

Lecture Notes in Artificial Intelligence 6173
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Jürgen Giesl Reiner Hähnle (Eds.)

Automated Reasoning

5th International Joint Conference, IJCAR 2010
Edinburgh, UK, July 16-19, 2010
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Jürgen Giesl
RWTH Aachen, LuFG Informatik 2
Ahornstr. 55, 52074 Aachen, Germany
E-mail: giesl@informatik.rwth-aachen.de

Reiner Hähnle
Chalmers University of Technology
Department of Computer Science
41296 Gothenburg, Sweden
E-mail: reiner@chalmers.se

Library of Congress Control Number: 2010929611

CR Subject Classification (1998): F.4.1, I.2.3, F.3, I.2, D.2.4, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-14202-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14202-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the proceedings of the 5th International Joint Conference
on Automated Reasoning (IJCAR 2010). IJCAR 2010 was held during July
16-19 as part of the 2010 Federated Logic Conference, hosted by the School of
Informatics at the University of Edinburgh, Scotland. Support by the conference
sponsors – EPSRC, NSF, Microsoft Research, Association for Symbolic Logic,
CADE Inc., Google, Hewlett-Packard, Intel – is gratefully acknowledged.

IJCAR is the premier international joint conference on all topics in automated
reasoning, including foundations, implementations, and applications. Previous
IJCAR conferences were held at Siena (Italy) in 2001, Cork (Ireland) in 2004,
Seattle (USA) in 2006, and Sydney (Australia) in 2008. IJCAR comprises sev-
eral leading conferences and workshops. In 2010, IJCAR was the fusion of the
following events:

– CADE: International Conference on Automated Deduction
– FroCoS: International Symposium on Frontiers of Combining Systems
– FTP: International Workshop on First-Order Theorem Proving
– TABLEAUX: International Conference on Automated Reasoning with An-

alytic Tableaux and Related Methods

There were 89 submissions (63 regular papers and 26 system descriptions) of
which 40 were accepted (28 regular papers and 12 system descriptions). Each
submission was assigned to at least three Program Committee members, who
carefully reviewed the papers, with the help of 92 external referees. Afterwards,
the submissions were discussed by the Program Committee during two weeks by
means of Andrei Voronkov’s EasyChair system. We want to thank Andrei very
much for providing his system, which was very helpful for the management of
the submissions and reviews and for the discussion of the Program Committee.
We are extremely grateful to the members of the Program Committee and to
the external reviewers for all of their hard work in putting together an excel-
lent technical program spanning the entire spectrum of research in automated
reasoning.

IJCAR 2010 had invited talks by Leonardo de Moura and Johan van Ben-
them. Moreover, together with CAV, CSF, and ICLP, IJCAR had an invited
plenary talk by David Basin and an invited keynote talk by Deepak Kapur.
These proceedings contain a full paper and two abstracts corresponding to the
invited talks. We want to thank the invited speakers for their interesting and
inspiring presentations.

The Herbrand Award for distinguished contributions to automated reasoning
was given to David Plaisted in recognition of his many outstanding seminal
results in the field. The selection committee for the Herbrand Award included the
previous award winners of the last ten years, the CADE trustees, and the IJCAR

VI Preface

2010 Program Committee. The Herbrand Award ceremony and the acceptance
speech were part of the conference program.

We are grateful to the IJCAR 2010 Workshop Chair Aaron Stump for at-
tracting the following workshops that took place in association with IJCAR:

– Automatheo: Workshop on Automated Mathematical Theory Exploration
– CLoDeM: International Workshop on Comparing Logical Decision Methods
– EMSQMS: Workshop on Evaluation Methods for Solvers and Quality Met-

rics for Solutions
– LfSA: Logics for System Analysis
– MLPA: Workshop on Module Systems and Libraries for Proof Assistants
– PAAR: Workshop on Practical Aspects of Automated Reasoning
– SVARM: Synthesis, Verification and Analysis of Rich Models
– UITP: International Workshop on User Interfaces for Theorem Provers
– UniDL: Workshop on Uncertainty in Description Logics
– UNIF: International Workshop on Unification
– VERIFY: International Verification Workshop
– WING: Workshop on Invariant Generation
– WST: International Workshop on Termination

Moreover, the following competitions were held as part of IJCAR:

– CASC-J5: 5th IJCAR ATP System Competition
– Termination Competition 2010: 7th International Termination Compe-

tition

Many people helped to make IJCAR 2010 a success. We want to thank the
IJCAR Publicity Chair Viorica Sofronie-Stokkermans and we are grateful to
Geoff Sutcliffe for hosting the IJCAR website. The IJCAR 2010 Steering Com-
mittee consisted of Peter Baumgartner, Maria Paola Bonacina (Chair), Alan
Bundy, Jürgen Giesl, Rajeev Goré, Bernhard Gramlich, Reiner Hähnle, and Ull-
rich Hustadt. We are particularly indebted to the IJCAR 2010 Conference Chair
and IJCAR representative in the FLoC Steering Committee Alan Bundy, the
FLoC Steering Committee Chair Moshe Y. Vardi, the FLoC Conference Chairs
Leonid Libkin and Gordon Plotkin, and all the other members of the FLoC Orga-
nizing Committee and the Local Organizing Committee, who organized IJCAR
and the other conferences and workshops of FLoC in a very careful way.

May 2010 Jürgen Giesl
Reiner Hähnle

Conference Organization

Program Chairs

Jürgen Giesl
Reiner Hähnle

Program Committee

Carlos Areces Alessandro Armando
Franz Baader Peter Baumgartner
Bernhard Beckert Christoph Benzmüller
Nikolaj Bjørner Maria Paola Bonacina
Alan Bundy Gilles Dowek
Christian Fermüller Ulrich Furbach
Didier Galmiche Silvio Ghilardi
Martin Giese Rajeev Goré
Bernhard Gramlich Ullrich Hustadt
Deepak Kapur Viktor Kuncak
Rustan Leino Carsten Lutz
George Metcalfe Aart Middeldorp
Neil Murray Tobias Nipkow
Nicola Olivetti Nicolas Peltier
Frank Pfenning Brigitte Pientka
Andre Platzer Christophe Ringeissen
Albert Rubio Renate A. Schmidt
Carsten Schürmann Roberto Sebastiani
Viorica Sofronie-Stokkermans Aaron Stump
Geoff Sutcliffe Cesare Tinelli
Ashish Tiwari Andrei Voronkov
Christoph Weidenbach

Conference Chair

Alan Bundy

Workshop Chair

Aaron Stump

Publicity Chair

Viorica Sofronie-Stokkermans

VIII Organization

Local Organization

Leonid Libkin, Gordon Plotkin, Philip Scott, Nicole Schweikardt, Stephan
Kreutzer, Seth Fogarty, Floris Geerts, Kousha Etessami, Anuj Dawar, Bartek
Klin, Perdita Stevens, Claire David, Ian Stark, Paul Jackson, Jacques Fleuriot

External Reviewers

Vincent Aravantinos Serge Autexier Taus Brock-Nannestad
Thomas Bolander Thorsten Bormer Thierry Boy de la Tour
Daniel Bruns Ricardo Caferra Serenella Cerrito
Kaustuv Chaudhuri Yannick Chevalier Ranald Clouston
Jeremy Dawson Stéphane Demri Mnacho Echenim
Bernd Finkbeiner Camillo Fiorentini Pascal Fontaine
Oliver Friedmann Sicun Gao Laura Giordano
Birte Glimm Valentina Gliozzi Amit Goel
Daniel Goŕın Alberto Griggio Gudmund Grov
Joe Hendrix Thomas Hillenbrand Carsten Ihlemann
Swen Jacobs Manfred Jaeger Emil Jerabek
Moa Johansson Yevgeny Kazakov Vladimir Klebanov
Martin Korp Markus Krötzsch Alexander Kurz
Ralf Küsters Roman Kuznets Dominique
Stéphane Lengrand Espen H. Lian Larchey-Wendling
Sven Linker Salvador Lucas Michael Ludwig
Thomas Lukasiewicz João Marcos Andrew Matusiewicz
Guillaume Melquiond Daniel Méry Ralf Möller
César Muñoz Enrica Nicolini Ligia Nistor
Albert Oliveras Luigi Palopoli Björn Pelzer
Rafael Peñaloza Adam Poswolsky Gian Luca Pozzato
Florian Rabe Silvio Ranise Hilverd Reker
David Renshaw Enric Philipp Rümmer
Gernot Salzer Rodŕıguez-Carbonell Andreas Schaefer
Luis Menasché Andreas Schnabl Lutz Schröder

Schechter Gert Smolka Christian Sternagel
Mark Stickel Audun Stolpe Lutz Straßburger
Thomas Studer Philippe Suter René Thiemann
Stefano Tonetta Xavier Urbain Vincent van Oostrom
Helmut Veith Michele Vescovi Laurent Vigneron
Uwe Waldmann Edwin Westbrook Florian Widmann
Sarah Winkler Patrick Wischnewski

Table of Contents

Logical Frameworks and Combination of Systems

Curry-Style Explicit Substitutions for the Linear and Affine Lambda
Calculus . 1

Anders Schack-Nielsen and Carsten Schürmann

Beluga: A Framework for Programming and Reasoning with Deductive
Systems (System Description) . 15

Brigitte Pientka and Jana Dunfield

MCMT: A Model Checker Modulo Theories . 22
Silvio Ghilardi and Silvio Ranise

On Hierarchical Reasoning in Combinations of Theories 30
Carsten Ihlemann and Viorica Sofronie-Stokkermans

Description Logic I

Global Caching for Coalgebraic Description Logics 46
Rajeev Goré, Clemens Kupke, Dirk Pattinson, and Lutz Schröder

Tractable Extensions of the Description Logic EL with Numerical
Datatypes . 61

Despoina Magka, Yevgeny Kazakov, and Ian Horrocks

Higher-Order Logic

Analytic Tableaux for Higher-Order Logic with Choice 76
Julian Backes and Chad E. Brown

Monotonicity Inference for Higher-Order Formulas 91
Jasmin Christian Blanchette and Alexander Krauss

Sledgehammer: Judgement Day . 107
Sascha Böhme and Tobias Nipkow

Invited Talk

Logic between Expressivity and Complexity . 122
Johan van Benthem

Verification

Multi-Prover Verification of Floating-Point Programs 127
Ali Ayad and Claude Marché

X Table of Contents

Verifying Safety Properties with the TLA+ Proof System 142
Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and
Stephan Merz

MUNCH - Automated Reasoner for Sets and Multisets 149
Ruzica Piskac and Viktor Kuncak

A Slice-Based Decision Procedure for Type-Based Partial Orders 156
Elena Sherman, Brady J. Garvin, and Matthew B. Dwyer

Hierarchical Reasoning for the Verification of Parametric Systems 171
Viorica Sofronie-Stokkermans

First-Order Logic

Interpolation and Symbol Elimination in Vampire . 188
Kryštof Hoder, Laura Kovács, and Andrei Voronkov

iProver-Eq: An Instantiation-Based Theorem Prover with Equality 196
Konstantin Korovin and Christoph Sticksel

Classical Logic with Partial Functions . 203
Hans de Nivelle

Non-Classical Logic

Automated Reasoning for Relational Probabilistic Knowledge
Representation . 218

Christoph Beierle, Marc Finthammer, Gabriele Kern-Isberner, and
Matthias Thimm

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic with
Converse . 225

Rajeev Goré and Florian Widmann

Terminating Tableaux for Hybrid Logic with Eventualities 240
Mark Kaminski and Gert Smolka

Herod and Pilate: Two Tableau Provers for Basic Hybrid Logic 255
Marta Cialdea Mayer and Serenella Cerrito

Induction

Automated Synthesis of Induction Axioms for Programs with
Second-Order Recursion . 263

Markus Aderhold

Focused Inductive Theorem Proving . 278
David Baelde, Dale Miller, and Zachary Snow

Table of Contents XI

Decision Procedures

A Decidable Class of Nested Iterated Schemata . 293
Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

RegSTAB: A SAT Solver for Propositional Schemata 309
Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

Linear Quantifier Elimination as an Abstract Decision Procedure 316
Nikolaj Bjørner

A Decision Procedure for CTL∗ Based on Tableaux and Automata 331
Oliver Friedmann, Markus Latte, and Martin Lange

URBiVA: Uniform Reduction to Bit-Vector Arithmetic 346
Filip Marić and Predrag Janičić

Keynote Talk

Induction, Invariants, and Abstraction . 353
Deepak Kapur

Arithmetic

A Single-Significant-Digit Calculus for Semi-Automated
Guesstimation . 354

Jonathan A. Abourbih, Luke Blaney, Alan Bundy, and Fiona McNeill

Perfect Discrimination Graphs: Indexing Terms with Integer
Exponents . 369

Hicham Bensaid, Ricardo Caferra, and Nicolas Peltier

An Interpolating Sequent Calculus for Quantifier-Free Presburger
Arithmetic . 384

Angelo Brillout, Daniel Kroening, Philipp Rümmer, and
Thomas Wahl

Invited Talk

Bugs, Moles and Skeletons: Symbolic Reasoning for Software
Development . 400

Leonardo de Moura and Nikolaj Bjørner

Applications

Automating Security Analysis: Symbolic Equivalence of Constraint
Systems . 412

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

XII Table of Contents

System Description: The Proof Transformation System CERES 427
Tsvetan Dunchev, Alexander Leitsch, Tomer Libal,
Daniel Weller, and Bruno Woltzenlogel Paleo

Premise Selection in the Naproche System . 434
Marcos Cramer, Peter Koepke, Daniel Kühlwein, and
Bernhard Schröder

On the Saturation of YAGO . 441
Martin Suda, Christoph Weidenbach, and Patrick Wischnewski

Description Logic II

Optimized Description Logic Reasoning via Core Blocking 457
Birte Glimm, Ian Horrocks, and Boris Motik

An Extension of Complex Role Inclusion Axioms in the Description
Logic SROIQ . 472

Yevgeny Kazakov

Termination

Decreasing Diagrams and Relative Termination . 487
Nao Hirokawa and Aart Middeldorp

Monotonicity Criteria for Polynomial Interpretations over the
Naturals . 502

Friedrich Neurauter, Aart Middeldorp, and Harald Zankl

Termination Tools in Ordered Completion . 518
Sarah Winkler and Aart Middeldorp

Author Index . 533

Curry-Style Explicit Substitutions for the Linear
and Affine Lambda Calculus�

Anders Schack-Nielsen and Carsten Schürmann

IT University of Copenhagen
Copenhagen, Denmark

{anderssn,carsten}@itu.dk

Abstract. We introduce a calculus of explicit substitutions for the λ-
calculus with linear, affine, and intuitionistic variables and meta-variables.
Using a Curry-style formulation, we redesign and extend previously sug-
gested type systems for linear explicit substitutions. This way, we obtain
a fine-grained small-step reduction semantics suitable for efficient imple-
mentation. We prove that subject reduction, confluence, and termina-
tion holds. All theorems have been formally verified in the Twelf proof
assistant.

1 Introduction

Explicit substitutions [1,7,13] are central for modern implementations of systems
that provide mechanisms for variable binding, such as logical frameworks [14],
theorem provers [8,2], proof assistants [3], and programming language implemen-
tations [19,12,18,15] and analysis [6]. Many of these systems, especially proof
assistants, employ meta-variables as a means to implement proof search and
type reconstruction. As substructural logics become more prevalent — examples
include separation logic, the logic of bunched implications, and even concurrent
process calculi — we are faced with the challenge of engineering sound, efficient,
and implementable explicit substitution calculi for substructural λ-calculi that
give us confidence about our design decisions and attest to the reliability of the
final product.

When denoting a λ-term using de Bruijn indices, we usually use one of two
commonly accepted notation styles. Following Church, we encode the simply-
typed term λx : a.x (of type a → a) as λ · : a. 1 where 1 refers to the innermost
binder occurrence. Following Curry, we simplify this encoding, omit the type
label, and write λ1. Church style encodings are a bit more verbose, but the
real disadvantage lies in the additional code that has to be written to keep
type labels up to date, for example in substitution application for dependently
typed λ-terms. Therefore, for a real implementation, the brevity of Curry-style
notation renders it preferable. However, in reality, it is not as easily adopted, in
part because one needs to be sure a priori that type labels are indeed irrelevant
� This work was in part supported by NABITT grant 2106-07-0019 of the Danish

Strategic Research Council.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Schack-Nielsen and C. Schürmann

or at the very least efficiently inferable whenever necessary using techniques such
as, for example, bi-directional type checking.

Further differences between the two notation systems become apparent if we
consider substructural λ-calculi. Linear λ-calculi [4] are of interest predominantly
to the logical framework community because they permit elegant and direct
encodings of formal languages that consume resources. A linear λ-term binds a
resource that must be consumed (referred to) in the body of the term exactly
once. For two reasons, affine λ-calculi are of interest as well. First, affine types
are useful when modelling programming languages with state, because heap cells
behave similarly to affine resources. Second, affine types have proven useful in
the development of linear unification algorithms [17]. The difference to linear
resources is that affine resources must be consumed at most once, which means
exactly once or not at all.

Consider, for example, the term M̂N (pronounced M linearly applied to
N) of type B in some context Γ . Given the standard formulation of the �
elimination rule

Γ1 � M : A � B Γ2 � N : A
� E

Γ1, Γ2 � M̂N : B

it seems impossible to derive how to split Γ into Γ1 and Γ2 without examining
the structure of M or N . Even worse, deriving the context split might be further
complicated if M or N contain meta-variables.

When working with explicit substitutions this poses a real problem, since sub-
stitutions must correspond to the context they are substituting for. Furthermore,
this means that the reduction (M̂N)[s] →M [s1]̂N [s2] depends on the context
split.

The lack of information on how to split the context in the Curry-style encoding
suggests that the alternative Church-style version M Γ̂1��Γ2 N is to be preferred.
This version, however, renders terms, types, and contexts mutually dependent,
which puts a significant additional burden on the implementation effort. In fact,
we suspect that the prospect of the unwieldy complexity is at least in part
responsible for that there exist only so few implementations of substructural
logical frameworks, theorem provers, and other linear logic based systems.

The problem is not new but has been observed in the past. Cervesato et al. [5]
give a good overview and discuss various suggestions and their shortcomings. But
none of the suggestions are satisfactory as they are either too cumbersome to be
usable in practice or lack basic properties such as subject reduction. Additionally,
none of the suggestions scale to meta-variables.

In this paper we demonstrate that Curry-style explicit substitutions can be
made to work. We define a type system for a linear and affine λ-calculus with
explicit substitutions and meta-variables together with a Curry-style reduction
semantics. We prove subject reduction, confluence, and termination for our cal-
culus. This means that we can guarantee type preservation of the reduction
(M̂N)[s] → M [s]̂N [s] without splitting the substitution, and that our cal-
culus therefore permits much more concise data structures in implementations
than previously suggested type systems for linear λ-calculi.

Curry-Style Explicit Substitutions for the Linear and Affine λ-Calculus 3

The main contributions of this work are the subject reduction and confluence
theorems. Subject reduction is achieved by a novel type system allowing con-
trolled occurrence of garbage terms (see the rules typ-cons-ua and typ-cons-ul
in Figure 3). Confluence on terms with meta-variables is achieved by a limited
η-expansion of substitutions.

All theorems proven in this paper have been mechanically checked by Twelf.
The formalized theorems are annotated with the corresponding source file in
which the proof can be found. All Twelf source files can be downloaded at
http://www.twelf.org/~celf/download/ex-sub-aff.tgz. As for empirical
evidence, we have implemented our calculus as the core data structure of the
Celf system [16]. The system implements several algorithms, including heredi-
tary substitutions, higher-order affine and linear unification, type reconstruction,
and a logic programming inspired proof search engine. Our concise Curry-style
representation proved to be both sufficient and elegant in all these extensive
applications.

This paper is organized as follows. In Section 2 we define the explicit sub-
stitution calculus. The type system is defined in Section 3, and the reduction
semantics is defined in Section 4. Section 5 gives a brief sketch of the extension
to dependent types. Finally, Section 6 concludes.

2 Explicit Substitutions

We define a calculus of explicit substitutions for the linear and affine λ-calculus.
In order to simplify the presentation we restrict attention to the simply typed
fragment. A generalization to dependent types is direct, but omitted for presen-
tation purposes. We will sketch the extension to dependent types in Section 5.
Our calculus denotes variables in de Bruijn notation, since it is closer to a real
implementation, avoids naming problems due to α-conversion, and highlights the
nature of the explicit substitutions.

Types: A,B ::= a | A & B | A � B | A −@ B | A→ B

Terms: M,N ::= 1 | M [s] | 〈M,N〉 | fst M | snd M | X [s]

| λ̂M | λ̊M | λM | M̂N | M@N | M N

Substitutions: s, t ::= id | ↑ | Mf .s | s ◦ t
Linearity flags: f ::= I | A | L

Types consist of base types (a), additive pairs (A & B), linear functions (A �
B), affine functions (A −@ B), and intuitionistic functions (A→ B).

Terms consist of the various introduction and elimination forms for each of
the type constructs along with variable indices (1), meta-variables (X), and
closures (M [s]). Variables n with n > 1 do not need to be included explicitly
in the syntax, since they can be represented by a closure as described below.
We require each meta-variable to be under a closure as it gives rise to more
uniform normal forms; an alternative would have been to add the “reduction”
rule X → X [id]. Meta-variables are also called logic variables.

http://www.twelf.org/~celf/download/ex-sub-aff.tgz

4 A. Schack-Nielsen and C. Schürmann

Substitutions are composed from identity, shifts, intuitionistic (M I), affine
(MA), and linear (ML) extensions, and an explicit substitution composition. In
the interest of readability we introduce a syntactic category f for linearity flags.

Example 1. Consider the term (λ̂1̂2)̂2 where we write 2 as a shorthand for
1[↑]. In a named representation, this term is written as (λ̂x.x̂y)̂z. The 1 refers
to the variable bound by the λ̂, the first 2 to the first free variable (because it
is in the scope of the λ̂), and the second 2 to the other free variable. Explicit
substitutions are used to represent an intermediate stage during ordinary β-
reduction. Our term reduces to (1̂2)[2L.id] where the L flag signifies that we
are substituting for a linear variable.

The intuition behind each of the substitution constructs is the following: A term
under an identity is supposed to reduce to itself. A shift applied to a term incre-
ments all freely occurring variables by one. An extension Mf .s will substitute
M for the variable 1, decrement all other freely occurring variables, and then
apply s to them. Finally a composition of two substitutions s ◦ t represents the
substitution that first applies s and then t, i.e. M [s ◦ t] is supposed to reduce to
the same term as reducing each closure individually in M [s][t].

We will use ↑n where n ≥ 0 as a short-hand for n compositions of shift, i.e.
↑ ◦ (↑ ◦ (. . . ◦ (↑ ◦ ↑) . . .)), where ↑0 means id. Additionally, de Bruijn indices
n with n > 1 are short-hand for 1[↑n−1].

3 The Type System

Before we get to the actual typing judgments we introduce contexts.

3.1 Contexts

Since we are using de Bruijn indices, contexts are simply ordered lists of types
without any names. Looking up a variable n in a context Γ amounts to selecting
the nth element of Γ . This means that the usual context splitting from named
versions of linear λ-calculus has to be redefined, as this would otherwise ruin the
meaning of de Bruijn variables. We have to essentially introduce dummy elements
in the context whenever we split, in order to maintain the correct position of
every type in the context. These dummy elements are in some presentations [5]
written as Γ ,̂ . Alternatively, one may view this as never actually splitting
the context, but instead maintaining a bit-vector with the same length as the
context, which indicates whether each particular variable is available.

For a concise representation we will superimpose the bit-vector signifying
availability on the context along with the information about whether the dec-
laration is linear, affine, or intuitionistic. This information is called a context
linearity flag.

Contexts: Γ ::= · | Γ,Al

Context linearity flags: l ::= f | UL | UA

Curry-Style Explicit Substitutions for the Linear and Affine λ-Calculus 5

join-nil
· = · �� ·

Γ = Γ1 �� Γ2
join-i

Γ, AI = Γ1, A
I �� Γ2, A

I

Γ = Γ1 �� Γ2
join-l-used

Γ, AUL = Γ1, A
UL �� Γ2, A

UL

Γ = Γ1 �� Γ2
join-l-L

Γ, AL = Γ1, A
L �� Γ2, A

UL

Γ = Γ1 �� Γ2
join-l-R

Γ, AL = Γ1, A
UL �� Γ2, A

L

Γ = Γ1 �� Γ2
join-a-used

Γ, AUA = Γ1, A
UA �� Γ2, A

UA

Γ = Γ1 �� Γ2
join-a-L

Γ, AA = Γ1, A
A �� Γ2, A

UA

Γ = Γ1 �� Γ2
join-a-R

Γ, AA = Γ1, A
UA �� Γ2, A

A

Fig. 1. Context splitting

The usual linear, affine, and intuitionistic assumptions are written as Γ,AL,
Γ,AA, and Γ,AI, respectively. We flag a declaration with UA to denote that an
affine assumption is not available, and similarly flag unavailable linear assump-
tions with UL.

The standard definition of the context splitting judgment Γ = Γ1 �� Γ2 (or
context joining judgment depending on the direction it is being read) is shown
in Figure 1.

We will introduce a couple of auxiliary definitions to do with context splitting
and context linearity flag management. Any context may be trivially split into
Γ = Γ �� Γ ′ by putting all affine and linear assumptions to the left. This means
that Γ ′ will consist of only the intuitionistic parts of Γ . We will denote this by
Γ and make it into a separate definition.

· = · Γ,AI = Γ,AI Γ,AL = Γ ,AUL Γ,AA = Γ ,AUA

Γ,AUL = Γ ,AUL Γ,AUA = Γ,AUA

We will need to make reference to the largest context that can split to a given
context. This is denoted Γ and defined easily by changing every UL to L and
UA to A.

· = · Γ,AI = Γ ,AI Γ,AL = Γ,AL Γ,AA = Γ ,AA

Γ,AUL = Γ,AL Γ,AUA = Γ,AA

Additionally, we will need a predicate on contexts specifying that there are no
linear assumptions. We write this predicate as nolin(Γ) and it is defined to be
true iff no context linearity flag in Γ is L.

Notice that Γ = Γ implies nolin(Γ) whereas the opposite does not hold, since
nolin(Γ) does not preclude occurrences of A in Γ .

6 A. Schack-Nielsen and C. Schürmann

nolin(Γ)
typ-var

Γ, Af � 1 : A

Γ � M : A Γ � N : B
typ-pair

Γ � 〈M, N〉 : A & B

Γ � M : A & B
typ-fst

Γ � fst M : A

Γ � M : A & B
typ-snd

Γ � snd M : B

Γ, AL � M : B
typ-lam-l

Γ � λ̂M : A � B

Γ, AA � M : B
typ-lam-a

Γ � λ̊M : A −@ B

Γ = Γ1 �� Γ2 Γ1 � M : A � B Γ2 � N : A
typ-app-l

Γ � M̂N : B

Γ = Γ1 �� Γ2 nolin(Γ2) Γ1 � M : A −@ B Γ2 � N : A
typ-app-a

Γ � M@N : B

Γ, AI � M : B
typ-lam-i

Γ � λM : A → B

Γ � M : A → B Γ � N : A
typ-app-i

Γ � M N : B

Γ � s : Γ ′ Γ ′ � M : A
typ-clos

Γ � M [s] : A

Γ � s : ΓX
typ-metavar

Γ � X[s] : AX

Fig. 2. Typing of terms

Finally, we will need an affine weakening relation Γ �aff Γ
′, which is defined as

Γ �aff Γ
′ ≡ ∃Γ ′′. Γ = Γ ′′ �� Γ ′ ∧ nolin(Γ ′′)

Notice that affine weakening is reflexive and transitive, as it merely amounts to
changing some number of As into UAs.

3.2 Types

The typing judgments for terms and substitutions are denoted Γ � M : A and
Γ � s : Γ ′, respectively. The typing rules are shown in Figures 2 and 3. In both
cases the Γ describes the types and availability of the free variables, and in the
case of substitution typing, Γ ′ describes the context that s substitutes for.

Each meta-variableX carries its own context ΓX and type AX as referenced in
the typing rule typ-metavar. This is equivalent to introducing a new contextual
modal context of the form Δ ::= · | Δ, (X :: A in Γ). In order to avoid clutter, we
omit this additional context from the judgments, since it would simply remain
constant and be copied everywhere. Instead we keep the lookup implicit by
writing ΓX and AX to mean that X :: AX in ΓX is in Δ.

The typ-cons-i, typ-cons-a, and typ-cons-l are the natural typing rules for
substitution extensions. A Church-style explicit substitution calculus would then
add two new syntactic substitution constructs, ⊥UL .s and ⊥UA .s, to correspond
to the contexts Γ ′, AUL and Γ ′, AUA with the following typing rules.

Γ � s : Γ ′
typ-cons-ul’

Γ � ⊥UL .s : Γ ′, AUL

Γ � s : Γ ′
typ-cons-ua’

Γ � ⊥UA .s : Γ ′, AUA

Curry-Style Explicit Substitutions for the Linear and Affine λ-Calculus 7

Γ �aff Γ ′
typ-id

Γ � id : Γ ′

Γ �aff Γ ′ l ∈ {I,A,UL,UA}
typ-shift

Γ, Al � ↑ : Γ ′

Γ = Γ1 �� Γ2 Γ1 � M : A Γ2 � s : Γ ′
typ-cons-l

Γ � ML.s : Γ ′, AL

Γ = Γ1 �� Γ2 nolin(Γ1) Γ1 � M : A Γ2 � s : Γ ′
typ-cons-a

Γ � MA.s : Γ ′, AA

Γ �i M : A Γ � s : Γ ′
typ-cons-ul

Γ � ML.s : Γ ′, AUL

Γ �i M : A Γ � s : Γ ′
typ-cons-ua

Γ � MA.s : Γ ′, AUA

Γ � M : A Γ � s : Γ ′
typ-cons-i

Γ � M I.s : Γ ′, AI

Γ � s2 : Γ ′′ Γ ′′ � s1 : Γ ′
typ-comp

Γ � s1 ◦ s2 : Γ ′

Fig. 3. Typing of substitutions

These substitution constructs read as: do not substitute anything for the vari-
able 1 (since it does not occur), but decrement all free variables by one and
apply s. This approach has been tried [9] and yields the problem described in
the introduction, i.e. the reduction (M̂N)[s] → M [s1]̂N [s2] needs to split s
according to the context split and thus cannot be performed without this addi-
tional information.

Our solution to this problem is to reuse the syntax ML.s and MA.s where we
would expect ⊥UL .s and ⊥UA .s. The idea is then to perform the substitution
splitting on the typing judgments instead of the syntax — this is the crucial
switch from the Church-style approach to our Curry-style formulation. How-
ever, we cannot reuse the typing rules typ-cons-ul’ and typ-cons-ua’, since
this would leave M untyped and prevent us from proving termination. And we
cannot just require M to be typed in some context, since M can potentially
violate linearity constraints. We therefore introduce a relaxed typing judgment
Γ �i M : A and get the typing rules typ-cons-ul and typ-cons-ua. This relaxed
judgment is similar to Γ � M : A except that it makes all variables available
everywhere disregarding linearity and affineness, i.e. it can be obtained by re-
moving all nolin constraints and by replacing all the relations “Γ = Γ1 �� Γ2”,
“Γ �aff Γ

′”, and “Γ ′ = Γ” by identity relations.

Example 2. Consider again the term (1̂2)[2L.id] from Example 1. If we follow
the Church-style system sketched above, this term reduces to 1[2L.id]̂2[⊥UL .id],
which in a few more steps reduces to the normal form 2̂1. Note that the two
explicit substitutions are syntactically different. In our system, we can however
leave the substitution unchanged 1[2L.id]̂2[2L.id] and perform splitting only on
the type level using the rule typ-cons-ul defined in Figure 3. The resulting
normal form is of course the same.

8 A. Schack-Nielsen and C. Schürmann

The fact that this solves the problem and allows us to split type derivations
of substitutions without changing the actual syntactic substitution is shown in
Lemma 3.

Lemma 1 (int-typing-lemmas.elf)

1. If Γ � M : A then Γ �i M : A.
2. If Γ � s : Γ ′ then Γ �i s : Γ ′.

Since affine assumptions can be weakened away at all leaves of a typing deriva-
tion, we get the following weakening lemma:

Lemma 2 (weakening.elf)

1. If Γ1 � M : A and Γ2 �aff Γ1 then Γ2 � M : A.
2. If Γ1 � s : Γ ′ and Γ2 �aff Γ1 then Γ2 � s : Γ ′.
3. If Γ � s : Γ ′

1 and Γ ′
1 �aff Γ

′
2 then Γ � s : Γ ′

2.

4 Reduction Semantics

The reduction rules defining the semantics are given in Figure 4. In order to
give a concise presentation of the congruence rules, we use Y {Z} to denote an
expression Y with a hole in it, where the hole has been replaced by Z. Note that
this is completely syntactical and has no α-equivalence problems as we are using
de Bruijn indices.

Most reduction systems with explicit substitutions also include reductions
such as 1 . ↑ → id and 1[s] . (↑ ◦ s) → s, and indeed without them (or something
similar) the system is not confluent. However, since these reductions essentially
are η-reductions on substitutions, it seems that they should really turn the other
way, enabling us to η-expand substitutions. We will regain confluence by allowing
substitution expansion at meta-variables. This allows us to bound the expansion
by the context carried by the meta-variable, since this must match the type of
the substitution. The substitution expansion rules are given in Figure 5 with the
eta-sub rule extending the rules in Figure 4. Notice that the eta-x-shifts-*
rules are exactly s→ 1[s] . (↑ ◦ s) in the case where s = ↑n.

Six desirable features of explicit substitution calculi are often referred to as
confluence (C), meta-confluence (MC), preservation of strong normalization
(PSN), strong normalization (SN), simulation of ordinary β-reduction (SIM),
and full composition (FC) [10]. As our calculus has its roots in the calculus
λσ we do not have strong normalization [11], but for implementations relying
on controlled reduction strategies this is not necessarily an issue. However, our
confluence result (Theorem 5) actually proves meta-confluence since we have
included meta-variables in our calculus.

4.1 Type Preservation

Lemma 3 (subst-lemmas.elf). Substitutions preserve context splits.

Curry-Style Explicit Substitutions for the Linear and Affine λ-Calculus 9

beta-l (λ̂M)̂N → M [NL.id]
beta-a (̊λM)@N → M [NA.id]
beta-i (λM) N → M [N I.id]
beta-fst fst〈M, N〉 → M
beta-snd snd〈M, N〉 → N

clos-var 1[Mf .s] → M
clos-clos M [s][t] → M [s ◦ t]
clos-metavar X[s][t] → X[s ◦ t]
clos-pair 〈M, N〉[s] → 〈M [s], N [s]〉
clos-fst (fst M)[s] → fst (M [s])
clos-snd (snd M)[s] → snd (M [s])
clos-lam-l (λ̂M)[s] → λ̂(M [1L.(s ◦ ↑)])
clos-lam-a (̊λM)[s] → λ̊(M [1A.(s ◦ ↑)])
clos-lam-i (λM)[s] → λ(M [1I.(s ◦ ↑)])
clos-app-l (M̂N)[s] → M [s]̂N [s]
clos-app-a (M@N)[s] → M [s]@N [s]
clos-app-i (M N)[s] → M [s] N [s]
clos-id M [id] → M

comp-id-L id ◦ s → s
comp-id-R s ◦ id → s

comp-shift ↑ ◦ (Mf .s) → s
comp-cons (Mf .s) ◦ t → M [t]f .(s ◦ t)
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

N → N ′
cong-tm-tm

M{N} → M{N ′}
s → s′

cong-tm-sub
M{s} → M{s′}

M → M ′
cong-sub-tm

s{M} → s{M ′}
t → t′

cong-sub-sub
s{t} → s{t′}

Fig. 4. Reduction rules

1. If Γ � s : Γ ′ and Γ ′ = Γ ′
1 �� Γ ′

2 then there exists Γ1 and Γ2 such that
Γ1 � s : Γ ′

1, Γ2 � s : Γ ′
2, and Γ = Γ1 �� Γ2.

2. If Γ � s : Γ ′ and Γ ′ = Γ ′ �� Γ ′
2 then there exists Γ2 such that Γ2 � s : Γ ′

2
and Γ = Γ �� Γ2.

3. If Γ � s : Γ ′ and nolin(Γ ′) then nolin(Γ).

Notice that the second part of Lemma 3 is equivalent to the statement that
Γ � s : Γ ′ implies Γ � s : Γ ′. Also it might be tempting to try and prove the
second part from the first, but this does not work since Γ2 � s : Γ ′ does not
imply Γ2 = Γ2 due to the possible existence of affine assumptions in Γ2.

With this lemma we can now prove type-preservation:

Theorem 1 (preservation-thm.elf). The reduction relation → is type-
preserving.

10 A. Schack-Nielsen and C. Schürmann

eta-x-shifts-i ↑n: Γ, AI →η (n + 1)I. ↑n+1

eta-x-shifts-a ↑n: Γ, AA →η (n + 1)A. ↑n+1

eta-x-shifts-ua ↑n: Γ, AUA →η (n + 1)A. ↑n+1

eta-x-shifts-l ↑n: Γ, AL →η (n + 1)L. ↑n+1

eta-x-shifts-ul ↑n: Γ, AUL →η (n + 1)L. ↑n+1

s : ΓX →η s′

eta-sub
X[s] → X[s′]

s : Γ →η s′

eta-x-i
M I.s : Γ, AI →η M I.s′

s : Γ →η s′

eta-x-a
MA.s : Γ, AA →η MA.s′

s : Γ →η s′

eta-x-ua
MA.s : Γ, AUA →η MA.s′

s : Γ →η s′

eta-x-l
ML.s : Γ, AL →η ML.s′

s : Γ →η s′

eta-x-ul
ML.s : Γ, AUL →η ML.s′

Fig. 5. Substitution expansion

1. If Γ � M : A and M →M ′ then Γ � M ′ : A.
2. If Γ � s : Γ ′ and s→ s′ then Γ � s′ : Γ ′.
3. If Γ � s : Γ ′ and s : Γ ′ →η s

′ then Γ � s′ : Γ ′.

4.2 σ-Reduction

Before we prove confluence and termination of the entire calculus, we deal with
substitutions. This will allow us to reduce the confluence and termination proofs
to the case of the ordinary λ-calculus.

Consider the reduction relation without the beta-* rules. We will call this
sub-relation σ-reduction and denote it →σ. A term or substitution that cannot
σ-reduce is said to be in σ-normal form. We write this as the postfix predicate
→σ.

Theorem 2 (signf-exists.elf). σ-reduction is terminating.

1. For all terms M there exists a term M ′ such that M →∗
σ M

′ and M ′ →σ.
2. For all substitutions s there exists a substitution s′ such that s →∗

σ s′ and
s′ →σ.

Furthermore typed σ-reduction is confluent, which is equivalent to having unique
normal forms, since it is terminating.1

For typed terms M and substitutions s we will denote their unique σ-normal
forms σ(M) and σ(s), respectively.

Theorem 3 (signf-uniq.elf). Typed σ-reduction is confluent.

1. If Γ � M : A, M →∗
σ M1, and M →∗

σ M2 then there exists a term M ′ such
that M1 →∗

σ M
′ and M2 →∗

σ M
′.

1 The reason why we need types is because confluence relies on η-expansion of substi-
tutions.

Curry-Style Explicit Substitutions for the Linear and Affine λ-Calculus 11

↑n ∼η ↑n

s ∼η s′ M �→σ

Mf .s ∼η Mf .s′

s ∼η s′

s′ ∼η s

↑n+1 ∼η s

↑n ∼η (n + 1)ff .s

Fig. 6. η-equivalence of substitutions

2. If Γ � s : Γ ′, s →∗
σ s1, and s →∗

σ s2 then there exists a substitution s′ such
that s1 →∗

σ s
′ and s2 →∗

σ s
′.

Having confluence of σ-reduction gives us a lot of nice algebraic properties.
One of the most important properties for the formalizations of the proofs is
σ(σ(M [s])[t]) = σ(M [s ◦ t]), which shows that substitution composition indeed
behaves as expected. But since we have restricted η-conversions on substitutions
we get no immediate corollaries from σ-confluence concerning η-equivalences. To
remedy this we will first define η-equivalence on substitutions in σ-normal form
and then show that η-equivalent substitutions indeed behave identically. The
definition of η-equivalence is given in Figure 6. The following lemma shows that
∼η is an equivalence relation on typed substitutions since symmetry is given by
definition.

Lemma 4 (signf-equiv.elf). Reflexivity and transitivity for η-equivalence of
substitutions.

1. If s →σ then s ∼η s.
2. If Γ � s1 : Γ ′, Γ � s2 : Γ ′, Γ � s3 : Γ ′, s1 ∼η s2, and s2 ∼η s3 then

s1 ∼η s3.

Lemma 5 (signf-equiv.elf). η-equivalence of substitutions contains η-
expansion.

If s : Γ →η s
′ and s →σ then s ∼η s

′.

Theorem 4 (signf-equiv.elf). Substitutions that are η-equivalent behave the
same way with respect to σ-reduction.

If Γ ′ � M : A, Γ ′ � t : Γ ′′, Γ � s : Γ ′, Γ � s′ : Γ ′, and s ∼η s
′ then:

1. σ(M [s]) = σ(M [s′])
2. σ(t ◦ s) ∼η σ(t ◦ s′)

4.3 Confluence and Termination

Now we have the tools necessary to prove confluence of the entire reduction
relation.

Lemma 6 (Generalized Interpretation Method). Given two sets B ⊆ A,
reduction relations R1 and R2 on A and B, respectively, and a function f : A→
B such that:

12 A. Schack-Nielsen and C. Schürmann

M

M1 f(M) M2

f(M1) f(M2)

M ′

R∗
1 R∗

1
R∗

1

R∗
1 R∗

1

R∗
2 R∗

2

R∗
2 R∗

2

M

M1 σ(M) M2

σ(M1) σ(M2)

M ′

β∗β∗

β∗ β∗

Fig. 7. Confluence by the interpretation method

1. R2 ⊆ R∗
1.

2. ∀M ∈ A : M →∗
R1

f(M).
3. ∀M,M ′ ∈ A : M →∗

R1
M ′ ⇒ f(M) →∗

R2
f(M ′).

Then confluence of R2 implies confluence of R1.

Proof. The proof is by simple diagram chasing as shown in Figure 7 on the left.

To prove confluence of the entire reduction relation we use Lemma 6 with σ-
normalization as the interpreting function f . As R2 we take ordinary β-reduction
on σ-normal forms, which in our case can be defined as one of the beta-* rules
followed by σ-normalization. The situation is illustrated in Figure 7 on the right.
First everything is σ-normalized, then σ-normalization is shown to preserve β-
reduction, and finally confluence of the usual λ-calculus is used to conclude
confluence of our calculus.

Theorem 5 (confluence.elf). The reduction relation → is confluent on typed
terms and substitutions.

1. If Γ � M : A, M →∗ M1, and M →∗ M2 then there exists a term M ′ such
that M1 →∗ M ′ and M2 →∗ M ′.

2. If Γ � s : Γ ′, s →∗ s1, and s →∗ s2 then there exists a substitution s′ such
that s1 →∗ s′ and s2 →∗ s′.

Similarly we can also prove termination of → from termination of the usual
λ-calculus by σ-normalization.

Theorem 6 (nf-exists.elf). The reduction relation → is terminating on
typed terms and substitutions.

1. If Γ � M : A then there exists a term M ′ such that M → M ′ and M ′ →.
2. If Γ � s : Γ ′ then there exists a substitution s′ such that s→ s′ and s′ →.

The normal forms for the reduction relation → are called β-normal forms and
because of Theorems 5 and 6 we know that they exist and are unique.

Curry-Style Explicit Substitutions for the Linear and Affine λ-Calculus 13

5 Dependent Types

The presented calculus can easily be extended to dependent types, since this ex-
tension is orthogonal to linear and affine types. We will sketch the extension here.

The base types a and intuitionistic function types A → B are replaced by
type families a M1 . . .Mn and dependent functions ΠA.B. The type system
is extended with a judgment Γ � A : type specifying that the type A is well-
formed in the context Γ and a well-formedness requirement on contexts stating
that whenever we form the context Γ,Al we must have Γ � A : type. The system
is then tied together by the central invariant stating that whenever Γ � M : A
then Γ � A : type.

The typing rules of the system become slightly more complicated to account
for the objects occurring in the types. As an example of one of the updated rules,
consider typ-cons-l which becomes:

Γ = Γ1 �� Γ2 Γ1 � M : A[s] Γ2 � s : Γ ′

deptyp-cons-l
Γ � ML.s : Γ ′, AL

Notice that Γ1 = Γ2 and that Lemma 3 gives us Γ2 � s : Γ ′ to ensure that A[s]
is well-formed in the right context.

Theorems 5 and 6 extend to the dependently typed setting as well, since the
proofs can be reused after type erasure.

6 Conclusion

Implementing substructural logics is a complex undertaking, because previous
formulations of explicit substitution calculi have not been very amenable to
implementation. We believe that the same implementation difficulties persist
even if one chooses nominal techniques.

In this paper we present a calculus of explicit substitutions for the linear and
affine λ-calculus including meta-variables. We have defined a Curry-centric type
system and a small-step reduction semantics that are directly implementable
without the need to split substitutions syntactically. We have proved subject re-
duction, confluence, and termination for this calculus and mechanically checked
all lemmas and theorems. The calculus serves as the foundation of the implemen-
tation of the logical framework Celf — the Celf source code can be downloaded
from http://www.twelf.org/~celf

We believe this to be an important contribution to the implementation of any
system based on substructural λ-calculi.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal
of Functional Programming 1(4), 375–416 (1991)

2. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system
for model checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

http://www.twelf.org/~celf

14 A. Schack-Nielsen and C. Schürmann

3. Barras, B.: Programming and computing in hol. In: Aagaard, M.D., Harrison, J.
(eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 17–37. Springer, Heidelberg (2000)

4. Bierman, G.: On Intuitionistic Linear Logic. PhD thesis, University of Cambridge
(1994)

5. Cervesato, I., de Paiva, V., Ritter, E.: Explicit Substitutions for Linear Logical
Frameworks: Preliminary Results. In: Felty, A. (ed.) Workshop on Logical Frame-
works and Meta-languages — LFM’99, Paris, France, September 28 (1999)

6. Chaudhuri, A., Naldurg, P., Rajamani, S.: A type system for data-flow integrity
on Windows Vista. SIGPLAN Notices 43(12), 9–20 (2008)

7. Dowek, G., Hardin, T., Kirchner, C., Pfenning, F.: Unification via explicit substi-
tutions: The case of higher-order patterns. Rapport de Recherche 3591, INRIA,
Preliminary version appeared at JICSLP’96 (December 1998)

8. Gacek, A.: The Abella interactive theorem prover (system description). In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008)

9. Ghani, N., de Paiva, V., Ritter, E.: Linear explicit substitutions. Logic Journal of
IGPL 8(1), 7 (2000)

10. Kesner, D.: The theory of calculi with explicit substitutions revisited. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 238–252.
Springer, Heidelberg (2007)

11. Mellies, P.-A.: Typed λ-calculi with explicit substitutions may not terminate.
Typed Lambda Calculi and Applications, 328–334 (1995)

12. Nadathur, G., Mitchell, D.J.: System description: Teyjus - a compiler and abstract
machine based implementation of lambda-Prolog. In: Ganzinger, H. (ed.) CADE
1999. LNCS (LNAI), vol. 1632, pp. 287–291. Springer, Heidelberg (1999)

13. Nadathur, G., Wilson, D.S.: A notation for lambda terms. a generalization of en-
vironment. Theoretical Computer Science 198(1-2), 49–98 (1998)

14. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical frame-
work for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

15. Poswolksy, A., Schürmann, C.: Practical programming with higher-order encodings
and dependent types. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
93–107. Springer, Heidelberg (2008)

16. Schack-Nielsen, A., Schürmann, C.: System description: Celf - a logical framework
for deductive and concurrent systems. In: Armando, A., Baumgartner, P., Dowek,
G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 320–331. Springer, Heidelberg
(2008)

17. Schack-Nielsen, A., Schürmann, C.: Pattern unification for the lambda calculus
with linear and affine types. Under consideration for publication (2010)

18. Shao, Z., League, C., Monnier, S.: Implementing typed intermediate languages. In:
ICFP ’98: Proceedings of the third ACM SIGPLAN international conference on
Functional programming, pp. 313–323. ACM, New York (1998)

19. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programmming with binders
made simple. In: Eighth ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Uppsala, Sweden, pp. 263–274. ACM Press, New York
(2003)

Beluga: A Framework for Programming and
Reasoning with Deductive Systems

(System Description)

Brigitte Pientka and Jana Dunfield

McGill University, Montréal, Canada

{bpientka@cs.mcgill.ca}

Abstract. Beluga is an environment for programming and reasoning
about formal systems given by axioms and inference rules. It implements
the logical framework LF for specifying and prototyping formal systems
via higher-order abstract syntax. It also supports reasoning: the user
implements inductive proofs about formal systems as dependently typed
recursive functions. A distinctive feature of Beluga is that it not only rep-
resents binders using higher-order abstract syntax, but directly supports
reasoning with contexts. Contextual objects represent hypothetical and
parametric derivations, leading to compact and elegant proofs. Our test
suite includes standard examples such as the Church-Rosser theorem,
type uniqueness, proofs about compiler transformations, and preserva-
tion and progress for various ML-like languages. We also implemented
proofs of structural properties of expressions and paths in expressions.
Stating these properties requires nesting of quantifiers and implications,
demonstrating the expressive power of Beluga.

1 Introduction

Beluga is an environment for programming with and reasoning about deduc-
tive systems. It uses a two-level approach. The data level implements the logical
framework LF [3], which has been successfully used to define logics and repre-
sent derivations and proofs. Its strength and elegance comes from supporting
encodings based on higher-order abstract syntax (HOAS), in which binders in
the object language are represented as binders in LF’s meta-language.

On top of LF, we provide a computation level that supports analyzing and
manipulating LF data via pattern matching. A distinctive feature of Beluga is
explicit support for contexts and contextual objects, which concisely character-
ize hypothetical and parametric derivations (proof objects). These contextual
objects are analyzed and manipulated naturally by pattern matching.

The Beluga system is unique in having context variables, allowing generic
functions that abstract over contexts. As types classify terms, context schemas
classify contexts. Contexts whose schemas are superficially incompatible can be
reasoned with via context weakening and context subsumption.

The main application of Beluga is to prototype deductive systems together
with their meta-theory. Deductive systems given via axioms and inference rules

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 15–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

16 B. Pientka and J. Dunfield

are common in the design and implementation of programming languages, type
systems, authorization and security logics, and so on. In Beluga, inductive proofs
about deductive systems are directly implemented as recursive functions that
case-analyze some given (possibly hypothetical) derivations. At the same time,
Beluga serves as an experimental framework for programming with proof objects,
useful for certified programming and proof-carrying code [6].

Beluga is implemented in OCaml. It provides a completely new implementa-
tion of LF [3] together with type reconstruction, constraint-based higher-order
unification and type checking. In addition, it provides a computation language
that supports writing dependently-typed recursive functions over contextual ob-
jects and explicit contexts. Building on our earlier work [10,11], we designed a
palatable source language. To achieve a practical system, we implemented bidi-
rectional type reconstruction for dependently typed functions.

We tested our implementation of LF type reconstruction on many examples
from the Twelf repository [7] and found its performance competitive. We also
implemented a broad range of proofs as recursive Beluga functions, including
proofs of the Church-Rosser theorem, proofs about compiler transformations,
subject reduction, and translation from natural deduction to Hilbert style. To
illustrate the expressive power of Beluga, our test suite includes simple theorems
about structural relationships between expressions and proofs about the paths
in expressions. These latter theorems have nested quantifiers and implications,
placing them outside the fragment of propositions expressible in systems such
as Twelf. Type reconstruction of these proofs takes less than a second. Finally,
Beluga provides an interpreter, based on a lazy environment-based semantics,
to execute computation-level programs.

The Beluga system, including source code, examples, and an Emacs mode, is
available from http://complogic.cs.mcgill.ca/beluga/.

To provide an intuition for what Beluga accomplishes and how it is used, we
first present a type uniqueness proof in Beluga. Section 3 compares Beluga to
systems with similar applications. Section 4 discusses Beluga’s implementation.

2 Example: Type Uniqueness

To illustrate the core ideas behind Beluga, we implement a proof of type unique-
ness for the simply-typed lambda-calculus (STLC). First, we briefly review how
to represent the STLC and its typing rules in LF.

tp: type .
nat: tp.
arr: tp → tp → tp.

exp: type .
lam : tp → (exp→exp) → exp.
app : exp → exp → exp.

oft: exp → tp → type .

t_app: oft E1 (arr T2 T) → oft E2 T2
→ oft (app E1 E2) T.

equal: tp → tp → type .
e_ref: equal T T.

t_lam: ({x:exp} oft x T1 → oft (E x) T2)
→ oft (lam T1 E) (arr T1 T2).

http://complogic.cs.mcgill.ca/beluga/

Beluga: A Framework for Programming and Reasoning 17

The first part states that nat is a data-level type tp and that arr takes two
arguments of type tp and constructs a tp. To represent λ-term constructors, we
use higher-order abstract syntax: The constructor lam takes a tp and the body
of the abstraction, of type (exp→ exp). For example, lamx:nat .x is represented
by lam nat λx.x. In the second part, we represent the typing judgment M : T
in our object language by an LF type oft, and the typing rules are represented
by LF type constants t app and t lam.

The rule t app encodes the typing rule for applications: from derivations of
oft E1 (arr T2 T) and oft E2 T2 we get oft (app E1 E2) T. The rule t lam uses
a parametric hypothetical derivation “for all x assuming oft x T1 we can derive
oft (E x) T2”, represented as a function type {x:exp} oft x T→ oft (E x) T2.
Finally, we define the equality judgment, which simply encodes reflexivity.

The above is standard in LF. We now state type uniqueness:

Theorem. If Γ � oft E T and Γ � oft E T’ then equal T T’.

This statement makes explicit the context Γ containing variable typing as-
sumptions. Note that while terms E can depend on variables declared in Γ , no
variables can occur in the types T and T’, though this is not captured by the
statement above.

The theorem corresponds to a type of a recursive function in Beluga. Before
showing how to implement it, we describe more precisely the shape of contexts
Γ , using a context schema declaration:

schema tctx = some [t:tp] block x:exp. oft x t;

The schema tctx describes a context containing assumptions x:exp, each asso-
ciated with a typing assumption oft x t for some type t. Formally, we are using
a dependent product Σ (used only in contexts) to tie x to oft x t. We thus do
not need to establish separately that for every variable there is a unique typing
assumption: this is inherent in the definition of tctx.

We can now state the Beluga type corresponding to the statement above:

{g:tctx} (oft (E ..) T)[g] → (oft (E ..) T’)[g] → (equal T T’)[]

Read it as follows: for all contexts g of schema tctx, given derivations of
(oft (E ..) T)[g] and of (oft (E ..) T’)[g] we can construct a derivation of
(equal T T’)[]. The [] means the result is closed. As we remarked, only the
term E can contain variables; the type T is closed. Although we did not state
this dependency in the on-paper statement, Beluga distinguishes closed objects
from objects depending on assumptions. To describe the dependency of E on the
context g, we write (E ..) associating .. with the variable E. (Technically, .. is
an identity substitution mapping variables from g to themselves.) In contrast, T
by itself denotes a closed tp that cannot depend on hypotheses in g.

The proof of type uniqueness is by case analysis on the first derivation. Accord-
ingly, the recursive function in Figure 1 pattern-matches on the first derivation
d, of type (oft (E ..) T)[g]. The first two cases correspond to d concluding with
t app or t lam. The third case corresponds to when d derives (oft (E ..) T)[g]
by using a declaration from the context g. If the context were concrete, we could

18 B. Pientka and J. Dunfield

rec unique : {g:tctx} (oft (E ..) T)[g]
→ (oft (E ..) T’)[g]
→ (equal T T’)[]

= fn d ⇒ fn f ⇒ case d of
| [g] t_app (D1 ..) (D2 ..) ⇒ % Application case

let [g] t_app (F1 ..) (F2 ..) = f in
let [] e_ref = unique ([g] D1 ..) ([g] F1 ..) in

[] e_ref

| [g] t_lam (\x.\u. D .. x u) ⇒ % Abstraction case
let [g] t_lam (\x.\u. F .. x u) = f in
let [] e_ref = unique ([g,b:block x:exp.oft x _] D .. b.1 b.2)

([g,b] F .. b.1 b.2) in
[] e_ref

| [g] #q.2 .. ⇒ % d : oft #q.1 T % Assumption case
let [g] #r.2 .. = f in % f : oft #q.1 T’

[] e_ref ;

Fig. 1. Implementation of type uniqueness in Beluga

simply refer to the concrete variable names listed, but our function is generic for
any context g. So we use a parameter variable #q that stands for some declara-
tion in g.

The first (application) case is essentially a simpler version of the second (ab-
straction) case, so we omit the application case.

Abstraction case: If the first derivation d concludes with t lam, it matches the
pattern [g] t lam (λx.λu. D .. x u), and is a contextual object in the context g of
type oft (lam T1 (λx. E0 .. x)) (arr T1 T2). Thus, E .. = lam T1 (λx. E0 .. x)
and T = arr T1 T2. Pattern matching—through a let-binding—serves to invert
the second derivation f, which must have been by t lam with a subderiva-
tion F1 .. x u deriving oft (E0 .. x) T2’ that can use x, u:oft x T1, and as-
sumptions from g. Hence, after pattern matching on d and f, we know that
E = lam T1 (λx. E0 .. x) and T = arr T1 T2 and T’ = arr T1 T2’.

The use of the induction hypothesis on D and F in a paper proof corre-
sponds to the recursive call to unique. To appeal to the induction hypothe-
sis, we need to extend the context by pairing up x and its typing assumption:
g, b:block x:exp. oft x T1. In the code, we wrote an underscore _ instead of T1,
which tells Beluga to reconstruct it. (We cannot write T1 there without binding
it by explicitly giving the type of D, so it is much easier to write _.) To retrieve
x we take the first projection b.1, and to retrieve x’s typing assumption we take
the second projection b.2. Note that while unique’s type says it takes a context
variable {g:tctx}, we do not pass it explicitly; Beluga infers it from the context
g, b:block x:exp. oft x in the first argument passed.

Now we can appeal to the induction hypothesis using D1 .. b.1 b.2 and
F1 .. b.1 b.2 in the context g,b:block x:exp. oft x T1. We pass three argu-
ments: the context g and two contextual objects. From the i.h. we get a contex-
tual object, a closed derivation of (equal (arr T1 T2) (arr T1 T2’))[]. The
only rule that could derive this is e ref, and pattern matching establishes that

Beluga: A Framework for Programming and Reasoning 19

T2 must equal T2’, and hence arr T1 T2 = arr T1 T2’, i.e. T = T’. Hence, there
is a proof of [] equal T T’, and we can finish with the reflexivity rule e ref.

Assumption case: Here, we must have used an assumption from the context g
to construct the derivation d. Parameter variables #q allow a generic case that
matches a declaration block x:exp.oft x S for any S in g. Since our pattern
match proceeds on typing derivations, we want the second component, written
#q.2. The pattern match on d also establishes that E = #q.1 and S = T. Next,
we pattern match on f, which has type oft (#q.1 ..) T’ in the context g. Clearly,
the only possible way to derive f is by using an assumption from g. We call
this assumption #r, standing for a declaration block y:exp. oft y S’, so #r.2
refers to the second component oft (#r.1 ..) S’. Pattern matching between
#r.2 and f also establishes that both types are equal and that S’ = T’ and
#r.1 = #q.1. Finally, we observe that #r.1 = #q.1 only if #r is equal to #q.
Consequently, both parameters have equal types, and S = S’ = T = T’. (In
general, unification in the presence of Σ-types does not yield a unique unifier,
but in Beluga only parameter variables and variables from the context can be of
Σ type, yielding a unique solution.)

3 Related Work

There are many approaches for specifying and reasoning about formal systems.
Our work builds on the experience with Twelf [7], which provides a meta-
language for specifying, implementing and reasoning about formal systems using
higher-order abstract syntax. However, proofs in Twelf are relations; one needs
to prove separately that the relation constitutes a total function and Twelf sup-
ports both termination and coverage checking.

A second key difference is that Twelf does not explicitly support contexts and
contextual data; contexts (worlds) in Twelf are implicit. Consequently, it is not
possible to distinguish between different contexts within the same statement and
base cases are scattered.

The third key difference is its expressiveness. In Twelf, we can only encode
forall-exists statements, while Beluga directly handles a larger class of state-
ments. An example is the statement that if, for all paths P through a lambda-
term M , we know that P also characterizes all paths through another term N ,
then M and N must be equal.

Delphin [12] is closest to Beluga. Its implementation uses much of the Twelf
infrastructure, but proofs are implemented as functions (like Beluga) rather than
relations. As in Twelf, contexts are implicit with similar consequences. To have
more fine-grained control over assumptions which we typically track in a context,
Delphin users can use a continuation-based approach where the continuation
plays the role of a context and must be explicitly managed by the programmer.

Abella [2] is an interactive theorem prover for reasoning about specifications
of formal systems. Its theoretical basis is different, but it supports encodings
based on higher-order abstract syntax. However, contexts are not first-class and

20 B. Pientka and J. Dunfield

must be managed explicitly. For example, type uniqueness requires a lemma that
each variable has a unique typing assumption, which comes for free in Beluga.

Finally, the Hybrid system [5] tries to exploit the advantages of HOAS within
the well-understood setting of higher-order logic as implemented by systems
such as Isabelle and Coq. Hybrid provides a definitional layer where higher-order
abstract syntax representations are compiled to de Bruijn representations, with
tools for reasoning about them using tactical theorem proving and principles of
(co)induction. This is a flexible approach, but contexts must be defined explicitly
and properties about them must be established separately.

4 Implementation

Beluga is implemented in OCaml. It provides a complete reimplementation of
the logical framework LF. Similarly to the Twelf core, Beluga supports type
reconstruction for LF signatures based on higher-order pattern unification with
constraints. In addition, we designed and implemented a type reconstruction
algorithm for dependently-typed functions on contextual data.

Type reconstruction is, in general, undecidable for the data level (that is,
LF) and for the computation level. For LF, our algorithm reports a principal
type, a type error, or that the source term needs more type information. For
our computation language, we check functions against a given type and either
succeed, report a type error, or fail by asking for more type information. It is
always possible to make typing unambiguous by adding more annotations.

An efficient implementation of higher-order unification is crucial to this. For
higher-order patterns [4], we implemented a unification algorithm [8] and, simi-
larly to Twelf, extended it with constraints. We also extended the algorithm to
handle parameter variables and Σ-types for variables.

Beluga also supports context subsumption, so one can provide a contextual
object in a context Ψ in place of a contextual object in some other context Φ,
provided Ψ can be obtained by weakening Φ. This mechanism, similar to world
subsumption in Twelf, is crucial when assembling larger proofs.

Finally, Beluga includes an interpreter with a lazy environment-based opera-
tional semantics. This allows us to execute Beluga programs, producing concrete
derivations and other LF data.

In the future, we plan to address two significant issues.

Totality. Type-checking guarantees local consistency and partial correctness,
but does not guarantee that functions are total. Thus, while we can implement,
partially verify, and execute functions about derivations in deductive systems,
Beluga does not currently guarantee the validity of a meta-proof. The two miss-
ing pieces are coverage and termination. We formulated an algorithm [1] to
ensure that all cases are covered, and plan to implement it over the next few
months. Verifying termination will follow ideas in Twelf [13,9] for checking that
arguments in recursive calls are indeed smaller.

Beluga: A Framework for Programming and Reasoning 21

Automation. Currently, the recursive functions that implement induction proofs
must be written by hand. We plan to explore how to enable the user to inter-
actively develop functions in collaboration with theorem provers that can fill in
parts of functions (that is, proofs) automatically.

References

1. Dunfield, J., Pientka, B.: Case analysis of higher-order data. In: International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP’08), June 2009. Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 228, pp. 69–84. Elsevier, Amsterdam (2009)

2. Gacek, A.: The Abella interactive theorem prover (system description). In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008)

3. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (1993)

4. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation 1(4), 497–536
(1991)

5. Momigliano, A., Martin, A.J., Felty, A.P.: Two-Level Hybrid: A system for rea-
soning using higher-order abstract syntax. In: International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP’07). Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 196, pp. 85–93. Elsevier,
Amsterdam (2008)

6. Necula, G.C.: Proof-carrying code. In: 24th Annual Symposium on Principles of
Programming Languages (POPL’97), January 1997, pp. 106–119. ACM Press, New
York (1997)

7. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical frame-
work for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

8. Pientka, B.: Tabled higher-order logic programming. PhD thesis, Department of
Computer Science, Carnegie Mellon University, CMU-CS-03-185 (2003)

9. Pientka, B.: Verifying termination and reduction properties about higher-order
logic programs. Journal of Automated Reasoning 34(2), 179–207 (2005)

10. Pientka, B.: A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In: 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’08), pp.
371–382. ACM Press, New York (2008)

11. Pientka, B., Dunfield, J.: Programming with proofs and explicit contexts. In: ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’08), July 2008, pp. 163–173. ACM Press, New York (2008)

12. Poswolsky, A., Schürmann, C.: System description: Delphin—a functional pro-
gramming language for deductive systems. In: International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP’08), June 2009.
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 228, pp. 135–141.
Elsevier, Amsterdam (2009)

13. Rohwedder, E., Pfenning, F.: Mode and termination checking for higher-order
logic programs. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 296–310.
Springer, Heidelberg (1996)

MCMT: A Model Checker Modulo Theories

Silvio Ghilardi1 and Silvio Ranise2

1 Dipartimento di Informatica, Università degli Studi di Milano, Italia
2 FBK-Irst, Trento, Italia

Abstract. We describe mcmt, a fully declarative and deductive sym-
bolic model checker for safety properties of infinite state systems whose
state variables are arrays. Theories specify the properties of the indexes
and the elements of the arrays. Sets of states and transitions of a sys-
tem are described by quantified first-order formulae. The core of the
system is a backward reachability procedure which symbolically com-
putes pre-images of the set of unsafe states and checks for safety and
fix-points by solving Satisfiability Modulo Theories (SMT) problems.
Besides standard SMT techniques, efficient heuristics for quantifier in-
stantiation, specifically tailored to model checking, are at the very heart
of the system. mcmt has been successfully applied to the verification of
imperative programs, parametrised, timed, and distributed systems.

1 Introduction

In [6], we have presented a fully declarative approach to verify safety properties
of infinite state systems—whose variables are arrays—by backward reachability.
Such systems can be used as suitable abstractions of many classes of systems
ranging from parametrised protocols to sequential programs manipulating ar-
rays. The idea is to use classes of quantified first-order formulae to represent an
infinite set of states of the system so that the computation of pre-images boils
down to symbolic manipulations. Using suitable theories over the elements and
the indexes of the arrays, we are able to declaratively specify both the data ma-
nipulated by the system and its topology (in the case of parametrised systems)
or properties of the indexes of arrays (in the case of imperative programs).

In the framework of [6], the key to mechanize backward reachability is to re-
duce the checks for fixed-point and safety to Satisfiability Modulo Theories (SMT)
problems of first-order formulae containing (universal) quantifiers. Under suitable
hypotheses on the theories over the indexes and the elements of the arrays, these
SMT problems are decidable [6] by integrating a quantifier instantiation proce-
dure with SMT solving techniques for quantifier-free formulae. In [8,9], we de-
scribed heuristics to reduce the number of quantified variables and—most
importantly—of instances while preserving the completeness of SMT solving. Un-
fortunately, the decidability of safety and fixed-point checks is not yet enough to
ensure the termination of the backward reachability analysis. Theoretically, ter-
mination for this procedure can be ensured for well-structured systems [1]; in [6],
we explained how to recast this notion in our framework so as to import all the

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 22–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MCMT: A Model Checker Modulo Theories 23

decidability results available in the literature. Pragmatically, it is well-known that
termination of backward reachability can be obtained by using invariants and we
discussed how natural it is to guess and use them in our framework and also gave
a characterization of the completeness of the proposed method [7].

In this paper, we give the first comprehensive high-level description of mcmt

v. 1.0, a significant extension of the prototype tool used in our previous work [7,8].
mcmt v. 1.0 uses Yices (http://yices.csl.sri.com) as the back-end SMT
solver and is available at http://www.dsi.unimi.it/~ghilardi/mcmt. Besides
various ameliorations and refinements to previously available functionalities as
well as new utilities (like Bounded Model-Checking), mcmt v. 1.0 supports the
following new features, which widen its scope of applicability and greatly im-
prove its performances (in particular, w.r.t. termination) when used with care:
(i) transitions with existentially quantified variables ranging over data values
(and not only indexes), provided that the theory over data admits elimination of
quantifiers; (ii) synthesis of invariants with two universally quantified variables
(previously [7], they were limited to containing just one variable); (iii) a form of
predicate abstraction, called signature abstraction, together with limited support
for the acceleration of transitions [4]. For lack of space, only an excerpt of the
experiments are described here (for full details, consult the mcmt web-page).

2 The MCMT Way of Life

We present our vision of model checking infinite state systems underlying mcmt.
To this end, we believe it is convenient to recall two distinct and complementary
approaches among the many possible alternatives available in the literature.

The first approach is pioneered in [1] and its main notion is that of well-
structured system. Recently, it was implemented in two systems [2,3], which
were able to automatically verify several protocols for mutual exclusion and
cache coherence. One of the key ingredients to the success of these tools is their
capability to perform accurate fixed-point checks so as to reduce the number of
iterations of the backward search procedure. A fixed-point check is implemented
by ‘embedding’ an old configuration (i.e. a finite representation of a potentially
infinite set of states) into a newly computed pre-image; if this is the case, then the
new pre-image is considered “redundant” (i.e., not contributing new information
about the set of backward reachable states) and thus can be discarded without
loss of precision. Indeed, the exhaustive enumeration of embeddings has a high
computational cost. Furthermore, constraints are only used to represent the data
manipulated by the system while its topology is encoded by ad hoc data struc-
tures. A change in the topology of the system requires the implementation from
scratch of algorithms for both pre-image and embedding computation. On the
contrary, mcmt uses particular classes of first-order formulae to represent config-
urations parametrised with respect to two theories, one for data and one for the
topology so that pre-image computation reduces to a fixed set of logical manip-
ulations and fixed-point checking to solve SMT problems containing universally
quantified variables. To mechanize these tests, a quantifier-instantiation proce-
dure is used, which is the logical counterpart of the enumeration of embeddings.

http://yices.csl.sri.com
http://www.dsi.unimi.it/~ghilardi/mcmt

24 S. Ghilardi and S. Ranise

Interestingly, this notion of embedding can be recaptured (via classical model
theory) [6] in the logical framework underlying mcmt, a fact that allows us to
import the decidability results of [1] for backward reachability. Another impor-
tant advantage of the approach underlying mcmt over that proposed in [1] is
its broader scope of applications with respect to the implementations in [2,3].
The use of theories for specifying the data and the topology allows one to model
disparate classes of systems in a natural way. Furthermore, even if the quantifier
instantiation procedure becomes incomplete with rich theories, it can soundly
be used and may still permit the proof of the safety of a system. In fact, mcmt

has been successfully employed to verify sequential programs (such as sorting
algorithms) that are far beyond the reach of the systems described in [2,3].

The second and complementary approach to model checking infinite state
systems relies on predicate abstraction techniques, initially proposed in [10]. The
idea is to abstract the system to one with finite states, to perform finite-state
model checking, and to refine spurious traces (if any) by using decision proce-
dures or SMT solvers. This technique has been implemented in several tools
and is often combined with interpolation algorithms for the refinement phase.
As pointed out in [5,11], predicate abstraction must be carefully adapted when
(universal) quantification is used to specify the transitions of the system or its
properties, as it is the case for the problems tackled by mcmt. There are two
crucial problems to be solved. The first is to find an appropriate set of pred-
icates to compute the abstraction of the system. In fact, besides system vari-
ables, universally quantified variables may also occur in the system. The second
problem is that the computation of the abstraction as well as its refinement
reduce to solving proof obligations containing universal quantifiers. Hence, we
need to perform suitable quantifier instantiations in order to enable the use of
decision procedures or SMT solving techniques for quantifier-free formulae. The
first problem is solved by Skolemization [5] or fixing the number of variables
in the system [11] so that standard predicate abstraction techniques can still
be used. The second problem is solved by adopting very straightforward (some-
times naive) and incomplete quantifier instantiation procedures. While being
computationally cheap and easy to implement, the heuristics used for quantifier
instantiation are largely imprecise and do not permit the detection of redundan-
cies due to variable permutations, internal symmetries, and so on. Experiments
performed with mcmt, tuned to mimic these simple instantiation strategies,
show much poorer performance. We believe that the reasons of success of the
predicate abstraction techniques in [5,11] lie in the clever heuristics used to find
and refine the set of predicates for the abstraction. The current implementa-
tion of mcmt is orthogonal to the predicate abstraction approach; it features an
extensive quantifier instantiation (which is complete for some theories over the
indexes and is enhanced with completeness preserving heuristics to avoid useless
instances), but it performs only a primitive form of predicate abstraction, called
signature abstraction (see Section 4). Another big difference is how abstraction is
used in mcmt: the set of backward reachable states is always computed precisely
while abstraction is only exploited for guessing candidate invariants which are

MCMT: A Model Checker Modulo Theories 25

then used to prune the set of backward reachable states. Since we represent sets
of states by formulae, guessing and then using the synthesized invariants turns
out to be extremely easy, thereby helping to solve the tension between model
checking and deductive techniques that has been discussed a lot in the literature
and is still problematic in the tools described in [2,3] where sets of states are
represented by ad hoc data structures. We plan to enhance predicate abstraction
techniques in future releases of mcmt, so as to find the best trade-off between
the advantages of predicate abstraction and extensive quantifier instantiation.

3 The Input Language for Safety Problems

The input language of mcmt can be seen as a parametrised extension of the one
used by UCLID (http://www.cs.cmu.edu/~uclid). Formally, it is a sub-set of
multi-sorted first-order logic, extended with the ternary expression constructor
“if-then-else” (which is standard in the SMT-LIB format). For lack of space,
we omit the presentation of the concrete syntax which is fully described in the
on-line User Manual.

Sorts. We use the following distinguished sorts: Ind for indexes, Elem1, ...,
Elemm for elements of arrays, and Arr1, ...,Arrm for array variables (where
Arrk corresponds to arrays of elements of sort Elemk, for k = 1, ...,m).

Theories. We assume that the mono-sorted theories TI and TEk
are given over

the sorts Ind and Elemk, respectively, for k = 1, ...,m. The three-sorted theories
AEk

I are obtained as the combination of the theories TI and TEk
for each k =

1, ...,m by adding the sort Arrk to Ind and Elemk, by taking the union of the
symbols of TI and TEk

, and by adding the binary symbol []k : Arrk × Ind →
Elemk for reading the content of an array at a given index (the subscript k is
omitted if clear from the context). Finally, we let AE

I :=
⋃m

k=1 A
Ek

I .

Formats of formulae. We use two classes of formulae to describe sets of states:
∀i.φ(i, a) and ∃i.φ(i, a), where i is a tuple of variables of sort Ind , a is a tuple
of length m of array variables of sorts Arr1, ...,Arrm, and φ is quantifier-free
formula containing at most the variables in i ∪ a as free variables. The former
are called ∀I -formulae and the latter ∃I -formulae. An ∃I -formula ∃i.φ is primitive
when φ is a conjunction of literals; it is differentiated when it is primitive and φ
contains as a conjunct the disequation ik = il for each 1 ≤ k < l ≤ length(i). By
applying simple logical manipulations, it is always possible to transform any ∃I -
formula into a disjunction of primitive differentiated ones. To specify transitions,
we use a particular class of formulae (called transition formulae) corresponding
to a generalization of the usual notion of guarded assignment system:

∃i1, i2, e.
(
G(i1, i2, e, a) ∧

m∧
k=1

∀j. a′k[j] = Updk(j, i1, i2, e, a)

)
,

where i1, i2 are variables of sort Ind (having at most two existentially quantified
variables is not too restrictive since many disparate systems can be formalized in
this format as shown by the experiments available on-line), e is a variable of sort

http://www.cs.cmu.edu/~uclid

26 S. Ghilardi and S. Ranise

Elemk (for some k = 1...,m), a is a tuple of array state variables, ak (in a) is
the actual value of a state variable and a′k is its value after the execution of the
transition,G is a conjunction of literals (called the guard), and Updk is a function
defined by cases (for k = 1, ...,m), i.e. by suitably nested if-then-else expressions
whose conditionals are again conjunctions of literals. The format for transition
formulae above—because of the presence of the existentially quantified variable e
over data values—is the first significant amelioration of the actual version of mcmt

as it allows one to specify classes of systems which were not previously accepted
by the tool such as real time systems or those with non-deterministic updates.
Notice that the theory TEk

over the sort Elemk of the variable e must be Linear
Arithmetic (over the integers or the reals). This limitation allows us to maintain
the closure of the class of ∃I -formulae under pre-image computation by exploiting
quantifier elimination (implemented only in the latest version of mcmt).

Safety problem. Let I be a ∀I -formula describing the set of initial states, Tr a
finite set of transition formulae, and U an ∃I -formula for the set of unsafe states.
The safety problem solved by mcmt consists in establishing whether there exists
an n ≥ 0 such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an) (1)

is AE
I -satisfiable, where ah = ah

1 ,, a
h
m for h = 0, ..., n, and τ :=

∨
τi∈Tr τi. If

there is no such n, then the system is safe (w.r.t. U); otherwise, it is said to be
unsafe since the AE

I -satisfiability of (1) implies the existence of a run (of length
n) leading the system from a state in I to a state in U .

4 The Main Loop: Deductive Backward Reachability

mcmt implements backward reachability to solve safety problems. For n ≥ 0,
the n-pre-image of an ∃I -formula K(a) is Pre0(τ,K) := K and Pren+1(τ,K) :=
Pre(τ, Pren(τ,K)), where Pre(τ,K) := ∃a′.(τ(a, a′) ∧ K(a′)). It is easy to
show [6] that the class of ∃I -formulae is closed under pre-image computation un-
der the assumption that TEk

admits elimination of quantifiers (if an existentially
quantified variable of sort Elemk occurs in a transition formula). The formula
BRn(τ, U) :=

∨n
i=0 Pre

i(τ, U) represents the set of states which are backward
reachable from the states in U in at most n ≥ 0 steps. So, backward reacha-
bility consists of computing BRn(τ, U) for increasing values of n and checking
whether BRn(τ, U) ∧ I is AE

I -satisfiable or ¬(BRn(τ, U) → BRn−1(τ, U)) is
AE

I -unsatisfiable. In the first case (safety test), one concludes the unsafety of
the system while in the second (fixed-point test), it is possible to stop comput-
ing pre-images as no new states can be reached and, if the safety test has been
passed, one can infer the safety of the system.

Figure 1 introduces the Tableaux-like calculus used by mcmt to implement
backward reachability [7]. We initialize the tableau with the ∃I -formula U(a)
representing the set of unsafe states. The computation of the pre-image is real-
ized by applying rule PreImg (we use square brackets to indicate the applicability

MCMT: A Model Checker Modulo Theories 27

K [K is primitive differentiated]
Pre(τ1, K) | · · · | Pre(τm, K)

PreImg
K

K1 | · · · | Kn
Beta

K [K is AE
I -unsatisfiable]
× NotAppl

K [I ∧ K is AE
I -satisfiable]

UnSafe
Safety

K [K ∧
∧
{¬K′|K′ � K} is AE

I -unsatisfiable]
× FixPoint

Fig. 1. The calculus underlying mcmt

condition of a rule), where Pre(τh,K) computes the ∃I -formula which is logi-
cally equivalent to Pre(τh,K). Since the ∃I -formulae labeling the consequents
of the rule PreImg may not be primitive and differentiated (because of nested
if-then-else expressions and incompleteness of variable distinction), we need to
apply the Beta rule to an ∃I -formula so as to eliminate the conditionals by
case-splitting and derive K1, . . . ,Kn primitive differentiated ∃I -formulae whose
disjunction is AE

I -equivalent to K. By repeatedly applying PreImg and Beta, it is
possible to build a tree whose nodes are labelled by ∃I -formulae whose disjunc-
tion is equivalent to BRn(τ, U) for some n ≥ 0. Indeed, there is no need to fully
expand the tree; it is useless to apply the rule PreImg to a node ν labelled by an
AE

I -unsatisfiable ∃I -formula (rule NotAppl). One can terminate the whole search
because of the safety test (rule Safety), in which case one can extract from the
branch a bad trace, i.e. a sequence of transitions leading the array-based system
from a state satisfying I to one satisfying U . A branch can be terminated by
the fixed-point test described by rule FixPoint, where K ′ � K means that K ′ is
a primitive differentiated ∃I -formula labeling a node preceding the node labeled
by K (nodes can be ordered according to the strategy for expanding the tree).

For the effectiveness of rules Safety and FixPoint, it is necessary to check
the AE

I -satisfiability of ∃I∀I -formulae, i.e. formulae containing an alternation of
quantifiers over variables of sort Ind . In mcmt, we have integrated a quantifier
instantiation procedure with SMT solving techniques for quantifier-free formu-
lae, augmented with heuristics to avoid the generation of useless instances and
incrementality of satisfiability checks [8]. The technique is complete under some
hypotheses on TI and the TEk

’s [6]. Even if such hypotheses are not satisfied,
the instantiation procedure can still be soundly used without loss of precision
for a final safety result of the backward reachability procedure, although its
termination is less guaranteed. This point is particularly delicate and merits
some discussion. Consider the verification of a mutual exclusion protocol (due
to Szymanski) which can be considered as a typical example of problems about
parametrised systems. To show the safety of this problem, mcmt generates 1153
satisfiable and 4043 unsatisfiable SMT problems. While our quantifier instanti-
ation procedure with Yices is capable of solving all SMT problems, Yices alone
with its quantifier handling techniques returns ‘unknown’ on all the 1153 sat-
isfiable instances while it can solve 2223 of the unsatisfiable ones and returns
‘unknown’ on the remaining 1820. We are currently adding the capability of gen-
erating satisfiability problems in the SMT-LIB format to mcmt so as to evaluate
the quantifier handling procedures available in various SMT solvers.

28 S. Ghilardi and S. Ranise

The main novelty of the latest version of mcmt is the more extensive support
for invariant synthesis, abstraction, and acceleration for computing the repeated
application of a sub-set of the transitions an arbitrary number of times in a single
step. Invariant synthesis has been introduced in [7] but the implementation was
able to generate universally quantified invariants with just one variable. mcmt

v. 1.0 supports the generation of invariants with up to two universal quantifiers.
While performing backward reachability (which is always precise), candidate in-
variants are guessed according to some heuristics [7] and then a resource bounded
(secondary) backward reachability is used to keep or discard the candidates. The
invariants found in this way are used in the main backward reachability proce-
dure when checking for fix-points. The present version of mcmt features also
a new technique for the synthesis of invariants, named signature abstraction: it
consists of projecting away (by quantifier elimination, whenever possible) those
literals containing a sub-set of the array variables; thereby obtaining an over-
approximation of the set of reachable states. This is without loss of precision,
since it is done in the secondary backward reachability procedure for invariant
synthesis while the main procedure continues to compute the set of backward
reachable states precisely. The last novelty of mcmt v. 1.0 is some support for
acceleration along the lines of [4] in the hope of a better convergence of the
backward reachable procedure; this is often the case for systems formalized by
arithmetic constraints such as Petri nets.

5 Experiments

To show the flexibility and the performance of mcmt, we have taken some pain to
build a library of benchmarks in the format accepted by our tool by translating
safety problems from a variety of sources, such as the distributions of the infinite
state model checkers described in [2,3] or imperative programs manipulating
arrays taken from standard books about algorithms. For lack of space, we include
here only an excerpt of the experiments (see the tool web-page for a full report).

We divide the problems in four categories: mutual exclusion (M) and cache
coherence (C) protocols, imperative programs manipulating arrays (I), and het-
erogeneous (H) problems. We tried the tool in two configurations: the “Default
Setting” is when mcmt is invoked without any option and the “Best Setting” is
when the tool is run with some options turned on. In Table 1, the column ‘d’
is the depth of the tableaux obtained by applying the rules in Figure 1, ‘#n’ is
the number of nodes in the tableaux, ‘#del’ is the number of subsumed nodes,
‘#SMT’ is the number of invocations to Yices, ‘#i’ is the number of invariants
found by mcmt (for the “Default Setting,” column ‘#i’ is not shown because
mcmt’s default is to turn off invariant synthesis), and ‘time’ is the total amount
of time (in seconds) taken by the tool to solve the problem on a Pentium Intel
1.73 GHz with 1 Gb Sdram running Linux Gentoo. In the cases when the tool
seemed to diverge, we aborted execution, and put ‘t(ime)o(out)’ in the column
of timings and leave the others empty (‘-’). All systems—except ‘GermanBug’ (a
bugged version of ‘German07’)—are certified to be safe by mcmt while for ‘Ger-
manBug,’ the tool returns an error trace consisting of 16 transitions. Invariant

MCMT: A Model Checker Modulo Theories 29

Table 1. Some experimental results

Default setting Best setting
Problem d #n #del #SMT time d #n #del #SMT #i time
Lamport (M) 23 913 242 47574 120.62 23 248 42 19254 7 32.84
RickAgr (M) 13 458 119 35355 187.04 13 458 119 35355 0 187.04
Szymanski at (M) 23 1745 311 424630 540.19 9 22 10 2987 42 1.25
German07 (C) 26 2442 576 121388 145.68 26 2442 576 121388 0 145.68
GermanBug (C) 16 1631 203 41497 49.70 16 1631 203 41497 0 49.70
GermanPFS (C) 33 11605 2755 858184 1861.0 33 11141 2673 784168 149 1827.0
SelSort (I) - - - - to 5 13 2 1141 11 0.62
Strcat (I) - - - - to 2 2 2 80 2 0.07
Strcmp (I) - - - - to 2 1 1 21 3 0.01
Fischer (H) 10 16 2 336 0.16 10 16 2 336 0 0.16
Ticket (H) - - - - to 3 4 2 201 10 0.06

synthesis (especially the signature abstraction technique introduced in this ver-
sion of the tool) is helpful to reduce the solving time for problems in (M), and
to obtain termination for those in (I), but has no effect on problems in (C).

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321 (1996)

2. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

4. Bérard, B., Fribourg, L.: Reachability Analysis of (Timed) Petri Nets Using Real
Arithmetic. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 178–193. Springer, Heidelberg (1999)

5. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202. ACM, New York (2002)

6. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model-Checking
of Array-based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008)

7. Ghilardi, S., Ranise, S.: Goal Directed Invariant Synthesis for Model Checking
Modulo Theories. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS
(LNAI), vol. 5607, pp. 173–188. Springer, Heidelberg (2009)

8. Ghilardi, S., Ranise, S.: Model Checking Modulo Theory at work: the intergration
of Yices in MCMT. In: AFM (co-located with CAV’09) (2009)

9. Ghilardi, S., Ranise, S., Valsecchi, T.: Light-Weight SMT-based Model-Checking.
In: AVOCS 07-08, ENTCS (2008)

10. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

11. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. ACM
Transactions on Computational Logic (TOCL) 9(1) (2007)

On Hierarchical Reasoning in Combinations of
Theories

Carsten Ihlemann and Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E1 4, Saarbrücken, Germany

Abstract. In this paper we study theory combinations over non-disjoint
signatures in which hierarchical and modular reasoning is possible. We
use a notion of locality of a theory extension parameterized by a closure
operator on ground terms. We give criteria for recognizing these types of
theory extensions. We then show that combinations of extensions of the-
ories which are local in this extended sense also have a locality property
and hence allow modular and hierarchical reasoning. We thus obtain pa-
rameterized decidability and complexity results for many (combinations
of) theories important in verification.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
the satisfiability of conjunctions of literals in a background theory (which can be
the extension of a base theory with additional functions – e.g., free, monotone, or
recursively defined – or a combination of theories). Considerable work has been
dedicated to the task of identifying situations where reasoning in extensions
and combinations of theories can be done efficiently and accurately. The most
important issues which need to be addressed in this context are: (i) finding
possibilities of reducing the search space without losing completeness, and (ii)
making modular or hierarchical reasoning possible.

In [10,17] Givan and McAllester introduced the so-called “local inference sys-
tems” (for which validity of ground Horn clauses can be checked in polynomial
time). A link between this proof theoretic notion of locality and algebraic argu-
ments used for identifying classes of algebras with a word problem decidable in
PTIME [4] was established in [7]. In [8,21] these results were further extended
to so-called local extensions of theories. Locality phenomena were also studied in
the verification literature, mainly motivated by the necessity of devising meth-
ods for efficient reasoning in theories of pointer structures [18] and arrays [3]. In
[14] we showed that these results are instances of a general concept of locality
of a theory extension – parameterized by a closure operator on ground terms.

Efficient reasoning in combinations of theories is also very important. Methods
for checking satisfiability of conjunctions of ground literals in combinations of
theories which have disjoint signatures, or only share constants, are well studied.
The Nelson/Oppen combination procedure [19] can be applied for combining
decision procedures of stably infinite theories over disjoint signatures; various

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 30–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Hierarchical Reasoning in Combinations of Theories 31

extensions have been established either by relaxing the requirement that the
theories to be combined are stably-infinite [26]; or by relaxing the requirement
that the theories to be combined have disjoint signatures [1,25,9]. These exten-
sions require additional conditions, e.g. generalizations of stable infinity on the
component theories, noetherianity of the shared theory. Since the notion of local
extensions we studied [21] imposes no major restrictions on the base theory, it
offers interesting, orthogonal criteria for the transfer of decidability in combina-
tions of theories. In this paper we show that efficient reasoning techniques can
be provided for combinations of local theory extensions as well. To this end, we
present new results on preservation of locality and Ψ -locality of theory exten-
sions under theory combinations, extending earlier results in [23] (cf. also [22]).
The main results of this paper can be summarized as follows:

– We present semantic characterizations for various notions of locality (possi-
bly parameterized by a closure operator on ground terms).

– We present various results on transfer of locality (and hence also of decid-
ability), some with a model theoretical flavor.

– We identify increasingly complex conditions under which locality is preserved
under taking unions of theories. We strengthen some results in [23,22] by
considering the embeddability conditions (EEmbw) instead of (Compw) and
by considering combinations of Ψi-local extensions of a theory. We briefly
discuss the way these ideas are implemented in H-PILoT.

The paper is structured as follows. Section 2 contains generalities on local the-
ory extensions, partial algebras, weak validity and embeddability. In Sect. 3 we
present ways of recognizing locality. In Sect. 4 we give semantical characteriza-
tions of locality; these are used in Sect. 5 to transfer locality results. Section 6
presents our results on combinations of local theory extensions, and a description
of the way we implemented hierarchical reasoning in such combinations.

2 Preliminaries

We assume standard definitions from first-order logic. In this paper, (logical)
theories are simply sets of sentences.

Extensions of theories. Let Π0=(Σ0,Pred) be a signature, and T0 be a “base”
theory with signature Π0. We consider the following types of extensions of T0:

– Extensions with sets of clauses are extensions T := T0 ∪ K of T0 with new
function symbols Σ (called extension functions) whose properties are axiom-
atized using a set K of (universally closed) clauses in the extended signature
Π = (Σ0 ∪Σ,Pred), which contain function symbols in Σ.

– Extensions with augmented clauses are extensions T := T0 ∪ K with new
function symbols Σ whose properties are axiomatized using a set K of for-
mulas of the form ∀x̄ (Φ(x̄)∨D(x̄)) where Φ(x̄) is an arbitrary formula in the
base signature Π0 and D(x̄) is a clause in the extended signature Π , which
contains at least one function symbol of Σ.

32 C. Ihlemann and V. Sofronie-Stokkermans

If for every formula ∀x̄ (Φ(x̄) ∨ D(x̄)) ∈ K, Φ(x̄) is universal we speak of
extension by universal augmented clauses ; if Φ(x̄) belongs to a certain class
F of Π0-formulae we speak of extension by F-augmented clauses.

Example 1. The following examples illustrate the notions above:

(i) Let T0 be the theory of Presburger arithmetic, with signature Π0. Let Σ =
{f} where f is a new function symbol, and let Kf = {∀x, y, z (y = z →
f(x, y) = f(x, z))} be an axiomatization for the injectivity of f in its second
argument. Then T1 := T0 ∪Kf is an extension of T0 with the set K of clauses
and f is an extension function.

(ii) Let T1 be the theory defined at (i) and let Σ = {g}, where g ∈ Σ0 ∪Σ and
let Kg = {∀x, y([∀z(z = y → f(x, z) < f(x, y))] → g(x) = f(x, y))}. Then
T := T1 ∪ Kg is an extension of T1 with a set Kg of augmented clauses (in
fact F -augmented clauses where F is the ∃-fragment of T1).

Our goal is to address proof tasks of the form G |=T0∪K ⊥, where G is a set of
ground clauses with additional (fresh) constants in a countable set C, i.e. in the
signature ΠC = (Σ0 ∪Σ ∪ C,Pred).

For the case of extensions T0 ∪ K by augmented clauses we also consider the
more general task of checking satisfiability problems of the form Γ |=T0∪K ⊥,
where Γ is a conjunction of sentences of the form Φ0 ∨D, where D is a ground
clause in the signature ΠC , and Φ0 is a ΠC

0 -sentence.
We also consider combinations of extensions (T0 ∪ K1) and (T0 ∪ K2) of the

base theory T0, where Ki are sets of (augmented) clauses over (Σ0 ∪ Σi,Pred).
Our proof tasks G, then, will be in the signature (Σ0 ∪Σ1 ∪Σ2 ∪C,Pred). Using
new constants, we can always separate G into a (Σ0 ∪Σ1 ∪ C,Pred)-part G1, a
(Σ0 ∪Σ2 ∪ C,Pred)-part G2, and a Π0-part G0.

Locality conditions. Let T0 be an arbitrary theory with signature Π0 =
(Σ0,Pred), where the set of function symbols is Σ0. Let Π = (Σ0∪Σ,Pred) ⊇ Π0
be an extension by a non-empty set Σ of new function symbols and K be a set
of (implicitly universally closed) clauses in the extended signature. Let C be a
fixed countable set of fresh constants. We say that an extension T0 ∪ K of T0 is
local if it satisfies the following condition1:

(Loc) For every set G of ground clauses in ΠC it holds that
T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[G] ∪G |= ⊥

where K[G] consists of those instances of K in which the terms starting with
extension functions are in the set est(K, G) of extension ground terms (i.e. terms
starting with a function in Σ) which already occur in G or K.

The notion of local theory extension generalizes the notion of local theories
[10,17,11,7]. In [14] we generalized condition (Loc) by considering operators on
ground terms. This allows us to be more flexible w.r.t. the instances needed.

1 It is easy to check that the formulation we give here and that in [21] are equivalent.

On Hierarchical Reasoning in Combinations of Theories 33

Definition 2. With the notations above, let T be a set of ground terms in the
signature ΠC . We denote by K[T] the set of all instances of K in which the
terms starting with a function symbol in Σ are in T . Formally:

K[T] := {ϕσ | ∀x̄. ϕ(x̄) ∈ K, where (i) if f ∈ Σ and t = f(t1, ..., tn) occurs in ϕσ
then t ∈ T ; (ii) if x is a variable that does not appear below some
Σ-function in ϕ then σ(x) = x}.

Definition 3. Let Ψ be a map associating with every set T of ground terms a
set Ψ(T) of ground terms. For any set G of (augmented) ground ΠC-clauses we
write K[ΨK(G)] for K[Ψ(est(K, G))]. We define versions of locality2 in which the
set of terms used in the instances of the axioms is described using the map Ψ .
Let T0 ∪ K be an extension of T0 with clauses in K. We define:

(Loc
Ψ) For every set G of ground clauses in ΠC it holds that

T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪G |= ⊥.

Let T0 ∪ K be an extension of T0 with augmented clauses in K. We define:

(ELoc
Ψ) For every set of formulas Γ =Γ0 ∪G, where Γ0 is a Π0-sentence

and G is a set of ground ΠC-clauses, it holds that
T0 ∪ K ∪ Γ |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪ Γ |= ⊥.

Extensions satisfying condition (Loc
Ψ) are called Ψ -local; we refer to (ELoc

Ψ) as
the extended Ψ -locality condition. Finite locality conditions ((E)Loc

Ψ
f) are de-

fined restricting the locality conditions to hold for finite sets G of ground clauses.

Example 4. Local theory extensions are Ψ -local, where Ψ is the identity operator.
The order-local theories introduced in [2] satisfy a Ψ -locality condition, where for
every set T of ground clauses Ψ(T) = {s | s ground term and s � t for some t ∈
T }, where ≺ is the order on terms considered in [2].

Hierarchical reasoning. Let T0 ⊆ T =T0∪K be a theory extension satisfying
((E)Loc

Ψ). To check the satisfiability w.r.t. T of a formula Γ0 ∪ G, where Γ0 is
a ΠC

0 -sentence3 and G is a set of ground ΠC-clauses, we proceed as follows:
Step 1: By locality, T ∪Γ0∪G |=⊥ iff T0∪K[ΨK(G)]∪Γ0∪G |=⊥.
Step 2: Purification. We purify K[ΨK(G)] ∪ G (by introducing, in a bottom-up
manner, new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ, gi ground
ΠC

0 -terms, and corresponding definitions ct ≈ t) and obtain the set of formulae
K0 ∪G0 ∪Γ0 ∪D, where D consists of definitions f(g1, . . . , gn)≈c, where f ∈ Σ, c
is a constant, g1, . . . , gn are ground ΠC

0 -terms, and K0, G0, Γ0 are ΠC
0 -formulae.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing
satisfiability in T0 by replacing D with the following set of clauses:

Con0 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

This yields a sound and complete hierarchical reduction to a satisfiability prob-
lem in the base theory T0:
2 It is easy to check that the formulation we give here and that in [14] are equivalent.
3 In the case of condition (LocΨ), Γ0 = �.

34 C. Ihlemann and V. Sofronie-Stokkermans

Theorem 5 ([14]). Let K and Γ0 ∧G be as specified above. Assume that T0 ⊆
T0 ∪K satisfies condition ((E)Loc

Ψ). Let K0 ∪G0 ∪Γ0 ∪Con0 be obtained from
K[ΨK(G)] ∪ Γ0 ∪G by purification (cf. Step 2). The following are equivalent:

(1) T0∪K∪Γ0∪G |=⊥ .
(2) T0 ∪ K0 ∪G0 ∪ Γ0 ∪ Con0 |=⊥.

Thus, satisfiability of goals Γ0 ∪G as above w.r.t. T is decidable provided K[ΨK(G)]
is finite and K0 ∪G0 ∪ Γ0 ∪ Con0 belongs to a decidable fragment of T0.

Implementation. This method is implemented in the program H-PILoT (Hier-
archical Proving by Instantiation in Local Theory Extensions) ([13]). H-PILoT
carries out a hierarchical reduction to T0 step-by-step if the user specifies differ-
ent levels for the extension functions in a chain of theory extensions. Standard
SMT provers or specialized provers can be used for testing the satisfiability of
the formulas obtained after the reduction. If the result of the reduction is a satis-
fiable problem, H-PILoT is able to generate a model. Ψ -locality is handled for the
array property fragment and a fragment of the theory of pointers [3,18,14], which
are fully integrated into H-PILoT. In this paper we establish ways of recognizing
(Ψ -)locality for wider classes of theories.

Since local extensions can be recognized by showing that certain partial models
embed into total ones, we introduce the main definitions here.

Partial Structures. Let Π = (Σ,Pred) be a first-order signature with set of
function symbols Σ and set of predicate symbols Pred. A partial Π-structure is a
structure A = (A, {fA}f∈Σ, {PA}P∈Pred), where A is a non-empty set, for every
f ∈ Σ with arity n, fA is a partial function from An to A, and for every P ∈ Pred,
PA ⊆ An. We consider constants (0-ary functions) to be always defined. A is
called a total structure if the functions fA are all total. Given a (total or partial)
Π-structure A and Π0 ⊆ Π we denote the reduct of A to Π0 by A|Π0 .

The notion of evaluating a term t with variables X w.r.t. an assignment
β : X → A for its variables in a partial structure A is the same as for total
algebras, except that the evaluation is undefined if t = f(t1, . . . , tn) and at
least one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of
fA. Recall that for total Π-structures A and B, ϕ : A → B is an embedding
if and only if it is an injective homomorphism and has the property that for
every P ∈ Pred with arity n and all (a1, . . . , an) ∈ An, (a1, . . . , an) ∈ PA iff
(ϕ(a1), . . . , ϕ(an)) ∈ PB. In particular, an embedding preserves the truth of all
literals. A similar notion can be defined for partial structures.

Definition 6 (Weak Π-Embedding). A weak Π-embedding between partial
Π-structures A = (A, {fA}f∈Σ, {PA}P∈Pred) and B = (B, {fB}f∈Σ, {PB}P∈Pred)
is a total map ϕ : A→ B such that

(1) whenever fA(a1, . . . , an) is defined (in A), then fB(ϕ(a1), . . . , ϕ(an)) is de-
fined (in B) and ϕ(fA(a1, . . . , an)) = fB(ϕ(a1), . . . , ϕ(an)), for all f ∈ Σ;

(2) for every P ∈ Pred with arity n and every a1, . . . , an ∈ A, (a1, . . . , an) ∈ PA
if and only if (ϕ(a1), . . . , ϕ(an)) ∈ PB.

On Hierarchical Reasoning in Combinations of Theories 35

Definition 7 (Weak Validity). Let A be a partial Π-algebra and β : X→A a
valuation for its variables. We define weak validity w.r.t. (A, β) as follows:

(1) (A, β) |=w t ≈ u if (i) both β(t) and β(u) are defined and equal; or (ii) at
least one of the terms β(t), β(u) is undefined.

(2) (A, β) |=w t≈u if (i) both β(t) and β(u) are defined but different; or (ii) at
least one of the terms β(t), β(u) is undefined.

(3) (A, β) |=w P (t1, . . . , tn) if (i) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn)) ∈ PA; or (ii) at least one β(ti), 1 ≤ i ≤ n, is undefined.

(4) (A, β) |=w ¬P (t1, . . . , tn) if (i) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn)) ∈ PA; or (ii) at least one β(ti), 1 ≤ i ≤ n, is undefined.

(A, β) weakly satisfies a clause C (notation: (A, β) |=w C) if it satisfies at least
one literal in C. A is a weak partial model of a set of clauses K if (A, β) |=w C
for every valuation β and every clause C in K.

If T = T0 ∪K is an extension of a Π0-theory T0 with new function symbols in Σ
and (augmented) clauses K, we denote by PModw(Σ, T) the set of weak partial
models of T whose Σ0-functions are total.

3 Recognizing Ψ -Local Theory Extensions

In [21] we proved that if all weak partial models of an extension T0 ∪ K of a
base theory T0 with total base functions can be embedded into a total model
of the extension, then the extension is local. In [14] we lifted these results to
Ψ -locality. We recall these results and then extend them to obtain semantical
characterizations of various types of Ψ -locality. In what follows, let T0 be a
Π0-theory, and T0 ⊆ T0 ∪ K = T a theory extension with functions in Σ and
(augmented) clauses K and let Ψ be as in Definition 3.

Definition 8. Let A = (A, {fA}f∈Σ0∪Σ , {PA}P∈Pred) be a partial ΠC-structure
with total Σ0-functions. We denote by ΠA the extension of the signature Π with
constants from A. We denote by D(A) the following set of ground ΠA-terms:

D(A) := {f(a1, ..., an) | f ∈ Σ, ai ∈ A, i = 1, . . . , n, fA(a1, ..., an) is defined }.

Let PModΨ
w(Σ, T) be the class of all weak partial models A of T0∪K in which the

Σ-functions are partial, all other functions are total and all terms in Ψ(est(K,
D(A))) are defined (in the extended structure AA with constants from A).
We consider the following embeddability properties of partial algebras:

(EmbΨ
w) Every A ∈ PModΨ

w(Σ, T) weakly embeds into a total model of T .

(CompΨ
w) Every A ∈ PModΨ

w(Σ, T) weakly embeds into a total model B
of T such that A|Π0 and B|Π0 are isomorphic.

Variants (CompΨ
w,f) and (EmbΨ

w,f) can be obtained by requiring embeddability
only for extension functions with a finite domain of definition.

When establishing links between locality and embeddability we require that
the extension clauses in K are flat (quasi-flat) and linear w.r.t. Σ-functions.

36 C. Ihlemann and V. Sofronie-Stokkermans

Definition 9. We distinguish between ground and non-ground clauses.
Non-ground clauses: An extension clause D is quasi-flat when all symbols below
a Σ-function symbol in D are variables or ground Π0-terms. D is flat when all
symbols below a Σ-function symbol in D are variables. D is linear if whenever
a variable occurs in two terms of D which start with Σ-functions, the terms are
identical, and no such term contains two occurrences of a variable.
Ground clauses: A ground clause D is flat if all symbols below a Σ-function in
D are constants. A ground clause D is linear if whenever a constant occurs in
two terms in D whose root symbol is in Σ, the two terms are identical, and if
no term which starts with a Σ-function contains two occurrences of the same
constant.

Definition 10. With the above notations, let Ψ be a map associating with K
and a set of ΠC-ground terms T a set ΨK(T) of ΠC-ground terms. We call ΨK
a term closure operator if the following holds for all sets of ground terms T, T ′:

(1) est(K, T) ⊆ ΨK(T),
(2) T ⊆ T ′ ⇒ ΨK(T) ⊆ ΨK(T ′),
(3) ΨK(ΨK(T)) ⊆ ΨK(T),
(4) for any map h : C → C, h̄(ΨK(T)) = Ψh̄K(h̄(T)), where h̄ is the canonical

extension of h to extension ground terms.

In [14] we proved that if Ψ is a term closure operator then condition (CompΨ
w)

implies (ELocΨ), provided the extension clauses are flat and linear. An analo-
gous proof shows that (EmbΨ

w) implies (LocΨ).4 This allowed us to identify many
examples of Ψ -local theory extensions. In [14] we showed that (i) a decidabil-
ity result for the array property fragment in [3] is due to the Ψ -locality (for a
certain Ψ) of the corresponding extensions of the many-sorted combination of
Presburger arithmetic (for indices) with the given theory of elements, and (ii) a
fragment of the theory of pointer structures studied in [18] satisfies a Ψ -locality
property.

4 Semantical Characterizations of Locality

The aim of this section is to obtain semantical characterizations of the notions of
Ψ -locality studied here. We first show that Ψ -locality implies Ψ -embeddability.

Theorem 11. Assume that K is a family of Σ-flat clauses in the signature Π.

(1) If T0 is a first-order theory and the extension T0 ⊆ T =T0∪K satisfies (LocΨ)
then every model in PModΨ

w(Σ, T) weakly embeds into a total model of T .
(2) If T0 ⊆ T =T0∪K satisfies (ELocΨ) then every A ∈ PModΨ

w(Σ, T) weakly
embeds into a total model B of T such that restriction of this embedding to
the reducts to Π0 of A, B preserves the truth of all first-order Π0-formulae.

4 It is easy to see that if T0 is a first-order theory then in order to prove locality it is
sufficient to restrict to countable partial models in the embeddability conditions.

On Hierarchical Reasoning in Combinations of Theories 37

Theorem 11(2) indicates that for characterizing extended Ψ -locality we need a
notion weaker than completability. Therefore, instead of condition (CompΨ

w) we
now consider embeddings that are elementary w.r.t. the base language.

Definition 12. A map ϕ : A → B is an elementary embedding iff it preserves
and reflects all formulas, i.e., for every formula F (x1, . . . , xn) with free variables
x1, . . . , xn and all elements a1, . . . , an from A,

A |= F (a1, . . . , an) if and only if B |= F (ϕ(a1), . . . , ϕ(an)).

If ϕ is the inclusion, we say that A is an elementary substructure of B (notation:
A � B). Two structures A,B are elementarily equivalent (notation: A ≡ B) if
they satisfy the same sentences.

Note that if there is an elementary embedding between two structures, then they
are elementarily equivalent in particular. We consider the following property.

(EEmbw) For every A ∈ PModw(Σ, T) there is a total model B of T
and a weak embedding ϕ : A → B
such that the embedding ϕ : A|Π0 → B|Π0 is elementary.

The definition generalizes in a natural way to a notion (EEmbΨ
w), parameterized

by a closure term operator Ψ by requiring that the embeddability condition
holds for all A ∈ PModΨ

w(Σ, T) with domain of definition closed under Ψ , and to
corresponding finite embeddability conditions (EEmbΨ

w,f) analogous to (EmbΨ
w,f).

Since every isomorphism is an elementary embedding we have the implications
(Compw) → (EEmbw) → (Embw) and (CompΨ

w) → (EEmbΨ
w) → (EmbΨ

w).
A model complete theory is one that has the property that all embeddings

between its models are elementary. So if we choose a model complete base theory
then (EEmbw) and (Embw) coincide. To give examples of model complete base
theories note first that every theory which allows quantifier elimination (QE) is
model complete (cf. [12], Theorem 7.3.1).

Example 13. The following theories have QE and are therefore model complete.

(1) Presburger arithmetic with congruence mod. n (≡n), n = 2, 3, ... ([6], p.197).
(2) Rational linear arithmetic in the signature {+, 0,≤} ([27]).
(3) Real closed ordered fields ([12], 7.4.4), e.g., the real numbers.
(4) Algebraically closed fields ([5], Ex. 3.5.2; Rem. p.204; [12], Ch. 7.4, Ex. 2).
(5) Finite fields ([12], Ch. 7.4, Example 2).
(6) The theory of acyclic lists in the signature {car, cdr, cons} ([16,9]).

Not all model complete theories allow QE: the theory of real closed fields (with-
out <) is model complete but does not admit quantifier elimination (cf. [5],
3.5.19, and the subsequent remark on p.204).

Theorem 14. Let T0 be a Π0-theory, Π = (Σ0 ∪Σ,Pred) and let K be a set of
universally closed, linear and quasi-flat clauses in the signature Π and let ΨK be
a term closure operator with the property that for every flat set of ground terms
T , Ψ(T) is flat.

38 C. Ihlemann and V. Sofronie-Stokkermans

(EmbΨ
w) �� (LocΨ)

(EEmbΨ
w)

�
�� (ELocΨ)

�

Fig. 1. Relations between locality and embeddability

(1) If the extension T0 ⊆ T0 ∪ K satisfies (EmbΨ
w) then it satisfies (LocΨ).

(2) If the extension T0 ⊆ T0 ∪ K satisfies (EEmbΨ
w) then it satisfies (ELocΨ).

The results above give us the following relations (Fig. 1) between these properties
under the conditions on Ψ and K in the statements of Theorem 14 and 11. The
results naturally adapt to yield links between ((E)LocΨ

f) and ((E)Emb
Ψ
w,f).

Comments. We can generalize these results even further and refer to versions
of locality resp. embeddability parameterized by a fragment F of the theory T0
(containing the ground clause fragment): In condition (EEmbΨ

w(F)) we require
that every A ∈ PModΨ

w(Σ, T) weakly embeds into a total model of T such that
the restriction of the embedding on Π0 preserves and reflects truth of formulae
in F , possibly with parameters in A, and by allowing in (ELocΨ (F)) that all
clauses in K and in G are F -augmented clauses (cf. Definition 3 in Section 2).
Due to space constraints, we do not present these extensions in detail here.

5 Locality Transfer Results

We present some locality transfer results.

Note. Considering an extension ΠC of a signature Π with fresh constants C =
{ci | i ∈ I}, we denote by (A, b̄) the expansion of a Π-structure A to a structure
for the extended language ΠC where ci is interpreted as bi, for all i. Supposing
that we have Π-structures A,B and constants ca for every element a ∈ A, note
that a map ϕ : A → B is an elementary embedding if and only if (A, ā) ≡ (B, ϕā).
We use the following theorem which can be seen as a generalization of Robinson’s
joint consistency theorem.

Theorem 15 ([12], 5.5.1). Let Π1, Π2 be signatures, Π = Π1 ∩Π2, B a Π1-
structure, C a Π2-structure and ā a sequence of elements in both B and C such
that (B|Π , ā)≡(C|Π , ā). Then there is a (Π1∪Π2)-structure D such that B�D|Π1

and an elementary embedding g : C → D|Π2 with g(ai)=ai for every ai in a.

D

B

� �

C

�g :�

if (B|Π , ā) ≡ (C|Π , ā)

ā

⊆
�

�
⊇

An application of Theorem 15 is the transfer of elementary embeddings.

On Hierarchical Reasoning in Combinations of Theories 39

Theorem 16 ((EEmb) Transfer). Let Π0 = (Σ0,Pred) be a signature, T0 a
theory in Π0, Σ1 and Σ2 two disjoint sets of new function symbols, Πi := (Σ0 ∪
Σi,Pred), i = 1, 2. Assume that T2 is a Π2-theory with T0 ⊆ T2, and K is a set
of universally closed Π1-clauses. If the extension T0 ⊆ T0 ∪ K enjoys (EEmbw)
then so does the extension T2 ⊆ T2 ∪ K. In particular, if K is (quasi)-flat and
linear then extension T2 ⊆ T2 ∪ K satisfies condition (ELoc).

If all variables in clauses in K occur below Σ1-functions, and ground satisfi-
ability is decidable in T2, then ground satisfiability is decidable in T2∪K.

The result extends in a natural way to the case of finite embeddability (EEmbw,f).
Theorem 16 is a very useful result, which allows us to identify a large number
of local extensions. We illustrate its applicability on one example.

Example 17. Let Lat be the theory of lattices and T1 = Lat∪Monf , where Monf =
{∀x, y (x≤y → f(x)≤f(y))} is the monotonicity of a new function symbol f .
Using techniques similar to the ones used in [24] we can prove that the extension
Lat ⊆ Lat∪Monf satisfies condition (Compw,f) hence also (EEmbw,f). Let T be
any extension of the theory of lattices (this can be the theory of distributive
lattices, Heyting algebras, Boolean algebras, any theory with a total order – e.g.
the (ordered) theory of integers or of reals, etc.). By Theorem 16, T ⊆ T ∪Monf

satisfies condition (EEmbw,f), hence the extended locality condition (ELocf).

For model complete base theories Theorem 16 specializes as follows.

Corollary 18. Let Π0 be a signature, T0 a model complete theory in Π0, and
Σ1 and Σ2 two disjoint sets of new function symbols. Let Πi = (Σ0∪Σi,Pred),
i = 1, 2. Let K be a set of flat and linear Π1-clauses and T2 be an arbitrary
Π2-theory with T0 ⊆ T2. If the extension T0 ⊆ T0 ∪ K is local then the extension
T2 ⊆ T2 ∪ K is local as well.

5.1 Locality and Model Completeness

A model complete theory can sometimes be regarded as the completion of an-
other theory with the same universal fragment. Recall that the diagram of a
first-order structure A is the set of all literals true in the extension (A, ā) of A
where we have a constant for each element of A.

Definition 19. A theory T ∗ is called a model completion of T if (i) T and T ∗

are co-theories (i.e. every model of T can be extended to a model of T ∗ and vice
versa), (ii) T ∗ is model complete and (iii) for every model A of T , T ∗ ∪ΔA is
complete where ΔA is the diagram of A.

Example 20. Below we present some examples of model completions:

(1) The theory of algebraically closed fields is the model completion of the theory
of fields. This was the motivating example for developing the theory of model
completions ([5], Examples 3.5.2, 3.5.12; Remark 3.5.6 ff; [12], 7.3).

40 C. Ihlemann and V. Sofronie-Stokkermans

(2) The theory of dense total orders without endpoints is the model completion
of the theory of total orders ([9]).

(3) The theory of atomless Boolean algebras is the model-completion of Boolean
algebras ([5], Example 3.5.12, cf. also p.196).

(4) Universal Horn theories in finite signatures have a model completion if they
are locally finite and have the amalgamation property (e.g., graphs, posets)
([28]).

Theorem 21. Let T0 be a theory. Assume that T0 has a model completion T ∗
0

such that T0 ⊆ T ∗
0 . Let T = T0 ∪ K be an extension of T0 with new function

symbols Σ whose properties are axiomatized by a set of flat and linear clauses K
(all of which contain symbols in Σ).

(1) Assume that:
(i) Every model of T0 ∪ K embeds5 into a model of T ∗

0 ∪ K.
(ii) T0 ∪ K is a local extension of T0.
Then T ∗

0 ⊆ T ∗
0 ∪ K satisfies condition (EEmbw), hence if K is a set of

quasi-flat and linear augmented clauses also condition (ELoc) as extension of
T ∗

0 .
(2) If all variables in K occur below an extension function and T ∗

0 ∪ K is a local
extension of T ∗

0 then T0 ∪ K is a local extension of T0.

The results extend in a natural way to Ψ -locality and to finite versions of em-
beddability and locality.

Example 22. We show that the extension of the theory TOrd of total orderings
with a strictly monotone function, i.e. a function f satisfying the axiom:

SMon(f) ∀x, y(x < y → f(x) < f(y))

satisfies condition (Locf). To show this, note that the model completion TOrd∗

of TOrd is the theory of dense total orderings without endpoints. We show that
the extension TOrd∗ ⊆ TOrd∗ ∪ SMon(f) satisfies condition (ELocf). Indeed,
let A = (A,≤, f) be a partial model of TOrd∗ ∪ SMon(f) where the domain
of definition of f is finite, say {a1, . . . , an} ⊆ A where a1 < a2 < · · · < an.
W.l.o.g. we can assume that A is countable. Let bi = f(ai) ∈ A, 1 ≤ i ≤ n. Then
b1 < b2 < · · · < bn. Let A0 = {x ∈ A | x < a1}, Ai = {x ∈ A | ai < x < ai+1},
for 1 ≤ i ≤ n− 1, and An = {x ∈ A | an < x}, and B0 = {x ∈ A | x < b1}, Bi =
{x ∈ A | bi < x < bi+1}, for 1 ≤ i ≤ n − 1, and Bn = {x ∈ A | bn < x}.
All these sets are countable models of TOrd∗ hence isomorphic (since the theory
of dense total orderings without endpoints is ω-categorical). We can use these
isomorphisms to extend the partial map to a strictly monotone map from A to
A. This extends a result established in [15].

Similarly, we can prove that the extension of the pure theory of equality with
a function f satisfying Inj(f) ∀x, y (x = y → f(x) = f(y)) is local.

5 If T0 is universal, this is the notion of compatibility defined in [9].

On Hierarchical Reasoning in Combinations of Theories 41

6 Combinations of Local Theories

We now identify situations in which the union of two local extensions of a com-
mon base theory is again a local extension of the base theory. This was first
studied in [22] and [23]. Here, we extend some of the results in [22] and [23] by
using instead of the completability of partial models the condition (EEmbw), and
also embeddability conditions parameterized by term closure operators.

6.1 Case 1: Both Theories Satisfy (EEmbw)

We first show that extended locality is preserved when combining theories.

Lemma 23. Let Π0 be a signature, T0 a Π0-theory, Σ1 and Σ2 two disjoint sets
of fresh function symbols and Ki a set of universally closed Πi-clauses (where
Πi = (Σ0 ∪ Σi,Pred)) for i = 1, 2. If both extensions T0 ⊆ T0 ∪ Ki, i = 1, 2,
satisfy (EEmbw) then so does the extension T0 ⊆ T0 ∪ K1 ∪ K2. If K1 ∪ K2 is
(quasi)-flat and linear then the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local.

Proof : This is a consequence of Theorem 15. �
If T0 is a model complete base theory then (EEmbw) and (Embw) coincide.

Corollary 24. Let T0 be a model complete Π0-theory, Σ1 and Σ2 two disjoint
sets of fresh function symbols and Ki a set of universally closed Πi-clauses for
i = 1, 2. If both extensions T0 ⊆ T0 ∪Ki, i = 1, 2, satisfy (Embw) then so does the
extension T0 ⊆ T0 ∪ K1 ∪ K2. In particular, if K1 ∪ K2 is (quasi)-flat and linear
then the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local.

If the base theory T0 is complete, (EEmbw) follows from (Embw). Recall that a
theory T is complete if it is consistent and it holds for every sentence ϕ that
T |= ϕ or T |= ¬ϕ. Equivalently, a theory T is complete if it is consistent and
all its models are elementarily equivalent.

Corollary 25. Let T0 be a complete theory in Σ0, Σ1 and Σ2 two disjoint sets
of fresh function symbols and Ki a set of clauses in Σ0 ∪Σi for i = 1, 2. If both
extensions T0 ⊆ T0 ∪ Ki, i = 1, 2, satisfy (Embw) then so does the extension
T0 ⊆ T0 ∪ K1 ∪ K2. In particular, if K1 ∪ K2 is (quasi)-flat and linear then the
extension T0 ⊆ T0 ∪ K1 ∪ K2 is local.

Example 26. The following theories are complete.
(1) Presburger arithmetic ([20]).
(2) Real closed fields ([12], Thm. 2.7.2 and subsequent Remark (b).).
(3) The theory of algebraically closed fields of characteristic 0 or p (p prime)

([5], Prop. 1.4.10ff.; Example 3.5.9 and page 197).
(4) Divisible torsion-free Abelian groups in which all elements have order p (p

prime) (ibid.).

Remark 27. Completeness and model completeness do not imply one another.
For instance, algebraically closed fields are model complete but not complete (cf.
[5], p.188). On the other hand, dense linear orders with endpoints are complete
but not model complete (cf. [5], p.187).

42 C. Ihlemann and V. Sofronie-Stokkermans

6.2 Case 2: One Theory Satisfies (EEmbw)

We consider combinations of theory extensions among which one satisfies con-
dition (EEmbw). We extend Theorem 19 of [23] to handle this situation.

Theorem 28. Let T0 be a theory in the signature Π0, Σ1 and Σ2 two disjoint
sets of new function symbols, and Πi = (Σ0 ∪ Σi,Pred). Let Ki be a set of
Πi-clauses for i = 1, 2, and Ti := T0 ∪ Ki, i = 1, 2. Assume that:

(1) T0 ⊆ T1 satisfies (EEmbw),
(2) T0 ⊆ T2 satisfies (Embw) and
(3) K1 is Σ1-flat in which all variables are shielded, i.e.,

all variables occur below some Σ1-function.

Then the extension T0 ⊆ T0 ∪ K1 ∪ K2 satisfies (Embw). If K1∪K2 is (quasi)-flat
and linear then the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local.

6.3 Combinations of Ψ -Local Theory Extensions

We now study combinations of Ψi-local extensions (with different Ψi’s) over a
common base theory. For a partial algebra A and a term closure operator Ψ , let
us write ΨK(A) for the set ΨK(D(A)) in what follows. The following lemma lifts
the argument in [23] (cf. also [22]) to Ψ -locality.

Lemma 29. Let T0 be a Π0-theory, Σ1 and Σ2 two disjoint sets of new function
symbols, Πi = (Σ0∪Σi,Pred), and Ki a set of universally closed Πi-clauses, for
i = 1, 2. Let Ti = T0 ∪ Ki, i = 1, 2. Let ΨK1 be a closure operator w.r.t. (ΠC

1)-
terms. Let A be a (Π1∪Π2)-structure such that A|Π1 ∈ PModw(Σ, T), B be a
total model of T2 and χ : A|Π2 → B be a weak Π2-embedding. Assume that:

(1) K1 is Σ1-flat,
(2) all variables of K1 appear below an extension function,
(3) all terms in ΨK1(A|Π1) are defined in (A, {a | a ∈ A}).

Then χ and B can be extended s.t. χ̂:A→B̂ is a weak Π1∪Π2-embedding, B̂|Π2 =
B|Π2 |=T2, B̂|Π1∈PModw(Σ, T), and all terms of ΨK1(B|Π1) are defined in B.

Theorem 30. Let T0 be a theory in the signature Π0, Σ1 and Σ2 two disjoint
sets of fresh function symbols. Let Πi defined as above, and let Ki be a set of
universally closed Πi-clauses for i = 1, 2. Let Ti := T0 ∪ Ki, i = 1, 2. Let Ψi be
term closure operators on ground ΠC

i -terms, i = 1, 2. Suppose that

(1) T0 is a ∀∃ theory,
(2) Ki is Σi-flat and T0 ⊆ Ti satisfies condition (EmbΨi

w) for i = 1, 2,
(3) all variables are shielded in Ki, i.e., all variables occur below an extension

function, i = 1, 2.

Then T0 ⊆ T0 ∪ K1 ∪ K2 has (EmbΨ1∪Ψ2
w) where (Ψ1 ∪ Ψ2)(Γ) := Ψ1(Γ) ∪ Ψ2(Γ).

On Hierarchical Reasoning in Combinations of Theories 43

Proof : Let A be a partial model of T0 ∪ K1 ∪ K2 with total Σ0-functions such
that the terms in (Ψ1 ∪ Ψ2)(A) are all defined. We need to embed A into a total
model of T0 ∪ K1 ∪ K2. We build up this total model inductively by repeatingly
using Lemma 29 and embeddability to get a diagram

T1,T w
2

B1

T1,T w
2

B3

...

A
T w
1 ,T w

2
�

B2
T w
1 ,T2

��

B4
T w
1 ,T2

��

where all the arrows are weak (Π1 ∪Π2)-inclusions, B2k |= T2, B2k |=w T1 and
B2k+1 |= T1, B2k+1 |=w T2 We can construct the inductive limit Bω of this chain,
having as carrier the union of the carriers Bi, and the functions defined by:

fBω(b̄) := fBi(b̄) if ∃i s. t. fBi(b̄) is defined.

The functions are total and well-defined by the definition of Bω and because
all maps in the diagram are weak embeddings. We obtain the total Π1 ∪ Π2-
structure Bω. Since T0 is ∀∃, Bω is a model of T0 (Chang-�Los-Suszko theorem).
It is easy to check that Bω is a total model of T0 ∪ K1 ∪ K2. �

Corollary 31. With the above notations, additionally assume that the Ki are
Σi-linear for i = 1, 2. Then for any closure term operator Ψ3 with Ψ3 ⊇ (Ψ1 ∪Ψ2)
it holds that T0 ⊆ T0 ∪ K1 ∪ K2 is a Ψ3-local extension. Hence, under conditions
(1),(3) if Ki are flat and linear and T0 ⊆ T0 ∪ Ki satisfies (EmbΨi

w), for i = 1, 2
then T0 ⊆ T0 ∪ K1 ∪ K2 satisfies (EmbΨ3

w) for every Ψ3 with Ψ3 ⊇ (Ψ1 ∪ Ψ2).

We now analyze the locality of combinations of local extensions of a base theory
which share some of the extension clauses (a consequence of Theorem 30).

Theorem 32. Let T0 be a theory with signature Π0 = (Σ0,Pred). Let K be a
set of universally closed, flat and linear clauses in the signature (Σ0 ∪Σ,Pred);
and let Σ1, Σ2 be sets of new function symbols such that Σ1 ∩ Σ2 = ∅ and
Σ ∩Σi = ∅, i = 1, 2. Let Ki, i = 1, 2, be sets of universally closed, flat and linear
(Σ0 ∪ Σ ∪ Σi,Pred)-clauses such that each clause in Ki contains at least one
Σi-symbol. Assume that T0 ⊆ T0 ∪ K ∪ Ki is local, for i = 1, 2. Then:

(1) The extension T0 ⊆ T0 ∪ K is local.
(2) The extension T0 ∪ K ⊆ T0 ∪ K ∪ Ki is local.
(3) If T0 is a ∀∃-theory and all variables are shielded in Ki, i = 1, 2, then the

extension T0 ⊆ T0 ∪ K ∪ K1 ∪ K2 is local.
(4) The extension T0 ∪ K ∪ K1 ⊆ T0 ∪ K ∪ K1 ∪ K2 is local.

Implementation. These results were established with the goal of having simple,
modular ways of recognizing locality and Ψ -locality and for giving and imple-
menting efficient decision procedures for theory extensions and combinations.
At the moment H-PILoT [13] handles combinations of local theories as follows:

44 C. Ihlemann and V. Sofronie-Stokkermans

By Theorems 30 and 32, a theory extension T0 ⊆ T0 ∪ K1 ∪ · · · ∪ Kn, where the
clauses Ki specify function symbols in mutually disjoint signatures Σi and where
all variables appear below an extension function, is local and can equivalently
be considered as a chain of local extensions T0 ⊆ T0 ∪ K1 ⊆ · · · ⊆ T0 ∪

⋃n
i=1 Ki,

provided each extension T0 ⊆ T0 ∪ Ki is local.

7 Conclusions

In this paper we gave semantical characterizations of locality conditions param-
eterized by closure operators on ground terms. These operators capture in a
theoretical way the type of instances of the axioms which are needed for guaran-
teeing completeness for ground satisfiability problems in extensions of a theory
with sets of clauses. The conditions we imposed on the closure operators we
consider allow us to address within the framework of Ψ -locality a large number
of theories related to data structures and some theories which occur e.g. in rela-
tionship with description logics. Based on this, we identified several situations in
which locality results can be transferred from one theory extension to another,
some of them with a model theoretical flavor. We then studied possibilities of
combining local theory extensions. The results we obtained allow us to identify
in a simple and structured way an even larger number of local theory exten-
sions interesting for applications. These theoretical results have been used for
extending the H-PILoT prover.

Acknowledgments. We thank the referees for their helpful comments. This
work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

1. Baader, F., Tinelli, C.: Deciding the word problem in the union of equational
theories. Information and Computation 178(2), 346–390 (2002)

2. Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered res-
olution. Journal of the ACM 48(1), 70–109 (2001)

3. Bradley, A.R., Manna, Z., Sipma, H.: What’s decidable about arrays? In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer,
Heidelberg (2005)

4. Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quar-
terly 41, 173–182 (1995)

5. Chang, C.C., Keisler, J.J.: Model Theory. North-Holland, Amsterdam (1990)
6. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Harcourt Aca-

demic Press, London (2002)
7. Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time

decidability of uniform word problems. In: Logic in Computer Science, LICS’01,
pp. 81–92. IEEE Computer Society Press, Los Alamitos (2001)

8. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems
for partial functions with weak equality. In: Basin, D., Rusinowitch, M. (eds.)
IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 168–182. Springer, Heidelberg (2004)

On Hierarchical Reasoning in Combinations of Theories 45

9. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning 33(3-4), 221–249 (2004)

10. Givan, R., McAllester, D.A.: New results on local inference relations. In: Nebel, B.,
Rich, C., Swartout, W.R. (eds.) Knowledge Representation and Reasoning, KR’92,
pp. 403–412 (1992)

11. Givan, R., McAllester, D.A.: Polynomial-time computation via local inference re-
lations. ACM Transactions on Comp. Logic 3(4), 521–541 (2002)

12. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge
(1997)

13. Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In:
Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 131–139. Springer,
Heidelberg (2009)

14. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifica-
tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
265–281. Springer, Heidelberg (2008)

15. Jacobs, S.: Hierarchic Decision Procedures for Verification. PhD. Thesis, Univ. des
Saarlandes (2010)

16. Mal’cev, A.I.: Axiomatizable classes of locally free algebras of various types. The
Metamathematics of Algebraic Systems. In: Collected Papers: 1936-1967, Stud-
ies in Logic and the Foundation of Mathematics, ch. 23, vol. 66. North-Holland,
Amsterdam (1971)

17. McAllester, D.A.: Automatic recognition of tractability in inference relations. Jour-
nal of the ACM 40(2), 284–303 (1993)

18. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490.
Springer, Heidelberg (2005)

19. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

20. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du Premier Congrès des Mathématiciens des Pays Slaves, 92–101 (1929)

21. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005)

22. Sofronie-Stokkermans, V.: On combinations of local theory extensions. In: Pro-
ceedings of the Workshop on Programming Logics in memory of Harald Ganzinger,
WPLHG’05 (to appear, 2005), http://arxiv.org/abs/0810.2653

23. Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories:
The case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007.
LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007)

24. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local ex-
tensions of ordered structures. Journal of Multiple-Valued Logics and Soft Com-
puting 13(4-6), 397–414 (2007)

25. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)

26. Tinelli, C., Zarba, C.: Combining non-stably infinite theories. Journal of Auto-
mated Reasoning 34(3), 209–238 (2005)

27. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1/2), 3–27 (1988)

28. Wheeler, W.H.: Model-companions and definability in existentially complete struc-
tures. Israel Journal of Mathematics 25, 305–330 (1976)

http://arxiv.org/abs/0810.2653

Global Caching for Coalgebraic Description Logics�

Rajeev Goré1, Clemens Kupke2, Dirk Pattinson2, and Lutz Schröder3

1 Computer Science Laboratory, The Australian National University
2 Department of Computing, Imperial College London

3 DFKI Bremen and Department of Computer Science, Universität Bremen

Abstract. Coalgebraic description logics offer a common semantic umbrella
for extensions of description logics with reasoning principles outside relational
semantics, e.g. quantitative uncertainty, non-monotonic conditionals, or coali-
tional power. Specifically, we work in coalgebraic logic with global assumptions
(i.e. a general TBox), nominals, and satisfaction operators, and prove sound-
ness and completeness of an associated tableau algorithm of optimal complex-
ity EXPTIME. The algorithm uses the (known) tableau rules for the underlying
modal logics, and is based on on global caching, which raises hopes of practi-
cally feasible implementation. Instantiation of this result to concrete logics yields
new algorithms in all cases including standard relational hybrid logic.

Introduction

Description Logics (DLs) [2], which may be regarded as notational variants of vari-
ous extensions of modal logic, constitute one of the most important formalisms in the
area of logic-based knowledge representation. Two key features of DLs are support for
nominals, i.e. the ability to reason about particular individual states of the model rather
than about subsets only, and support for reasoning using global assumptions, a so-called
(general) TBox. The combination of these two features corresponds roughly to (i.e. is
slightly less expressive than) reasoning with global assumptions in hybrid logic [1].

On the other hand, reasoning about real-life problems typically calls for modal prin-
ciples beyond the standard existential and universal constraints that correspond in DL
notation to the boxes and diamonds of modal logic. Some of these principles, such as
qualified number constraints, are already incorporated in many DLs, while support for
others such as quantitative uncertainty (‘with likelihood at least p’), non-monotonic
conditionals (‘if a then normally b’), and strategic aspects (‘coalition C of agents can
force a’) is less well-developed. In particular, the complexity of hybrid or description
logics including these features was largely unknown until it was shown recently that
TBox reasoning in such logics is, under weak assumptions, in EXPTIME and, hence,
typically EXPTIME complete [20] The generic framework that makes results at this
level of generality possible is coalgebraic logic, which relies on the principle of en-
capsulating the type of systems underlying the semantics of a given modal or hybrid
logics (neighbourhood frames, Kripke frames, Markov chains, game frames etc.) as
coalgebras for a set functor.

� The second and third author supported by EPSRC grant EP/F031173/1. The last author sup-
ported by BMBF grant FormalSafe (FKZ 01IW07002).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 46–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Global Caching for Coalgebraic Description Logics 47

From a practical point of view, the generic algorithm presented in [20] has two draw-
backs: it relies on decision procedures for infinite games, which guarantee EXPTIME

complexity but also induce average-case exponential run time; and moreover it starts
by guessing the theories of named states, which is practically infeasible. In the present
work, we drastically improve on this by presenting an EXPTIME tableau algorithm that
uses global caching. Tableau-based methods have been successful in providing efficient
decision procedures for modal and description logics [12], and in particular are em-
ployed in the leading current DL reasoners. They are relatively easy to implement but
often do not meet known upper complexity bounds for a given logic. For example, the
traditional tableau algorithm for theALC requires double exponential time in the worst
case, and known alternative EXPTIME tableaux are highly complex [8]. Global caching
has recently been proposed as a way of establishing tableau-based decision procedures
that do meet known optimality bounds, while at the same time offering good practical
efficiency and room for heuristic optimization. It has been successfully applied to the
description logics ALC and ALCI [10,11] and, more recently, to coalgebraic modal
logic with global assumptions [9].

The fundamental idea of global caching is that tableau sequents should be arranged
in a directed graph rather than in a tree. In this way one is able to avoid unnecessary
repetitions of calculations that would normally happen on various branches of a tree-
shaped tableau. The challenge in extending global caching to hybrid logics is to manage
the theories of named nodes in a consistent way across the tableau without resorting to
backtracking, which is what global caching tries to avoid. Our algorithm achieves pre-
cisely this. It instantiates to new tableau-based decision procedures for a wide range of
hybrid logics such as probabilistic and graded hybrid logics and hybrid coalition logic.
Even its incarnation in the traditional relational realm seems to be a new decision proce-
dure for global reasoning in hybrid K (or ALCO extended with satisfaction operators;
see [4,3] for an overview of existing tableau systems for hybrid K), to our knowl-
edge the first backtracking-free tableau-based procedure for hybrid K that matches the
known EXPTIME bound [1]. Compared to other approaches in the literature [4] we note
that our tableaux are unlabelled which allows us to avoid backtracking, as we do not
need to pay special attention to labels, and in turn entails the optimal complexity bound.

1 Global Caching for Hybrid Logics, Informally

We proceed to give a brief motivation of the main ideas of our algorithm, using two
very simple examples; the full description of the algorithm is given in Section 4. We
feel entitled to work in the standard example of hybrid logic over Kripke frames, as
our algorithm appears to be new even in this basic case, but we emphasize that our
method applies in the much wider setting of coalgebraic hybrid logic. Recall that the
main features that distinguish hybrid logic from plain modal logic (which comes with
an operator ♦ ‘there exists a successor state such that’, corresponding to existential
restrictions in description logic) are nominals which designate individual states, and
satisfaction operators @i ‘state i satisfies . . . ’. The main problem in designing tableaux
calculi for hybrid logics that are amenable to global caching is that the satisfaction op-
erators are global in nature, i.e. all states in the tableau have to agree on the truth values

48 R. Goré et al.

of formulas of the form @iA. In complexity proofs, it is unproblematic to just guess
these truth values before building the tableau [14,20], but of course this is not a feasible
approach in the design of a reasoning algorithm that aims for efficient average-case
behaviour. Standard tableau algorithms for hybrid logic (e.g. [3]) explore possible truth
values for @-formulas via backtracking; however, the driving idea behind the global
caching approach is precisely to minimize backtracking.

Our solution to this problem is roughly as follows. We view the construction of a
tableau in the standard way as a game between two players, Eloise (∃) and Abelard
(∀), where ∃ tries to prove satisfiability of the target formulas, and ∀ unsatisfiability. A
typical move by ∃ in a standard purely modal tableau would be, e.g., to select a disjunct
from a disjunction, while a typical move by ∀would be, e.g., to pick a diamond formula
♦A for which ∃ then has to establish satisfiability of a new state labelled A. In the
hybrid setting, ∃ may stumble upon formulas @iψ in this process; she may choose to
just ignore these for the moment, but will later be forced to prove satisfiability of all such
formulas that she runs across. Our main idea is now to collect such @-formulas along a
potential winning strategy of ∃ and propagate this collection back through the tableau.
Collections of @-formulas, which we call @-constraints, are attached to standard nodes
via special links, along (one of) which ∃ may be forced to move to prove satisfiability.

As our first example, we have the following tableau for the sequent ♦@ip,♦(♦@iq∨
♦¬p) (with the comma read conjunctively).

@ip,@i¬p ♦@ip,♦(♦@iq ∨ ♦@i¬p)
∀

������������
∀

��

∃ ��∃�� @ip,@iq

∀
��

@ip ♦@ip

∀
��

∃�� ♦@iq ∨ ♦@i¬p

∃

����
��

��
��

��
��

��
��

�

∃

���
��

��
��

��
��

��
��

��
�

∃ ��
∃

��

@iq i, p, q,@ip,@iq

∃
		

@ip @ip
∃�� @i¬p

@iq ♦@iq

∀
��

∃�� ♦@i¬p
∀

��

∃ �� @i¬p

@iq @iq
∃�� @i¬p ∃ �� @i¬p

The solid arrows above indicate unfolding of tableau rules. At the root node, ∀ has
two challenges, corresponding to the two ♦-formulas, that ∃ can answer in each case,
and she can choose between two disjuncts at the node below the root. Ignoring @-
constraints, both choices would demonstrate satisfiability of the root. The @-constraints
are represented by dotted lines above, and are propagated from the bottom nodes that
contain @-formulas. At the node below the root, ∃ can demonstrate satisfiability if she
can satisfy either of the two constraints, which are propagated to the root node, and
induce (stronger) constraints that also account for the the second (left) ♦-formula. At
the root, each constraint represents a set of assumptions that need to be met in order for
∃ to demonstrate satisfiability, and the ability to establish satisfiability of the constraint
on the right finally gives satisfiability of the root node. Note that we could have declared

Global Caching for Coalgebraic Description Logics 49

satisfiability even without unfolding the left disjunct at the node below the root, as the
satisfiability of a node hinges on the satisfiability of only one constraint. The situation
is different in the next example, a tableau for the sequent ♦@i⊥,♦A, where A is some
complex formula:

♦@i⊥,♦A ∃ ��

∀
��

@i⊥, •
∀

��
@i⊥ @i⊥∃�� i,⊥,@i⊥

Here, the root formula is clearly unsatisfiable, and ∀ can challenge the satisfiability of
the root by requiring successors for each of the ♦-formulas. Unfolding the left ♦, this
induces an unsatisfiable @-constraint that is propagated to the root, but as the right ♦
is not yet unfolded, this constraint is incomplete, indicated by • – further unfolding
and propagation would still require satisfiability of @i⊥. Challenging the satisfiability
of this (incomplete) constraint, ∀ demonstrates unsatisfiability of the root node, even
without fully unfolding the tableau.

2 Syntax and Semantics of Coalgebraic Hybrid Logic

To make our treatment parametric in the concrete syntax of any given modal logic,
we fix a modal similarity type Λ consisting of modal operators with associated arities
throughout. Throughout the paper, Prop and N denote two denumerable disjoint sets of
propositional variables and nominals, respectively. We will only be considering formu-
las in negation normal form, and abbreviate P = {p | p ∈ P} and Λ = {♥ | ♥ ∈ Λ}
where the derived dual modal operator ♥ has the same arity as ♥. The set H(Λ) of
hybrid Λ-formulas is given by the grammar

H(Λ) � A,B ::= x | A ∧B | A ∨B | ♥(A1, . . . , An) | ♥(A1, . . . , An) | @iA

where x ∈ P∪P∪N∪N is a possibly negated propositional variable or nominal,♥ ∈ Λ
is n-ary and i ∈ N is a nominal. We write

(Λ ∪ Λ)(F) = {♥(A1, . . . , An) | ♥ ∈ Λ ∪ Λ n-ary, A1, . . . , An ∈ F}

for the set of all formulas that can be constructed by applying a (possibly dualised)
modal operator to elements of a set F of formulas. A Λ-tableau-sequent, short Λ-
sequent or just sequent, is a finite set of Λ-formulas that we read conjunctively, and
we write S(Λ) for the set of Λ-sequents. A Λ-state is a Λ-sequent that neither con-
tain a top-level propositional connective nor a pair x, x of complementary proposi-
tional variables or nominals, and we write State(Λ) for the set of Λ-states. We de-
fine the negation A of a formula A ∈ H(Λ) by p = p, (A ∧B) = A ∨ B,

A ∨B = A∧B,♥(A1, . . . An) = ♥(A1, . . . , An),♥(A1, . . . , An) = ♥(A1, . . . , An)
and @iA = @iA. We use the standard definitions for the other propositional connec-
tives→,↔,∨. The set of nominals occurring in a formula A is denoted by N(A). This
extends to sets of formulas, and N(Γ) =

⋃
{N(A) | A ∈ Γ}. A formula of the form

50 R. Goré et al.

@iA is called an @-formula, and a formula that does not begin with @ is called plain.
Semantically, nominals i denote individual states in a model, and an @-formula @iA
stipulates that A holds at i.

To reflect parametricity in the particular underlying logic also semantically, we equip
hybrid logics with a coalgebraic semantics extending the standard coalgebraic seman-
tics of modal logics [15]: we fix an endofunctor T : Set → Set throughout that is
equipped with an assigment of an n-ary predicate lifting �♥� for every n-ary modal op-
erator♥ ∈ Λ, i.e. a set-indexed family of mappings (�♥�X : P(X)n → P(TX))X∈Set

that satisfies
�♥�X ◦ (f−1)n = (Tf)−1 ◦ �♥�Y

for all f : X → Y . In categorical terms, [[♥]] is a natural transformationQn → Q◦T op

whereQ : Setop → Set is the contravariant powerset functor.
In this setting, T -coalgebras play the roles of frames. A T -coalgebra is a pair (C, γ)

where C is a set of states and γ : C → TC is the transition function. If clear from the
context, we identify a T -coalgebra (C, γ) with its state space C. A (hybrid) T -model
(C, γ, π) consists of a T -coalgebra (C, γ) together with a hybrid valuation π, i.e. a map
P ∪ N → P(C) that assigns singleton sets to all nominals i ∈ N. We often identify the
singleton set π(i) with its unique element.

The semantics of H(Λ) is a satisfaction relation |= between states c ∈ C in hybrid
T -models M = (C, γ, π) and formulas A ∈ H(Λ), inductively defined as follows. For
x ∈ N ∪ P and i ∈ N, put

c,M |= x iff c ∈ π(x) c,M |= @iA iff π(i),M |= A.

Modal operators are interpreted using their associated predicate liftings, that is,

c,M |= ♥(A1, . . . , An) ⇐⇒ γ(c) ∈ �♥�C(�A1�M , . . . , �An�M)

where ♥ ∈ Λ n-ary and �A�M = {c ∈ C | M, c |= A} denotes the truth-set of A
relative to M and �♥�C(A1, . . . , An) = C \ �♥�(C \ A1, . . . , C \An) for the case of
dual operators. If Ξ is a set of formulas (the global assumptions, or TBox), we write
Mod(Ξ) for the class of models M = (C, γ, π) such that M, c |= A for all A ∈ Ξ and
all c ∈ C. A formula A is satisfiable in Mod(Ξ) if it is satisfied in some state in some
model of Mod(Ξ).

The distinguishing feature of the coalgebraic approach to hybrid and modal logics
is the parametricity in both the logical language and the notion of frame: concrete in-
stantiations of the general framework, in other words a choice of modal operatorsΛ, an
endofunctor T and an assigment of predicate liftings, capture the semantics of a wide
range of modal logics, as witnessed by the following examples.

Example 1. 1. The hybrid version of the modal logic K , hybrid K for short, has
a single unary modal operator �, and we write � = ♦. Hybrid K is interpreted over
coalgebras for the powerset functor P that takes a set X to its powerset P(X) and
���X(A) = {B ∈ P(X) | B ⊆ A}. It is clear that P-coalgebras (C, γ : C → P(C))
are in 1-1 correspondence with Kripke frames, and that the coalgebraic definition of
satisfaction specialises to the usual semantics of the box operator.

Global Caching for Coalgebraic Description Logics 51

2. Graded hybrid logic has modal operators ♦k ‘in more than k successors, it holds
that’, where we write ♦k = �k. It is interpreted over the functor B that takes a set X
to the set B(X) of multisets over X , i.e. maps B : X → � ∪ {∞}, by [[♦k]]X(A) =
{B ∈ B(X) |

∑
x∈AB(x) > k}. This captures the semantics of graded modalities over

multigraphs [7], which are precisely the B-coalgebras. One can encode the description
logicALCOQ (which features qualified number restrictions ≥nR and has a relational
semantics) into multi-agent graded hybrid logic with multigraph semantics by adding
formulas ¬♦1i for all occurring nominals i to the TBox.

3. Probabilistic hybrid logic, the hybrid extension of probabilistic modal logic [13],
has modal operators Lp ‘in the next step, it holds with probability at least p that’, for
p ∈ [0, 1]∩�. It is interpreted over the functorDω that maps a setX to the set of finitely-
supported probability distributions on X by putting [[Lp]]X(A) = {P ∈ Dω(X) |
PA ≥ p}. Coalgebras for Dω are just Markov chains.

3 Tableau Rules for Coalgebraic Logics

We now introduce the (type of) tableau rules we will be working with. Clearly, these
rules have to relate syntax and semantics in an appropriate way, and we cannot expect to
prove as much as soundness, let alone completeness, without the rules satisfying appro-
priate coherence conditions, which we introduce later. We begin with the propositional
part of the calculus, for which it is convenient to unfold propositional connectives in a
single step. This process is called saturation and is given by a map sat that is defined
inductively by the clauses

sat(Δ′) = {Δ′} sat(A ∨B,Γ) = sat(A,Γ) ∪ sat(B,Γ)
sat(x, x, Γ) = ∅ sat(A ∧B,Γ) = sat(A,B, Γ)

where A,B ∈ H(Λ) are formulas, Γ is a sequent, x ∈ P ∪ N is a propositional vari-
able or a nominal and Δ′ ∈ State(Λ) is a state, i.e. contains neither complementary
propositional variables nor top-level propositional connectives. As we interpret hybrid
formulas over the class of all (coalgebraic) hybrid models, it suffices to use modal rules
of a rather specific form where the premise contains only modalised formulas and the
conclusion is purely propositional in terms of the arguments of the modalities. Rules of
this type are called one-step rules and have been used in the context of tableau calculi
in [9,6] and originate from the (dual) sequent rules of [19].

Definition 2. A one-step tableau rule over Λ is a tuple (Γ0, Γ1, . . . , Γn), written as
Γ0/Γ1 . . . Γn, where Γ0 ⊆ (Λ ∪ Λ)(P ∪ P) and Γi ⊆ P ∪ P so that every variable that
occurs in the conclusion Γ1 . . . Γn also occurs in the premise Γ0, and every proposi-
tional variable occurs at most once in the premise Γ0.

We can think of one-step rules as a syntactic representation of the inverse image
γ−1 : P(TC) → P(C) of a generic coalgebra map γ : C → TC in that the premise
describes a property of successors, whereas the conclusion describes states. The re-
quirement that propositional variables do not occur twice in the premise is a mere tech-
nical convenience, and can be met by introducing premises that state the equivalence

52 R. Goré et al.

of variables. While this rigid format of one-step rules suffices to completely axiomatise
all coalgebraic logics [17], it does not accommodate frame conditions like transitivity
(�p→ ��p), which require separate consideration.

Example 3. One-step rules that axiomatise the logics in Example 1 can be found (in
the form of proof rules) in [16,19]. Continuing Example 1, we single out hybridK and
(hybrid) graded modal logic.

1. Hybrid K is axiomatised by the setRK of one-step rules that contain

(K)
♦p0,�p1, . . . ,�pn

p0, . . . , pn
for all n ≥ 0.

2. The rulesRB for graded modal logic contain

(G)
♦k1p1, . . . ,♦knpn,�l1q1, . . . ,�lmqm∑m

j=1 sjqj −
∑n

i=1 ripi < 0

where n,m ∈ � and ri, sj ∈ � \ {0} satisfy the side condition
∑n

i=1 ri(ki + 1) ≥
1 +
∑m

j=1 sj lj . The conclusion of (G) is to be read as arithmetic of characteristic
functions, and expands into a disjunctive normal form with only positive literals [19].

While the above are examples of one-step rules, the generic treatment of a larger class
of modal logic requires that we abstract away from concretely given rule sets. This is
achieved by formalising coherence conditions that link the rules with the coalgebraic
semantics. The following terminology is handy to formalise these conditions:

Definition 4. Suppose thatX is a set, P ⊆ Prop is a set of variables and τ : P→ P(X)
is a valuation. The interpretation of a propositional sequent Γ ⊆ P∪P relative to (X, τ)
is given by �Γ �X,τ =

⋂
{τ(p) | p ∈ Γ} ∩

⋂
{X \ τ(p) | p ∈ Γ} ⊆ X . Modalised

sequents Γ ⊆ (Λ ∪ Λ)(P ∪ P) are interpreted, again relative to (X, τ), as subsets of
TX by

�Γ �TX,τ =
⋂
{�♥�X(�p1�X,τ , . . . , �pn�X,τ) | ♥(p1, . . . , pn) ∈ Γ}

where p1, . . . , pn ∈ P ∪ P and ♥ ∈ Λ ∪ Λ.

The coherence conditions can be formulated solely in terms of (the interpretation of)
propositional and modal sequents. In particular, we do not consider models for the logic
under scrutiny.

Definition 5. Suppose that R is a set of one-step tableau rules. We say that R is one-
step tableau sound (resp. one-step tableau complete) with respect to T if, for all P ⊆
Prop, all finite Γ ⊆ (Λ ∪ Λ)(P ∪ P), all sets X and valuations τ : P → P(X):
�Γ �TX,τ �= ∅ only if (if) for all rules Γ0/Γ1 . . . Γn ∈ R and all renamings σ : P → P
(such that A �= B implies Aσ �= Bσ for all A,B ∈ Γ0) with Γ0σ ⊆ Γ , we have that
�Γiσ�X,τ �= ∅ for some 1 ≤ i ≤ n.

This means that a rule set is sound and complete if a modalised sequent is satisfiable
iff every one-step rule applicable to it has at least one satisfiable conclusion. We note
that the rule sets given in Example 3 are both one-step sound and one-step complete for
their respective interpretations. This is argued, in the dual case of sequent rules, in [19].

Global Caching for Coalgebraic Description Logics 53

4 Caching Graphs for Coalgebraic Hybrid Logic

Caching graphs address the problem of deciding the validity of a sequent Γ0 under a
finite set of global assumptions (TBox)Ξ both of which we fix throughout. We write C
for the closure of Γ0, Ξ , i.e. the smallest set of formulas that contains Γ,Ξ and is closed
under taking subformulas, their (involutive) negations and prefixing of plain formulas
(that do not begin with @) with @i where i ∈ N(C); we then work with sequents over
C, i.e. subsets of C, but mostly omit explicit mention of C.

For a given one-step sound and complete set R of one-step rules, this allows us
to consider the set T (R) that consists of the rule instances that are needed to expand
sequents over C.

Definition 6. The set T (R) of tableau rules relative to C consists of the rules Γ/sat(Γ)
for Γ ∈ C and the rules

Γσ, Γ ′

Δ1σ,Ξ . . . Δnσ,Ξ

where Γ/Δ1, . . . , Δn ∈ R, σ : P → C is a substitution such that Γσ ⊆ C and σ does
not identify elements of Γ , and Γ ′ ⊆ C.

In other words, the set T (R) of tableau rules relative to C consists of all substitution
instances of one-step rules where we allow an additional sequent Γ ′ in the premise to
absorb weakening, and the set Ξ of global assumptions is added to every conclusion.
Informally, the conclusions of a modal rule specify properties of successor states, and
adding Ξ to each conclusion ensures that successor states also validate Ξ , leading to a
model that globally validates the TBox.

While the tableau rules are used to expand sequents, a second type of sequent is
needed to deal with the @-formulas: since @-formulas are either globally true or glob-
ally false, they need to be propagated across the tableau, and their validity needs to be
ascertained. This is the role of @-constraints that we now introduce, together with rules
that govern their expansion.

Definition 7 (@-Constraints). An @-constraint over C is a finite set of @-formulas
in C that may additionally include the symbol •. The expansion of @-constraints is
governed by the rules T (@) that contain, for each @-constraint Υ over C, the following
@-expansion rules

Υ

i, Υ/@i, Υ \ {•}, Ξ
where i ∈ N(Υ) is a nominal occurring in Υ and Υ/@i = {A | @iA ∈ Υ}.

The role of @-constraints is to record those formulas that are required to be globally
valid (and therefore need to satisfy the global assumptions Ξ)to guarantee the satisfia-
bility of a particular sequent. To check whether a particular @-constraint is satisfiable,
we therefore need to check, for each applicable @-expansion rule, the consistency of
the conclusion. The role of • as an element of an @-constraint is to denote an (as yet)
unknown constraint to be induced by a sequent that is yet to be expanded. We next in-
troduce caching graphs, which provide the fundamental data structure that allows for
the propagation of these constraints.

54 R. Goré et al.

Definition 8. A caching graph over C is a tuple G = (S,C, LM , L@, λS , λC) where

– S and C are sets of sequents and @-constraints respectively
– LM = (L∀

M , L∃
M) is a pair of relations with L∀

M ⊆ S×P(S) and L∃
M ⊆ P(S)×S

– L@ = (L∀
@, L

∃
@) is a pair of relations with L∀

@ ⊆ C × S and L∃
@ ⊆ S × C; we

require that L∃
@ is upclosed, i.e. (Γ, Υ) ∈ L∃

@ and Υ ⊆ Υ ′ imply (Γ, Υ ′) ∈ L∃
@

– λS : S → {A,E,U,X} and λC : C → {T,D} are labelling functions.

We denote the upclosure (under⊆) of a set B of @-constraints by ↑ B.

We think of LM as the “modal links” where L∀
M links sequents to sets of conclusions of

modal rules, and L∃
M links conclusions (sets of sequents) to their individual elements.

This reflects the fact that to declare a sequent Γ satisfiable, we need to select, for all
rules applicable to this sequent (all (Γ, Ψ) ∈ L∀

M) one conclusion Δ ∈ Ψ (there exists
(Ψ,Δ) ∈ L∃

M) which is recursively satisfiable. Similarly, L@ encodes the global con-
straints (which we later propagate) that ensure that a sequent is satisfiable. For example
for the sequent Γ = @iA ∨ @jB to be satisfiable, either the @-constraint @iA or the
@-constraint @jB needs to be satisfiable, so that {(Γ,@iA), (Γ,@iB)} ⊆ L∃

@, and
we ask for the existence of a L∃

@-successor of Γ . The required upclosure corresponds
to the fact that – in order to satisfy an @-constraint – it suffices to satisfy any larger
constraint. Technically, requiring upclosure simplifies the definition of @-propagation
below. To guarantee the satisfiability of @-constraints, we link every @-constraint to a
set of sequents (one for each nominal) that stipulate the validity of these constraints.
For example, the @-constraint Υ = @iA,@jB requires that A holds at i and B holds
at j which stipulates that both Υi = i, A, Υ and Υj = j, B, Υ should be satisfiable.
This is represented by stipulating that {(Υ, Υi), (Υ, Υj)} ⊆ L∀

@ where again ∀ indicates
universal choice.

The role of the labelling functions is essentially for bookkeeping. The label λS(Γ)
of a sequent Γ indicates whether the sequent is satisfiable (E: a winning position for
the existential player), unsatisfiable (A: a winning position for the universal player),
unknown (U) or unexpanded (X). Similarly, the label of an @-constraint Υ indicates
that this constraint is expanded (D for done) or unexpanded (T for todo).

Remark 9. In a concrete implementation of caching graphs, it is sufficient to represent
the upwards closed sets L∃

@(Γ) = {Υ | (Γ, Υ) ∈ L∃
@} by means of a set of generators,

which dramatically reduces the size of caching graphs.

We now introduce a set of transitions between caching graphs that correspond to expan-
sion of both sequents and @-constraints, propagation of @-constraints and updating of
winning positions. We begin with sequent expansion.

Definition 10 (Sequent Expansion). Suppose G = (S,C, LM , L@, λC , λS) is a
caching graph. We putG→E G′ and say that G′ arises from G through sequent expan-
sion if there is an unexpanded sequent Γ ∈ S (i.e. λS(Γ) = X), and G′ arises from G
by inserting all relations (Γ, Ψ) where Γ/Ψ ∈ T (R) is a rule into L∀

M , all ensuing rela-
tions (Ψ,Δ) with Δ ∈ Ψ to L∀

M , updating S to contain new sequents Δ that have been
encountered in this procedure and setting their status to unexpanded (i.e. λS(Δ) = X),
equipping them with all @-constraints that contain • and finally marking Γ as unknown
(λS(Γ) = U).

Global Caching for Coalgebraic Description Logics 55

The situation is somewhat dual for @-constraints, where the universal links are added
by a simple expansion process, but the existential links arise via propagation. Given
that satisfiability of a sequent is conditional on the satisfiability of one of the associ-
ated @-constraints, we need a mechanism to check their satisfiability. In a nutshell, for
an @-constraint to be satisfiable, we need to check, for each nominal, that the formu-
las deemed to be valid at this nominal are jointly satisfiable. While this results in an
(ordinary) sequent, this process may uncover more constraints, and we therefore need
to remember the set of @-constraints that we started out with. Formally, expansion of
@-constraints takes the following form:

Definition 11 (@-Expansion). Suppose G = (S,C, LM , L@, λS , λC) is a caching
graph. We put G→@E G′ and say that G′ arises from G through @-expansion if there
exists a ‘todo’-constraint Υ ∈ C (i.e. λC(Υ) = T and G′ arises from G by inserting all
sequents Γ for which Υ/Γ ∈ T (@) to L∃

∀(Υ) and adding all new sequents to S, mark-
ing them as unexpanded (λC(Γ) = X , equipping new sequents with all @-constraints
containing •, and finally marking Υ as done (λC(Υ) = D).

Informally, every @-constraint Υ specifies, for each nominal i, a set of formulas that
are to be valid at i, which are collected in the @-demands. As the expansion of these
formulas may unearth further @-formulas (possibly involving nominals distinct from
i), the original @-constraint Υ is remembered in the @-demand. For the existential @-
links the situation is more complicated, as @-links emanating from a sequent describe
constraints (sets of @-prefixed formulas) that need to be satisfied for the sequent to be
satisfiable. As @-prefixed formulas are either globally true or globally false, these con-
straints must hold at all points of a putative model. This necessitates distributing those
constraints from one node of a tableau graph to the others. In general, every tableau
node comes with a finite number of @-constraints where each particular constraint rep-
resents one requirement under which the associated sequent is satisfiable, such @iA or
@jB for the above-mentioned example sequent @iA ∨ @jB. As a consequence, we
need to analyse the universal / existential branching structure of the caching graph dur-
ing the propagation phase. As we are dealing with a possibly circular graph (due to the
global assumptions), propagation is formalised as a greatest fixpoint computation.

Definition 12 (@-Propagation). Let A denote the set of all @-constraints that can be
formed in the closed set C. Suppose G = (S,C, LM , L@, λS , λC) is a caching graph
and R ⊆ S ×A. The set CR(Γ) of R-constraints of Γ consists of all @-constraints of
the form Υ1, . . . , Υk such that for some (Δ1, . . . , Δk) ∈

∏
(Γ,Ψ)∈L∀

M
Ψ , (Δi, Υi) ∈ R

and λS(Δi) �= A for i = 1, . . . , k. In other words, anR-constraint of Γ collects, for ev-
ery rule applicable to Γ , one constraint of one rule conclusion. In particular,CR(Γ) = ∅
if (Γ/∅) ∈ L∀

M (i.e. Γ is inconsistent) and CR(Γ) = {∅} in case no rule is applicable
to Γ . Recall that L∃

@ is maintained as an upclosed relation of type S × A. Thus, let
R = {R ⊆ L∃

@ | R upclosed}, and define a monotone operatorW@ : R→ R by

W@(R)(Γ) =

{
↑ {{•}} (λS(Γ) = X)
↑ {@Γ,Θ1, Θ2, | Θ1 ∈ R(Γ), Θ2 ∈ CR(Γ)} (otherwise)

where @Γ = {@iA | i, A ⊆ Γ and A not an @-formula}∪{A ∈ Γ | A an @-formula}
so that to an expanded sequent, we associate its own @-formulas together with one

56 R. Goré et al.

previously computed constraint and one constraint that is propagated upwards from its
children. We put G→@P G′ if G′ = (S,C′, LM , L′

@, λS , λ
′
C) where

– C′ = C ∪ {Υ | ∃Γ ∈ S ((Γ, Υ) ∈ νW@)},
– L∃

@
′ = νW@ and L∀

@
′ = L∀

@
– λ′C(Υ) = λC(Υ) if Υ ∈ C and λ′C(Υ) = T , otherwise

and say that G′ arises from G through @-propagation.

Some comments are in order regarding the above definition of @-propagation. Updating
L∃

@ requires us to compute an upclosed relation R ⊆ S ×A; because constraints grow
monotonically (due to sequent expansion), we will haveR ⊆ L∃

@ (possibly throwing out
some smaller constraints). To propagate @-constraints from the children of a sequent
Γ up to Γ itself, note that Γ is satisfiable if for all applicable rules Γ/Ψ , there exists
at least one satisfiable conclusion in Δ ∈ Ψ . In particular, one of the @-constraints
associated with Δ needs to be satisfiable. In other words, for Γ to be satisfiable it is
necessary to be able to simultaneously select one @-constraint Υ ∈ R(Δ) from one of
the conclusionsΔ ∈ Ψ for each of the rules Γ/Ψ that are applicable to Γ . If we think of
R as defining an over-approximation of @-constraints, we keep for each Γ only those
constraints that contain the @-formulas of Γ and one of the R-constraints of Γ . This is
precisely the effect of one application of W@, and we compute the greatest fixpoint of
W@ to propagate this information across cycles in the tableau graph.

The final crucial step is the updating of winning positions. Here, the intuition is that
a given sequent is satisfiable if we can select a complete set of @-constraints so that
all @-demands of this set are satisfiable – i.e. for each of the @-demands, we must
be able to (recursively) pinpoint a complete set of @-constraints for which the same
condition holds. We call a set of @-constraints complete if it represents full information,
that is, collects all constraints that ensure that – if these constraints are satisfied – the
sequent under consideration does not have a closed tableau. This is where • comes in:
@-constraints that do not include • are complete. On the other hand, ∀ can win from a
given sequent if all of the (possibly still incomplete) @-constraints (recursively) have at
least one unsatisfiable @-demand.

Definition 13 (Position Propagation). Suppose that G = (S,C, LM , L@, λS , λC) is
a caching graph. By abuse of notation, write

U = λ−1
S (U) E = λ−1

S (E) and A = λ−1
S (A)

for the sets of sequents that are labelled with U,E andA respectively. Define two mono-
tone operatorsM,W : P(U)→ P(U) by

M(X) = {Γ ∈ U | ∀(Γ, Υ) ∈ L∃
@ ∃(Υ,Δ) ∈ L∀

@ (Δ ∈ X ∪A)}
W (X) = {Γ ∈ U | ∃(Γ, Υ) ∈ L∃

@ (• /∈ Υ) and ∀(Υ,Δ) ∈ L∀
@ (Δ ∈ X ∪ E)}.

We put G→P G′ if G′ = (S,C, LM , L@, λ
′
S , λC) where λ′S(Γ) = A if Γ ∈ A∪μM ,

λ′S(Γ) = E if Γ ∈ E ∪ νW and λ′S(Γ) = λS(Γ), otherwise, and say that G′ arises
from G through position propagation.

Global Caching for Coalgebraic Description Logics 57

We now have all ingredients in place to describe the algorithm for deciding the satisfia-
bility of a sequent Γ ⊆ H(Λ). This algorithm non-deterministically applies expansion,
propagation and update steps until the initial sequent is either marked A (unsatisfiable)
or E (satisfiable).

Algorithm 14. Decide whether Γ0 is satisfiable in Mod(Ξ).

1. Initialise: put G = ({Γ0, Ξ}, ↑ {{•}}, ∅, L@, λS , λC) where
– λS(Γ0, Ξ) = X , and λC(Υ) = T everywhere;
– L∃

@ is total and L∀
@ = ∅.

2. While (λS(X)−1 �= ∅) or (λ−1
C (T) �= ∅) do

(a) choose G′ with G→E G′ or G→@E G′ and let G := G′;
(b) (optional) choose G′ with G→@P G′ and let G := G′;
(c) (optional)

– choose G′ with G→P G′ and let G := G′;
– return ‘yes’ if λS(Γ) = E and ‘no’ if λS(Γ) = A.

3. Find G′ with G→@P G′, let G := G′, and continue with Step 2.
4. Find G′ with G→P G′ and let G := G′.
5. Return ‘yes’ if λS(Γ) = E and ‘no’ if λS(Γ) = A.

In the above formulation, the algorithm nondeterministically expands sequents or @-
constraints and interleaves @-propagation and position update. Since @-propagation
may create new @-constraints, we need to make sure that all @-constraints are eventu-
ally created, which is ensured by going back to Step 2 after @-propagation in Step 3.
This procedure terminates, after at most exponentially many steps, as there are at most
exponentially many @-constraints and sequents (measured in the size of the initial se-
quent Γ0 and the TBox Ξ), and the final position update ensures that all sequents are
marked accordingly. Note that we may terminate at any time after the initial sequent
has been marked as either satisfiable or unsatisfiable after a position update.

5 Correctness and Completeness

We begin by showing that a sequent marked as satisfiable by Algorithm 14 is indeed
satisfiable. This necessitates the construction of a satisfying model, which is based on
a named tableau graph. Simply put, a named tableau graph consists of sequents Γ so
that for every rule applicable to Γ , one of the conclusions occurs in the tableau graph,
and is connected to Γ . In order to also satisfy @-formulas, we require that the tableau
graph be named, as introduced next.

Definition 15. A tableau graph over a finite set S of sequents is a graph GT = (S,L)
where L ⊆ (S × P(S)) ∪ (P(S)× S) is such that

– for all Γ ∈ S and all Γ/Ψ ∈ T (R) there existsΔ(Γ,Ψ) ∈ Ψ such thatL = {(Γ, Ψ) |
Γ/Ψ ∈ T (R)} ∪ {(Ψ,Δ(Γ,Ψ)) | Γ/Ψ ∈ T (R)}.

We say that (S,L) is a named tableau graph if additionally

– for each i ∈ N , there exists exactly one Γi ∈ S with i ∈ Γ , and
– for all Γ ∈ S and all @iA ∈ Γ we have A ∈ Γi.

58 R. Goré et al.

The crucial stepping stone in the correctness proof for Algorithm 14 is the fact that we
can construct a satisfying model based on a named tableau graph.

Lemma 16 (Model Existence Lemma). If GT is a named tableau graph over a set
S of sequents, there exists a coalgebra structure σ : W → TW on the set of states
contained in S and a hybrid valuation π : N ∪ P → P(W) such that Γ ∈ �A�(W,w,π)
for all A ∈ Γ .

In order to be marked as satisfiable by a position update step in Algorithm 14, we need
to be able to select a •-free @-constraint for every satisfiable sequent. This entails the
existence of a tableau graph for this sequent, and we will later merge these graphs.

Lemma 17. Suppose that during the execution of Algorithm 14, (Γ, Υ) ∈ L∃
@ with

• /∈ Υ for a caching graph G. Then there exists a (not necessarily named) tableau
graph (S, T) with Γ ∈ S.

The first part of the correctness assertion can now be established as follows:

Lemma 18 (Completeness). Every sequent marked ‘satisfiable’ by Algorithm 14 is
satisfiable in Mod(Ξ).

The second half of the correctness of Algorithm 14 needs the following preliminary
lemma that shows that satisfiable sequents have satisfiable @-constraints.

Lemma 19. Throughout the construction of the caching graph G =
(S,C, LM , L@, λS , λC) by Algorithm 14, it holds that for every satisfiable se-
quent Γ ∈ S there exists an @-constraint Υ ∈ C such that (Γ, Υ) ∈ L∃

@, @Γ ⊆ Υ , and
Υ \ {•} is satisfiable.

With the help of the last lemma, the second half of correctness of Algorithm 14 can now
be established as follows:

Lemma 20. Every sequent marked ‘unsatisfiable’ by Algorithm 14 is unsatisfiable in
Mod(Ξ).

Finally, we need to establish that Algorithm 14 in fact marks the initial sequent Γ0, Ξ
as either satisfiable or unsatisfiable, which only requires proof if Algorithm 14 termi-
nates in Step 5. This rests on the final position update, and we first show that every
@-constraint is ‘morally’ complete, that is, can be turned into a complete @-constraint
by removing •. This trivialises the condition • /∈ Υ in the definition of position update,
which is used in the following lemma.

Lemma 21. If Algorithm 14 terminates in Step 5, then the following holds for all Γ ∈
S: If (Γ, Υ) ∈ L∃

@ then (Γ, Υ \ {•}) ∈ L∃
@.

Finally, we show that Algorithm 14 always delivers a result (which is correct by Lemma
20 and Lemma 18), and thus finally confirm correctness.

Lemma 22. When Algorithm 14 terminates in Step 5, each sequent is either marked
satisfiable or unsatisfiable.

Correctness of Algorithm 14 is a consequence of Lemma 18, Lemma 20 and Lemma 22.

Theorem 23. For any given sequent Γ , Algorithm 14 delivers the answer ’yes’ if Γ is
satisfiable in Mod(Ξ) and the answer ’no’ otherwise.

Global Caching for Coalgebraic Description Logics 59

6 Complexity

We proceed to analyse the runtime of the global caching algorithm, under suitable sanity
assumptions on the set of modal rules. Specifically, in order to ensure that executions
of the algorithm run in exponential time, we need to assume, as in [9,20], that our set
R of one-step rules is EXPTIME-tractable in the following sense. To begin, a demand
of a sequent Δ is a sequent Γiσ, i ≥ 1, where Γ0/Γ1 . . . Γn ∈ R is a modal rule and σ
is a substitution such that Γ0σ ⊆ Δ and σ does not identify any two formulas in Γ0. In
this case, σ matches Γ0/Γ1 . . . Γn to Δ. Then, we say that R is EXPTIME-tractable if
there exists a coding of the rules such that all demands of a sequent can be generated by
rules with codes of polynomially bounded size, validity of codes and membership of a
sequent in the set of premises of a coded rule are decidable in EXPTIME, and matching
substitutions for a given rule code/sequent pair can be enumerated in exponential time.

Theorem 24. If the given set R of one-step rules is EXPTIME-tractable, then every
execution of the global caching algorithm (Algorithm 14) runs in EXPTIME.

We emphasize explicitly that, although the global caching algorithm is non-
deterministic, it does not have any inherent non-determinism: every terminating exe-
cution yields the correct answer, so that the non-determinism works in favour of the
implementer, who now has a chance to achieve improved average case behaviour by us-
ing suitable heuristics in his strategy for choosing expansion, propagation, and update
steps. In particular, the above theorem does reprove the tight EXPTIME bound from [20].

7 Conclusions

We have presented an optimal tableau algorithm for hybrid modal logic over arbitrary
TBoxes that is applicable to all (hybrid) logics with coalgebraic semantics. Instantiated
to the modal logicK or a multi-modal variant, such as the description logicALCO, this
provides, to our knowledge, the first purely syntax driven and backtracking-free tableau
algorithm that realizes optimal (EXPTIME) complexity bounds. However, the scope of
the coalgebraic framework is much broader, and the built-in parametricity uniformly
provides us with optimal tableau-based decision procedures, e.g., for hybrid graded
modal logic (or the description logic ALCOQ), hybrid probabilistic modal logic, or
hybrid logics for coalitional power in games. The compositionality of coalgebraic logics
[18] in particular allows us to obtain optimal tableau algorithms for logics that mix the
above features (see [20] for examples). The most pressing research concern at this point
is, of course, experimental evaluation, which is the subject of ongoing work, and we
plan to extend the CoLoSS system [5] that already implements the (modal) proof rules
for a large variety of logics.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)
Handbook of Modal Logic. Elsevier, Amsterdam (2007)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook. Cambridge University Press, Cambridge (2003)

60 R. Goré et al.

3. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Comput. 17, 517–554
(2007)

4. Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. J. Log. Com-
put. 16(6), 737–763 (2006)

5. Calin, G., Myers, R., Pattinson, D., Schröder, L.: CoLoSS: The coalgebraic logic satisfia-
bility solver (system description). In: Methods for Modalities, M4M-5. ENTCS. Elsevier,
Amsterdam (to appear, 2008)

6. Cı̂rstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic μ-calculus. In:
Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 179–193. Springer, Heidelberg
(2009)

7. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets.
Arch. Math. Logic 41, 267–298 (2002)

8. Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artif. Intell. 124, 87–138 (2000)
9. Gore, R., Kupke, C., Pattinson, D.: Optimal tableau algorithms for coalgebraic logics. In:

Tools and Algorithms for the Construction and Analysis of Systems, TACAS 10. LNCS.
Springer, Heidelberg (2010)

10. Goré, R., Nguyen, L.: EXPTIME tableaux for ALC using sound global caching. In: Descrip-
tion Logics, DL ’07, CEUR Workshop Proceedings, vol. 250 (2007)

11. Goré, R., Nguyen, L.: EXPTIME tableaux with global caching for description logics with
transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007.
LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)

12. Horrocks, I., Patel-Schneider, P.F.: Optimising description logic subsumption. J. Logic Com-
put. 9, 267–293 (1999)

13. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28
(1991)

14. Myers, R., Pattinson, D., Schröder, L.: Coalgebraic hybrid logic. In: de Alfaro, L. (ed.) FOS-
SACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009)

15. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theoret. Comput. Sci. 309, 177–193 (2003)

16. Pattinson, D., Schröder, L.: Cut elimination in coalgebraic logics. Inf. Comput. (to appear)
17. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr.

Prog. 73, 97–110 (2007)
18. Schröder, L., Pattinson, D.: Modular algorithms for heterogeneous modal logics. In: Arge, L.,

Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 459–471.
Springer, Heidelberg (2007)

19. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput.
Log. 10, 13:1–13:33 (2009); Earlier version in LICS’06 (2006)

20. Schröder, L., Pattinson, D., Kupke, C.: Nominals for everyone. In: International Joint Con-
ferences on Artificial Intelligence, IJCAI 09, pp. 917–922. AAAI Press, Menlo Park (2009)

21. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.)
STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

Tractable Extensions of the Description Logic
EL with Numerical Datatypes

Despoina Magka, Yevgeny Kazakov, and Ian Horrocks

Oxford University Computing Laboratory
Wolfson Building, Parks Road, OXFORD, OX1 3QD, UK

{despoina.magka,yevgeny.kazakov,ian.horrocks}@comlab.ox.ac.uk

Abstract. We consider extensions of the lightweight description logic
(DL) EL with numerical datatypes such as naturals, integers, rationals
and reals equipped with relations such as equality and inequalities. It is
well-known that the main reasoning problems for such DLs are decidable
in polynomial time provided that the datatypes enjoy the so-called con-
vexity property. Unfortunately many combinations of the numerical rela-
tions violate convexity, which makes the usage of these datatypes rather
limited in practice. In this paper, we make a more fine-grained complex-
ity analysis of these DLs by considering restrictions not only on the kinds
of relations that can be used in ontologies but also on their occurrences,
such as allowing certain relations to appear only on the left-hand side of
the axioms. To this end, we introduce a notion of safety for a numerical
datatype with restrictions (NDR) which guarantees tractability, extend
the EL reasoning algorithm to these cases, and provide a complete clas-
sification of safe NDRs for natural numbers, integers, rationals and reals.

Keywords: description logic, computational complexity, datatypes.

1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontology
languages such as OWL1 and OWL 2 [2]. EL++ [3] is a lightweight DL for
which reasoning is tractable (i.e., can be performed in time that is polynomial
w.r.t. the size of the input), and that offers sufficient expressivity for a number
of life-sciences ontologies, such as SNOMED CT [4] or the Gene Ontology [5].
Among other constructors, EL++ supports limited usage of datatypes. In DL,
datatypes (also called concrete domains) can be used to define new concepts by
referring to particular values, such as strings or integers. For example, the con-
cept Human � ∃hasAge.(<, 18) � ∃hasName.(=,“Alice”) describes humans whose
age is less than 18 and whose name is “Alice”. Datatypes are characterised first
by the domain their values can come from and also by the relations that can be
used to constrain possible values. In our example, (<, 18) refers to the domain
of natural numbers and uses the relation “<” to constrain possible values to

1 http://www.w3.org/2004/OWL

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 61–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

 http://www.w3.org/2004/OWL

62 D. Magka, Y. Kazakov, and I. Horrocks

those less than 18, while (=, “Alice”) refers to the domain of strings and uses the
relation “=” to constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, EL++ allows only for
datatypes which satisfy a condition called p-admissibility [3]. In an nutshell, this
condition ensures that the satisfiability of datatype constraints can be solved in
polynomial time, and that concept disjunction cannot be expressed using da-
tatype concepts. For example, if we were to allow both ≤ and ≥ for integers,
then we could express A � B � C by formulating the axioms A � ∃R.(≤, 5),
∃R.(≤, 2) � B and ∃R.(≥, 2) � C. Thus, allowing both ≤ and ≥ has the same
effect as extending EL++ with disjunction, which is well known to cause in-
tractability [3]. Similarly, we can show that p-admissibility prevents from having
both ≤ and = or both ≥ and = in the language. For this reason, the EL Pro-
file of OWL 2, which is based on EL++, admits only equality (=) in datatype
expressions.

In this paper, we demonstrate how these restrictions can be significantly re-
laxed without loosing tractability. As a motivating example, consider the follow-
ing two axioms which might be used, e.g., in a pharmacy-related ontology:

Panadol � ∃contains.(Paracetamol � ∃mgPerTablet.(=, 500)) (1)

Patient � ∃hasAge.(<, 6) �
∃hasPrescription.∃contains.(Paracetamol � ∃mgPerTablet.(>, 250)) � ⊥ (2)

Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per
tablet, while axiom (2) states that a drug that contains more than 250 mg of
paracetamol per tablet must not be prescribed to a patient younger than 6 years
old. The ontology could be used, for example, to support clinical staff who want
to check whether Panadol can be prescribed to a 3-year-old patient. This can
easily be achieved by checking whether the following concept is satisfiable w.r.t.
the ontology:

Patient � ∃hasAge.(=, 3) � ∃hasPrescription.Panadol (3)

Unfortunately, this is not possible using EL++, because axioms (1) and (2)
involve both equality (=) and inequalities (<, >), and this violates the p-
admissibility restriction. In this paper we demonstrate that it is, however, pos-
sible to express axioms (1) and (2) and concept (3) in a tractable extension of
EL. A polynomial classification procedure can then be used to determine the
satisfiability of (3) w.r.t. the ontology by checking if adding an axiom

X � Patient � ∃hasAge.(=, 3) � ∃hasPrescription.Panadol

for some new concept name X would entail X � ⊥.
Our idea is based on the intuition that equality in (1) and (3) serves a differ-

ent purpose than inequalities do in (2). Equality in (1) and (3) is used to state a
fact (the content of a drug and the age of a patient) whereas inequalities in (2)
are used to trigger a rule (what happens if a certain quantity of drug is prescribed

Extensions of EL with Numerical Datatypes 63

to a patient of a certain age). In other words, equality is used positively and
inequalities are used negatively. It seems reasonable to assume that positive
usages of datatypes will typically involve equality since a fact can usually be
precisely stated. On the other hand, it seems reasonable to assume that negative
occurrences of datatypes will typically involve equality as well as inequalities
since a rule usually applies to a range of situations. In this paper, we make a
fine-grained study of datatypes in EL by considering restrictions not only on the
kinds of relations included in a datatype, but also on whether the relations can
be used positively or negatively.

The main contributions of this paper can be summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR)
that specifies the domain of the datatype, the datatype relations that can
be used positively and the datatype relations that can be used negatively.

2. We extend the EL reasoning algorithm [3] to provide a polynomial reason-
ing procedure for an extension of EL with NDRs, and we prove that this
procedure is sound for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of EL
with a safe NDR is tractable, and prove that our reasoning procedure is
complete for any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases of
natural numbers, integers, rationals and reals. Notably, we demonstrate that
the numerical datatype restrictions can be significantly relaxed by allowing
arbitrary numerical relations to occur negatively—not only equality as cur-
rently specified in the OWL 2 EL Profile. As argued earlier, this combination
is of particular interest to ontology engineering, and is thus a strong candi-
date for the next extension of the EL Profile in OWL 2.

This work is based on a Master’s thesis [6].

2 Preliminaries

In this section we introduce an extension of EL⊥ [3] with numerical datatypes
which we denote by EL⊥(D). In the DL literature the notion of a datatype is
better known as a concrete domain [7]; we call them datatypes to be more con-
sistent with OWL 2 [2]. The syntax of EL⊥(D) uses a set of concept names NC ,
a set of role names NR and a set of feature names NF . EL⊥(D) is parametrised
with a numerical domain D, such that D ⊆ R, where R is the set of real numbers.
NC , NR and NF are countably infinite sets and, additionally, pairwise disjoint.

Definition 1 (D-Datatype Restriction). We call (s, y), where y ∈ D and
s ∈ {<,≤, >,≥,=}, a D-datatype restriction (or simply a datatype restriction
if the domain D is clear from the context). Given a domain D, a D-datatype
restriction r = (s, y) and an x ∈ D, we say that x satisfies r and we write r(x)
iff (x, y) ∈ s, where s is interpreted as the corresponding standard relation on
real numbers.

64 D. Magka, Y. Kazakov, and I. Horrocks

Table 1. Concept descriptions in EL⊥(D)

Name Syntax Semantics

Concept name C CI

Top � ΔI

Bottom ⊥ ∅
Conjunction C � D CI ∩ DI

Existential restriction ∃R.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ RI ∧ y ∈ CI}
Datatype restriction ∃F.r {x ∈ ΔI | ∃v ∈ D : (x, v) ∈ F I ∧ r(v)}

Intuitively, a datatype restriction is used to specify a subset of the numerical
domain so that one can form new concepts that refer to elements of this subset.
The set of concepts is recursively defined using the constructors listed in the
middle column of Table 1, where C and D are concepts, R ∈ NR, F ∈ NF and r
is a D-datatype restriction. We typically use the capital letters A, B to refer to
concept names and the capital letters C, D or E to refer to concepts. We also
set the abbreviations N

C = NC ∪ {�} and N
,⊥
C = NC ∪ {�,⊥}.

An axiom α in EL⊥(D) or simply an axiom α is an expression of the form
C � D, where C and D are concepts. An EL⊥(D)-ontology O or simply an
ontology O is a set of axioms. We say that a concept E occurs in a concept C iff
E is used as a concept in the construction of C. Moreover, a concept E is said
to positively (negatively) occur in an axiom C � D iff it occurs in the concept
D (C); we alternatively say that we have a positive (negative) occurrence of E.

An interpretation of EL⊥(D) is a pair I = (ΔI , ·I), where ΔI is a non-empty
set which we call the domain of the interpretation and ·I is the interpretation
function. The interpretation function maps each concept name A to a subset AI

of ΔI , each role name R ∈ NR to a relation RI ⊆ ΔI × ΔI and each feature
name F ∈ NF to a relation F I ⊆ ΔI × D. Note that we do not require the
interpretation of features to be functional. In this respect, they correspond to
the data properties in OWL 2 [2]. The constructors of EL⊥(D) are interpreted
as indicated in the right column of Table 1. For an axiom α, where α = C � D,
we write I |= α and we say that an interpretation I satisfies an axiom α, iff
CI ⊆ DI . If I |= α for every α ∈ O, then I is a model of O and we write I |= O.
Additionally, if every model I of O satisfies the axiom α then we say that O
entails α and we write O |= α. We define the signature of an ontology O as the
set sig(O) of concept, role and feature names that occur in O. We say that a
concept, role or feature name X is fresh w.r.t. an ontology O iff X /∈ sig(O).

One of the most common reasoning tasks w.r.t. an ontology O is the classifi-
cation of an ontology O, that is computing all axioms of the form A � B, where
A, B ∈ N
,⊥

C and O |= A � B. The set of these axioms is called the taxonomy
of the ontology O.

We say that an axiom in EL⊥(D) is in normal form if it has one of the forms
NF1-NF6 of the left part of Table 2, where A, A1, A2, B ∈ N

C , B′ ∈ N
,⊥
C ,

R ∈ NR, F ∈ NF and r is a D-datatype restriction. Given an EL⊥(D)-ontology,
if the normalization rules of the right part of Table 2 are applied, we obtain an

Extensions of EL with Numerical Datatypes 65

Table 2. Normal form of axioms and normalization rules for EL⊥(D)

Normal forms Normalization rules

NF1 A � B′ C � H � E → {H � Af , C � Af � E}
NF2 A1 � A2 � B ∃R.G � D → {G � Af ,∃R.Af � D}
NF3 A � ∃R.B G � H → {G � Af , Af � H}
NF4 ∃R.B � A C � ∃R.H → {C � ∃R.Af , Af � H}
NF5 A � ∃F.r B � C � D → {B � C, B � D}
NF6 ∃F.r � A ⊥ � C → ∅

ontology which contains only axioms in normal form [3]. For the rules of Table 2,
we have that B ∈ N

C , G,H /∈ N

C , R ∈ NR, C, D, E, G and H are concepts

and Af is a fresh concept name w.r.t. the so far transformed ontology.

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restric-
tions (NDR) which specifies which datatype relations can be used positively and
negatively. We then present a polynomial consequence-based classification pro-
cedure for EL⊥ extended with NDRs and prove its soundness. Finally we prove
that the procedure is complete provided that the NDR satisfies special safety
requirements.

Definition 2 (Numerical Datatype with Restrictions). A numerical data-
type with restrictions (NDR) is a triple (D, O+, O−), where D ⊆ R is a numeri-
cal domain and O+, O− ⊆ {<,≤, >,≥,=} is the set of positive and, respectively,
negative relations. An axiom in EL⊥(D) is an axiom in EL⊥(D, O+, O−) if for
every positive (negative) occurrence of a concept ∃F.(s, y) in the axiom, s ∈ O+
(s ∈ O−). An EL⊥(D, O+, O−)-ontology is a set of axioms in EL⊥(D, O+, O−).

Subsequently, we describe when a datatype restriction is inconsistent and when
one datatype restriction implies another (w.r.t. a domain D). These definitions
of inconsistency and implication for datatype restrictions are necessary for the
formulation of the inference rules, which we then briefly present.

3.1 The Classification Procedure and Soundness

We are going to describe a classification procedure for EL⊥(D, O+, O−), which
is closely related to the procedure for EL++ [3]. In order to formulate inference
rules for datatypes we need to introduce notation for satisfiability of a datatype
restriction and implication between datatype restrictions.

Definition 3. For two D-datatype restrictions r+ and r−, we write r+ →D ⊥
iff there is no x ∈ D such that r+(x) holds. Otherwise, we write r+ �D ⊥.
We write that r+ →D r− iff r+(x) implies r−(x), ∀x ∈ D. Otherwise, we write
r+ �D r−.

66 D. Magka, Y. Kazakov, and I. Horrocks

Table 3. Reasoning rules in EL⊥(D)

IR1
A � A

IR2
A � � CR1

A � B

A � C′ B � C′ ∈ O

CR2
A � B A � C

A � D
B � C � D ∈ O CR3

A � B

A � ∃R.C
B � ∃R.C ∈ O

CR4
A � ∃R.B B � C

A � D
∃R.C � D ∈ O CR5

A � ∃R.B B � ⊥
A � ⊥

ID1
A � ⊥ A � ∃F.r+ ∈ O , r+ →D ⊥

CD1
A � ∃F.r+

A � B
∃F.r− � B ∈ O , r+ →D r−

CD2
A � B

A � ∃F.r+
B � ∃F.r+ ∈ O

A,B, C, D ∈ N�
C

C′ ∈ N�,⊥
C

R ∈ NR, F ∈ NF

We assume that deciding whether r+ →D ⊥ and r+ →D r− can be done in
polynomial time. It is easy to see that this is the case when D is the set of natural
numbers, integers, reals or rationals for the set of relations {<,≤, >,≥,=}.

The classification procedure for EL⊥(D) takes as input an EL⊥(D)-ontology
O whose axioms are in normal form and applies the inference rules in Table 3
to derive new axioms of the form NF1, NF3 and NF5 in Table 2. The rules are
applied to already derived axioms and use axioms in O and properties r+ →D ⊥
and r+ →D r− as side-conditions. The procedure terminates when no new axiom
can be derived. It is easy to see that the procedure runs in polynomial time
because there are only polynomially many axioms of the form NF1, NF3 and
NF5 possible over sig(O). It can be easily proved that the procedure is sound
because the rules derive logical consequences of the axioms.

Theorem 1 (Soundness). Let O be an EL⊥(D)-ontology consisting of axioms
in normal form and O′ consists of all axioms that are derivable using the rules
of Table 3 for O. Every model I of O is a model of O′ as well.

Proof. For every axiom α ∈ O′, we prove that I |= α by induction on the length
of the derivation of α.

Induction base: If α is obtained using rules IR1 and IR2 then I |= α trivially.
Suppose that α = A � ⊥ is obtained using rule ID1. In this case, A � ∃F.r+ ∈ O
and since I |= O then AI ⊆ (∃F.r+)I . Since r+ →D ⊥ we have (∃F.r+)I = ∅.
Therefore, AI ⊆ ∅ and so I |= A � ⊥.

Induction step: For the cases when axiom α is obtained using rules CR1-CR5

(that do not involve datatypes) the proof is identical with the case of EL++

[3]. Suppose that α = A � B is obtained using CD1 from A � ∃F.r+. Then by
induction hypothesis, AI ⊆ (∃F.r+)I . Since I |= O, (∃F.r−)I ⊆ BI and from
r+ →D r−, we have that AI ⊆ BI . So, I |= A � B. Suppose that α = A � ∃F.r+

Extensions of EL with Numerical Datatypes 67

is obtained using CD2 from A � B. Then by induction hypothesis, AI ⊆ BI .
Since I |= O, BI ⊆ (∃F.r+)I and, so, AI ⊆ (∃F.r+)I . So, I |= A � ∃F.r+.

3.2 Completeness and Safe NDRs

The completeness proof is based on the canonical model construction similarly
as for EL++ [3]. In order to deal with datatypes in the canonical model we
introduce a notion of a datatype constraint. Intuitively, a constraint specifies
which datatype restrictions should hold in a model and which should not.

Definition 4 (Constraint). A constraint over (D, O+, O−) is defined as a
pair of sets (S+, S−), such that S+ = {(s1+, y1), . . . , (sn

+, yn)} with si
+ ∈ O+,

S− = {(s1−, z1), . . . , (sm
− , zm)} with sj

− ∈ O−, yi, zj ∈ D, (si
+, yi) �D (sj

−, zj)
and (si

+, yi) �D ⊥ for 1 ≤ i ≤ n, 1 ≤ j ≤ m and m, n ≥ 0.

Definition 5. A constraint (S+, S−) over (D, O+, O−) is satisfiable iff there
exists a solution of (S+, S−) that is a set V ⊆ D such that every r+ ∈ S+ is
satisfied by at least one v ∈ V but no r− ∈ S− is satisfied by any v ∈ V .

Our model construction procedure works only for the cases where we can ensure
that every constraint over a numerical domain is satisfiable. This leads us to a
notion of safety for an NDR.

Definition 6 (NDR Safety). Let (D, O+, O−) be an NDR. (D, O+, O−) is
safe iff every constraint over (D, O+, O−) is satisfiable.

We define strong and weak convexity for NDRs and prove that an NDR is safe
iff it is weakly convex.

Definition 7 (Strong and Weak Convexity). The NDR (D, O+, O−) is
strongly convex when for every ri

+ = (si
+, yi) and rj

− = (sj
−, zj), with si

+ ∈ O+,
sj
− ∈ O− and yi, zj ∈ D (1 ≤ i ≤ n, 1 ≤ j ≤ m), if

∧n
i=1 r

i
+ →D

∨m
j=1 rj

−, then
there exists an rj

− (1 ≤ j ≤ m) such that
∧n

i=1 r
i
+ →D rj

−. (D, O+, O−) is weakly
convex when the implication holds for n = 1.

For example the NDR (Z, {<,>}, {=}) is weakly convex but not strongly con-
vex. It is weakly convex since the implications ((<, y) →Z

∨m
j=1(=, zj)) and

((>, y) →Z

∨m
j=1(=, zj)) never hold. However, it is not strongly convex: it is

(>, 2) ∧ (<, 5)→Z (=, 3) ∨ (=, 4), but also (>, 2) ∧ (<, 5) �Z (=, 3) and
(>, 2) ∧ (<, 5) �Z (=, 4).

Lemma 1. (D, O+, O−) is safe iff it is weakly convex.

Proof. We assume that (D, O+, O−) is not weakly convex and we prove that it
is non-safe. Since it is not weakly convex we have that for some r+ →D

∨m
j=1 rj

−
there exists no rj

− such that r+ →D rj
−. In order to prove non-safety it is

sufficient to define a constraint which is not satisfiable. We define (S+, S−),

68 D. Magka, Y. Kazakov, and I. Horrocks

with S+ = {r+} and S− = {rj
−}m

j=1. (S+, S−) is indeed a constraint because
r+ �D ⊥ (otherwise r+ →D rj

− is true for every rj
−) and for every rj

−, r+ �D
rj
− (otherwise r+ →D rj

− is true for at least one rj
−). Additionally, it is not

satisfiable, because from r+ →D
∨m

j=1 rj
− there can be found no x such that

r+(x) and
∧m

j=1 ¬r
j
−(x).

We prove that if (D, O+, O−) is not safe, then it is not weakly convex. Since
it is not safe then there exists a non-satisfiable constraint (S+, S−), where
S+ = {ri

+}n
i=1 and S− = {rj

−}m
j=1. If S− = ∅, then since ri

+ �D ⊥ for 1 ≤ i ≤ n,
there is a solution V = {xi | 1 ≤ i ≤ n} for (S+, S−). Thus, S− �= ∅. If S+ = ∅
then there is the solution V = ∅ for (S+, S−). Thus, S+ �= ∅. Since (S+, S−)
is a constraint, then ri

+ �D rj
− for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since (S+, S−)

is not satisfiable for every 1 ≤ i ≤ n there exists no x such that ri
+(x) and∧m

j=1 ¬r
j
−(x), that is if ri

+(x) then rj
−(x) holds for at least one rj

− or, otherwise
written, ri

+ →D
∨m

j=1 rj
−. From this and ri

+ �D rj
− for every rj

−, (D, O+, O−)
is not weakly convex. ��

Theorem 2 (Completeness). Let (D, O+, O−) be a safe NDR, let O be an
EL⊥(D, O+, O−)-ontology containing axioms in normal form and let O′ be the
saturation of O under the rules of Table 3. For every A, B ∈ (N

C ∩ sig(O)), if
O |= A � B, then A � B ∈ O′ or A � ⊥ ∈ O′.

Proof. The proof is analogous to the completeness proof of the subsumption
algorithm for EL++ [3]; we build a canonical model I for O using O′ and show
that if A �� B ∈ O′ and A �� ⊥ ∈ O′ then I � A � B.
For every A ∈ NC , F ∈ NF , define S+(A,F) and S−(A,F), as follows:

S+(A,F) = {r+ | A � ∃F.r+ ∈ O′, A � ⊥ /∈ O′} (3)
S−(A,F) = {r− | ∃F.r− � B ∈ O, A � B /∈ O′} (4)

We now show that (S+(A,F), S−(A,F)) is a constraint over (D, O+, O−). First
we prove that r+ �D ⊥, ∀r+ ∈ S+(A,F), which is true because otherwise
due to rule ID1 it would be A � ⊥ ∈ O′, in contradiction to the definition
of S+(A,F). Additionally, there is no r+ ∈ S+(A,F) and r− ∈ S−(A,F) such
that r+ →D r−, otherwise from A � ∃F.r+ ∈ O′, ∃F.r− � B ∈ O and CD1

it would be A � B ∈ O′ which contradicts the definition of S−(A,F). Since
(S+(A,F), S−(A,F)) is a constraint over (D, O+, O−) and (D, O+, O−) is safe,
there exists a solution V (A,F) ⊆ D of (S+(A,F), S−(A,F)). We now construct
the canonical model I:

ΔI = {xA | A ∈ (N

C ∩ sig(O)), A � ⊥ /∈ O′} (5)

BI = {xA | xA ∈ ΔI , A � B ∈ O′} (6)
RI = {(xA, xB) | A � ∃R.B ∈ O′, xA, xB ∈ ΔI} (7)
F I = {(xA, v) | v ∈ V (A,F)} (8)

We prove that I |= O by showing that I |= α, when α takes one of the NF1-NF6.

Extensions of EL with Numerical Datatypes 69

NF1 A � B: We need to prove AI ⊆ BI . Take an x ∈ AI . By (6), x = xC

such that C � A ∈ O′. From A � B ∈ O and since O′ is closed under CR1, we
have C � B ∈ O′. Hence x = xC ∈ BI by (6).

IfB = ⊥, then we need to show that AI = ∅. If there exists x ∈ AI , then by (6)
x = xC such that C � A ∈ O′. Since O′ is closed under CR1 and A � ⊥ ∈ O′, we
have C � ⊥ ∈ O′. Thus, x = xC /∈ ΔI by (5), which contradicts our assumption
that x ∈ AI .

We examine separately the case when A = �. We have that xA ∈ ΔI and we
need to show that xA ∈ BI . From rule IR2, we have that A � � ∈ O′. From rule
CR1, A � B ∈ O′; since xA ∈ ΔI and A � B ∈ O′ we get xA ∈ BI by (6).

NF2 A1 �A2 � B: We prove (A1 �A2)
I ⊆ BI . Take an x ∈ (A1 � A2)I ;

then, x ∈ AI
1 , x ∈ AI

2 and by (6) x = xA for some concept name A such that
A � A1 ∈ O′ and A � A2 ∈ O′. Since A � A1 ∈ O′, A � A2 ∈ O′ and
A1 � A2 � B ∈ O closure under rule CR2 gives A � B ∈ O′ and, therefore,
x ∈ BI , by (6).

NF3 A � ∃R.B: We show AI ⊆ (∃R.B)I ; take an x ∈ AI . By (6), x = xC

where C � A ∈ O′. Since A � ∃R.B ∈ O and O′ is closed under CR3, we have
C � ∃R.B ∈ O′. Since xC ∈ ΔI , we have C � ⊥ /∈ O′ and, hence, B � ⊥ /∈ O′

by CR5. Thus, xB ∈ ΔI and (xC , xB) ∈ RI by (7). Since B � B ∈ O′ by IR1, we
have xB ∈ BI by (6). Thus, x = xC ∈ (∃R.B)I .

NF4 ∃R.B � A: We prove (∃R.B)I ⊆ AI ; take an x ∈ (∃R.B)I . Then, there
exists y ∈ ΔI such that (x, y) ∈ RI and y ∈ BI . By (7) and (6) x = xC

and y = xD such that C � ∃R.D ∈ O′ and D � B ∈ O′ respectively. Since
∃R.B � A ∈ O and O′ is closed under CR4, we have C � A ∈ O′. Hence,
x = xC ∈ AI by (6).

NF5 A � ∃F.r+: We show that AI ⊆ (∃F.r+)I ; take an x ∈ AI . By (6),
there exists a concept name C such that x = xC and C � A ∈ O′. Since
A � ∃F.r+ ∈ O and O′ is closed under CD2, we have C � ∃F.r+ ∈ O′. We use
(3) and (4) to build (S+(C,F), S−(C,F)); we have r+ ∈ S+(C,F). By (8) we
have (xC , v) ∈ F I for every v ∈ V (C,F). Since r+ ∈ S+(C,F), there exists
v ∈ V (C,F) such that v satisfies r+ and, hence, x = xC ∈ (∃F.r+)I .

NF6 ∃F.r− � B: We prove that (∃F.r−)I ⊆ BI ; take an x ∈ (∃F.r−)I . By
(5), there exists a concept name C such that x = xC . We use (3) and (4)
and construct (S+(C,F), S−(C,F)). Since xC ∈ (∃F.r−)I , by (8), there exists
v ∈ V (C,F), such that r−(v) and V (C,F) is a solution for (S+(C,F), S−(C,F)).
Hence, r− /∈ S−(C,F), and so, C � B ∈ O′ by (4). Now by (6) and C � B ∈ O′,
we have that xC ∈ BI .

We now show that if A � B /∈ O′ and A � ⊥ /∈ O′, then O � A � B by
proving I � A � B (since I |= O). AI � BI holds, because xA ∈ ΔI (from
A � ⊥ /∈ O′ and (5)), xA ∈ AI (from A � A ∈ O′ using rule IR1 and (6)) and
xA /∈ BI (from A � B /∈ O′ and (6)). ��

4 Maximal Safe NDRs for N

In this section we present a full classification of safe NDRs for natural numbers;
for the current section we assume that every constraint is over the domain N

70 D. Magka, Y. Kazakov, and I. Horrocks

Table 4. Maximal safe NDRs for N

NDR O+ O−
NDR1 {=} {<,≤, >,≥, =}
NDR2 {<,≤, >,≥, =} {<,≤}
NDR3 {<,≤, >,≥, =} {>,≥}
NDR4 {>,≥, =} {<,≤, =}

Table 5. Transformations C1 ⇒ C2 preserving constraints and their satisfiability for
N, where S−, S+ and S are sets of datatype restrictions and y1 ≤ y2, z1 ≤ z2

C1 = (S ∪ S1
+, S−), C2 = (S ∪ S2

+, S−) C1 = (S+, S ∪ S1
−), C2 = (S+, S ∪ S2

−)

S1
+ S2

+ S1
− S2

−
{(<, y)} {(≤, y − 1)} {(<, z)} {(≤, z − 1)}
{(>, y)} {(≥, y + 1)} {(>, z)} {(≥, z + 1)}

{(≤, y1), (≤, y2)} {(≤, y1)} {(≤, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (≥, y2)} {(≥, y2)} {(≥, z1), (≥, z2)} {(≥, z1)}
{(=, y1), (≤, y2)} {(=, y1)} {(=, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (=, y2)} {(=, y2)} {(≥, z1), (=, z2)} {(≥, z1)}

{(<, 0)} ∅

(0 ∈ N). Table 4 lists all maximal safe NDRs for N. We prove that: (i) every NDR
in Table 4 is safe, (ii) extending any of these NDRs with a new relation leads to
non-safety and (iii) every safe NDR is contained in some NDR in Table 4.

Table 5 presents some basic transformations that preserve satisfiability of
constraints.

Lemma 2. Let C1 and C2 be as defined in Table 5 and (N, O+, O−) be an
NDR. Then (i) C1 is a constraint over (N, O+, O−) iff C2 is a constraint over
(N, O+, O−) and (ii) if C1 and C2 are both constraints over (N, O+, O−), then
C1 is satisfiable iff C2 is satisfiable.

Corollary 1. Let NDRi = (N, Oi
+, O

i
−), with 1 ≤ i ≤ 4. For every (S1

+, S
1
−)

over NDRi there exists a constraint (S2
+, S

2
−) over NDRi, y1, . . . , yn ∈ N and

z1, . . . , zm ∈ N such that:

S2
+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
S2
− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)}

where y1 < . . . < yn, z1 < . . . < zm, z1 < y1, zm > yn , yi �= zj (2 ≤ i ≤ n− 1,
2 ≤ j ≤ m − 1, m, n ≥ 0) and (S1

+, S
1
−) over NDRi is satisfiable iff (S2

+, S
2
−)

over NDRi is satisfiable.

The proof of Lemma 2 and Corollary 1 is trivial by a routine check of all cases.

Lemma 3. Every NDR in Table 4 is safe.

Extensions of EL with Numerical Datatypes 71

Table 6. Examples of non-safe NDRs for N where (s+, y) →N (s1
−, z1) ∨ (s2

−, z2),
(s+, y) �N (s1

−, z1) and (s+, y) �N (s2
−, z2)

{s+} {s1
−, s2

−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<, >} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<, >} 1 3 2

{>} {=,≥} 1 2 3
{>} {=, >} 1 2 2
{≥} {=,≥} 1 1 2
{≥} {=, >} 1 1 1
{<} {=} 3 1 2
{≤} {=} 2 1 2

Proof. We prove Lemma 3 by building a solution V for every constraint over
NDRs in Table 4. By Corollary 1 we can assume w.l.o.g. the following restrictions
for (S+, S−) and construct the corresponding solution V :

NDR1: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn)} and for S− that
S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)} with z1 < y1 < . . . < yn < zm,
z1 < . . . < zm and yi �= zj (1 ≤ i ≤ n, 2 ≤ j ≤ m− 1). V = {y1, . . . , yn}.

NDR2: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)} and
for S− that S− ⊆ {(≤, z1)} with z1 < y1 < . . . < yn. V = {y1, . . . , yn}.

NDR3: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)} and
for S− that S− ⊆ {(≥, z1)} with y1 < . . . < yn < z1. V = {y1, . . . , yn}.

NDR4: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn−1), (≥, yn)} and for S−
that S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm)} with y1 < . . . < yn, z1 < . . . < zm,
z1 < y1 and yi �= zj (1 ≤ i ≤ n − 1, 2 ≤ j ≤ m). V = {y1, . . . , yn−1, y

′
n}, where

y′n = max(yn, zm) + 1. ��

Lemma 4. Let (N, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} �= ∅, O− ∩ {<,≤} �= ∅ and O− ∩ {>,≥} �= ∅, then
(N, O+, O−) is non-safe.

(b) If O+ ∩ {>,≥} �= ∅, O− ∩ {>,≥} �= ∅ and {=} ⊆ O−, then (N, O+, O−) is
non-safe.

(c) If O+ ∩ {<,≤} �= ∅ and {=} ⊆ O−, then (N, O+, O−) is non-safe.

Proof. In order to prove that the NDR is non-safe it suffices, from Lemma 1 to
prove that it is not weakly convex. We provide restrictions (s+, y), (s1−, z1) and
(s2−, z2), such that s+ ∈ O+, s1−, s2− ∈ O− and (s+, y)→N (s1−, z1) ∨ (s2−, z2),
(s+, y) �N (s1−, z1), (s+, y) �N (s2−, z2) that consist a violation of the weak
convexity condition. Table 6 provides the counterexamples; the first four, next
four and last two lines refer to Lemma 4(a), 4(b) and 4(c) respectively. ��

Lemma 5. Every NDR in Table 4 is maximal safe, that is if any relation is
added to O+ or O− it becomes non-safe.

72 D. Magka, Y. Kazakov, and I. Horrocks

Proof. We examine all cases of adding a new relation to NDRs in Table 4:
NDR1: If any of the <, ≤, >, ≥ is added to O+, then NDR1 becomes non-safe

due to Lemma 4(a).
NDR2: If > or ≥ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR2 becomes non-safe due to Lemma 4(c).
NDR3: If < or ≤ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR3 becomes non-safe due to Lemma 4(c).
NDR4: If > or ≥ is added to O−, then non-safety is due to Lemma 4(b). For

adding < or ≤ to O+, non-safety is due to Lemma 4(c). ��

It remains to be proved that every safe NDR is contained in some NDR in
Table 4. In the following, we assume that Oi

+ and Oi
− are defined such that

NDRi = (N, Oi
+, O

i
−) with 1 ≤ i ≤ 4.

Lemma 6. If (N, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for
some i (1 ≤ i ≤ 4).

Proof. The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} �= ∅. If O− ∩ {<,≤} �= ∅ and O− ∩ {>,≥} �= ∅
at the same time, then from Lemma 4(a), the NDR is non-safe. Therefore, we
examine two cases: either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.

Case 2.1: O− ⊆ {>,≥,=}. We further distinguish whether O− ⊆ {>,≥} or
{=} ⊆ O−.

Case 2.1.1: O− ⊆ {>,≥} = O3
− and O+ ⊆ O3

+.
Case 2.1.2: {=} ⊆ O−. By Lemma 4(c) it should be O+ ⊆ {>,≥,=} = O4

+
otherwise the NDR is non-safe. If O− ∩ {>,≥} �= ∅ then the NDR is non-safe by
Lemma 4(b); otherwise O− = {=} ⊆ O4

−.
Case 2.2: O− ⊆ {<,≤,=} = O4

−. If O+ ⊆ {>,≥,=}, then O+ ⊆ O4
+. Oth-

erwise, O+ ∩ {<,≤} �= ∅ and we distinguish cases whether O− ⊆ {<,≤} or
{=} ∈ O−.

Case 2.2.1: O− ⊆ {<,≤} = O2
− and O+ ⊆ O2

+.
Case 2.2.2: {=} ∈ O−. In this case, S is non-safe by Lemma 4(c). ��

5 Maximal Safe NDRs for Z, R and Q

In this section we present the classification of maximal safe NDRs for the cases
of integers, reals and rationals. Due to space restriction, we do not provide the
full proofs. The interested reader can find details in the technical report [8]. The
proofs are analogous to the case of natural numbers. In the following, we provide
a brief explanation for the results.

Table 7 provides the safe NDRs for integers. When we compare the results
with Table 4 we notice two new maximal safe NDRs, namely NDR2 and NDR6.
The reason is that integers do not have a minimal element such as 0 in the
case of naturals. In particular positive occurrences of < (or ≤) and negative
occurrence of = are no longer dangerous (e.g. (≤, 1) �Z (=, 1)∨ (=, 0) does not
hold anymore).

Extensions of EL with Numerical Datatypes 73

Table 7. Maximal safe NDRs for Z

NDR O+ O−
NDR1 {=} {<,≤, >,≥, =}
NDR2 {<,≤, >,≥, =} {=}
NDR3 {<,≤, >,≥, =} {<,≤}
NDR4 {<,≤, >,≥, =} {>,≥}
NDR5 {>,≥, =} {<,≤, =}
NDR6 {<,≤, =} {>,≥, =}

Table 8. Maximal safe NDRs for R and Q

NDR O+ O−
NDR1 {=} {<,≤,>,≥, =}
NDR2 {<,≤, >,≥, =} {≤, =}
NDR3 {<,≤, >,≥, =} {≥, =}
NDR4 {<,≤, >,≥, =} {<,≤}
NDR5 {<,≤, >,≥, =} {>,≥}
NDR6 {<, >,≥, =} {<,≤, =}
NDR7 {<,≤, >, =} {>,≥, =}

Table 8 presents the maximal safe NDRs for reals, which are the same for
rationals. Reals and rationals are examples of dense domains: between every
two different numbers there always exists a third one. This property is re-
sponsible for new safe NDRs. Specifically, either ≤ or ≥ can be added to O−
of NDR2 from Table 7 because it does not violate the weak convexity prop-
erty (e.g. (≤, 5) �R (=, 5) ∨ (≤, 4)). For the same reason, O+ of NDR5 and
NDR6 from Table 7 can be extended with < and > respectively because the
weak convexity property which did not apply for Z now applies for R (e.g.
(<, 5) �R (=, 4) ∨ (≤, 3)).

6 Related Work

Datatypes have been extensively studied in the context of DLs [3,7,9]. Exten-
sions of expressive DLs with datatypes have been examined in depth [7] with the
main focus on decidability. Baader, Brandt and Lutz [3] formulated tractable ex-
tensions of EL with datatypes using a p-admissibility restriction for datatypes.
A datatype D is p-admissible if (i) satisfiability and implication of conjunc-
tions of datatype restrictions can be decided in polynomial time, and (ii) D is
convex: if a conjunction of datatype restrictions implies a disjunction of data-
type restrictions then it also implies one of its disjuncts [3]. In our case instead
of condition (i) we require that implication and satisfiability of just datatype
restrictions (not conjunctions) is decidable in polynomial time since we do not
consider functional features. Condition (ii) is relaxed to the requirement of safety
for NDRs since we take into account not only the domain of the datatypes and
the types of restrictions but also the polarity of their occurrences. The relaxed

74 D. Magka, Y. Kazakov, and I. Horrocks

restrictions allow for more expressive usage of datatypes in tractable languages,
as demonstrated by the example given in the introduction. Furthermore, Baader,
Brandt and Lutz did not provide a classification of datatypes that are
p-admissible; in our case we provide such a classification for natural numbers, in-
tegers, rationals and reals. The EL Profile of OWL 2 [2] is inspired by EL++ and
restricts all OWL 2 datatypes to satisfy p-admissibility. In particular, only equal-
ity can be used in datatype restrictions. Our result can allow for a significant
extension of datatypes in the OWL 2 EL Profile, where in addition inequalities
can be used negatively.

Our work is not the only one where the convexity property is relaxed without
losing tractability. It has been shown [9] that the convexity requirement is not
necessary provided that (i) the ontology contains only concept definitions of the
form A ≡ C, where A is a concept name, and (ii) every concept name occurs
at most once in the left-hand side of the definition. In some applications this
requirement can be too restrictive since it disallows the usage of general concept
inclusion axioms (GCIs), such as the axiom (2) given in the introduction, which
do not cause any problem in our case.

7 Conclusions and Future Work

In this work we made a fine-grained analysis of extensions of EL with numerical
datatypes, focusing not only on the types of relations but also on the polari-
ties of their occurrences in axioms. We made a full classification of cases where
these restrictions result in a tractable extension for natural numbers, integers,
rationals and reals. One practically relevant case for these datatypes is when
positive occurrences of datatype expressions can only use equality and negative
occurrences can use any of the numerical relations considered. This case was
motivated by an example of a pharmacy-related ontology and can be proposed
as a candidate for a future extension of the OWL 2 EL Profile. For the cases
where the extension is tractable, we provided a polynomial sound and complete
consequence-based reasoning procedure, which can be seen as an extension of
the completion-based procedure for EL. We think that the procedure can be
straightforwardly extended to accommodate other constructors in EL++ such
as (complex) role inclusions, nominals, domain and range restrictions and asser-
tions since these constructors do not interact with datatypes [10]. We hope to
investigate these extensions in future works.

In future work we also plan to consider other OWL datatypes, such as strings,
binary data or date and time, functional features, and to try to extend the
consequence-based procedure for Horn SHIQ [11] with our rules for datatypes.
For example, to extend the procedure with functional features, we probably need
a notion of “functional safety” for an NDR that corresponds to the strong con-
vexity property (see Definition 7). In order to achieve even higher expressivity for
datatypes we shall study how to combine different restrictions on the datatypes
occurring in an ontology so that tractability is preserved. For example, using
two safe NDRs in a single ontology may result in intractability, as is the case for

Extensions of EL with Numerical Datatypes 75

NDR1 and NDR2 for integers (see Table 7). One possible solution to this problem
is to specify explicitly which features can be used with which NDRs in order to
separate their usage in ontologies.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn.
Cambridge University Press, Cambridge (2007)

2. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: IJCAI, pp. 364–369.
Professional Book Center (2005)

4. Cote, R., Rothwell, D., Palotay, J., Beckett, R., Brochu, L.: The systematized
nomenclature of human and veterinary medicine. Technical report, Northfield, IL:
College of American Pathologists (1993)

5. The Gene Ontology Consortium: Gene Ontology: Tool for the unification of biology.
Nature Genetics 25, 25–29 (2000)

6. Magka, D.: Consequence-Based Datatype Reasoning in EL: Identifying the
Tractable Fragments. Master’s thesis, Oxford University Computing Laboratory
(2009)

7. Lutz, C.: Description Logics with Concrete Domains-A Survey. In: Advances in
Modal Logic, pp. 265–296. King’s College Publications (2002)

8. Magka, D., Kazakov, Y., Horrocks, I.: Tractable Extensions of the Description
Logic EL with Numerical Datatypes. Technical report, Oxford University Com-
puting Laboratory (2010), posted on, http://web.comlab.ox.ac.uk/isg/people/
despoina.magka/publications/reports/NDRTechnicalReport.pdf

9. Haase, C., Lutz, C.: Complexity of Subsumption in the EL Family of Descrip-
tion Logics: Acyclic and Cyclic tboxes. In: ECAI, vol. 178, pp. 25–29. IOS Press,
Amsterdam (2008)

10. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)

11. Kazakov, Y.: Consequence-driven Reasoning for Horn SHIQ Ontologies. In:
IJCAI, pp. 2040–2045 (2009)

http://web.comlab.ox.ac.uk/isg/people/despoina.magka/publications/reports/NDRTechnicalReport.pdf
http://web.comlab.ox.ac.uk/isg/people/despoina.magka/publications/reports/NDRTechnicalReport.pdf

Analytic Tableaux for Higher-Order Logic with
Choice

Julian Backes and Chad E. Brown

Saarland University, Saarbrücken, Germany

Abstract. While many higher-order interactive theorem provers include
a choice operator, higher-order automated theorem provers currently do
not. As a step towards supporting automated reasoning in the presence
of a choice operator, we present a cut-free ground tableau calculus for
Church’s simple type theory with choice. The tableau calculus is designed
with automated search in mind. In particular, the rules only operate on
the top level structure of formulas. Additionally, we restrict the instan-
tiation terms for quantifiers to a universe that depends on the current
branch. At base types the universe of instantiations is finite. We prove
completeness of the tableau calculus relative to Henkin models.

1 Introduction

Interactive theorem provers based on classical higher-order logic (e.g., Isabelle-
HOL [16], HOL [12] and the successors of the HOL system) build in the axiom of
choice by including a form of Hilbert’s ε binder and appropriate rules. Church’s
formulation of the simple theory of types [11] included a choice operator (called
ι) and an axiom of choice at each type. Henkin defined a general notion of a
model of Church’s type theory with choice and proved completeness [13]. A
higher-order version of the TPTP has been under development the past few
years [18]. In 2009 it was decided that Henkin models with choice would be the
default semantics of the higher-order TPTP.

Automated theorem provers for classical higher-order logic (e.g., TPS [3] and
LEO-II [7]) do not currently build in the axiom of choice. Completeness of such
calculi is judged with respect to a variant of Henkin’s models without choice [2,6].
What would be involved in adding support for choice? Assume a new logical
constant εσ of type (σ → o) → σ at each type σ is added to the syntax. We need
new rules corresponding to this constant. The fundamental property εσ should
satisfy is expressed by the formula

∀pσ→oxσ.px→ p(εσp)

Our purpose in this paper is to give a complete analytic tableau calculus for
higher-order logic with choice that forms a basis for automated reasoning in the
logic. Mints [15] has given a sequent calculus for relational higher-order logic
with an ε-operator and proves completeness. Mints’ calculus does not include
arbitrary function types and the corresponding simply typed λ-terms. We adapt

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 76–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Analytic Tableaux for Higher-Order Logic with Choice 77

Mints’ rules for a simply typed formulation in the style of Church. We obtain
tighter restrictions on when Mints’ main choice rule (the ε-rule) needs to be
applied. Furthermore, we show we can omit Mints’ ε-extensionality rule alto-
gether. These results are important for automated reasoning because these two
rules would be highly branching in practice. In addition to including cut-free
rules for the ε-operator, we give strong restrictions on the instantiation of uni-
versal quantifiers over base types analogous to those reported in [9].

In Section 2 we give a quick presentation of the syntax and semantics of
simple type theory with choice. In Section 3 we present the tableau calculus. In
Section 4 we define the notion of an evident set and prove that every evident
set has a Henkin model. We define a notion of abstract consistency and use it
to prove completeness of the tableau calculus in Section 5. We discuss related
work and conclude in Sections 6 and 7. For reasons of space several proofs are
omitted. Detailed proofs are available in [5].

2 Preliminaries

We start by giving the syntax for simple type theory with a choice operator in
the style of Church [11]. Types (σ, τ , μ) are given inductively by the base type
o (of truth values), ι (of individuals) and σ → τ (of functions from σ to τ). For
brevity, we will omit the arrow and write στ for σ → τ . Omitted parenthesis in
types associate to the right: στμmeans σ(τμ). The results in the paper generalize
to the case where there are arbitrarily many base types of individuals. We use
β to range over the base types o and ι.

For each type σ we assume a countably infinite set Vσ of variables of type σ.
For each type σ we have logical constants =σ of type σσo, ∀σ of type (σo)o and
εσ (the choice operator) of type (σo)σ. Furthermore, we have logical constants
for disjunction ∨ of type ooo, negation ¬ of type oo, false ⊥ of type o and for a
default individual ∗ of type ι. (The default individual is included only to act as
an instantiation when no other instantiation of type ι is allowed by our calculus.)
We use x, y to range over variables and c to range over logical constants. A name
is either a variable or a logical constant. We use ν to range over names. Variables
x and choice operators εσ are called decomposable names. We use δ to range over
decomposable names.

The family of sets Λσ of terms of type σ are inductively defined. If ν is a name
of type σ, then ν ∈ Λσ. If t ∈ Λστ and s ∈ Λσ, then we have an application term
ts ∈ Λτ . If x ∈ Vσ and t ∈ Λτ , then we have an abstraction term λx.s ∈ Λστ . A
formula is a term s ∈ Λo.

Application associates to the left, so that stu means (st)u, with the exception
that ¬tu always means ¬(tu). We use infix notation and write s =σ t (or s = t)
for =σ st and write s ∨ t for ∨st. We write s �=σ t (or s �= t) for ¬(s =σ t). We
also use binder notation to write ∀x.s for ∀σλx.s and write εx.s for εσλx.s.

The set Vt of free variables of t is defined as usual. For a set of variables X
we write ΛX

σ for the set of all terms t ∈ Λσ such that Vt ⊆ X .

78 J. Backes and C.E. Brown

An elimination context (E) is a term with a hole []σ defined inductively as
follows. []σ is an elimination context of type σ. If E is an elimination context of
type τμ and s ∈ Λτ then Es is an elimination context of type μ.

Let E be an elimination context of type σ which has a hole of type τ . We can
apply E to a term t ∈ Λτ to get a term of type σ: [][t] = t and (E s)[t] = E [t] s.

An accessibility context (C) is a term with a hole []σ of the form E , ¬E , E �=ι s
or s �=ι E where E is an elimination context. We can apply an accessibility
context C with a hole of type σ to a term t ∈ Λσ to get a term of type o in
the obvious way. A term s is accessible in a set A of formulas iff there is an
accessibility context C such that C[s] ∈ A.

Let A be a set of formulas. A term s is discriminating in A iff there is a term
t such that s �=ι t ∈ A or t �=ι s ∈ A. A discriminant Δ of A is a maximal
set of discriminating terms such that there is no s, t ∈ Δ with s �=ι t ∈ A.
(Discriminants first appeared in [10].)

We now turn to a brief description of the semantics. Our notion of an inter-
pretation is essentially that given by Henkin [13]. A frame D is a typed family
of nonempty sets such that Do = {0, 1} and Dστ is a set of total functions from
Dσ to Dτ . Do is the set of Booleans 0 (false) and 1 (true). An assignment into a
frame D is a function I that maps every name ν of type σ to an element of Dσ.
We denote Ix

a to be the assignment that is like I but maps the variable x to a.

Table 1. Properties of values of logical constants

prop. where holds for all
L∗(a) a ∈ Dι always
L⊥(a) a ∈ Do when a = 0
L¬(n) n ∈ Doo when na = 1 iff a = 0 a ∈ Do

L∨(d) d ∈ Dooo when dab = 1 iff a = 1 or b = 1 a, b ∈ Do

L∀σ (p) p ∈ D(σo)o when pf = 1 iff ∀a ∈ Dσ fa = 1 f ∈ Dσo

L=σ (q) q ∈ Dσσo when qab = 1 iff a = b a, b ∈ Dσ

Lεσ (Φ) Φ ∈ D(σo)σ when f(Φf) = 1 iff ∃a ∈ Dσ fa = 1 f ∈ Dσo

For each logical constant c of type σ we define a corresponding property Lc(a)
of elements a ∈ Dσ in Table 1. Essentially Lc(a) holds iff a is an appropriate
interpretation of c. An assignment I into D is logical if Lc(Ic) holds for each
logical constant c. A logical assignment I must map ⊥ to 0, ¬ to the negation
function, and so on. There is no restriction on the value of I∗ in Dι. The most
interesting case to consider is the choice function εσ. For an assignment to be
logical, Iεσ must be a function in D(σo)σ such that f((Iεσ)f) = 1 for every
f ∈ Dσo except when f is the constant 0 function. There may be many different
elements in D(σo)σ satisfying this condition. (Of course, there may also be no
element satisfying the condition.)

We now turn to the interpretation of all typed terms. To do this we use
induction on terms to lift each assignment I to a partial function Î on terms:

Analytic Tableaux for Higher-Order Logic with Choice 79

Î(ν) := I(ν)
Î(st) := fa if Îs = f and Ît = a

Î(λx.s) := f if λx.s ∈ Λστ , f ∈ Dστ and ∀a ∈ Dσ: Îx
a s = fa

If Î is a total function, then we say I is an interpretation.
A model (D, I) is a frame D and a logical interpretation I into D. We say

that a model (D, I) satisfies a formula s iff Î(s) = 1. A formula is satisfiable iff
there is a model (D, I) such that Î(s) = 1. We say (D, I) is a model of a set of
formulas A if Î(s) = 1 for every s ∈ A. A set A of formulas is satisfiable if there
is a model of A.

We assume a type preserving and total normalization operator [·] from terms
to terms. A term is normal iff [s] = s. A set of terms is normal if every element
of this set is normal. Instead of committing to a specific operator such as β-
normalization or βη-normalization, we require the following properties:

N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [νs1 . . . sn] = ν[s1] . . . [sn] if νs1 . . . sn ∈ Λβ for some base type β and n ≥ 0
N4 Î[s] = Îs for every model (D, I).
N5 V [s] ⊆ Vs
Note that by N5 we know [s] ∈ ΛX

σ whenever s ∈ ΛX
σ .

A substitution is a type preserving partial function from variables to terms. If
θ is a substitution, x is a variable, and s is a term that has the same type as x,
we write θx

s for the substitution that agrees everywhere with θ except possibly on
x where it yields s. For each substitution θ we assume there is a type preserving
total function θ̂ from terms to terms such that the following conditions hold:

S1 θ̂x = θx for every x ∈ Dom θ
S2 θ̂(st) = (θ̂s)(θ̂t)
S3 [(θ̂(λx.s))t] = [θ̂x

t s]
S4 [θ̂s] = [s] if θx = x for every x ∈ Dom θ ∩ Vs
S5 [θ̂[s]] = [θ̂s]

The following proposition demonstrates that we can recover a form of β-reduction
relative to abstract normalization and substitution. The empty set ∅ is the sub-
stitution that is undefined on every variable.

Proposition 1. [[λx.s]t] = [∅̂x
t s]

Proof. [[λx.s]t] S4= [[∅̂(λx.s)]t] N2= [(∅̂(λx.s))t] S3= [∅̂x
t s]

For each set A of formulas and each type σ we define a nonempty universe
UA

σ ⊆ Λσ as follows.

– Let UA
o = {⊥,¬⊥}.

– Let UA
ι be the set of discriminating terms in A if there is some discriminating

term in A.
– Let UA

ι = {∗} if there are no discriminating terms in A.
– Let UA

στ = {[s]|s ∈ Λστ ,Vs ⊆ VA}.
When trying to refute a set A of formulas, all our instantiations of type σ will
come from the set UA

σ . When the set A is clear in context, we write Uσ.

80 J. Backes and C.E. Brown

3 Tableau Calculus

A branch is a finite set of normal formulas. A step is an n+1-tuple 〈A,A1, . . . , An〉
of branches where n ≥ 1, ⊥ /∈ A and A ⊂ Ai for each i ∈ {1, . . . , n}. The branch
A is the head of the step 〈A,A1, . . . , An〉 and each Ai is an alternative. A rule
is a set of steps, and is usually indicated by a schema. For example, the schema

Tbe

s �=o t

s , ¬t | ¬s , t

indicates the set of steps 〈A,A1, A2〉 where s �=o t is in A, ⊥ /∈ A, {s,¬t} �⊆ A1,
{¬s, t} �⊆ A1, A1 = A∪ {s,¬t} and A2 = A∪ {¬s, t}. We say a rule applies to a
branch A if some step in the rule has A as its head. A tableau calculus is also a
set of steps. Our tableau calculus T is given as the union of the rules in Figure 1.

T¬
s, ¬s

⊥
T�=

s �=ι s

⊥
T¬¬

¬¬s

s
T∨

s ∨ t

s | t
T¬∨

¬(s ∨ t)
¬s,¬t

T∀
∀σs

[st]
t ∈ Uσ T¬∀

¬∀σs

¬[sx]
x ∈ Vσ fresh

Tmat

δs1 . . . sn , ¬δt1 . . . tn

s1 �= t1 | · · · | sn �= tn

n ≥ 1 Tdec

δs1 . . . sn �=ι δt1 . . . tn

s1 �= t1 | · · · | sn �= tn

n ≥ 1

Tcon

s =ι t , u �=ι v

s �= u , t �= u | s �= v , t �= v
Tbe

s �=o t

s , ¬t | ¬s , t
Tbq

s =o t

s , t | ¬s , ¬t

Tfe

s �=στ t

¬[∀x.sx = tx]
x /∈ Vs ∪ Vt Tfq

s =στ t

[∀x.sx = tx]
x /∈ Vs ∪ Vt

Tε
[∀x.¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

Fig. 1. Tableau rules

In the rules Tmat (the mating rule) and Tdec (the decomposition rule) δ ranges
over decomposable names (variables and choice operators). In the rule T∀ the
instantiation term t must belong to the set UA

σ where A is the head of the step.
In the rule T¬∀ the variable x must be fresh in the sense that it is not in VA
where A is the head of the step. We restrict the T¬∀ to apply only in the case
where there is no variable y ∈ Vσ such that ¬[sy] is in the head A. In the context
of an automated prover, this restriction implies there is no need to apply the
T¬∀ rule to a formula ¬∀s more than once.

We explain the choice rule Tε. Whenever we must consider εs, either s corre-
sponds to the empty set and hence ∀x.¬(sx) holds, or s represents a set contain-
ing at least one element and s(εs) holds. Note that we obtain a complete calculus

Analytic Tableaux for Higher-Order Logic with Choice 81

even though we only apply the choice rule when εs occurs on the branch in the
form C[εs] for some accessibility context C. That is, the choice rule only applies
using εs when the branch contains a formula of the form εst1 · · · tn, ¬(εst1 · · · tn),
(εst1 · · · tn) �=ι u or u �=ι (εst1 · · · tn). This is a tighter restriction than the one
given for the choice rule in [15].

The set of refutable branches is defined inductively as follows. If ⊥ ∈ A,
then A is refutable. If 〈A,A1, . . . , An〉 is a step in T and every alternative Ai is
refutable, then A is refutable.

Proposition 2 (Soundness). If A is refutable, then A is unsatisfiable.

Proof. It is enough to check for each step 〈A,A1, · · · , An〉 in T that if A is
satisfiable, then Ai is satisfiable for some i ∈ {1, . . . , n}. Each case is easy. For
the steps involving the normalization operator, property N4 is used.

Example 1. Let p ∈ Vιo. For this example, assume p and λx.¬px are normal. We
refute the set {p(εx.¬px),¬p(εp)} using the rules Tmat, Tε, T∀ and T¬.

p(εx.¬px)
¬p(εp)

(εx.¬px) �= εp
∀x.¬px

¬p(εx.¬px)
⊥

p(εp)
⊥

4 Evident Sets and Model Existence

Let E be a set of normal formulas. We sayE is evident if it satisfies the conditions
in Figure 2. The conditions Efe, Efq and Eε are formulated in a slightly different
way than the corresponding tableau rules Tfe, Tfq and Tε. The tableau rules are
formulated in a way that makes proof search more practical while the evidence
conditions are formulated in a way that will ease the model construction. The
next proposition demonstrates that these three evidence conditions could also
be formulated differently. Later we will use the proposition to help prove certain
sets are evident. We omit the proof.

Proposition 3. Let E be a set of normal formulas satisfying E∀ and E¬∀.

1. For s, t ∈ Λστ and x ∈ Vσ \ (Vs ∪ Vt), if ¬[∀x.sx =τ tx] is in E, then
[sy] �= [ty] is in E for some y ∈ Vσ.

2. For s, t ∈ Λστ and x ∈ Vσ\(Vs∪Vt), if [∀x.sx =τ tx] is in E, then [su] = [tu]
is in E for every u ∈ UE

σ .
3. For s ∈ Λστ and x ∈ Vσ \ Vs, if [∀x.¬sx] is in E, then ¬[st] is in E for

every t ∈ UE
σ .

Let E be an evident set. In the rest of this section we will construct a model of
E. The construction is similar to the ones in [8,9] except for some complications
arising from the instantiation restrictions.

82 J. Backes and C.E. Brown

E⊥ ⊥ is not in E.
E¬ If ¬s is in E, then s is not in E.
E �= s �=ι s is not in E.
E¬¬ If ¬¬s is in E, then s is in E.
E∨ If s ∨ t is in E, then either s or t is in E.
E¬∨ If ¬(s ∨ t) is in E, then ¬s and ¬t are in E.
E∀ If ∀σs is in E, then [st] is in E for every t ∈ UE

σ .
E¬∀ If ¬∀σs is in E, then ¬[sx] is in E for some x ∈ Vσ.
Emat If δs1 . . . sn and ¬δt1 . . . tn are in E where n ≥ 1,

then si �= ti is in E for some i ∈ {1, . . . , n}.
Edec If δs1 . . . sn �=ι δt1 . . . tn is in E where n ≥ 1,

then si �= ti is in E for some i ∈ {1, . . . , n}.
Econ If s =ι t and u �=ι v are in E,

then either s �= u and t �= u are in E or s �= v and t �= v are in E.
Ebe If s �=o t is in E, then either s and ¬t are in E or ¬s and t are in E.
Ebq If s =o t is in E, then either s and t are in E or ¬s and ¬t are in E.
Efe If s �=στ t is in E, then [sx] �= [tx] is in E for some x ∈ Vσ.
Efq If s =στ t is in E, then [su] = [tu] is in E for every u ∈ UE

σ .
Eε If εσs is accessible in E, then either [s(εs)] is in E or

¬[st] is in E for every t ∈ UE
σ .

Fig. 2. Evidence conditions

Let X be the set VE of free variables in E. We begin by defining a binary
relation �σ by induction on types. For each σ, let Dσ be the range of �σ, i.e., set
of all a such that there is some s ∈ ΛX

σ such that s �σ a.

– s �o 0 if s ∈ ΛX
o and [s] /∈ E.

– s �o 1 if s ∈ ΛX
o and ¬[s] /∈ E.

– s �ι Δ if s ∈ ΛX
ι , Δ is a discriminant (of E), and either [s] is not a discrimi-

nating term or [s] ∈ Δ.
– s �στ f if s ∈ ΛX

στ , f : Dσ → Dτ and st �τ fa whenever t �σ a.

Clearly we have �σ ⊆ ΛX
σ × Dσ. Also, by definition of D we have that for every

a ∈ Dσ there is some s ∈ ΛX
σ such that s �σ a. For any set T ⊆ ΛX

σ we write
T � a if s � a for every s ∈ T .

Lemma 1. For all types σ, terms s ∈ ΛX
σ and values a ∈ Dσ, s � a iff [s] � a.

Proof. This follows by an easy induction on types σ using N1, N2 and N5. The
proof is essentially the same as that of Lemma 3.3 in [8].

The next proposition records a number of useful facts about � and D. In partic-
ular, D is a frame and for every value a ∈ Dσ there is some t ∈ UE

σ such that
t � a. We omit the proof.

Proposition 4
1. ⊥ � 0 and ¬⊥ � 1. In particular, Do = {0, 1}.
2. For every discriminant Δ, there is a term t ∈ UE

ι such that t �Δ. In partic-
ular, Dι is the set of all discriminants.

3. For all types σ and a ∈ Dσ there is a term t ∈ UE
σ such that t � a.

Analytic Tableaux for Higher-Order Logic with Choice 83

4. If t �μ b and x ∈ Vτ \ Vt, then λx.t �Kb where Kb : Dτ → Dμ is the constant
b function.

5. For all types σ, Dσ is nonempty.
6. D is a frame.

We now turn to a notion of compatibility of terms. For s, t ∈ ΛX
σ we say s�t

holds if either s �= t or t �= s is in E.

Definition 1. For each type σ we define when two terms s, t ∈ ΛX
σ are compat-

ible (written s ‖ t) by induction on types.

σ = o: s ‖ t if {[s],¬[t]} �⊆ E and {¬[s], [t]} �⊆ E.
σ = ι: s ‖ t if [s]�[t] does not hold.
σ = τμ: s ‖ t if for all u, v ∈ ΛX

τ u ‖ v implies su ‖ tv.

We say a set T ⊆ ΛX
σ is compatible if s ‖ t for all s, t ∈ T .

The next lemma provides relationships between compatibility of terms and the
presence of disequations in E. Note that part (2) of the lemma implies εσ ‖ εσ

for every type σ and x ‖ x for every variable x ∈ X .

Lemma 2. For all types σ we have the following:

1. For all s, t ∈ ΛX
σ , if s ‖ t, then [s]�[t] does not hold.

2. For all δs1 · · · sn, δt1, · · · tn ∈ ΛX
σ where n ≥ 0 and δ is a decomposable name,

either δs1 · · · sn ‖ δt1, · · · tn or there is some i ∈ {1, . . . , n} such that [si]�[ti].

Proof. By mutual induction on σ. The only complicated case is proving (1)
when σ is τμ. Assume s ‖ t holds and [s]�[t] holds. By Efe [[s]x]�[[t]x] for some
variable x. If x ∈ X , then x ‖τ x by inductive hypothesis (2) and so sx ‖μ tx,
contradicting inductive hypothesis (1) and N2. Assume x /∈ X . In particular,
x /∈ Vs ∪ Vt ∪ V [sx] ∪ V [tx]. In this case we can prove [sx] is [s(εx.⊥)] and [tx]
is [t(εx.⊥)]. Using the inductive hypothesis (2) we can prove εx.⊥ ‖ εx.⊥ and
derive a contradiction.

The next lemma relates compatibility to � and can be proven by an easy induc-
tion on types.

Lemma 3. For all sets T ⊆ ΛX
σ , T is compatible iff there exists a value a ∈ Dσ

such that T � a.

We now turn to the interpretation of the choice operators. We use a construction
similar to that of Mints [15] adapted to our setting.

Let f ∈ Dσo be a function and εs be a term in ΛX
σ . We write f ∝ εs (read f

chooses εs) iff s � f and ε[s] is accessible in E. Let f0 := {εs ∈ ΛX
σ |f ∝ εs}.

Lemma 4. Let E be an evident set and let f ∈ Dσo be a function. Then, there
is some a ∈ Dσ such that f0 � a.

Proof. We show that f0 is compatible. Lemma 3 gives us the claim. Let εs, εt ∈
f0. By definition of ∝, s, t � f and hence, by Lemma 3, s ‖ t. By Lemma 2(2)
ε ‖ ε. Thus εs ‖ εt.

84 J. Backes and C.E. Brown

For any type σ, we define Φσ ∈ Dσo → Dσ as follows:

Φσf =

{
some b such that fb = 1 if f0 is empty and such a b exists.
some a such that f0 � a.

The existence of an a in the second case follows from Lemma 4. Note that the
second case includes the case in which f is the constant 0 function. In particular,
if f is the constant 0 function and f0 is empty, then Φσf can be any a ∈ Dσ.

Lemma 5. Let E be an evident branch, ε be a choice operator, εt1 . . . tn ∈ ΛX
σ

and a ∈ Dσ. If εt1 . . . tn � a, then ε[t1] . . . [tn] is accessible in E.

Proof. The proof is by an easy induction on σ.

Lemma 6. For any type σ we have εσ � Φσ.

Proof. Assume ε � Φ. Then, there are s, f such that s � f but εs � Φf . By
Lemma 5 ε[s] is accessible in E. Hence εs ∈ f0. There is some a such that
Φf = a and f0 � a. Thus εs � a, a contradiction.

Lemma 7. Lεσ (Φσ) holds. That is, Φ as defined above is a choice function.

Proof. Let f ∈ Dσo be a function and b ∈ Dσ be such that fb = 1. Suppose
f(Φf) = 0. Then f0 must be nonempty (by the definition of Φf). Choose some
εs ∈ f0. We will show a contradiction. By Eε there are two possibilities:

1. [s(εs)] ∈ E: In this case s(εs) � 0. On the other hand, s � f and ε � Φ
(by Lemma 6) and so s(εs) � f(Φf). This contradicts our assumption that
f(Φf) = 0.

2. ¬[st] ∈ E for every t ∈ UE
σ . By Proposition 4(3) there is some term t ∈ UE

σ

such that t � b. Hence ¬[st] ∈ E. By definition of �o, st � 1. On the other
hand, we know st�fb since s�f and t � b, contradicting the assumption that
fb = 1.

Lemma 8. If s �σ a, t �σ b and s = t is in E, then a = b.

Lemma 9. For each c ∈ Λσ there is some a ∈ Dσ such that Lc(a) and c � a.

Proof. If c is a choice operator εσ, then we know εσ � Φσ and Lεσ (Φσ) by Lem-
mas 6 and 7. Checking for the other logical constants is tedious, but not difficult.
Lemma 8 is used in the case where c is =σ.

We say an assignment I into D is admissible if c � Ic for all logical constants
c. The following lemma can be proven by induction on terms.

Lemma 10. Let s be a term, θ be a substitution and I be an admissible assign-
ment into D. Suppose for every x ∈ Vs, x ∈ Dom θ and θx�Ix. Then s ∈ Dom Î
and θ̂s � Îs.

Now we can prove the model existence theorem for evident sets.

Analytic Tableaux for Higher-Order Logic with Choice 85

Theorem 1 (Model Existence). Every evident set is satisfiable.

Proof. Let E be an evident set. Take � and D as defined in this section. We
define an assignment I as follows. For each logical constant c we can choose Ic
such that c � Ic and Lc(Ic) by Lemma 9. This ensures we will have a logical,
admissible assignment. For each variable x ∈ X we know x ‖ x by Lemma 2(2)
and we can choose Ix such that x � Ix by Lemma 3. For each variable x ∈ Vσ

not in X we take Ix = ΦσK0 where K0 is the constant 0 function. Let θ be the
substitution mapping each x ∈ X to x and each variable x ∈ Vσ not in X to
εσy.⊥ ∈ ΛX

σ . By Lemma 6 and Proposition 4(4) we know that εσy.⊥ � ΦK0 and
hence θx � Ix for every variable x. By Lemma 10 we know every s ∈ Dom Î and
θ̂s � Îs for every term s. In particular, I is an interpretation. It remains to prove
Îs = 1 for all s ∈ E. Let s ∈ E be given. By S4 we know [θ̂s] = [s]. Using this
and Lemma 1 we know s � Îs. Since s � 0 and s � Îs, we must have Îs = 1 as
desired.

We can now prove that if the tableau calculus T cannot make progress on a
branch, then this branch is satisfiable and in fact has a model with finitely many
individuals.

Corollary 1. Let A be a branch. Suppose ⊥ /∈ A and A is not the head of any
step in the calculus T . Then A is evident and there is a model (D, I) of A where
Dι is finite.

Proof. Once we know A is evident, we know we have a model (D, I) of A where
Dι is the set of discriminants of A. Since A is finite, there are only finitely many
discriminating terms of A and hence only finitely many discriminants.

The evidence condition E⊥ follows from the assumption that ⊥ /∈ A. The
conditions E¬ and E �= follows from ⊥ /∈ A and the assumption that the rules T¬
and T�= do not apply to A. Except for Efe, Efq and Eε, the remaining evidence
conditions follow immediately from the assumption that the corresponding rule
does not apply. After we know E∀ and E¬∀ hold for A, we can conclude that
Efe, Efq and Eε hold for A using Proposition 3 and the assumption that the
corresponding rule does not apply.

Example 2. Let p ∈ Vιo and q ∈ Vo. For this example assume [s] = s for all
βη-normal forms s. We prove ∀oq.ειop �= ειox.q is satisfiable. Applying tableau
rules we can construct a branch with the following formulas:

∀oq.εp �= εx.q, εp �= εx.⊥, εp �= εx.¬⊥, p �= λx.⊥, p �= λx.¬⊥, ¬∀x.px = ⊥,
¬∀x.px = ¬⊥, px �= ⊥, py �= ¬⊥, px, ¬⊥, ¬py,

x �= y, p(εp), εp �= y, ∀x.¬⊥

5 Abstract Consistency and Completeness

We now lift the model existence theorem for evident sets to a model existence
theorem for abstractly consistent sets. This will allow us to prove completeness

86 J. Backes and C.E. Brown

C⊥ ⊥ is not in A.
C¬ If ¬s is in A, then s is not in A.
C �= s �=ι s is not in A.
C¬¬ If ¬¬s is in A, then A ∪ {s} is in Γ .
C∨ If s ∨ t is in A, then A ∪ {s} or A ∪ {t} is in Γ .
C¬∨ If ¬(s ∨ t) is in A, then A ∪ {¬s,¬t} is in Γ .
C∀ If ∀σs is in A, then A ∪ {[st]} is in Γ for every t ∈ UA

σ .
C¬∀ If ¬∀σs is in A, then A ∪ {¬[sx]} is in Γ for some variable x.
Cmat If xs1 . . . sn is in A and ¬xt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si �= ti} is in Γ for some i ∈ {1, . . . , n}.
Cdec If xs1 . . . sn �=ι xt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si �= ti} is in Γ for some i ∈ {1, . . . , n}.
Ccon If s =ι t and u �=ι v are in A,

then either A ∪ {s �= u, t �= u} or A ∪ {s �= v, t �= v} is in Γ .
Cbe If s �=o t is in A, then either A ∪ {s,¬t} or A ∪ {¬s, t} is in Γ .
Cbq If s =o t is in A, then either A ∪ {s, t} or A ∪ {¬s,¬t} is in Γ .
Cfe If s �=στ t is in A, then A ∪ {¬[∀x.sx =τ tx]} is in Γ for some x ∈ Vσ \ (Vs ∪ Vt).
Cfq If s =στ t is in A, then A ∪ {[∀x.sx =τ tx]} is in Γ for some x ∈ Vσ \ (Vs ∪ Vt).
Cε If εσs is accessible in A, then either A ∪ {[s(εs)]} is in Γ or

there is some x ∈ Vσ \ Vs such that A ∪ {[∀x.¬(sx)]} is in Γ .

Fig. 3. Abstract consistency conditions (must hold for every A ∈ Γ)

of the tableau calculus T . The use of abstract consistency to prove completeness
was first used by Smullyan [17] and later used by several authors in various
higher-order settings [1,14,6,8].

A set Γ of branches is an abstract consistency class if it satisfies the conditions
in Figure 3. In Lemma 12 we will prove that every member of an abstract
consistency class can be extended to an evident set. In order to verify the E∀
condition we will need the following lemma relating universes for different sets
of formulas.

Lemma 11. Let A be a nonempty subset of Γ and let E be
⋃
A. Suppose for

every branch B ⊆ E there is a branch A ∈ A such that B ⊆ A. Then for every
t ∈ UE

σ there is some A ∈ A such that t ∈ UA
σ .

We can now prove the desired extension lemma.

Lemma 12 (Extension Lemma). Let Γ be an abstract consistency class. For
every A ∈ Γ there is an evident set E such that A ⊆ E.

Proof. Let u0, u1, . . . be an enumeration of all normal formulas. We will construct
a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that every An ∈ Γ . Let
A0 := A. We define An+1 by cases. If there is no B ∈ Γ such that An∪{un} ⊆ B,
then let An+1 := An. Otherwise, choose some B ∈ Γ such that An ∪ {un} ⊆ B.
We consider five subcases.

1. If un is of the form ¬∀σs, then choose An+1 to be B ∪ {¬[sx]} ∈ Γ for some
x ∈ Vσ. This is possible since Γ satisfies C¬∀.

2. If un is of the form s �=στ t, then choose An+1 to be B∪{¬[∀x.sx =τ tx]} ∈ Γ
for some x ∈ Vσ \ ([s] ∪ [t]). This is possible by Cfe.

Analytic Tableaux for Higher-Order Logic with Choice 87

3. If un is of the form s =στ t, then choose An+1 to be B∪{[∀x.sx =τ tx]} ∈ Γ
for some x ∈ Vσ \ ([s] ∪ [t]). This is possible by Cfq.

4. Suppose un is of the form C[εσs] where C is an accessibility context. (Note
that if un is of this form, then it cannot be of one of the previous forms by
the definition of an accessibility context.) By Cε there either B ∪ {[s(εs)]}
is in Γ or there is some x ∈ Vσ \ Vs such that B ∪ {[∀x.¬(sx)]} is in Γ . If
B∪{[s(εs)]} is in Γ , then let An+1 be B∪{[s(εs)]}. Otherwise, choose An+1
to be B ∪ [∀x.¬(sx)] ∈ Γ for some x ∈ Vσ \ Vs.

5. If no previous case applies, then let An+1 be B.

Let E :=
⋃
n∈N

An. We must prove E satisfies the evidence conditions. We check

only E∀ and Eε in detail, leaving the others to the reader. Proposition 3 is helpful
for verifying Efe and Efq just as it is helpful verifying Eε below.

E∀ Assume ∀σs is in E. Let t ∈ UE
σ be a normal term. Let n be such that

un = [st]. By Lemma 11 (taking A to be {Ar|r ≥ n and ∀σs ∈ Ar}) there is
some r ≥ n such that t ∈ UAr

σ and ∀σs is in Ar. By C∀ Ar ∪ {[st]} is in Γ .
Since An ∪ {un} ⊆ Ar ∪ {[st]}, we have [st] = un ∈ An+1 ⊆ E.

Eε Assume εσs is accessible in E. Then there is some accessibility context C
such that C[εσs] is in E. Let n be such that un is C[εσs]. Let r ≥ n be
such that un is in Ar. By the definition of An+1 either [s(εs)] is in An+1 or
[∀x.¬(sx)] is in An+1 for some x ∈ Vσ \ Vs. In the first case we are done. In
the second case let x ∈ Vσ \ Vs be such that [∀x.¬(sx)] is in E. Let t ∈ UE

σ

be given. By Proposition 3(3) we know ¬[st] is in E.

Using the extension lemma we can lift the model existence theorem for evident
sets to a model existence theorem for abstract consistency classes.

Theorem 2 (Model Existence). Let Γ be an abstract consistency class. Every
A ∈ Γ is satisfiable.

Proof. Let A ∈ Γ be given. By Lemma 12 there is an evident set E such that
A ⊆ E. By Theorem 1 E is satisfiable.

We can now prove completeness of the tableau calculus T . Let ΓT be the set
of all branches A which are not refutable. We will first prove ΓT is an abstract
consistency class and then use Model Existence to prove completeness.

Lemma 13. ΓT is an abstract consistency class.

Proof. It is easy to check each condition in Figure 3 using the corresponding
tableau rule in T . For example, we check Cε. Suppose εσs is accessible in A,
A∪{[s(εs)]} is not in ΓT and A∪{[∀x.¬(sx)]} is not in ΓT for every x ∈ Vσ \Vs.
Choose some x ∈ Vσ \ Vs. We know A ∪ {[s(εs)]} and A ∪ {[∀x.¬(sx)]} are
refutable. Hence A is refutable using Cε, contradicting A ∈ ΓT .

Completeness now follows directly from Lemma 13 and Theorem 2.

Theorem 3 (Completeness). Let A be a branch. If A is not refutable, then
A is satisfiable.

88 J. Backes and C.E. Brown

6 Related Work

This work is an extension of two lines of research. First, we have extended the
tableau calculus of Brown and Smolka [8] to support a choice operator at every
type. We have done this by modifying sequent rules given by Mints [15] to
be tableau rules and adapting the relevant parts of his cut-elimination proof.
Second, we have obtained tighter restrictions on the instantiations of quantifiers
than were available before.

In [9] Brown and Smolka give a complete tableau calculus for a first-order
subsystem (EFO) of higher-order logic. Quantifiers are only allowed at type ι
there and the instantiations are restricted to discriminating terms. We have
maintained this restriction on instantiations for quantifiers at type ι. In addition
we have proven that it is enough to instantiate quantifiers at type o with the
two terms ⊥ and ¬⊥. As for quantifiers at function types, we have proven that
these instantiations need not consider variables that do not already occur free
on the branch.

The choice rule given in this paper is similar to a ε-rule for a sequent calculus
given by Mints [15]. We briefly sketch a comparison between our rules and the
rules of Mints.

Translating into our language, Mints’ rule could be represented as

(Mints’ ε)
[¬(st)] | [s(εs)]

εs occurs on the branch

By εs occurs on the branch we simply mean that εs appears as any subterm
where none of the free variables of s are captured by a λ-binder. Note that this
rule could apply more often than our Tε rule. Our Tε rule cannot be applied
until εs appears on the branch in one of the forms εst1 · · · tn, ¬(εst1 · · · tn),
(εst1 · · · tn) �=ι u or u �=ι (εst1 · · · tn). Furthermore, in Mints’ system the ε-rule
would need to be applied for each new instantiation term t. In practice this could
lead to the need to refute branches with [s(εs)] multiple times. We have avoided
this by using the quantified formula [∀x.¬(sx)] on the left branch.

Mints also includes an ε-extensionality rule in [15]. In our context, his rule
could be realized as

(Mints’ ext ε)
s �= t | (εs) = (εt)

εσs and εσt occur on the branch

In words, whenever εσs and εσt both occur on the branch, we must consider the
case where s and t are different, and the case where εs and εt are the same. This
rule could be highly branching in practice. When n different terms of the form
εs occur on the branch, then the rule must be applied n2−n

2 times. Furthermore,
it has the disadvantage that it adds a positive equation to the branch. If σ is
a function type, this will lead to the need to perform instantiations. We were
able to omit such a rule entirely from our system and still prove completeness.
It seems that Mints needed such a rule because the extensionality in [15] is
not liberal enough. Translated into our context, the extensionality rule in [15]
includes the rule

Analytic Tableaux for Higher-Order Logic with Choice 89

(Special Case of Mints’ extensionality)

εss1 . . . sn , ¬εst1 . . . tn
s1 �= t1 | · · · | sn �= tn

n ≥ 1

This corresponds to our mating rule, except that we have liberalized the rule to
include the case when the corresponding first arguments of ε are different.

(Special Case of Tmat)

εs1 . . . sn , ¬εt1 . . . tn
s1 �= t1 | · · · | sn �= tn

n ≥ 1

7 Conclusion

We have presented a cut-free tableau calculus for Church’s simple type theory
with a choice operator. The calculus is designed with automated proof search in
mind. In particular, only accessible terms on the branch need to be considered
in order to apply a rule. Furthermore, instantiation terms are restricted accord-
ing to the type and the formulas on the branch. At type o only instantiations
corresponding to true and false are considered. At the base type ι only discrim-
inating terms on the branch need to be considered (except when there are no
discriminating terms in which case a default element can be used). Note that
this means only finitely many instantiations at type ι need to be considered at
each stage of the search. At function types, the set of instantiations is infinite,
but we have at least proven that we do not need to consider instantiations with
free variables that do not occur on the current branch.

The first author has extended this work by also considering description oper-
ators and if-then-else operators in addition to choice operators. This work has
been reported in his Master’s thesis [4]. The same style of rules (restricted to ac-
cessible terms) and model construction (using discriminants and possible values)
can be used to incorporate description and if-then-else. Interpreting if-then-else
is straightforward. Interpreting description is analogous to the interpretation of
choice given here.

The second author has implemented a new higher-order automated theo-
rem prover, Satallax, based on the ground calculus in this paper. Early results
show the implementation to be competitive with the automated theorem provers
TPS [3] and LEO-II [7] as well as the automated features of Isabelle [16].

References

1. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36, 414–432 (1971)
2. Andrews, P.B.: General models and extensionality. J. Symb. Log. 37, 395–397

(1972)
3. Andrews, P.B., Brown, C.E.: TPS: A hybrid automatic-interactive system for de-

veloping proofs. Journal of Applied Logic 4(4), 367–395 (2006)
4. Backes, J.: Tableaux for higher-order logic with if-then-else, description and choice.

Master’s thesis, Universität des Saarlandes (2010)
5. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice.

Technical report, Programming Systems Lab, Saarland University, Saarbrücken,
Germany (January 2010)

90 J. Backes and C.E. Brown

6. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extension-
ality. J. Symb. Log. 69, 1027–1088 (2004)

7. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II — A cooperative
automatic theorem prover for higher-order logic. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer,
Heidelberg (2008)

8. Brown, C.E., Smolka, G.: Analytic tableaux for simple type theory and its first-
order fragment. Technical report, Programming Systems Lab, Saarland Univer-
sity, Saarbrücken, Germany (December 2009) (accepted for publication by Logical
Methods in Computer Science)

9. Brown, C.E., Smolka, G.: Extended first-order logic. In: Urban, C. (ed.) TPHOLs
2009. LNCS, vol. 5674, pp. 164–179. Springer, Heidelberg (2009)

10. Brown, C.E., Smolka, G.: Terminating tableaux for the basic fragment of simple
type theory. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI),
vol. 5607, pp. 138–151. Springer, Heidelberg (2009)

11. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68
(1940)

12. Gordon, M.J., Melham, T.F.: Introduction to HOL: A Theorem-Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

13. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15, 81–91 (1950)
14. Huet, G.P.: Constrained Resolution: A Complete Method for Higher Order Logic.

PhD thesis, Case Western Reserve University (1972)
15. Mints, G.: Cut-elimination for simple type theory with an axiom of choice. J. Symb.

Log. 64(2), 479–485 (1999)
16. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002)
17. Smullyan, R.M.: First-Order Logic. Springer, Heidelberg (1968)
18. Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development

of automated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) CADE
2009. LNCS, vol. 5663, pp. 116–130. Springer, Heidelberg (2009)

Monotonicity Inference for
Higher-Order Formulas

Jasmin Christian Blanchette� and Alexander Krauss

Institut für Informatik, Technische Universität München, Germany
{blanchette,krauss}@in.tum.de

Abstract. Formulas are often monotonic in the sense that if the formula is satis-
fiable for given domains of discourse, it is also satisfiable for all larger domains.
Monotonicity is undecidable in general, but we devised two calculi that infer it in
many cases for higher-order logic. The stronger calculus has been implemented in
Isabelle’s model finder Nitpick, where it is used to prune the search space, leading
to dramatic speed improvements for formulas involving many atomic types.

1 Introduction

Formulas occurring in logical specifications often exhibit monotonicity in the sense that
if the formula is satisfiable when the types are interpreted with sets of given (positive)
cardinalities, it is still satisfiable when these sets become larger. Consider the following
formulas, in which superscripts indicate types:

1. ∃xα y. x �= y
2. f xα = x ∧ f y �= y
3. (∀xα. f x = x) ∧ f y �= y

4. {yα}= {z}
5. ∃xα y. x �= y ∧ ∀z. z = x ∨ z = y
6. ∀xα y. x = y

Formulas 1 and 2 are satisfiable iff |α| > 1, formula 3 is unsatisfiable, formula 4 is
satisfiable for any cardinality of α, formula 5 is satisfiable iff |α| = 2, and formula 6 is
satisfiable iff |α|= 1. Formulas 1 to 4 are monotonic, whereas 5 and 6 are not.

Monotonicity can be exploited in model finders to prune the search space. Model
finders are automatic tools that generate finite set-theoretic models of formulas. They
are useful for exploring a specification (e.g., to check if a set of axioms is satisfiable)
and for producing counterexamples. Notable model finders include Paradox [5], MACE
[11], and SEM [19] for first-order logic (FOL), Alloy [9] and Kodkod [17] for first-order
relational logic, and Nitpick [3] and Refute [18] for higher-order logic (HOL).

Model finders for many-sorted or typed logics typically work by systematically enu-
merating the domain cardinalities for the atomic types (type variables and other uninter-
preted types) occurring in the formula. To exhaust all models up to a given cardinality
bound k for a formula involving n atomic types, a model finder iterates through kn com-
binations of cardinalities and must consider all models for each of these combinations.
In general, this exponential behavior is necessary for completeness, since the formula
may require a model with specific cardinalities. However, if the formula is monotonic,
it is sufficient to consider only the models in which all types have cardinality k.

� Research supported by the DFG grant Ni 491/11-1.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 91–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 J.C. Blanchette and A. Krauss

Monotonicity occurs surprisingly often in practice. As a real-world example, con-
sider the specification of a hotel key card system with recordable locks [8, pp. 299–306;
13]. Such a specification involves rooms, guests, and keys, modeled as distinct atomic
types. A desirable property of the system is that only the occupant of a room may un-
lock it. Clearly, a counterexample requiring one room, two guests, and four keys will
still be a counterexample if more rooms, guests, or keys are available.

In this paper, we present two calculi for detecting monotonicity of HOL formulas.
The first calculus (Sect. 5) is based on the idea of tracking the use of equality and quan-
tifiers. Although useful on its own, it mainly serves as a stepping stone for a second,
refined calculus (Sect. 6), which uses a type system to detect the ubiquitous “sets as
predicates” idiom and treats it specially. The soundness proof of the refined calculus
explicitly relates models of different sizes. Both calculi are readily adapted to handle
inductive datatypes (Sect. 7), which are pervasive in HOL formalizations. Our evalu-
ation is done in the context of Nitpick (Sect. 8), a counterexample generator for Is-
abelle/HOL [14]. Although the focus is on HOL, the approach could be adapted to any
logic that provides unbounded quantification, such as many-sorted FOL with equality.

2 Related Work

In plain first-order logic without equality, every formula is monotonic, since it is impos-
sible to express an upper bound on the cardinality of the models and hence any model
can be extended to a model of arbitrarily larger cardinality. This monotonicity property
is essentially a weak form of the upward Löwenheim–Skolem theorem.

When equality is added, nonmonotonic formulas follow suit. For example, the for-
mula ∀x y. x = y is satisfied only by singleton models. Nonetheless, ∀x y. x = y −→
P(x,y) is monotonic, because equality occurs only negatively. Distinguishing between
positive and negative occurrences of equality is a natural syntactic criterion for detect-
ing monotonicity, and our approach is based on this idea.

Moving to higher-order logic introduces new complications. Since HOL is typed,
we are interested in monotonicity with respect to a given type variable or some other
uninterpreted type α. Moreover, our calculi must cope with occurrences of α in nested
function types such as (α→β)→β and in datatypes such as α list. We are not aware of
any previous work on detecting monotonicity for HOL.

In the first-order world, Alloy constitutes an interesting case in point. Although Al-
loy’s logic is unsorted, models must give a semantics to “primitive types,” which are sets
of uninterpreted atoms. Early versions of the Alloy language ensured monotonicity with
respect to the primitive types by providing only bounded quantification and disallowing
explicit references to the sets that denote the types [9]. Monotonicity has been lost in
more recent versions of the language, which allow such references [8, p.165]. Nonethe-
less, many Alloy formulas are monotonic, notably the existential–bounded-universal
class of formulas studied by Kuncak and Jackson [10].

For some logics, small model theorems give an upper bound on the cardinality of a
sort [4], primitive type [12], or variable’s domain [15]. If no model exists below that
bound, no larger models exist. Paradox and Alloy exploit such theorems to speed up the
search. Our approach is complementary and could be called a “large model” theorem.

Monotonicity Inference for Higher-Order Formulas 93

3 Higher-Order Logic

Our presentation of HOL is very similar to that of Andrews [1], but instead of a single
type ι of individuals, we use type variables α, β, γ to denote uninterpreted types.

Definition 3.1 (Syntax). The types and terms of HOL are that of the simply-typed
λ-calculus, augmented with constants and a special type o of Booleans:

Types: Terms:
σ ::= o (Boolean type) t ::= xσ (variable)

| α (type variable) | cσ (constant)
| σ→σ (function type) | t t (application)

| λxσ. t (abstraction)

The function arrow associates to the right, reflecting the left-associativity of application.
We assume throughout that terms are well-typed using the standard typing rules and
often omit the type superscripts. A formula is a term of type o.

Unlike in Gordon’s version of HOL [6], on which several popular proof assistants are
based [7, 14, 16], we treat polymorphism in the metalanguage: Polymorphic constants
such as equality are expressed as collections of constants, one for each type.

Types and terms are interpreted in the standard set-theoretic way, relative to a type
environment that fixes the interpretation of type variables.

Definition 3.2 (Scope). A scope S is a function from type variables to nonempty sets
(domains). We write S ≤α S ′ to mean that S(α)⊆ S ′(α) and S(β) = S ′(β) for all β �= α.

The set S(α) can be finite or infinite, although for model finding we usually have finite
domains in mind. In contexts where S is clear, the cardinality of S(α) is written |α| and
the elements of S(α) are denoted by 0, 1, 2, etc. Often, scopes are also called “type
environments”; our terminology here is consistent with Jackson [9].

Definition 3.3 (Interpretation of Types). The interpretation �σ�S of type σ in scope
S is defined recursively by the equations

�o�S = {⊥,�} �α�S = S(α) �σ→ τ�S = �σ�S → �τ�S

where A→B denotes the set of (total) functions from A to B.

Definition 3.4 (Models). A constant model is a scope-indexed family of functions MS

that map each constant cσ to a value MS (c) ∈ �σ�S . A variable assignment A for
scope S is a function that maps each variable xσ to a value A(x) ∈ �σ�S . A model
for S is a triple M = (S ,A,M), where A is a variable assignment for S and M is a
constant model.

Definition 3.5 (Interpretation of Terms). Let M = (S ,A,M) be a model. The inter-
pretation �t�M of a term t is defined recursively by the equations

�x�(S ,A,M) = A(x) �t u�(S ,A,M) = �t�(S ,A,M)
(
�u�(S ,A,M)

)
�c�(S ,A,M) = MS (c) �λxσ. t�(S ,A,M) = a∈ �σ�S $→ �t�(S ,A[x$→a],M) .

If t is a formula and �t�M =�, we say that M is a model of t, written M � t. A formula
is satisfiable for scope S if it has a model for S.

94 J.C. Blanchette and A. Krauss

We use constants to express the logical primitives, whose interpretation is fixed a priori
for each scope. Our definition of HOL is fairly minimalistic, with equality (=σ�σ�o

for any σ) and implication (−→o�o�o) as primitive constants. In the sequel, we always
use the standard constant model M̂, which interprets implication and equality in the
standard way, and we omit the last component of (S ,A, M̂).

The remaining connectives and quantifiers are defined as abbreviations in terms of
implication and equality. Abbreviations also cater for set-theoretic notations.

Notation 3.1 (Logical Abbreviations)

True ≡ (λxo. x) = (λx. x) p ∧ q ≡ ¬(p−→¬q)
False ≡ (λxo. x) = (λx. True) p ∨ q ≡ ¬ p−→ q

¬ p ≡ p−→ False ∀xσ. p ≡ (λx. p) = (λx. True)
p �= q ≡ ¬ p = q ∃xσ. p ≡ ¬∀x. ¬ p.

Notation 3.2 (Set Abbreviations)

/0 ≡ λx. False s ∩ t ≡ λx. s x ∧ t x x ∈ s ≡ s x

U ≡ λx. True s ∪ t ≡ λx. s x ∨ t x insert x s ≡ (λy. y = x) ∪ s.

s− t ≡ λx. s x ∧ ¬ t x

The constants /0 and insert can be seen as constructors for finite sets. Following tradition,
we write {x1, . . . , xn} rather than insert x1 (. . .(insert xn /0) . . .).

4 Monotonicity

The introduction gave an informal definition of monotonicity. A more rigorous defini-
tion follows.

Definition 4.1 (Monotonicity). A formula t is monotonic w.r.t. a type variable α if for
all scopes S, S ′ such that S ≤α S ′, if t is satisfiable for S, it is also satisfiable for S ′. It
is antimonotonic w.r.t. α if its negation is monotonic w.r.t. α.

Example 4.1. If you have five Swedish friends and all five are blond, the existential
statement “at least one of your Swedish friends is dark-haired” is monotonic—it will
either stay false or become true as you expand your circle of Nordic friends. Inversely,
the universal statement “all your Swedish friends are blond” is antimonotonic—it will
either stay true or become false as you make new friends. �

Theorem 4.1 (Undecidability). Monotonicity w.r.t. α is undecidable.

Proof (reduction). For any closed HOL formula t, let t� ≡ t ∨ ∀xα y. x = y, where α
does not occur in t. Clearly, t� must be monotonic if t is valid, since the second disjunct
becomes irrelevant in this case. If t is not valid, then t� cannot be monotonic, since it
is true for |α| = 1 due to the second disjunct but false for some larger scopes. Thus,
validity in HOL (which is undecidable) can be reduced to monotonicity. ��
The best we can do is approximate monotonicity.

Convention. In the rest of this paper, we denote by α̃ the type variable w.r.t. which we
consider monotonicity.

Monotonicity Inference for Higher-Order Formulas 95

5 A Simple Calculus

This section presents the simple calculus MF for inferring monotonicity. This simple
calculus serves as a stepping stone toward the more general calculus MFS of Sect. 6.
(The ‘F’ in MF and MFS stands for “function,” whereas ‘S’ stands for “set.”) Since the
results in this section are subsumed by those of the next section, we omit the proofs.

5.1 Extension Relation and Constancy

We first introduce a concept that is similar to monotonicity but that applies to terms of
any type—the notion of constancy. Informally, a term is constant if it denotes essen-
tially the same value before and after we enlarge the scope. What it means to denote
“essentially the same value” can be formalized using an extension relation �, which
relates elements of the smaller scope to elements of the larger scope.

For types such as o and α̃, this is easy: Any element of the smaller scope is also
present in the larger scope and can serve as an extension. In the case of functions, we
expect that the extended function coincides with the original one where applicable;
elements not present in the smaller scope may be mapped to any value. For example,
when going from |α̃| = 1 to |α̃| = 2, the function f α̃�o = [0 $→ �] can be extended to
either g = [0 $→ �, 1 $→ ⊥] or g′ = [0 $→ �, 1 $→ �]. For now, we take the liberal view
that both g and g′ are “essentially the same value” as f , which we write f �α̃→o g and
f �α̃→o g′. We will reconsider this decision in Sect. 6.

Definition 5.1 (Extension Relation). Let σ be a type, and let S, S ′ be scopes such
that S ≤α̃ S ′. The extension relation �σ ⊆ �σ�S × �σ�S ′ for S and S ′ is defined by the
following equivalences:

a�σ b iff a = b if σ is o or a type variable

f �σ→τ g iff ∀a b. a�σ b−→ f (a)�τ g(b).

Definition 5.2 (Model Extension). Let M = (S ,A) and M ′ = (S ′,A′) be models. The
model M ′ extends M , written M � M ′, if S ≤α̃ S ′ and A(x)�σ A′(x) for all xσ.

The symbol �σ is read “is extended by.” Fig. 1 illustrates �σ for various types. We
represent a function from σ to τ by a |σ|-tuple such that the nth element for σ (accord-
ing to the lexicographic order, with ⊥ < � and n < n + 1) is mapped to the nth tuple
component. Observe that �σ is always left-total (∀a.∃b. a �σ b) and left-unique (i.e.,
injective: ∀a a′ b. a �σ b ∧ a′ �σ b −→ a = a′). It is also right-total (i.e., surjective:
∀b.∃a. a �σ b) if α̃ does not occur positively in σ (e.g., σ = α̃→o), and right-unique
(i.e., functional: ∀a b b′. a �σ b ∧ a �σ b′ −→ b = b′) if α̃ does not occur negatively
(e.g., σ= o→ α̃). These properties are crucial to the correctness of our calculus.

Definition 5.3 (Constancy). A term tσ is constant if �t�M �σ �t�M ′ for all models M ,
M ′ such that M � M ′.

Example 5.1. f α̃�α̃ x is constant. Proof: Let A(x) = a1 and A(f)(a1) = a2. For any
M ′ = (S ′,A′) that extends M = (S ,A), we have A(x)�α̃ A′(x) and A(f) �α̃→α̃ A′(f).
By definition of �σ, A′(x) = a1 and A′(f)(a1) = a2. Thus, � f x�M = � f x�M ′ = a2. �

96 J.C. Blanchette and A. Krauss

(a) α̃ (right-unique) (b) o→ α̃ (right-unique)

(c) α̃→o (right-total) (d) α̃→ α̃ (neither)

Fig. 1. �σ for various types σ, with |S(α̃)|= 2 and |S ′(α̃)|= 3

Example 5.2. xo�α̃ = y is constant. Proof: For any M ′ = (S ′,A′) that extends M =
(S ,A), we have A(x) �o→α̃ A′(x) and A(y) �o→α̃ A′(y). By definition of �σ, A′(x) =
A(x) and A′(y) = A(y). Hence, �x = y�M = �x = y�M ′ . �

Example 5.3. f α̃�o = g is not constant. Counterexample: |S(α̃)| = 1, A(f) = A(g) =
(�), |S ′(α̃)| = 2, A′(f) = (�,⊥), A′(g) = (�,�). Then � f = g�(S ,A) = � but � f =
g�(S ′,A′) =⊥. �

More generally, we note that variables are always constant, and constancy is preserved
by application and λ-abstraction. On the other hand, the equality symbol =σ�σ�o is
constant only if α̃ does not occur negatively in σ. Moreover, since �o is the identity
relation, constant formulas are both monotonic and antimonotonic.

5.2 Syntactic Criteria

We syntactically approximate constancy, monotonicity, and antimonotonicity with the
predicates K(t), M+(t), and M–(t), respectively. The goal is to derive M+(t) for the
formula t we wish to prove monotonic. The predicates depend on TV+(σ) and TV–(σ),
which collect the positive and negative type variables of σ.

Definition 5.4 (Positive and Negative Type Variables). The sets of positive type vari-
ables TV+(σ) and of negative type variables TV–(σ) of a typeσ are defined as follows:

TV+(α) = {α} TVs(o) = /0

TV–(α) = /0 TVs(σ→ τ) = TVs(σ) ∪ TVs(τ).

If s = +, then s denotes –; otherwise, s denotes +.

Monotonicity Inference for Higher-Order Formulas 97

Definition 5.5 (Constancy and Monotonicity Rules). The predicates K(t), M+(t),
and M–(t) are inductively defined by the rules

K(x) K(−→)

α̃ /∈ TV–(σ)

K(=σ�σ�o)

K(tσ�τ) K(uσ)

K(t u)

K(t)

K(λx. t)

K(t)

Ms(t)

Ms(t) Ms(u)

Ms(t −→ u)

K(tσ) K(uσ)

M–(t = u)

M–(t)

M–(∀x. t)

M+(t) α̃ /∈ TV+(σ)

M+(∀xσ. t)
.

The rules for K simply traverse the term structure and ensure that equality is not used
on types in which α̃ occurs positively. The first two rules for M+ and M– are easy to
justify semantically. The other three are more subtle:

– The M–(t = u) rule is sound because the extensions of distinct elements are always
distinct (since �σ is left-unique).

– The M–(∀x. t) rule is sound because if enlarging the scope makes x range over new
elements, these cannot make ∀x. t become true if it was false in the smaller scope.

– The M+(∀x. t) rule is the most difficult one. If α̃ does not occur at all in σ, then
monotonicity is preserved. Otherwise, there is the danger that the formula t is true
for all values a ∈ �σ�S but not for some b ∈ �σ�S ′ . However, in Sect. 6 we will
show that this can only happen for b’s that do not extend any a, which can only
exist if α ∈ TV+(σ).

Example 5.4. The following derivation shows that ∀xα�o. P x is monotonic w.r.t. α:

K(P) K(x)

K(P x)

M+(P x) α /∈ TV+(α→o)

M+(∀xα�o. P x) �

Example 5.5. Formula 4 from Sect. 1 is monotonic, but M+ fails on it:

α /∈ TV–(α→o)

K(=(α�o)�(α�o)�o)

...

K({y})
K((=) {y})

...

K({z})
K({y}= {z})

M+({y}= {z})
The assumption α /∈ TV–(α→o) cannot be discharged, since TV–(α→o) = {α}. �

The last example exhibits a significant weakness of the calculus MF. HOL identi-
fies sets with predicates, yet M+ prevents us from comparing terms of type α̃→ o for
equality. This happens because the extension of a function of this type is not unique
(cf. Fig. 1(c)), and thus equality is generally not preserved as we enlarge the scope.

This behavior of �α̃→o is imprecise for sets, as it puts distinct sets in relation; for
example, {0} �α̃→o {0,2} if S(α̃) = 2 and S ′(α̃) = 3. We would normally prefer each
set to admit a unique extension, namely the set itself. This would make set equality
constant. The next section introduces a refined calculus that formalizes this idea.

98 J.C. Blanchette and A. Krauss

6 A Refined Calculus

To solve the problem sketched above, we introduce an alternative version of �σ such
that the extension of a set is always the set itself. Rephrased in terms of functions,
this means that the extended function must return ⊥ for all elements that are “new” in
the larger scope. Fig. 2 compares this more conservative “set” approach to the liberal
“functional” approach of Sect. 5; in subfigure (b), it may help to think of (⊥,⊥) and
(⊥,⊥,⊥) as /0, (�,⊥) and (�,⊥,⊥) as {0}, and so on.

(a) functional view (right-total) (b) set view (right-unique)

Fig. 2. �α̃→o with S(α̃) = 2 and S ′(α̃) = 3

With this approach, we could easily infer that {y} = {z} is constant. However, the
wholesale application of this principle would have pernicious consequences on con-
stancy: Semantically, the universal set U α̃�o, among others, would no longer be con-
stant; syntactically, the introduction rule for K(λx. t) would no longer be sound.

What we propose instead is a hybrid approach that supports both forms of extensions
in various combinations. The required bookkeeping is conveniently expressed as a type
system, in which each function arrow is annotated with F (“function”) or S (“set”):

Definition 6.1 (Annotated Types). An annotated type is a HOL type in which each
function arrow carries an annotation X ∈ {F,S}.

The annotations have no influence on the interpretation of types as sets of values, which
is unchanged. Instead, they specify how � should extend functional values to larger
scopes. While F-functions are extended as in the previous section, the extension of an
S-function must map all new values to ⊥.

6.1 Refined Extension Relation

The extension relation �σ distinguishes between the two kinds of arrows. The F case
coincides with Def. 5.1.

Definition 6.2 (Extension Relation). Let σ be an annotated type, and let S, S ′ be
scopes such that S ≤α̃ S ′. The extension relation �σ ⊆ �σ�S × �σ�S ′ for S and S ′ is
defined by the following equivalences:

Monotonicity Inference for Higher-Order Formulas 99

a�σ b iff a = b if σ is o or a type variable

f �σ→Fτ g iff ∀a b. a�σ b−→ f (a)�τ g(b)
f �σ→Sτ g iff ∀a b. a�σ b−→ f (a)�τ g(b) and ∀b. (∃a. a�σ b) ∨ g(b) = (|τ|)S ′

where (|o|)S =⊥, (|σ→ τ|)S = a ∈ �σ�S $→ (|τ|)S , and (|α|)S is any element of S(α).

Although the S annotation is tailored to predicates, the annotated type σ→S τ is legal
for any type τ. The value (|τ|)S then takes the place of ⊥ as the default extension.

We now prove the crucial properties of �σ, to which we alluded in Sect. 5. The
unusual definitions of TV+ and TV– in the S case ensure that Lem. 6.2 holds uniformly.

Lemma 6.1. The relation �σ is left-total and left-unique (injective).

Proof (structural induction onσ). For o and α, both properties are obvious. Forσ→X τ,
we assume by induction that �σ and �τ are left-unique and left-total. Since �σ→Sτ ⊆
�σ→Fτ, it suffices to show that �σ→Fτ is left-unique and �σ→Sτ is left-total.

LEFT-UNIQUENESS: We assume f , f ′ �σ→Fτ g and show that f = f ′. For every
a ∈ �σ�S , left-totality of�σ yields an extension b with a�σ b. Then f (a)�τ g(b) and
f ′(a)�τ g(b), and since �τ is left-unique, f (a) = f ′(a).

LEFT-TOTALITY: For f ∈ �σ→ τ�S , we find an extension g as follows: Let b ∈
�σ�S ′ . If b extends an a, that a is unique by left-uniqueness of �σ. Since �τ is left-
total, there exists a y such that f (a)�τ y, and we let g(b) = y. If b does not extend any
a, then we set g(b) = (|τ|)S ′ . By construction, f �σ→Sτ g. ��
Definition 6.3 (Positive and Negative Type Variables). The sets of positive type vari-
ables TV+(σ) and of negative type variables TV–(σ) of an annotated typeσ are defined
as follows:

TV+(o) = /0 TV–(o) = /0

TV+(α) = {α} TV–(α) = /0

TV+(σ→F τ) = TV–(σ) ∪ TV+(τ) TV–(σ→F τ) = TV+(σ) ∪ TV–(τ)
TV+(σ→S τ) = TV+(σ) ∪ TV–(σ) ∪ TV+(τ) TV–(σ→S τ) = TV–(τ).

Lemma 6.2. If α̃ /∈ TV+(σ), then �σ is right-total (surjective). If α̃ /∈ TV–(σ), then
�σ is right-unique (functional).

Proof (structural induction onσ). For o and α, both properties are obvious. Forσ→X τ,
we assume by induction that the implications hold for�σ and �τ.

RIGHT-UNIQUENESS OF �σ→Fτ: If α̃ /∈ TV–(σ→F τ) = TV+(σ) ∪ TV–(τ), then
by induction hypothesis�σ is right-total and�τ is right-unique. We consider g, g′ such
that f �σ→Fτ g and f �σ→Fτ g′, and show that g = g′. For every b∈ �σ�S ′ , right-totality
of �σ yields a restriction a �σ b. Then f (a) �τ g(b) and f (a) �τ g′(b), and since �τ
is right-unique, g(b) = g′(b).

RIGHT-UNIQUENESS OF �σ→Sτ AND RIGHT-TOTALITY OF �σ→Xτ: Omitted. ��
Notice how the new definition of TV+ and TV– solves the problem exhibited by the
formula {y} = {z} (Ex. 5.5), since the α̃ in α̃→S o counts as a positive occurrence.
However, we must now ensure that types are consistently annotated.

100 J.C. Blanchette and A. Krauss

6.2 Type Checking

Checking constancy can be seen as a type checking problem involving annotated types.
The basic idea is to derive typing judgments Γ% t :σ, whose intuitive meaning is that the
denotations of t in a smaller and a larger scope are related by �σ (i.e., that t is constant
in a sense given by σ). Despite this new interpretation, the typing rules are similar to
those of the simply-typed λ-calculus, extended with a particular form of subtyping.

Regrettably, our rules cannot derive the desired types for the basic set operations ∪,
∩, and− when they are defined as abbreviations (cf. Notat. 3.2). This problem is solved
by treating set constants as primitive along with implication and equality.

Definition 6.4 (Context). A context is a pair of mappings Γ = (Γc,Γv), where Γc maps
constant symbols to sets of annotated types, and Γv maps variables to annotated types.
A constant context Γc is compatible with a constant model M if σ ∈ Γc(c) implies
MS (c)�σ MS ′(c) for all scopes S, S ′ with S ≤α̃ S ′ and for all constants c and types σ.

Definition 6.5 (Standard Constant Context). The standard constant context Γ̂c is the
following mapping:

−→ $→ {o→F o→F o}
= $→ {σ→Fσ→X o | X ∈ {F,S}, α̃ /∈ TV–(σ)}
/0 $→ {σ→X o | X ∈ {F,S}}

U $→ {σ→F o}
∪ $→ {(σ→X o)→F (σ→X o)→Fσ→X o | X ∈ {F,S}}
∩ $→ {(σ→X o)→F (σ→X o)→Fσ→X o | X ∈ {F,S}}
− $→ {(σ→X o)→F (σ→F o)→Fσ→X o | X ∈ {F,S}}
∈ $→ {σ→F (σ→X o)→F o | X ∈ {F,S}}

insert $→ {σ→F (σ→X o)→Fσ→X o | X ∈ {F,S}, α̃ /∈ TV–(σ)}.

Allowing constants to have multiple annotated types gives us a form of polymorphism
on the annotations. We treat Γ̂c as a global table of annotated types for constants.

Lemma 6.3. The standard constant context is compatible with the standard constant
model.

Proof. CASE =: Since α̃ /∈TV–(σ),�σ is right-unique (Lem. 6.2). Unfolding the def-
inition of �, we assume a �σ b and show that if a′ �σ b′, then (a = a′) = (b = b′),
and that if there exists no restriction a′ such that a′ �σ b′, then (b = b′) = ⊥. The first
part follows from the left-uniqueness and right-uniqueness of �σ. For the second part,
b �= b′ because a restricts b but b′ admits no restriction.

OTHER CASES: Omitted. ��

Defs. 5.2 and 5.3 and the K part of Def. 5.5 from Sect. 5 are generalized as follows.

Definition 6.6 (Model Extension). Let M = (S ,A) and M ′ = (S ′,A′) be models. The
model M ′ extends M in a context Γ, written M �Γ M ′, if S ≤α̃ S ′ and Γv(x) = σ
implies A(x)�σ A′(x) for all x.

Monotonicity Inference for Higher-Order Formulas 101

Definition 6.7 (Constancy). Let σ be an annotated type. A term t is σ-constant in a
context Γ if �t�M �σ �t�M ′ for all models M , M ′ such that M �Γ M ′.

Definition 6.8 (Typing Rules). The typing relation Γ % t : σ is given by the rules

Γv(x) = σ
VAR

Γ % x : σ

σ ∈ Γc(c)
CONST

Γ % c : σ

Γ % t : σ′ →X τ Γ % u : σ σ≤ σ′
APP

Γ % t u : τ

Γ[x $→ σ] % t : τ
LAM

Γ % λx. t : σ→F τ

where X ∈ {F,S} and the subtype relation σ≤ τ is defined by the rules

o≤ o α≤ α
σ′ ≤ σ τ≤ τ′
σ→X τ≤ σ′ →F τ

′
τ≤ τ′

σ→S τ≤ σ→S τ
′ .

In the above definition, Γ[x $→ σ] abbreviates (Γc,Γv[x $→ σ]).

Lemma 6.4. If σ≤ σ′, then �σ ⊆�σ′ .

Proof. By straightforward induction on the derivation of σ≤ σ′. ��

Theorem 6.1 (Soundness of Typing). If Γ % t : σ, then t is σ-constant in Γ.

Proof (induction on the derivation of Γ % t : σ)
VAR: Obvious, since A(x)�σ A′(x) by assumption for σ= Γv(x).
CONST: Obvious, since M̂S (c)�σ M̂S ′(c) by assumption for all σ ∈ Γc(c).
APP: By induction hypothesis, and since �σ′→Sτ ⊆ �σ′→Fτ, we have �t�M �σ′→Fτ

�t�M ′ and �u�M �σ �u�M ′ . Lem. 6.4 and the condition σ ≤ σ′ imply that �u�M �σ′

�u�M ′ . Then by Def. 6.2, we know that �t u�M = �t�M (�u�M)�τ �t�M ′ (�u�M ′)=�t u�M ′ ,
which shows that t u is τ-constant in Γ.

LAM: Let a ∈ �σ�S and b ∈ �σ�S ′ such that a �σ b. Then we have the extended
models Ma = (S ,A[x $→ a]) and M ′

b = (S ′,A′[x $→ b]). Thus, Ma �Γ[x$→σ] M ′
b, and

by induction hypothesis �λx. t�M (a) = �t�Ma �τ �t�M ′
b

= �λx. t�M ′(b). This implies
�λx. t�M �σ→Fτ �λx. t�M ′ . ��

6.3 Monotonicity Checking

The rules for monotonicity and antimonotonicity are almost the same as in the previous
section, except that they now extend the context when moving under a quantifier.

Definition 6.9 (Monotonicity Rules). The predicates Γ % M+(t) and Γ % M–(t) are
given by the rules

Γ % t : o
TERM

Γ %Ms(t)

Γ %Ms(t) Γ %Ms(u)
IMP

Γ %Ms(t −→ u)

Γ % t : σ Γ % u : σ
EQ–

M–(t = u)

Γ[x $→ σ] %M–(t)
ALL–

Γ %M–(∀x. t)

Γ[x $→ σ] %M+(t) α̃ /∈ TV+(σ)
ALL+.

Γ %M+(∀x. t)

102 J.C. Blanchette and A. Krauss

Theorem 6.2 (Soundness of Ms). Let M and M ′ be models such that M �Γ M ′. If
Γ %M+(t), then M � t implies M ′ � t. If Γ %M–(t), then M �� t implies M ′ �� t.

Proof (induction on the derivation of Γ %M(t)). Let M = (S ,A) and M ′ = (S ′,A′).
TERM: Because constancy implies (anti)monotonicity for type o.
IMP: Obvious.
EQ–: Assume that Γ % s : σ, Γ % t : σ, and M �� s = t. Since M is a standard model,

we know that �s�M �= �t�M . By Thm. 6.1, we have �s�M �σ �s�M ′ and �t�M �σ �t�M ′ .
By the left-uniqueness of �σ, the extensions cannot be equal, and thus M ′ �� s = t.

ALL–: Assume that Γ[x $→ σ] %M–(t) and M �� ∀xσ. t. Then there exists a ∈ �σ�S

such that (S ,A[x $→ a]) �� t. Since �σ is left-total, there exists an extension b ∈ �σ�S ′

with a�σ b. Since (S ,A[x $→ a])�Γ (S ′,A′[x $→ b]), we can conclude (S ′,A′[x $→ b]) �� t
by induction hypothesis. Thus M ′ �� ∀xσ. t.

ALL+: Assume that Γ[x $→ σ] %M+(t), α̃ /∈ TV+(σ), and M � ∀xσ. t. We show that
M ′ � ∀xσ. t. Let b ∈ �σ�S ′ . Since �σ is right-total (Lem. 6.2), there exists a restric-
tion a ∈ �σ�S with a �σ b. By assumption, (S ,A[x $→ a]) � t. Since (S ,A[x $→ a]) �Γ
(S ′,A′[x $→ b]), we can conclude (S ′,A′[x $→ b]) � t by induction hypothesis. ��
Corollary 6.1 (Soundness of MFS). If Γ %M+(t) can be derived in some arbitrary
context Γ, then t is monotonic. If Γ %M–(t) can be derived in some arbitrary context Γ,
then t is antimonotonic.

Example 6.1. Let {α} stand forα→S o, and let Γv = [x $→ {α}, y $→ {α}]. The following
derivation shows that xα�o = y is monotonic w.r.t. α:

Γ(=) = {α}→F {α}→F o

Γ % (=) : {α}→F {α}→F o

Γ(x) = {α}
Γ % x : {α} {α} ≤ {α}

Γ % (=) x : {α}→F o

Γ(y) = {α}
Γ % y : {α} {α} ≤ {α}

Γ % x = y : o

Γ %M+(x = y) �

Example 6.2. The following table lists some example formulas, including those from
Sect. 1. For each formula, we indicate whether it is monotonic or antimononic w.r.t. α
according to the calculi MF and MFS and to the semantic definitions.

MONOTONIC ANTIMONOTONIC

FORMULA MF MFS SEM. MF MFS SEM.

∃xα y. x �= y ✓ ✓ ✓ · · ·
f xα = x ∧ f y �= y ✓ ✓ ✓ ✓ ✓ ✓

xo�α = y ✓ ✓ ✓ ✓ ✓ ✓
sα�o = t · ✓ ✓ ✓ ✓ ✓

{yα}= {z} · ✓ ✓ ✓ ✓ ✓

(λxα. x = y) = (λx. x = z) · · ✓ ✓ ✓ ✓
(∀xα. f x = x) ∧ f y �= y · · ✓ ✓ ✓ ✓

∀xα y. x = y · · · ✓ ✓ ✓

∃xα y. x �= y ∧ ∀z. z = x ∨ z = y · · · · · ·
�

Monotonicity Inference for Higher-Order Formulas 103

6.4 Type Inference

Expecting all types to be fully annotated with F and S is unrealistic, so we now face
the problem of computing annotations such that a given term is typable—a type infer-
ence problem. We follow a standard approach to type inference: We start by annotating
all types with annotation variables ranging over {F,S}. Then we construct a typing
derivation, collecting a set of constraints over the annotations. Finally, we look for an
instantiation for the annotation variables that satisfies all the constraints.

Definition 6.10 (Annotation Constraints). An annotation constraint over a set of an-
notation variables V is an expression of the form σ≤ τ, α̃ /∈ TV+(σ), or α̃ /∈ TV–(σ),
where the types σ and τ may contain annotation variables in V. Given a valuation
ρ : V→{F,S}, the meaning of a constraint is defined as in Defs. 6.3 and 6.8.

A straightforward way of solving such constraints is to encode them in propositional
logic, following Defs. 6.3 and 6.8, and give them to a SAT solver. Annotation vari-
ables, which may take two values, are mapped directly to propositional variables. This
approach proved very efficient on the problems that we encountered in our experiments.

So far, we have been unable to prove that the satisfiability problem for this constraint
language is NP-complete. We suspect that it is not, but we have not found a polynomial-
time algorithm. Thus, it is unclear if our use of a SAT solver is fully appropriate from a
theoretical point of view, even though it works perfectly well in practice.

7 Inductive Datatypes

To make monotonicity checking useful in practice, we must support user-defined types,
which we have ignored so far. The most important way of introducing new types in
Isabelle/HOL is to declare an inductive datatype using the command

datatype ᾱ κ = C1 σ11 . . . σ1k1 | · · · | Cn σn1 . . . σnkn

Inductive datatypes are a derived concept in HOL [2]. However, our analysis benefits
from treating them specially as opposed to unfolding the underlying construction.

The datatype declaration introduces the type constructor κ, together with the term
constructors Ci of type σi1→F · · ·→Fσiki →F ᾱ κ. The type ᾱ κ may occur recursively
in the σij’s, but only in positive positions. For simplicity, we assume that any arrows
in the σij’s are annotated with F or S. (In the implementation, annotation variables are
used to infer the annotations.) The interpretation �ᾱ κ�S of the new type is given by the
corresponding free term algebra.

We must now extend the basic definitions of �, ≤, and TVs to this new construct.
For Def. 6.2, we add the following case:

Ci(a1, . . . ,aki)�τ̄ κ Ci(b1, . . . ,bki) iff ∀ j ∈ {1, . . . ,ki}. a j �σij[ᾱ $→τ̄] b j.

Similarly, Def. 6.3 is extended with

TVs(τ̄ κ) =
⋃

1≤i≤n
1≤ j≤ki

TVs(σij[ᾱ $→ τ̄])

104 J.C. Blanchette and A. Krauss

and Def. 6.8 with

σij[ᾱ $→ τ̄]≤ σij[ᾱ $→ τ̄′] for all 1≤ i≤ n, 1≤ j≤ ki

τ̄ κ≤ τ̄′ κ
.

To extend our soundness result, we must show that Lems. 6.1 to 6.4 still hold. The
proofs are straightforward and omitted from this paper. Constancy of the datatype con-
structors also follows directly from the above definitions.

8 Evaluation

What proportion of monotonic formulas are detected as such by our calculi? We applied
Nitpick’s implementations of MF and (a large fragment of) MFS on the user-supplied
theorems from six highly polymorphic Isabelle theories. In the spirit of counterexample
generation, we conjoined the negated theorems with the relevant axioms. The results
are given below.

FORMULAS SUCCESS RATE

THEORY MF MFS MF MFS

AVL2 18/24 22/24 75.0% 91.7%
Fun 49/87 71/87 56.3% 81.6%
Huffman 41/94 86/94 43.6% 91.5%
List 266/524 402/524 50.8% 76.7%
Map 94/97 97/97 96.9% 100.0%
Relation 59/144 94/144 41.0% 65.3%

The table indicates how many formulas were found to involve at least one monotonic
type variable using MF and MFS, respectively, over the total number of formulas in-
volving type variables in the six theories. Since the formulas are all negated theorems,
they are all semantically monotonic (no models exist for any scope).

An ideal way to assess the calculi would have been to try them on a representative
database including non-theorems, but we lack such a database. Nonetheless, our experi-
ence suggests that the calculi perform as well on non-theorems as on theorems, because
realistic non-theorems tend to use equality and quantifiers in essentially the same way
as theorems. Interestingly, non-theorems that are derived from theorems by omitting an
assumption or mistyping a variable name are even more likely to pass the monotonicity
check than the corresponding theorems.

Although the study of monotonicity is interesting in its own right and leads to an
elegant theory, our main motivation—speeding up model finders—is resolutely prag-
matic. For Nitpick, which uses a default upper bound of 8 on the cardinality of the
atomic types, we observed a speed increase factor of about 5 per inferred monotonic
type. Since each monotonic type reduces the number of scopes to consider by a factor
of 8, we could perhaps expect an 8-fold speed increase; however, the scopes that can be
omitted by exploiting monotonicity are smaller and faster to check than those that are
actually checked. The time spent performing the monotonicity analysis (i.e., generating
the annotation constraints and solving the resulting SAT problem) is negligible.

Monotonicity Inference for Higher-Order Formulas 105

9 Discussion

Fully covariant arrow. In Def. 6.3, both the positive and the negative type variables
in σ count as positive occurrences in σ→S τ. This raises the question of whether a
fully covariant behavior, with TVs(σ→S τ) = TVs(σ) ∪TVs(τ), can also be achieved,
possibly with a different definition of �σ→Sτ. Although such a behavior looks more
regular, it would make the calculus unsound, as the following counterexample shows.

Consider the formula t ≡ ∀F (α�o)�o f α�o g h. f ∈ F∧g ∈ F∧ f a �= g a−→ h ∈ F.
The formula is not monotonic w.r.t. α: Regardless of the value of the free variable a, it
is true for |α| = 1, since the assumptions imply that f �= g, and as there are only two
functions of type α→ o, h can only be one of them, so it must be in F. This argument
breaks down for larger scopes, so the formula is not monotonic. However, with a fully
covariant S-arrow, we could type F as F (α�Fo)�So and the rule ALL+ would apply,
since there is no positive occurrence of α in the types of F, f , g, and h.

Principal types. Similar to the simply-typed λ-calculus, our type system admits prin-
cipal types if we promote annotation variables to first-class citizens. When performing
type inference, we would then keep the constraints as part of the type, instead of com-
puting an arbitrary solution for the collected constraints. More precisely, a type schema
has the form ∀X. ∀α. σ 〈C〉, where σ is an annotated type containing annotation vari-
ables X and type variables α, and C is a list of constraints of the form given in Def. 6.10.
As an example, equality has the principal type schema ∀α. α→Fα→X o 〈α̃ /∈TV–(α)〉.
This approach nicely extends ML-style polymorphism.

Set comprehensions. An obvious weakness of our type system is that the rule LAM

always types λ-abstractions with F-arrows. The only way to construct terms whose
type contains S annotations is by building them from a set of primitives whose types
are justified semantically. This solution is far from optimal. To take just one example,
consider the term λx z. ∃y. R x y ∧ S y z, which composes two binary relations R and S.
Semantically, composition is constant for type (α→S β→S o)→F (β→S γ→S o)→F

α→S γ→S o, but our analysis cannot infer this. As a consequence, our analysis cannot
infer the monotonicity of any of the four type variables occurring in the associativity
law for composition, unless composition is added to the constant context Γc.

10 Conclusion

In model finders that work by enumerating scopes (domain cardinalities specifications),
the choice of the scopes and their order is critical to obtain good performance. Yet, little
work has been done on this problem beyond the discovery of small model theorems.

We presented a solution for HOL that prunes the search space by inferring mono-
tonicity with respect to atomic types. Monotonicity is in general undecidable, so we
approximate it with syntactic criteria. The main difficulty occurs in conjunction with
common set idioms, which we detect using a suitable type system. Our approach also
handles datatypes defined in terms of the atomic types. A direction for future research
would be to extend the type system to handle more syntactic idioms (e.g., set compre-
hensions and “almost full” sets such as U−{x}), thereby strengthening the analysis.

106 J.C. Blanchette and A. Krauss

Our measurements show that monotonic formulas are pervasive in HOL formaliza-
tions and that syntactic criteria can detect them more often than not. Our more powerful
calculus MFS has been implemented as part of Isabelle’s SAT-based counterexample
generator Nitpick, with dramatic speed gains. It will be interesting to see whether this
success can be repeated in the context of other model finders.

Acknowledgment. We would like to thank Lukas Bulwahn, Tobias Nipkow, Mark Sum-
merfield, and the anonymous reviewers for suggesting several textual improvements.

References

1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof, 2nd edn. Applied Logic, vol. 27. Springer, Heidelberg (2002)

2. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic
engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs
1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)

3. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In: Kaufmann, M., Paulson, L. (eds.) ITP-10. LNCS.
Springer, Heidelberg (to appear, 2010)

4. Claessen, K.: Private communication (2009)
5. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In:

MODEL (2003)
6. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press, Cambridge (1993)
7. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD

1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge

(2006)
9. Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In: FSE/ESEC

2001, pp. 62–73 (2001)
10. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Gall, H.C. (ed.)

ESEC/FSE 2005 (2005)
11. McCune, W.: A Davis–Putnam program and its application to finite first-order model search:

Quasigroup existence problems. Technical report, ANL (1994)
12. Momtahan, L.: Towards a small model theorem for data independent systems in Alloy.

ENTCS 128(6), 37–52 (2005)
13. Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A., Cerone, A.

(eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg (2006)
14. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
15. Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The small model property: How small can

it be? Inf. Comput. 178(1), 279–293 (2002)
16. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S.

(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)
17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.)

TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)
18. Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept.

of Informatics, T.U. München (2008)
19. Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Kaufmann, M. (ed.) IJCAI

95, vol. 1, pp. 298–303 (1995)

Sledgehammer: Judgement Day

Sascha Böhme� and Tobias Nipkow

Institut für Informatik, Technische Universität München

Abstract. Sledgehammer, a component of the interactive theorem pro-
ver Isabelle, finds proofs in higher-order logic by calling the automated
provers for first-order logic E, SPASS and Vampire. This paper is the
largest and most detailed empirical evaluation of such a link to date.
Our test data consists of 1240 proof goals arising in 7 diverse Isabelle
theories, thus representing typical Isabelle proof obligations. We measure
the effectiveness of Sledgehammer and many other parameters such as
run time and complexity of proofs. A facility for minimizing the number
of facts needed to prove a goal is presented and analyzed.

1 Introduction

Sledgehammer (SH) [4,5,7], developed by Paulson et al. at Cambridge, is a linkup
of the interactive theorem prover (ITP) Isabelle/HOL [6] (for higher-order logic)
and automated first-order provers (ATPs). The purpose of this paper is to eval-
uate SH in various dimensions, but in particular w.r.t. effectiveness: How much
benefit can the average Isabelle user expect from SH? What’s in it for Joe Proof?

In addition to evaluating effectiveness, this paper also presents data for de-
termining weaknesses of SH, improving SH and developing it further. Some of
our data have already influenced the SH setup.

Based on a large sample of typical Isabelle proofs, the following aspects of SH
are analyzed: success rates; complications when turning ATP proofs into Isabelle
proofs; run times; size and difficulty of proofs. We also describe and analyze a
new addition to SH for reducing the number of facts used in proofs.

We believe that our analysis is of interest to both the ATP and ITP com-
munity. Many of the issues faced by SH will be faced by any linkup with ATPs
where a) there is a non-trivial translation from some logic H into the language of
the ATPs and b) proofs delivered by the ATPs are translated back and checked
as proofs in H. Invariably, such back-and-forth translations introduce problems
and lead to lost proofs, one of the issues we investigate in detail.

For a management summary of our findings, please fast-forward to §8.
See http://www.in.tum.de/~nipkow/pubs/ijcar10.html for our test data

and log files. Many of these problems have been included into the TPTP library
(see http://www.tptp.org).

� Research supported by BMBF project Verisoft XT.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 107–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.in.tum.de/~nipkow/pubs/ijcar10.html
http://www.tptp.org

108 S. Böhme and T. Nipkow

1.1 Related Work

We do not give a comprehensive overview of combinations of interactive and
automatic theorem provers. Relevant related work is already discussed in pub-
lications by Paulson et al. The main focus of our paper is empirical evaluation.
Meng and Paulson present statistics in their reports on the development of SH,
too, but those were based on hand-picked problems primarily meant for tun-
ing the setup. This paper is an independent evaluation with a large set of test
data coming from a wider collection of theories (= modules for definitions and
proofs) in the Isabelle distribution, with no hand selection: all goals arising in
the Isabelle proofs are passed to the ATPs.

Another large scale empirical evaluation of automating ITP proofs with ATPs
is reported for the Mizar system by Urban [13].

On the empirical side, the CASC [11] has been setting standards for many
years now and we refer to it throughout the text. Apart from differences in what
data is analyzed, the main difference to CASC is attitude or perspective:

Although we look at success rates and other data of individual ATPs,
SH is not a competition among ATPs but between ATPs and Isabelle:
how much can ATPs do automatically where Isabelle requires nontrivial
human interaction?

2 Sledgehammer

When SH is activated by an Isabelle user to prove some goal G, it performs the
following steps:

1. Based on the syntactic form of G, a set S of relevant facts (axioms and
lemmas) is extracted from the background theory, that is, all the knowledge
available to the user at this point. S typically contains hundreds of facts.

2. S ∪ {¬G} is translated from HOL (with a Haskell-like type system) into
untyped first-order logic (FOL).

3. One or more ATPs are called.
4. If one of the ATPs returns a proof of G, i.e. a refutation of ¬G, SH extracts

the facts R ⊆ S used in the proof.

Strictly speaking, at this point SH is over, but we regard the next step as part
of SH: The user is given the option to call the internal ATP Metis (M) that will
try to prove G with the help of R. M was designed and implemented by Hurd [3]
and adapted for Isabelle by Paulson and Susanto [7]. M is written in SML and
produces actual Isabelle/HOL proofs, the whole point of the setup. This double-
checking is necessary because the translation from HOL to FOL is potentially
unsound (see §4.1). M is slow compared to the leading ATPs, but its performance
at CASC is respectable. Typically R contains only a few facts, in rare cases more
than 20. As a result, the final step in the SH process, calling M with R, succeeds
surprisingly often — more below. Successful M calls become part of the Isabelle

Sledgehammer: Judgement Day 109

proof text. We call the M step proof reconstruction because M has to search
for a proof once more, but w.r.t. a very focussed set of facts. Essentially, SH uses
the ATPs as very powerful relevance filters for M.

A recent enhancement of SH (implemented by Fabian Immler at TUM) is the
ability to call ATPs remotely via Sutcliffe’s SystemOnTPTP [12].

3 The Setup

Our test data are 7 theories from the Isabelle distribution and the Archive of
Formal Proofs (afp.sf.net) representative for a range of typical applications.
All theories were developed without the use of SH.

Arrow Arrow’s impossibility theorem 8% LS
NS Needham-Schroeder shared-key protocol 8% I
Hoare Completeness of Hoare logic with procedures 16% IL
Jinja Type soundness of a subset of Java 13% IL
SN SN of typed λ-calculus with de Bruijn indices 9% AI
FTA Fundamental Theorem of Algebra 34% A
FFT Fast Fourier Transform 12% A L

The leftmost column shows the names used below, the % column what percentage
of the overall 1240 problems/goals come from each theory, and the rightmost
column the logical nature of each theory: A means arithmetic; I means that the
theory is dominated by recursive functions defined by equations and inductive
relations defined by Horn clauses; L means that λs occur; S means sets.

Our data differs from that of Meng and Paulson in two respects: they consider
153 [4] and 285 [5] goals as opposed to our 1240, and their goals are hand-selected
for the purpose of tuning SH, where extremely easy or extremely hard problems
are unhelpful. In contrast, all goals arising in our 7 theories are part of our test
data, including those proved by induction, of which there are 72. Thus we claim
our data is representative for the average goals actually faced by Isabelle users.

We have run all experiments with the 3 ATPs SH currently supports, with
their default SH options: E [9] (version 1.0 in auto mode), SPASS [14] (version
3.5 with SOS enabled), and Vampire [8] (version 9.0 in CASC mode). SOS, set
of support, is a complete resolution strategy [16] but incomplete in the SPASS
context. We confirmed that SPASS with SOS worked best for us.

Below we abbreviate the provers as E, S and V.
We conducted our tests on Dual Core Intel Xeon processors running at 3.06

GHz. The ATPs were run with different timeouts, and “timeout” refers to ATPs
by default. In contrast, M’s timeout was fixed at 30s (for the tests — normally
M can run as long as the user likes). The reason for the 30s: During interactive
proof development, proof text does not evolve linearly one step after the next,
but whole regions are continuously modified (by the user) and rechecked (by the
machine). In our experience, 30s is at the limit of what users are prepared to
tolerate for rechecking (as opposed to finding) of a proof step.

afp.sf.net

110 S. Böhme and T. Nipkow

4 Success Rates

Below we present the success rates (in percent) both for the ATPs and for M
proof reconstruction runs — we refer to them as ATP-success and M-success.
Remember that M-success is what counts for the Isabelle user, because only those
proofs can be imported into Isabelle. We have run E, S and V on all 7 sample
theories, with ATP timeouts of 5, 10, 30, 60 and 120 seconds. In the following
table we show the data obtained for 5s and 120s. The rightmost column, labeled
with ∅, gives the average. The table contains for each prover, timeout and theory
combination two values, the ATP and M success rates in percent. Both success
rates are relative to the total number of problems (in each theory). Hence M-
success is never above ATP-success.

Arrow NS Hoare Jinja SN FTA FFT ∅
E 5 22 19 46 32 46 42 24 23 57 56 50 49 12 12 40 37
E 120 26 19 58 40 51 46 26 24 59 58 58 56 19 17 45 41
S 5 29 26 38 38 50 42 22 20 50 46 53 51 15 12 40 37
S 120 30 27 41 41 51 42 22 20 50 47 55 52 15 12 42 38
V 5 18 16 22 22 35 34 26 24 49 47 49 48 10 10 35 33
V 120 35 29 52 46 57 47 29 26 61 58 62 58 18 14 49 44
ESV 5 33 28 56 44 53 48 28 26 61 58 61 58 17 15 48 44
ESV 120 42 34 65 56 61 53 31 27 63 61 67 63 22 18 54 48

Percentages of problems solved

For example, E with a timeout of 120s can solve 26% of all goals in theory
Arrow, but after running M on the solved goals (with the facts identified by
the ATP), only 19% of all goals could actually be proved (because M failed to
reconstruct (26 − 19)/26 ≈ 27% of the E proofs). The two bottom rows of the
table represent the ATP ESV, which runs E, S and V in parallel, and each of
them is run until it finds a proof or reaches timeout.

For a subset of theories, the data is shown graphically for all timeouts in
Figures 1 to 4, where the two success rates are labeled by P and PM, where
P ∈ {E, S,V}. The M-success rate of ESV is shown as the grey area. Individual
ATP-success rates may lie above the grey area. Note that all graphs in this paper
use a logarithmic timeline.

The splendid news is that on average

Running each of the 3 provers for 5s yields the same M-success rate
(44%) as running the most effective one for 120s.

This result is crucial for interactive proofs, where every second counts. The gain
of 3 ATPs over 1 is impressive: the success rates rise between 4 and 13 percentage
points, depending on the timeout (5s or 120s) and the ATP we compare ESV
with. Having hard empirical evidence for the effectiveness of ESV has influenced
Isabelle’s SH setup: ESV is now the default setting. More precisely V is invoked
remotely (see §2) because a) V is not readily available (for example not on
MacOS) and b) it requires only a dual core machine and internet access to

Sledgehammer: Judgement Day 111

0%

10%

20%

30%

40%

50%

60%

70%

5 10 30 60 120

E S V

EM SM VM

Fig. 1. Theory NS

0%

10%

20%

30%

40%

50%

60%

70%

5 10 30 60 120

E S V

EM SM VM

Fig. 2. Theory FTA

0%

10%

20%

30%

40%

50%

60%

70%

5 10 30 60 120

E S V

EM SM VM

Fig. 3. Theory FFT

0%

10%

20%

30%

40%

50%

60%

70%

5 10 30 60 120

E S V

EM SM VM

Fig. 4. Average

112 S. Böhme and T. Nipkow

benefit from this setup without the provers stealing each others’ cycles — thanks
to Sutcliffe’s SystemOnTPTP.

The Figures 1 to 4 bring out the difference between the provers’ performance
profiles very well. S starts out (at 5s) above E and V but does not improve much,
whereas E and V keep on growing and overtake S at some point. The reason for
V’s behaviour is strategy scheduling: V runs multiple strategies in sequence until
one finds a proof. Thus V is able to utilize long timeouts more effectively. Neither
E nor S employ strategy scheduling. It is to E’s credit that its success rate keeps
growing almost as well as V’s.

Success rates are one thing, indispensabil-
ity is another. Indispensability of a prover
can be judged by the number of goals only
it can prove, its uniqueness number (an intu-
itive variant of Sutcliffe’s more refined SO-
TAC [11]). In the diagram to the right we
show the uniqueness numbers (cumulative
over all theories) of our ATPs with varying
timeout. Clearly, S is indispensable for users
with no patience, V is indispensable for users
with a lot of time, and nobody should be
without E.

0

20

40

60

5 10 30 60 120

E S V

Further important observations concerning success rates are:

– The difference between the ATP and M success rates increases for E and V
over time. This is not surprising because M’s timeout is fixed. The problem
is discussed in detail in the next subsection.

– In theory NS (Fig. 1), E tops all other provers, but EM is 10% below E. This
is an exception and turns out to be the result of a typing problem (see §4.1).

– The theory with the lowest success rate is FFT. We conjecture (this is dif-
ficult to ascertain) that the culprit is λ: there are many goals that contain
the summation operator

∑
which gives rise to a λ (internally). We looked

at the goals that were proved and only one contained a
∑

.
– Our average success rates are lower than Meng and Paulson’s [4]. We believe

that this is due to the fact that they hand-selected their goals whereas we
picked entire theories with very variable success rates.

Readers disappointed by the actual ATP success rates should keep in mind that
although all Isabelle goals are provable, not all ATP problems are: 72 problems
require induction, and an unknown and hard to determine number is unprovable
because the extraction of relevant facts from the Isabelle theory (step 1 of SH)
does not guarantee to preserve provability.

We have also run the ATPs for 240s and observed the success rates: E/S/V
prove an additional 9/0/10 goals, M proves an additional 5/0/5 goals — the
success rates increase by a mere 0.4/0/0.4 percent. Hence we stopped at 120s.

We will now examine the problem that M may fail to reconstruct ATP proofs.

Sledgehammer: Judgement Day 113

4.1 M May Fail

On average, the difference between ATP and M success rates is at most 5% (at
120s). This means that at 120s ATP timeout, M fails to reconstruct around 10%
of all ATP proofs. The situation is extreme in theory NS, where M fails on 30%
of the proofs found by E. There are three reasons why M may fail to reconstruct
a proof:

1. The default translation of HOL problems to ATP input is unsound [4]. The
reason is that HOL has a Haskell-like type system, which needs to be encoded
into unsorted FOL, and by default SH economizes on the amount of type
information that is passed to the ATPs for the sake of performance. In some
cases this allows the ATPs to find proofs that are no longer sound when
translated back to HOL. We call those type-unsound below.

2. M is internally a two stage process: the first stage is an ATP that produces
proof objects, the second stage translates these proof objects into Isabelle
proofs. The first stage is called with the same reduced type information
passed to the external ATPs and may also find type-unsound proofs. In such
cases the translation to Isabelle proofs throws a type exception.

3. M may time out.

It is hard to distinguish these 3 reasons. For example, if M throws a type excep-
tion, the proof found by the external ATP may be type-unsound, and M merely
followed suit, or the external ATP may have found a perfectly good proof, but
M’s first stage found a type-unsound one.

For a timeout of 120s we examined the failed M calls individually and classified
them according to the above three-fold distinction. The classification cannot
be automatic, as we just explained. We used methods introduced below (e.g.
adding full type information) but in some cases it remains approximate. Hence
the figures below should be taken with a grain of salt. On average, 66% of failed
M calls are genuine M timeouts, 21% are caused by type-unsound ATP proofs
and 13% are type-unsound M proofs. But the individual provers differ notably
in their profile of failed M calls:

120 Total # of M failures M timeout ATP type-unsound M type-unsound
E 47 34% 51% 15%
S 42 79% 9% 12%
V 56 84% 5% 11%

This confirms V’s ability to find difficult proofs, given enough time. And E ap-
pears to be the expert at exploiting (type-)unsound axiomatizations.

Of course it is not surprising that M cannot compete with highly optimized
ATPs, the CASC already told us that. Hence the SH architecture is often viewed
with suspicion by ATP researchers. In fact, we consider M in the SH context
surprisingly effective. Of course, we would like to reconstruct all sound ATP
proofs. There are two ways to improve the situation:

– Give M more time. Experimentally we doubled M timeout from 30s (see §3)
to 60s. This reduced the number of M timeouts by 20%, but 60s is the limit
of what is acceptable in an interactive system.

114 S. Böhme and T. Nipkow

– Replay the proof found by the ATP rather than reconstruct it. Paulson [7]
presents an extension of SH with a translation scheme from resolution proofs
found by an ATP (and output in TSTP format [10]) into Isabelle proof
scripts that replay the resolution proof step by step. At the time where that
paper was written only E produced TSTP proofs, and the resulting Isabelle
proof scripts were a bit brittle, i.e. they would sometimes fail because of
technical problems. Last but not least, it is very unattractive to have long
resolution proofs in the middle of nicely structured and readable proofs that
are customary in Isabelle [15]. For these reasons the default setup for SH
is to call M, and translation of TSTP proofs is currently not used at all,
although it is clearly the way to go — but see the Conclusions.

When running ESV, M failures are greatly reduced: there are 121 problems where
M fails to reconstruct at least one of the ATP proofs, but for 46 of them M
succeeds to reconstruct a proof found by a different ATP.

We will now consider how type-unsound ATP and M proofs can be avoided.

4.2 The Fully-Typed Translation

0%

10%

20%

30%

40%

50%

5 10 30 60 120

E S V

EM SM VM

To avoid type-unsound ATP proofs, SH
also offers a fully-typed translation from
HOL to FOL (FT below). The figure to the
right shows the resulting average success
rates. Compared with Fig. 4, we observe a
decrease of the success rate of around 10%
by going to FT. Meng and Paulson [4] mea-
sured 10–20%, but even 10% is not accept-
able. Hence FT remains only an option. It
can be useful in case an ATP appears to
have found a type-unsound proof. Switch-
ing to FT can sometimes allow the ATP to
find a valid proof. In most cases, however,
the ATP will time out instead, which leaves
one none the wiser. The purpose of FT, to
avoid M failures, is largely fulfilled: the M-success rates are barely below those
for the ATPs. They are not identical, because M may still genuinely time out
(or find type-unsound proofs, see §4.3). With increasing ATP timeout, the gap
between V and VM is widening because V starts to outperform M again (whose
timeout is fixed, see §3).

4.3 Metis with Full Types

M is run by default with the same reduced type information as the ATPs. Thus M
also finds type-unsound proofs, which are rejected by Isabelle. Therefore Paulson
recently added a version of M with full type information, MFT below. MFT cannot
replace M just like the fully-typed ATP translation cannot replace the default

Sledgehammer: Judgement Day 115

one, because of performance reasons. Instead we have evaluated how often MFT

would reconstruct a proof where M failed. That is, how much benefit we can
expect from MFT in addition to M. All figures below were obtained for 120s ATP
timeout and refer to all failures over all theories and provers. The figures for M
are given in §4.1 above.

Of the 18 valid ATP proofs where M runs into typing problems, only 6 can
be reconstructed by MFT. In most of the other cases MFT times out (because the
type information overwhelms it), but in a few cases MFT itself runs into typing
problems (a somewhat unfortunate situation). Interestingly, MFT also manages
to reconstruct 5 (of 96) proofs where M had timed out. Taken together, MFT

succeeds on 9% of the M failures. These figures are cumulative over all 3 ATPs.
When running ESV, type unsoundness of M almost ceases to be an issue: only

two such failed proofs remain. MFT fails on both of them, too.

5 Time

SH performs the following steps: extracting and translating relevant facts, run-
ning the ATPs, and running M. Extraction and translation take 3.2s on average.

Below we show the run times for successful ATP runs in seconds. We exclude
the failed runs because they generally end in timeout, thus distorting the statis-
tics. The table on the left is restricted to 30s, 60s and 120s. The average over all
theories is shown graphically on the right.

Arrow NS Hoare Jinja SN FTA FFT
E 30 3.6 2.1 1.0 1.0 0.7 1.9 3.7
E 60 5.0 2.5 1.0 1.0 1.4 3.0 5.0
E 120 5.2 15.3 8.4 1.0 2.4 4.8 10.0
S 30 0.4 0.9 0.4 0.1 0.3 0.6 0.6
S 60 0.4 1.9 0.9 0.1 0.3 1.0 0.6
S 120 0.4 3.9 1.9 2.5 0.3 0.9 0.6
V 30 6.9 5.8 5.7 1.9 2.4 2.9 7.0
V 60 7.8 15.7 7.0 1.9 2.4 3.8 10.0
V 120 18.3 35.0 10.5 2.0 2.5 6.5 20.5

0s

2s

4s

6s

8s

10s

5 10 30 60 120

E S V

– We can see once again the effect of V’s strategy scheduling. S is the most
economical with its time.

– E and V agree on what are hard theories and what are easy ones.

For a theoretical analysis of T (t), the total time for successful ATP runs with
timeout t, observe in Fig. 4 that the average success rate is roughly linear w.r.t.
a logarithmic t. This means that when the timeout increases from t to 2t, a fixed
number k of new goals are proved, on average in time 1.5t: T (2t) = T (t)+1.5kt.
The master theorem for recurrence relations tells us that T (t) is linear; the
solution is T (t) = 1.5kt + c0, for some c0. Since the t axis is logarithmic, the

116 S. Böhme and T. Nipkow

expected graph for T (t) would be an exponential function. Our data supports
this merely vaguely.

We have also measured the average time spent by the ATPs on failed proof
attempts. Since E and V try so hard, this figure is close to timeout. In some
of the theories, S departs from this pattern and its average failure time is 30%
below timeout. This could be induced by SOS’s incompleteness (see §3).

The average run times for successful runs of M turn out to be moderate, that
is, below 1 second, even at 120s ATP timeout:

120 Arrow NS Hoare Jinja SN FTA FFT ∅
E 0.0 0.5 0.3 0.5 0.0 0.0 0.2 0.2
S 0.3 0.1 0.2 0.6 0.0 0.1 0.5 0.2
V 0.3 0.1 0.4 0.3 0.0 0.1 0.1 0.2

This is perfectly acceptable for interactive use.

6 Proof Complexity

How difficult are the proofs found by the ATPs? We will look at it both from
the ATP’s and the user’s point of view. From the ATP’s point of view, the time
taken to find a proof is one measure already covered. Another one is the number
of facts used in the proof (i.e. the cardinality of R, see §2). This is a very crude
measure as one can easily have long and difficult to find proofs with only a few
facts. But we will observe a strong correlation between fact and time complexity.
Below we show the average number of facts for the ATP timeouts of 5s and 120s.

For each prover and theory we show a pair i j where i is the average number of
facts returned from ATP proofs and j the average number of facts in (successful!)
M proofs. We have i ≥ j in most cases because M tends to fail on proofs involving
many rather than a few facts. All figures are rounded.

5 Arrow NS Hoare Jinja SN FTA FFT ∅σ
E 3 2 6 5 2 2 3 2 2 2 3 3 5 5 3 3 3
S 2 2 3 3 2 2 2 1 1 1 2 2 6 7 2 2 3
V 2 3 3 3 2 2 2 2 2 2 3 3 5 5 3 3 3

120 Arrow NS Hoare Jinja SN FTA FFT ∅σ
E 9 2 6 5 3 2 3 2 2 2 4 4 6 5 4 3 4
S 2 2 3 3 3 2 2 1 1 1 3 2 6 7 3 2 3
V 3 3 6 5 4 3 3 2 2 2 4 4 7 6 4 3 4

The rightmost column contains triples i j s where i and j are the averages and
s is the standard deviation of the j’s. We observe the following:

– The average number of facts in M proofs is the same at 5s and 120s, namely
2–3. The standard deviation σ of 3–4, however, indicates that there is quite
a bit of variation.

– Raising the timeout from 5s to 120s, the average number of facts in ATP
proofs rises from 2–3 to 3–4, just 1 above the fact complexity of M proofs.
This confirms the expectation that M failures lose the more difficult proofs,
which are of course the ones users would most like to see automated.

Sledgehammer: Judgement Day 117

– There is a strong correlation between the average fact complexity and run
times of ATP proofs: proofs in theories SN and Jinja are particularly short
and fast, in theories FFT and NS proofs are particularly long and slow.

Just like success rates, when the timeout is increased from 5s to 120s, fact com-
plexity of proofs increases only slowly. However, the high standard deviation tells
another story, which is confirmed when we look at the maximum fact complexity.
In the table below, pairs i j are the maximum fact complexities of all ATP and
all M proofs in a given theory, and max is the maximum of the maxima.

5 Arrow NS Hoare Jinja SN FTA FFT max
E 7 7 15 13 12 8 10 5 6 6 15 15 12 12 15 15
S 5 5 6 6 11 10 10 6 8 3 25 25 21 21 25 25
V 7 7 8 8 9 9 7 7 8 8 23 23 10 10 23 23

120 Arrow NS Hoare Jinja SN FTA FFT max
E 47 7 15 15 18 14 10 5 7 7 33 33 37 12 47 33
S 5 5 7 7 24 10 10 6 8 5 28 25 21 21 28 25
V 10 7 22 15 52 35 8 7 8 8 44 44 21 18 52 44

From the max column we can tell that at 5s, M keeps up with the ATPs, but
that at 120s, E and V outperform M significantly. The rest of the table merely
illustrates the considerable variation depending on theories and provers.

We now look at proof complexity from a user perspective. For a user, a proof
is trivial if it consists of the invocation of one of the proof methods simp, auto,
arith or blast. They are the standard proof tools familiar to all Isabelle users.
Their functionality is irrelevant here. The point is that automating such proofs
is of little help to Isabelle users, because they are already automatic. Or at least
almost so, because the form of the goal will almost always narrow the choice down
to one or two of the methods. Note that we no longer consider simp and friends
trivial if they need to be augmented somehow, e.g. by supplying additional facts,
because in that case the user had to figure out what those facts are. It turns out
that the percentage of trivial proofs among those found by the ATPs does not
vary much with timeout and is around 64% at 30s timeout. In contrast, only
53% of all proofs in the considered theories are trivial. Clearly, ATPs have a
predilection for trivial goals, i.e. goals with a trivial proof. A priori, this is not
at all evident because triviality is in the eye of the beholder! For example, simp
can generate long chains of conditional rewrites and arith complicated proofs
in linear arithmetic. But this means that the success rates we measured so far
are skewed. What the user really wants to know is this:

How many non-trivial goals can the ATPs prove for me?

Let G be the set of goals, T ⊆ G the trivial ones (for Isabelle) and A ⊆ G the
automatically provable ones (by an ATP). Let t = |T |/|G|, ta = |A∩ T |/|A| and
s = |A|/|G| (the success rate). Then the non-trivial success rate |A−T |/|G−T |
turns out to be s(1− ta)/(1− t) by a simple calculation. In our setting t = 0.53
and ta = 0.64 on average (see the two tables above). Thus we need to adjust the
success rate by 0.77 to obtain the non-trivial success rate. Since s is around 45%

118 S. Böhme and T. Nipkow

(M-success, see Fig. 4), it means that in fact only around 34% of all non-trivial
goals are proved by SH.

Finally, we focus on the textually most complex Isabelle proofs, the compound
ones. Those are subproofs consisting of a begin–end (proof–qed in Isabelle par-
lance) block. They are the last resort for most users, if everything else fails.
There are 49 compound proofs in our theories (excluding inductions), of which
E/S/V solved 8/8/3 with 5s and 9/8/9 with 120s timeout, roughly 17%, which
is not bad.

7 Minimization

A set of facts returned by an ATP as a proof of some goal is redundant iff
some proper subset of the facts proves the goal. Many proofs found by ATPs
are redundant, for two very different reasons: certain facts are genuinely useless
and can lead to unnecessary detours (if used), but other facts enable shortcuts
and their removal forces a detour. Since genuinely useless facts can lead to M
timeouts, we have investigated minimization, the process of reducing a given
set of facts to an irredundant subset that still proves the goal. This is a new
extension of SH that we developed at TUM. The implementation is due to
Philipp Meyer.

7.1 Minimization Algorithms

The obvious linear algorithm removes one fact after another from the initial set,
calls the ATP with the reduced fact set, and puts the fact back if that proof fails
now. This requires as many calls of the ATP as there are facts in the initial set.1

But there is also a clever algorithm based on bisecting the set [1, §4.3]. It can
take as little as log2 n calls of the ATP (if only 1 fact is needed) and as much
as 2n (if all are needed). The beauty and lure of the binary algorithm was such
that we implemented it right away. It was only after using it for some time that
we suspected that it performed worse than the linear one on our data. After
measuring the number of iterations of the binary algorithm, it turned out we
were right: on average it required 1.15 times as many iterations as the linear one.
This agrees with a simulation by Jasmin Blanchette of the binary algorithm on
random data with the same redundancy rate as our data (about 1/3, see §7.2).
Of course we switched to the linear algorithm as a result. The simulation predicts
superiority of the binary algorithm above 40% redundancy.

7.2 Benefits

The following table shows how many additional goals could be proved due to
minimization: each entry is the difference between the number of M failures
before and after minimization. Negative numbers indicate a loss of proofs.
1 Since the initial set is quite small (see §6), a default ATP timeout of 5s during

minimization suffices most of the time and leads to very acceptable run times, in
particular because minimization only needs to be performed once.

Sledgehammer: Judgement Day 119

120 Arrow NS Hoare Jinja SN FTA FFT
∑

E 3 1 4 1 0 −2 0 7
S 2 0 6 1 0 1 2 12
V 5 2 4 1 0 −3 1 10

Most of the time we gain proofs, but in FTA we lose a few. Losses are of no
consequence: minimization is optional, and if M succeeds on the original set of
facts but fails on the minimized set, the user would simply stick with the original
set and no harm is done. Hence the negative numbers should be disregarded. In
a nutshell: 9–13 (out of about 50, see the table in §4.1) M failures can be avoided
by minimization. In FTA the net effect is negative because FTA is very algebraic:
there is a large redundant set of facts that often allow short proofs; the removal
of some such derived shortcut may just push M over the edge.

How redundant are proofs found by the ATPs? How much does minimization
reduce the set of facts used? Depending on the theory, 10–50% of the facts can
be dropped (30% on average). This does not vary much with ATP timeout, but
increases for large proofs. For example, the record 52-fact proof found by V in
Hoare (see §6) collapses to 3 facts after minimization.

What is the impact of minimization on M run times? We have measured by
how much the run time changes on average, i.e. the average of all ai/bi where
ai (bi) is the time M takes after (before) minimization of proof i, provided both
runs succeed. However, run times for the same call of M easily fluctuate by 10ms.
In particular, if ai or bi is below 10ms, ai/bi becomes somewhat random. Hence
we have replaced ai/bi by 1 if ai − bi ≤ 10ms. The following table contains the
averages of all ai/bi in each theory and the weighted average of the averages:

120 Arrow NS Hoare Jinja SN FTA FFT ∅
E 0.9 0.9 1.2 1.0 1.0 0.9 0.7 1.0
S 1.1 1.0 0.9 1.0 1.0 0.9 1.0 1.0
V 0.8 0.7 0.9 1.0 1.0 1.0 0.8 0.9

Minimization can cut both ways but has only a small effect on average.
Finally we look at the impact of minimization on MFT (see §4.3). It turns out

that because proofs are often simplified by minimization, M fails less often and
MFT is less in demand. If MFT is called where M failed (with minimized sets of
facts), a mere additional 4 proofs over all theories and provers is obtained. This
is down from 11 additional proofs without minimization (§4.3)

8 Conclusions

With respect to our realistic test data we have established the following:

– Success rates for Sledgehammer are around 45% but vary enormously from
theory to theory (from below 20% up to 60%).

– The more meaningful rate of how many non-trivial goals (by Isabelle stan-
dards) are solved by the ATPs is around 34%. ATPs can help ITPs!

120 S. Böhme and T. Nipkow

– Running all 3 ATPs together for 5s yields the same success rate (44%) as
running the most effective one for 120s. Therefore Sledgehammer now calls
all 3 ATPs concurrently.

– SPASS is indispensable for short timeouts, Vampire for long ones, and E in
any situation, according to the number of goals proved only by that ATP.

– CASC results for the FOF and CNF divisions (Vampire just ahead of E) cor-
rectly predict ATP success on Isabelle theories, although CASC test data is
not dominated by Isabelle problems: at CASC-22, none of the FOF problems
and 59 of the 200 CNF problems came from Isabelle theories.

– Proof reconstruction in Isabelle using Metis works well most of the time but
loses up to 10% of sound ATP proofs, mainly because Metis times out.

– Minimization of ATP proofs reduces the required number of facts by 1/3
(and in an extreme case from 52 down to 3 facts), thus helping 20% of the
failed Metis proofs to succeed. Our measurements showed that the naive
algorithm was faster than the clever binary one we had implemented first.

For these reasons we plan the following future work items:

– In order to avoid loosing up to 10% of ATP proofs because Metis fails, we
intend to reactivate proof replay [7] while ironing out the implementation
and presentation problems. We aim at producing truly readable (natural
deduction) proofs along the lines of Huang [2].

– We plan an “auto Sledgehammer” mode for Isabelle were each goal is auto-
matically passed to all 3 ATPs with a low timeout like 5s. The low timeout
avoids the current effect of users going into sleep mode and waiting for the
default 60s timeout of all ATPs before they reactivate their brain.

– Our test harness will also be used for further tuning of Sledgehammer (the
default filter parameters determined by Meng and Paulson [4]) and Metis
(whose parameters have never been tuned for Isabelle). It will also help
in continuous performance monitoring by gathering key figures like success
rates in our daily regression tests.

Acknowledgement. Mike Gordon and Larry Paulson generously hosted a visit
by Tobias Nipkow to the Cambridge Computer Lab where much of this research
was conducted. Geoff Sutcliffe answered numerous questions. Jasmin Blanchette,
Alex Krauss and Geoff Sutcliffe helped to improve the paper considerably.

References

1. Bradley, A., Manna, Z.: Property-directed incremental invariant generation. Formal
Asp. Comput. 20, 379–405 (2008)

2. Huang, X.: Reconstructing proofs at the assertion level. In: Bundy, A. (ed.) CADE
1994. LNCS, vol. 814, pp. 738–752. Springer, Heidelberg (1994)

3. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer,
M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in
Higher Order Logics. Number NASA/CP-2003-212448 in NASA Technical Reports,
pp. 56–68 (2003)

Sledgehammer: Judgement Day 121

4. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Automated Reasoning 40, 35–60 (2008)

5. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Applied Logic 7, 41–57 (2009)

6. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002), http://www.in.tum.de/~nipkow/LNCS2283/

7. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive the-
orem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732,
pp. 232–245. Springer, Heidelberg (2007)

8. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15, 91–110 (2002)

9. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
10. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Automated

Theorem Proving Tools. In: Sorge, V., Zhang, W. (eds.) Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems, pp. 201–215. IOS Press,
Amsterdam (2004)

11. Sutcliffe, G.: The 4th IJCAR Automated Theorem Proving System Competition
— CASC-J4. AI Commun. 22, 59–72 (2009)

12. Sutcliffe, G.: SystemOnTPTP. In: McAllester, D. (ed.) CADE 2000. LNCS,
vol. 1831, pp. 406–410. Springer, Heidelberg (2000)

13. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Auto-
mated Reasoning 37(1-2), 21–43 (2006)

14. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
Spass version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145.
Springer, Heidelberg (2009)

15. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof
documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Thery, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

16. Wos, L., Robinson, G., Carson, D.: Efficiency and completeness of the set of support
strategy in theorem proving. J. ACM 12, 536–541 (1965)

http://www.in.tum.de/~nipkow/LNCS2283/

Logic between Expressivity and Complexity

Johan van Benthem

Institute for Logic, Language and Computation
University of Amsterdam

http://staff.science.uva.nl/~johan

Abstract. Automated deduction is not just application or implementa-
tion of logical systems. The field of computational logic also poses deep
challenges to our understanding of logic itself. I will discuss some key is-
sues. This text is just an appetizer that will be elaborated in the lecture.

1 Logic and the Balance of Expressive Power and
Computational Complexity

Defining and proving/computing are the main faces of logic. But they require
a balance. Historically, first-order logic arose from type theory by giving up
expressive power in order to gain axiomatizability (and better semantic transfer
properties between models). The same move occurred a bit later in going from
first-order logic to modal languages: one gives up yet more expressive power, but
now one gains decidability (as well as discovering a new nice structural invariance
for the modal language: viz. bisimulation).

2 Upward from Modal to Guarded Fragments

What makes the modal move to weaker languages tick? Did we go too fast?
Essentially, standard modal operators are local guarded quantifiers of the special
first-order form

∃y(G(x, y) & ϕ(x, y)),

where G is an atomic guard predicate, and the x, y are finite tuples of variables.
Restricting quantifiers to only these forms defines the Guarded Fragment (GF).

Theorem 1. GF is decidable, with an effective finite model property.

Up to logical equivalence, GF is also the set of first-order formulas that are
invariant for guarded bisimulation, a structural invariance that lies in between
bisimulation and (potential) isomorphism.

But the border with complex behaviour lies still a bit higher up inside first-
order logic. Decidability continues to hold for the ‘Loosely Guarded Fragment’
that allows conjunctions of guard atoms &G:

∃y(&G(x, y) & ϕ(x, y)),

where any two variables in x, y occur under at least one atom in &G.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 122–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://staff.science.uva.nl/~johan

Logic between Expressivity and Complexity 123

Beyond this lie the ‘cliffs of complexity’: quantifiers expressing well-known
confluence (grid) properties are not loosely guarded, think of

∀yz((R(x, y) & R(x, z))→ ∃u(R(y, u) & R(z, u))).

These can encode Tiling Problems, and so their logic becomes undecidable.

Infinitary Second-order Fixed-point logics highly complex, non-RE
.

FOL RE, undecidable
GF decidable, NEXPtime
ML decidable, Pspace

Aside (restricting a language versus re-interpretation): modal and related
moves in logic have two faces. We either restrict to fragments, or we interpret
all of FOL in some suitable generalized semantics, where not all assignments of
objects to variables are available, encoding ‘dependencies’ in the model.

3 Aside: Downward to ‘Poor Man’s Logics’

Modal logics tend to be Pspace-complete. But this is not rock bottom yet. Going
down even further to feasible logics with (N)Ptime satisfiability problems often
takes non-Boolean languages.

Open Problem. Find a principled logical analysis for this move.

4 Model Theory in the Small: Lindström Theory

Our style of analysis multiplies logics. So, how can we understand the landscape
of possible logical systems in greater generality?

Theorem 2 (Lindström). FOL is inclusion-maximal with respect to the Com-
pactness and Löwenheim-Skolem properties. For the latter one can also choose:
the Karp Property (invariance of all sentences for potential isomorphisms), the
RE property (axiomatizability of the valid sentences).

Traditionally, foundational attention has only been paid to extensions of first-
order logic (second-order, infinitary logics). Many characterizations exist, mostly
via model-theoretic properties. But what happens if we look down in the land-
scape below FOL, on the idea that ‘Small is Beautiful’?

Proof methods in Lindström theory require explicit encoding for back-and-
forth properties of partial isomorphisms that capture first-order expressive power.
But these are typically non-guarded grid properties. Still, new methods have
been developed that work for small languages:

Theorem 3. ML is maximal with respect to the properties of Compactness and
Invariance for Bisimulation.

124 J. van Benthem

Surprisingly, this yields a classical result in the theory of process logics:

Corollary 1. A first-order formula is definable by a modal formula iff it is
invariant for bisimulation.

Now we can start a general abstract model theory of fragments, with new sorts of
result. E.g., FOL is the largest extension of the 3-variable fragment L3 with the
Compactness and Löwenheim-Skolem properties. (The crux is that 3 variables
suffice for the encoding needed in a standard Lindström proof.)

Open Problem. Find a Lindström Theorem for GF.

For a related open problem for modal logic with a universal modality, there is a
partial solution by Otto & Piro, but no best result yet [2].

5 Challenge 1: Fixed Point Logics

Logics with fixed-point operators have proved resistant to model-theoretic anal-
ysis ever sine the 1970s. (So far, the only things known about LFP(FO) are
Karp and strong Löwenheim-Skolem properties.) And yet they are very natural
as general logics of induction and recursion.

But modal lightweight logics can carry non-first-order fixed-point structure.
Famously, the modal μ-calculus is decidable. And so is the guarded fixed-point
logic LFP(GF). These logics present a challenge in terms of characterization,
since they even improve on standard logics in having uniform interpolation,
effective proofs of preservation theorems, etc.

Open Problem. Find a Lindström-type analysis for fixed-point logics (whether
first-order or modal).

Perhaps, we have hit a boundary here of the usual model-theoretic stance in
logic. We might essentially need further computational properties such as the
Effective Finite Model Property, or even more explicitly procedural properties
of logics, say, from Automata Theory.

This fits with a general issue in understanding logical systems today. Should
we think of them as consisting essentially of definition plus procedure? This fits
with the current trend to logic games that cast basic logical notions (truth,
consistency, proof) in terms of interactive procedures. But we have no abstract
game theory yet to back this up.

6 Challenge 2: Logic Combinations

As we go down in the landscape, logics get simpler. But in applications to agent
theory (and cognitive science) we need to put the simple pieces back together
again. Then logic combinations become ubiquitous. Can we do this while keep-
ing trees and avoiding grids? Warning example: the mode of combination may
crucially affect the outcome:

Logic between Expressivity and Complexity 125

Theorem 4. Putting together simple modal logics of time/action and knowl-
edge for agents with Perfect Memory gives commuting diagrams, and hence the
Recurrent Tiling Problem can be encoded, making the logic Π1

1 -complete.

Similar surprises may be in store in the upcoming logical study of games:

Open Problem. What is the complexity for modal logics of action and prefer-
ence in games for players that satisfy the usual assumption of Rationality?

Issue for reflection: What do these results mean? How bad is high complexity
for a logic describing agents? Better focus on complexity of agent tasks?

7 Aside: Let the Structure Help

There is another traditional source of low complexity in logics: through wealth
rather than poverty. Rich structures can also create decidability, even for dan-
gerous languages with grid patterns:

Theorem 5. Tarski’s elementary geometry is decidable.

The reason is that Euclidean space allows for ‘elimination of quantifiers’ in ar-
bitrary first-order sentences. It is not so clear, however, whether this line is very
helpful to us in computational logic.

8 Discussion: Practical Perspectives on Expressiveness
and Complexity

Finally, if time permits, we will discuss a few outrageously general perspectives
on the above issues. Philosophy: low complexity may not be needed, since a key
aspect of rationality is a talent for exercising ‘judgment’ in using a potentially
dangerous tool. Cognitive science: we operate in a complex world by learning
where our best talents lie, and then selecting the right inputs. In line with these
ideas, there are now new richer views of a reasoning system as merging two
crucial abilities: logical inference plus memory search for pattern recognition,
combining logic with probabilistic features.

Open Problem. Develop a general model theory for combined logics with
probabilistic components.

Interestingly, in this area, the probabilistic Zero-One laws for first-order logic
were discovered around the same time as Lindström’s Theorem, but no similar
theory has emerged yet.

But in this setting, we may also want to rethink our traditional view of ‘logic
and cognition’. Computational logic designs new forms of behaviour that get
inserted into existing cognitive practice (just as mathematics has done in his-
tory). The new challenge may be understanding this insertion and its ’hybrids’
of natural and designed behaviour.

126 J. van Benthem

Finally, even without resolving all this in depth, there is the practical world
of teaching: introducing automated logic and a sense of the above considerations
into general logic teaching seems rewarding (see the Opencourse project http://
staff.science.uva.nl/~jaspars/OpenCourse/)

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal logics and bounded fragments of
predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)

2. Otto, M., Piro, R.: A Lindström characterisation of the guarded fragment and of
modal logic with a global modality. In: Areces, C., Goldblatt, R. (eds.) Advances in
Modal Logic 7, papers from the seventh conference on ‘Advances in Modal Logic,’
Nancy, France, pp. 273–287. College Publications (2008)

3. ten Cate, B., van Benthem, J., Väänänen, J.A.: Lindström theorems for fragments
of first-order logic. In: LICS, pp. 280–292 (2007)

4. van Benthem, J.: Exploring Logical Dynamics. Center for the Study of Language
and Information, Stanford, CA, USA (1997)

5. van Benthem, J.: Guards, bounds, and generalized semantics. Journal of Logic,
Language and Information 14(3), 263–279 (2005)

6. van Benthem, J.: Minimal predicates, fixed-points, and definability. Journal of Sym-
bolic Logic 70(3), 696–712 (2005)

7. van Benthem, J.: A new modal Lindström theorem. Logica Universalis 1(1), 125–138
(2007)

8. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge Uni-
versity Press, Cambridge (2010)

9. van Benthem, J.: Modal Logics for Open Minds. Center for the Study of Language
and Information, Stanford, CA, USA (2010)

http://staff.science.uva.nl/~jaspars/OpenCourse/
http://staff.science.uva.nl/~jaspars/OpenCourse/

Multi-Prover Verification of Floating-Point Programs�

Ali Ayad1,3 and Claude Marché2,3

1 CEA LIST, Software Safety Laboratory, F-91191 Gif-sur-Yvette
2 INRIA Saclay - Île-de-France, F-91893 Orsay
3 LRI, Univ. Paris-Sud, CNRS, F-91405 Orsay

Abstract. In the context of deductive program verification, supporting floating-
point computations is tricky. We propose an expressive language to formally spec-
ify behavioral properties of such programs. We give a first-order axiomatization
of floating-point operations which allows to reduce verification to checking the
validity of logic formulas, in a suitable form for a large class of provers includ-
ing SMT solvers and interactive proof assistants. Experiments using the Frama-C
platform for static analysis of C code are presented.

1 Introduction

Floating-point (FP for short) computations appear frequently in critical applications
where a high level of confidence is sought: aeronautics, space flight, energy (nuclear
plants), automotive, etc. There are numerous approaches for checking that a program
runs as expected: testing, assertion checking at runtime, model checking, abstract in-
terpretation, etc. Deductive verification techniques, originating from the landmark ap-
proach of Floyd-Hoare logic, amounts to generating automatically logic formulas called
verification conditions (VCs for short), using techniques such as Dijkstra’s weakest pre-
condition calculus, so that validity of VCs entails soundness of the code with respect
to its specification. The generated VCs are checked valid by theorem provers, hope-
fully automatic ones. Complex behavioral properties of programs can be verified by
deductive verification techniques, since these techniques usually come with expressive
specification languages to specify the requirements. Nowadays, several implementa-
tions of deductive verification approaches exist for standard programming languages,
e.g., ESC-Java2 [12] and KeY [6] for Java, Spec# [3] for C#, VCC [29] and Frama-
C [18] for C. In each of them, contracts (made of preconditions, postconditions, and
several other kinds of annotations) are inserted into the program source text with spe-
cific syntax, usually in a special form of comments that are ignored by compilers. The
resulting annotation languages are called Behavioral Interface Specification Languages
(BISL), e.g., JML [10] for Java, ACSL [5] for C.

To analyse accurary of FP computations, abstract interpretation-based techniques
have shown quite successful on critical software. However, there are very few attempts

� This work was supported by the French national projects: CerPan (Certification of numerical
programs, ANR-05-BLAN-0281-04), Hisseo (Static and dynamic analysis of floating-point
programs, Digiteo 09/2008-08/2011), and U3CAT (Unification of Critical C Code Analysis
Techniques, ANR-09-ARPEGE).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 127–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

128 A. Ayad and C. Marché

axiomatic model
of FP arithmetics
(Section 4.1)

Realization
in Coq
(Section 4.2)

FP operations,
defensive model
(Section 4.3)

FP operations,
full model
(Section 4.4)

Annotated
C program

C front-end
(Frama-C)

VC generator
(Jessie/Why)

verification
conditions

Automatic proof
(SMT provers and Gappa)

Interactive proof
(Coq)

Fig. 1. Architecture of our FP modeling

to provide ways to specify and to prove behavioral properties of FP programs in de-
ductive verification systems like those above mentioned. This is difficult because FP
computations are described operationally and have tricky behaviors as shown by Mon-
niaux [25]. Consequently, it is hard to describe denotationally in a logic setting. A
first proposal has been made in 2007 by Boldo and Filliâtre [7] for C code, using the
Coq proof assistant [30] for discharging VCs. The approach presented in this paper
is a follow-up of the Boldo-Filliâtre approach, which we extend in two main direc-
tions: first a full support of IEEE-754 standard for FP computations, including special
floating-point values ±∞ and NaN (Not-a-Number); and second the use of automatic
theorem provers. Our contributions are the following:

– Additional constructs to specification languages for specifying behavioral proper-
ties of FP computations. This is explained in Section 3.

– Modeling of FP computations by a first-order axiomatization, suitable for a large
set of different theorem provers, and interpretation of annotated programs in this
modeling (Section 4). There are two possible interpretations of FP operations in
programs: a defensive version which forbids overflows and consequently apparition
of special values (Section 4.3); and a full version which allows special values to
occur (Section 4.4).

– Combination of several provers to discharge VCs (Section 5).

Our approach is implemented in the Frama-C [18] platform for static analysis of
C code, and experiments performed with this platform are presented along this pa-
per (see http://hisseo.saclay.inria.fr/gallery.html for other ex-
amples). The lower part of Fig. 1 represents the current state of Frama-C, and the upper
part presents the additions we make for dealing with FP computations.

2 The IEEE-754 Standard for Floating-Point Arithmetic

The IEEE-754 standard [1] defines an expected behavior of FP computations. It
describes binary and decimal formats to represent FP numbers, and specifies the ele-
mentary operations and the comparison operators on FP numbers. It explains when FP

http://hisseo.saclay.inria.fr/gallery.html

Multi-Prover Verification of Floating-Point Programs 129

exceptions occur, and introduces special values to represent signed infinities and NaNs.
We summarize here the essential parts we need, see [19] for more details. In this paper
we focus on the 32-bits (type float in C, Java) and 64-bits (type double) binary
formats; adaptation to other formats is straightforward. Generally speaking, in any of
these formats, an interpretation of the bit sequence under the form of a sign, a mantissa
and an exponent is given, so that the set of FP numbers denote a finite subset of real
numbers, called the set of representable numbers in that format.

For each of the basic operations (add, sub, mul, div, and also sqrt, fused-multiply-
add, etc.) the standard requires that it acts as if it first computes a true real number,
and then rounds it to a number representable in the chosen format, according to some
rounding mode. The standard defines five rounding modes: if a real number x lies be-
tween two consecutive representable FP numbers x1 and x2, then the rounding of x
is as follows. With mode Up (resp. Down), it is x2 (resp. x1). With ToZero, it is x1
if x > 0 and x2 if x < 0. With NearestAway and NearestEven, it is the closest to x
among x1 and x2, and if x is exactly the middle of [x1, x2] then in the first case it is x2
if x > 0 and x1 if x < 0 ; whereas in the second case the one with even mantissa is
chosen.

The standard defines three special values: −∞,+∞ and NaN. It also distinguishes
between positive zero (+0) and negative zero (-0). These numbers should be treated both
in the input and the output of the arithmetic operations as usual, e.g. (+∞) + (+∞) =
(+∞), (+∞) + (−∞) = NaN, 1/(−∞) = −0, ±0/± 0 = NaN, etc.

IEEE-754 characterizes FP formats by describing their bit representation, but for for-
mal reasoning on FP computations, it is better to consider a more abstract view of binary
FP numbers: a FP number is a pair of integers (n, e), which denotes the real number
n× 2e, where n ∈ Z is the integer significand, and e ∈ Z is the exponent. For example,
in the 32-bit format, the real number 0.1 is approximated by1 0x1.99999Ap-4, which
can be denoted by the pair of integers (13421773,−27). Notice that this representation
is not unique, since, e.g, (n, e) and (2n, e − 1) represent the same number. This set
of pairs denote a superset of all FP numbers in any binary format. A suitable charac-
terization of a given FP format f is provided by a triple (p, emin, emax) where p is a
positive integer called the precision of f , and emin and emax are two integers which
define a range of exponents for f . A number x = n× 2e is representable in the format
f (f -representable for short) if n and e satisfy |n| < 2p and emin ≤ e ≤ emax. If
x is representable, its canonical representative is the pair (n, e) satisfying the property
above for |n| maximal.2 The characterization of the float format is (24,−149, 104)
and those of double is (53,−1074, 971). The largest f -representable number is
(2p − 1)2emax . In order to express whether an operation overflows or not, we intro-
duce a notion of unbounded representability and unbounded rounding: A FP num-
ber x = n × 2e is unbounded f -representable for format f = (p, emin,, emax) if
|n| < 2p and emin ≤ e. The unbounded f,m-rounding operation for given for-
mat f and rounding mode m maps any real number x to the closest (according to m)
unbounded f -representable number. We denote that as roundf,m.

1 C99 notation for hexadecimal FP literals: 0xhh.hhpdd, where h are hexadecimal digits and
dd is in decimal, denotes number hh.hh × 2dd, e.g. 0x1.Fp-4 is (1 + 15/16) × 2−4.

2 This definition allows a uniform treatment of normalized and denormalized numbers [1].

130 A. Ayad and C. Marché

/*@ requires \abs(x) <= 1.0;
@ ensures \abs(\result − \exp(x)) <= 0x1p−4; */

double my_exp(double x) {
/*@ assert \abs(0.9890365552 + 1.130258690*x +
@ 0.5540440796*x*x − \exp(x)) <= 0x0.FFFFp−4; */

return 0.9890365552 + 1.130258690 * x + 0.5540440796 * x * x;
}

Fig. 2. Remez approximation of the exponential function

3 Behavioral Specifications of Floating-Point Programs

We propose extensions to specification languages in order to specify properties of FP
programs. As a basis we consider classical first-order logic with built-in equality and
arithmetic on both integer and real numbers. We assume also built-in symbols for stan-
dard functions such as absolute value, exponential, trigonometric functions and such.
Those are typically denoted with backslashes: \abs, \exp, etc. The core of the speci-
fication language is made of a classical BISL (ACSL [5] in our examples) which allows
function contracts (preconditions, postconditions, frame clauses, etc.), code annotations
(code assertions, loop invariants, etc.) and data invariants.

To deal with FP properties, we first make important design choices. First, there is
no FP arithmetic in the annotations: operators +, −, ∗, / denote operations on mathe-
matical real numbers. Thus, there are neither rounding nor overflow that can occur in
logic annotations. Second, in annotations any FP program variable, or more generally
any C left-value of type float or double, denotes the real number it represents. The
following example illustrates the impact of these choices.

Example 1. The C code of Fig. 2 is an implementation of the exponential function for
double precision FP numbers in interval [−1; 1], using a so-called Remez polynomial
approximation of degree 2.

The contract declared above the function contains a precondition (keyword
requires) which states that this function is to be called only for values of x
with |x| ≤ 1. The postcondition (keyword ensures) states that the returned value
(\result) is close to the real exponential, the difference being not greater than 2−4.
The function body contains an assert clause, which specifies a property that holds
at the corresponding program point. In that particular code, it states that the expres-
sion 0.9890365552+ 1.130258690x+ 0.5540440796x2− exp(x) evaluated as a real
number, hence without any rounding, is not greater than (1 − 2−16)× 2−4.

The intermediate assertion thus naturally specifies the method error, induced by the
mathematical difference between the exponential function and the approximating poly-
nomial; whereas the postcondition takes into account both the method error and the
rounding errors added by FP computations.

So far we did not specify anything about the rounding mode in which programs are
executed. In Java, or by default in C, the default rounding mode is NearestEven. In the
C99 standard, there is a possibility for dynamically changing it using fesetround().
For efficiency issues, is not recommended to change it too often, so usually a program
will run in a fixed rounding mode set once for all. To specify what is the expected

Multi-Prover Verification of Floating-Point Programs 131

//@ pragma allowOverflow
//@ pragma roundingMode(Down)

typedef struct { double l, u; } interval;
/*@ type invariant is_interval(interval i) =

@ (\is_finite(i.l) || \is_minus_infinity(i.l)) &&
@ (\is_finite(i.u) || \is_plus_infinity(i.u)) ; */

/*@ predicate double_le_real(double x,real y) =
@ (\is_finite(x) && x <= y) || \is_minus_infinity(x);
@ predicate real_le_double(real x,double y) =
@ (\is_finite(y) && x <= y) || \is_plus_infinity(y);
@ predicate in_interval(real x,interval i) =
@ double_le_real(i.l,x) && real_le_double(x,i.u); */

/*@ ensures \forall real a,b;
@ in_interval(a,x) && in_interval(b,y) ==>
@ in_interval(a+b,\result); */

interval add(interval x, interval y) {
interval z;
z.l = x.l + y.l; z.u = −(−x.u − y.u);
return z;

}

Fig. 3. Interval structure, its invariant, and addition of intervals

rounding mode we choose to provide a special global declaration in the specification
language: pragma roundingMode(value) ; where value is either one of the 5 IEEE
modes, or ‘variable’, meaning that it can vary during execution. The default is thus
pragma roundingMode(NearestEven). In the ‘variable’ case, a special ghost
variable is available in annotations, to denote the current mode. Since the first case is
the general one, we focus on it in this paper.

Usually, in a program involving FP computations, it is expected that special values
for infinities and NaNs should never occur. For this reason we choose that by default,
arithmetic overflow should be forbidden so that special values never occur. This first
and default situation is called the defensive model: it amounts to check that no overflow
occur for all FP operations. For programs where special values are indeed expected to
appear, we provide another global declaration: pragma allowOverflow, to switch
to the so-called full model. In that case, a set of additional predicates are provided:
\is_finite, \is_infinite, \is_NaN are unary predicates to test whether an
expression of type float or double is either finite, infinite or NaN. Additional shortcuts
are provided, e.g. \is_plus_infinity, etc. (See [2] for details.)

Example 2. Interval arithmetic aims at computing lower bounds and upper bounds of
real expressions. It is a typical example of a FP program that uses a specific rounding
mode and makes use of infinite values.

An interval is a structure with two FP fields representing a lower and an upper bound.
It represents the sets of all the real numbers between these bounds. Fig. 3 provides a C

132 A. Ayad and C. Marché

implementation of such a structure, equipped with a data invariant [5] which states
that the lower bound might be −∞ and the upper bound might be +∞. The two
pragmas specify that overflows are expected and the Down rounding mode is in use.
In the same figure, a behavioral specification for addition is specified via a predicate
in_interval(x, i) stating that a real x belongs to an interval i. Notice the trick for
computing the upper bound in Down mode, using negations.

Notice that since we choose a standard logic with total functions, usual caution must be
taken [11]: a formula should mention the real value of some FP expression x only in
contexts where \is_finite(x) is known to hold, such as in the definition of predi-
cate double_le_real of Fig. 3 (similarly as one should mention 1/x only when x
is known to be non-null).

4 Modeling FP Computations

We model FP programs and their annotations, in order to reduce soundness to proper
VCs. We proceed in four steps, the ones schematized on the upper part of Fig. 1.

4.1 Axiomatization of FP Arithmetics

To remain prover-independent, we model FP numbers with abstract datatypes Single
and Double (the support for more formats would amount to add new types). For each
f among single and double, we introduce an observation function: value_f : f → R,
supposed to denote the real number represented by a FP number (when it is finite). The
largest f -representable number is introduced in our modelling by constants max_f : R
defined as max_single = (224 − 1)× 2104 and max_double = (253 − 1)× 2971.

The five IEEE rounding modes are naturally modelled by a concrete datatype
mode = Up | Down | ToZero | NearestAway | NearestEven. The function
roundf,m defined in Section 2 is introduced as an underspecified logic function
round_f : mode,R → R. Then, the following predicate indicates when the round-
ing does not overflow: no_overflow_f(m : mode, x : R) := |round_f(m,x)| ≤
max_f . For example, computing 10200 × 10200 in 64 bits overflows. In our
model, it is represented by round_double(NearestEven, 10200 × 10200) which is
supposed to denote something close to 10400. It exceeds max_Double, thus
no_overflow_Double(NearestEven, 10200 × 10200) is false.

The rounding function round_f is not directly defined: we axiomatize it by some,
incomplete, set of axioms. Here are two of them, useful in the examples of this paper:
∀m : mode;x, y : R,

|x| ≤ max_f ⇒ no_overflow_f(m,x) (1)

x ≤ y ⇒ round_f(m,x) ≤ round_f(m, y) (2)

In order to annotate FP programs that allow overflows and special values, we extend
the above logical constructions with new types, predicates and functions. A natural
idea would be to introduce new constants to represent NaN, +∞, −∞. We do not
do that for two reasons: first, there are several NaNs, and second, we want to keep

Multi-Prover Verification of Floating-Point Programs 133

the Single and Double types as abstract, equipped with observation functions, and not
a mixed abstract/concrete representation with constants. Our proposal is thus to add
two new observation functions, similar to value_f , to give the class of a float, either
finite, infinite or NaN; and its sign. We introduce two concrete types Float_class =
Finite | Infinite | NaN and Float_sign = Negative | Positive and additional functions
class_f : f → Float_class and sign_f : f → Float_sign which indicate respectively
the class and the sign of a FP number.

Additional predicates are defined to test if a FP number is finite, infinite, NaN, etc.:
is_finite_f(x : f) := class_f(x) = Finite, and similar definitions for is_infinite_f ,
is_NaN_f , is_plus_infinity_f , is_minus_infinity_f , etc.

Comparison between two FP numbers is given by the predicates le_f, lt_f, eq_f ,
etc., e.g.

le_f(x : f, y : f) := (is_finite_f(x) ∧ is_finite_f(y) ∧ value_f(x) ≤ value_f(y))
∨ (is_minus_infinity_f(x) ∧ ¬ is_NaN_f(y))
∨ (¬ is_NaN_f(x) ∧ is_plus_infinity_f(y))

We must constrain our model to ensure that the sign function is consistent with the sign
of real numbers: whenever x represents a finite number, sign_f(x) should have the sign
of value_f(x). This is achieved by the following definitions

same_sign_f(x : f, y : f) := sign_f(x) = sign_f(y)
diff_sign_f(x : f, y : f) := sign_f(x) �= sign_f(y)
same_sign_real_f(x : R, y : f) :=

(x < 0 ∧ sign_f(y) = Negative) ∨ (x > 0 ∧ sign_f(y) = Positive)

and an axiom: ∀x : f ,

(is_finite_f(x) ∧ value_f(x) �= 0)⇒ same_sign_real_f(value_f(x), x) (3)

4.2 A Coq Realization of the Axiomatic Model

Our formalization of FP arithmetic is a first-order, axiomatic one. It is clearly under-
specified and incomplete.

We realized this axiomatic model in the Coq proof assistant. This realization has
two different goals. First, it allows us to prove the lemmas we added as axioms, thus
providing an evidence that our axiomatization is consistent. Second, when dealing with
a VC in Coq involving FP arithmetic, we can benefit from all the theorems proved in
Coq about FP numbers. We build upon the Gappa [22] library which provides: (1) a
definition of binary finite FP numbers: type float2 (a pair of integers as in section 2)
together with a function float2R mapping (n, e) to the real n × 2e; (2) a complete
definition of the rounding function. Our realization amounts to declare types format,
mode, Float_class and Float_sign as inductive types, and defines max_f by cases. The
abstract types Single and Double are realized by Coq records whose fields are:

– genf of type float2;
– The value_f field which is equal to (float2R genf);

134 A. Ayad and C. Marché

– The class_f field, of type Float_class;
– The sign_f field, of type Float_sign;
– An invariant corresponding to axiom (3).

The last field is a noticeable point: it allows us to realize properly the finite_sign axiom
above. Finally, the round_f operator is realized by the corresponding one in the Gappa
library.

4.3 The Defensive Model of FP Computations

To model the effect of the basic FP operations, we now need to make an important
assumption: we assume that both the compiler and the processor implement strict IEEE-
754, that is any single operation acts as if it first computes a true real number, and then
rounds the result to the chosen format, according to the rounding mode. For example,
addition of FP numbers is addf,m(x, y) = roundf,m(x+ y) for x, y non-special values,
where the + on the right is the mathematical addition of real numbers. This means in
particular that addition overflows whenever the rounding overflows. We will discuss
this assumption in Section 6.

We model FP operations in FP programs by abstract functions, using the Hoare-
style notation f(x1, . . . , xn) : {P (x1, .., xn)}τ{Q(x1, .., xn, result)}, which speci-
fies that operation f expects arguments x1, . . . , xn satisfying P (this leads to a VC
at each call site) and returns a value r (denoted by keyword result) of type τ , such that
Q(x1, .., xn, r) holds. In other words, in our modeling we do not say exactly how an
operation is performed, but only give its specification.

The defensive model must ensure that no overflows and no NaNs should ever occur.
This can be done by proper preconditions to operations. For instance, division of FP
numbers is modeled by an abstract function

div_f(m : mode, x : f, y : f) :
{ value_f(y) �= 0 ∧ no_overflow_f(m, value_f(x)/value_f(y)) }
f
{ value_f(result) = round_f(m, value_f(x)/value_f(y)) }

This reads as: the computation of a FP division requires to check that the divisor is not
zero, and the result of the division in R does not overflow, and it returns a FP number
in format f whose real value is the rounding of the real result. Other operations such
that addition. subtraction, unary negation and multiplication are defined similarly, and
also cast operations between float formats. The square root function is defined similarly,
requiring that the argument is non-negative.

Notice that, for a given operation in a program, the expected format of the result
is known at compile-time, by static typing. But on the contrary, it should be clari-
fied what is the rounding mode to choose: we use whatever is declared by the pragma
roundingMode in Section 3.

Particular care has to be taken for FP constant literals: they are not necessarily rep-
resentable and they are rounded (usually at compile-time) to a FP number according to

Multi-Prover Verification of Floating-Point Programs 135

a certain rounding direction (usually NearestEven). This is modeled by the following
abstract function:

real_to_f(m : mode, x : R) :
{ no_overflow_f(m,x) } f { value_f(result) = round_f(m,x)}

This reads as: the real value of the literal must be able to be rounded without overflow,
and then the result is its rounding.

4.4 The Full Model of FP Computations

The full model allows FP computations to overflow, and make use of special values:
NaNs, infinities and signed zeros. Unlike for the defensive model, there are no pre-
conditions on operations. We carefully interpret IEEE-754 informal specifications into
postconditions taking all cases into account. Below is the complete specification for the
multiplication (see [2] for other operations).

mul_f(m : mode, x : f, y : f) :
{ // no preconditions }
f
{ ((is_NaN_f(x) ∨ is_NaN_f(y))⇒ is_NaN_f(result))

// NaNs arguments propagate to the result
∧ ((is_zero_f(x) ∧ is_infinite_f(y))⇒ is_NaN_f(result))
∧ ((is_infinite_f(x) ∧ is_zero_f(y))⇒ is_NaN_f(result))

// zero times∞ gives NaN
∧ ((is_finite_f(x)∧ is_infinite_f(y)∧ value_f(x) �= 0)⇒ is_infinite_f(result))
∧ ((is_infinite_f(x) ∧ is_finite_f(y)∧ value_f(y) �= 0)⇒ is_infinite_f(result))

//∞ times non-zero finite gives∞
∧ ((is_infinite_f(x) ∧ is_infinite_f(y))⇒ is_infinite_f(result))

//∞ times∞ gives∞
∧ ((is_finite_f(x) ∧ is_finite_f(y)⇒

if no_overflow_f(m, value_f(x)× value_f(y))) then
(is_finite_f(result)∧
value_f(result) = round_f(m, value_f(x)× value_f(y)))

// finite times finite without overflow
else (overflow_value(m, result)))

// finite times finite with overflow
∧ product_sign_f(result, x, y)

// in any case, sign of result is product of signs
}

where

is_zero_f(x : f) := class_f(x) = Finite ∧ value_f(x) = 0
product_sign_f(z : f, x : f, y : f) :=

(same_sign_f(x, y)⇒ sign_f(z) = Positive)∧
(diff_sign_f(x, y) ⇒ sign_f(z) = Negative)

136 A. Ayad and C. Marché

overflow_value(m : mode, x : f) :=
(m = Down⇒

(sign_f(x) = Negative⇒ is_infinite_f(x))∧
(sign_f(x) = Positive⇒ is_finite_f(x) ∧ value_f(x) = max_f))

∧ (m = Up ⇒
(sign_f(x) = Positive⇒ is_infinite_f(x))∧
(sign_f(x) = Negative⇒ is_finite_f(x) ∧ value_f(x) = −max_f))

∧(m = ToZero⇒ is_finite_f(x)∧
(sign_f(x) = Negative⇒ value_f(x) = −max_f(f))∧
(sign_f(x) = Positive⇒ value_f(x) = max_f(f)))

∧(m = NearestAway ∨ m = NearestEven⇒ is_infinite_f(x))

The auxiliary predicate overflow_value specifies the result of FP operations, in case
the real result overflows, depending on its sign and the rounding mode. The predicate
product_sign_f encodes the usual rule for the sign of a product. Those are reused for
other operations.

5 Discharging Proof Obligations

Our aim is to support as many theorem provers as possible. However, we must consider
provers that are able to understand first-order logic with integer and real arithmetic.
Suitable automatic provers are those of the SMT-family (Satisfiability Modulo Theo-
ries) which support first-order quantification, such as Z3 [15], CVC3 [4], Yices [16],
Alt-Ergo [13]. Due to the high expressiveness of the logic, these provers are necessarily
incomplete. Hence we may also use interactive theorem provers, such as Coq and PVS.

Additionally, recall that our modeling involves an uninterpreted rounding function
round_f . The Gappa tool [23] is an automatic prover, which specifically handles for-
mulas made of equalities and inequalities over expressions involving real constants,
arithmetic operations, and the round_f operator. But unlike SMT provers, Gappa does
not handle quantifiers.

All the provers mentioned above are available as back-ends for the Frama-C envi-
ronment and its Jessie/Why plugin [17]. Our experiments are conducted with those.

Example 3 (Example 1 continued). The VCs for our Remez approximation of exponen-
tial are the following:

– 3 VCs for the representability of constants 0.9890365552; 1.130258690
and 0.5540440796 in double format. These are proved by Gappa and by SMT
solvers. SMT solvers make use of the axiom (1) on round_f .

– 5 VCs for checking that the three multiplications and the two additions do not
overflow. These are automatically proved by Gappa. This demonstrates the power
of Gappa to check non-overflow of FP computations in practice.

– 1 VC for the validity of the post-condition. This is also proved by Gappa, as a
consequence of the assertion. In other words, whenever Gappa is given the method
error, it is able to add the rounding error to deduce the total error.

Multi-Prover Verification of Floating-Point Programs 137

– 1 VC for the validity of the assertion stating the method error. This is not proved
by any automatic prover. It corresponds to the VC:

∀x : Double, |value_Double(x)| ≤ 1.0⇒
|0.9890365552 + 1.130258690× value_Double(x) + 0.5540440796×

value_Double(x) ∗ value_Double(x)− exp(value_Double(x))|
≤ (1− 2−16)× 2−4

Indeed, value_Double(x) is just an arbitrary real number here, and that formula is a
pure real arithmetic formula. It is expected that no automatic prover proves it since
they do not know anything about the exp function. However, this VC can be proved
valid using the Coq proof assistant, in a very simple way (2 lines of proof script to
write) thanks to its interval tactic [23], which is able to bound mathematical
expressions using interval arithmetic.

Example 4 (Interval example continued). Although the code for interval addition
(Fig. 3) is very simple, it was not proved by automatic provers. We started an interactive
proof in Coq, and saw that the proof was complex because it involved a large amount
of different cases to distinguish, depending on whether interval bounds are finite or in-
finite, and whether an overflow occurs or not. Nevertheless, no case was difficult, and
we found that the important property that automatic provers were missing was that for
any format f and real x: round_f(Down, x) ≤ x, which can be proved correct using
our Coq realization. Adding this property in our axiomatization of round_f allows to
perform the verification with SMT solvers.

Example 5 (Interval multiplication). To go further, we proved also the multiplication
of intervals. Its code is given in Fig. 4. Notice the large number of branches. This code
calls some auxiliary functions on intervals from Fig. 5. This was difficult to verify. First,
we had to find proper contracts for the auxiliary functions: see the preconditions about
signs for mul_up and mul_dn. Second, the number of cases is definitely larger than
for addition: we got a total of 140 VCs, where each of them has a complex propositional
structure, leading to consider a large number of subcases. By investigating in Coq the
VCs which were not proved automatically, we were able to discover that SMT solvers
were missing a few lemmas related to multiplication, e.g for all reals x, y, z and t:

(0 ≤ x ≤ z ∧ 0 ≤ y ≤ t) ⇒ x× y ≤ z × t
(0 ≤ z ≤ x ∧ y ≤ t ∧ y < 0)⇒ x× y ≤ z × t

and similar others.
The Z3 prover is able to validate all VCs except one (the first post-condition of

mul_up). This is done in around 45s on a 3GHz CPU (each VCs is solved within 0.5s),
whereas the remaining VC cannot be proved with a 2 minutes time limit. Fortunately,
the CVC3 prover is able to solve the remaining VC, but misses 7 other VCs. CVC3
needs a similar amount of time. What is important here is the very good efficiency of
SMT solvers, for dealing with all the cases coming from the complex propositional
structures of VCs.

138 A. Ayad and C. Marché

/*@ ensures \forall real a,b;
@ in_interval(a,x) && in_interval(b,y) ==>
@ in_interval(a*b,\result); */

interval mul(interval x, interval y) {
interval z;
if (x.l < 0.0)
if (x.u > 0.0)

if (y.l < 0.0)
if (y.u > 0.0) {
z.l = min(mul_dn(x.l, y.u), mul_dn(x.u, y.l));
z.u = max(mul_up(x.l, y.l), mul_up(x.u, y.u)); }

else { z.l = mul_dn(x.u, y.l); z.u = mul_up(x.l, y.l); }
else

if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.u); z.u = mul_up(x.u, y.u); }

else { z.l = 0.0; z.u = 0.0; }
else

if (y.l < 0.0)
if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.u); z.u = mul_up(x.l, y.l); }

else { z.l = mul_dn(x.u, y.u); z.u = mul_up(x.l, y.l); }
else

if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.u); z.u = mul_up(x.u, y.l); }

else { z.l = 0.0; z.u = 0.0; }
else
if (x.u > 0.0)

if (y.l < 0.0)
if (y.u > 0.0)
{ z.l = mul_dn(x.u, y.l); z.u = mul_up(x.u, y.u); }

else { z.l = mul_dn(x.u, y.l); z.u = mul_up(x.l, y.u); }
else

if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.l); z.u = mul_up(x.u, y.u); }

else { z.l = 0.0; z.u = 0.0; }
else { z.l = 0.0; z.u = 0.0; }

return z;
}

Fig. 4. Multiplication of intervals

6 Related Works and Perspectives

There exist several formalizations of FP arithmetic in various proof environments: two
variants in Coq [14,22] and one in PVS [24] exclude special values; one in ACL2 [27]
and one in HOL-light [20] also deal with special values. Compared to those, our purely
first-order axiomatization has the clear disadvantage of being incomplete, but has the
advantage of allowing use of off-the-shelf automatic theorem provers. Our approach al-
lows to incorporate FP reasoning in environments for program verification for general-
purpose programming languages like C or Java.

Multi-Prover Verification of Floating-Point Programs 139

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ ensures \le_float(\result,x) && \le_float(\result,y);
@ ensures \eq_float(\result,x) || \eq_float(\result,y); */

double min(double x, double y) { return x < y ? x : y; }

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ ensures \le_float(x,\result) && \le_float(y,\result);
@ ensures \eq_float(\result,x) || \eq_float(\result,y); */

double max(double x, double y) { return x > y ? x : y; }

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ requires (\is_infinite(x) || \is_infinite(y))
@ ==> \sign(x) != \sign(y);
@ requires (\is_infinite(x) && \is_finite(y)) ==> y != 0.0;
@ requires (\is_infinite(y) && \is_finite(x)) ==> x != 0.0;
@ ensures double_le_real(\result,x*y);
@ ensures (\is_infinite(x) || \is_infinite(y)) ==>
@ \is_minus_infinity(\result); */

double mul_dn(double x, double y) { return x*y; }

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ requires (\is_infinite(x) || \is_infinite(y))
@ ==> \sign(x) == \sign(y);
@ requires (\is_infinite(x) && \is_finite(y)) ==> y != 0.0;
@ requires (\is_infinite(y) && \is_finite(x)) ==> x != 0.0;
@ ensures real_le_double(x * y,\result);
@ ensures (\is_infinite(x) || \is_infinite(y)) ==>
@ \is_plus_infinity(\result); */

double mul_up(double x, double y) { return −(x*(−y)); }

Fig. 5. Auxiliary functions on intervals

In 2006, Leavens [21] described some pitfalls when trying to incorporate FP special
values and specifically NaN values in a BISL like JML for Java. In its approach, FP
numbers, rounding and such also appear in annotations, which cause several issues
and traps for specifiers. We argue that our approach, using instead real numbers in
annotations, solves these kind of problems.

In 2006, Reeber & Sawada [28] used the ACL2 system together with a automated
tool to verify a FP multiplier unit. Although their goal is at a significantly different con-
cern (hardware verification instead of software behavioral properties) it is interesting to
remark that they came to a similar conclusion, that using interactive proving alone is
not practicable, but incorporating an automatic tool is successful.

In Section 5, we have seen that we needed both SMT solvers, Gappa for reasoning
about rounding, and interactive proving to prove all VCs. Improving cooperation of
provers is an interesting perspective, e.g. like in the Jahob verification tool for Java [31]
which selects the prover to call depending on the class of goal (but does not support FP).
Turning the Gappa techniques for FP into some specific built-in theory for SMT solvers
should be considered. Integrating SMT solvers into interactive proving systems is also

140 A. Ayad and C. Marché

potentially very useful: possibility of calling Z3 and Vampyre from Isabelle/HOL has
been experimented recently, and similar integration in Coq is in progress.

Another future work is to deal with programs, where FP computations do not strictly
respect the IEEE standard, due to transformations made at compile-time (reorganization
of expression order, use of fused multiply-add instructions) ; or at runtime by using extra
precision (e.g., 80 bits FP precision in 387 processors) on intermediate calculations [8].

Discovering the proper annotations (e.g. contract for mul_up above) is essential for
successful deductive verification. Another interesting future work is to automatically in-
fer annotations, for example using abstract interpretation techniques [26] or abstraction
refinement [9], to assist this task.

Acknowledgements. We thank G. Melquiond for his help in the use of the Gappa tool,
the FP-specific Coq tactics, and more generally for his suggestions about the approach
presented here.

References

1. IEEE standard for floating-point arithmetic. Technical report (2008), http://dx.doi.
org/10.1109/IEEESTD.2008.4610935

2. Ayad, A., Marché, C.: Behavioral properties of floating-point programs. Hisseo publications
(2009), http://hisseo.saclay.inria.fr/ayad09.pdf

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL: ANSI/ISO
C Specification Language (2008), http://frama-c.cea.fr/acsl.html

6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

7. Boldo, S., Filliâtre, J.-C.: Formal Verification of Floating-Point Programs. In: 18th IEEE
International Symposium on Computer Arithmetic, Montpellier, France, pp. 187–194 (2007)

8. Boldo, S., Nguyen, T.M.T.: Hardware-independent proofs of numerical programs. In: Pro-
ceedings of the Second NASA Formal Methods Symposium. NASA Conference Publication,
Washington D.C (April 2010)

9. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In:
FMCAD’09, pp. 69–76. IEEE, Los Alamitos (2009)

10. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer (2004)

11. Chalin, P.: Reassessing JML’s logical foundation. In: Proceedings of the 7th Workshop on
Formal Techniques for Java-like Programs (FTfJP’05), Glasgow, Scotland (July 2005)

12. Cok, D.R., Kiniry, J.R.: ESC/Java2 implementation notes. Technical report (May 2007),
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/
docs/Escjava2-ImplementationNotes.pdf

13. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): Semantical combination of con-
gruence closure with solvable theories. In: Proceedings of the 5th International Workshop
SMT’2007. ENTCS, vol. 198-2, pp. 51–69. Elsevier Science Publishers, Amsterdam (2008)

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://hisseo.saclay.inria.fr/ayad09.pdf
http://frama-c.cea.fr/acsl.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/Escjava2-ImplementationNotes.pdf
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/Escjava2-ImplementationNotes.pdf

Multi-Prover Verification of Floating-Point Programs 141

14. Daumas, M., Rideau, L., Théry, L.: A generic library for floating-point numbers and its ap-
plication to exact computing. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS,
vol. 2152, p. 169+. Springer, Heidelberg (2001)

15. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver,
http://research.microsoft.com/projects/z3/

16. Dutertre, B., de Moura, L.: The Yices SMT solver (2006),
http://yices.csl.sri.com/tool-paper.pdf

17. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program
verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Heidelberg (2007)

18. The Frama-C platform (2008), http://www.frama-c.cea.fr/
19. Goldberg, D.: What every computer scientist should know about floating-point arithmetic.

ACM Computing Surveys 23(1), 5–48 (1991)
20. Harrison, J.: Floating point verification in HOL Light: The exponential function. Formal

Methods in System Design 16(3), 271–305 (2000)
21. Leavens, G.: Not a number of floating point problems. Journal of Object Technology 5(2),

75–83 (2006)
22. Melquiond, G.: Floating-point arithmetic in the Coq system. In: Proceedings of the 8th

Conference on Real Numbers and Computers, pp. 93–102. Santiago de Compostela, Spain
(2008), http://gappa.gforge.inria.fr/

23. Melquiond, G.: Proving bounds on real-valued functions with computations. In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 2–17. Springer, Heidelberg (2008), http://www.lri.fr/~melquion/soft/
coq-interval/

24. Miner, P.S.: Defining the IEEE-854 floating-point standard in PVS. Technical Memorandum
110167, NASA Langley (1995)

25. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Transactions on
Programming Languages and Systems 30(3), 12 (2008)

26. Monniaux, D.: Automatic modular abstractions for linear constraints. In: 36th ACM Sympo-
sium POPL 2009, pp. 140–151 (2009)

27. Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of the correctness of
the kernel of the AMD5k86 floating-point division algorithm. IEEE Transactions on Com-
puters 47(9), 913–926 (1998)

28. Reeber, E., Sawada, J.: Combining ACL2 and an automated verification tool to verify a mul-
tiplier. In: Sixth International Workshop on the ACL2 Theorem Prover and its Applications,
pp. 63–70. ACM, New York (2006)

29. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verifying C compiler, http://
www.cs.ru.nl/~tews/cv07/cv07-smans.pdf

30. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.2
(2008), http://coq.inria.fr

31. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In:
PLDI’08, pp. 349–361. ACM, New York (2008)

http://research.microsoft.com/projects/z3/
http://yices.csl.sri.com/tool-paper.pdf
http://www.frama-c.cea.fr/
http://gappa.gforge.inria.fr/
http://www.lri.fr/~melquion/soft/coq-interval/
http://www.lri.fr/~melquion/soft/coq-interval/
http://www.cs.ru.nl/~tews/cv07/cv07-smans.pdf
http://www.cs.ru.nl/~tews/cv07/cv07-smans.pdf
http://coq.inria.fr

Verifying Safety Properties with the TLA+ Proof System

Kaustuv Chaudhuri1, Damien Doligez2, Leslie Lamport3, and Stephan Merz4

1 INRIA Saclay, France
kaustuv.chaudhuri@inria.fr

2 INRIA Rocquencourt, France
damien.doligez@inria.fr

3 Microsoft Research Silicon Valley, USA
http://lamport.org
4 INRIA Nancy, France
stephan.merz@inria.fr

1 Overview

TLAPS, the TLA+ proof system, is a platform for the development and mechanical
verification of TLA+ proofs. The TLA+ proof language is declarative, and understand-
ing proofs requires little background beyond elementary mathematics. The language
supports hierarchical and non-linear proof construction and verification, and it is inde-
pendent of any verification tool or strategy. Proofs are written in the same language as
specifications; engineers do not have to translate their high-level designs into the lan-
guage of a particular verification tool. A proof manager interprets a TLA+ proof as a
collection of proof obligations to be verified, which it sends to backend verifiers that
include theorem provers, proof assistants, SMT solvers, and decision procedures.

The first public release of TLAPS is available from [1], distributed with a BSD-like
license. It handles almost all the non-temporal part of TLA+ as well as the temporal
reasoning needed to prove standard safety properties, in particular invariance and step
simulation, but not liveness properties. Intuitively, a safety property asserts what is per-
mitted to happen; a liveness property asserts what must happen; for a more formal
overview, see [3,10].

2 Foundations

TLA+ is a formal language based on TLA (the Temporal Logic of Actions) [12]. It was
designed for specifying the high-level behavior of concurrent and distributed systems,
but it can be used to specify safety and liveness properties of any discrete system or
algorithm. A behavior is a sequence of states, where a state is an assignment of values
to state variables. Safety properties are expressed by describing the allowed steps (state
transitions) in terms of actions, which are first-order formulas involving two copies v
and v′ of each state variable, where v denotes the value of the variable at the current
state and v′ its value at the next state. These properties are proved by reasoning about
actions, using a small and restricted amount of temporal reasoning. Proving liveness
properties requires propositional linear-time temporal logic reasoning plus a few TLA
proof rules.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 142–148, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verifying Safety Properties with the TLA+ Proof System 143

It has always been possible to assert correctness properties of systems in TLA+, but
not to write their proofs. We have added proof constructs based on a hierarchical style
for writing informal proofs [11]. The current version of the language is essentially the
same as the version described elsewhere [7]. Here, we describe only the TLAPS proof
system. Hierarchical proofs are a stylistic variant of natural deduction with lemmas and
have been used in other declarative proof languages [8,14,15]. A hierarchical proof is
either a sequence of steps together with their proofs, or a leaf (lowest-level) proof that
simply states the known facts (previous steps and theorems) and definitions from which
the desired conclusion follows. The human reader or a backend verifier must ensure that
the leaf proofs are correct in their interpretation of TLA+ to believe the entire proof.

The TLAPS proof manager, TLAPM, reads a (possibly incomplete) hierarchical
proof and invokes the backend verifiers to verify the leaf proofs. One important back-
end is Isabelle/TLA+, which is an implementation of TLA+ as an Isabelle object logic
(see Section 4.1). Isabelle/TLA+ can be used directly with Isabelle’s generic proof
methods, or other certifying backend verifiers can produce proofs that are checked by
Isabelle/TLA+. Currently, the only certifying backend is the Zenon theorem prover [4].
Among the non-certifying backends is a generic SMT-LIB-based backend for SMT
solvers, and a decision procedure for Presburger arithmetic. We plan to replace these
with certifying implementations such as the SMT solver veriT [5] and certifying imple-
mentations of decision procedures [6].

TLAPS is intended for avoiding high-level errors in systems, not for providing a for-
mal foundation for mathematics. It is far more likely for a system error to be caused
by an incomplete or incorrect specification than by an incorrect proof inadvertently ac-
cepted as correct due to bugs in TLAPS. Although we prefer certifying backends when-
ever possible, we include non-certifying backends for automated reasoning in important
theories such as arithmetic.

3 Proof Management

A TLA+ specification consists of a root module that can (transitively) import other
modules by extension and parametric instantiation. Each module consists of a number
of parameters (state variables and uninterpreted constants), definitions, and theorems
that may have proofs. TLAPS is run by invoking the Proof Manager (TLAPM) on the
root module and telling it which proofs to check. In the current version, we use pragmas
to indicate the proofs that are not to be checked, but this will change when TLAPS
is integrated into the TLA+ Toolbox IDE [2]. The design of TLAPM for the simple
constant expressions of TLA+ was described in [7]; this section explains the further
processing required to support more of the features of TLA+. TLAPM first flattens the
module structure, since the module language of TLA+ is not supported by backend
verifiers, which will likely remain so in the future.

Non-constant reasoning: A TLA+ module parameter is either a constant or a (state)
variable. Constants are independent of behaviors and have the same value in each state
of the behavior, while a variable can have different values in different states. Following
the tradition of modal and temporal logics, TLA+ formulas do not explicitly refer to
states. Instead, action formulas are built from two copies v and v′ of variables that refer

144 K. Chaudhuri et al.

to the values before and after the transition. More generally, the prime operator ′ can
be applied to an entire expression e, with e′ representing the value of e at the state after
a step. A constant expression e is one that does not involve any state variables, and
is therefore equal to e′. (Double priming is not allowed in TLA+; the TLA+ syntactic
analyzer catches such errors.)

Currently, all TLAPS backends support logical reasoning only on constant expres-
sions. The semantics of the prime operator is therefore syntactically approximated as
follows: it is commuted with all ordinary operators of mathematics and is absorbed by
constant parameters. Thus, if e is the expression (u = v + 2 ∗ c) where u and v are vari-
ables and c a constant, then e′ equals u′ = v′ + 2 ∗ c. TLAPM currently performs such
rewrites and its rewrite engine is trusted.

Operators and substitutivity: At any point in the scope of its definition, a user-defined
operator is in one of two states: usable or hidden. A usable operator is one whose defi-
nition may be expanded in a proof; for example, if the operator P defined by P(x, y)

Δ

=

x + 2 ∗ y is usable, then TLAPM may replace P(2, 20) with 2 + 2 ∗ 20 (but not with
42, which requires proving that 2 + 2 ∗ 20 = 42). A user-defined operator is hidden by
default; it is made usable in a particular leaf proof by explicitly citing its definition, or
for the rest of the current subproof by a use step (see [7] for the semantics of use).

Because TLA+ is a modal logic, it contains operators that do not obey substitutivity,
which underlies Leibniz’s principle of equality. For example, from (u = 42) = true one
cannot deduce (u = 42)′ = true′, i.e., u′ = 42. A unary operator O(_) is substitutive if
e = f implies O(e) = O(f), for all expressions e and f . This definition is extended in the
obvious way to operators with multiple arguments. Most of the modal primitive opera-
tors of TLA+ are not substitutive; and an operator defined in terms of non-substitutive
operators can be non-substitutive. If a non-substitutive operator is usable, then TLAPM
expands its definition during preprocessing, as described in the previous paragraph; if it
is hidden, then TLAPM replaces its applications by cryptographic hashes of its text to
prevent unsound inferences by backend verifiers. This is a conservative approximation:
for example, it prevents proving O(e ∧ f) = O(f ∧ e) for a hidden non-substitutive op-
erator O. Users rarely define non-substitutive operators, so there seems to be no urgent
need for a more sophisticated treatment.

Subexpression references: A fairly novel feature of the TLA+ proof language is the abil-
ity to refer to arbitrary subexpressions and instances of operators, theorems, and proof
steps that appear earlier in the module or in imported modules, reducing the verbosity
and increasing the maintainability of TLA+ proofs. Positional references denote a path
through the abstract syntax; for example, for the definition, O(x, y)

Δ

= x = 20 ∗ y + 2,
the reference O(3, 4)!2!1 resolves to the first subexpression of the second subexpression
of O(3, 4), i.e., 20 ∗ 4. Subexpressions can also be labelled and accessed via labelled
references. For example, for O(x, y)

Δ

= x = l::(y ∗ 20) + 2, the reference O(3, 4)!l refers
to 4 ∗ 20 and will continue to refer to this expression even if the definition of O is later
modified to O(x, y)

Δ

= x = 7 ∗ y2 + l::(20 ∗ y) + 2. TLAPM replaces all subexpression
references with the expressions they resolve to prior to further processing.

Verifying obligations: Once an obligation is produced and processed as described be-
fore, TLAPM invokes backend verifiers on the proof obligations corresponding to the

Verifying Safety Properties with the TLA+ Proof System 145

leaf proofs. The default procedure is to invoke the Zenon theorem prover first. If Zenon
succeeds in verifying the obligation, it produces an Isabelle/Isar proof script that can
be checked by Isabelle/TLA+. If Zenon fails to prove an obligation, then Isabelle/TLA+

is instructed to use one of its automated proof methods. The default procedure can be
modified through pragmas that instruct TLAPM to bypass Zenon, use particular Isabelle
tactics, or use other backends. Most users will invoke the pragmas indirectly by using
particular theorems from the standard TLAPS module. For instance, using the theorem
named SimpleArithmetic in a leaf proof causes TLAPM to invoke a decision proce-
dure for Presburger arithmetic for that proof. The user can learn what standard theorems
can prove what kinds of assertions by reading the documentation, but she does not need
to know how such standard theorems are interpreted by TLAPM.

4 Backend Verifiers

4.1 Isabelle/TLA+

Isabelle/TLA+ is an axiomatization of TLA+ in the generic proof assistant Isabelle [?].
It embodies the semantics of the constant fragment of TLA+ in TLAPS; as mentioned
in Section 2, it is used to certify proofs found by automatic backend verifiers. We ini-
tially considered encoding TLA+ in one of the existing object logics that come with
the Isabelle distribution, such as Isabelle/ZF or Isabelle/HOL. However, this turned out
to be inconvenient, mainly because TLA+ is untyped. (Indeed, TLA+ does not even
distinguish between propositions and terms.) We would have had to define a type of
TLA+ values inside an existing object logic and build TLA+-specific theories for sets,
functions, arithmetic etc., essentially precluding reuse of the existing infrastructure.

Isabelle/TLA+ defines classical first-order logic based on equality, conditionals, and
Hilbert’s choice operator. All operators take arguments and return values of the sin-
gle type c representing TLA+ values. Set theory is based on the uninterpreted predi-
cate symbol ∈ and standard Zermelo-Fränkel axioms. Unlike most presentations of ZF,
TLA+ considers functions to be primitive objects rather than sets of ordered pairs. Nat-
ural numbers with zero and successor are introduced using Hilbert’s choice as some
set satisfying the Peano axioms; the existence of such a set is established from the
ZF axioms. Basic arithmetic operators over natural numbers such as ≤, +, and ∗ are
defined by primitive recursion, and division and modulus are defined in terms of +
and ∗. Tuples and sequences are defined as functions whose domains are initial intervals
of the natural numbers. Characters are introduced as pairs of hexadecimal digits, and
strings as sequences of characters. Records are functions whose domains are finite sets
of strings. Isabelle’s flexible parser and pretty-printer transparently converts between
the surface syntax and the internal representation. The standard library introduces ba-
sic operations for these data structures and proves elementary lemmas about them. It
currently provides more than 1400 lemmas and theorems, corresponding to about 200
pages of pretty-printed Isar text. Isabelle/TLA+ sets up Isabelle’s generic automated
proof methods (rewriting, tableau and resolution provers, and their combinations).

It is a testimony to the genericity of Isabelle that setting up a new object logic was
mostly a matter of perseverance and engineering. Because TLA+ is untyped, many the-
orems come with hypotheses that express “typing conditions”. For example, proving

146 K. Chaudhuri et al.

n + 0 = n requires proving that n is a number. When the semantics of TLA+ allowed
us to do so, we set up operators so that they return the expected “type”; for example,
p ∧ q is guaranteed to be a Boolean value whatever its arguments p and q are. In other
cases, typechecking is left to Isabelle’s automatic proof methods; support for condi-
tional rewrite rules in Isabelle’s simplifier was essential to make this work.

4.2 Zenon

Zenon is a theorem prover for first-order logic with Hilbert’s choice operator and equal-
ity. It is a proof-producing theorem prover: it outputs formal proof scripts for the theo-
rems it proves. Zenon was extended with a backend that produces proofs in Isar syntax;
these proofs use lemmas based on the Isabelle/TLA+ object logic and are passed to
Isabelle for verification. Zenon is therefore not part of the trusted code base of TLAPS.

Zenon had to be extended with deduction rules specific to TLA+: rules for reason-
ing about set-theoretic operators, for the case operator of TLA+, for set extensionality
and function extensionality, for reasoning directly on bounded quantifiers (which is not
needed in theory but is quite important for efficiency), and for reasoning about func-
tions, strings, etc. Interestingly, Hilbert’s choice operator was already used in Zenon for
Skolemization, so we were easily able to support the choose operator of TLA+.

Future work includes adding rules to deal with tuples, sequences, records, and arith-
metic, and improving the handling of equality. While there is some overlap between
Zenon and Isabelle’s automatic methods as they are instantiated in Isabelle/TLA+, in
practice they have different strong points and there are many obligations where one
succeeds while the other fails. Zenon uses Isabelle’s automatic proof tactics for some
of the elementary steps when it knows they will succeed, in effect using these tactics as
high-level inference rules.

4.3 Other Backends

The first release of TLAPS comes with some additional non-certifying backends. For
arithmetic reasoning we have:

– An SMT-LIB based backend that can be linked to any SMT solver. Obligations are
rewritten into the AUFLIRA theory of SMT-LIB, which generally requires omit-
ting assumptions that lie outside this theory. This backend is needed for reasoning
about real numbers. We have successfully used Yices, CVC3, Z3, veriT and Alt-
Ergo in our examples. In future work we might specialize this generic backend for
particular solvers that can reason about larger theories.

– A Presburger arithmetic backend, for which we have implemented Cooper’s al-
gorithm. Our implementation is tailored to certain elements of TLA+ that are not
normally part of the Presburger fragment, but can be (conservatively) injected.

For both these backends, TLAPM performs a simple and highly conservative sort detec-
tion pass for bound identifiers. Both backends are currently non-certifying, but we plan
to replace them with certifying backends in the future. In particular, we are integrating
the proof-producing SMT solver veriT [5], with the goal of tailoring it for discharging
TLA+ proof obligations.

Verifying Safety Properties with the TLA+ Proof System 147

5 Proof Development

Writing proofs is hard and error-prone. Before attempting to prove correctness of a
TLA+ specification, we first check finite instances with the TLC model checker [12].
This usually catches numerous errors quickly – much more quickly than by trying to
prove it correct. Only after TLC can find no more errors do we try to write a proof.

The TLA+ language supports a hierarchical, non-linear proof development process
that we find indispensable for larger proofs [?]. The highest-level proof steps are derived
almost without thinking from the structure of the theorem to be proved. For example, a
step of the form P1∨ . . .∨Pn ⇒ Q is proved by the sequence of steps asserting Pi ⇒ Q,
for each i. When the user reaches a simple enough step, she first tries a fully automatic
proof using a leaf directive citing the facts and definitions that appear relevant. If that
fails, she begins a new level with a sequence of proof-less assertion steps that simplify
the assertion, and a final qed step asserting that the goal follows from these steps. These
new lower-level steps are tuned until the qed step is successfully verified. Then, the
steps are proved in any order. (The user can ask TLAPM what steps have no proofs.)
The most common reason that leaf proofs fail to verify is that the user has forgotten to
use some fact or definition. When a proof fails, TLAPM prints the usable hypotheses
and the goal, with usable definitions expanded. Examining this output often reveals the
omission.

This kind of hierarchical development cries for a user interface that allows one to
see what has been proved, hide irrelevant parts of the proof, and easily tell TLAPM
what it should try to prove next. Eventually, these functions will be provided by the
TLA+ Toolbox. (It now performs only the hiding.) When TLAPS is integrated into the
Toolbox, writing the specification, model-checking it, and writing a proof will be one
seamless process. Meanwhile, we have written an Emacs mode that allows hierarchical
viewing of proofs and choosing which parts to prove.

We expect most users to assume simple facts about data structures such as sequences
rather than spending time proving them – especially at the beginning, before we have
developed libraries of such facts for common data structures. Relying on unchecked
assumptions would be a likely source of errors; it is easy to make a mistake when
writing an “obviously true” assumption. Such assumptions should therefore be model-
checked with TLC.

5.1 Example Developments

We have written a number of proofs, mainly to find bugs and see how well the prover
works. Most of them are in the examples sub-directory of the TLAPS distribution.
Here are the most noteworthy:

– Peterson’s Mutual Exclusion Algorithm. This is a standard shared memory mutual
exclusion algorithm. The algorithm (in its 2-process version) is described in a dozen
lines of PlusCal, an algorithm language that is automatically translated to TLA+.
The proof of mutual exclusion is about 130 lines long.

– The Bakery Algorithm with Atomic Reads and Writes. This is a more complicated
standard mutual exclusion example; its proof (for the N-process version) is 800
lines long.

148 K. Chaudhuri et al.

– Paxos. We have specified a high-level version of the well-known Paxos consensus
algorithm as a trivial specification of consensus and two refinement steps—a total
of 100 lines of TLA+. We have completed the proof of the first refinement and most
of the proof of the second. The first refinement proof is 550 lines long; we estimate
that the second will be somewhat over 1000 lines.

Tuning the back-end provers has made them more powerful, making proofs easier to
write. While writing machine-checked proofs remains tiresome and more time consum-
ing than we would like, it has not turned out to be difficult once the proof idea has been
understood.

Acknowledgements. Georges Gonthier helped design the TLA+ proof language. Jean-
Baptiste Tristan wrote the (incomplete) Paxos proof.

References

1. TLAPS web-site, http://www.msr-inria.inria.fr/~doligez/tlaps
2. TLA+ Toolbox, http://www.tlaplus.net/tools/tla-toolbox/
3. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)
4. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An extensible automated theorem prover

producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS
(LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

5. Bouton, T., de Oliveira, D.C., Déharbe, D., Fontaine, P.: veriT: An open, trustable and ef-
ficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 151–156.
Springer, Heidelberg (2009)

6. Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. Journal of Auto-
mated Reasoning 41, 33–59 (2008)

7. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: A TLA+ Proof System. In: Sutcliffe, G.,
Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Workshop on Knowledge Exchange:
Automated Provers and Proof Assistants. CEUR Workshop Proceedings, vol. 418, pp. 17–37
(2008)

8. Corbineau, P.: A declarative proof language for the Coq proof assistant. In: Miculan, M.,
Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84. Springer,
Heidelberg (2008)

9. Gafni, E., Lamport, L.: Disk Paxos. Distributed Computing 16(1), 1–20 (2003)
10. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.

SE-3(2), 125–143 (1977)
11. Lamport, L.: How to write a proof. American Mathematical Monthly 102(7), 600–608 (1995)
12. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2003)
13. Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
14. Rudnicki, P.: An overview of the Mizar project. In: Workshop on Types for Proofs and Pro-

grams, Bastad, Sweden, pp. 311–332 (1992)
15. Wenzel, M.: The Isabelle/Isar reference manual (December 2009),
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf

http://www.msr-inria.inria.fr/~doligez/tlaps
http://www.tlaplus.net/tools/tla-toolbox/
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf

MUNCH - Automated Reasoner for Sets and
Multisets

Ruzica Piskac and Viktor Kuncak

Swiss Federal Institute of Technology Lausanne (EPFL)
firstname.lastname@epfl.ch

Abstract. This system description provides an overview of the MUNCH
reasoner for sets and multisets. MUNCH takes as the input a formula in a
logic that supports expressions about sets, multisets, and integers. Con-
straints over collections and integers are connected using the cardinality
operator. Our logic is a fragment of logics of popular interactive theo-
rem provers, and MUNCH is the first fully automated reasoner for this
logic. MUNCH reduces input formulas to equisatisfiable linear integer
arithmetic formulas. MUNCH reasoner is publicly available. It is imple-
mented in the Scala programming language and currently uses the SMT
solver Z3 to solve the generated integer linear arithmetic constraints.

1 Introduction

Applications in software verification and interactive theorem proving often in-
volve reasoning about sets of objects. Cardinality constraints on such collections
also arise in these scenarios. Multisets arise for analogous reasons as sets: ab-
stracting the content of linked data structure with duplicate elements leads to
multisets. Multisets (and sets) are widely present in the theorem proving com-
munity. Interactive theorem provers such as Isabelle [3], Why [1] or KIV [4]
specify theories of multisets with cardinality constraints. They prove a number
of theorems about multisets to enable their use in interactive verification. How-
ever, all those tools require a certain level of interaction. Our tool is the first
automated theorem prover for multisets with cardinality constraints, which can
check satisfiability of formulas belonging to a very expressive logic (defined in
Figure 1) entirely automatically.

This system description presents the implementation of the decision proce-
dure for satisfiability of multisets with cardinality constraints [8]. We evaluated
our implementation by checking the unsatisfiability of negations of verification
conditions for the correctness of mutable data structure implementations. If an
input formula is satisfiable, our tool generates a model, which can be used to
construct a counterexample trace of the checked program.

2 Description of the MUNCH Implementation

2.1 Input Language

A multiset (bag) is a function m from a fixed finite set E to N, where m(e)
denotes the number of times an element e occurs in the multiset (multiplicity of

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 149–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

150 R. Piskac and V. Kuncak

e). Our logic includes multiset operations such as multiplicity-preserving union
and the intersection. In addition, it supports an infinite family of relations on
multisets defined point-wise, one relation for each Presburger arithmetic for-
mula. For example, (m1 ∩ m2)(e) = min(m1(e),m2(e)) and m1 ⊆ m2 means
∀e.m1(e) ≤ m2(e). Our logic supports using such point-wise operations for arbi-
trary quantifier-free Presburger arithmetic formulas. The logic also supports the
cardinality operator that returns the number of elements in a multiset. Figure
1 summarizes the language of multisets with cardinality constraints (MAPA).
There are two levels at which integer linear arithmetic constraints occur: to de-
fine point-wise operations on multisets (inner formulas) and to define constraints
on cardinalities of multisets (outer formulas). Integer variables from outer for-
mulas cannot occur within inner formulas.

Top-level formulas:
F ::= M=M | M ⊆ M | ∀e.Fin | Aout | F ∧ F | ¬F

Outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
∑

Fin(tin, . . . , tin)
tout ::= k | C | tout + tout | C · tout | ite(Fout, tout, tout) | |M|

Inner linear arithmetic formulas:
Fin ::= tin ≤ tin | tin=tin | Fin ∧ Fin | ¬Fin

tin ::= m(e) | C | tin + tin | C · tin | ite(Fin, tin, tin)
Multiset expressions:

M ::= m | ∅ | M ∩ M | M ∪ M | M 	 M | M \ M | M \\M | setof(M)

C - integer constant Variables: e - fixed index, k - integer, m - multiset

Fig. 1. Quantifier-Free Multiset Constraints with Cardinality Operator (MAPA)

This logic subsumes the BAPA logic [5]. If a formula reasons only about sets,
this can be added by explicitly stating for each set variable S that it is a set:
∀e.(S(e) = 0 ∨ S(e) = 1).

2.2 NP vs. NEXPTIME Algorithm in Implementations

Checking satisfiability of MAPA formulas is an NP-complete problem [9]. Our
first implementation was based on the algorithm used to establish this optimal
complexity, but we found that the running times were impractical due to large
constants. MUNCH therefore currently uses the conceptually simpler algorithm
in [8]. Despite its NEXPTIME worst-case complexity, we have found that the
algorithm from [8], when combined with additional simplifications, results in a
tool that exhibits acceptable performance. Our implementation often avoids the
worst-case complexity of the most critical task, the computation of semilinear
sets, by leveraging the special structure of formulas that we need to process (see
Section 2.4).

MUNCH - Automated Reasoner for Sets and Multisets 151

2.3 System Overview

Figure 2 provides a high-level overview of the reasoner.

Fig. 2. Phases in checking formula satisfiability. MUNCH translates the input formula
through several intermediate forms, preserving satisfiability in each step.

Given an input formula (Figure 1), MUNCH converts it into the sum normal
form

P ∧ (u1, . . . , un) = Σe∈E(t1, . . . , tn) ∧ ∀e.F

where

– P is a quantifier-free Presburger arithmetic formula without any multiset
variables, and sharing integer variables only with terms u1, . . . , un

– the variables in t1, . . . , tn and F occur only as expressions of the form m(e)
for m a multiset variable and e the fixed index variable

The algorithm that reduces a formula to its sum normal form runs in polynomial
time and is applicable to every input formula.

The derived formula is further translated into the logic that we call LIA∗ [9].
LIA∗ is linear integer arithmetic extended with the ∗ operator. The ∗ operator
is defined on sets of vectors by C∗ = {v1 + . . .+vn | v1, . . .vn ∈ C∧n ≥ 0}. The
new atom that we add to the linear integer arithmetic syntax is u ∈ {x | F (x)}∗,
where F is a Presburger arithmetic formula.

152 R. Piskac and V. Kuncak

A formula in the sum normal form

P ∧ (u1, . . . , un) =
∑
e∈E

(t1, . . . , tn) ∧ ∀e.F

is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈ {(t′1, . . . , t′n) | F ′}∗

where the terms t′i and the formula F ′ are formed from the terms ti and the
formula F in the following way: for each multiset expression mj(e) we introduce
a fresh new integer variable xj and then we substitute each occurrence of mj(e)
in the terms ti and the formula F with the corresponding variable xj . The
equisatisfiability theorem between the two formulas follows from the definitions.
Given a finite set of vectors (t′1, . . . , t

′
n) such that their sum is (u1, . . . , un), we

define the carrier set E to have as many elements as there are summands and
define mj(e) to have the value of xj in the corresponding summand. We use this
theorem in the model reconstruction.

Model Reconstruction. Our tool outputs a model if an input formula is
satisfiable. After all transformations, we obtain a linear arithmetic formula eq-
uisatisfiable to the input formula. If there is a satisfying assignment for the
final formula, we use the constructive proofs of the equisatisfiability theorems to
construct a model for the original formula.

2.4 Efficient Computation of Semilinear Sets and Elimination of
the ∗ Operator

The elimination of the ∗ operator is done using semilinear sets. Let S ⊆ Zm be
a set of integer vectors and let a ∈ Zm be a integer vector. A linear set LS(a;S)
is defined as LS(a;S) = {a + x1 + . . .+ xn | xi ∈ S ∧ n ≥ 0}. Note that vectors
xj and xj can be equal and this way we can define a multiplication of a vector
with a positive integer constant. A semilinear set Z is defined as a finite union
of linear sets: Z = ∪k

i=1LS(ai;Si).
All vectors belonging to a semilinear set can be described as a solution set

of a Presburger arithmetic formula. A classic result [2] shows that the converse
also holds: the set of satisfying assignments of a Presburger arithmetic formula
is a semilinear set.

Consider the set {(t′1, . . . , t′n) | F ′}∗. The set of all vectors which are the so-
lution of formula F ′ is a semilinear set. It was shown in in [8, 6] that applying
the ∗ operator on a semilinear set results in a set which can be described by
a Presburger arithmetic formula. Consequently, applying the star operator on
a semilinear set results in a new semilinear set. Because {(t′1, . . . , t′n) | F ′}∗ is
a semilinear set, checking whether (u1, . . . , un) ∈ {(t′1, . . . , t′n) | F ′}∗ is effec-
tively expressible as a Presburger arithmetic formula. This concludes that the
elimination of the ∗ operator results in a equisatisfiable Presburger arithmetic
formula.

MUNCH - Automated Reasoner for Sets and Multisets 153

Efficient Computation of Semilinear Sets. The problem with this approach
is that computing semilinear sets is expensive. The best know algorithms still
run in the exponential time and are fairly complex [10].

For complexity reasons, we are avoiding to compute semilinear sets. Still, the
exponential running time is unavoidable in this approach. Therefore, instead of
developing an algorithm which computes semilinear sets for an arbitrary Pres-
burger arithmetic formula, we split a formula into simpler parts for which we
can easier compute semilinear sets. Namely, we convert formula F into a dis-
junctive normal form: F ′(t) ≡ A1(t) ∨ . . . ∨ Am(t). This way checking whether
u ∈ {t | F ′(t)}∗ reduces to u = k1 + . . .+km∧

∧m
j=1 kj ∈ {t | Aj(t)}∗. The next

task is to eliminate the ∗ operator for the formula kj ∈ {t | Aj(t)}∗, where Aj is a
conjunction of linear arithmetic atoms. Aj can also be rewritten as a conjunction
of equalities by introducing fresh non-negative variables. In most of the cases,
computing a semilinear set is actually computing a linear set which can be done
effectively, for example, using the Omega-test [11]. Since Aj is a conjunction of
equations, we use simple rewriting rules. The problem of inequalities expressing
that a term is non-negative in most cases is resolved by implicitly using them as
non-negative coefficients. As an illustration, consider formula m0 = y+x, where
all variables have to be non-negative. All solutions are described with a linear set:
(m0, y, x) = (0, 0, 0) + y(1, 1, 0) + x(1, 0, 1), i.e. LS((0, 0, 0), {(1, 1, 0), (1, 0, 1)}).
This approach of using equalities and rewriting is highly efficient and works in
most of the cases. We also support a simple version of the Omega test.

However, our implementation is not complete for the full logic described in
Figure 1. There are cases where one cannot avoid the computation of a semilinear
set. One of the examples where the MUNCH tool cannot find a solution is when
there exists an inner formula of the form ∀e.Fin(e) and Fin(e) is a formula
where none of the variables have coefficient 1. An example of such a formula
is ∀e.5m1(e) + 7m2(e) ≤ 6m3(e). If at least one variable has coefficient 1 after
the simplifications, our tool works. In our experimental results, while processing
formulas derived in verification, we did not encounter such a problem. Notice
also that our tool is always complete for sets, so it can also be used as a complete
reasoner for sets with cardinality constraints (with a doubly exponential worst-
case bound on running time).

To summarize, out of each conjunct we derive an equisatisfiable Presburger
arithmetic formula and this way the initial multiset constraints problem reduces
to satisfiability of quantifier-free Presburger arithmetic formulas. To check sat-
isfiability of such a formula, we invoke the SMT solver Z3 [7] with the option
”-m”. This option ensures that Z3 returns a model in case that the input formula
is satisfiable. Since all our transformations are satisfiability preserving, we either
return unsat or reconstruct a model for the initial multiset formula from the
model returned by Z3.

3 Examples and Benchmarks

First we illustrate how the MUNCH reasoner works on a simple example, and
then we show some benchmarks that we did.

154 R. Piskac and V. Kuncak

Consider a simple multiset formula |x' y| = |x|+ |y|. Its validity is proved by
showing that |x ' y| �= |x|+ |y| is unsatisfiable. We chose such a simple formula
so that we can easily present and analyze the tool’s output. The intermediate
formulas in the output correspond to the result of the individual reduction step
described in Section 2.

Formula f3:

NOT (|y PLUS x| = |y| + |x|)

Normalized formula f3:

NOT (k0 = k1 + k2) AND FOR ALL e IN E. (m0(e) = y(e) + x(e)) AND

(k0, k1, k2) = SUM {e in E, TRUE } (m0(e), y(e), x(e))

Translated formula f3:

NOT (k0 = k1 + k2) AND (k0, k1, k2) IN {(m0, y, x) | m0 = y + x }*

No more disjunctions:

NOT (k0 = k1 + k2) AND k0 = u0 AND k1 = u1 AND k2 = u2 AND

(u0, u1, u2) IN {(m0, y, x) | m0 = y + x }*

Semilinear set computation :

(m0, y, x) | m0 = y + x,

semilinear set describing it is:

List(0, 0, 0), List(List(1, 1, 0), List(1, 0, 1))

No more stars:

NOT (k0 = k1 + k2) AND k0 = u0 AND k1 = u1 AND k2 = u2 AND

u2 = 0 + 1*nu1 + 0 AND u1 = 0 + 0 + 1*nu0 AND u0 = 0 + 1*nu1 + 1*nu0

AND (NOT (mu0 = 0) OR (nu1 = 0 AND nu0 = 0))

This formula is unsat

The main problem we are facing for a more comprehensive evaluation of our
tool is the lack of similar tools and benchmarks. Most benchmarks we were using
are originally derived for reasoning about sets. Sometimes those formulas contain
conditions that we do not need to consider when reasoning about multisets. This
can especially be seen in Figure 3. Checking that an invariant on the size field
of a data structure that implements a multiset is preserved after inserting 3

Property #set vars #multiset vars time (s)

Correctness of efficient emptiness check 1 0 0.40
Correctness of efficient emptiness check 0 1 0.40
Size invariant after inserting an element in a list 2 1 0.46
Size invariant after inserting an element in a list 0 2 0.40
Size invariant after deleting an element from a list 0 2 0.35
Allocating and inserting 3 objects into a container 5 0 3.23
Allocating and inserting 3 objects into a container 0 5 0.40
Allocating and inserting 4 objects into a container 6 0 8.35

Fig. 3. Measurement of running times for checking verification conditions that arise
in proving correctness of container data structures. Please see tool web page for more
details.

MUNCH - Automated Reasoner for Sets and Multisets 155

objects requires 0.4 seconds. Checking the same property for a data structure
implementing a set requires 3.23 seconds.

We could also not compare the MUNCH tool with interactive theorem provers
since our tool is completely automated and does not require any interaction.

In the future we plan to integrate our tool into theorem provers for expres-
sive higher-order logics and to incorporate it into software verification systems.
This will also enable us to obtain further sets of benchmarks. Our tool and the
presented examples can be found at the following URL:

http://icwww.epfl.ch/~piskac/software/MUNCH/

References

1. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007),
http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf

2. Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific
Journal of Mathematics 16(2), 285–296 (1966)

3. Isabelle: Isabelle - a generic proof assistant,
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

4. KIV: KIV (Karlsruhe Interactive Verifier),
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/

5. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Pres-
burger Arithmetic. J. of Automated Reasoning (2006), http://dx.doi.org/10.

1007/s10817-006-9042-1

6. Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2), 225–263
(2005)

7. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008), http://dx.doi.org/10.1007/978-3-540-78800-3_24

8. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-
straints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 218–232. Springer, Heidelberg (2008)

9. Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008)

10. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algo-
rithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488. Springer, Heidelberg (1991)

11. Pugh, W.: A practical algorithm for exact array dependence analysis. ACM Com-
mun. 35(8), 102–114 (1992)

http://icwww.epfl.ch/~piskac/software/MUNCH/
http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://dx.doi.org/10.1007/s10817-006-9042-1
http://dx.doi.org/10.1007/s10817-006-9042-1
http://dx.doi.org/10.1007/978-3-540-78800-3_24

A Slice-Based Decision Procedure for
Type-Based Partial Orders

Elena Sherman, Brady J. Garvin, and Matthew B. Dwyer

Department of Computer Science and Engineering
University of Nebraska–Lincoln

Lincoln, NE 68588-0115
{esherman,bgarvin,dwyer}@cse.unl.edu

Abstract. Automated software verification and path-sensitive program
analysis require the ability to distinguish executable program paths from
those that are infeasible. To achieve this, program paths are encoded
symbolically as a conjunction of constraints and submitted to an SMT
solver; satisfiable path constraints are then analyzed further.

In this paper, we study type-related constraints that arise in path-
sensitive analysis of object-oriented programs with forms of multiple in-
heritance. The dynamic type of a value is critical in determining program
branching related to dynamic dispatch, type casting, and explicit type
tests. We develop a custom decision procedure for queries in a theory
of type-based partial orders and show that the procedure is sound and
complete, has low complexity, and is amenable to integration into an
SMT framework. We present an empirical evaluation that demonstrates
the speed and robustness of our procedure relative to Z3.

1 Introduction

Recent years have witnessed an explosion in research on path-sensitive program
analysis, e.g., [1–4]. These approaches have the potential to achieve significantly
greater precision than more traditional program flow analyses. Increased pre-
cision is possible because the analyses are able to ignore program behavior on
infeasible paths—sequences of program statements that are not executable in
any run of the program—and thus more accurately reflect the program’s seman-
tics. Analyses avoid infeasible paths by calculating a symbolic characterization
of constraints on input values that govern the execution of a path. This charac-
terization is referred to as the path condition.

A path condition includes a constraint for each conditional branch in the
program. For example, an integer constraint would be generated both for explicit
branches like if(x > 0){ ... } and implicit branches such as those embedded
in array bounds and divide-by-zero checks. Constraints over a variety of domains,
and theories, are needed to encode path conditions for non-trivial programs. In
addition to the theory of linear integer arithmetic, the theories of uninterpreted
functions, extensional arrays and fixed-size bit vectors are commonly used [2, 3].
This diversity of constraints makes Satisfiability Modulo Theory (SMT) solvers,

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 156–170, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Slice-Based Decision Procedure for Type-Based Partial Orders 157

such as CVC3 [5] and Z3 [6], particularly well suited to reason about path-
sensitive program behavior.

The theories supported by modern SMT solvers are somewhat limited, and
mapping the data types in modern programming languages onto those theories
can lead to inefficiency and imprecision. Consequently, there is significant interest
in enriching the theories supported by SMT solvers to better match the needs of
program analysis clients. For example, last year alone there were several papers
reporting on decision procedures for theories of strings and on the reductions
in cost and improvements in precision that arise from using those theories in
reasoning about programs [7–9].

In this paper, we identify a fragment of the theory of partial orders, type-based
partial orders (TPO), that is sufficient for reasoning about type constraints aris-
ing in object-oriented programs. In particular, it comprises the constraints due
to dynamic dispatch, explicit subtyping tests (such as Java’s instanceof), and
typecasts. Furthermore, in contrast to the general theory of partial orders, un-
der this smaller fragment we are able to adapt existing approaches for evaluating
type tests at runtime to implement a standalone decision procedure for TPO,
TPO-DP. It is amenable to inclusion in the DPLL(T) framework for SMT solvers
[10] because it is incremental, restartable, and capable of calculating equalities
for propagation as well as unsatisfiable cores.

We have evaluated TPO-DP on a set of challenging benchmarks that are
generated from a characterization of the type constraints encountered in path-
sensitive program analyses. The results of the evaluation demonstrate that TPO-
DP performs significantly better than Z3 using the theory of uninterpreted func-
tions and an axiomatization of TPO.

In Sect. 2 we provide background on the nature of the type constraints that
require support, discuss decision procedures that are capable of reasoning about
partial orders, and describe existing approaches to efficiently evaluating type
tests at runtime. We present a TPO-DP in Sect. 3; proofs of soundness, com-
pleteness and time and space complexity are included. An evaluation of TPO-DP
and a discussion of our findings are presented in Sect. 4. Sect. 5 concludes with a
discussion of several approaches that might be taken to further extend TPO-DP.

2 Background and Related Work

Figure 1 illustrates how type constraints arise when performing a path-sensitive
analysis. Consider a modular analysis of method A.f() that begins on entry to
the method. Initially, it can be inferred that the dynamic type of the implicit
receiver object, this, is a subtype of A, but is not A itself because there can
be no instances of an abstract class. The right side of the figure illustrates the
constraints on the type of this, denoted t, that arise during the analysis; t (A
means that t is a subtype of A. The root of the tree expresses the constraints
arising from the definition of the type hierarchy. The edge from the root cor-
responds to the constraints on entry. At the call site to method m() there are
two possibilities: either A.m() or B.m() is invoked depending on the type of this;

158 E. Sherman, B.J. Garvin, and M.B. Dwyer

abstract class A {
void m() { . . . } ;
void n () { . . . } ;
void f () { m() ; n () ; }

}
class B extends A {

void m() { . . . } ; }
class C extends A {

void n () { . . . } ; }

B
 A ∧ C
 A

A.f()

B.m()

A.n()

t
 A ∧ t �
 C

������C.n()

t
 C

t
 B

A.m()

C.n()

t
 C

������A.n()

t
 A ∧ t �
 C

t
 A ∧ t �
 B

t �= A ∧ t
 A

Fig. 1. Simple dynamic dispatch example (left) and type-related branching in symbolic
execution tree (right)

the type constraints describing these situations label the second level of tree
edges. Similarly at the call site to method n() the receiver type determines the
invocation of A.n() or C.n().

An analysis that does not consider type constraints must consider all four
of the inter-procedural paths through A.f(). This can be costly in terms of
both analysis time and precision since, for example, the analysis of the sequence
B.m() followed by C.n() may produce results that are not reflective of executable
program behavior. In this example, two of the four paths, marked with × in the
figure, are infeasible and can be eliminated from analysis, thereby increasing
both analysis speed and precision.

2.1 A Fragment of the Theory of Partial Orders

A type hierarchy is a partial order (T,() where T is the set of types and t0 (t1
holds if and only if t0 is a subtype of t1. The relevant semantics of the subtype
relation are completely captured by the definition of a partial order:(is reflexive
(every type is a subtype of itself), transitive (a subtype of a subtype is itself a
subtype), and antisymmetric (mutual subtypes must be identical).

Let x be the dynamic type of a given value on a given path through the
program. The domain of x is T . An analysis seeks to determine whether a path
permits a constraint-satisfying assignment to x; otherwise the path must be
infeasible.

Since most widely used object-oriented languages, such as Java and C++,
do not support computing with types directly1, constraints of the form x (y,
x = y, or t0 (x (where y is another type variable) will not arise during analysis.
TPO is the fragment of partial orders that is free of such constraints.

Within this fragment, we distinguish two classes of constraints. Constraints
of the form t0 (t1 and t0 �(t1 are used to encode the type hierarchy. These con-
straints are known ahead of time and do not directly arise during path-sensitive
analyses. Constraints that do arise in path conditions may take on four forms:
x �= t0 (e.g., no dynamic type is abstract), x = t0 (e.g., a newly constructed

1 Language support for type reflection can provide a form of type based computation,
but we defer its treatment to future work.

A Slice-Based Decision Procedure for Type-Based Partial Orders 159

object’s type is known exactly), x (t0 (e.g., when successful dynamic type
checks imply one of the object’s supertypes), or x �(t0 (e.g., when failed dy-
namic type checks eliminate a possible supertype). We refer to constraints with
negations as negative and all others as positive.

When encoding a tree of TPO constraints, as in Fig. 1, we observe that the
type hierarchy constraints can only appear in the root of the tree. This fact can
be leveraged by incremental TPO decision procedures. The lack of constraints
between type variables in TPO can also be leveraged since a TPO query can be
decomposed into separate per-variable sub-queries that are each solved indepen-
dently.

2.2 Deciding Partial Order Queries

Techniques for deciding partial order queries are readily available. There have
been a rich body of work and also tool development related to the Bernays-
Schönfinkel class of formulae, which subsumes partial order queries. Tools such
as iProver [11] and Darwin [12] have been shown to be quite effective on such
formulae. But in our setting, these tools have the disadvantage of not supporting
incremental query checking, a common occurrence in path-sensitive analyses.
While we could, in principle, compare TPO-DP to these tools, the comparison
would be unfairly and severely biased in our favor. Therefore we chose a different
approach for comparing our procedure to the state of the art.

Researchers have also explored support for the Bernays-Schönfinkel class of
formulae in DPLL(T) solvers [13], but to the best of our knowledge no widely
available solver implements those techniques. However, Z3 does offer heuris-
tic quantifier instantiation, the underlying technique exploited by, for example,
iProver. TPO queries can be encoded in Z3’s theory of uninterpreted functions
with an appropriate axiomatization of partial orders. Moreover, using Z3’s sup-
port for the SMT-LIB Command language [14], complex TPO queries can be
solved faster than on other tools we experimented with. In Sect. 4 we provide
more detail on exactly how Z3 was configured for our evaluation.

2.3 Efficient Type Tests

As with runtime type tests, the key to an efficient TPO decision procedure is
the encoding of the type hierarchy T . Two obvious alternatives are the transi-
tive closure of (represented as a Boolean matrix and the transitive reduction
of (as a linked structure. The former offers constant time subtyping tests, but
it requires Θ(|T |2) space and as much time to setup. Thus it can be costly on
realistically sized hierarchies, e.g., Java 6 has 8865 classes in its standard library
[15]. On the other hand, representing the transitive reduction as a linked struc-
ture needs only Θ(|T |+ r) space, where r is the size of the transitive reduction,
though subtype tests take Θ(h) time, where h is the height of the hierarchy.

There has been a significant body of research on finding novel encodings to
improve this space/time trade-off, especially on the memory front [16–19]. But
viewed as solving a satisfiability problem, these runtime tests never consider

160 E. Sherman, B.J. Garvin, and M.B. Dwyer

anything except a conjunction of two constraints in the pattern (x = t0)∧(x (t1)
where t0 is the object’s known type, and t1 is the type it is being checked against.
As modular symbolic execution doesn’t always have exact type, information we
concentrated on encodings where longer conjunctions of constraints could be
supported. This requirement led us to use the Type Slicing (TS) encoding [17]
as the basis for TPO-DP.

TS constructs a compact representation of a type hierarchy by partitioning T
and ordering the types within each partition. Let T =

⋃
i=1...k Ti, where all Ti

are disjoint; each individual Ti is called a slice, and the partitioning is termed
a slicing. Further define Di(t) to be the descendants of t in slice i, namely
{t′ | t′ (t} ∩ Ti. Then we denote the ordered elements of a slice with square
brackets, e.g., [Ti]. Similarly, [Di(t)] designates the elements of Di(t) in the
order given for Ti. The essence of TS is the requirement that every [Di(t)] be a
substring of the corresponding Ti. In other words, the descendants of every type
must be ordered contiguously in every slice. Once this property is established,
determining whether one type t0 is a subtype of another, t1, is a two-step process.
First we must locate t0 in the slicing. Then we must compare its position to the
bounds of the interval occupied by [Di(t1)] in the same slice. The operation is
constant time.

The TS encoding uses two integers per type to store that location information:
one index indicating which slice it occupies and another giving its position in
that slice’s order. Additionally, for every type/slice pair there must be an entry
to track the upper and lower bounds of [Di(t)]. Hence, the space complexity is
in Θ(k |T |) where, recall, k is the number of slices. As we show later in Sect. 3.2,
for TPO-DP we also want to minimize k.

Algorithms for constructing a minimal number of slices are exponential, but
greedy algorithms have proven effective on real type hierarchies. They operate
by building a slice by repeatedly adding a single type. That type is added by
attempting to insert it into each existing slice in succession. If insertion into an
existing slice is not possible without violating the contiguity requirement, a new
slice is created with t as the sole member.

Even though in the worst case k ∈ Θ(|T |), the number of slices k is usually
very small compared to |T |. For instance the Java 6 hierarchy of java.* and
javax.* packages contains 5, 632 types which can be partitioned into 12 slices.
Table 3 in [19] provides more k values for different Java releases using different
slicing encodings. That data confirms that k is at least two orders of magnitude
smaller than |T | in practice. While the TS encoding is not in that table, we
found it better in practice than the ESE encoding that is mentioned.

We illustrate the TS encoding and type test evaluation approach on the simple
type hierarchy from Fig. 1. Assume that A, B and C types are divided (sub-
optimally) into 2 slices: [A,B] and [C]. According to TS, the encoding is A =
(1, 1, ([1 . . .2], [1 . . . 1])), B = (1, 2, ([2 . . . 2], [])) and C = (2, 1, ([], [1 . . .1])). The
first element of each tuple is the slice the type belongs to, the second is the
type’s position in that slice’s order, and the third is the per-slice descendant
intervals. To evaluate C (A, we first determine that C lies in slice 2 at index

A Slice-Based Decision Procedure for Type-Based Partial Orders 161

1. A’s descendant interval for slice 2 is [1 . . . 1], which includes C’s position. So
C (A holds. Checking C (B, C’s index cannot lie in the second descendant
interval of B because that interval is empty; C �(B.

3 Decision Procedure for Type Partial Orders (TPO-DP)

We determine the set of assignments that satisfy a conjunction of literals by
computing the set of assignments that satisfy each literal on its own and then
taking the intersection of these sets. A formula is satisfiable if this intersection
is nonempty.

Under the slicing used in TS, a set of assignments can be expressed as the
union of a set of intervals in the slices’ orderings. Consider the example encod-
ing at the end of the previous section. The constraint x (A would have its
assignments encoded as {[1 . . . 2]} for the first slice and {[1 . . . 1]} for the sec-
ond. Because of the contiguity of descendants (the contiguity of equal types is
trivial), assignments for a positive constraint will form at most one interval in
each slice. Similarly, negative constraints are satisfied by the complement set
of assignments, which can be expressed in at most two intervals per slice. In
contrast the general theory of partial orders affords no such guarantees.

To support pushing and popping constraints, we keep an explicit stack of
these sets for each slice. Take, for instance, the same example encoding and two
operations: pushing x �= A and x �(C. The first would push the interval set
{[2 . . .2]} on the first slice’s stack and {[1 . . .1]} on the second’s. x �(C would
be encoded as {[1 . . . 2]} and ∅, so the intersections of the respective interval
unions would be {[2 . . .2]} and ∅; these sets become the new tops of the stacks
when x �(C is pushed.

3.1 Soundness and Completeness

Because we are computing intersections of sets of satisfying assignments, sound-
ness and completeness depend on the correctness of the TS slicing algorithm.

Unfortunately, the TS paper does not contain a proof of correctness. However
correctness follows directly from two facts. First, the algorithm guards every
insertion of a type into a slice with explicit checks for the contiguity of descen-
dants. Therefore, the intervals resulting from the TS slicing do not contain any
assignments which are not satisfying. Second, every element is inserted into some
slice; as a last resort a new slice can always be allocated. Hence, as all satisfying
assignments are in T , every one of them lies in some interval.

In [20], we review the algorithm from Appendix A of [17] and present this
argument in more detail.

3.2 Time and Space Complexity

Because TPO-DP uses the TS encoding of T we separate the description of time
and space complexity into the TS slicing complexity and the decision procedure
complexity.

162 E. Sherman, B.J. Garvin, and M.B. Dwyer

The time complexity of greedily creating slices is determined by the cost of
trying to insert each type into a slice, multiplied by the number of types |T | and
the number of slices k. The TS insertion attempts take O(|A(t)|) time where
A(t) designates the type’s ancestors [17]. So the worst case for preprocessing
is certainly in O(k |T |2). Note that this is only an upper bound—we have not
developed a tighter bound. Also recall that k grows very slowly with respect to
|T |, as discussed in Sect. 2.3.

The space complexity is dominated by the encoding at Θ(k |T |).
As for the online decision procedure, time and space complexity are closely

coupled. We proceed by considering two cases: the cost per slice of pushing a
positive constraint and the same cost for pushing a negative one.

For a positive constraint we must take a union of intervals already on the
stack and retain only the elements within the interval that correspond to the
new constraint. In processing each interval we test whether it should be kept,
narrowed, or discarded, so the operation is in the worst case linear in the num-
ber of intervals in the union. Note that positive constraints have only one in-
terval per slice, and it is impossible for the push to divide a single interval into
many.

Similarly, when a negative constraint is added, each interval in the slice’s
union may be kept, narrowed, or discarded, but it is also possible to split one of
the intervals into two if it encloses the constraint-violating assignments. Thus,
the complexity of adding a negative constraint is the same as for a positive
constraint—linear in the number of intervals in the union—but in the worst case
it may increase this count by one for the next push. The growth in the number of
intervals across all slices is bounded by |T | /2 though; the maximum is reached
when the types in every slice are alternately included and excluded, and all slices
have even length.

So let cp be the number of positive constraints and cn the number that are
negative. In the worst case, the negative constraints come first, amassing as
many as

∑cn

i=1 k(i + 1) intervals on the stack when k(cn + 1) ≤ |T | /2 and the
|T | /2 bound is not encountered. If the bound is struck, at the bth constraint, the
number of intervals is

∑b
i=1 k(i+1) for the first b pushes and

∑cn

i=b+1 k(b+1) for
those that come later. After that, the worst that the positive constraints can do
is eliminate no intervals from the tops of the stacks. There will be an additional∑cp

i=1 k(cn + 1) intervals in the first case and
∑cp

i=1 k(b+ 1) in the second.
In total, the first case creates Θ(kcp + kcncp + kc2n) intervals and the latter

builds Θ(cp |T |+ cn |T |− |T |2). Each interval is processed exactly once, so these
expressions give the time complexity. It also follows that the worst-case mem-
ory complexity is the sum of these counts and the Θ(k |T |) space taken by the
slicing.

Designating the total number of constraints as c, we observe that cn controls
where the complexity of the algorithm lies between Θ(kc) andΘ(|T | c). Therefore
we believe it may be fruitful to explore transformations that eliminate negative
constraints. We propose one such transformation in Sect. 5.

A Slice-Based Decision Procedure for Type-Based Partial Orders 163

3.3 Incrementality, Restartability, and Unsatisfiable Cores

For a decision procedure to be incorporated into the DPLL(T) framework it
should be incremental, restartable, able to propagate equalities, and able to
generate explanations for UNSAT cases, i.e. unsatisfiable cores. The TPO-DP
meets each of these requirements.

TPO-DP is inherently incremental thanks to the explicit stack. Restarting is
also straightforward: the procedure is reset by clearing its stack. For propagating
equalities we must merely check after each push if there is exactly one possible
assignment.

We have developed two approaches for calculating unsatisfiable cores. Each
approach has its own advantages in terms of complexity and core size. However
neither approach is completely incremental in nature or guaranteed to produce
minimum cores. In the paragraph below we present the simpler of the two. An-
other method and the discussion of tradeoffs are presented in our tech report [20].

Let u be the first constraint on variable x to make the top of every slice’s
stack empty. Then the constraints up through u constitute an (likely large)
unsatisfiable core U . All sub-cores of U must contain u, because the formula was
SAT before u was pushed. Furthermore, if we define a sub-domain T ′ of T that
includes exactly those assignments to x that satisfy u, U \ {u} is UNSAT on T ′.
Therefore, we mark u and push it onto a new solver instance (effectively limiting
the domain to T ′), followed by the constraints that preceded it in order, until we
obtain u′ in the same manner that we obtained u. If u′ is unmarked, as it will
likely be the first time, we can repeat the procedure with a chance to eliminate
more constraints from the core. Otherwise, we terminate, returning the set of
constraints pushed on the last solver instance.

The complexity of finding unsatisfiable cores by this process is the cost of
checking the formula at most c times, c being the total number of contraints as
defined in Sect. 3.2.

3.4 Implementation Choices

We implemented the TPO-DP in Java without any significant effort to optimize
its performance. To perform a fair comparison with Z3, we implemented a parser
for SMT-LIB command syntax that prepares inputs for our decision procedure;
this allows our DP and Z3 to use exactly the same input.

After initial evaluation, we identified two optimizations that yield a perfor-
mance benefit. First, when multiple type variables are present, we produce in-
dependent instances of the TPO solver for each variable; a problem is SAT if
and only if it is SAT in each solver instance. Second, we cache the results of
satisfiability check which allows us to avoid processing redundant queries. Such
queries can be common in path-sensitive analysis of real programs. For instance,
[21] reports on an analysis that caches queries outside of the decision procedure
and observes hit-rates above 80%.

164 E. Sherman, B.J. Garvin, and M.B. Dwyer

4 Evaluation

Our primary research question centers on performance: How does the perfor-
mance of the TPO-DP compare to state-of-the-art solvers on queries arising in
path-sensitive program analyses? We begin with an assessment of path-sensitive
analysis techniques and their use of decision procedures.

4.1 Categories of Path-Sensitive Analyses

A path-sensitive analysis generates a set of closely related queries where longer
queries are extended from shorter ones by conjoining additional clauses. There
are multiple ways to extend a query, e.g., producing two queries where one con-
joins a constraint for a branch predicate and another that conjoins its negation.
Such an analysis gives rise to a query tree where nodes correspond to calls to
check for satisfiability and edges in the tree encode the assertion of clause sets.

Path-sensitive analyses are expensive to apply to real programs. Consequently,
intra-procedural path-sensitive analyses, i.e., analyses limited to individual meth-
ods, were the first to be explored by researchers. It is natural that papers on
these techniques report results on leaf methods – methods that do not call other
methods. For example, red-black tree implementations can be analyzed to detect
complex corner cases in their logic [2]; when tree height is no greater than six
such an analysis generates a tree with a few thousand queries. In intra-procedural
analysis, dynamic dispatch is not an issue, since calls from the method will not
be analyzed, so there is, arguably, little need for a TPO-DP.

Recently, researchers have begun to develop inter-procedural path-sensitive
analyses and apply them to larger portions of programs. This strategy has been
applied, for example, to produce crash-inducing inputs [22] and to detect security
faults [21]. Such analyses consider larger portions of programs whose behavior
involves many method calls and, consequently, there is a need to reason about
non-trivial type constraints related to dynamic dispatch. The authors of [21]
applied their technique to 3 large programs that required from 22 to 188 thousand
queries. We note that these query counts were taken after significant optimization
of query checks were performed, e.g., caching of query results outside of the
decision procedure.

Spurred by advances in automated decision procedures research in path-
sensitive program analysis appears to be accelerating. We conjecture that the
next-generation of path-sensitive analyses will continue to scale to larger portions
of program behavior.

4.2 A Population of TPO Queries

Since we do not have access to a next-generation path-sensitive analysis, we
performed a pilot study to characterize the size and diversity of type queries
across a set of three open-source Java programs of varying size and complexity.
For each program, we instrumented its implementation to record the total num-
ber of branches taken and, for each object, the sequence of type related branches

A Slice-Based Decision Procedure for Type-Based Partial Orders 165

Table 1. Type Constraint-related Observations from Program Trace Data

Program |T | Ex. k #Trace #Obj. Len. DD CC IN Type
NanoXML[23] 79 106 3 5 366 41.0 68k 5.5k 0 41%
Weka[24] 611 893 6 14 2.8k 35.5 134k 1.2M 383 36%
Soot[25] 3259 4019 7 1 32k 191.7 458k 1.6M 4.1M 69%

evaluated and the nature of the predicate being tested. The instrumented pro-
grams were executed on a subset of their test suites, and the recorded data were
analyzed to produce the summary in Table 1.

We measured the number of classes and interfaces used in each program in-
cluding all of the application classes’ super-types and super-interfaces. This num-
ber is shown under the second (|T |) column in Table 1. The third column (Ex.)
corresponds to the number of subtype, i.e., extends declarations, or interface
implementation declarations, i.e., implements. The number of type slices for
each program (k) illustrate the significant compression achieved by the TS en-
coding. The recorded program traces (#Trace) are partitioned into sub-traces
for each object allocated in the program. (#Obj.) reports the average number
of objects in a trace that are involved in type constraints and (Len.) the average
length of the per-object sub-traces. Across all of the traces for a program we
recorded the number of branches related to dynamic dispatch (DD), class casts
(CC), and instanceof tests (IN). Finally, we report the percentage of all branches
across the traces that involved type tests (Type); these data clearly indicate the
need to support TPO constraints. We also note that gathering fine-grain trace
data is extremely expensive, and to reduce the cost of our study we ran Soot
just once and only collected information for objects of Soot-defined type. Even
then the data collection took many hours.

To characterize the per-variable constraints, we processed the per-object trace
data to discard type tests that occurred in the same method where the object was
instantiated, since they could be decided trivially with the equality constraints
introduced by object allocation. In this way we retained only the tests that
modular path-sensitive analysis might see.

From those raw traces we built a summary in the form of a Markov model
where each state corresponded to exactly one type test. The training could then
proceed deterministically by frequency counting. We used no prior distribution.

Finally, we built the benchmarks directly from the Markov models for each
program. For each variable our generator kept a stack of states. Then, to push
constraints, it chose a variable randomly and treated its state stack as the pre-
fix of a path in the Markov model; the next state was chosen according to the
transition probabilities from the topmost state. This state and one of the corre-
sponding sets of constraints were pushed. As for popping, the generator removed
the most recently pushed state, along with its constraints. Moreover, to better
mimic the constraints generated by a path-sensitive analysis, if a popped state
still had other alternatives to explore, one of these was subsequently pushed.

166 E. Sherman, B.J. Garvin, and M.B. Dwyer

The generator can be parameterized by the number of objects involved in a
trace and the depth of the query tree, thereby allowing us to produce a popu-
lation of TPO query trees that resemble the three programs but are scaled in
several dimensions. Query trees are emitted in the SMT-LIB command format
using push/pop to encode the query tree edges2.

4.3 Comparing to a State-of-the-Art SMT Solver

We selected Z3 as a point of comparison since it is known to be efficient, supports
incremental solving, and can answer TPO queries by instantiating quantifiers in
the partial order axioms. Initially our use of Z3 for checking TPO queries resulted
in poor performance. It is widely understood that the appropriate selection of
solver heuristics is crucial to using a tool like Z3 effectively. To be as fair as pos-
sible in our evaluation we contacted the developers of Z3 asking for their advice
on configuring the tool and modifying the input files to maximize performance.
The developers were very supportive and supplied us with a modified input file
that was better suited for Z3’s quantifier instantiation techniques [26]. They
also suggested that for our queries we should run Z3 with AUTO CONFIG=false
to disable heuristics that were unnecessary for TPO problems and, in fact, were
hurting performance significantly. Finally, they informed us that for TPO prob-
lems Z3 is “effectively” sound and complete, thus when the solver returns an
UNKNOWN result it can be interpreted as SAT; the results of our evaluation
confirmed this to be the case.

4.4 Results

We decomposed the population of TPO query trees into three groupings based
on the number of queries in the tree. The data from [21] combined with the fact
that between 36% and 69% of the queries in our pilot studies were related to
type tests led us to the following breakdown. Inter-procedural (Inter) analyses
perform between a few thousand up to several tens-of-thousands of type-related
queries; for our TPO data we selected 4096 as the lower and 65535 as the upper
bound for defining this category. Queries trees that were smaller were classified
as those that intra-procedural (Intra) analyses could produce, and those that
were larger we consider the province of next-generation analyses.

Table 2 reports performance data of TPO-DP and Z3 on the population of
TPO queries broken down by grouping. The number of query trees (Num. Trees)
and the average number of queries (Avg. Size) in a tree are listed for each group-
ing. In addition, we report the average number of SAT and UNSAT problems per
tree; TPO-DP and Z3 agreed on this in every case—when Z3’s UNKNOWN is
interpreted as SAT. We ran all jobs under Linux on a 2.4GHz Opteron 250 with
4 Gigabytes of RAM. With a timeout of four hours, Z3 failed to complete some
of the larger query trees, and we give the number aborted (Z3 TO); TPO-DP

2 The data and benchmarks used in this study are available at
http://esquared.unl.edu/wikka.php?wakka=TpoDp

http://esquared.unl.edu/wikka.php?wakka=TpoDp

A Slice-Based Decision Procedure for Type-Based Partial Orders 167

Table 2. Solver performance data across size-based problem categories

Num. Avg. Avg. Avg. TPO-DP TPO-DP Z3 Z3
Category Trees Size SAT UNSAT all non-TO non-TO TO
Intra 388 857.6 535.4 322.1 10.2 2.8 464.1 119
Inter 46 22359.1 11665.4 10693.7 12.3 2.4 2233.1 21
Next-Gen. 16 124576.7 64668.6 59908.1 21.1 3.2 831.6 10

NW S NW S NW S NW S NW NW NW NW
0.1

1

10

100

1000

104

Z3 TPO Z3 TPO Z3 TPO Z3 TPO

1 Var. 2 Vars. 4 Vars. 8 Vars.

A
ve

ra
ge

U
se

r
T

im
e

(s
)

Fig. 2. Z3 and TPO User Times versus Variable Count

never took more than 72 seconds and completed all problems. We provide the
average time to solve a TPO query tree across each category for TPO-DP in
seconds (TPO-DP all). For the problems on which Z3 completed, we report the
average TPO query tree solve times for TPO-DP (TPO-DP non-TO) and for Z3
(Z3 non-TO) in seconds of user time.

We conjectured that other factors might influence the relative effectiveness
of TPO-DP and Z3. Specifically, the diversity in programs that informed our
generation strategy was significant and had a non-trivial influence on the degree
of branching in the query tree. In addition the number of free variables in the
constraints and the depth of the query tree (i.e. the number of the conjuncts)
could cause the two techniques to perform differently. Figures 2 and 3 present
log-scale plots of the cumulative cost of running the queries while varying the
two parameters of our generator. This time we break the data down by pro-
gram, where N, W, and S stand for nanoXML, Weka, and Soot, respectively. In
addition, we indicate the mean run times with the dashed line.

Note that these plots only reflect benchmarks solved by both implementations
—the problems which Z3 could complete in four hours. In particular all of the
Soot benchmarks with more than two variables timed out, and the bar for Soot
at two variables represents a single data point. Similarly, at the depths of 10
and 15 only one Z3 run with the Soot hierarchy completed. In contrast, the data
for the nanoXML and Weka benchmarks was not significantly hampered by
timeouts.

168 E. Sherman, B.J. Garvin, and M.B. Dwyer

N W S N W S N W S N W S N W S N W S
0.1

1

10

100

1000
104

Z3 TPO Z3 TPO Z3 TPO

Depth of 5 Depth of 10 Depth of 15

A
ve

ra
ge

U
se

r
T

im
e

(s
)

Fig. 3. Z3 and TPO User Times versus Stack Depth

4.5 Discussion

We believe that these results strongly suggest that in advanced path-sensitive
program analyses there is a need for custom decision procedures for TPO queries.
Such queries arise frequently, and when they do, even state-of-the-art solvers such
as Z3 struggle to scale to the size of problems that are characteristic of advanced
analyses.

Across all of the different decompositions of the data we collected, TPO-DP
outperformed Z3 by a wide margin. Varying the program, the number of vari-
ables, or tree depth seemed to have only a modest effect on TPO-DP’s perfor-
mance, except when the number of variables grows large. We believe this latter
observation to be more a property of the generated problems, because when the
number of variables grows large, for a fixed depth of query tree, the number
of constraints that simultaneously involve a single variable will likely decrease.
TPO-DP appears to scale well with query tree size, it is relatively stable when
moving from the intra-procedural to inter-procedural categories, a 26-fold in-
crease in size on average. This appears to reflect a true benefit of TPO-DP, since
Z3’s run time increases almost 5-fold across those same categories. We believe
that the performance of TPO-DP in moving from the inter-procedural to next-
generation categories also suggests good scalability, a 5.6-fold increase in size
gives rise to only a 70% increase in solver time. The analogous data for Z3 is not
informative since it times out on 10 of the 16 problems.

5 Conclusions and Future Work

As path-sensitive analyses scale to consider larger portions of object-oriented pro-
grams they will invariably encounter large numbers of type-related constraints.
Existing methods for solving those constraints are not well-integrated with SMT
solvers that support the integer, array, string, and bit-vector theories needed for
program reasoning. We developed TPO-DP—a custom decision procedure that
leverages results from efficient language runtime systems to efficiently process con-
straints related to type-based partial orders. We designed and conducted a

A Slice-Based Decision Procedure for Type-Based Partial Orders 169

significant evaluation producing problems representative of those that would be
generated by path-sensitive analyses and took care in conducting this evaluation
that we did not bias the results in favor of our tool. In this context, TPO-DP out-
performed Z3 by a wide margin.

In future work, we plan to explore additional optimizations to our method that
will compute type slices for commonly used libraries ahead of time. In addition
we will investigate hierarchy transformations that will allow us to introduce a
concreteness pseudo-type and thereby convert the many negative constraints for
abstract classes into one positive subtype constraint. Our fine-grained complexity
characterization suggests that this may further reduce solver time. Finally, we
have been approached by the developers of Kiasan [2] who wish to integrate
TPO-DP into their analysis engine to study its effectiveness on a variety of
analysis problems. In support of that work, we plan to explore extensions of
TPO and TPO-DP that support dynamic loading of types and type reflection.

Acknowledgements

The authors would like to thank Robby for bringing the need for a TPO decision
procedure to our attention and Xiao Qu for working on a early prototype. Cesare
Tinelli, Aaron Stump, and Leonardo de Moura provided helpful comments on
an early version of this work and suggestions for developing it further, and we
thank them. We could not have conducted a fair comparative evaluation without
the help of Nikolaj Bjørner, and we thank him for sharing his insights with us.

This work was supported in part by the National Science Foundation through
awards CCF-0541263 and CCF-0747009, the National Aeronautics and Space
Administration under grant number NNX08AV20A, the Air Force Office of Sci-
entific Research through award FA9550-09-1-0129, and the Army Research Office
through DURIP award W91NF-04-1-0104.

References

1. Păsăreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11, 339–353 (2009)

2. Deng, X., Lee, J., Robby: Bogor/Kiasan: A k-bounded symbolic execution for
checking strong heap properties of open systems. In: Proceedings of ASE, pp.
157–166 (2006)

3. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 367–381. Springer, Heidelberg (2008)

4. Godefroid, P., de Halleux, J., Nori, A.V., Rajamani, S.K., Schulte, W., Tillmann,
N., Levin, M.Y.: Automating software testing using program analysis. IEEE Soft-
ware 25, 30–37 (2008)

5. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

170 E. Sherman, B.J. Garvin, and M.B. Dwyer

7. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

8. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: Combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

9. Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over reg-
ular languages. In: Proceedings of PLDI, pp. 188–198 (2009)

10. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

11. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

12. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL
method. Artif. Intell. 172, 591–632 (2008)

13. de Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL
and substitution sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 410–425. Springer, Heidelberg (2008)

14. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Technical
Report BarST-RR-10, Department of Computer Science, The University of Iowa
(2010), http://www.SMT-LIB.org

15. Java: Package java.lang, JavaTMplatform standard ed. 6,
http://java.sun.com/javase/6/docs/api/java/lang/package-summary.html

16. Zibin, Y., Gil, J.Y.: Efficient subtyping tests with PQ-encoding. In: Proceedings
of OOPSLA, pp. 96–107 (2001)

17. Zibin, Y., Gil, J.Y.: Fast algorithm for creating space efficient dispatching tables
with application to multi-dispatching. In: Proceedings of OOPSLA, pp. 142–160
(2002)

18. Baehni, S., Barreto, J., Eugster, P., Guerraoui, R.: Efficient distributed subtyping
tests. In: Proceedings of DEBS, pp. 214–225 (2007)

19. Alavi, H.S., Gilbert, S., Guerraoui, R.: Extensible encoding of type hierarchies. In:
Proceedings of POPL, pp. 349–358 (2008)

20. Sherman, E., Garvin, B.J., Dwyer, M.B.: A slice-based decision procedure for
type-based partial orders. Technical Report TR-UNL-CSE-2010-0004, University
of Nebraska–Lincoln, Lincoln, NE 68588-0115 (2010)

21. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: Automati-
cally generating inputs of death. ACM Trans. Inf. Syst. Secur. 12 (2008)

22. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of z, pp.
209–224 (2008)

23. SIR: Software-artifact infrastructure repository, http://sir.unl.edu
24. Weka: Machine learning software, http://sourceforge.net/projects/weka
25. Soot: a java optimization framework, http://www.sable.mcgill.ca/soot/
26. Bjørner, N.: Personal Communication (2009)

http://www.SMT-LIB.org
http://java.sun.com/javase/6/docs/api/java/lang/package-summary.html
http://sir.unl.edu
http://sourceforge.net/projects/weka
http://www.sable.mcgill.ca/soot/

Hierarchical Reasoning for the Verification of
Parametric Systems

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E 1.4, D-66123 Saarbrücken, Germany
sofronie@mpi-sb.mpg.de

Abstract. We study certain classes of verification problems for para-
metric reactive and hybrid systems, and identify the types of logical
theories which can be used for modeling such systems and the reasoning
tasks which need to be solved in this context. We identify properties of
the underlying theories which ensure that these classes of verification
problems can be solved efficiently, give examples of theories with the de-
sired properties, and illustrate the methods we use on several examples.

1 Introduction

Most of the applications in verification require reasoning about complex domains.
In this paper we identify several classes of verification problems for parametric
reactive systems (modeled by transition constraints) and for simple hybrid sys-
tems, and point out the reasoning tasks in the associated theories which need
to be solved. The type of parametricity we consider refers to parametric data
(including parametric change and environment) specified using functions with
certain properties and parametric topology, specified using data structures.

The first problem we address is to check whether a safety property – expressed
by a suitable formula – is an invariant, or holds for paths of bounded length, for
given instances of the parameters, or under given constraints on parameters. For
this type of problems, we aim at identifying situations in which decision proce-
dures exist. We show that this is often the case, by investigating consequences
of locality phenomena in verification. If unsafety is detected, the method we use
allows us to generate counterexamples to safety, i.e. concrete system descriptions
which satisfy all the imposed constraints and are unsafe.

We also analyze the dual problem – related to system synthesis – of deriving
constraints between parameters which guarantee that a certain safety property is
an invariant of the system or holds for paths of bounded length. Such problems
were studied before for the case when the parameters are constants [1,6,20,15,13].
We present a new approach which can be used also in the case when some of
the parameters are allowed to be functional and show that sound and complete
hierarchical reduction for SMT checking in local extensions allows to reduce the
problem of checking that certain formulae are invariants to testing the satis-
fiability of certain formulae w.r.t. a standard theory. Quantifier elimination is
used for generating constraints on the parameters of the system (be they data

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 171–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

172 V. Sofronie-Stokkermans

or functions) which guarantee safety. These constraints on the parameters may
also be used to solve optimization problems (maximize/minimize some of the
parameters) such that safety is guaranteed. If we also express invariants in a
parametric form, this method can also be used for identifying conditions which
guarantee that formulae with a certain shape are invariants, and ultimately for
generating invariants with a certain shape. There exist approaches to the verifi-
cation of parametric reactive infinite state systems and timed automata (e.g. by
Ghilardi et al. [8], Hune et al. [10], Cimatti et al. [3]) and for parametric hybrid
automata (e.g. by Henzinger et al. [1], Frehse, [6], Wang [20], and Cimatti et al.
[4]), but in most cases only situations in which the parameters are constants were
considered. The idea of using hierarchical reasoning and quantifier elimination
for obtaining constraints on the parameters (constants or functions) is new.

Structure of the paper. The paper is structured as follows: In Section 2 we
present existing results on local theory extensions which allow us to identify
decidable theories interesting in verification. In Section 3 we identify situations
in which decision procedures exist for invariant checking and bounded model
checking, as well as methods for obtaining constraints between the parameters
which guarantee that certain properties are invariants. We consider both systems
modeled using transition constraints and a similar model of hybrid systems. In
Section 4 we draw conclusions and present plans for future work.

1.1 Idea and Running Examples

We illustrate the ideas on the following examples:

Example 1. Consider a discrete water level controller in which the inflow (in)
in the interval of time for one step in the evolution of the system is fixed. If
the water level becomes greater than an alarm level Lalarm (below the overflow
level Loverflow) a valve is opened and a fixed quantity of water (out) is left out.
Otherwise, the valve remains closed. We want to check whether, assuming that
we start from a state in which the water level L satisfies L ≤ Loverflow, the water
level always remains below Loverflow. Let TS be R, the theory of real numbers.

L > Lalarm L < L alarm

L′:=L+in

L′:=L+in−out L′:=L+in

L′:=L+in−out

Assume that a set Γ of constraints
on the parameters is given, e.g.
Γ = {in = out−10, in = Loverflow

−Lalarm−10}.
Then L≤Loverflow is an invariant iff formulae (i), (ii) are unsatisfiable w.r.t. TS∪Γ .

(i) ∃L,L′(Loverflow ≥ L ≥ Lalarm ∧ L′ = L+ in− out ∧ L′ > Loverflow).
(ii) ∃L,L′(L < Lalarm ∧ L′ = L+ in ∧ L′ > Loverflow).

It is easy to check that formulae (i) and (ii) above are unsatisfiable w.r.t. TS ∪Γ
by using a decision procedure for the theory of real numbers.

Assume now that we do not a priori impose any constraints Γ on the parame-
ters of the systems. We still know that the safety condition is an invariant iff the
formulae in (i), (ii) are unsatisfiable w.r.t. TS . We can eliminate the existentially

Hierarchical Reasoning for the Verification of Parametric Systems 173

quantified variables L,L′ using a method for quantifier elimination in R and thus
show that (assuming that Lalarm < Loverflow) the formula in (i) is equivalent to
(in > out) and the formula in (ii) is equivalent to (in > Loverflow−Lalarm). We can
therefore conclude (under the assumption that Lalarm<Loverflow) that L > Loverflow

is an invariant iff (in ≤ out) ∧ (in ≤ Loverflow−Lalarm).

Example 2. Consider a variant of Example 1 in which the inflow varies in time.
In all transitions, we will therefore replace in by in(t) and add the time change
t′ = t+1. Assume that we describe the initial states using the formula Init(L) :=
La≤L≤Lb, where La, Lb are parameters with La<Lb. Then L ≤ Loverflow is an
invariant iff the following formulae are unsatisfiable w.r.t. TS = R∪Z (the many-
sorted combination of the theory of reals and integers (for modeling time)):

(1) ∃L(La ≤ L ≤ Lb ∧ L ≥ Loverflow) |=TS⊥.
(2) Safety is invariant under transitions:

(i) ∃L,L′, t, t′(Loverflow≥L≥Lalarm∧L′=L+in(t)−out∧t′=t+1∧L′>Loverflow).
(ii) ∃L,L′, t, t′(L<Lalarm ∧ L′=L+in(t) ∧ t′=t+1 ∧ L′>Loverflow).

Under the assumption that La < Lb we can prove (using quantifier elimination
in the theory of reals [19]) that (1) iff Lb < Loverflow. It is not immediately clear
how to eliminate the quantifiers in the formulae in (2)(i) and (2)(ii) because of
the occurrences of the function in. In this paper we identify situations in which
the satisfiability problems can be reduced, in a sound and complete way, to
satisfiability problems over the base theory, by using locality properties of these
theories. Locality allows us to perform a reduction to satisfiability checks w.r.t.
R∪Z, where we can eliminate all quantified variables except for the parameters
and the variables which stand for arguments of the parametric functions; we
then interpret the result back in the theory extension. This way we proved that
(2)(i) iff ∀t(in(t)−out ≤ 0), and (2)(ii) iff ∀t(in(t) ≤ Loverflow − Lalarm).

Example 3. We can also model the water tank controller as a hybrid system,
with two discrete states (state invariants L ≥ Lalarm and L < Lalarm); and changes
described by jumps between these states and flows within each state.

L < L alarm

L > L
alarm

dL/dt = indL/dt = (in−out)

L > Lalarm L < L alarm

We model inflow and outflow by functions infl, outfl, where
infl(t) (outfl(t)) is the inflow (resp. outflow) in time t.
Assume that the inflow and outflow rates are constant
and equal to in, resp. out. The problems we consider are:

(1) Check whether the safety condition Ψ = L < Loverflow is invariant (under
jumps and flows), assuming that in, out satisfy certain given properties.

(2) Generate conditions on the parameters which guarantee that Ψ is invariant.

L < Loverflow is invariant under flows iff the following formulae are unsatisfiable:

(i) ∃L, t(L<Lalarm∧∀t′(0≤t′≤t→L+in ∗ t′ < Lalarm) ∧ L+in ∗ t > Loverflow).
(ii) ∃L, t(L≥Lalarm∧∀t′(0≤t′≤t→L+(in−out)∗t′≥Lalarm)∧L+(in−out)∗t>Loverflow).

174 V. Sofronie-Stokkermans

These are formulae with alternations of quantifiers. Task (1) can be solved using
a decision procedure for the satisfiability of the ∃∀ fragment of the theory of
reals, task (2) uses quantifier elimination. In Section 3.2 we will present in detail
this situation and also the case when the evolution rules in a state are specified
by giving bounds on the rate of growth of the continuous variables.

2 Decision Problems in Complex Theories

In this section we analyze a class of theories used for modeling reactive, real time
and hybrid systems for which we can obtain decidability results.

Theories, theory extensions. First-order theories are sets of formulae (closed
under logical consequence), typically all consequences of a set of axioms. (Al-
ternatively, we may consider a set of models which defines a theory.) Let T0 be
a theory with signature Π0 = (S,Σ0,Pred), where S is a set of sorts, Σ0 a set
of function symbols, and Pred a set of predicate symbols. We consider exten-
sions T1 = T0 ∪ K of T0 with signature Π = (S,Σ,Pred), where Σ = Σ0 ∪ Σ1
(i.e. the signature is extended by new function symbols Σ1 whose properties are
axiomatized by a set K of formulae). We consider two cases:

– K consists of clauses C(x1, . . . , xn) containing Σ1-functions.
– K consists of augmented clauses, i.e. of axioms of the form (Φ(x1, . . . , xn) ∨
C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary first-order formula in the
base signature Π0 and C(x1, . . . , xn) is a clause containing Σ1-functions.

The free variables x1, . . . , xn are considered to be universally quantified.

Locality of an extension. The notion of locality for theory extensions was
introduced in [16,7]. We focus on the following types of locality1 of an extension
T0 ⊆ T1 = T0 ∪ K with K a set of clauses (resp. augmented clauses for (ELoc)).

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G |=⊥
(ELoc) For every formula Γ = Γ0 ∪G, where Γ0 is a Πc

0-sentence and G is
a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪K[Γ] ∪ Γ |=⊥

where K[G] is the set of instances of K where all terms starting with an extension
function are in the set st(K, G) of all ground terms occurring in K or G.

We say that an extension T0 ⊆ T1 is local if it satisfies condition (Loc). We refer
to condition (ELoc) as extended locality condition. The notions of Ψ -locality and
Ψ -extended locality of a theory extension were introduced in [11] to encompass
situations in which the instances to be considered are described by a closure
operation Ψ . We say that K is Ψ -local if it satisfies:

(LocΨ) for every finite set G of ground clauses, K∪G|= ⊥ iff K[ΨK(G)]∪G |=⊥

where ΨK(G) = Ψ(st(K, G)). Condition (ELocΨ) is defined analogously. If ΨK(G)
= st(K, G) we recover the notions (Loc) resp. (ELoc).
1 In what follows, when we refer to sets G of ground clauses we assume that they are

in the signature Πc = (S, Σ ∪ C, Pred), where C is a set of new constants.

Hierarchical Reasoning for the Verification of Parametric Systems 175

Hierarchical reasoning. Consider a Ψ -local theory extension T0 ⊆ T0∪K. Con-
dition (LocΨ) requires that, for every set G of ground Πc clauses, T0∪K∪G |=⊥
iff T0 ∪ K[ΨK(G)] ∪ G |=⊥. All clauses in K[ΨK(G)] ∪ G have the property
that the function symbols in Σ1 have as arguments only ground terms, so
K[ΨK(G)] ∪ G can be flattened and purified2. The set of clauses thus obtained
has the form K0∪G0∪Def, where Def consists of ground unit clauses of the form
f(g1, . . . , gn) = c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground terms
without Σ1-function symbols, and K0 and G0 do not contain Σ1-function sym-
bols. (In what follows we always flatten and then purify K[ΨK(G)]∪G to ensure
that the ground unit clauses in Def are f(c1, . . . , cn) = c, where c1, . . . , cn, c are
constants.)

Theorem 1 ([16,11]). Let K be a set of clauses. Assume that T0 ⊆ T1 = T0∪K
is a Ψ -local theory extension. For any set G of ground clauses, let K0 ∪G0 ∪Def
be obtained from K[ΨK(G)]∪G by flattening and purification, as explained above.
Then the following are equivalent to T1 ∪G |=⊥:

(1) T0∪K[ΨK(G)]∪G |=⊥ .
(2) T0∪K0∪G0∪Def |=⊥ .
(3) T0 ∪ K0 ∪G0 ∪ Con[G]0 |=⊥, where

Con[G]0 = {
n∧

i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ Def}.

A similar equivalence holds for extended Ψ -local extensions, with the remark
that in that case K0 and G0 may contain arbitrary Π0-sentences.

Decidability, parameterized complexity. Theorem 1 allows us to show that
if for every finite set T of terms ΨK(T) is finite then (i) decidability of satisfiability
w.r.t. a Ψ -local extension T1 of a theory T0 is a consequence of the decidability
of the satisfiability of a certain fragment of T0, and (ii) the complexity of such
satisfiability tests in T1 can be expressed as a function of the complexity of
satisfiability checking for a suitable fragment of T0.

Theorem 2 ([16,11]). Assume that the theory extension T0 ⊆ T1 = T0∪K sat-
isfies condition ((E)Loc

Ψ). Satisfiability of Γ0∪G as in the definition of ((E)Loc
Ψ)

w.r.t. T1 is decidable provided K[ΨK(G)] is finite and K0 ∪ G0 ∪ Γ0 ∪ Con[G]0
belongs to a decidable fragment F of T0. If (i) the complexity of testing the sat-
isfiability of a set of formulae in F of size m w.r.t. T0 can be described by a
function g(m) and (ii) G is a set of T1-clauses of size n, then the complexity
of checking whether G |=T1⊥ is g(nk), where k is the maximum number of free
variables in a clause in K (but at least 2).

The (Ψ -)locality of an extension can be recognized by proving embeddability of
partial into total models assuming that the extension clauses are flat and linear
2 The function symbols in Σ1 are separated from the other symbols by introducing, in

a bottom-up manner, new constants ct for subterms t=f(g1, . . . , gn) with f∈Σ1, gi

ground Πc
0-terms together with corresponding definitions ct=t (C is a set of constants

which contains the constants introduced by flattening, resp. purification).

176 V. Sofronie-Stokkermans

[16,17,11]. (The converse implication also holds.) If we can guarantee that the
support of the total model which we obtain is the same as the support of the
partial model we start with, then condition (ELocΨ) is guaranteed. We present
some examples of theory extensions which proved to be Ψ -local in previous work:

Free and bounded functions. Any extension of a theory T0 with free function
symbols is local. Assume T0 contains a binary predicate ≤, and f �∈ Σ0. For
1 ≤ i ≤ m let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms in the signature Π0 and
φi(x1, . . . , xn) be Π0-formulae with (free) variables among x1, . . . , xn, such that
(i) T0 |= ∀x(φi(x)→ ∃y(si(x) ≤ y ≤ ti(x))), and (ii) if i �= j, φi ∧ φj |=T0⊥. The
extension T0 ⊆ T0 ∪ GB(f) satisfies condition ELoc [17,11], if

GB(f) =
m∧

i=1

GBφi(f), where GBφi(f) : ∀x(φi(x)→ si(x) ≤ f(x) ≤ ti(x)).

Monotonicity, boundedness for monotone functions. Any extension of a
theory for which ≤ is a partial order (or at least reflexive) with functions satis-
fying3: Monσ(f) and Boundt(f) is local [17,11]. The extensions satisfy condition
(ELoc) if e.g. in T0 all finite and empty infima (or suprema) exist.

Monσ(f)
∧
i∈I

xi≤i
σiyi ∧

∧
i�∈I

xi = yi → f(x1, .., xn) ≤ f(y1, .., yn)

Boundt(f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))
where t(x1, . . . , xn) is a Π0-term with variables among x1, . . . , xn whose asso-
ciated function has the same monotonicity as f in any model.

Convexity/concavity [18]. Let f be a unary function, and I = [a, b] a subset
of the domain of definition of f . We consider the axiom:

ConvI(f) ∀x, y, z
(
x, y∈I ∧ x ≤ z ≤ y → f(z)−f(x)

z−x ≤ f(y)−f(x)
y−x

)
.

Then T0⊆T0∪ConvI
f satisfies condition (ELoc) if T0 = R (the theory of reals),

or T0 = Z (e.g. Presburger arithmetic), or T0 is the many-sorted combination of
the theories of reals (sort real) and integers (sort int) and f has arity int→ real.

Bounds on the slope. The extension R ⊆ R∪BSc1,c2
f satisfies condition (ELoc),

where BSc1,c2
f is the following boundedness condition on the slope of f :

BSc1,c2
f ∀x, y

(
x �= y → c1 ≤ f(x)−f(y)

x−y ≤ c2

)
.

It is easy to see that condition (BSc1,c2
f) can be relativized to (unions of) intervals

I = [a, b] and combined with boundedness conditions of the form (x ∈ I →
sI(x) ≤ f(x) ≤ tI(x)) if (i) sI is convex and tI concave on I or (ii) the slope of
sI is smaller than c1 and the slope of tI larger than c2 on I.

In [18] we proved that the conditions above can be combined with continuity
and sometimes also with the derivability of the functions.
The following locality transfer result proved to be very useful.

3 For i ∈ I , σi∈{−, +}, and for i �∈ I , σi = 0; ≤+=≤,≤−=≥.

Hierarchical Reasoning for the Verification of Parametric Systems 177

Theorem 3 ([12]). Let Π0 = (Σ0,Pred) be a signature, T0 a Π0-theory, Σ1
and Σ2 two disjoint sets of new function symbols, Πi = (Σ0∪Σi,Pred), i = 1, 2,
and K a set of flat and linear Π1-clauses. Assume that the extension T0 ⊆ T0∪K
satisfies condition ELoc as a consequence of an embeddability condition in which
the support of the models does not change. Let T2 be a Π2-theory such that
T0 ⊆ T2. Then the extension T2 ⊆ T2 ∪ K satisfies condition ELoc as well.

3 Verification Problems for Parametric Systems

We identify situations in which decision procedures exist for invariant check-
ing and bounded model checking, as well as methods for obtaining constraints
between the parameters which guarantee that certain properties are invariants.

3.1 Systems Modeled Using Transition Constraints

We specify reactive systems using tuples (ΠS , TS , TS) where ΠS is a signature
and TS is a ΠS-theory (describing the data types used in the specification and
their properties), and TS = (V,Σ, Init,Update) is a transition constraint system
which specifies: the variables (V) and function symbols (Σ) whose values change
over time; a formula Init specifying the properties of initial states; a formula
Update with variables in V ∪V ′ and function symbols in Σ∪Σ′ (where V ′ and Σ′

are copies of V resp.Σ, denoting the variables resp. functions after the transition)
which specifies the relationship between the values of variables x (function f)
before a transition and their values x′ (f ′) after the transition.
We consider invariant checking and bounded model checking problems4, cf. [14]:

Invariant checking. A formula Ψ is an inductive invariant of a system S with
theory TS and transition constraint system TS=(V,Σ, Init,Update) if:
(1) TS , Init |= Ψ and (2) TS , Ψ,Update |= Ψ ′, where Ψ ′ results from Ψ by replacing
each x ∈ V by x′ and each f ∈ Σ by f ′.

Bounded model checking. We check whether, for a fixed k, unsafe states are
reachable in at most k steps. Formally, we check whether:

TS ∧ Init0 ∧
j∧

i=1

Updatei ∧ ¬Ψj |=⊥ for all 0 ≤ j ≤ k,

where Updatei is obtained from Update by replacing every x∈V by xi, every
f∈Σ by fi, and each x′∈V ′, f ′∈Σ′ by xi+1, fi+1; Init0 is Init with x0 replacing
x ∈ V and f0 replacing f∈Σ; Ψi is obtained from Ψ similarly.
Let Γ be a formula describing additional constraints on the parameters. To check
whether a formula Ψ is an inductive invariant under the constraints Γ we need
to analyze whether the following holds (where T1 = TS ∪ Γ):

(1) ∃x(Init(x) ∧ ¬Ψ(x)) |=T1 ⊥
(2) ∃x, x′(Ψ(x) ∧ Update(x, x′) ∧ ¬Ψ(x′)) |=T1 ⊥ .

4 In what follows we only address invariant checking; the problems which occur in
bounded model checking are similar.

178 V. Sofronie-Stokkermans

These are satisfiability problems for possibly quantified formulae w.r.t. an under-
lying theory T1. We are interested in identifying situations in which the problems
above are decidable, and also in the dual problem of inferring a set Γ of most
general constraints on the parameters which guarantee that Ψ is an invariant.

Definition 4. Let Γ be a formula expressing constraints on the parameters of
a verification problem. We say that Γ is the weakest condition under which Ψ
is an inductive invariant iff for every formula Γ expressing constraints on the
parameters, Ψ is an inductive invariant under Γ iff TS ∪ Γ |= Γ .

We distinguish the following, increasingly more complicated situations.

Case 1. There are no functional parameters, and only variables change value in
updates. Theorem 5 is a consequence of the form of the formulae in (1) and (2).

Theorem 5. Assume that the formulae Init(x), Ψ(x),¬Ψ(x),Update(x, x′) be-
long to a fragment F of the theory TS closed under conjunction.

(a) Assume that checking satisfiability of formulae in F w.r.t. TS is decidable. If
in the description of S no parameters are used or a set of constraints on the
parameters Γ (p) belonging to the fragment F is given, then checking whether
the formula Ψ is an invariant (under conditions Γ (p)) is decidable.

(b) If T allows quantifier elimination then we can use this to effectively construct
a weakest condition Γ on the parameters under which Ψ is an invariant.

Example 1 in Section 1.1 illustrates the way Theorem 5 can be used. Theo-
rem 5(b) can also be used for generating invariants with a given shape, expressed
using undetermined constants which can be considered to be parameters.

Case 2. Only variables change their value in updates, but some parameters of
the system are functions, possibly satisfying a set of axioms K, and TS = T0∪K.

Theorem 6. Assume that the formulae Init(x), Ψ(x),¬Ψ(x),Update(x, x′) be-
long to a fragment F of the theory TS closed under conjunction. Assume that
satisfiability of formulae in F w.r.t. TS is decidable. Let Γ (p) = Γ0∪ΓΣ be a set
of constraints on the parameters of TS, where: (i) Γ0 is a set of constraints on
the non-functional parameters which belongs to the fragment F , and (ii) ΓΣ is
a set of axioms containing functional parameters such that satisfiability of for-
mulae in F w.r.t. TS ∪ΓΣ is decidable. Then checking whether the formula Ψ is
an invariant (under conditions Γ (p) on the parameters) is decidable.

Proof : Decidability of problems of type (1) above is a consequence of the fact
that Init(x) ∧ ¬Ψ(x) |=TS∪Γ⊥ iff Γ0 ∧ Init(x) ∧ ¬Ψ(x) (which by assumption is
in F) is unsatisfiable w.r.t. TS ∪ ΓΣ . To prove decidability of problem (2) note
that Ψ(x)∧Update(x, x′)∧¬Ψ(x′) |=TS∪Γ⊥ iff Γ0∧Ψ(x)∧Update(x, x′)∧¬Ψ(x′)
(which is again in F) is unsatisfiable w.r.t. TS ∪ ΓΣ . �

The conditions of Theorem 6 hold e.g. if the decidability of the problems above
is a consequence of locality properties of certain theory extensions, i.e. if the
following conditions are satisfied:

Hierarchical Reasoning for the Verification of Parametric Systems 179

Condition 1: TS is an extension of a Π0-theory T0 with a set K of flat and
linear clauses (properties of the parameters in Σ1 ⊆ Σ) satisfying ELoc (and
the additional requirement in Thm. 3), and s.t. all variables occurring in
clauses in K occur below a Σ-function symbol.

Condition 2: Init(x), Ψ(x), and ¬Ψ(x) are quantifier-free Π0-formulae.
Condition 3: Update(x, x′) are quantifier-free formulae possibly containing also

functional parameters in Σ.

For clarity, in the conditions above and Theorem 7 we consider the particular
case in which locality allows us to reduce all proof tasks to satisfiability checks
for ground formulae w.r.t. T0. We will then briefly discuss the way the results
extend in the presence of extended locality conditions.

Theorem 7. Assume that Conditions 1–3 hold.

(a) Assume that ground satisfiability of formulae in T0 is decidable. Let Γ =
Γ0 ∪ ΓΣ be a set of constraints on Σ2⊆Σ, where Σ1 ∩ Σ2 = ∅, s.t. Γ0 is a
quantifier-free Π0-formula with no variables (only with parameters) and ΓΣ

is a set of flat and linear clauses such that T0 ⊆ T0∪ΓΣ is a local extension.
Then checking whether Ψ is an invariant (under conditions Γ) is decidable.

(b) If the theory T0 has quantifier elimination, this can be used to construct a
weakest condition Γ on the parameters under which Ψ is an invariant.

Proof : (a) follows from Thm. 2 since by Thm. 3, T0∪Γ⊆T0∪K∪Γ satisfies ELoc.
(b) The fact that the initial states satisfy Ψ can clearly be expressed as a satisfi-
ability problem w.r.t. T0. We can eliminate the existentially quantified variables
in x using a quantifier elimination method for T0 to obtain a weakest condition
Γ 1(p) on the parameters under which Ψ |= Init. We now analyze updates. Let
Γ be an arbitrary set of constraints for parametric functions not in Σ1. Ψ is
invariant under updates (under conditions Γ) iff ∃x∃x′ (Ψ(x) ∧ Update(x, x′) ∧
¬Ψ(x′)) |=T0∪K∪Γ ⊥. As T0∪Γ ⊆ T0∪K∪Γ is local, the following are equivalent:

– ∃x∃x′ (Ψ(x) ∧ Update(x, x′) ∧ ¬Ψ(x′)) |=T0∪Γ∪K ⊥.
– T0∪Γ∪G′ |=⊥, whereG′ is a set of groundΠ0-clauses (containing in addition

to the parameters and the constants obtained from x, x′ by Skolemization
also additional constants xf obtained from renaming extension terms).

– ∃x∃x′∃xfG
′ |=T0∪Γ ⊥.

– ∃xΓ2(y, p) |=T0∪Γ⊥, where Γ2 is obtained by eliminating (using QE in T0)
all existentially quantified variables from ∃x∃x′∃xfG

′ except for those used
for terms starting with Σ-functions and their arguments.

– T0 ∪ Γ |= ∀yΓ 2(y, p), where Γ 2 is obtained from ¬Γ2 by replacing back the
newly introduced constants with the terms they represent.

If K does not contain any constraints, Γ = Γ1 ∧ Γ2 is the weakest condition
under which Ψ is an invariant. �

Example 4. Consider the water controller in Example 2 in Section 1.1 where
the inflow in depends on time. We assume that time is discrete (modeled by

180 V. Sofronie-Stokkermans

the integers), and that the values of the water level are real numbers. Let
TS = T0 ∪ Free(in) be the extension of the many-sorted combination T0 of Z
(Presburger arithmetic) and R (the theory of reals) with the free function in.
Then for every set Γ of constraints, L ≤ Loverflow is an invariant under Γ iff the
following formulae are unsatisfiable w.r.t. T1 = TS ∪ Γ :

(i) ∃L,L′, t, t′(Loverflow≥L≥Lalarm ∧ L′=L+in(t)−out ∧ t′=t+1 ∧ L′>Loverflow)
(ii) ∃L,L′, t, t′(L<Lalarm ∧ L′=L+in(t) ∧ t′=t+1 ∧ L′>Loverflow)

Consider formula (i). By the locality of the extension with the free function in,
the following are equivalent:

(a) (Loverflow≥L≥Lalarm ∧ L′=L+in(t)−out ∧ t′=t+1 ∧ L′>Loverflow) |=T1⊥.
(b) (Loverflow≥L≥Lalarm ∧ L′=L+in0−out ∧ t′=t+1 ∧ L′>Loverflow) ∧ Def |=T1⊥,

where Def consists of the formula (in0 = in(t)).
(c) (Loverflow≥L≥Lalarm ∧ L′=L+in0−out ∧ t′=t+1 ∧ L′>Loverflow) |=T0∪Γ⊥.

We now eliminate all variables except for the parameters Loverflow, Lalarm, in0 and
the variable t (argument for in) and obtain that under the assumption that
Lalarm < Loverflow the formula in (c) is equivalent to in0−out > 0 i.e. – replacing
in0 with in(t) – with ∃t(in(t)−out > 0). Thus, (c) holds iff

(d) T0 ∪ Γ |= Γ 1, where Γ 1 = ∀t(in(t)− out ≤ 0).

For formula (ii) we can similarly construct Γ 2 = ∀t(in(t) ≤ Loverflow−Lalarm), so
Γ = Γ 1 ∧ Γ 2 is the weakest constraint under which L > Loverflow is invariant.

Comment. For fully exploiting the power of extended locality, we can relax
Conditions 1–3 and allow K and Γ to consist of augmented clauses, require that
T0 ⊆ T0∪Γ satisfies ELoc; allow Init(x), Ψ(x),¬Ψ(x) to be arbitraryΠ0-formulae
and require that Update(x, x′) consists of augmented clauses in which arbitrary
Π0-formulae are allowed to appear. The decidability results still hold if we can
guarantee that the formulae we obtain with the hierarchical reduction belong to
a fragment for which satisfiability w.r.t. T0 is decidable.

Case 3. Variables in V and functions in Σ may change their values during the
transitions. We consider transition constraint systems TS in which the formulae
in Update contain variables in X and functions in Σ and possibly parameters in
Σp. We assume thatΣp∩Σ = ∅. We therefore assume that the background theory
TS is an extension of a Π0-theory T0 with axioms K specifying the properties of
the functions in Σ1 ⊆ Σ\Σp. We make the following assumptions:

Assumption 1: Init(x) and Ψ(x) are conjunctions of clauses with free variables
x which do not contain functional parameters in Σp.

Assumption 2: T0∪K∪Init and T0∪K∪Ψ are flat and linear extensions of T0
satisfying ELoc (and the additional requirements in Thm. 3).

Assumption 3: For every f ∈ Σ, Update(f, f ′) – describing the update rules
for f – is a set of clauses which, for every ΠS-theory T , defines an extension
with a new function f ′ �∈ Σ, such that T ⊆T ∪Update(f, f ′) satisfies ELoc. 5

5 This is always the case if Update(f, f ′) are updates by definitions for f ′ depending
on a partition of the state space, or updates by guarded boundedness conditions.

Hierarchical Reasoning for the Verification of Parametric Systems 181

Theorem 8. Under Assumptions 1–3 the following hold:

(a) Assume that ground satisfiability of formulae in T0 is decidable. Let Γ be a
set of clauses expressing constraints on parameters in Σp (and not containing
functions in Σ) s.t. T0 ⊆ T0 ∪Γ is a local extension. Then checking whether
Ψ is an invariant (under conditions Γ) is decidable.

(b) If the theory T0 has quantifier elimination, this can be used to construct a
weakest condition Γ on the parameters under which Ψ is an invariant.

Proof : (a) By Theorem 3, Assumption 3 implies that T0∪Γ ⊆ T0∪Γ∪K∪Init and
T0 ∪ Γ ⊆ T0 ∪ Γ ∪K ∪ Ψ satisfy condition (ELoc). We first analyze the problem
of showing that initial states satisfy Ψ under conditions Γ . Since T0 ∪ Γ ⊆
T0 ∪ Γ ∪K ∪ Init satisfies condition (ELoc), the following are equivalent:

(1) ∃x(Init(x, f) ∧ ¬Ψ(x, f)) |=T0∪Γ∪K⊥.
(2) T0 ∪ Γ ∪G′ |=⊥ where G′ is obtained from ¬Ψ , Init and K using the hierar-

chical reduction in Theorem 1.

T0 ⊆ T0 ∪ Γ is a local extension, so (2) can be reduced to a ground satisfiability
check w.r.t. T0 (which is decidable). Invariance under updates is similar.
(b) Let Γ be a set of constraints referring to functional parameters in Σp; without
Σ symbols. We use the equivalence of (1) and (2) established in (a), and note
that (2) is equivalent to ∃x∃xfG

′ |=T0∪Γ⊥, hence also to (3) and to (4) below:

(3) ∃y∃xfΓ1(y, xf) |=T0∪Γ⊥, where Γ1 is obtained from ∃x∃xfG
′ by eliminating

all existentially quantified variables apart from the variables y which occur
as arguments of functional parameters (using QE in T0).

(4) T0 ∪ Γ |= ∀yΓ 1(y), where Γ 1(y) is obtained from ¬Γ1 by replacing back
every xf with the term it represents.

Invariance under transitions can be solved similarly and yields a constraint Γ 2.
As before, Γ = Γ 1 ∧ Γ 2 is the weakest constraint under which Ψ is invariant. �

Comment. We can extend this result to fully exploit extended locality by al-
lowing, in Assumptions 1–3, K, Init, Ψ , Update to consist of augmented clauses,
requiring ELoc for T0⊆T0∪Γ , and decidability of T0-satisfiability for the fragment
to which the formulae obtained after the hierarchical reduction belong.

Example 5. Consider an algorithm for inserting an element c into a sorted array
a at a (fixed, but parametric) position i0. We want to derive constraints on the
value of c which guarantee that the array remains sorted after the insertion. Let
TS be the disjoint combination of Presburger arithmetic (Z, sort index) and a
theory Te of elements (here, R, sort elem). We model the array a by using a
function a of sort index → elem, and a constant ub of sort index (for the size of
the array). The safety condition is the condition that the array is sorted, i.e.
Sorted(a, ub) ∀i, j : index(0 ≤ i ≤ j ≤ ub→ a(i) ≤ a(j)).
The update rules are described by the following formula:
Update(a, a′, ub, ub′) ∀i : index(0 ≤ i < i0 → a′(i) = a(i)) ∧ a′(i0) = c ∧

∀i : index(i0 < i ≤ ub→ a′(i)=a(i− 1)) ∧ ub′ = ub+ 1

182 V. Sofronie-Stokkermans

We want to determine conditions on c and a s.t. sortedness is preserved, i.e.:

Sorted(a, ub)∧Update(a, a′, ub, ub′)∧∃j(0≤j≤ub′−1∧a′(j)>a′(j+1)) |=⊥ .

The examples of local extensions in Section 2 show that Assumptions 1–3 are
fulfilled, hence the following are equivalent for every set Γ of constraints:

– Sorted(a, ub)∧Update(a, a′, ub, ub′)∧(0≤d≤ub′−1)∧a′(d)>a′(d+1) |=TS∪Γ⊥.
– Sorted(a, ub)[G′] ∧G′ |=TS∪Γ⊥, where
G′ = 0≤d≤ub′ − 1 ∧ a′(d)>a′(d+ 1) ∧ a′(i0)=c ∧ ub′=ub+1∧

(0≤d<i0→a′(d)=a(d))∧ (i0<d≤ub→a′(d)=a(d− 1)) ∧ a′(i0)=c ∧
(0≤d+1<i0→a′(d+1)=a(d+1))∧ (i0<d+1≤ub→a′(d+1)=a(d)).

– a(d−1) ≤ a(d) ∧ a(d) ≤ a(d+1) ∧G′ |=TS∪Γ⊥.

Any set of clauses
∧n

i=1(φi(x, f) → Ci(x, x′, f, f ′)), where φi ∧ φj |=T⊥ for
i �= j and |=T

∨n
i=1 φi is equivalent to

∨n
i=1(φi(x, f) ∧ Ci(x, x′, f, f ′)). The two

instances of the update axioms in G′ have this form. By the transformation
above and distributivity we obtain the following equivalent DNF formula:

– (ψ1 ∧ ψ) ∨ (ψ2 ∧ ψ) ∨ (ψ3 ∧ ψ) ∨ (ψ4 ∧ ψ) |=TS∪Γ⊥, where

ψ = a(d−1) ≤ a(d) ∧ a(d) ≤ a(d+1) ∧ a′(d)>a′(d+ 1) ∧ a′(i0)=c ∧ ub′=ub−1
ψ1 = (0≤d < d+1 < i0 ∧ a′(d)=a(d) ∧ a′(d+1)=a(d+1))
ψ2 = (0≤d < d+1 = i0≤ub ∧ a′(d)=a(d) ∧ a′(d+1)=c)
ψ3 = (0≤d = i0 < d+1≤ub ∧ a′(d)=c ∧ a′(d+1)=a(d))
ψ4 = (0≤i0 < d < d+1≤ub ∧ a′(d)=a(d−1) ∧ a′(d+1)=a(d)).

ψ1 ∧ψ and ψ4 ∧ψ are clearly unsatisfiable. Consider now ψ2 ∧ψ. We purify the
formulae and eliminate all constants (i.e. existentially quantified variables) with
the exception of c, i0, d, d−1, d+1, and those which rename a(d), a(d−1), a(d+1).
Then ψ2 ∧ ψ is unsatisfiable w.r.t. TS ∪ Γ iff

TS ∪ Γ |= Γ 2, where Γ 2 = ∀d(0≤d<i0 ∧ a(d)≤a(i0) ∧ a(d−1)≤a(d) → a(d)≤c).

Under the assumption of sortedness for a, we obtain the equivalent condition:
Γ

′
2 = ∀x(x<i0 → a(x)≤c). Similarly, from ψ3 ∧ ψ we obtain condition Γ

′
3 =

∀x(i0≤x→ c≤a(x)). Thus, the weakest condition under which Ψ is an invariant
(assuming sortedness) is Γ

′
= ∀x[(x<i0 → a(x)≤c) ∧ (i0≤x→ c≤a(x))].

We also consider the problem of determining conditions on a and c under which a′

is sorted, without a priori assuming sortedness for a. Then ψ1∧ψ |=⊥ yields Γ 1 =
∀x(0≤x<x+ 1<i0 → a(x)≤a(x+ 1)) and ψ4 ∧ψ |=⊥ yields Γ 4 = ∀x(i0≤x<x+
1<ub→ a(x)≤a(x+ 1)). Hence, the overall condition we obtain is in this case

Γ = Sorted(a) ∧ ∀x((x < i0 → a(x) ≤ c) ∧ (i0 ≤ x→ c ≤ a(x))).

Note that these simple formulae were obtained after various simplifications de-
pending on the properties of the parametric functions we consider. At the mo-
ment, no system (neither for automated reasoning nor for symbolic computation)
provides such simplification facilities. Simplification and redundancy removal
modulo theories is a topic which we plan to explore in the future.

Hierarchical Reasoning for the Verification of Parametric Systems 183

3.2 Hybrid Automata

We use descriptions of hybrid automata (Q, V,Σ, Init, Inv, Jump,Flow) specifying
the variables (V) whose values change over time; a formula Init describing the
initial states; the discrete states (Q); for every q ∈ Q a formula Invq represent-
ing the invariant for state q; rules Flowq(x, t, t′) describing the evolution of the
variables x in state q; transitions between discrete states, specified using formu-
lae Jump(q, q′, x, x′). We here restrict to abstractions of hybrid systems in which
the rules Flowq(x, t, t′) are represented as formulae. As before, for the sake of
simplicity we only consider invariant checking. (Bounded model checking can be
handled analogously.) A formula Ψ is an inductive invariant of a hybrid system
T=(V,Σ, Init, Inv,Flow, Jump) if:

(1) TS∪Init(x)|=Ψ(x);
(2) TS∪Ψ(x(t0))∪Flowq(x, t0, t) |= Ψ(x(t)).
(3) TS∪Ψ(x)∪Jump(q, q′, x, x′) |= Ψ(x′).

Invariance under jumps can be checked as for discrete systems. Invariance under
flows can be expressed as the unsatisfiability of formulae of the following form:

(F) ∃t, t′ (Ψ(x(t)) ∧ Invq(x(t))∧Flowq(x, t, t′)
∧∀t′′(t≤t′′≤t′→(Flowq(x, t, t′′)∧Invq(x(t′′)))) ∧ ¬Ψ(x′))

stating that there exist two moments t, t′ such that x(t) satisfies the invariant of
state q and Ψ , and x changes until moment t′ (at which Ψ does not hold) using
the flow rule from state q, without leaving this state. These are satisfiability
problems for quantified formulae w.r.t. an underlying theory.

Constants bounds on slope. We analyze the case when the evolution of the
continuous variable x within any discrete state q is described by giving constant
bounds lq ≤ uq on the rate of growth of the values of x (cf. e.g. [1]). For simplicity
of presentation, we here assume that there is only one continuous variable x.
Then for every discrete state q with invariant Invq(x), the formula describing
the update of x after a flow from time t to time t′ within state q is:

Flowq(x, t, t′) : t < t′ ∧ lq(t′ − t) ≤ x(t′)− x(t) ≤ uq(t′ − t).

Theorem 9. Assume that (i) all continuous variables are modeled as functions
over R, (ii) the formulae describing Invq(x) and Ψ are quantifier-free and (ii)
R∪K is an extension of R with a new function symbol x which satisfies condition
ELoc, where K is of the form (with t, t′ constants and t′′ universally quantified):

{t≤t′′≤t′→x(t)+l·(t′′−t) ≤ x(t′′) ≤ x(t)+u·(t′′−t), t≤t′′≤t′→Invq(x(t′′))}.

(a) Let Γ be an additional constraint on the values of x expressed again by a set
of flat and linear clauses such that R ⊆ R∪K∪Γ satisfies Loc. Then checking
whether the formula Ψ is an invariant (under conditions Γ) is decidable.

(b) We can use the QE procedure for the theory of reals to effectively construct
a weakest constraint Γ on the parameters under which Ψ is an invariant.

184 V. Sofronie-Stokkermans

Proof : Similar to the proof of Theorem 8 �

The state invariants Invq are often conjunctions of boundedness conditions on
the continuous variables.

Corollary 10. Assume that Invq are of the form lq(t) ≤ x(t) ≤ uq(t), where lq
and uq are polynomials such that for every partially defined function x weakly
satisfying the boundedness condition for the slope in BSlq,uq

x , the piecewise linear
function lin-appr(x) which passes through all points {(t, x(t)) | x ∈ Dom(x)}
has the property that for every t we have lq(t) ≤ lin-appr(x) ≤ uq(t).6 Then the
conclusions (a) and (b) in Theorem 9 hold.

The conditions in Theorem 9 subsume the case of hybrid systems in which the
flows within the discrete states are given by specifying a fixed rate of growth, i.e.
x(t) = x(t0)+ c(t− t0) (equal upper and lower bounds), also written dx/dt = c.

Example 6. Consider the following hybrid system introduced in Example 3.
There are two discrete states (state invariants L ≥ Lalarm and L < Lalarm).

L < L alarm

L > L
alarm

dL/dt = indL/dt = (in−out)

L > Lalarm L < L alarm

Assume that the inflow/outflow rates are constant and
equal to in/out. L < Loverflow is invariant under flows iff
(i) and (ii) are unsatisfiable (where in′ = in−out, green(t)=
L(t)≤Lalarm and red(t)=Lalarm≤L(t)≤Loverflow):

(i) ∃t, t′(green(t)∧t<t′∧∀t′′(t≤t′′≤t′→L(t)+in(t′′−t) < Lalarm)∧L(t)+in(t′−t)>Loverflow)
(ii) ∃t, t′(red(t)∧t<t′∧∀t′′(t≤t′′≤t′→L(t)+in′(t′′−t)≥Lalarm)∧L(t)+in′(t′−t)>Loverflow).

Using the method described in Theorem 9 and QE over R we can show that (i)
is always unsatisfiable and that assuming that (in > 0) and (Lalarm < Loverflow)
(ii) is equivalent to (in > out) ∧ (Lalarm < L(t)), thus (ii) holds iff (in ≤ out).

Example 7. We consider a variant of the previous example in which we assume
that the rate with which the water level changes satisfies the following conditions:

L < L alarm

L > L
alarm

c1 < L/ t < d1

L > Lalarm L < L alarm

c2 < L/ t < d2

(L ≥ Lalarm) : ∀t1, t2(t1 �= t2 → c1 ≤ L(t2)−L(t1)
t2−t2

≤ d1)

(L < Lalarm) : ∀t1, t2(t1 �= t2 → c2 ≤ L(t2)−L(t1)
t2−t2

≤ d2)
where c1, d1, c2, d2 are parameters. As before, L ≤ Loverflow

is an invariant iff the following formulae are unsatisfiable:

(i) ∃t, t′(L(t)<Lalarm ∧ t<t′ ∧ L(t′) > Loverflow ∧ ∀t′′(t≤t′′≤t′→L(t′′)<Lalarm))
∧ ∀t′′(t≤t′′≤t′→c2(t′′ − t) ≤ L(t′′) − L(t) ≤ d2(t′′ − t))

(ii) ∃t, t′(Loverflow≥L(t)≥Lalarm∧t<t′∧L(t′)>Loverflow∧∀t′′(t≤t′′≤t′→L(t′′)≥Lalarm))
∧ ∀t′′(t≤t′′≤t′→c1(t′′ − t) ≤ L(t′′) − L(t) ≤ d1(t′′ − t))

Let Γ = {c1 ≤ d1, c2 ≤ d2}. Using the method in Theorem 9 and QE over
R we can show that under the assumption that Lalarm < Loverflow (i) is always

6 This happens for instance if lq is convex and uq concave on [0, t] or the slope of lq is
smaller than c1 and that of uq greater than c2 (under these conditions, we can even
allow lq , uq to contain additional functions).

Hierarchical Reasoning for the Verification of Parametric Systems 185

unsatisfiable. For (ii) note that due to the locality of the extensions defined by the
universally quantified formulae in (ii), (ii) is unsatisfiable iff (ii’) is unsatisfiable:

(ii’) ∃t, t′(Loverflow≥L(t)≥Lalarm ∧ t<t′ ∧ L(t′) > Loverflow∧
(c1(t′ − t) ≤ L(t′)− L(t) ≤ d1(t′ − t)) ∧ (L(t)≥Lalarm) ∧ (L(t′)≥Lalarm)).

After purification we use QE to eliminate the existential variables (t, t′ and the
variables standing for x(t), x(t′)). Using Redlog [5] we obtained a formula which
could be simplified (as c1 ≤ d1) to d1 > 0. Thus, safety is guaranteed for all
flows within this state as long as d1 ≤ 0 (i.e. the water level is not increasing).

4 Conclusion

In this paper we studied certain classes of verification problems for paramet-
ric reactive and simple hybrid systems. We identified some deductive problems
which need to be solved, and properties of the underlying theories which ensure
that these verification problems are decidable. We gave examples of theories with
the desired properties, and illustrated the methods on several examples.

Parametricity in hybrid systems was addressed before in e.g. [1,15,6,20]. Some
approaches to invariant generation use a parametric form for the invariants and
use constraint solving for generating invariants with a certain shape [2,9]. In all
these approaches, the parameters are constants occurring in the description of
the systems or in the invariants. In e.g. [8,4] also functions are used in the de-
scription of reactive or hybrid systems. In this paper we go one step further: we
allow both functions and data to be parametric, and present ways of construct-
ing (weakest) constraints on such parameters which guarantee safety – which
turns out to be very useful. In ongoing work we extended these ideas to lin-
ear hybrid automata: we obtained locality results for boundedness conditions of
linear combinations of values of the continuous variables and for linear combina-
tions of their slopes and established several complexity results. In this paper we
did not study the link between the abstractions of hybrid systems we consider
w.r.t. hybrid systems they may model (we do not impose any restrictions on
the derivability of the continuous variables). This is planned for future work.
We also did not formally analyze situations in which the flows within the dis-
crete states are described by differential equations. We tackled some examples
(e.g. a temperature controller in which the continuous variable is the tempera-
ture, and the evolution of the external temperature is a functional parameter)
by generating abstractions similar to those used in Section 3.2 and identified
situations in which constraints on these parametric functions which imply safety
can be derived. (We showed e.g. that the “cooling” state of the temperature
controller is safe provided the outside temperature is smaller than the interior
temperature.) Since we use an abstraction, we cannot always guarantee that
these constraints are “weakest”. A formal study of such more general hybrid
systems is in progress.

186 V. Sofronie-Stokkermans

Acknowledgments. We thank the referees for their helpful comments. This
work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

1. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic Symbolic Verification of Embedded
Systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)

2. Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Invariant Synthesis
for Combined Theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 378–394. Springer, Heidelberg (2007)

3. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic Computation of Schedulability
Regions Using Parametric Timed Automata. In: IEEE Real-Time Systems Sym-
posium 2008, pp. 80–89. IEEE Computer Society, Los Alamitos (2008)

4. Cimatti, A., Roveri, M., Tonetta, S.: Requirements Validation for Hybrid Sys-
tems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203.
Springer, Heidelberg (2009)

5. Dolzmann, A., Sturm, T.: Redlog: Computer Algebra Meets Computer Logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

6. Frehse, G., Jha, S.K., Krogh, B.H.: A Counterexample-Guided Approach to Pa-
rameter Synthesis for Linear Hybrid Automata. In: Egerstedt, M., Mishra, B. (eds.)
HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

7. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems
for partial functions with Evans equality. Information and Computation 204(10),
1453–1492 (2006)

8. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination Methods for Sat-
isfiability and Model-Checking of Infinite-State Systems. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007)

9. Gulwani, S., Tiwari, A.: Constraint-Based Approach for Analysis of Hybrid Sys-
tems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203.
Springer, Heidelberg (2008)

10. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear Parametric Model
Checking of Timed Automata. Journal of Logic and Algebraic Programming 52-
53, 183–220 (2002)

11. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On Local Reasoning in Veri-
fication. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 265–281. Springer, Heidelberg (2008)

12. Ihlemann, C., Sofronie-Stokkermans, V.: On Hierarchical Reasoning in Combina-
tions of Theories. In: Giesl, J., Hähnle, R. (eds.) Proceedings of IJCAR 2010. LNCS
(LNAI), vol. 6173, pp. 30–45. Springer, Heidelberg (2010)

13. Jacobs, S., Sofronie-Stokkermans, V.: Applications of Hierarchical Reasoning in
the Verification of Complex Systems. Electr. Notes Theor. Comput. Sci. 174(8),
39–54 (2007)

14. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

15. Platzer, A., Quesel, J.-D.: European Train Control System: A Case Study in Formal
Verification. In: Cavalcanti, A. (ed.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265.
Springer, Heidelberg (2009)

Hierarchical Reasoning for the Verification of Parametric Systems 187

16. Sofronie-Stokkermans, V.: Hierarchic Reasoning in Local Theory Extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005)

17. Sofronie-Stokkermans, V., Ihlemann, C.: Automated Reasoning in some Local Ex-
tensions of Ordered Structures. Journal of Multiple-Valued Logics and Soft Com-
puting 13(4-6), 397–414 (2007)

18. Sofronie-Stokkermans, V.: Efficient Hierarchical Reasoning about Functions over
Numerical Domains. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-
Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 135–143. Springer,
Heidelberg (2008)

19. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
University of California Press, Berkeley (1951)

20. Wang, F.: Symbolic Parametric Safety Analysis of Linear Hybrid Systems with
BDD-Like Data-Structures. IEEE Trans. Software Eng. 31(1), 38–51 (2005)

Interpolation and Symbol Elimination in Vampire�

Kryštof Hoder1, Laura Kovács2, and Andrei Voronkov1

1 University of Manchester
2 TU Vienna

Abstract. It has recently been shown that proofs in which some symbols are col-
ored (e.g. local or split proofs and symbol-eliminating proofs) can be used for a
number of applications, such as invariant generation and computing interpolants.
This tool paper describes how such proofs and interpolant generation are imple-
mented in the first-order theorem prover Vampire.

1 Introduction

Interpolation offers a systematic way to generate auxiliary assertions needed for soft-
ware verification techniques based on theorem proving [7,10], predicate abstraction
[5,7], constraint solving [15], and model-checking [12,1].

In [9] it was shown that symbol-eliminating inferences extracted from proofs can be
used for automatic invariant generation. Further, [10] gives a new proof of a result from
[7] on extracting interpolants from colored proofs:1 this proof contains an algorithm for
building (from colored proofs) interpolants that are boolean combinations of symbol-
eliminating steps. Thus, [10] brings interpolation and symbol elimination together.

Based on the results of [9,10] we implemented colored proof generation in the first-
order theorem prover Vampire [14]. Colored proofs form the base for our interpolation
and symbol elimination algorithms.

The purpose of this paper is to describe how interpolation and symbol elimination are
implemented and can be used in Vampire. We do not overview Vampire itself but only
describe its new functionalities. The presented features have been explicitly designed
for making Vampire appropriate for formal software verification: symbol elimination
for automated assertion (invariant) synthesis and computation of Craig interpolants for
abstraction refinement. Unlike its predecessors, the “new” Vampire thus provides func-
tionalities which extend the applicability of state-of-the-art first theorem provers in ver-
ification. To the best of our knowledge, it is the first theorem prover that supports both
invariant generation and interpolant computation.

The obtained symbol eliminating inferences and interpolants contain quantifiers, and
can be further used as invariant assertions to verify properties of programs manipulating
arrays and linked lists [13,9]. We believe that software verification may benefit from the
interpolant generation engine of Vampire.

Implementation. The new version of Vampire is available from http://www.
vprover.org and runs under most recent versions of Linux (both 32 and 64 bits),

� This work has been partly done while the second authors was at ETH Zürich.
1 Such proofs are also called local and split proofs, in this paper we will call them colored.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 188–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.
vprover.org

Interpolation and Symbol Elimination in Vampire 189

MacOS and Windows. Vampire is implemented in C++ and has about 73,000 lines
of code.

Experiments. We successfully applied Vampire on benchmarks taken from recent
work on interpolants and invariants [6,19,3,4,15,8] – see Section 4 and the mentioned
URL. Our methods can discover required invariants and interpolants in all examples,
suggesting its potential for automated software verification.

Related work. There are several interpolant generation algorithms for various theo-
ries. For example, [12,5,7,1] derive interpolants from resolution proofs in the combined
ground theory of linear arithmetic and uninterpreted functions. The approach described
in [15] generates interpolants in the combined theory of arithmetic and uninterpreted
functions using constraint solving techniques over an a priori defined interpolants tem-
plate. The method presented in [13] computes quantified interpolants from first-order
resolution proofs over scalars, arrays and uninterpreted functions.

Our algorithm implemented in Vampire automatically extracts interpolants from col-
ored first-order proofs in the superposition calculus. Theories, such as arithmetic or
theories of arrays, can be handled by adding theory axioms to the first-order problem to
be proved. Thus, interpolation in Vampire is not limited to decidable theories for which
interpolation algorithms are known. One can use arbitrary first-order axioms. However,
a consequence of this generality is that we do not guarantee finding interpolants even
for decidable theories. Moreover, if a theory is not finitely axiomatisable, we can only
use its incomplete first-order axiomatisation.

As far as we know, symbol elimination has not been implemented in any other sys-
tem. A somehow related approach to symbol elimination is presented in [13,16] where
theorem proving is used for inferring loop invariants. Contrary to our approach, the
cited works are adapted to prove given assertions as opposed to generating arbitrary
invariants. Using the saturation-based theorem prover SPASS [18], [13] generates inter-
polants as quantified invariants that are strong enough to prove given assertions. In [16]
templates over predicate abstraction are used, reducing the problem of invariant discov-
ery to that of finding solutions, by the Z3 SMT solver [2], for unknowns in an invariant
template formula. Unlike [13,16], we automatically generate invariants as symbol elim-
inating inferences in full-first order logic, without using predefined predicate templates
or assertions.

2 Colored Proofs, Symbol Elimination and Interpolation

Colored proofs are used in a context when some (predicate and/or function) symbols
are declared to have colors. In colored proofs every inference can use symbols of at
most one color, as a consequence, every term or atomic formula used in such proofs can
use symbols of at most one color, too. We will call a symbol, term, clause etc. colored
if it uses a color, otherwise it is called transparent.

In symbol elimination [9] we are interested in inferences having at least one col-
ored premise and a transparent conclusion; such inferences are called symbol-elimina-
ting. Conclusions of symbol-eliminating inferences can be used to find loop invariants.
Symbol elimination can be reformulated as consequence-finding: we are trying to find
transparent consequences of a theory including both colored and transparent formulas.

190 K. Hoder, L. Kovács and A. Voronkov

Vampire

Annotated
FO Formulas

Symbol eliminating
inferences

Choice of ordering
and literal selection

Restricted saturation

Colored proofs search

Symbol elimination

Refutation

found Interpolant

Fig. 1. Interpolation and Symbol Elimination in Vampire

Note that, unlike traditional applications of first-order theorem proving, we are not inter-
ested in finding a refutation: symbol-eliminating inferences can be obtained by running
a theorem prover on a satisfiable formula, for which no refutation exists.

A formula I is called an interpolant of formulas L and R (with respect to a theory
T) if the following conditions are satisfied:

(1) T � L→ I;
(2) T � I → R;
(3) I uses only symbols occurring either in T or in both L and R.

Interpolation can be reformulated in terms of colors as follows: we assign one color to
symbols occurring only in L and another color to symbols occurring only in R: then
the last condition on interpolants can be reformulated as I is transparent. For extracting
interpolants from colored proofs we use the algorithm described in [10].

The notion of interpolant has been changed in the model-checking community start-
ing with [12]. Namely, the condition (2): T � I → R has been replaced by (2a):
T � I ∧ R → ⊥. To avoid any confusion between the two notions of interpolant, in
[10] any formula I satisfying conditions (1), (2a) and (3) is called a reverse interpolant
of L and R. Clearly, reverse interpolants for L and R are exactly interpolants of L
and ¬R.

In the sequel, we reserve the notation L and R for the two formulas whose interpolant
is to be computed.

3 Tool Overview

Vampire [14] is a general purpose first-order theorem prover based on the resolution and
superposition calculus. To implement symbol elimination and interpolation in
Vampire, we had to extend it by new functionalities, change the inference mechanism to
be able to generate colored derivations, and implement an algorithm for extracting inter-
polants. The workflow of interpolation and symbol elimination in Vampire is illustrated
in Figure 1.

Annotated formulas. Vampire reads problems expressed in the TPTP syntax [17]: a
Prolog-like syntax allowing one to specify input axioms and conjecture for theorem
provers. We had to extend the input syntax to make it rich enough to define colors and

Interpolation and Symbol Elimination in Vampire 191

vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,c,0,right).
vampire(option,show interpolant,on).

vampire(left formula).
fof(a1,axiom, q(f(a))).
fof(a1,axiom, ∼q(f(b))).

vampire(end formula).
vampire(right formula).

fof(a2,conjecture, ? [V] : (f(V)!=c)).
vampire(end formula).

Fig. 2. Specification of Interpolation

interpolation requests. In fact, we had to extend it even more since in the application
of interpolation and symbol elimination the set of symbols that can occur in the inter-
polants is not necessarily the intersection of the languages of L and R with addition
of theory symbols. We extended the TPTP syntax with Vampire-specific declarations.
Their use is illustrated in Figure 2 and detailed in Example 1 taken from [13].

EXAMPLE 1. [13] Consider the problem of computing an interpolant of q(f(a)) ∧
¬q(f(b)) (i.e. L) and ∃v(f(v) �= c) (i.e. R).

The first three declarations shown in the left column of Figure 2 say that a, b are
constants (function symbols of arity 0) and q is a unary predicate symbol colored
in the “left” color (that is, in the language of L). Likewise, the fourth declaration
in the left column says that c is a constant colored in the “right” color (that is, in
the language of R). Finally, the left column contains an option that sets interpolant
generation. This option can also be passed in the command line. The declarations
fof(..) are TPTP declarations for introducing formulas. The vampire declarations
left formula, right formula and end formula are used to define L and R.
If we have formulas not in the scope of the left formula or right formula
declarations, they are considered as part of the theory T .

To use Vampire for symbol elimination, we can simply assign all symbols to be elimi-
nated the left color and leave the right color unused. For concrete examples seehttp://
www.vprover.org.

Colored proof generation. In order to support the generation of colored proofs, the
following had to be implemented.

1. We had to block inferences that have premises of two different colors.
2. We had to change the simplification ordering and literal selection, so that colored

terms are larger than transparent ones, and that (when possible) transparent literals
are selected only when there are no colored ones. To make colored terms bigger
than transparent, we had to implement the Knuth-Bendix ordering with ordinals as
defined in [11] and make colored symbols to have the weight ω, while transparent
symbols to have finite weights.

To output the conclusions of symbol eliminating inferences, we check premises of each
inference that produced a transparent clause, and if one of the premises is colored, we
output the resulting clause.

Interpolants are generated from refutations using the algorithm described in [10].
For instance, given the input shown in Example 1, Vampire outputs the interpolant
¬∀x∀y(f(x) = f(y)).

http://
www.vprover.org

192 K. Hoder, L. Kovács and A. Voronkov

Table 1. Interpolation with Vampire

Formulas Coloring Reverse Interpolant
L : z < 0 ∧ x ≤ z ∧ y ≤ x
R : y ≤ 0 ∧ x + y ≥ 0

left: z
right: - x < 0

L : g(a) = c + 5 ∧ f(g(a)) ≥ c + 1
R : h(b) = d + 4 ∧ d = c + 1 ∧ f(h(b)) < c + 1

left: g, a
right: h, b

c + 1 ≤ f(c + 5)

L : p ≤ c ∧ c ≤ q ∧ f(c) = 1
R : q ≤ d ∧ d ≤ p ∧ f(d) = 0

left: c
right: d

p ≤ q ∧ (q > p ∨ f(p) = 1)

L : f(x1) + x2 = x3 ∧ f(y1) + y2 = y3 ∧ y1 ≤ x1
R : x2 = g(b) ∧ y2 = g(b) ∧ x1 ≤ y1 ∧ x3 < y3

left: f
right: g, b

x1 > y1 ∨ x2 �= y2 ∨ x3 = y3

L : c2 = car(c1) ∧ c3 = cdr(c1) ∧ ¬(atom(c1))
R : ¬(c1) = cons(c2, c3)

left: car, cons
right: - ¬atom(c1) ∧ c1 = cons(c2, c3)

L : Q(f(a))∧ �= Q(f(b))
R : f(V) = c

left: Q, a, b
right: c

∃x, y : f(x) �= f(y)

L : a = c ∧ f(c) = a
R : c = b∧ �= (b = f(c))

left: a
right: b

c = f(c)

L : True ∧ a′[x′] = y ∧ x′ = x ∧ y′ = y + 1 ∧ z′ = x′

R : ¬(a′[z′] = y′ − 1)
left: x, y
right: - 1 + a′[x′] = y′ ∧ x′ = z′

Symbol Elimination. To make Vampire output conclusions of symbol-eliminating in-
ferences, one should set the option show symbol elimination to on. As Vampire
is not supposed to terminate in the symbol-eliminating mode, it is wise to specify a time
limit when it is run in this mode.

4 Experiments

We have successfully run Vampire on benchmark examples taken from recent litera-
ture on interpolation and invariant generation. In this section we present two different
sets of experimental results that underline the effectiveness of our implementation. The
reported results were obtained on a machine with 2 GHz processor and 2GB of RAM.

Interpolation. Table 1 summarises some of our results for computing interpolants on ex-
amples that have been used as motivating examples by previous techniques [6,19,15,13].
The first column of Table 1 presents the input formulas L and R whose interpolants is
going to be computed. The second column shows symbols declared colored, whereas the
third column shows the interpolant generated by Vampire.

All interpolants given in Table 1 were computed by Vampire in essentially no time
(e.g. in less than 0.1 second). In the first four examples of Table 1 a simple axiomatisa-
tion of arithmetic with the greater-than relation and successor function was used. The
fifth example of Table 1 uses the theory of lists, whereas the last example of Table 1
uses the combined theory of arrays and arithmetic.

The last example of Table 1 originates from an example taken from [6], and is a
request to prove the infeasibility of the following one-path program annotated by a pre-
and a post-condition:

{	} a[x] := y; y := y + 1; z := x {a[z] �= y − 1}.
Let x, y, z, a denote the initial and x′, y′, z′, a′ the final values of program variables.
Based on the bounded-model checking approach [12], proving infeasibility of the above
program path boils down to computing an interpolant for the formulas	∧T ({x, y, z, a},
{x′, y′, z′, a′}) and a′[z′] �= y′ − 1, where T ({x, y, z, a}, {x′, y′, z′, a′}) ≡ a′[x′] =
y∧x′ = x∧ y′ = y + 1∧ z′ = x′ is the transition relation defined by the program. The

Interpolation and Symbol Elimination in Vampire 193

Table 2. Symbol Elimination with Vampire on Array Programs

Loop � of SEI � of Min SEI SEI as Invariant

Initialisation [8]

a = 0;
while (a < m) do
aa[a] = 0; a = a + 1

end do

399 15 ∀x : 0 ≤ x < a → aa[x] = 0

Copy [8]

a = 0;
while (a < m) do
bb[a] = aa[a]; a = a + 1

end do

379 14 ∀x : 0 ≤ x < a → bb[x] = aa[x]

Vararg [8]

a = 0;
while (aa[a] > 0) do
a = a + 1

end do

1 1 ∀x : 0 ≤ x < a → aa[x] > 0

Partition [4]

a = 0; b = 0; c = 0;
while (a < m) do
if (aa[a] >= 0)
then bb[b] = aa[a]; b = b + 1
else cc[c] = aa[a]; c = c + 1
end if;
a = a + 1

end do

150 61
∀x : 0 ≤ x < b →

∃y : 0 ≤ y < a → bb[x] = aa[y]

Partition Init [8]

a = 0; c = 0;
while (a < m) do
if (aa[a] == bb[a])
then cc[c] = a; c = c + 1
end if;
a = a + 1

end do

18 13
∀x : 0 ≤ x < c ∧ 0 ≤ x < a →

aa(cc(x)) = bb(cc(x))

interpolant computed by Vampire proves that the program has no feasible path from the
initial state to the final state.

Symbol Elimination. Experiments with symbol elimination on array programs taken
from [4,8] are summarised in Table 2. We ran Vampire in the symbol elimination mode
with a time limit of 10 seconds. We recall that each conclusion of a symbol-eliminating
inference is a loop invariant [9].

For all examples of Table 2 we show in the rightmost column a desired invariant that
could be computed using other techniques. We were interested in the following: (i) can
Vampire generate the invariant itself and if not, (ii) can Vampire generate invariants that
would imply the desired invariant?

After running Vampire in the symbol-eliminating mode we sometimes obtain a large
set of invariants. The number of invariants (that is, the number of symbol-eliminating
inferences) is shown in the second column of the Table 2. To make them usable we
did the following minimization: remove invariants that are implied by the theory ax-
ioms or by other invariants. For the task we used Vampire itself. Obviously, the problem

194 K. Hoder, L. Kovács and A. Voronkov

whether an invariant is implied by other invariants, is undecidable, so we ran Vampire
with a time limit of 0.3 seconds once for each invariant, trying to prove it from the
remaining invariants and the theory axioms. The number of invariants that could not be
proved redundant is shown in the third column of Table 2.

We tried many more examples, always with success, that is, the invariants generated
by Vampire using symbol elimination always implied the desired invariant. There are
many interesting issues related to symbol elimination which cannot be discussed here
due to lack of space.

5 Conclusion

We described how interpolant generation and symbol elimination are implemented and
can be used in the first-order theorem prover Vampire. Future work includes integrating
Vampire into software verification tools for automatically generating interpolants and
supporting the entire process of verification. Inferring a minimal set of invariants and
improving these invariants can also be done using theorem proving and remains an
interesting topic for further research.

References

1. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satisfiability
Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 397–412. Springer, Heidelberg (2008)

2. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

3. Gopan, D., Reps, T.W., Sagiv, M.: A Framework for Numeric Analysis of Array Operations.
In: POPL, pp. 338–350 (2005)

4. Gulwani, S., Tiwari, A.: Combining Abstract Interpreters. In: Proc. of PLDI, pp. 376–386
(2006)

5. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from Proofs. In:
Proc. of POPL, pp. 232–244 (2004)

6. Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg
(2005)

7. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer,
Heidelberg (2006)

8. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

9. Kovacs, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theo-
rem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.
Springer, Heidelberg (2009)

10. Kovacs, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.)
CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

11. Ludwig, M., Waldmann, U.: An Extension of the Knuth-Bendix Ordering with LPO-Like
Properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 348–362. Springer, Heidelberg (2007)

12. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

Interpolation and Symbol Elimination in Vampire 195

13. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover.
In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427.
Springer, Heidelberg (2008)

14. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communica-
tions 15(2-3), 91–110 (2002)

15. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg
(2007)

16. Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate Abstraction.
In: PLDI, pp. 223–234 (2009)

17. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. The FOF and CNF
Parts, v3.5.0. J. of Automated Reasoning (to appear, 2009)

18. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System Description:
SpassVersion 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520.
Springer, Heidelberg (2007)

19. Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In: Nieuwen-
huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg
(2005)

iProver-Eq: An Instantiation-Based Theorem Prover
with Equality

Konstantin Korovin and Christoph Sticksel

School of Computer Science
The University of Manchester

{korovin,sticksel}@cs.man.ac.uk

Abstract. iProver-Eq is an implementation of an instantiation-based calculus
Inst-Gen-Eq which is complete for first-order logic with equality. iProver-Eq
extends the iProver system with superposition-based equational reasoning and
maintains the distinctive features of the Inst-Gen method. In particular, first-
order reasoning is combined with efficient ground satisfiability checking where
the latter is delegated in a modular way to any state-of-the-art SMT solver. The
first-order reasoning employs a saturation algorithm making use of redundancy
elimination in form of blocking and simplification inferences. We describe the
equational reasoning as it is implemented in iProver-Eq, the main challenges and
techniques that are essential for efficiency.

1 Introduction

Instantiation-based methods (IMs) are a class of calculi for first-order clausal logic.
The common idea is to instantiate clauses and to employ efficient propositional or more
general ground reasoning methods in order to prove unsatisfiability or to find a model.
Among other important properties, IMs naturally decide the first-order logic fragment
of effectively propositional logic (EPR) which has interesting applications as it has been
shown recently (see, e.g., [2] for an overview). Let us remark that Inst-Gen-Eq decides
the EPR fragment modulo equality.

The basic idea of the Inst-Gen method, introduced in [4], is as follows. The set of
first-order clauses is abstracted to a set of ground clauses by mapping all variables to
the same ground term. If this ground abstraction is unsatisfiable, then the set of first-
order clauses is also unsatisfiable. Otherwise, there is a ground model for the abstraction
that is used to guide an instantiation process. The ground satisfiability check and con-
struction of a ground model is delegated to an industrial-strength satisfiability modulo
theories (SMT) solver in the presence of equations or to a propositional (SAT) solver if
no equational reasoning is required.

The model is represented as a set of abstracted literals and an attempt is made to
extend it to a model of the first-order clauses by reasoning on the first-order literals cor-
responding to the abstracted literals in the model. When this fails, new (not necessarily
ground) instances of clauses are generated in a way that forces the ground reasoner
to refine the model in the next iteration. Inst-Gen is therefore composed of two parts:
ground satisfiability solving on the abstraction of the set of clauses and first-order rea-
soning on literals corresponding to ground literals in the model of the abstraction.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 196–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

iProver-Eq: An Instantiation-Based Theorem Prover with Equality 197

A characteristic feature of the Inst-Gen method is the delegation of the ground rea-
soning to a black-boxed off-the-shelf solver. The iProver-Eq system currently uses
MiniSat [3] as the SAT solver and either CVC3 [1] or Z3 [7] as the SMT solver.

The iProver system [6] has treated equations only axiomatically, the iProver-Eq sys-
tem adds equational reasoning based on term rewriting. Following the approach from
[5], it implements a superposition-style calculus that both finds sets of inconsistent
equational literals and obtains instantiating substitutions from the proof of their incon-
sistency.

The implementation addresses the combination of three main components:

1. ground reasoning by an SMT solver.
2. superposition-based equational reasoning with literals in a candidate model.
3. instantiation by extracting substitutions from proofs generated in 2.

This system description first outlines the structure of the iProver-Eq system. We con-
tinue by defining the unit superposition calculus for equational reasoning and demon-
strate it by way of an example. We discuss extraction of instantiating substitutions from
proofs, giving an example for one of the non-trivial obstacles encountered which render
the method incomplete if naively addressed. Finally, we highlight some of the main fea-
tures of the implementation and conclude with an evaluation and directions for further
research.

2 System Overview

Given a set of first-order clauses S we first form its ground abstraction S⊥ by mapping
all variables to the same ground term, conventionally denoted⊥. If the ground abstrac-
tion S⊥ is unsatisfiable, the original set S is also unsatisfiable and the procedure can
terminate. Otherwise, there is a model I⊥ of the ground abstraction S⊥ and the first-
order instantiation process is guided by means of a selection function based on I⊥. The
selection function assigns to each first-order clause C in S exactly one literal L from C
such that I⊥ |= L⊥. At least one such literal always exists as the ground abstraction of
the clause is true in the model I⊥.

If the set of selected (not necessarily ground) literals, seen as unit clauses, is con-
sistent in first-order logic modulo equality, a model for the clause set S exists and
it has thus been proved satisfiable. Otherwise, there is a subset of the selected liter-
als which is inconsistent and the clauses these literals are selected in are instantiated
such that the inconsistency can already be witnessed in the ground abstraction and thus
forces the ground solver to refine it. For non-equational literals it suffices to search for
unifiable complementary literal pairs. In the presence of equations, we apply the unit
superposition calculus in order to find inconsistent literals and to obtain instantiating
substitutions.

iProver-Eq generates instances of clauses in a saturation process outlined in
Figure 1(a). Two major components in this process are unit superposition (US) for
equational reasoning on literals and an SMT solver for ground reasoning. Both are
non-trivial processes and while the equational reasoning will be described in the next
section, the ground solver is regarded as a black box. The saturation process is based on

198 K. Korovin and C. Sticksel

(a) Inst-Gen-Eq-Loop (b) US-Loop

Fig. 1. Sketch of the iProver-Eq System

a given clause algorithm which partitions the set of clauses into two disjoint sets, in
the following called the Inst-active and the Inst-passive clauses. The invariant is that
the ground abstractions of the selected literals in the set of Inst-active clauses are con-
sistent and have been passed to the US component. Initially, there are no Inst-active
clauses, all clauses are considered to be new instances, their ground abstractions are
input to the ground solver which is then invoked to return a model of the abstraction
or to prove its unsatisfiability. The new clauses are moved to the Inst-passive set from
where in each step of the process a clause, called the given clause, is chosen and put
into the Inst-active set. Using the current model of the ground abstraction, one of the
literals in the given clause is selected and passed to the unit superposition calculus, see
Figure 1(b). If a subset of the selected literals is found to be inconsistent by the unit su-
perposition calculus, then substitutions are extracted from the proof of the inconsistency
and corresponding instances are added to the set of new clauses. The process continues
by adding the abstractions of the new clauses to the SMT solver, running the solver
on the extended set of ground clauses and moving the new clauses to the Inst-passive
set. iProver-Eq terminates with a result of unsatisfiable if the ground solver reports an
unsatisfiable abstraction. If the passive clause set is empty and the selected literals are
consistent as indicated by the unit superposition component, iProver-Eq terminates with
the result satisfiable.

3 The Unit Superposition Calculus

In this section we describe the inference rules of the unit superposition calculus for
finding inconsistent equational literals and demonstrate it with an example (for a proof
of completeness, see [5]). Subsequently we discuss the US-Loop saturation procedure.

For simplicity, we work with pure equational logic where all atoms are equations.
The unit superposition calculus is similar to the standard superposition calculus, see,
e.g., [8]. Different literals are assumed to be variable-disjoint and as we only work with
literals, i.e. unit clauses, we can reduce the inference rules to the following ones.

iProver-Eq: An Instantiation-Based Theorem Prover with Equality 199

Definition 1 (Unit Superposition)

l � r s[l′] � t
(σ)

(s[r] � t)σ
l � r s[l′] �� t

(σ)
(s[r] �� t)σ

(i) σ = mgu(l, l′), (ii) l′ is not a variable, (iii) lσθ � rσθ
and (iv) s[l′]σθ � tσθ for some grounding substitution θ

l �� r
(σ)�

σ = mgu(l, r)

A proof of the contradiction, denoted �, is a tree where the leaves are literals selected
in the Inst-active set of clauses, inner nodes are obtained by applying inference rules
to the parent nodes and the root is the contradiction �. In order to extract instantiating
substitutions we annotate each inference with the substitution σ applied. The composi-
tion of the substitutions along the path in the proof tree from a selected literal at a leaf
to the contradiction yields a substitution which we call relevant to the selected literal.
In the Inst-Gen-Eq-Loop we take all clauses whose selected literals are leaves in the
proof and instantiate each clause with the substitution relevant to its selected literal.

Example 1. Consider the clauses (1)-(4) below and let the ground abstractions of their
selected literals (the first literal in each clause) be as shown to their right.
(1) f(f(u)) � f(u) f(f(⊥)) � f(⊥)
(2) g(f(f(x)), f(y)) � h(z) ∨ g(f(x), y) �� h(c) g(f(f(⊥)), f(⊥)) � h(⊥)
(3) g(f(a), f(b)) �� h(w) g(f(a), f(b)) �� h(⊥)
(4) g(f(a), b) � h(c) g(f(a), b) � h(c)

The clause set is unsatisfiable, but its ground abstraction is satisfiable with a model
containing the literals shown. Accordingly, the literals can indeed be selected and we
derive the contradiction using the US calculus.

(1)

f(f(u)) f(u)

(2)

g(f(f(x)), f(y)) h(z)
{x/u}

g(f(x), f(y)) h(z)

(3)

g(f(a), f(b)) � h(w)
{a/x, b/y}

h(z) � h(w)
{w/z}�

(�)

By tracing the branches in the proof tree, we extract a relevant substitution for each
of the three literals: {a/u}, {a/x, b/y, w/z} and {}, respectively. We instantiate the
clauses with the relevant substitutions of their selected literals. Clause (3) is instantiated
to itself, the instances of the first two clauses are:
(5) f(f(a)) � f(a)
(6) g(f(f(a)), f(b)) � h(w) ∨ g(f(a), b) �� h(c)

The ground abstraction is now unsatisfiable due to the following four clauses.

(3⊥) g(f(a), f(b)) �� h(⊥)
(4⊥) g(f(a), b) � h(c)

(5⊥) f(f(a)) � f(a)
(6⊥) g(f(f(a)), f(b)) � h(⊥) ∨ g(f(a), b) �� h(c)

Implementation of Unit Superposition. Figure 1(b) on page 198 is a sketch of the sat-
uration procedure in the unit superposition component in the Inst-Gen-Eq-Loop. The
saturation algorithm is a given literal algorithm, a variant of the given clause algorithm
described above. Literals are either US-active or US-passive and the invariant is that
all inferences between two US-active literals have been drawn. The US-passive set is
populated with selected literals from the Inst-Gen-Eq-Loop in Figure 1(a). In every

200 K. Korovin and C. Sticksel

step a given literal is chosen from the US-passive set, put into the US-active set and all
conclusions from inferences between the given literal and US-active literals are drawn.
The given literal is considered to be US-active in order to enable inferences with it-
self. If a conclusion is contradictory, substitutions are extracted from its proof as shown
above and passed to the Inst-Gen-Eq-Loop. Otherwise, the conclusion is added to the
US-passive set and the US-Loop continues choosing another given literal.

The US-Loop is a sub-procedure inside the Inst-Gen-Eq-Loop and interleaved with
it in a fair way such that neither process has to wait for termination of the other process.
All clauses from inconsistent subsets of their selected literals have to be instantiated,
therefore the US-Loop continues after having found a contradiction. If the US-passive
set in the US-Loop is empty, the Inst-Gen-Eq-Loop continues and only if in both pro-
cesses the sets of US-passive literals and Inst-passive clauses, respectively, are empty,
iProver-Eq is in a saturated state and returns satisfiability.

4 Instances from Unit Superposition Proofs

In this section we discuss one of the problems related to the extraction of substitutions
from proofs. We keep all clauses variable disjoint and thus the selected literals are also
variable disjoint.

It is well-known from standard implementations of paramodulation that for every
literal all its variants should be considered to be identical in order to avoid duplicating
inferences. However, in the Inst-Gen framework, variants of a literal can have different
proofs, in turn resulting in different substitutions which may all be required by the Inst-
Gen-Eq-Loop. Moreover, variants of a literal can occur in the same proof, potentially
leading to cycles as the following example shows.

Example 2. We modify the clause set from Example 1 by replacing clause (2) with
(2’) g(f(x), f(y)) � h(z) ∨ g(x, y) �� h(c)

The clause set remains unsatisfiable with a satisfiable ground abstraction and again
the first literals in each clause are selected. To prove unsatisfiability, instances have to
be generated in a way which might seem not immediately obvious.

(1)

f(f(u)) f(u)

(2’)

g(f(x), f(y)) h(z)
{f(u)/x}

g(f(u), f(y)) h(z)

(3)

g(f(a), f(b)) � h(w)
{a/u, b/y}

h(z) � h(w)
{w/z}�

()

The literal g(f(x), f(y)) � h(z) is inferred to its variant which may seem redundant as
the contradiction could already be derived from clauses (2’) and (3). However, due to
the substitution {f(u)/x} in the inference, different substitutions are extracted from the
proof. Indeed, only upon adding the instances of clauses (1) and (2’) with the respective
substitutions {a/u} and {f(a)/x, b/y, w/z} which are identical to clauses (5) and (6)
from Example 1 the ground abstraction becomes unsatisfiable as shown there.

If we identify the literal variants of g(f(x), f(y)) � h(z) with each other, the proof tree
in the example would collapse to a tree with the addition of a cycle on the literal. Book-
keeping information about cycles considerably complicates extraction of substitutions
from proofs and approaches are needed that eliminate cycles.

iProver-Eq: An Instantiation-Based Theorem Prover with Equality 201

Our main approach is to extract substitutions after each inference step and to use
them to label the inferred literal. In order to combine all literal variants we introduce a
new inference rule which merges different labels of the same literal. We also modify the
inference rules from Definition 1 to accommodate labels which are merely annotations
and do not influence the applicability of inferences. The conditions on the inference
rules remain as in Definition 1.

Definition 2 (Labelled Unit Superposition)

�1 : L �2 : L

�1 ∪ �2 : L

�1 : l � r �2 : L[l′]
(σ)

�1σ ∪ �2σ : L[r]σ
� : l �� r

(σ)
�σ : �

In proof () above, the inferred variant of the literal g(f(x), f(y)) � h(z) has a differ-
ent label from the variant used as a premise. By first merging the labels of both variants
and subsequently deriving the contradiction, we obtain the instances of (1), (2’) and (3)
from proof () as well as the instances from (2’) and (3) alone. We now do not need to
trace a proof tree that potentially contains cycles, the necessary substitutions to generate
instances can be read from the label of the contradiction.

For Example 2, we can choose a second approach orthogonal to labelling to tackle
cycles by generating instances. We instantiate clause (2’) with the substitution {f(u)/x}
from the cycle to clause (2) from Example 1 and can prove unsatisfiability as shown
there. The cyclic proof () becomes redundant and the relevant substitution for clause
(2) leading to its instance (6) can instead be extracted from the proof (�). Although this
method of unfolding cycles by eagerly instantiating clauses seems simple and yet pow-
erful, it becomes much more involved when the substitution in the cycle is not proper,
i.e. no variable is instantiated to a term, e.g., {y/x, y/z}. For such non-proper cycles the
labelled approach is advantageous and we are investigating the benefits of combining
both approaches.

5 Features of the Implementation

iProver-Eq is implemented in the functional language OCaml and uses MiniSat, CVC3
and Z3 as ground (SAT/SMT) solvers via their C/C++ APIs. It processes input in TPTP
format and uses the E prover1 for clausification of non-CNF problems. We briefly men-
tion the most significant features of the implementation, some of which have already
been present in the iProver system and were adapted or extended.

Passive Clauses/Literals. Both the Inst-passive set of clauses and the US-passive set
of literals are maintained in the form of priority queues that allow user-configurable
heuristics to prefer promising clauses and literals.

Dismatching Constraints. All clauses are annotated with dismatching constraints that
make redundancy due to common ground instances between a clause and its in-
stances explicit. Thus we can block redundant instantiations in the Inst-Gen-Eq-
Loop and most crucially redundant proofs in the US-Loop.

Demodulation. In addition to superposition inferences, the US-Loop simplifies literals
with demodulation inferences with orientable equations obtained from unit clauses.

1 http://www.eprover.org

http://www.eprover.org

202 K. Korovin and C. Sticksel

Indexing. Several unification indexes, implemented as non-perfectdiscrimination trees,
make the forward and backward search for unifiable subterms for unit superposition
and for matching subterms for demodulation efficient.

Global subsumption. iProver-Eq makes use of a global subsumption algorithm for
simplifying both ground and non-ground clauses using the ground solver similar to
the way it is done in iProver. It also integrates the resolution prover from iProver to
obtain short clauses which are propagated to the ground solver and in turn enhance
global subsumption.

6 Evaluation

iProver-Eq2 is still in an early stage of development which has not been focused on effi-
ciency issues yet. We have evaluated the current version of iProver-Eq which integrates
CVC3 as its ground solver, on the standard TPTP v4.0.1 benchmark library. Running
on Intel Xeon Quad Core machines with 2.33GHz and 3GB of memory, 5004 out of the
13783 problems are solved within 60 seconds. These include three problems that are
not known to be solved by any other theorem prover. The success in 1621 problems is
due to the equational reasoning and iProver did not succeed on them with the previous
axiomatic handling of equations using CVC3 as a SAT solver.3

At the moment the core US component taken as a stand-alone reasoner for unit
equations is not as efficient as dedicated superposition-based provers. As an obvious
next step we are working on strengthening the US component, however, as we have
demonstrated in Section 4, not all techniques from state-of-the-art reasoners can be
straightforwardly adapted due to the requirement to generate all relevant instances.

References

1. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

2. Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 404–409. Springer, Heidelberg (2007)

3. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Ganzinger, H., Korovin, K.: New Directions in Instantiation-Based Theorem Proving. In:
LICS 2003, pp. 55–64. IEEE, Los Alamitos (2003)

5. Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-Based Theo-
rem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84.
Springer, Heidelberg (2004)

6. Korovin, K.: iProver - An Instantiation-Based Theorem Prover for First-Order Logic (Sys-
tem Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

7. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

8. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier, Amsterdam (1999)

2 Available from http://www.cs.man.ac.uk/˜korovink/iprover
3 In SAT solving, CVC3 has an overhead due to its theory handing. For non-equational prob-

lems, one should return to the more efficient MiniSat which we did not do in the experiments.

Classical Logic with Partial Functions

Hans de Nivelle

Instytut Informatyki, University of Wroc�law, Poland

Abstract. We introduce a semantics for classical logic with partial func-
tions. We believe that the semantics is natural. When a formula contains
a subterm in which a function is applied outside of its domain, our se-
mantics ensures that the formula has no truth-value, so that it cannot be
used for reasoning. The semantics relies on order of formulas. In this way,
it is able to ensure that functions and predicates are properly declared
before they are used. We define a sequent calculus for the semantics, and
prove that this calculus is sound and complete for the semantics.

1 Introduction

Partial functions occur frequently in mathematics and programming. In high-
school, one is taught that one ‘should not divide by zero’. Similarly, one is taught
that log(0) and tan π

2 ‘do not exist’. In programming, partial functions are even
more abundant. A pointer can only be dereferenced if it is not the null-pointer.
A vector has only a first element if it is non-empty. A file can only be read from
if it is in a good state.

One approach to partial functions is what is called the traditional approach
to partial functions in [5] and [6]: In this approach, (1) variables and constants
are always defined, and (2) formulas are always true or false. Atoms (includ-
ing equalities) containing undefined subterms are always false. Although the
traditional approach takes partiality serious, it does not fit with our view that
ill-typed formulas should not be propositions at all. (Because no assumptions
should be made about programs containing undefined values.)

For this reason, many authors ([1,8]) have taken an approach based on three-
valued Kleene logic. Three-valued logic is obtained by introducing an extra value
u, which is the truth-value for undefined propositions. It is assumed that the
truth values are ordered as f < u < t. Using this order, P ∨ Q can be defined
as MAX<(P,Q). Negation can be defined from [f ⇒ t, u ⇒ u, t ⇒ f]. Other
operators can be introduced through standard equivalences. The well-definedness
approach of [2,9] is closely related to Kleene logic, although at first it may appear
different, due to its proof-theoretic motivation. In the WD-approach, one has to
prove that a formula is well-defined before it is used. It can be seen from the
definitions in [9] that a formula is not well-defined iff it would take the value u
in Kleene logic.

Kleene logic (and the WD-approach) are closer to our intuitions, but there is
a difference: In our view, ill-defined formulas are not unknown, but errors after
which nothing can be assumed. The justification for setting t∨u = t, is the fact

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 203–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

204 H. de Nivelle

that whichever value u will take, the t ensures that the disjunction will be true.
In our philosophy, nothing should be assumed about error values.

In addition to this philosophy, our system has some other, teachnical features
that we believe may be useful: Preconditions of partial functions and types are
treated in a unified way, and they are treated inside the logic itself, not by
an external type system. This ensures that the logic does not have any built-
in restrictions on type systems with which it is used. Both the type and the
preconditions of a partial function can be expressed by ordinary formulas, as for
example in ∀x, y Nat(x)∧Nat(y)→ Nat(x + y). Subtraction can be specified as
a partial function by the formula: ∀x, y Nat(x) ∧Nat(y) ∧ x ≥ y → Nat(x− y).

In our setting, partial functions are functions that sometimes have results
about which nothing can be assumed. If the specification of the function requires
that it throws exceptions, then something is assumed about the result. We view
exceptions as a form of polymorphism, which is different from partiality. Our
system is flexible enough to handle both polymorphism and partiality.

In order to connect preconditions to formulas, we introduce two binary opera-
tors: The first operator is the lazy implication operator [A]B, the second operator
is the lazy conjunction operator 〈A〉B. We call the operators ‘lazy’ because they
do not look at the second argument when the first argument is false. (Similar to
&& and || in C). Because of this, B needs to be a proposition only when A is true,
so that truth of A can be assumed when proving that B is a proposition. In the
strict operators A→ B and A ∧B, the second argument must be a proposition
independent of A.

We now introduce the syntax and semantics of our system, which we will call
PCL (Partial Classical Logic).

Definition 1. The set of terms of PCL (partial classical logic) is recursively
defined by the following rule: If t1, . . . , tn are terms (with n ≥ 0), and f is a
function symbol with arity n, then f(t1, . . . , tn) is also a term. We call function
symbols with arity 0 constants or variables, dependant on how they are used.

Using the set of terms, we define the set of formulas of PCL recursively as
follows:

– ⊥ and 	 are formulas.
– Every term A is a formula. We will call formulas of this form atoms.
– If t1, t2 are terms, then t1 = t2 is a formula.
– If A is a formula, then ¬A is a formula.
– If A and B are formulas, then A ∧ B, A ∨ B, A → B, and A ↔ B are

formulas.
– If A and B are formulas, then [A]B and 〈A〉B are formulas.
– If x is a variable, A is a formula, then ∀x A and ∃x A are formulas.
– If A is a formula, then Prop(A) is a formula.

The intuitive meaning of Prop(F) is ‘F is a formula’. The logic is set up in such
a way, that type correctness of formulas and terms must be proven within the
calculus. As a consequence, there is no syntactic distinction between formulas
and terms in Definition 1.

Classical Logic with Partial Functions 205

We will now introduce a lattice on non-truth values. It will be used in Defini-
tion 3, to ensure that logical operators behave in a predictable way when their
arguments are not valid propositions. This has the advantage that many meta-
properties of the logic can be formulated as equivalences. For example, without
the lattice on non-truth values, I(A) = I(A∧A) would not hold as equality. This
would have no effect on the provable formulas, because the equality would still
hold for the truth values. The lattice is only a trick to make the meta-properties
nicer. We do not intend to use the lattice for abstraction, as is proposed in [7].

Definition 2. Let S be a set. A relation � is called a partial order if it meets
the following requirements: (1) For all s ∈ S, s � s. (2) For all s1, s2, s3, s1 �
s2 ∧ s2 � s3 ⇒ s1 � s3. (3) For all s1, s2, s1 � s2 ∧ s2 � s1 ⇒ s1 = s2. Let S′

be a subset of S. We call s ∈ S a lower bound of S′ if for all s′ ∈ S′, s � s′.
We call s a greatest lower bound of S′ if s is a lower bound of S′, and for every
lower bound ŝ of S′, we have ŝ � s.

We write �S′ for the greatest lower bound of S′, if it exists. If S′ is finite, we
write s1 � s2 � · · · � sn instead of �{s1, s2, . . . , sn}.

It is easily checked that the greatest lower bound is unique if it exists.

Definition 3. An interpretation I = (D, f , t,�, []) is defined by

– A domain D.
– Two distinct truth constants f and t, such that both of f , t ∈ D,
– A partial order � on D\{f , t}, s.t. every non-empty D′ ⊆ D\{f , t} has a

greatest lower bound �D′, which is in D\{f , t}.
– a function [] that interprets function symbols as follows: If f is a function

symbol with arity n, then [f] is a total function from Dn to D.

As said above, the role of the partial order � is to obtain predictable behaviour
of the logical operators when they are applied on non-Boolean objects.

Definition 4. Let I = (D, f , t,�, []) be an interpretation. We recursively define
the interpretation I(F) of a formula F as follows:

– I(⊥) = f , I() = t.
– If F = [f], then I(f(t1, . . . , tn)) = F (I(t1), . . . , I(tn)).
– If I(t1) = I(t2), then I(t1 = t2) = t. Otherwise, I(t1 = t2) = f .
– If I(A) = t, then I(¬A) = f . If I(A) = f , then I(¬A) = t. Otherwise

I(¬A) = I(A).
– We characterize the strict binary operators:
• If I(A) ∈ {f , t}, and I(B) �∈ {f , t}, then I(A ∧B) = I(A ∨B) = I(A→

B) = I(A↔ B) = I(B).
• If I(A) �∈ {f , t}, and I(B) ∈ {f , t}, then I(A ∧B) = I(A ∨B) = I(A→

B) = I(A↔ B) = I(A).
• If both I(A), I(B) �∈ {f , t}, then I(A ∧ B) = I(A ∨ B) = I(A → B) =

I(A↔ B) = I(A) � I(B).

206 H. de Nivelle

• If both of I(A), I(B) ∈ {f , t}, then ∧,∨,→,↔ are characterized by the
following (standard) truth table:

I(A) I(B) I(A ∧B) I(A ∨B) I(A→ B) I(A↔ B)
f f f f t t
f t f t t f
t f f t f f
t t t t t t

– We characterize the lazy binary operators:
• If I(A) = f , then I([A]B) = t, and I(〈A〉B) = f .
• If I(A) �∈ {f , t}, and I(B) ∈ {f , t}, then I([A]B) = I(〈A〉B) = I(A).
• If both I(A), I(B) �∈ {f , t}, then I([A]B) = I(〈A〉B) = I(A) � I(B).
• If I(A) = t, then I([A]B) = I(〈A〉B) = I(B).

– Next come the quantifiers: Let x be some variable. Let F be a formula. Let
R = { Ix

d (d) | d ∈ D}, where Ix
d is defined as usual.

• If R �⊆ {f , t}, then I(∀x F) = I(∃x F) = �(R\{f , t}).
• If R = {f}, then I(∀x F) = I(∃x F) = f .
• If R = {t}, then I(∀x F) = I(∃x F) = t.
• If R = {f , t}, then I(∀x F) = f and I(∃x F) = t.

– It remains to characterize Prop. If I(A) ∈ {f , t}, then I(Prop(A)) = t.
Otherwise, I(Prop(A)) = f .

Valid judgments will be represented by sequents.

Definition 5. A context is a finite sequence of formulas Γ1, . . . , Γn. A sequent
is an object of form Γ � A, in which Γ is a context and A is a formula.

We introduce two notions of validity for sequents. The first notion is the standard
notion. The second, stronger notion is the notion that we will be using.

Definition 6. Let Γ1, . . . , Γn � A be a sequent. We call Γ1, . . . , Γn � A valid if
in every interpretation I = (D, f , t,�, []), s.t. I(Γ1) = · · · = I(Γn) = t, we also
have I(A) = t. We call the sequent Γ1, . . . , Γn � A strongly valid, if it is valid,
and in addition the context Γ1, . . . , Γn has the following property: Either for all
i with 1 ≤ i ≤ n, we have I(Γi) = t, or for the first i with 1 ≤ i ≤ n that has
I(Γi) �= t, we have I(Γi) = f .

The sequent A � A is valid, but not strongly valid. One can take an interpretation
I with I(A) = e, for some e �∈ {f , t}. The sequent Prop(A), A � A is strongly
valid because it is valid, and if I(A) = e, then I(Prop(A)) = f . Similarly, the
sequent � A∨¬A is valid, but not strongly valid. The sequent Prop(A) � A∨¬A
is strongly valid.

The notion of strong validity captures the fact that functions and predicates
have to be declared before they are used. If one has a context Γ1 and a formula
A, for which Γ1 �|= Prop(A), then there exists an interpretation I, in which
I(Γ1) = t and I(A) �∈ {f , t}, so that no sequent of form Γ1, A, Γ2 � B can be
strongly valid. The following example illustrates declaration of partial functions,
and usage of the lazy operators 〈 〉 and [] :

Classical Logic with Partial Functions 207

F1 ∀x Prop(Nat(x)),
F2 ∀xy Nat(x) ∧Nat(y)→ Prop(x ≥ y),
F3 ∀xy [Nat(x) ∧Nat(y)] x ≥ y → Nat(x− y),
F4 ∀xy [Nat(x) ∧Nat(y)] x ≥ y → ∃z 〈 Nat(z) 〉 〈 x ≥ z 〉 x− z = y.

In F2, the relation ≥ is defined on natural numbers. This can be done with
standard implication → because Prop(x ≥ y) is always Prop by itself. In F3,
subtraction x − y is declared to return Nat on the condition that x ≥ y. Here
lazy implication must be used, because without Nat(x),Nat(y), x ≥ y would
not be Prop. In F4, 〈 〉 must be used with ∃ to declare z in Nat, but also to
declare x ≥ z, because otherwise x− z would not be Nat.

We aim to define a sequent calculus that is able to model strong validity. It
turns out that definition of this calculus is simpler when one defines a one-sided
calculus, in which sequents are refuted instead of proven. The reasons for this
are the following: Validity of Prop(A) � A∨¬A and the fact that the semantics
is based on truth-values, suggest that PCL is essentially classical (in contract
to intuitionistic). At the same time, the notion of strong validity depends on
the order of formulas in the sequent. Allowing formulas to freely move from
the premise to the conclusion in a sequent, which would be needed for classical
¬-rules, and simultaneously keeping track of the order of the formulas in the
sequent, is tedious. It can be avoided by using one-sided sequents.

Definition 7. A one-sided sequent is an object of form Γ1, . . . , Γn �, in which
Γ1, . . . , Γn (n ≥ 0) is a sequence of formulas. We say that Γ1, . . . , Γn � fails in
an interpretation I if there is an i, (1 ≤ i ≤ n), s.t. I(Γi) �= t. We will usually
write ‘sequent’ instead of ‘one-sided sequent’, since it is always clear from the
form which type is meant.

We say that Γ � fails strongly in I if there is an i, (1 ≤ i ≤ n), s.t. I(Γi) = f
and for all j, (1 ≤ j < i), I(Γj) = t. If we want to stress that Γi is the first
formula in Γ with I(Γi) �= t (which implies that I(Γi) = f), then we say that Γ
fails strongly at Γi in I.

We call the one-sided sequent Γ � unsatisfiable if it fails in every interpreta-
tion. We call Γ strongly unsatisfiable if it fails strongly in every interpretation.

Theorem 1. Let Γ � A be a sequent. Γ � A is strongly valid if and only if the
one-sided sequent Γ,¬A � is strongly unsatisfiable.

Proof. Write Γ = Γ1, . . . , Γn � with n ≥ 0. For convenience, define Γn+1 := ¬A.
Assume that Γ � A is strongly valid. We have to show that the sequent

Γ1, Γ2, . . . , Γn+1 � is strongly unsatisfiable. Let I be an arbitrary interpretation.
We have to show that there exists an i, (1 ≤ i ≤ n + 1) with property Φ(i),
where Φ(i) is the property that I(Γi) = f , and for all j, (1 ≤ j < i), I(Γj) = t.
We distinguish two cases:

– If for all i, 1 ≤ i ≤ n, I(Γi) = t, then it follows from validity of Γ � A that
I(A) = t, so that I(¬A) = f . Since ¬A = Γn+1, we have Φ(n + 1).

– If there is an i with 1 ≤ i ≤ n, s.t. I(Γi) �= t, then by strong validity of
Γ � A (See Definition 6), we have I(Γi) = f for the first i with I(Γi) �= t. It
follows that we have Φ(i).

208 H. de Nivelle

¬⊥ ⇒ �, ¬� ⇒ ⊥
¬¬A ⇒ A,
¬(〈A〉B) ⇒ [A]¬B, ¬([A]B) ⇒ 〈A〉¬B
¬(A ∧ B) ⇒ ¬A ∨ ¬B, ¬(A ∨ B) ⇒ ¬A ∧ ¬B
¬(A → B) ⇒ A ∧ ¬B, ¬(A ↔ B) ⇒ A ↔ ¬B
¬∀x F, ⇒ ∃x ¬F ¬∃x F ⇒ ∀x ¬F

Fig. 1. Reduction Rules for ¬

In order to show the other direction, assume that Γ1, . . . , Γn, Γn+1 � is strongly
unsatisfiable. We first show that Γ1, . . . , Γn � A is valid. Let I be an interpre-
tation. Assume that I(Γ1) = I(Γ2) = · · · = I(Γn) = t. It follows from the
strong unsatisfiability of Γ1, . . . , Γn, Γn+1 � that I(Γn+1) = f , so that I(A) = t.
Next we show the additional property that makes Γ1, . . . , Γn � A strongly valid.
If no i has I(Γi) �= t, then we are done. Otherwise, let i be the first position
where I(Γi) �= t. If we would have I(Γi) �= f , then this would contradict strong
unsatisfiability of the sequent Γ1, . . . , Γn, Γn+1 �, so that the proof is complete.

Using Theorem 1, the conclusion of a sequent can be moved to the left hand side,
after which it can be treated in the same way as the other premises. This has the
advantage that one can delete half of the rules from the sequent calculus, and it
avoids the burden of keeping track of the order of formulas spread between the
premises and the conclusions. In order to further simplify the calculus, we use
the reduction rules in Figure 1 and Figure 2. Figure 1 contains rules for pushing
negation inwards, while Figure 2 contains rules for pushing Prop inwards. Most
rules in Figure 1 look familiar, but their validity still needs to be checked in the
context of PCL. It can be checked (by case analysis) that for every interpretation
I, for each rule A⇒ B in Figure 1 or Figure 2, we have I(A) = I(B), so that the
equivalences can be freely used in proofs. Figure 1 and Figure 2 ensure that ¬
or Prop never needs to be the main operator of a formula. The only cases where
Prop and ¬ cannot be eliminated are in formulas of form φ1(φ2(A)), where A
is an atom, φ2 is either Prop or nothing, and φ1 is either ¬ or nothing. Such
formulas play the same role as literals in first-order logic. One can either simplify
the sequent completely before proof search, or apply the rules ‘lazily,’ i.e. only
when ¬ or Prop stands in the way of a rule application.
Figure 3 contains the rules of the sequent calculus SeqPCL. Most rules proba-
bly look familiar, but there are pitfalls. For example, the rule for ∧-introduction
would be unsound if the second premise would be removed. It would then be pos-
sible that in some interpretation I = (D, f , t,�, []), one has I(Γ1) = t, I(A) = f ,
and I(B) �∈ {f , t}. In that case the left premise would fail strongly, while the
conclusion would fail only weakly. Similarly, the rule for ∀-introduction would
be unsound if one would not keep a copy of ∀x P (x) in the premise before P (t).
It could happen that in some interpretation I, I(P (t)) = t, while at the same
time I(∀x P (x)) �∈ {f , t}.

If one would remove the A from the second premise in []-introduction, the
rule would still be sound, but become too weak for completeness. The problem
would show up when Prop(B) depends on A.

Classical Logic with Partial Functions 209

Prop(�) ⇒ �
Prop(⊥) ⇒ �
Prop(¬A) ⇒ Prop(A)
Prop(Prop(A)) ⇒ �

Prop(A ∧ B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))
Prop(A ∨ B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))
Prop(A → B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))
Prop(A ↔ B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))

Prop(〈A〉B) ⇒ 〈 Prop(A) 〉(A → Prop(B))
Prop([A]B) ⇒ 〈 Prop(A) 〉(A → Prop(B))

Prop(∀x F) ⇒ ∀x Prop(F)
Prop(∃x F) ⇒ ∀x Prop(F)

Prop(t1 = t2) ⇒ �

Fig. 2. Reduction Rules for Prop

In contrast to standard first-order logic, a sequent of form Γ,A,¬A � is
not automatically an axiom. It is possible that Γ � fails weakly, or I(Γ) = t
and I(A) �∈ {f , t}. Both cases are covered by requiring the additional sequent
Γ, ¬Prop(A) � .

We will prove soundness of the rules for 〈 〉, ∨, and ∃. Most of the other
rules can be reduced to 〈 〉 and ∨, by using the equivalences in Figure 4. The
remaining rules can be checked by case analysis.

Theorem 2. Let Γ〈A〉B be a sequent of form Γ1, . . . , Γm, 〈A〉B, Γ ′
1, . . . , Γ

′
n �.

Let ΓA,B be the sequent Γ1, . . . , Γm, A,B, Γ ′
1, . . . , Γ

′
n �. Let I be an interpreta-

tion. Then Γ〈A〉B fails strongly in I iff ΓA,B fails strongly in I.

Proof. Assume that Γ〈A〉B fails strongly in I. This means that the first formula
F in Γ〈A〉B, for which I(F) �= t, has I(F) = f .

– If F is among the Γi, then it is immediate that ΓA,B fails strongly in I.
– If F = 〈A〉B, then either I(A) = f , or (I(A) = t and I(B) = f). Since

I(Γ1) = · · · = I(Γm) = t, in both cases ΓA,B fails strongly in I.
– If F is among the Γ ′

j , then F also occurs in ΓA,B. We know that I(Γ1) = · · · =
I(Γm) = t. From the fact that I(〈A〉B) = t, follows that I(A) = I(B) = t.
Since we assumed that I(Γ ′

1) = · · · = I(Γ ′
j−1) = t, it follows that F is the

first formula in ΓA,B for which I(F) �= t. Since I(F) = f , we know that ΓA,B

fails strongly in I.

For the other direction, assume that ΓA,B fails strongly in I. Let F be the first
formula in ΓA,B for which I(F) �= t. We have I(F) = f .

– If F is among the Γi, then it is immediate that Γ〈A〉B fails strongly in I.
– If F = A, then I(〈A〉B) = f , and I(Γ1) = · · · = I(Γm) = t, so that Γ〈A〉B

fails strongly in I at formula A.

210 H. de Nivelle

Rules for 〈 〉 and ∨

Γ1, A, B, Γ2 �
Γ1, 〈A〉 B, Γ2 �

Γ1, A, Γ2 � Γ1, B, Γ2 �
Γ1, A ∨ B, Γ2 �

Rules for ∧ and []

Γ1, A, B, Γ2 � Γ1, B, A,Γ2 �
Γ1, A ∧ B, Γ2 �

Γ1, ¬A, Γ2 � Γ1, A, B, Γ2 �
Γ1, [A]B, Γ2 �

Rules for → and ↔
Γ1, ¬A, Γ2 Γ1, B, Γ2 �

Γ1, A → B, Γ2 �
Γ1, A, B, Γ2 � Γ1, ¬B,¬A, Γ2 �

Γ1, A ↔ B, Γ2 �

Rules for ∀ and ∃

Γ1, ∀x P (x), P (t), Γ2 �
Γ1, ∀x P (x), Γ2 �

Γ1, P (x), Γ2 �
Γ1, ∃x P (x), Γ2 �

(In the ∀-rule, t must be a term. In the ∃-rule x must be not free in Γ1 or Γ2.)
Equivalence If A ⇒ B is an instance of one of the rules in figure 2 or figure 1, then

the following derivation is possible:

Γ1, B, Γ2 �
Γ1, A, Γ2 �

Axioms

Γ, ¬Prop(A) �
Γ, A,¬A �

Γ, ¬Prop(A) �
Γ,¬A, A � ⊥ �

Weakening

Γ1,¬Prop(A) � Γ1, Γ2 �
Γ1, A, Γ2 �

Γ �
Γ, A �

Γ1, Γ2 �
Γ1,�, Γ2 �

(In the first two rules, A can be an arbitrary formula.)
Contraction, Cut

Γ1, A, Γ2, A, Γ3 �
Γ1, A, Γ2, Γ3 �

Γ1, ¬A � Γ1, A, Γ2 �
Γ1, Γ2 �

(A can be an arbitrary formula.)
Equality

Prop(A),A, t1 = u1, . . . , tn = un,¬A′ � t1 = u1, . . . , tn = un, t �= u �

In the first axiom, it must be the case that A, t1 = u1, . . . , tn = un |= A′ in
the standard theory of equality. In the second axiom, it must be the case that
t1 = u1, . . . , tn = un � t = u in the standard theory of equality.

Fig. 3. Rules of SeqPCL :

Classical Logic with Partial Functions 211

∧ A ∧ B ⇒ (〈A〉B) ∨ (〈B〉A)
[] [A]B ⇒ ¬A ∨ (〈A〉B)
→ A → B ⇒ ¬A ∨ B
↔ A ↔ B ⇒ (〈A〉B) ∨ (〈¬A〉¬B)

� 〈A〉� ⇒ A
� 〈�〉A ⇒ A

∀ ∀x P (x) ⇒ 〈 ∀x P (x) 〉 P (t)

Fig. 4. Reduction of remaining rules to 〈 〉 and ∨

– If F = B, then we know that I(A) = t, so that I(〈A〉B) = f . Since
I(Γ1) = · · · I(Γm) = t, it follows that Γ〈A〉B fails strongly in I at formula B.

– If F is among the Γ ′
j , then F also occurs in Γ〈A〉B, so that it is sufficient to

show that there is no formula F ′ before F in Γ〈A〉B, s.t. I(F ′) �= t. The only
candidate is 〈A〉B, because all other formulas were copied from ΓA,B. But
since we know that I(A) = I(B) = t, it follows that I(〈A〉B) = t.

Theorem 3. Let ΓA∨B be a sequent of form Γ1, . . . , Γm, A ∨ B,Γ ′
1, . . . , Γ

′
n �.

Let ΓA = Γ1, . . . , Γm, A, Γ ′
1, . . . , Γ

′
n �, and let ΓB = Γ1, . . . , Γm, B, Γ ′

1, . . . , Γ
′
n �.

Let I be an interpretation. The sequent ΓA∨B fails strongly in I iff both of ΓA

and ΓB fail strongly in I.

Proof. Because of space restriction, we do some handwaving. Using Theorem 2
and Figure 4, we can collapse Γ1, . . . , Γm and Γ ′

1, . . . , Γ
′
n into single formulas of

form C1 = 〈Γ1〉 · · · 〈Γm〉	 and C2 = 〈Γ ′
1〉 · · · 〈Γ ′

n〉	.
After the replacement, the proof reduces to showing that C1, A∨B,C2 � fails

strongly in I iff both of C1, A, C2 � and C1, B, C2 � fail strongly in I. This can
be checked by case analysis. Each of C1, A,B,C2 can be either f , t or �∈ {f , t}.
This results in 34 = 81 cases, which can be checked. 1

Theorem 4. Let Γ∃ be a sequent of form Γ1, . . . , Γm, ∃x P (x), Γ ′
1, . . . , Γ

′
n �.

Let Γx be the sequent Γx = Γ1, . . . , Γm, P (x), Γ ′
1, . . . , Γ

′
n �. Assume that x is

not free in any of the formulas Γ1, . . . , Γm, Γ ′
1, . . . , Γ

′
n.

Let I = (D, f , t,�, []) be an arbitrary interpretation. Then Γ∃ fails strongly
in I iff for every d ∈ D, the sequent Γx fails strongly in Ix

d = (D, f , t,�, []xd).

Proof. In the proof, we make use of the fact that I(Γi) = Ix
d (Γi) and I(Γ ′

j) =
Ix
d (Γ ′

j), because x is not free in Γi, Γ
′
j .

Assume that Γ∃ fails strongly in I. This means that for the first formula F in
Γ∃ with I(F) �= t, one has I(F) = f .

– If F is one of the Γi, then I(Γi) = Ix
d (Γi) = f , and for all i′, (1 ≤ i′ ≤

i), I(Γi′) = Ix
d (Γi′) = t, so that Γx fails strongly at Γi in every Ix

d .
– If F is ∃x P (x), then the fact that I(∃x P (x)) = f , implies that for every

d ∈ D, Ix
d (P (x)) = f . Since for every i, I(Γi) = Ix

d (Γi) = t, it follows
that Γx fails strongly at formula P (x) in every interpretation Ix

d .
– If F is one of the Γ ′

j , then we know that for every d ∈ D, I(Γ1) = Ix
d (Γ1) =

· · · = I(Γm) = Ix
d (Γm) = t. It can be seen from Definition 4 that

1 The cases have been checked by a computer program, together with all cases for the
reductions in Figure 1, 2 and 4.

212 H. de Nivelle

I(∃x P (x)) = t implies that for every d ∈ D, either Ix
d (P (x)) = f , or

Ix
d (P (x)) = t. If Ix

d (P (x)) = f , then Γx strongly fails at P (x) in Ix
d .

Otherwise, we have Ix
d (P (x)) = t and I(Γ ′

1) = Ix
d (Γ ′

1) = · · · = I(Γ ′
j−1) =

Ix
d (Γ ′

j−1) = t, and I(Γj) = Ix
d (Γj) = f , so that Γx fails strongly at Γ ′

j in Ix
d

For the other direction, we use contraposition, so assume that Γ∃ does not fail
strongly in I. We show that there exists a d ∈ D, s.t. Γx does not fail strongly
in Ix

d . We distinguish the following cases:

– The first formula F with I(F) �= t is among the Γi and I(Γi) �= f . Since for
all i, (1 ≤ i ≤ m), I(Γi) = Ix

d (Γi), the sequent Γx does not fail strongly in
any Ix

d .
– The first formula F with I(F) �= t is ∃x P (x), and I(∃x P (x)) �= f . It

follows from Definition 4 that there is a d ∈ D, s.t. Ix
d (P (x)) �∈ {f , t}. In

the corresponding Ix
d , the sequent Γx does not fail strongly.

– The first formula F for which I(F) �= t is among the Γ ′
j , and I(Γ ′

j) �= f .
Since I(∃x P (x)) = t, there exists a d ∈ D, s.t. Ix

d (P (x)) = t. In Ix
d , we

have I(Γ1) = Ix
d (Γ1) = · · · = I(Γm) = Ix

d (Γm) = t, and I(Γ ′
1) = Ix

d (Γ ′
1) =

· · · = I(Γ ′
j−1) = Ix

d (Γ ′
j−1) = t, so that Γx does not fail strongly in Ix

d .
– There is no formula F for which I(F) �= t in Γ∃. This case is analogeous to

the previous case.

2 Completeness

In the previous section we introduced SeqPCL and proved its soundness. In the
rest of the paper, we will give an outline of the completeness proof. If there
would exist no ∀-quantifier, we would already have the completeness proof at
this point. The calculus has sufficiently many equivalence preserving rules: For
every interpretation I, the conclusion of the rule fails strongly in I iff all premises
of the rule strongly fail in I. Using the equivalence preserving rules, it is possible
to break down the goal sequent into a set of sequents that contain only (negations
of) (Props of) atoms. These simple sequents are either axioms, or there exists a
model in which they do not fail strongly. By the equivalence property, this implies
that we either have a proof of the original sequent, or a counter interpretation.

In order to include ∀ in the completeness proof, we would like to proceed in a
standard way: Allow each ∀-quantifier to have some fixed set of instances. If no
proof can be constructed, then grant each ∀-quantifier one instance more. This
process either results in a proof, or it leads to an increasing sequence of sets of
atoms from which one can read of an interpretation in the limit.

Unfortunately, there is a problem with this approach, which is caused by the
fact that in most cases the limit will be infinite. We want to show that the limit
sequent does not fail strongly in the limit interpretation I (and that none of
the sequents on the way fails strongly in I), but we have no concept of strong
failure for infinite sequents. One possible solution would be to introduce infinite
sequents. Infinite sequents can be defined by labelling a well-founded set with
formulas. The sequent fails strongly if every element in the well-founded set that

Classical Logic with Partial Functions 213

is labelled with a non-true formula, has an element before it, that is labelled with
a false formula. Finite sequents would correspond to linearly ordered, finite sets.
It turns out that there is a simpler approach, which avoids introducing special
notions for infinite sequents:

Definition 8. Let Γ = Γ1, . . . , Γn � be a sequent. We say that Γ is in Prop
normal form (PNF) if for every Γi, either (1) Γi is of form t1 = t2, t1 �=
t2, Prop(A) or ¬Prop(A), or (2) there is a j < i, s.t. Γj has form Prop(Γi).

Lemma 1. Let Γ � be a sequent in PNF. Let I be an interpretation. Then Γ �
does not fail strongly in I iff for every formula F in Γ, I(F) = t.

Theorem 5. If SeqPCL is complete for sequents in PNF, then it is complete for
all sequents.

Proof. Assume that SeqPCL is complete for sequents in PNF. Let Γ � be an
arbitrary sequent. Write Γ � in the form Γ1, . . . , Γn �. Let #Γ � be the number
of violations of Definition 8 in Γ �. (This is the number of Γi that are not of
form t1 = t2, t1 �= t2, Prop(A), ¬Prop(A), and for which there also exists no
j < i with Γj = Prop(Γi).)

If #Γ � = 0, then Γ � is in PCL, so that we are done. Otherwise, assume
that the first violation of Definition 8 occurs on position i. This implies that the
sequent S1 = Γ1, . . . , Γi−1,¬Prop(Γi) � is in PNF. If S1 has no proof, then by
PNF-completeness, we know that there exists an interpretation I, in which S1
does not fail strongly. By Lemma 1, I(Γ1) = · · · = I(Γi−1) = I(¬Prop(Γi)) = t,
so that I(Prop(Γi)) = f . This implies that the sequent Γ1, . . . , Γi−1, Γi, . . . , Γn �
fails in I, but not strongly. As a consequence, we have completeness for this case.

If S1 does have a proof, then we consider the sequent
S2 = Γ1, . . . , Γi−1, Prop(Γi), Γi, . . . , Γn �. Clearly, #S2 = #(Γ �) − 1, so that
we can assume completeness for S2.

If S2 has no proof, then there exists an interpretation I, in which S2 does
either not fail at all, or it fails but not strongly. If S2 does not fail in I, then
Γ � also does not fail, and we are done. Otherwise, consider the first formula F
in S2, for which I(F) �= t. If F were among the Γ1, . . . , Γi−1, this would imply
that the sequent S2 fails strongly, due to the fact that S1 has a proof. From the
provability of S1 follows, that F cannot be Prop(Γi). If F would be Γi, this would
imply that I(Prop(Γi)) = f , which contradicts the fact that S2 is provable. So
it must be the case that F is among Γi+1, . . . , Γn. But this implies that Γ � also
fails non strongly in I, so that we have completeness in this case as well.

Finally assume that S2 has a proof. In that case, we can combine the proofs
of S1 and S2 into a proof of Γ � as follows:

Γ1, . . . , Γi−1, ¬Prop(Γi) � Γ1, . . . , Γi−1,Prop(Γi), Γi, . . . , Γn �
Γ1, . . . , Γi−1, Γi, . . . , Γn �

(cut).

The fact that we can restrict our attention to sequents in PNF, simplifies the
completeness proof quite a lot. By Lemma 1, we know that we are looking either
for a proof, or an interpretation that makes all atoms in the sequent true. Since

214 H. de Nivelle

this does not rely on order anymore, we can use standard techniques to construct
the limit of the sequents in the failed proof attempt. We still have to show two
things, but they turn out unproblematic: (1) It does not happen that, during
proof search for a sequent in PNF, one needs to make use of a sequent that is
not in PNF. (2) All formulas in the orginal sequent are true in the resulting
interpretation. In order to do this, we show that a nonsucceeding proof attempt
converges towards a saturated set, which is defined as follows:

Definition 9. Let Σ be a set of formulas. We call Σ saturated if it has the
following properties:

– If A ∈ Σ, and A is not of form t1 = t2, t1 �= t2, Prop(B), or ¬Prop(B),
then Prop(A) ∈ Σ.

– ⊥ �∈ Σ.
– There exist no terms t, u, no n ≥ 0, no sequence of terms t1, u1, . . . , tn, un,

s.t. {t1 = u1, . . . , tn = un, t �= u} ⊆ Σ, and t1 = u1, . . . , tn = un � t = u in
the standard theory of equality.

– There exist no atoms A,A′, no n ≥ 0, no sequence of terms t1, u1, . . . , tn, un,
s.t. {A, t1 = u1, . . . , tn = un, ¬A′} ⊆ Σ, and A, t1 = u1, . . . , tn = un � A′

in the standard theory of equality.
– If { Prop(A ∨B), A ∨B } ⊆ Σ, then either
{Prop(A), A} ⊆ Σ, or {Prop(B), B} ⊆ Σ.

– If { Prop(〈A〉B), 〈A〉B } ⊆ Σ, then {Prop(A),Prop(B), A,B} ⊆ Σ.
– If { Prop(∃x P (x)), ∃x P (x) } ⊆ Σ, then there exists a term t, s.t.
{ Prop(P (t)), P (t) } ⊆ Σ.

– If { Prop(∀x P (x)), ∀x P (x) } ⊆ Σ, then for every term t that can be
formed from the signature of Σ, we have { Prop(P (t)), P (t) } ⊆ Σ.

– For every instance A⇒ B of a rule in Figure 1 or Figure 4, if
{Prop(A), A} ⊆ Σ, then {Prop(B), B} ⊆ Σ.

– For every instance Prop(A)⇒ B of a rule in Figure 2, if Prop(A) ∈ Σ, but
A �∈ Σ, then B ∈ Σ.

Note that, by taking n = 0 in the fourth case, the definition of saturated set
implies that Σ does not contain a complementary pair of atoms A,¬A. Since
our aim is to prove completeness, we need a proof search strategy that converges
towards a saturated set in the limit. In order to obtain a saturated set, it is nec-
essary to preserve PNF during proof search. If, for example, one has a sequent
of form Γ1,Prop(A ∧ B), A ∧ B,Γ2 � and tries to prove it from Γ1,Prop(A ∧
B), A,B, Γ2 �, then the new sequent is not in PNF anymore. In this case we can
continue proof search by replacing Prop(A∧B) by 〈Prop(A)〉Prop(B), which in
turn can be replaced by Prop(A),Prop(B), which is in PNF again. Figures 5,
6, 7 and 8 show that, for the operators 〈 〉,∨, ∀ and ∃, it is always possible
to continue proof search with sequents in PNF. All of the remaining cases can
be reduced to the cases for 〈 〉 and ∨, using the equivalences in Figures 1,
2 and 4.

Classical Logic with Partial Functions 215

(provable)

Γ1, Prop(A),¬A, A, B, Γ2 � Γ1, Prop(A), Prop(B), A, B, Γ2 �
(∨-intro)

Γ1, Prop(A), ¬A ∨ Prop(B), A, B, Γ2 �
(〈 〉-intro, Equiv Figure 4)

Γ1, 〈 Prop(A) 〉 (A → Prop(B)), 〈A〉B, Γ2 �
(Equiv Figure 2)

Γ1, Prop(〈A〉B), 〈A〉B, Γ2 �

Fig. 5. Preservation of PNF under 〈 〉-intro

Γ1, Prop(A), Prop(B), A, Γ2 � Γ1, Prop(A), Prop(B), B, Γ2 �
(∨-intro)

Γ1, Prop(A), Prop(B), A ∨ B, Γ2 �
(Equiv Figure 2, 〈 〉-intro)

Γ1, Prop(A ∨ B), A ∨ B, Γ2 �

Fig. 6. Preservation of PNF under ∨-intro

In Figure 5, the leftmost sequent is provable, because it is in PNF, and it
contains the complementary pair A,¬A. Hence, it is sufficient to continue proof
search with the rightmost sequent, which is also in PNF.
Figure 7 shows how PNF can be preserved when instantiating a ∀. In the middle,
the proof splits at the cut application. The first formula of the left branch is
provable, because it contains the complementary pair Prop(P (t)),¬Prop(P (t)),
Γ1 is in PNF, and the remaining formulas ∀x Prop(P (x)), Prop(P (t)), ∀x P (x)
can be easily proven Prop in their respective contexts. The right premise of the
cut application is in PNF, and has the formulas Prop(P (t)), P (t) added. Figure 8
branches at the weakening step, and its first premise is provable.
It remains to extract an interpretation IΣ = (DΣ, fΣ , tΣ ,�Σ , []Σ) from the
saturated set Σ. This can be done as follows:

– Assume two designated objects f , t that are not in the signature of Σ. They
will represent the truth values. Let TΣ be the set of terms that can be
formed from the signature of Σ. Let ≡ be the smallest congruence relation
on TΣ ∪ {f , t}, s.t.
• for all t1, t2 ∈ TΣ , if (t1 = t2) ∈ Σ, then t1 ≡ t2,
• for all t ∈ TΣ, if both of Prop(t), t ∈ Σ, then t ≡ t,
• for all t ∈ TΣ, if Prop(t) ∈ Σ, but t �∈ Σ, then t ≡ f .

The domain DΣ of IΣ is defined as (T ∪ {f , t})/ ≡ .
– fΣ is the element of DΣ that contains f .
– tΣ is the element of DΣ that contains t.
– The choice of �Σ is not important, so we simply select an arbitrary total

order on DΣ\{fΣ, tΣ}.
– The function []Σ is defined in such a way that for every t ∈ TΣ , the inter-

pretation IΣ(t) is the equivalence class of ≡ in which t falls.

216 H. de Nivelle

Γ1,∀x Prop(P (x)), Prop(P (t)),∀x P (x), ¬Prop(P (t)) �
(∀-intro)

Γ1, ∀x Prop(P (x)),∀x P (x), ¬Prop(P (t)) �
(Equiv Figure 2)

Γ1, Prop(∀x P (x)),∀x P (x), ¬ Prop(P (t)) �
Γ1, Prop(∀x P (x)),∀x P (x), Prop(P (t)), P (t), Γ2 �

(cut)

Γ1, Prop(∀x P (x)),∀x P (x), P (t), Γ2 �
∀-intro

Γ1, Prop(∀x P (x)),∀x P (x), Γ2 �

Fig. 7. Preservation of PNF under ∀-intro

Γ1, ¬Prop(∀x Prop(P (x)) � Γ1, Prop(P (y)), P (y), Γ2 �
(weakening)

Γ1, ∀x Prop(P (x)), Prop(P (y)), P (y), Γ2 �
(∀-intro)

Γ1, ∀x Prop(P (x)), P (y), Γ2 �
(∃-intro)

Γ1, ∀x Prop(P (x)),∃x P (x), Γ2 �
(Equiv Figure 2)

Γ1, Prop(∃x P (x)),∃x P (x), Γ2 �

Fig. 8. Preservation of PNF under ∃-intro

It remains to show that for every formula A, A ∈ Σ ⇔ IΣ(A) = t. This can be
proven by structural induction on A using the properties in Definition 9.

Theorem 6. Sequent calculus SeqPCL is complete: If a sequent Γ � is not prov-
able in SeqPCL, then there exists an interpretation I in which Γ � does not fail
strongly.

3 Conclusions, Future Work

We have introduced a variant of first-order logic that supports partial functions
and explicit type reasoning (PCL). We have introduced a semantics for PCL,
which captures the intuitive meaning of partiality in a natural way. One of the
motivations for introducing geometric resolution in [4] was the expectation that
geometric resolution will be better at handling partial functions than standard
automated theorem proving techniques. The current paper results from attempts
to extend geometric resolution with partial functions. The next step is to extend
geometric resolution (and its implementation Geo [3]), so that it can deal with
PCL. On the theoretical side, we would like to know whether SeqPCL admits
cut elimination.

Part of this research was funded by the ‘Programme for the Advancement of
Computer Science’ of the city of Wroc�law.

Classical Logic with Partial Functions 217

References

1. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.: A
practical approach to partial functions in CVC Lite. In: Selected Papers from the
Workshop on Disproving and the Second International Workshop on Pragmatics
of Decision Procedures (PDPAR 04), July 2005. Electronic Notes in Theoretical
Computer Science, vol. 125, pp. 13–23. Elsevier, Amsterdam (2005)

2. Darvas, Á., Mehta, F., Rudich, A.: Efficient well-definedness checking. In: Armando,
A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
100–115. Springer, Heidelberg (2008)

3. de Nivelle, H.: Theorem prover Geo 2007F. Can be obtained from the author’s
homepage (September 2007)

4. de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite
model search. In: Harrison, J., Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

5. Farmer, W.M.: Mechanizing the traditional approach to partial functions. In:
Farmer, W., Kerber, M., Kohlhase, M. (eds.) Proceedings of the Workshop on the
Mechanization of Partial Functions (associated to CADE 13), pp. 27–32 (1996)

6. Farmer, W.M., Guttman, J.D.: A set theory with support for partial functions.
Studia Logica 66, 59–78 (2000)

7. Hähnle, R.: Many-valued logic, partiality, and abstraction in formal specification
languages. Logic Journal of the IGPL 13(4), 415–433 (2005)

8. Kerber, M., Kohlhase, M.: A mechanization of strong Kleene logic for partial func-
tions. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 371–385. Springer,
Heidelberg (1994)

9. Mehta, F.: A practical approach to partiality - a proof based approach. In: Liu, S.,
Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 238–257. Springer,
Heidelberg (2008)

Automated Reasoning for Relational
Probabilistic Knowledge Representation�

Christoph Beierle1, Marc Finthammer1,
Gabriele Kern-Isberner2, and Matthias Thimm2

1 Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2 Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany

Abstract. KReator is a toolbox for representing, learning, and auto-
mated reasoning with various approaches combining relational first-order
logic with probabilities. We give a brief overview of the KReator system
and its automated reasoning facilities.

1 Introduction

Approaches combining logic with probabilities for representing uncertain infor-
mation are typically based upon propositional logic (see, e.g., [8]). Various exten-
sions to a first-order setting like Bayesian logic programs [3, Ch. 10] or Markov
logic networks [3, Ch. 12] have been proposed. In order to promote the use as
well as the evaluation and comparison of such proposals, KReator provides
a common and easy-to-use interface for representing, learning, and automated
reasoning with different relational probabilistic approaches. In this paper, we
give a brief description of the KReator system and its background and us-
age. In Sec. 2, we start with recalling the concept of Bayesian logic programs
and Markov logic networks and sketch the relational maximum entropy frame-
work RME. Section 3 gives an overview on the KReator system and presents
a system walk-through with several examples, while Sec. 4 outlines its system
architecture and implementation and points out further work.

2 Background

Bayesian logic programming combines logic programming and Bayesian net-
works [3, Ch. 10]. The basic structure for knowledge representation in Bayesian
logic programs are Bayesian clauses like (alarm(X) | lives in(X,Y), tornado(Y))
which model probabilistic dependencies between Bayesian atoms. A function
cpdc for a Bayesian clause c expresses the conditional probability distribution
P (head(c) | body(c)) and thus partially describes an underlying probability dis-
tribution P . In order to aggregate probabilities that arise from applications of
different Bayesian clauses with the same head, BLPs make use of combining
� The research reported here was partially supported by the Deutsche Forschungsge-

meinschaft (grants BE 1700/7-1 and KE 1413/2-1).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 218–224, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automated Reasoning for Relational Probabilistic Knowledge 219

rules. Semantics are given to Bayesian logic programs via transformation into
propositional forms, i. e. into Bayesian networks [8] (see [3, Ch. 10] for details).

Markov logic [3, Ch. 12] establishes a framework which combines Markov
networks [8] with first-order logic to handle a broad area of statistical re-
lational learning tasks. The Markov logic syntax complies with first-order
logic where each formula is quantified by an additional weight value, e.g.,
(lives in(x, y) ∧ tornado(y) ⇒ alarm(x), 2.2). Semantics are given to sets of
Markov logic formulas by a probability distribution over propositional possible
worlds that is calculated as a log-linear model over weighted ground formulas.
The fundamental idea in Markov logic is that first-order formulas are not han-
dled as hard constraints but each formula is more or less softened depending on
its weight. A Markov logic network (MLN) L is a set of weighted first-order logic
formulas Fi together with a set of constants C. The semantics of L is given by a
ground Markov network ML,C constructed from Fi and C [3, Ch. 12]. The stan-
dard semantics of Markov networks [8] is used for reasoning, e.g. to determine
the consequences of L (see [3, Ch. 12] for details).

The basic idea of the relational maximum entropy framework (RME) [2,6,11].
is to make use of propositional maximum entropy techniques [7,4,9] after
grounding the knowledge base appropriately. The entropy H is an information-
theoretic measure on probability distributions and is defined as a weighted
sum on the information encoded in every possible world ω ∈ Ω: H(P) =
−
∑

ω∈Ω P (ω) logP (ω). By employing the principle of maximum entropy one
can determine the single probability distribution that is the optimal model
for a consistent knowledge base R in an information-theoretic sense: PME

R =
argmaxP |=RH(P). However, this depends crucially on R being consistent, for
otherwise no model of R exists, let alone models with maximum entropy. Since
groundings may introduce non-trivial conflicts, this problem is all the more diffi-
cult in a first-order context with free variables where one has probabilistic first-
order clauses like (alarm(X) | lives in(X,Y), tornado(Y))[0.9], specifying that the
conditional probability of alarm(X) given lives in(X,Y) and tornado(Y) ought
to be 0.9. The RME inference process can be divided into three steps: (1) ground
the knowledge base R with a grounding operator G, (2) calculate the probability
distribution PME

G(R) with maximum entropy for the grounded instance G(R), and
(3) determine the probabilistic implications of PME

G(R) [2,6,11].

3 Examples and System Overview

The KReator system provides automated reasoning facilities for all three prob-
abilistic relational frameworks sketched in Sec. 2. As an illustration, we consider
the well-known burglary example given in [8] where we have some (uncertain)
beliefs about the relationships between burglaries, types of neighborhoods, natu-
ral disasters, and alarms. This example could be represented by a BLP containig
the three Bayesian clauses

c1 : (alarm(X) | burglary(X))
c2 : (alarm(X) | lives in(X, Y), tornado(Y))

c3 : (burglary(X) | nhood(X))

220 C. Beierle et al.

together with corresponding conditional probability distributions cpdci
. For in-

stance, cpdc2
(true, true, true) = 0.9 would express our subjective belief that alarm

is true with probability 0.9 if lives in(X,Y) and tornado(Y) are true. In this BLP
modelling, nhood is a multi-valued unary predicate, while in the modellings using
MLNs and RME, nhood will be a binary-valued two-place predicate.

Using the Alchemy syntax [5] for MLN files, a MLN knowledge base for the
burglary example is given by the following five weighted clauses:

2.2 burglary(x) => alarm(x)
2.2 lives in(x, y) ∧ tornado(y)=> alarm(x)

−0.8 nhood(x,Good) => burglary(x)
−0.4 nhood(x,Average)=> burglary(x)

0.4 nhood(x,Bad) => burglary(x)

Note that, in contrast to BLPs and RMEs, MLNs do not support conditional
probabilities, so the rule-like knowledge has to be modeled as material implica-
tions. Modeling our running example in RME can be done by

c1: (alarm(X) |burglary(X))[0.9]
c2: (alarm(X) | lives in(X, Y),

tornado(Y))[0.9]
c3: (burglary(X) |nhood(X, bad))[0.6]

c4: (burglary(X) |nhood(X, average))[0.4]
c5: (burglary(X) |nhood(X, good))[0.3]
c6: (nhood(X, Z) |nhood(X, Y))[0.0] [Y �= Z]
c7: (lives in(X, Z) | lives in(X, Y))[0.0] [Y �= Z]

where in this knowledge base, the conditionals c6 and c7 ensure mutual exclusion
of the states for literals of “nhood” and “lives in”.

A query in so-called unified syntax can be answered by KReator with respect
to a BLP, MLN, or RME knowledge base. This query syntax abstracts from

Fig. 1. Processing query in unified syntax

the respective
syntax which is
necessary to ad-
dress a “native”
query to a BLP,
MLN, or RME
knowledge base.
The idea behind
this functionality
is that while some
knowledge can be
modeled in dif-
ferent knowledge
representation ap-
proaches, the user is
able to compare the
reasoning facilities
of these approaches
in a direct way
by formulating
appropriate queries
in unified syntax,
passing them to the

Automated Reasoning for Relational Probabilistic Knowledge 221

different knowledge bases, and analyzing the different answers. A KReator

query in unified syntax consists of two parts: In the head of the query there are
one or more ground atoms whose probabilities shall be determined. The body of
the query is composed of several evidence atoms. For each supported knowledge
representation formalism, KReator must convert a query in unified syntax
in the exact syntax required by the respective inference engine. Among other
things, this includes e. g. the conversion from lower case constants to upper case
ones (and variables, vice versa), as required by the Alchemy tool for processing
MLNs. KReator also converts the respective output results to present them
in a standardized format to the user (cf. Fig. 1).

In addition to a knowledge base, that typically contains only general generic
knowledge, also evidential knowledge like

lives in(james , yorkshire), lives in(carl , austin), burglary(james),
tornado(austin),nhood(james) = average,nhood(carl) = good

can be taken into account when reasoning with KReator. The following table
shows three queries and their respective probabilities inferred by KReator from
each of the example knowledge bases and the evidence given above:

BLP MLN RME
alarm(james) 0.900 0.896 0.918
alarm(carl) 0.550 0.900 0.880
burglary(carl) 0.300 0.254 0.362

The inferred probabilities are are not identical since the same generic knowledge
is modelled slightly differently in the three formalisms. For instance in BLPs,
specific information resides in the combinig rules (in this example, noisy-or was
used) that aggregate probabilities of different clauses with the same head.

Doing further computations in the different formalisms is conveniently sup-
ported by KReator. For example, dropping tornado(austin) from the evidence
yields, as expected, the values for the query alarm(james) as given in the
table above; whereas the values for alarm(carl) drop dramatically. Replacing
burglary(james) by alarm(james) in the evidence and asking for burglary(james)
yields 0.400 (BLP), 0.411 (MLN), and 0.507 (RME).

All specification and reasoning steps involved in these examples are conve-
niently supported by the KReator system. KReator comes with a graphi-
cal user interface and an integrated console-based interface. The main view of
KReator (see Fig. 2) is divided into the menu, a toolbar and four main panels:
the project, editor, outline, and console panel.

KReator structures its data into projects which may contain knowledge
bases, scripts written in KReatorScript (see below), query collections for
knowledge bases, and sample/evidence files. Although all types of files can be
opened independently in KReator, projects can help the knowledge engineer
to organize his work. The project panel (upper left in Fig. 2) gives a complete
overview on the project the user is currently working on.

All files supported by KReator can be viewed and edited in the editor panel
(upper middle in Fig. 2). Multiple files can be opened at the same time and the

222 C. Beierle et al.

Fig. 2. KReator – Main window

editor supports editing knowledge bases and the like with syntax-highlighting,
syntax check, and other features normally known from development environ-
ments for programming languages.

The outline panel (upper right in Fig. 2) gives an overview on the currently
viewed file in the editor panel. If the file is a knowledge base the outline shows
information on the logical components of the knowledge base, such as used pred-
icates (and, in case of BLPs, their states), constants, and sorts (if the knowledge
base uses a typed language).

The console panel (bottom in Fig. 2) contains two tabs, one with the actual
console interface and one with the report. The console can be used to access all
KReator functionality just using textual commands, e. g. querying knowledge
bases, open and saving file, and so on. The console is a live interpreter for
KReatorScript which can also be used for writing scripts that allows the
knowledge engineer to save recurring tasks. By doing so results can be verified
and sophisticated queries can be addressed to different knowledge bases with
little adaptations. As a further ease, every action executed in KReator, e. g.
opening a file in the graphical user interface or querying a knowledge base from
the console, is recorded as a KReatorScript command in the report. The
whole report or parts of it can easily be saved as script file and executed again
when experiments have to be repeated and results have to be reproduced.

KReator is highly configurable and extensible. Figure 3 shows the prefer-
ences dialog which enables the configuration of nearly every property of the
graphical user interface as well as special features of the different knowledge

Automated Reasoning for Relational Probabilistic Knowledge 223

Fig. 3. Preferences in KReator

representation formalism. Furthermore, every property can also be modified us-
ing KReatorScript so that different configurations can be tested easily in
script files. Due to the open architecture, KReator can be extended effortlessly
by further formalisms and most of the features like querying are automatically
enabled.

4 System Architecture and Implementation

The implementation of KReator is done in Java and mirrors its objective to
support different approaches to relational probabilistic knowledge representa-
tion and reasoning. It strictly separates the internal logic and the user interface,
employing an abstract command structure allowing easy modifications on both
sides. In order to support the implementation of other approaches, KReator

features a large library on first-order logic and basic probabilistic methods.
Among others this library contains classes for formulæ, rules, conditionals and
various methods to operate on these. There is also a rudimentary implementa-
tion of Prolog available that can be used for specifying background knowledge
as e. g. in BLPs. This integrated library is designed to support a fast imple-
mentation of specific approaches to statistical relational learning. The task of
integrating a new approach into the KReator system is supported by a small
set of interfaces that have to be implemented in order to be able to access the
new approach from the user interface. There are interfaces for knowledge bases
(which demands e. g. support for querying), file writers and parsers (for reading
and writing the specific syntax of an approach), and learner. One thing to note
is that both file writers and parsers have to work on strings only, all the cum-
bersome overhead of file operations and I/O is handled by KReator. With the
help of a plugin-like architecture the developer of a new approach only has to
be concerned with connecting her approach to KReator using these interfaces.
Then all the benefits of an integrated development environment as provided
by KReator are immediately accessible. Currently, KReator supports know-
ledge representation using BLPs, MLNs, and the relational maximum entropy
approach RME; other formalisms will be integrated in the near future.

Performing inference on MLNs is done using the Alchemy software package
[5], a console-based tool for processing Markov logic networks. For BLPs, a

224 C. Beierle et al.

reasoning component was implemented within KReator. To process ground
RME knowledge bases, KReator uses a so-called ME-adapter to communicate
with a MaxEnt-reasoner. Currently, such adapters are supplied for the SPIRIT
reasoner [10] and for MEcore [1] which are tools for processing (propositional)
conditional probabilistic knowledge bases using maximum entropy methods.

Ongoing work includes integration of different learning algorithms. Due to the
availability of several formalisms in KReator these algorithms can be imple-
mented in a very general manner and employed by the formalisms in an easy way.
Future work consists of extending the support for other relational probabilistic
formalisms, such as Probabilistic Relational Models [3, Ch. 5].

References

1. Finthammer, M., Beierle, C., Berger, B., Kern-Isberner, G.: Probabilistic reason-
ing at optimum entropy with the MEcore system. In: Lane, H.C., Guesgen, H.W.
(eds.) Proceedings 22nd International FLAIRS Conference, FLAIRS’09. AAAI
Press, Menlo Park (2009)

2. Finthammer, M., Loh, S., Thimm, M.: Towards a toolbox for relational probabilis-
tic knowledge representation, reasoning, and learning. In: Relational Approaches to
Knowledge Representation and Learning. Workshop at KI-2009, Paderborn, Ger-
many, Informatik-Bericht, vol. 354, pp. 34–48. FernUniv. in Hagen (2009)

3. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

4. Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within
a conditional-logical framework. Artificial Intelligence 98, 169–208 (1998)

5. Kok, S., Singla, P., Richardson, M., Domingos, P., Sumner, M., Poon, H., Lowd,
D., Wang, J.: The Alchemy System for Statistical Relational AI: User Manual. De-
partment of Computer Science and Engineering. University of Washington (2008)

6. Loh, S., Thimm, M., Kern-Isberner, G.: On the problem of grounding a relational
probabilistic conditional knowledge base. In: Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (NMR’10), Toronto, Canada (May 2010)

7. Paris, J.B.: The uncertain reasoner’s companion – A mathematical perspective.
Cambridge University Press, Cambridge (1994)

8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1998)

9. Rödder, W., Meyer, C.-H.: Coherent knowledge processing at maximum entropy
by SPIRIT. In: Horvitz, E., Jensen, F. (eds.) Proceedings 12th Conference on Un-
certainty in Artificial Intelligence, pp. 470–476. Morgan Kaufmann, San Francisco
(1996)

10. Rödder, W., Reucher, E., Kulmann, F.: Features of the expert-system-shell
SPIRIT. Logic Journal of the IGPL 14(3), 483–500 (2006)

11. Thimm, M., Finthammer, M., Loh, S., Kern-Isberner, G., Beierle, C.: A system for
relational probabilistic reasoning on maximum entropy. In: Proceedings 23rd In-
ternational FLAIRS Conference, FLAIRS’10. AAAI Press, Menlo Park (to appear,
2010)

Optimal and Cut-Free Tableaux for
Propositional Dynamic Logic with Converse

Rajeev Goré1 and Florian Widmann1,2

1Logic and Computation Group
2,� NICTA The Australian National University

Canberra, ACT 0200, Australia,
{Rajeev.Gore,Florian.Widmann}@anu.edu.au

Abstract. We give an optimal (exptime), sound and complete tableau-
based algorithm for deciding satisfiability for propositional dynamic logic
with converse (CPDL) which does not require the use of analytic cut. Our
main contribution is a sound method to combine our previous optimal
method for tracking least fix-points in PDL with our previous optimal
method for handling converse in the description logic ALCI . The exten-
sion is non-trivial as the two methods cannot be combined naively. We
give sufficient details to enable an implementation by others. Our OCaml
implementation seems to be the first theorem prover for CPDL.

1 Introduction

Propositional dynamic logic (PDL) is an important logic for reasoning about pro-
grams. Its formulae consist of traditional Boolean formulae plus “action modali-
ties” built from a finite set of atomic programs using sequential composition (;),
non-deterministic choice (∪), repetition (∗), and test (?). The logic CPDL is ob-
tained by adding converse (−), which allows us to reason about previous actions.
The satisfiability problem for CPDL is exptime-complete [1].

De Giacomo and Massacci [2] give an nexptime tableau algorithm for decid-
ing CPDL-satisfiability, and discuss ways to obtain optimality, but do not give an
actual exptime algorithm. The tableau method of Nguyen and Sza�las [3] is op-
timal. Neither method has been implemented, and since both require an explicit
analytic cut rule, it is not at all obvious that they can be implemented efficiently.
Optimal game-theoretic methods for fix-point logics [4] can be adapted to han-
dle CPDL [5] but involve significant non-determinism. Optimal automata-based
methods [6] for fix-point logics are still in their infancy because good optimisa-
tions are not known. We know of no resolution methods for CPDL.

We give an optimal tableau method for deciding CPDL-satisfiability which
does not rely on a cut rule. Our main contribution is a sound method to combine
our method for tracking and detecting unfulfilled eventualities as early as possible
� NICTA is funded by the Australian Government’s Department of Communications,

Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 225–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

226 R. Goré and F. Widmann

Table 1. Smullyan’s α- and β-notation to classify formulae

α ϕ ∧ ψ [γ ∪ δ]ϕ [γ∗]ϕ 〈ψ?〉ϕ 〈γ; δ〉ϕ [γ; δ]ϕ
α1 ϕ [γ]ϕ ϕ ϕ 〈γ〉〈δ〉ϕ [γ][δ]ϕ
α2 ψ [δ]ϕ [γ][γ∗]ϕ ψ

β ϕ ∨ ψ 〈γ ∪ δ〉ϕ 〈γ∗〉ϕ [ψ?]ϕ
β1 ϕ 〈γ〉ϕ ϕ ϕ

β2 ψ 〈δ〉ϕ 〈γ〉〈γ∗〉ϕ ∼ψ

in PDL [7] with our method for handling converse for ALCI [8]. The extension
is non-trivial as the two methods cannot be combined naively.

We present a mixture of pseudo code and tableau rules rather than a set of
traditional tableau rules to enable easy implementation by others. Our unopti-
mised OCaml implementation appears to be the first automated theorem prover
for CPDL (http://rsise.anu.edu.au/~rpg/CPDLTabProver/). A longer ver-
sion with full proofs is available at http://arxiv.org/abs/1002.0172.

2 Syntactic Preliminaries

Definition 1. Let AFml and APrg be two disjoint and countably infinite sets
of propositional variables and atomic programs, respectively. The set LPrg of
literal programs is defined as LPrg := APrg ∪ {a− | a ∈ APrg}. The set Fml of
all formulae and the set Prg of all programs are defined mutually inductively as
follows where p ∈ AFml and l ∈ LPrg:

Fml ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈γ〉ϕ | [γ]ϕ
Prg γ ::= l | γ; γ | γ ∪ γ | γ∗ | ϕ? .

A 〈lp〉-formula is a formula 〈γ〉ϕ where γ ∈ LPrg is a literal program.

Implication (→) and equivalence (↔) are not part of the core language but
can be defined as usual. In the rest of the paper, let p ∈ AFml and l ∈ LPrg.

We omit the semantics as it is a straightforward extension of PDL [7] and
write M,w 	 ϕ if ϕ ∈ Fml holds in the world w ∈ W of the model M .

Definition 2. For a literal program l ∈ LPrg, we define l� as a if l is of
the form a−, and as l− otherwise. A formula ϕ ∈ Fml is in negation normal
form if the symbol ¬ appears only directly before propositional variables. For ev-
ery ϕ ∈ Fml, we can obtain a formula nnf(ϕ) in negation normal form by pushing
negations inward such that ϕ↔ nnf ϕ is valid. We define ∼ϕ := nnf(¬ϕ).

We categorise formulae as α- or β-formulae as shown in Table 1 so that the
formulae of the form α↔ α1 ∧α2 and β ↔ β1 ∨β2 are valid. An eventuality is a
formula of the form 〈γ1〉 . . . 〈γk〉〈γ∗〉ϕ, and Ev is the set of all eventualities. Using
Table 1, the binary relation “
” relates a 〈〉-formulae α (respectively β), to its
reduction α1 (respectively β1 and β2). See [7, Def. 7] for their formal definitions.

3 An Overview of our Algorithm

Our algorithm builds an and-or graph G by repeatedly applying four rules (see
Table 2) to try to build a model for a given φ in negation normal form. Each

http://rsise.anu.edu.au/~rpg/CPDLTabProver/
http://arxiv.org/abs/1002.0172

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 227

node x carries a formula set Γx, a status stsx, and other fields to be described
shortly. Rule 1 applies the usual expansion rules to a node to create its children.
These expansion rules capture the semantics of CPDL. We use Smullyan’s α/β-
rule notation for classifying rules and nodes. As usual, a node x is a (“saturated”)
state if no α/β-rule can be applied to it. If x is a state then for each 〈l〉ξ in Γx,
we create a node y with Γy = {ξ} ∪Δ, where Δ = {ψ | [l]ψ ∈ Γx}, and add an
edge from x to y labelled with 〈l〉ξ to record that y is an l-successor of x.

If Γx contains an obvious contradiction during expansion, its status becomes
“closed”, which is irrevocable. Else, at some later stage, Rule 2 determines its
status as either “closed” or “open”. “Open” nodes contain additional information
which depends on the status of other nodes. Hence, if a node changes its status,
it might affect the status of another (“open”) node. If the stored status of a node
does not match its current status, the node is no longer up-to-date. Rule 3, which
may be applied multiple times to the same node, ensures that “open” nodes are
kept up-to-date by recomputing their status if necessary. Finally, Rule 4 detects
eventualities which are impossible to fulfil and closes nodes which contain them.
We first describe the various important components of our algorithm separately.

Global State Caching. For optimality, the graph G never contains two state
nodes which carry the same set of formulae [8]. However, there may be multiple
non-states which carry the same set of formulae. That is, a non-state node x
carrying Γ which appears while saturating a child y of a state z is unique to y.
If a node carrying Γ is required in some other saturation phase, a new node
carrying Γ is created. Hence the nodes of two saturation phases are distinct.

Converse. Suppose state y is a descendant of an l-successor of a state x, with no
intervening states. Call x the parent state of y since all intervening nodes are not
states. We require that {ψ | [l−]ψ ∈ Γy} ⊆ Γx, since y is then compatible with
being a l-successor of x in the putative model under construction. If some [l−]ψ ∈
Γy has ψ /∈ Γx then x is “too small”, and must be “restarted” as an alternative
node x+ containing all such ψ. If any such ψ is a complex formula to which an
α/β-rule is applicable then x+ is not a state and may have to be “saturated”
further. The job of creating these alternatives is done by special nodes [8]. Each
special node monitors a state and creates the alternatives when needed.

Detecting Fulfilled and Unfulfilled Eventualities. Suppose the current node x
contains an eventuality ex. There are three possibilities. The first is that ex can
be fulfilled in the part of the graph which is “older” than x. Else, it may be
possible to reach a node z in the parts of the graph “newer” than x such that z
contains a reduction ez of ex. Since this “newer” part of the graph is not fully
explored yet, future expansions may enable us to fulfil ex via z, so the pair (z, ez)
is a “potential rescuer” of ex. The only remaining case is that ex cannot be
fulfilled in the “older” part of the graph, and has no potential rescuers. Thus
future expansions of the graph cannot possibly help to fulfil ex since it cannot
reach these “newer” parts of the future graph. In this case x can be “closed”. The
technical machinery to maintain this information for PDL is from [7]. However,

228 R. Goré and F. Widmann

the presence of “converse” and the resulting need for alternative nodes requires
a more elaborate scheme for CPDL.

4 The Algorithm

Our algorithm builds a directed graph G consisting of nodes and directed edges.
We first explain the structure of G in more detail.

Definition 3. Let X and Y be sets. We define X⊥ := X�{⊥} where ⊥ indicates
the undefined value and � is the disjoint union. If f : X → Y is a function
and x ∈ X and y ∈ Y then the function f [x �→ y] : X → Y is defined as
f [x �→ y](x′) := y if x′ = x and f [x �→ y](x′) := f(x′) if x′ �= x.

Definition 4. Let G = (V,E) be a graph where V is a set of nodes and E is
a set of directed edges. Each node x ∈ V has six attributes: Γx ⊆ Fml, annx :
Ev→ Fml⊥, pstx ∈ V ⊥, pprx ∈ LPrg⊥, idxx ∈ Nat⊥, and stsx ∈ S where S :=
{unexp, undef} ∪ {closed(alt) | alt ⊆ P(Fml)} ∪ {open(prs, alt) | prs : Ev →
(P(V × Ev))⊥ & alt ⊆ P(Fml)}. Each directed edge e ∈ E is labelled with a
label le ∈ (Fml ∪P(Fml) ∪ {cs})⊥ where cs is just a constant.

All attributes of a node x ∈ V are initially set at the creation of x, possibly with
the value ⊥ (if allowed). Only the attributes idxx and stsx are changed at a later
time. We use the function create-new-node(Γ, ann, pst, ppr, idx, sts) to create a
new node and initialise its attributes in the obvious way.

The finite set Γx contains the formulae which are assigned to x. The at-
tribute annx is defined for the eventualities in Γx at most. If annx(ϕ) = ϕ′

then ϕ′ ∈ Γx and ϕ
 ϕ′. The intuitive meaning is that ϕ has already been
“reduced” to ϕ′ in x. For a state (as defined below) we always have that annx

is undefined everywhere since we do not need the attribute for states.
The node x is called a state iff both attributes pstx and pprx are undefined.

For all other nodes, the attribute pstx identifies the, as we will ensure, unique
ancestor p ∈ V of x such that p is a state and there is no other state between p
and x in G. We call p the parent state of x. The creation of the child of p which
lies on the path from p to x (it could be x) was caused by a 〈lp〉-formula 〈l〉ϕ
in Γp. The literal program l which we call the parent program of x is stored
in pprx. Hence, for nodes which are not states, both pstx and pprx are defined.

The attribute stsx describes the status of x. Unlike the attributes described
so far, its value may be modified several times. The value unexp, which is the
initial value of each node, indicates that the node has not yet been expanded.
When a node is expanded, its status becomes either closed(·) if it contains an
immediate contradiction, or undef to indicate that the node has been expanded
but that its “real” status is to be determined. Eventually, the status of each
node is set to either closed(·) or open(·, ·). If the status is open(·, ·), it might be
modified several times later on, either to closed(·) or to open(·, ·) (with different
arguments), but once it becomes closed(·), it will never change again.

We call a node undefined if its status is unexp or undef and defined oth-
erwise. Hence a node is undefined initially, becomes defined eventually, and

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 229

then never becomes undefined again. Furthermore, we call x closed iff its status
is closed(alt) for some alt ⊆ P(Fml). In this case, we define altx := alt. We
call x open iff its status is open(prs, alt) for some prs : Ev → (P(V × Ev))⊥

and some alt ⊆ P(Fml). In this case, we define prsx := prs and altx := alt. To
avoid some clumsy case distinctions, we define altx := ∅ if x is undefined.

The value closed(alt) indicates that the node is “useless” for building an
interpretation because it is either unsatisfiable or “too small”. In the latter
case, the set alt of alternative sets contains information about missing formulae.
Finally, the value open(prs, alt) indicates that there is still hope that x is “useful”
and the function prsx contains information about each eventuality ex ∈ Γx as
explained in the overview. Although x itself may be useful, we need its alternative
sets in case it becomes closed later on. Hence it also has a set of alternative sets.

The attribute idxx serves as a time stamp. It is set to ⊥ at creation time of x
and becomes defined when x becomes defined. When this happens, the value
of idxx is set such that idxx > idxy for all nodes y which became defined earlier
than x. We define y � x iff idxy �= ⊥ and either idxx = ⊥ or idxy < idxx. Note
that y � x depends on the current state of the graph. However, once y � x
holds, it will do so for the rest of the time.

To track eventualities, we label an edge between a state and one of its chil-
dren by the 〈lp〉-formula 〈l〉ϕ which creates this child. Additionally, we label
edges from special nodes (see overview) to their corresponding states with the
marker cs. We also label edges from special nodes to its alternative nodes with
the corresponding alternative set.

Definition 5. Let ann⊥ : Ev → Fml⊥ and prs⊥ : Ev → (P(V × Ev))⊥ be the
functions which are undefined everywhere. For a node x ∈ V and a label l ∈
Fml∪P(Fml)∪ {cs}, let getChild(x, l) be the node y ∈ V such that there exists
an edge e ∈ E from x to y with le = l. If y does not exists or is not unique, let
the result be ⊥. For a function prs : Ev→ (P(V ×Ev))⊥, a node x ∈ V , and an
eventuality ϕ ∈ Ev, we define the set reach(prs, x, ϕ) of eventualities as follows:

reach(prs, x, ϕ) :=
{
ψ ∈ Ev | ∃k ∈ IN0. ∃ϕ0, . . . , ϕk ∈ Ev.

(
ψ = ϕk &

(x, ϕ0) ∈ prs(ϕ) & ∀i ∈ {0, . . . , k − 1}. (x, ϕi+1) ∈ prs(ϕi)
)}

.

The function defer : V × Ev→ Fml⊥ is defined as follows:

defer(x, ϕ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ if ∃k ∈ IN0. ∃ϕ0, . . . , ϕk ∈ Fml.

(
ϕ0 = ϕ & ϕk = ψ &

∀i ∈ {0, . . . , k − 1}.
(
ϕi ∈ Ev & annx(ϕi) = ϕi+1

)
&(

ϕk /∈ Ev or annx(ϕk) = ⊥
))

⊥ otherwise.

The function getChild(x, l) retrieves a particular child of x. It is easy to see that,
during the algorithm, the child is always unique if it exists.

Intuitively, the function reach(prs, x, ϕ) computes all eventualities which can
be “reached” from ϕ inside x according to prs. If a potential rescuer (x, ψ) is

230 R. Goré and F. Widmann

Procedure is-sat(φ) for testing whether a formula φ is satisfiable
Input: a formula φ ∈ Fml in negation normal form
Output: true iff φ is satisfiable

G := a new empty graph; idx := 1
let d ∈ APrg be a dummy atomic program which does not occur in φ
rt := create-new-node({〈d〉φ}, ann⊥,⊥,⊥,⊥, unexp)
insert rt in G
while one of the rules in Table 2 is applicable do

apply any one of the applicable rules in Table 2
if stsrt = open(·, ·) then return true else return false

Table 2. Rules used in the procedure is-sat

Rule 1: Some node x has not been expanded yet.
Condition: ∃x ∈ V. stsx = unexp

Action: expand(x)
Rule 2: The status of some node x is still undefined.
Condition: ∃x ∈ V. stsx = undef

Action: stsx := det-status(x) & idxx := idx & idx := idx + 1
Rule 3: Some open node x is not up-to-date.
Condition: ∃x ∈ V. open(·, ·) = stsx �= det-status(x)
Action: stsx := det-status(x)
Rule 4: All nodes are up-to-date, and some x has an unfulfilled eventuality ϕ.
Condition: Rule 3 is not applicable and

∃x ∈ V. stsx = open(prsx, altx) & ∃ϕ ∈ Ev ∩ Γx. prsx(ϕ) = ∅
Action: stsx := closed(altx)

contained in prs(ϕ), the potential rescuers of ψ are somehow relevant for ϕ at x.
Therefore ψ itself is relevant for ϕ at x. The function reach(prs, x, ϕ) computes
exactly the transitive closure of this relevance relation.

Intuitively, the function defer(x, ϕ) follows the “annx-chain”. That is, it com-
putes ϕ1 := annx(ϕ), ϕ2 := annx(ϕ1), and so on. There are two possible out-
comes. The first outcome is that we eventually encounter a ϕk which is either not
an eventuality or has annx(ϕk) = ⊥. Consequently, we cannot follow the “annx-
chain” any more. In this case we stop and return defer(x, ϕ) := ϕk. The second
outcome is that we can follow the “annx-chain” indefinitely. Then, as Γx is finite,
there must exist a cycle ϕ0, . . . , ϕn, ϕ0 of eventualities such that annx(ϕi) = ϕi+1
for all 0 ≤ i < n, and annx(ϕn) = ϕ0. In this case we say that x (or Γx) contains
an “at a world” cycle and return defer(x, ϕ) := ⊥.

Next we comment on all procedures given in pseudocode.

Procedure is-sat(φ) is invoked to determine whether a formula φ ∈ Fml in
negation normal form is satisfiable. It creates a root node rt and initialises the
graph G to contain only rt. The dummy program d is used to make rt a state
so that each node in G which is not a state has a parent state. The global
variable idx is used to set the time stamps of the nodes accordingly.

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 231

Procedure expand(x) for expanding a node x

Input: a node x ∈ V with stsx = unexp

if ∃ϕ ∈ Γx. ∼ϕ ∈ Γx or (ϕ ∈ Ev & defer(x, ϕ) = ⊥) then
idxx := idx; idx := idx + 1; stsx := closed(∅)

else (∗ x does not contain a contradiction ∗)
stsx := undef

if pstx = ⊥ then (∗ x is a state ∗)
let 〈l1〉ϕ1, . . . , 〈lk〉ϕk be all of the 〈lp〉-formulae in Γx

for i ←− 1 to k do
Γi := {ϕi} ∪ {ψ | [li]ψ ∈ Γx}
yi := create-new-node(Γi, ann⊥, x, li,⊥, unexp)
insert yi, and an edge from x to yi labelled with 〈li〉ϕi, into G

else if ∃α ∈ Γx. {α1, . . . , αk} �⊆ Γx or (α ∈ Ev & annx(α) = ⊥) then
Γ := Γx ∪ {α1, . . . , αk}
ann := if α ∈ Ev then annx[α �→ α1] else annx

y := create-new-node(Γ, ann, pstx, pprx,⊥, unexp)
insert y, and an edge from x to y, into G

else if ∃β ∈ Γx. {β1, β2} ∩ Γx = ∅ or (β ∈ Ev & annx(β) = ⊥) then
for i ←− 1 to 2 do

Γi := Γx ∪ {βi}
anni := if β ∈ Ev then annx[β �→ βi] else annx

yi := create-new-node(Γi, anni, pstx, pprx,⊥, unexp)
insert yi, and an edge from x to yi, into G

else (∗ x is a special node ∗)
if ∃y ∈ V. Γy = Γx & psty = ⊥ then (∗ state already exists in G ∗)

insert an edge from x to y labelled with cs into G
else (∗ state does not exist in G yet ∗)

y := create-new-node(Γx, ann⊥,⊥,⊥,⊥, unexp)
insert y, and an edge from x to y labelled with cs, into G

While at least one of the rules in Table 2 is applicable, that is its condition
is true, the algorithm applies any applicable rule. If no rules are applicable, the
algorithm returns satisfiable iff rt is open.

Rule 1 picks an unexpanded node and expands it. Rule 2 picks an expanded
but undefined node and computes its (initial) status. It also sets the correct time
stamp. Rule 3 picks an open node whose status has changed and recomputes its
status. Its meaning is, that if we compute det-status(x) on the current graph
then its result is different from the value in stsx, and consequently, we update stsx

accordingly. Rule 4 is only applicable if all nodes are up-to-date. It picks an open
node containing an eventuality ϕ which is currently not fulfilled in the graph and
which does not have any potential rescuers either. As this indicates that ϕ can
never be fulfilled, the node is closed.

This description leaves several questions open, most notably: “How do we
check efficiently whether Rule 3 is applicable?” and “Which rule should be taken
if several rules are applicable?”. We address these issues in Section 5.

232 R. Goré and F. Widmann

Procedure det-status(x) for determining the status of a node x

Input: a node x ∈ V with unexp �= stsx �= closed(·)
if x is an α-or a β-node then stsx := det-sts-β(x)
else if x is a state then stsx := det-sts-state(x)
else (∗ x is a special node, in particular pstx �= ⊥ �= pprx ∗)

Γalt := {ϕ | [ppr�
x]ϕ ∈ Γx} \ Γpstx

if Γalt = ∅ then stsx := det-sts-spl(x) else stsx := closed({Γalt})

Procedure expand(x) expands a node x. If Γx contains an immediate contradic-
tion or an “at a world” cycle then we close x and set the time stamp accordingly.
For the other cases, we assume implicitly that Γx does not contain either of these.

If x is a state, that is pstx = ⊥, then we do the following for each 〈lp〉-
formula 〈li〉ϕi. We create a new node yi whose associated set contains ϕi and
all ψ such that [li]ψ ∈ Γx. As none of the eventualities in Γyi is reduced yet, there
are no annotations. The parent state of yi is obviously x and its parent program
is li. In order to relate yi to 〈li〉ϕi, we label the edge from x to yi with 〈li〉ϕi.
We call yi the successor of 〈li〉ϕi.

If x is not a state and Γx contains an α-formula α whose decompositions are
not in Γx, or which is an unannotated eventuality, we call x an α-node. In this
case, we create a new node y whose associated set is the result of adding all
decompositions of α to Γx. If α is an eventuality then anny extends annx by
mapping α to α1. The parent state and the parent program of y are inherited
from x. Note that pstx and pprx are defined as x is not a state. Also note
that Γy
 Γx or α is an eventuality which is annotated in anny but not in annx.

If x is neither a state nor an α-node and Γx contains a β-formula β such that
neither of its immediate subformulae is in Γx, or such that β is an unannotated
eventuality, we call x a β-node. For each decomposition βi we do the following.
We create a new node yi whose associated set is the result of adding βi to Γx.
If β is an eventuality then annyi extends annx by mapping α to βi. The parent
state and the parent program of y are inherited from x. Note that pstx and pprx

are defined as x is not a state. Also note that Γyi
 Γx or β is an eventuality
which is annotated in annyi but not in annx.

If x is neither a state nor an α-node nor a β-node, it must be fully saturated
and we call it a special node. Intuitively, a special node sits between a saturation
phase and a state and is needed to handle the “special” issue arising from con-
verse programs, as explained in the overview. Like α- and β-nodes, special nodes
have a unique parent state and a unique parent program. In this case we check
whether there already exists a state y in G which has the same set of formulae
as the special node. If such a state y exists, we link x to y; else we create such a
state and link x to it. In both cases we label the edge with the marker cs since
a special node can have several children (see below) and we want to uniquely
identify the cs-child y of x. Note that there is only at most one state for each
set of formulae and that states are always fully saturated since special nodes
are.

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 233

Procedure det-sts-β(x) for determining the status of an α- or a β-node
Input: an α- or a β-node x ∈ V with unexp �= stsx �= closed(·)
Output: the new status of x

let y1, . . . , yk ∈ V be all children of x
alt :=

⋃k
i=1 altyi

if ∀i ∈ {1, . . . , k}. stsyi = closed(·) then return closed(alt)
else (∗ at least one child is not closed ∗)

prs := prs⊥

foreach ϕ ∈ Γx ∩ Ev do
for i ←− 1 to k do Λi := det-prs-child(x, yi, ϕ)
Λ := if ∃i ∈ {1, . . . , k}. Λi = ⊥ then ⊥ else

⋃k
i=1 Λi

prs := prs[ϕ �→ Λ]
prs′ := filter(x, prs)
return open(prs′, alt)

Procedure det-status(x) determines the current status of a node x. Its result
will always be closed(·) or open(·, ·). If x is an α/β-node or a state, the procedure
just calls the corresponding sub-procedure. If x is a special node, we determine
the set Γalt of all formulae ϕ such that [ppr�

x]ϕ is in Γx but ϕ is not in the set of
the parent state of x. If there is no such formula, that is Γalt is the empty set, we
say that x is compatible with its parent state pstx. Note that incompatibilities
can only arise because of converse programs.

If x is compatible with pstx, all is well, so we determine its status via the
corresponding sub-procedure. Else we cannot connect pstx to a state with Γx

assigned to it in the putative model as explained in the overview, and, thus, we
can close x. That does not, however, mean that pstx is unsatisfiable; maybe it
is just missing some formulae. We cannot extend pstx directly as this may have
side-effects elsewhere; but to tell pstx what went wrong, we remember Γalt. The
meaning is that if we create an alternative node for pstx by adding the formulae
in Γalt, we might be more successful in building an interpretation.
Procedure det-sts-β(x) computes the status of an α- or a β-node x ∈ V . For
this task, an α-node can be seen as a β-node with exactly one child. The set of
alternative sets of x is the union of the sets of alternative sets of all children. If
all children of x are closed then x must also be closed. Otherwise we compute the
set of potential rescuers for each eventuality ϕ in Γx as follows. For each child yi

of x we determine the potential rescuers of ϕ which result from following yi by
invoking det-prs-child. If the set of potential rescuers corresponding to some yi

is ⊥ then ϕ can currently be fulfilled via yi and prsx(ϕ) is set to ⊥. Else ϕ cannot
currently be fulfilled in G, but each child returned a set of potential rescuers, and
the set of potential rescuers for ϕ is their union. Finally, we deal with potential
rescuers in prs of the form (x, χ) for some χ ∈ Ev by calling filter.

Procedure det-sts-state(x) computes the status of a state x ∈ V . We obtain
the successors for all 〈lp〉-formulae in Γx. If any successor is closed then x is closed
with the same set of alternative sets. Else the set of alternative sets of x is the
union of the sets of alternative sets of all children and we compute the potential

234 R. Goré and F. Widmann

Procedure det-sts-state(x) for determining the status of a state
Input: a state x ∈ V with unexp �= stsx �= closed(·)
Output: the new status of x

let 〈l1〉ϕ1, . . . , 〈lk〉ϕk be all of the 〈lp〉-formulae in Γx

for i ←− 1 to k do yi := getChild(x, 〈li〉ϕi)
if ∃i ∈ {1, . . . , k}. stsyi = closed(alt) then return closed(alt)
else (∗ no child is closed ∗)

alt :=
⋃k

i=1 altyi

prs := prs⊥

for i ←− 1 to k do
if ϕi ∈ Ev then

Λ := det-prs-child(x, yi, ϕi)
prs := prs[〈li〉ϕi �→ Λ]

prs′ := filter(x, prs)
return open(prs′, alt)

rescuers for each eventuality 〈li〉ϕi in Γx by invoking det-prs-child. Finally,
we deal with potential rescuers in prs of the form (x, χ) for some χ ∈ Ev by
calling filter. Note that we do not consider eventualities which are not 〈lp〉-
formulae. The intuitive reason is that the potential rescuers of such eventualities
are determined by following the annotation chain (see below). However, different
special nodes which have the same set, and hence all link to x, might have
different annotations. Hence we cannot (and do not need to) fix the potential
rescuer sets for eventualities in x which are not 〈lp〉-formulae.

Procedure det-sts-spl(x) computes the status of a special node x ∈ V . First,
we retrieve the state y0 corresponding to x, namely the unique cs-child of x. For
all alternative sets Γi of y0 we do the following. If there does not exist a child
of x such that the corresponding edge is labelled with Γi, we create a new
node yi whose associated set is the result of adding the formulae in Γi to Γx.
The annotations, the parent state, and the parent program of yi are inherited
from x. We label the new edge from x to yi with Γi. In other words we unpack
the information stored in the alternative sets in alty0 into actual nodes which are
all children of x. Note that each Γi �= ∅ by construction in det-status. Some
children of x may not be referenced from alty0 , but we consider them anyway.

The set of alternative sets of x is the union of the sets of alternative sets of all
children; with the exception of y0 since the alternative sets of y0 are not related
to pstx but affect x directly as we have seen. If all children of x are closed then x
must also be closed. Otherwise we compute the set of potential rescuers for each
eventuality ϕ in Γx as follows.

First, we determine ϕ′ := defer(x, ϕ). Note that ϕ′ is defined because the
special node x cannot contain an “at a world” cycle by definition. If ϕ′ is not
an eventuality then ϕ′ is fulfilled in x and prs(ϕ) remains ⊥. If ϕ′ is an even-
tuality, it must be a 〈lp〉-formula as x is a special node. We use ϕ′ instead of ϕ
since only 〈lp〉-formula have a meaningful interpretation in prsy0

(see above).
For each child yi of x we determine the potential rescuers of ϕ′ by invoking

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 235

Procedure det-sts-spl(x) for determining the status of a special node
Input: a special node x ∈ V with unexp �= stsx �= closed(·)
Output: the new status of x

y0 := getChild(x, cs)
let Γ1, . . . , Γj be all the sets in the set alty0

for i ←− 1 to j do
yi := getChild(x, Γi)
if yi = ⊥ then (∗ child does not exist ∗)

yi := create-new-node(Γx ∪ Γi, annx, pstx, pprx,⊥, unexp)
insert yi, and an edge from x to yi labelled with Γi, into G

let yj+1, . . . , yk be all the remaining children of x
alt :=

⋃k
i=1 altyi

if ∀i ∈ {0, . . . , k}. stsyi = closed(·) then return closed(alt)
else (∗ at least one child is not closed ∗)

prs := prs⊥

foreach ϕ ∈ Γx ∩ Ev do
ϕ′ := defer(x,ϕ)
if ϕ′ ∈ Ev then

for i ←− 0 to k do Λi := det-prs-child(x, yi, ϕ
′)

Λ := if ∃i ∈ {0, . . . , k}. Λi = ⊥ then ⊥ else
⋃k

i=0 Λi

prs := prs[ϕ �→ Λ]

prs′ := filter(x, prs)
return open(prs′, alt)

det-prs-child. If the set of potential rescuers corresponding to some yi is ⊥
then ϕ′ can currently be fulfilled via yi and so prsx(ϕ) is set to ⊥. Otherwise ϕ′

cannot currently be fulfilled in G, but each child returned a set of potential res-
cuers, and the set of potential rescuers for ϕ is their union. Finally, we deal with
potential rescuers in prs of the form (x, χ) for some χ ∈ Ev by calling filter.

Procedure det-prs-child(x, y, ϕ) determines whether an eventuality ψ ∈ Γx,
which is not passed as an argument, can be fulfilled via y such that ϕ is part
of the corresponding fulfilling path; or else which potential rescuers ψ can reach
via y and ϕ. If y is closed, it cannot help to fulfil ψ as indicated by the empty
set. If y is undefined or did not become defined before x then (y, ϕ) itself is a
potential rescuer of x. Else, if ϕ can be fulfilled, i.e. prsy(ϕ) = ⊥, then ψ can be
fulfilled too, so we return ⊥. Otherwise we invoke the procedure recursively on
all potential rescuers in prsy(ϕ). If at least one of these invocations returns ⊥
then ψ can be fulfilled via y and ϕ and the corresponding rescuer in prsy(ϕ).
If all invocations return a set of potential rescuers, the set of potential rescuers
for ψ is their union. The recursion is well-defined because if (zi, ϕi) ∈ prsy(ϕ)
then either zi is still undefined or zi became defined later than y.

Each invocation of det-prs-child can be uniquely assigned to the invo-
cation of det-sts-β, det-sts-state, or det-sts-spl which (possibly indi-
rectly) invoked it. To meet our complexity bound, we require that under the
same invocation of det-sts-β, det-sts-state, or det-sts-spl, the procedure

236 R. Goré and F. Widmann

det-prs-child is only executed at most once for each argument triple. Instead
of executing it a second time with the same arguments, it uses the cached re-
sult of the first invocation. Since det-prs-child does not modify the graph,
the second invocation would return the same result as the first one. An easy
implementation of the cache is to store the result of det-prs-child(x, y, ϕ)
in the node y together with ϕ and a unique id number for each invocation of
det-sts-β, det-sts-state, or det-sts-spl.

Procedure filter(x, prs) deals with the potential rescuers for each eventuality
of a node x which are of the form (x, ψ) for some ψ ∈ Ev. The second argument of
filter is a provisional prs for x. If an eventuality ϕ ∈ Γx is currently fulfillable
in G there is nothing to be done, so let (x, ψ) ∈ prs(ϕ). If ψ = ϕ then (x, ϕ)
cannot be a potential rescuer for ϕ in x and should not appear in prs(ϕ). But
what about potential rescuers of the form (x, ψ) with ψ �= ϕ? Since we want
the nodes in the potential rescuers to become defined later than x, we cannot
keep (x, ψ) in prs(ϕ); but we cannot just ignore the pair either.

Intuitively (x, ψ) ∈ prs(ϕ) means that ϕ ∈ Γx can “reach” ψ ∈ Γx by following
a loop in G which starts at x and returns to x itself. Thus if ψ can be fulfilled
in G, so can ϕ; and all potential rescuers of ψ are also potential rescuers of ϕ. The
function reach(prs, x, ϕ) computes all eventualities in x which are “reachable”
from ϕ in the sense above, where transitivity is taken into account. That is, it
detects all self-loops from x to itself which are relevant for fulfilling ϕ. We add ϕ
as it is not in reach(prs, x, ϕ). If any of these eventualities is fulfilled in G then ϕ
can be fulfilled and is consequently undefined in the resulting prs′. Otherwise we
take all their potential rescuers whose nodes are not x.

Theorem 6 (Soundness, Completeness and Complexity). Let φ ∈ Fml
be a formula in negation normal form of size n. The procedure is-sat(φ) ter-
minates, runs in exptime in n, and φ is satisfiable iff is-sat(φ) returns true.

5 Implementation, Optimisations, and Strategy

It should be fairly straightforward to implement our algorithm. It remains to
show an efficient way to find nodes which are not up-to-date. It is not too hard
to see that the status of a node x can become outdated only if its children change
their status or det-prs-child(x, y, ·) was invoked when x’s previous status was
determined and y now changes its status. If we keep track of nodes of the second
kind by inserting additional “update”-edges as described in [7], we can use a
queue for all nodes that might need updating. When the status of a node is
modified, we queue all parents and all nodes linked by “update”-edges.

We have omitted several refinements from our description for clarity. The
most important is that if a state s is closed, all non-states which have s as a
parent state are ignorable since their status cannot influence any other node t
unless t also has s as a parent state. Moreover, if every special node parent x of a
state s′ is incompatible or itself has a closed parent state, then s′ and the nodes
having s′ as parent state are ignorable. This applies transitively, but if s′ gets a
new parent whose parent state is not closed then s′ becomes “active” again.

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 237

Another issue is which rule to choose if several are applicable. As we have
seen, it is advantageous to close nodes as early as possible. Apart from imme-
diate contradictions, we have Rule 4 which closes a node because it contains an
unfulfillable eventuality. If we can apply Rule 4 early while the graph is still
small, we might prevent big parts of the graph being built needlessly later. Try-
ing to apply Rule 4 has several consequences on the strategy of how to apply
rules.

First, it is important to keep all nodes up-to-date since Rule 4 is not applicable
otherwise. Second, it is preferable that a node x cannot reach open nodes which
became defined (or will be defined) after x did. Hence, we should try to use
Rule 2 on a node only if all children are already defined.

6 An Example

To demonstrate how the algorithm works, we invoke it on the satisfiable toy
formula 〈a〉φ where φ := 〈a∗〉[a−]p. To save space, Fig. 1 only shows the core
subgraph of the tableau. Remember that the order of rule applications is not
fixed but the example will follow some of the guidelines given in Section 5.

The nodes in Fig. 1 are numbered in order of creation. The annotation ann
is given using “
” in Γ . For example, in node (3), we have Γ3 = { φ, [a−]p },
and ann3 maps the eventuality φ to [a−]p and is undefined elsewhere. The bottom
line of a node contains the parent state and the parent program on the left, and
the time stamp on the right. We do not show the status of a node since it changes
during the algorithm, but explain it in the text. If we write stsx = open(Λ, ·)
where Λ ⊆ V × Ev, we mean that prsx maps all eventualities in Γx, with the
exception of non-〈lp〉-formulae if x is a state, to Λ and is undefined elsewhere.

We only consider the core subgraph of φ and start by expanding node (1)
which creates (2). Then we expand (2) and create (3) and (4) which are both spe-
cial nodes. Next we expand (3) and create the state (5). Expanding (5) creates no
new nodes since Γ5 contains no 〈lp〉-formula. Now we define (5) and then (3). This
results in setting sts5 := open(prs⊥, ∅) according to det-sts-state, and sts3 :=
closed({p}) since (3) is not compatible with its parent state (1). Expanding (4)
inserts the edge from (4) to (1) and defining (4) sets sts4 := open({(1, 〈a〉φ)}, ∅)
according to det-sts-spl. Note that (6) does not exist yet. Next we define (2)
and then (1) which results in setting sts2 := open({(1, 〈a〉φ)}, {p}) according to
det-sts-β and sts1 := open(∅, {p}) thanks to filter.

Note that 〈a〉φ ∈ Γ1 has an empty set of potential rescuers. In PDL, we could
thus close (1), but converse programs complicate matters for CPDL as reflected
by the fact that Rule 4 is not applicable for (1) because (4) is not up-to-date.
Updating (4) creates (6) and sets sts4 := open({(1, 〈a〉φ), (6, 〈a〉φ)}, ∅). Updat-
ing (2) and then (1) sets sts2 := open({(1, 〈a〉φ), (6, 〈a〉φ)}, {p}) and sts1 :=
open({(6, 〈a〉φ)}, {p}). Now all nodes are up-to-date, but Rule 4 is not applica-
ble for (1) because the set of potential rescuers for φ is no longer empty.

Next we expand (6), which creates (7), then (7), which creates (8), then (8),
which creates (9) and (10), and finally (9), which creates no new nodes. Node (9)

238 R. Goré and F. Widmann

Procedure det-prs-child(x, y, ϕ) for passing a prs-entry of a child to a
parent

Input: two nodes x, y ∈ V and a formula ϕ ∈ Γy ∩ Ev
Output: ⊥ or a set of node-formula pairs
Remark: if det-prs-child(x, y,ϕ) has been invoked before with exactly the

same arguments and under the same invocation of det-sts-β,
det-sts-state or det-sts-spl, the procedure is not executed a
second time but returns the cached result of the first invocation. We
do not model this behaviour explicitly in the pseudocode.

if stsy = closed(·) then return ∅
else if stsy = unexp or stsy = undef or not y � x then return {(y, ϕ)}
else (∗ stsy = open(·, ·) & y � x ∗)

if prsy(ϕ) = ⊥ then return ⊥
else (∗ prsy(ϕ) is defined ∗)

let (z1, ϕ1), . . . , (zk, ϕk) be all of the pairs in prsy(ϕ)
for i ←− 1 to k do Λi := det-prs-child(x, zi, ϕi)
if ∃j ∈ {1, . . . , k}. Λj = ⊥ then return ⊥ else return

⋃k
i=1 Λi

(1) state
{ φ, 〈a〉φ }
⊥,⊥ 5

〈a〉φ ��
(2) β-node

{ φ }
1, a 4

��

��

(3) special node
{ φ
 [a−]p }

1, a 2

cs

��

(6) special node
{ φ
 〈a〉φ, p }

1, a 9

cs

��

(4) special node
{ φ
 〈a〉φ }

1, a 3

cs

�����������

{p}��
(5) state
{ φ, [a−]p }
⊥,⊥ 1

(7) state
{ φ, 〈a〉φ, p }
⊥,⊥ 8

〈a〉φ ��
(8) β-node

{ φ }
7, a 7

��

������������

(9) special node
{ φ
 [a−]p }

7, a 6

cs

		

(10) special node
{ φ
 〈a〉φ }

7, a 10

��

��

cs

��

{p} ��
(11) special node
{ φ
 〈a〉φ, p }

7, a 11

��

�	
cs

		

Fig. 1. An example: The graph G just before setting the status of node (2)

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 239

Procedure filter(x, prs) for handling self-loops in prs chains in G

Input: a node x ∈ V and a function prs : Ev → (P(V × Ev))⊥

Output: prs where self-loops have been handled

prs′ := prs⊥

foreach ϕ ∈ Γx ∩ Ev such that prs(ϕ) �= ⊥ do
Δ := {ϕ} ∪ reach(prs, x, ϕ)
if not ∃χ ∈ Δ. prs(χ) = ⊥ then

Λ :=
⋃

χ∈Δ

{
(z, ψ) ∈ prs(χ) | z �= x

}
prs′ := prs′[ϕ �→ Λ]

return prs′

is similar to (3), but unlike (3), it is compatible with its parent state (7) which
results in sts9 := open(⊥, ∅). Using our strategy from the last section, we would
now expand (10) so that (8) can become defined after both its children became
defined. Since (9) fulfils all its eventualities, we choose to define (8) instead
and set sts8 := open(⊥, ∅). Next we define (7) and then (6) which sets sts7 :=
open(⊥, ∅) and sts6 := open(⊥, ∅). The status of (4) is not affected since (6) was
defined after (4), giving “(6) �� (4)” in det-prs-child(4, 6, 〈a〉φ).

We expand (10) which inserts the edge from (10) to (1). Then we define (10)
which creates (11) and sets sts10 := open(⊥, ∅). Note that the invocation of
det-prs-child(10, 1, 〈a〉φ) in the invocation det-sts-spl(10) leads to the
recursive invocation det-prs-child(10, 6, 〈a〉φ). Expanding and defining (11)
yields sts11 := open(⊥, ∅). Finally, no rule is applicable in the shown subgraph.

References

1. Vardi, M.Y.: The taming of converse: Reasoning about two-way computations. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 413–424. Springer,
Heidelberg (1985)

2. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for Converse-PDL. Inf. and Comp. 162, 117–137 (2000)

3. Nguyen, L.A., Sza�las, A.: An optimal tableau decision procedure for Converse-PDL.
In: Proc. KSE-09, pp. 207–214. IEEE Computer Society, Los Alamitos (2009)

4. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal
logic. In: Proc. LICS-01, pp. 357–365. IEEE Computer Society, Los Alamitos (2001)

5. Lange, M.: Satisfiability and completeness of Converse-PDL replayed. In: Günter,
A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 79–92.
Springer, Heidelberg (2003)

6. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences 32(2), 183–221 (1986)

7. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009)

8. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219.
Springer, Heidelberg (2009)

Terminating Tableaux for
Hybrid Logic with Eventualities

Mark Kaminski and Gert Smolka

Saarland University, Saarbrücken, Germany

Abstract. We present the first terminating tableau system for hybrid
logic with eventualities. The system is designed as a basis for gracefully
degrading reasoners. Eventualities are formulas of the form ♦∗s that hold
for a state if it can reach in n ≥ 0 steps a state satisfying the formula s.
The system is prefix-free and employs a novel clausal form that abstracts
away from propositional reasoning. It comes with an elegant correctness
proof. We discuss some optimizations for decision procedures.

1 Introduction

We consider basic modal logic extended with nominals and eventualities. We
call this logic H∗. Nominals are formulas of the form x that hold exactly for
the state x. Eventualities are formulas of the form ♦∗s that hold for a state if
it can reach in n ≥ 0 steps a state satisfying the formula s. Nominals equip
modal logic with equality and are the characteristic feature of hybrid logic [4,2].
Eventualities extend modal logic with reflexive transitive closure and are an es-
sential feature of PDL [10,12] and temporal logics [16,8,9]. One can see H∗ either
as hybrid logic extended with eventualities or as stripped-down PDL extended
with nominals. Due to the inductive nature of eventualities, H∗ is not compact
(consider ♦∗¬p, p, �p, ��p, . . .). On the other hand, the satisfiability problem
for H∗ is decidable and EXPTIME-complete. Decidability can easily be shown
with filtration [4]. Decidability in deterministic exponential time follows from a
corresponding result for the hybrid μ-calculus [18], a logic that subsumes H∗.
EXPTIME-hardness follows from Fischer and Ladner’s [10] proof for PDL, which
also applies to modal logic with eventualities. See Blackburn et al. [4] for a dis-
cussion and an elegant proof (Theorem 6.52).

We are interested in a terminating tableau system for H∗ that can serve
as a basis for gracefully degrading reasoners. Given that there are terminat-
ing tableau systems for both PDL [17,3,7,1,11] and hybrid logic [6,5,13,14,15],
one would hope that coming up with a terminating system for H∗ is not dif-
ficult. Once we attacked the problem we found it rather difficult. First of all,
the approaches taken by the two families of systems are very different. Hybrid
systems rely on fine-grained prefix-based propagation of equational information
and lack the structure needed for checking eventualities. PDL systems do not pro-
vide the propagation needed for nominals and this propagation is in conflict with
the and-or graph representation [17,11] and the existing techniques for proving
correctness.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 240–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Terminating Tableaux for Hybrid Logic with Eventualities 241

After some trial an error, we decided to first construct a terminating tableau
system for modal logic with eventualities and nothing else. The goal was to obtain
a simple system with a simple correctness proof that would scale to the extension
with nominals. In the end we found a convincing solution that uses some new
ideas. In contrast to existing systems for hybrid logic, our system is prefix-
free and does not rely on fine-grained propagation of equational constraints.
Following the PDL systems of Baader [3] and De Giacomo and Massacci [7],
our system avoids a posteriori eventuality checking by disallowing bad loops.
The novel feature of our system is the use of a clausal form that abstracts
away from propositional reasoning and puts the focus on modal reasoning. This
way termination and bad loop checking become obvious. The crucial part of
the correctness proof, which shows that branches with bad loops can be safely
ignored, employs the notion of a straight model. A straight model requires that
the links on the branch make maximal progress towards the fulfillment of the
eventuality they serve. The notion of a straight model evolved in work with
Sigurd Schneider [19] and builds on an idea in Baader’s [3] correctness proof
(Proposition 4.7).

Due to the clausal form, the extension of our system to nominals is straight-
forward. When we add a new clause to a branch, we add to the new clause all
literals that occur in clauses of the branch that have a nominal in common with
the new clause. This takes care of nominal propagation. Clauses and links that
are already on the branch remain unchanged. Our approach yields a novel and
particularly simple tableau system for hybrid logic.

The paper is organized as follows. First, we introduce formulas, interpreta-
tions, and the clausal form. We then present the tableau system and its correct-
ness proof in three steps, first for modal logic, then for hybrid logic, and finally
for hybrid logic with eventualities. Finally, we discuss some optimizations for
decision procedures.

2 The Logic

We assume that two kind of names, called nominals and predicates, are given.
Nominals (x, y) denote states and predicates (p, q) denote sets of states. For-
mulas are defined as follows:

s ::= p | ¬p | s ∧ s | s ∨ s | ♦s | �s | ♦∗s | �∗s | x | ¬x | @xs

For simplicity we employ only a single transition relation and consider only
formulas in negation normal form. Generalization of our results to multiple
transition relations is straightforward. We use the notations ♦+s := ♦♦∗s and
�+s := ��∗s. An eventuality is a formula of the form ♦∗s or ♦+s. All other dia-
mond formulas ♦s are called simple. An interpretation I consists of the following
components:

– A set |I| of states.
– A transition relation →I⊆ |I| × |I|.

242 M. Kaminski and G. Smolka

– A set Ip ⊆ |I| for every predicate p.
– A state Ix ∈ |I| for every nominal x.

We write →∗
I for the reflexive transitive closure of→I . The satisfaction relation

I, a |= s between interpretations I, states a ∈ |I|, and formulas s is defined by
induction on s:

I, a |= p ⇐⇒ a ∈ Ip I, a |= s ∧ t ⇐⇒ I, a |= s and I, a |= t

I, a |= ¬p ⇐⇒ a /∈ Ip I, a |= s ∨ t ⇐⇒ I, a |= s or I, a |= t

I, a |= x ⇐⇒ a = Ix I, a |= ♦s ⇐⇒ ∃b : a →I b and I, b |= s

I, a |= ¬x ⇐⇒ a �= Ix I, a |= �s ⇐⇒ ∀b : a →I b implies I, b |= s

I, a |= @xs ⇐⇒ I, Ix |= s I, a |= �∗s ⇐⇒ ∀b : a →∗
I b implies I, b |= s

I, a |= ♦∗s ⇐⇒ ∃b : a →∗
I b and I, b |= s

We interpret sets of formulas conjunctively. Given a set A of formulas, we write
I, a |= A if I, a |= s for all formulas s ∈ A. An interpretation I satisfies (or is a
model of) a formula s or a set A of formulas if there is a state a ∈ |I| such that
I, a |= s or, respectively, I, a |= A. A formula s (a set A) is satisfiable if s (A)
has a model.

We say that two formulas s and t are equivalent and write s ∼= t if the
equivalence I, a |= s ⇐⇒ I, a |= t holds for all interpretations I and all states
a ∈ |I|. Two important equivalences are ♦∗s ∼= s ∨ ♦+s and �∗s ∼= s ∧�+s.

We write H∗
@ for the full logic and define several sublogics:

K p | ¬p | s ∧ s | s ∨ s | ♦s | �s | �∗s
K∗ K extended with ♦∗s
H K extended with x, ¬x
H∗ H extended with ♦∗s
H∗

@ H∗ extended with @xs

Note that K is basic modal logic plus positive occurrences of �∗s, and H is basic
hybrid logic plus positive occurrences of �∗s.

3 Clausal Form

We define a clausal form for our logic. The clausal form allows us to abstract
from propositional reasoning and to focus on modal reasoning.

A literal is a formula of the form p, ¬p, ♦s, �s, x, ¬x, or @xs. A clause
(C, D) is a finite set of literals that contains no complementary pair (p and ¬p
or x and ¬x). Clauses are interpreted conjunctively. Satisfaction of clauses (i.e.,
I, X |= C) is a special case of satisfaction of sets of formulas (i.e., I, X |= A),
which was defined in §2. For instance, the clause {p,¬p} is unsatisfiable. Note
that every clause not containing literals of the forms ♦s and @xs is satisfiable.
We will show that for every formula one can compute n ≥ 0 clauses such that
the disjunction of the clauses is equivalent to the formula.

Terminating Tableaux for Hybrid Logic with Eventualities 243

The syntactic closure SA of a set A of formulas is the least set of formulas
that contains A and is closed under the rules

¬s
s

s ∧ t

s , t

s ∨ t

s , t

♦s

s

�s

s

�∗s

s , �+s

♦∗s

s , ♦+s

@xs

x , s

Note that SA is finite if A is finite, and that the size of SA is linear in the size
of A (sum of the sizes of the formulas appearing as elements of A).

The support relation C � s between clauses C and formulas s is defined by
induction on s:

C � s ⇐⇒ s ∈ C if s is a literal
C � s ∧ t ⇐⇒ C � s and C � t

C � s ∨ t ⇐⇒ C � s or C � t

C � �∗s ⇐⇒ C � s and C � �+s

C � ♦∗s ⇐⇒ C � s or C � ♦+s

We say C supports s if C � s. We write C � A and say C supports A if C � s for
every s ∈ A. Note that C � D ⇐⇒ D ⊆ C if C and D are clauses.

Proposition 3.1. If I, a |= C and C � A, then I, a |= A.

Proposition 3.2. If C � A and C ⊆ D and B ⊆ A, then D � B.

We define a function D that yields for every set A of formulas the set of all
minimal clauses supporting A:

DA := {C | C � A and ∀D ⊆ C : D � A implies D = C }

We call DA the DNF of A.

Example 3.1. Consider s = p∧ q∨¬p∧ q. Then D{s} = {{p, q}, {¬p, q}}. Hence
{q} � {s} even though q and s are equivalent.

If X is a set, we use the notation X ;x := X ∪ {x}.

Proposition 3.3.

1. I, a |= A ⇐⇒ ∃C ∈ DA : I, a |= C.
2. If C ∈ DA, then C ⊆ SA.
3. C � A ⇐⇒ ∃D ∈ DA : D ⊆ C.
4. D(A ; s) ⊆ D(A ; ♦∗s).

Proposition 3.4. If A is a finite set of formulas, then DA is finite.

Proof. The claim follows with Proposition 3.3 (2) since SA is finite. �!

244 M. Kaminski and G. Smolka

The DNF of a finite set of formulas can be computed with the following tableau
rules:

s ∧ t

s , t

s ∨ t

s | t
�∗s

s , �+s

♦∗s

s | ♦+s

To obtain DA, one develops A into a complete tableau. The literals of each open
branch yield a clause. The minimal clauses obtained this way constitute DA.

Let C and D be clauses. The request of C isRC := { t | �t ∈ C }. We say D re-
alizes ♦s in C if D �RC ; s.

Proposition 3.5. If ♦s ∈ C and I satisfies C, then I satisfies some clause
D ∈ D(RC ; s).

Proof. Follows with Proposition 3.3 (1). �!

4 Tableaux for K

We start with a terminating tableau system for the sublogic K to demonstrate
the basic ideas of our approach. A branch of the system is a finite and nonempty
set of clauses. A model of a branch is an interpretation that satisfies all clauses
of the branch. A branch is satisfiable if it has a model. Let Γ be a branch, C be
a clause, and ♦s be a literal. We say that

– Γ realizes ♦s in C if D �RC ; s for some clause D ∈ Γ .
– Γ is evident if Γ realizes ♦s in C for all ♦s ∈ C ∈ Γ .

The syntactic closure SΓ of a branch Γ is the union of the syntactic closures of
the clauses C ∈ Γ . Note that the syntactic closure of a branch is finite. Moreover,
C ⊆ SΓ for all clauses C ∈ Γ .

Every evident branch describes a finite interpretation that satisfies all its
clauses. The states of the interpretation are the clauses of the branch, and the
transitions of the interpretation are the pairs (C,D) such that D �RC.

Theorem 4.1 (Model Existence). Every evident branch has a finite model.

Proof. Let Γ be an evident branch and I be an interpretation as follows:

– |I| = Γ
– C →I D ⇐⇒ D �RC
– C ∈ Ip ⇐⇒ p ∈ C

We show ∀s ∈ SΓ ∀C ∈ Γ : C � s =⇒ I, C |= s by induction on s. Let s ∈ SΓ ,
C ∈ Γ , and C � s. We show I, C |= s by case analysis. The cases are all straight-
forward except possibly for s = �∗t. So let s = �∗t. Let C = C1 →I . . .→I Cn.
We show I, Cn |= t by induction on n. If n = 1, we have Cn � s by assumption.
Hence Cn � t and the claim follows by the outer inductive hypothesis. If n > 1,
we have s ∈ RC1 since �s ∈ C1 since C1 � �s since C1 � s. Thus C2 � s and the
claim follows by the inner inductive hypothesis. �!

Terminating Tableaux for Hybrid Logic with Eventualities 245

The tableau system for K is obtained with a single rule.

Expansion Rule for K
If ♦s ∈ C ∈ Γ and Γ does not realize ♦s in C,
then expand Γ to all branches Γ ;D such that D ∈ D(RC; s).

The expansion rule for K has the obvious property that it applies to a branch
if and only if the branch is not evident. It is possible that the expansion rule
applies to a branch but does not produce an extended branch. We call a branch
closed if this is the case. Note that a branch is closed if and only if it contains a
clause C that contains a literal ♦s such that the DNF of RC; s is empty.

Example 4.1. Consider the clause C = {♦p, �¬p}. Since ♦p is not realized in
C in Γ = {C}, the expansion rule applies to the branch Γ . Since D(RC ; p) = ∅,
the expansion rule fails to produce an extension of Γ . Thus Γ is closed.

Example 4.2. Here is a complete tableau for a clause C1.

C1 = {♦♦p, ♦(q ∧ ♦p), �(q ∨�¬p)}
C2 = {♦p, q} C3 = {♦p,�¬p}
C4 = {p}

The development of the tableau starts with the branch {C1}. Application of the
expansion rule to ♦♦p ∈ C1 yields the branches {C1, C2} and {C1, C3}. The
branch {C1, C3} is closed. Expansion of ♦p ∈ C2 ∈ {C1, C2} yields the evident
branch {C1, C2, C4}. Note that C2 realizes ♦(q ∧ ♦p) in C1.

Theorem 4.2 (Termination). The tableau system for K terminates.

Proof. Let a branch Γ ′ be obtained from a branch Γ by the expansion rule such
that Γ � Γ ′. By Proposition 3.3 (2) we have SΓ ′ = SΓ and Γ � Γ ′ ⊆ 2SΓ ′

=
2SΓ . This suffices for termination since SΓ is finite. �!

Theorem 4.3 (Soundness). Let I be a model of a branch Γ and ♦s ∈ C ∈ Γ .
Then there exists a clause D ∈ D(RC ; s) such that Γ ;D is a branch and I is a
model of Γ ;D.

Proof. Follows with Proposition 3.5. �!

We now have a tableau-based decision procedure that decides the satisfiability of
branches. Given a branch Γ , the procedure either extends Γ to an evident branch
that describes a model of Γ , or it constructs a closed tableau that proves that Γ
is unsatisfiable. The procedure is recursive. It checks whether the current branch
contains a diamond formula that is not yet realized. If no such formula exists,
the branch is evident and the procedure terminates. Otherwise, the DNF of the
body of such a formula and the request of the clause containing it are computed.
If the DNF is empty, the branch is closed and thus unsatisfiable. Otherwise,
the branch is expanded into as many branches as the DNF has clauses and the
procedure continues recursively. The correctness of the procedure follows from
the theorems and propositions stated above.

246 M. Kaminski and G. Smolka

5 Tableaux for H

We now develop a terminating tableau system for the sublogic H, which ex-
tends K with nominals. The system is very different from existing systems for
hybrid logic [6,5,13,14,15] since it does not employ prefixes. The key observation
is that two clauses that contain a common nominal must be satisfied by the same
state in every model of the branch. Thus if two clauses on a branch contain a
common nominal, we can always add the union of the two clauses to the branch.

Proposition 5.1. Suppose an interpretation I satisfies two clauses C and D
that contain a common nominal x ∈ C ∩D. Then I satisfies C ∪D and the set
C ∪D is a clause.

We call a clause nominal if it contains a nominal. Let Γ be a set of clauses and A
be a set of formulas. We define two notations to realize what we call nominal
propagation:

AΓ := A ∪ { s | ∃x ∈ A ∃C ∈ Γ : x ∈ C ∧ s ∈ C }
DΓ A := {CΓ | C ∈ DA and CΓ is a clause }

Note that AΓ is the least set of formulas that contains A and all clauses C ∈ Γ
that have a nominal in common with A. Thus (AΓ)Γ = AΓ . Moreover, AΓ = A
if A contains no nominal.

Proposition 5.2. Let A be a set of formulas, I be a model of a branch Γ , and
a be a state of I. Then I, a |= A ⇐⇒ I, a |= AΓ .

Proof. Follows with Proposition 5.1. �!

The branches of the tableau system for H are finite and nonempty sets Γ of
clauses that satisfy the following condition:

– Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .

Satisfaction, realization, evidence, and the syntactic closure of branches are de-
fined as for K. The core CΓ := {C ∈ Γ | CΓ = C } of a branch Γ is the set of
all clauses of Γ that are either maximal or not nominal.

Proposition 5.3. Let Γ be a branch. Then:

1. CΓ is a branch.
2. An interpretation satisfies Γ iff it satisfies CΓ .
3. Γ is evident iff CΓ is evident.

Proof. Claims (1) and (2) are obvious, and (3) follows with Proposition 3.2. �!

Theorem 5.1 (Model Existence). Every evident branch has a finite model.

Terminating Tableaux for Hybrid Logic with Eventualities 247

Proof. Let Γ be an evident branch. Without loss of generality we can assume
that for every nominal x ∈ SΓ there is a unique clause C ∈ CΓ such that x ∈ C
(add clauses {x} as necessary). We choose an interpretation I that satisfies the
conditions

– |I| = CΓ
– C →I D ⇐⇒ D �RC
– C ∈ Ip ⇐⇒ p ∈ C
– Ix = C ⇐⇒ x ∈ C for all x ∈ SΓ

The last condition can be satisfied since Γ is nominally coherent. We show
∀s ∈ SΓ ∀C ∈ CΓ : C � s =⇒ I, C |= s by induction on s. Let s ∈ SΓ , C ∈ CΓ ,
and C � s. We show I, C |= s by case analysis. The proof now proceeds as the
proof of Theorem 4.1. The additional cases for nominals can be argued as follows.

Let s = x. Then x ∈ C and thus Ix = C. Hence I, C |= s.
Let s = ¬x. Then ¬x ∈ C and thus x /∈ C and Ix �= C. Hence I, C |= s. �!

Nominal coherence acts as an invariant for the tableau system for H. The ex-
pansion rule for H refines the expansion rule for K such that the invariant is
maintained. The tableau system for H is obtained with the following rule.

Expansion Rule for H
If ♦s ∈ C ∈ CΓ and Γ does not realize ♦s in C,
then expand Γ to all branches Γ ;D such that D ∈ DΓ (RC; s).

As in the system for K, the expansion rule for H has the property that it applies
to a branch if and only if the branch is not evident. Moreover, termination follows
as for K. The adaption of the soundness theorem is also straightforward.

Theorem 5.2 (Soundness). Let I be a model of a branch Γ and ♦s ∈ C ∈ Γ .
Then there exists a clause D ∈ DΓ (RC ; s) such that Γ ;D is a branch and I is
a model of Γ ;D.

Proof. Since I satisfies C, we know by Proposition 3.5 that I satisfies some
clause D ∈ D(RC ; s). The claim follows with Proposition 5.2. �!

We have now arrived at a decision procedure for the sublogic H.

Example 5.1. Consider the following closed tableau.

♦(♦♦(x ∧ ¬p) ∧ (♦(x ∧ p) ∨ x ∧ p))
0

♦♦(x ∧ ¬p), ♦(x ∧ p)
1

x, ♦♦(x ∧ ¬p), p
2

♦(x ∧ ¬p)
3

♦(x ∧ ¬p)
5

x, ¬p
4

The numbers identifying the clauses indicate the order in which they are intro-
duced. Once clause 4 is introduced, ♦(x ∧ p) in clause 1 cannot be realized due

248 M. Kaminski and G. Smolka

to nominal propagation from clause 4. Hence the left branch is closed. The right
branch is also closed since the diamond formula in clause 5 cannot be realized
due to nominal propagation from clause 2.

The example shows that nominals have a severe impact on modal reasoning.
The impact of nominals is also witnessed by the fact that in K the union of two
branches is a branch while this is not the case in H (e.g., {{x, p}} and {{x,¬p}}).
Remark 5.1. To obtain the optimal worst-case run time for tableau provers, one
must avoid recomputation. In the absence of nominals this can be accomplished
with a minimal and-or graph representation [17,11]. Unfortunately, the minimal
and-or graph representation is not compatible with nominal propagation. To see
this, consider the minimal and-or graph representing the tableau of Example 5.1.
This graph represents clauses 3 and 5 with a single node. This is not correct since
the nominal context of the clauses is different. While clause 3 can be expanded,
clause 5 cannot.

6 Evidence for H∗

Next, we consider the sublogic H∗, which extends H with eventualities ♦∗s. We
define branches and evidence for H∗ and prove the corresponding model existence
theorem. As one would expect, realization of eventualities ♦+s is more involved
than realization of simple diamond formulas.

Example 6.1. Consider the clause C = {♦+¬p, �+p, p}. We have RC = {�∗p}.
Hence C �RC ; ♦∗¬p. If we extend our definitions for H to H∗, the branch {C}
is evident. However, the clause C is not satisfiable.

To obtain an adequate notion of realization for eventualities, branches for H∗

will contain links in addition to clauses. A link is a triple C(♦s)D such that
♦s ∈ C and D �RC; s. A quasi-branch Γ is a finite and nonempty set of clauses
and links such that Γ contains the clauses C and D if it contains a link C(♦s)D.
A model of a quasi-branch is an interpretation that satisfies all of its clauses.
Note that a model is not required to satisfy the links of a quasi-branch. A quasi-
branch is satisfiable if it has a model. A quasi-branch Γ realizes ♦s in C if Γ
contains some link C(♦s)D. Quasi-branches can be drawn as graphs with links
pointing from diamond formulas to clauses. Figure 1 shows three examples. The
first two graphs describe models of the clauses. This is not the case for the
rightmost graph where both clauses are unsatisfiable. Still, all diamond formulas
are realized with links. The problem lies in the “bad loop” that leads from the
lower clause to itself.

The notations AΓ and DΓ A are defined for quasi-branches in the same way
as they are defined for the branches of H. Let Γ be a quasi-branch. A path for
♦+s in Γ is a sequence C1 . . . Cn of clauses such that n ≥ 2 and:

1. ∀i ∈ [1, n] : CΓ
i = Ci.

2. ∀i ∈ [1, n− 1] ∃D : Ci(♦+s)D ∈ Γ and DΓ = Ci+1.
3. ∀i ∈ [2, n− 1] : Ci � s.

Terminating Tableaux for Hybrid Logic with Eventualities 249

♦+p, �¬p, ¬p

♦+p, ¬p

p

♦+p, �¬p

♦+p, ¬p

♦+p

p

♦+p, �+¬p

♦+p, �+¬p, ¬p

Fig. 1. Three quasi-branches drawn as graphs

A run for ♦+s in C in Γ is a path C . . .D for ♦+s in Γ such that D � s. A bad
loop for ♦+s in Γ is a path C . . . C for ♦+s in Γ such that C � s. A branch is
a quasi-branch Γ that satisfies the following conditions:

– Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .
– Functionality: If C(♦s)D ∈ Γ and C(♦s)E ∈ Γ , then D = E.
– Bad-loop-freeness: There is no bad loop in Γ .

The first two quasi-branches in Fig. 1 are branches. The third quasi-branch in
Fig. 1 is not a branch since it contains a bad loop.

The core CΓ of a branch Γ is CΓ := {C ∈ Γ | CΓ = C }. A branch Γ is
evident if Γ realizes ♦s in C for all ♦s ∈ C ∈ CΓ . The syntactic closure SΓ of
a branch Γ is the union of the syntactic closures of the clauses C ∈ Γ .

Proposition 6.1. Let Γ be an evident branch and ♦+s ∈ C ∈ CΓ . Then there
is a unique run for ♦+s in C in Γ .

Proof. Since Γ realizes every eventuality in every clause in CΓ and Γ is finite,
functional and bad-loop-free, there is a unique run for ♦+s in C in Γ . �!

Theorem 6.1 (Model Existence). Every evident branch has a finite model.

Proof. Let Γ be an evident branch. Without loss of generality we can assume
that for every nominal x ∈ SΓ there is a unique clause C ∈ CΓ such that x ∈ C
(add clauses {x} as necessary). We choose an interpretation I that satisfies the
following conditions:

– |I| = CΓ
– C →I D ⇐⇒ ∃s, E : C(♦s)E ∈ Γ and D = EΓ

– C ∈ Ip ⇐⇒ p ∈ C
– Ix = C ⇐⇒ x ∈ C for all x ∈ SΓ

We show ∀s ∈ SΓ ∀C ∈ CΓ : C � s =⇒ I, C |= s by induction on s. Let s ∈ SΓ ,
C ∈ CΓ , and C � s. We show I, C |= s by case analysis. Except for s = ♦∗t the
claim follows as in the proofs of Theorems 4.1 and 5.1.

Let s = ♦∗t. Since C �s, we have either C �t or C �♦+t. If C �t, then I, C |= t
by the inductive hypothesis and the claim follows. Otherwise, let C �♦+t. Then
♦+t ∈ C ∈ CΓ . By Proposition 6.1 we know that there is a run for ♦+t in C
in Γ . Thus C →∗

I D and D � t for some clause D ∈ CΓ . Hence I, D |= t by the
inductive hypothesis. The claim follows. �!

250 M. Kaminski and G. Smolka

7 Tableaux for H∗

The tableau system for H∗ is obtained with the following rule.

Expansion Rule for H ∗

If ♦s ∈ C ∈ CΓ and Γ does not realize ♦s in C,
then expand Γ to all branches Γ ;D ;C(♦s)D such that D ∈ DΓ (RC; s).

Example 7.1. Here is a tableau derivation of an evident branch from an initial
clause with eventualities.

♦+p, ¬p, �(x ∧ ♦+p ∧ ¬p), ♦�¬p
0

x, ♦+p, ¬p
1

x, ♦+p, ¬p, �¬p
3

p
2 ♦+p, ¬p

4

1

2

3

4

5

The numbers indicate the order in which the links and clauses are introduced.
In the final branch, the clauses 0, 3, 4, 2 constitute a run for ♦+p in clause 0.

The dashed link is not on the branch. We use it to indicate the implicit
redirection of link 1 that occurs when clause 3 is added. The implicit redirection
is due to nominal propagation and is realized in the definition of paths. Note that
before link 3 is added, the clauses 0, 1, 2 constitute a run for ♦+p in clause 0.
When clause 3 is added, this run disappears since clause 1 is no longer in the
core.

As in the system for H, the expansion rule for H∗ has the property that it
applies to a branch if and only if the branch is not evident. Moreover, termi-
nation follows essentially as for H. There is, however, an essential difference as
it comes to soundness. Due to our definition of branches a candidate exten-
sion Γ ;D ;C(♦s)D is only admissible if it is a bad-loop-free quasi-branch. We
now encounter the difficulty that the analogue of the soundness property for H
(Theorem 5.2) does not hold since there are satisfiable branches to which the
expansion rule applies but fails to produce extended branches since all candidate
branches contain bad loops. This is shown by the next example.

Example 7.2. Consider the literal s := �+(q ∨�¬p) and the following branch:

♦+p, ¬p, q, s

♦+p, �¬p, s

♦+p, ¬p, �¬p, s

Note that the branch is satisfiable. Since the eventuality in the third clause is not
realized, the branch is not evident. The expansion rule applies to the eventuality
in the third clause but does not produce an extended branch since both candidate

Terminating Tableaux for Hybrid Logic with Eventualities 251

extensions contain bad loops (one extension adds a link from the third clause to
the first clause, and the other adds a link from the third clause to itself).

Note that the branch can be obtained by starting with the first clause. The
link for the literal ♦+p in the first clause does not make progress and leads to
the bad loop situation. There are two alternative links for this literal that point
to the clauses {p, q, s} and {p, �¬p, s}. Both yield evident branches.

We solve the problem with the notion of a straight link. The idea is that a straight
link for an eventuality ♦+s reduces the distance to a clause satisfying s as much
as possible. We will define straightness with respect to a model.

Let I be an interpretation, A be a set of formulas, and s be a formula. The
distance from A to s in I is defined as follows:

δIAs := min{n ∈ IN | ∃a, b : a→n
I b and I, a |= A and I, b |= s }

where min ∅ = ∞ and n < ∞ for all n ∈ IN. The relations →n
I are defined as

usual: a →0
I b iff a = b and a ∈ |I|, and a →n+1

I b iff a →I a′ and a′ →n
I b for

some a′.

Proposition 7.1. δIAs <∞ iff I satisfies A; ♦∗s.

Proposition 7.2. Let I be a model of a quasi-branch Γ . Then δIAs = δIA
Γ s.

A link C(♦+s)D is straight for an interpretation I if the following conditions
are satisfied:

1. δIDs ≤ δIEs for every E ∈ D(RC; ♦∗s).
2. If δIDs = 0, then D � s.

A straight model of a quasi-branch Γ is a model I of Γ such that every link
C(♦+s)D ∈ Γ is straight for I.

Lemma 7.1 (Straightness). A quasi-branch that has a straight model does not
have a bad loop.

Proof. By contradiction. Let I be a straight model of a quasi-branch Γ and let
C1 . . . Cn be a bad loop for ♦+s in Γ . Then Cn = C1 and n ≥ 2. To obtain a
contradiction, it suffices to show that δICis > δICi+1s for all i ∈ [1, n− 1]. Let
i ∈ [1, n− 1].

1. We have Ci ∈ CΓ , Ci � s, Ci(♦+s)D ∈ Γ , and DΓ = Ci+1 for some D ∈ Γ .
2. We show δICis < ∞. By (1) we have ♦+s ∈ Ci ∈ Γ . The claim follows by

Proposition 7.1 since I satisfies Ci.
3. We show 0 < δICis. Case analysis.

(a) i > 1. Then Ci−1(♦+s)E ∈ Γ and EΓ = Ci for some E. By Proposi-
tion 7.2 and the second condition for straight links it suffices to show
E � s. This holds by Proposition 3.2 since Ci � s by (1).

(b) i = 1. Then Cn−1(♦+s)E ∈ Γ and EΓ = C1 for some E. By Proposi-
tion 7.2 and the second condition for straight links it suffices to show
E � s. This holds by Proposition 3.2 since C1 � s by (1).

252 M. Kaminski and G. Smolka

4. By (2) and (3) there are states a, b, c such that I, a |= Ci, a→I b→δICis−1
I c

and I, c |= s. We have I, b |= RCi ;♦∗s. By Proposition 3.3 (1) there is a
clause E ∈ D(RCi ; ♦∗s) such that I, b |= E. Thus δIEs ≤ δICis − 1. By
Proposition 7.2 and the first condition for straight links we have δICi+1s =
δIDs ≤ δIEs < δICis, which yields the claim. �!

Theorem 7.1 (Soundness). Let I be a straight model of a branch Γ and let
♦s ∈ C ∈ Γ . Moreover, let Γ not realize ♦s in C. Then there exists a clause
D ∈ DΓ (RC ; s) such that Γ ;D ;C(♦s)D is a branch and I is a straight model
of Γ ;D ;C(♦s)D.

Proof. Since I is a model of C and ♦s ∈ C, there is a clause D ∈ DΓ (RC; s) that
is satisfied by I (Propositions 3.5 and 5.2). For every such clause, Γ ;D ;C(♦s)D
is a quasi-branch that has I as a model and satisfies the nominal coherence and
functionality conditions. By Lemma 7.1 it suffices to show that we can choose
D such that I is straight for C(♦s)D. If ♦s is not an eventuality, this is trivially
the case. Otherwise, let ♦s = ♦+t and s = ♦∗t. We proceed by case analysis.

1. I satisfies RC; t. We pick a clause D ∈ DΓ (RC; t) that is satisfied by I.
By Proposition 3.3 (4), we have D(RC; t) ⊆ D(RC; ♦∗t), and consequently
DΓ (RC; t) ⊆ DΓ (RC; ♦∗t). Thus D ∈ DΓ (RC; ♦∗t) as required. It remains
to show that I is straight for C(♦+t)D. This is the case since δIDt = 0 since
D � t and I satisfies D (Proposition 3.1).

2. I does not satisfy RC; t. This time we choose D ∈ DΓ (RC; ♦∗t) such that
I satisfies D and δIDt is minimal. We show that I is straight for C(♦+t)D.

Let E ∈ D(RC; ♦∗t). We show δIDt ≤ δIEt. If I does not satisfy E,
the claim holds by Proposition 7.1. If I satisfies E, I satisfies EΓ and
EΓ ∈ DΓ (RC; ♦∗t). Hence δIDt ≤ δIE

Γ t. The claim follows by Proposi-
tion 7.2.

We show δIDt > 0. For contradiction, let δIDt = 0. Then I, a |= D ; t
for some a. Thus I, a |= RC ; t by Proposition 3.3 (1). Contradiction. �!

We have now arrived at a decision procedure for the sublogic H∗.

8 Tableaux for H∗ with @

It is straightforward to extend our results to the full logic H∗
@, which adds formu-

las of the form @xs to H∗. A quasi-branch Γ realizes a literal @xs if it contains
a clause D such that D � {x, s}. A branch Γ is evident if it is evident as defined
for H∗ and in addition realizes every literal @xs such that @xs ∈ C for some
clause C ∈ Γ . It is easy to verify that the model existence theorem for H∗ ex-
tends to the full logic H∗

@. The realization condition for @ leads to an additional
expansion rule.

Expansion Rule for @
If @xs ∈ C ∈ CΓ and Γ does not realize @xs,
then expand Γ to all branches Γ ;D such that D ∈ DΓ {x, s}.

Terminating Tableaux for Hybrid Logic with Eventualities 253

Since the new rule respects the subterm closure, termination is preserved. The
soundness of the new rule is easy to show.

Proposition 8.1 (Soundness of Rule for @). Let I be a straight model of a
branch Γ and let @xs ∈ C ∈ Γ . Then there exists a clause D ∈ DΓ {x, s} such
that Γ ;D is a branch and I is a straight model of Γ ;D.

9 Optimizations

We give two additional rules that realize certain diamond literals with links to al-
ready present clauses, thus avoiding the introduction of unnecessary clauses and
unnecessary branchings. This way the size of the tableaux the decision procedure
has to explore can be reduced.

Additional Expansion Rule for Simple Diamonds
If ♦s ∈ C ∈ CΓ and Γ does not realize ♦s in C
and ♦s is simple and D ∈ Γ and D �RC ; s,
then expand Γ to Γ ;C(♦s)D.

Additional Expansion Rule for Eventualities
If ♦+s ∈ C ∈ CΓ and Γ does not realize ♦+s in C
and D ∈ Γ and D �RC ; s,
then expand Γ to Γ ;C(♦+s)D.

Both rules preserve straight models and yield extensions that are branches. This
suffices for their correctness.

A branch Γ is quasi-evident if there is some set Δ of links such that Γ ∪Δ is
an evident branch. It suffices if the decision procedure stops with quasi-evident
branches rather than evident branches. This provides for optimizations since it
allows the decision procedure not to introduce new clauses and branchings for
diamond formulas that can be realized with links to existing clauses. The two
expansion rules given above are subsumed by this optimization.

Let Γ be a branch. A clause C is subsumed in Γ if C contains no eventualities
and there is a clause D ∈ Γ such that C � D. There is no need to realize literals
in subsumed clauses.

Proposition 9.1. A branch that realizes all literals of the form ♦s or @xs in
non-subsumed clauses is quasi-evident and hence has a finite model.

The left branch in Fig. 1 explains why subsumed clauses must not contain even-
tualities.

Finally, we remark that bad-loop checking can be done in quasi-constant time
when a branch is extended with a new link. For this, one maintains a data
structure that for every clause C and every unrealized eventuality ♦+s ∈ C
provides all clauses D such that a link C(♦+s)D would result in a bad loop. Such
a data structure can be maintained in quasi-constant time. History variables as
used in De Giacomo and Massacci [7] are one possibility to realize such a data
structure.

254 M. Kaminski and G. Smolka

References

1. Abate, P., Goré, R., Widmann, F.: An on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Areces, C., Demri, S. (eds.) M4M-5. ENTCS, vol. 231,
pp. 191–209. Elsevier, Amsterdam (2009)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier, Amsterdam (2007)

3. Baader, F.: Augmenting concept languages by transitive closure of roles: An al-
ternative to terminological cycles. DFKI Research Report RR-90-13, Deutsches
Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Germany (1990)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

5. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Com-
put. 17(3), 517–554 (2007)

6. Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. J.
Log. Comput. 16(6), 737–763 (2006)

7. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for converse-PDL. Inf. Comput. 162(1-2), 117–137 (2000)

8. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)

9. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. System Sci., 194–211 (1979)

11. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009)

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
13. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom.

Reasoning 39(3), 249–276 (2007)
14. Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with the difference

modality and converse. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 210–225. Springer, Heidelberg (2008)

15. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with dif-
ference and converse. J. Log. Lang. Inf. 18(4), 437–464 (2009)

16. Pnueli, A.: The temporal logic of programs. In: FOCS’77, pp. 46–57. IEEE Com-
puter Society Press, Los Alamitos (1977)

17. Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. System
Sci. 20(2), 231–254 (1980)

18. Sattler, U., Vardi, M.Y.: The hybrid μ-calculus. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 76–91. Springer, Heidelberg
(2001)

19. Schneider, S.: Terminating Tableaux for Modal Logic with Transitive Closure.
Bachelor’s thesis, Saarland University (2009)

Herod and Pilate:
Two Tableau Provers for Basic Hybrid Logic

Marta Cialdea Mayer1 and Serenella Cerrito2

1 Università di Roma Tre
2 Ibisc, Université d’Evry Val d’Essonne

Abstract. This work presents two provers for basic hybrid logic HL(@),
which have been implemented with the aim of comparing the internalised
tableau calculi independently proposed, respectively, by Bolander and
Blackburn [3] and Cerrito and Cialdea Mayer [5]. Experimental results
are reported, evaluating, from the practical point of view, the different
treatment of nominal equalities of the two calculi.

1 A Brief Presentation of the Calculi P and H

The treatment of nominal equalities in proof systems for hybrid logics may eas-
ily induce many redundancies. In fact, when processing a statement of the form
@ab, any known property of a can potentially be copied to b (and vice-versa).
This work compares, from a practical point of view, two different approaches to
nominal equalities, represented by two internalised tableau calculi for HL(@),
both terminating without loop-checking and with no restriction on rule applica-
tion strategies. The two calculi were independently proposed, respectively, in [3]
and [5] (a revised and extended version of the latter is [4]). The main difference
between them is the treatment of nominal equalities, that is essentially carried
out by means of an elegant and simple rule in the first calculus ([3], here named
P), which copies formulae labelled by a to the equal nominal b (the Id rule),
while the second ([4,5], the calculus H) uses a more technically involved rule,
requiring explicit substitution (the Sub rule).

An analysis and comparison of P and H, highlighting their respective similar-
ities and differences from a theoretical point of view can be found in [7], where
also an application-oriented, though abstract, reformulation of the expansion
rules can be found. This presentation describes the implementations and some
experimental results, run on sets of formulae randomly generated by hGen [1].
The experiments show that the approach to nominal equalities in H, although
theoretically less elegant than P’s, has important practical advantages. The sys-
tems are also briefly compared to other implemented tableau provers. We omit
here the definition of the syntax and semantics of HL(@), which can be found
in any work on hybrid logic.

Since the provers only deal with the uni-modal version of HL(@), the (neces-
sarily brief and informal) description of the tableau systems that follows is re-
stricted accordingly. Differently from [4,5,7], for the sake of simplicity, tableaux

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 255–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

256 M. Cialdea Mayer and S. Cerrito

are presented here in the “nodes as formulae” style. Assuming that input formu-
lae are in negation normal form, tableau nodes in both P and H are labelled by
satisfaction statements, i.e. formulae of the form @aF , where F is in negation
normal form. The initial tableau for a set S of formulae is a single branch tableau
whose nodes are labelled by @aF , for each F ∈ S, where a is a new nominal.
The set {@aF | F ∈ S} is called the initial set.

The two systems share the following expansion rules:

@a(F ∧ G)

@aF, @aG
(∧)

@a(F ∨ G)

@aF | @aG
(∨)

@a@bF

@bF
(@)

@a�F, @a�b

@bF
(�)

@a�F

@a�b, @bF
(�) where b is new in the branch

The �-rule is subject to some restrictions that will be given later on.
It is assumed that a formula is never added to a branch where it already occurs

and that the �-rule, which generates new nominals, is never applied twice to the
same premise on the same branch. A tableau branch is closed if it contains either
@ap and @a¬p for some nominal a and atom p, or @a¬a for some nominal a.

A formula of the form @a�b, where b is a nominal, is a relational formula. A
relational formula generated by application of the �-rule is called an accessibility
formula. The system P restricts the applicability of the �-rule to cases where
its premise @a�F is not an accessibility formula, while in H it is restricted to
cases where @a�F is not a relational formula.

If a nominal b is introduced in a branch Θ by application of the �-rule to
a premise of the form @a�F , then we say that b is a child of a, and use the
notation a ≺Θ b . The relation ≺Θ

+ is the transitive closure of ≺Θ. If a ≺+
Θ b

we say that b is a descendant of a and a an ancestor of b in the branch Θ.
The essential difference between the two calculi consists in the treatment

of nominal equalities. In P, such formulae are expanded by means of the two
premises rule Id, which is applicable only if @aF is not an accessibility formula:

@aF,@ab

@bF
(Id)

The system H treats equalities by means of a more complex rule, with side
effects, the Substitution rule (Sub). When expanding a formula of the form @ab
(where a �= b) by means of Sub in a branch Θ, the whole branch is modified as
follows: every occurrence of a is replaced by b, and every formula containing a
descendant of a is deleted.

The two rules for the treatment of equalities are apparently very different.
However, they bear strong similarities, which are highlighted in [7]. We only
observe here that the restriction on the Id rule, and nominal deletion in the Sub
rule, are crucial to ensure strong termination of the respective systems. And their
role is similar: avoiding the “adoption” of a replaced nominal’s children by the
replacing one. In simple words, we can say that the main difference between the
two systems is that P is more tolerant than H: even when the descendants of a

Herod and Pilate: Two Tableau Provers for Basic Hybrid Logic 257

nominal are of no use any longer, they are left alive, since they are not harmful,
either. H, on the contrary, is radical and bloody: when a nominal becomes useless,
it is killed with all its descent.

Nominal deletion in H has a practical advantage, avoiding the employment of
resources to expand formulae labelled by “useless” nominals. It can therefore be
conjectured that the treatment of nominal equalities in H might be more efficient
than in P. In order to verify such an hypothesis, the calculi P and H have been
implemented, as described in the next section.

2 Pilate and Herod

The system Pilate (“What crime has he committed?”) implements the calculus
P, and Herod is the implementation of the slaughter of the innocents repre-
sented by H. The two systems are implemented in Objective Caml [12] and are
available at Herod web page [13]. In the rest of this section a description of the
implementations is given, with some simplifications and abstractions.

Both systems take as input a file specifying a set of hybrid formulae and build
a tableau for them in a depth-first manner. If a complete and open branch is
found, then a model of the initial set of formulae is extracted from it and given
as output. Otherwise, the set is declared unsatisfiable. At any stage of the search
process, the systems consider a single active branch, the others being kept in a
stack, where the branching points are stored and retrieved upon backtracking.

A branch Θ is represented by a set (implemented by a hash table) of worlds.
Each world w corresponds to a nominal occurring in the branch and is a structure
(a record) with the following fields: name(w) stores the nominal a corresponding
to w; pending(w) contains the formulae labelled by a (a=name(w)) in Θ, that
still have to be processed; memory(w) contains the formulae labelled by a in
Θ that have already been processed but have to be kept in memory for future
use (i.e. literals and formulae of the form �F and �F); children(w) is a set of
pointers to the children of a in Θ, i.e. the nominals b such that a ≺Θ b.

In the implementation of Herod, beyond the set of its worlds, each branch
is associated a table of replacements, that is updated with the application of
the substitution rule, and used whenever accessing a nominal, looking for its
presently replacing nominal. Substitution is in fact treated in a lazy way. In the
following, we shall denote the nominal replacing a by replaces(a), meaning that
replaces(a) = a if a has not been replaced in the branch.

The expansion loop obeys the following basic principle: for each world w,
memory(w) is “saturated” with respect to any rule application, in the sense
that every formula (or pair of formulae) in memory(w) has been expanded. At
each stage, a world w is chosen for expansion and a formula F selected from
pending(w). According to the form of F , different operations are performed.

– If F is a literal �, then its consistency is checked with respect to the literals in
memory(w). If the branch is closed, then the systems backtrack; otherwise,
if � is not a nominal, it is moved to memory(w) and if it is a nominal, the
respective rules for equalities, described below, are fired.

258 M. Cialdea Mayer and S. Cerrito

– If F is either a disjunction, or a conjunction or a satisfaction statement, its
expansion (or, in the case of a disjunction, one of its expansions, the other
being recorded in the stack) is added to pending(w) and F is deleted.

The treatment of the other rules differs in the two systems. We begin by
describing Herod.

H1. The expansion of a formula of the form �F in a world w causes the moving
of �F from pending(w) to memory(w), the creation of a new world w′ with
F ∈pending(w′), and the addition of w′ to children(w).

H2. The �-rule in Herod is fired whenever the selected formula has the form of
one of its premises: if it has the form �F , then the �-rule is applied to it and
each formula of the form �b ∈memory(w). Moreover, it is applied to each
�b implicitly represented by children(w). Symmetrically, if the extracted
formula has the form �b, then the �-rule is applied to it and each formula
of the form �F ∈memory(w). The obtained expansions are in both cases
added to pending(w).

H3. Finally, if the selected formula is a nominal b, the substitution rule is fired. If
w′ is the world representing b, then: (a) every formula in pending(w) is copied
to pending(w′); (b) every formula of the form �F ∈memory(w) is copied
to pending(w′); (c) every formula of the form �F ∈memory(w) is copied to
memory(w′) and the �-rule is fired against each �c ∈memory(w′) and the
children of w′; (d) the literals in memory(w) are added to memory(w′), after
a consistency check. Finally, the table of replacements is updated, and the
world w and, recursively, all its descendants are deleted. This suffices to im-
plement nominal deletion; in fact, every information related to a descendant
w′′ of w is contained either in w′′ itself, or in its parent, which is either w
or, in turn, a descendant of w (that is deleted altogether).

Let us now turn to consider the implementation of the Id rule in Pilate. The basic
principle is always that the set in memory(w) has to be maintained saturated
with respect to every rule application. Therefore:

P1. When an equality @ab is processed, i.e. a nominal b is chosen from pend-
ing(w) for some world w with name(w)=a, it is moved to memory(w) and
the Id rule is fired against @ab and: (a) any already processed formula of
the form @aF that is not an accessibility formula, yielding @bF (i.e. F is
added to to the pending field of the world w′ representing b – provided that
F is not already in memory(w′)); (b) any already processed formula of the
form @ac, producing @cb (i.e. for all nominal c in memory(w), b is added
to the pending field of the world w′ representing c – provided that b is not
already in memory(w′)); and, finally (c) Id is applied to @ab and @ab itself,
if a �= b (producing @bb, i.e. b is added to the pending field of the world
representing b); such an operation is in fact necessary for completeness. The
membership tests are needed in order to avoid that, in the presence of a
looping chain of equalities, formulae are copied forever, passing from the
memory of a node to the pending formulae of another one and then back to
the pending formulae of the first one.

Herod and Pilate: Two Tableau Provers for Basic Hybrid Logic 259

The symmetric case is subtler, since the leftmost premise of the Id rule can have
any form. Pilate’s treatment consists in firing the Id rule against any memorised
equality every time a formula is moved to memory(w):

P2. when processing a literal or a formula of the form �F or �F chosen from a
world w with name(w)=a, beyond the operations performed by Herod (H1
and H2), the Id rule is fired against such a formula and any already processed
equality of the form @ab (i.e. any nominal in memory(w), and the results
are added to the pending field of the world representing b).

3 Experimental Results

The relative performances of Herod and Pilate have been evaluated running the
provers on a set of 1600 sets of formulae, randomly generated by hGen [1], and
approximately equally partitioned into satisfiable and unsatisfiable. The modal
depth (greatest number of nested modal operators) of the tests varies from 10
to 40, and the number of clauses varies from 60 to 200. The sets of formulae
used for the benchmarks and the parameters used for their generation can be
found at Herod web page [13]. The experiments were run on an Intel Pentium
4 3GHz, with 3Gb RAM, running under Linux, and the provers were given 1
minute timeout.

Considering the 1274 tests that both Pilate and Herod solved in the allowed
time, Pilate is in the average more than 50 times slower than Herod, and the
median run time of Pilate is more than 5 times Herod’s one.1 Moreover, Pilate
runs out of time almost 50% more often than Herod. The diagram on the left
in Figure 1 plots the average run time of the two systems against the number
of clauses of the tests solved by both provers. In the the diagram, points on the
X-axis group all sets with the same number of clauses, independently of their
modal depth. Pilate seems to be more sensible to the phase transition in the
easy-hard-easy pattern of the benchmarks [8].

Maybe more interesting is the comparison between the two systems on a
set of hand-written formulae which involve many �’s and equalities, where the
differences in treating equalities should be pushed to the limit. The formulae we
have used have the form @a1�

n(@a1a2 ∧ ... ∧ @anan+1 ∧ �F), where �n is a
sequence of n �’s, dominating n nominal equalities, and F is a (non trivially)
unsatisfiable formula. Processing such formulae forces the provers to generate n
new worlds before processing the equalities. The size of such formulae is taken
to be n. The results are represented by the diagram on the right in Figure 1. As
can be seen, Pilate can only solve problems up to size 100 in the allowed time
of one minute, while Herod solved the problems up to the maximal tested size
(600), within 0.11 seconds.

The empirical results described above confirm that Pilate consumes, in gen-
eral, more resources than Herod. It is important to point out, moreover, that the
1 The median times are computed counting timeouts as values greater than all the

others.

260 M. Cialdea Mayer and S. Cerrito

 0

 1

 2

 3

 4

 60 80 100 120 140 160 180 200

tim
e

(s
)

number of clauses

Pilate
Herod

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 40 60 80 100 120 140

tim
e

(s
)

size

"Pilate"
"Herod"

Fig. 1. Pilate and Herod average run times

different performances are effectively due to the different treatment of equalities.
In fact, on a set of 400 modal formulae (without nominals and satisfaction oper-
ators) randomly generated by hGen, of modal depth varying from 30 to 70, the
two provers had the same cases of timeouts and the same average and median
execution times. The same results, showing that that all the difference between
the systems is due to their treatment of equalities, are obtained when running
the two provers on the hand-tailored collection of modal formulae proposed in
[2], where in fact Pilate and Herod show the same behaviour.

It must be remarked, however, that Pilate constitutes a more or less “ad
literam” implementation of P and that more effective ways of treating its Id
rule can be conceived. For this reason, Herod has been compared with HTab [11],
which implements the prefixed calculus presented in [3]. HTab implements equal-
ity by means of equivalence classes of nominals and prefixes, that are created,
enlarged and merged while the tableau construction proceeds. Many redundan-
cies are avoided by processing only formulae true at the representative of each
class. However, in HTab, the descendants of any nominal are always expanded,
thus consuming time and space. The comparison has also considered another
prover, Spartacus [10].2 Spartacus processes nominal equalities by merging the
content of the corresponding “nodes”, and electing one of them as the represen-
tative of both [9]. Both HTab and Spartacus are much more mature provers than
Herod, handling a richer logic and implementing many important optimisation
strategies. On the contrary, at present, the only simple rule application strat-
egy adopted by Herod, beyond semantic branching, consists of delaying tableau
branching as far as possible. And in fact, HTab and Spartacus behave definitely
much better than Herod when run on the set of hand-tailored collection of modal
formulae presented in [2], as well as on hybrid formulae of a very low modal depth
(personal communication by the maintainer of HTab). The experiments reported
below aimed at testing whether Herod gains any advantage from its treatment
of equalities.

2 In the tests, HTab 1.4.0 and Spartacus 1.0.1 were used, both run with the respective
default options.

Herod and Pilate: Two Tableau Provers for Basic Hybrid Logic 261

The three provers were run on the same sets of random formulae used for the
comparison with Pilate. As can be seen in the tables below, HTab could solve 95%
of the tests in the allowed time (one minute) and space (7% more than Herod),
and Spartacus failed to solve only one test in the allowed one minute time.
Although the number of Herod’s failures is the highest one, surprisingly enough
its median run time is much better than HTab’s and Spartacus’s. Moreover, the
average execution times on all the problems (modal depth 10 to 40) solved by
both Herod and HTab are in favour of Herod. In the average, moreover, the
execution times of Herod and Spartacus are comparable.

modal Number of failures Median times
depth Herod HTab Spartacus Herod HTab Spartacus
10 56 22 1 0.02 0.07 0.07
20 47 12 0 0.02 0.14 0.12
30 44 24 0 0.03 0.20 0.16
50 42 24 0 0.04 0.29 0.21

total 189 82 1 0.03 0.16 0.13

Average times
Herod vs HTab Herod vs Spartacus

modal number of tests Average time number of tests Average time
depth solved by both Herod HTab solved by both Herod Spartacus

10 340/400 0.16 0.12 344/400 0.16 0.06
20 348/400 0.03 0.21 353/400 0.03 0.11
30 347/400 0.03 0.27 356/400 0.04 0.16
50 346/400 0.25 0.31 358/400 0.24 0.20

total 1381/1600 0.12 0.23 1411/1600 0.12 0.13

The efficiency of Herod’s treatment of equalities is apparent when comparing
the three systems on the set of hand-written formulae earlier defined. The interest
of such tests relies on the fact that they are meant not so much to compare the
provers in themselves, but rather their different treatments of nominal equalities.
The provers were run on formulae up to size 600. Herod employed 10 seconds to
solve the problem of maximal size, while the execution times of Spartacus and
HTab were, respectively, of 24 and 28 seconds.

4 Concluding Remarks

The experimental results are encouraging and suggest that, although an impor-
tant refinement and optimisation work still has to be done, Herod’s approach to
nominal equalities is algorithmically interesting. In fact, although Herod is still
at a very early stage of development, the very nature of the treatment of nominal
equalities in H already gives rather good results, thanks to nominal deletion that
allows one to economize on the number of processed nominals. Therefore it seems
worth going on and refine its implementation, both by some routine work that
still can be done, as well as by studying and experimenting more effective rule

262 M. Cialdea Mayer and S. Cerrito

application strategies and the implementation of basic optimisation techniques.
Moreover, Herod has to be extended to handle different accessibility relations
and the global and converse modalities [6].

Acknowledgements. The very first versions of Herod and Pilate were devel-
oped as a bachelor project at “Università di Roma Tre” by Emanuele Benassi,
Fabio Giammarinaro and Chiara Varani.

References

1. Areces, C., Heguiabehere, J.: hGen: A random CNF formula generator for hybrid
languages. In: Methods for Modalities 3 (M4M-3), Nancy, France (2003)

2. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propo-
sitional modal logics K, KT, S4. Journal of Automated Reasoning 24(3), 297–317
(2000)

3. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and
Computation 17(3), 517–554 (2007)

4. Cerrito, S., Cialdea Mayer, M.: An efficient approach to nominal equalities in hybrid
logic tableaux. Journal of Applied Non-classical Logics (to appear)

5. Cerrito, S., Cialdea Mayer, M.: Terminating tableaux for HL(@) without loop-
checking. Technical Report IBISC-RR-2007-07, Ibisc Lab., Université d’Evry Val
d’Essonne (2007),
http://www.ibisc.univ-evry.fr/Vie/TR/2007/IBISC-RR2007-07.pdf

6. Cerrito, S., Cialdea Mayer, M.: Tableaux with substitution for hybrid logic with the
global and converse modalities. Technical Report RT-DIA-155-2009, Dipartimento
di Informatica e Automazione, Università di Roma Tre (2009)

7. Cialdea Mayer, M., Cerrito, S., Benassi, E., Giammarinaro, F., Varani, C.: Two
tableau provers for basic hybrid logic. Technical Report RT-DIA-145-2009, Dipar-
timento di Informatica e Automazione, Università di Roma Tre (2009)

8. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the Eleventh
European Conference on Artificial Intelligence, ECAI’94, pp. 105–109 (1994)

9. Götzmann, D.: Spartacus: A tableau prover for hybrid logic. Master’s thesis, Saar-
land University (2009)

10. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A tableau prover for hy-
brid logic. In: M4M6. Computer Science Research Reports, vol. 128, pp. 201–212.
Roskilde University (2009)

11. Hoffmann, G., Areces, C.: HTab: A terminating tableaux system for hybrid logic.
Electronic Notes in Theoretical Computer Science, vol. 231, pp. 3–19 (2007); Pro-
ceedings of the 5th Workshop on Methods for Modalities, M4M-5 (2007)

12. Leroy, X.: The Objective Caml system, release 3.11. Documentation and user’s
manual (2008), http://caml.inria.fr/

13. Herod web page (2009), http://cialdea.dia.uniroma3.it/herod/

http://www.ibisc.univ-evry.fr/Vie/TR/2007/IBISC-RR2007-07.pdf
http://caml.inria.fr/
http://cialdea.dia.uniroma3.it/herod/

Automated Synthesis of Induction Axioms for
Programs with Second-Order Recursion

Markus Aderhold

Technische Universität Darmstadt, Germany
aderhold@informatik.tu-darmstadt.de

Abstract. In order to support the verification of programs, verification
tools such as ACL2 or Isabelle try to extract suitable induction axioms
from the definitions of terminating, recursively defined procedures. How-
ever, these extraction techniques have difficulties with procedures that
are defined by second-order recursion: There a first-order procedure f
passes itself as an argument to a second-order procedure like map, every ,
foldl , etc., which leads to indirect recursive calls. For instance, second-
order recursion is commonly used in algorithms on data structures such
as terms (variadic trees). We present a method to automatically extract
induction axioms from such procedures. Furthermore, we describe how
the induction axioms can be optimized (i. e., generalized and simplified).
An implementation of our methods demonstrates that the approach fa-
cilitates straightforward inductive proofs in a verification tool.

1 Introduction

For the verification of programs one usually needs to show that a program
behaves as expected for all possible inputs. Therefore formal specifications of ex-
pected properties often contain universal quantifications. In order to prove a uni-
versal formula ∀x : τ. ψ[x], many theorem provers employ explicit induction
[4,5,7,10,11,16]. Given a well-founded relation � on the domain τ that the quan-
tification ranges over (i. e., a relation without infinite chains q0 � q1 � q2 � . . .),
the general schema of well-founded induction permits the inference

∀x : τ.
(
∀x′ : τ. x � x′ → ψ[x′]

)
→ ψ[x]

∀x : τ. ψ[x]
. (1)

For a concrete well-founded relation �, we call (1) an induction axiom.1

From the infinitely many well-founded relations � that exist for each non-
trivial data type τ , in general only few relations are suitable to prove ∀x : τ. ψ[x]
for a given formula ψ. Thus finding an appropriate well-founded relation � for
a formula ψ is an essential challenge in program verification.

One particularly successful approach to finding a suitable induction axiom for
a formula ψ is recursion analysis, which was pioneered by Boyer and Moore [5].
1 The term “axiom” emphasizes that well-foundedness of � need not necessarily be

proved within the formal system, but may be assumed when applying (1).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 263–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

264 M. Aderhold

Variants have been developed that are used in current theorem provers, see
[4,9,10,13] for instance. The idea is to exploit the strong relationship between
recursion and induction by uniformly extracting well-founded relations from ter-
minating, recursively defined procedures occurring in formula ψ.

In this paper we describe a method for recursion analysis of procedures with
second-order recursion. A procedure f is defined by second-order recursion if f
calls a second-order2 procedure g using f in a function argument for g, e. g.,
g(f, . . .) [8,12]. Typical examples of second-order recursion arise in algorithms
on variadic trees such as terms; e. g., applying a substitution to a term, counting
the variables in a term, computing the size of a term (cf. Figs. 1 and 2). The
following examples illustrate how recursion analysis works and why second-order
recursion is a challenge for current theorem provers.

Example 1. Fig. 1(a) shows an example program that defines data types bool ,
N, and list [@A] (where @A is a type variable) by enumerating the respective
data constructors true, false , 0, succ, ø, and “::”. Each argument position of
a data constructor is assigned a selector function; e. g., selector pred denotes
the predecessor function. Procedure sum computes the sum of all numbers in a
list k. An induction axiom for proofs about sum can be directly read off from
the recursive definition:

∀k : list [N]. k = ø→ ψ[k] ∀k : list [N]. k =/ ø ∧ ψ[tl(k)]→ ψ[k]
∀k : list [N]. ψ[k]

(2)

The base case of the recursion becomes a base case of the induction. The recursive
call sum(tl(k)) gives rise to the induction hypothesis ψ[tl(k)] in the step case.♦

Example 2. In Fig. 1(b), procedure map is a second-order procedure that gets a
first-order function f as argument. Procedure varcount uses second-order recur-
sion to count the number of variables in a term t, modeled by data type term.
(Expressions of the form ?cons(t) check if t denotes a value of the form cons(. . .).)
While it is easy to see that ?var (t) is a base case of the recursion, the arguments
of the recursive calls of varcount are not obvious from the source code. However,
this information about the indirect recursion via map is necessary to synthesize
an induction axiom for varcount . ♦

Isabelle builds on the concept of so-called congruence rules that tell the system
which function calls need to be evaluated [12,8]. For example, a procedure call
map(f, k) requires evaluation of f(z) for all z ∈ k. From this knowledge one can
infer that varcount is recursively called on all terms z ∈ args(t). A drawback
of congruence rules is that the user needs to state and prove the corresponding
congruence theorems. Moreover, for a fixed set of congruence rules—possibly
supplied by libraries—the resulting induction axioms may easily become subop-
timal (e. g., due to weak induction hypotheses) [8].

2 As in [3], we define the order o(τ) of base types τ like N or list [N] as 0; the order of
a functional type τ1 × . . . × τn → τ is 1 + maxi o(τi) for a base type τ .

Automated Synthesis of Induction Axioms 265

(a) structure bool <= true , false

structure N <= 0, succ(pred : N)
structure list [@A] <= ø, ::(hd : @A, tl : list [@A])
procedure sum(k : list [N]) : N <=
if k = ø then 0 else hd(k) + sum(tl(k))

(b) structure variable.symbol <= variable(varID : N)
structure function.symbol <= func(funcID : N)
structure term <=

var(vsym : variable.symbol),
apply(fsym : function.symbol , args : list [term])

procedure map(f : @A → @B , k : list [@A]) : list [@B] <=
if k = ø then ø else f(hd(k)) ::map(f, tl(k))
procedure varcount(t : term) : N <=
if ?var(t) then 1 else sum(map(varcount , args(t)))

Fig. 1. A functional program with (a) the first-order procedure sum and (b) the second-
order procedure map and second-order recursion in procedure varcount

The contributions of this paper

(1) allow the automated extraction of induction axioms from procedures that
are defined by second-order recursion (e. g., procedure varcount) and

(2) facilitate the optimization (i. e., generalization and simplification) of induc-
tion axioms, which permits more straightforward inductive proofs.

The optimization also helps to reveal the essence of the recursion structure of
a procedure. This supports the heuristic selection of an induction axiom for a
formula ψ (as ψ usually involves more than just one procedure). However, such
a heuristic selection is beyond the scope of this paper.

The input for our methods is the source code of the procedures and their
termination proofs. In particular, our approach does not require additional user
input such as congruence theorems. It has been implemented and integrated into
�eriFun, a semi-automated verifier for functional programs [16].

In Sect. 2 we give a brief overview over the programming language and some
terminology that we use afterwards. Sect. 3 describes the synthesis of so-called
quantification procedures that we use to formulate induction hypotheses. The
synthesis of induction axioms is presented in Sect. 4. We describe techniques for
their optimization in Sect. 5 and compare our methods with related techniques
in Sect. 6. We conclude with experimental results in Sect. 7.

2 Programming Language and Terminology

We briefly summarize the relevant features of �eriFun’s input language L [1,15]
that roughly corresponds to the second-order fragment of ML or Haskell with
strict evaluation; additional details can be found in [1,15].

266 M. Aderhold

L offers definition principles for freely generated polymorphic data types,
for first-order and second-order procedures that operate on these data types,
and for statements about the data types and procedures. A base type is a type
variable @A or an expression of the form str [τ1, . . . , τk], where τ1, . . . , τk are base
types and str is a k-ary type constructor (k ≥ 0). A type is a base type or an
expression of the form τ1× . . .× τk → τ for types τ1, . . . , τk, τ . Type constructors
are defined by expressions of the following form:

structure str [@A1, . . . ,@Ak] <= . . . , cons(sel1 : τ1, . . . , seln : τn), . . .

The τj are base types, and str may only occur as str [@A1, . . . ,@Ak] in the τj .
Each cons is called a data constructor and the sel j are called selectors.

Let Σ(P) denote the signature of all function symbols defined by an L-
program P . As usual, T (Σ(P),V) denotes the set of all terms over Σ(P) and
a set V of variables. We write T (Σ(P)) instead of T (Σ(P), ∅) for the set of all
ground terms over Σ(P). Σ(P)c ⊂ Σ(P) contains all data constructors of P . A
literal is an if -free Boolean term or the negation if b then false else true of such
a term. CL(Σ(P),V) is the set of clauses over Σ(P), i. e., the set of all finite sets
of literals. For a term t ∈ T (Σ(P),V), we let Π(t) ⊂ �∗ denote the set of all
positions of t, i. e., Π(t) comprises the positions of all subterms of t. We write
t|π for the subterm of t at position π ∈ Π(t).

For a ground type3 τ , V(P)τ denotes the “values” of type τ : If τ is a ground
base type, V(P)τ := T (Σ(P)c)τ , and for each ground type τ = τ1 × . . .× τk →
τk+1, V(P)τ contains all closed (i. e., no free variables) λ-expressions of type τ ;
e. g., λt : term. varcount(t) ∈ V(P)term→N.

The call-by-value interpreter evalP : T (Σ(P)) �→ V(P) defines the oper-
ational semantics of L [1] by mapping ground terms t ∈ T (Σ(P))τ to val-
ues evalP (t) ∈ V(P)τ . It is a partial function, because some procedures in
program P may not terminate. A universally quantified formula of the form
∀x1 : τ1, . . . , xn : τn. b, where b ∈ T (Σ(P),V)bool , is true iff all procedures in P
terminate and evalP ′(b[q1, . . . , qn]) = true for each terminating program P ′ ⊇ P
and all q1, . . . , qn ∈ V(P ′).4

We implicitly assume procedure bodies to be in η-long form; e. g., map(f, tl(k))
abbreviates map(λz : @A. f(z), tl(k)) in Fig. 1, because f =η λz : @A. f(z). The
following definition formalizes the notion “f(q) requires the evaluation of g(q′)”:

Definition 1. For a procedure or λ-expression f with body Bf and parameters
x1, . . . , xn, a procedure or λ-expression g, and q1, . . . , qn, q′1, . . . , q

′
m ∈ V(P),

we write f(q1, . . . , qn) g(q′1, . . . , q′m) iff Bf contains a subterm h(t′1, . . . , t′m)
under some call context 5 C such that for σ := {x1/q1, . . . , xn/qn}, σ(h) =η g,
evalP (σ(c)) = true for all c ∈ C, and q′j = evalP (σ(t′j)) for all j = 1, . . . ,m. We
write f(q1, . . . , qn) g g(q′1, . . . , q′m) iff f(q1, . . . , qn) h1(. . .) . . . hk(. . .)
g(q′1, . . . , q

′
m) such that hi �=η g for all i = 1, . . . , k.

For example, map(varcount , t1 :: t2 :: t3 :: ø) varcount(t1).
3 A ground (base) type is a (base) type without type variables; e. g., list [N].
4 Program P ′ may define additional data types and procedures to instantiate the xi.
5 C ∈ CL(Σ(P),V) consists of the conditions in Bf that lead to the call h(. . .).

Automated Synthesis of Induction Axioms 267

procedure every(f : @A → bool , k : list [@A]) : bool <=
if k = ø then true else if f(hd(k)) then every(f, tl(k)) else false

procedure foldl(f : @A × @B → @A, x : @A, k : list [@B]) : @A <=
if k = ø then x else foldl(f, f(x, hd(k)), tl(k))
procedure groundterm (t : term) : bool <=
if ?var(t) then false else every(groundterm , args(t))
procedure termsize(t : term) : N <=
if ?var(t) then 1 else foldl(λn : N, s : term . n + termsize(s), 1, args(t))

Fig. 2. Second-order recursion in procedures groundterm and termsize

3 Quantification Procedures

Quantification procedures are system-generated procedures that iterate over cer-
tain values z and check if a given predicate p is satisfied for all these values z.

Quantification Procedures for Data Types. Consider the usual structural induc-
tion axiom for terms: In the base case, one proves that ψ[t] holds if t is an
arbitrary variable. In the step case, t is of the form f(t1, . . . , tn) and one proves
ψ[t] under the induction hypothesis that “ψ[ti] holds for all i = 1, . . . , n”. In
general a program does not contain procedures to access the i-th element of list
args(t) = t1 :: . . . :: tn :: ø or to quantify over all elements of list args(t). Hence
we assume that for each data type str [@A] a quantification procedure

procedure forall .str(p : @A→ bool , x : str [@A]) : bool (3)

is synthesized that returns true iff p(z) holds for all items z : @A in x. PVS and
�eriFun synthesize such quantification procedures automatically [11,1].

Example 3. For data type list [@A], Fig. 3(a) shows quantification procedure
forall .list that checks if some predicate p on @A is satisfied for all elements z :@A
of a list k. Thus the axiom for structural induction on terms can be expressed
(and automatically extracted by PVS and �eriFun) as

∀t : term. ?var (t)→ ψ[t]
∀t : term. ?apply(t) ∧ forall .list(λs : term. ψ[s], args(t))→ ψ[t]

∀t : term. ψ[t]

where the induction hypothesis forall .list(. . .) states that ψ[s] may be assumed
for all terms s in list args(t). ♦

Quantification Procedures for Second-Order Procedures. As Example 2 shows,
the recursion analysis for procedure varcount needs to find out which arguments z
the second-order procedure map calls its first-order parameter f := varcount
with. The induction hypothesis in the induction axiom for varcount will then
quantify over all these arguments z to ensure ψ[z].

268 M. Aderhold

(a) procedure forall .list(p : @A → bool , k : list [@A]) : bool <=
if k = ø then true else if p(hd(k)) then forall .list(p, tl(k)) else false

(b) procedure forall .map(p : @A → bool , f : @A → @B , k : list [@A]) : bool <=
if k = ø then true else if p(hd(k)) then forall .map(p, f, tl(k)) else false

procedure forall .every(p, f : @A → bool , k : list [@A]) : bool <=
if k = ø then true

else if p(hd(k)) then if f(hd(k)) then forall .every(p, f, tl(k)) else true
else false

procedure forall .foldl(p : @A× @B → bool , f : @A × @B → @A,
x : @A, k : list [@B]) : bool <=

if k = ø then true
else if p(x,hd(k)) then forall .foldl(p, f, f(x, hd(k)), tl(k)) else false

Fig. 3. Automatically synthesized quantification procedures

For that purpose we introduce a new concept, namely quantification proce-
dures forall .proc for second-order procedures proc. For the sake of readability,
we define forall .proc for second-order procedures proc with one first-order pa-
rameter f and an (optional) second formal parameter x. This definition can be
generalized to more parameters in a straightforward way [1].

Definition 2. For each terminating second-order procedure

procedure proc(f : τ1 × . . .× τm → τf , x : τx) : τproc <= Bproc

the quantification procedure forall .proc for proc is defined by

procedure forall .proc(p : τ1 × . . .× τm → bool ,
f : τ1 × . . .× τm → τf , x : τx) : bool <= ALLf (Bproc)

where

ALLf (v) := true
ALLf (f(t1, . . . , tm)) := p(t1, . . . , tm) ∧ ALLf (t1) ∧ . . . ∧ ALLf (tm)
ALLf (g(t1, . . . , tn)) := ALLf (t1) ∧ . . . ∧ ALLf (tn)
ALLf (h(λy. t, t′)) := ALLf (t′) ∧ forall .h(λy.ALLf (t), λy. t, t′)
ALLf (if t1 then t2 else t3) := ALLf (t1) ∧ if t1 then ALLf (t2) else ALLf (t3)

for any variable v, any first-order function g �= if , g �= f , and any second-order
procedure h (including proc). We write y as an abbreviation of y1, . . . , yk, and
A ∧B abbreviates “if A then B else false”.

Quantification procedure forall .proc checks if p(z1, . . . , zm) holds for all tuples
(z1, . . . , zm) that occur as arguments of f -calls:

Example 4. Procedure forall .map shown in Fig. 3 checks if p(z) is satisfied for
all elements z of list k, as procedure map applies f to all elements z of k. ♦

Automated Synthesis of Induction Axioms 269

f f ¬f

Fig. 4. Procedure every examines only the black elements of this list

Example 5. Procedure every in Fig. 2 checks if f(z) is satisfied for all elements z
of list k. As soon as an element z is encountered with ¬ f(z), procedure every
stops with result false . This is illustrated in Fig. 4, where every evaluates f(z)
only for the black elements of the list. Consequently, procedure forall .every in
Fig. 3 checks if p(z) is satisfied for the first n elements of k, where n ∈ {1, . . . , |k|}
is the smallest index such that f is not satisfied for the n-th element of k. (If
there is no element z with ¬ f(z), then n := |k|, the length of k.) ♦

Example 6. Procedure forall .foldl checks if p(a, b) is satisfied for all pairs (a, b)
that f is applied to by foldl . ♦

The following lemma asserts that the quantification procedures according to
Definition 2 compute the expected result. It demands that p and f be fresh
functions, which means that these functions do not occur in the body of proc or
in the bodies of auxiliary procedures for proc. (Alternatively, one can imagine
p and f as uniquely labeled to distinguish these function calls from hard-coded
function calls in the procedure bodies.)

Lemma 1. For all x ∈ V(P) and all fresh functions p ∈ V(P) and f ∈ V(P):

(1) evalP (forall .proc(p, f, x)) ∈ {true, false}
(2) evalP (forall .proc(p, f, x)) = true ⇐⇒ evalP (p(q1, . . . , qm)) = true for all

q1, . . . , qm ∈ V(P) with proc(f, x) f f(q1, . . . , qm)

Proof. The proof is given in [1] (Sect. 3.2.2). �!

4 Synthesis of Induction Axioms

In order to synthesize an induction axiom for a procedure

procedure p(x : τ) : τ ′ <= Bp

we analyze the recursive calls in the body Bp of procedure p. In case of second-
order recursion, the indirect recursive calls are nested in λ-expressions, so in
general we need to analyze a subterm t of Bp.

A result term of t is a maximal subterm of t that occurs outside of if -conditions
and λ-expressions and does not contain if -expressions. We define Πbase

p (t) ⊆ Π(t)
as the set of the positions of the base cases of p in t, i. e., the positions of those
result terms that do not contain calls of p. Πrec1

p (t) ⊆ Π(t) denotes the set of
the positions of direct recursive calls, i. e., calls p(. . .) outside of λ-expressions.
Finally, Πrec2

p (t) ⊆ Π(t) denotes the set of positions of second-order recursive

270 M. Aderhold

calls, i. e., calls p(. . .) inside a λ-expression that is passed to a second-order
procedure. For some π ∈ Πp(t) := Πbase

p (t) ∪ Πrec1
p (t) ∪ Πrec2

p (t), we write Cπ
t for

the call context of the subterm at position π in t (i. e., the set of conditions that
lead to π).

In the base and step cases of an inductive proof of ∀x : τ. ψ[x], ψ[x] needs to be
shown under certain premises. Given a subterm t of Bp and a position π ∈ Πp(t),
the premise Premπ

p (ψ, t) is constructed as follows:

– If π ∈ Πbase
p (t), we get a base case of the induction: Premπ

p (ψ, t) :=
∧

Cπ
t .

– If π ∈ Πrec1
p (t), we have a recursive call t|π = p(t′) for some t′, which gives

rise to an induction hypothesis: Premπ
p (ψ, t) :=

∧
Cπ

t ∧ ψ[t′].
– If π ∈ Πrec2

p (t), then there is a minimal prefix π′ of π such that t|π′ =
h(λy. t′′, t′) for some second-order procedure h, and t′′ contains a recursive
call at position π′′ ∈ Πp(t′′) that is a suffix of π. Thus we use the quantifi-
cation procedure forall .h in the induction hypothesis to assert that ψ[. . .]
holds for the arguments of the respective p-call within λy. t′′:
Premπ

p (ψ, t) :=
∧

Cπ′

t ∧ forall .h
(
λy.Premπ′′

p (ψ, t′′), λy. t′′, t′
)

These premises are used in the induction axiom for procedure p as follows:

Definition 3. For a terminating procedure procedure p(x : τ) : τ ′ <= Bp, the
induction axiom for p is given by{

∀x : τ. Premπ
p (ψ,Bp)→ ψ[x]

∣∣ π ∈ Πp(Bp)
}

∀x : τ. ψ[x]
.

Example 7. The base case of procedure varcount (cf. Fig. 1) is given by result
term “1” under call context {?var(t)}. After η-expansion, second-order recursion
occurs in map(λs : term. varcount(s), args(t)). Thus the induction axiom is:

∀t : term. ?var (t)→ ψ[t]
∀t : term. ¬ ?var (t) ∧ forall .map(λs : term. ψ[s], varcount , args(t))→ ψ[t]

∀t : term. ψ[t]

In the induction hypothesis, procedure forall .map asserts λs : term. ψ[s] for all
calls of λs : term. varcount(s) by map. ♦

Example 8. In the induction axiom for groundterm (cf. Fig. 2), the step case is
∀t : term. ¬ ?var(t) ∧ forall .every(λs : term. ψ[s], groundterm, args(t))→ ψ[t].♦

Definition 3 can easily be generalized to accommodate procedures with more
parameters. We illustrate this with two examples:

Example 9. Procedure termsize (cf. Fig. 2) is defined by second-order recursion
via foldl , which receives a third argument that is just passed on to forall .foldl :
The induction hypothesis

forall .foldl
(
λn : N, s : term. ψ[s], λn : N, s : term. n + termsize(s), 1, args(t)

)
asserts ψ[s] for all elements of args(t). ♦

Automated Synthesis of Induction Axioms 271

structure predefinedSymbol <= T ,CONS ,CAR,CDR,LIST ,QUOTE , IF , . . .

structure sexpr <=
nil , lispsymbol(name : predefinedSymbol), cons(car : sexpr , cdr : sexpr), . . .

structure maybe[@A] <= nothing , just(what : @A)
procedure mapsx(f : sexpr → maybe[sexpr], x : sexpr) : maybe [sexpr] <= . . .
procedure eval(expr , va, fa : sexpr , n : N) : maybe[sexpr] <=

. . .mapsx (λarg : sexpr . eval(arg , va, fa, n), cdr(expr)) . . .

Fig. 5. Excerpt from a LISP Interpreter eval

Example 10. In [6], Boyer and Moore describe a LISP Interpreter eval that eval-
uates LISP s-expressions (cf. Fig. 5). Since the evaluation of a LISP function call
(F T1 ... Tn) requires the evaluation of the list (T1 ... Tn) of arguments,
they introduce an auxiliary procedure

procedure evlist(expr , va, fa : sexpr , n : N) : maybe[sexpr]

that considers expr as a list of s-expressions and successively evaluates these
s-expressions by calling eval on each of them. Thus eval and evlist are mutually
recursive. Due to lacking support of mutual recursion, Boyer and Moore merge
both procedures into a single procedure ev that is parameterized by a flag to
indicate if a single s-expression or a list of s-expressions is to be evaluated.

Second-order recursion provides a much more elegant way to implement the
interpreter: Procedure mapsx considers parameter x as a list, applies f to car (x),
car(cdr (x)), car(cdr (cdr(x))), . . . , and returns an s-expression that represents
the list of the result values. If an application of f yields nothing , the iteration
stops and mapsx returns nothing . Procedure eval then uses second-order recur-
sion via mapsx to evaluate a “list” cdr(expr) of s-expressions.6

According to Definition 2 our approach synthesizes a quantification proce-
dure forall .mapsx (p : sexpr → bool , f : sexpr → maybe[sexpr], x : sexpr) : bool
that checks p(z) for all calls f(z) by mapsx . In one of the step cases of the in-
duction axiom for eval for a proof of ∀expr , va, fa : sexpr , n : N. ψ[expr , va, fa, n]
the induction hypothesis is

forall .mapsx (λarg : sexpr . ψ[arg , va, fa , n],
λarg : sexpr . eval(arg , va, fa, n), cdr(expr)) . ♦

Theorem 1. The induction axiom from Definition 3 for a terminating proce-
dure p is an instance of well-founded induction.

Proof (sketch). The relation � on τ , defined by x � x′ iff p(x) p p(x′), is well-
founded, because p terminates. This relation can be syntactically represented by
6 Parameter va models the variable assignment, and fa associates function symbols

with their definition. If the resource limit n for the evaluation of expr does not suffice,
eval returns nothing as in [6]. The complete source code is several pages long [1].

272 M. Aderhold

a formula that may use the quantification procedures from Sect. 3. This formula
can be used to instantiate the schema (1) of well-founded induction to obtain
the induction axiom from Definition 3, see [1] (Sect. 5.2.2 and 5.3). �!

Hence Definition 3 describes a method to extract induction axioms from the
source code of procedures with second-order recursion. These induction axioms
precisely mirror the recursive structure of the respective procedure.

5 Optimization of Induction Axioms

Induction axioms from terminating procedures often are overly specific and thus
suboptimal [5,8,9,13,14]. This also holds for many induction axioms that are
synthesized according to Definition 3. In the following, we describe optimization
techniques for the case of second-order recursion.

Similarly to many existing optimization techniques for procedures without
second-order recursion, our approach examines the termination proof of the re-
spective procedure to find optimizations: Intuitively, “components” of induction
axioms (e. g., subformulas or parameters) that are irrelevant for the termination
proof are also irrelevant for the induction axiom, because well-foundedness of
the underlying relation obviously does not depend on these components.

5.1 Optimization of Quantification Procedures

Quantification procedures as in Definition 2 play a pivotal role in induction ax-
ioms for procedures with second-order recursion. Our approach optimizes quan-
tification procedures along the following three dimensions (in this order):

(1) Reduce the arity of the additional predicate p.
(2) Extend the range of the quantification.
(3) Reduce the number of parameters of the quantification procedure.

Optimizations along dimensions (1) and (3) obviously increase the readabil-
ity of induction hypotheses by making them syntactically simpler. In addition,
they facilitate a final polishing of induction axioms that simplifies their use in
proofs. Optimizations along dimension (2) strengthen the induction hypotheses
by generalizing them, so ψ[z] may be assumed for further values z.

In the induction axiom for procedure groundterm, for example, the induction
hypothesis forall .every(λs : term. ψ[s], groundterm, args(t)) only ensures that ψ
holds on a prefix of list args(t), because every in general only examines a prefix
of list k (cf. Example 5). This is suboptimal, because from structural induction
we know that it would be safe to assume that ψ holds for all elements of args(t).

In a typical termination proof for procedure groundterm, one tries to
show that the parameter of groundterm gets structurally smaller in recursive
calls [2,8,11]. Clearly, args(t) is structurally smaller than t, because the leading
apply -constructor is missing. Procedure every applies f := groundterm only to
values s ∈ {hd(k), hd(tl(k)), hd(tl(tl(k))), . . .} for k := args(t). Since each such

Automated Synthesis of Induction Axioms 273

value s is structurally not larger than args(t), one concludes that each argument s
of a recursive call of groundterm is structurally smaller than t, which proves
termination of groundterm.

Apparently the proof that procedure every applies f only to values z that are
structurally not larger than k does not use the fact that every stops as soon as
it encounters an element z with ¬ f(z). Formally, condition f(hd(k)) from the
body of every is not used in the proof. Thus groundterm would still terminate
if every continued with the examination of list elements in case ¬ f(hd(k)).
Then the case analysis over f(hd(k)) in the body of forall .every would become
unnecessary, and the induction hypothesis for groundterm would assert ψ for all
elements of args(t) as desired.

Consequently, we optimize quantification procedures as follows:

Definition 4. Let proc(f : τ1 × . . .× τm → τf , x : τx) : τproc be a procedure and
i ∈ {1, . . . ,m}. Let Prf be a proof that proc calls f only with values q1, . . . , qm

such that qi is structurally not larger than x.7 We say that proc is call-bounded
wrt. the i-th argument of f and define the synthesis of the optimized quantifica-
tion procedure forallopti .proc for proc as follows:

(1) Procedure forallopti .proc(p : τi → bool , f : τ1 × . . .× τm → τf , x : τx) : bool is
derived from forall .proc by replacing all subterms p(t1, . . . , tm) in the proce-
dure body with p(ti).

(2) For each case analysis over some term c in the body of proc such that
c is not used in Prf, the corresponding case analysis over c in the body
of forallopti .proc is replaced with the conjunction of its branches.

(3) Each unused parameter of forallopti .proc is removed.

Call-bounded procedures can be identified by the approach in [2], for example.
Unused conditions c of case analyses can be read off from proofs Prf.

Example 11. Procedure foldl is call-bounded wrt. the 2nd argument of f , so
step (1) reduces the arity of p to p :@B → bool . In step (3), parameters x and f
are removed from forallopt2 .foldl (in this order). Thus

procedure forallopt2 .foldl (p : @B → bool , k : list [@B]) : bool <=
if k = ø then true else if p(hd(k)) then forall opt2 .foldl (p, tl(k)) else false

checks p(z) for all elements z of k, and forallopt2 .foldl (p, k)↔ forall .list(p, k). ♦

Example 12. For forall .every , steps (2) and (3) apply: A proof that every is call-
bounded does not use condition c := f(hd(k)) (i. e., the fact that every stops
the iteration over list k when ¬ f(hd(k)) holds). Thus the case analysis over
f(hd(k)) in the body of forall .every can be removed, and parameter f is no
longer used. Hence forallopt .every in addition checks p for the gray elements in
Fig. 4, and forallopt .every(p, k)↔ forall .list(p, k). ♦

Example 13. For procedure forall .map, only step (3) applies, which removes the
unused parameter f , so forallopt .map(p, k)↔ forall .list(p, k). ♦
7 The structural size of values can be determined by a size measure as in [2].

274 M. Aderhold

cdr

f�
car

f� f�

Fig. 6. Procedure mapsx applies f to the black entries of this s-expression

Example 14. Fig. 6 shows an exemplary s-expression x. When applying mapsx
to x, function f is potentially applied to the black and the gray nodes (cf.
Example 10). A node z is labeled with “f�” if ?just(f(z)), whereas “f�” means
f(z) =nothing. As “f�” holds for the third black node, procedure mapsx stops
here and does not apply f to the gray nodes. Since a proof that mapsx is call-
bounded (i. e., that f is only applied to s-expressions z that are structurally not
larger than the whole s-expression x) does not use the fact that the iteration
may stop early, the optimized quantification procedure

procedure forallopt .mapsx (p : sexpr → bool , x : sexpr) : bool

checks p(z) for both the black and the gray nodes. ♦

5.2 Optimized Induction Hypotheses For Second-Order Recursion

We optimize induction axioms for procedures with second-order recursion by
using the optimized quantification procedures if possible:

Definition 5. Let p be terminating procedure. If the termination proof for p ex-
ploits that some second-order procedure h is call-bounded, the optimized induc-
tion axiom for p is obtained by replacing forall .h with forallopt .h in the induction
axiom from Definition 3. If forallopt .h is equivalent 8 to forall .str for some type
constructor str, then forall .str is used instead of forall opt .h.

Example 15. The optimized induction axioms for varcount , groundterm, and
termsize are equivalent to the structural induction axiom from Example 3:

∀t : term. ?var (t)→ ψ[t]
∀t : term. ¬ ?var (t) ∧ forall .list(λs : term. ψ[s], args(t))→ ψ[t]

∀t : term. ψ[t]

This induction axiom is significantly stronger than the non-optimized induction
axiom for groundterm: In the optimized axiom ψ[s] may be assumed for all
terms s in list args(t) as induction hypothesis. In contrast, in the non-optimized
axiom ψ[s] may only be assumed for the first n terms in args(t), where n is the
index of the first term s in args(t) with ¬ groundterm(s). ♦

8 Syntactical identity up to a renaming of formal parameters is a sufficient and prac-
tically useful criterion for equivalence of quantification procedures.

Automated Synthesis of Induction Axioms 275

Example 16. For the LISP interpreter of Example 10 and some s-expression
cdr(expr) as in Fig. 6, the induction hypothesis asserts ψ[arg, . . .] only for black
entries before the optimization (where f corresponds to the LISP interpreter
eval). After the optimization, forall opt .mapsx (λarg : sexpr . ψ[arg , n], cdr (expr))
asserts ψ[arg , . . .] also for the gray nodes (i. e., for all elements of the “list”). ♦
As the examples demonstrate, the optimization leads to intuitive induction ax-
ioms. The induction hypotheses correspond to the recursive calls of the respective
procedure without being restricted by unnecessary preconditions.

Theorem 2. The optimized induction axiom from Definition 5 for a terminat-
ing procedure p is an instance of well-founded induction.

Proof (sketch). The optimization drops case analyses (in quantification proce-
dures forall .h) on conditions that are irrelevant for the termination proof of p.
Thus there is a modified copy p′ of p where these case analyses are dropped in h
(cf. Sect. 5.2.3 in [1]). Procedure p′ terminates and the non-optimized induction
axiom for p′ is equivalent to the optimized induction axiom for p. �!

6 Related Work

In Isabelle [8,10,12] induction theorems are synthesized (and proved within Is-
abelle’s higher-order logic) for terminating procedures and data types. Since
higher-order logic is not a programming language and thus lacks an operational
semantics, Isabelle cannot determine which function calls are required to evalu-
ate a given term. Therefore, induction axioms for procedures with second-order
recursion cannot be synthesized from just the source code. To solve this problem,
the user can specify congruence rules by proving congruence theorems such as
k = k′ ∧

(
∀z :@A. z ∈ k → f(z) = f ′(z)

)
→ map(f, k) =map(f ′, k′), which tells

Isabelle that for map(f, k) the values f(z) for at most all z ∈ k are relevant. The
resulting induction theorem for procedure varcount is equivalent to our induc-
tion axiom from Example 15. Syntactically, the quantification over the elements s
in args(t) is expressed by ∀s : term. s ∈ args(t) → ψ[s], where the notion “∈”
of list membership stems from the user’s congruence rule. Thus the induction
theorems directly depend on the congruence rules, and the only way to optimize
induction theorems is to (manually) modify the congruence rules. However, this
becomes impossible when two function calls require different sets of congru-
ence rules (e. g., see the example with procedure testany in [8]), so “in general,
there is no ‘best’ or ‘complete’ set of congruence rules” [8]. Apart from that,
the induction theorem for data type term is different from the usual structural
induction and targets the simultaneous proof of two formulas ∀t : term. φ[t] and
∀k : list [term]. ψ[k] based on the mutual recursion of types term and list [term].

In contrast, PVS [11] synthesizes quantification procedures for parameterized
data types such as list [@A] and uses these procedures for structural induction
axioms (e. g., for data type term). While PVS uses constructor induction, our
induction axioms use destructor induction. PVS does not synthesize induction
axioms for (terminating) procedures and hence does not offer techniques to op-
timize induction axioms.

276 M. Aderhold

In ACL2 [5,9] induction axioms are synthesized for data types and for ter-
minating procedures. Induction axioms are optimized using various techniques
(e. g., [9]). However, procedures cannot be defined by second-order recursion.

For Coq, Barthe et al. [4] describe a tool that synthesizes induction axioms
for terminating procedures, but second-order recursion is not supported.

Bundy et al. [7] developed a technique to construct induction axioms for the
synthesis of procedures. In their approach, the goal is to find novel induction
axioms that do not correspond to the recursive structure of existing procedures.
Second-order recursion is not considered in this approach.

7 Conclusion

Our approach to automatically extract induction axioms from terminating pro-
cedures consists of two main steps: Firstly, it synthesizes induction axioms that
precisely mirror the recursive structure of the procedures. For procedures with
second-order recursion, the indirect recursive calls are captured using so-called
quantification procedures that are synthesized automatically for the respective
second-order procedures. Secondly, induction axioms are optimized automati-
cally (i. e., generalized and simplified) by inspecting the termination proofs of
the respective procedures. For that purpose our approach in particular optimizes
the quantification procedures to strengthen the induction hypotheses.

The vision behind our approach is that a degree of automation can be achieved
for the verification of second-order programs that is comparable to highly au-
tomated verification tools for first-order programs, e. g., ACL2. Practical ex-
periments in �eriFun9 (involving 21 procedures with second-order recursion,
14 main theorems and 28 auxiliary lemmas) showed that our methods in fact
synthesize induction axioms that are neither too specific (as “precise” induction
axioms tend to be) nor too general (as axioms for complete induction would be).
This facilitates intuitive proofs, i. e., proofs that are quite similar to what one
would do using paper and pencil. Hence our approach contributes to achieving
such a high degree of automation.

For example, the optimization of induction axioms considerably simplifies the
proof that varcount(t) = 0 implies groundterm(t). With the optimization, a simple
auxiliary lemma is required: If p(zi) and p(zi) → q(zi) hold for all elements zi

of a list k, then q(zi) holds for all elements zi of k. Without the optimization,
the user needs to discover and prove a much more complicated auxiliary lemma:
Let n be the index of the first element zn of a list k with ¬ q(zn), or n := |k|
if there is no such element in k ; if p(zi) and p(zi) → q(zi) hold for the first n
elements zi of k, then q(zi) holds for all elements zi of k.

We expect that our approach can be transferred to other programming lan-
guages with call-by-value semantics; for ML, this might require to also consider
axioms for constructor-style induction. Our commitment to an evaluation strat-
egy makes it possible to uniformly determine which function calls need to be
evaluated for a given term. In contrast, Isabelle does not commit to an evaluation

9 See http://www.mais.informatik.tu-darmstadt.de/Markus_Aderhold.html

http://www.mais.informatik.tu-darmstadt.de/Markus_Aderhold.html

Automated Synthesis of Induction Axioms 277

strategy; the price for this increased flexibility is that the user needs to formulate
and prove additional theorems that at least approximate an evaluation strategy
for particular functions.

Procedures in continuation passing style provide numerous additional exam-
ples of second-order recursion, because there each procedure has a function pa-
rameter (representing the continuation). However, in certain cases this may in-
volve indirect recursive calls in continuations of direct recursive calls, which we
leave as an area for further research.

Acknowledgment. I am grateful to Nathan Wasser for the implementation of the
approach and to the anonymous referees for constructive feedback.

References

1. Aderhold, M.: Verification of Second-Order Functional Programs. Doctoral disser-
tation, TU Darmstadt (2009)

2. Aderhold, M.: Automated termination analysis for programs with second-order
recursion. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 221–235. Springer, Heidelberg (2010)

3. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Kluwer Academic Publishers, Dordrecht (2002)

4. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recur-
sive functions: A practical tool for the Coq proof assistant. In: Hagiya, M., Wadler,
P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 114–129. Springer, Heidelberg (2006)

5. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, Inc., London
(1979)

6. Boyer, R.S., Moore, J.S.: A mechanical proof of the unsolvability of the halting
problem. Journal of the ACM 31(3), 441–458 (1984)

7. Bundy, A., Dixon, L., Gow, J., Fleuriot, J.: Constructing induction rules for de-
ductive synthesis proofs. In: Proceedings of Constructive Logic for Autom. Softw.
Engineering 2005. ENTCS, vol. 153, pp. 3–21. Elsevier, Amsterdam (2006)

8. Krauss, A.: Automating Recursive Definitions and Termination Proofs in Higher-
Order Logic. Doctoral dissertation, TU München, Germany (2009)

9. Manolios, P., Turon, A.: All-termination(T). In: Kowalewski, S., Philippou, A.
(eds.) TACAS-2009. LNCS, vol. 5505, pp. 398–412. Springer, Heidelberg (2009)

10. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

11. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language
Reference. Computer Science Laboratory, SRI International (November 2001)

12. Slind, K.: Reasoning about Terminating Functional Programs. PhD thesis, TU
München, Germany (1999)

13. Walther, C.: Computing induction axioms. In: Voronkov, A. (ed.) LPAR 1992.
LNCS, vol. 624, pp. 381–392. Springer, Heidelberg (1992)

14. Walther, C.: Mathematical induction. In: Handbook of Logic in Artificial Intelli-
gence and Logic Programming, vol. 2. Oxford University Press, Oxford (1994)

15. Walther, C., Aderhold, M., Schlosser, A.: The L 1.0 Primer. Technical Report
VFR 06/01, TU Darmstadt (2006)

16. Walther, C., Schweitzer, S.: Verification in the classroom. Journal of Automated
Reasoning 32(1), 35–73 (2004)

Focused Inductive Theorem Proving

David Baelde1, Dale Miller2, and Zachary Snow1

1 Digital Technology Center and Dept of CS, University of Minnesota
2 INRIA & LIX, École Polytechnique

Abstract. Focused proof systems provide means for reducing and struc-
turing the non-determinism involved in searching for sequent calculus
proofs. We present a focused proof system for a first-order logic with in-
ductive and co-inductive definitions in which the introduction rules are
partitioned into an asynchronous phase and a synchronous phase. These
focused proofs allow us to naturally see proof search as being organized
around interleaving intervals of computation and more general deduc-
tion. For example, entire Prolog-like computations can be captured us-
ing a single synchronous phase and many model-checking queries can be
captured using an asynchronous phase followed by a synchronous phase.
Leveraging these ideas, we have developed an interactive proof assistant,
called Tac, for this logic. We describe its high-level design and illustrate
how it is capable of automatically proving many theorems using induc-
tion and coinduction. Since the automatic proof procedure is structured
using focused proofs, its behavior is often rather easy to anticipate and
modify. We illustrate the strength of Tac with several examples of proved
theorems, some achieved entirely automatically and others achieved with
user guidance.

1 Introduction

The sequent calculus of Gentzen is a well-studied proof framework used to de-
scribe provability for a number of logics. This framework also seems to be a
natural setting for organizing the search for proofs in a theorem prover. For ex-
ample, a sequent of the form Σ;Γ � B denotes the obligation of showing that
the formula B follows from the assumptions in the (multi)set Γ for every instan-
tiation of the variables in Σ. An attempt to prove a formula, say B0, then gives
rise to attempts to apply inference rules repeatedly to the root sequent ·; · � B0
leaving, at some point, open premises Σ1;Γ1 � B1, . . . , Σn;Γn � Bn. This set
of sequents represents one way to decompose the original proof obligation into
n ≥ 0 subgoals. The frontier of the open proof tree can represent the abstract
state of an idealized theorem prover.

The sequent calculus is, unfortunately, far too non-deterministic to directly
organize a theorem prover. For example, consider the case when there are even
just two hypotheses on which to work. The sequent calculus does not specify
on which to work first, and so one might first work on one, then the other,
alternating back and forth. This creates an explosive number of alternatives

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 278–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Focused Inductive Theorem Proving 279

to explore, many of which are often redundant. Similarly, the structural rules of
weakening and contraction can be applied, in principle, to every formula anytime.

Anyone who has attempted to build a theorem prover based on the sequent
calculus (or related systems such as tableaux) has undoubtedly observed that
there are different ways to give some structure to many of these choices. For
example, some inference rules are invertible and, as a result, choices in the order
of their application do not affect provability. Additionally, sometimes when a
formula is introduced it no longer needs to be maintained: thus the contraction
rule need not be considered for that formula. Finally, sometimes selecting one
formula for introduction can be seen as causing a cascade of other introduction
rules. In recent years, a series of proof theory papers have appeared that present
various focused proof systems for classical and intuitionistic logic. These new
proof systems formalize exactly these kinds of observations and turn them into
elegant and deep normal form theorems.

Focused proof systems require classifying connectives into two polarities,
called synchronous and asynchronous. From a proof-search point of view, asyn-
chronous connectives can be introduced early and in any order, since these con-
nectives generally have invertible inference rules. In contrast, once a synchronous
formula has been chosen for introduction, then all synchronous subformulas must
also be selected immediately for introduction: the synchronous phase ends when
the proof is finished or only asynchronous subformulas are reached. This disci-
pline gives rise to the notion of synthetic connectives aggregating logical connec-
tives of the same polarity, and focused proof systems can be seen as introducing
such synthetic connectives, building their introduction rules from collections of
individual, small, introduction rules. The identification of synthetic connectives
allows us to view proof search in sequent calculus as revolving around big step in-
ference rules and not the usual small step introduction rules of Gentzen. Further-
more, since the proof theory behind focused proof systems for classical and in-
tuitionistic logic contains some ambiguity (for example, conjunctions and atoms
can be considered as being part of an asynchronous or a synchronous phase),
the theorem prover designer has some flexibility in what she wants to have as a
synthetic connective. The formal results about focused proof systems provide a
solid foundation for these engineered, big-step inference rules: they remain sound
and complete with respect to the original small-step proof system.

From the perspective of designing a theorem prover, the above concepts are
invaluable. As we shall see, focusing allows mixing computation and deduction in
natural and transparent ways. For example, it is entirely possible to describe, say,
the concatenation of two lists (in the relational style of Prolog) and then embed
the entire computation of such a relationship within one synthetic connective.
This is in striking contrast with the treatment in most resolution-style theorem
provers where such a computation is emulated by a possibly large number of
small-step resolution rules. Going one step further, a model-checking problem
(e.g., all members of one finite set are members of another set) can be naturally
modeled as just two synthetic connectives: the first asynchronous (enumerating
all members by case analysis) and the second synchronous (showing that they

280 D. Baelde, D. Miller, and Z. Snow

belong to the other set). Thus, the high-level viewpoint of proof brought by the
notion of synthetic connective can make for more effective proof-search.

In this paper, we present the design and applications of an automatic theorem
prover, called Tac. Section 2 describes μLJ, the logic underlying Tac: it is an
intuitionistic logic containing least and greatest fixed points. In Section 3 we
introduce a focused proof system for μLJ. In Section 4, we describe the high-
level design of Tac, in particular its automatic proof-search strategy involving
the use of (co)induction. This design has been governed by the following three
principles. First, while Tac is an interactive prover based on tacticals, it is hoped
that a single, automatic tactic can be used to fill in the gaps between a theorem
and a list of (human supplied) lemmas. Second, the automatic tactic is orga-
nized around the search for focused proofs via the use of synthetic connectives.
Third, the only influence we allow on the automatic tactic’s behavior involves
those aspects of focused proof systems that proof theory has not fixed. Section 5
summarizes the behavior of Tac and compares it to some other theorem proving
systems.

2 The Logic μLJ

The logic μLJ [2] is the extension of first-order intuitionistic logic1 with inductive
and coinductive definitions given using least and greatest fixed points. The proof
system for μLJ contains familiar rules for inductive and coinductive inference
based on the selection of invariants, which notably provides the intuitionistic
version of Peano’s arithmetic. Its study is inspired by that of μMALL [4].

We consider the following simply typed language of formulas:

P ::= P ∧ P | P ∨ P | P ⊃ P | ⊥ | 	
| ∃γx. P | ∀γx. P | s γ

= t | μγ1...γn(λpλx. P)t | νγ1...γn(λpλx. P)t.

The syntactic variable γ represents a term type, e.g., natural numbers or lists.
The quantifiers have type (γ → o) → o and the equality has type γ → γ → o.
The least fixed point connective μ and the greatest fixed point connective ν have
type (τ → τ)→ τ where τ is γ1 → · · · → γn → o for some arity n ≥ 0. We shall
almost always elide the references to γ, assuming that they can be determined
from the context when it is important to know their value. Note that we do
not consider atoms, i.e., predicate constants: although μLJ accomodates them
without any problem, atoms are often unnecessary since fixed points play their
role in practice, and thus we leave them out for simplicity.

Formulas with top-level connective μ or ν are called fixed point expressions.
Fixed points can be arbitrarily nested and interleaved — that is, we can have
mutually recursive definitions. The first argument of a fixed point connective
is a predicate operator expression, called its body, and shall be denoted by B.
In order for the logic to enjoy consistency and other useful properties, all fixed
1 While intuitionistic logic is the natural choice for the specifications we consider, note

that our proof-theoretical approach also applies well to linear or classical settings.

Focused Inductive Theorem Proving 281

point bodies are required to be monotonic, i.e., there should be no negative
occurrence of the bound predicate variable p in λpλx. Bpx.

Example 1. Assuming a term type n and two constants 0 : n and s : n → n,
the natural number predicate nat of type n→ o can be defined as the inductive
expression μBnat, where Bnat is defined as λNλx. x = 0 ∨ ∃y. x = s y ∧N y.

The inference rules of μLJ deal with usual first-order intuitionistic sequents,
of the form Σ;Γ � P where Σ is a set of universal (eigen)variables x1, . . . , xn

and Γ is a set of formulas P1, . . . , Pm. The logical reading of such a sequent is
∀x1 . . .∀xn. (P1 ∧ . . . ∧ Pm ⊃ P).

The inference rules of μLJ are the usual ones for the propositional connectives
and first-order quantifiers. The left and right-introduction rules for equality date
back to [6,12]:

{(Σ;Γ � Q)θ : θ ∈ csu(t .= t′)}
Σ;Γ, t = t′ � Q

=L
Σ;Γ � t = t

=R

In the left equality rule (=L), csu stands for complete set of unifiers [7]. This
set can be restricted to have at most one element when terms are first-order but
might be infinite if terms are interpreted modulo some algebraic theory or if they
are simply typed λ-terms. The application of a substitution to the signature of a
sequent consists in removing instantiated variables and adding newly introduced
ones; the application to the rest of the sequent simply propagates it to the
terms of every formula. Note that this treatment of equality is stronger than
Leibniz equality, as it notably expresses the injectivity of term constructors.
More generally, it provides our proof system with an approach to negation-as-
failure: if the equality t = t′ is a failure (that is, csu(t, t′) is empty) then the
equality left rule yields a successful proof (that is, the rule has no premises).

The least fixed point μB is characterized as the least of the prefixed points.

Σ;Γ, St � P x;BSx � Sx

Σ;Γ, μBt � P
induction

Σ;Γ � B(μB)t
Σ;Γ � μBt

μ-unfolding

The right unfolding rule expresses B(μB)t ⊃ μBt, and the left induction rule
expresses that μB entails any prefixed point S, also called an invariant. Notice
that the universal variables x in the induction rule are new.

From the induction rule one can always derive a left unfolding rule for μ, using
the invariant B(μB):

Σ;Γ,B(μB)t � P

Σ;Γ, μBt � P

Thus, the least prefixed point is a fixed point, i.e., μBx and B(μB)x are provably
equivalent. The introduction rules for greatest fixed points are the dual rules:

Σ;Γ,B(νB)t � P

Σ;Γ, νBt � P
ν-unfolding

Σ;Γ � St x;Sx � BSx

Σ;Γ � νBt
coinduction

Finally, the initial rule can be restricted to fixed point expressions.

282 D. Baelde, D. Miller, and Z. Snow

eq
def= μ(λEλxλy. (x = 0 ∧ y = 0) ∨ (∃x′∃y′. x = s x′ ∧ y = s y′ ∧ E x′ y′))

leq
def
= μ(λLλxλy. x = y ∨ (∃y′. y = s y′ ∧ L x y′))

half
def
= μ(λHλxλh. ((x = 0 ∨ x = s 0) ∧ h = 0)

∨ (∃x′∃h′. x = s2 x′ ∧ h = s h′ ∧ H x′ h′))

append
def= μ(λAλxλyλz. (x = nil ∧ y = z)

∨ (∃e∃x′∃z′. x = e :: x′ ∧ z = e :: z′ ∧ A x′ y z′))

reverse
def
= μ(λRλlλr. (l = nil ∧ r = nil)

∨ (∃h∃l′∃r′. l = h :: l′ ∧ R l′ r′ ∧ append r′ (h :: nil) r))

sim
def
= ν(λSλpλq. ∀l∀p′. step p a p′ ⊃ ∃q′. step q a q′ ∧ S p′ q′)

Fig. 1. Examples of fixed point expressions

Example 2. In the particular case of nat, the induction rule with invariant S
yields the usual induction principle:

Σ;Γ, S t � P

� S(0) y;S(y) � S(s y)

x; (BnatS)x � Sx
∨L, ∃L,∧L,=L

Σ;Γ, nat t � P

The logic μLJ results from a line of work on definitions [6,12] and induction and
coinduction [9,11]. The presentation using μ and ν makes for a more direct proof
theoretical study, and notably naturally brings the possibility to treat mutual
(co)inductive definitions in an expressive way. Figure 1 contains several example
fixed point definitions. These examples use nil as the empty list constructor and
:: as the non-empty list constructor.

For brevity, we shall omit the signature Σ from the sequents in the next
sections; its treatment should be clear from the above presentation.

3 Focused Proofs for μLJ

The proof system for μLJ described in the previous section is unfocused since
there is no particular structure imposed on how one occurrence of an inference
rule relates to another. In contrast, a focused proof system classifies inference
rules into synchronous and asynchronous ones and then groups those of similar
classification into one “synthetic introduction rule”. The first focused proof sys-
tem for a full logic was given by Andreoli for linear logic [1]. Eventually, focused
proof systems have been developed for other logics where it was revealed that,
unlike in linear logic, proof theory concerns do not fix all polarization choices
(in particular, for atoms [1], conjunctions [8], and fixed points [2]). As a result,
these non-fixed items could be placed into either the asynchronous or the syn-
chronous phases: such choices do not affect provability but can have a striking
effect on the size and shape of proofs. In linear logic, asynchronous connectives

Focused Inductive Theorem Proving 283

are exactly those with invertible right-introduction rules; this does not hold for
richer logics, such as μLJ. Indeed, fixed points can always be treated in an in-
vertible way (provability is never lost by unfolding) but completeness cannot
be obtained with a strategy that eagerly unfolds all fixed points. For example,
proving nat x � nat x cannot succeed by repeatedly unfolding the hypothesis;
at some point, one has to stop unfolding and, instead, use the initial rule.

Definition 1 (Polarities for μLJ). The connectives ∧, ∨, ∃, =, and μ are
synchronous while the connectives ∀, ⊃ and ν are asynchronous. A synchronous
(resp. asynchronous) formula is one whose top-level connective is synchronous
(resp. asynchronous). If every connective of a formula is synchronous (resp.
asynchronous), it is called fully synchronous (resp. asynchronous). Finally, a
fixed point formula can be annotated as frozen, which is denoted by (μBt)∗ and
(νBt)∗, in which case it is neither synchronous nor asynchronous.

Figures 2, 3 and 4 present μLJF, a focused proof system for μLJ. There are two
kinds of sequents: the unfocused sequent is written Γ � P (as before) and the fo-
cused sequent is written with a bracketed formula (the focus) as either Γ � [P] or
Γ, [P] � Q. In each of these sequents, Γ is a multiset of formulas. There is an un-
surprising symmetry between left and right hand-sides of sequents: a synchronous
connective is treated as asynchronous on the left and vice-versa. The asyn-
chronous phase contains sequents of the form Γ � P and introduces asynchronous
connectives on the right and synchronous ones on the left. The synchronous
phase contains sequents containing one distinguished (bracketed) formula
that is under focus. When the focus is on the right (Γ � [P]) only the toplevel
synchronous connectives of P can be introduced. When the focus is on the left
(Γ, [P] � Q) only toplevel asynchronous connectives of P can be introduced. The
alternation between the two phases is allowed only when no other rule applies:
the asynchronous phase ends when no synchronous formula remains on the left,
and the conclusion is synchronous; the synchronous phase ends when the focus
is on the left on a synchronous formula, or on the right on an asynchronous one.
Finally, the structural rule of contraction is used (implicitly) only in the rule es-
tablishing a left focus formula — and thus, only for asynchronous formulas.

Each fixed point has two rules per phase: one of these rules treats the
fixed point as a structured formula; the other treats it as an atom. The syn-
chronous rules are unfolding and the initial rule and the asynchronous rules are
(co)induction and freezing. A strong constraint of the asynchronous phase is that
it requires that any least fixed point hypothesis (and greatest fixed point con-
clusion) is either immediately used for (co)induction (which includes unfolding)
or frozen, in which case it can never again be unfolded or used for induction: it
can only be used in an initial rule later in the proof. Also note that when one
focuses on a fully synchronous least fixed point, such as nat and all predicates
of Figure 1 except sim, focus can never be released. Hence, the proof has to be
completed in that phase, eventually reaching units, equality, or the initial rule
if an appropriate frozen side-formula is available.

The standard, unfocused proof system for μLJ can be recovered from μLJF
by removing all focusing annotations.

284 D. Baelde, D. Miller, and Z. Snow

Γ, P, P ′ � Q

Γ, P ∧ P ′ � Q

Γ, P � Q Γ, P ′ � Q

Γ, P ∨ P ′ � Q

Γ, P � Q

Γ � P ⊃ Q Γ,⊥ � P
Γ � P

Γ,� � P

Γ � Px
Γ � ∀x. Px

Γ, Px � Q

Γ, ∃x. Px � Q

{(Γ � P)θ : θ ∈ csu(t .= t′)}
Γ, t = t′ � P

Γ, St � P BSx � Sx

Γ, μBt � P

Γ, (μBt)∗ � P

Γ, μBt � P
Γ � St Sx � BSx

Γ � νBt

Γ � (νBt)∗

Γ � νBt

Fig. 2. μLJF: asynchronous rules

Γ � [P] Γ � [P ′]

Γ � [P ∧ P ′]
Γ � [Pi]

Γ � [P0 ∨ P1]

Γ, [P ′] � Q Γ � [P]

Γ, [P ⊃ P ′] � Q Γ � [�]

Γ, [Pt] � Q

Γ, [∀x. Px] � Q

Γ � [Pt]
Γ � [∃x. Px] Γ � [t = t]

Γ, [B(νB)t] � P

Γ, [νBt] � P Γ, [νBt] � (νBt)∗
Γ � [B(μB)t]

Γ � [μBt] Γ, (μBt)∗ � [μBt]

Fig. 3. μLJF: synchronous rules

Γ, Q, [Q] � P

Γ, Q � P

Γ � [P]
Γ � P

Γ, P � Q

Γ, [P] � Q

Γ � Q

Γ � [Q]

Fig. 4. μLJF: structural rules (P synchronous, Q asynchronous)

Theorem 1 (Completeness [2]). The sequent Γ � P is provable in μLJ if
and only if it is provable in μLJF.

Although not visible in the statement of completeness, the asynchronous rules
can be applied in any order — permuting them actually leaves the proof essen-
tially unchanged.

As usual, the completeness of the focused proof system justifies a reading of
logic based on synthetic connectives and synthetic introduction rules. A synthetic
introduction rule for a synthetic synchronous connective is a big-step rule that
has a focused sequent as its conclusion and which extends upwards until there
are only unfocused sequents present. Dually, a synthetic introduction rule for
a synthetic asynchronous connective is a big-step rule that has an unfocused
sequent as its conclusion and which extends upwards until no asynchronous rule
can be applied. Note that this is especially powerful with fixed points, since
we can now have synthetic introduction rules built from unbounded numbers of
micro-rules. An interesting particular case of this is that of fully synchronous
formulas, such as nat and more generally any Prolog-style computation, which
constitute a synthetic unit, with an infinity of synthetic introduction rules.

Focused Inductive Theorem Proving 285

Example 3. Consider the synthetic introduction rule that ends with the right-
focused sequent Γ � [(leq m n ∧ B1) ∨ (leq n m ∧ B2)], where m and n are
natural numbers (terms over s and 0) and leq is the purely synchronous fixed
point in Figure 1 denoting the less-than-or-equal-to relation. If both B1 and B2
are asynchronous formulas, then there are exactly two possible synthetic rules:
one with premise Γ � B1 when m ≤ n and one with premise Γ � B2 when
n ≤ m (thus, if m = n, both premises are possible). In this sense, a synthetic
synchronous connective can contain an entire Prolog-style computation.

Being complete, the focused proof system for μLJ obviously does not render
theorem proving decidable. But the focused structure of proofs can be very
useful when building a theorem prover, as we shall see in the main contribution
of this paper: the design of an automatic tactic that is organized around synthetic
connectives.

4 Tac

There are several ways to exploit focusing for proof-search. For instance, the
inverse method — performing top-down proof-search — yields impressive re-
sults when combined with focusing [5,10]. Proof search that must generate
(co)invariants is hard to do in such a top-down style, particularly when con-
texts are used to generate the (co)invariants. Thus, we use bottom-up proof
search. As we outline next, that choice is also compatible with the use of tactics
and tacticals in a proof assistant.

Tac is built around a small kernel implementing elementary operations and
(small-step) inferences rules. Each inference rule gives rise to a primitive tactic.
Complex tactics can then be formed using tacticals such as then, repeat, etc.
The successful application of a series of tactics to prove a theorem triggers the
production of a proof, which can be inspected. There is no specific support for
any particular datatype.

Focusing is built into the foundations of Tac: formulas are annotated with
polarity information and that information is used to guide the application of
logical rules. Such annotations are useful not only for the automation of induc-
tive proof search but also for human interaction. For example, the tactic async
simplifies a goal by repeatedly applying asynchronous rules, the common tactic
apply actually consists of focusing on a lemma and performing a synchronous
phase, and the tactic freeze is used to prevent induction and thereby guide
automated theorem proving. Finally, we also use focusing to display proofs more
concisely by showing synthetic inference rules instead of the “micro” rules.

In the following we describe our automated tactic, called prove. This tactic
performs focused proof-search as described in Section 3, with a special treatment
of computation and of the crucial deduction step of (co)induction.

4.1 Progress

We generally think of proof search as being a process composed primarily of
deduction, but of course large portions of a particular proof may be given over

286 D. Baelde, D. Miller, and Z. Snow

to computation. Any implementation of proof search should recognize and ex-
ploit this distinction, not only for efficiency (computations should not involve
(co)inductions or certain other deductive techniques) but also for robustness
and predictability. Focusing allows us to circumscribe computations to sin-
gle phases, even if that computation is non-deterministic. A useful fragment
to identify is that of deterministic computation. For example, given the goal
∀x. mult 10 10 x ⊃ P x or the goal ∃x. mult 10 10 x ∧ P x, the prover should
compute the value of x immediately in a single step. The notion of progressing
unfolding presented below allows us to do so and, in fact, to treat these examples
in exactly the same way.

Definition 2 (Patterns). A pattern C of type γ1, . . . , γn → γ′
1, . . . , γ

′
m is a

vector of m elementary patterns pi, which are themselves closed terms of type
γ1, . . . , γn → γ′

i. The input arity of the pattern is n, and m is its output arity.
Both can be zero. When t is a vector of terms 〈t1 : γ1, . . . , tn : γn〉, the expression
Ct denotes the vector 〈p1t, . . . , pnt〉. For two vectors of terms of equal length n,
the expression t = t′ denotes the formula t1 = t′1 ∧ . . . ∧ tn = t′n.

Definition 3 (Matcher). Let C be a vector 〈C1, . . . , Cn〉 of patterns, all of the
same output arity m. The matcher MC is defined as the term:

MC
def
= λφ1 . . . λφnλx1 . . . λxm.(∃y1. x = C1y∧φ1y)∨. . .∨(∃yn. x = Cny∧φny)

Example 4. We can define nat from the matcher on the patterns C1 := 〈0〉 and
C2 := 〈λp. s p〉 by nat := μ(λNλx. MC	Nx). The fixed point half is built on
the patterns 〈0, 0〉, 〈s 0, 0〉, and 〈λp. s2p, λp. s p〉. Finally, the binary fixed point
eq is built on the patterns 〈0, 0〉 and 〈λp. s p, λp. s p〉.

In fact, matchers correspond to synchronous synthetic connectives, leaving out
the least fixed points. In most fixed point definitions, the structure of matchers
is used literally, but even when it is not strictly followed, it can be recovered by
re-arranging the outermost layer of synchronous connectives, namely ∧, ∨ and
∃. Hence, any fixed point body can be assumed of the form (λpλx. MC(φp)x)
for some patterns C and predicate operator expressions φ.

Definition 4 (Progressing unfolding). Let C be a vector 〈C1, . . . , Cn〉 of pat-
terns of the same output arity. A least fixed point instance μ(λpλx. MC(φp)x)t
has a progressing unfolding if ∃x. t = Cjx holds for at most one j ∈ {0, . . . , n}.

Example 5. The formulas nat 0 and nat (s t) have progressing unfoldings, for
any term t, e.g., sn0, x, nil. For any h, the formulas half 0 h, half (s 0) h and
half (s2t) h for any t have progressing unfoldings. This is not true of half (s x) h,
because the term s x satisfies two patterns in the definition of half. For eq, the
progressing unfoldings are on instances of eq 0 0, eq (s x) y and eq x (s y).

This definition is critically tied to focusing: we only inspect one synchronous
synthetic connective, namely a synchronous fixed point and the outermost syn-
chronous layer of its body. After an unfolding on the left hand-side, all absurd

Focused Inductive Theorem Proving 287

branches of that structure are discarded during the current asynchronous phase,
and at most one remains. Symmetrically, after an unfolding on the right hand-
side, at most one branch remains by the end of the synchronous phase.

Note that the definition of progressing unfolding described above does not
attempt to embody a notion of termination. There is no restriction placed on the
structure under the pattern, hence no guarantee that the result of the unfolding
is simpler than the initial fixed point. It is in fact undecidable to identify non-
termination, and not even desired, since we also want to partially explore infinite
computations, as we shall see in Example 6.

4.2 Discovering (Co)invariants

The construction of (co)invariants in theorem proving is an extremely difficult
problem, one that has been addressed by a large number of researchers. We take
a simple approach with the prove tactic, trying only one invariant per possible
induction site. That invariant is obtained directly from the context:

Σ; Γ, St � G x ; BSx � Sx

Σ; Γ, μBt � G
with S := λx. ∀Σ. x = t ⊃ (

∧
Γ) ⊃ G.

With this invariant, the first premise is trivially provable, as it is essentially an
instance of the identity. The second premise is where proof-search continues.
This approach to induction is similar to that used in Coq, where the induction
tactic always uses the current goal as the invariant. When that is not sufficient,
one has to generalize the goal manually — for example by introducing a lemma.

We proceed dually for coinduction:

Σ; Γ � St x ; Sx � BSx

Σ; Γ � νBt
with S := λx. ∃Σ. x = t ∧ (

∧
Γ).

Such trivial (co)inductions suffice for many examples. For instance, when proving
∀n. even n ⊃ nat n, the generated formula λx. nat x is actually an invariant of
even. Similarly, when proving ∀p. sim p p, the context does provide a coinvariant:
λp1λp2. ∃p. p1 = p ∧ p = p2, that is, λp1λp2. p1 = p2.

Example 6. Consider the following theorem of μLJ: ∀x. eq (s x) (s (s x)) ⊃ ⊥.
In the asynchronous phase, ∀ and ⊃ are introduced, after which the fixed point
has to be treated. It can be either frozen, inducted on, or unfolded. Obviously,
freezing cannot lead to a proof. Induction fails as the context does not yield a
valid invariant (λmλn. ∀x. m = s x ⊃ n = s (s x) ⊃ ⊥). The last possibility is to
perform the (progressing) unfolding of the fixed point, in which case we obtain
the subgoal eq x (s x) � ⊥. At this point one can quickly obtain a proof, as the
context does yield an invariant: λmλn. n = s m ⊃ ⊥. Notice that performing
another progressing unfolding of eq would loop, producing the same subgoal.

4.3 Organization of the prove Tactic

In order to turn focused proof search into a practical automated tactic, several
compromises must be made and these compromises will result, ultimately, in the

288 D. Baelde, D. Miller, and Z. Snow

loss of completeness. We detail below the main compromises for prove, namely
the design of search in the asynchronous phase and how termination is ensured.

Except for freezing, all asynchronous rules are invertible – in the case of in-
duction, this is obtained by instantiating it into a left unfolding. However, from
a bottom-up proof-search point of view, this does not mean that these rules
can be applied eagerly without backtracking. Namely, an asynchronous fixed
point instance can be treated in a number of different ways: it may be frozen,
(co)inducted on with an arbitrary (co)invariant (although in automated proof
search we only use the (co)invariant generated from the context) or unfolded,
perhaps in a progressing way. Our approach is to postpone these choices as much
as possible, first applying all non-backtracking asynchronous rules. Moreover, we
treat progressing unfoldings as non-backtracking rules, reflecting their determin-
istic nature. Therefore the asynchronous phase proceeds as follows: (1) apply the
non-backtracking asynchronous rules, (2) try for each remaining asynchronous
fixed point to either freeze, (co)induct or unfold2, backtracking on those possi-
bilities and coming back to Step (1) after each attempt.

The usual problem of top-down proof-search is that it may encounter infinite
branches during search — in μLJ, such branches are caused by contractions,
fixed point unfoldings, and (co)induction. A common way to address this issue
is to bound the depth of search. This technique can be too rough, but we tame
its downsides by working at the level of synthetic connectives. Moreover, we
exploit the distinction between computation and deduction. First, we make use
of a deductive bound, attached to individual sequents, which limits the num-
ber of non-progressing fixed point unfoldings, (co)inductions, and contractions
in one branch. Second, we introduce a computational bound to limit the num-
ber of progressing unfoldings performed on a given fixed point. Computational
bounds must be attached to individual formulas: since progressing unfoldings
are performed eagerly, we must prevent one chain of such unfoldings from starv-
ing another. The deductive bound controls the number of critical choices made
in a proof, and therefore the complexity of proof-search; increasing the bound
even slightly can lead to significantly longer attempts. However, since compu-
tations are factored out of the deductive bound, a low bound typically suffices;
as a default we perform iterative deepening up to a depth of 3. In contrast,
the computational bound can be set much higher without affecting the cost of
proof-search. This design has proved critical to the success of our tactic.

5 Comparison and Experimental Results

In order to show the strengths of our approach, we provide several exam-
ples of its successes in Figure 5 and use them to compare Tac with two es-
tablished inductive theorem provers. The first group of examples come from
the IWC suite (http://www.cs.nott.ac.uk/~lad/research/challenges) and
the second one from Twelf’s examples. The last group consists of interesting
2 It might be surprising that we attain the best results by attempting (co)induction

before unfolding; this is because these non-progressing unfoldings are rarely useful.

Focused Inductive Theorem Proving 289

original examples leveraging Tac’s specificities: sim illustrates that Tac deals
with coinductive definitions and coinduction just as naturally as with induc-
tive definitions; the other examples show interesting developments3 that ex-
ploit Tac’s support for generic quantification [3] and the role that the automatic
tactic prove can play within interactive proof development. We do not pro-
vide timings since our implementation was not optimized for speed, but stress
that all automated examples pass in less than a few seconds. The implemen-
tation, including all of the examples mentioned in this paper, is available at
http://slimmer.gforge.inria.fr/tac/

Name Description Success
IWC 02 append(l, l′) of even length iff append(l′, l) is too Automatic
IWC 03 x ∈ l implies x ∈ append(l, l′) Automatic
IWC 04 l = rotate(length(l), l) Guided, Lemma
IWC 06 equiv. of mutual and straight definitions of even Automatic
IWC 07 natural numbers are even or odd Automatic
IWC 12 verifying abstractions in model checking Guided, Lemmas
IWC 16 whisky problem Automatic, Lemma

plus commutativity and associativity of plus Automatic
arith totality of many Horn programs, e.g., half, ack Automatic

prop-calc Hilbert’s abstraction theorem Automatic
reverse involutivity of list reversal Automatic

binarytree antisymmetry of the subtree ordering on binary trees Automatic
sim reflexivity and transitivity of sim Automatic
PCF subject reduction and determinacy of typing for PCF Manual, Lemmas

POPL-1A transitivity of subtyping for F≤ Manual, Lemmas

Fig. 5. Examples of Tac proofs. “Lemma” indicates that a lemma had to be manu-
ally specified. “Automatic” indicates that prove derived the theorem and all lemmas.
“Guided” denotes a small amount of user guidance while “Manual” denotes a mostly
interactive development.

5.1 Comparison with Rewriting Based Approaches

Rewriting based approaches to inductive theorem proving are common: for ex-
ample, ACL2 and the many provers that make use of rippling. These specialized
foundations, together with refined heuristics, make for powerful tools, but also
have some drawbacks. Notably, they do not provide as solid proof witnesses as
sequent calculus, and in general cannot be related to general-purpose proof assis-
tants such as Coq or Isabelle. Leaving aside problems that involve higher-order
functions, and thus could not even be stated in our framework, the IWC chal-
lenges highlight the main differences between our approach and rewriting-based
techniques.

Several challenges were infeasible in Tac because they relied too heavily on
equational reasoning. When stated in a relational way in our tool, the complexity
3 We also have a partial solution of POPLMark problem 2A, and we do not see any

obstacle to its short-term completion.

290 D. Baelde, D. Miller, and Z. Snow

of such statements increases a lot: for example, (x+y)+z = t becomes ∃i. x+y =
i ∧ i + z = t. This weakness is not so important in application areas such as
operational semantics, where commutativity and associativity are rarely relevant
and equational reasoning is little used.

On the other hand, the challenges that Tac passed show that our relatively
straightforward but general approach replicates reasoning schemes that have to
be implemented as special techniques in rewriting and termination-based ap-
proaches, such as case analysis, generalization, simultaneous and mutual induc-
tion schemes. Our single induction principle and limited invariant generation
already embeds an interesting amount of generalization, and the nesting and in-
terleaving of inductions gives rise to complex induction schemes (corresponding,
for example, to multiset and lexicographic orderings). This is visible in some of
our custom examples such as the totality of ack or the involutivity of list reversal.

In some cases, it is unreasonable to expect an automatic proof: the user will
need to explicitly introduce generalizations or lemmas. The same goes for all
provers and Tac is no exception. In our test suite, once lemmas were stated, Tac
was able to prove them automatically and deduce the final theorem. In IWC
challenges 4 and 12, however, some non-trivial human guidance was required in
this process.

5.2 Comparison with Twelf

Twelf [13] allows writing specifications in LF, a dependently typed intuitionistic
framework, and can perform proof-search in LF as well as meta-reasoning about
LF specifications. Meta-reasoning is done in two ways.

First, Twelf is equipped with a number of specialized procedures for estab-
lishing whether some LF relation is total, functional, etc. That feature is well
developed and widely used. We can replicate many of the established meta-
theorems, but those dedicated procedures outperform our generic tactic, which
is not able to re-use properties of nested fixed points. It should be noted, how-
ever, that in order to check a totality assertion, a termination order should be
explicitly given, while our system infers it.

Secondly, Twelf has a more generic meta-theorem prover [13] which searches
for proofs in the M2 meta-logic, whose objects are LF terms. This logic only
deals with Π2 statements and Twelf implements a simply structured proof-search
strategy for them. The main phases of this strategy can be formulated in terms
of focusing, but their general organization differs. Notably, this strategy only
attempts an outermost induction, whose validity is based on a termination or-
dering provided by the user. In contrast, the (co)invariant generation of Tac can
discover induction schemes without assistance from the user and can notably
use nested inductions to discover proofs that are inaccessible to Twelf. A strik-
ing example is the involutivity of list reversal, which Tac proves without any
additional lemmas thanks to nested inductions. On the other hand, Twelf can
sometimes prove a theorem, e.g., the totality of half, using a single induction
when Tac would require nested inductions, since Twelf’s meta-logic allows the
use of an induction hypothesis on an arbitrary predecessor, while our scheme

Focused Inductive Theorem Proving 291

corresponds to restricting to the immediate predecessor. Finally, there is no no-
tion of progress in Twelf’s meta-theorem prover, which results in a critical need
to tweak bounds.

The major strength of Twelf is not so much the architecture of its proof-
search strategy, but the expressivity of the LF objects manipulated in the M2
logic. Twelf handles higher-order abstract syntax (HOAS) specifications eas-
ily, enabling its simple meta-theorem prover to prove important results such as
type preservation and progress for programming languages. Tac supports higher-
order terms and features minimal generic quantification [3] to expressively reason
about such objects. Focused proof search is not affected by the introduction of
these rich notions, and prove indeed handles them without any modification.
But HOAS notably involves dealing with hypothetical contexts, for which there
is no built-in support in Tac. When working with such contexts in Tac one must
therefore implement them by hand, generally using lists, which tends to cre-
ate artificial details. As a result, while Tac seems to be in general more powerful
than Twelf’s meta-theorem prover on examples not involving HOAS, it is unable
to carry out automatically developments significantly dealing with hypothetical
contexts. However, since Tac is an interactive proof assistant, the user can guide
the proving of such theorems, still benefiting from prove to fill in many simple
proof obligations.

6 Conclusion

We have developed a strong focusing proof system for the expressive logic μLJ,
and we have shown how this important proof-theoretic result can be applied to
the construction of an inductive theorem prover. The Tac prover is capable of
proving automatically many non-trivial theorems, which is particularly impres-
sive given the genericity and simplicity of its design.

There are a number of ways to enhance the current system. A general chal-
lenge with proof-search and our treatment of equality lies in the handling of
logical variables in left hand-side equalities, which obviously hinders automated
proof search in several examples; we are currently exploring ways to address this
unusual aspect of unification. Another important challenge to address is inte-
grating support for hypothetical contexts when reasoning about HOAS specifi-
cations. We also plan to explore the use of flexibilities in polarity assignment
left in the design of focused systems for μLJ; in our experience, such choices can
have an important impact on proof-search. Finally, it is crucial that we develop
efficient techniques for re-using previously proved lemmas — a common problem
in theorem proving.

Acknowledgments. The authors wish to thank Alexandre Viel for his help in
developing Tac and the reviewers of an earlier version of this paper for their
comments. This work has been supported in part by INRIA through the “Equipes
Associées” Slimmer and by the NSF grant CCF-0917140. Opinions, findings, and
conclusions or recommendations expressed in this papers are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

292 D. Baelde, D. Miller, and Z. Snow

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic
and Computation 2(3), 297–347 (1992)

2. Baelde, D.: A linear approach to the proof-theory of least and greatest fixed points.
PhD thesis, Ecole Polytechnique (December 2008)

3. Baelde, D.: On the expressivity of minimal generic quantification. In: Abel, A.,
Urban, C. (eds.) International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2008). ENTCS, vol. 228, pp. 3–19 (2008)

4. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz,
N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 92–106. Springer,
Heidelberg (2007)

5. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong,
C.-H.L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005)

6. Girard, J.-Y.: A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu. (February 1992)

7. Huet, G.: A unification algorithm for typed λ-calculus. Theoretical Computer Sci-
ence 1, 27–57 (1975)

8. Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 451–465. Springer,
Heidelberg (2007)

9. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction.
Theoretical Computer Science 232, 91–119 (2000)

10. McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized focused inverse
method for intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov,
A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg
(2008)

11. Momigliano, A., Tiu, A.: Induction and co-induction in sequent calculus. In: Be-
rardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp.
293–308. Springer, Heidelberg (2004)

12. Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) Eighth
Annual Symposium on Logic in Computer Science, June 1993, pp. 222–232. IEEE
Computer Society Press, Los Alamitos (1993)

13. Schürmann, C., Pfenning, F.: Automated theorem proving in a simple meta-logic
for LF. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421,
pp. 286–300. Springer, Heidelberg (1998)

A Decidable Class of Nested Iterated Schemata�

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

Grenoble University (LIG/CNRS)

Abstract. Many problems can be specified by patterns of propositional
formulae depending on a parameter, e.g. the specification of a circuit
usually depends on the number of bits of its input. We define a logic
whose formulae, called iterated schemata, allow to express such patterns.
Schemata extend propositional logic with indexed propositions, e.g. Pi,
Pi+1, P1 or Pn, and with generalized connectives, e.g.

∧n
i=1 or

∨n
i=1 where

n is an (unbound) integer variable called a parameter. The expressive
power of iterated schemata is strictly greater than propositional logic: it
is even out of the scope of first-order logic. We define a proof procedure,
called dpll

�, that can prove that a schema is satisfiable for at least
one value of its parameter, in the spirit of the dpll procedure [9]. But
proving that a schema is unsatisfiable for every value of the parameter,
is undecidable [1] so dpll

� does not terminate in general. Still, dpll
�

terminates for schemata of a syntactic subclass called regularly nested.

1 Introduction

The specification of problems in propositional logic often leads to propositional
formulae that depend on a parameter: the n-queens problem depends on n,
the pigeonhole problem depends on the number of considered pigeons, a cir-
cuit depends on the number of bits of its input, etc. Consider for instance a
specification of a ripple-adder circuit that takes as input two n-bit vectors and
computes their sum: Adder

def=
∧n

i=1 Sumi ∧
∧n

i=1 Carryi ∧ ¬C1 where n is the
number of bits of the input, Sumi

def= Si ⇔ (Ai ⊕ Bi) ⊕ Ci, Carryi
def= Ci+1 ⇔

(Ai∧Bi)∨(Bi∧Ci)∨(Ai∧Ci), ⊕ is the exclusive OR, A1, . . . , An (resp. B1, . . . , Bn)
are the bits of the first (resp. second) operand of the circuit, S1, . . . , Sn is the
output (the Sum), and C1, . . . , Cn are the intermediate Carries.

Presently, automated reasoning on such specifications requires that we give
a concrete value to the parameter n. Besides the obvious loss of generality, this
instantiation hides the structure of the initial problem which can be however a
useful information when reasoning about such specifications: the structure of the
proof can in many cases be guided by the one of the original specification. This
gave us the idea to consider parameterized formulae at the object level and to
design a logic to reason about them.

Notice that schemata not only arise naturally from practical problems, but
also have a deep conceptual interpretation, putting bridges between logic and
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 293–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

294 V. Aravantinos, R. Caferra, and N. Peltier

computation. As well as first-order logic abstracts from propositional logic via
quantification, schemata allow to abstract via computation, in a complementary
way. Indeed, a schema can be considered as a very specific algorithm taking as
input a value for the parameter and generating a propositional formula depend-
ing on this value. So a schema can be seen as an algorithm whose codomain is
the set of propositional formulae (its domain is the set of integers).

If we want to prove, e.g. that the implementation of a parameterized speci-
fication is correct, we need to prove that the corresponding schema is valid for
every value of the parameter. As usual we actually deal with unsatisfiability:
we say that a schema is unsatisfiable iff it is (propositionally) unsatisfiable for
every value of its parameter. In [1] we introduced a first proof procedure for
propositional schemata, called stab. Notice that there is an easy way to system-
atically look for a counter-example: we can just enumerate all the values and
check the satisfiability of the corresponding formula with a SAT solver. How-
ever this naive procedure does not terminate when the schema is unsatisfiable.
On the other hand, stab not only terminates (and much more efficiently) when
the schema is satisfiable, but it can also terminate when the schema is unsat-
isfiable. However it still does not terminate in general, as we proved that the
(un)satisfiability problem is undecidable for schemata [1]. Still, we proved that
stab terminates for a particular class of schemata, called regular, which is thus
decidable.

An important restriction of the class of regular schemata is that it cannot con-
tain nested iterations, e.g.

∨n
i=1
∨n

j=1 Pi ⇒ Qj. Nested iterations occur frequently
in the specification of practical problems. We take the example of a binary mul-
tiplier which computes the product of two bit vectors A = (A1, . . . , An) and
B = (B1, . . . , Bn) using the following decomposition: A.B = A.

∑n
i=1 Bi.2i−1 =∑n

i=1 A.Bi.2i−1. The circuit is mainly an iterated sum: “S1 = 0” ∧
∧n

i=1(Bi ⇒
Add(S i, “A.2i−1”, S i+1)) ∧ (¬Bi ⇒ (S i+1 ⇔ S i)) where S i denotes the ith partial
sum (hence Sn denotes the final result) and Add(x, y, z) denotes any schema spec-
ifying a circuit which computes the sum z of x and y (for instance the previous
Adder schema). We express “A.2i−1” by the bit vector Shi = (Shi

1, . . . , Shi
2n) (Sh

for Shift): (
∧n

j=1 Sh1
j ⇔ Aj) ∧ (

∧2n
j=n ¬Sh1

j) ∧ (
∧n

i=1 ¬Shi
1 ∧
∧2n

j=1(Shi
j+1 ⇔ Shi

j))
and “S1 = 0” by

∧n
i=1 ¬S1

i . This schema obviously contains nested iterations.
stab does not terminate in general on such specifications. We introduce in

this paper a new proof procedure, called dpll
�, which is an extension of the

dpll procedure [9]. Extending dpll to schemata is a complex task, because the
formulae depend on an unbounded number of propositional variables (e.g.

∨n
i=1 Pi

“contains” P1, . . . , Pn). Furthermore, propagating the value given to an atom is
not straightforward as in dpll (in

∨n
i=1 Pi if the value of e.g. P2 is fixed then we

must propagate the assignment to Pi but only in the case where i = 2). The main
advantage of dpll

� over stab is that it can operate on subformulae occurring
at a deep position in the schema. This feature is essential for handling nested
iterations. dpll

� is sound, complete for satisfiability detection and terminates
on a class of schemata, called regularly nested .

The paper is organized as follows. Section 2 defines the syntax and semantics
of iterated schemata. Section 3 presents the dpll

� proof procedure. Section 4

A Decidable Class of Nested Iterated Schemata 295

deals with the detection of cycles in proofs, which is the main tool allowing
termination. Section 5 presents the class of regularly nested schemata, for which
dpll

� terminates. Section 6 concludes the paper and overviews related works.
Due to space restrictions, proofs are omitted or simply sketched (detailed proofs
can be found in [2]).

2 Schemata of Propositional Formulae

Terms on the signature {0, s,+,−} and on a countable set of integer variables
IV are called linear expressions, whose set is written LE . As usual we simply
write n for sn(0) (n > 0) and n.e for e+ · · ·+ e (n times). Linear expressions are
considered modulo the usual properties of the arithmetic symbols (e.g. s(0) +
s(s(0)) − 0 is assumed to be the same as s(s(s(0))) and written 3). The set of
first-order formulae built on LE and =, <,> is called the set of linear constraints
(or in short constraints), written LC. If C1, C2 ∈ LC, we write C1 |= C2 iff C2 is
a logical consequence of C1. This relation is well known to be decidable see e.g.
[7]. It is also well known that linear arithmetic admits quantifier elimination.
Closed terms of Σ (i.e. integers) are denoted by n,m, i, j, k, l, linear expressions
by e, f , constraints by C,C1, C2, . . . and integer variables by n, i, j to make clear
the distinction between integer variables and expressions of the meta-language.

To make technical details simpler, and w.l.o.g., only schemata in negation
normal form (n.n.f.) are considered. A linear constraint encloses a variable i iff
there exist e1, e2 ∈ LE s.t. i does not occur in e1, e2 and C |= e1 ≤ i ∧ i ≤ e2.

Definition 1 (Schemata). For every k ∈ IN, let Pk be a set of symbols. The
set P of formula patterns (or, for short, patterns) is the smallest set such that:

– 	,⊥ ∈ P.
– If k ∈ IN, P ∈ Pk and e1, . . . , ek ∈ LE then Pe1,...,ek

∈ P and ¬Pe1,...,ek
∈ P.

– If π1, π2 ∈ P then π1 ∨ π2 ∈ P and π1 ∧ π2 ∈ P.
– If π ∈ P, i ∈ IV, C ∈ LC and C encloses i then

∧
i|C π ∈ P and

∨
i|C π ∈ P.

A schema S is a pair (written as a conjunction) π ∧ C, where π is a pattern
and C is a constraint. C is called the constraint of S, written CS . π is called its
pattern, written ΠS.

The first three items differ from propositional logic only in the atoms which we
call indexed propositions (e1, . . . , ek are called indices). The real novel part is the
last item. Patterns of the form

∧
i|C π or

∨
i|C π are called iterations. C is called

the domain of the iteration. In [1] only domains of the form e1 ≤ i∧ i ≤ e2 were
handled, but as we shall see in Section 3, more general classes of constraints are
required to define the dpll

� procedure. If C is unsatisfiable then the iteration is
empty. Any occurrence of i in π is bound by the iteration. A variable occurrence
which is not bound is free. A variable which has free occurrences in a pattern
is a parameter of the pattern. A pattern which is just an indexed proposition
Pe1,...,ek

is called an atom. An atom or the negation of an atom is called a literal.
In [1] a schema was just a pattern, however constraints appear so often that

it is more convenient to integrate them to the definition of schema. Informally,

296 V. Aravantinos, R. Caferra, and N. Peltier

a pattern gives a “skeleton” with “holes” and the constraint specifies how the
holes can be filled (this choice fits the abstract definition of schema in [8]). In
the following we assume w.l.o.g. that CS entails n1 ≥ 0 ∧ · · · ∧ nk ≥ 0 where
n1, . . . , nk are the parameters of ΠS .

For instance, S
def= P1 ∧

∧
1≤i∧i≤n(Qi ∧

∨
1≤j≤n+1∧i �=j ¬Pn ∨ Pj+1) ∧ n ≥ 1 is a

schema. P1, Qi, Pn and Pj+1 are indexed propositions.
∨

1≤j≤n+1∧i �=j ¬Pi ∨ Pi+1

and
∧

1≤i∧i≤n(Qj ∧
∨

1≤j≤n+1∧i �=j ¬Pi ∨ Pi+1) are the only iterations, of domains
1 ≤ j ≤ n + 1 ∧ i �= j and 1 ≤ i ≤ n. n is the only parameter of S. Finally
ΠS is P1 ∧

∧
1≤i∧i≤n(Qi ∧

∨
1≤j≤n+1∧i �=j ¬Pn ∨ Pj+1) and CS is n ≥ 1. Schemata

are denoted by S, S1, S2 . . . , parameters by n, n1, n2 . . . , bound variables by
i, j. Δi|C S and ∇i|C S denote generic iterations (i.e.

∨
i|C S or

∧
i|C S), � and �

denote generic binary connectives (∨ or ∧), Δe2
i=e1

S denotes Δi|e1≤i∧i≤e2 S.
Let S be a schema and Δi1|C1 S1, . . . , Δik|Ck

Sk be all the iterations occur-
ring in S. Then CS ∧C1 ∧ · · · ∧Ck is called the constraint context of S, written
Context(S). Notice that Context(S) loses the information on the binding po-
sitions of variables. This can be annoying if a variable name is bound by two
different iterations or if it is both bound and free in the schema. So we assume
that all schemata are such that this situation does not hold1.

Substitutions on integer variables map integer variables to linear arithmetic
expressions. We write [e1/i1, . . . , ek/ik] for the substitution mapping i1, . . . , ik to
e1, . . . , ek respectively. The application of a substitution σ to an arithmetic ex-
pression e, written eσ, is defined as usual. Substitution application is naturally
extended to schemata (notice that bound variables are not replaced). A substi-
tution is ground iff it maps integer variables to integers (i.e. ground arithmetic
expressions). An environment ρ of a schema S is a ground substitution mapping
all parameters of S and such that CSρ is true.
Definition 2 (Propositional Realization). Let π be a pattern and ρ a ground
substitution. The propositional formula |π|ρ is defined as follows:

– |Pe1,...,ek
|ρ

def= Pe1ρ,...,ekρ, |¬Pe1,...,ek
|ρ

def= ¬Pe1ρ,...,ekρ

– |	|ρ
def= 	, |⊥|ρ

def= ⊥, |π1 ∧ π2|ρ
def= |π1|ρ ∧ |π2|ρ, |π1 ∨ π2|ρ

def= |π1|ρ ∨ |π2|ρ
– |
∨

i|C π|ρ
def=
∨{
|π[i/i]|ρ∪[i/i]

∣∣i ∈ Z s.t. C[i/i]ρ is valid
}

– |
∧

i|C π|ρ
def=
∧{
|π[i/i]|ρ∪[i/i]

∣∣i ∈ Z s.t. C[i/i]ρ is valid
}

When ρ is an environment of a schema S, we define |S|ρ as |ΠS |ρ. |S|ρ is called
a propositional realization of S.
Notice that 	,⊥,∨,∧,¬ on the right-hand sides of equations have their standard
propositional meanings.

∨
and
∧

on the right-hand side are meta-operators
denoting respectively the propositional formulae · · · ∨ · · · ∨ · · · and · · · ∧ · · · ∧ · · ·
or ⊥ and 	 when the sets are empty. In contrast, all those symbols on the
left-hand side are pattern connectives.

We now make precise the semantics outlined in the introduction. Propositional
logic semantics are defined as usual. A propositional interpretation is a function
mapping every propositional variable to a truth value true or false.
1 The rule Emptiness of the proof system defined in Section 3 does not preserve this

property, but it is easily circumvented by renaming variables.

A Decidable Class of Nested Iterated Schemata 297

Definition 3 (Semantics). Let S be a schema. An interpretation I of the
schemata language is a pair consisting of an environment ρI of S and a propo-
sitional interpretation Ip of |S|ρI . A schema S is true in I iff |S|ρI is true in
Ip, in which case I is a model of S. S is satisfiable iff it has a model.

Notice that an iteration
∨

i|C π (resp.
∧

i|C π) where C is equivalent to ⊥ (i.e.
the iteration is empty), is equivalent to ⊥ (resp.).

Example 1. Let S
def= P1∧

∧n
i=1(Pi ⇒ Pi+1)∧¬Pn+1∧n ≥ 0 (as usual, S1 ⇒ S2 is a

shorthand for ¬S1∨S2). Then |S|n �→0 = P1∧¬P1, |S|n �→1 = P1∧(P1 ⇒ P2)∧¬P2,
|S|n �→2 = P1 ∧ (P1 ⇒ P2) ∧ (P2 ⇒ P3) ∧ ¬P3, etc. S is clearly unsatisfiable.

The set of satisfiable schemata is recursively enumerable but not recursive [1].
Hence there cannot be a refutationally complete proof procedure for schemata.

The next definitions will be useful in the definition of dpll
�. Let φ be a propo-

sitional formula and L a (propositional) literal. We say that L occurs positively
in φ, written L � φ, iff there is an occurrence of L in φ which is not in the scope
of a negation.

Definition 4. Let S be a schema and L a literal s.t. the parameters of L are
parameters of S. We write L �� S iff for every environment ρ of S, |L|ρ � |S|ρ.
We write L �� S iff there is an environment ρ of S s.t. |L|ρ � |S|ρ.

Example 2. Consider S as in Example 1. We have P1 �� S, Pn+1 �� S, P2 ���

S. However P2 �� S and P2 �� (S ∧ n ≥ 1). Finally P0 ��� S and Pn+2 ��� S.

Suppose L has the form Pe1,...,ek
(resp. ¬Pe1,...,ek

). For a literal L′ � S of indices
f1, . . . , fk, φL(L′) denotes the formula ∃i1 . . . in(Ci1∧· · ·∧Cin∧e1 = f1∧· · ·∧ek =
fk) where i1, . . . , in are all the bound variables of S occurring in f1, . . . , fk and
Ci1 , . . . , Cin are the domains of the iterations binding i1, . . . , in. φL(S) denotes∨
{φL(Pf1,...,fk

) | Pf1,...,fk
� S} (resp.

∨
{φL(¬Pf1,...,fk

) | ¬Pf1,...,fk
� S}).

Proposition 1. L �� S iff ∀n1, . . . , nl(CS ⇒ φL(S)) is valid, where n1 . . . nl

are all the parameters of S. L �� S iff ∃n1, . . . , nl(CS ∧ φL(S)) is valid.

Consider e.g. S as in Example 1. For any e, Pe �� S iff ∀n(n ≥ 0) ⇒ [e =
1 ∨ ∃i(1 ≤ i ∧ i ≤ n ∧ e = i) ∨ ∃i(1 ≤ i ∧ i ≤ n ∧ e = i + 1) ∨ e = n + 1] is valid.
By decidability of linear arithmetic, both �� and �� are decidable. Besides, it
is easy to compute the set L(S) def= {L | L �� S} for a schema S.

3 A Proof Procedure: dpll
�

We provide now a set of (sound) deduction rules (in the spirit of the Davis-
Putnam-Logemann-Loveland procedure for propositional logic [9]) complete
w.r.t. satisfiability (we know that it is not possible to get refutational com-
pleteness). Compared to other proof procedures [1] dpll

� allows to rewrite sub-
formulae occurring at deep positions inside a schema — in particular occurring
in the scope of iterated connectives: this is crucial to handle nested iterations.
dpll

� is a tableaux-like procedure: rules are given to construct a tree whose

298 V. Aravantinos, R. Caferra, and N. Peltier

root is the formula that one wants to refute. The formula is refuted iff all the
branches are contradictory.

As usual with tableaux related methods, the aim of branching is to browse the
possible interpretations of the schema. As a schema interpretation assigns a truth
value to each atom and a number to each parameter, there are two branching
rules: one for atoms, called Propositional splitting (this rule assigns a value to
propositional variables, as the splitting rule in dpll), and one for parameters,
called Constraint splitting. However Constraint splitting does not give a value to
the parameters, but rather restricts their values by refining the constraint of the
schema (i.e. CS), e.g. the parameter can be either greater or lower than a given
integer, leading to two branches in the tableaux. Naturally, in order to analyze a
schema, one has to investigate the contents of iterations. So a relevant constraint
to use for the branching is the one that states the emptiness of some iteration. In
the branch where the iteration is empty, we can replace it by its neutral element
(i.e. 	 for

∧
and ⊥ for

∨
), which is done by Constraint splitting (this may also

entails the emptiness of some other iterations, and thus their replacement by
their neutral elements too, this is handled by Algebraic simplification). Then in
the branch where the iteration is not empty, we can unfold the iteration: this is
done by the Unfolding rule.

Iterations might occur in the scope of other iterations. Thus their domains
might depend on variables bound by the outer iterations. Constraint splitting
is of no help in this case, indeed it makes a branching only according to the
values of the parameter : bound variables are out of its scope. Hence we define
the rule Emptiness that can make a “deep” branching, i.e. a branching not in
the tree, but in the schema itself: it “separates” an iteration into two distinct
ones, depending on the constraint stating the emptiness of the inner iteration,
e.g.
∨n

i=1
∨i

j=3 Pi ∧ n ≥ 2 is replaced by
∨n

i=3
∨i

j=3 Pi ∨
∨2

i=1⊥ ∧ n ≥ 2.
Constraint splitting strongly affects the application of Propositional splitting.

Indeed Propositional splitting only applies on atoms occurring in all instances of
the schema (formalized by Definition 4), and we saw in Example 2 that this de-
pends on the constraint. Once an atom A is given the value true (resp. false) we
can replace it by	 (resp.⊥). But this is not as simple as in the propositional case
as A may occur in a realization of the schema without occurring in the schema
itself (e.g. P1 in

∧n
i=1 Pi (�)), so we cannot just replace it by 	. The simplification

is performed by the rule Expansion which wraps the indexed propositions that
are more general than the considered atom (Pi in (�)) with an iteration whose
domain is a disunification constraint stating that the proposition is distinct from
the atom (for (�) this gives:

∧n
i=1
∧

j|i �=1∧j=0 Pi). The introduced iteration is very
specific because the bound variable always equals 0 (this variable is not used but
we assign it 0 to satisfy the condition in Definition 1 that it has to be enclosed
by the domain). Whereas usual iterations shall be considered as “for loops”, this
one is an “if then else”. It makes sense when Emptiness or Constraint splitting
is applied: if the condition holds (i.e. if the wrapped proposition differs from the
atom) then the contents of the iteration hold (i.e. we keep the indexed propo-
sition) else the iteration is empty (i.e. we replace it by its neutral element). In
(�), Emptiness applies:

∧
i|1≤i≤n∧∃j(i �=1∧j=0)

∧
j|i �=1∧j=0 Pi ∧

∧
i|1≤i≤n∧∀j(i=1∨j�=0)	

A Decidable Class of Nested Iterated Schemata 299

(of course the domains can be simplified to allow reader-friendly presentation).
Then Algebraic simplification gives:

∧
i|1≤i≤n∧∃j(i �=1∧j=0) Pi, i.e.

∧n
i=2 Pi, as ex-

pected. This process may seem cumbersome, but it is actually a uniform and pow-
erful way of propagating constraints about nested iterations along the schema.

Finally we may know that an iteration is empty without knowing which value
of the bound variable satisfies the domain constraint. Then the Interval splitting
rule adds some constraints on the involved expressions to ensure this knowledge.

We now define dpll
� formally.

Definition 5 (Tableau). A tableau is a tree T s.t. each node α in T is labeled
with a pair (ST (α),LT (α)) containing a schema and a finite set of literals.

If α is the root of the tree then LT (α) = ∅ and ST (α) is called the root schema.
The transitive closure of the child-parent relation is written ≺. For a set of
literals L,

∧
L denotes the pattern

∧
L∈L L.

As usual a tableau is generated from another tableau by applying extension
rules written P

C (resp. P
C1|C2

) where P is the premise and C (resp. C1, C2) the
conclusion(s). Let α be a leaf of a tree T , if the label of α matches the premise
then we can extend the tableau by adding to α a child (resp. two children)
labeled with Cσ (resp. C1σ and C2σ), where σ is the matching substitution. A
leaf α is closed iff ΠST (α) is equal to ⊥ or CST (α) is unsatisfiable.

When used in a premise, S[π] means that the schema π occurs in S; when
used in a conclusion, S[π′] denotes S in which π has been substituted with π′.

Definition 6 (dpll
� rules). The extension rules are:

– Propositional splitting.
(S,L)

(S,L ∪ Pe1,...,ek
) (S,L ∪ ¬Pe1,...,ek

)

if either Pe1,...,ek
�� S or ¬Pe1,...,ek

�� S, and neither Pe1,...,ek
��

∧
L ∧CS

nor ¬Pe1,...,ek
��

∧
L ∧CS .

– Constraint splitting. For (Δ, ε) ∈ {(
∧

,), (
∨

,⊥)}:

(S[Δi|C π],L)
(S[Δi|C π] ∧ ∃iC,L) (S[ε] ∧ ∀i¬C,L)

if CS∧∀i¬C is satisfiable and free variables of C other than i are parameters.
– Rewriting:

(S1,L)
(S2,L)

where CS2 = CS1 and ΠS1 → ΠS2 by the following rewrite system:
• Algebraic simplification. For every pattern π:
¬	 → ⊥ π ∧ 	 → π π ∧ ⊥ → ⊥

∧
i|C 	 → 	 π ∧ π → π

¬⊥ → 	 π ∨ 	 → 	 π ∨ ⊥ → π
∨

i|C ⊥ → ⊥ π ∨ π → π

if Context(S1) ∧ ∃iC is unsatisfiable:
∧

i|C π → 	
∨

i|C π → ⊥
if Context(S1)⇒ ∃iC is valid and π does not contain i: Δi|C π → π

300 V. Aravantinos, R. Caferra, and N. Peltier

• Unfolding. For (�,Δ) ∈ {(∧,
∧

), (∨,
∨

)}:

Δ
i|C

π → π[e/i] � Δ
i|C∧i �=e

π if Context(S1)⇒ C[e/i] is valid

e can be chosen arbitrarily2.
• Emptiness. For (�,Δ) ∈ {(∧;

∧
), (∨;

∨
)}, (∇, ε) ∈ {(

∧
;), (

∨
;⊥)}:

Δ
i|C

(π[∇
i′|C′

π′])→ Δ
i|C∧∃i′C′

(π[∇
i′|C′

π′])� Δ
i|C∧∀i′¬C′

(π[ε])

if Context(S1) ∧ ∀i′¬C′ is satisfiable and i occurs freely in C′.
• Expansion.

Pe1,...,ek
→

∧
i|(e1 �=f1∨···∨ek �=fk)∧i=0

Pe1,...,ek
if Pf1,...,fk

∈ L

Pe1,...,ek
→

∨
i|(e1 �=f1∨···∨ek �=fk)∧i=0

Pe1,...,ek
if ¬Pf1,...,fk

∈ L

if Context(S1)∧e1 = f1∧· · ·∧ek = fk is satisfiable. i is a fresh variable.
– Interval splitting. For k, l ∈ IN, Δ ∈ {

∧
,
∨
}, � ∈ {<,≤,≥, >}:

(S[Δi|C∧k.i�e1∧l.i�e2 π],L)
(S[Δi|C∧k.i�e1 π] ∧ l.e1� k.e2,L) (S[Δi|C∧l.i�e2 π] ∧ l.e1 ��k.e2,L)

if every free variable of C is either i or a parameter, all variables of e1, e2
are parameters and k > 0, l > 0.

A derivation is a (possibly infinite) sequence of tableaux (Ti)i∈I s.t. I is either
IN or [0..k] for some k ≥ 0, and s.t. for all i > 0, Ti is obtained from Ti−1 by
applying a rule. A derivation is fair iff no leaf can be indefinitely “freezed” i.e.
either there is i ∈ I s.t. Ti contains an irreducible, not closed, leaf or if for all
i ∈ I and every leaf α in Ti there is j ≥ i s.t. a rule is applied on α in Tj .

Theorem 1 (Soundness and Completeness w.r.t. Satisfiability). Con-
sider a fair derivation (Ti)i∈I . T0 is satisfiable iff there is i ∈ I s.t. Ti contains
an irreducible and not closed leaf.

The proof can be found in [2], which also contains a dpll
� tableau example.

4 Looping Detection

The above extension rules do not terminate in general, but this is not surpris-
ing as the satisfiability problem is undecidable [1]. Non-termination comes from
the fact that iterations can be infinitely unfolded (consider e.g.

∨n
i=1 Pi ∧ ¬Pi),

thus leading to infinitely many new schemata. However, often, newly obtained

2 e.g. in Section 5 we choose the maximal integer fulfilling the desired property.

A Decidable Class of Nested Iterated Schemata 301

schemata have already been seen (up to some relation that remains to be de-
fined) i.e. the procedure is looping (e.g.

∨n
i=1 Pi ∧ ¬Pi generates

∨n−1
i=1 Pi ∧ ¬Pi,

then
∨n−2

i=1 Pi ∧ ¬Pi, then
∨n−k

i=1 Pi ∧ ¬Pi, which are all equal up to a shift of n).
This is actually an algorithmic interpretation of a proof by mathematical induc-
tion. We now define precisely the notion of looping. We start with a very general
definition:

Definition 7 (Looping). Let S1, S2 be two schemata having the same param-
eters n1, . . . , nk, we say that S1 loops on S2 iff for every model I of S1 there is
a model J of S2 s.t. ρJ (nj) < ρI(nj) for some j ∈ 1..k and ρJ (nl) ≤ ρI(nl) for
every l �= j. The induced relation among schemata is called the looping relation.

For instance, if S1 =
∨n−1

i=1 Pi and S2 =
∨n

i=1 Pi, take any model I of S1 and
construct a model J of S2 as follows: ρJ (n) def= ρI(n) − 1, and for every i ∈
1..ρJ (n), Jp(Pi)

def= Ip(Pi). It is easy to see that J is indeed a model. Similarly
S1 =

∨n
i=2 Pi loops on S2 =

∨n
i=1 Pi: take any model I of S1 and build a model

J of S2 as follows: ρJ (n) def= ρI(n) − 1, and for every i ∈ 1..ρJ (n), Jp(Pi)
def=

Ip(Pi+1). In both cases, it is intuitive that if dpll
� encounters S1 after having

seen S2, then it will behave similarly as for S2, hence the name of “looping”.
Notice that looping also applies e.g. with

∨n−1
i=1 Pi and

∨n
i=1 Qi, i.e. the name of

symbols does not matter. Looping is undecidable (e.g. if S2 = ⊥ then S1 loops
on S2 iff S1 is unsatisfiable). It is trivially transitive.

Definition 8. Let α, β be nodes in a tableau T . SLT (α) denotes the schema
ST (α) ∧

∧
LT (α). Then β loops on α iff SLT (β) loops on SLT (α).

The Looping rule closes a leaf that loops on some existing node of the tableau.
From now on, dpll

� denotes the extension rules, plus the Looping rule. Theorem
1 still holds [2]. The notion of loop introduced in Definition 8 is undecidable,
thus, in practice, we use decidable refinements of looping. Termination proofs
work by showing that the set of schemata which are generated by the procedure
is finite up to some looping refinement. We make precise this notion:

Definition 9. A binary relation between schemata is a looping refinement iff it
is a subset of the looping relation. Let S be a set of schemata and � a looping
refinement. A schema S ∈ S is a �-maximal companion w.r.t. S iff there is no
S′ ∈ S s.t. S � S′. The set of all �-maximal companions w.r.t. S is written S/�.
If it is finite then we say that S is finite up to �.

4.1 Equality Up to a Shift

We now present perhaps the simplest refinement of looping. A shiftable is a
schema, a linear constraint, a pattern, a linear expression or a tuple of those.
The refinement is defined on shiftables (and not only on schemata) in order to
handle those objects in a uniform way. This is useful in the termination proof of
Section 5 (and even more in [2]).

Definition 10. Let s, s′ be shiftables and n a variable. If s′ = s[n − k/n] for
some k > 0, then s′ is equal to s up to a shift of k on n, written s′ ⇒n s (or
s′ ⇒n

k s when we want to make k explicit).

302 V. Aravantinos, R. Caferra, and N. Peltier

For instance,
∨n−1

i=1 Pi ⇒n
1
∨n

i=1 Pi but
∨n

i=2 Pi �⇒n
∨n

i=1 Pi. As examples of shifta-
bles which are not schemata : n− 2 ⇒n

2 n and (∀i · n ≥ i) ⇒n
1 (∀i · n + 1 ≥ i).

The fact that we use syntactic equality makes the refinement less powerful
but simpler to implement and easier to reason with. It is easy to check that ⇒n

is a looping refinement when restricted to schemata having n as a parameter.
Furthermore ⇒n is transitive but neither reflexive, nor irreflexive. It is irreflexive
for shiftables containing n, and reflexive for shiftables not containing n.

We focus now on sets which are finite up to equality up to a shift, in short “⇒n-
finite”: termination proofs go by showing that the set of all schemata possibly
generated by dpll

� is ⇒n-finite, thus ensuring that the Looping rule will eventu-
ally apply. To prove such results we need to reason by induction on the structure
of a schema. To do this properly we need closure properties for ⇒n-finite sets i.e.
if we know that two sets are ⇒n-finite, we would like to be able to combine them
and preserve the ⇒n-finite property. This is generally not possible, e.g. for two
⇒n-finite sets of shiftables S1 and S2, the set S1×S2 (remember that shiftables
are closed by tuple construction) is generally not ⇒n-finite. For instance take
S1 = {Pn, Pn−1, Pn−2, , . . . } (S1 is ⇒n-finite with S1/⇒n = {Pn}) and S2 = {Pn}
(which is finite and thus ⇒n-finite). Then {(Pn, Pn), (Pn−1, Pn), (Pn−2, Pn), . . . }
is not ⇒n-finite: indeed for every i ∈ IN, (Pn−i, Pn) is a maximal companion
in S1 × S2, there is thus an infinite set of maximal companions. Consequently
S1 × S2 is not ⇒n-finite. Hence we have to restrict our closure operators.

Definition 11. Let n be a variable. A shiftable s is translated w.r.t. n iff for
every linear expression e occurring in s and containing n there is k ∈ Z s.t.
e = n+k (i.e. neither k.n nor n+ i are allowed, where k ∈ Z, k �= 0 and i ∈ IV).

Assume that s is translated w.r.t. n. The deviation of s w.r.t. n, written δ(s),
is defined as δ(s) def= max{k1− k2 | k1, k2 ∈ Z, n + k1, n+ k2 occur in s}. δ(s) def= 0
if s does not contain n. Let k ∈ IN, we write Bk

def= {s | δ(s) ≤ k}.

Theorem 2. Let S1 and S2 be two sets of shiftables translated w.r.t. a variable
n. If S1 and S2 are ⇒n-finite then, for any k ∈ IN, S1 × S2 ∩Bk is ⇒n-finite.

Consequently (assume all shiftables are translated w.r.t. n): {S1 �S2 | S1 ∈
S1, S2 ∈ S2} ∩Bk, where � ∈ {∧,∨}, is ⇒n-finite if S1 and S2 are ⇒n-finite;
and {(

∧
i|C ΠS)∧CS | S ∈ S, C ∈ C}∩Bk is ⇒n-finite if S and C are ⇒n-finite.

4.2 Refinement Extensions

We now define simple extensions that allow better detection. Consider for ex-
ample the schema S defined in Example 1. Using dpll

� there is a branch which
contains: S′ def= P1 ∧

∧n−1
i=1 (Pi ⇒ Pi+1) ∧ ¬Pn ∧ ¬Pn+1 ∧ n ≥ 0 ∧ n − 1 ≥ 0. S′

loops on S but S′ is not equal to S up to a shift. However ¬Pn+1 is pure in
S′ (i.e. Pn+1 �� S′) so ¬Pn+1 may be evaluated to true. Therefore we obtain
P1 ∧

∧n−1
i=1 (Pi ⇒ Pi+1) ∧ ¬Pn ∧ n ≥ 0 ∧ n − 1 ≥ 0, i.e. S[n − 1/n] ∧ n ≥ 0. But

n − 1 ≥ 0 entails n ≥ 0 so we can remove n ≥ 0 and finally get S[n − 1/n]. We
now generalise this example, thereby introducing two new looping refinements:
the pure literal extension and the redundant constraint extension.

A Decidable Class of Nested Iterated Schemata 303

As usual a literal L is (propositionally) pure in a formula φ iff its complement
does not occur positively in φ. The pure literal rule is standard in propositional
theorem proving: it consists in evaluating a literal L to true in a formula φ if
L is pure in φ. It is well-known that this operation preserves satisfiability. The
notion of pure literal has to be adapted to schemata. The conditions on L must
be strengthened in order to take iterations into account. For instance, if L = Pn

and S =
∨2n

i=1 ¬Pi then L is not pure in S since ¬Pi is the complement of L for
i = n (and 1 ≤ n ≤ 2n). However P2n+1 is pure in S (since 2n + 1 �∈ [1..2n]).

Definition 12. A literal L is pure in a schema S iff for every environment ρ
of S, |L|ρ is propositionally pure in |S|ρ.

It is easily seen that L is pure in S iff Lc ��� S, thus by decidability of ��, it is
decidable to determine if a literal is pure or not.

The substitution of an indexed proposition Pe1,...,ek
by a pattern π′ in a

pattern π, written π[π′/Pe1,...,ek
], is defined as follows: Pe1,...,ek

[π′/Pe1,...,ek
] def=

π′; Qf1,...,fk
[π′/Pe1,...,ek

] def= Qf1,...,fk
if P �= Q or fi �= ei for some i ∈ [1..k];

(π1 �π2)[π′/Pe1,...,ek
] def= π1[π′/Pe1,...,ek

] �π2[π′/Pe1,...,ek
]; (Δi|C π)[π′/Pe1,...,ek

]
def= Δi|C π[π′/Pe1,...,ek

]. For a schema S, we set S[π′/Pe1,...,ek
] def= ΠS [π′/Pe1,...,ek

].

It is easy to show that for a literal L which is pure in a schema S, if S (resp.
S[/L]) has a model I then S[/L] (resp. S) has a model J s.t. ρI(n) = ρJ (n)
for every parameter n of S. A schema S in which all pure literals have been
substituted with 	 is written purified(S).

Definition 13. Let � be a looping refinement. We call the pure extension of �
the relation �′: S1 �′ S2 ⇔ purified(S1) � purified(S2).

�′ is easily proved to be a looping refinement.
Finally we describe the redundant constraint extension:

Definition 14. Any normal form of a schema S by the following rewrite rules:

C1 ∧ · · · ∧ Ck → C1 ∧ · · · ∧ Ck−1 if {C1, . . . , Ck−1} |= Ck

C → ⊥ if C is unsatisfiable
is called a constraint-irreducible schema of S.

By decidability of satisfiability in linear arithmetic, it is easy to compute a
constraint-irreducible schema of S.

Definition 15. Let � be a looping refinement. We call the constraint-irreducible
extension of � the relation �′ s.t. for all S1, S2, S1 �′ S2 iff there exists S′

1 (resp.
S′

2) a constraint-irreducible schema of S1 (resp. S2) s.t. S′
1 � S′

2.

Once again �′ is easily proved to be a looping refinement.

5 A Decidable Class: Regularly Nested Schemata

Definition 16 (Regularly Nested Schema). An iteration Δi|C π is framed
iff there are two expressions e1, e2 s.t. C ⇔ e1 ≤ i ∧ i ≤ e2. [e1..e2] is called the
frame of the iteration. A schema S is:

304 V. Aravantinos, R. Caferra, and N. Peltier

– Monadic iff all indexed propositions occurring in S have only one index.
– Framed iff all iterations occurring in it are framed.
– Aligned on [e1..e2] iff it is framed and all iterations have the same frame

[e1..e2].
– Translated iff it is translated (Def.11) w.r.t. every variable occurring in it.
– Regularly Nested iff it has a unique parameter n, it is monadic, translated

and aligned on [k..n− l] for some k, l ∈ Z.

Notice that regularly nested schemata allow the nesting of iterations. But they
are too weak to express the binary multiplier presented in the Introduction (since
only monadic propositions are considered). However

∧n
i=1
∨n

j=1(Pi ⇒ Qj+1) ∧∧n
i=1 ¬Qi+1 ∧

∨n
i=1 Pi, for instance, is a regularly nested schema: it is obviously

monadic; all its iterations have the same domain 1 ≤ i ∧ i ≤ n so they are
clearly framed and aligned on [1..n] (so we have indeed the required alignment
for k = 1 and l = 0); it is translated as no multiplication nor addition between
variables occur inside the schema; finally it has of course only one parameter:
n. Also, though not needing the nesting of iterations the ripple-adder presented
in the introduction is a regularly nested schema. So is a carry look-ahead adder
or an arithmetic comparison circuit, or actually any circuit performing linear
arithmetic computations on bit-vectors of arbitrary size. One can also express
the inclusion of a finite automaton into another one, and similarly for alternating
automata.

We divide Constraint splitting into two disjoint rules: framed -Constraint split-
ting (resp. non framed -Constraint splitting) denotes Constraint splitting with the
restriction that Δi|C π (following the notations of the rule) is framed (resp. not
framed). We consider the following strategy S for applying the extension rules
on a regularly nested schema:

1. First only framed-Constraint splitting is applied until irreducibility.
2. Then all other rules except Unfolding are applied until irreducibility with

the restriction that Expansion rewrites Pe1 iff e1 contains no variable other
than the parameter of the schema.

3. Finally only Unfolding is applied until irreducibility, with the restriction that
if the unfolded iteration is framed then e (in the definition of Unfolding) is
the upper bound of the frame. We then go back to 1.

For the Looping rule we use equality up to a shift with its pure and constraint-
irreducible extensions. It is easy to prove that S preserves completeness.

Theorem 3. S terminates on every regularly nested schema.

Proof. (Sketch) We show that the set {SLT (α) | α is a node of T } — i.e.
the set of schemata generated all along the procedure — is finite up to the
constraint-irreducible and pure extensions of equality up to a shift. As SLT (α) =
ΠST (α) ∧ CST (α) ∧

∧
LT (α), this set is equal to {ΠST (α) ∧ CST (α) ∧

∧
LT (α) |

α is a node of T }. So the task can approximately be divided into four: prove
that the set of patterns is finite up to a shift, prove that the set of constraints
is finite up to a shift, prove that the set of partial interpretations is finite up to
a shift and combine the three results thanks to Theorem 2.

A Decidable Class of Nested Iterated Schemata 305

Among those tasks, the hardest is the first one, because it requires an induc-
tion on the structure of ΠST (α). For this induction to be achieved properly we
need to “trace” the evolution under S of every subpattern of ΠST (α). A subpat-
tern can be uniquely identified by its position. So we extend dpll

� into t-dpll
�

(for Traced dpll
�), by adding to the pair (ST (α),LT (α)) labelling nodes in

dpll
� a third component containing a set of positions of ΠST (α). Along the ex-

ecution of the procedure, this subpattern may be moved, duplicated, deleted,
some context may be added around it, some of its subpatterns may be modified.
Despite all those modifications, we are able to follow the subpattern thanks to
the set of positions in the labels.

As usual, a position is a finite sequence of natural numbers, ε denotes the
empty sequence, s1.s2 denotes the concatenation of s1 and s2 and ≤ denotes the
prefix ordering. The positions of a pattern π are defined as follows: ε is a position
in π; if p is a position in π then 1.p is a position in ¬π,

∧
i|C π and

∨
i|C π; let

i ∈ {1, 2}, if p is a position in πi then i.p is a position in π1 ∨ π2 and π1 ∧ π2.
For two sequences s1, s2 s.t. s2 is a prefix of s1, s2 \ s1 is the sequence s.t.

s2.(s2 \ s1) = s1. In particular for two positions p1, p2 s.t. p2 is a prefix of p1,
p2\ p1 can be seen as the position relatively to p2 of the subterm in position p1.

Definition 17 (t-dpll
�). A t-dpll

� tableau T is the same as a dpll
� tableau

except that a node α is labeled with a triple (ST (α),LT (α),PT (α)) where PT (α)
is a set of positions in ΠST (α). t-dpll

� keeps the behavior of dpll
� for ST (α)

and LT (α), we only describe the additional behavior for PT (α) as follows: p→
p1, . . . , pk means that p is deleted and p1, . . . , pk are added to PT (α).

– Splitting rules and the Expansion rewrite rule leave PT (α) as is.
– Rewrite rules. We write q for the position of the subpattern of ΠS which is

rewritten. We omit Emptiness as it never applies.
• Algebraic simplification. For p > q:

p→ q.(1\ (q\ p))
for rules where π occurs on both sides of the rewrite
(following the notations of Definition 6), and if p
is the position of a subpattern of π

p→ ∅ otherwise

• Unfolding. For p > q : p→ q.1.(q\ p), q.2.1.(q\ p)

(Interval splitting and Emptiness are untouched as they never apply when the
input schema is regularly nested, see [2])

From now on, T is a t-dpll
� tableau whose root schema is regularly nested of

parameter n and of alignment [k..n− l] for some k, l ∈ Z.
The set {SLT (α) | α is a node of T } is actually not finite up to a shift. We

have to restrict ourselves to a particular kind of nodes, called alignment nodes.
Then {SLT (α) | α is an alignment node of T } will indeed be finite up to a shift.
A node of T is an alignment node iff it is irreducible by step 2 of S. It is easy
to check that every alignment node is framed and aligned on [k..n − l − j] for
some j > 0. Thus every alignment node is regularly nested. Furthermore, by
irreducility w.r.t. the Propositional splitting and Expansion rules, the parameter

306 V. Aravantinos, R. Caferra, and N. Peltier

n only occurs in the domain of the iteration (otherwise the corresponding literal
would be added into L). It can be shown (see [2] for details) that each of the
steps 1-3 terminates. Thus every branch b containing a node α is either finite or
contains an alignment node β ≺ α, i.e. an alignment node is always reached.

Once this preliminary work is done, we can tackle the four aforementioned
tasks. Finiteness (up to a shift) of {ΠST (α) | α is an alignment node of T } is
proved by induction: t-dpll

� enables to reason by induction and Theorem 2
enables to make use of the inductive hypotheses to prove each inductive case.
Finiteness of {CST (α) | α is an alignment node of T } is proved thanks to the
constraint-irreducible extension of equality up to a shift. Finiteness of {

∧
LT (α) |

α is an alignment node of T } is proved thanks to the pure literal extension of
equality up to a shift. Finally Theorem 2 enables to combine the three results.

See [2] for the detailed proof. �!

6 Conclusion

We have presented a proof procedure, called dpll
�, for reasoning with proposi-

tional formula schemata. The main originality of our calculus is that the inference
rules may apply at a deep position in a formula, a feature that is essential for
handling nested iterations. A looping mechanism is introduced to improve the
termination behavior. We defined an abstract notion of looping which is very
general, then instantiated this relation into a more concrete version that is de-
cidable, but still powerful enough to ensure termination in many cases.

We identified a class of schemata, called regularly nested schemata, for which
dpll

� always terminates. This class is much more expressive than the class of
regular schemata handled in [1]. The principle of the termination proof is (to
the best of our knowledge) original: we investigate how a given subformula is
affected by the application of extension rules on the “global” schema. This is done
by defining a “traced” version of the calculus in which additional information is
provided concerning the evolution of a specific subformula (or set of subformulae,
since a formula may be duplicated). This also required a thorough investigation
of the properties of the looping relation. We think these ideas could be reused to
prove termination of other calculi, sharing common features with dpll

� (namely
calculi that operate at deep levels inside a formula and that allow cyclic proofs).

We do not know of any similar work in automated deduction. Schemata
have been studied in logic (see e.g. [8,12]) but our approach is different from
these (essentially proof theoretical) works both in the particular kind of tar-
geted schemata and in the emphasis on the automation of the proposed calculi.
However one can find similarities with other works.

Iterations are closely related to fixed-point constructions, in particular in the
(modal) μ-calculus3 [4] (with

∧n
i=1 φ translated into something like μX.φ ∧X).

However the semantics are very different: that of iterated schemata is restricted
to finite models (since every parameter is mapped to an integer, the obtained
interpretation is finite), whereas models of the μ-calculus may be infinite. Hence

3 In which many temporal logics e.g. CTL, LTL, and CTL* can be translated.

A Decidable Class of Nested Iterated Schemata 307

the involved logic is very different from ours and actually simpler from a the-
oretical point of view: the μ-calculus admits complete proof procedures and is
decidable, whereas schemata enjoy none of those properties. The relation be-
tween schemata and the μ-calculus is analogous to the relation between finite
model theory [10] and classical first-order logic. The detailed comparison of all
those formalisms is worth investigating but out of the scope of the present work.

One can also translate schemata into first-order logic by turning the iterations
into (bounded) quantifications i.e.

∧n
i=1 φ (resp.

∨n
i=1 φ) becomes ∀i(1 ≤ i ≤

n ⇒ φ) (resp. ∃i(1 ≤ i ≤ n ∧ φ)). This translation is completed by quantifying
universally on the parameters and by axiomatizing first-order linear arithmetic.
Then one can use inductive theorem provers [6,5]. For such provers, the only
decidability results that we know of are due to Kapur et al. (see e.g. [11]) but
they do not apply to the formulae obtained by the above translation: they all
deal with formulae of the form ∀x.φ where φ is quantifier-free. However another
translation is possible that is better suited to those results: inductive theorem
provers are designed to prove results about recursively defined functions (e.g. ∀x·
double(x) = x + x where double is defined by double(0) def= 0 and double(s(x)) =
s(s(double(x)))), and it happens that we can define iterations with recursive
functions e.g.

∨n
i=1 Pi can be defined by f(0) def= ⊥ and f(s(i)) def= P (i) ∨ f(i),

where P is an uninterpreted symbol. And indeed ACL2 [3] is able to prove some
very simple schemata translated this way. However such formulae still does not
fit the shape required for the results in [11], due to the presence of uninterpreted
symbol functions in the recursive definitions.

Future work includes the implementation of the dpll
� calculus and the in-

vestigation of its practical performances. It would also be interesting to extend
the termination result in Section 5 to non monadic schemata. Extension of the
previous results to first-order logic is also planned.

References

1. Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus For Propositional
Logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
32–46. Springer, Heidelberg (2009)

2. Aravantinos, V., Caferra, R., Peltier, N.: A Decidable Class of Nested Iter-
ated Schemata (extended version). Technical report, Laboratory of Informatics
of Grenoble (2010), http://arxiv.org/abs/1001.4251

3. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, New York
(1979)

4. Bradfield, J., Stirling, C.: Modal Mu-Calculi. In: Blackburn, P., van Benthem,
J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Prac-
tical Reasoning, vol. 3. Elsevier Science Inc., New York (2007)

5. Bundy, A.: The Automation of Proof by Mathematical Induction. In: [13], pp.
845–911

6. Comon, H.: Inductionless induction. In: [13], ch. 14
7. Cooper, D.: Theorem proving in arithmetic without multiplication. In: Meltzer, B.,

Michie, D. (eds.) Machine Intelligence, vol. 7. Edinburgh University Press (1972)

http://arxiv.org/abs/1001.4251

308 V. Aravantinos, R. Caferra, and N. Peltier

8. Corcoran, J.: Schemata: the concept of schema in the history of logic. The Bulletin
of Symbolic Logic 12(2), 219–240 (2006)

9. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Communication of the ACM 5, 394–397 (1962)

10. Fagin, R.: Finite-Model Theory - A Personal Perspective. Theoretical Computer
Science 116, 3–31 (1993)

11. Kapur, D., Subramaniam, M.: Extending Decision Procedures with Induction
Schemes. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 324–345.
Springer, Heidelberg (2000)

12. Orevkov, V.P.: Proof schemata in Hilbert-type axiomatic theories. Journal of Math-
ematical Sciences 55(2), 1610–1620 (1991)

13. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
volumes). Elsevier, Amsterdam (2001)

RegSTAB: A SAT Solver for Propositional
Schemata�

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

Grenoble University (LIG/CNRS)

Abstract. We describe the system RegStab (for regular schemata
tableau) that solves the satisfiability problem for a class of propositional
schemata. Our formalism extends propositional logic by considering in-
dexed propositions (such as P1, Pi, Pj+1, . . .) and iterated connectives
(e.g.

∨n

i=i φ). The indices and bounds are linear arithmetic expressions
(possibly containing variables, interpreted as integers). Our system al-
lows one to check the satisfiability of sequences of formulae such as
(
∨n

i=1 Pi) ∧ (
∧n

i=1 ¬Pi).

1 Introduction

Propositional logic is widely used in many domains such as artificial intelligence,
automated reasoning, program verification or circuit design. Very efficient sys-
tems (SAT solvers) have been developed for deciding satisfiability (see e.g. [1]
for a survey). Frequently, propositional specifications are parameterized by a
natural number that encodes for instance the size of the data. As a typical ex-
ample, consider the following formula, implementing a n-bits adder. ⊕ denotes
the exclusive OR, A,B denote the operands, S denotes the result, C the vector
of carries and Xi the i-th bit of X .

¬C1 ∧
∧n

i=1(Ci+1 ⇔ [(Ai ∧Bi) ∨ (Ai ∧ Ci) ∨ (Bi ∧ Ci)])∧n
i=1(Si ⇔ (Ai ⊕Bi)⊕ Ci)

Various properties can be verified on this specification, for instance the following
formula checks that A + 0 = A: (

∧n
i=1 ¬Bi)⇒

∧n
i=1(Ai ⇔ Si).

The usual way of handling such a specification is by giving a value to n
(e.g. n = 8, 16, 64, . . .). Then the iterated connectives

∧n
i=1 may be expanded

into standard ones (∧), yielding a propositional formula that can be handled
by a SAT solver (if the value of n is not too big). In this paper we describe a
system called RegStab (standing for regular schemata tableau) that is able to
reason directly on such schemata to prove that they are valid or unsatisfiable
for every value of n ∈ IN (or n ∈ Z). This problem obviously requires some
form of inductive reasoning (on n). It is actually undecidable if arbitrary indices
and iterations are considered [2] but it is decidable for a (reasonably expressive)
subclass of schemata, that we call regular. The prover uses a tableaux-based
decision procedure. It is fully automatic (no human guidance is needed) and has
been optimized to be reasonably efficient.
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 309–315, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

310 V. Aravantinos, R. Caferra, and N. Peltier

2 Regular Schemata: Formal Definitions

For the sake of conciseness, we only give the formal definitions for the specific
class of schemata handled by RegStab (general definitions can be found in [2]).

Let P be a set of propositional symbols and let V be a set of arithmetic variables.

Definition 1. An atom is an expression of the form Pa or Pn+a where P ∈ P,
n ∈ V and a ∈ Z. The set of atoms of the form Pa (resp. Pn+a) is denoted by A
(resp. A(n)). An n-iteration body is a propositional formula built on the set of
atoms A(n) and on the set of logical connectives ∨,∧,⇒,⇔,¬.

Let n ∈ V, a, b ∈ Z. The set of regular schemata of bounds a, n− b (or simply
schemata) is written Rn−b

a and inductively defined as follows:
• A ∪ A(n) ∪ {	,⊥} ⊆ Rn−b

a .
• If φ, ψ ∈ Rn−b

a then (φ ∨ ψ), (φ ∧ ψ), (φ⇒ ψ), (φ⇔ ψ) ∈ Rn−b
a .

• If φ ∈ Rn−b
a then (¬φ) ∈ Rn−b

a .

• If i ∈ V, φ is an i-iteration body then
∨n−b

i=a φ,
∧n−b

i=a φ ∈ Rn−b
a .

n is called the parameter of the schema.

Example 1. Let φ1
def= [Pn+1 ∧ ¬P0], φ2

def= [P1 ∧ (
∧n

i=1 Pi ⇔ Pi+2) ∧ ¬Pn] and
φ3

def= [¬Pn+2 ∧
∨n+1

i=0 Pi+1 ∧
∧n+1

j=0 ¬Pj]. φ1 ∈ Rn−b
a for every a, b ∈ Z. φ1 is

an n-iteration body. φ2 ∈ Rn−0
1 and φ3 ∈ R

n−(−1)
0 . The adder defined in the

introduction belongs to Rn−0
1 .∨n

i=1 Pi∧
∧n−1

i=0 ¬Pi+1 and
∨n

i=1 Pi+n are not regular schemata: in the former
case the two iterations have distinct bounds and in the latter the index is not of
the form i + a for a ∈ Z.

We forbid arithmetic expressions of the form e.g. n+ i or i+ i. This restriction
is essential for decidability. However, the fact that the iterations have the same
bounds is not so important since in many cases this property can be easily
ensured by “unfolding” the iterated connectives.

Schemata are interpreted by giving a value to the parameter n and mapping
every ground index proposition Pk to a truth value. Formally:

Definition 2. An interpretation I of a formula φ ∈ Rn−b
a is a function mapping

n to an integer and mapping every indexed proposition Pc where P ∈ P, c ∈ Z
to a truth value T or F .

Let c ∈ Z. If φ is an i-iteration body then φ[c] denotes the formula obtained
by replacing every atom Pi+d occurring in φ by Pc+d. If φ ∈ Rn−b

a then φ[c]
denotes the formula obtained by replacing every atom Pn+d by Pc+d and every i-
iteration

∨n−b
i=a ψ (resp.

∧n−b
i=a ψ) by the (standard) disjunction (resp. conjunction)

ψ[a] ∨ . . . ∨ ψ[c − b] (resp. ψ[a] ∧ . . . ∧ ψ[c − b]). Notice that the disjunction or
conjunction is empty if c − b < a, in which case it is equivalent to ⊥ or to 	,
by convention. If c− b = a then the disjunction or conjunction is equivalent to
ψ[a]. Obviously φ[c] is a standard propositional formula built on A, thus every
interpretation I of φ is also an interpretation of φ[c] (except that the mapping
of n is useless for φ[c]). Propositional formulae are interpreted as usual.

RegSTAB: A SAT Solver for Propositional Schemata 311

Definition 3. Let φ ∈ Rn−b
a . An interpretation I is a model of φ (written

I |= φ) iff I |= φ[I(n)]. φ is satisfiable iff it has a model.

Consider the formulae φ1, φ2, φ3 defined in Example 1. φ1 and φ2 are satisfiable
but not valid (if I |= φ1 then I(n) �= −1 and if I |= φ2 then I(n) must be even).
φ3 is unsatisfiable.

In many cases, it is useful to add arithmetic constraints to the schema, for
instance

∧n
i=1(Pi ∧ ¬Pi) is valid if n < 1 and unsatisfiable if n ≥ 1. Thus we

actually consider pairs φ | C where φ is a schema and C is an arithmetic atom of
the form n ≤ a, n ≥ a, n > a, n < a or n = a where a ∈ Z. We write I |= φ | C
iff I |= φ and I |= C (arithmetic constraints are interpreted as usual).

An obvious method to check whether a (constrained) schema is satisfiable or
not is to enumerate all possible interpretations. This naive procedure does not
terminate when the schema is unsatisfiable. The reader can refer to [2,3,4] for
informal comparisons with existing languages and discussions.

3 Proof Procedure

The proof procedure (called Stab) used by RegStab is introduced in [2]. Stab

handles general schemata (not only regular ones). It is sound and complete for
satisfiability (i.e. it always returns a model if the considered schema is satisfiable)
and it terminates on every regular schema (in double exponential time [3]). It is
based on an extension of the tableaux method for propositional logic.

For the sake of efficiency RegStab does not implement the full procedure
Stab: it only handles the regular schemata defined in section 2, using a strategy
specifically tuned for this class (sketched in Section 5). This restriction permits
to define an always terminating, fully automatic program. Several optimizations
have been incorporated in order to improve efficiency.

We briefly review the proof procedure. The nodes in the tableaux are labeled
by sets of formulae that are either schemata or arithmetic constraints. All the
schemata have the same parameter n that is also the only (free) variable occur-
ring in the constraints. The notion of models and satisfiability extend straight-
forwardly to sets of formulae. Initially, the root is labeled by {φ, C} where φ | C
is the considered constrained schemata (as defined in Section 2). The tableaux
are constructed by extension rules of the form φ1,...,φa

ψ1|...|ψb
meaning that a leaf node

labeled by Φ ∪ {φ1, . . . , φa} can be extended by b new child nodes labeled by
Φ ∪ {ψc} (where 1 ≤ c ≤ b).

To describe these rules, we need to introduce two additional definitions. A
schema ψ occurs positively in φ iff it occurs in the scope of an even number of
negation symbols (taking into account “hidden” negations, i.e. P occurs posi-
tively in Q ⇒ P or in ¬P ⇒ Q but not in P ⇒ Q). A literal l is pure in a set
of formulae Φ of parameter n iff for every model I of Φ and for every formula
φ ∈ Φ, the complement of l does not occur positively in φ[I(n)].

If Φ, Ψ are two sets of formulae of parameter n, we say that Φ loops on Ψ iff
for every model I of Φ there exists a model J of Ψ such that J(n) < I(n). A leaf
in the tree is looping iff its label loops on the label of the previous node in the
branch. The previous relation is actually undecidable, thus a stronger criterion

312 V. Aravantinos, R. Caferra, and N. Peltier

is used: we check that Ψ can be obtained from Φ by replacing the parameter n
by n− a, where a > 01. The extension rules of Stab are defined as follows.

• The usual rules of propositional tableaux:
φ ∧ ψ
φ ψ

φ ∨ ψ
φ ψ

• Rules proper to schemata (“iteration rules”)2:∧n−b
i=a φ

n− b ≥ a∧n−b−1
i=a φ ∧ φ[n − b]

n− b < a

∨n−b
i=a φ

n− b ≥ a∨n−b−1
i=a φ ∨ φ[n− b]

• The closure rule adds disunification constraints to the branch (using the same

idea as in e.g. [5] or [6]):
Pa ¬Pb

Pa,¬Pb, a �= b

• The purity rule removes pure literals from the branch3 and the looping rule
closes looping leaves.

A branch is closed iff it contains ⊥, if the constraints in it are unsatisfiable (mod-
ulo arithmetic) or if it is looping. Intuitively, the previous rules try to construct
in a symbolic way all possible tableaux starting from the root, depending on the
different possible values for n. This is done in a lazy way, i.e. the instantiation
of n is postponed until it is necessary to apply a rule (e.g. to decide whether
an iteration is empty or not or whether a branch contains two complementary
literals). The looping rule allows one to discard infinite derivations by detecting
cycles in the proof search.

4 The System

RegStab is available at http://regstab.forge.ocamlcore.org/. It is written
in OCaml and was successfully tested on MacOSX (10.5), Win32 (Windows XP
SP3) and GNU Linux (Ubuntu 9.04) x86 platforms. The system comes with a
(short) manual including installation and usage instructions and a description of
the input syntax. Functions can be defined to make the input file more readable
(see Sum(i) and Carry(i) below). Here is an input file for the adder example
in the Introduction.

// A+0=A

let Sum(i) := S_i <-> (A_i (+) B_i (+) C_i) in

let Carry(i) := C_i+1 <-> (A_i /\ B_i \/ C_i /\ A_i \/ C_i /\ B_i) in

let Adder := /\i=1..n (Sum(i) /\ Carry(i)) /\ ~C_1 in

1 A much more comprehensive criterion is proposed in [2] but the previous one is
simpler to implement and sufficient to ensure termination.

2 The right branch in the conclusion of the Iterated ∧-rule is required, e.g. to detect
that

∧n
i=1 ⊥ is satisfiable with n = 0.

3 Only top-level literals are removed: simplifying positive occurrences is not straight-
forward since these occurrences are not necessarily explicit (e.g. p2 “occurs” in∨n

i=1 pi if n > 1). The interest reader can refer to [4] for more details about this
problem.

RegSTAB: A SAT Solver for Propositional Schemata 313

let NullB := /\i=1..n ~B_i in

let Conclusion := \/i=1..n (A_i (+) S_i) in

Adder() /\ NullB() /\ Conclusion()

The software simply prints the status of the schema (satisfiable or unsatisfi-
able). Options are provided to get more information about the search space
(number of inference rules, depth of unfolding etc.). See the manual for details.
An additional tool is offered to expand the schema into a propositional formula
in DIMACS format (by fixing the value of n). Several examples are available
in the distribution (encoding various properties of n-bits adders, automata in-
clusion and Presburger arithmetic formulae). For instance, the associativity of
the ripple-carry adder runs in about 2s with about 240000 applications of the
propositional inference rules and 422 applications of the iteration rules.

5 Implementing the Proof Procedure

The Strategy. [2] describes a simple strategy for ensuring termination on reg-
ular schemata:
• The propositional extension, looping, closure and purity rules are applied

with the highest priority.
• The iteration rules are applied only on iterations of maximal length. More

precisely, an iteration Πn−b
i=a is eligible only if n− b− a is maximal w.r.t. the

usual ordering between arithmetic expressions. For instance, if the current
branch contains both

∨n
i=1 pi and

∧n−1
i=1 qi then the decomposition rules do

not apply on
∧n−1

i=1 qi.
To improve efficiency, we need to strengthen the application conditions of the
rules. The heaviest operation is of course the looping rule: we have to store all
the previously generated sets into a database and to check at each step whether
the current set occurs in the database (up to a shift on the parameter). From a
practical point of view, the database must be kept as small as possible. Fortu-
nately, from the proof of termination in [2] we know we can ensure termination
by checking looping just after the purity rule. As a consequence this is also the
best place to insert a node in the database.

The purity rule is also costly because one has to go over every literal in the
node. By chance, it is only needed for applying the looping rule. Thus we can
apply the purity rule only once; and the ideal place for this is just after all
propositional extension rules. So we get the following strategy:
• Propositional extension and closure rules are applied until saturation.
• The purity literal, looping and iteration rules are applied, in that order.
• Back to the beginning.

Handling Indices in the Closure Rule. The purity and closure rules re-
quire the handling of arithmetic constraints, which is easy from a theoretical
point of view but drastically reduces the efficiency. For instance ¬P3 is not pure
in
∧n

i=1 Pi ⇒ Pi+1 in general, but it is pure if n < 2. The indices must be

314 V. Aravantinos, R. Caferra, and N. Peltier

compared w.r.t. the arithmetic constraints occurring in the branch. This problem
is well known to be very complex in general. Furthermore, this prevents us from
using efficient data-structures such as search trees or hash-tables. However, due to
the restrictions on regular schemata and to the fact that the rules do not need the
whole expressive power of linear arithmetic, we can easily optimize the handling of
those rules. We only detail the case of the closure rule (the purity rule is presented
in [3]).

First, notice that the constraints that are added to the nodes always have the
form n − b ≥ a or n − b < a (where n denotes the parameter and a, b ∈ Z). By
definition, the initial constraints (those occurring at the root level) are of the
form n ≥ c or n < c. So it is easily seen that any conjunction of such constraints
can be normalized to one of the forms 	, ⊥, n = c, n ≥ c, n < c, or n ≥ c1∧n < c2
(with c1 �= c2 − 1). Among those forms only n = c (and ⊥) can entail a = b
for two syntactically distinct indices a, b. As a consequence either the constraint
is not of the form n = c in which case syntactic equality can be used, or it
is of the form n = c in which case we just substitute n with c and eliminate
the arithmetic parameter. Then we can construct a search tree and look for the
negation of the literal. Of course constructing this tree each time we look for a
single literal is absurd. To enable the reuse of this tree, we observe that when
the closure rule applies, the only other rules that can apply are propositional
extension rules, which do not affect the constraints in the branch, thus we do
not need to reconstruct the tree.

Looping. Of course the heaviest task is the maintenance and look up of the
database. Once again because of the arithmetic constraints we cannot directly
use classical data structures. But again we can define a normal form for which
syntactic equality is sufficient. First of all, notice that the labels do not need
to be sets: lists are sufficient. This does not affect termination: the number of
possible nodes is still finite, though much bigger. Complexity is transferred from
the looping rule to the whole algorithm. It seems we did not gain anything but
actually switching from sets to lists has many advantages: a total order can
easily be defined between lists, thus a set of labels may be represented through a
search tree. Similarly a hash function compatible with equality is much easier to
define and can be computed much faster than with sets. Finally, sets of lists are
canonically handled by a usual data structure: tries [7]. The membership test is
linear in the size of the label and independent of the size of the set4.

In practice, it can be observed that switching from sets to lists does not really
increase the length of the branch (i.e. no cycle is “missed”). Indeed when a set
Φ loops on Ψ , each schema in Φ loops on an element of Ψ . Often the elements
that loop on each other have the same “role”, i.e. they come from the same
subterm of the original schema. As the order of the rules is deterministic in our
implementation these elements will often occur in the same position in the list.

6 Conclusion

We described a theorem prover for iterated schemata of propositional formulae.
This system is able to check (for a large class of schemata) that a sequence
4 Our implementation is actually not as efficient, but is sufficient in practice.

RegSTAB: A SAT Solver for Propositional Schemata 315

of propositional formulae depending on a parameter n is valid or unsatisfiable
for every value of n ∈ Z. This obviously requires some form of mathematical
induction, which is achieved in our context by a cycle detection rule (the looping
rule). We are not aware of any existing system offering similar features (in order
to use a SAT solver, n must be instantiated). The problems we consider could be
encoded into general purpose higher-order systems, but such systems are usually
not suitable for fully automated, efficient, theorem proving.

Future work includes the extension of RegStab to non regular schemata,
which can be achieved in many cases by translating the considered problem
into a regular one. Some useful features will be added, for instance the program
could return models of satisfiable formulae5. Refutation schemata could be con-
structed in case the formula is unsatisfiable. It should be noticed that currently,
as it can be expected, our system is not very efficient when restricted to purely
propositional logic (because it uses a very straightforward decision procedure).
Thus combining it with more efficient SAT solvers that could be in charge of
the propositional part is a very natural idea. However this is not straightfor-
ward since such systems cannot be simply used as “black boxes”, mainly due
to the fact that a partial evaluation is needed to propagate the values into the
iterations. The implementation of the DPLL-based procedure in [8] will also
be considered. This will have the advantage that some optimizations that have
been proposed in order to improve the efficiency of the DPLL procedure could
be incorporated into our system.

References

1. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: A comparative survey. ACM Comput. Surv. 38(4) (2006)

2. Aravantinos, V., Caferra, R., Peltier, N.: A schemata calculus for propositional logic.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 32–46.
Springer, Heidelberg (2009)

3. Aravantinos, V., Caferra, R., Peltier, N.: Complexity of the satisfiability problem
for a class of propositional schemata. In: LATA 2010 (Language, Automata Theory
and Applications). LNCS. Springer, Heidelberg (2010)

4. Aravantinos, V., Caferra, R., Peltier, N.: A Decidable Class of Nested Iterated
Schemata. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173,
pp. 293–308. Springer, Heidelberg (2010)

5. Giese, M.: Simplification rules for constrained formula tableaux. In: Cialdea Mayer,
M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 65–80. Springer,
Heidelberg (2003)

6. Caferra, R., Zabel, N.: Building models by using tableaux extended by equational
problems. Journal of Logic and Computation 3, 3–25 (1993)

7. Fredkin, E.: Trie memory. ACM Commun. 3(9), 490–499 (1960)
8. Aravantinos, V., Caferra, R., Peltier, N.: A DPLL proof procedure for propositional

iterated schemata. In: Workshop “Structures and Deduction 2009” (ESSLI), pp.
24–38 (2009)

5 The extraction of the model from irreducible open branches is straightforward but
it has been avoided in the current implementation for efficiency reasons.

Linear Quantifier Elimination as an Abstract
Decision Procedure

Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
nbjorner@microsoft.com

Abstract. This paper develops abstract quantifier elimination proce-
dures for linear arithmetic over the reals and integers. They are formu-
lated as theory solvers in the context of an abstract DPLL-based search.
The resulting procedures allow the solvers to maintain integral control of
the search process. We also evaluate this procedure and compare it with
several alternatives. So far, the evaluation indicates that the proposed
approach has some compelling advantages.

1 Introduction

Quantifier elimination for linear arithmetic remains a classical but timely chal-
lenge for automated deduction tools. Applications ranging from program ana-
lyzers based on separation logic [4], [6] to predicate abstraction [18] rely on tools
for performing quantifier elimination.

Our current work draws motivation from two main sources. The first motiva-
tion was exploiting the benefits of efficient DPLL search and decision procedures
based on integer linear programming for quantifier-elimination. The work in [13]
addresses linear arithmetic over the reals. It uses an All-SMT loop to enumerate
satisfiable monomes (conjunctions of literals), and applies quantifier elimination
procedures on the monomes. A second motivation came from the application of
quantifier elimination for predicate abstraction [18] where a large repository of
challenging benchmarks have been recently made available. These benchmarks
showed to us some limitations of the All-SMT approach: the number of satisfi-
able monomes to a formula can potentially be much larger than the case analysis
inherent in the quantifier elimination procedures. This prompted developing a
procedure where case analysis is bounded by the minimum branching of All-SMT
and the quantifier-elimination procedure. The solver still enjoys the benefits of
using ground decision procedures. Another takeaway from our approach is that
substitutions are encoded into constraints and therefore represented implicitly
during quantifier elimination. We found that this reduces the overhead of creat-
ing often useless terms during search.

To give an idea of a challenge in practical quantifier elimination, consider
the following formula extracted from [18]. The predicates p0, . . . , p23 correspond
to the abstracted program state and the arithmetical sub-formulas encode a
transition relation without abstraction. Quantifier-elimination produces the most
precise abstraction for the transition relation.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 316–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linear Quantifier Elimination as an Abstract Decision Procedure 317

∃x1, x2, x3, x4, x5, x6, x7

(p0 ≡ (x4 < x2)) ∧ (p1 ≡ (x1 > x4)) ∧ (p2 ≡ (x4 > x2))
∧ (p3 ≡ (x5 > x2 + 17)) ∧ (p23 ≡ x4 � 0) ∧ (p5 ≡ (x6 > x2))
∧ (p7 ≡ (x1 < x4)) ∧ (p6 ≡ (x3 > x2 + 16)) ∧ (p9 ≡ (x1 < x5))
∧ (p10 ≡ (x1 < x6)) ∧ (p19 ≡ (x7 < x6)) ∧ (p11 ≡ (x3 > x1 + 16))
∧ (p12 ≡ (x5 < x2 + 1)) ∧ (p13 ≡ (x1 > x5)) ∧ (p14 ≡ (x6 < x2))
∧ (p17 ≡ (x5 > x7 + 1)) ∧ (p15 ≡ (x1 > x6)) ∧ (p16 ≡ (x7 < x4))
∧ (p18 ≡ (x5 > x7)) ∧ (p8 ≡ (x1 < x5 + 16)) ∧ (p20 ≡ (x3 < x2))
∧ (p21 ≡ (x3 < x1)) ∧ (p22 ≡ (x3 < x1)) ∧ (p4 ≡ (x5 > x2 + 1))

An approach based on enumerating satisfiable monomes could potentially
produce 224 satisfying cases. On the other hand, there are only 24 relevant atoms
using 7 variables; a case analysis extracted from using Cooper’s method has a
much lower bound.

We also develop a quantifier-elimination procedure for Presburger arithmetic
that combines features from the Omega test and Cooper’s algorithm. We believe
it is new and our experiments indicate that it offers some advantages to either
of the known approaches.

1.1 Related Work

Linear quantifier elimination has received so much attention that we can only
hope here to give a very partial list of contributions. The Omega tool [16] is
well-known from program analysis. It uses an adaptation of the Fourier-Motzkin
elimination procedure for integer linear programming. It relies on auxiliary
procedures for converting formulas into disjunctive normal form. LIRA [3] im-
plements procedures for mixed integer/real linear programming using automata-
theoretic methods [7]. Redlog [10] contains several quantifier elimination
procedures for different variants of arithmetic, such as the P-adics. Isabelle [15]
contains a set of verified algorithms for linear quantifier elimination. These algo-
rithms share a common skeleton and only differ in auxiliary routines.
Mjollnir [13] implements decision procedures for linear real arithmetic. It in-
tegrates with the SMT solver Yices to efficiently extract satisfiable monomes
using an All-SMT loop. An important insight is that quantifier elimination can
often work much more efficiently on such small conjunctions as opposed to glob-
ally on a formula. To make the All-SMT loop more effective, the SMT solver
is used to also minimize the monomes that are used for quantifier elimination.
Our own experiments confirmed the importance of this step, but also indicated
that it could also account for significant portion of the resulting run-time. Mjoll-
nir’s quantifier elimination procedure also interacts to make the All-SMT loop
more efficient: the result of eliminating quantifiers from a monome is negated
and added as a constraint. Recently, the LDD package [18] for linear differential
diagrams (for UTVPI, which is integer arithmetic where inequalities are of the
form ±x±y ≤ k, where x, y are variables and k is an integer constant) integrates
a Fourier-Motzkin elimination procedure tightly with the BDD package CUDD.

The effective integration of arithmetic theories into first-order saturation and
instantiation-based provers has also been a long-running enterprise, starting with

318 N. Bjørner

theory resolution and continuing with specialized integration of arithmetic [9],
[2], [17]. A tool based on [1] uses an older version of the quantifier-elimination
procedures from Z3 [5].

The rest of the paper is organized as follows: After notation has been fixed,
Section 3 presents the main idea behind our quantifier-elimination approach in
the context of reals. This gets refined into an abstract decision procedure in
Section 4. An analogous elimination procedure for integers is given in Section 5.
Sections 6 and 7 are devoted to some of the practical problems we are faced with
for scalability. Section 8 contains experimental feedback.

2 Preliminaries

The underlying domain for numerals is the set of integers, Z, for integer lin-
ear arithmetic, and the set of reals, R for the theory of linear arithmetic over
reals. We use letters a, b, c, d, e, a1, a2, .. to represent constant numerals, and
x, y, z, x1, x2, .. for variables. The letters s, t range over terms, that are assumed
in summation normal form t ::= a1x1 + a2x2 + · · ·+ anxn + c.

It will be convenient to highlight a distinguished variable x in each atomic
formula. For integer linear arithmetic, atoms are inequalities and (negated) di-
visibility constraints:

atom ::= ax ≤ t | bx ≥ s | c|(dx + t) | ¬c|(dx + t)

We will write the atoms so that a, b, c, d > 0 and x does not appear in s, t.
Equalities x � t will be treated as shorthand for x ≤ t ∧ x ≥ t. Atoms for linear
reals are normalized so that x uses the unit coefficient, 1.

atom ::= x � t | x > s | x < t

Non-strict inequality x ≥ s is just a shorthand for x > s ∨ x � s.
Our algorithms work on formulas without negations, except for negative di-

visibility,

ϕ ::= true | false | atom | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x . ϕ | ∀x . ϕ

We will nevertheless use normal logical connectives, such as negation ¬ and im-
plication→ to write formulas, and appeal to a straight-forward negation normal
form conversion.

An example valid (integer) linear arithmetic formula1 is

∃� . ∀x . ((x ≤ �) ∨ ∃y, z . (y ≥ 0 ∧ z ≥ 0 ∧ x � 7y + 8z))

It encodes an instance of the well-known stamp problem, that asks whether 7
and 8 cent stamps can be combined to cover every cent after a bound �.

1 apparently attributed to Bob Constable

Linear Quantifier Elimination as an Abstract Decision Procedure 319

It will be useful to introduce notation for finite range quantifiers, that can be
kept as is, or expanded to finite disjunctions.

(∃z ∈ [0 . . . a])ϕ ≡ ∃z . 0 ≤ z ≤ a ∧ ϕ ≡
a∨

z=0

ϕ

We write ϕ[x] to refer to all occurrences of x in ϕ. The notation extends to terms
and formulas. So, ϕ[ψ] refers to all occurrences of a sub-formula ψ inside of ϕ.
We write ϕ[t/x] for the formula where x is replaced by the term t.

Our procedures will work on formulas ∃x . ϕ, where ϕ is quantifier-free. This
means that quantifier elimination works bottom-up in the formula. Universal
quantifiers (∀) are handled using the de-Morgan duals (¬∃¬).

We use terminology from DPLL(T) [14] to describe our algorithms. DPLL(T)
works with a partial propositional assignment Γ and a set of clauses F . Forcing
Γ F is used when F evaluates to true under the partial assignment Γ . We will
not go into much background on Satisfiability Modulo Theories solvers here; the
main feature that is central to our approach is that they include efficient solvers
for checking satisfiability of quantifier-free formulas over linear arithmetic.

3 Linear Real Arithmetic

Let us first recollect Loos-Weispfenning’s [11] method for quantifier elimination.
It will be used to derive the abstract theory solver version. Given a formula ∃x . ϕ,
where ϕ is quantifier free and such that all occurrences of x have been isolated,
we refer to E as the set of atoms in ϕ of the form x � t, L is the set of atoms of the
form x > s and U is the set of atoms x < t. The notation is borrowed from [15].
The Loos-Weispfenning method then amounts to the following equivalence:

∃x . ϕ ≡ ϕ[∞/x] ∨
∨

(xt)∈E

ϕ[t/x] ∨
∨

(x<t)∈U

ϕ[t− ε/x] (1)

There is also an equivalence using −∞ and L instead of ∞ and U . It is ad-
vantageous to use this when |L| < |U | to avoid case analysis, but we will work
with just this version to simplify the presentation. The infinitesimals can be
eliminated after substitution: (∞ � t) = (∞ < t) = false , (∞ > s) = true,
(s− ε > t) = (s > t), (s− ε < t) = (s ≤ t).

We will use this equivalence as a starting point to a formulation that is suitable
as an abstract decision procedure in the context of DPLL(T). The crux of the
method is quite simple, but essential: instead of applying substitutions, encode
the effect of substitutions in a new formula. A satisfying assignment to the new
formula will then respect the substitution. The first step is to introduce a finite
domain quantifier to encode the finite set of substitutions that are required for
the Loos-Weispfenning method. The second step requires the substitution to
preserve truth monotonically. The construction uses references to the elements
in the set {∞} ∪ E ∪ U , so we will resort to subscripts to make this feasible.

320 N. Bjørner

So set U = {(x < t1), . . . , (x < tm)} and E = {(x � tm+1), . . . , (x � tn)}. We
now will introduce predicates pivot i, for i = 0, . . . , n to cover a case analysis for
the values of x that satisfy ϕ. They correspond to the disjunctions in (1) and
they encode the conditions where the respective disjunction holds. Thus, pivot0
encodes ϕ[∞/x], and for (x < ti), pivot i encodes ϕ[ti − ε/x], and for (x � ti),
pivot i encodes ϕ[ti/x].

Definition 1 (Real Arithmetic Pivoting)

pivot0 =
∧

atm∈E∪U

¬atm ∧
∧

atm∈L

atm

pivot1≤i≤m = x < ti
∧

atm∈E

¬atm
∧

(x<t)∈U

(x < t→ ti ≤ t)
∧

(x>s)∈L

(x > s→ ti > s)

pivotm<i≤n =

x � ti
∧

(xt)∈E

(x � t→ ti � t)
∧

(x<t)∈U

(x < t→ ti < t)
∧

(x>s)∈L

(x > s→ ti > s)

Proposition 1. Let pivot(z) =
∧n

i=0(z � i→ pivot i), then

∃x . ϕ ≡ ∃x . (∃z ∈ [0 . . . n]) . ϕ ∧ pivot(z)

It is easy to argue informally for the lemma: Any interpretationM that satisfies
ϕ assigns some value to x. There are three main cases for this value: (1) xM is
equal to some tM, where (x � t) ∈ E, the case is encoded in pivotm<i≤n. The
resulting model will also have to satisfy all implications. Case (2), xM is bigger
or equal to every tM, where (x < t) ∈ U , but then an interpretation where xM

is also bigger than every sM will satisfy ϕ, so pivot0 must hold (in the modified
model). Case (3), xM is smaller than some tM where (x < t) ∈ U , then one of
these is the least. Setting xM arbitrary close to this least upper bound lets us
satisfy pivot1≤i≤m. The converse direction is immediate because ϕ is already in
the formula 2

We can now derive a quantifier elimination procedure based on a ground
satisfiability procedure. Every satisfying assignment to 0 ≤ z ≤ n∧ ϕ∧ pivot(z)
assigns z to some value i between 0 and n, and for each of these values, pivot i

constrains the value of x with respect to the constraints E,L, U . At this point,
apply the substitution on ϕ that corresponds to each literal or right hand side
of each implication in pivot i and obtain the formula without x.

Our construction can also be iterated as a procedure for multiple bound vari-
ables. To simulate the effect of substitution, the new atomic formulas ti < t, ti �
t, ti ≤ t, ti > s, that appear on the right side of implications must be included
as part of the sets E, L and U that are used to eliminate the next variable in
the new formula.
2 There is an alternative definition of pivot i that allows replacing z � i → pivoti

by z � i ≡ pivoti. This version is obtained by breaking symmetries: add∧
(x<tj)∈U,j<i(x < tj → ti < tj) to pivotq≤i≤m, and add

∧
(x	tj)∈E,j<i x �� tj to

pivotm<i≤n.

Linear Quantifier Elimination as an Abstract Decision Procedure 321

4 An Abstract Quantifier Elimination Procedure

Expanding ϕ up front increases the size of it unnecessarily. There is instead
an advantage to integrate pivoting as a decision procedure in the DPLL(T)
framework. Some of the main practical advantages include that the framework
allows for inter-operating with other decision procedures, inspecting the current
state to avoid introducing redundant clauses, and it allows for garbage collecting
clauses once they become redundant.

Figure 1 summarizes the theory-solver based elimination procedure for the
single variable case. It works over a formula ∃x . ϕ. We follow the style of the
abstract DPLL(T) presentation and write the state of the current search as a
combination of a stack of assigned literals, Γ and a formula F (in clausal normal
form). To track the current partial result of quantifier elimination the state also
includes a formula R(esult).

Only four rules, additional to the usual DPLL(T) rules are required. In prac-
tice (in our implementation) the existing way that theory solvers are plugged in
can directly accommodate these rules without extending the DPLL(T) core. The
first rule Init provides the initial state of the quantifier elimination. It contains
the empty assignment ε, and the formulas ϕ and a constraint that z ranges from
0 to n. This forces the underlying propositional and theory solvers to choose a
value for z. The Pivot rule applies when some value is taken. Pivoting introduces
the set of assumptions corresponding to the disjunction encoded by z � i. All
these pivots are conditioned on z � i. Once the context Γ forces z �� i, ex-
isting mechanisms for garbage collecting clauses can take effect. The Elim rule
applies when Γ is an assignment that satisfies F . The rule leaves some room for
flexibility: while our own implementation always checks Γ for consistency with
respect to the theory of linear arithmetic, it is not required by the rule. In this
state, we apply the substitution corresponding to the i’th pivot to ϕ, add the
disjunction to R, and block this branch. The rules cannot be applied forever:
They ensure that eventually F contains z �� i for each i = 0, .., n, which is
inconsistent.

Init
=⇒ ε ||ϕ,

∨n

i=0
z � i || false

Γ (z � i); but not Γ pivot i.
Pivot

Γ ||F ||R =⇒ Γ ||F, (z � i → pivot i) ||R

Γ F, z � i, pivoti
Elim

Γ ||F ||R =⇒ Γ ||F, (z �� i) ||R ∨ ϕ[pivot i]

Γ false (or F contains the empty clause)
Return

Γ ||F ||R =⇒ R

Fig. 1. An Abstract Quantifier Elimination Procedure for Reals

322 N. Bjørner

Section 6 describes at a high level the elimination of multiple variables using
depth-first or breadth-first strategies. The choice of strategy can have a signifi-
cant impact on the search space.

5 Linear Integer Arithmetic

In this section we show how to lift the quantifier-elimination method for the reals
to the case of integers. The result is an algorithm that combines elements from
Cooper’s method and the Omega test. In a nutshell, we utilize the Omega test
method for resolving integer inequalities in order to avoid taking least common
multiples with coefficients that come from inequalities. The resulting algorithm
allows creating smaller intermediary disjunctions during quantifier elimination
and is to our knowledge new.

After a review of Cooper’s method and the integer resolution method from
the Omega test, we discuss in Section 5.2 discusses how divisibility constraints
can be combined. Then Section 5.3 shows how the pieces can be combined.

5.1 Cooper’s Algorithm and the Omega Test

Before proceeding with the algorithm, let us briefly review Cooper’s elimination
procedure and how the Omega test can be adapted to eliminating quantifiers. We
will be eliminating x from ϕ. The set U consists of atoms of the form ax ≤ t, L
of bx ≥ s, and D are the atoms c|(dx+u). Let δ be the least common multiplier
of the coefficients to x from U and the divisors in D. (later we will see that
our procedure just needs the lcm from D). Cooper’s procedure is based on the
equivalence (see also [7]):

(∃x . ϕ) ≡
δ−1∨
i=0

⎛⎝ϕ[∞− i/x] ∨
∨

ax≤t∈U

a|(t− i) ∧ ϕ[(t− i)/ax]

⎞⎠
As customary, set (bx ≥ s)[t/ax] = (bt ≥ as), and c|(bx+s)[t/ax] = ac|(bt+as).
The formula ϕ[∞− i/x] is defined in a similar way by using the replacements
s ≤ bx← true and cx ≤ t← false and c|(dx + t)← c|(−di + t).

The core of the Omega test is an integer variant of the Fourier-Motzkin reso-
lution principle. The presentation in [16] suggests to use resolution to conjunc-
tive constraints

∧
i aix ≤ ti ∧

∧
j bjx ≥ sj , creating |L| × |U | resolvents. While

resolution can be generalized to constraints in DNF, it does not reduce the mul-
tiplicative expansion. Working with conjunctive constraints requires also a phase
that converts the formula into DNF, which is one significant bottleneck in the
Omega package. It will here suffice to use just the binary variant of the Omega
test, which we formulate here as:

resolve(ax ≤ t, bx ≥ s) =
as + (a− 1)(b− 1) ≤ bt ∨
a ≥ b ∧ as ≤ bt ∧ (∃z ∈ [0 . . . b− 2])(b|(s + z) ∧ a(s + z) ≤ bt) ∨
b > a ∧ as ≤ bt ∧ (∃z ∈ [0 . . . a− 2])(a|(t− z) ∧ as ≤ b(t− z))

(2)

Linear Quantifier Elimination as an Abstract Decision Procedure 323

Resolution can be used to eliminate x:

Lemma 1 (Integer Resolution)

(∃x . ax ≤ t ∧ bx ≥ s) ≡ resolve(ax ≤ t, bx ≥ s) (3)

Our formulation of the binary resolution rule is close to, but not quite identical
to the version in [16]. In particular, the terms used in the bounded disjunctions
have been simplified. Notice that when either a = 1 or b = 1, then the equivalence
simplifies to:

(∃x . ax ≤ t ∧ bx ≥ s) ≡ as ≤ bt

There are two components to the new algorithm. The first component is to
extract and process divisibility constraints. The second component is close to the
Loos-Weispfenning formulation, but here applied to integers. It selects a least
upper bound (or greatest lower bound) for the variable x and either collects the
bound constraints or applies the linear integer resolution principle.

5.2 Divisibility Constraints

Divisibility constraints can be handled at the cost of introducing one auxiliary
bounded variable. Let δ be the least common multiple of the divisors in D, then
for each divisor term in D we have the equivalence:

c|(ax + t) ≡ c|(a(x mod δ) + t)

Therefore, we can introduce an auxiliary variable u and define the predicate

div elim := δ|(x− u)
∧

c|(dx+t)∈D

(c|(dx + t)↔ c|(du + t)) (4)

Then the following is a tautology (true for all free variables in ϕ):

(∃u ∈ [0 . . . δ − 1]) . div elim .

The last equivalences in div elim encode replacement of the original divisibil-
ity constraints with atoms where x is eliminated. If we wish to eliminate the
remaining divisibility constraint we can use the equivalence:

∃x . δ|(x − u) ∧ ϕ ≡ ∃x, y . δy � x− u ∧ ϕ ≡ ∃x . ϕ[δx + u/x] (5)

We will make use of this equivalence in the next section, but in a lazy way.

Remark: In fact, there is a more general, Euclidean inspired, way to eliminate
arbitrary divisibility constraints by using the additional equivalences:

c|(ax + t) ≡ c|((a mod c)x + t)
∃x . 1|(ax + t) ∧ ϕ ≡ ∃x . ϕ

∃x . c|(ax + t) ∧ ϕ ≡ ∃x .a|((c mod a)x− t) ∧ ϕ[(cx− t)/ax] for c > a > 1

324 N. Bjørner

The equivalences produce substitutions. These can be combined to a single sub-
stitution [bx− t/ax] because when R(x, y) ranges over the relations a′x ≤ y and
b′x ≥ y, then

R(x, y)[bx− t/ax][dx− s/cx] = R(bx− t, ay)[dx− s/cx] =
R(bdx− bs− ct, acy) = R(x, y)[bdx− ct− bs/acx]

In summary, a formula that existentially binds x, possibly using divisibility con-
straints on x, can be equivalently represented as

∃x . c|(dx + s) ∧ ϕ ≡ ∃x . ϕ[bx− t/ax] (6)

where [bx − t/ax] is the substitution obtained from c|(dx + s), and ϕ does not
contain divisibility constraints.

5.3 Integer Pivoting

In the following we will assume we are given the formula ∃x . ϕ and that div elim
is obtained using (4). Let θ := [δx + u/x] be the substitution corresponding to
the divisibility constraint in (5). The identifiers in the substitution are primed
so they are not confused with the identifiers used elsewhere. If c is 1, then θ is
just the identity substitution [x/x]. Then in the same spirit as definition 1 we
define shorthands for pivoting. Recall, that for integers, we only need to consider
non-strict inequalities, so let U = {(a1x ≤ t1), . . . , (amx ≤ tm)} and define:

Definition 2 (Integer pivoting)

pivot0 :=
∧

atm∈U

¬atm
∧

atm∈L

atm

pivot1≤i≤m := aix ≤ ti∧
(ax≤t)∈U

(ax ≤ t→ ati ≤ ait)

∧
(bx≥s)∈L

(bx ≥ s→ resolve((bx ≥ s)[θ], (aix ≤ ti)[θ]))

and set

pivot := div elim ∧
n∧

i=0

(z � i→ pivot i)

Analogously to the case for linear real arithmetic we now have:

Proposition 2 (Elimination based on Integer Pivoting). Assume ϕ is a
quantifier free formula whose occurrences of x are summarized using the sets D,
L and U

∃x . ϕ ≡ ∃x, (∃u ∈ [0 . . . δ − 1]), (∃z ∈ [0 . . . n]) . ϕ ∧ pivot

Linear Quantifier Elimination as an Abstract Decision Procedure 325

Correctness of the proposition is by an argument similar to the correctness for
Proposition 1.

Proof: The direction from right to left is immediate because the right side
already contains the left.

For the direction from left to right, assume we have a model M |= ϕ. If xM

is such that every upper bound in U is false, we can choose xM arbitrary large
so that every lower bound in L is true. The case z � 0 ∧ pivot0 is satisfied in
this model. On the other hand, let (aix ≤ ti) ∈ U be the least upper bound with
respect to M. That is, for every other (ax ≤ t) ∈ U where M |= ax ≤ t it is
the case that it holds that (ti/ai)M ≤ (t/a)M (using rational division), which
is the same as M |= ati ≤ ait (over the integers). This establishes the second
conjunct of pivot i. If there is a bx ≥ s ∈ L, such that M |= bx ≥ s, there is a
greatest lower bound in L with respect to M. For this inequality the left side
implies

∃x . δ|(x− u) ∧ bx ≥ s ∧ aix ≤ ti ≡ ∃x . (bx ≥ s)[θ] ∧ (aix ≤ ti)[θ]
≡ resolve((bx ≥ s)[θ], (aix ≤ ti)[θ]))

The resolvents of the other lower bounds for x are weaker, so they are implied.

The abstract decision procedure that implements quantifier elimination for in-
tegers uses essentially the same rules as the one given for the reals in Figure 1.

Init

=⇒ ε ||ϕ, div elim,
∨n

i=0
z � i,

∨δ−1

j=0
u � j || false

Γ (z � i); but not Γ pivot i.
Pivot

Γ ||F ||R =⇒ Γ ||F, (z � i → pivoti) ||R

Γ F, z � i, u � j, pivot i
Elim

Γ ||F ||R =⇒ Γ ||F, (z �� i ∨ u �� j) ||R ∨ ϕ[pivot i][j/u]

Γ false (or F contains the empty clause)
Return

Γ ||F ||R =⇒ R

Fig. 2. An Abstract Quantifier Elimination Procedure for integers

There is one important exception though: resolution and the divisibility con-
straints introduce finite range (existential) variables in the state. We would like
to find the set of instances from these values that satisfy the formula. This is
in principle obtained by enumerating the finite set of satisfying assignments to
these integers. In the context of the SMT solver Z3, and we believe the expe-
rience applies generally to other contexts, we found that a bit-wise encoding of
the finite range variables offered dramatic performance gains. We outline the
encoding in Section 7.

326 N. Bjørner

6 Elimination of Multiple Variables

The introductory example formula illustrated that we should in general expect
to eliminate several variables. The order in which the variables are eliminated
has a significant impact on search. A possible heuristic known from QBF solvers
is to count the number of occurrences of each variable and each polarity. The
variable with the least number of occurrences subject to a polarity is chosen first.
Similarly, an obvious heuristic is to select the variable whose set L∪E or U ∪E
is the smallest (for reals). For integers minimizing for the least common multiple
of the coefficients and divisors to x has a significant impact on the branching.

Another factor that can have a significant impact on performance is whether to
eliminate variables together (depth-first) or independently (breadth-first). So in
breadth-first elimination for the formula ∃x, y . ϕ, one computes first ϕ′ ≡ ∃x . ϕ,
where x is eliminated, then y is eliminated from ϕ′. In depth-first elimination,
y gets eliminated from ϕ every time a substitution for x has been chosen. A
combination of depth-first and breadth-first search seems desired. For example,
given the formula ∃y, z, x, u . ϕ[x, u, y]∧ψ[x, u, z] it is an advantage to eliminate
y and z independently and combine the results instead of eliminating z in every
disjunct generated when eliminating y. On the other hand, the dependencies
between x and u could make a depth-first exploration more efficient.

The approach taken in our implementation is to use variable disjoint partitions
of top-level conjunctions for breadth-first search. It allows using a simplistic
algorithm. It splits ϕ into conjuncts ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn. Then, for each variable
v, that occurs in fewer than n/2 conjuncts, create an equivalence class of the
formulas where v occurs. Union-find is used to merge and maintain the classes.
If more than one class remains, then the variables from each class are eliminated
independently. The variables that occur in more than n/2 conjuncts are handled
jointly as well.

7 From Bounded Integers to Bit-Vectors

We skipped one part of the integer linear arithmetic elimination procedure,
namely elimination of finite range variables. The formula produced from quan-
tifier elimination is of the form (∃z1 ∈ [0 . . . u1 − 1]) . . . (∃zn ∈ [0 . . . un − 1])ψ.
These quantifiers can directly be treated as disjunctions, but the size of the re-
sulting formulas can easily grow to be exponential in the number of bound finite
range variables (u1 · u2 · · · ·un · |ψ|).

When only a few disjuncts are satisfied in the resulting formula, it pays to use
an All-SMT loop. We found that encoding finite range integers as bit-vectors
offered superior performance in contrast to an integer encoding; the intermedi-
ary conflict clauses produced for bit-vectors remain more precise than what is
currently possible (at least to our experience) for the theory of integers.

Of course ψ can contain free integer variables that are not among the finite
range z1, . . . , zn. So we need to handle constraints that mix integers and bit-
vectors. We introduce functions bv2int and int2bv [n] in order to convert from n-
bit bit-vectors to integers and from integers to n-bit integers. The interpretation

Linear Quantifier Elimination as an Abstract Decision Procedure 327

of these functions on any bit-vector term x, and integer term y are determined
fully by adding constraints:

bv2int(x[n]) =
n−1∑
i=0

ite(xi, 2i, 0) bv2int(int2bv [n](y)) = y mod 2n

Let us define bw (a) = ,log2(a)-, then the formula becomes

∃y1 : bv[bw(u1)] . bvule(y1, bv2int(u1)) ∧ . . .∃yn : bv[bw(un)] .

bvule(yn, bv2int(un)) ∧ ψ[y1/z1, . . . , yn/zn]

Nested occurrences of bv2int can now be propagated upwards by using transfor-
mations that propagate it over the the arithmetical functions +, · and relation ≤.
Two examples illustrate the transformation: bv2int(x[n]) + bv2int(y[n]) becomes
bv2int((0[1] ⊕ x[n]) +bv (0[1] ⊕ y[n])), where ⊕ is bit-vector concatenation. Also,
bv2int(x[n]) ≤ bv2int(y[n]) becomes bvule(x[n], y[n]). The relation bvule(x, y) per-
forms unsigned comparisons on bit-vectors x and y.

8 Implementations and Experimentation

We implemented several variants of quantifier elimination procedures for reals
and integers as part of Z3. In all our variants bounded quantifiers are eliminated
using an All-SMT loop. Another important feature present in all variants is that
quantifier elimination is avoided completely and replaced by a cheap satisfiability
check when the only variables and uninterpreted symbols in ϕ are those to be
eliminated. The variants we tried out are:

FM/Ω-SMT. Fourier-Motzkin/Omega test algorithms that work on monomes
produced by an All-SMT loop. For the case of reals, this corresponds to
algorithms implemented in Mjollnir.

LW/C-SMT. Loos-Weispfenning/Cooper’s algorithm that works on monomes
produced by an All-SMT loop. This is also an equivalent to the loop used
by Mjollnir.

LW/C-Plain. Loos-Weispfenning/Cooper’s algorithm that works directly on
the negation normal form formula.

Mix-Model. Our new quantifier elimination algorithm that that uses the cur-
rent interpretationM to select the substitutions to explore for each variable.
In other words, if M |= ax ≤ t, where (ax ≤ t) ∈ U , and M selects t/a as
the least upper bound for x, then eliminate x based on this substitution.
This method is different from the All-SMT strategy since it is guaranteed to
only explore branches corresponding to the number of virtual substitutions
for x.

Mix-SMT. The theory-solver based integration presented in this paper.

The first three variants are available in the current release v2.4 of Z3.

328 N. Bjørner

8.1 Benchmarking

In spite of long-running attention, we are aware of only a limited set of readily
available benchmarks for linear quantifier elimination. We will here report on
selected and somewhat circumstantial experiments. Admittedly, the experience is
currently somewhat sporadic and not as established as with other SMT divisions.

Table 1. Experimental samples

Source Type TO # FM/Ω-SMT LW/C-SMT LW/C-Plain Mix-Model Mix-SMT
HOL-l LIA ∞ 72 0.3s 0 3.1s 0 4.9s 0 0.3s 0 0.3s 0
LRA/m LRA ∞ 150 19.7s 0 18.0s 0 8.6s 0 10.3s 0 9.2s 0
LRA/R LRA 100s 100 61s 15 240s 15 206s 11 270 14 405s 20
LDD IDL 4s 100 54s 29 52s 29 28s 37 53s 29 66s 17
LDD IDL 8s 100 135s 18 122s 19 91s 24 121s 19 86s 13

The examples are taken from different sources. We list the source, fragment
of arithmetic (IDL is short for integer difference logic), chosen timeout, num-
ber of benchmarks in the set, and solver setting. The table fields contain split
columns containing cumulative time and #timeouts, respectively. The HOL-light
examples come from the HOL-light distribution3. The LRA benchmarks come
from SMT-LIB (http://www.smtlib.org). They are contributed by Scholl et.al.
whose LinAIG tool uses interpolants to simplify formulas. The 150 benchmarks
from LRA/model are extracted from a model-checking tool. They are all easy,
especially for LW/C-Plain and Mix-SMT. The All-SMT loop seems like a disad-
vantage here. The situation is different on the random benchmarks where using
the SMT solver only slows solving down. This can be expected when most case
splits are hard to satisfy. It is of course tempting to dismiss random benchmarks
because their relationship with applications is dubious and can lead optimiza-
tion efforts astray. We selected randomly 100 (but not random) benchmarks
from more than 5000 LDD files kindly supplied by Aarie Gurfinkel, and we
chose low timeouts of 4 and 8 seconds to get timely, but informative, feedback.
In this case, the new DPLL-based integration is the clear winner and solves
more benchmarks within 4s than any of the other methods can do in 8s. This
is particularly true with the formula sketched in the introduction. Each of the
methods FM/Ω-SMT, LW/C-SMT and Mix-Model spend around 80 seconds on
such a small formula, LW/C-Plain can get away with spending 30 seconds, but
Mix-SMT spends less than 2 seconds. In conclusion, the experimental feedback
suggests that the Mix-SMT approach is generally robust and therefore should
be the preferred method.

It will be very interesting in future work to compare with the LDD elimination
procedures more carefully. The LDD benchmarks also contain quantifiers over
Boolean variables. Currently, we don’t handle such quantified variables with any
sophistication. A fundamental difference is also how LDD algorithms can rely on
3 http://www.cl.cam.ac.uk/~jrh13/hol-light

http://www.smtlib.org

Linear Quantifier Elimination as an Abstract Decision Procedure 329

dynamic programming techniques, memoizing and re-using partial results built
bottom-up. This is not as easy in the DPLL(T) framework where contexts Γ are
built top-down.

One resident motivation for the work was the SLAyer [6] tool. It relies on
quantifier elimination by Z3. Currently, all queries comprise of very small for-
mulas that can be discharged in micro-seconds. Quantifier elimination is indis-
pensable, but not a bottleneck so far. The SLAyer application also indicates a
potentially useful extension to special case quantifier elimination for arrays (it
is impossible in general). For example, SLAyer requires Z3 to understand that
∃i, C . (A � store(C,flink , i)) is equivalent to true. The formula says that the
array A is equal to some array C where i is stored at index flink .

9 Concluding Remarks

We have presented abstract quantifier elimination procedures for linear arith-
metic. These integrate directly as theory solvers in the DPLL(T) framework.
Case analysis is bounded by the elimination algorithms and All-SMT and they
leverage efficient procedures for ground feasibility. Our procedure for Presburger
arithmetic also has the potential to produce fewer top-level disjunctions than
Cooper’s classical algorithm: to handle divisibility constraints it requires the
lcm of the divisors in D, disjuncts from the coefficients to x in U (or L) are
distributed over resolution steps so they can be handled separately.

In our experience with Z3 users, we are increasingly finding requests for ad-
ditional exotic functionality. Quantifier elimination for a suitable fragment of
the array theory is one example. Quantifier elimination for inductive data-types
could be used in model-based design tools that use Z3 for their Prolog-inspired
specification language.

Recently, several works [8, 12] and Scott Cotton’s thesis have investigated a
variant of the Fourier-Motzkin elimination procedure that uses partial models
for guiding the use of resolution. It is not hard to establish how one can use
pivoting combined with the resolution procedures, including the integer version,
for these approaches, and we speculate if this can provide a performance benefit.
The approaches still need to handle auxiliary atoms in the search space, but
pivoting may indicate how these can be turned on and off.

We would also like to investigate whether the abstract quantifier elimination
procedure for integers presents any advantages to integer linear programming
based on Simplex augmented with Gomory cuts and branch and bound. The
potential advantage is that elimination can complement cuts and branches.

Thanks to the reviewers for their detailed and highly constructive feedback.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp.
84–99. Springer, Heidelberg (2009)

330 N. Bjørner

2. Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) – Model Evolution With Linear
Integer Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)

3. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: Lira: Handling constraints of linear
arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)

4. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular oo veri-
fication with separation logic. In: POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
87–99. ACM, New York (2008)

5. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. http://research.microsoft.com/enus/um/cambridge/projects/slayer/

7. Klaedtke, F.: On the automata size for presburger arithmetic. In: LICS, pp.
110–119. IEEE Computer Society, Los Alamitos (2004)

8. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)

9. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007)

10. Lasaruk, A., Sturm, T.: Effective quantifier elimination for presburger arithmetic
with infinity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009.
LNCS, vol. 5743, pp. 195–212. Springer, Heidelberg (2009)

11. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput.
J. 36(5), 450–462 (1993)

12. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing dpll to richer logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009)

13. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 243–257. Springer, Heidelberg (2008)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53(6) (2006)

15. Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P.,
Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 18–33. Springer,
Heidelberg (2008)

16. Pugh, W.: A practical algorithm for exact array dependence analysis. ACM Com-
mun. 35(8), 102–114 (1992)

17. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

18. Chaki, S., Gurfinkel, A., Strichman, O.: Decision Diagrams for Linear Arithmetic.
In: FMCAD (2009)

http://research.microsoft.com/enus/um/cambridge/projects/slayer/

A Decision Procedure for CTL∗ Based on
Tableaux and Automata

Oliver Friedmann1, Markus Latte1, and Martin Lange2

1 Dept. of Computer Science, University of Munich, Germany
2 Dept. of Electrical Engineering and Computer Science, University of Kassel, Germany

Abstract. We present a decision procedure for the full branching-time
logic CTL∗ which is based on tableaux with global conditions on infinite
branches. These conditions can be checked using automata-theoretic ma-
chinery. The decision procedure then consists of a doubly exponential
reduction to the problem of solving a parity game. This has advantages
over existing decision procedures for CTL∗, in particular the automata-
theoretic ones: the underlying tableaux only work on subformulas of the in-
put formula. The relationship between the structure of such tableaux and
the input formula is given by very intuitive tableau rules. Furthermore,
runtime experiments with an implementation of this procedure in the
MLSolver tool show the practicality of this approach within the limits of
the problem’s computational complexity of being 2EXPTIME-complete.

1 Introduction

The full branching-time temporal logic CTL∗ is an important tool for the specifi-
cation and verification of reactive systems [8] and of agent-based systems [11], for
program synthesis [14], etc. Emerson and Halpern have introduced CTL∗ [3] as
a formalism which supersedes both the branching-time logic CTL and the linear-
time logic LTL. As much as this has led to an easy unification of CTL and LTL,
it has also proved to be quite a difficulty in obtaining decision procedures for this
logic. The first was automata-theoretic [5], requiring the determinisation of ω-
word automata resulting from linear-time formulas. A series of improvements in
this part has eventually led to Emerson and Jutla’s automata-theoretic decision
procedure [4] whose asymptotic worst-case running time is optimal, namely dou-
bly exponential [20]. Other procedures have been given some time later, namely
Reynolds’ proof system [15], Gabbay and Pnueli’s proof system [8], and most
recently Reynolds’ tableaux [16].

In this paper we present a characterisation of CTL∗ satisfiability. It is formu-
lated as a calculus of infinite tableaux with natural rules and with global condi-
tions on their branches. The non-termination of the tableaux raises the question
after an effective decision procedure based on this calculus, and it is only here
that we use automata-theoretic machinery. Branches violating the global condi-
tion are recognisable by nondeterministic Büchi automata, and we can then use
determinisation and complementation to reduce the question of existence of a
tableau to the problem of solving a doubly exponentially large parity game.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 331–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

332 O. Friedmann, M. Latte, and M. Lange

This also yields an asymptotically optimal decision procedure which has two
distinct advantages over some of the existing ones. First, the tableaux only use
subformulas of the input formula, while automata are only used on top of the
tableaux in order to check the global conditions. Second, the reduction is im-
plemented in the modal fixpoint solver MLSolver [6] which uses the high-
performance parity game solver PGSolver [7] as a backend. The work pre-
sented here is therefore—to the best of our knowledge—the first serious attempt
at creating a practical decision procedure for CTL∗.

The rest of the paper is organised as follows. Sect. 2 recalls CTL∗. Sect. 3
introduces the tableau calculus. Soundness and completeness are technically
non-trivial to prove but still proceed along standard lines. The detailed proofs
are omitted for lack of space and are given in an extended version of this pa-
per. Sect. 4 presents a decision procedure which uses automata-theory in order
to reduce the satisfiability problem to the problem of solving a parity game.
Sect. 5 highlights the advantages of this approach in comparison to existing
others. Sect. 6 reports on experimental results.

2 CTL∗

Let P be a countably infinite set of propositional constants. A transition system
is a tuple T = (S, s∗,→, λ) with (S,→) being a directed graph, s∗ ∈ S being
a designated starting state and λ : S → 2P is a labeling function. We assume
transition systems to be total, i.e. every state has at least one successor. A path
π in T is an infinite sequence of states s0, s1, . . . s.t. si → si+1 for all i. With
πk we denote the suffix of π starting with state sk, and π(k) denotes sk in this
case.

Branching-time temporal formulas are given by the following grammar.

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Eϕ
where q ∈ P . Formulas of the form q or ¬q are called literals. We use �̄ to denote
the complement of a literal �, i.e. �̄ = ¬q if � = q and �̄ = q if � = ¬q.

Other constructs like tt, ff,∨,→ are derived as usual, and so are the temporal
ones ϕRψ := ¬(¬ϕU¬ψ), Gϕ = ffRϕ, Fϕ = ttUϕ, and Aϕ := ¬E¬ϕ. A formula
of this extended syntax is in positive normal form if ¬ only occurs in front of
a propositional constant. The set of subformulas of ϕ is denoted by Sub(ϕ) and
defined as usual by setting Sub(ϕ ◦ψ) := {ϕ ◦ψ, X(ϕ ◦ψ)}∪Sub(ϕ)∪Sub(ψ) for
◦ being U or R. The notation is extended to formula sets in the usual way. The
size |ϕ| of a formula ϕ is number of its subformulas. A quantifier-bound formula
block is an E- or A-labeled set of formulas. We omit the braces for singleton sets.
Formulas are interpreted over paths π of a transition systems T = (S, s∗,→, λ).

T , π |= q iff q ∈ λ(π(0))
T , π |= ¬ϕ iff T , π �|= ϕ
T , π |= ϕ ∧ ψ iff T , π |= ϕ and T , π |= ψ
T , π |= Xϕ iff T , π1 |= ϕ
T , π |= ϕUψ iff ∃k ∈ N, T , πk |= ψ and ∀j < k : T , πj |= ϕ
T , π |= Eϕ iff ∃π′, s.t. π′(0) = π(0) and T , π′ |= ϕ

A Decision Procedure for CTL∗ Based on Tableaux and Automata 333

A(ϕ, Σ), A(ψ, Σ), Φ
(A∧)

A(ϕ ∧ ψ, Σ), Φ
A(ϕ, ψ, Σ), Φ

(A∨)
A(ϕ ∨ ψ, Σ), Φ

�, Φ | AΣ, Φ
(Al)

A(�, Σ), Φ

A(ψ, ϕ, Σ), A(ψ, X(ϕUψ), Σ), Φ
(AU)

A(ϕUψ, Σ), Φ
A(ψ, Σ), A(ϕ, X(ϕRψ), Σ), Φ

(AR)
A(ϕRψ, Σ), Φ

Aϕ, Φ | AΣ, Φ
(AA)

A(Aϕ, Σ), Φ
Eϕ, Φ | AΣ, Φ

(AE)
A(Eϕ, Σ), Φ

Φ(Ett)
E∅, Φ

E(ϕ, Π), Φ | E(ψ, Π), Φ
(E∨)

E(ϕ ∨ ψ, Π), Φ
E(ϕ, ψ, Π), Φ

(E∧)
E(ϕ ∧ ψ, Π), Φ

EΠ, �, Φ
(El)

E(�,Π), Φ

E(ψ, Π), Φ | E(ϕ, X(ϕUψ), Π), Φ
(EU)

E(ϕUψ, Π), Φ
Eϕ, EΠ,Φ

(EE)
E(Eϕ, Π), Φ

E(ψ, ϕ, Π), Φ | E(ψ, X(ϕRψ), Π), Φ
(ER)

E(ϕRψ, Π), Φ
Aϕ, EΠ, Φ

(EA)
E(Aϕ, Π), Φ

AΣ1, . . . , AΣm(X0)
AXΣ1, . . . , AXΣm, Λ

EΠ1, AΣ1, . . . , AΣm . . . EΠn, AΣ1, . . . , AΣm(X1)
EXΠ1, . . . , EXΠn, AXΣ1, . . . , AXΣm, Λ

Fig. 1. The pre-tableau rules for CTL∗

Two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, if for all paths π of all
transition systems T : T , π |= ϕ iff T , π |= ψ. It is well-known and easy to see
that every formula is equivalent to one in positive normal form. A formula ϕ
is called a state formula if for all T , π, π′ with π(0) = π′(0) we have T , π |= ϕ
iff T , π′ |= ϕ. Hence, satisfaction of a state formula in a path only depends on
the first state of the path. Note that ϕ is a state formula iff ϕ ≡ Eϕ. For state
formulas we also write T , s |= ϕ for s ∈ S. CTL∗ is the set of all branching-time
formulas which are state formulas. A CTL∗ formula ϕ is satisfiable if there is a
transition system T with an initial state s∗ s.t. T , s∗ |= ϕ.

3 Tableaux for CTL∗

From now on, formulas are assumed to be in positive normal form. We will
construct a tableau for a given state formula ϑ. The following notations are
used: Σ and Π are finite (possibly empty) sets of formulas with Σ being in-
terpreted as a disjunction of formulas and Π as a conjunction. We write Λ
for a set of literals. For a set of formulas Γ let XΓ := {Xψ | ψ ∈ Γ}. A goal
(for ϑ) is a non-empty set—the outermost braces are omitted—of the form
AΣ1, . . . , AΣn, EΠ1, . . . , EΠm, Λ where n,m ≥ 0, and Σ1, . . . , Σn, Π1, . . . , Πm, Λ
are subsets of Sub(ϑ). Such a goal stands for the state formula

∧n
i=1 A
(∨

ψ∈Σi
ψ
)
∧∧m

i=1 E
(∧

ψ∈Πi
ψ
)
∧
∧

�∈Λ �. Goals are denoted by C. We write Seq(ϑ) for the set
of all possible goals for ϑ. Note that this is a finite set of at most doubly ex-
ponential size in |ϑ|. A goal C is consistent if there is no q ∈ P s.t. q ∈ C and
¬q ∈ C.

334 O. Friedmann, M. Latte, and M. Lange

Definition 1. A pre-tableau for ϑ is a possibly infinite tree built according to
the rules of Fig. 1 whose root is Eϑ, whose nodes are all consistent and do not
contain A∅, and whose leaves consist of literals only.

We write pre-tableaux as trees growing upwards. Consequently, a rule in Fig. 1
has a goal at the bottom and one or several subgoals at the top. Letter � stands
for arbitrary literals. Rule (X1) is the only rule with more than one subgoal, rules
(Al), (AA), (AE), (E∨), (EU), (ER) each have a single subgoal which can be chosen
nondeterministically to be of either of two forms.

An occurrence of a formula is called principal if it gets transformed by a rule.
For example, the occurrence of ϕ ∧ ψ is principal in (E∧). A principal formula
has descendants in the subgoals. For example, both occurrences of ϕ and ψ are
descendants of the principal ϕ ∧ ψ in rule (E∧).

Note that, in the modal rules (X0) and (X1), every formula apart from those
in the literal part is principal. Literals in the literal part can never be principal,
but literals in an A- or E-block are principal in rules (Al) and (El). Finally, any
non-principal occurrence of a formula in a goal may have a copy in one of the
subgoals. The copy is the same formula since it has not been transformed. For
instance, any formula in Σ in rule (Al) has a copy in the subgoal if it is of the
right form, but does not have a copy if it is of the left form.

A quantifier-bound block AΣ or EΠ is called principal as well if it contains a
principal formula, and possibly has descendants in the subgoal(s). For example,
A(ϕ ∧ ψ,Σ) has two descendants A(ϕ,Σ) and A(ψ,Σ) in an application of (A∧).

Definition 2. Let C be a goal to which a rule r is applicable and let C′ be one of
its subgoals. Furthermore, let Q1Δ1, resp. Q2Δ2 with Q1, Q2 ∈ {E, A} and Δ1, Δ2 ⊆
Sub(ϑ) be quantifier-bound blocks occurring in the A- or E-part of C, resp. C′. We
say that Q1Δ1 is connected to Q2Δ2 in C and C′, if either

– Q1Δ1 is principal in r, and Q2Δ2 is one of its descendants in C′; or
– Q1Δ1 is not principal in r and Q2Δ2 is a copy of Q1Δ1 in C′.

We write this as (C, Q1Δ1) � (C′, Q2Δ2). If the rule instance can be inferred from
the context we may also simply write Q1Δ1 � Q2Δ2. Additionally, let ψ, resp.
ψ′ be a formula occurring in Δ1, resp. Δ2. We say that ψ is connected to ψ′ in
(C, Q1Δ1) and (C′, Q2Δ2), if either

– ψ is principal in r, and ψ′ is one of its descendants in C′; or
– ψ is not principal in r and ψ′ is a copy of ψ in C′.

We write this as (C, Q1Δ1, ψ) � (C′, Q2Δ2, ψ
′). If the rule instance can be inferred

from the context we may also simply write (Q1Δ1, ψ) � (Q2Δ2, ψ
′). A block

connection (C1, Q1Δ1) � (C2, Q2Δ2) is called spawning iff Q2ψ ∈ Δ1 is principal
and Δ2 = {ψ}. The only rules that possibly induce a spawning block connection
are (EE), (EA), (AA) and (AE).

Definition 3. Let C0, C1, . . . be an infinite branch of a pre-tableau t for some Φ.
A trace Ξ in this branch is an infinite sequence Q0Δ0, Q1Δ1, . . . s.t. for all i ∈ N:

A Decision Procedure for CTL∗ Based on Tableaux and Automata 335

(Ci, QiΔi) � (Ci+1, Qi+1Δi+1). A trace Ξ is called an E-trace, resp. A-trace if
there is an i ∈ N s.t. Qj = E, resp. Qj = A for all j ≥ i. We say that a trace is
finitely spawning if it contains only finitely many spawning block connections.

Lemma 4. Every infinite branch of a pre-tableau contains infinitely many ap-
plications of rules (X0) or (X1).

Proof. Assume by contradiction that there is an infinite branch C0, C1, . . . in
a pre-tableau for some Φ that contains only finitely many applications of the
modal rules. Note that there must be a trace Q0Δ0, Q1Δ1, . . . in the branch that
is principal infinitely often. Now we consider a lexicographic measure on all the
Δi that counts how many non-modal formulas of a certain depth are contained
in the block. Note that every rule application except the modal rule decreases
this measure. But this cannot be the case. �!

Definition 5. A thread t in a trace Ξ = Q0Δ0, Q1Δ1, . . . is an infinite sequence
ψ0, ψ1, . . . s.t. for all i ∈ N: (Ci, QiΔi, ψi) � (Ci+1, Qi+1Δi+1, ψi+1). Such a
thread t is called a U-thread, resp. R-thread if there is a formula ϕUψ ∈ Sub(Φ),
resp. ϕRψ ∈ Sub(Φ) s.t. ψj = ϕUψ, resp. ψj = ϕRψ for infinitely many j.

An E-trace is called good iff it has no U-thread; similarly, an A-trace is called
good iff it has an R-thread.

This immediately yields the definition of a bad trace: an E-trace is bad if it
contains an U-thread, and an A-trace is bad if it contains no R-thread.

Lemma 6. Every trace in an infinite branch of a pre-tableau is either an A-trace
or an E-trace and only finitely spawning.

Proof. Let Ξ = Q0Δ0, Q1Δ1, . . . be a trace and assume by contradiction that
{i | QiΔi � Qi+1Δi+1 is spawning} is infinite. Let i0 < i1 < . . . be the ascending
sequence of numbers in this infinite set and let φij denote the formula in the
singleton set Δij+1. Note that for all j it is the case that φij+1 ∈ Sub(φij)
and φij �= φij+1 , hence the set cannot be infinite. Now note that every finitely
spawning trace eventually must be either an A- or an E-trace. �!

Lemma 7. Every thread in a trace of an infinite branch of a pre-tableau is either
an U- or an R-thread.

Proof. Let t = ψ0, ψ1, . . . be a thread. Assume that t is neither an U- nor an
R-thread, hence there is a position i∗ s.t. ψi is neither of the form ψ′Uψ′′ nor of
the form ψ′Rψ′′ for all i ≥ i∗, hence ψi+1 ∈ Sub(ψi) for all i ≥ i∗. By Lemma 4
it follows that ψi+1 �= ψi for infinitely many i which cannot be the case, hence
t has to be a U- or an R-thread. Finally, assume that t is both an U- and an
R-thread, i.e. there are positions i0 < i1 < i2 s.t. ψi0 = ψi2 = ψ′Rψ′′ and
ψi1 = ϕ′Uϕ′′. Hence ψi1 ∈ Sub(ψi0) \ {ψi0} and ψi2 ∈ Sub(ψi1) \ {ψi1}, thus
ψ′Rψ′′ ∈ Sub(ψ′Rψ′′) \ {ψ′Rψ′′} which cannot be the case. �!

Lemma 8. For every U- and every R-thread (in a trace of an infinite branch of
a pre-tableau) ψ0, ψ1, . . . there is an i ∈ N such that ψi is an U-, or an R-formula
resp., and ψj = ψi or ψj = Xψi for all j ≥ i.

336 O. Friedmann, M. Latte, and M. Lange

Proof. For all i ∈ N, it holds that ψi+1 ∈ Sub(ψi), or ψi+1 = Xψi provided that
ψi is an U- or an R-formula. The map removing from a formula its frontal X
converts the thread into a chain which is weakly decreasing with respect to the
subformula order. Because this order is well-founded the claim follows. �!

Definition 9. A tableau for ϑ is a pre-tableau for ϑ that does not contain a
branch which contains a bad trace.

In other words, all traces in a tableau must be good. Such tableaux exactly
characterise satisfiability of CTL∗ in the sense of the following theorem.

Theorem 10. For all ϑ ∈ CTL∗: ϑ is satisfiable iff there is a tableau for ϑ.

The completeness proof is technically tedious but does not use any heavy ma-
chinery once the right invariants etc. are being found. Given a model for ϑ we
use this to construct a pre-tableau in a certain way. Then assume that the result
is not a tableau and derive a contradiction from it. Soundness can be shown by
collapsing a tableau into a tree-like transition system and verifying that it is
indeed a model of ϑ.

4 A Decision Procedure for CTL∗

4.1 Using Automata to Recognise Tableau Branches

The main difficulty in deciding the existence of a tableau for a formula ϕ is the
global condition on infinite branches being required to be good. We propose to
use automata-theory for this. Pre-tableau branches can be represented as infinite
words over a certain alphabet, and we will show that the language of good
branches is recognisable by a nondeterministic Büchi-automaton (NBA). This is
not trivial since a nondeterministic machine cannot easily check for absence of U-
threads in E-traces for instance. However, we can use the nondeterminism in order
to check for violations, i.e. the presence of U-threads in an E-trace for instance.
This then has to be complemented and combined with something checking for
the presence of an R-thread in an A-trace in order to have a device recognising
exactly the set of good paths of a tableau.

The goal is then to replace the global condition on branches of having good
traces by an annotation of the tableau nodes with automaton states and a global
condition on these states. For instance, if the resulting automaton was of Büchi
type, then a tableau can be seen as a pre-tableau with nodes annotated by the
automaton s.t. on every infinite path, infinitely many final states occur.

Now note that the automaton recognising good paths needs to be determin-
istic: suppose there are two branches uv and uw with a common prefix u s.t.
both branches are recognised by A. If A is nondeterministic then it may have
two different accepting runs on uv and uw that differ on the common prefix u
already. Remember that an annotation of tableau nodes with a single automaton
state is required. However, this is possible if A is deterministic.

A Decision Procedure for CTL∗ Based on Tableaux and Automata 337

The problem of deciding existence of a tableau then reduces to the problem
of solving a game. Its nodes are pre-tableau nodes annotated with states of the
deterministic automaton. Nondeterministic choices in the tableau rules translate
into choices of the existential player in the game; the branching rules (X0) and
(X1) translate into choices of the universal player. The type of the game is the
same as the type of A. For instance, if A is a deterministic parity automaton
then the game is a parity game.

Here we are particularly interested in Büchi and parity automata [9]. An NBA
is a tupleA = (Q,Σ, q0, δ, F) withQ being a finite set of states,Σ a finite alphabet,
q0 ∈ Q an initial state, δ ⊆ Q × Σ × Q the transition relation and F ⊆ Q a set
of final states. A run of A on a a0a1 . . . ∈ Σω is an infinite sequence q0, q1, . . .
s.t. (qi, ai, qi+1) ∈ δ for all i ∈ N. It is accepting if qi ∈ F for infinitely many i.
The language of the NBA A is L(A) = {w | there is an accepting run of A on w}.
A co-Büchi automaton (NcoBA) is syntactically the same as a NBA. However, a
run q0, q1, . . . of an NcoBA is accepting if it only contains finitely many non-final
states. A parity automaton (NPA) is a tupleA = (Q,Σ, q0, δ, Ω) withQ,Σ, q0, δ as
above andΩ : Q→ N assigns to each state a priority. A run q0, q1, . . . is accepting
if max{Ω(q) | q = qi for infinitely many i ∈ N} is even. The index of an NPA A
is the number of different priorities occurring, i.e. |Ω[Q]|.

An NBA / NcoBA / NPA with transition relation δ is deterministic (DBA /
DcoBA / DPA) if |{q′ | (q, a, q′) ∈ δ}| = 1 for all q ∈ Q and a ∈ Σ. Determinism
and the duality between Büchi and co-Büchi condition as well as the self-duality
of the parity acceptance condition makes it easy to complement a DcoBA to
a DBA as well as a DPA to a DPA again. The following is a standard and
straight-forward result [9, Sec. 1.2] in the theory of ω-word automata.

Lemma 11. For every DcoBA, resp. DPA, A there is a DBA, resp. DPA, A
with L(A) = L(A) and |A| = |A|.

4.2 Automata for Tableau Branches

We regard rule applications—more precisely: pairs of a goal and one of its sub-
goals in one of the tableau rules—in a pre-tableau for a formula ϕ as symbols of a
finite alphabet. Näıvely, this would yield an alphabet of doubly exponential size
since there are doubly exponentially many different goals. However, note that
such a pair is entirely determined by the principal block and the principal formula
of the goal and a number specifying the subgoal. This enables a smaller symbolic
encoding. For instance, the transition from the goal A(Eϕ,Σ), Φ to the subgoal
AΣ,Φ in rule (AE) would be represented by the quadruple (A, {Eϕ} ∪ Σ, Eϕ, 1).
The other possible premiss would have index 0 instead. There are three excep-
tions to this: applications of rules (Ett) and (X0) can be represented using a
constant name, and the premiss in rule (X1) is entirely determined by one of the
E-blocks in the subgoal. Hence, let

Σbr
ϕ := ({A, E} × 2Sub(ϕ) × Sub(ϕ)× {0, 1}) ∪ {0, 1} ∪ 2Sub(ϕ)

Note that |Σbr
ϕ | = 2O(|ϕ|).

338 O. Friedmann, M. Latte, and M. Lange

An infinite branch π = C0, C1, . . . in a pre-tableau for ϕ then induces a word
π′ = r0, r1, . . . ∈ (Σbr

ϕ)ω in a straight-forward way: ri is the symbolic repre-
sentation of the goal/subgoal pair (Ci, Ci+1). We will not distinguish formally
between an infinite branch π and its induced ω-word π′ over Σbr

ϕ .
Remember that we want to define an NBA which accepts exactly those branches

which are not good, i.e. which either contain an E-trace with an U-thread or an
A-trace with no R-thread. Nondeterminism can be used in order to guess the
trace in the branch, and it can also be used in order to guess an U-thread in an
E-trace. However, it is not necessarily useful for showing that no R-thread exists
in an A-trace. We therefore use complementation for this subproblem again.

An A-trace-marked branch is a pre-tableau branch in which a single A-trace
is marked. It can be represented as an infinite word over the alphabet Σtmb

ϕ =
Σbr

ϕ × 2Sub(ϕ). The second component of the alphabet simply names the set
of subformulas which form the current A-block on the marked trace. Then we
define a co-Büchi automaton Cϕ which recognises exactly those A-trace-marked
branches which contain an R-thread in the marked trace. It is Cϕ = ({W, F} ∪
Sub(ϕ), Σtmb

ϕ , W, δ, F) with F = Sub(ϕ). We define the transition relation δ by
intuitively describing its behaviour. Starting in the waiting state W it guesses a
formula of the form ψ1Rψ2 which occurs in the marked A-trace. It then tracks
this formula in its state for as long as it is unfolded with rule (AR) and remains
in the marked trace. If it leaves the marked trace then Cϕ moves into the failure
state F. The following proposition is easily seen to be true.

Lemma 12. Let w ∈ (Σtmb
ϕ)ω be an A-trace-marked branch of a pre-tableau

for ϕ. Then w ∈ L(Cϕ) iff the marked trace of w contains a R-thread.

Remember that we are interested in branches whose A-traces do not contain
R-threads. Hence, we need complementation. Luckily, an NcoBA can be deter-
minised into a DcoBA using the Miyano-Hayashi construction [12] which can
easily be complemented into a DBA according to Lemma 11.

Theorem 13 ([12]). For every NcoBA A with n states there is a DBA A with
at most 3n states s.t. L(A) = L(A).

Equally, we can define an E-trace-marked branch as a word over Σtmb
ϕ and an

NcoBA Bϕ which accepts exactly those which contain an U-thread in the marked
E-trace. It is Bϕ := ({W, F}∪Sub(ϕ), Σtmb

ϕ , W, δ, F) with F = Sub(ϕ). Its behaviour
is almost the same as that of Cϕ with the difference that it tracks an U-formula
in its state component rather than an R-formula.

Lemma 14. Let w ∈ (Σtmb
ϕ)ω be an E-trace-marked branch of a pre-tableau

for ϕ. Then w ∈ L(Bϕ) iff the marked trace of w contains an U-thread.

Then we can define an NBA Aϕ that accepts exactly those branches which
contain a bad trace. Let Cϕ = (QC , Σtmb

ϕ , qC0 , δ
C , F C) be the DBA obtained from

Cϕ using the complementation construction of Thm. 13, and Bϕ = (QB, Σtmb
ϕ , qB0 ,

δB, FB). Then define Aϕ := (Q,Σbr
ϕ , W, δ, F) where Q = {W, F} ∪ 2Sub(ϕ)×

(
QC ∪̇

QB). Again, we describe its behaviour informally. It starts in the waiting state W.
At some point it guesses a block that is contained in the given alphabet symbol

A Decision Procedure for CTL∗ Based on Tableaux and Automata 339

and tracks this block in the first component of its state space in order to check
that it is a non-spawing trace. Depending on whether or not it is an A- or E-
block it simulates in its second component the automaton Cϕ, resp. Bϕ on the
letters which are composed of the input letter and the first component. Thus, it
effectively guesses a trace and simulates one of the two automata on the branch
in which this trace is marked. If the trace disappears using rule (Ett) for instance,
it moves to the failure state F. Its accepting states F are 2Sub(ϕ) × (F C ∪̇ FB).
The following is not too difficult to see using Lem. 12 and 14 as well as Thm. 13.

Lemma 15. Let w ∈ (Σbr
ϕ)ω be a branch of a pre-tableau for ϕ. Then w ∈ L(Aϕ)

iff w contains a trace which is not good.

Furthermore, a close inspection of the constructions together which Thm. 13 yields
the following estimation on the size of Aϕ. Note that the initial waiting states of
Cϕ and Bϕ are redundant since waiting is also done in the initial state of Aϕ.

Proposition 16. The number of states of Aϕ is bounded by 2 + 2|ϕ| · (3|ϕ|+2 ·
(|ϕ|+ 2)) ≤ 2O(|ϕ|).

Finally, remember that we need a deterministic automaton recognising the com-
plement of the language recognised by Aϕ. Luckily, there are determinisation
constructions for Büchi automata. We are particularly interested in those that
yield parity automata [13,10,18].

Theorem 17 ([13]). For every NBA with n states there is an equivalent DPA
with at most n2n+2 states and index at most 2n− 1.

Together with Lemma 11 we obtain a DPA Aϕ which accepts exactly those
branches containing good traces only, and has size 22O(|ϕ|)

and index 2O(|ϕ|).

4.3 The Reduction to Parity Games

The problem of deciding the existence of a tableau can easily be phrased as a
game: starting with the initial goal Eϕ, the proponent chooses a rule instance
that can be applied to the current goal, and the opponent chooses a subgoal
whenever the instance is a branching rule. Note this is only the case for the
modal rules. This yields a pre-tableau branch in the limit. The proponent wins
iff all traces on this branch are good, otherwise the opponent wins. Clearly, there
is a tableau for ϕ iff the proponent has a winning strategy in this game. We will
now use the automata-theoretic machinery of the previous subsection in order
to formalise this game and present a reduction of the satisfiability problem for
CTL∗ to the problem of solving a parity game.

A parity game is a G = (V, V0, V1, v0, E,Ω) s.t. (V,E) is a finite, directed
graph with total edge relation E, V0, V1 is a partition of the node set V into
nodes owned by player 0 and 1, resp., v0 ∈ V is a designated starting node, and
Ω : V → N assigns priorities to the nodes. A play is an infinite sequence v0, v1, . . .
starting in v0 s.t. (vi, vi+1) ∈ E for all i ∈ N. It is won by player 0 if max{Ω(v) |

340 O. Friedmann, M. Latte, and M. Lange

v = vi for infinitely many i} is even. A (non-positional) strategy for player i
is a function σ : V ∗Vi → V , s.t. for all sequences v0 . . . vn with (vj , vj+1) ∈ E
for all j = 0, . . . , n − 1, and all vn ∈ Vi we have: (vn, σ(v0 . . . vn)) ∈ E. A play
v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we have: if vj ∈ Vi

then vj+1 = σ(v0 . . . vj). A strategy σ for player i is a winning strategy in node
v if player i wins every play that begins in v and conforms to σ. A (positional)
strategy for player i is a strategy σ for player i s.t. for all v0 . . . vn ∈ V ∗Vi and
all w0 . . . wm ∈ V ∗Vi we have: if vn = wm then σ(v0 . . . vn) = σ(w0 . . . wm).
Hence, we can identify positional strategies with σ : Vi → V . It is a well-known
fact that for every node v ∈ V , there is a winning strategy for either player 0 or
player 1 for node v. In fact, parity games enjoy positional determinancy meaning
that there is even a positional winning strategy for node v for one of the two
player [1]. The problem of solving a parity game is to determine which player
has a winning strategy for v0. It is solvable [17] in time polynomial in |V | and
exponential in |Ω[V]|.

Definition 18. Let ϕ be a state formula and Aϕ = (Q,Σbr
ϕ , q0, δ, Ω) be the

DPA according to the previous subsection which recognises good branches in pre-
tableaux for ϕ. The satisfiability game for ϕ is a parity game Gϕ = (V, V0, V1, v0,
E,Ω′) defined as follows.

– V := Seq(ϕ)×Q
– V1 := {(C, q) ∈ V | rule (X0) or (X1) applies to C}
– V0 := V \ V1

– v0 := (Eϕ, q0)
– ((C, q), (C′, q′)) ∈ E iff (C,C′) is an instance of a rule application which is

symbolically represented by r ∈ Σbr
ϕ and q′ = δ(q, r), or no rule is applicable

to C and C = C ′ and q = q′,

– Ω′(C, q) :=

⎧⎪⎨⎪⎩
0 if C is a consistent set of literals
Ω(q) if there is a rule applicable to C
1 otherwise

The following theorem states correctness of this construction. It is not difficult to
prove. In fact, a winning strategy for player 0 is basically a finite representation
of an infinite tableau.

Theorem 19. Player 0 wins Gϕ iff there is a tableau for ϕ.

Proof. Assume that player 0 wins Gϕ with a positional winning strategy σ. Un-
folding the game Gϕ starting with v∗ and conforming to σ results in a possibly
infinite tree that can be easily transformed into a pre-tableau P for ϕ by re-
moving all annotations of the branch-checking automaton and by replacing all
consistent-set-loops with consistent-set-leafs. Note that it is impossible that a
finite branch does not end in a consistent set with player 0 winning from v∗.
Given an arbitrary infinite branch π in P , it holds that π ∈ L(Aϕ), hence by
Lemma 15 it follows that π contains no bad trace. Consequently, P is a tableau.

A Decision Procedure for CTL∗ Based on Tableaux and Automata 341

For the other direction, let P be a tableau for ϕ. Starting with v∗, every goal
in P can be labeled with the corresponding game state; then, every player 0
position of Gϕ corresponding to a node in the labeled version of P can be used
as a non-positional strategy decision for player 0. The player 0 strategy obtained
in that manner is indeed a winning strategy for player 0 starting in v∗: let π be
an arbitrary play conforming to the strategy; if π is finite, it must correspond to
a branch in P that ends in a consistent set of literals, hence it is won by player
0, otherwise the branch corresponding to π contains only good traces, and hence
by Lemma 15 it follows that π is won by player 0. �!

Corollary 20. Deciding existence of a tableau for some ϕ is in 2EXPTIME.

Corollary 21. Any satisfiable CTL∗ formula ϕ has a model of size at most
22O(|ϕ|)

and branching-width at most 2|ϕ|.

5 Comparison with Existing Methods

We briefly compare the tableau/automata-based reduction to parity games with
existing decision procedures for CTL∗, namely Emerson/Jutla’s tree automata [4],
Reynolds’ proof system [15], Gabbay/Pnueli’s proof system [8], and Reynolds’
tableaux [16].

Emerson/Jutla’s procedure transforms a CTL∗ ϕ formula in some normal
form into a tree-automaton recognising exactly the tree-unfoldings of fixed bran-
ching-width of all models of ϕ. This uses a translation of linear-time formulas
into Büchi automata and then into deterministic (Rabin) automata for the same
reasons as outlined above. This has a drawback, as Emerson [2, Sec. 6.5] notes
himself: “. . . due to the delicate combinatorial constructions involved, there is
usually no clear relationship between the structure of the automaton and the
candidate formula.”

Note that our approach does not use tree-automata as such—even though one
may argue that the constructed parity games represent tree automata. However,
the crucial difference is the separation between the use of tableau-machinery for
the characterisation of satisfiability in CTL∗ and the use of automata-machin-
ery only in order to obtain a decision procedure. In particular, we do not need
translations of linear-time temporal formula into ω-word automata. The relation-
ship between input formula and resulting structure (here: game) is given by the
tableau rules. Furthermore, this separation makes a huge difference in practice,
as we believe, because it allows the branching-width of models of ϕ to be flexi-
ble. Note that this is given by the number of premisses of rule (X1), whereas in
Emerson/Jutla’s approach it is fixed a priori to a number which is linear in the
size of the input formula. While this does not increase the asymptotic worst-case
complexity, it does have an effect on the efficiency in practice. Not surprisingly,
we do not know of any attempt to implement the tree-automata approach.

Reynolds’ proof system is an approach at giving a sound and complete finite
axiomatisation for CTL∗. Its proof of correctness is rather intricate and the
system itself is useless for practical purposes since it uses a second-order rule

342 O. Friedmann, M. Latte, and M. Lange

and it is therefore not even clear how a decision procedure, i.e. proof search
could be done. In comparison, our calculus has the subformula property and
comes with an implementable decision procedure. The only price to pay for this
is the characterisation of satisfiability through infinite objects instead.

Gabbay/Pnueli’s proof system is a unifying approach to compositional model
checking and validity checking. Their work focuses on obtaining a sound and
complete system. It is not clear whether this could be used in practice and we
also do not know of any implementation based on that calculus. Also, the system
is only complete for a special model of reactive systems in which path quantifiers
are implicitly relativised.

Reynold’s recent tableau system shares some similarities with our tableau
system. He also uses sets of sets of formulas as well as traces (which he calls
threads), etc. Even though his tableaux are finite, the difference in this respect
is marginal. Finiteness is obtained through looping back, i.e. those branches
might be called infinite as well. One of the real differences between the two
systems lies in the way that the semantics of the CTL∗ operators shows up.
In Reynolds’ system it translates into technical requirements on nodes in the
tableaux, whereas our system comes with relatively straight-forward tableau
rules. The other main difference is the loop-check. Reynolds says that “. . .we are
only able to give some preliminary results on mechanisms for tackling repetition.
[. . .] The task of making a quick and more generally usable repetition checker
will be left to be advanced and presented at a later date.” Our method comes
with a non-trivial repetition checker: it is given by the annotated automata.
Finally, Reynolds reports of a prototype implementation of his tableau decision
procedure [16]. This implementation is, however, not publicly available, and tests
are only performed on single short formulas such that no asymptotic behaviour
can be inferred from those results. We strongly believe that this implementation
is greatly outperformed by ours. For example, the formula AG(EXp ∧ EX¬p) ∧
AG(Gp∨(¬r)U(r∧¬p)) apparently cannot be checked for satisfiability by Reynolds’
implementation anymore whereas ours takes 0.04s for this task.

6 An Implementation

We report on practical aspects of the decision procedure described above. As
said in the introduction, it is implemented in the MLSolver tool, a framework
for solving satisfiability and validity problems of modal fixpoint logics. It reduces
such problems to parity games and then uses PGSolver, a high-performance
solver for parity games. Both tools are publicly available1.

Optimisations. (1) It is possible to partially determinise the proponent’s strategy
without compromising on soundness or completeness: except for the modal rules
(X0) and (X1), it is not important which rule is to be applied next. Instead of allow-
ing the proponent to choose the rule we use a function which determines for each
goal the rule that has to be applied to it next. This leaves the proponent with the
1 http://www.tcs.ifi.lmu.de/{mlsolver,pgsolver}

A Decision Procedure for CTL∗ Based on Tableaux and Automata 343

choices of the disjuncts to be preserved in the current goal in rules (Al), (AA), (AE),
(E∨), (EU), and (ER) and reduces the out-degree of the resulting parity games.

(2) MLSolver allows parity games to be generated in compact mode. This
means that not every pair of pre-tableau goal and automaton state is present
in the game. Instead, the game only contains those pairs in which rule (X0) or
(X1) applies to the pre-tableau goal. This is possible because CTL∗ formulas are
guarded in the sense that every infinite pre-tableau path must contain infinitely
many applications of one of these rules. Compact mode does not only create
much smaller games, they are also often generated faster because loop-checks do
not need to be performed for every newly generated pair.

(3) MLSolver is able to perform literal propagation in each step of the cre-
ation of a pre-tableau. This means that whenever a literal becomes top-level in
a goal, its other occurrences which are not under the scope of a temporal oper-
ator are replaced by tt. Equally, all such occurrences of the complement literal
are replaced by ff. The resulting goal can be simplified according to the usual
rules for boolean operations and then provide less disjunctive choices or allow to
detect inconsistencies earlier.

(4) MLSolver prefers large formulas as principals. This scheduling reduces
the branching width to linear—in contrast to the general case, cf. Cor. 21.

(5) Finally, PGSolver contains implementations of basically all known al-
gorithms for solving parity games. While some of them are consistently bad in
practice, there are some which perform quite well even though none of them is
always best. These are furthermore aided by modules performing simplifications
on the parity games which speed up the solving. The running times reported
below are obtained using the solving algorithm which is best on the respective
instance—usually the one by Stevens and Stirling [19].

Benchmarks. (1) We consider two simple families of formulas that feature deep
nestings of modal operators. Let α0 := q, αn+1 := AFGαn, β0 := q, βn+1 :=
AFAGβn, ψn := αn → βn, and ϕn := βn → αn for n ≥ 0. Both families are
checked for validity, but note that ψn is falsifiable whereas ϕn is valid. Thus,
there is a tableau for ¬ψn but none for ¬ϕn.

(2) We consider n+ 1 programs 0, . . . , n. A proposition pi states whether or
not the program i is running. A scheduler is assumed which guarantees that at
any time at least one program is running, and that each program runs infinitely
often. Then for any execution sequence and at any time, if program 0 is running
then the programs 1 to n will run in this order but possibly interrupted by others.
The hole setting is given by the formula (AG(

∨
i pi) ∧

∧
i AGFpi) → AG(p0 → τ1)

where τi = F(pi ∧ τi+1) and τn+1 = tt.
(3) The formula λ(ϕ, ψ, ϕ′, ψ′) := (ϕ∧ AG(ϕ→ EX(ψUϕ))) → EG(ψ′Uϕ′) is a

variation of the limit closure property, and is a tautology if ϕ′ is a consequence
of ϕ and ψ′ of ψ. Its iterations serve as benchmarks, that are

α0 := q → q and αn+1 := λ(p, ϕ, p, ϕ′) where ϕ→ ϕ′ = αn, and
β0 := p→ p and βn+1 := λ(ϕ, q, ϕ′, q) where ϕ→ ϕ′ = βn.

344 O. Friedmann, M. Latte, and M. Lange

Family n Explored Time
Game Size

N
es

te
d

M
od

al
O

p
er

at
or

s

14 102, 200 727.55s
15 123, 774 1, 315.55s

ψn 16 148, 213 1, 663.43s
17 175, 697 3, 173.65s
18 ? †

2 400 0.25s
ϕn 3 5, 581 10.18s

4 ? †

Family n Explored Time
Game Size

Scheduler

1 81 0.08s
2 852 1.21s
3 12, 320 30.82s
4 ? †

L
im

it
C

lo
su

re

1 49 0.12s
αn 2 7, 213 328.15s

3 ? †

βn
1 49 0.12s
2 ? †

Fig. 2. Runtime results

Experimental Results. All tests have been carried out on a 64-bit machine with
four quad-core OpteronTM CPUs and 128GB RAM space. The implementation
does not (yet) support parallel computations, hence, each test runs on one core
only and needed less than 4 GB RAM. We only present instances of non-negligible
running times. On the other hand, the solving of larger instances not presented
in Fig. 2 anymore has experienced time-outs after one hour, marked †.

7 Further Work

The results of the previous section show that the tableau/automata approach to
deciding CTL∗ is reasonably viable in practice. Note that the implementation
so far only features optimisations on one of three fronts: it uses the latest and
optimised technology for solving the resulting games. However, there are two
more fronts for optimisations which have not been exploited so far. The main
advantage of this approach is—as we believe—the combination of tableau-,
automata- and game-machinery and therefore the possible benefit from optimisa-
tion techniques in any of these areas. It remains to be seen for instance whether
the automaton determinisation procedure can be improved or replaced by a bet-
ter one. Also, the tableau community has been extremely successful in speeding
up tableau-based procedures using various optimisations. It also remains to be
seen how those can be incorporated in the combined method.

Furthermore, it remains to expand this work to extensions of CTL∗, for ex-
ample CTL∗ with past operators, multi-agent logics based on CTL∗, etc.

References

1. Emerson, E., Jutla, C.: Tree automata, μ-calculus and determinacy. In: Proc. 32nd
Symp. on Foundations of Computer Science, San Juan, pp. 368–377. IEEE, Los
Alamitos (1991)

2. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, ch. 16. Formal Models and Semantics, vol. B, pp.
996–1072. Elsevier and MIT Press, New York (1990)

A Decision Procedure for CTL∗ Based on Tableaux and Automata 345

3. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. J. of the ACM 33(1), 151–178 (1986)

4. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs.
SIAM Journal on Computing 29(1), 132–158 (2000)

5. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and
Control 61(3), 175–201 (1984)

6. Friedmann, O., Lange, M.: A solver for modal fixpoint logics. In: Proc. 6th Work-
shop on Methods for Modalities, M4M-6 (2009)

7. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

8. Gabbay, D.M., Pnueli, A.: A sound and complete deductive system for CTL* veri-
fication. Logic Journal of the IGPL 16(6), 499–536 (2008)

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

10. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 724–735. Springer, Heidelberg (2008)

11. Luo, X., Su, K., Sattar, A., Chen, Q., Lv, G.: Bounded model checking knowledge
and branching time in synchronous multi-agent systems. In: Proc. 4th Int. Conf.
on Auton. Agents and Multiagent Syst., AAMAS’05, pp. 1129–1130. ACM, New
York (2005)

12. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. TCS 32(3),
321–330 (1984)

13. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. 21st Symp. on Logic in Computer Science, LICS’06, pp.
255–264. IEEE Computer Society, Los Alamitos (2006)

14. Pnueli, A., Rosner, R.: A framework for the synthesis of reactive modules. In: Vogt,
F.H. (ed.) CONCURRENCY 1988. LNCS, vol. 335, pp. 4–17. Springer, Heidelberg
(1988)

15. Reynolds, M.: An axiomatization of full computation tree logic. Journal of Symbolic
Logic 66(3), 1011–1057 (2001)

16. Reynolds, M.: A tableau for CTL∗. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 403–418. Springer, Heidelberg (2009); Long version availabe
as technical report of the University of Western Australia

17. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

18. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Al-
faro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg
(2009)

19. Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998)

20. Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics
of programs. In: Proc. 17th Symp. on Theory of Computing, STOC’85, Baltimore,
USA, pp. 240–251. ACM, New York (1985)

URBiVA: Uniform Reduction to Bit-Vector
Arithmetic

Filip Marić and Predrag Janičić

Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia
{filip,janicic}@matf.bg.ac.rs

Abstract. We describe a system URBiVA for specifying and solving a
range of problems by uniformly reducing them to bit-vector arithmetic
(bva). A problem description is given in a C-like specification language
and this high-level specification is transformed to a bva formula by sym-
bolic execution. The formula is passed to a bva solver and, if it is satisfi-
able, its models give solutions of the problem. The system can be used for
efficient modelling (specifying and solving) of a wide class of problems.
Several state-of-the-art solvers for bva are currently used (Boolector,
MathSAT, Yices) and additional solvers can be easily included. Hence,
the system can be used not only as a specification and solving tool, but
also as a platform for evaluation and comparison between bva solvers.

1 Introduction

In recent years, propositional satisfiability (sat) and satisfiability modulo theory
(smt) testing have successfully been applied for solving different problems. Huge
advances have been made, and state-of-the art sat and smt solvers can quickly
solve huge problem instances coming from various industrial applications. The
progress in this community is strengthen by standardization initiatives like SMT-
lib1 and by annual competitions like SAT-Comp2 and SMT-Comp.3 One of the
smt theories that has been extensively used in software and hardware verification
lately is the theory of bit-vector arithmetic (bva) [4]. Informally, bit-vectors
represent fixed-length vectors of bits over which operations are performed as
over (finite-precision) integers (either unsigned or two’s complement encoded
signed). Syntactically, the quantifier-free fragment of the first-order theory of
bit-vector arithmetic includes arithmetic operators (+, *, -, /, %), relational
operations (==, !=, <, >, <=, >=), bit-wise operators (&, |, ^, <<, >>), logical
operators (&&,||, !), operators for bit-extraction and concatenation, etc. All
arithmetic operators are finite-precision and are applied only over bit-vectors of
the same width. The semantics of bva is introduced in a straightforward manner
[1]. The satisfiability problem for the quantifier-free fragment of bva is defined
as usual: for a given formula F , check whether there is a variable assignment
1 http://combination.cs.uiowa.edu/smtlib/
2 http://www.satcompetition.org/
3 http://www.smtcomp.org

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 346–352, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://combination.cs.uiowa.edu/smtlib/
http://www.satcompetition.org/
http://www.smtcomp.org

URBiVA: Uniform Reduction to Bit-Vector Arithmetic 347

which makes F true. Although arithmetic over arbitrary precision integers with
addition and multiplication is undecidable, bva is decidable thanks to the finite
domain.4 Additional operators can be defined (in a reasonable manner) without
compromising decidability. It can be simply proved that this decidability problem
is NP-complete. bva is suitable for representing and reasoning about programs’
properties because it operates on the word-level, in compliance with standard
hardware and software operations over integers.

Most (if not all) reported applications of bva are in the domain of software and
hardware verification. We argue that potentials for using bva solvers are much
wider. In this paper, we describe a specification language and a tool URBiVA

that can be used for solving not just verification problems, but a much wider
range of problems (including, for instance, many classes of constraint satisfaction
problems). The approach combines features of declarative and imperative pro-
gramming. It automatically transforms problem specifications to bva and solves
generated formulae by one of underlying bva solvers. This general reduction ap-
proach can be beneficial since hand-crafting bva formulae that encode specific
problems is typically error-prone. As we are aware of, there are still no other
tools that uniformly reduce problem specifications to bva.

2 Problem Specification

The class of problems that are considered are problems of the general form: find
(if it exists) an assignment S which satisfies some given constraints (variations
can require only checking if such an assignment exists, finding all assignments
that meet the given conditions, etc). Constraints can be specified by an impera-
tive test that checks whether S (assuming that S is given in advance) is indeed
a solution. Therefore, the approach is declarative: only this test is given (instead
of a solving procedure). It is often much easier to write such a test, than to write
an efficient program that checks satisfiability.

The specification language is C-like and provides all standard arithmetic, bit-
wise, logical and relational operators, and the ternary conditional operator (?:).
Two types of variables are supported — numerical (with identifiers starting with
n) and Boolean (with identifiers starting with b). For simplicity, variables are not
declared, but introduced dynamically. All operators can be applied to variables of
both types (implicit type conversions are performed whenever necessary). User-
defined functions are also supported. The assert statement specifies a condition
(a Boolean expression) that must be satisfied. It triggers the underlying solver
to search for an assignment to the unknowns which satisfies the assertion. The
assert_all statement searches for all such assignments.

Let us illustrate the specification language by considering the problem of
finding all Gray codes of given length, i.e., finding all permutations of integers
from 0 to dim−1 such that each successive pair of integers differs exactly in one
bit in their binary representation. A possible specification of this problem is:

4 Indeed, for a given formula F to be tested for satisfiability, one can test all possible
assignments to variables that appear in F and check if any of them satisfies F .

348 F. Marić and P. Janičić

nDim = 8;

bDomain = true;

for (ni = 0; ni < nDim; ni++)

bDomain &&= 0 <= na[ni] && na[ni] < nDim;

bAllDiff = true;

for (ni = 0; ni < nDim-1; ni++)

for (nj = ni+1; nj < nDim; nj++)

bAllDiff &&= na[ni] != na[nj];

bGray = true;

for (ni = 0; ni < nDim - 1; ni++) {

nDiff = na[ni] ^ na[ni+1];

bGray &&= !(nDiff & (nDiff - 1)) && (nDiff != 0);

}

assert_all(bDomain && bAllDiff && bGray);

The vector na is assumed to contain the required permutation (and all such
vectors should be found). The code checks if all required conditions are met. The
auxiliary variable bDomain encodes that all elements of na are between 0 and
dim, bAllDiff encodes that all elements of na are different, and bGray encodes
that all successive pairs differ in exactly one bit.

Notice that specifications (implicitly) contain the information on the variables
that are unknown and have to be assigned so that the given constraints are
satisfied. Those are the variables that appear within expressions/statements (not
on the left-hand side of the assignment operator) before they were defined (in this
example, na[0], . . . , na[7]). So, the above code is a full and precise specification
of the problem, up to the domains of the variables and the semantics of operators
(discussed in the next section).

There are certain restrictions of the specification language: conditions in the
if, while and for statements and indices for accessing array elements must
be ground and not symbolic values. The restriction for if is relaxed by the
presence of the conditional operator that can take symbolic arguments, while
the restriction for arrays and loops cannot be removed (as it would require e.g.,
undefinite loop unrolling).

3 Problem Solving

Specifications given in the language outlined above are used as a starting point
in problem solving. Namely, a problem specification is symbolically executed
(for a given fixed bit-width) in order to build a bva encoding of the problem.
The unknowns are represented by bva variables and results of operations are
represented by bva formulae. Finally, an assertion generates a bva formula for
which a satisfying assignment is to be found. Any satisfying valuation (if it
exists) for that formula yields (ground) values for the unknowns that meet the
specification, i.e., a solution to the problem.

URBiVA: Uniform Reduction to Bit-Vector Arithmetic 349

The semantics of specification language is not equal, but rather parallel to
the standard semantics of imperative programming languages. Namely, in the
standard semantics, expressions (numerical and Boolean) are always evaluated
to ground values and variables must be defined before they are accessed. In the
proposed semantics, expressions may be evaluated to ground or symbolic values
(bva formulae) and accessing undefined variables is allowed. In the URBiVA

tool, the standard semantics of unsigned bva is assumed. The domain of Boolean
variables is {false, true} and the domain of numerical variables are finite precision
unsigned integers from a domain [0, 2l − 1], for a given l (so, arithmetic modulo
2l is assumed).5 Constant expressions are always evaluated to ground values
(for example, after the statement nA = 3 + 2*5;, the variable nA is assigned
the ground value 13, instead of a bva formula). Note that even expressions
involving symbolic values need not necessarily be evaluated to symbolic values
(for example, after the statement bX = bY && false;, the variable bX can be
assigned the ground value false, even if the variable bY had symbolic value).

Let us illustrate the solving process on the following specification:

nB = nA + 3;

nB = 2 * nB;

assert(nA + nB == 12);

Since, in the first line of the specification, the variable nA was accessed before it
was defined, it is associated with a fresh bit-vector variable A. In the same line,
the formula A+3 is assigned to nB. Similarly, in the second line, the variable nB
is assigned the symbolic value 2 * (A+3). Finally, the assert command asserts
that nB + nA == 12 is true, which gives a bva formula A + 2*(A+3) == 12
which is tested for satisfiability. It is true if A is assigned the value 2, so a
solution to the given problem is nA == 2 (notice that the variable nA was the
only unknown in the specification, i.e., only its value is required).

4 Implementation

The system URBiVA
6 is implemented in the programming language C++. The

whole system has a flexible architecture and is relatively small. An input speci-
fication is parsed into an abstract syntax tree (AST). The interpreter traverses
the AST, performs type checking and conversions and executes statements, while
keeping a list of unknown variables, and a symbol table containing current vari-
able values. Variable values are represented using a specialized data structure:
ground values (bva constants) are represented by finite length bit-arrays (im-
plemented as byte arrays) and symbolic values (bva formulae) are represented
by term-sharing data structures (DAGs). DAG data structures for representing
symbolic values can be either our custom structures, or the ones offered by an
5 The system can be also applied for any finite-precision signed or unsigned, integer or

real numbers, as long as the underlying bva solver provides support for these types.
6 The source code with example specifications (but without third-party solvers, due to

specific licensing) is available online from: http://argo.matf.bg.ac.rs/software/

http://argo.matf.bg.ac.rs/software/

350 F. Marić and P. Janičić

underlying solver’s API. Using underlying solvers’ native data structures helps
the integration of the system (and avoids using of external files and textual
formats, e.g., SMT-lib). The direct communication via API also facilitates the
search for all models: once a model is found, a corresponding blocking clause is
constructed and passed to the solver via API and the search for the next model
can be (incrementally) started. Currently supported underlying solvers are: our
custom solver based on bit-blasting [5] that uses our sat solver ArgoSAT [6],
Boolector7 [2], Yices8 and MathSAT9 [3].

5 Examples and Experimental Results

In this section we give several examples that illustrate the problem modelling
and problem solving within the URBiVA system and that we used for a small
comparison between the underlying solvers (as yet, larger specifications related
to real-world applications have not been considered). We consider one number-
theory problem, two combinatorial problems, and one problem from software
verification.

Fermat’s triples modulo m. By the Fermat’s last theorem, there are no nat-
ural numbers a, b, c such that an + bn = cn and n > 2. However, this does
not hold in arithmetic modulo m. The problem of determining the number
of solutions of the given equation can be simply stated in our specification
language (for a concrete n, say 3) as follows:

function nPower(nx, np) {
nPower=1;
for(ni = 0; ni < np; ni++)
nPower *= nx;

}
assert_all(nPower(na,3) + nPower(nb,3) == nPower(nc,3));

This specification can solved by the URBiVA system using k-bit represen-
tation when arithmetic modulo 2k is considered.

Gray Codes Problem. The Gray codes problem is described and its specifi-
cation is given in Section 2. The parameter of the problem is dim and it
can be solved for different bit-widths (sufficient for storing values from 0 to
dim− 1).

Magic Square Problem. A magic square of order n is a n×n matrix contain-
ing the numbers from 1 to n2, with each row, column and both diagonals
equal the same sum. The problem is to find one (or all, unique up to rotations
and reflections) magic square(s) of order n.10

7 http://fmv.jku.at/boolector/
8 http://yices.csl.sri.com
9 http://mathsat.itc.it/

10 For lack of space, we do not give a specification of this problem here, but it is
available within the URBiVA distribution.

http://fmv.jku.at/boolector/
http://yices.csl.sri.com
http://mathsat.itc.it/

URBiVA: Uniform Reduction to Bit-Vector Arithmetic 351

Software Verification Example — Bit Counting. Bit count (or population
count) is the problem of counting all set bits of an integer. It can be imple-
mented in a number of ways, two of which are given here for 16-bit integers,
specified in our language (almost in verbatim as in the C programming lan-
guage). The URBiVA tool can be used to show that these two specifications
agree on all inputs, i.e., the asserted expression is unsatisfiable.

function nBC1(nX) {

nBC1 = 0;

for (nI = 0; nI < 16; nI++)

nBC1 += nX & (1 << nI) ? 1 : 0;

}

function nBC2(nX) {

nBC2 = nX;

nBC2 = (nBC2 & 0x5555) + (nBC2>>1 & 0x5555);

nBC2 = (nBC2 & 0x3333) + (nBC2>>2 & 0x3333);

nBC2 = (nBC2 & 0x0077) + (nBC2>>4 & 0x0077);

nBC2 = (nBC2 & 0x000F) + (nBC2>>8 & 0x000F);

}

assert(nBC1(nX) != nBC2(nX));

Experimental Results. Table 1 shows results of experimental comparison of the
four underlying solvers applied on some instances of the four described prob-
lems. We solved other instances of these problems and relative performance
of the solvers is rather consistent across instance sizes for one problem. We
also used different bit-widths for one problem instance and longer bit-widths
do not necessarily lead to longer solving times, contrary to what one might
expect.

It is interesting to notice that there is no solver superior to others, and that
some sorts of problems seem more suited to some solvers (even if the translation
mechanism is fixed). This confirms that a system such as URBiVA should take
advantage of having several different solvers supported.

Table 1. Results of experimental comparison between four underlying solvers (“bw”
denotes bit-width used; all times are given in seconds; best times are given in bold face,
worst times are given in italic). All experiments were performed on a PC computer,
with Intel Pentium Dual-Core 2.00GHz processor and 2GB RAM.

Problem Fermat’s triples Gray codes Magic square Bit Count
n = 3, bw=6 dim=12, bw=4 n = 4, bw=6 bw=32

number of solutions 10240 1168 880 0
Boolector 3.22 9.37 197.28 1.20

MathSAT 98.43 9.72 309.09 >600.00

Yices 144.64 2.66 76.15 560.67
bit-blasting 27.18 12.23 461.81 7.26

352 F. Marić and P. Janičić

6 Conclusions, Related Tools, and Further Work

We have described a system that can be used for efficient modelling (specifying
and solving) of a wide class of problems by reducing them to bva and using the
power of state-of-the art bva solvers. The system can also serve as a testing and
evaluation platform for bva solvers. The approach is most suitable for problems
for which it is easy to check whether some values satisfy the problems, but it
is hard to construct such values. Such problems are, for instance, np-problems
and one-way functions. More generally, the approach can be used for calculating
values x, such that f(x) = y, where f is a function expressible in the described
specification language. Still, the approach has two limitations. The first is a
finite-precision representation used, and the second is that not all computable
functions are expressible since conditional statements and array indices in the
specification can involve only expressions that evaluate to ground values.

There is a number of general modelling systems using specific underlying theo-
ries and techniques (e.g., CLP(FD) systems, answer set programming (ASP) sys-
tems, ILOG OPL, DLV, etc.). All these systems use purely declarative languages
(e.g, MiniZinc) and, in contrast to URBiVA, do not have features of imperative
programming languages (e.g., destructive assignments). These features, however,
make URBiVA directly applicable to wider class of problems (e.g., verification
problems). URBiVA is also related to tools for software verification based on sym-
bolic execution (e.g., Java Pathfinder, Pex, SAGE, SmartFuzz, FORTE). Some of
these tools use smt solvers, but they are focused on finding (single) models that
lead to bugs (rather than on enumerating all solutions of a given problem). Also,
they typically handle only machine data-types (and not arbitrary bit-widths).

URBiVA reduces problems to bit-vector arithmetic. However, the same me-
thodology can be applied, in some cases, for reducing to other smt problems. We
are currently developing a wider system ursa major, that will use various smt

solvers for various theories, yielding a powerful general problem solving tool. We
are planning to consider a wide range of combinatorial and verification problems
from various domains and to explore the practical applicability of the approach.

References

1. Brinkmann, R., Drechsler, R.: Rtl-datapath verification using integer linear pro-
gramming. In: Proceedings of the VLSI Design 2002. IEEE Computer Society, Los
Alamitos (2002)

2. Brummayer, R., Biere, A.: Boolector: An efficient smt solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
178–181. Springer, Heidelberg (2009)

3. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The
mathSAT 4 SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 299–303. Springer, Heidelberg (2008)

4. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
An abstraction-based decision procedure for bit-vector arithmetic. STTT 11(2) (2009)

5. Janičić, P.: Uniform Reduction to SAT (manuscript submitted) (2010)
6. Marić, F.: Formalization and Implementation of Modern SAT Solvers. Journal of

Automated Reasoning 43(1) (2009)

Induction, Invariants, and Abstraction�

Deepak Kapur

University of New Mexico, Albuquerque, NM, USA
kapur@cs.unm.edu

Given that loops in imperative programs can be represented as tail-recursive
programs, it is perhaps possible to gain insights into automatically generating
loop invariants by analyzing inductive reasoning about tail-recursive programs.
Intermediate lemmas are typically needed in a proof by induction, and methods
have been investigated to speculate such lemmas from proof attempts.

The abstract interpretation framework has been successfully used to generate
loop invariants using widening operators suitably designed for various abstract
domains, e.g., interval domain, octagon domain, congruences, linear constraints,
etc. Most of these abstract domains can be expressed in the quantifier-free theory
of Presburger arithmetic. Intermediate lemma generation while reasoning about
tail-recursive representations of such loops can be exploited to generate such
loop invariants expressed in various fragments of Presburger arithmetic.

Interpolants have been found a useful tool for performing postcondition com-
putation in program analysis and are related to program invariants. There
is also a close relationship between interpolant computation and quantifier-
elimination methods. The reduction approach to generating decision procedures
for quantifier-free theories for collections such as finite sets, finite multisets(bags),
finite lists, and finite arrays, can be exploited to generate interpolants for for-
mulas in these theories, leading to automatic generation of loop invariants of
programs operating on such data structures. Relationships among invariant gen-
eration, intermediate lemma speculation in inductive reasoning, interpolation,
and quantifier-elimination methods are investigated.

References
1. Kapur, D.: A Quantifier Elimination based Heuristic for Automatically Generating

Inductive Assertions for Programs. J. of Systems Science and Complexity 19(3),
307–330 (2006)

2. Kapur, D., Majumdar, R., Zarba, C.: Interpolation for Data Structures. In: Proc.
14th Symp. on Foundations of Software Engineering (November 2006)

3. Kapur, D., Sakhanenko, N.A.: Automatic generation of generalization lemmas
for proving properties of tail-recursive definitions. In: Basin, D., Wolff, B. (eds.)
TPHOLs 2003. LNCS, vol. 2758, pp. 136–154. Springer, Heidelberg (2003)

4. Kapur, D., Subramaniam, M.: Lemma discovery in automating induction. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 538–552.
Springer, Heidelberg (1996)

5. Kapur, D., Subramaniam, M.: Automatic generation of simple lemmas from recur-
sive definitions using decision procedures–preliminary report. In: Saraswat, V.A.
(ed.) ASIAN 2003. LNCS, vol. 2896, pp. 125–145. Springer, Heidelberg (2003)

6. Kapur, D., Zarba, C.: A Reduction Approach to Decision Procedures. TR-CS-2005-
44, Dept. of Computer Science, University of New Mexico (November 2004)

� Partially supported by NSF grants CCF-0729097, CNS-0831462, and CNS-0905222.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, p. 353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Single-Significant-Digit Calculus
for Semi-Automated Guesstimation�

Jonathan A. Abourbih, Luke Blaney, Alan Bundy, and Fiona McNeill

School of Informatics, University of Edinburgh
jabourbih@acm.org, L.Blaney@sms.ed.ac.uk,

{A.Bundy,f.j.mcneill}@ed.ac.uk

Abstract. We describe a single-significant-digit calculus for estimating
approximate solutions to guesstimation problems. The calculus is for-
malised as a collection of proof methods, which are combined into proof
plans. These proof methods have been implemented as rewrite rules and
successfully evaluated in an interactive system, gort, which forms a cus-
tomised proof plan for each problem and then executes the plan to obtain
a solution.

1 Introduction

The benefits of the huge amount of information available via the internet will not
be fully realised until we can automatically combine it in novel ways. Unfortu-
nately, most of the interest in information retrieval focuses around the extraction
of isolated facts. Interest in question answering, which did try to combine such
facts via inference, has waned recently (but see §6).

This paper tries to return to that earlier vision. We are interested in solving
problems by using inference to combine information from a variety of sources,
including linked data, natural language, etc from the internet, and knowledge
already known to the user. Our research programme is as follows:

1. Construct a proof plan [3] that can be used to identify the information
required to solve the current problem and then solve it.

2. Retrieve this information and use it to construct an initial problem-specific,
logic-based ontology from multiple sources. Note that the sources might con-
tain ungrammatical, uncertain and dubious information, and must be parsed,
disambiguated, checked, etc and expressed logically. The final logical repre-
sentation might be more sophisticated than any explicitly present in the
original sources.

3. Execute the proof plan in the customised ontology to provide the required
solution.

� This paper is based on the MSc project of Jonathan A. Abourbih and the undergrad-
uate project of Luke Blaney. Dr McNeill was funded by onr project N000140910467.
We would like to thank 3 anonymous ijcar referees for their constructive comments,
and Aparna Ghagre for information on the quark system.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 354–368, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 355

4. Sanity check the answer and the information used in its construction, e.g.,
ensure that the customised ontology is consistent. If a problem is diagnosed,
use ontology evolution techniques to repair it, extracting new information,
if necessary, then re-execute the plan.

1.1 Guesstimation

Guesstimation is the task of finding a single-significant-digit estimate to a quan-
titative problem based on a combination of intuition, facts, and reasoning. The
types of problems that are suited to guesstimation are those for which a pre-
cise answer cannot be known or easily found [13,10]. An example guesstimation
problem is:

How many golf balls would it take to circle the Earth at the equator?

This can be answered by finding the diameter of a typical golf ball and the
circumference of the Earth and dividing the latter by the former. More examples
can be found in Table 1 in §5. Guesstimation requires a combination of facts,
planning, reasoning, and guesswork. We have implemented a semi-automated
guesstimator in the system gort (Guesstimation with Ontologies and Reasoning
Techniques) using swi-Prolog, which was chosen for its excellent linked-data
toolkit.

Since common patterns of reasoning can be identified and formalised as proof
plans, and the information from a variety of diverse sources must be combined
in unexpected ways, guesstimation is an ideal initial vehicle for realising the
programme outlined above. We emphasise “initial” because the work described
in this paper does not yet realise all aspects of our programme. For instance, we
have not yet tackled fault diagnosis or ontology repair, although these are the
topic of other research projects in our research group [8,4]. Nor have we used
natural language processing techniques.

1.2 The SingSigDig Calculus

According to [13], the normal form for guesstimation answers is a number in
single significant digit form, d× 10i, in si units, where d is a digit from 1, . . . , 9
and i is an integer. Where quantities are not originally in this normal form,
numeric values must be approximated to the form d×10i and non-si units must
be converted to si

1.
We now define a calculus for reasoning about numbers approximated to a sin-

gle significant digit, which we will call the SingSigDig Calculus. This calculus is
expressed as a set of rewrite rules between first-order terms that evaluate to num-
bers in this normal form, i.e., function values are expressed only approximately.
These rewrite rules are based on an equality that is modulo this approximation,
which we represent as s
 t.

1 In practice, the current gort implementation does not stick to strictly si units.

356 J.A. Abourbih et al.

Let R∼ = {d × 10i|d ∈ {1, . . . , 9} ∧ i ∈ Z} be the domain of normal form
numbers. Let nf∼ : R �→ R∼ be the function that converts a real number into
its nearest single significant digit approximation. Observe that R∼ is the quotient
space R

nf∼ .
Upper-case letters represent sets; lower-case letters represent objects, and the

notation ‖. . .‖ : Set(τ) �→ R∼ approximates the number of elements in a set.
Formulae in the SingSigDig Calculus are first-order expressions whose do-

main of discourse consists of numbers in R∼ plus everyday objects and sets of
such objects. Functions and predicates defined on this domain are abstracted
from those defined on R. Suppose, without loss of generality, that all real num-
ber arguments of function f (predicate p) are initial, i.e., that f : Rm× τn �→ R
(p : Rm × τn �→ bool), where τ is the type of any non-R arguments of f , if any,
so n ≥ 0. For every such function f (predicate p), we define a corresponding
f∼ : R∼m × τn �→ R (p∼ : R∼m × τn �→ bool). In particular, we define the
equality predicate =∼: R∼2 �→ bool. In general, f∼ (p∼) can be defined in terms
of f (p) as follows:

f∼(nf∼(r1), . . . , nf∼(rm), t1, . . . , tn) ::= nf∼(nf∼(r1), . . . , nf∼(rm), t1, . . . , tn)
(p∼(nf∼(r1), . . . , nf∼(rm), t1, . . . , tn) ::= nf∼(nf∼(r1), . . . , nf∼(rm), t1, . . . , tn))

These definitions ensure that f∼ (p∼) is uniquely defined on its first m numeric
arguments2. In order to ensure uniqueness for the next n non-numeric arguments,
we need to make the following assumption.

Assumption 1. Similarity Assumption:
For all functions f∼ (predicates p∼) and sets S, to ensure that f∼(. . . , S, . . .)

(p∼(. . . , S, . . .)) is uniquely defined then we assume that:

∀s1, s2 ∈ S. f∼(. . . , s1, . . .) =∼ f∼(. . . , s2, . . .)
(∀s1, s2 ∈ S. p∼(. . . , s1, . . .) ⇐⇒ p∼(. . . , s2, . . .))

Note that =∼ is actually =, but over R∼2 rather than R2. This makes =∼ an
appropriate basis for a rewriting calculus, since it inherits from = the properties
required of rewriting, namely transitivity, monotonicity and stability.
 is a
directed version of =∼. Where the context makes clear that an approximate
function is being used, we will usually drop the ∼ superscript.

We will frequently want to specify some typical element of a set. To formalise
this we will use Hilbert’s ε operator, [5]. We will designate εS to be a typical
representative element of the set S.

We will use polymorphic functions which apply to both objects and sets of
those objects. If S is a set, the semantics of f(S) is f(εS). An exception to this
semantic rule is the function ‖S‖ described above, which returns the approximate
number of elements in the set S.

2 We are indebted to an anonymous referee for suggesting this version of the definition
of f∼ (p∼) to ensure this property.

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 357

1.3 Hypothesis

The hypothesis that we seek to evaluate in this project is:

Proof planning in the SingSigDigCalculus can be successfully used to
solve guesstimation problems.

Our evaluation consists of implementing this technology in the system gort

and applying it to a representative sample of guesstimation problems (see §5).
‘Success’ here is mainly measured by the proportion of test set guesstimation
problems to which gort returns an accurate result. Secondary characteristics of
success are gort’s efficiency and its adaptability to the information available to
it. In §6 gort is compared favourably to related systems.

2 Guesstimation Proof Methods

Proof plans consist of a configuration of proof methods. We now describe the
proof methods that typically apply to guesstimation problems. These methods
have been derived by introspection and examination of the worked problems
from [13]. To date it has proven possible to express each of them as a, sometimes
conditional, rewrite rule based on the
 relation. It is unclear whether this will
continue to be the case for future methods. The methods described below are
not an exhaustive list of all techniques that apply to guesstimation problems,
but they do form the basis of the methods currently implemented in gort.

We have divided the methods into primary and secondary. Primary methods
form the initial part of each guesstimation proof plan and are applied manually
using the web interface (see §4.3). Primary methods also often require user input
of parameters. Secondary methods are used to complete the proof plan and are
applied automatically by gort (see §4.2). One exception to this classification is
the user interaction method, which can either be called manually as a primary
method or automatically, as a secondary method on backtracking when all other
methods have failed.

2.1 Primary Methods

The Total Size Method. The total size method is applicable in cases where
a guesstimation question requires the total of some physical quantity over a set.
The general form of this question asks for the sum total of a quantity for all
elements in a set. Thus, this type of question can be expressed as

∑
s∈S f(s),

which is rewritten as, ∑
s∈S

f(s)
 f(S)× ‖S‖, (1)

where S is a set of non-numeric objects of type τ and f is a function f : τ �→ R∼.
An example might be, What area would be required if all humans in the world
were put in one place?. Here, S is the set of all humans and f(s) is the area
occupied by s.

358 J.A. Abourbih et al.

The Count Method. The count method is applicable in cases where a guessti-
mation question requires a count, ‖Small‖, of a set of small objects, Small, that
would exactly fit a larger object, big. An example might be, How many golf
balls would it take to circle the Earth?, which is also worked as an example in
Section 3.

We assume that the sum of some measurement g over the elements of Small
is equal to a measurement f of big. f and g will typically be the volume, length,
duration or mass of these objects. The units of the measurements must be the
same. We can formalise the count method as:

g(Small) �= ∅ ∧ f(big) =∼
∑

s∈Small

g(s) =⇒ ‖Small‖
 f(big)
g(Small)

· (2)

The preconditions of the count method are checked by user interaction; the user
instantiates f and g to functions for which s/he believes the preconditions to be
true.

The Law of Averages Method. The law of averages3 method uses the fact
that, on average, the proportion of time an object has a given property is equal
to the proportion of objects in a larger population with that property at a given
time. This can be formalised as:

S �= ∅ ∧ T �= ∅ =⇒ ‖t ∈ T |φ(εS, t)‖
‖T ‖
 ‖s ∈ S|φ(s, εT)‖

‖S‖ (3)

For example, the proportion of time an average person spends asleep is equal to
proportion of people on Earth asleep at any time, where S is the set of people,
T is a finite set of equal time intervals in a day, and φ(s, t) asserts that person
s is asleep during time interval t.

The Distance Method. The distance method is a domain-specific technique
for calculating the distance between two locations on Earth. It applies in the
case of a problem such as, How much time would it take to drive from London to
Manchester?, where two locations are given and a distance is required. distance
calculates an exact value using the following formula. For two points 〈φs, λs〉
and 〈φf , λf 〉, where the φs represent latitudes and λs represent longitudes, the
planar angle between the points is calculated4 by the formula:

Δσ̂ = 2 arcsin

(√
sin2
(
Δφ

2

)
+ cosφs cosφf sin2

(
Δλ

2

))
.

Then the distance along the surface of the Earth is r · Δσ̂, where the single
significant digit approximation of r, the radius of the Earth, is 6× 104 km.

3 This name is adopted from [13]. The normal pejorative use of this phrase is not
intended.

4 http://en.wikipedia.org/wiki/Great-circle_distance

http://en.wikipedia.org/wiki/Great-circle_distance

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 359

2.2 Secondary Methods

The Arbitrary Object Method. The arbitrary object method uses Hilbert’s
ε operator to convert the value of some function of a set into the value of that
function on a typical member of that set. This can be formalised as:

f(S)
 f(εS) (4)

For example, S might be the set of humans and f(s) the height of the human s.

The Average Value Method. The average value method guesstimates a nu-
meric value for some f(εS) by computing the arithmetic mean of all f(s), s ∈ S:

S �= ∅ =⇒ f(εS)

∑

s∈S f(s)
‖S‖ · (5)

An application of this method could be to find the average runtime of a typical
film, based on knowledge about runtimes of particular films. In this case, S would
be the set of all films and f(s) the runtime of the film s.

The Aggregation over Parts Method. A guesstimation problem may require
a quantity for a large object that is composed of many non-overlapping smaller
objects. This is formalised as the aggregation over parts method:

f(o)

∑

p∈Parts(o)

f(p), (6)

where Parts(o) is a function that returns the set of all non-overlapping parts of
o. One such example could be a need for the population of a continent. In that
case, the continent could be subdivided into non-overlapping regions, such as
countries. o would be the continent and each p a country in that continent. The
population of o would be calculated as the sum of the populations of the ps.

The Generalisation Method. The generalisation method finds more general
information when it isn’t available for the typical member of a specific set. By
looking at the properties of the typical member of a superset, an approximate
value can be found.

S ⊂ T =⇒ f(εS)
 f(εT) (7)

For instance, suppose we cannot discover the thickness of a typical lottery ticket.
Knowing that lottery tickets are made from cardboard, we can seek instead the
thickness of a typical piece of cardboard. S would be the set of lottery tickets
and T the set of cardboard objects.

The Geometry Methods. Guesstimation problems often need to reason about
the physical properties of an object, such as its surface area or volume. Where
a precise value for the needed measurement is unavailable, it may be possible to
calculate the required measurement from other knowledge, for example a sphere’s

360 J.A. Abourbih et al.

circumference, Circ(s), given its radius, Radius(s). The geometry methods re-
quire knowledge of the shape of an object and a measurement. An example of
a geometry method is one that expresses the circumference of a circular object,
Circ(s), in terms of its radius, Radius(s):

Circ(s)
 2πRadius(s)

Similarly, methods have been implemented for computing the volume and the
surface area of both spherical and rectangular prism objects.

The User Interaction Method. The solution to a guesstimation question
may rely on information that gort cannot find on the internet. The educated
guess method then asks the user for the required value. The user can also elect
to use this method as a primary one.

2.3 Towards an Axiomatic Equational SingSigDig Theory

The question naturally arises as to whether we can develop an axiomatic equa-
tional SingSigDig theory in which the rewrite rules of this section are theorems.
We have begun some experiments towards this end to explore some of the op-
tions. The domain-specific rewrite rules generally follow just from the rules of
algebra, trigonometry, geometry, etc. We, therefore, restricted our attention to
the general-purpose rewrite rules. Firstly, we made unoriented versions of each of
them, considered as equations over the =∼ relation. Then we considered which
of them could be derived from the others.

If equations based on rewrite rules (4) and (7) are adopted as axioms, then
equations based first on (1), and then on (5), (2) and (3), can all be proved as
theorems. Equation (6) requires a definition of Parts(o) in terms of o, or could
itself be adopted as an axiom.

Note that, as oriented, the rewrite rules for the arbitrary object (4), average
value (5) and total size (1) methods have the potential to loop. Such loops
are currently prevented by the division of the proof plan into separate primary
and secondary phases. The potential loops we have identified all contain both a
primary and a secondary method. Since no primary method is allowed to follow
a secondary method, such loops do not arise in practice. If, in the future, this
restriction is relaxed, or if purely primary or secondary loops are discovered,
then a loop checking mechanism will be required.

gort’s proof methods are approximate in two senses. Not only do they return
an answer only accurate to within a single significant digit, but they are also
fallible. If, for some function f∼ and set S the Similarity Assumption 1 is vio-
lated then different ways of evaluating f∼(. . . , S, . . .) can return different values.
Currently, it is the responsibility of the user to check that this assumption is
met. We would like to automate this check, but it seems inherently resistant to
automation.

An anonymous referee wondered whether it might be possible to order the
methods by some fallibility measure, e.g., the probability of their truth, and

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 361

use this measure during search control. Given their interderivability, it seems
unlikely that it will be possible to order the proof methods in this way. Rather,
fallibility is not due to the particular method used, but rather to the violation
of the Similarity Assumption for some function and set.

3 Worked Examples

We now illustrate how gort can combine the proof methods from §2 into a proof
plan to solve a guesstimation problem. Our worked example is taken from [13].

Problem: How many golf balls would it take to circle the Earth at the equator?

Solution: We begin by identifying the type of plan that is appropriate for this
question. The result of the question must be a count of a set of golf balls;
therefore, the appropriate proof plan is the count method described in §2.1.
The objects being considered are the set of golf balls required, Golf Balls, and
the object, earth5, and the properties under consideration are the diameter and
circumference of these objects, respectively.

We start by choosing the count method (2). The user instantiates big,
Small, f and g to earth, Golf Balls , Circ and Dia, respectively. The user
also confirms that the preconditions Dia(Golf Balls) �= 0 and Circ(earth) =∑

s∈Golf Balls Dia(s) are satisfied. This creates the following rewrite rule:

‖Golf Balls‖
 Circ(earth)
Dia(Golf Balls)

(8)

whose RHS must be evaluated to provide the required value for the LHS.
Since Golf Balls is a set, the arbitrary object method applies and rewrites the

RHS of (8), giving:

‖Golf Balls‖
 Circ(earth)
Dia(εGolf Balls)

· (9)

Continuing, we now need values for Circ(earth) and Dia(εGolf Balls). We take
an educated guess for the diameter of a golf ball:

Dia(εGolf Balls)
 4.100 cm

Next, we need the circumference of the earth. [13] uses background knowledge
about flights and time zones to guesstimate the circumference. However, with
an information retrieval system at our disposal, we can easily look up the radius
of the earth, calculate the circumference and rewrite the units to match those
of our archetypal golf ball:

Radius(earth)
 6.103 km

Circ(earth)
 2π × Radius(earth)
 4.105 km
 4.109 cm

5 Recall the upper/lower case convention for sets/objects given in §1.2.

362 J.A. Abourbih et al.

Finally, we continue the plan from (9) to obtain the result:

Circ(earth)
Dia(εGolf Balls)

 4.109 cm
4.100 cm

 1.109 �

4 Implementation

gort is implemented as a collection of modules, each of which is described below.

4.1 Basic Ontology

gort needs background knowledge to determine the appropriate proof plans
that apply at a given point in a guesstimation solution. The basic ontology
consists of an upper ontology and a small set of ground facts. The knowledge
base encompasses the following bodies of knowledge.

– shapes and geometric properties of objects, such as roundness, whether an
object is tangible, etc;

– measurement units and dimensions, to support scale unit conversion and
common conversion factors;

– a hierarchy of concepts and entailments that allows reasoning about sub-
sumption relationships between sets (e.g., all Actors are also Persons);

– a large range of instances of sets, to allow the user to express questions on a
broad number of topics.

4.2 Inference System

The proof plans, composed of the methods described in §2, form the basis of
gort’s ability to reason over the facts in the knowledge base. The system im-
plements both general and domain-specific methods, and refers to knowledge
in the knowledge base to select an appropriate method. Primary methods are
selected by the user and secondary method are selected automatically by exhaus-
tive, depth-first rewriting. The proof planner handles failure by backtracking to
attempt other plans when possible. If none of the proof plans achieve a result,
then the planner will need to trigger a user interaction to get a needed fact.

4.3 The Web Interface

A prototype web interface has been developed for gort. It uses ajax to load
the results asynchronously. A drag-and-drop interface (using the bbc’s Glow

Javascript Library
6) allows users to select primary methods and provide the

parameters required by these methods. When a proof method receives these
parameters, it updates itself and any other methods which rely on its output.

6 http://www.bbc.co.uk/glow/

http://www.bbc.co.uk/glow/

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 363

4.4 Customised Ontology

The Customised Ontology serves two purposes. First, it provides a mechanism for
gort to record intermediate calculation results and facts that it has retrieved
from either the knowledge base or some outside source. Second, because the
custom ontology records each intermediate calculation and retrieved fact, it also
makes explicit the knowledge that gort uses to solve a guesstimation question.

4.5 Information Retrieval

gort needs a way to gather data in response to a user query, and combine it
with the proof plans and background knowledge already in the knowledge base to
arrive at a solution. This module is responsible for gathering appropriate infor-
mation in response to a user query. It will eventually be adaptable to a range of
information sources, such as Semantic Web sources and natural-language knowl-
edge sources.

gort, currently supports two methods of information retrieval. Firstly it has
various pre-stored ontologies in the form of rdf triples, with explicit links into
them using rdfs:subClassOf, rdfs:subPropertyOf, and owl:sameAs relations.
Secondly, it uses sparql to dynamically link to ontologies that have an appro-
priate endpoint.

sparql(sparql Protocol and rdf Query Language) is an rdf query lan-
guage. It allows the querying of rdf datastores, which means that only relevant
data is returned. This avoids having to download lots of unnecessary data, which
could be a problem for large datastores. There are a range of datastores with
sparql endpoints7, including DbPedia8, the bbc

9 and Edubase10. Queries are
sent over http to the sparql endpoint, which then returns the relevant re-
sults. gort uses parts of the ClioPatria semantic search library

11 for
swi-Prolog to assist in querying the endpoints.

Another benefit of using sparql is that gort doesn’t need to remember uris
for every object. Queries can be sent using the English labels given by the user
and numerical results are returned.

5 Evaluation

The results of a run of gort on 8 example test problems are summarised in
Table 1. The tests were run on a Linux-based, 3Ghz HP dc7900 running swi-
Prolog version 5.8.1. Problem 2 was run twice — once without the data for Loch
Ness (2∗), and again after having loaded it.

The ‘Target’ results are taken from third party sources, where available, such
as [13]. Note that gort produced results accurate to within a single significant

7 http://esw.w3.org/topic/SparqlEndpoints
8 http://dbpedia.org/sparql
9 http://api.talis.com/stores/bbc-backstage/services/sparql

10 http://services.data.gov.uk/education/sparql
11 http://e-culture.multimedian.nl/software/ClioPatria.shtml

http://esw.w3.org/topic/SparqlEndpoints
http://dbpedia.org/sparql
http://api.talis.com/stores/bbc-backstage/services/sparql
http://services.data.gov.uk/education/sparql
http://e-culture.multimedian.nl/software/ClioPatria.shtml

364 J.A. Abourbih et al.

Table 1. Results for all Test Problems

Problem Answer Target User Time (s)
1. How many cells are there in the human body? 2.1014 1.1014 √

10.4
2∗. How many golf balls would it take to fill Loch

Ness?
fail fail n/a < 0.1

2. How many golf balls would it take to fill Loch
Ness?

2.1014 1.1014 √
< 0.1

3. If all Europeans were placed head-to-toe, how
far would they reach?

1.109 m 1.109 m × 11.0

4. How many people would be needed to form a
chain from central London to central Edin-
burgh?

3.105 3.105 × 10.4

5. How many Loch Nesses would fit into the Red
Sea?

3.104 3.104 × 0.17

6. How many Hangzhou Bay Bridges would it
take to cross the Doppler crater on the moon?

3.100 3.100 × 0.17

7. If everyone in the crowd at Croke Park drove
a Volkswagen New Beetle and parked them in
straight line, how long would the line be?

3.108 mm 3.108 mm × 0.5

8. How many Channel Tunnels would it take to
stretch from Edinburgh to New York?

2.102 1.102 × 0.4

The Answer column gives gort’s answer and Target gives the target result. A
√

in
the User column shows that user input was required via the educated guess method; a
× shows it wasn’t. The Time column shows the average CPU time in seconds, averaged
over 10 runs.

digit for 5 of the 8 problems and within an order-of-magnitude for the other
three. The three discrepancies arise from differences in the proof plans used
by gort and human guesstimators, and from the inherent fallibility of gort’s
guesstimation methods (see discussion in §2.3).

To estimate the success rate of gort it was run on all 11 of the ‘general
questions’ from [13][Chap. 3]. These 11 problems were chosen because they
were a wide and representative sample from an independent source. gort was
able to solve 6 of these 11 problems. For all 6 successful problems it returned
a result identical to that given by Weinstein and Adams. The remaining 5
failed for various reasons. 2 failed because gort did not have a guesstima-
tion method able to solve rate of change problems (see §7.2 for further discus-
sion). The other 3 failed due to the lack of the required geometric or chemical
knowledge.

The adaptability of the system was assessed by its ability to modify its exe-
cution plan when new rdf triples appeared in the knowledge base, simulating
the appearance of new knowledge in the web of linked data. In problem 2, when
the volume data for Loch Ness was missing, gort queried the user to provide it,
but the user declined, so the attempt failed. The missing information was then
provided and the problem successfully rerun.

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 365

6 Related Work

There are no systems that are directly comparable to gort. However, there
are several systems that share common characteristics. In this section, we com-
pare gort with five other Semantic Web and knowledge-based systems: Power-
Aqua, a Semantic Web-based question answering system [7], quark, a domain-
independent, logic-based, natural-language, question-answering system [12], CS
Aktive Space, a system for tracking UK computer science research [11], Cyc,
a general-purpose ‘common-sense’ reasoning system [6], and Wolfram|Alpha, a
system that calculates answers to numerical questions on a wide range of top-
ics12. The comparisons will be conducted along the four dimensions below, which
were proposed in [9] for evaluating next-generation Semantic Web applications.
They have been used to compare other Semantic Web systems, so act as an
objective set of evaluation criteria.

1. the system’s ability to re-use Semantic Web data;
2. whether the system is single-ontology or multi-ontology;
3. the system’s ability to adapt to new Semantic Web resources at the request

of the user; and
4. the system’s ability to scale.

Data Reuse. To begin, we consider the systems’ abilities to reuse data from
other Semantic Web systems. The earliest system under consideration is Cyc,
which is a large-scale, curated, knowledge base that is not able to directly in-
corporate knowledge from Semantic Web sources, although there are techniques
for mapping Cyc concepts to external concepts. CS Aktive Space (CSA) was de-
signed in the early days of the Semantic Web, and thus little data was available. It
is not designed to dynamically adapt to other Semantic Web resources until their
contents have been translated into its AKT reference ontology. Wolfram|Alpha
is the newest of the systems under consideration. Like Cyc, it uses a closed,
hand-curated data set to perform its inferences and does not incorporate a facil-
ity for accessing Semantic Web resources. PowerAqua, quark and gort, on the
other hand, are each designed to operate with data from other Semantic Web
resources. PowerAqua and quark can answer questions based on data gathered
from a large number of ontologies, and do so dynamically at runtime. gort is
also capable of incorporating data from several Semantic Web data sources.

Single- or Multi-Ontology. Secondly, we consider whether each system is
single-ontology or multi-ontology. This distinction is important: only a multi-
ontology system assumes that it operates in a larger data ecosystem such as
the Semantic Web. As systems with hand-curated, proprietary knowledge bases,
both Cyc and Wolfram|Alpha are clearly single-ontology systems. These sys-
tems do not appear to be capable of working with more than their own ontology.
Although CS Aktive Space incorporates data from multiple sources, all of its

12 http://www.wolframalpha.com/

http://www.wolframalpha.com/

366 J.A. Abourbih et al.

data is re-mapped into the AKT reference ontology. As previously mentioned,
PowerAqua and quark can work with multiple ontologies at the same time.
PowerAqua discovers and integrates these at runtime. quark is linked to various
information interchange sources. This flexibility makes it particularly easy to
incorporate new Semantic Web data sources into PowerAqua and quark —
they have been designed with multiple ontologies in mind. gort is also capable
of working with multiple ontologies. The use of sparql makes it fairly easy to
add new ontologies by adding their endpoints.

Openness. Thirdly, we consider each system’s openness to new semantic re-
sources. Three of the systems are not especially amenable to the incorporation
of new semantic resources: none of Cyc, Wolfram|Alpha, or CS Aktive Space
can incorporate new rdf content in response to a user query. This is a conse-
quence of each of those systems’ single-ontology approach. There are techniques
for mapping new ontologies into Cyc, but these ontologies cannot automatically
be retrieved and mapped at the user’s request. PowerAqua is capable of incor-
porating new ontologies into its query answering at its user’s request, without
additional configuration. quark can be readily reprogrammed to link it to ad-
ditional ontologies. gort is also open to new ontologies via its sparql interface.
By adding an ontology’s sparql endpoint, its data becomes available.

Scalability. Finally, we consider each system’s ability to scale to large data sets.
Although Cyc’s knowledge base is large and supports complex inferences, it is
small in comparison to the projected size of the Semantic Web. Although Cyc
is adaptable to Semantic Web sources, no testing has been done to evaluate its
performance on large, non-curated data sets. Similarly, quark is linked to some
very large ontologies, but we could find no experimental data on its scalability.
There is no public estimate of the amount of data stored in Wolfram|Alpha,
but the range of problems for which it provides an answer suggests a very large
knowledge base, but this is unlikely to approach the magnitude of the Semantic
Web. PowerAqua is designed with the large-scale Semantic Web in mind, and its
query performance has been tested against large data sets. The PowerAqua sys-
tem has access to a larger data set, more sophisticated inference algorithms, and
is capable of answering a larger variety of question types than gort, although it
does not solve guesstimation problems. The 0–11 second response time of gort

with a database of 3 million triples, suggests that it is scalable up to several
million more, still staying within tolerable response times.

7 Conclusion

In this paper we have argued that proof planning in an SingSigDig calculus
can be successfully used to solve guesstimation problems. We have implemented
this technology in the gort system and applied it to a representative sample
of guesstimation problems §5. gort has been compared favourably with related
systems in §6.

A Single-Significant-Digit Calculus for Semi-Automated Guesstimation 367

7.1 Discussion

We now consider the success of gort by the criteria defined in §1.3, namely: the
proportion of accurate results returned from its test set; its adaptability; and its
efficiency.

In §5, gort was able to produce an answer to all 8 of the test set of guesstima-
tion problems. On 5 problems, gort guesstimated the target single significant
digit answer. On 3 other problems it came within an order-of-magnitude of the
target answer. These discrepancies arose from different choices in the proof plans
used to guesstimate the answers, and seem inevitable given the inherent approx-
imate nature of guesstimation. On another run, designed to evaluate its success
rate on an independently sourced test set, gort successfully guesstimated 6/11
problems to within a single significant digit.

gort was shown to be adaptable via the experiments on problem 2, as dis-
cussed in §5. Further such experimentation is desirable.

The timing data shown in Table 1 indicate that each query completed in less
than 11 seconds, over a knowledge base of approximately 3 million rdf triples.
Profiling shows that the system spends most of its time in tactics that perform
list aggregation, such as the average value and aggregation over parts plans.
We have also investigated the computational complexity of gort’s various proof
methods. average value and aggregation over parts both use breadth-first search,
and so have complexities O(bd), where b is the branching rate and d is the depth
of the search space. The other secondary methods all have complexity O(1); the
complexity of the primary methods depends on the secondary methods they call.

7.2 Further Work

To extend gort to handle the full range of guesstimation problems found in
sources such as [13,10] requires several additional methods. For instance, many
problems require examining rates, such as “How long would it take to fill the
dome of St. Paul’s Cathedral with water from a typical garden hose?” To solve
this problem would require a proof method for reasoning about rates of flow.

To make gort easier to use, the web-service interface needs considerable
improvement. In the long term, we plan to build a natural language interface,
so that guesstimation problems can be posed as English questions. We also plan
to automate the choice of top-level proof method, by analysing the form of
the question. This would include, for instance, automating the instantiation and
checking of the preconditions of methods such as count13. We will also continue to
explore the development of an axiomatic equational theory for the SingSigDig

calculus, as discussed in §2.3.

References
1. Abourbih, J.A.: Method and system for semi-automatic guesstimation. Master’s

thesis, University of Edinburgh, Edinburgh, Scotland (August 2009)
2. Blaney, L.: Semi-automatic guesstimation. University of Edinburgh, Undergradu-

ate Project Dissertation (2010)
13 This will be the topic of a new MSc project by Aparna Ghagre.

368 J.A. Abourbih et al.

3. Bundy, A.: A science of reasoning. In: Lassez, J.-L., Plotkin, G. (eds.) Com-
putational Logic: Essays in Honor of Alan Robinson, pp. 178–198. MIT Press,
Cambridge (1991)

4. Bundy, A., Chan, M.: Towards ontology evolution in physics. In: Hodges, W., de
Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp. 98–110. Springer,
Heidelberg (2008)

5. Hilbert, D., Bernays, P.: Die Grundlagen der Mathematik — Zweiter Band. In:
Number L in Die Grundlehren der Mathematischen Wissenschaften in Einzel-
darstellungen. Springer, Heidelberg (1939)

6. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. ACM
Commun. 38(11), 33–38 (1995)

7. Lopez, V., Guidi, D., Motta, E., Peroni, S., d’Aquin, M., Gridinoc, L.: Evaluation
of semantic web applications. OpenKnowledge Deliverable D8.5, Knowledge Media
Institute, The Open University, Milton Keynes, England (October 2008) (accessed
August 10, 2009)

8. McNeill, F., Bundy, A.: Dynamic, automatic, first-order ontology repair by diag-
nosis of failed plan execution. International Journal On Semantic Web and Infor-
mation Systems 3(3), 1–35 (2007); Special issue on ontology matching

9. Motta, E., Sabou, M.: Next Generation Semantic Web Applications. In: Mizoguchi,
R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 24–29.
Springer, Heidelberg (2006)

10. Santos, A.: How Many Licks: Or, How to Estimate Damn Near Anything. Perseus
Books, Cambridge (2009)

11. Shadbolt, N., Gibbins, N., Glaser, H., Harris, S., Schraefel, M.C.: CS AKTive space,
or how we learned to stop worrying and love the semantic web. IEEE Intelligent
Systems 19(3), 41–47 (2004)

12. Waldinger, R., Hobbs, J., Appelt, D.E., Fry, J., Israel, D.J., Jarvis, P., Martin,
D., Riehemann, S., Stickel, M.E., Tyson, M., Dungan, J.L.: Deductive question
answering from multiple resources. In: New Directions in Question Answering, pp.
253–262. AAAI Press, Menlo Park (2003)

13. Weinstein, L., Adam, J.A.: Guesstimation: solving the world’s problems on the
back of a cocktail napkin. Princeton University Press, Princeton (2008)

Perfect Discrimination Graphs: Indexing Terms
with Integer Exponents�

Hicham Bensaid1,2, Ricardo Caferra2, and Nicolas Peltier2

1 INPT/LIG, Avenue Allal Al Fassi, Madinat Al Irfane,
Rabat, Morocco

bensaid@inpt.ac.ma
2 Grenoble University (LIG/CNRS)

Bâtiment IMAG C - 220, rue de la Chimie 38400 Saint Martin d’Hères, France
{Ricardo.Caferra,Nicolas.Peltier}@imag.fr

Abstract. Perfect discrimination trees [12] are used by many efficient
resolution and superposition-based theorem provers (e.g. E-prover [17],
Waldmeister [10], Logic Reasoner1, . . .) in order to efficiently implement
rewriting and unit subsumption. We extend this indexing technique to
handle a class of terms with integer exponents (or I-terms), a schema-
tisation language allowing to capture sequences of iterated patterns [8].
We provide an algorithm to construct the so called perfect discrimina-
tion graphs from I-terms and to retrieve indexed I-terms from their
instances. Our research is essentially motivated (but not restricted to)
by some approaches to inductive proofs, for which termination of the
proof procedure is capital.

1 Introduction

Inductive definitions are intensively used in mathematics and computer science.
For instance natural numbers, lists, trees, ... are all formalised by means of induc-
tive definitions. Automatically proving properties of such objects is more difficult
than reasoning in first-order logic because the validity of the logical formulae has
to be considered in special interpretations (Herbrand minimal models for exam-
ple) and not in the set of all possible interpretations. We distinguish two classes
of approaches in inductive theorem proving: The first one is based on explicit in-
duction schemes (see [5] for a survey): for example, to prove that a property P on
natural numbers is inductively valid, we prove that P (0)∧∀n(P (n)⇒ P (n+1))
is valid. The second class of approaches contains all the proof procedures in
which the inductive schema is not made explicit, ranging from the implicit in-
duction approach [3,4] to the inductionless induction method [7]. In particular,
in this latter setting, inductive proofs are reduced to first-order consistency ver-
ification, which makes possible to use saturation in a first-order theorem prover
to check inductive validity. The problem then is that in many cases, saturation
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).
1 http://sites.google.com/site/lcastelli2/logicreasoner

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 369–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://sites.google.com/site/lcastelli2/logicreasoner

370 H. Bensaid, R. Caferra, and N. Peltier

(and consequently satisfiability) cannot be detected due to the divergence of the
inference process.

To address this divergence problem, one often has to transform the initial
formulae into a different equivalent “convergent” statement2. This can be done
for instance by adding appropriate inductive lemmata or by using reformulation
techniques. Such lemmata can be generated automatically by running the prover
for a while and by trying to detect regularities in the search space. This approach
is used for instance by the divergence critic of [19], which uses a “difference match-
ing” procedure to generate lemmata. Another approach based on generalisation
techniques is described in [1]. The inferred formulae (clauses) share in general a
common structure and the differences can be described by a rule or a pattern. For
example from the input {even(0), ∀x(even(x) ⇒ even(s(s(x)))} an infinite set
of clauses can be produced, i.e. {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .}.
Several formalisms have been introduced to grasp such repeating patterns. They
allow one to finitely specify infinite sequences of structurally similar terms, ob-
tained by repeated applications of a given context (e.g. s(s(. . .))) on an initial
term (e.g. 0). The infinite set of clauses in the last example can be represented by
even(s2N (0)) where N is an arithmetic variable. The concept of recurrent terms
has been introduced in [6] and then other formalisms have been defined, which
gave rise to a hierarchy of term schematisation languages in term of expressive-
ness and complexity [8,16,9]. The existence of these formalisms suggests that it
could be worth implementing the handling of term schematisation in existing
first-order provers, in order to help to solve divergence problems, particularly
(but not exclusively) in inductive proofs.

There are however two serious constraints: the first one is that a (finitary)
unification algorithm is needed for performing inferences on the considered for-
malism (in order to avoid loosing decidability of inference rules) and the second
one is that suitable indexing techniques must be developed to perform efficiently
redundancies elimination. The unification problem has been proven to be decid-
able (and finitary) for the previously mentioned term schematisation languages
([8,16,9]). The present work tackles the second issue, namely the extension of
state-of-the-art indexing techniques to such languages (see [14] for a survey on
existing term indexing techniques), more precisely of the perfect discrimination
trees [12] that are used to implement efficiently subsumption and simplification
rules. This point is crucial because such simplification rules are usually essential
for termination and using general purpose algorithms [13] for finding subsuming
(generalised) terms would be exceedingly time consuming. The matching prob-
lem (i.e. finding for a term s, a term t such that there exists a substitution σ
verifying s = tσ) is much more complex than for usual first-order terms because
one has to handle unfolding: for instance sN(0) subsumes both s(s(s(0))) and
s(s2N+1(0)). The expressive power of term schematisations makes the extension
of usual indexing techniques such as discrimination trees to these languages a
very difficult – but potentially rewarding – task. We focus on a particular term
schematisation language, called I-terms, that presents a good tradeoff between

2 This is obviously not always possible since first-order logic is only semi-decidable.

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 371

expressiveness and simplicity. We devise an extension of the perfect discrimina-
tion tree indexing algorithm for a sub-class of the I-terms, that we call eligible.

The paper is structured as follows. Section 2 introduces the main definitions,
in particular the syntax and semantics of terms with integer exponents (I-terms).
Section 3 defines the notion of index graph, an extension of discrimination trees
that is able to deal with I-terms. Section 4 shows how to construct an index graph
for a given I-term (or sets of I-terms). Section 5 contains the most important
contribution of the present paper, namely the algorithm for retrieving subsuming
(indexed) terms for a given term. Section 6 briefly concludes the paper.

2 Definitions and Notations

We consider three disjoint (nonempty) sets of symbols: a set of ordinary variables
VX , a set of function symbols F and a set of arithmetic variables VN . We consider
two special symbols , # not occurring in VX ∪ VN ∪F : is called the hole and
is used to define inductive contexts (see Definition 1) and # is used in Section
3 to encode cycles in index graphs. By convention, arithmetic variables will be
denoted by capital letters N,M, . . . and ordinary variables by x, y,

We first define the set of terms with integer exponents (I-terms) and the set
of terms with one hole (originally introduced in [8]). For the sake of readability,
examples are given before formal definitions.

Example 1 (I-terms). f(a, , b)N .g(c) is an I-term denoting the infinite set of
(standard) terms {g(c), f(a, g(c), b), f(a, f(a, g(c), b), b), ...}.

EN denotes the set of arithmetic expressions built as usual on the signature 0,
s and VN (in particular N ⊆ EN).

Definition 1. The set of terms with integer exponents TI (or I-terms) and the
set of terms with one hole T� are the smallest sets verifying:

– ∈ T� and VX ⊂ TI.
– If t1, . . . , tk ∈ TI , f ∈ F and arity(f) = k then f(t1, . . . , tk) ∈ TI.
– If arity(f) = k > 0, tj ∈ TI for j ∈ [1, k], j �= i and ti ∈ T� then
f(t1, . . . , tn) ∈ T�. ti is called the hole holder.

– If t ∈ T�, t �= , s ∈ TI and N ∈ EN then tN .s ∈ TI . An I-term of this
form is called an N -term. t is the inductive context, N is the exponent and
s is the base term. A F -term is an I-term that is not an N -term.

If t is a term with one hole, we denote by t[s] the term obtained from t by
replacing the (unique) occurrence of the hole (not in an N -term) by s. We
denote by t[s]p the term obtained from t by replacing the subterm at position p
by s. The semantics of I-terms are defined by the following rewrite rules:

t0.s→ s tN+1.s→ t[tN .s]

This rewrite system is convergent and together with the rules of Presburger arith-
metic, it reduces any I-term not containing arithmetic variables to a standard
term. We denote by t ↓ the normal form of t.

372 H. Bensaid, R. Caferra, and N. Peltier

To simplify technicalities, we assume that the exponent of every N -term is a
variable (this is easy to ensure by unfolding, for instance f()2N+1.a is equivalent
to f(f(f())N .a)).

It is clear, from the semantics of the I-terms, that the head symbol of the
normal form of an N -term tn.s depends on the value of n. The function ph()
returns the set of possible head symbols of a term:
Definition 2. The function ph: (TI ∪ T�)→ P(F) is defined by:
– ph(x) = F if x ∈ VX .
– ph() = ∅.
– ph(f(t1, . . . , tk)) = {f}.
– If t ∈ T�\{}, s ∈ TI, N ∈ VN then ph(tN .s) = ph(t) ∪ ph(s).

A term t ∈ TI ∪ T� is eligible iff for every N -term uN .v occurring in t we have
ph(u)∩ph(v) = ∅. The set of eligible terms in TI (resp. T�) is denoted by Ξ (resp.
Ξ�). Notice that Ξ is closed under substitution (if the variables are replaced by
eligible terms), thus restricting a resolution-based prover to eligible I-terms is a
straightforward task: it suffices to check that all I-terms occurring in the initial
set are eligible. Ξ is not closed under substitutivity, thus using superposition
would require additional restriction to ensure that no non eligible term can be
generated3. However, the superposition calculus is not complete in presence of
I -terms [2]. N -terms of the form un.x where x ∈ VX are not eligible.

Example 2 (Eligible and non eligible I-terms). f(a, , b)N .g(c) and
f()N .g()M .b are eligible I-terms, f()N .g()M .f(a) is not because
ph(g()M .f(a)) = {g} ∪ ph{f(a)} = {g} ∪ {f} thus f ∈ ph(g()M .f(a)).

The restriction on eligible terms makes the index graph deterministic (i.e. read-
ing the next input symbol is sufficient to decide whether we are in the inductive
context or in the base term) and permits to define an efficient retrieving algo-
rithm (without it we would have to consider several paths in parallel).

From now on, we consider exclusively eligible I-terms.

3 Index Graphs
An index graph is an automaton (see, e.g. [11]), driven by the symbols occurring
(from left to right) in the indexed term. We distinguish three kinds of edges:
edges labeled with a symbol from the indexed terms or with the symbol #,
edges labeled with arithmetic variable symbols (i.e. from the set VN) and edges
labeled with equations of the form N = 0 where N ∈ VN .

Definition 3. Let V = VX ∪F ∪{,#} (the vocabulary) and L = V ∪VN ∪V 0
N

(the transition labels) where V 0
N is the set of equations of the form N = 0 with

N ∈ VN . An index graph is a tuple (S,Σ, δ, F), where S ∈ Σ is the initial state,
Σ is a set of states, F ⊆ Σ is the set of final (accepting) states and δ:Σ×L → Σ
is a (partial) transition function4.
3 The simplest way to ensure this property is to restrict oneself to N-terms of the form

tN .a, where a is a constant symbol, and assume that the ordering is chosen in such
a way that a constant cannot be replaced by a complex term.

4 We write δ(p, μ) = ⊥ iff δ(p, μ) is undefined.

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 373

If δ(p, μ) = q �= ⊥ then the graph contains a transition from p to q labeled with
μ. q is a successor of p. A transition labeled by an element of a set E ⊆ L (resp.
by a label μ ∈ L) is called an E-transition (resp. μ-transition). The language
denoted by an index graph is defined as usual [11].

We briefly recall some basic operations on index graphs [11]. If f is a symbol
in V then we also denote by f (when no confusion is possible) an arbitrary graph
of the form (p, {p, q}, {(p, f) �→ q}, {q}) where p �= q (i.e. a graph accepting {f}).
IG1 • . . . • IGn denotes the sequential composition of the graphs IG1, . . . , IGn.
Intuitively, the language denoted by the obtained graph corresponds to the con-
catenation of the ones of IG1, ..., IGn in this order. The graphs IG1, . . . , IGn

are assumed to be disjoint (the states are renamed if needed). IG1|IG2 denotes
the graph obtained from IG1∪IG2 by merging the initial states of IG1 and IG2
(IG1 and IG2 are assumed to be disjoint). The language denoted by IG1|IG2
is the union of the ones denoted by IG1, IG2. This operation is well-defined iff
there is no label f s.t. both IG1 and IG2 contain an f -transition from their
initial state. Finally, IG[p/q] denotes the graph obtained from IG by replacing
the state p by the state q. Every edge pointing to p is redirected to q. This oper-
ation can obviously be extended to multiple replacements of states pi by states
qi (1 ≤ i ≤ n). These operations are standard thus the formal definitions are
omitted.

4 Construction of the Index Graph

We create for each term or context t an index graph denoted by IG(t) which
represents t. IG(t) is inductively defined as follows.

1. If t = f(t1, t2, . . . , tn) (with possibly n = 0 and/or f ∈ VX) then IG(t) =
f • IG(t1) • . . . • IG(tn).

2. Assume that t = f(t1, . . . , tn)N .s. Let IGi = IG(ti) = (Si, Σi, δi, Fi) for
1 ≤ i ≤ n. Let IGs = IG(s) = (Ss, Σs, δs, Fs) and let IG0

s = (S0
s , Σ

0
s , δ

0
s , F

0
s)

be a copy of IGs.
The index graph of t is composed of two branches IG0

b and IGN �=0 corre-
sponding respectively to N = 0 and N �= 0. The latter branch is obtained by
concatenation of two graphs IGc and IGb corresponding respectively to the
iterated context and base term. More precisely, IG0

b , IGc, IGb, IGN �=0 and
IG are defined as follows:
(a) IGb and IG0

b are obtained from IGs and IG0
s respectively by adding

for each state ps ∈ Fs (resp. p0
s ∈ F 0

s) a new state qs (resp. q0s) and
a transition from ps to qs (resp. from p0

s to q0s) labeled by N (resp. by
N = 0). The final states of IGb and IG0

b are the states qs, q0s .
(b) IGc is obtained from IG1 • . . . • IGn by adding a new state rq and a #-

transition from q to rq for every final state q in IGn. Each #-transition
creates a cycle in the graph (encoding iterated unfolding).

(c) IGN �=0 is obtained from IGc • IGb by adding an f -transition from each
rq to the initial state of IGc.

(d) IG = IG0
b |(f • IGN �=0).

374 H. Bensaid, R. Caferra, and N. Peltier

1

2

3

4 5

6

8

9

a b

c

◊

7
f #

0

c f

N

(N=0)

Fig. 1. The index graph of f(a, �, b)N .c

Notice that the merging operation used in the last item is well defined since we
consider only eligible I-terms. Considering two distinct copies of the base term
IGs and IG0

s is necessary to avoid ambiguities when distinct N -terms share the
same base term (see Remark 1 page 380).

Due to space restriction, we only present the construction of the index graph
of a single term. This technique may be extended to index simultaneously sets of
I-terms. The corresponding graph is constructed from an initially empty one by
inserting successively the index graph of each I-term in the set. The procedure
inserting a new term t into an existing graph IG must ensure as much as possible
common prefix sharing in the resulting graph. This may be done for instance by
first constructing the graph IG(t) (assumed to be disjoint from IG) and then by
replacing iteratively the states in IG(t) (starting from the initial one) by states
from IG, until we reach a transition that does not occur in IG. Then the resulting
index is simply the union of IG and IG(t). We do not detail the algorithm since
it is actually very similar to the one for trees. The retrieval algorithm presented
in the next section handles indexes containing multiple indexed terms (see for
instance Remark 1 page 380).

For every index graph IG and for every final state p in IG we denote by
θIG(p) the I-term corresponding to the state p.

5 The Filtering Algorithm

In this section, IG = (S,Σ, δ, F) denotes a given index graph. We describe
an algorithm for finding all the (indexed) terms t that filter a candidate term
s, i.e. the set {t | t ∈ θIG(F), ∃σ tσ ↓= s} where σ is a substitution. The
main difficulty is to handle N -terms in the input term and (,#)-transitions in
the index (F -terms and VX ∪ F-transitions are handled exactly as usual). The
following lemma introduces a crucial property of eligible N -terms on which our
algorithm is based:

Lemma 1. Let w and uM .v be non variable eligible I-terms. If there exists a
substitution σ s.t. wσ ↓= uM .v then:

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 375

– w is of the form tN .s.
– ∃i ∈ N, Nσ = i.M .
– tiσ ↓= u and sσ ↓= v, where ti = t[t[. . . []q . . .]q]q︸ ︷︷ ︸

i

.

Notice that Lemma 1 does not hold if w is non eligible. As a consequence of
Lemma 1, if the input term is anN -term uM .v then the current state in the index
graph must also correspond to an N -term tN .s5. Furthermore, the matching
can be decomposed into two parts, corresponding respectively to the inductive
context u and to the base term v. Then the value of the exponent N is i.M ,
where i is the number of unfoldings of t that are necessary to match u.

We now provide an informal description of the retrieving algorithm based on
this decomposition. Variables and function symbols are handled exactly as usual.
When we read an input term of the form uN .v, we store the base term v and
the exponent N into a stack BT and we try to match the inductive context u.
During the handling of u, a -transition will eventually be reached. Then the
I-term corresponding to the current loop in the index graph must be unfolded
in order to match the input term (for instance the context f() must be unfolded
once to match f(f())). Unfortunately, the context cannot be unfolded at this
point since we have not reached the #-transition pointing to its initial state.
Consequently, we must use another stack H to store the input term, in order
to delay its treatment until the remaining part of the context is filtered. If we
reach a #-transition, a term is popped from H. If this term is distinct from
then the index term is unfolded to match the remaining part of the inductive
context. Otherwise the iterated context u has been entirely filtered, thus we start
processing the base term (stored in BT). After successfully filtering the base term,
we apply the N -transition, which allows us to compute the value of the exponent.
The base term and the exponent (still) stored in BT are then popped from it.

We also need to remind (using another stack L) the first state corresponding
to the loop of the index term (and the head function symbol), in order to check
that the first transition that is reached after matching the inductive context
really loops to this state (see Example 5 for more details).

In case two distinct loops share a common prefix, we have to ensure that the
same transitions are applied at each iteration. This is done by marking all the
encountered states (using a set mk). If a successor of the current state is marked
then we simply ignore all the other transitions. The usefulness of mk is well
evidenced by the following example.

Example 3. Consider the input term f(a, f(a, c, b), d) and an index containing
the terms f(a, , b)N .c and f(a, , d)N .e. The inductive contexts of these two
terms share the prefix fa. Starting from the initial state of the index graph,
we read successively f , a and we reach a -transition, pointing to a state p. As
explained before, we need to store the term f(a, c, b) in H. Next we read the
symbol d and we reach the #-transition. The term f(a, c, b) is popped from H

5 Notice that due to the sharing, the current state may actually correspond to several
terms, including both N-terms and F-terms.

376 H. Bensaid, R. Caferra, and N. Peltier

and the inductive context of the index graph is unfolded. We read the symbol
f, a and we reach the state p again. The term c is stored and we try to match the
term b. However, the inductive context has already been unfolded, and we know
that this context is f(a, , d) and not f(a, , b). Consequently, the transition b
(that is not marked) can be ignored and the algorithm fails (no valid transition).
Without marking, the b-transition would be applicable which would yield an
unsound solution.

In order to find the value of the exponent variables, we need to count the number
of times we enter into the corresponding loop in the index graph. This can be
done by counting the number of #-transitions. However, a unique counter is
not sufficient. Indeed, the unfolding can correspond either to the matching of
a standard term (e.g. if f(f(f(a))) is matched by f()N .a) or to the one of an
inductive context (if f(f())N .a is matched). We use a counter b for the first kind
of unfolding and another counter a for the second one. Both counters are stored
into a stack (Cnt), together with the corresponding state in the index graph. We
also need to store a flag that indicates the kind of terms that is currently handled
(I-terms or context). A stack Ctx is used for this purpose. Notice that the two
counters can be used on the same time e.g. if the index contains t = f()N .c
and the input term is s = f(f︸︷︷︸(f(f(f()))M︸ ︷︷ ︸ .c)) which is an instance of t. The

b-counter is used to count the number of unfoldings before reaching the nested
N -term (2 in this case) and the a-counter is used to count the number of loops
needed to match f(f(f())) using f() (3 in this case). We have s = tσ with
σ = {N �→ 3.M + 2}.

Finally, we use a set of equations E to store the value of the variables occurring
in the index graph (both the ordinary variables and the arithmetic ones). The
algorithm fails if this set of equations is unsatisfiable (considering variables of
the input term as constant).

Formally, the algorithm handles tuples of the form C = (q, W, BT, H, Cnt, Ctx,
L, E,mk) where:

– q ∈ Σ the current state, W ∈ (Ξ ∪ Ξ�)∗ is a stack used to store remaining
terms to handle. Initially q = S and W = s where s is the query term.

– BT ∈ (Ξ × VN)∗ is a stack used for storing base terms and exponents of
eligible I-terms.

– H ∈ (Ξ ∪ Ξ�)∗ is a stack used for storing terms occurring in hole positions
during filtering.

– Cnt ∈ (Σ × N × N)∗ is a stack used by #-transitions to store couples of
integers used as counters. The first component is used to identify the state
used in the last #-transition, so that we can determine if it is the first time
we visit a #-transition or not.

– Ctx ∈ ({0, 1} × N × N)∗ is a stack used to hold the type of the current
open context (the current I-term not entirely filtered): 0 for F -terms, 1 for
N -terms. The second and third components are used only for non constant
functional terms, they denote respectively the arity of the function symbol
and the number of arguments remaining to handle.

– L ∈ (Σ ×F)∗ is a stack used for filtering N -terms.

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 377

– E is a set of equations that are either of the form N = a.M + b where
N,M ∈ VN and a, b ∈ N or of the form x = t where x ∈ VX and t ∈ Ξ.

– mk is a set of marked states.

We call such tuples a configuration. Initially we have C = C0 = (S, s, ε, ε, ε, ε,
ε, ∅, {S}), where ε denotes an empty stack. CF denotes the set of configurations.

Let empty, top, pop, push be functions operating on stacks. empty and top
return respectively a boolean indicating whether the stack is empty and the first
element of a non empty stack, pop returns the first element and removes this
element from the stack and push adds a new element in the stack.

The next definition states sufficient conditions ensuring that a given transition
is valid in a given configuration. Transitions labeled by a function or an ordinary
variable are handled as usual, whereas transitions labeled by ,#, by an arithmetic
variable or by an equationN = 0 are treated as ε-transitions (no condition on the
input). Furthermore, the reached state must be marked if this is possible.

Definition 4. Let C = (q, W, BT, H, Cnt, Ctx, L, E,mk) be a configuration. We say
that a transition (q, μ) �→ p is valid in C if and only if:

1. δ(q, μ) = p and one of the following conditions holds:
– μ ∈ {,#} ∪ VN ∪ V 0

N .
– μ ∈ VX , top(W) = t where t ∈ Ξ and t /∈ Ξ�.
– μ = f , top(W) = t where t ∈ (Ξ ∪ Ξ�) and t is of the form f(t1, . . . , tn)

or f(t1, . . . , tn)N .s.
2. Either p ∈ mk or Λ∩mk = ∅ where Λ is a set of nodes defined as follows: Λ

is the set of all successors of q if q does not occur right after a #-transition
and otherwise, the set of all successors p′ of q s.t. (q, ν) �→ p′ and top(L) �=
(p′, ν) (hence, we discard the first state of the iterative context loop which has
already been marked, and we consider only states belonging to base terms).

FindGeneralisation implements the matching algorithm.

Function FindGeneralisation(C)
Input: C = (q, W, BT, H, Cnt, Ctx, L, E,mk) the configuration for which to find a

generalisation
IG = (S, Σ, δ, F) /* the index graph */
Output: (θIG(p), E), a solution of the generalisation finding problem. θIG(p) is

the term corresponding to the final state and E are the constraints on
the variables in θIG(p).

if (empty(W)) and (q ∈ F) then
/* We are in an accepting state */ ;
return (θIG(q),E) ;

else if there is no valid transition (q, μ) 	→ p in C then
fail;

else
Cn = ComputeNextConfiguration(C) ;
FindGeneralization(Cn) ;

378 H. Bensaid, R. Caferra, and N. Peltier

Function ComputeNextConfiguration(C)
Input: C: the configuration to handle
/* C = (q, W, BT, H, Cnt, Ctx, L, E,mk) */ ;
Output: Cn: a next configuration
choose a valid transition (q, μ) 	→ p ;
t = pop(W); /* The current term to handle */ ;
q = p ;
mk = mk ∪ {p} ;
switch μ do

case μ ∈ VX

E = E ∪ {μ = t} ;
DiscardArgOfOpenTerm(Ctx) ;
if E is not satisfiable then

fail
case μ = �

push(t,H) ;
case μ = #

ManageCounters(Cnt,q,Ctx) ;
r = pop(H) ;
if r = � then

(s, N) = top(BT) ; /* Base term and exponent */
(r, f) = pop(L) ;
push(s,W) ; /* Next term to handle is s */
if δ(p, f) �= r then

fail
else

push(r,W) ;
case μ ∈ VN

(s, N) = pop(BT) ;
(r, a, b) = pop(Cnt) ;
E = E ∪ {μ = a.N + b} ;
pop(Ctx) ;
DiscardArgOfOpenTerm(Ctx) ;
if E is not satisfiable then

fail
case μ ∈ V 0

N

E = E ∪ {μ = 0} ;
if E is not satisfiable then

fail
case μ ∈ F /* t = f(t1, ..., tk) or t = fN (t1, ..., tk).s */

push(tk, W); push(tk−1, W); · · · ; push(t1, W) ;
if t /∈ Ξ� then

PushOverOpenTerm(t,Ctx);
if t = fN (t1, ..., tk).s then

push((p, f), L) ;
push((s,N), BT) ;

Cn = (q, W, BT, H, Cnt, Ctx, L, E,mk) ;
return Cn ;

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 379

Procedure ManageCounters(Cnt,q,Ctx)
Input: Cnt the counter stack handling a- and b-counters; q the current state; Ctx

the open contexts stack
Result: Modifies Cnt according to the type of handled terms and wether it is the

first visit or not to the current state
if empty(Cnt) or (top(Cnt) = (p, a, b) and p �= q) then /* This is the first
time we visit this state */

if top(Ctx) = (0, x, y) then /* the current open term is an F-term. We
must use the b-counter */

push((q, 0, 1), Cnt) ;
else

push((q, 1, 0), Cnt) ;
else

(p, a, b) = pop(Cnt) ;
if top(Ctx) = (0, x, y) then /* the current open term is an F-term. We
must use the b-counter */

push((p, a, b + 1), Cnt) ; /* we increment the b-counter */
else

push((p, a + 1, b), Cnt) ; /* we increment the a-counter */

It uses the non deterministic function ComputeNextConfiguration which
computes the configurations produced by all the possible valid transitions.

The handling of the stack Cnt is ensured by the procedure ManageCounters.
When we read a term (not a context), we push in Ctx its type (0 if it is an

F -term, 1 if it is an N -term). If this term is an F -term, we also store the arity of
the head symbol and the number of remaining arguments. A F -term is entirely
handled when all its arguments are handled. It is then removed from Ctx. An
N -term is entirely handled if both the iterated context and the base term are
handled. The procedure PushOverOpenTerm is used for managing Ctx.

Procedure PushOverOpenTerm(Ctx,t)
Input: Ctx the context stack; t ∈ Ξ the next term to process
if t = fN (t1, ..., tn).s then

push((1, 0, 0), Ctx) ;
else

if t = f(t1, ..., tn) and n = arity(f) > 0 then
push((0, n, n), Ctx) ;

else
DiscardArgOfOpenTerm(Ctx) ; /* t is a constant or a variable */

Handling N -terms is easy: they are removed from the stack when an N -
transition is reached. Handling F -terms is slightly more difficult. When we read
a constant or a variable, the counter of remaining arguments on the top of Ctx
is decreased. When this counter reaches 0, the term is removed from the stack.
This operation is repeated until the stack is empty or until an N -term is reached.

380 H. Bensaid, R. Caferra, and N. Peltier

Procedure DiscardArgOfOpenTerm(Ctx)
Input: Ctx the context stack
/* we iteratively close (discard) imbricated simple open terms having
only one remaining argument */ ;
while ∃n ∈ N, top(Ctx) = (0, n, 1) do

pop(Ctx) ;
if top(Ctx) = (0, n, d) where (d > 1) then

(0, n, d) = pop(Ctx) ;
push((0, n, d− 1), Ctx) ;

When a term is popped from Ctx the new counter of remaining arguments of the
top of Ctx must be recursively decreased. The procedure DiscardArgOfOpenTerm
implements this operation.

Example 4. The following example illustrates the usefulness of Ctx. We con-
sider the indexed term t = f()N .a and the input term s = f(f(f(f())M .a)).
The index graph of t contains a loop for the iterated part f(). The first time
we reach the corresponding #-transition, the current term is f(f(f(f())M .a))
which is not an N -term. Therefore we must use the b-counter. The current term
is unfolded again, yielding the term f(f(f())M .a). The b-counter is used since
this term is an F -term. After the next unfolding, when we reach #, the current
term is the N -term f(f()))M .a, thus the a-counter must be used. The role of
Ctx is to keep track of the type of the current term in order to determine which
counter must be used (a or b). Back to our example, before the loop, we push
in Ctx the tuple (0, 1, 1) meaning that we are handling an F -term (0), with a
head symbol of arity 1 and that 1 argument remains to handle. When we reach
#, we find in the top of Ctx a tuple (0, x, y) which indicates that we must use
the b-counter. The next term to handle is f(f(f())M .a) which is again an
F -term. We push in Ctx the tuple (0, 1, 1). In the #-transition, we use
again the b-counter (for the same reasons of the first loop). The next term to
handle is the N -term f(f())M .a, thus we push in Ctx the tuple (1, 0, 0). When
we reach the #-transition, the top of Ctx drives us to use the a-counter. The
next term to handle is a context f(), thus no information is pushed in Ctx and
the top of the stack still contains (1, 0, 0). After a new loop, when we reach the
#-transition we use again the a-counter. The next term to handle is which is
discarded from Ctx. means that the iterated context is entirely handled. Next
we consider the base term a. It is a constant and hence it is discarded. The top
of Ctx is not affected because it corresponds to an N -term. Finally we reach an
N -transition, Ctx is popped and the procedure DiscardArgOfOpenTerm is called.
top(Ctx) is successively (0, 1, 1) and (0, 1, 1), and then Ctx becomes empty.

The next remark explains why we needed to duplicate the index graph of the
base term in Section 4.

Remark 1. Suppose that we use only one index graph for the base term (follow-
ing the notations of Section 4, we use IGs in both cases instead of IG0

s) and
suppose that we have to index the two terms h(f()N .a, b) and h(g()M .a, c).
The resulting index graph is presented in Figure 2.

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 381

34

f 2

#

◊
f

a

9 10

h

0

c b

12

11

7

6

NM

1

a

5

8

#

◊

a

g

g

Fig. 2. Indexing h(f(�)N .a, b) and h(g(�)M .a, c)

Now if we try to match the term h(g()N .a, b) which is neither an instance of
h(f()N .a, b) nor of h(g()M .a, c), we will succeed following for example the path
0 → 1 → 8 → 9 → 10 → 5 → 6 → 7. The reason of this undesired behaviour
is that if we use a single index graph for the base term, then the index graphs
of two N -terms having the same base term and completely different inductive
contexts will share a common state (5 in the previous example) which can be
reached from two different paths, leading to inconsistencies. This problem is
quite similar in essence to the one that leaded us to use marked states, namely
the existence of states reachable from many different paths (e.g. the state 5 in
the example). However, the chosen solution is different in this case. Actually
marks are useful for states occurring inside loops where common states can be
visited several times. But if the state is outside a loop (as in this example),
marks cannot prevent incoherences since the state will be visited only once. The
only solution is to distinguish between the case were the base term is filtered
directly (without handling the iterated context) and the case where it is filtered
after having handled the iterated context. Thus, even if two N -terms share a
common base term, they will share only states belonging to the index graph of
the common base term. A possible optimisation is to duplicate the base term
index graph only when this is needed, namely when we insert a new term to the
index having the same base term as an existing indexed term (this optimisation
is straightforward, but it is not considered in the present paper, for the sake of
readability).

Finally, we illustrate the usefulness of the stack L with an example.

Example 5. Consider the terms t = f(g()N .a) and s = f(g())N .a. Obviously,
t is not a generalisation of s. However if we represent the two terms without
parenthesis and without the transition corresponding to the cycle, we obtain the
same representation, namely fg #aN and fg #aN . To solve this problem,
we have to take into account the state pointed by the #-transition. Using this
state, the two representations can be distinguished provided the initial state of
the loop and the corresponding head symbol are available, which justifies the
use of L. In our example, after handling the iterated context f(g()) we will find

382 H. Bensaid, R. Caferra, and N. Peltier

on the top of L a pair (p, f) but in the index graph we have no valid transition
driven by f (the iterated context in the index is g() therefore the only valid
transition is driven by g) and the matching will fail.

The following theorem states the soundness and completeness of our algorithm.

Theorem 1. Let IG be an index graph, let t be an eligible term. The two fol-
lowing assertions are equivalent:

– There exist a state S in IG and a substitution σ s.t. θIG(S)σ ↓= t.
– There is a run of FindGeneralisation(C0) that returns (θIG(S), E), where
σ is a solution of E.

The proof follows from the previous explanations and from the key lemma 1.
The complexity of the function FindGeneralisation is obviously linear w.r.t
the size of the input term.

6 Conclusion

The presented work is a natural continuation of [2]. In [2] we described the the-
orem prover dei, an extension of the well-known E-prover [17]. The extension
allows for compact, more expressive clauses containing the so-called I-terms,
i.e. schemata denoting (possibly infinite) sets of standard first-order terms. One
of the main motivations for using this formalism is to improve the termination
behaviour of the calculus, which permits satisfiability detection and proof by
consistency (in inductive theorem proving). This obviously requires simplifica-
tion and redundancy elimination rules. In order to implement such rules effec-
tively, and to use the implementation for extensive experimentation (which are
obviously beyond the scope of the present paper), powerful indexing techniques
similar to that used for standard terms are needed, e.g. perfect discrimination
trees. Originally motivated by implementation needs, adapting perfect discrimi-
nation trees to deal with I-terms turned out to be a difficult task and appeared
to be a research subject per se.

The algorithm is described in details (using pseudocode to make the im-
plementation easier). The main property ensuring its soundness is proven and
several examples illustrate the construction of the index graph (called perfect
discrimination graphs) allowing to represent schemata and to retrieve subsum-
ing terms of a given (query) term. Other index maintenance techniques (e.g.
deletion) are on going work.

Term schematisation languages are expressive formalisms that have been stud-
ied so far essentially from a theoretical perspective. Our work is, to the best of
our knowledge, the first attempt to devise efficient implementation techniques for
such languages. It has to our opinion, at least two positive aspects: it will allow
a much more efficient implementation of dei necessary to extensive practical
experimentation and, in some sense a partial consequence of this, the experi-
mentation will very probably provide hints to solve a theoretical problem, i.e.
characterize an interesting subclass of I-terms whose presence in formulae will
preserve completeness of the superposition calculus. We are presently working
in both directions.

Perfect Discrimination Graphs: Indexing Terms with Integer Exponents 383

References

1. Bensaid, H., Caferra, R., Peltier, N.: Towards systematic analysis of theorem
provers search spaces: First steps. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC
2007. LNCS, vol. 4576, pp. 38–52. Springer, Heidelberg (2007)

2. Bensaid, H., Caferra, R., Peltier, N.: Dei: A theorem prover for terms with inte-
ger exponents. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22. LNCS,
vol. 5663, pp. 146–150. Springer, Heidelberg (2009)

3. Bouhoula, A., Kounalis, E., Rusinowitch, M.: Spike, an automatic theorem prover.
In: Voronkov (ed.) [18], pp. 460–462 (1992)

4. Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. Journal
of Automated Reasoning 14, 14–189 (1995)

5. Bundy, A.: The automation of proof by mathematical induction. In: Robinson,
Voronkov (eds.) [15], pp. 845–911 (2001)

6. Chen, H., Hsiang, J., Kong, H.: On finite representations of infinite sequences of
terms. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 100–114.
Springer, Heidelberg (1991)

7. Comon, H.: Inductionless induction. In: David, R. (ed.) 2nd Int. Conf. in Logic
For Computer Science: Automated Deduction. Lecture notes, Chambéry, Univ. de
Savoie (1994)

8. Comon, H.: On unification of terms with integer exponents. Mathematical Systems
Theory 28(1), 67–88 (1995)

9. Hermann, M., Galbavý, R.: Unification of infinite sets of terms schematized by
primal grammars. Theor. Comput. Sci. 176(1-2), 111–158 (1997)

10. Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: Waldmeister - high-performance
equational deduction. J. Autom. Reason. 18(2), 265–270 (1997)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 2nd edn. Addison-Wesley, Reading (2000)

12. McCune, W.: Experiments with discrimination-tree indexing and path indexing for
term retrieval. J. Autom. Reasoning 9(2), 147–167 (1992)

13. Peltier, N.: Increasing model building capabilities by constraint solving on terms
with integer exponents. Journal of Symbolic Computation 24(1), 59–101 (1997)

14. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson,
Voronkov (eds.) [15], pp. 1853–1964

15. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
volumes). Elsevier, Amsterdam (2001)

16. Salzer, G.: The unification of infinite sets of terms and its applications. In: [18],
pp. 409–420 (1992)

17. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

18. Voronkov, A. (ed.): LPAR 1992. LNCS, vol. 624. Springer, Heidelberg (1992)
19. Walsh, T.: A divergence critic for inductive proof. Journal of Artificial Intelligence

Research 4(1), 209–235 (1996)

An Interpolating Sequent Calculus
for Quantifier-Free Presburger Arithmetic�

Angelo Brillout1, Daniel Kroening2, Philipp Rümmer2, and Thomas Wahl2

1 ETH Zurich, Switzerland
2 Oxford University Computing Laboratory, United Kingdom

Abstract. Craig interpolation has become a versatile tool in formal
verification, for instance to generate intermediate assertions for safety
analysis of programs. Interpolants are typically determined by annotat-
ing the steps of an unsatisfiability proof with partial interpolants. In this
paper, we consider Craig interpolation for full quantifier-free Presburger
arithmetic (QFPA), for which currently no efficient interpolation proce-
dures are known. Closing this gap, we introduce an interpolating sequent
calculus for QFPA and prove it to be sound and complete. We have
extended the Princess theorem prover to generate interpolating proofs,
and applied it to a large number of publicly available linear integer arith-
metic benchmarks. The results indicate the robustness and efficiency of
our proof-based interpolation procedure.

1 Introduction

Craig interpolation [3], a principle known to logicians since the 1950s, has re-
cently emerged in formal verification as a practical approximation method. Its
applications range from efficient image computations in SAT-based model check-
ing to accelerating convergence of fixpoint calculations for infinite-state systems.
Given two formulae A and C such that A implies C, written A ⇒ C, an inter-
polant is a formula I such that A⇒ I, I ⇒ C, and I contains only non-logical
symbols occurring in both A and C. Interpolants exist for any two first-order
formulae A and C such that A⇒ C. As is common in formal verification, we also
consider interpolation for unsatisfiable conjunctions A ∧B, which corresponds
to C = ¬B in the above formulation.

In software verification, interpolation is applied to formulae encoding the tran-
sition relation of a model underlying a program. In order to support expressive
programming languages, much effort has been invested in the design of algo-
rithms that compute interpolants for formulae of various theories. As a result,
efficient interpolation methods are known for propositional logic, linear arith-
metic over the reals with uninterpreted functions [10,1,16], datastructures like
arrays and sets [7], and other theories. As for integer arithmetic, a theory partic-
ularly relevant for software, interpolating solvers have so far been reported only
� Supported by the Engineering and Physical Sciences Research Council (EPSRC)

under grant no. EP/G026254/1, by the EU FP7 STREP MOGENTES, and by the
EU ARTEMIS CESAR project.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 384–399, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 385

for restricted fragments such as difference-bound logic, and logics with linear
equalities and constant-divisibility predicates. For these theories, an interpolant
can be derived in time polynomial in the size of the input formulae.

In this paper, we push the boundaries of interpolation-based software model
checking by presenting an interpolation method for full quantifier-free Presburger
arithmetic (QFPA), i.e., linear arithmetic over the integers. This theory has been
used, besides others, to model the behavior of infinite-state programs and of
hardware designs. Presburger arithmetic was shown to be decidable by quan-
tifier elimination [12]. A brute-force interpolation method is to quantify out
the variables not common to the input formulae, and then to eliminate those
quantifiers. This approach suffers, however, from the triply-exponential complex-
ity of the elimination procedure and tends to be ineffective in many practical
cases.

A more promising approach (that has also been used, e.g., in [10,1,8,5]) is to
extract interpolants directly from an unsatisfiability proof for A ∧ B. To this
end, we first present a sound and complete proof system for QFPA based on a
sequent calculus. We then augment the proof rules with labeled formulae and
partial interpolants — proof annotations that, at the root of a closed proof,
reduce to interpolants. In practice, the resulting interpolating proof system can
be used to extend an existing unsatisfiability proof to one that interpolates. It
can also serve as a replacement of the non-interpolating proof system, allowing
the calculation of an interpolant on the fly. We prove our interpolating calculus
to be sound and complete for QFPA. Our completeness result states that, for
any valid implication, there exists a proof of its validity in our calculus, and the
proof can be annotated with partial interpolants satisfying the proof rules.

In the case of QFPA, the primary difficulty when extracting interpolants from
a proof is the treatment of mixed cuts : applications of a cut-rule (such as Go-
mory cuts [17] or the Omega rule [13]) to inequalities that have been derived as
linear combinations of inequalities from both A and B. Our work extends earlier
interpolation procedures for linear arithmetic, in particular [8,10], by defining an
interpolating cut-rule called strengthen that can handle even mixed cuts. The
rule subsumes a variety of cut-rules for integer linear programming, including
Gomory cuts and the Omega rule, so that interpolants can be extracted from
proofs using either of those rules by reduction to strengthen.

To implement our interpolation method, we have extended the Princess the-
orem prover [15] to generate proofs, using the proof rules presented in this paper.
We have applied the interpolating prover to a large number of publicly available
linear integer arithmetic benchmarks, such as from the QF-LIA category of the
SMT library. We compare the efficiency of the prover to the only currently known
interpolation method for Presburger arithmetic, which is based on local-variable
quantification and subsequent brute-force quantifier elimination (QE). Our ex-
periments not only demonstrate the weaknesses of interpolation using QE, but
also indicate the robustness and efficiency of our proof-based interpolation pro-
cedure, in terms of both time and interpolant size.

386 A. Brillout et al.

2 Preliminaries

Presburger arithmetic. We assume familiarity with classical first-order logic
(e.g., [4]). Let x range over an infinite set X of variables, c over an infinite
set C of constant symbols, and α over the integers Z. The syntax of Presburger
arithmetic is defined by the following grammar:

φ ::= t
.= 0 || t ≤ 0 || α | t || φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α || c || x || αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. For simplicity, we only al-
low 0 as the right-hand side of equalities and inequalities. The explicit divisi-
bility operator α | t, which is short for ∃s. αs − t

.= 0, is included to permit
quantifier-free interpolants for formulae such as y − 2x .= 0 ∧ y − 2z − 1 .= 0,
with interpolant 2 | y. We use the abbreviations true and false for the equal-
ities 0 .= 0 and 1 .= 0, and φ → ψ as abbreviation for ¬φ ∨ ψ. Simulta-
neous substitution of terms t1, . . . , tn for variables x1, . . . , xn in φ is denoted
by [x1/t1, . . . , xn/tn]φ; we assume that variable capture is avoided by renam-
ing bound variables as necessary. As short-hand notation, we sometimes also
quantify over constants (as in ∀c.φ) and assume that the constants are implic-
itly replaced by fresh variables. For reasons of presentation, we further assume
that terms t are implicitly simplified to 0 or to the form α1t1 + · · ·+ αntn, in
which 0 �∈ {α1, . . . , αn}, and t1, . . . , tn are pairwise distinct variables, constants,
or 1.

The semantics of Presburger arithmetic is defined over the universe Z of in-
tegers in the standard way [4]. Furthermore, we only allow quantifiers that can
be handled by Skolemization (only universal/existential quantifiers under an
even/odd number of negations).

Gentzen-style sequent calculi. If Γ , Δ are finite sets of formulae and C is a
formula, all without free variables, then Γ � Δ is a sequent. The sequent is
valid if the formula

∧
Γ →

∨
Δ is valid. A calculus rule is a binary relation

between a finite set of sequents called the premises, and a sequent called the
conclusion. A sequent calculus rule is sound if, for all instances

Γ1 � Δ1 · · · Γn � Δn

Γ � Δ

whose premises Γ1 � Δ1, . . . , Γn � Δn are valid, the conclusion Γ � Δ is
valid, too. Proof trees are defined to grow upwards. Each node is labeled with
a sequent, and each non-leaf node is related to the node(s) directly above it
through an instance of a calculus rule. A proof is closed if it is finite and all
leaves are justified by an instance of a rule without premises.

The interpolating sequent calculus for QFPA presented in this paper extends
the ground fragment of the sequent calculus in [15].

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 387

∗
. . . , false � close-left

′

. . . , 1 ≤ 0 � simp
′

. . . , −x ≤ 0, x + 1 ≤ 0 � fm-elim
′

. . . ,−x ≤ 0, −b + x ≤ 0, 3b − 2x + 1 ≤ 0 � fm-elim
′

. . . , −2x ≤ 0, −2b + 2x − 1 ≤ 0, 3b − 2x + 1 ≤ 0 � simp
′+

. . . ,−2x ≤ 0,−2b + 2x − 1 ≤ 0, c − 3b − 1 .= 0, c − 2x ≤ 0 �
red

′

a − 2x
.= 0, −a ≤ 0, 2b − a ≤ 0, −2b + a − 1 ≤ 0, c − 3b − 1 .= 0, c − a ≤ 0 �

red
′+

a − 2x
.= 0 ∧ −a ≤ 0 ∧ 2b − a ≤ 0 ∧ −2b + a − 1 ≤ 0 ∧ c − 3b − 1 .= 0 ∧ c − a ≤ 0 �

and-left
′+

Fig. 1. Unsatisfiability proof for the examples of Sect. 3

3 A Motivating Example

Consider the following program with variables ranging over unbounded integers:

if (a == 2*x && a >= 0) {
b = a / 2; c = 3*b + 1; assert (c > a); }

We would like to verify the assertion in the program. To this end, the program
is translated into the QFPA formula below. Note that b = a / 2 is converted
into a conjunction of two inequalities, and that the assertion is negated:

a−2x .= 0∧−a ≤ 0∧2b−a ≤ 0∧−2b+a−1 ≤ 0∧c−3b−1 .= 0∧c−a ≤ 0 (1)

The unsatisfiability of (1) implies that no run of the program violates the as-
sertion. Fig. 1 shows a refutation of (1) in the Gentzen-style sequent calculus
used in this paper (the right-hand side Δ happens to be empty in all sequents,
which is not true in general). We add the prime symbol ′ to the rule names
to distinguish them from the interpolating rules introduced later. The proof
starts with the conjunction (1) in the bottom sequent of the tree. Repeatedly
applying the rule and-left

′ (denoted and-left
′+) splits the conjunction into a

list of arithmetic literals. The equality a− 2x .= 0 is used to reduce the inequali-
ties−a ≤ 0,−2b+ a− 1 ≤ 0, and c− a ≤ 0 by means of substitution (rule red

′).
Similarly, c− 3b− 1 .= 0 is used to reduce c− 2x ≤ 0. The inequalities −2x ≤ 0
and −2b+ 2x− 1 ≤ 0 are simplified (rule simp

′) by eliminating the coefficient 2;
in the latter inequality, this requires rounding. Unsatisfiability of the remaining
inequalities follows from two applications of the Fourier-Motzkin rule fm-elim

′,
and the proof can be closed.

Interpolants for unsatisfiable formulae like (1) can reveal additional informa-
tion about the program being investigated, for instance intermediate assertions.
Suppose we want to compute an invariant for the program point immediately
after b = a / 2. Let A denote the part of equation (1) encoding the program
up to this point. Currently, the only known interpolation method for QFPA is
to quantify out the local variables, i.e., variable x from A:

∃x. (a− 2x .= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧−2b+ a− 1 ≤ 0) ,

388 A. Brillout et al.

which simplifies via quantifier elimination (QE) to −a ≤ 0∧2b−a .= 0. Existen-
tially quantifying out the local variables from A (or, universally, the local vari-
ables from the remaining part of (1)) always returns the strongest (respectively,
weakest) interpolant for an unsatisfiable formula. These “extremal” interpolants
may be very large, however. Suppose we modify the conditional in the program
by adding further conjuncts that are unnecessary for the safety of the program:

if (a == 2*x && a >= 0 && a >= n*y - n
2 && a <= n*y) (2)

where n ∈ 2Z is a parameter. The strongest (quantifier-free) interpolant, denoted
In
s , grows linearly in n and thus exponentially in the size of the program:

In
s ≡ − a ≤ 0 ∧ 2b− a .= 0 ∧ (n | a ∨ n | (a+ 1) ∨ · · · ∨ n | (a+ n

2)) .

A weaker but much more succinct interpolant is the inequality −3b+ a ≤ 0.
We demonstrate in this paper that proof-based interpolation provides a way of
obtaining such succinct interpolants. Proofs can compactly encode the unsat-
isfiability of a formula and abstract away from irrelevant facts, enabling the
extraction of succinct interpolants; this is of particular importance for program
verification, where interpolants carrying unnecessary details can delay or pre-
vent the discovery of inductive invariants (e.g., [11]). We therefore propose to
lift proofs of unsatisfiability to interpolating proofs. This way, we avoid many
disadvantages of QE-based interpolation, namely (i) its high complexity, (ii) its
inflexibility in always returning a strongest or weakest interpolant, and (iii) the
need to restart from scratch in order to consider a new partitioning of the un-
satisfiable formula into A and B (in contrast, a proof-based method can extract
many interpolants from a single proof).

4 An Interpolating Sequent Calculus for QFPA

In order to extract interpolants from proofs of unsatisfiable conjunctions A∧B,
we introduce interpolating sequents as an extension of the Gentzen-style sequents
defined in Sect. 2. Formulae in interpolating sequents are labeled either with
the letter L to indicate that they are derived purely from A, the letter R for
formulae derived purely from B, or with partial interpolants (PIs) that record
the A-contribution to a formula obtained jointly from A and B. Similarly as in
[4], the labels L/R will be used to handle analytic rules that operate only on
subformulae of the input formulae, while rewriting rules for arithmetic may mix
parts of A and B and therefore require partial interpolants (as in [10]).

More formally, if φ is a formula and t, tA are terms, all without free variables,
then 1φ2L and 1φ2R are L/R-labeled formulae and t .= 0 [tA .= 0], t .= 0 [tA � .= 0],
and t ≤ 0 [tA ≤ 0] are formulae labeled with the partial interpolants tA .= 0,
tA � .= 0, and tA ≤ 0, respectively. Furthermore, if Γ , Δ are sets of labeled for-
mulae and I is an unlabeled formula such that (i) none of the formulae con-
tains free variables, (ii) Γ only contains formulae 1φ2L, 1φ2R, t .= 0 [tA .= 0], or
t ≤ 0 [tA ≤ 0], and (iii) Δ only contains formulae 1φ2L, 1φ2R, t .= 0 [tA .= 0], or
t
.= 0 [tA � .= 0], then Γ � Δ � I is an interpolating sequent.

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 389

A B

∗
. . . , 2 ≤ 0 [−6b + 2a ≤ 0] � � I1

close-ineq

. . . , −2x ≤ 0 [−2x ≤ 0], 2x + 2 ≤ 0 [−6b + 2a + 2x ≤ 0] � � I1
fm-elim

. . . , −2b + 2x ≤ 0 [−2b + 2x − 1 ≤ 0], 3b − 2x + 1 ≤ 0 [a − 2x ≤ 0] � � I1
fm-elim

. . . , −2b + 2x − 1 ≤ 0 [−2b + 2x − 1 ≤ 0], 3b − 2x + 1 ≤ 0 [a − 2x ≤ 0] � � I2
strengthen

. . . ,−2x ≤ 0 [−2x ≤ 0],−2b + 2x − 1 ≤ 0 [−2b + 2x − 1 ≤ 0],
c − 3b − 1 .= 0 [0 .= 0], c − 2x ≤ 0 [a − 2x ≤ 0] � � I2

red-left

. . . , a − 2x
.= 0 [a − 2x

.= 0], −2b + a − 1 ≤ 0 [−2b + a − 1 ≤ 0],
−a ≤ 0 [−a ≤ 0], c − 3b − 1 .= 0 [0 .= 0], c − a ≤ 0 [0 ≤ 0]

� � I2

red-left
+

�a − 2x
.= 0�L , �−a ≤ 0�L , . . . , �−2b + a − 1 ≤ 0�L ,
�c − 3b − 1 .= 0�R , �c − a ≤ 0�R

� � I2

ipi
+

�a − 2x
.= 0 ∧ −a ≤ 0 ∧ 2b − a ≤ 0 ∧ −2b + a − 1 ≤ 0�L ,

�c − 3b − 1 .= 0 ∧ c − a ≤ 0�R
� � I2

and-left
+

Fig. 2. The interpolating version of Fig. 1. The initial interpolant generated by close-

ineq is I1 = (−6b + 2a ≤ 0) ≡ (−3b + a ≤ 0), which is by strengthen combined
with the interpolants false and φ from the subproofs A and B to form the final inter-
polant I2 = (I1 ∨ (false ∧ φ)) ≡ I1.

The semantics of interpolating sequents is defined with the help of projections
ΓL =def {φ | 1φ2L ∈ Γ} and ΓR =def {φ | 1φ2R ∈ Γ} that extract the L/R-parts
of a set Γ of labeled formulae. A sequent Γ � Δ � I is valid if (i) the (Gentzen-
style) sequent ΓL � I,ΔL is valid, (ii) the sequent ΓR, I � ΔR is valid, and
(iii) the constants in I occur in both ΓL ∪ΔL and ΓR ∪ΔR. Note that formulae
annotated with PIs are irrelevant for deciding whether an interpolating sequent
is valid; this only depends on L/R-formulae. The semantics of PIs is made precise
in Sect. 4.3; intuitively, a labeled formula φ [φA] in an interpolation problemA∧B
expresses the implications A⇒ φA and B ∧ φA ⇒ φ.

As special cases, 1A2L � 1C2R � I reduces to I being an interpolant of the
implication A ⇒ C, while 1A2L, 1B2R � � I captures the concept of inter-
polants I for conjunctions A ∧B common in formal verification.

Example. We illustrate the concept of interpolating sequents with the proof in
Fig. 2, which is the interpolating version of the proof in Fig. 1 and will serve as
a running example in the whole section. For sake of brevity, we omit the sub-
proofsA and B. Due to the soundness of the applied calculus (stated in Sect. 4.3),
the root sequent of the proof is valid, which implies that I2 ≡ (−3b+ a ≤ 0)
is an interpolant for the unsatisfiable conjunction (1). Note that I2 is the in-
equality discussed in Sect. 3 as a succinct interpolant and intermediate program
assertion.

In the remainder of Sect. 4, we explain the rules of our interpolating calculus
given in Fig. 3, 4. As usual in sequent calculi, the rules are applied in the upward
direction, starting from a sequent Γ � Δ � ? with unknown interpolant that
is to be proven (the proof root), and applying rules to successively decompose
and simplify the sequent until a closure rule becomes applicable. The unknown
interpolants of sequents have to be left open while building a proof and can only
be filled in once all proof branches are closed.

390 A. Brillout et al.

Γ, t ◦ 0 [t ◦ 0], �t ◦ 0�L � Δ � I

Γ, �t ◦ 0�L � Δ � I
ipi-

left

Γ � t
.= 0 [t .= 0], �t .= 0�L, Δ � I

Γ � �t .= 0�L, Δ � I
ipi-

right

Γ, t ◦ 0 [0 ◦ 0], �t ◦ 0�R � Δ � I

Γ, �t ◦ 0�R � Δ � I
ipi-

left

Γ � t
.= 0 [0 � .= 0], �t .= 0�R, Δ � I

Γ � �t .= 0�R, Δ � I
ipi-

right

∗
Γ, t

.= 0 [tA .= 0] � Δ � ∃LA tA .= 0
close-eq-left

(t .= 0 is unsatisfiable)
∗

Γ, α ≤ 0 [tA ≤ 0] � Δ � ∃LA tA ≤ 0
close-ineq

(α > 0)
∗

Γ � 0 .= 0 [tA .= 0], Δ � ∃LA tA � .= 0
close-eq-right

∗
Γ � 0 .= 0 [tA � .= 0], Δ � ∃LA tA .= 0

close-neq-right

Fig. 3. Initialization and closure rules. In the rules ipi-left-l/r, ◦ ∈ { .=,≤} de-
notes a relation symbol. In the rules close-*, ∃LA denotes existential quantifica-
tion ∃c1, . . . , cn., where c1, . . . , cn are the constants that occur in ΓL, ΔL but not
in ΓR, ΔR. An equality tA .= 0 is unsatisfiable if and only if it is of the form
α1d1 + · · ·+ αndn + α0

.= 0 and gcd(α1, . . . , αn) � α0 (with the convention gcd() = 0).

4.1 Propositional, Initialization, and Closure Rules

To construct a proof for an interpolation problem A ∧B, we start with a se-
quent 1A2L, 1B2R � � ? that only contains L/R-labeled formulae and apply
propositional and Skolemization rules to decompose A and B (the applications
of rule and-left in Fig. 2). Because our propositional rules closely follow stan-
dard interpolating calculi (see [9,4]), we only show two of these rules, namely
the top-most two in Fig. 4. When splitting over L-disjunctions in the antecedent
(or-left-l), it is necessary to form the disjunction of the interpolants derived
in the subproofs. Analogously, R-disjunctions yield conjunctive interpolants. All
propositional rules propagate the L/R-label of formulae to their subformulae,
unchanged. For brevity, we have omitted rules to move inequalities from the
succedent to the antecedent.

Once the decomposition of formulae results in arithmetic literals, the initial-
ization rules in the upper part of Fig. 3 are used to turn L/R-formulae into
formulae with PIs, to prepare them for later rewriting (the applications ipi in
Fig. 2). Generally, PIs for L-literals are chosen to be the literals themselves, while
empty PIs are introduced for R-literals: the intuition is that L-formulae are fully
contributed by A, while R-formulae do not contain any A-contribution at all.

We observe that the ipi rules do not remove the L/R-formula to which they
are applied (the formula occurs both in the conclusion and in the premise). The
reason is that L/R-formulae in sequents, besides their logical meaning, track the
vocabulary of symbols occurring in the input formulae A,B; the vocabulary is

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 391

Γ, �φ�L � Δ � I
Γ, �ψ�L � Δ � J

Γ, �φ ∨ ψ�L � Δ � I ∨ J
or-left-l

Γ, �φ�D, �ψ�D � Δ � I

Γ, �φ ∧ ψ�D � Δ � I
and-left

Γ, t
.= 0 [tA .= 0], s + α · t ◦ 0 [sA + α · tA ◦ 0] � Δ � I

Γ, t
.= 0 [tA .= 0], s ◦ 0 [sA ◦ 0] � Δ � I

red-left

Γ, t
.= 0 [tA .= 0] � s + α · t .= 0 [sA + α · tA ◦ 0], Δ � I

Γ, t
.= 0 [tA .= 0] � s

.= 0 [sA ◦ 0], Δ � I
red-right

Γ, �u− c
.= 0�L � Δ � I

Γ � Δ � I
col-red-l

Γ, α · t ◦ 0 [α · tA ◦ 0] � Δ � I

Γ, t ◦ 0 [tA ◦ 0] � Δ � I
mul-left

Γ, �u− c
.= 0�R � Δ � I

Γ � Δ � I
col-red-r

Γ � α · t .= 0 [α · tA ◦ 0], Δ � I

Γ � t
.= 0 [tA ◦ 0], Δ � I

mul-right

Γ, �∃x. αx + t
.= 0�D � Δ � I

Γ, �α | t�D � Δ � I
div-left

Γ, �(α | t + 1) ∨ · · · ∨ (α | t + α− 1)�D � Δ � I

Γ � �α | t�D, Δ � I
div-right

Γ, s ≤ 0 [sA ≤ 0], t ≤ 0 [tA ≤ 0], αs + βt ≤ 0 [αsA + βtA ≤ 0] � Δ � I

Γ, s ≤ 0 [sA ≤ 0], t ≤ 0 [tA ≤ 0] � Δ � I
fm-elim

Γ, t
.= 0 [tA .= 0] � Δ � E

Γ, t + 1 ≤ 0 [tA ≤ 0] � Δ � I0

Γ, t + 1 ≤ 0 [tA + 1 ≤ 0] � Δ � I1

Γ, t ≤ 0 [tA ≤ 0] � Δ � I1 ∨ (E ∧ I0)
strengthen

Γ, t + 1 ≤ 0 [tA + 1 ≤ 0] � Δ � I

Γ,−t + 1 ≤ 0 [−tA + 1 ≤ 0] � Δ � J

Γ � t
.= 0 [tA .= 0], Δ � I ∨ J

split-eq

Γ, t + 1 ≤ 0 [tA ≤ 0] � Δ � I
Γ,−t + 1 ≤ 0 [−tA ≤ 0] � Δ � J

Γ � t
.= 0 [tA � .= 0], Δ � I ∧ J

split-neq

Fig. 4. Rules for propositional connectives, equalities, divisibility, and inequalities.
In and-left, we assume D ∈ {L, R}. In red-left and mul-left, ◦ ∈ { .=,≤}, while
◦ ∈ { .=, � .=} in red-right and mul-right. In col-red-l and col-red-r, c is a constant
that does not occur in the conclusion or in u. The term u in col-red-l must only
contain constants from ΓL ∪ ΔL, while u in col-red-r must only contain constants
from ΓR ∪ ΔR. In mul-left and mul-right, α > 0 is a positive literal. In div-left

and div-right, D ∈ {L, R}, x is an arbitrary variable, and α > 0. In fm-elim, α > 0
and β > 0 are positive integers.

392 A. Brillout et al.

used in condition (iii) of the definition of valid interpolating sequents, but also
in the closure rules discussed next. For completeness, it is never necessary to
apply ipi rules twice on a proof branch to the same L/R-formula.

Finally, once rewriting (discussed in Sect. 4.2) has produced an unsatisfiable
literal in an antecedent (or a valid literal in a succedent), a closure rule can be
used to close the proof branch and to derive an interpolant from the PI of the
unsatisfiable literal (the application close-ineq in Fig. 2). Closure rules are
given in the lower part of Fig. 3. Because PIs can still contain local symbols
that occur only in ΓL ∪ ΔL (and are not allowed in interpolants), it may be
necessary to introduce existential quantifiers at this point. We note, however,
that quantifiers in quantified literals can be eliminated in polynomial time; e.g.,
∃c1, . . . , cn. α1c1 + · · ·+ αncn + t

.= 0 is equivalent to the divisibility judgement
gcd(α1, . . . , αn) | t.

4.2 Rewriting Rules for Equality, Inequality and Divisibility

The arithmetic rewriting rules form a calculus to solve systems of equalities by
means of Gaussian elimination and Euclid’s algorithm (the middle part of Fig. 4),
as well as a calculus for systems of inequalities based on Fourier-Motzkin elim-
ination and cutting planes (the lower part of Fig. 4). Decision procedures for
QFPA in terms of the corresponding non-interpolating rules have been intro-
duced in [14,15] and directly carry over to the interpolating case. We therefore
focus on the differences between the normal and the interpolating rules.

The rules red-left/right rewrite (in)equalities with equalities in the an-
tecedent; in both cases, PIs are simply propagated along with the literals (red-

left is applied repeatedly in Fig. 2). The red rules alone do not form a complete
calculus for integer equalities and have to be complemented with col-red-l/r

to introduce fresh constants defined in terms of existing constants (the rules
resemble column reductions when encoding systems of equalities as matrices).
In combination, red and col-red are able to simulate the equality elimination
procedure in [13], as well as standard procedures to transform sets of equalities
(or matrices) to Hermite and Smith normalform [6,5]. Because col-red-l/r

only introduce local L/R-constants, it is guaranteed that the new constants do
not occur in interpolants.

In contrast to [14,15], we do not introduce a simplification rule simp
′ for lit-

erals, as full simplification is not always possible in the presence of PIs. For in-
stance, the equality 2x .= 0 [a .= 0] cannot be simplified to the form x

.= 0 [tA .= 0]
(as it would happen in [14,15]) because the factor 2 does not occur in the PI.
This raises a potential problem, as terms αx cannot be rewritten to 0 with the
help of 2x .= 0 if α is odd. As a solution, we introduce the rules mul-left/right

to multiply terms with positive integers prior to rewriting.
Similar to rewriting with equalities, inequalities can be added to each other

with the help of the rule fm-elim realizing Fourier-Motzkin variable elimina-
tion. The strengthen rule is introduced to achieve completeness over the in-
tegers (Fig. 2 shows applications of fm-elim and strengthen). Compared to
the calculi in [14,15], the use of strengthen in our interpolating calculus is

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 393

Table 1. Sequents with partial interpolants and correctness conditions (i) and (ii)

Partial interpolant annotation Sequent (i) Sequent (ii)
Γ, t

.= 0[tA .= 0] � Δ ΓL � tA .= 0, ΔL ΓR � t− tA .= 0, ΔR

Γ, t ≤ 0[tA ≤ 0] � Δ ΓL � tA ≤ 0, ΔL ΓR � t− tA ≤ 0, ΔR

Γ � t
.= 0[tA .= 0], Δ ΓL, tA .= 0 � ΔL ΓR � t− tA .= 0, ΔR

Γ � t
.= 0[tA � .= 0], Δ ΓL � tA .= 0, ΔL ΓR, t− tA .= 0 � ΔR

threefold: (i) strengthen can simulate the omega-elim rule in [15], (ii) as
shown in Fig. 2, repeated application of strengthen can be used to round in-
equalities αt+ β ≤ 0 to αt+ α,β

α- ≤ 0 (which is done by simp
′ in [14,15]), and

(iii) strengthen can simulate the law of anti-symmetry that is implemented
by the rule anti-symm

′ in [14,15]. As strengthen is the most central rule in
our calculus, we provide a detailed discussion in Sect. 5.

4.3 Properties of the Calculus

Soundness. Our interpolating calculus generates correct interpolants: whenever
a sequent 1A2L � 1C2R � I is derived, the implications A⇒ I ⇒ C are valid,
and all constants in I occur in both A and C. More generally:

Lemma 1 (Soundness). If an interpolating sequent Γ � Δ � I without any
PIs is provable in the calculus, then it is valid. This implies, in particular, that
the sequent ΓL, ΓR � ΔL, ΔR is valid.

To prove this lemma, we first need to define the semantics of PIs (although the
sequent Γ � Δ � I in the lemma does not contain any PIs, they are likely to be
introduced in the course of a proof). We say that a PI is correct if the sequents
(i) and (ii) given in Table 1 are valid, tA only contains constants that occur in
ΓL∪ΔL, and t− tA only contains constants that occur in ΓR∪ΔR. Soundness is
then proven in two steps: (i) We show that all PIs in a closed proof are correct
by induction on the distance of a sequent from the root of the proof: assuming
that all PIs in the conclusion of a rule application are correct, we prove that the
PIs in the rule premises are correct. (ii) We show the validity of all sequents in
a closed proof by induction on the size of sub-proofs: assuming that all premises
of a rule are valid, we prove that the conclusion is valid, too.

As a technical difficulty, we need to annotate some rules by introducing further
auxiliary formulae in the premises to ensure (i) holds. These annotations are only
required for the soundness proof; soundness of the rules with auxiliary formulae
directly implies soundness of the original rules.

Completeness. Vice versa, whenever an implication A⇒ C holds, our calculus is
able to derive an interpolant. We have to ban quantifiers that cannot be handled
by Skolemization.

Lemma 2 (Completeness). Suppose Γ,Δ are sets of labeled formulae 1φ2L
and 1φ2R such that all occurrences of existential quantifiers in Γ/Δ are under

394 A. Brillout et al.

an even/odd number of negations, and all occurrences of universal quantifiers in
Γ/Δ are under an odd/even number of negations. If ΓL, ΓR � ΔL, ΔR is valid,
then there is a formula I such that Γ � Δ � I is provable.

The lemma follows from the completeness of the calculi in [14,15] by means of
proof lifting: given that ΓL, ΓR � ΔL, ΔR is valid, there is a proof of this fact
in the non-interpolating calculus. This proof can be lifted by replacing each rule
application with an application of the corresponding interpolating rule.

5 Strengthening and Mixed Cuts

Reasoning in linear integer arithmetic generally requires some kind of cut-rule to
deal with the phenomenon of formulae that are satisfiable over the rationals, but
unsatisfiable over integers. The non-interpolating calculus in [14] provides two
rules for this: the simp

′ rule to round inequalities αt+ β ≤ 0 to αt+ α,β
α- ≤ 0

(which resembles Gomory cuts [17]), and the general strengthen
′ rule:

Γ, t
.= 0 � Δ Γ, t+ 1 ≤ 0 � Δ

Γ, t ≤ 0 � Δ
strengthen

′

Because strengthen
′ subsumes rounding via the rule simp

′, we can ignore the
latter rule for the time being and concentrate on strengthen

′.
In order to lift strengthen

′ to the interpolating calculus, we can first observe
that two special cases are easy to handle:

Γ, t
.= 0 [t .= 0] � Δ � I Γ, t+ 1 ≤ 0 [t+ 1 ≤ 0] � Δ � J

Γ, t ≤ 0 [t ≤ 0] � Δ � I ∨ J strengthen-l

Γ, t
.= 0 [0 .= 0] � Δ � I Γ, t+ 1 ≤ 0 [0 ≤ 0] � Δ � J

Γ, t ≤ 0 [0 ≤ 0] � Δ � I ∧ J strengthen-r

These cases are called pure cuts in [8], because the PIs tell that the inequal-
ity t ≤ 0 has been derived only from L- or only from R-formulae, respectively.
Strengthening inequalities of this kind corresponds to splitting a disjunction
labeled with L or R.

The general case is known as mixed cut [8] and encompasses an application of
strengthen to a formula t ≤ 0 [tA ≤ 0] with tA �∈ {0, t}; the rule for this gen-
eral case is given in Fig. 4 and features three premises, one more than the non-
interpolating rule strengthen

′. To understand the shape of strengthen, note
that we can represent t ≤ 0 as the sum of the inequalities tA ≤ 0 and t− tA ≤ 0,
the first of which is derived from L-formulae, and the second from R-formulae.
The effect of strengthen can then be simulated by applying strengthen-l

to tA ≤ 0 [tA ≤ 0], and afterward strengthen-r to t− tA ≤ 0 [0 ≤ 0]; the com-
bined application of the two rules explains the interpolant I1 ∨ (E ∧ I0) resulting
from strengthen.

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 395

Complexity. Non-interpolating refutations of unsatisfiable conjunctions of lit-
erals have exponential size in the worst case [17]. Similarly, it can be shown
that any valid sequent (without quantifiers or propositional connectives) has in-
terpolants of worst-case exponential size that can be derived using a proof of
worst-case exponential size (using the rules strengthen-l/r from above).

In general, however, lifting a non-interpolating to an interpolating proof can
increase the size of the proof exponentially, due to two reasons: (i) the fact
that strengthen in Fig. 4 has three premises, while the non-interpolating
rule strengthen

′ has only two, which can make it necessary to repeatedly
duplicate subproofs during lifting (this is partly addressed in Sect. 5.1), and
(ii) because the rule simp

′ (which has to be simulated by strengthen in the
interpolating calculus) often allows very succinct proofs. As a result, there are
unsatisfiable conjunctions A ∧B with non-interpolating proofs of linear size, al-
though all interpolants have exponential size.

5.1 Successive Strengthening

It is quite common that strengthen is applied repeatedly to a sequence t ≤ 0,
t+ 1 ≤ 0, t+ 2 ≤ 0, . . . of inequalities, for instance to simulate rounding of an
inequality or the Omega rule [13]. Because each application of strengthen

generates two new inequalities, 2k − 1 applications are necessary in order to
strengthen an inequality t ≤ 0 to t+ k ≤ 0, and the resulting interpolant will
be of exponential size as well. To tackle this growth, we present an optimized
rule that captures k-fold strengthening and requires only a quadratic number of
premises. The optimized rule k-strengthen exploits the fact that many of the
goals created by repeated application of strengthen are redundant:{

Γ, t+ i
.= 0 [tA + j

.= 0] � Δ � Ej
i

}
0≤j≤i<k{

Γ, t+ k ≤ 0 [tA + j ≤ 0] � Δ � Ij
}

0≤j≤k

Γ, t ≤ 0 [tA ≤ 0] � Δ � K
k-strengthen

where the resulting interpolant K is defined by:

K =
∨

0≤j≤k

(
Ij ∧

∧
j≤i<k

Ej
i

)
(3)

The size of K grows quadratically, rather than exponentially, in k. Thus, when-
ever the strengthen rule is to be applied k times in succession, it is possible
and more efficient to use the k-strengthen rule instead.

The number of premises of k-strengthen (but not the size of the result-
ing interpolant) can be reduced further to a linear number: any two premises
generating Ej

i and El
i differ only in the partial interpolant of t+ i ≤ 0, not in

any other formula. We can exploit this by treating the family (Ej
i)0≤j≤i as a

single premise that is parameterized in the free variable j. This way, a single
subproof can generate a parameterized interpolant Ei(j). The parameter j can
be instantiated to the values 0 ≤ j ≤ i when constructing K. Parametrized
interpolants I(j) can be derived similarly.

396 A. Brillout et al.

Interpolation of rounding operations. An additional optimization is possible
when the rule k-strengthen is used to round an inequality αt+ β ≤ 0 to
αt+ α,β

α- ≤ 0. Rounding corresponds to k-strengthen with k = α,β
α- − β:{

Γ, αt+ β + i
.= 0 [tA + j

.= 0] � Δ � Ej
i

}
0≤j≤i<k{

Γ, αt+ α,β
α- ≤ 0 [tA + j ≤ 0] � Δ � Ij

}
0≤j≤k

Γ, αt+ β ≤ 0 [tA ≤ 0] � Δ � K
k-strengthen

We can observe that αt+ β + i
.= 0 is unsatisfiable for 0 ≤ i < α,β

α- − β, so
that the equality-premises can be closed immediately via close-eq-left. Con-
sequently, the interpolants Ej

i = Ej = (∃LA tA + j
.= 0) do not depend on i, and

the overall interpolant can be simplified to K = Ik ∨
∨

0≤j<k(Ij ∧Ej).

Example. We use k-strengthen to compute an interpolant for the conjunc-
tion A ∧ B with A = −y + 5x− 1 ≤ 0 ∧ y − 5x ≤ 0 and B = 5z − y + 1 ≤ 0 ∧
−5z + y − 2 ≤ 0. Note that A ∧B is satisfiable over rationals, but unsatisfiable
over the integers. An interpolating proof of unsatisfiability is as follows:

∗....
{· · · � Ej

i }

∗
. . . , 1 ≤ 0 [j − 1 ≤ 0] � � j − 1 ≤ 0

close-ineq

. . . , −5z + 5x ≤ 0 [−y + 5x − 1 + j ≤ 0],
5z − 5x + 1 ≤ 0 [y − 5x ≤ 0] � � j − 1 ≤ 0

fm-elim

. . . , −5z + 5x − 3 ≤ 0 [−y + 5x − 1 ≤ 0], 5z − 5x + 1 ≤ 0 [y − 5x ≤ 0] � � K
3-strengthen

. . . , y − 5x ≤ 0 [y − 5x ≤ 0], 5z − y + 1 ≤ 0 [0 ≤ 0],
−5z + 5x − 3 ≤ 0 [−y + 5x − 1 ≤ 0] � � K

fm-elim

−y + 5x − 1 ≤ 0 [−y + 5x − 1 ≤ 0], y − 5x ≤ 0 [y − 5x ≤ 0],
5z − y + 1 ≤ 0 [0 ≤ 0], −5z + y − 2 ≤ 0 [0 ≤ 0] � � K

fm-elim

�−y + 5x − 1 ≤ 0�L , �y − 5x ≤ 0�L , �5z − y + 1 ≤ 0�R , �−5z + y − 2 ≤ 0�R � � K
ipi

+

�−y + 5x − 1 ≤ 0 ∧ y − 5x ≤ 0�L , �5z − y + 1 ≤ 0 ∧ −5z + y − 2 ≤ 0�R � � K
and-left

+

Most importantly, the rule 3-strengthen is used to round −5z + 5x− 3 ≤ 0
to −5z + 5x ≤ 0, from which a contradiction can be derived via fm-elim. In the
premises of 3-strengthen, the inequality interpolants Ij = (j − 1 ≤ 0) and the
equality interpolantsEj = (∃x. − y + 5x− 1 + j

.= 0) ≡ (5 | (y + 1− j)) are de-
rived as discussed above. The overall interpolant is:

K = 3− 1 ≤ 0︸ ︷︷ ︸
Ik

∨
∨

0≤j<3

(j − 1 ≤ 0︸ ︷︷ ︸
Ij

∧ 5 | (y + 1− j)︸ ︷︷ ︸
Ej

) ≡ 5 | (y + 1) ∨ 5 | y

6 Experimental Evaluation

We implemented1 the proposed interpolating calculus on top of the Princess

theorem prover [15], including all optimizations described in Sect. 5. To this end,
we extended Princess to generate proofs. The interpolation procedure then pro-
cesses the proof and generates an interpolant using the rules presented in this
paper. The benchmarks for our experiments are derived from the SMT-LIB cat-
egory QF-LIA. We evaluate them on an Intel Pentium Xeon with 3GHz and
1 Implementation and benchmarks: www.philipp.ruemmer.org/iprincess.shtml

www.philipp.ruemmer.org/iprincess.shtml

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 397

10
-2

10
-1

1

10

10
2

10
-2

10
-1 1 10 10

2

P
ro

o
f-

B
as

ed
 I

n
te

rp
o
la

ti
o
n
 (

ru
n
ti

m
e

in
 s

ec
o
n
d
s)

Quantifier Elimination (runtime in seconds)

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

P
ro

o
f-

B
as

ed
 I

n
te

rp
o
la

ti
o
n
 (

in
te

rp
o
la

n
t

si
ze

)
Quantifier Elimination (interpolant size)

0

5

10

>15

N
u
m

b
er

 o
f

lo
ca

l
sy

m
b
o
ls

 i
n
 A

10
-2

10
-1

1

10

10
2

 10 20 30 40 50 60 70P
ro

o
f-

B
as

ed
 I

n
te

rp
o
la

ti
o
n
 (

ru
n
ti

m
e

in
 s

ec
o
n
d
s)

Number of local symbols in A

10
-2

10
-1

1

10

10
2

 10 20 30 40 50 60 70

Q
u
an

ti
fi

er
 E

li
m

in
at

io
n
 (

ru
n
ti

m
e

in
 s

ec
o
n
d
s)

Number of local symbols in A

Fig. 5. Benchmarks comparing interpolant extraction with quantifier elimination

4MB cache, running Linux. Because SMT-LIB benchmarks are usually conjunc-
tions at the outermost level, we partitioned them into A ∧ B by choosing the
first k

10 · n of the benchmark conjuncts as A, the rest as B (where n is the total
number of conjuncts, and k ∈ {1, . . . , 9}). Partitionings where A did not contain
any local symbols (constants or propositional variables) were ignored.

Since (to the best of our knowledge) no other interpolation procedure for
QFPA was available, we compared the performance of the Princess interpola-
tion procedure with interpolation by quantifier elimination (QE), eliminating all
local symbols in A. For the latter, we use the implementation of the Omega [13]
test available in Princess. The results are shown in Fig. 5.

The upper left diagram compares runtimes of proof-based interpolation (PBI)
with QE, with a timeout of 120s. We do not include the time to generate proofs,
because in typical applications (like software model checking) many interpolants
will be generated from each proof, and because QE does not decide the input
formula. Considering only the cases without timeout, proving took on average
about 4 times as long as the extraction of all interpolants from one proof. The
diagram shows that PBI outperforms QE in 147 out of 205 cases, while QE is
faster in 58 cases. QE times out for 103 of the benchmarks, PBI for 29. When
analyzing the cases where QE is faster than PBI, we observed that QE typically
performs well when A only contains few local symbols, i.e., when few quantifiers

398 A. Brillout et al.

need to be eliminated. We highlight cases where the number of local symbols is
less than 15 by gray points in the diagrams; with an increasing number of local
symbols, the performance of QE quickly degrades. To quantify this phenomenon,
we measured interpolation runtimes classified by the number of local symbols in
A: the two lower diagrams in Fig. 5 show that PBI is a lot less dependent on
the number of such symbols than QE.

The upper right diagram compares the sizes of the interpolants (the number
of operators) generated by the two techniques. In 149 cases, the interpolants
obtained using PBI are smaller than those derived by QE, in 122 cases they are
at least one order of magnitude smaller.

7 Related Work and Conclusions

Related work. Interpolation for propositional logic, linear rational arithmetic,
and uninterpreted functions is a well-explored field. In particular, McMillan
presents an interpolating theorem prover for rational arithmetic and uninter-
preted functions [10]; an interpolating SMT solver for the same logic has been
developed by Beyer et al. [1]. Rybalchenko et al. [16] introduce an interpolation
procedure for this logic that works without constructing proofs.

Interpolation has also been investigated in several fragments of integer arith-
metic. McMillan considers the logic of difference-bound constraints [11], which is
decidable by reduction to rational arithmetic. As an extension, Cimatti et al. [2]
present an interpolation procedure for the UT VPI fragment of linear integer
arithmetic. Both fragments allow efficient reasoning and interpolation, but are
not sufficient to express many typical program constructs, such as integer di-
vision. In [5], separate interpolation procedures for two theories are presented,
namely (i) QFPA restricted to conjunctions of integer linear (dis)equalities and
(ii) QFPA restricted to conjunctions of stride constraints. The combination of
both fragments with integer linear inequalities is not supported, however.

Kapur et al. [7] prove that full QFPA is closed under interpolation (as an
instance of a more general result about recursively enumerable theories), but
their proof does not directly give rise to an efficient interpolation procedure.
Lynch et al. [8] define an interpolation procedure for linear rational arithmetic,
and extend it to integer arithmetic by means of Gomory cuts. No interpolating
rule is provided for mixed cuts, however, which means that sometimes formulae
are generated that are not true interpolants because they violate the vocabulary
condition (i.e., contain symbols that are not common to A and B).

Conclusions. We have presented the first interpolating sequent calculus for
quantifier-free Presburger arithmetic, permitting arbitrary combinations of lin-
ear integer equalities, inequalities, and stride predicates. Our calculus is intended
to be used with a reasoning engine for sequent calculi, resulting in an interpo-
lating decision procedure for Presburger arithmetic. We have implemented our
calculus rules in Princess and demonstrated experimentally that our method
is able to generate much more succinct interpolants than quantifier elimination,
which is the only other method for Presburger interpolation we are aware of.

An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 399

Currently, we are working on the integration of our interpolation procedure
into a software model checker based on lazy abstraction [11]. The model checker
uses interpolation to refine the abstraction and avoids the expensive image com-
putation required by predicate abstraction. When using our QFPA interpolation
procedure, we expect to be able to verify software with more complex numerical
features than other model checkers.

Acknowledgments. We want to thank Jerome Leroux, Vijay D’Silva, Georg
Weissenbacher, and the anonymous referees for discussions and/or comments.

References

1. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer,
Heidelberg (2008)

2. Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant generation for UTVPI.
In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 167–182. Springer,
Heidelberg (2009)

3. Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. The
Journal of Symbolic Logic 22(3), 250–268 (1957)

4. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, Heidelberg (1996)

5. Jain, H., Clarke, E., Grumberg, O.: Efficient interpolation for linear diophantine
(dis)equations and linear modular equations. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 254–267. Springer, Heidelberg (2008)

6. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

7. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In:
SIGSOFT ’06/FSE-14, pp. 105–116. ACM, New York (2006)

8. Lynch, C., Tang, Y.: Interpolants for linear arithmetic in SMT. In: Cha, S(S.), Choi,
J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp.
156–170. Springer, Heidelberg (2008)

9. Maehara, S.: On the interpolation theorem of Craig. Sugaku 12, 235–237 (1960)
10. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
11. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)

CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
12. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du Ier congrès de Mathématiciens des Pays Slaves (1929)

13. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM 8, 102–114 (1992)

14. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gen-
eration. In: VERIFY. CEUR, vol. 259 (2007), http://ceur-ws.org/

15. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

16. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007)

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

http://ceur-ws.org/

Bugs, Moles and Skeletons:
Symbolic Reasoning for Software Development

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98052, USA
{leonardo,nbjorner}@microsoft.com

Abstract. Symbolic reasoning is in the core of many software devel-
opment tools such as: bug-finders, test-case generators, and verifiers. Of
renewed interest is the use of symbolic reasoning for synthesing code, loop
invariants and ranking functions. Satisfiability Modulo Theories (SMT)
solvers have been the focus of increased recent attention thanks to tech-
nological advances and an increasing number of applications. In this pa-
per we review some of these applications that use software verifiers as
bug-finders “on steroids” and suggest that new model finding techniques
are needed to increase the set of applications supported by these solvers.

1 Introduction

Symbolic reasoning is present in many diverse areas including software and hard-
ware verification, type inference, static program analysis, test-case generation,
scheduling and planning. In the software industry, symbolic reasoning has been
successfully used in many test-case generation and bug-finding tools.

Symbolic reasoning is attractive for verifiation, but we have found it even
more compelling for finding bugs. Test-case generation tools produce moles
that are test inputs which exercise particular program paths and their main
goal is to increase code coverage. Of recent interest is the use of skeletons,
also known as templates or schemas, when using symbolic reasoning in domain
specific ways.

We claim these tools are successful in industry because their results, moles
and bugs, can be easily digested, and domain specific skeletons are simple to
formulate. For example, generated moles can be directly executed on the system
under test. So it is straightforward to check and re-use the result from test-case
generation tools. We here make a case for the importance of symbolic reasoners
supporting the hunt for bugs and moles and the creation of skeletons.

A long-running and natural use of symbolic reasoning tools has been in the
context of program verification, and indeed, a lot of our experience with sym-
bolic reasoning has been rooted in program verification systems. The ideal of
verified software has been a long-running quest since Floyd and Hoare intro-
duced program verification by assigning logical assertions to programs. Yet,
the starting point of this paper is making a case that using symbolic reason-
ing tools are compelling in the context of even partial program exploration

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 400–411, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development 401

and design, and this domain offers compelling challenges for symbolic reason-
ing systems. The ideal of verified software amounts to a formidable task. It
includes grasping with problems that are often quite tangentical to the soft-
ware being verified. Common pittfalls are that an axiomatization of the envi-
ronment/runtime may be incorrect and the properties being verified are not
the right ones. Such pittfalls are hard to avoid as verification is intimately
tied to abstraction. Unfortunately unsound abstractions are so much easier to
come around than sound ones. Examples where unsound abstractions creep in
include using arithmetic over the integers (Z) instead of machine arithmetic,
using memory model simplifications (e.g., pointer arithmetic), and ignoring con-
currency. In other cases the challenge is not about simplifying the verification
task, but it is about correctly encoding the underlying environment and run-
time. Finally, with a Floyd-Hoare proof in house, and a trusted system model,
the question is how can I trust the verifier? One approach to answering this
question is by using certificates generated by the symbolic reasoning system.
However, certificate generation can produce a significant overhead on auto-
matic theorem provers in terms of memory and time. Another solution is the
use of certified theorem provers. Verifying the verifier has become the ultimate
distraction.

Independently of all these hurdles, in our point of view, software verification
systems can be seen as bug-finding tools with much better coverage. Of course,
in this case, the tool must be capable of reporting why a proof attempt did
not succeeded. This view is used in almost every software verification project
at Microsoft. It is not uncommon for these projects to demonstrate value by
reporting the discovery of non-trivial bugs in software that was heavily tested
by standard techniques. Following this view, a certificate/proof should be seen
as a “the verifier cannot find more bugs for you” result.

Between these two extremes, bug-finding and verification, there is another
application that is undergoing a rennaisance: synthesis. The idea of synthesiz-
ing code is not new, it dates back to the late 60’s [12,16]. Due to the recent
advances in first-order theorem proving, SMT and QBF solving, it is becom-
ing more feasible to synthesize non trivial glue code [15], small algorithms [17],
ranking functions [4] and procedures [14]. The outcome of a synthesis tool is
not as simple to check as the one produced by a bug-finding tool, but it is more
tangible than a proof of correctness. In principle, developers can inspect and test
the synthesized code independently of the symbolic reasoner.

2 Symbolic Reasoning at Microsoft

Z3 [5] is an SMT solver and the main symbolic reasoning engine used at Mi-
crosoft. SMT solvers combine the problem of Boolean Satisfiability with domains,
such as, those studied in convex optimization and term-manipulating symbolic
systems. They involve the decision problem, completeness and incompleteness
of logical theories, and finally complexity theory.

402 L. de Moura and N. Bjørner

2.1 Dynamic Symbolic Execution

SMT solvers play a central role in the context of dynamic symbolic execution,
also called smart white-box fuzzing. There are today several industry applied tools
based on dynamic symbolic execution, including CUTE, Exe, DART, SAGE,
Pex, and Yogi [11]. These tools collect explored program paths as formulas and
use solvers for identifying new test input (moles) that can steer execution into
new branches.

SMT solvers are a good fit for symbolic execution because they rely on a
solver that can find feasible solutions to logical constraints. They also use com-
binations of theories that are already supported by the solvers. To illustrate the
basic idea of dynamic symbolic execution consider the greatest common divisor
program 2.1. It takes the inputs x and y and produces the greatest common
divisor of x and y.

int GCD(int x , int y) {
while (true) {

int m = x % y ;
i f (m == 0) return y ;
x = y ;
y = m;

}
}

Program 2.1: GCD Program

Program 2.2 represents the
static single assignment unfold-
ing corresponding to the case
where the loop is exited in the
second iteration. We use asser-
tions to enforce that the con-
dition of the if-statement is
not satisfied in the first itera-
tion, and it is in the second.
The sequence of instructions is
equivalently represented as a
formula where the assignment
statements have been turned
into equations.

int GCD(int x0 , int y0) {
int m0 = x0 % y0 ;
a s s e r t (m0 != 0) ;
int x1 = y0 ;
int y1 = m0 ;
int m1 = x1 % y1 ;
a s s e r t (m1 == 0) ;

}

(m0 = x0 % y0) ∧
¬(m0 = 0) ∧
(x1 = y0) ∧
(y1 = m0) ∧
(m1 = x1 % y1) ∧
(m1 = 0)

Program 2.2: GCD Path Formula

The resulting path formula is satisfiable. One satisfying assignment that can
be found using an SMT solver is of the form:

x0 = 2, y0 = 4, m0 = 2, x1 = 4, y1 = 2, m1 = 0

It can be used as input to the original program. In the case of this example, the
call GCD(2,4) causes the loop to be entered twice, as expected. Smart white-
box fuzzing is actively used at Microsoft. It complements traditional black-box

Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development 403

fuzzing, where the program being fuzzed is opaque, and fuzzing is performed
by pertubing input vectors using random walks. It has been instrumental in
uncovering several subtle security critical bugs that black-box methods have
been unable to find.

2.2 Static Program Analysis

Static program analysis tools work in a similar way as dynamic symbolic exe-
cution tools. They also check feasibility of program paths. On the other hand
they can analyze software libraries and utilities independently of how they are
used. One advantage of using modern SMT solvers in static program analysis
is that SMT solvers nowadays accurately capture the semantics of most basic
operations used by commonly used programming languages. We use the program
in Figure 1 to illustrate the need for static program analysis to use bit-precise
reasoning. The program searches for an index in a sorted array arr that contains
a key.

int b inary search (
int [] arr , int low , int high , int key) {

a s s e r t (low > high | | 0 <= low < high) ;
while (low <= high) {

// Find middle va l ue
int mid = (low + high) / 2 ;
a s s e r t (0 <= mid < high) ;
int val = ar r [mid] ;
// Ref ine range

i f (key == val) return mid ;
i f (val > key) low = mid+1;
else high = mid−1;
}
return −1;

}

Fig. 1. Binary search

The assert statement is a pre-condition, for the procedure. It restricts the
input to fall within the bounds of the array arr. The program performs sev-
eral operations involving arithmetic, so a theory and corresponding solver that
understands arithmetic appears to be a good match. It is however important
to take into account that languages, such as Java, C# and C/C++ all use 32-
bit integers as the representation for values of type int. This means that the
accurate theory for int is two-complements modular arithmetic. The maximal
positive 32-bit integer is 231−1 and the smallest negative 32-bit integer is −231.
If both low and high are 230, low + high evaluates to 231, which is treated as
the negative number −231. The presumed assertion 0 ≤ mid < high therefore
does not hold. Fortunately, several modern SMT solvers support the theory of

404 L. de Moura and N. Bjørner

bit-vectors, which accurately captures the semantics of modular arithmetic. The
bug does not escape an analysis based on the theory of bit-vectors. Such an
analysis would check that the array read arr[mid] is within bounds during the
first iteration by checking the formula:

low > high ∨ 0 ≤ low < high < arr .length
∧ low ≤ high
→ 0 ≤ (low + high)/2 < arr .length

As we saw, the formula is not valid. The values low = high = 230, arr.length =
230 + 1 provide a counter-example. An integration with the solver Z3 and the
static analysis tool PREfix led to the automatic discovery of several overflow-
related bugs in Microsoft’s rather large code-base.

2.3 Software Verification

Extended static checking uses the methods developed for program verification,
but in the more limited context of checking absence of run-time errors. The
SMT solver Simplify [7] was developed in the context of the extended static
checking systems ESC/Modula 3 and ESC/Java [10]. This work has been the
inspiration for several subsequent extended static program checkers, including
Why [9] and Boogie [1]. These systems are actively used as bridges from several
different front-ends to SMT solver backends. Boogie, for instance, is used as
a backend for systems that verify code from languages, such as an extended
version of C# (called Spec#), as well as low level systems code written in C.
Current practice indicates that one person can drive these tools to verify selected
extended static properties of large code bases with several hundreds of thousands
of lines. This effort relies heavily on some of the automated methods used in
software model-checking. A more ambitious project is the Verifying C-Compiler
system [8], which targets functional correctness properties of Microsoft’s Viridian
Hyper-Visor. The Hyper-Visor is a relatively small (100K lines) operating system
layer, yet correctness properties are challenging to formulate and establish. The
entire verification effort is estimated to be around 60 man-years.

2.4 Synthesis

Finally, there is recent and active interest in using modern SMT solvers in the
context of synthesis of inductive loop invariants [18] and synthesis of program
fragments [14], such as sorting, matrix multiplication, de-compression, graph, and
bit-manipulating algorithms. Take for instance the Strassen’s matrix multiplica-
tion algorithm in the special case of 2 × 2 matrices. Synthesizing it amounts to
arranging a set of (7) multipliers and adders to obtain equivalent results as the
standard matrix multiplication algorithm that uses 8 multipliers. The search pro-
cess can be carried out on a multipliers that manipulate words of length 2-3 bits.
The synthesized code can then be checked on full bit-widths (32 or 64 bits). These
applications share a common trait in the way they use their underlying symbolic
solver. They search a template vocabulary of instructions, that are composed as a
model in a satisfying assignment. Section 3.3 goes into more detail.

Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development 405

3 Symbolic Reasoning Support for Models

3.1 Streams of Candidate Models

Most SMT solvers are capable of producing models for satisfiable quantifier-free
formulas. A model is an interpretation that makes the formula true. For example,
the interpretation {a �→ 2, b �→ 5} is a model for the formula a ≥ 0 ∧ b ≥ a+ 3.
This capability is essential in many industrial applications, because moles and
bugs are extracted from models.

Quantifiers are usually used to axiomatize the environment/runtime, state
properties, specify frame axioms, etc. For example, the formula ∀i, j. i ≤ j →
f(i) ≤ f(j) is used to say that f is a non-decreasing function. Quantifier reasoning
in SMT is a long-standing challenge. The practical method employed in modern
SMT solvers is to instantiate quantified formulas based on heuristics, which is not
refutationally complete even for pure first-order logic. Moreover, refutationally
complete procedures are not sufficient, since they will only guarantee that a proof
of unsatisfiability will be found eventually for unsatisfiable formulas. However, in
industry, we are mainly interested in the satisfiable instances, where a refutation-
ally complete procedure may not even terminate. Some SMT solvers support de-
cidable fragments [2,6,20], unfortunately they are not expressive enough to encode
all symbolic reasoning problems found in practice.

A pragmatic approach for dealing with the problem above is to produce can-
didate models. Given a formula of the form F ∧ G, where G is quantifier-free, a
candidate model is an interpretation that satisfies G and many instances of the
universally quantified formulas in F . For example, consider the following simple
satisfiable formula

F︷ ︸︸ ︷
∀i, j. i ≤ j → f(i) ≤ f(j)∧

w ≥ v + 2 ∧ f(v) ≤ 1 ∧ f(w) ≤ 3︸ ︷︷ ︸
G

Standard SMT solvers will produce a candidate model such as:

v �→ 0, w �→ 2, f �→ [0 �→ 1, 2 �→ 3, else �→ 4]

The interpretation for f is a function graph, it states that the value of the
function f at 0 is 1, at 2 is 3, and for all other values is 4. This interpretation
satisfies G, and satisfies the instance v ≤ w → f(v) ≤ f(w) of F , but it clearly
does not satisfy F .

Candidate models are relevant because they may contain enough information
to help the developer to understand why some property does not hold, or some
program location is reachable. Moles and bugs may still be extracted from them,
and the actual program (i.e., the definitive oracle) can be executed to confirm
they are indeed correct. This observation suggests a particular tool flow not very
often explored. The basic idea is to use the actual program as an oracle, to check
whether the candidate model really induces a valid mole/bug or not. If it does,

406 L. de Moura and N. Bjørner

then the tool terminates. Otherwise, it informs the solver that the candidate
model is a not valid, and the search continues. In this approach, the solver is
forced to generate a stream of more and more refined candidate models until a
valid mole/bug can be successfully extracted.

3.2 Model Checking Quantifiers

Given a candidate model I, it is useful to have a procedure P that checks whether
the interpretation I satisfies a universally quantified formula F or not. We say
P is a model checking procedure. To describe how P can be constructed, let us
describe how interpretations are particularly encoded in Z3. In Z3, we assume
there is an intended interpretation T for the supported set of theories T . In the
case of Z3, T is the union of the following theories: linear arithmetic, bit-vectors,
arrays, inductive data-types, and uninterpreted functions. Given a satisfiable
formula F , a model I is a function that maps the structure T that satisfies
T , into an expanded structure M that satisfies F ∪ T . Our models also come
equipped with a set of formulasR that restricts the class of structures that satisfy
T . For example, if T is the empty theory, then R is just a cardinality constraint
on the size of the universe. When needed, we use fresh constant symbols k1,
. . . , kn (ur-elements) to name the elements in |M | (i.e., the universe of M).
In Z3, the interpretation of an uninterpreted symbol s is an expression Is[x̄],
which contains only interpreted symbols and the fresh constants k1, . . . , kn.
For uninterpreted constants c, Ic[x̄] is just a ground term Ic. For uninterpreted
function and predicate symbols, the term Is[x̄] should be viewed as a lambda
expression. For example, the candidate model described in the previous section
is encoded as:

v �→ 0, w �→ 2, f(x) �→ ite(x = 0, 1, ite(x = 2, 3, 4))

Where ite(c, t, e) is the if-the-else term.
When models are encoded this way, it is straightforward to check whether

a universally quantified formula ∀x̄. F [x̄] is satisfied by a candidate model or
not [20]. Let F I [x̄] be the formula obtained from F [x̄] by replacing any term f(t̄)
with If [t̄], when f is uninterpreted. We claim a candidate model satisfies ∀x̄. F [x̄]
if and only if R ∧ ¬F I [s̄] is unsatisfiable, where s̄ is a tuple of fresh constant
symbols. In the previous example, the formula ∀i, j. i ≤ j → f(i) ≤ f(j) is not
satisfied by the candidate model, because the following formula is satisfiable.

s1 ≤ s2 ∧ ¬(ite(s1 = 0, 1, ite(s1 = 2, 3, 4)) ≤ ite(s2 = 0, 1, ite(s2 = 2, 3, 4)))

For instance, this formula is satisfied by {s1 �→ 1, s2 �→ 2}.
Similarly to the oracle-approach based on the actual program, new instances

of universally quantified formulas can be extracted from failed model checking
attempts. The new instance has the property that it will “block” the current
candidate model from being produced again by the solver.

Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development 407

This particular way of encoding models allows Z3 to represent interpreta-
tions for function symbols that are not expressible by finite function graphs. For
example, the following candidate model

v �→ 0, w �→ 2, f(x) �→ ite(x ≤ 0, 1, ite(x ≤ 2, 3, 4))

is a model for our working example, because the following ground formula is
unsatisfiable.

s1 ≤ s2 ∧ ¬(ite(s1 ≤ 0, 1, ite(s1 ≤ 2, 3, 4)) ≤ ite(s2 ≤ 0, 1, ite(s2 ≤ 2, 3, 4)))

Candidate models with this particular shape can be automatically computed
because our example is in the array property decidable fragment [2].

3.3 Skeleton Based Model Finding and Synthesis

Satisfiability solvers have been used to synthesize loop invariants [3,13], code [19],
and ranking functions [4]. To illustrate these ideas, consider the following ab-
stract program:

pre
while (c) {
T

}
post

In the loop invariant synthesis problem, we want to synthesize a predicate I that
can be used to show that post holds in the end of the while-loop. Let, pre[s] be
a formula encoding the set of states reachable before the beginning of the loop,
c[s] be the encoding of the entering condition, T [s, s′] be the transition relation,
and post[s] be the encoding of the property we want to prove. Then, the loop
invariant exists if the following formula is satisfiable, and any model can be used
to extract the loop invariant.

∀s. pre[s]→ I(s) ∧
∀s, s′. I(s) ∧ c[s] ∧ T [s, s′]→ I(s′) ∧
∀s. I(s) ∧ ¬c[s]→ post[s]

Similarly, in the ranking function synthesis problem, we want to synthesize a
function rank that decreases after each loop iteration. The idea is to use this
function to show a particular loop always terminate in the program. This problem
can be encoded as the following satisfiability problem.

∀s. rank(s) ≥ 0 ∧
∀s, s′. c[s] ∧ T [s, s′]→ rank(s′) < rank(s)

408 L. de Moura and N. Bjørner

a s s e r t (n >= 0) ;
x = 0 ; y = 0 ;
while (x < n) {

x = x + 1 ;
y = y + 1 ;

}
a s s e r t (y == n) ;

Let us now illustrate these general schemas using the
following simple example program. The program incre-
ments x and y in lock-step in a loop and we wish to
check that the loop terminates and that y = n at the
end of the loop.

For this simple program, the formulas associated
with invariant and ranking synthesis problems are:

∀x, y, n. n ≥ 0 ∧ x = 0 ∧ y = 0→ I(x, y, n) ∧
∀x, y, n, x′, y′, n′. I(x, y, n) ∧ x < n ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ n′ = n→

I(x′, y′, n′) ∧
∀x, y, n. I(x, y, n) ∧ ¬(x < n)→ y = n

and

∀x, y, n. rank(x, y, n) ≥ 0 ∧
∀x, y, n, x′, y′, n′. x < n ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ n′ = n→

rank(x′, y′, n′) < rank(x, y, n)

Both formulas are satisfiable, the following interpretations are models for them:

I(x, y) �→ x = y ∧ x ≤ n

and

rank(x, y, n) �→ ite(x ≤ n, n− x, 0)

Thus, in principle, these problems can be attacked by any SMT solver with
support for universally quantified formulas, and capable of producing models.
Unfortunately, to the best of our knowledge, no SMT solver can handle this kind
of problem, even when n, x and y range over finite domains, such as machine
integers. They will not terminate or give-up in both problems. For these reasons,
many synthesis tools only use SMT solvers to decide quantifier-free formulas. In
these applications, the SMT solver is usually used to check whether a candidate
interpretation for I and rank is valid or not. The synthesis tool search for candi-
date interpretations using templates. Abstractly, a template is a skeleton that
can be instantiated. For example, when searching for a ranking function, the
synthesis tool may limit the search to functions that are linear combinations of
the input.

This approach can be easily incorporated to SMT solvers that support the
techniques described in the previous section. Given a collection of skeletons,
the basic idea is to search for models where the intepretation of function and
predicate symbols are instances of the given skeletons. We say an SMT solver
based on this approach is a skeleton based model finder. In this context, an
SMT solver may even report a formula to be unsatisfiable modulo a collection of
skeletons.

Similarly to the approach used to represent models in Z3 (Section 3.2), skele-
tons are expressions containing free variables, and should be also viewed as

Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development 409

lambda expressions. However, skeletons may also contain fresh constants that
must be instantiated. For example, the skeleton ax+ b, where a and b are fresh
constants, may be used as a template for the interpretation of unary function
symbols. The expressions x + 1 ({a �→ 1, b �→ 1}) and 2x ({a �→ 2, b �→ 0}) are
instances of this skeleton.

As usual, we assume the input formula is of the form F ∧ G, where G is
quantifier free. We also assume a collection of skeletons S is provided by the
user. First, we use an SMT solver to check whether F ∧G is satisfiable or not. If
it returns unsat or sat, then we terminate. In practice, for satisfiable instances,
the SMT solver will most likely return just a candidate model. Then, for each
function symbol f in G, we select a skeleton sf [x̄] from S. Next, we check whether
the following formula is satisfiable or not.

F ∧G ∧
∧

f(t̄)∈G

f(t̄) = sf [t̄]

If this formula is unsatisfiable, we conclude that the selected skeletons cannot
be used to satisfy the formula. Let C be the set of fresh constants used in the
skeletons. So, if the SMT solver returns a candidate model, it must assign values
for each constant in C, and these values are used to instantiate the skeletons.
After the skeletons are instantiated, the new interpretation for the uninterpreted
function symbols can be checked using the model checking technique described
in Section 3.2. If the model checking step fails, then new quantifier instances are
generated and added to G, and the process continues.

For example, consider the following very simple formula

F︷ ︸︸ ︷
∀x. g(x) ≥ 2x ∧ ∀x. f(x) ≤ g(x) + 1∧

g(0) ≤ 0 ∧ f(0) ≥ 0︸ ︷︷ ︸
G

Assume our collection of skeletons S is {ax + b}. That is, we are looking for
models where the interpretation of every function symbol is a linear function.
Assume the SMT solver terminates producing a candidate model, then we select
afx + bf and agx + bg as the skeletons for f and g respectively. Note that we
use a different set of fresh constants for f and g. Then, we check whether the
following formula is satisfiable or not.

F ∧G ∧ g(0) = ag0 + bg ∧ f(0) = af0 + bf︸ ︷︷ ︸
E1

Assume the SMT solver returns a candidate model for the formula above as-
signing {ag �→ 0, bg �→ 0, af �→ 0, bf �→ 0}. So, using this assignment, our in-
terpretation for g and f is the constant function 0. This interpretation satisfies
the quantifier ∀x. f(x) ≤ g(x) + 1, but fails to satisfy ∀x. g(x) ≥ 2x, because
the induced model checking formula ¬(0 ≥ 2s1) is satisfiable. A possible model

410 L. de Moura and N. Bjørner

is s1 �→ 1. Then, instantiating the quantifier with x = 1, we obtain a new set
of ground formulas G1 = G ∧ g(1) ≥ 2. Assume the SMT solver terminates
producing a candidate model for F ∧G1. Then, we check whether the following
formula is satisfiable or not.

F ∧G1 ∧E1 ∧ g(1) = ag + bg︸ ︷︷ ︸
E2

In this case, we obtain the new assignment {ag �→ 2, bg �→ 0, af �→ 0, bf �→ 0},
which corresponds to the interpretations g(x) �→ 2x and f(x) �→ 0. Now, the first
quantifier is satisfied, but ∀x. f(x) ≤ g(x) + 1 fails because the model checking
formula ¬(0 ≤ 2s1 + 1) is satisfiable. A possible model is s1 �→ −1. Then, we
obtain G2 = G1 ∧ f(−1) ≤ g(−1) + 1. Similarly to the previous steps, we check
the satisfiability of

F ∧G2 ∧E2 ∧ g(−1) = −ag + bg ∧ f(−1) = −af + bf

We obtain the assignment {ag �→ 2, bg �→ 0, af �→ 2, bf �→ 0}, which corresponds
to the interpretations g(x) �→ 2x and f(x) �→ 2x. Now, both quantifiers are
satisfied by this interpretation and the SMT solver can report F∧G as satisfiable.

4 Conclusion

A long-running and natural use of symbolic reasoning tools has been in the
context of program verification. However, given the many software verification
and analysis tools used at Microsoft, we have found that the most attractive are
the ones for finding bugs and producing moles. Skeletons enable a new set of
promising applications based on synthesis. They are currently applied as layers
on top of SMT solvers. We believe that supporting these techniques natively as
part of quantifier instantiation engines is a useful and promising technique for
searching models of quantified satisfiable formulas.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

3. Colón, M.: Schema-guided synthesis of imperative programs by constraint solv-
ing. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 166–181. Springer,
Heidelberg (2005)

4. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development 411

5. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. de Moura, L., Bjørner, N.: Deciding Effectively Propositional Logic using DPLL
and substitution sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 410–425. Springer, Heidelberg (2008)

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
TPHOL (2009)

9. Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Technical
Report 1366, LRI, Université Paris Sud (2003)

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for Java. In: PLDI, pp. 234–245 (2002)

11. Godefroid, P., de Halleux, J., Nori, A.V., Rajamani, S.K., Schulte, W., Tillmann,
N., Levin, M.Y.: Automating Software Testing Using Program Analysis. IEEE
Software 25(5), 30–37 (2008)

12. Green, C.C.: Application of theorem proving to problem solving. In: IJCAI, pp.
219–240 (1969)

13. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)

14. Jha, S., Gulwani, S., Seshia, S., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ICSE (to appear, 2010)

15. Lowry, M.R., Philpot, A., Pressburger, T., Underwood, I.: Amphion: Automatic
programming for scientific subroutine libraries. In: Raś, Z.W., Zemankova, M.
(eds.) ISMIS 1994. LNCS, vol. 869, pp. 326–335. Springer, Heidelberg (1994)

16. Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. ACM Com-
mun. 14(3), 151–165 (1971)

17. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.A.: Combinatorial
sketching for finite programs. In: ASPLOS (2006)

18. Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate
Abstraction. In: PDLI (2009)

19. Srivastava, S., Gulwani, S., Foster, J.: From program verification to program syn-
thesis. In: POPL (2010)

20. Ge, Y., de Moura, L.: Complete instantiation for quantified SMT formulas. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer,
Heidelberg (2009)

Automating Security Analysis: Symbolic
Equivalence of Constraint Systems�

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. We consider security properties of cryptographic protocols,
that are either trace properties (such as confidentiality or authenticity)
or equivalence properties (such as anonymity or strong secrecy).

Infinite sets of possible traces are symbolically represented using de-
ducibility constraints. We give a new algorithm that decides the trace
equivalence for the traces that are represented using such constraints, in
the case of signatures, symmetric and asymmetric encryptions. Our al-
gorithm is implemented and performs well on typical benchmarks. This
is the first implemented algorithm, deciding symbolic trace equivalence.

1 Introduction

Security protocols are small distributed programs aiming at some security goal,
though relying on untrusted communication media. Formally proving that such
a protocol satisfies a security property (or finding an attack) is an important
issue, in view of the economical and social impact of a failure.

Starting in the 90s, several models and automated verification tools have been
designed. For instance both protocols, intruder capabilities and security proper-
ties can be formalized within first-order logic and dedicated resolution strategies
yield relevant verification methods [18,21,6]. Another approach, initiated in [19],
consists in symbolically representing the traces using deducibility constraints.
Both approaches were quite successful in finding attacks/proving security proto-
cols. There are however open issues, that concern the extensions of the methods
to larger classes of protocols/properties [11]. For instance, most efforts and suc-
cesses only concerned, until recently, trace properties, i.e., security properties
that can be checked on each individual sequence of messages corresponding to
an execution of the protocol. A typical example of a trace property is the confi-
dentiality, also called weak secrecy: a given message m should not be deducible
from any sequence of messages, that corresponds to an execution of the protocol.
Agreement properties, also called authenticity properties, are other examples of
trace properties.

There are however security properties that cannot be stated as properties of
a single trace. Consider for instance a voter casting her vote, encrypted with a
public key of a server. Since there are only a fixed, known, number of possible
plaintexts, the confidentiality is not an issue. A more relevant property is the

� This work has been partially supported by the ANR project SeSur AVOTÉ.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 412–426, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 413

ability to relate the voter’s identity with the plaintext of the message. This
is a property in the family of privacy (or anonymity) properties [15]. Another
example is the strong secrecy: m is strongly secret if replacing m with any m′ in
the protocol, would yield another protocol that is indistinguishable from the first
one: not only m itself cannot be deduced, but the protocol also does not leak
any piece of m. These two examples are not trace properties, but equivalence
properties : they can be stated as the indistinguishability of two processes. In
the present paper, we are interested in automating the proofs of equivalence
properties. As far as we know, there are only three series of works that consider
the automation of equivalence properties for security protocols1.

The first one [7] is an extension of the first-order logic encoding of the pro-
tocols and security properties. The idea is to overlap the two processes that are
supposedly equivalent, forming a bi-process, then formalize in first-order logic
the simultaneous moves (the single move of the bi-process) upon reception of a
message. This method checks a stronger equivalence than observational equiv-
alence, hence it fails on some simple (cook up) examples of processes that are
equivalent, but their overlapping cannot be simulated by the moves of a single
bi-process. The procedure might also not terminate or produce false attacks, but
considers an unbounded number of protocol instances.

The second one [3] (and [14]) assumes a fixed (bounded) number of sessions.
Because of the infinite number of possible messages forged by an attacker, the
number of possible traces is still infinite. The possible traces of the two processes
are symbolically represented by two deducibility constraints. Then [3] provides
with a decision procedure, roughly checking that the solutions, and the recipes
that yield the solutions are identical for both constraints. This forces to compute
the solutions and the associated recipes and yields an unpractical algorithm.

The third one [17,9] is based on an extension of the small attack property
of [20]. They show that, if two processes are not equivalent, then there must
exist a small witness of non-equivalence. A decision of equivalence can be derived
by checking every possible small witness. As in the previous method, the main
problem is the practicality. The number of small witnesses is very large as all
terms of size smaller than a given bound have to be considered. Consequently,
neither this method nor the previous one have been implemented.

We propose in this paper another algorithm for deciding equivalence proper-
ties. As in [3,9], we consider trace equivalence, which coincides with observational
equivalence for determinate processes [14]. In that case, the equivalence problem
can be reduced to the symbolic equivalence of finitely many pairs of deducibility
constraints, each of which represents a set of traces (see [14]). We consider sig-
natures, pairing, symmetric and asymmetric encryptions, which is slightly less
general than [3,9], who consider arbitrary subterm-convergent theories. The main
idea of our method is to simultaneously solve pairs of constraints, instead of solv-
ing each constraint separately and comparing the solutions, as in [3]. These pairs
are successively split into several pairs of systems, while preserving the symbolic

1 [16] gives a logical characterization of the equivalence properties. It is not clear if
this can be of any help in deriving automated decision procedures.

414 V. Cheval, H. Comon-Lundh, and S. Delaune

equivalence: roughly, the father pair is in the relation if, and only if, all the sons
pairs are in the relation. This is not fully correct, since, for termination purposes,
we need to keep track of some earlier splitting, using additional predicates. Such
predicates, together with the constraint systems, yield another notion of equiv-
alence, which is preserved upwards, while the former is preserved downwards.
When a pair of constraints cannot be split any more, then the equivalence can
be trivially checked.

A preliminary version of the algorithm has been implemented and works well
(within a few seconds) on all benchmarks. The same implementation can also
be used for checking the static equivalence and for checking the constraints
satisfiability. We also believe that it is easier (w.r.t. [3,9]) to extend the algorithm
to a more general class of processes (including disequality tests for instance) and
to avoid the detour through trace equivalence. This is needed to go beyond the
class of determinate processes.

We first state precisely the problem in Section 2, then we give the algorithm,
actually the transformation rules, in Section 3. We sketch the correctness and
termination proofs in Section 4 and provide with a short summary of the exper-
iments in Section 5. Detailed proofs of the results can be found in [8].

2 Equivalence Properties and Deducibility Constraints

We use the following straightfoward example for illustrating some definitions:

Example 1. Consider the following very simple handshake protocol:

A→ B : enc(NA,KAB)
B → A : enc(f(NA),KAB)

The agent A sends a random message NA to B, encrypted with a key KAB, that
is shared by A and B only. The agent B replies by sending f(NA) encrypted
with the same key. The function f is any function, for instance a hash function.

Consider only one session of this protocol: a sends enc(na, kab) and waits
for enc(f(na), kab). The agent b is expecting a message of the form enc(x, kab).
The variable x represents the fact that b does not know in advance what is this
randomly generated message. Then he replies by sending out enc(f(xσ), kab). All
possible executions are obtained by replacing x with any message xσ such that
the attacker can supply with enc(xσ, kab) and then with enc(f(na), kab). This is
represented by the following constraint:

C :=

⎧⎨⎩ a, b, enc(na, kab)
?
� enc(x, kab)

a, b, enc(na, kab), enc(f(x), kab)
?
� enc(f(na), kab)

Actually, C has only one solution: x has to be replaced by na. There is no other
way for the attacker to forge a message of the form enc(x, kab).

2.1 Function Symbols and Terms

We will use the set of function symbols F = N ∪ C ∪D where:

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 415

– C = {enc, aenc, pub, sign, vk, 〈 〉} is the set of constructors;
– D = {dec, adec, check, proj1, proj2} is the set of destructors ;
– N is a set of constants, called names.

In addition, X is a set of variables x, y, z,... The constructor terms (resp. ground
constructor terms) are built on C, N and X (resp. C,N). The term rewriting
system below is convergent: we let t↓ be the normal form of t.

adec(aenc(x, pub(y)), y)→ x proj1(〈x, y〉)→ x dec(enc(x, y), y)→ x
check(sign(x, y), vk(y))→ x proj2(〈x, y〉)→ y

A (ground) recipe records the attacker’s computation. It is used as a witness of
how some deduction has been performed. Formally, it is a term built on C,D and
a set of special variables AX = {ax1, . . . , axn, . . .}, that can be seen as pointers
to the hypotheses, or known messages. Names are excluded from recipes: names
that are known to the attacker must be given explicitly as hypotheses.

Example 2. Given enc(a, b) and b, the recipe ζ = dec(ax 1, ax2) is a witness of
how to deduce a: ζ{ax 1 �→ enc(a, b); ax2 �→ b}↓ = a.

The recipes are generalized, including possibly variables that range over
recipes: (general) recipes are terms built on C,D,AX and Xr, a set of recipe
variables, that are written using capital letters X,X1, X2,

We denote by var (u) is the set of variables of any kind that occur in u.

2.2 Frames

The frame records the messages that have been sent by the participants of
the protocol; it is a symbolic representation of a set of sequences of messages.
The frame is also extended to record some additional informations on attacker’s
deductions. Typically dec(X, ζ), i � u records that, using a decryption with the
recipe ζ, on top of a recipe X , allows to get u (at stage i). After recording this
information in the frame, we may forbid the attacker to use a decryption on top
of X , forcing him to use this “direct access” from the frame.

Definition 1. A frame φ is a sequence ζ1, i1�u1, . . . , ζn, in�un where u1, . . . , un

are constructor terms, i1, . . . , in ∈ N, and ζ1, . . . , ζn are general recipes. The
domain of the frame φ, denoted dom(φ), is the set {ζ1, . . . , ζn} ∩ AX . It must
be equal to {ax1, . . . , axm} for some m that is called the size of φ. A frame is
closed when u1, . . . , un are ground terms and ζ1, . . . , ζn are ground recipes.

Example 3. The messages of Example 1 are recorded in a frame of size 4.

{ax1, 1 � a, ax 2, 2 � b, ax 3, 3 � enc(na, kab), ax 4, 4 � enc(f(x), kab)}.

A frame φ defines a substitution {ax �→ u | ax ∈ dom(φ), ax � u ∈ φ}. A closed
frame is consistent if, for every ζ � u ∈ φ, we have that ζφ↓ = u.

416 V. Cheval, H. Comon-Lundh, and S. Delaune

2.3 Deducibility Constraints

The following definitions are consistent with [12]. We generalize however the
usual definition, including equations between recipes, for example, in order to
keep track of some choices in our algorithm.

Definition 2. A deducibility constraint (sometimes called simply constraint in
what follows) is either ⊥ or consists of:

1. a subset S of X (the free variables of the constraint);
2. a frame φ, whose size is some m;

3. a sequence X1, i1
?
� u1; . . . ; Xn, in

?
� un where

– X1, . . . , Xn are distinct variables in Xr, u1, . . . , un are constructor terms,
and 0 ≤ i1 ≤ . . . ≤ in ≤ m.

– for every 0 ≤ k ≤ m, var (axkφ) ⊆
⋃

ij<k var (uj);
4. a conjunction E of equations and disequations between terms;
5. a conjunction E′ of equations and disequations between recipes.

The variables Xi represent the recipes that might be used to deduce the right
hand side of the deducibility constraint. The indices indicate which initial seg-
ment of the frame can be used. We use this indirect representation, instead of
the seemingly simpler notation of Example 1, because the transformation rules
that will change the frame don’t need then to be reproduced on all relevant left
sides of deducibility constraints.

Example 4. Back to Example 1, the deducibility constraint is formally given by
S = {x, y}, E = E′ = ∅, the frame φ as in Example 3 and the sequence:

D = X1, 3
?
� enc(x, kab); X2, 4

?
� enc(f(na), kab).

For sake of simplicity, in what follows, we will forget about the first component
(the free variables). This is justified by an invariant of our transformation rules:
initially all variables are free and each time new variables are introduced, their
assignment is determined by an assignment of the free variables.

Definition 3. A solution of a deducibility constraint C = (φ,D,E,E′) consists
of a mapping σ from variables to ground constructor terms and a substitution θ
mapping Xr to ground recipes, such that:

– for every ζ, i � u ∈ φ, var(ζθ) ⊆ {ax1, . . . , ax i} and ζθ(φσ)↓ = uσ↓ (i.e. the
frame is consistent after instanciating the variables);

– for every Xi, j
?
� ui in D, var(Xiθ) ⊆ {ax 1, . . . , ax j} and Xiθ(φσ)↓ = uiσ↓;

– for every equation u
?= v (resp. u

?
�= v) in E, uσ↓ = vσ↓ (resp. uσ↓ �= vσ↓);

– for every equation ζ
?= ζ′ (resp. ζ

?
�= ζ′) in E′, ζθ = ζ′θ (resp. ζθ �= ζ′θ).

Sol(C) is the set of solutions of C. By convention, Sol(⊥) = ∅.

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 417

Example 5. Coming back to Example 4, a solution is (σ, θ) with:

– σ = {x �→ na, y �→ 〈a, enc(na, kab)〉}, and
– θ = {X1 �→ ax 3, X2 �→ ax 4, X3 �→ 〈ax 1, ax 3〉}.

Each solution of a constraint corresponds to a possible execution of the protocol,
together with the attacker’s actions that yield this execution. For instance an

attack on the confidentiality of a term s can be modeled by adding X,m
?
� s to

the constraint system (X is a fresh variable and m is the size of the frame). This
represents the derivability of s from the messages sent so far. Note that there
might be several attacker’s recipes yielding the same trace.

Example 6. Consider another very simple example: the Encrypted Password
Transmission protocol [13], which is informally described by the rules:

A→ B : 〈NA, pub(KA)〉
B → A : aenc(〈NA, P 〉, pub(KA))

Assume that a first sends a message whereas b is waiting for a message of the form
〈x, pub(ka)〉. Then b responds by sending aenc(〈x, p〉, pub(ka)). The correspond-
ing deducibility constraint is (S, φ,D,E,E′) where S = {x, y}, E = E′ = ∅, and
the sequences φ and D are as follows:

φ =

⎧⎨⎩ax 1, 1 � pub(ka); ax 2, 2 � pub(kb);
ax 3, 3 � 〈na, pub(ka)〉;
ax 4, 4 � aenc(〈x, p〉, pub(ka))

D =

⎧⎨⎩X1, 3
?
� 〈x, pub(ka)〉

X2, 4
?
� aenc(〈na, y〉, pub(ka))

There are several solutions. For instance, the “honest solution” (σh, θh) is given
by σh = {x �→ na, y �→ p} and θh = {X1 �→ ax 3, X2 �→ ax 4}. Another solution
is (σ, θ) where σ = {x �→ pub(ka), y �→ na} and θ = {X1 �→ 〈ax 1, ax 1〉, X2 �→
aenc(〈proj1(ax 3), proj1(ax 3)〉, ax 1)}.

2.4 Static Equivalence

Two sequences of terms are statically equivalent if, whatever an attacker observes
on the first sequence, the same observation holds on the second sequence [2]:

Definition 4. Two closed frames φ and φ′ having the same size m are statically
equivalent, which we write φ ∼s φ

′, if

1. for any ground recipe ζ such that var(ζ) ⊆ {ax1, . . . , axm}, we have that
ζφ↓ is a constructor term if, and only if, ζφ′↓ is a constructor term

2. for any ground recipes ζ, ζ′ such that var ({ζ, ζ′}) ⊆ {ax1, . . . , axm}, and the
terms ζφ↓, ζ′φ↓ are constructor terms, we have that

ζφ↓ = ζ′φ↓ if, and only, if ζφ′↓ = ζ′φ′↓.

Example 7. Consider the frames φ1 = {ax1 � a, ax 2 � enc(a, b), ax 3 � b} and φ2 =
{ax1 � a, ax2 � enc(c, b), ax 3 � b}. φ1 �∼s φ2 since choosing ζ = dec(ax 2, ax 3) and
ζ′ = ax 1 yields ζφ1↓ = ζ′φ1↓ = a while ζφ2↓ �= ζ′φ2↓.

418 V. Cheval, H. Comon-Lundh, and S. Delaune

On the other hand, {ax1 � a, ax2 � enc(a, b)} ∼s {ax 1 � a, ax 2 � enc(c, b)} since,
intuitively, there is no way to open the ciphertexts or to construct them, hence
no information on the content may leak.

2.5 Symbolic Equivalence

Now we wish to check static equivalence on any possible trace. This is captured
by the following definition:

Definition 5. Let C and C ′ be two constraints whose corresponding frames
are φ and φ′. C is symbolically equivalent to C ′, C ≈s C

′, if:
- for all (θ, σ)∈ Sol(C), there exists σ′ such that (θ, σ′)∈ Sol(C′), and φσ ∼s φ

′σ′,
- for all (θ, σ′)∈ Sol(C′), there exists σ such that (θ, σ) ∈ Sol(C), and φσ ∼s φ

′σ′.

Example 8. As explained for instance in [3], the security of the handshake pro-
tocol against offline guessing attacks can be modeled as an equivalence property
between two samples of the protocol instance, one in which, at the end of the
protocol, the key is revealed and the other in which a random number is revealed
instead. This amounts to check the symbolic equivalence of the two constraints:

– C1 = (φ ∪ {ax 5, 5 � kab}, D ∪ {X3, 5
?
� y}, ∅, ∅), and

– C2 = (φ ∪ {ax 5, 5 � k}, D ∪ {X3, 5
?
� y}, ∅, ∅)

where D is as in Example 4 and φ is as in Example 3.
The constraints C1 and C2 are not symbolically equivalent: considering the

assignment σ = {x �→ na, y �→ na}, there is a recipe X3θ = dec(ax 3, ax 5)
yielding this solution, while any solution σ′ of C2 maps x to na and, if X3θ =
dec(ax 3, ax 5), we must have yσ′↓ = dec(enc(na, kab), k), which is not possible
since this is not a constructor term.

Any trace equivalence problem can be expressed as an instance of the equiva-
lence of an initial pair of constraints, that is a pair of the form (φ1, D1, E1, E

′
1),

(φ2, D2, E2, E
′
2) in which:

– E′
1 = E′

2 = ∅, and E1, E2 only contain equations;

– φ1 = {ax 1, 1 � u1, . . . , axm,m � um}, and D1 = X1, i1
?
� s1; . . . ; Xn, in

?
� sn;

– φ2 = {ax 1, 1 � v1, . . . , axm.m � vm}, and D2 = X1, i1
?
� t1; . . . ; Xn, in

?
� tn.

Or else it is a pair as above, in which one of the components is replaced with ⊥.
In particular, the number of components in the frame and in the deducibility

part are respectively identical in the two constraints, when none of them is ⊥.
This will be an invariant in all our transformation rules. Hence we will always
assume this without further mention. This is unchanged by the transformations,
unless the constraint becomes ⊥. We keep the notation m for the size of the
frames. Finally, the consistency of the frame after instanciation (the first condi-
tion of Definition 3) is satisfied for all solutions of initial constraints and is again
an invariant, hence we will not care of this condition.

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 419

As explained in [14], such initial constraints are sufficient for our applications.
The case where one of the component is⊥ solves the satisfiability problem for the
constraint: the constraint solving procedure of [12] solves this specific instance.

3 Transformation Rules

The main result of this paper is a decision procedure for symbolic equivalence
of an initial pair of constraints:

Theorem 1. Given an initial pair (C,C′), it is decidable whether C ≈s C
′.

This result in itself is already known (e.g. [3,9]), but, as claimed in the intro-
duction, the known algorithms cannot yield any reasonable implementation. We
propose here a new algorithm/proof, which is implemented. As pointed in [14],
this yields a decision algorithm for the observational equivalence of simple pro-
cesses without replication nor else branch. The class of simple processes captures
most existing protocols.

The decision algorithm works by rewriting pairs of constraints, until a trivial
failure or a trivial success is found. These rules are branching: they rewrite
a pair of constraints into two pairs of constraints. Transforming the pairs of
constraints therefore builds a binary tree. Termination requires to keep track
of some information, that is recorded using flags, which we describe first. In
Section 4, we show that the tree is then finite: the rules are terminating. The
transformation rules are also correct: if all leaves are success leaves, then the
original pair of constraints is equivalent. They are finally complete: if the two
original constraints are equivalent then any of two pairs of constraints resulting
from a rewriting steps are also equivalent.

3.1 Flags

The flags are additional constraints that restrict the recipes. We list them here,
together with (a sketch of) their semantics.

Constraints X, i
?
�F u may be indexed with a set F consisting of propositions

NoConsf where f is a constructor. Any solution (θ, σ) such that Xθ is headed
with f is then excluded. Expressions ζ, j �F u in a frame are indexed with a set F
consisting of:

– NoConsf (as above) discards the solutions (θ, σ) such that a subterm of a
recipe allows to deduce uσ using f as a last step.

– NoDestf (i) where f is a destructor and i ≤ m discards the solutions (θ, σ) such

that there exists X, j
?
� v with j ≤ i and ζ′2, . . . , ζ′n where f(ζθ, ζ′2, . . . , ζ′n)

occurs as a subterm in Xθ, unless we use a shortcut explicitly given in the
frame.

– NoUse. The corresponding elements of the frame cannot be used in any recipe,
and avoids shifting the indices.

420 V. Cheval, H. Comon-Lundh, and S. Delaune

3.2 The Rules

The rules are displayed in Figure 1 for single constraints. We explain in
Section 3.3 how they are applied to pairs of constraints (an essential feature
of our algorithm). A simple idea would be to guess the top function symbol of
a recipe and replace the recipe variable with the corresponding instance. When
the head symbol of a recipe is a constructor and the corresponding term is not a
variable, this is nice, since the constraint becomes simpler. This is the purpose of
the rule Cons. When the top symbol of a recipe is a destructor, the constraint
becomes more complex, introducing new terms, which yields non-termination.

Our strategy is different for destructors: we switch roughly from the top posi-
tion of the recipe to the redex position. Typically, in case of symmetric encryp-
tion, if a ciphertext is in the frame, we will guess whether the decryption key is
deducible, and at which stage.

The Cons rule simply guesses whether the top symbol of the recipe is a
constructor f . Either it is, and then we can split the constraint, or it is not and
we add a flag forbidding this. The rule Axiom also guesses whether a trivial
recipe can be applied. If so, the constraint can simply be removed. Otherwise,
it means that the right-hand-side of the deducibility constraint is different from
the members of the frame. The Dest rule is more tricky. If v is a non-variable
member of the frame, that can be unified with a non variable subterm of a left
side of a rewrite rule (for instance v is a ciphertext), we guess whether the rule
can be applied to v. This corresponds to the equation u1

?= v, that yields an
instance of w, the right member of the rewrite rule, provided that the rest of

the left member is also deducible: we get constraints X2, i
?
� u2; . . . ;Xn, i

?
� un.

The flag NoDest is added in any case to the frame, since we either already
applied the destructor, and this application result is now recorded in the frame
by f(ζ,X2, . . . , Xn), i � w, or else it is assumed that f applied to v will not yield
a redex.

The remaining rules cover the comparisons that an attacker could perform
at various stages. The equality rules guess equalities between right sides of de-
ducibility constraints and/or members of the frame. If a member of the frame is
deducible at an early stage, then this message does not bring any new informa-
tion to the attacker: it becomes useless, hence the NoUse flag.

Finally, the last rule is the only rule that is needed to get in addition a static
equivalence decision algorithm, as in [1]. Thanks to this rule, if a subterm of the
frame is deducible, then there will be a branch in which it is deduced.

3.3 How to Use the Transformation Rules

In the previous section we gave rules that apply on a single constraint. We explain
here how they are extended to pairs of constraints. If one of the constraint is ⊥,
then we proceed as if there was a single constraint. Otherwise, the indices i
(resp. i1, i2) and the recipes X, ζ (resp. X1, X2, ζ1, ζ2) matching the left side of
the rules must be identical in both constraints : we apply the rules at the same
positions in both constraints.

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 421

Cons : X, i
?

�F f(t1, . . . , tn) �����
�����

X1, i
?

�F t1; · · · ; Xn, i
?

�F tn; X ?= f(X1, . . . , Xn)

X, i
?

�F+NoConsf f(t1, . . . , tn)
If NoConsf /∈ F and X1, . . . Xn are fresh variables.

Axiom : X, i
?

�F v �����
�����

u
?= v; X

?= ζ

X, i
?

�F v; X
?

�= ζ

If v �∈ X , φ contains ζ, j �G u with NoUse /∈ G, and i ≥ j.

Dest : ζ, y �G v �����
�����

X2, i
?

� u2; · · · ; Xn, i
?

� un; u1
?= v; ζ, j �G+NoDestf (m) v;

f(ζ, X2, . . . , Xn), i � w

ζ, j �G+NoDestf (i) v

If v /∈ X , NoUse /∈ G, there is a rewrite rule f(u1, . . . , un) → w, k < i whenever

NoDestf (k) ∈ G and i is minimal such that j ≤ i and there is some constraint X, i
?

� w
(i = m if there is no such constraint).

Eq-left-left : ζ1, i1 �F1 u1; ζ2, i2 �F2 u2
�����
�����

ζ1, i1 �F1 u1; ζ2, i2 �F2 u1; u1
?= u2

ζ1, i1 �F1 u1; ζ2, i2 �F2 u2; u1

?

�= u2If NoUse /∈ F1 ∪ F2 and i1 ≤ i2.

Eq-right-right : X2, i2
?

� u2
�����
�����

X1 = X2; u1
?= u2

X2, i2
?

� u2; u1

?

�= u2

If X1, i1
?

� u1; and i1 ≤ i2.

Eq-left-right : ζ, j �G v �����
�����

ζ, j �G+NoUse u; u
?= v

ζ, j �G v; u
?

�= v

If X, i
?

�F u;, NoUse /∈ G and j > i.

Ded-subterms : ζ, i �F f(u1, . . . , un) �����
�����

X1, m
?

� u1; · · · ; Xn, m
?

� un;
ζ, i �F+NoConsf u

ζ, i �F+NoConsf f(u1, . . . , un)
If NoConsf , NoUse /∈ F and X1, . . . , Xn are fresh variables.

All rules assume that the equations have a mgu and that this mgu is eagerly applied to
the resulting constraint without yielding any trivial disequation.

Fig. 1. Transformation rules

422 V. Cheval, H. Comon-Lundh, and S. Delaune

We have to explain now what happens when, on a given pair (C,C′) a rule
can be applied on C and not on C′ (or the converse).

Example 9. Let C = (φ,D,E,E′) and C′ = (φ,D′, E,E′) where E = E′ = ∅,

φ = ax 1, 1 � a, D = X, 1
?
� enc(x1, x2), and D′ = X, 1

?
� x. The rule Cons can

be applied on C and not on C′. However, we have to consider solutions where
enc(x1, x2)σ and xσ′ are both obtained by a construction. Hence, it is important
to enable this rule on both sides. For this, we first apply the substitution x �→
enc(y1, y2) where y1, y2 are fresh variables. This yields the two pairs of constraints
(C1, C

′
1) and (C2, C

′
2) (forgetting about equations):

– C1 = (φ,X1, 1
?
� x1;X2, 1

?
� x2) and C′

1 = (φ,X1, 1
?
� y1; X2, 1

?
� y2);

– C2 = (φ,X, 1
?
�NoConsenc

enc(x1, x2)) and C′
2 = (φ,X, 1

?
�NoConsenc

x).

Therefore, the rule Cons, (this is similar for Ded-subterms), when applied to
pairs of constraints comes in three versions: either the rule is applied on both

sides or, if X, i
?
� f(t1, . . . , tn) (resp. ζ � f(t1, . . . , tn)) is in C, and X, i

?
� x (resp.

ζ � x) is in C′, we may apply the rule on the pair of constraints, adding to C′

the equation x
?= f(x1, . . . , xn) where x1, . . . , xn are fresh variables. The third

version is obtained by switching C and C′. This may introduce new variables,
that yield a termination issue, which we discuss in Section 4.1. Similarly, the
rules Axiom and Dest assume that v /∈ X . This has to be satisfied by C or C′.
In case of the rule Dest, this means that the variables of the rewrite rule might
not be immediately eliminated: this may also introduce new variables. For the
rules Eq-left-left, Eq-right-right and Eq-left-right, we require that at
least one new non-trivial equality (or disequality) is added to one of the two
constraints (otherwise there is a trivial loop).

For all rules, if a rule is applicable on one constraint and not the other, we do
perform the transformation, however replacing a constraint with ⊥ when a con-
dition becomes false or meaningless. Furthermore, we also replace a constraint C
with ⊥ when:
– the rule Dest cannot be applied on C; and

– C contains a constraint X, i
?
� v such that v is not a variable and the rules

Cons and Axiom cannot be applied to it.
Altogether this yields a transformation relation (C,C′) → (C1, C

′
1), (C2, C

′
2)

on pairs of constraints: a node labeled (C,C′) has two sons, respectively la-
beled (C1, C

′
1) and (C2, C

′
2).

Our algorithm can be stated as follows:

– Construct, from an initial pair of constraints (C0, C
′
0) a tree, by applying as

long as possible a transformation rule to a leaf of the tree.
– If, at some point, there is a leaf to which no rule is applicable and that is

labeled (C,⊥) or (⊥, C) where C �=⊥, then we stop with C0 �≈s C
′
0.

– Otherwise, if the construction of the tree stops without reaching such a
failure, return C0 ≈s C

′
0.

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 423

Our algorithm can also be used to decide static equivalence of frames, as well as
the (un)satisfiability of a constraint. Furthermore, in case of failure, a witness
of the failure can be returned, using the equations of the non-⊥ constraint.

4 Correctness, Completeness and Termination

4.1 Termination

In general, the rules might not terminate, as shown by the following example:

Example 10. Consider the initial pair of contraints (C,C′) given below:

C =

⎧⎨⎩ a
?
� enc(x1, x2)

a, b
?
� x1

C′ =

⎧⎨⎩ a
?
� y1

a, b
?
� enc(y1, y2)

We may indeed apply Cons yielding (on one branch):

C1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

?
� x1

a
?
� x2

a, b
?
� x1

C′
1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

?
� z1

a
?
� z2 and y1

?= enc(z1, z2)

a, b
?
� enc(enc(z1, z2), y2)

Then, again using Cons, we get back as a subproblem the original constraints.

Fortunately, there is a simple complete strategy that avoids this behavior, by
breaking the symmetry between the two constraints components. We assume in
the following that, applying

– Cons to (C,C′) where X, i
?
� x ∈ C and X, i

?
� f(t1, . . . , tn) ∈ C′,

– Ded-subterms to (C,C′) where ζ, j � x ∈ C and ζ, j � f(t1, . . . , tn) ∈ C′,

– Dest to (C,C′) where X, i
?
� u; ζ, j � x ∈ C and X, i

?
� u′; ζ, j � v′ ∈ C′

are only allowed when no other rule can be applied.
There is however no such restriction, when we switch the elements of the pair.

If we come back to Example 10, we still apply the same transformation rule to
the pair (C,C′), but we cannot apply Cons to (C1, C

′
1) since Eq-right-right

can be applied to the constraint C1, yielding a failure: C �≈s C
′.

Lemma 1. With the above strategy, the transformation rules are terminating
on any initial pair of constraint systems.

Idea of the proof: as long as no new first-order variable is introduced, the set of
first-order terms appearing in the constraint is roughly bounded by the subterms
of the constraint. (This relies on the properties of the rewrite system). Loops
are then prevented by the flags. Now, because of the eager application of sub-
stitutions, the only cases in which new first-order variables are introduced are
the above cases of applications of Cons, Ded-subterms and Dest. Until new
variables are introduced in the right constraints, the above argument applies:

424 V. Cheval, H. Comon-Lundh, and S. Delaune

the sequence of transformations is finite. Then, according to the strategy, when
new variables are introduced on the right constraint, no other rule may apply.
This implies that the left constraint (considered in isolation) is irreducible: it

is of the form X1, i1
?
� x1, . . . , Xn, in

?
� xn, ... where x1, . . . xn are distinct vari-

ables (which we call a solved constraint). From this point onwards, the rules
Dest,Ded-subterms will never be applicable and therefore, no element will
be added to the frames. Then, either usable elements of the frames are strictly
decreasing (using a Eq-left-right) or else we preserve the property of be-
ing solved on the left. In the latter case, the first termination argument can be
applied to the right constraint.

4.2 Correctness

The transformation rules yield a finite tree labeled with pairs of constraints.

Lemma 2. If all leaves of a tree, whose root is labeled with (C0, C
′
0) (a pair

of initial constraints), are labeled either with (⊥,⊥) or with some (C,C′) with
C �=⊥, C′ �=⊥, then C0 ≈s C

′
0.

The idea of the proof is to first analyse the structure of the leaves. We introduce
a restricted symbolic equivalence ≈r

s such that C ≈r
s C′ for any leaf whose

two label components are distinct from ⊥. Roughly, this restricted equivalence
will only consider the recipes that satisfied the additional constraints induced
by the flags. Then we show that ≈r

s is preserved upwards in the tree: for any
transformation rule, if the two pairs of constraints labeling the sons of a node
are respectively in ≈r

s, then the same property holds for the father. Finally, ≈r
s

coincides with ≈s on the initial constraints (that contain no flag).

4.3 Completeness

We prove that the symbolic equivalence is preserved by the transformation rules,
which yields:

Lemma 3. If (C0, C
′
0) is a pair of initial constraints such that C0 ≈s C

′
0, then

all leaves of a tree, whose root is labeled with (C0, C
′
0), are labeled either with

(⊥,⊥) or with some (C,C′) with C �=⊥ and C′ �=⊥.

5 Implementation and Experiments

An Ocaml implementation of an early version of the procedure described in this
paper, as well as several examples, are available at http://www.lsv.ens-cachan.
fr/~cheval/programs/index.php (around 5000 lines of Ocaml). Our imple-
mentation closely follows the transformation rules that we described. For effi-
ciency reasons, a strategy on checking the rules applicability has been designed
in addition.

http://www.lsv.ens-cachan.fr/~cheval/programs/index.php
http://www.lsv.ens-cachan.fr/~cheval/programs/index.php

Automating Security Analysis: Symbolic Equivalence of Constraint Systems 425

We checked the implementation on examples of static equivalence problems,
on examples of satisfiability problems, and on symbolic equivalence problems
that come from actual protocols. On all examples the tool terminates in less
than a second (on a standard laptop). Note that the input of the algorithm
is a pair of constraints: checking the equivalence of protocols would require in
addition an interleaving step, that could be expensive.

We have run our tool on the following family of examples presented in [5]:

φn = {ax 1 � t
0
n, ax 2 � c0, ax 3 � c1} and φ′n = {ax1 � t

1
n, ax 2 � c0, ax 3 � c1}

where ti0 = ci and tin+1 = 〈enc(tin, k
i
n), ki

n〉, i ∈ {0, 1}. In these examples, the size
of the distinguishing tests increase exponentially while the sizes of the frames
grow linearly. As KiSs [10], our tool outperforms YAPA [4] on such examples.

For symbolic equivalences, we cannot compare with other tools (there is no
such tools); we simply tested the program on some home made benchmarks as
well as on the handshake protocol, several versions of the encrypted password
transmission protocol, the encrypted key exchange protocol [13], each for the
offline guessing attack property. We checked also the strong secrecy for the cor-
rected Dennin-Sacco key distribution protocol. Unfortunately we cannot (yet)
check anonymity properties for e-voting protocols, as we would need to consider
more cryptographic primitives.

6 Conclusion

We presented a new algorithm for deciding symbolic equivalence, which performs
well in practice. There is still some work to do for extending the results and the
tool. First, we use trace equivalence, which requires to consider all interleavings
of actions; for each such interleaving, a pair of constraints is generated, which is
given to our algorithm. This requires an expensive overhead (which is not imple-
mented), that might be unnecessary. Instead, we wish to extend our algorithm,
considering pairs of sets of constraints and use a symbolic bisimulation. This
looks feasible and would avoid the detour through trace equivalence. This would
also allow drop the determinacy assumption on the protocols and to compare
our method with ProVerif [7].

We considered only positive protocols; we wish to extend the algorithm to
non-positive protocols, allowing disequality constraints from the start. Finally,
we need to extend the method to other cryptographic primitives, typically blind
signatures and zero-knowledge proofs.

Acknowledgments. We wish to thank Sergiu Bursuc for fruitful discussions.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 367(1-2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proc. of 28th ACM Symposium on Principles of Programming Languages, POPL’01
(2001)

426 V. Cheval, H. Comon-Lundh, and S. Delaune

3. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proc. of 12th ACM Conference on Computer and Communications Security (2005)

4. Baudet, M.: YAPA, Yet Another Protocol Analyzer (2008), http://www.lsv.

ens-cachan.fr/~baudet/yapa/index.html

5. Baudet, M., Cortier, V., Delaune, S.: YAPA: A generic tool for computing intruder
knowledge. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 148–163. Springer,
Heidelberg (2009)

6. Blanchet, B.: An automatic security protocol verifier based on resolution theorem
proving (invited tutorial). In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI),
vol. 3632, Springer, Heidelberg (2005)

7. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

8. Cheval, V., Comon-Lundh, H., Delaune, S.: Automating security analysis: sym-
bolic equivalence of constraint systems. Technical report (2010), http://www.lsv.
ens-cachan.fr/~cheval/programs/technical-report.pdf

9. Chevalier, Y., Rusinowitch, M.: Decidability of symbolic equivalence of derivations
(unpublished draft) (2009)

10. Ciobâcă, Ş.: Kiss (2009), http://www.lsv.ens-cachan.fr/~ciobaca/kiss
11. Comon-Lundh, H.: Challenges in the automated verification of security protocols.

In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 396–409. Springer, Heidelberg (2008)

12. Comon-Lundh, H., Cortier, V., Zalinescu, E.: Deciding security properties of cryp-
tographic protocols. application to key cycles. Transaction on Computational
Logic 11(2) (2010)

13. Corin, R., Doumen, J., Etalle, S.: Analysing password protocol security against
off-line dictionary attacks. Electr. Notes Theor. Comput. Sci. 121, 47–63 (2005)

14. Cortier, V., Delaune, S.: A method for proving observational equivalence. In: Proc.
of 22nd Computer Security Foundations Symposium (CSF’09), pp. 266–276. IEEE
Comp. Soc. Press, Los Alamitos (2009)

15. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

16. Fendrup, U., Hüttel, H., Jensen, J.N.: Modal logics for cryptographic processes.
Theoretical Computer Science 68 (2002)

17. Huttel, H.: Deciding framed bisimulation. In: 4th International Workshop on Ver-
ification of Infinite State Systems, INFINITY’02, pp. 1–20 (2002)

18. Meadows, C.: The NRL protocol analyzer: An overview. Journal of Logic Program-
ming 26(2), 113–131 (1996)

19. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proc. of 8th ACM Conference on Computer and Communi-
cations Security (2001)

20. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is
np-complete. In: Proc. of 14th Computer Security Foundations Workshop (2001)

21. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html
http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html
http://www.lsv.ens-cachan.fr/~cheval/programs/technical-report.pdf
http://www.lsv.ens-cachan.fr/~cheval/programs/technical-report.pdf
http://www.lsv.ens-cachan.fr/~ciobaca/kiss

System Description:
The Proof Transformation System CERES�

Tsvetan Dunchev, Alexander Leitsch, Tomer Libal,
Daniel Weller, and Bruno Woltzenlogel Paleo

Institute of Computer Languages (E185),
Vienna University of Technology, Favoritenstraße 9,

1040 Vienna, Austria
{cdunchev,leitsch,shaolin,weller,bruno}@logic.at

Abstract. Cut-elimination is the most prominent form of proof trans-
formation in logic. The elimination of cuts in formal proofs corresponds
to the removal of intermediate statements (lemmas) in mathematical
proofs. The cut-elimination method CERES (cut-elimination by resolu-
tion) works by extracting a set of clauses from a proof with cuts. Any
resolution refutation of this set then serves as a skeleton of an ACNF,
an LK-proof with only atomic cuts.

The system CERES, an implementation of the CERES-method has been
used successfully in analyzing nontrivial mathematical proofs (see [4]).In
this paper we describe the main features of the CERES system with spe-
cial emphasis on the extraction of Herbrand sequents and simplification
methods on these sequents. We demonstrate the Herbrand sequent ex-
traction and simplification by a mathematical example.

1 Introduction

Proof analysis is a central mathematical activity which proved crucial to the
development of mathematics. Indeed many mathematical concepts such as the
notion of group or the notion of probability were introduced by analyzing existing
arguments. In some sense the analysis and synthesis of proofs form the very core
of mathematical progress.

Cut-elimination introduced by Gentzen [8] is the most prominent form of
proof transformation in logic and plays a key role in automatizing the analysis
of mathematical proofs. The removal of cuts corresponds to the elimination
of intermediate statements (lemmas) from proofs resulting in a proof which is
analytic in the sense that all statements in the proof are subformulas of the
result. Therefore, the proof of a combinatorial statement is converted into a
purely combinatorial proof.

The development of the method CERES (cut-elimination by resolution) was
inspired by the idea to fully automate cut-elimination on real mathematical
proofs, with the aim of obtaining new interesting elementary proofs. While a

� Supported by the Austrian Science Fund (project no. P22028-N13).

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 427–433, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

428 T. Dunchev et al.

fully automated treatment proved successful for mathematical proofs of mod-
erate complexity (e.g. the “tape proof” [2] and the “lattice proof” [9]), more
complex mathematical proofs required an interactive use of CERES; this way
we successfully analyzed Fürstenberg’s proof of the infinitude of primes (see [4])
and obtained Euclid’s argument of prime construction. Even in its interactive use
CERES proved to be superior to the reductive cut-elimination due to additional
structural information provided by the characteristic clause set (see below).

CERES [5,6] is a cut-elimination method that is based on resolution. The
method roughly works as follows: From the input proof ϕ of a sequent S a clause
term is extracted and evaluated to an unsatisfiable set of clauses CL(ϕ), the
characteristic clause set. A resolution refutation γ of CL(ϕ), which is obtained
using a first-order theorem prover, serves as a skeleton for an (atomic cut normal
form) ACNF ψ, a proof of S which contains at most atomic cuts. This method
of cut-elimination has been implemented in the system CERES1. The system is
capable of dealing with formal proofs in an extended version LKDe of LK,
among them also very large ones.

However, the large size of ACNFs, automatically generated by CERES, turned
out problematic in practice. Indeed, the aim is not only to produce an ACNF
ψ from ϕ, but also to interpret ψ as a mathematical proof. In fact, the huge
sizes of output proofs result from an inherent redundancy of formal calculi. Less
redundant representations of the underlying mathematical arguments can be
obtained by extracting a Herbrand sequent H(ψ) from an ACNF ψ (see [9] and
[11]). Thereby, H(ψ) is a sequent consisting of instances of the quantifier-free
parts of the formulas in S (we assume that S is skolemized). Though Herbrand
sequents proved clearly superior to ACNFs in the analysis by humans, further
simplifications of these sequents turned out important in practice. In this sys-
tem description we lay specific emphasis on the extraction and simplification of
Herbrand sequents, and illustrate transformations by an example.

By its high efficiency (the core of the method is first-order theorem proving by
resolution and paramodulation), and by automatically extracting crucial struc-
tural information from proofs (e.g. the characteristic clause set) CERES proved
useful in automated proof mining, thus contributing to an experimental culture
of computer-aided proof analysis in mathematics.

2 The System CERES

The cut-elimination system CERES is written in ANSI-C++. The core function-
ality of CERES[3] allows the user to input a first order proof ϕ and obtain an
ACNF(ϕ). The core system also includes two additional tools: the compiler hlk2

for the intermediary proof language HandyLK and the proof viewer ProofTool3.
The system follows a uniform data representation model for proofs and sequents
in the form of XML using the proofdatabase DTD4.
1 Available at http://www.logic.at/ceres/
2 http://www.logic.at/hlk
3 http://www.logic.at/prooftool
4 http://www.logic.at/ceres/xml/5.0/proofdatabase.dtd

http://www.logic.at/ceres/
http://www.logic.at/hlk
http://www.logic.at/prooftool
http://www.logic.at/ceres/xml/5.0/proofdatabase.dtd

System Description: The Proof Transformation System CERES 429

This functionality is extended in the current system by various optimizations
on the resulted proof. CERES allows the computation of a Herbrand-sequent of the
theorem and applies to it several simplification algorithms. Due to the important
role of resolution provers in CERES, the system interfaces now with two additional
provers: Prover95 and ATP6.

The execution cycle starts with the mathematician using HandyLK to produce
a formal LKDe-proof ϕ. LKDe is an extension of LK[2] to include definition
and equality rules. HandyLK produces a formal proof by focusing on essential
information as input. In particular, propositional inferences and context formu-
las are not required. HandyLK also simplifies the writing of proofs in a tree form
by supplying meta-variables denoting proofs. Finally, HandyLK enables the def-
inition of proof schemata by supporting parameterization over meta-terms and
meta-formulas.

Since the restriction to skolemized proofs is crucial to the CERES-method,
the system includes a proof skolemization transformation sk following Andrew’s
method[1]. sk(ϕ) is then parsed by CERES to produce CL(ϕ).

CL(ϕ) is given as input to one of the three possible theorem provers (Otter,
Prover9 and ATP) and a resolution refutation is extracted. Otter and its succes-
sor Prover9 are both very efficient resolution provers that produce the resolution
tree as output. Because a fully automatic refutation is not always possible, the
interactive prover ATP was developed. ATP is a basic resolution prover that
supports interaction with the user as well as customizable refinements. Interac-
tion was used in order to validate and complete (manually obtained) refutations
while customization can be used in order to implement specific and more efficient
refinements[12].

In the last phase, CERES maps the refutation into an LKDe-proof such that
resolution steps are mapped into atomic cuts, paramodulation into equality rules,
etc. Moreover, it inserts proof projections (which are cut-free parts of the input
proof[5,6]) in order to obtain an ACNF(ϕ).

For a convenient analysis of the results, the system is equiped with the proof
viewer/editor ProofTool. ProofTool is capable of presenting all data objects used
in the process: the original and skolemized proof, the profile, the refutation, the
ACNF-proof and the simplified Herbrand-sequent.

Herbrand-sequent extraction and simplification. As a post-process, the
system now supports the extraction of a Herbrand-sequentH(ϕ) from ACNF(ϕ).
This process transforms the ACNF(ϕ) into a proof in an intermediary calculus
LKeA, in which weakly quantified formulas are being replaced by an array of
their instances. By “inverting” the transformation, we obtainH(ϕ), which is still
valid and contains all the desired information in a more compact form. H(ϕ) is
simplified further by the application of three algorithms[7].

The first simplification algorithm Suse removes formulas containing irrelevant
information: formulas which were introduced either by weakening or as the side-
formulas of the main formulas of some other inferences.
5 http://www.cs.unm.edu/~mccune/prover9/
6 http://www.logic.at/atp

http://www.cs.unm.edu/~mccune/prover9/
http://www.logic.at/atp

430 T. Dunchev et al.

An algebraic simplification Salg is performed on the resulted sequent by nor-
malizing each term with regard to a user-defined set of rewriting rules.

The last simplification algorithm Slog strips logically irrelevant formulas. As a
Herbrand-sequent is always valid with regard to a given theory, we negate H(ϕ)
and apply a resolution theorem prover in order to obtain a refutation γ of the
background theory and ¬H(ϕ). The logically irrelevant formulas are all those
formulas not appearing as leaves in γ.

3 An Example

In this section, we will treat a simple example from lattice theory. There are
several different, but equivalent, definitions of the notion of lattice. Usually, the
equivalence of several statements is shown by proving a cycle of implications.
While this approach is elegant, it has the drawback that it does not provide
direct proofs between the statements. Using cut-elimination, direct proofs of the
implications between any two of the statements can be obtained. Hence we will
demonstrate how the CERES system can be used to automatically generate such a
proof via cut-elimination, how the Herbrand sequent extracted from the resulting
proof can be simplified, and how the simplified Herbrand sequent provides a
minimal explicit construction which was implicit in the original proof.

Lattice definitions. We will consider three definitions of the notion of lattice:
two are algebraic, using 3-tuples 〈L,∩,∪〉, while the third one depends on the
notion of partially ordered set 〈S,≤〉.
Definition 1 (Algebraic Lattices). A semi-lattice is a set L together with an
operation ◦ fulfilling for all x, y, z ∈ L

x ◦ y = y ◦ x and x ◦ x = x and (x ◦ y) ◦ z = x ◦ (y ◦ z).
A L1-lattice is a set L together with operations ∩ (meet) and ∪ (join) s.t. both
〈L,∩〉 and 〈L,∪〉 are semi-lattices and for all x, y ∈ L

x ∩ y = x↔ x ∪ y = y.

A L2-lattice is a set L together with operations ∩ and ∪ s.t. both 〈L,∩〉 and
〈L,∪〉 are semi-lattices which for all x, y ∈ L obey the absorption laws

(x ∩ y) ∪ x = x and (x ∪ y) ∩ x = x

Definition 2 (Partial Order). A binary relation ≤ on a set S is called partial
order if for all x, y, z ∈ S

x ≤ x and (x ≤ y ∧ y ≤ x)→ x = y and (x ≤ y ∧ y ≤ z)→ x ≤ z.
Definition 3 (Lattices Based on Partial Orders). A L3-lattice is a partially
ordered set 〈S,≤〉 s.t. for all x, y ∈ S there exist a greatest lower bound ∩ and a
least upper bound ∪, i.e. for all z ∈ S

x ∩ y ≤ x ∧ x ∩ y ≤ y ∧ (z ≤ x ∧ z ≤ y → z ≤ x ∩ y) and
x ≤ x ∪ y ∧ y ≤ x ∪ y ∧ (x ≤ z ∧ y ≤ z → x ∪ y ≤ z).

System Description: The Proof Transformation System CERES 431

It is well known that the above three definitions of lattice are equivalent. We
will formalize the proofs of L1 → L3 and L3 → L2 in order to extract a direct
proof of L1→ L2, i.e. one which does not use the notion of partial order.

Formalization of the Lattice Proof. The full LKDe-proof of L1 → L2,
formalized in the HandyLK language and compiled to LKDe by hlk, has 260
rules (214 rules, if structural rules, except cut, are not counted). It is too large
to be displayed here. Below we show only a part of it, which is close to the end-
sequent and depicts the main structure of the proof, based on the cut-rule with
L3 as the cut-formula. The full proofs, conveniently viewable with ProofTool,
are available on the website of CERES.

We note here that the proof is formalized in the theory of semi-lattices: it
uses (instances of the open versions of) the semi-lattice axioms, and hence the
theorem is valid in the theory T of semi-lattices, but not in general.

[pR]
� R

[pAS]
� AS

[pT]
� T

� AS ∧ T
∧ : r

� R ∧ (AS ∧ T)
∧ : r

� POSET
d : r

[pGLB] [pLUB]
L1 � GLB ∧ LUB

∧ : r

L1 � POSET ∧ (GLB ∧ LUB)
∧ : r

L1 � L3 d : r
[p2

3]
L3 � L2

L1 � L2
cut

– L1 ≡ ∀x∀y((x ∩ y) = x→ (x ∪ y) = y) ∧ ((x ∪ y) = y → (x ∩ y) = x)
– L2 ≡ ∀x∀y(x ∩ y) ∪ x = x ∧ ∀x∀y(x ∪ y) ∩ x = x
– L3 ≡ POSET ∧ (GLB ∧ LUB)
– pAS , pT , pR are proofs of, respectively, anti-symmetry, transitivity and re-

flexivity of ≤, which is defined as x ≤ y ≡ x ∩ y = x.
– pGLB and pLUB are proofs that ∩ and ∪ are greatest lower bound and

greatest upper bound, respectively.
– p2

3 is a proof that L3-lattices are L2-lattices.

Cut-Elimination of the Lattice Proof. Prior to cut-elimination, the for-
malized proof is skolemized by CERES, resulting in a proof of the skolemized
end-sequent L1 � (s1 ∩ s2) ∪ s1 = s1 ∧ (s3 ∪ s4) ∩ s3 = s3, where s1, s2, s3
and s4 are skolem constants for the strongly quantified variables of L2. Then
CERES eliminates cuts (using Prover9 for computing the refutation), producing
a proof in ACNF (available for visualization with ProofTool in the website of
CERES).

Herbrand Sequent Extraction of the ACNF of the Lattice Proof. As
our proof under investigation uses axioms of the theory T , also our ACNF ϕ is a
proof in T , and the Herbrand sequent H(ϕ), extracted from ϕ according to the
algorithm from [9], is valid in T . After the application of Suse, H(ϕ) becomes
the sequent H ′:

432 T. Dunchev et al.

s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2)→ s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1,
s1 ∩ s1 = s1 → s1 ∪ s1 = s1,
(s1 ∩ s2) ∩ s1 = s1 ∩ s2 → (s1 ∩ s2) ∪ s1 = s1,
(s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s1 = s1 ∪ (s1 ∩ s2),
(s3 ∪ (s3 ∪ s4) = s3 ∪ s4 → s3 ∩ (s3 ∪ s4) = s3
�L2, (s1 ∩ s2) ∪ s1 = s1 ∧ (s3 ∪ s4) ∩ s3 = s3

Observe that Suse has pruned some subformulas from H(ϕ): as H(ϕ) is a Her-
brand sequent of our theorem, its antecedent only contains instances of L1.
Observe that the formulas in the antecedent of H ′ are not instances of L1 (some
conjuncts where deleted), but still H ′ is valid in T and contains the relevant
information from the ACNF.

By Slog, H ′ is further pruned and four formulas are deleted, finally resulting
in the Herbrand sequent H ′′

(s1 ∩ s2) ∩ s1 = s1 ∩ s2 → (s1 ∩ s2) ∪ s1 = s1,
s3 ∪ (s3 ∪ s4) = s3 ∪ s4 → s3 ∩ (s3 ∪ s4) = s3
� (s1 ∩ s2) ∪ s1 = s1 ∧ (s3 ∪ s4) ∩ s3 = s3

H ′′ is minimal in the sense that if we remove a formula from H ′′, the resulting
sequent is not valid in T anymore. This is not the case in general; minimality is
determined by the resolution refutation computed in Slog.
H ′′ now gives rise to an elementary proof of the theorem L1 � L2: Our goal

is to prove (1) (s1 ∩ s2) ∪ s1 = s1 and (2) (s3 ∪ s4) ∩ s3 = s3. For (1), we prove
(s1 ∩ s2)∩ s1 = s1 ∩ s2 using idempotency, associativity and commutativity of ∩
and conclude with L1. For (2), we prove s3∪(s3∪s4) = s3∪s4 using idempotency
and associativity of ∪. We conclude with L1 and commutativity of ∩.

Summarizing, the CERES system has taken as input a proof in lattice the-
ory which used the auxiliary notion of partial order. By cut-elimination, a new
proof not using any auxiliary notions is computed. From this proof, a Herbrand
sequent summarizing the mathematical information (i.e. the instantiations) is
extracted. This sequent is further pruned, resulting in a compact presentation
of the relevant mathematical ideas of the proof (in this case, an algebraic con-
struction not visible in the input proof). In the present example, the algorithm
Salg was not used: we refer to [7] for further examples.

4 Summary of Recent Improvements and Future Work

The simplification of Herbrand sequents is one of the most important features
recently added to the CERES. Redundancy in the resulting sequent is significantly
reduced and the terms are rewritten to a more readable normal-form. However,
even if the simplified Herbrand sequent is completely redundancy-free, it can
still be large and, consequently, the user can still face difficulties to formulate
the informal mathematical proof that it summarizes. Our experience [9] indi-
cates that enriching the Herbrand sequent with certain kinds of links between
its atomic sub-formulas might provide helpful information to the user. These

System Description: The Proof Transformation System CERES 433

links would resemble the axiom links of proof nets or the connections of the
connection method, and they could be obtained by analyzing either the axioms
of the ACNF or the resolved literals in the refutation used in the simplifcation
of the Herbrand sequent. The theoretical investigation and the implementation
of such links remains for future work.

As mentioned in Section 2, CERES relies on resolution theorem provers to refute
characteristic clause sets or profiles. While only Otter was originally supported,
now it is also possible to use CERES together with Prover9 and ATP. For the
future, we intend to support the TPTP/TSTP format. It is also desirable to
interface CERES with proof assistants like Isabelle, Coq, PVS and Mizar. On the
one hand, CERES would benefit from the large libraries of proofs written in the
languages of these systems, and on the other hand, these systems would benefit
from the proof transformations of CERES. The main obstacle has always been
the differences in the logical frameworks used by each of these systems and by
CERES.

Our most ambitious current goal is an extension of CERES to higher-order
logic [10]. This task encountered a few hard theoretical obstacles, such as the
difficulty of skolemizing higher-order proofs [10], as well as practical obstacles,
such as the need to change the core data-structures of CERES in order to support
higher-order formulas. This led to the decision of implementing a new version of
CERES, currently under development in the more flexible language Scala.

References

1. Andrews, P.B.: Resolution in Type Theory. J. of Symbolic Logic 36, 414–432 (1971)
2. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Proof Transformation

by CERES. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI),
vol. 4108, pp. 82–93. Springer, Heidelberg (2006)

3. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: System Description: The
Cut-Elimination System CERES. In: Proc. ESCoR 2006, pp. 159–167 (2006)

4. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An analysis of
Fürstenberg’s proof of the infinity of primes. Th. Co. Sci. 403, 160–175 (2008)

5. Baaz, M., Leitsch, A.: Cut-Elimination and Redundancy-Elimination by Resolu-
tion. Journal of Symbolic Computation 29, 149–176 (2000)

6. Baaz, M., Leitsch, A.: Towards a Clausal Analysis of Cut-Elimination. Journal of
Symbolic Computation 41, 381–410 (2006)

7. Dunchev, T.: Simplification of Herbrand Sequents. Master Thesis (2009)
8. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische

Zeitschrift 39, 176–210, 405–431 (1934-1935)
9. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand sequent extrac-

tion. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F.
(eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp.
462–477. Springer, Heidelberg (2008)

10. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: A Clausal Approach to
Proof Analysis in Second-Order Logic. In: Logical Foundations of Computer Sci.
(2009)

11. Woltzenlogel Paleo, B.: Herbrand Sequent Extraction. VDM-Verlag (2008)
12. Woltzenlogel Paleo, B.: A General Analysis of Cut-Elimination by CERes. PhD

Thesis (2009)

Premise Selection in the Naproche System

Marcos Cramer, Peter Koepke, Daniel Kühlwein, and Bernhard Schröder

Mathematical Institute, University of Bonn
German Linguistics, University of Duisburg-Essen
{cramer,koepke,kuehlwei}@math.uni-bonn.de,

bernhard.schroeder@uni-due.de

http://www.naproche.net

Abstract. Automated theorem provers (ATPs) struggle to solve prob-
lems with large sets of possibly superfluous axiom. Several algorithms
have been developed to reduce the number of axioms, optimally only
selecting the necessary axioms. However, most of these algorithms con-
sider only single problems. In this paper, we describe an axiom selection
method for series of related problems that is based on logical and textual
proximity and tries to mimic a human way of understanding mathemat-
ical texts. We present first results that indicate that this approach is
indeed useful.

Keywords: formal mathematics, automated theorem proving, axiom
selection.

1 Introduction

Reducing the search space of ATP problems is a long standing problem in the
ATP community. In 1987 Larry Wos called a solution to the problem of defini-
tion expansion and contraction “one of the more significant advances in the field
of automated reasoning” [22]. In recent years, several algorithms have been de-
veloped to tackle this problem. (e.g. SRASS [17], SInE [8], Gazing [1], MaLARea
[18], and the work by Meng and Paulson [13]). In this paper, we describe an
axiom selection method for series of related problems that is based on logical
and textual proximity.

The Naproche project (NAtural language PROof CHEcking) studies the semi-
formal language of mathematics as used in mathematical journals and text-
books from the perspectives of linguistics, logic and mathematics. As part of the
Naproche project, we develop the Naproche system [5], a program that can auto-
matically check texts written in the Naproche controlled natural language (CNL)
for logical correctness. We test our system by reformulating parts of mathemati-
cal textbooks and the basics of mathematical theories in the Naproche CNL and
checking the resulting texts.

The checking process is similar to how a human reader would verify the cor-
rectness of a text. Each statement in the text that is not an axiom1, a definition
1 Here, axiom is used in the mathematical sense, e.g. the axiom of choice.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 434–440, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Premise Selection in the Naproche System 435

or an assumption must follow from the information given so far. Using logi-
cal terms, we can say that the statement has to follow from its premises. In
the Naproche system, such statements create proof obligations. A proof obliga-
tions is an ATP problem with the statement as conjecture and the premises as
axioms.

The longer a text is, the more premises are available, which makes proof
obligations harder to discharge. Thus, we need to find a way to reduce the number
of premises, i.e. reduce the search space of the ATP. For single ATP problems,
successful algorithms (e.g. SInE, SRASS) exist. There are also programs that
were developed for larger theories, e.g. Gazing and MaLARea. However, to our
knowledge there is no system that is based on a ’human’ understanding of a
proof. The texts we are dealing with read like normal mathematical proofs in
natural language. We developed a premise selection algorithm that tries to use
some of the information implicit in the human structuring of the proof text.

We first give a quick overview of the Naproche system. Section 2 explains our
premise selection algorithm. First results are presented in section 3.

2 The Naproche System

The Naproche system [5] checks texts that are written in a controlled natural
language for mathematics for correctness. We call this controlled natural lan-
guage the Naproche CNL. Texts written in the Naproche CNL read like normal
mathematical texts. The Naproche CNL is described in a separate paper (see
[3]). A quick overview can be found online2.

The input text is first translated into a linguistic representation called Proof
Representation Structure (PRS, see [3], [4]). From such a PRS the program
determines which statements have to be checked and creates the corresponding
proof obligations [10]. For the actual proving we use the TPTP infrastructure
[16]. The proof obligations are translated into ATP problems in the TPTP format
and then sent to an ATP.

There are two main long term goals of the Naproche Project: Firstly, to pro-
vide a more natural system for formalising mathematics, and secondly to function
as a tool that can help undergraduate students to learn how to write formally
correct proofs and thus get used to the semi-formal language of mathematics.

2.1 An Example Text

We present a short example texts taken from the Naproche translation of Euclid’s
Elements [7]. Note that Naproche uses LATEX-sourcecode as input. The example
shows the compiled version.

Example: Let a, b and c be distinct points. By Theorem 1 there is a point d,
such that da = db = ab. Let M be the line such that b and d are on M . Let α
be the circle such that b is the center of α, and c is on α.

2 http://www.naproche.net/wiki/doku.php?id=dokumentation:language

http://www.naproche.net/wiki/doku.php?id=dokumentation:language

436 M. Cramer et al.

2.2 Related Work

There are several projects that are similar to Naproche. We will just name a few:
A. Trybulec’s Mizar [12] is arguably the most prominent. It was started in

1973, and by today many non-trivial mathematical theorems have been proved.
An active community continues to formulate and prove theorems in Mizar. The
results are published regularly in the journal Formalized Mathematics.

The Isabelle [14] team is working on Isar [21], a “human-readable structured
proof language”. The System for Automated Deduction (SAD, [19]) checks texts
that are written in its input language, ForThel [20], for correctness.

Claus Zinn did his PhD on Understanding Informal Mathematical Discourse
[23], but focused on only two examples. The DIALOG group [2] did experiments
with mathematical language in a tutoring context. Mohan Ganesalingam [6]
studied the language of mathematics in detail, but did not implement his ideas
(yet).

What distinguishes Naproche is our focus on deep linguistic analysis of non-
annotated natural language. We try to keep our input language as close as pos-
sible to the natural language of mathematics.

3 The Premise Selection Algorithm

When verifying the correctness of a proof, mathematicians basically face the
same problem as ATPs. They have a given set of premises, i.e. all their mathe-
matical knowledge, and have to derive the conjecture from these premises. Un-
derstanding the proof means knowing which premises were used in each step.
While the human selection process as a whole is very complicated, there are
three parts that can easily be used for automated premise selection.

– Explicit References:
Explicit references like “by theorem 4” are often used in mathematical texts.
Such a reference is a clear indication that the referenced object is useful, or
even necessary.

– Textual Adjacency:
While human proofs are not as detailed as formal derivations, they are still
done step by step. Usually, the proof steps just before a statement are rele-
vant. The most common example of this are assumptions: Assume ϕ. Then
ψ. Here, the proof step before Then ψ is Assume ϕ, and ϕ will most likely
be needed to prove ψ.

– Logical Relevance:
Quite often, ideas that were needed in one part of a proof are also needed
in another part. I.e. if a definition was needed for the first proof step, it will
probably be needed again later in the proof.

In order to capture these ideas we developed Proof Graphs. Each statement
of the proof becomes a node in this graph. Two nodes are connected by an
(untyped) edge if they are textually or logically close to each other, or if there is

Premise Selection in the Naproche System 437

an explicit reference from one to the other. We define the distance between two
statements as the geodesic distance. i.e. the length of the shortest path from one
statement to the other.

Based on Proof Graphs, we can define a premise selection algorithm. Given a
proof obligation, the premise selection algorithm determines which of the avail-
able premises are given to the ATP. The algorithm was implemented as part of
the Naproche system.

Explicit references and textual adjacency are calculated during the linguistic
analysis of the text. We say that ϕ is logically close to ψ if ϕ was used in the
proof on ψ. In the implementation, we use Geoff Sutcliffes program Proof
Summary which analyses ATP proofs.

The premises selection algorithm proceeds as follows:

– Input: Conjecture, Axioms, Distance and Time
1 Determine the distance between the Conjecture and the Axioms.
2 Select all axioms whose nodes have distance less than Distance from the

conjecture Node.
3 Create a TPTP problem with the selected axioms and the Conjecture.
4 Run an ATP on the problem with time limit Time.
5 If the ATP cannot prove the conjecture from the axioms, the starting dis-

tance is less than the predefined maximum distance, and the starting time is
less than the predefined maximum time, define a new time limit and a new
starting distance (e.g. NewTime = 2∗Time and NewDistance = 2∗Distance)
and try again.

6 If the ATP finds a proof, use the proof given by the ATP to find out which
axioms where actually used. Determine the maximum distance of the used
axiom to define the new starting distance (e.g. NextDistance = (4∗Distance+
MaxUsedDistance)/5) and update the proof graph with this new information.

4 Results

To test the algorithm we checked a Naproche CNL version of the first chapter of
Landau’s Grundlagen der Analysis [11] with and without the premises selection
algorithm. This text contains 228 proof obligation with a total number of 7602
premises.

Currently Proof Summary [16] only supports two ATPs, Metis [9] and EP
[15]. Both were used during testing. MaxDistance was set to 20, MaxTime was
set to 5 seconds, the start Distance was set to 1, and the start Time set to 1 sec.
The other values were defined as follows:

NewTime = 2 ∗ Time
NewDistance = 2 ∗Distance
NextDistance = , 4∗Distance+MaxUsedDistance

5 -

Table 1 shows the results for EP. Without the premises selection algorithm,
seven obligations could not be discharged by EP. With the premise selection
algorithm enabled, EP was able to discharge all 228 obligations.

438 M. Cramer et al.

Table 1. Results for EP 1.0

Without PS With PS
Total Theorem No Proof Theorem No Proof

obligations 228 221 7 228 0
premises 7602 7235 367 3964 0

premises/obligations 32.74 52.43 17.39 N/A
used premises/obligation 2.99 N/A 2.93 N/A
unused premises/obligation 29.75 52.43 5.96 N/A

average distance 8.2 8.15 5.53 N/A
average used distance 3.46 N/A 3.38 N/A
average unused distance 8.68 8.15 5.96 N/A

We also determined the average distance of the used (3.46) and unused premises
(8.68). These numbers are a clear indicator that our distance definition is indeed
useful.

In Table 2 we see the results for Metis. Without the premises selection al-
gorithm, 44 obligations could not be discharged by Metis. With the premise
selection algorithm enabled, 26 obligations could not be discharged.

Table 2. Results for Metis 2.2

Without PS With PS
Total Theorem No Proof Theorem No Proof

obligations 228 184 44 202 26
premises 7602 5630 1972 2412 1176

premises/obligations 30.6 44.82 11.94 45.23
used premises/obligation 2.16 N/A 2.09 N/A
unused premises/obligation 28.43 44.42 9.85 45.23

average distance 8.98 9.64 5.22 9.49
average used distance 3.49 N/A 3.22 N/A
average unused distance 9.39 9.64 5.64 9.49

The reason why Metis ends up with a lower number of total premises with
premises selection enabled is that the fewer obligations an ATP is able to dis-
charge, the less information we have about logical relevance. This affects the
subsequent obligations since fewer formulas are within the search distance. Sim-
ilar to the EP results, the average distance of used premises is much lower (3.49)
than the average distance of unused premises (9.39).

For further testing, we created two problem batches. The first one contained
the original 228 problems. For the second batch we took all the modified problems
that were created when using EP 1.0 and the premises selection algorithm. We
sent the problems to Geoff Sutcliffe and he used his TPTP infrastructure
to run seven ATP systems on the problems with a time limit of 300 seconds per
obligation. The results can be seen in Table 3.

Premise Selection in the Naproche System 439

Table 3. Results with more ATPs and time limit 300 sec

ATP Solved(Modified) Solved(Original)

Bliksem 1.12 225 222
E 1.1 228 228
Geo 2007f 219 210
iProver 0.7 223 222
Metis 2.2 205 193
Prover9 0908 213 221
Vampire 11.0 227 227

182 of the modified problems were solved by all the systems. Of the remaining
46, 39 were solved by 6 out of the 7 systems. 169 of the original problems were
solved by all the systems. Of the remaining 59, 50 were solved by 6 out of the 7
systems. 6 of the 9 are also in the set of 7 hard ones from the modified versions
of the problems.

Of all ATPs tested, only Prover9 performs worse on the modified problem
set. We assume that this is due to the fact that we used EP to create the mod-
ified problems. We hope that Prover9 would also perform better with premise
selection when being used directly in the Naproche system. Unfortunately this
cannot be tested at the moment since Prover9 does not provide Proof Summary
parseable output.

5 Conclusion and Future Work

While the details of the implementation are and should be up for discussion, the
results we received suggest that the ideas behind the premise selection algorithm:
textual adjacency, references and reusing the same ideas do seem to work and
improve the ATP performance.

For further testing, we would like to compare and combine our approach with
other axiom selection algorithms. Furthermore, it would be interesting to see
how important the different aspects of the proof graph are.

The main focus for the future will be to create longer and more mathemat-
ical texts. Once we do have more material, we will experiment with different
modification of the presented Proof Graph.

References

1. Barker-Plummer, D.: Gazing: An Approach to the Problem of Definition and
Lemma Use. J. Autom. Reasoning 8(3), 311–344 (1992)

2. Benzmüller, C., Schiller, M., Siekmann, J.: Resource-bounded modelling and analy-
sis of human-level interactive proofs. In: Crocker, M., Siekmann, J. (eds.) Resource
Adaptive Cognitive Processes. Cognitive Technologies Series. Springer, Heidelberg
(2010) (in print)

440 M. Cramer et al.

3. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The
Naproche Project: Controlled Natural Language Proof Checking of Mathematical
Texts. In: Fuchs, N.E. (ed.) CNL 2009 Workshop. LNCS, vol. 5972, pp. 170–186.
Springer, Heidelberg (2010)

4. Cramer, M.: Mathematisch-logische Aspekte von Beweisrepresentationsstrukturen.
Master’s thesis, University of Bonn (2009)

5. Koepke, P., Kühlwein, D., Cramer, M., Schröder, B.: The Naproche System (2009)
6. Ganesalingam, M.: The Language of Mathematics. PhD thesis, University of Cam-

bridge (2009)
7. Heath, T.L., Euclid: The Thirteen Books of Euclid’s Elements, Books 1 and 2.

Dover Publications, New York (1956) (Incorporated)
8. Hoder, K.: Automated Reasoning in Large Knowledge Bases. Master’s thesis,

Charles University (2008)
9. Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In:

Design and Application of Strategies/Tactics in Higher Order Logics, number
NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

10. Kuehlwein, D.: A Calculus for Proof Representation Structures. Master’s thesis,
University of Bonn (2008)

11. Landau, E.: Grundlagen der Analysis. Chelsea Publishing Company (1930)
12. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Mathematics

and Its Applications 4 (2005)
13. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-

olution problems. J. Applied Logic 7(1), 41–57 (2009)
14. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002)
15. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3),

111–126 (2002)
16. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF

and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)
17. Sutcliffe, G., Puzis, Y.: SRASS - A Semantic Relevance Axiom Selection System.

In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer,
Heidelberg (2007)

18. Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: MaLARea SG1- Machine Learner
for Automated Reasoning with Semantic Guidance. In: Armando, A., Baumgart-
ner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456.
Springer, Heidelberg (2008)

19. Verchinine, K., Lyaletski, A., Paskevich, A.: System for Automated Deduction
(SAD): A Tool for Proof Verification. In: Pfenning, F. (ed.) CADE 2007. LNCS
(LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007)

20. Vershinin, K., Paskevich, A.: ForTheL - the language of formal theories. Interna-
tional Journal of Information Theories and Applications 7(3), 120–126 (2000)

21. Wenzel, M.: Isabelle/Isar - a generic framework for human-readable proof doc-
uments. Studies in Logic, Grammar and Rhetoric, vol. 10(23). University of
Bia�lystok (2007)

22. Wos, L.: The problem of definition expansion and contraction. J. Autom. Rea-
son. 3(4), 433–435 (1987)

23. Zinn, C.: Understanding Informal Mathematical Discourse. PhD thesis, Friedrich-
Alexander-Universitt Erlangen Nürnberg (2004)

On the Saturation of YAGO

Martin Suda, Christoph Weidenbach, and Patrick Wischnewski

Max Planck Institute for Informatics, Saarbrücken, Germany
{suda,weidenbach,wischnew}@mpi-inf.mpg.de

Abstract. YAGO is an automatically generated ontology out of Wiki-
pedia and WordNet. It is eventually represented in a proprietary flat text
file format and a core comprises 10 million facts and formulas. We present
a translation of YAGO into the Bernays-Schönfinkel Horn class with
equality. A new variant of the superposition calculus is sound, complete
and terminating for this class. Together with extended term indexing
data structures the new calculus is implemented in Spass-YAGO. YAGO
can be finitely saturated by Spass-YAGO in about 1 hour. We have found
49 inconsistencies in the original generated ontology which we have fixed.
Spass-YAGO can then prove non-trivial conjectures with respect to the
resulting saturated and consistent clause set of about 1.4 GB in less than
one second.

1 Introduction

YAGO (Yet Another Great Ontology) has been developed by our colleagues from
the database/information retrieval group at the Max Planck Institute for Infor-
matics [10]. It attracted a lot of attention in the information retrieval community
because it was the first automatically retrieved ontology with both an accuracy
of about 97% and a high coverage as it includes a unification of Wikipedia and
WordNet. It contains about 20 million “facts” of the YAGO language. A detailed
introduction to YAGO containing a comparison to other well-known ontologies
can be found in [11].

After a close inspection of the YAGO language it turned out that the Bernays-
Schoenfinkel Horn class with equality, abbreviated BSHE from now on, is suffi-
ciently expressive to cover a core of YAGO. In 2008 the idea was born to write
a translation procedure from YAGO into BSHE and then use Spass in order to
find all inconsistencies in YAGO and to answer queries. The translation proce-
dure is described in Section 3. We then started running Spass on the resulting
formulas in a kind of “test and refine” loop, eventually leading to the Spass-
YAGO variant of Spass, a new superposition calculus for BSHE, an extension
to context tree indexing, and this paper.

The first step was actually to make Spass ready for handling really big formula
and clause sets. Some of this work went already into Spass 3.5 [16], the basis for
Spass-YAGO, but further refinements were needed in order to actually start the
experiments on YAGO. The engineering steps taken are explained in Section 6.

After the first experiments on smaller fragments of YAGO it immediately be-
came clear that the standard superposition calculus does not work sufficiently

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 441–456, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

442 M. Suda, C. Weidenbach, and P. Wischnewski

well on BSHE. We started searching for a calculus that is sound, complete and
terminating on BSHE and at the same time generates “small” saturations. The
YAGO language assumes a unique name assumption, i.e., all constants are dif-
ferent. This can be translated into first-order logic by enumerating disequations
a �≈ b for all different constants a, b. For several million constants this trans-
lation is not tractable. Bonancina and Schulz [7] therefore suggested additional
inference rules instead of adding the disequations. We followed this approach
and further refined one of their rules according to the BSHE fragment and the
rest of our calculus. The BSH fragment can be decided by positive hyper resolu-
tion. Hyper resolution is a good choice anyway, because it prevents the prolific
generation of intermediate resolvents of the form ¬A1 ∨ . . .¬An ∨B that would
be generated and kept by (ordered) binary resolution if there are no resolution
partners for some ¬Ai. Experiments showed that this works nicely for most types
of clauses resulting from the translation. For example, in YAGO a relation Q can
be defined to be functional, translated into the clause ¬Q(x, y)∨¬Q(x, z)∨y ≈ z.
If hyper resolution succeeds on generating a ground clause (y ≈ z)σ out of this
clause, it is either a tautology or the unique name assumption rule mentioned
above will refute the clause. The search space generated by hyper resolution out
of subsort definitions and transitive relations contained in YAGO turned out to
be too prolific. Therefore, we further composed our calculus by adding chaining
for transitive relations [1] and sort reasoning [15]. The latter is available in Spass

anyway, whereas for chaining we added a novel implementation. All details on
the BSHE fragment generated out of YAGO and the eventual calculus includ-
ing proofs for completeness, soundness, and termination plus implementation
aspects are discussed in Section 4.

Thirdly, it turned out that the well-known indexing solutions for first-order
theorem proving [6] are too inefficient for the size and structure of the YAGO
BSHE fragment. The problem is that for example unifiability queries with a
query atom Q(x, a) need an index to both discriminate on the signature symbols
Q and a without explicitly looking at all potential partner atoms in the index.
In Section 5 we present an extension to context tree indexing [2] called Filtered
Context Trees that discriminate for the above example on Q and a in logarithmic
time in the number of symbols, i.e. in logarithmic time the filtered context tree
index gives access to a structure that contains all potential partners containing
these symbols. Context trees are a generalization of substitution trees used in
Spass. In Spass-YAGO the context tree extension is finally implemented as an
extension to substitution tree indexing.

Eventually, Spass-YAGO saturates the BSHE translation of YAGO in 1 hour,
generating 26379349 clauses. The generated saturated clause set consists of
9943056 clauses. We found 49 inconsistencies which we resolved by hand. With
respect to saturated clause set we can prove queries in less than one second (Sec-
tion 7). The paper ends with a summary of the obtained results and directions for
future work (Section 8). Detailed proofs and algorithms are available in a technical
report [13].Spass-YAGO and all input files are available from theSpass homepage
http://www.spass-prover.org/ in section prototypes and experiments.

http://www.spass-prover.org/

On the Saturation of YAGO 443

2 Preliminaries

We follow the notation from [15]. A first-order language is constructed over a
signature Σ. We assume Σ to be a finite set of function symbols. In addition
to the signature Σ we assume that there is an infinite set V of variables. The
set of terms T (Σ,X) over a signature Σ and a set of variables X with X ⊂ V
is recursively defined: X ⊆ T (Σ,X) and for every function symbol f ∈ Σ with
arity zero (a constant) f ∈ T (Σ,X) and if f has arity n and t1, . . . tn ∈ T (Σ,X)
then also f(t1, . . . tn) ∈ T (Σ,X). The variables V \X are used as meta variables
in context tree indexing. Let vars(t) for a term t ∈ T (Σ,X) be the set of all
variables occurring in t. If t = f(t1, . . . , tn) then top(t) = f .

A substitution σ : V → T (Σ,X) is a mapping from the set of variables into
the set of terms such that xσ �= x for only finitely many x ∈ V . The domain of a
substitution σ is defined as dom(σ) = {x | xσ �= x} and the codomain is defined
as cod(σ) = {xσ | xσ �= x}. Substitutions are lifted to terms as usual. Given
two terms s,t, a substitution σ is called a unifier if sσ = tσ and most general
unifier (mgu) if, in addition, for any other unifier τ of s and t there exists a
substitution λ with σλ = τ . A substitution σ is called a matcher from s to t if
sσ = t. The term s is then called a generalization of t and t an instance of s. A
substitution σ is a unifier for substitutions τ and ρ if σ is a unifier of xτ and xρ
for all x ∈ dom(τ). The definitions for matcher, generalization and instance can
be lifted to substitutions analogously.

3 Translation of YAGO into BSHE

From a logical perspective, YAGO [10, 11] consists of about 20 million ground
atoms of second-order logic. However, most of the second-order content is ac-
tually “syntactic sugar” that can be eventually translated into first-order logic.
For example, subsort relations are represented as facts over the involved sort
predicates. Representative examples of YAGO facts we have considered together
with our clause translation are

bornIn AlbertEinstein Ulm
bornIn(AlbertEinstein ,Ulm)

type bornIn yagoFunction
¬bornIn(x, y) ∨ ¬bornIn(x, z) ∨ y ≈ z

locatedIn Ulm Germany
locatedIn(Ulm,Germany)

type locatedIn yagoTransitiveRelation
¬locatedIn(x, y) ∨ ¬locatedIn(y, z) ∨ locatedIn(x, z)

type AngelaMerkel human
human(AngelaMerkel)

subClassOf human mammal
¬human(x) ∨mammal(x)

The above kind of facts make up about half of YAGO, i.e., about 10 million
facts translated into ground atoms and clauses of the above form. The transla-
tion results in first-order ground facts and non-unit clauses one half each. For
this paper we left out YAGO facts about the source of information as well as
confidence values attached to the facts. For example, in YAGO for each relation
occurring in a YAGO fact there is also a fact relating it to the link of the website
it was extracted from as well as further facts relating to links of other websites
containing the same relation.

444 M. Suda, C. Weidenbach, and P. Wischnewski

4 A New Calculus for BSHE

We translated YAGO into the Bernays-Schönfinkel Horn class with equality
where all the clauses are range restricted. This means that any clause has the
form C ∨A or just C where

– Horn clauses: C contains only negative literals and A is a positive literal,
– range restricted: Var(A) ⊆ Var(Cn), where Cn is the subclause of C con-

sisting of all the non-equality atoms of C,
– Bernays-Schönfinkel: the signature Σ contains only constant symbols,
– equality (≈) is present among the predicate symbols.

By using the unique name assumption, which is in our case imposed on all the
constant symbols from Σ, the given set of clauses can be further simplified before
starting the actual reasoning process. Each clause of the form C ∨ a �≈ b is a
tautology and can therefore be removed. If it is of the form C ∨ a �≈ a the literal
a �≈ a can be deleted. Moreover, clauses of the form C∨x �≈ t, for variable x and
term t (either a variable or a constant) can be simplified to C[x ← t]. Thus we
may assume that the clause set does not contain disequation literals. When we
look at the positive occurrences of the equality predicate, we can do yet another
simplification: a clause of the form C ∨ a ≈ b can be simplified to C, because
a ≈ b is false in any interpretation satisfying the unique name assumption. Thus,
when starting our saturation process, we can assume that the given clause set
only contains positive occurrences of the equality predicate. As noted in the
introduction, we used the refinement of the calculus presented in [7] to deal with
the unique name assumption.

Another key ingredient in the process of saturation of YAGO is the chaining
calculus, a refinement of superposition designed to deal efficiently with transi-
tive relations [1]. It is well known that the axiom stating that a relation Q is
transitive,

Q(x, y) ∧Q(y, z)→ Q(x, z),
may be a source of non-termination in resolution proving. This is because the
transitivity axiom clause may be resolved with (a variant of) itself to yield a new
clause Q(x, y)∧Q(y, z)∧Q(z, w)→ Q(x,w). Evidently, such process can be ar-
bitrarily iterated. Even if we use selection of negative literals or hyperresolution
to block the self-inference, (hyper)resolution will eventually explicitly compute
the whole transitive closure of the relation Q.

The idea of chaining is to remove the prolific transitivity axiom from the
given clause set, and instead to introduce a couple of specialized inference rules
that encode the logical consequences of transitivity in a controlled way. The
crucial restriction lies in requiring that the two literals Q(u, v) and Q(v, w)
chain together only if v 4 u and v 4 w, where � is a standard superposition
term ordering. In order to show that such a restricted version of the rule is still
complete techniques from term rewriting are employed.

An important step in introducing the chaining calculus to a theorem prover
is the implementation of a new literal ordering. In the standard superposition
setting literal ordering is typically defined as the two-fold multiset extension

On the Saturation of YAGO 445

of the term ordering on the so called occurrences of equations/atoms (see e.g.
[15] for details). This, for instance, entails that ¬A � A for any atom A, a
property essential for the completeness of the calculus. Unfortunately, however,
stronger properties are required for the chaining to work, namely to ensure that
the chaining inferences are decreasing, i.e. that the conclusion of an inference is
always smaller than the maximal premise. These properties are integrated under
the notion of admissibility of the literal ordering.

Definition 1. An ordering � on ground terms and literals is called admissi-
ble [1] if

– it is well-founded and total on ground terms and literals,
– it is compatible with reduction on maximal subterms, i.e. L � L′ whenever
L and L′ contain the same transitive predicate symbol Q, and the maximal
subterm of L′ is strictly smaller than the maximal subterm of L,

– it is compatible with goal reduction, i.e.
• ¬A � A for all ground atoms A,
• ¬A � B whenever A is an atom Q(s, t) and B is an atom Q(s′, t′), such

that Q is a transitive predicate and max(s, t) 4 max (s′, t′),
• ¬A � ¬B whenever A is an atom Q(s, s) and B atom Q(s, t) or Q(t, s),

where Q is a transitive predicate and s � t.

An ordering on ground clauses is called admissible if it is the multiset extension
of an admissible ordering on literals.

In order to actually implement an admissible ordering on literals, we can work
as follows. We associate to each L a tuple (maxL, pL,minL) and compare these
lexicographically, using the superposition term ordering � in the first and last
component, and the ordering 1 > 0 in the middle component. The individual
members of the tuple are defined as follows: If L is of the form Q(s, t) for a
transitive predicate Q we set maxL to the maximum of s and t, and minL to
the minimum of the two terms (with respect to �). If L is of the form A or
¬A for some atom A the top symbol of which is not a transitive predicate, we
set maxL = A and minL = 	, where 	 is special symbol minimal in the term
ordering �. We set pL = 1, if L is negative, and 0 otherwise.

We use � to denote both the standard term ordering, which is as usual as-
sumed to be total on ground terms, and the just described admissible ordering
on literals and clauses. Context should always make clear what instance of � is
meant.

Lifting the lexicographic ordering of the tuples to the non-ground level is
a non-trivial task. For instance, the maximum of s and t may not be unique,
because the term ordering � cannot be total on non-ground terms. Neverthe-
less, it is possible to proceed by simultaneously considering both cases. Then
it can happen that we produce a distinctive result, as opposed to just report-
ing incomparability of the two literals in question, which is always a sound
solution, because it only means that more inference will potentially have to be

446 M. Suda, C. Weidenbach, and P. Wischnewski

done. For example, comparing the two non-ground literals L1 = ¬R(s1, t1) and
L2 = R(s2, t2) where the term pairs s1, t1, s2, t2, and t1, s2 are incomparable
respectively, but s1 � s2 and t1 = t2, we can report that L1 � L2 although we
don’t know whether maxL1 is s1 or t1. In the second case the comparison of the
pL-member of the tuple would take over. Obviously, we try to identify as many
such cases as possible, to be able to restrict applicability of the inferences.

4.1 The Proof System

Here we present the inference rules of our calculus. They are refinements of calculi
presented in [1] and [7] composed and specialized for BSHE. For the chaining
rules, we assume that Q is a transitive predicate.

Ordered Chaining
Q(l, s) Q(t, r)

Q(l, r)σ

where σ is the most general unifier of s and t, lσ �4 sσ, and rσ �4 tσ.
Negative Chaining

Q(l, s) D ∨ ¬Q(t, r)
Dσ ∨ ¬Q(s, r)σ

where σ is the most general unifier of l and t, sσ �4 lσ, and rσ �4 tσ, and

Q(l, s) D ∨ ¬Q(t, r)
Dσ ∨ ¬Q(t, l)σ

where σ is the most general unifier of s and r, lσ �4 sσ, and tσ �� rσ.
Hyperresolution

A1 . . . An ¬B1 ∨ . . . ∨ ¬Bn ∨ P
Pσ

,

where n ≥ 1, A1, . . . , An are unit clauses, P is a positive literal or false, and
σ is the simultaneous most general unifier of Ai and Bi respectively, for all
i ∈ {1, . . . n}.

OECut [7]
a ≈ b
⊥ ,

where a and b are two different constants.
In negative chaining, the case tσ = rσ needs to be dealt with by only one

of the two negative chaining rules. We do not impose maximality restrictions
on the negative literal as this would cause incompleteness in the combination
with hyperresolution. Positive hyperresolution alone is known to decide Horn
function-free clauses, but with respect to YAGO the search space becomes too
prolific. Therefore, we developed the above calculus where transitivity is replaced
by the specific chaining rules.

On the Saturation of YAGO 447

4.2 Completeness, Soundness, and Termination

In this section we show that our calculus is sound and terminating for the
Bernays-Schönfinkel Horn class with equality with range restricted clauses. Be-
fore that, however, we explain how the completeness of the calculus can be
established.

The completeness proof is based on the ideas from [1] adapted to our spe-
cial case. It incorporates the notion of redundancy, so the standard elimination
rules like subsumption and tautology deletion can be added to the calculus. The
model construction itself proceeds along standard lines. One takes the set of all
ground instances of the given saturated clause set, and uses the clause ordering
which is total and well-founded on the ground level to inductively build partial
interpretations. In order to satisfy all the clauses in the final interpretation, some
of the clauses are designated as productive, which means they contribute with a
positive atom to the interpretation. A specialty of our case is that we addition-
ally need to consider a closure of the contributed atoms in order to obtain the
right interpretation. Moreover, we only allow positive unit clauses to potentially
become productive (this can be justified by viewing all the negative literals as
implicitly selected). The full proof of the model construction lemma along with
all the necessary definitions can be found in [13].

Theorem 2 (Completeness). If a set of Horn clauses N is saturated up to
redundancy then the set N ∪ TRANS ∪ UNA is unsatisfiable if and only if N
contains the empty clause, where TRANS is the set of transitivity axioms for
predicates Q1, . . . , Ql, and UNA = {a �≈ b|a �= b, a ∈ Σ, b ∈ Σ}.

Proof. If N does not contain the empty clause, we claim that the Herbrand
interpretation I constructed from the set of all ground instances (see [13] for the
details about the construction) of N is a model of N ∪TRANS ∪UNA. Via the
usual lifting argument1 the set of all ground instances is saturated as well. By
the model construction lemma, every ground instance C of a clause in N is true
in I, and in addition I is a transitivity interpretation and satisfies the unique
name assumption.

Theorem 3 (Soundness). The presented calculus is sound. Conclusion of any
inference is logically entailed by the premises of the inference and the theory
(TRANS ∪UNA).

Proof. The claim is obvious for hyperresolution, and also for the OECut rule,
where we use the unique name assumption. Finally, all the chaining rules can
be simulated as two resolution steps between the participating premises and the
appropriate transitivity axiom clause.

Theorem 4 (Termination). The calculus terminates on the set of Horn clauses
from Bernays-Schönfinkel class.
1 Note that we only consider ground version of the OECut rule. Nevertheless, it does

not need to be lifted in our case. It is because our clauses are range restricted, and
therefore we can never generate a non-ground positive (unit) clause.

448 M. Suda, C. Weidenbach, and P. Wischnewski

Proof. No inference rule produces a longer clause than any of its premises. There
are only finitely many clauses of given length (up to variable renaming) as all
the function symbols are constants.

5 Filtered Context Trees

The translation of YAGO into the BSHE class results in several million clauses.
In order to reason about these formulas, a fast indexing mechanism is vital. The
atoms occurring in the clauses are of the form: Q(a, b), Q(a, x), Q(x, b), Q(x, y),
S(a) and S(x), where Q is a binary predicate symbol, a, b are constants and
S is a monadic predicate (sort symbol) from the signature. In order to perform
retrieval operations on an index containing such atoms, we have to discriminate
efficiently on all available signature symbols. In order to achieve this we develop
a filtering mechanism for the context tree indexing [2]. The filtering performs in
logarithmic time and filters out subtrees of the indexing that do not lead to a
success with respect to the current retrieval operation.

Context tree indexing is a generalization of substitution tree indexing [3].
Compared to substitution trees, context trees can additionally share common
subterms even if they occur below different function symbols via the introduction
of extra variables for function symbols which we call function variables. For
example, the terms f(s, t) and g(s, t) can be represented as F (s, t) with children
F = f and F = g. The function variable F represents a single function symbol.
In the context of deep formulas, this potentially increases the degree of sharing in
the index structure. Figure 1 depicts a context tree containing the terms f(c, a),
h(d, a), g(a, d), g(d, b), and g(e, b).

We assume a set of function variables U ⊂ V which is disjoint from the set of
variables X . The set of terms T (Σ ∪U ,X) are terms built over the signature Σ,
the function variables U and the variables X . The notion of a substitution can
be adapted accordingly. In addition, we assume a set of index variables W ⊂ V
which is pairwise disjoint from X and U . Index variables are internal variables
of a context tree. Index variables are denoted by wi. We also assume a set of
index function variables which are denoted by Fi.

In the context of YAGO, the notion of function variables provides an extended
query mechanism. For example, we can query the index for terms that contain the
symbol a as their second argument without fixing the top symbol. The respective
query term is F (x, a). Applying this query to the context tree given in Figure 1,
returns the terms f(c, a) and h(d, a).

The following example demonstrates a retrieval operation on a context tree.
Consider the context tree of Figure 1 and the retrieval of terms unifiable with
the term g(e, x). The retrieval operation works with respect to a query sub-
stitution containing the query term. The query substitutions ρ for g(e, x) is
ρ = {w0 �→ g(e, x)} where w0 is the first indexing variable occurring in the con-
text tree. The algorithm starts with the query substitution ρ at the node whose
substitution is τ0. The substitution τ0 is unifiable with ρ using the substitution
σ = {w1 �→ e, w2 �→ x, F1 �→ g}. Descending the indexing further requires to

On the Saturation of YAGO 449

τ0 : {w0 	→ F1(w1, w2)}

τ1 : {w2 	→ a}

τ2 : {F1 	→ f
w1 	→ c}

τ3 : {F1 	→ h
w1 	→ d}

τ4 : {w1 	→ a
F1 	→ g
w2 	→ d}

τ5 : {F1 	→ g
w2 	→ b}

τ6 : {w1 	→ d} τ7 : {w1 	→ e}

Fig. 1. Context Tree

check all subnodes. In this case, these are the nodes containing τ1, τ4 and τ5.
Unifiable under the current substitution ρ◦σ are the substitutions τ1 and τ5. At
first, the algorithm proceeds by inspecting the subtree starting at the node with
τ1. The substitution τ1 is unifiable with ρ ◦ σ using σ′ = {x �→ a}. Continuing
with the subnodes, the algorithms recognizes that neither τ2 nor τ3 are unifiable
with ρ ◦ σ ◦ σ′. Then the algorithm backtracks, proceeds with τ5 and eventually
finds a leaf where all substitutions along the path τ0, τ5, τ7 are unifiable under
the respective substitution ρ and returns the desired term which is w0τ0τ5τ7.

In this example, after examining the node containing the substitution τ0, the
retrieval procedure proceeds by examining all subnodes. These subnodes are the
nodes containing the substitutions τ1, τ4 and τ5. However, if we inspect the query
substitution and the subtree starting at the node with the substitution τ1 we
recognize that the symbol g does not occur in any substitution of this subtree.
Consequently, the retrieval procedure does not need to process this subtree.

In the case of Spass-YAGO, it is vital to efficiently exclude subtrees that do
not contribute to the current retrieval operation because one node may have
millions of subnodes and the term indexing is processed several thousand times
in a reasoning loop. Therefore, we develop in the following an improvement of
the indexing which filters out subtrees from the indexing that do not contribute.
In the case of YAGO, the filtering avoids inspecting several million nodes during
one retrieval operation. Without our filtering technique, Spass was even unable
to load the core of YAGO into the index in reasonable time.

The following gives an overview over context trees and introduces the new
filtered context trees. Additionally, we present the retrieval algorithm together
with some details about the implementation of filtered context trees in Spass. For
a complete introduction of filtered context trees and the respective algorithms
we refer to the technical report [13].

Definition 5 (Context Tree). A context tree is a tree T = (V,E, subst, vr)
where V is a set of vertexes, E ⊂ V × V is the edge relation, the function subst
assigns to each vertex a substitution, vr ∈ V is the root node of T and the
following properties hold:

1. each node is either a leaf or an inner node with at least two children.

450 M. Suda, C. Weidenbach, and P. Wischnewski

2. for every path v1 . . . vn from the root (v1 = vr) to any node it holds:

dom(subst(vi)) ∩
⋃

1≤j<i

dom(subst(vj)) = ∅

3. for every path v1 . . . vn from the root (v1 = vr) to a leaf vn

vars(cod(subst(v1) ◦ · · · ◦ subst(vn))) ⊂ X

Each node in a context tree which is not a leaf node, must have at least two sub-
trees due to the first condition. The second condition ensures that each variable
is bound at most once along a path. The third condition assures that all terms
represented by a path from the root to a leaf are from T (Σ,X).

Definition 6 (Variables of a path). Let v1, . . . , vn be a path from the root of
a context tree to a node vn then the set of variables of this path is

vars(v1, . . . , vn) =
⋃

i∈{1...n}
vars(cod(subst(vi))) \

⋃
i∈{1...n}

dom(subst(vi))

For obtaining filtered context trees, we extend the notion of context trees. To
each node v we add a map M from any symbol s to each subnode of v that
contains s in one substitution along a path starting at v including v itself.

Reconsider the above example with the unification retrieval operation for the
query substitution ρ = {w0 �→ g(e, x)}. Extending Figure 1 with the map M
yields the filtered context tree depicted in Figure 2. The retrieval algorithm
applied to Figure 2 examines the node containing the substitution τ0. As we
have seen in the above example, only those subtrees can contribute to the current
retrieval operation that contain g in the codomain of the substitution of any of
its nodes. The function M contains exactly this information. If we apply g to
M , the function M returns those subtrees; in our example these are the subtrees
starting at the nodes containing the substitution τ4 and τ5. Consequently, the
node containing the substitutions τ1 is not considered during the retrieval.

A mapping mechanism has also been used for discrimination trees. In dis-
crimination tree indexing the mapping assigns to a given label the respective
successor node of the discrimination tree. For example, this has been added to
the indexing of the theorem prover E [9].

In order to be able to use a mapping mechanism for context trees we have to
define a function that assigns a set of signature symbols to a given substitution.
We define the characteristic function for a substitution as the set of top symbols
occurring in its codomain. In order to also characterize a substitution containing
only variables in its codomain we assume a symbol ⊥ with ⊥ �∈ Σ.

Definition 7 (Characteristic Function). Let σ be a substitution and O be a
set of variables. The set of top symbols of σ and O is defined as

ts(σ,O) = {f | ∃x ∈ dom(σ) ∩ O with xσ = f(t1, . . . , tn)}

On the Saturation of YAGO 451

τ0 : {w0 	→ F1(w1, w2)}

[a, c, d, f, h]
τ1 : {w2 	→ a}

[c, f]
τ2 : {F1 	→ f

w1 	→ c}

[d, h]
τ3 : {F1 	→ h

w1 	→ d}

[a, d, g]
τ4 : {w1 	→ a

F1 	→ g
w2 	→ d}

[b, e, g]
τ5 : {F1 	→ g

w2 	→ b}

[d]
τ6 : {w1 	→ d}

[e]
τ7 : {w1 	→ e}

Fig. 2. Filtered Context Tree

The characteristic function chr(σ,O) of a substitution σ with respect to the set
of variables O is defined as follows:

chr(σ,O) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ts(σ,O) if ts(σ,O) �= ∅

{⊥} if ts(σ,O) = ∅ ∧ ∃x ∈ dom(σ) with
xσ ∈ X ∨ xσ ∈ T (Σ ∪ U ,X) \ T (Σ,X) ∨ x ∈ X

∅ otherwise

Note that this definition also includes the cases where xσ is a constant or xσ is
a function symbol mapped from a function variable.

Reconsider the above example with query substitution ρ = {w0 �→ g(e, x)}.
The characteristic function of ρ is chr(ρ, {w0}) = {g}. Note that g is the only
symbol of the characteristic function of ρ because this is the top symbol of the
term g(e, x). A term that is unifiable with g(e, x) is of the form g(y, x), where
y is either a variable or the constant e. Consequently, the symbol g is the only
symbol characterizing ρ.

Once we have defined the characteristic function for a substitution, we can
extend the definition of context trees with a function M that assigns to a given
node v and a symbol s a set of successor nodes. For each node v′ in the set of
successor nodes it holds that there is a node on a path, starting at v′, which
contains the symbol s in the characteristic function of its substitution. This lifts
the characteristic function of a substitution of one node to the characteristic of
a subtree of a context tree.

Definition 8 (Filtered Context Tree). A filtered context tree
FT = (V,E, subst, vr,M) is a context tree (V,E, subst, vr) together with a func-
tion M : V × (Σ ∪ {⊥}) → 2V from nodes and function symbols to a subset
of V such that vk+1 ∈ M(vk, s) iff there is a path v1, . . . , vk, vk+1, . . . , vn where
v1 = vr is the root node with

s ∈
⋃

i∈{k+1,...,n}
chr(subst(vi), vars(v1, . . . , vk))

452 M. Suda, C. Weidenbach, and P. Wischnewski

Algorithms for Filtered Context Trees. The procedure FilteredLookup
(Algorithm 1) depicts the function performing the lookup operation on a given
filtered context tree FT , a node vn, a query substitution ρ and a function Test.
The node vn is the current examined node of FT during the recursive applica-
tion of FilteredLookup. Initially, vn is the root node vr. The function Test is
one of the test functions unification, generalization or instantiation. These test
functions get two substitutions as their arguments and check if these substitu-
tions are unifiable, are generalizations or are instances of each other, respectively.
Consequently, these are independent of the underlying indexing structure and we
can use the standard algorithms of these tests for the implementation of filtered
context tree indexing.

Algorithm 1. FilteredLookup
Input: FT = (V, E, subst, vr, M), vn ∈ V , substitution ρ, function Test

1 HITS = ∅;
/* vr = v1, ..., vn path from the root vr to vn */

2 C = chr(ρ,vars(vr, ..., vn));
3 if C = {⊥} then N = {v′|(vn, v′) ∈ E};
4 else if C �= ∅ then N =

⋃
s∈C∪{⊥}) M(vn, s);

5 else N = ∅;
6 foreach v′ ∈ N do
7 if Test(subst(v′), ρ) = (true, σ) then
8 if isLeaf(v′) then return {v′};
9 HITS = HITS ∪ FilteredLookup(FT , v′, ρ ◦ σ, Test);

10 end

11 end
12 return HITS

FilteredLookup (Algorithm 1) first computes the characteristic function in
line 2. If the characteristic function returns {⊥} then the algorithm inspects all
subnodes of the given node vn. Otherwise, the algorithm looks for the symbols
in M and considers only those nodes which are returned by M (line 4). From
this point on FilteredLookup is exactly the implementation of the corresponding
retrieval operation of context tree indexing.

Computing the characteristic of the substitution ρ in line 2 is in time
O(| dom(ρ)|), where | dom(ρ)| is the number of elements of the domain of ρ.
As a result, obtaining the set N from M in line 4 is in time O(| dom(ρ)| ∗ log |Σ|)
where |Σ| is the number of symbols in the signature. Hence, the overhead for
the filtering is in O(| dom(ρ)| ∗ log |Σ|).

The algorithms for insertion and deletion of the context tree indexing have
to be adapted to work with filtered context trees. The search for the correct
insert and deletion position, respectively, have to be adapted analogously to
FilteredLookup. Additionally, the procedures have to maintain the map M . This
works in time O(n∗| dom(τ)|∗log |Σ|) where n is the path length from the root to
the insert (deletion) position, | dom(τ)| is the number of elements of the domain
of τ and |Σ| is the number of symbols in the signature.

On the Saturation of YAGO 453

Implementation in Spass-YAGO. Since context trees are a generalization of
substitution trees and Spass has an implementation of substitution tree index-
ing, our implementation of Spass-YAGO contains the substitution tree indexing
of Spass together with the above described filter techniques.

In Spass, symbols are internally represented as integers. Consequently, they
can be compared with respect to their integer value. So we implemented the
lookup function M using CSB+-trees [8].

For further details about the algorithms, the implementation in Spass and
further optimization techniques of the filtered context tree indexing we refer to
the technical report [13].

6 Engineering

In order to accommodate Spass to the new indexing technique and the calculus
for BSHE, a lot of extra engineering had to be performed. We increased the
maximal number of signature symbols that Spass can handle to 19M. The pars-
ing module was modified, so that originally quadratic manipulations on the lists
of input clauses now only take linear time. Algorithms for manipulating clause
sets holding Spass’s search state, such as loading the usable clauses, or sorting
clause lists, were sped up from O(n2) to O(n ∗ log(n)). Hashmaps used in the
clausification process in Flotter had to be extended to reduce the number of
hash-conflicts. The structure for storing superterms in the sharing was changed
from lists to maps. Newly derived clauses are now inserted at the first possible
position with respect to weight in the list of usable clauses, instead of also con-
sidering search space depth. Finally, Spass-YAGO skips auto-configuration and
instead uses a standard complete flag setting in the input files according to our
calculus (Section 4).

There is still plenty of room for speed ups via further engineering. Our moti-
vation was not on getting a much faster system but to advance Spass such that
it can cope with the size of YAGO.

7 Experiments

We ran our experiments on 4 x Intel Xeon Processor X5560 (8M Cache, 2.80
GHz) Debian Linux machine with 48 GB RAM. We compared Spass-YAGO with
iProver version 0.7 [5], E version 1.1 [9], and Spass version 3.5 [16] including the
before mentioned engineering improvements. The reason for this comparison is
only to show that our new calculus, filtered context tree indexing and improved
implementation advances the state of the art in automated reasoning on large
ontologies. None of the above systems has been specifically designed to fit the
BSHE theory created out of YAGO. All the provers were recompiled for the
above 64 bit architecture to better cope with the large inputs.

First we evaluated the task of showing satisfiability of (slices of) YAGO after
having removed all inconsistencies by hand on the basis of Spass-YAGO runs.
The examples are in favor of iProver, E, and Spass 3.5 as we did not include

454 M. Suda, C. Weidenbach, and P. Wischnewski

Slices Input size [F] Time to saturate Output size [F] Other provers

S0 136808 12.5 +1768 fail

S1 132080 9.7 +16060 fail

S2 96454 9.9 +1768 fail

S3 114527 10.6 +4769 fail

S4 4891235 37:11.1 +24123 fail

Full 9918933 1:03:24.0 +24123 fail

Fig. 3. Saturating YAGO

the unique name assumption units for those provers, whereas Spass-YAGO tests
the corresponding inference rule. The results are given in Figure 3.

The second column shows the number of formulas (clauses), the third the time
needed for saturation, and the fourth the number of additionally eventually kept
clauses by Spass-YAGO. All other provers fail on showing any of the examples
due to timing constraints of 60 min for the first 4 slices and due to running out
of (internal) memory (except for Spass and E running out of time) for S4 and
the full set.

Note that showing satisfiability is the more difficult problem compared to
actually proving queries. All provers can successfully solve queries with respect
to at least one of the S0-S4 slices.

Since none of the other provers could handle the overall core, we only carried
out the second experiment on queries using Spass-YAGO. We evaluated the fol-
lowing two queries on the saturated core of YAGO, where we applied the now
complete SOS strategy.

Q1 ∃x.politician(x) ∧ physicist(x) ∧ bornIn(x,Hamburg) ∧
hasSuccessor (Helmut Schmidt , x)

Q2 ∃x, y, z.diedIn(x, y) ∧ hasChild (x, z) ∧ bornIn(z, y) ∧
locatedIn(y,New York)

The results of the querying are shown in the table below.

Query Derived Kept Proof length Reasoning Total

Q1 1 1 18 0:00.1 9:37.8

Q2 9 0 6 0:00.1 9:38.3

The table shows the number of derived, kept clauses and the length of the
proof found by Spass-YAGO. Actually, almost all of the time is spent on load-
ing the overall clause set, the difference between total time and reasoning time.
The time for answering the queries is below one second. The difference between

On the Saturation of YAGO 455

derived/kept clauses and proof length is the result of simplification, in particular
sort simplification exploring subsort relationships. Recall that in the saturated
core not all ground consequences of YAGO are explicitly represented. So the in-
volved reasoning goes beyond simple data base style joins but involves reasoning
about transitivity and subsort relationships.

8 Conclusion

The saturation of large ontologies is a challenge for first-order reasoning. The
core of the YAGO ontology can be saturated by Spass-YAGO in about 1 hour
(Section 7) due to a new complete, sound, and terminating variant of the su-
perposition calculus (Section 4) accompanied by filtered context tree indexing
(Section 5) and improved implementations (Section 6). Spass-YAGO signifi-
cantly advances the state of the art in theorem proving on large ontologies
(Section 7). It complements other efforts in this direction. The yearly CASC
division on ontology reasoning [14] as well as approaches on combining theorem
provers with other sources of knowledge [12] concentrate on finding proofs (an-
swers, contradictions), not saturations, i.e. models of an overall ontology as we
have studied in this paper for a core of YAGO. One of the first contributions on
applying theorem proving to large ontologies is [4] where a number of engineering
questions are discussed.

Most importantly, we showed that standard automated reasoning tools such as
Spass are able to cope with large ontologies such as a core of YAGO if the calcu-
lus and implementation are adopted accordingly. Currently, our implementation
does not directly give answers but shows proofs. This can be straightforwardly
extended to an answer mechanism. The queries we considered are solely existen-
tially quantified. This can be extended to arbitrary quantifier prefixes, because
we are considering a finite domain only. However, it needs further research in
order to cope with the potential search space spanned by such a query. Here an
even more refined calculus, e.g. by integrating chaining directly into the hyper
resolution inference is instrumental. Finally, reasoning with respect to the con-
fidence values attached to facts in YAGO that are ignored for this paper could
be added to the calculus, e.g. in the style of a multi-valued logic aggregating
formulas at their respective confidence values.

References

[1] Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of
transitive relations. Journal of the ACM (JACM) 45(6), 1007–1049 (1998)

[2] Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. In: Goré, R., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 242–256.
Springer, Heidelberg (2001)

[3] Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)
[4] Horrocks, I., Voronkov, A.: Reasoning support for expressive ontology languages

using a theorem prover. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 201–218. Springer, Heidelberg (2006)

456 M. Suda, C. Weidenbach, and P. Wischnewski

[5] Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order
Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

[6] Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964.
Elsevier/MIT Press (2001)

[7] Schulz, S., Bonacina, M.P.: On Handling Distinct Objects in the Superposition
Calculus. In: Konev, B., Schulz, S. (eds.) Proc. of the 5th International Workshop
on the Implementation of Logics, Montevideo, Uruguay, pp. 66–77 (2005)

[8] Rao, J., Ross, K.A.: Making B+-trees cache conscious in main memory. In: ACM
SIGMOD International Conference on Management of Data, pp. 475–486 (2000)

[9] Schulz, S.: E - a brainiac theorem prover. AI Communication 15(2-3), 111–126
(2002)

[10] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: 16th international World Wide Web conference (WWW 2007), Banff, Canada,
pp. 697–706. ACM Press, New York (2007)

[11] Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from
Wikipedia and WordNet. J. Web Sem. 6(3), 203–217 (2008)

[12] Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.:
External sources of axioms in automated theorem proving. In: Mertsching, B.,
Hund, M., Aziz, M.Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 281–288. Springer,
Heidelberg (2009)

[13] Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO.
Research Report MPI-I-2010-RG1-001, Max-Planck-Institut für Informatik,
Saarbrücken (2010)

[14] Sutcliffe, G.: The 4th IJCAR Automated Theorem Proving System Competition
- CASC-J4. AI Communication 22(1), 59–72 (2009)

[15] Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 27, vol. 2, pp.
1965–2012. Elsevier, Amsterdam (2001)

[16] Weidenbach, C., Dimova, D., Fietzke, A., Suda, M., Wischnewski, P.: SPASS
Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145.
Springer, Heidelberg (2009)

Optimized Description Logic Reasoning via Core
Blocking

Birte Glimm, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory, UK

Abstract. State of the art reasoners for expressive description logics, such as
those that underpin the OWL ontology language, are typically based on highly
optimized implementations of (hyper)tableau algorithms. Despite numerous op-
timizations, certain ontologies encountered in practice still pose significant chal-
lenges to such reasoners, mainly because of the size of the model abstractions
that they construct. To address this problem, we propose a new blocking tech-
nique that tries to identify and halt redundant construction at a much earlier stage
than standard blocking techniques. An evaluation of a prototypical implementa-
tion in the HermiT reasoner shows that our technique can dramatically reduce the
size of constructed model abstractions and reduce reasoning time.

1 Introduction

Description logics (DLs) are a family of logic based knowledge representation for-
malisms [1] widely used in conceptual modeling, and they provide the formal basis
for the OWL 2 ontology language [2]. DL reasoners support the development and de-
ployment of ontologies in numerous tools and applications. State of the art reasoners
for expressive DLs are typically based on highly optimized variants of (hyper)tableau
algorithms—model building procedures that decide the (un)satisfiability of a knowl-
edge base K via a constructive search for an abstraction of a model for K. Examples of
such reasoners include FaCT++ [3], HermiT [4], Pellet [5], and Racer [6].

Despite numerous optimizations, certain existing and emerging knowledge bases
still pose significant challenges to such reasoners. In particular, state of the art (hy-
per)tableau reasoners use a cycle detection technique called blocking to ensure that
only finite model abstractions are constructed. These abstractions can, however, be very
large, which can be problematical with respect to space and time: the available memory
may be exhausted, and even if this is not the case, building such large structures, and
potentially performing backtracking search over them, can be time consuming.

It has already been demonstrated that using a more fine-grained blocking condition
can make the constructed abstractions smaller, resulting in a significant speedup [7].
Even with such a blocking condition, however, the constructed model abstractions can
be very large; furthermore, checking such fine-grained conditions can itself be costly.

To address these problems, we propose a new core blocking technique. Our tech-
nique first employs an easy-to-check and very “aggressive” blocking condition that can
halt the model construction much earlier than existing techniques. This condition is
so aggressive that, if used alone, it is not necessarily the case that the constructed ab-
straction can be expanded into a model. Therefore, after a model abstraction has been

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 457–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

458 B. Glimm, I. Horrocks, and B. Motik

constructed, a detailed check is performed to ensure that all blocks are indeed valid, and
model construction terminates only if all blocks pass this check. Checking blocks for
validity can be costly, but it has to be performed relatively rarely, sometimes only once.

We present our technique in the context of the hypertableau calculus [4] and show
that the resulting calculus is sound, complete, and terminating. As we discuss in Section
3.4, however, our idea can easily be transferred to standard tableau calculi.

To make our technique effective in practice, one must strike a balance between model
expansion and blocking validation: if the core blocking condition is too strict, then it
will offer little advantage over standard blocking, and model abstractions may still grow
very large; if the condition is not strict enough, then it may stop the construction too
early, and the reasoner will spend most of its time in validating blocks. We therefore
present several variants of core blocking inspired by our observations about reason-
ing algorithms for EL-like DLs [8,9], and we present an empirical evaluation using a
prototypical implementation of our technique in the HermiT reasoner. The evaluation
compares the performance of the hypertableau algorithm employing the original block-
ing condition and each of the core blocking variants on several widely used ontologies.
As might be expected, the effects of core blocking are most pronounced with large and
complex ontologies such as DOLCE or GALEN, on which it significantly reduces the
sizes of the constructed model abstractions. Furthermore, core blocking allows HermiT
to classify an OWL version of the FMA ontology [10], whereas with standard blocking
the reasoner runs out or memory. Finally, with simple ontologies such as Wine, core
blocking may have little or no effect on the size of abstractions, but it incurs little or no
additional cost compared to the standard blocking technique.

2 Preliminaries

We present our results in the context of the hypertableau calculus, which preprocesses
a DL knowledge base into a particular clausal form. Therefore, the precise definitions
of DLs [1] are not relevant. The basic elements of DL knowledge bases are atomic con-
cepts, atomic roles, and individuals, which correspond to unary predicates, binary pred-
icates, and constants, respectively. Using various constructors, one can construct com-
plex concepts, which can be transformed into formulae of two-variable first-order logic
with counting. For example, the concept Man � ∃hasChild .Man , representing the set
of all men with a male child, corresponds to Man(x) ∧ ∃y : hasChild (x, y) ∧Man(y).
Concepts can be used in axioms of the formC � D, which state that the extension ofC
is contained in the extension ofD. For example, Man � Person expresses the fact that
all men are persons. Various DLs allow for other types of axioms, such as statements
that a particular role is reflexive, symmetric, or transitive. A TBox T is a set of axioms.
An ABox A is a set of assertions of the form C(a), R(a, b), a ≈ b, and a �≈ b, where
C is a concept, R is an atomic role, and a and b are individuals. A knowledge base is a
pairK = (T ,A); it is satisfiable if a first-order interpretation satisfying T andA exists.

2.1 Model Construction Calculi

Model construction calculi, such as tableau and hypertableau [4], decide the satisfiabil-
ity of K = (T ,A) by trying to construct a model of K. To this end, they use derivation

Optimized Description Logic Reasoning via Core Blocking 459

rules that, given an ABox A�, derive an ABox A�+1 and thus explicate information
implicit in T and A�. Derivation rules can be nondeterministic—that is, they can de-
rive more than one A�+1 from A�. To check the satisfiability of K, model construction
calculi construct a derivation for K, which is a sequence of ABoxes A0, . . . ,Ak such
that A0 = A, the ABox A�+1 is obtained from A� by applying a derivation rule for
each 0 ≤ � < k, and no derivation rule is applicable to Ak. The satisfiability of K can
be decided by checking whether a derivation exists such that Ak does not contain an
obvious contradiction; such an Ak is called a pre-model. Given such an Ak, a model
for K can be constructed by a process called unraveling [4].

2.2 The Hypertableau Calculus

The formal definition of the hypertableau calculus is technically involved; therefore,
we present here only the aspects that are needed to understand the idea behind core
blocking. For further details and the precise definitions, please refer to [4].

The calculus is applicable to a knowledge base K = (T ,A) expressed in SROIQ
[11]—the DL underpinning OWL 2. The calculus does not operate onK directly; rather,
in order to reduce nondeterminism, it first translates K into a set of clauses C and an
ABox A. The class of clauses on which the hypertableau calculus operates is called
HT-clauses. An HT-clause is an implication of the form

∧m
i=1 Ui →

∨n
j=1 Vj , where Ui

and Vj are called the antecedent and the consequent atoms, respectively. Most notably,
the atoms in an HT-clause must satisfy the following restrictions, where r is an atomic
role, s is a role, A is an atomic concept, and B is a possibly negated atomic concept.

– Each antecedent atom is of the form A(x), r(x, x), r(x, yi), r(yi, x), A(yi), or
A(zj).

– Each consequent atom is of the form B(x), �n s.B(x), B(yi), r(x, x), r(x, yi),
r(yi, x), r(x, zj), r(zj , x), x ≈ zj , or yi ≈ yj .

These syntactic restrictions reflect the structure of DL axioms and ultimately ensure
termination of the calculus. HT-clauses are straightforwardly interpreted in first-order
logic, and they intuitively state that at least one consequent atom must be true whenever
all atoms in the antecedent are true. We next present the derivation rules of the calculus.

The Hyp-rule is the main derivation rule. For σ a mapping of variables to individuals
and U an atom, let σ(U) be the atom obtained fromU by replacing each variable xwith
σ(x). The Hyp-rule is applicable to an HT-clause

∧m
i=1 Ui →

∨n
j=1 Vj and an ABoxA�

if a mapping σ from the variables in the clause to the individuals in A� exists such that
σ(Ui) ∈ A� for each 1 ≤ i ≤ m, but σ(Vj) �∈ A� for each 1 ≤ j ≤ n. If that is the case,
the rule nondeterministically derives A�+1 = A� ∪ {σ(Vj)} for some 1 ≤ j ≤ n. For
example, when applied to the HT-clause r(x, y)→ (� 1 r.A)(x) ∨D(y) and an ABox
A� containing r(a, b), the Hyp-rule extendsA� with either (� 1 r.A)(a) or D(b).

The �-rule deals with existential quantifiers and number restrictions. Intuitively,
an assertion (�n s.B)(a) implies the existence of distinct individuals b1, . . . , bn such
that role s connects a with each bi and that B(bi) holds. Thus, the �-rule is applica-
ble to (�n s.B)(a) in A� if no individuals b1, . . . , bn exist such that ar(s, a, bi) ∈ A�

and B(bi) ∈ A� for each 1 ≤ i ≤ n, and bi �≈ bj ∈ A� for each 1 ≤ i < j ≤ n, where

460 B. Glimm, I. Horrocks, and B. Motik

ar(s, a, b) = s(a, b) if s is an atomic role and ar(s, a, b) = r(b, a) if s is an inverse role
such that s = r−. If that is the case, then A� is extended to A�+1 by introducing fresh
individuals c1, . . . , cn and adding assertions ar(s, a, ci) and B(ci) for 1 ≤ i ≤ n, and
ci �≈ cj for 1 ≤ i < j ≤ n. The individual a is called a predecessor of each ci; each
ci is called a successor of a; and ancestor and descendant are transitive closures of the
predecessor and successor relations, respectively.

The ≈-rule deals with equality. Intuitively, an assertion a ≈ b states that individuals
a and b are equal, so one can be treated as a synonym for the other. The ≈-rule is
applicable to an assertion a ≈ b in A� if a �= b, in which case it derives A�+1 from A�

by a process called merging: a is replaced with b in all assertions, certain assertions are
removed, and some bookkeeping information is added in order to ensure termination.

The NI-rule deals with certain complications due to an interaction between num-
ber restrictions, nominals, and inverse roles. The details of this derivation rule are not
relevant for core blocking, so we omit it for the sake of brevity.

The⊥-rule detects obvious contradictions. IfA� containsA(a) and¬A(a), or a �≈ a,
the rule derivesA�+1 = A� ∪ {⊥}; then A�+1 is said to contain a clash.

2.3 Blocking

The �-rule is found in virtually all DL model construction calculi. Unrestricted appli-
cation of the �-rule can lead to the introduction of infinitely many fresh individuals and
thus prevent the calculus from terminating. To counteract that, the �-rule is applied to
an assertion (�n r.B)(a) only if the individual a is not blocked, as described next.

To apply blocking, the individuals are split into two sets. Root individuals either
occur in the input or are introduced by the NI-rule, and they are never blocked. In
contrast, blockable individuals are introduced by the �-rule and they can be blocked.
Blocking uses labels of an individual and an individual pair defined as follows, where
A is an atomic concept and r is an atomic role:

LA(s) = {A | A(s) ∈ A} LA(s, t) = {r | r(s, t) ∈ A}

To prevent cyclic blocks, one needs to pick a strict order≺ over all individuals satisfying
certain restrictions. In practice,≺ usually coincides with the order in which individuals
are inserted into an ABox.

Pairwise anywhere blocking is necessary for knowledge bases that use inverse roles
and number restrictions. Each individual s in an ABox A is assigned by induction on
≺ a status as follows: s is blocked if it is directly or indirectly blocked; s is indirectly
blocked if it has a blocked ancestor; and s is directly blocked by an individual t if, for
s′ and t′ the predecessors of s and t, respectively, s, t, s′, and t′ are all blockable, t is
not blocked, t ≺ s, and (1)–(4) hold.

LA(s) = LA(t) (1) LA(s′) = LA(t′) (2)
LA(s, s′) = LA(t, t′) (3) LA(s′, s) = LA(t′, t) (4)

For an efficient implementation, we build, for each individual, a blocking signature that
consist of the four label sets. A hash table containing the blocking signatures for possi-
ble blockers can then be used to cheaply look-up a blocker for an unblocked individual
before the �-rule is applied.

Optimized Description Logic Reasoning via Core Blocking 461

The simpler single anywhere blocking can be used on knowledge bases without in-
verse roles, and it differs from the above definition in that s is directly blocked by an
individual t if s and t are blockable, t is not blocked, t ≺ s, and (1) holds.

A pre-modelA′ can be extended to a model for (A, C) by unraveling. Roughly speak-
ing, each individual s that is directly blocked in A′ by t is replaced by a “copy” of t; a
precise account of this process is given in [4].

Tableau algorithms for DLs without inverse roles can use single subset blocking,
in which s is directly blocked by t if LA(s) ⊆ LA(t). This can result in smaller pre-
models; however, in the hypertableau calculus single subset blocking does not guarantee
that a pre-model can be expanded into a model [4].

3 Optimized Blocking Strategies

On complex knowledge bases, reasoners based on model construction calculi may con-
struct very large pre-models. This is one of the main limiting factors in practical DL
reasoning [4], as the construction may be time-consuming, and the reasoner may even
run out of memory before terminating. Blocking prevents the application of the �-rule
and thus constrains the size of pre-models, so some effort has been devoted to detecting
situations in which a block can be established earlier than with the standard single or
pairwise blocking, but without sacrificing soundness.

For tableau algorithms that normally require pairwise blocking, Horrocks and Sattler
proposed a more precise blocking condition [7], which amounts to single subset block-
ing with additional constraints on the predecessor of the individual that is to be blocked
and on the blocker itself. For example, if an individual s with predecessor s′ is to be
blocked by an individual t, and ∀r.C is in the label of the blocker t, then either s should
be not an r−-successor of s′ or C should be in the label of s′. Although checking the
blocking conditions is quite expensive, the optimization exhibits substantial improve-
ments in reasoning performance due to the significantly smaller pre-models.

Related blocking optimizations were proposed in the context of first-order theorem
proving [12]; however, these techniques do not guarantee termination for DLs such as
SROIQ that provide for nominals, number restrictions, and inverse roles.

Caching [13] is an orthogonal approach for reducing the pre-model size by reusing
already constructed pre-model fragments. In fact, caching techniques can be used to
obtain a worst-case optimal algorithm for certain DLs [14,15]; in contrast, standard
(hyper)tableau algorithms are usually not worst-case optimal.

3.1 Core Blocking

Unlike existing blocking techniques, core blocking is approximate rather than exact: ap-
plying core blocking alone does not guarantee that a pre-model can indeed be unraveled
into a model. To ensure the latter, a pre-model needs to be checked to discover invalid
blocks; if such blocks are found, the derivation is continued until either a contradiction
is derived or all blocks become valid. The latter condition is satisfied at latest when the
standard blocking condition is satisfied, which ensures termination.

To formalize the process of discovering approximate blocks, we assume that each
assertion α in an ABox is associated with a Boolean flag that determines whether α is

462 B. Glimm, I. Horrocks, and B. Motik

a core assertion. A core blocking policy will be used to determine which assertions are
core. A credulous policy would make no assertions core, thus allowing any individual to
potentially block any other individual. While this might generate very small pre-models,
it is unlikely to be practicable because most blocks are likely to be invalid, so a reasoner
would spend a lot of time in validation. In contrast, a conservative policy would make
all assertions core, thus making core blocking exact. In Section 3.3 we present two
policies that strike a balance between the potential for reduction in the pre-model size
and the cost of validating blocks. Before that, however, we introduce a general notion
of core blocking that is applicable to any policy.

Definition 1. For an ABox A and a pair of individuals s and t, let

Lcore
A (s) ={A | A ∈ LA(s) and A(s) is a core assertion in A} and

Lcore
A (s, t) ={r | r(s, t) ∈ LA(s, t) and r(s, t) is a core assertion in A}.

Single and pairwise core blocking are obtained from the respective definitions given in
Section 2.3 by using Lcore

A instead of LA in conditions (1)–(4); furthermore, in single
core blocking, for s to be directly blocked by t we additionally require both s and t to
be successors of blockable individuals.

On knowledge bases that normally require pairwise anywhere blocking (i.e., that con-
tain inverse roles), the model construction from [4] requires individuals s and t involved
in direct blocking to be successors of blockable individuals. This is reflected in the no-
tion of single core blocking in Definition 1, which allows single core blocking to be
used with knowledge bases that contain inverse roles.

Since core blocking may halt the model expansion too early, we introduce a blocking
validation test that checks whether any of the derivation rules would be applicable if we
were to unravel a candidate pre-modelA� to a model. To this end, we define an ABox
valA�

(s) for a blockable individual s that, intuitively, contains the assertions from the
unraveling ofA� that affect inferences involving s. If no derivation rule is applicable to
valA�

(s), we can conclude that no derivation rule is applicable to the model constructed
fromA� as discussed in [4].

Definition 2. Let C be a set of HT clauses, and letA� be an ABox. For an individualw,
let |w| = w if w is not blocked in A�, and |w| = w′ if w is blocked in A� by w′. For a
blockable individual s, the ABox valA�

(s) is the union of the sets shown in the following
table, where u denotes the predecessor of s, v denotes a successor of |s|, b denotes a
root individual, C denotes a concept, and r denotes an atomic role.

1 2 3
{C(u) | C(u) ∈ A�} {r(u, s) | r(u, s) ∈ A�} {r(s, u) | r(s, u) ∈ A�}
{C(s) | C(|s|) ∈ A�}
{C(v) | C(|v|) ∈ A�} {r(s, v) | r(|s|, v) ∈ A�} {r(v, s) | r(v, |s|) ∈ A�}
{C(b) | C(b) ∈ A�} {r(s, b) | r(|s|, b) ∈ A�} {r(b, s) | r(b, |s|) ∈ A�}

A blockable individual s is safe for blocking in an ABox A� if the following conditions
are satisfied:

Optimized Description Logic Reasoning via Core Blocking 463

– the Hyp-rule is not applicable to an HT-clause γ ∈ C and valA�
(s) with a mapping

σ such that σ(x) = s, and
– the �-rule is not applicable to an assertion (�n r.B)(s) in valA�

(s).

A directly blocked individual s with predecessor s′ is validly blocked in A� if both s
and s′ are safe for blocking.

We finish this section with a note that, on knowledge bases that normally require single
blocking (i.e., that do not contain inverse roles), Definitions 1 and 2 can be simplified.
By the model construction from [4], valA�

(s) then needs to contain only sets from
columns 1 and 2 in Definition 2; this, in turn, allows us to drop the extra requirement
on the predecessors of s and t in Definition 1 in the case of single core blocking.

3.2 Applying Core Blocking in a Derivation

If an individual s is core-blocked by an individual t but the block is identified as in-
valid, one should reconsider t as a potential blocker for s only after valA�

(s) changes;
otherwise, the calculus might get stuck in an endless loop trying to block s by t and sub-
sequently discovering the block to be invalid. We deal with this problem by associating
with each individual s in A� a Boolean flag modA�

(s) that is updated as the derivation
progresses. Intuitively, modA�

(s) = true means that valA�
(s) has changed since the

last time blocks were checked for validity. We also maintain a set S of pairs of validly
blocked and blocking individuals, which we to ensure that the calculus terminates only
when all blocks are valid.

Definition 3. Let S be a set of pairs of individuals; let A� be an ABox; and let s and
t be individuals occurring in A�. Then, s is directly blocked by t in A� for S-core
blocking iff s is directly blocked by t in A� for core blocking and

〈s, t〉 ∈ S or modA�
(s) = true or modA�

(t) = true.

A derivation by the hypertableau calculus with core blocking for a set of HT-clauses C
and an ABox A is constructed by applying the following steps.

1. Set S := ∅, Aa := A, and modAa(s) := true for each individual s in Aa.
2. Apply the hypertableau calculus exhaustively toAa and C while using S-core block-

ing in the �-rule; furthermore, whenever A�+1 is derived from A�, for each indi-
vidual s in A�+1 set
(a) modA�+1(s) := true if valA�+1(s) �= valA�

(s) or if s does not occur inA�, and
(b) modA�+1(s) := modA�

(s) otherwise.
Let Ab be a resulting ABox to which no derivation rule is applicable.

3. Set S to be equal to the set of pairs 〈s, t〉 of individuals such that s is directly
blocked in Ab by t and s is validly blocked in Ab.

4. Set modAb(s) := false for each individual s in Ab.
5. If an individual s exists such that s is core blocked in Ab by t but 〈s, t〉 �∈ S, then

set Aa := Ab and go to Step 2.
6. Return Ab.

464 B. Glimm, I. Horrocks, and B. Motik

Roughly speaking, our algorithm first applies the derivation rules as usual, with the
difference that core blocking is used (this is because S = ∅ in Step 1). After computing
a candidate pre-modelAb in Step 2, in Step 3 the algorithm updates S to the set of pairs
of valid blocks, and in Step 4 it marks all individuals in Ab as not changed. In Step 5,
the algorithm checks whetherAb contains invalid blocks. If that is the case, the process
is repeated; but then, S-core blocking ensures that only those blocks are considered that
are known to be valid or for which at least one of the individuals has changed since the
last validation. Theorem 1 shows that the calculus is sound, complete, and terminating.

Theorem 1. Let K = (T ,A) be a SROIQ knowledge base and C the set of HT-
clauses for K.

1. The hypertableau calculus with core blocking terminates.
2. If C andA are satisfiable, then ⊥ �∈ Ab for some Ab computed by the calculus.
3. If C andA are unsatisfiable, then ⊥ ∈ Ab for each Ab computed by the calculus.

Proof (Sketch). For the first claim, assume thatAb is an ABox computed in Step 2 such
that, whenever s is directly blocked in Ab by t for core blocking, then s is directly
blocked in Ab by t for standard blocking. Each individual s is then validly blocked in
Ab, so 〈s, t〉 ∈ S at Step 3 and the condition at Step 5 is not satisfied, so the calculus
terminates. Thus, in the worst case, core blocking reduces to standard blocking, which
implies a bound on the size of Ab in the usual way [4]. Furthermore, if an individual
t does not validly block s in an ABox Ab, then t can be considered again as a blocker
for s only after valAb(s) or valAb(t) changes. Since Ab is bounded in size, valAb(s)
and valAb(t) can change only a bounded number of times; hence, t is considered as a
candidate blocker for s only a finite number of times, which implies termination.

The second claim holds in the same way as in [4]. Finally, for the third claim, given
an ABox Ab computed by the calculus such that ⊥ �∈ Ab, we unravel Ab into an in-
terpretation in the standard way [4]. From the definition of unraveling in [4], one can
see that, for each blockable individual s, the ABox valAb(s) contains the assertions that
correspond to the part of the unraveled interpretation involving s. Since s is validly
blocked in Ab, all the relevant restrictions are satisfied for s. Since all blocks are valid
in Ab, the unraveled interpretation is a model of C andA. �!

3.3 Core Blocking Policies

We now present two policies for identifying core assertions. Each policy can be used
with either single or pairwise core blocking.

The simple core policy is inspired by the following observation. Let A be a poten-
tially infinite ABox obtained by applying the hypertableau calculus without blocking
to an EL knowledge base K, and let s and t be two individuals introduced by ap-
plying the �-rule to assertions of the form (�n r.B)(s′) and (�mr′.B)(t′). Then,
LA(s) = LA(t); in fact, the concept labels LA(s) and LA(t) depend only on the con-
cept B. The policy thus makes such assertionsB(s) and B(t) core in the hope that, if a
knowledge base is sufficiently “EL-like,” then s would validly block t.

Definition 4. The simple core policy marks all assertions as not core unless they are
covered by one of the following rules.

Optimized Description Logic Reasoning via Core Blocking 465

– Each assertion B(cj) derived by applying the �-rule to an assertion of the form
(�n r.B)(a) is marked as core.

– Each assertion α′ derived by the≈-rule from an assertion α via merging is marked
as core if and only if α is core.

– If an ABox contains α as a noncore assertion but some derivation rule derives α as
a core assertion, the former assertion is replaced with the latter.

Simple core blocking generates very small cores, but it can be imprecise and can there-
fore lead to frequent validation of blocks. For example, if s and t are individuals in-
troduced by applying the �-rule as above, then inferences involving the predecessor
of s can cause the propagation of new concepts to s, which might invalidate blocking.
Furthermore, if the knowledge base contains nondeterministic concepts, then nondeter-
ministic inferences involving s and tmay causeLA(s) and LA(t) to diverge, which can
also invalidate blocking. We therefore define the following, stronger notion of cores.

Definition 5. The complex core policy is the extension of the simple core policy in
which, whenever the Hyp-rule derives an assertion σ(Vj) using a mapping σ and an
HT-clause γ =

∧m
i=1 Ui →

∨n
j=1 Vj , the assertion σ(Vj) is marked as core if and only

if σ(Vj) is a concept assertion and

– n > 1, or
– σ(Vj) is of the form B(s) with s a successor of σ(w) for some variable w in γ.

The complex core policy is motivated by the fact that, when EL-style algorithms are
extended to expressive but deterministic DLs such as Horn-SHIQ [9], the concepts that
are propagated to an individual from its predecessor uniquely determine the individual’s
label, so we mark all such assertions as core.

From the above discussion, one might expect simple core blocking to be exact on
HT-clauses obtained from an EL knowledge base. The knowledge base consisting of
axioms (1)–(6), however, shows that this is not the case.

A(x)→ (� 1 r.C)(x) (1)

B(x)→ (� 1 s.C)(x) (2)

C(x)→ (� 1 t.D)(x) (3)

t(x, y) ∧D(y)→ E(x) (4)

B(x) ∧ s(x, y) ∧E(y)→ ⊥ (5)

A(a) B(a′) (6)

The algorithm initially produces the pre-model shown on the left-hand side of Figure 1,
in which b directly core-blocks b′ (since there are no inverse roles, it does not matter that
a and a′ are root individuals). If single core blocking were exact, the algorithm would
terminate and declare the knowledge base satisfiable. This block, however, is invalid
since the Hyp-rule is applicable to HT-clause (5) and ABox valA�

(b′) shown below
(since there are no inverse roles, valA�

(b′) does not contain assertions from column 3 of
Definition 2) for σ(x) = a′ and σ(y) = b′. Therefore, the model expansion continues
as shown on the right-hand side of Figure 1, which ultimately leads to a contradiction.

valA�
(b′) = { B(a′), � 1 s.C(a′), s(a′, b′), C(b′), � 1 t.D(b′), E(b′),

D(c), t(b′, c), A(a), � 1 r.C(a) } (7)

466 B. Glimm, I. Horrocks, and B. Motik

aA, � 1 r.C

bC, � 1 t.D, E

cD

a′ B, � 1 s.C

b′ C, � 1 t.D

r

t

sblocks

aA, � 1 r.C

bC, � 1 t.D, E

cD

a′ B, � 1 s.C, ⊥

b′ C, � 1 t.D, E

c′ D

r

t

s

t

Fig. 1. Left is the first pre-model for the knowledge base (1)–(6) and single simple core blocking,
and right is the final pre-model. Core concepts are shown in bold.

3.4 Applying Core Blocking in Tableau Calculi

Although we presented our idea in the context of the hypertableau calculus, core block-
ing can be straightforwardly adapted to tableau calculi. This would require adapting the
definition of valA�

(s) to reflect the model construction used in the soundness proof of
the calculus, and adapting the notion of safe blocking and Definition 5 to reflect the
inference rules of the calculus. For example, most tableau calculi use a ∀-rule that from
(∀r.A)(a) and r(a, b) derivesA(b). Consequently, an individual a should be considered
safe for blocking if the ∀-rule is not applicable to an assertion in valA�

(a) involving a,
and A(b) should be made core if b is a successor of a.

4 Empirical Evaluation

We implemented the different core blocking strategies in our HermiT reasoner
and carried out a preliminary empirical evaluation. For the evaluation, we selected sev-
eral ontologies commonly used in practice. We classified each ontology and tested the
satisfiability of all concepts from the ontologies with the different blocking strategies.
We were mainly interested in the number of individuals in a candidate pre-model, which
we expected to be smaller due to core blocking. Since the number of individuals in a
pre-model directly relates to the amount of memory required by the reasoner, smaller
pre-models can make the difference between being able to process an ontology or not.

We conducted our tests on a 2.6 GHz Windows 7 Desktop machine with 8 GB of
RAM. We used Java 1.6 allowing for 1 GB of heap space in each test. All tested ontolo-
gies, a version of HermiT that supports core blocking, and Excel spreadsheets contain-
ing test results are available online.1

Figures 2–6 contain concepts on the x-axis; however, concept names are not shown
due to the high number of concepts. The concepts are ordered according to the perfor-
mance of the standard blocking strategy reasoner. The y-axis either displays the number
of individuals in the pre-models or the reasoning times in milliseconds. All reason-
ing times exclude loading and preprocessing times, since these are independent of the
blocking strategy. Some figures employ a logarithmic scale to improve readability. The
label standard pairwise refers to the standard pairwise anywhere blocking strategy,
complex pairwise refers to pairwise core blocking with the complex core policy, etc.

Tables 1–3 show average measurements taken while testing the satisfiability of all
concepts in an ontology. The meaning of various rows is as follows: final pre-model size
shows the average number of individuals in the final pre-model; finally blocked shows

1 http://www.hermit-reasoner.com/coreBlocking.html

http://www.hermit-reasoner.com/coreBlocking.html

Optimized Description Logic Reasoning via Core Blocking 467

Fig. 2. The number of individuals in the pre-models for all concepts in DOLCE

Fig. 3. The reasoning times in ms for testing the satisfiability of all concepts in DOLCE

the average number of blocked individuals in the final pre-model; number of valida-
tions shows the average number of validations before a pre-model was found in which
all blocks are valid; time in ms shows the average time to test concept satisfiability; and
validation part shows the percentage of this time taken to validate blocks. Finally, all ta-
bles show the time needed to classify the ontology in the format hours:minutes:seconds.

DOLCE is a small but complex SHOIQ(D) ontology containing 209 concepts and
1,537 axioms that produce 2,325 HT-clauses. Core blocking works particularly well on
DOLCE. The pre-model sizes (see Figure 2) and the reasoning times (see Figure 3)
for all core blocking variants are consistently below those obtained with the standard
anywhere blocking strategy. The simple single core blocking strategy gives the smallest
pre-models but the reasoning times are slightly smaller for the simple pairwise strategy.
This is because the simple single strategy produces more invalid blocks and, conse-
quently, requires more expansion and (expensive) validation cycles before a final pre-
model is found (see Table 1). Overall, the strategies work very well because DOLCE
does not seem to be highly constrained and many blocks are valid immediately.

Wine has often been used to demonstrate various DL features. The ontology con-
tains 139 concepts and 393 SHOIN (D) axioms that are converted to 627 HT-clauses.
State of the art reasoners can routinely process the ontology. Satisfiability for almost all
concepts can be checked using pre-models with very few blocks and almost all blocks
are valid immediately, so we have not provided a figure showing the pre-model sizes.

468 B. Glimm, I. Horrocks, and B. Motik

Table 1. Average measurements over all concepts in DOLCE and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 28,310 13,583 5,942 1,634 1,426
finally blocked 19,319 9,341 4,241 1,207 1,046
number of validations — 1.03 1.06 1.09 2.09
time in ms 41,821 5,970 1,663 511 601
validation part — 2.17% 3.98% 48.84% 65.63%
classification time 01:18:32 00:24:03 00:08:43 00:03:45 00:05:29

Fig. 4. The reasoning times for testing the satisfiability of all concepts in the Wine ontology

Different blocking strategies (cf. Figure 4 and Table 2) exhibit little difference in perfor-
mance, and slight variations can be attributed to Java’s inconsistent runtime behavior.

GALEN is the original version of the GALEN medical ontology dating from about
10 years ago. Apart from CB [9], which implements an extension of an EL-style algo-
rithm to Horn-SHIQ [9], HermiT is currently the only reasoner that can classify this
ontology. GALEN is a Horn-SHIF ontology containing 2,748 concepts and 4,979
axioms that produce 8,189 HT-clauses, and it normally requires pairwise blocking.
GALEN is unusual in that it contains 2,256 “easy” concepts that are satisfied in very
small pre-models (< 200 individuals) and 492 “hard” concepts that are satisfied in very
large pre-models (> 35,000 individuals) for the standard blocking strategy. The classi-
fication times in Table 3 take all concepts into account; in all other cases we omit the
measurements for the “easy” concepts since they do not show much difference between
the different blocking strategies and just clutter the presentation. As for DOLCE, the
simple single core blocking strategy produces the most significant reduction in model
size (see Figure 5). Although this strategy requires the most validation rounds, and these
take up 86% of the overall reasoning time, this strategy is still the fastest (see Figure 6)
since the reduction in model sizes compensates for the expensive block validations.

The only optimization in HermiT that needs adapting in order to work with core
blocking is the blocking cache: once a pre-model for a concept is constructed, parts of
the pre-model are reused in the remaining subsumption tests [4]. This dramatically re-
duces the overall classification time. The blocking cache can only be used on ontologies
without nominals; in out test suite only GALEN falls into that category. Although the
blocking cache could in principle be adapted for use with core blocking, this has not
yet been implemented, so we switched this optimization off.

Optimized Description Logic Reasoning via Core Blocking 469

Table 2. Average measurements over all concepts in Wine and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 204.56 204.56 204.56 204.56 219.40
finally blocked 0 0 0 0 0
number of validations — 1.00 1.00 1.01 1.01
time in ms 108 152 154 141 168
validation part — 0.00% 0.01% 0.01% 0.06%
classification time 00:00:38 00:00:41 00:00:42 00:00:40 00:00:41

Fig. 5. The number of individuals in the pre-models for the (hard) concepts in GALEN

The foundational model of anatomy (FMA) is a domain ontology about human
anatomy [10]. The ontology is one of the largest OWL ontologies available, containing
41,648 concepts and 122,617ALCOIF(D) axioms, and it is transformed into 125,346
HT-clauses and 3,740 ABox assertions. We initially tried to take the same measurements
for FMA as for the other ontologies; however, after 20 hours we processed only about
10% of the concepts (5,288 out of 41,648), so we aborted the test. Only the single simple
core blocking strategy was able to process all 5,288 concepts. The pairwise simple
core strategy stayed within the memory limit, but it was significantly slower and it
suffered from 5 timeouts due to our imposition of a 2 minute time limit per concept. The
standard blocking strategy exceeded either the memory or the time limit on 56 concepts,
the pairwise complex core strategy on 70, and the single complex core strategy on 37
concepts. Therefore, we produced complete measurements only with single simple core
blocking, using which HermiT was able to classify the entire ontology in about 5.5
hours, discovering 33,431 unsatisfiable concepts. The ontology thus seems to contain
modeling errors that went undetected so far due to lack of adequate tool support. The
unsatisfiability of all of these concepts was detected before blocking validation was
required. The sizes of the ABoxes constructed while processing unsatisfiable concepts
is included in the final pre-model size in Table 4, although these are not strictly pre-
models since they contain a clash.

We also tested how much memory is necessary to construct all pre-models for
DOLCE and GALEN under different blocking strategies. Starting with 16MB, we dou-
bled the memory until the tested strategy could build all pre-models. The simple and
complex core blocking strategies require as little as 64MB and 128MB of memory,
respectively, whereas the standard blocking technique requires 512MB.

470 B. Glimm, I. Horrocks, and B. Motik

Fig. 6. The reasoning times for testing the satisfiability of the (hard) concepts in GALEN

Table 3. Average measurements over (hard) concepts in GALEN and the classification time

standard complex complex simple simple
pairwise pairwise single pairwise single

final pre-model size 37,747 33,557 4,876 4,869 2,975
finally blocked 19,290 19,726 2,234 1,896 1,247
number of validations — 9.18 12.65 8.87 13.91
time in ms 33,293 36,213 8,050 10,485 7,608
validation part — 27.47% 74.91% 81.47% 86.78%
classification time 03:50:01 04:35:12 01:07:18 01:27:50 01:02:44

Table 4. Average measurements over FMA with the single simple core strategy

final pre-model size 1,747 finally blocked 1,074
time in ms 518 validation part 0.00%
number of validations 0.2 classification time 05:31:23

5 Discussion

In this paper we presented several novel blocking strategies that can improve the perfor-
mance of DL reasoners by significantly reducing the size of the pre-models generated
during satisfiability tests. Although we expected complex core blocking to work better
on knowledge bases in expressive DLs, the evaluation shows that the simple core pol-
icy clearly outperforms the complex core policy regarding space and time on all tested
ontologies. On more complex ontologies, the memory requirement with core blocking
seems to decrease significantly.

On ontologies such as Wine where very few individuals are blocked, the new strate-
gies cannot really reduce the sizes of the pre-models; however, they do not seem to
have a negative effect on the reasoning times either. On more complex ontologies, the
memory requirement with core blocking seems to decrease significantly.

The current publicly available version of HermiT (1.2.2) uses simple single core
blocking as its default blocking strategy for ontologies with nominals; for ontologies
without nominals it uses standard anywhere blocking with the blocking cache opti-
mization, an optimization that has not yet been extended to core blocking.

Optimized Description Logic Reasoning via Core Blocking 471

Blocking validation is not highly optimized in our prototypical implementation. This
is most apparent for the single simple core strategy that causes the most invalid blocks
and where block validation takes 86% of the time for GALEN. Only the significant
model size reductions allows this strategy to nevertheless be the fastest. We believe
that we can significantly improve the performance in the future. We identified the two
most common reasons for invalid blocks: the �-rule is applicable to an assertion from
valA�

(s) of a blocked individual, or the Hyp-rule is applicable to the assertions from the
temporary ABox of the predecessor of a directly blocked individual. Testing for these
two cases first should reduce the overall time of validity tests. Finally, we shall adapt
the blocking cache technique to core blocking.

Acknowledgements. The presented work is funded by the EPSRC project HermiT:
Reasoning with Large Ontologies.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Descrip-
tion Logic Handbook. Cambridge University Press, Cambridge (2003)

2. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language document
overview (2009), http://www.w3.org/TR/owl2-overview/

3. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In:
Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297.
Springer, Heidelberg (2006)

4. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. of
Artificial Intelligence Research 173(14), 1275–1309 (2009)

5. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2) (2007)

6. Haarslev, V., Möller, R.: Description of the RACER system and its applications. In: Proc. of
DL-01 (2001)

7. Horrocks, I., Sattler, U.: Optimised reasoning for SHIQ. In: Proc. of ECAI-02, pp. 277–281
(2002)

8. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: : Proc. of IJCAI-05, vol. 19,
pp. 364–369 (2005)

9. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: : Proc. of IJCAI-
09, pp. 2040–2045 (2009)

10. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in owl: Ex-
perience and perspectives. J. of Web Semantics: Science, Services and Agents on the World
Wide Web 4(3), 181–195 (2006)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: : Proc. of KR-06,
pp. 57–67 (2006)

12. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model gen-
eration methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 125–139. Springer, Heidelberg (2006)

13. Ding, Y., Haarslev, V.: Tableau caching for description logics with inverse and transitive
roles. In: Proc. of DL-06 (2006)

14. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219. Springer, Heidelberg
(2009)

15. Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelligence Jour-
nal 124(1), 87–138 (2000)

http://www.w3.org/TR/owl2-overview/

An Extension of Complex Role Inclusion Axioms
in the Description Logic SROIQ

Yevgeny Kazakov

Oxford University Computing Laboratory

Abstract. We propose an extension of the syntactic restriction for complex role
inclusion axioms in the description logic SROIQ. Like the original restriction
in SROIQ, our restrictions can be checked in polynomial time and they guaran-
tee regularity for the sets of role chains implying roles, and thereby decidability
for the main reasoning problems. But unlike the original restrictions, our syn-
tactic restrictions can represent any regular compositional properties on roles.
In particular, many practically relevant complex role inclusion axioms, such as
those describing various parthood relations, can be expressed in our extension,
but could not be expressed in the original SROIQ.

1 Introduction

The description logic (DL) SROIQ [11] provides a logical foundation for the new
version of the web ontology language OWL 2.1 In comparison to the DL SHOIN
which underpins the first version of OWL,2 SROIQ provides several new constructors
for classes and axioms. One of the new powerful features of SROIQ are so-called
complex role inclusion axioms (RIAs) which allow for expressing implications between
role chains and roles: R1 · · ·Rn � R. It is well-known that unrestricted usage of such
axioms can easily lead to undecidability for modal and description logics [6,8,9,12],
with a notable exception of the DL EL++ [2]. Therefore, certain syntactic restrictions
are imposed on RIAs in SROIQ to regain decidability. Specifically, the restrictions
ensure that RIAs R1 · · ·Rn � R when viewed as production rules for context-free
grammarsR→ R1 . . . Rn induce a regular language. In fact, the reasoning procedures
for SROIQ [11,13] do not use the syntactic restrictions directly, but take as an input
the resulting non-deterministic finite automata for RIAs. This means that it is possible
to use exactly the same procedure for any set of RIAs for which the corresponding
regular automata can be constructed.

Unfortunately, the syntactic restrictions on RIAs in SROIQ are not satisfied in
all cases when the language induced by the RIAs is regular. In this paper we analyze
several common use cases of RIAs which correspond to regular languages but cannot
be expressed within SROIQ. To extend the expressive power of RIAs, we introduce
a notion of stratified set of RIAs and demonstrate that it can be used to express the
required axioms. Our restrictions have several nice properties, which could allow for
their seamless integration into future revisions of OWL:

1 http://www.w3.org/TR/owl2-overview/
2 http://www.w3.org/TR/owl-ref/

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 472–486, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl-ref/

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 473

Table 1. The syntax and semantics of SROIQ

Name Syntax Semantics

Concepts
atomic concept A AI (given)
nominal {a} {aI}
top concept � ΔI

negation ¬C ΔI \ CI

conjunction C �D CI ∩DI

existential restriction ∃R.C {x | RI(x,CI) �= ∅}
min cardinality �nS.C {x | ||SI(x, CI)|| ≥ n}
exists self ∃S.Self {x | 〈x, x〉 ∈ SI}

Axioms
complex role inclusion ρ � R ρI ⊆ RI

disjoint roles Disj(S1, S2) SI
1 ∩ SI

2 = ∅
concept inclusion C � D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈a, b〉 ∈ RI

1. Our restrictions are conservative over the current restrictions in SROIQ. That is,
every set of RIAs that satisfies the current restriction in SROIQ will automatically
satisfy our restrictions.

2. Our restrictions are tractable, that is, they can be verified in polynomial time in the
size of the input set of RIAs.

3. Our restrictions are constructive, which means that there is a procedure that builds
the corresponding regular automaton for every set of RIAs that satisfies our
restrictions.

4. Finally, unlike the original restrictions in SROIQ, our restrictions are complete
w.r.t. regular compositional properties. This means that any regular compositional
properties on roles can be expressed using a stratified set of RIAs.

2 Preliminaries

In this section we introduce syntax and semantics of the DL SROIQ [11]. A SROIQ
vocabulary consists of countably infinite sets NC of atomic concepts, NR of atomic
roles, and NI of individuals. A SROIQ role is either r ∈ NR, an inverse role r− with
r ∈ NR, or the universal role U . A role chain is a sequence of roles ρ = R1 · · ·Rn,
n ≥ 0, where Ri �= U , 1 ≤ i ≤ n; in this case we denote by ||ρ|| := n the size of
ρ; when n = 0, ρ is called the empty role chain and is denoted by ε. With ρ1ρ2 we
denote the concatenation of role chains ρ1 and ρ2, and with ρR (Rρ) we denote the role
chain obtained by appending (prepending) R to ρ. We denote by Inv(R) the inverse of
a role R defined by Inv(R) := r− when R = r, Inv(R) := r when R = r−, and
Inv(R) := U when R = U . The inverse of a role chain ρ = R1 · · ·Rn is a role chain
Inv(ρ) := Inv(Rn) · · · Inv(R1).

474 Y. Kazakov

The syntax and semantics of SROIQ is summarized in Table 1. The set of SROIQ
concepts is recursively defined using the constructors in the upper part of the table,
whereA ∈ NC , C, D are concepts,R, S roles, a an individual, and n a positive integer.

A regular order on roles is an irreflexive transitive binary relation ≺ on roles such
that R1 ≺ R2 iff Inv(R1) ≺ R2. A (complex) role inclusion axiom (RIA) R1 · · ·Rn �
R is said to be ≺-regular, if either: (i) n = 2 and R1 = R2 = R, or (ii) n = 1 and
R1 = Inv(R), or (iii) Ri ≺ R for 1 ≤ i ≤ n, or (iv) R1 = R and Ri ≺ R for
1 < i ≤ n, or (v) Rn = R and Ri ≺ R for 1 ≤ i < n. A setR of RIAs is ≺-regular if
every RIA in R is ≺-regular.

A SROIQ ontology is a set O of axioms listed in the lower part of Table 1, where
ρ is a role chain, R(i) and S(i) are roles, C, D concepts, and a, b individuals, such that
the set of all RIAs in O is ≺-regular for some regular order ≺ on roles.

For a RIA α = (ρ � R) and role chains ρ′ and ρ′′, we write ρ′ �α ρ
′′ if ρ′ = ρ′1ρρ

′
2

and ρ′′ = ρ′1Rρ
′
2 for some ρ′1 and ρ′2. To indicate a position where α was used, we

also write ρ′ �α,k ρ′′ where k = ||ρ′1||. For a set of RIAs R, we write ρ′ �R ρ′′

(ρ′ �R,k ρ′′) if ρ′ �α ρ′′ (ρ′ �α,k ρ′′) for some α ∈ R. We denote by �∗
R (�∗

R,k)
the reflexive transitive closure of �R (�R,k). The sequence ρ0 �α1 ρ1 · · · �αn ρn

(ρ0 �α1,k1 ρ1 · · · �αn,kn ρn), n ≥ 0, αi ∈ R (1 ≤ i ≤ n) is called a proof for
ρ0 � ρn inR. In this case we also say that ρ0 � ρn is provable inR.

We denote by R̄ the extension of R with inverses Inv(ρ) � Inv(R) of RIAs ρ �
R ∈ R. Let O be a SROIQ ontology and R the set of RIAs in O. A role S is simple
if ρ �∗

R̄ S implies ||ρ|| ≤ 1. It is required that all roles S(i) in Table 1 are simple
w.r.t. R. Other constructors of SROIQ [11] can be expressed using those in Table 1.
The bottom concept ⊥ stands for ¬	, disjunction C !D for ¬(¬C � ¬D), universal
restriction ∀R.C for ¬(∃R.¬C), max cardinality �nS.C for ¬(�(n+ 1)S.C), role
transitivity Tra(S) for S · S � S, role reflexivity Ref(R) for ε � R, role symmetry
Sym(R) for Inv(R) � R, role irreflexivity Irr(S) for ∃S.Self � ⊥, role asymmetry
Asy(S) for Disj(S, Inv(S)), concept equivalence C ≡ D for C � D and D � C,
and negative role assertion ¬S(a, b) for SS(a, b) and Disj(S, SS), where SS is a fresh
(simple) role for S. Of all constructors and axioms, only RIAs are of a primary focus in
this paper.

The semantics of SROIQ is defined using interpretations. An interpretation is a
pair I = (ΔI , ·I) where ΔI is a non-empty set called the domain of the interpretation
and ·I is the interpretation function, which assigns to every A ∈ NC a set AI ⊆ ΔI ,
to every r ∈ NR a relation rI ∈ ΔI ×ΔI , and to every a ∈ NI an element aI ∈ ΔI .
I is extended to roles by UI := ΔI ×ΔI and (r−)I := {〈x, y〉 | 〈y, x〉 ∈ rI}, and
to role chains by (R1 · · ·Rn)I := RI

1 ◦ · · · ◦ RI
n where ◦ is the composition of binary

relations. The empty role chain ε is interpreted by εI := {〈x, x〉 | x ∈ ΔI}.
The interpretation of concepts is defined according to the right column of the upper

part of Table 1, where δ(x, V) for δ ⊆ ΔI ×ΔI , V ⊆ ΔI , and x ∈ ΔI denotes the
set {y | 〈x, y〉 ∈ δ ∧ y ∈ V }, and ||V || denotes the cardinality of a set V ⊆ ΔI . An
interpretation I satisfies an axiom α (written I |= α) if the respective condition to the
right of the axiom in Table 1 holds; I is a model of an ontologyO (written I |= O) if I
satisfies every axiom in O. We say that α is a (logical) consequence of O or is entailed
by O (writtenO |= α) if every model of O satisfies α.

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 475

3 Regularity for Sets of Role Inclusion Axioms

Given a set of RIAs R, for every role R, define the following language LR(R) of role
chains (viewed as words over roles):

LR(R) := {ρ | ρ �∗
R R} (1)

We say that R is regular if the language LR(R) is regular for every role R. It has
been shown [12] that ≺-regularity for R implies regularity for R̄. The converse of this
property, however, does not always hold, as demonstrated in the following example.

Consider the following setR of RIAs:

isProperPartOf � isPartOf (2)

isPartOf · isPartOf � isPartOf (3)

isPartOf · isProperPartOf � isProperPartOf (4)

R expresses properties of parthood relations isPartOf and isProperPartOf: RIA (2)
says that isProperPartOf is a sub-relation of isPartOf; RIA (3) says that isPartOf is
transitive; RIA (4) says that if x is a part of y which is a proper part of z, then x is a
proper part of z. Since any role chain consisting of isPartOf and isProperPartOf can
be reduced using (2) and (3) to isPartOf, it is easy to see that:

LR̄(isPartOf) = (isPartOf | isProperPartOf)+ (5)

Since isProperPartOf is only implied by (4), we also have:

LR̄(isProperPartOf) = (isPartOf∗ · isProperPartOf)+ (6)

Thus, the languages (5) and (6) induced by RIAs (2)–(4) are regular. However, there
is no order ≺ for which RIAs (2)–(4) are ≺-regular. Indeed, by conditions (i)–(v) of
≺-regularity, it follows from (2) that isProperPartOf ≺ isPartOf, and from (4) that
isPartOf ≺ isProperPartOf, which is not possible if≺ is a transitive irreflexive relation.

In fact, there is no set of RIAs R, possibly with additional roles, that could express
properties (2)–(4) using only ≺-regular RIAs. It is easy to show by induction over the
definition of�∗

R that if the RIAs ofR are≺-regular, thenR1 · · ·Rn �∗
R̄ R implies that

for every i with 1 ≤ i ≤ n, either Ri = R, or Ri = Inv(R), or Ri ≺ R. This means
that for every role R, the language LR̄(R) contains only words over R, Inv(R), or R′

with R′ ≺ R. Clearly, this is not possible if LR̄(isPartOf) and LR̄(isProperPartOf)
are extensions of the languages defined in (5) and (6).

Axioms such as (2)–(4) naturally appear in ontologies describing parthood relations,
such as those between anatomical parts of the human body. For example, release 7 of the
GRAIL version of the OpenGALEN ontology3 contains the following axioms, which
are analogous to (2)–(4):

isNonPartitivelyContainedIn � isContainedIn (7)

isContainedIn · isContainedIn � isContainedIn (8)

isNonPartitivelyContainedIn · isContainedIn � isNonPartitivelyContainedIn (9)

3 http://www.opengalen.org/

http://www.opengalen.org/

476 Y. Kazakov

Complex RIAs such as (7)–(9) are used in OpenGALEN to propagate properties over
chains of various parthood relations. For example, the next axiom taken from Open-
GALEN expresses that every instance of body structure contained in spinal canal is a
structural component of nervous system:

BodyStructure � ∃isContainedIn.SpinalCanal

� ∃isStructuralComponentOf.NervousSystem
(10)

Recently, complex RIAs over parthood relations have been proposed as an alternative to
SEP-triplet encoding [19]. The SEP-triplet encoding was introduced [17] as a technique
to enable the propagation of some properties over parthood relations, while ensuring
that other properties are not propagated. For example, if a finger is defined as part of a
hand, then any injury to a finger should be classified as an injury to the hand, however,
the amputation of a finger should not be classified as an amputation of the hand. The
proposed new encoding makes use of complex RIAs such as (2)–(4) to express propa-
gation properties. For example, propagation of the injury property over the proper-part
relation can be expressed using the following RIA:

isInjuryOf · isProperPartOf � isInjuryOf. (11)

It was argued that the usage of complex RIAs can eliminate many potential problems
with the existing SEP-triplet encoding, used, e.g., in SNOMED CT,4 and can dramat-
ically reduce the size of the ontology. However, since RIAs (2)–(4) do not satisfy ≺-
regularity, this technique is currently limited to EL++ ontologies where≺-regularity is
not required, and can be problematic when an expressivity beyond EL++ is required,
such as for translating OpenGALEN into OWL 2. In this paper we propose an extension
of regularity conditions, which, in particular, can handle axioms such as (2)–(4).

4 Stratified Sets of Role Inclusion Axioms and Regularity

As can be seen from example RIAs (2)–(4), one limitation of ≺-regularity is that it
cannot deal with cyclic dependencies on roles. Our first step is to relax this requirement
by considering arbitrary (i.e., not necessarily strict) orders on roles.

Definition 1. Let � be a preorder (a transitive reflexive relation) on roles. We write
R1 R2 if R1 � R2 and R2 � R1, and R1 ≺ R2 if R1 � R2 and R2 �� R1. The
level l�(R) of R w.r.t. � is the largest n such that there exists roles R1 ≺ R2 ≺ · · · ≺
Rn ≺ R. We say that a RIA R1 · · ·Rn � R is �-admissible if Ri � R (1 ≤ i ≤ n).

Unlike ≺-regularity, however, �-admissibility is not sufficient for regularity since ev-
ery RIA is �-admissible for the total preorder �, i.e., the one such that R1 � R2
holds for all roles R1 and R2. Note l�(R) = 0 for every role R w.r.t. to this pre-
order. To regain regularity, we impose an additional condition on the set of RIAs R as
a whole.

4 http://www.ihtsdo.org/

http://www.ihtsdo.org/

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 477

Definition 2. Given a set of �-admissible RIAs R, we say that a RIA ρ � R′ is �-
stratified in R, if for every R R′ such that ρ = ρ1Rρ2, there exists R1 such that
ρ1R �∗

R R1 and R1ρ2 �∗
R R′. We say that R is �-stratified if every RIA ρ � R

provable in R, is �-stratified in R.

Intuitively, a set of RIAs R is �-stratified, if every RIA ρ � R′ provable in R is
always provable in R when reducing the left-most roles of the maximal level first. For
example, consider the set R consisting of RIAs (2)–(4) and (11) and the preorder �
such that isPartOf isProperPartOf � isInjuryOf w.r.t. which R is clearly stratified.
Then both of the following RIAs are provable in R and are �-stratified inR:

isPartOf · isPartOf · isPropertPartOf � isProperPartOf, (12)

isInjuryOf · isPartOf · isPropertPartOf � isInjuryOf. (13)

RIA (12) is stratified because for ρ1 := isPartOf, R := isPartOf isProperPartOf =:
R′, and ρ2 := isProperPartOf, we have ρ1R = isPartOf·isPartOf �(3) isPartOf := R1
and R1ρ2 = isPartOf · isProperParOf �(4) isProperPartOf = R′. Note that when
either ρ1 = ε or ρ2 = ε, the conditions of Definition 2 hold trivially. RIA (13) is strat-
ified because R R′ := isInjuryOf holds only for R = isInjuryOf , in which case
ρ1 = ε. It can be similarly shown that every RIA provable in R, is �-stratified in
R, so R is �-stratified. If we, however, extend the preorder � such that isPartOf
isProperPartOf isInjuryOf , i.e., take the total preorder �, RIA (13) will be no
longer �-stratified. Indeed, for ρ1 := isInjuryOf, R := isPartOf isInjuryOf := R′,
and ρ2 := isProperPartOf, there does not exist R1 such that ρ1R = isInjuryOf ·
isPartOf �∗

R R1.
As seen from this example, the choice of the preorder � has an impact on whether

R is �-stratified or not. As we pointed out, every RIA is �-admissible for the total
preorder �. However, since all roles R have the same maximal level L�(R) = 0 for
the total preorder �, to check if ρ � R′ is �-stratified, one has to consider every role
R in ρ, and prove that ρ1R �∗

R R1 and R1ρ2 �∗
R R′ hold for the respective prefix

ρ1 and suffix ρ2. On the other hand, by taking the smallest preorder �R for which
the RIAs in R are �R-admissible, one can avoid many of these tests. The smallest
preorder �R forR can be defined as the transitive reflexive closure of the relation ≺R
such that R1 ≺R R2 iff ρ1R1ρ2 � R2 ∈ R for some ρ1 and ρ2. It can easily be shown
using Definition 1 and Definition 2 that for every preorder �, (i) all RIAs in R are
�-admissible iff � extends �R, and (ii) if R is �-stratified then R is �R-stratified.
From (ii) it follows, in particular, that R is �-stratified for some order � iff R is �R-
stratified.

Our next goal is to prove that every �-stratified set of RIAs R induces a regular
language LR(R) for every role R. From now on, we assume that we are given a fixed
preorder � and a set of �-admissible RIAsR. So, when we say thatR is stratified or a
RIA is stratified, we meanR is �-stratified and the RIA is �-stratified inR.

First, we distinguish two types of RIAs according to the levels of their roles:

Definition 3. The level of a RIA α = (R1 · · ·Rn � R) ∈ R (w.r.t. �) is l�(α) :=
l�(R). We say that α is simple if Ri ≺ R for all i with 1 ≤ i ≤ (n − 1); otherwise
we say that α is complex. For n ≥ 0, define Rn := {α ∈ R | l�(α) = n}, R<n :=⋃

k<nRk, and defineRs
n to be the set of simple RIAs inRn.

478 Y. Kazakov

In the next lemma, we demonstrate that for every stratified set of RIAs w.l.o.g. one can
assume a certain precedence on RIAs in proofs: RIAs of smaller level are applied first;
simple RIAs are applied before complex RIAs of the same level; and complex RIAs are
only applied to the prefix of the role chain, i.e, at the position 0.

Lemma 1. For every ρ and R′ such that ρ �∗
R R′, there exist ρ1 and ρ2 such that

ρ �∗
R<n

ρ1 �∗
Rs

n
ρ2 �∗

Rn,0 R
′, where n = l�(R′).

Proof. W.l.o.g., one can assume that R does not contain RIAs of the form ε � R.
Indeed, otherwise for Rε := {ε � R ∈ R} and R′ := R \ Rε, we have ρ �∗

R R′ iff
ρ �∗

Rε ρ1 �∗
R′ R′ for some ρ1. Now if the lemma holds forR′, then there exist ρ1

1 and
ρ2
1 such that ρ1 �∗

R′
<n

ρ1
1 �∗

R′s
n
ρ2
1 �∗

R′
n,0

R′. In this case, it can be readily seen that

ρ �∗
Rε

<n
ρ1 �∗

R′
<n

ρ2 �∗
Rε

n
ρ3 �∗

R′s
n
ρ2
1 �∗

R′
n,0

R′ for some ρ1, ρ2, and ρ3.

Now, consider all ρ′ such that ρ �∗
R ρ′ �∗

R R′. Since R does not contain RIAs
of the form ε � R, the number of all such ρ′ is bounded. From all such ρ′, select all
ρ′ = ρ′0R1ρ

′
1 · · ·Rmρ

′
m with the maximal number of occurrences R1, . . . , Rm of roles

of level n, and from them select one of the largest length. Then ρ = ρ0ρ
1
1ρ1 · · · ρ1

mρm

such that ρi �∗
R<n

ρ′i (0 ≤ i ≤ m) and ρ1
i �∗

R<n
ρ2

i �∗
Rs

n
Ri (1 ≤ i ≤ m). Otherwise

one could find ρ′ with more occurrences of roles of level n or the same number of
occurrences but of a larger length.

Since ρ′0R1ρ
′
1 · · ·Rmρ

′
m �∗

R R′ and R is stratified, there exist R′
i (1 ≤ i ≤ m)

such that ρ′0R1 �∗
R R′

1, R′
iρ

′
iRi+1 �∗

R R′
i+1 (1 ≤ i < m), and R′

mρ
′
m �∗

R R′. In
particular, there exist ρ′1i (1 ≤ i ≤ m), ρ′2i (0 ≤ i < m) that do not contain roles of
level n, and R1

i (1 < i ≤ m) such that ρ′0 �∗
R<n

ρ′20 , ρ′20 R1 �∗
Rs

n
R′

1, ρ′i �∗
R<n

ρ′1i ρ
′2
i ,

ρ′2i Ri+1 �∗
Rs

n
R1

i+1, R′
iρ

′1
i R

1
i+1 �∗

Rn,0 R′
i+1 (1 ≤ i < m), ρ′m �∗

R<n
ρ′1m, and

R′
mρ

′1
m �∗

Rn,0 R
′. Otherwise one could again find ρ′ with more roles of level n or with

the same number of roles but of a larger length.
Summing up, we obtain the required ρ1 and ρ2 as follows:

ρ =ρ0ρ
1
1ρ1 · · · ρ1

mρm �∗
R<n

ρ1 := ρ′20 ρ
2
1ρ

′1
1 ρ

′2
1 · · · ρ2

mρ
′1
m

�∗
Rs

n
ρ2 := R′

1ρ
′1
1 R

1
2ρ

′1
2 · · ·R1

mρ
′1
m �∗

Rn,0 R
′. �!

We are now in a position to prove that every stratified set of RIAsR is regular.

Theorem 1. For every �-stratified set of RIAs R and every role R, one can construct
a non-deterministic finite automaton (NFA) that recognizes the language LR(R). The
size (i.e., the number of transitions) of the automaton is bounded by (c ·m)2·n where
m := ||R||, n := l�(R), and c is some fixed constant.

Proof. By Lemma 1, for every role R we have:

LR(R) = {ρ | ∃ρ1∃ρ2 : ρ �∗
R<n

ρ1 �∗
Rs

n
ρ2 �∗

Rn,0R}. (14)

We first show that the languages LRs
n
(R) and LRn,0(R) := {ρ | ρ �∗

Rn,0 R} can
be recognized by NFAs. For every role R, introduce a terminal symbol aR and a
non-terminal symbol AR. For Rs

n, consider a grammar containing production rules

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 479

AR → aR for every role R and AR → aR1 · · · aRk−1ARk
for every RIA R1 · · ·Rk �

R ∈ Rs
n. Since for every simple RIA R1 · · ·Rk � R ∈ Rs

n the level of the roles Ri

with 1 ≤ i < k is smaller than n, it is easy to show by induction that R1 · · ·Rm ∈
LRs

n
(R) iff AR →∗ aR1 . . . aRm . Since the grammar is right-linear, the language

LRs
n
(R) is regular. Similarly, the language LRn,0(R) is regular since it corresponds

to the left-linear grammar containing production rules AR → aR for every role R and
AR → AR1aR2 · · · aRk

for every RIA R1 · · ·Rk � R ∈ Rn. It is well-known that for
left- and right-linear grammars one can construct an NFA with size linear in the size of
the grammar, which in our cases is bounded by c ·m wherem := ||R|| and c a constant.

Assume, by induction hypothesis, that for everyR such that l�(R) < n, LR(R) can
be recognized by an NFA of size at most (c · m)2·(n−1). Since LR<n(R) = {R} if
l�(R) ≥ n and LR<n(R) = LR(R) if l�(R) < n, for LR<n(R) one can construct an

NFA of size bounded by (c ·m)2·(n−1). For the remaining case l�(R) = n, consider
Ln(R) := {ρ1 | ∃ρ2 : ρ1 �∗

Rs
n
ρ2 �∗

Rn,0 R}. Clearly, ρ1 ∈ Ln(R) iff there exists ρ2 =
R1 · · ·Rk ∈ LRn,0(R) such that ρ1 = ρ1

1 · · · ρ1
k where ρ1

i ∈ LRs
n
(Ri) (1 ≤ i ≤ k).

Hence Ln(R) = LRn,0(R)[R1/LRs
n
(R1), . . . , Rk/LRs

n
(Rk)] where Ri are all roles

of level n and L[R1/L1, . . . , Rk/Lk] denotes the language obtained by substituting in
every word from L the lettersRi with words from Li in all possible ways. Since regular
languages are closed under substitution and an NFA for L[R1/L1, . . . , Rm/Lm] can
be constructed with the size bounded by the size of the NFA for L multiplied with the
maximum size of the NFA for L1, . . . , Lm, the language Ln(R) is regular and can be
recognized by an NFA of size at most (c ·m)2.

Similarly, by (14), we have LR(R) = Ln(R)[R1/LR<n(R1), . . . , Rk/LR<n(Rk)]
where Ri for 1 ≤ i ≤ k are all roles of level n. Thus, one can construct an NFA of size
bounded by (c ·m)2 · (c ·m)2·(n−1) = (c ·m)2·n that recognizes LR(R). �!

5 Testing If a Set of RIAs Is Stratified

Up to now we have demonstrated that, similar to ≺-regularity, Definition 2 provides
a sufficient condition for regularity of a set of RIAs R. However, unlike ≺-regularity,
Definition 2 does not provide for any effective means of testing this condition since
it requires to test if all (of possibly infinitely many) RIAs ρ � R provable in R, are
stratified. Below we demonstrate that it suffices to test regularity only for finitely many
RIAs that can be effectively computed fromR.

Definition 4. Let R be a set of �-admissible RIAs. RIA ρ1Rρ2 � R′ is an overlap
of two RIAs ρε

2Rρ2 � R1 and ρ1R2ρ
ε
1 � R′ (w.r.t. R and �) if R R′, ε �∗

R ρε
2,

ε �∗
R ρε

1, and R1 �∗
R R2.R is weakly �-stratified if (i) every RIA inR is �-stratified

inR and (ii) the overlap of every two RIAs in R is �-stratified inR.

Note that the overlap ρ1Rρ2 � R′ is provable in R in a such a way that only RIAs
ρε
2Rρ2 � R1 and ρ1R2ρ

ε
1 � R′ involved in the overlap reduce the length of the role

chains: ρ1(Rρ2) �∗
R ρ1(ρε

2Rρ2) �R ρ1R1 �∗
R ρ1R2 �∗

R ρ1R2ρ
ε
1 �R R′. Intuitively,

to prove that R is weakly stratified, one has to consider only RIAs provable in R us-
ing at most two reducing steps, first, reducing the suffix of a role chain, and second,
reducing the prefix of the role chain: ρ1(Rρ2) �∗

R ρ1R1 �∗
R R′.

480 Y. Kazakov

For example, the setR of RIAs (2)–(4) is weakly stratified. Indeed, every RIA inR
is trivially stratified since no role chain in R has more than two roles. RIAs (3) and (4)
can overlap (possibly with themselves) only in the following three cases:

isPartOf · (isPartOf · isPartOf) �(2) isPartOf · isPartOf �(3) isPartOf, (15)

isPartOf · (isPartOf · isProperPartOf) �(4)

isPartOf · isProperPartOf �(4) isProperPartOf,
(16)

isPartOf · (isPartOf · isProperPartOf) �(4)

isPartOf · isProperPartOf �(2)

isPartOf · isPartOf �(3) isPartOf.

(17)

The resulted overlaps are provable using (2)–(4) “left-to-right” and thus stratified:

(isPartOf · isPartOf) · isPartOf �(3),(3) isPartOf, (18)

(isPartOf · isPartOf) · isProperPartOf �(3),(4) isProperPartOf, (19)

(isPartOf · isPartOf) · isProperPartOf �(3),(4),(2) isPartOf. (20)

Similarly, one can show that R̄ is weakly stratified by considering all overlaps between
the inverses of (3) and (4).

The notion of overlap and conditions for a weakly stratified set of RIAs are reminis-
cent of the well-known notions of a critical pair and the weak Church-Rosser property
from term rewriting [3]. Despite close resemblance, there seem, however, to be no direct
correspondence between these properties—if to consider the entailment relation �R as
a rewriting relation on chains of roles, the conditions of Definition 4 essentially mean
that if a role chain can be rewritten to a role using at most two complex “rightmost”
reductions, then it can also be rewritten to the same role chain using only “leftmost”
reductions. Like in Church-Rosser theorem, however, it is possible to prove that every
weakly stratified set of RIAs is stratified:

Theorem 2. For every preorder � and every set of �-admissible RIAs R, R is �-
stratified iffR is weakly �-stratified.

Proof. As in the proof of Lemma 1, we first prove that w.l.o.g. one can assume that
R does not contain RIAs of the form ε � R. Otherwise, we extend R by repeatedly
adding for every ε � R ∈ R and ρ1Rρ2 � R′ ∈ R a RIA ρ1ρ2 � R. This transforma-
tion preserves the set of implied RIAs, and therefore the result R′ is stratified iff R is
stratified. It can also be shown that if ρ � R′ is provable in R′ and ρ �= ε then ρ � R′

is provable in R′ without using RIAs of the form ε � R. Hence, if we prove that is
R′ weakly stratified iffR is weakly stratified, we can disregard all axioms of the form
ε � R in this proof (since all provable RIAs ρ � R for ρ = ε are trivially stratified).

It is clear that if R′ is weakly stratified then R is as well since R′ contains R. To
prove the converse, assume that R is weakly stratified. Let Rε := {ε � R ∈ R}.
Note that if ρ′ �Rε ρ and ρ � R is stratified then ρ′ � R is stratified as well (in
both R and R′). Hence the condition (i) of Definition 4 for R′ is immediate from this
property and the construction of R′. To prove condition (ii) of Definition 4 for R′, let

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 481

ρ1Rρ2 � R′ be an overlap of two RIAs ρε
2Rρ2 � R1 and ρ1R2ρ

ε
1 � R′ in R′. From

the construction ofR′, there should be RIAs ρε
4Rρ4 � R1 and ρ3R2ρ

ε
3 � R′ inR such

that ρε
2 �∗

Rε ρε
4, ρ2 �∗

Rε ρ4, ρ1 �∗
Rε ρ3, and ρε

1 �∗
Rε ρε

3. In particular ε �∗
R ρε

2 �∗
R ρε

4,
ε �∗

R ρε
1 �∗

R ρε
3, and so, ρ3Rρ4 � R′ is an overlap of RIAs in R, which by condition

(ii) should be stratified. Since ρ1Rρ2 �∗
Rε ρ3Rρ4, we obtain that ρ1Rρ2 � R′ is

stratified as well.
So now, w.l.o.g., we can assume thatR does not contain RIAs of the form ε � R.
The “only if” direction of the theorem is trivial since RIAs in R and overlaps of

RIAs inR are provable in R.
To prove the “if” direction, assume to the contrary that there exists ρ such that ρ �∗

R
R′ but ρ � R′ is not stratified w.r.t.R and �.

Take such a ρ of the smallest length. Then ρ = ρ1Rρ2 where R R′ and there
exists no R1 such that ρ1R �∗

R R1 and R1ρ2 �∗
R R′. Clearly, ρ1 �= ε and ρ2 �= ε.

Since ρ = ρ1Rρ2 �∗
R R′, there exist ρ1

1, ρ2
1, ρ1

2, ρ2
2, R1, and R2 such that ρ1 �∗

R
ρ2
1ρ

1
1, ρ2 �∗

R ρ1
2ρ

2
2, R �∗

R R1, ρ1
1R

1ρ1
2 � R2 ∈ R, ρ2

1R
2ρ2

2 �∗
R R′, and ρ1

1ρ
1
2 �= ε, so:

ρ1Rρ2 �∗
R ρ2

1(ρ
1
1R

1ρ1
2)ρ

2
2 �R ρ2

1R
2ρ2

2 �∗
R R′.

Since R is weakly stratified and ρ1
1R

1ρ1
2 � R2 ∈ R, by condition (i) in Definition 4,

ρ1
1R

1 �∗
R R1

1 and R1
1ρ

1
2 �∗

R R2 for some R1
1. In particular, ρ2

1R
1
1ρ

1
2ρ

2
2 �∗

R R′.
We prove that ρ1

1 = ε. If ρ1
1 �= ε, then ||ρ2

1R
1
1ρ

1
2ρ

2
2|| < ||ρ||, so, ρ2

1R
1
1 �∗

R R1 and
R1ρ

1
2ρ

2
2 �∗

R R′ for some R1. We obtain a contradiction since ρ1R �∗
R ρ2

1(ρ
1
1R

1) �∗
R

ρ2
1R

1
1 �∗

R R1 and R1ρ2 �∗
R R1ρ

1
2ρ

2
2 �∗

R R′, but we assumed that no such R1 exists.
Thus ρ1

1 = ε.
Now we prove that ρ2

2 = ε. Since ρ1
1ρ

1
2 �= ε, ||ρ2

1R
2ρ2

2|| < ||ρ||, so, ρ2
1R

2 �∗
R R2

1 and
R2

1ρ
2
2 �∗

R R′ for someR2
1. In particular, ρ2

1ρ
1
1R

1ρ1
2 �∗

R R2
1. If ρ2

2 �= ε then ||ρ2
1ρ

1
1R

1ρ1
2||

< ||ρ||, so ρ2
1ρ

1
1R

1 �∗
R R1 and R1ρ

1
2 �∗

R R2
1 for some R1. We obtain a contradiction

since ρ1R �∗
R ρ2

1ρ
1
1R

1 �∗
R R1 and R1ρ2 �∗

R (R1ρ
1
2)ρ

2
2 �∗

R R2
1ρ

2
2 �∗

R R′, but we
assumed that no such R1 exists. Thus ρ2

2 = ε.
Now since ρ2

1R
2 �∗

R R′, there exist ρ3
1, ρ4

1, R3, and R4 such that ρ2
1 �∗

R ρ4
1ρ

3
1,

R2 �∗
R R3, ρ3

1R
3 � R4 ∈ R, ρ4

1R
4 �∗

R R′, and ρ3
1 �= ε. So the full picture is:

ρ1Rρ2 �∗
R ρ2

1R
1ρ1

2 �∗
R ρ4

1ρ
3
1(R

1ρ1
2) �R

ρ4
1ρ

3
1R

2 �∗
R ρ4

1(ρ
3
1R

3) �R ρ4
1R

4 �∗
R R′.

In this case, ρ3
1R

1ρ1
2 � R4 is an overlap of the RIAs R1ρ1

2 � R2 and ρ3
1R

3 � R4 w.r.t.
R and �. SinceR is weakly stratified, by condition (ii) in Definition 4, ρ3

1R
1 �∗

R R3
1

andR3
1ρ

1
2 � R4 for someR3

1. In particular, ρ4
1R

3
1ρ

1
2 �∗

R R′. Since p3
1 �= ε, ||ρ4

1R
1
1ρ

1
2|| <

||ρ||, so, ρ4
1R

3
1 �∗

R R1 and R1ρ
1
2 �∗

R R′ for some R1. We obtain a contradiction since
ρ1R �∗

R ρ4
1(ρ

3
1R

1) �∗
R ρ4

1R
3
1 �∗

R R1 and R1ρ2 �∗
R R1ρ

1
2 �∗

R R′, but we assumed
that no such R1 exists. �!

Now, in order to present an algorithm for deciding whether a set of RIAsR is stratified,
according to Theorem 2, it is sufficient to prove that one can effectively check the
conditions of Definition 4.

Lemma 2. Given a set of RIAsR and a RIA ρ � R, it is possible to decide in polyno-
mial time whether ρ �∗

R R.

482 Y. Kazakov

Proof. Define a context-free grammar with terminal symbols aR and non-terminal sym-
bols AR for every role R, and production rules AR → aR for every role R and
AR → AR1 . . . ARn for every RIA R1 · · ·Rn � R ∈ R. It is easy to show that
AR →∗ aR1 . . . aRn w.r.t. this grammar iff R1 · · ·Rn �∗

R R. Since the word problem
(membership in the language) for context-free grammars is decidable in polynomial
time (see, e.g. [10]), so is the property ρ �∗

R R. �!

Corollary 1. For every �-admissible set of RIAsR, one can check in polynomial time
in ||R|| ifR is �-stratified.

Proof. By Theorem 2, to check if R is stratified, it is sufficient to check if every RIA
in R is stratified and every overlap of two RIAs is stratified. Hence there are only
polynomially-many RIAs to test. In order to test whether ρ1Rρ2 � R′ is stratified for
R, we enumerate all roles R1 in R and check if ρ1R �∗

R R1 and R1ρ2 �∗
R R′ hold.

By Lemma 2, each of these conditions can be checked in polynomial time. �!

Using the criterion in Theorem 2, it is now possible to show that for every set R of
≺-regular RIAs (according to the original conditions in SROIQ), R̄ is stratified w.r.t.
� defined by R1 � R2 if either R1 ≺ R2, R1 = R2 or R1 = Inv(R2). Clearly, the
conditions of ≺-regularity ensure that every ρ � R ∈ R̄ is stratified. Note also that
if ρR � R′ ∈ R̄ or Rρ � R′ ∈ R̄ with R R′ then either R′ = R or ρ = ε.
Now, if ρ1Rρ2 � R′ is an overlap of two RIAs ρε

2Rρ2 � R2 and ρ1R1ρ
ε
1 � R′

in R̄ with ρ1 �= ε and ρ2 �= ε (otherwise it is trivially stratified), then R2 �∗
R̄ R1,

R R2 R1 R′, so ρε
1 = ρε

2 = ε, R2 = R, R′ = R1, and either R1 = R2
or R1 = Inv(R2) (by definition of �). From the last and the fact that R2 �∗

R̄ R1, it
follows that R1 �∗

R̄ R2. Hence, ρ1R = ρ1R2 �∗
R̄ ρ1R1 �R̄ R′ = R1 �∗

R̄ R2 = R,
Rρ2 �R̄ R2 �∗

R̄ R1 = R′, and so ρ1Rρ2 � R′ is stratified.
To illustrate the practical benefits of Definition 4, consider the setR of RIAs (2)–(4)

and (11) for the total preorder �. As we showed before, R̄ is not stratified because of
RIA (13) provable in R̄. RIA (13) can be obtained as an overlap of RIAs (4) and (11):

isInjuryOf · (isPartOf · isProperPartOf) �(4)

isInjuryOf · isProperPartOf �(11) isInjuryOf.
(21)

RIA (13) is not stratified, because there is noR1 such that isInjuryOf · isPartOf �∗
R̄ R1

and R1 · isProperPartPf �∗
R̄ isInjuryOf hold. In our situation, the roles isInjuryOf and

isPartOf can be “composed” together with the third role isProperPartOf, but cannot
be composed directly. This typically indicates on some missing properties, which the
domain expert, presented with this situation, could often easily identify. In our case,
the set of RIAs becomes stratified as soon as we add the axiom propagating the injury
relation over the part-of relation, which then subsumes (11) given (2):

isInjuryOf · isPartOf � isInjuryOf. (22)

Thus, Definition 4 has two practical benefits. First, it can be used to check automati-
cally if the given set of RIAs is stratified. Second, in the case when the set of RIAs is
not stratified, it is possible to use this definition in interactive setting when the user is
presented with problematic overlaps and prompted to enter the missing RIAs.

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 483

It is a natural question, whether for any set of RIAsR that induces regular languages,
there exists an extensionR′, as in this example, that is stratified. The following theorem
gives a surprising positive answer to this question. It turns out, there always exists a
stratified conservative extension of R—a super-set R′ of R possibly containing new
roles, such that any model I of R can be extended to a model J of R′ that interprets
the roles occurring inR exactly as I does.

Theorem 3. LetR be a set of RIAs such that LR̄(R) is regular for every role R. Then
there exists a conservative extensionR′ ofR such that R̄′ is �-stratified for every �.

Proof. Let Σ be the set of all roles occurring in R̄. For every R ∈ Σ and ρ1, ρ2 ∈ Σ∗,
define the language LR̄(R, ρ1, ρ2) := {ρ | ρ1ρρ2 ∈ LR̄(R)}. It follows from Myhill-
Nerode theorem (see, e.g., [18]) that LR̄(R) is regular iff there are only finitely many
different languagesLR̄(R, ρ1, ρ2) for all possible ρ1 and ρ2. LetLR̄ := {LR̄(R, ρ1, ρ2)
| R ∈ Σ, ρ1, ρ2 ∈ Σ∗} be the set of all languages of this form, and SR := {

⋂
L∈S L |

S ⊆ LR̄} be the set of all their possible intersections (the empty intersection is Σ∗).
Since every language LR̄(R) is regular, clearly, both sets LR̄ and SR are finite. Note
that LR̄(R) = LR̄(R, ε, ε) ∈ LR̄ ⊆ SR. For languages L1, . . . , Ln ⊆ Σ∗ (not neces-
sarily in SR), let L1 · · ·Ln := {ρ1 · · · ρn | ρi ∈ Li, 1 ≤ i ≤ n} if n > 0, or {ε} if
n = 0. One nice feature of SR is the following interpolation-like property:

Claim 1. For every L1, L2, L such that L1 · L2 ⊆ L ∈ SR, there exists L′
1 ∈ SR and

L′
2 ∈ SR such that Li ⊆ L′

i, i = 1, 2, and L′
1 · L′

2 ⊆ L.

Indeed, let L =
⋂

1≤i≤n LR̄(Ri, ρ
1
i , ρ

2
i) for some Ri, ρ1

i , and ρ2
i , (1 ≤ i ≤ n). Define:

L′
1 :=

⋂
ρ2∈L2,1≤i≤n

LR̄(Ri, ρ
1
i , ρ2ρ

2
i); L′

2 :=
⋂

ρ1∈L′
1,1≤i≤n

LR̄(Ri, ρ
1
i ρ1, ρ

2
i).

To prove that L1 ⊆ L′
1, take any ρ1 ∈ L1. Since L1 · L2 ⊆ L, for every ρ2 ∈ L2, we

have ρ1ρ2 ∈ L. By definition of L and LR̄(Ri, ρ
1
i , ρ

2
i), we have ρ1

i ρ1ρ2ρ
2
i ∈ LR̄(Ri),

(1 ≤ i ≤ n), so ρ1 ∈ LR̄(Ri, ρ
1
i , ρ2ρ

2
i), (1 ≤ i ≤ n). Thus ρ1 ∈ L′

1.
We now prove that L′

1 ·L2 ⊆ L. Take any any ρ1 ∈ L′
1 and ρ2 ∈ L2. By definition of

L′
1, ρ1 ∈ LR̄(Ri, ρ

1
i , ρ2ρ

2
i), so ρ1ρ2 ∈ LR̄(Ri, ρ

1
i , ρ

2
i), (1 ≤ i ≤ n). Thus ρ1ρ2 ∈ L.

Using L′
1 ·L2 ⊆ L, it is now easy to show that L2 ⊆ L′

2 and L′
1 ·L′

2 ⊆ L symmetri-
cally to the proofs above.

To continue the proof of the theorem, for every L ∈ SR, we introduce a fresh role
RL. Consider the setR1 consisting of the following RIAs for every L,L1, L2 ∈ SR:

ε � RL if ε ∈ L, (23)

RL1 � RL if L1 ⊆ L, (24)

RL1 · RL2 � RL if L1 · L2 ⊆ L. (25)

Claim 2. For every L1, . . . , Ln, L ∈ SR, L1 · · ·Ln ⊆ L iff RL1 · · ·RLn �∗
R1

RL.

The “if” direction of the claim can easily be shown by induction on the length of the
proof of RL1 · · ·RLn �∗

R1
RL.

We prove the “only if” direction of the claim by induction on n. For n ≤ 2 the claim
follows directly from (23)–(25).

484 Y. Kazakov

Now, if L1 · · ·Ln · Ln+1 ⊆ L then by Claim 1, there exists L′ ∈ SR such that
L1 · · ·Ln ⊆ L′ and L′ · Ln+1 ⊆ L. By induction hypothesis, RL1 · · ·RLn �∗

R1
RL′ .

Since by (25) we have RL′ · RLn+1 � RL ∈ R1, we obtain that RL1 · · ·RLn+1 �∗
R1

RL, which was required to show.
We are now in a position to define the conservative extension R′ of R required by

the theorem. LetR′ be an extension of R with R1 and the following axioms for every
role R ∈ Σ:

R � RL, and RL � R, where L = LR̄(R) ∈ SR. (26)

Clearly, R′ is a conservative extension of R. Indeed, every model I of R can be ex-
tended to a model of R′ by interpreting the fresh roles RL for L ∈ SR as RI

L :=⋃
ρ∈L ρ

I . It is readily checked that I satisfies all RIAs (23)–(26).
Before proving that R̄′ is stratified, first note that for every R1 · · ·Rn � R ∈ R we

have RL1 · · ·RLn �∗
R1

RL when Li = LR̄(Ri), (1 ≤ i ≤ n), and L = LR̄(R). This
follows directly from Claim 2 since L1 · · ·Ln ⊆ L. Thus, every RIA in R is provable
using axioms (23)–(26), and so, all RIAs in R can be disregarded. Moreover, we can
regard every roleRL for L = LR̄(R) as a syntactic variant for the roleR because of the
axioms (26). Thus, it is sufficient to show that R̄1 is stratified w.r.t. every � admissible
for R̄1.

Since the RIAs in R1 do not contain inverses, it is easy to see that ρ �∗
R̄1

R iff
either ρ �∗

R1
R or Inv(ρ) �∗

R1
Inv(R). So, it is sufficient to show that for every

L1, . . . , Ln, L ∈ SR such that RL1 · · ·RLn �∗
R1

RL and every k = 1 . . . n, there exist
R1

k and R2
k such that:

RL1 · · ·RLk
�∗

R1
R1

k, R1
kRLk+1 · · ·RLn �∗

R1
RL, (27)

RLk
· · ·RLn �∗

R1
R2

k, RL1 · · ·RLk−1R
2
k �∗

R1
RL. (28)

Indeed, by Claim 2, L1 · · ·Ln ⊆ L. By Claim 1, there exist L1
k, L

2
k ∈ SR such that

L1 · · ·Lk ⊆ L1
k, Lk · · ·Ln ⊆ L2

k, L1
kLk+1 · · ·Ln ⊆ L, and L1 · · ·Lk−1L

2
k ⊆ L. By

Claim 2 we obtain (27) and (28) for R1
k := RL1

k
and R2

k := RL2
k
. �!

6 Related Work and Outlook

Complex RIAs are closely related to inclusion (interaction) axioms in grammar modal
logics �i1 · · ·�inX → �j1 · · ·�jnX [6,5,8]. Such axioms often cause undecidability,
however Baldoni [5] and Demri [8] found a decidable class called the regular gram-
mar modal logics. Demri and de Nivelle [9] gave a decision procedure for this class
by a translation into the two-variable guarded fragment. The decision procedure as-
sumes that a regular automata are given as an input of the procedure. When applying
these results to ontologies and complex RIAs, such a restriction poses a serious prac-
tical problem because the users are unlikely to provide such automata. One proposed
solution to this problem, is to use a sufficient syntactic condition for regularity, such as
≺-regularity [12,11]. Another sufficient condition [20] requires associativity of RIAs:
if R1R2 � R′

1 and R′
1R3 � R′ then there should be R′

2 such that R2R3 � R′
2 and

R1R
′
2 � R′. A similar condition was required for completeness of the ordered chain-

ing calculus for first-order logic with compositional theories [4]. It is easy to see that

An Extension of Complex Role Inclusion Axioms in the DL SROIQ 485

associativity is a partial case of our sufficient conditions, when � is a total relation on
roles. Therefore, our syntactic condition can be seen as a generalization of both asso-
ciativity and ≺-regularity. Note that Theorem 3 is, in fact, proved for total preorders,
and therefore it holds for all preorders.

Theorem 1 can possibly be relevant to several results in language theory identifying
regular fragments of context-free languages and semi-Thue systems such as non-self-
embedded languages, one-letter grammars, and finite languages (see, e.g., [7,1,15]).
However, neither the original regularity condition for SROIQ [11], nor our extended
condition, nor the associativity condition seem to relate to the known cases of regular
context-free grammars. The reason could probably be that the conditions that are nat-
ural for compositional properties of binary relations (R1R2 � R3) might be not be so
natural in the context of formal language theory (A1 → A2A3) and vice versa.

Theorem 3 means that stratified sets of RIAs can express any regular compositional
properties of roles. In other words, our syntactic restriction has already maximal ex-
pressive power w.r.t. such properties and no further extension is necessary. Note that the
proof of Theorem 3 is not constructive: it does not provide an algorithm for building the
extension R′ automatically from R—it is necessary to know the regular automata for
LR̄(R). It is an interesting question whether there exists such a completion procedure
that terminates if all LR̄(R) are regular. It seems to be not even clear if it is possible to
effectively check regularity for R. It was claimed [9] that this problem is undecidable
since it is undecidable whether a linear grammar is regular. But the problem of regularity
for context-free grammars seems to be harder since context-free grammars distinguish
between terminal and non-terminal symbols. There is no such a distinction between
types of roles in RIAs, which makes a reduction from context-free grammars to sets of
RIAs problematic. In this respect, the sets of RIAs are more related to so-called senten-
tial forms of context-free grammars [16] or pure context-free grammars [14] where the
symbols are not distinguished. A sentential form of a context-free grammar is a pure
grammar that generates the language consisting of terminal and non-terminal symbols.
The resulted language can be non-regular even for a regular grammar. For example, the
linear grammar A → a, A → aAa generates a regular language L(A) = a(aa)∗, but
its sentential form generates a non-regular language Ls(A) = L(A)∪{aiAai | i ≥ 0}.
Pure grammars have different algorithmic properties than context-free grammars. For
example, unlike for context-free grammars, given a pure context-free grammar and a
regular automaton, it is decidable if they generate the same language [14]. The problem
of regularity for pure grammars, however, is still open, to the best of our knowledge.

In this work we introduced a notion of stratified set of role inclusion axioms which
provides a syntactically-checkable sufficient condition for regularity of RIAs—a condi-
tion that ensures decidability of SROIQ [11]. We demonstrated that for every stratified
SROIQ ontology, one can construct a regular automaton representing the RIAs, which
is worst case exponential in the size of the ontology. This implies that the complexity
of reasoning with extended SROIQ remains the same as the complexity of the origi-
nal SROIQ, namely N2ExpTime-complete [13]. Moreover, we demonstrated that our
conditions for regularity are in a sense maximal—every ontologyO with regular RIAs
can be conservatively extended to an ontology with stratified RIAs.

486 Y. Kazakov

Acknowledgement

The author would like to thank the anonymous referees for valuable comments and
Frantisek Simancik for pointing out to the literature on sentential forms and pure gram-
mars. This work was supported by the EPSRC, grant number EP/G02085X.

References

1. Andrei, S., Chin, W.N., Cavadini, S.V.: Self-embedded context-free grammars with regular
counterparts. Acta Inf. 40(5), 349–365 (2004)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 05, pp. 364–369
(2005)

3. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York
(1998)

4. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive
relations. J. ACM 45(6), 1007–1049 (1998)

5. Baldoni, M.: Normal Multimodal Logics: Automatic Deduction and Logic Programming
Extension. Ph.D. thesis, Università degli Studi di Torino (1998)

6. Fariñas del Cerro, L., Penttonen, M.: Grammar logics. Logique et Analyse 121-122, 123–134
(1988)

7. Chomsky, N.: On certain formal properties of grammars. Information and Control 2(2),
137–167 (1959)

8. Demri, S.: The complexity of regularity in grammar logics and related modal logics. J. Log.
Comput. 11(6), 933–960 (2001)

9. Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order
logic. Journal of Logic, Language and Information 14(3), 289–329 (2005)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading (1979)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR. pp. 57–67
(2006)

12. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artif.
Intell. 160(1-2), 79–104 (2004)

13. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: KR, pp. 274–284. AAAI
Press, Menlo Park (2008)

14. Maurer, H., Salomaa, A., Wood, D.: Pure grammars. Information and Control 44(1), 47–72
(1980)

15. Nederhof, M.J.: Practical experiments with regular approximation of context-free languages.
Computational Linguistics 26(1), 17–44 (2000)

16. Salomaa, A.: On sentential forms of context-free grammars. Acta Informatica 2(1), 40–49
(1973)

17. Schulz, S., Romacker, M., Hahn, U.: Part-whole reasoning in medical ontologies revisited:
Introducing SEP triplets into classification-based description logics. In: Proc. of the 1998
AMIA Annual Fall Symposium, pp. 830–834. Hanley & Belfus (1998)

18. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Course Technology (Febru-
ary 2005)

19. Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.A.: Replacing SEP-triplets in
SNOMED CT using tractable description logic operators. In: Bellazzi, R., Abu-Hanna, A.,
Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291. Springer, Heidelberg
(2007)

20. Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description logics:
Some undecidability results. In: Description Logics. CEUR Workshop Proceedings., vol. 49.
CEUR-WS.org (2001)

Decreasing Diagrams and Relative Termination�

Nao Hirokawa1 and Aart Middeldorp2

1 School of Information Science
Japan Advanced Institute of Science and Technology, Japan

2 Institute of Computer Science
University of Innsbruck, Austria

Abstract. In this paper we use the decreasing diagrams technique to
show that a left-linear term rewrite system R is confluent if all its critical
pairs are joinable and the critical pair steps are relatively terminating
with respect to R. We further show how to encode the rule-labeling
heuristic for decreasing diagrams as a satisfiability problem. Experimen-
tal data for both methods are presented.

1 Introduction

This paper is concerned with automatically proving confluence of term rewrite
systems. Unlike termination, for which the interest in automation gave and con-
tinues to give rise to new methods and tools,1 automating confluence has received
little attention. Only very recently, the first confluence tool made its appearance:
ACP [2] implements Knuth and Bendix’ condition—joinability of critical pairs—
for terminating rewrite systems [14], several critical pair criteria for left-linear
rewrite systems [11,19,21], as well as divide and conquer techniques based on
persistence [1], layer-preservation [16], and commutativity [17].

For abstract rewrite systems, the decreasing diagrams technique of van Oost-
rom [20] subsumes all sufficient conditions for confluence. To use this technique
for term rewrite systems, a well-founded order on the rewrite steps has to be
supplied such that rewrite peaks can be completed into so-called decreasing
diagrams.

We present two results in this paper. We show how to encode the rule-labeling
heuristic of van Oostrom [22] for linear rewrite systems as a satisfiability problem.
In this heuristic rewrite steps are labeled by the applied rewrite rule. By limiting
the number of steps that may be used to complete local diagrams, we obtain a
finite search problem which is readily transformed into a satisfiability problem.
Any satisfying assignment returned by a modern SAT or SMT solver is then
translated back into a concrete rule-labeling.

Our second and main result employs the decreasing diagrams technique to ob-
tain a new confluence result for left-linear but not necessarily right-linear rewrite
� The research described in this paper is the starting point of FWF (Austrian Science

Fund) project P22467 and the Grant-in-Aid for Young Scientists (B) 22700009 of
the Japan Society for the Promotion of Science.

1 http://termination-portal.org/wiki/Termination_Competition

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 487–501, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://termination-portal.org/wiki/Termination_Competition

488 N. Hirokawa and A. Middeldorp

systems. It requires that the rewrite steps involved in the generation of critical
pairs are relatively terminating with respect to the rewrite system. This result
can be viewed as a generalization of the two standard approaches for proving
confluence: orthogonality and joinability of critical pairs for terminating systems.
In the non-trivial proof we use the self-labeling heuristic in which rewrite steps
are labeled by their starting term.

Throughout the paper we assume familiarity with the basics of term rewrit-
ing ([18]). In the next section we recall the decreasing diagrams technique and
present a small variation which better serves our purposes. Section 3 is devoted to
our main result. We prove that a locally confluent left-linear term rewrite system
is confluent if there are no infinite rewrite sequences that involve infinitely many
steps that were used in the generation of critical pairs. In Section 4 we explain
how this result is implemented. Moreover, we show how the rule-labeling heuris-
tic for decreasing diagrams can be transformed into a satisfiability problem.
Section 5 presents experimental data. In Section 6 we conclude with suggestions
for future research.

2 Decreasing Diagrams

We start this preliminary section by recalling the decreasing diagrams technique
for abstract rewrite systems (ARSs) from [20]. We write 〈A, {→α}α∈I〉 to denote
the ARS 〈A,→〉 where → is the union of →α for all α ∈ I. If J ⊆ I then →J

denotes the union of →α for all α ∈ J .
Let A = 〈A, {→α}α∈I〉 be an ARS and let > be a well-founded order on I. For

every α ∈ I we write <−→α for the union of→β for all β < α. If α, β ∈ I then <−→αβ

denotes the union of <−→α and <−→β . Moreover, we write <−→∗
αβ for (<−→αβ)∗. We say

that α and β are locally decreasing with respect to > and we write LD>(α, β) if

α← · →β ⊆ <−→∗
α· →=

β · <−→∗
αβ · ∗

αβ

<←− · =
α← · ∗β <←−

Graphically (dashed arrows are implicitly existentially quantified and double-
headed arrows denote reflexive and transitive closure):

·

· ·

α β

·

·

·

·

·α
<

β

=

αβ

<

β

<

α
=

αβ

<

LD>(α, β)

The ARS A = 〈A, {→α}α∈I〉 is locally decreasing if there exists a well-founded
order > on I such that LD(α, β) for all α, β ∈ I.

Van Oostrom [20] obtained the following result.

Decreasing Diagrams and Relative Termination 489

Theorem 1. Every locally decreasing ARS is confluent. �!

Variations of this fundamental confluence result are presented in [3,12,13,22].
We present a version of Theorem 1 which is more suitable for our purposes.

Let A = 〈A, {→α}α∈I〉 be an ARS. Let (>,�) consist of a well-founded order
> on I together with a quasi-order � such that � ·> ·� ⊆ >. For every α ∈ I
we write �−→α for the union of →β for all β � α and all β < α. (Note that
> ⊆ � need not hold.) We say that α and β are locally decreasing with respect
to (>,�) and we write LD(>,�)(α, β) if

α← · →β ⊆ <−→∗
α· �−→=

β · <−→∗
αβ · ∗

αβ

<←− · =
α

�←− · ∗β <←−

The ARS A = 〈A, {→α}α∈I〉 is extended locally decreasing if there exists (>,�)
such that LD(>,�)(α, β) for all α, β ∈ I. Despite the name, from the proof of
the following theorem we infer that every extended locally decreasing ARS has
a locally decreasing presentation.

Theorem 2. Every extended locally decreasing ARS is confluent.

Proof. Let A = 〈A, {→α}α∈I〉 be extended locally decreasing with respect to
(>,�). We write Cα as the set of all β ∈ I with α � β and α �> β. The set of all
such Cα is denoted by C. For every C ∈ C we write →C for the union of →α for
all α ∈ C. The well-founded order > on I can be lifted to C: Cα > Cβ if α > β.
If Cα = Cα′ , Cβ = Cβ′ , and α > β then α′ � α > β � β′ and thus α′ > β′

because of the requirement � ·> ·� ⊆ >. Hence > is well-defined on C. If β � α
and β < α then →β ⊆ →Cβ

⊆ <−→Cα . If β � α and β �< α then β ∈ Cα and thus
→β ⊆ →Cα . Hence �−→α ⊆ <−→Cα ∪→Cα . Now consider arbitrary sets C,D ∈ C
and let α ∈ C and β ∈ D. From the assumption LD(>,�)(α, β) we obtain

α← · →β ⊆ <−→∗
α· �−→=

β · <−→∗
αβ · ∗

αβ

<←− · =
α

�←− · ∗β <←−

By construction, the latter relation is contained in

<−→∗
C · <−→=

D · <−→∗
CD · ∗

CD

<←− · =
C

<←− · ∗
D

<←−

Since
C← · →D =

⋃
α∈C, β∈D

α← · →β

we conclude LD>(C,D). According to Theorem 1, the ARS 〈A, {→C}C∈C〉 is
confluent. Since ⋃

α∈I

→α =
⋃

C∈C
→C

it follows that A is confluent. �!

We are interested in the application of Theorems 1 and 2 for proving confluence
of term rewrite systems (TRSs). Many sufficient conditions for confluence of
TRSs are based on critical pairs. Critical pairs are generated from overlaps. An
overlap (l1 → r1, p, l2 → r2)μ of a TRS R consists of variants l1 → r1 and

490 N. Hirokawa and A. Middeldorp

l2 → r2 of rules of R without common variables, a position p ∈ PosF(l2), and a
most general unifier μ of l1 and l2|p. If p = ε then we require that l1 → r1 and
l2 → r2 are not variants. The induced critical pair is (l2μ[r1μ]p, r2μ). Following
Dershowitz [5], we write s←�→ t to indicate that (s, t) is a critical pair.

In [22] van Oostrom proposed the rule-labeling heuristic in which rewrite steps
are partitioned according to the employed rewrite rules. If one can find an order
on the rules of a linear TRS such that every critical pair is locally decreasing,
confluence is guaranteed. A formalization of this heuristic is given below where
α←�→β denotes the set of critical pairs obtained from overlaps (α, p, β)μ.

Theorem 3. A linear TRS R is confluent if there exists a well-founded order
> on the rules of R such that α←�→β ⊆ <−→∗

α· �−→=
β · <−→∗

αβ · ∗
αβ

<←− · =
α

�←− · ∗β <←−
for all rewrite rules α, β ∈ R. Here � is the reflexive closure of >. �!

The heuristic readily applies to the following example from [10].

Example 4. Consider the linear TRS R consisting of the rewrite rules

1 : nats→ 0 : inc(nats) 4 : inc(x : y)→ s(x) : inc(y)
2 : hd(x : y)→ x 5: inc(tl(nats))→ tl(inc(nats))
3 : tl(x : y)→ y

There is one critical pair: inc(tl(0 : inc(nats))) 1←− inc(tl(nats)) 5−→ tl(inc(nats)).
We have

inc(tl(0 : inc(nats))) 3−→ inc(inc(nats))

tl(inc(nats)) 1−→ tl(inc(0 : inc(nats))) 4−→ tl(s(0) : inc(inc(nats))) 3−→ inc(inc(nats))

Hence the critical pair is locally decreasing with respect to the rule-labeling
heuristic together with the order 5 > 3, 4.

The following example (Vincent van Oostrom, personal communication) shows
that linearity in Theorem 3 cannot be weakened to left-linearity.

Example 5. Consider the TRS R consisting of the rewrite rules

1 : f(a, a)→ c 2: f(b, x)→ f(x, x) 3 : f(x, b)→ f(x, x) 4 : a→ b

There are three critical pairs: f(a, b) 4←− f(a, a) 1−→ c, f(b, a) 4←− f(a, a) 1−→ c, and
f(b, b) 2←− f(b, b) 3−→ f(b, b). Since f(a, b) 3−→ f(a, a) 1−→ c and f(b, a) 2−→ f(a, a) 1−→ c,
it follows that the critical pairs are locally decreasing by taking the order 4 > 2, 3.
Nevertheless, the conversion f(b, b)← f(b, a)← f(a, a)→ c reveals that R is not
confluent.

In the next section we impose a relative termination condition to obtain a con-
fluence criterion for possibly non-right-linear TRSs.

Decreasing Diagrams and Relative Termination 491

3 Confluence via Relative Termination

Let R be a TRS. We denote the set

{l2μ→ l2μ[r1μ]p, l2μ→ r2μ | (l1 → r1, p, l2 → r2)μ is an overlap of R}

of rewrite steps that give rise to critical pairs of R by CPS(R). The rules in
CPS(R) are called critical pair steps. We say thatR is relatively terminating with
respect to S or that R/S is terminating if the relation →R/S =→∗

S · →R · →∗
S

is well-founded. The main result of this section (Theorem 16 below) states that
a left-linear locally confluent TRS R is confluent if CPS(R) is relatively ter-
minating with respect to R. Since CPS(R) is empty for every orthogonal TRS
R, this yields a generalization of orthogonality. In the proof we use decreasing
diagrams with the self-labeling heuristic in which rewrite steps are labeled by
their starting term. A key problem when trying to prove confluence in the ab-
sence of termination is the handling of duplicating rules. Parallel rewrite steps
are typically used for this purpose [11,17]. To anticipate future developments (cf.
Section 6) we use multi-steps instead. However, first we present a special case of
our main result in which duplicating rules are taken care of by requiring them
to be relatively terminating with respect to the non-duplicating ones.

Theorem 6. Let R be a left-linear TRS. Let Rd be the subset of duplicating
rules and Rnd the subset of non-duplicating rules in R. The TRS R is confluent
if ←�→ ⊆ ↓ and CPS(R) ∪Rd is relatively terminating with respect to Rnd.

Proof. We label rewrite steps by their starting term. Labels are compared with
respect to the strict order > =→+

(CPS(R)∪Rd)/Rnd
and the quasi-order � =→∗

R.
Note that > is well-founded by the assumption that CPS(R) ∪ Rd is relatively
terminating with respect to Rnd. We show that all local peaks of R are extended
locally decreasing. Let s→ t1 and s → t2 by applying the rewrite rules l1 → r1
and l2 → r2 at the positions p1 and p2. We may assume that l1 → r1 and
l2 → r2 do not share variables and thus there exists a substitution σ such that
s = s[l1σ]p1 = s[l2σ]p2 , t1 = s[r1σ]p1 , and t2 = s[r2σ]p2 . We distinguish three
cases.

1. If p1 ‖ p2 then t1 → u← t2 for the term u = s[r1σ, r2σ]p1,p2 . We have s > t1
if l1 → r1 is duplicating and s � t1 if l1 → r1 is non-duplicating. So in
both cases we have t1 �−→s u. Similarly, t2 �−→s u and thus we have local
decreasingness.

2. Suppose the redexes l1σ at position p1 and l2σ at position p2 overlap. If p1 =
p2 and l1 → r1 and l2 → r2 are variants then t1 = t2 and there is nothing
to prove. Assume without loss of generality that p1 � p2. There exists a
substitution τ such that t1 = s[vτ]p1 and t2 = s[uτ]p1 with u ←�→ v. By
assumption u ↓ v and hence also t1 ↓ t2. Every label a in the valley between
t1 and t2 satisfies t1 � a or t2 � a. Since s→CPS(R) t1 and s→CPS(R) t2, it
follows that s > t1, t2. Hence s > a for every label a in the valley between
t1 and t2. Consequently, local decreasingness holds.

492 N. Hirokawa and A. Middeldorp

3. In the remaining case we have a variable overlap. Assume without loss of
generality that p1 < p2. Let x be the variable in l1 whose position is above
p2 \ p1. Due to linearity of l1 we have t1 →∗ u ← t2 for some term u.
The number of steps in the sequence from t1 to u equals the number of
occurrences of the variable x in r1. If this number is not more than one then
local decreasingness is obtained as in the first case. If this number is more
than one then l1 → r1 is duplicating and hence s > t1. Therefore s > a for
every term a in the sequence from t1 to u. Moreover s > t2 or s � t2. Hence
also in this case we have local decreasingness. �!

Example 7. Consider the TRS R from [9, p.28] consisting of the rewrite rules

f(g(x))→ f(h(x, x)) g(a)→ g(g(a)) h(a, a)→ g(g(a))

The only critical pair f(g(g(a))) ←�→ f(h(a, a)) is clearly joinable. The TRS
CPS(R) ∪Rd consists of the rewrite rules

f(g(a))→ f(h(a, a)) f(g(a))→ f(g(g(a))) f(g(x))→ f(h(x, x))

and can be shown to be relatively terminating with respect to Rnd using the
method described at the beginning of Section 4. Hence the confluence of R is
concluded by Theorem 6.

The following example2 shows that left-linearity is essential in Theorem 6.

Example 8. Consider the non-left-linear TRS R

f(x, x)→ a f(x, g(x))→ b c→ g(c)

from [11]. Since CPS(R) ∪ Rd is empty, termination of (CPS(R) ∪ Rd)/Rnd is
trivial. However, R is not confluent because the term f(c, c) has two distinct
normal forms.

The termination of (CPS(R) ∪Rd)/Rnd can be weakened to the termination of
CPS(R)/R. In the proof of Theorem 6 we showed the local decreasingness of
→R. The following example shows that this no longer holds under the weakened
termination assumption.

Example 9. Consider the orthogonal TRS R consisting of the two rules f(x) →
g(x, x) and a→ b. Consider the local peak f(b)← f(a)→ g(a, a). There are two
ways to complete the diagram:

f(a)

f(b)

g(a, a)

g(b, a)

g(b, b)

f(a)

f(a)

g(a,a)

g(b,a)

f(b)

f(a)

f(b)

g(a, a)

g(a, b)

g(b, b)

f(a)

f(a)

g(a,a)

g(a,b)

f(b)

2 This example contradicts [12, Theorem 4].

Decreasing Diagrams and Relative Termination 493

Since CPS(R) is empty, neither of them is extended locally decreasing with
respect to the order in the proof of Theorem 6.

To address the problem, we first recall multi-steps (cf. [18]).

Definition 10. Let R be a TRS. The multi-step relation ◦−−→R (or simply ◦−−→)
is inductively defined as follows:

(1) x ◦−−→R x for all variables x,
(2) f(s1, . . . , sn) ◦−−→R f(t1, . . . , tn) if for each i we have si ◦−−→R ti, and
(3) lσ ◦−−→R rτ if l→ r ∈ R and σ ◦−−→R τ .

where σ ◦−−→R τ if xσ ◦−−→R xτ for all variables x.

The following result is well-known ([18, Lemma 4.7.12]).

Lemma 11. For every TRS R we have →R ⊆ ◦−−→R ⊆ →∗
R. �!

The following lemma relates ◦−−→R to→CPS(R)/R. It is the key to prove our main
result.

Lemma 12. Let R be a TRS and l → r a left-linear rule in R. If lσ ◦−−→R t
then one of the following conditions holds:

(a) t ∈ {lτ, rτ} and σ ◦−−→R τ for some τ ,
(b) lσ →CPS(R) · ◦−−→R t and lσ →CPS(R) rσ.

Proof. We may write lσ = C[s1, . . . , sn] ◦−−→R C[t1, . . . , tn] = t where si ◦−−→R ti
is obtained by case (3) in the definition of ◦−−→R for all 1 � i � n. If n = 0 then
lσ = t and hence we can take τ = σ to satisfy condition (a). So let n > 0. Let pi

be the position of si in lσ. We distinguish two cases.

– Suppose that p1, . . . , pn /∈ PosF(l). We define a substitution τ as follows.
For x ∈ Var(l) let q be the (unique) position in PosV(l) such that l|q = x.
Let P = {pi | pi � q} be the set of positions in lσ of those terms s1, . . . , sn

that occur in σ(x). We define τ(x) as the term that is obtained from σ(x)
by replacing for all pi ∈ P the subterm si at position pi\q with ti. We have
t = lτ and σ ◦−−→R τ , so condition (a) is satisfied.

– In the remaining case at least one position among p1, . . . , pn belongs to
PosF(l). Without loss of generality we assume that p1 ∈ PosF (l). Since
s1 ◦−−→R t1 is obtained by case (3), s1 = l1μ and t1 = r1ν for some rewrite
rule l1 → r1 and substitutions μ and ν with μ ◦−−→R ν. We assume that
l1 → r1 and l→ r share no variables. Hence we may assume that μ = σ. We
distinguish two further cases.

• If l1 → r1 and l → r are variants and p1 = ε then n = 1, C = �, and
lσ = s1 = l1σ ◦−−→R r1ν = t. Because l1 → r1 and l → r are variants,
there exists a substitution τ such that rτ = r1ν and σ ◦−−→R τ . So in
this case condition (a) is satisfied.

494 N. Hirokawa and A. Middeldorp

• If l1 → r1 and l → r are not variants or p1 �= ε then there exists an
overlap (l1 → r1, p1, l → r)θ such that lσ = lσ[l1σ]p1 is an instance of
lθ = lθ[l1θ]p1 . The TRS CPS(R) contains the rules lθ → lθ[r1θ]p1 and
lθ → rθ. The latter rule is used to obtain lσ →CPS(R) rσ. An application
of the former rule yields lσ →CPS(R) lσ[r1σ]p1 . From σ ◦−−→R ν we infer
that r1σ ◦−−→R r1ν = t1. Hence lσ →CPS(R) lσ[r1σ]p1 ◦−−→R lσ[t1]p1 =
C[t1, s2, . . . , sn] ◦−−→∗

R C[t1, . . . , tn] = t. The ◦−−→R-steps can be com-
bined into a single one and hence condition (b) is satisfied. �!

The following example shows that both conditions in Lemma 12 can occur.

Example 13. Consider the TRS R consisting of the rules f(g(x), y) → h(x, y),
g(a)→ b, and a→ c. Let l→ r be the first rule, t = f(b, c), and σ = {x, y �→ a}.
We have lσ ◦−−→R t with t satisfying condition (b) in Lemma 12: lσ →CPS(R)
f(b, a) ◦−−→R t and lσ →CPS(R) rσ. Note that condition (a) is not satisfied. If we
take t = f(g(a), c) or t = h(g(c), c) then condition (a) is satisfied but condition
(b) is not.

The following example shows the necessity of left-linearity in the preceding
lemma.

Example 14. Consider the TRS R consisting of the rewrite rules f(x, x)→ b and
a → b. Let l → r be the former rule, t = f(a, b), and σ = {x �→ a}. We have
lσ ◦−−→R t but t satisfies neither condition in Lemma 12.

The final preliminary lemma states some obvious closure properties.

Lemma 15. Let > and � be closed under contexts.

1. If t <◦−−→∗
s u then C[t] <◦−−→∗

C[s] C[u].
2. If t �◦−−→=

s u then C[t] �◦−−→=
C[s] C[u].

3. Let � =→∗
R and � ·> ·� ⊆ >. If s > t and t ◦−−→∗ u then t

<◦−−→∗
s u.

Proof. Straightforward. �!
After these preliminaries we are ready for the main result. In order to anticipate
future developments (see Section 6), we avoid the use of advanced results from
the confluence literature in the proof.

Theorem 16. A left-linear TRS R is confluent if ←�→ ⊆ ↓ and CPS(R)/R
is terminating.

Proof. Because of Lemma 11, it is sufficient to prove confluence of ◦−−→R. We
show that the relation ◦−−→R is extended locally decreasing with respect to
the source labeling. Labels are compared with respect to the strict order > =
→+

CPS(R)/R and the quasi-order � =→∗
R. We show that

s ◦←−− · ◦−−→s ⊆

�◦−−→=
s ·

<◦−−→∗
s · ∗s

<◦←−− · =
s

�◦←−−

for all terms s by well-founded induction on the order (>∪�)+. In the base case
s is a variable and the inclusion trivially holds. Let s = f(s1, . . . , sn). Suppose
t ◦←−− s ◦−−→ u. We distinguish the following cases, depending on the derivation
of s ◦−−→ t and s ◦−−→ u.

Decreasing Diagrams and Relative Termination 495

– Neither s ◦−−→ t nor s ◦−−→ u is obtained by (1), because s is not a variable.
Suppose both s ◦−−→ t and s ◦−−→ u are obtained by (2). Then t and u can
be written as f(t1, . . . , tn) and f(u1, . . . , un). Fix i ∈ {1, . . . , n}. We have
ti ◦←−− si ◦−−→ ui. By the induction hypothesis there exist t′i, u

′
i, and vi such

that

ti

�◦−−→=
si
t′i

<◦−−→∗
si
vi

∗
si

<◦←−− u′i =
si

�◦←−− ui

With repeated applications of Lemma 15(1,2) we obtain

t �◦−−→=
s f(t′1, . . . , t

′
n) <◦−−→∗

s f(v1, . . . , vn) ∗
s

<◦←−− f(u′1, . . . , u
′
n) =

s

�◦←−− u

– Suppose s ◦−−→ t or s ◦−−→ u is obtained by (3). Without loss of generality
we assume that s ◦−−→ t is obtained by (3), i.e., s = lσ, t = rτ , and σ ◦−−→ τ .
Following Lemma 12, we distinguish the following two cases for lσ ◦−−→ u.

• Suppose u ∈ {lμ, rμ} for some μ with σ ◦−−→ μ. Fix x ∈ Var(l). We have
xτ ◦←−− xσ ◦−−→ xμ. By the induction hypothesis there exist terms tx,
ux, and vx such that

xτ �◦−−→=
xσ tx

<◦−−→∗
xσ vx

∗
xσ

<◦←−− ux
=

xσ
�◦←−− xμ

Define substitutions τ ′, ν, and μ′ as follows: τ ′(x) = tx, ν(x) = vx, and
μ′(x) = ux for all x ∈ Var(l), and τ ′(x) = ν(x) = μ′(x) = x for all
x /∈ Var(l). We obtain

t �◦−−→=
s rτ ′

<◦−−→∗
s rν

∗
s

<◦←−− rμ′ =
s

�◦←−− u

by repeated applications of Lemma 15(1,2).
• In the remaining case we have s →CPS(R) u

′ ◦−−→ u for some term u′ as
well as s→CPS(R) rσ. Clearly rσ ◦−−→ rτ = t. Since R is locally confluent
(due to←�→ ⊆ ↓), there exists a term v′ such that rσ →∗ v′ ∗← u′ and
thus also rσ ◦−−→∗ v′ ∗ ◦←−− u′. We have s > rσ and s > u′. Lemma 15(3)
ensures that rσ <◦−−→∗

s v
′ ∗

s

<◦←−− u′. For every term v with s > v we have

v ◦←−− · ◦−−→v ⊆

�◦−−→=
v ·

<◦−−→∗
v · ∗v

<◦←−− · =
v

�◦←−−

by the induction hypothesis. Hence the ARS 〈T (F ,V), { ◦−−→v}v<s〉 is
locally decreasing and therefore the relation

<◦−−→s =
⋃
v<s

◦−−→v

is confluent. This is used to obtain the diagram

496 N. Hirokawa and A. Middeldorp

s

rσ

t ·

u′ u

v′

·

◦<s

◦<

s

◦<

s

◦<s

◦<s

◦<

s
◦<

s

◦<s

CPS(R)

CPS(R)

CR(<◦−−→s)

CR(<◦−−→s)

from which we conclude that t <◦−−→∗
s · ∗s

<◦←−− u. �!

The above result can also be proved using Lemma 12 in connection with the
conversion version of decreasing diagrams together with the predecessor labeling
diagrams [22] in which steps s ◦−−→ t are labeled by terms u such that u →∗ s
(Vincent van Oostrom, personal communication).

Example 17. Suppose we extend the TRS R of Example 4 by the rewrite rule

d(x : y)→ x : (x : d(y))

The resulting TRS R′ has the same critical pair as R and CPS(R′) consists of

inc(tl(nats))→ tl(inc(nats)) inc(tl(nats))→ inc(tl(0 : inc(nats)))

By taking the matrix interpretation ([7])

incM(x) =
(

1 0
1 0

)
x hdM(x) = x 0M =

(
0
0

)
natsM =

(
0
1

)
tlM(x) =

(
1 1
1 0

)
x sM(x) =

(
1 1
0 0

)
x

dM(x) =
(

1 1
1 1

)
x :M(x,y) =

(
1 1
1 1

)
x + y

we obtain R′ ⊆ �M and CPS(R′) ⊆ >M:

[inc(tl(nats))]M =
(

1
1

)
>

(
0
0

)
= [tl(inc(nats))]M = [inc(tl(0 : inc(nats)))]M

Hence CPS(R′)/R′ is terminating and Theorem 16 yields the confluence of R′.
Note that Theorem 6 does not apply because CPS(R′) ∪ R′

d is not relatively
terminating with respect to R′

nd; consider the term d(nats).

Decreasing Diagrams and Relative Termination 497

Replacing CPS(R) in Theorem 16 by CPS′(R) = {l1μ → r1μ, l2μ → r2μ |
(l1 → r1, p, l2 → r2)μ is an overlap of R} yields a correct but strictly weaker con-
fluence criterion as termination of CPS′(R)/R implies termination of CPS(R)/R
but not vice versa; CPS′(R′)/R′ in Example 17 is not terminating.

The next example explains why one cannot replace CPS(R) by one of its
subsets CPSo(R) = {l2μ → r2μ | (l1 → r1, p, l2 → r2)μ is an overlap of R} and
CPSi(R) = {l2μ→ l2μ[r1μ]p | (l1 → r1, p, l2 → r2)μ is an overlap of R}.

Example 18. Consider the TRSs R1 = {f(a) → c, f(b) → d, a → b, b → a}
and R2 = {a → c, b → d, f(a) → f(b), f(b) → f(a)}. Both TRSs are locally
confluent but not confluent. We have CPSo(R1) = {f(a) → c, f(b) → d} and
CPSi(R2) = {f(a)→ f(c), f(b)→ f(d)}. It is easy to see that CPSo(R1)/R1 and
CPSi(R2)/R2 are terminating.

An easy extension of our main result is obtained by excluding critical pair steps
from CPS(R) that give rise to trivial critical pair steps. The proof is based on
the observation that Lemma 12 still holds for this modification of CPS(R).

4 Automation

Concerning the automation of Theorem 16, for checking relative termination we
use the following criteria of Geser [8]:

Theorem 19. For TRSs R and S, R/S is terminating if

1. R = ∅,
2. R∪ S is terminating, or
3. there exist a well-founded order > and a quasi-order � such that > and �

are closed under contexts and substitutions, � ·> ·� ⊆ >, R∪ S ⊆ �, and
(R \>)/(S \>) is terminating.

Based on this result, termination of CPS(R)/R is shown by repeatedly using the
last condition to simplify CPS(R) and R. As soon as the first condition applies,
termination is concluded. If the first condition does not apply and the third
condition does not make progress, we try to establish termination of CPS(R)∪R
using the termination tool TTT2 [15]. For checking the third condition we use
matrix interpretations [7].

In the remainder of this section we show how to implement Theorem 3. We
start by observing that the condition of Theorem 3 is undecidable even for locally
confluent TRSs.

Lemma 20. The following decision problem is undecidable:

instance: a finite locally confluent linear TRS R,
question: are all critical pairs locally decreasing with respect to the

rule-labeling heuristic?

498 N. Hirokawa and A. Middeldorp

Proof. We provide a reduction from the problem whether two (arbitrary) ground
terms in a linear non-overlapping TRS are joinable. The latter is undecid-
able as an easy consequence of the encoding of Turing machines as linear non-
overlapping TRSs, see e.g. [18]. So let S be a (finite) linear non-overlapping TRS
and let s and t be arbitrary ground terms. We extend S with fresh constants
a, b and the rewrite rules {a → s, b → t, a → b, b → a} to obtain the TRS R.
If s and t are joinable (in S) then all its all critical pairs are locally decreasing
by ordering all rules in S below the above four rules If s and t are not joinable,
then no order on the rules will make the critical pairs locally decreasing with
respect to the rule-labeling heuristic. So confluence of R can be established by
the rule-labeling heuristic if and only if the terms s and t are joinable in S. �!

By putting a bound on the number of steps to check joinability we obtain a
decidable condition for (extended) local decreasingness:

l2[r1]pμ

at most k steps︷ ︸︸ ︷

<−→∗
α· �−→=

β · <−→∗
αβ ·

at most k steps︷ ︸︸ ︷
∗

αβ
<←− · =

α

�←− · ∗β <←− r2μ

for each overlap (l1 → r1, p, l2 → r2)μ of R with α = l1 → r1 and β = l2 → r2.
Below we reduce this to precedence constraints of the form

φ ::= 	 | ⊥ | φ ∨ φ | φ ∧ φ | α > α | α � α

where α stands for variables corresponding to the rules in R. From the encodings
of termination methods for term rewriting, we know that the satisfiability of such
precedence constraints is easily determined by SAT or SMT solvers (cf. [4,23]).

Definition 21. For terms s, t and k � 0, a pair ((γ1, . . . , γm), (δ1, . . . , δn)) is
called a k-join instance of (s, t) if m,n � k, γ1, . . . , γm, δ1, . . . , δn ∈ R, and

s→γ1
· · · · · →γm

· δn
← · · · · · δ1

← t

The embedding order 5 on sequences is defined as (a1, . . . , an) 5 (ai1 , . . . , aim)
whenever 1 � i1 < · · · < im � n. The set of all minimal (with respect to 5×5)
k-join instances of (s, t) is denoted by Jk(s, t). We define Φα

β ((γ1, . . . , γn)) as∨
i	n

(∧
j<i

α > γj ∧ Ψi,n

)
with Ψi,n denoting 	 if i = n and

β � γi ∧
∧

i<j	n

(α > γj ∨ β > γj)

if i < n. Furthermore, RLk(R) denotes the conjunction of∨{
Φl1→r1

l2→r2
(γ) ∧ Φl2→r2

l1→r1
(δ)
∣∣ (γ, δ) ∈ Jk(l2[r1]pμ, r2μ)

}
for all overlaps (l1 → r1, p, l2 → r2)μ of R.

Decreasing Diagrams and Relative Termination 499

Table 1. Summary of experimental results

(a) (b) (c) (d) (e) (f) (g)

YES 20 81 67 49 100 107 135
timeout (60 s) 0 0 0 3 4 3 17

The only non-trivial part of the encoding is the minimality condition in Jk(s, t).
The next lemma explains why non-minimal pairs can be excluded from the set
and Example 23 shows the benefit of doing so.

Lemma 22. If Φα
β (δ) is satisfiable and δ 5 γ then Φα

β (γ) is satisfiable.

Proof. Straightforward. �!

We illustrate the encoding on a concrete example.

Example 23. Consider the TRS R of Example 4. We show how RL4(R) is com-
puted. There is a single overlap (1, 11, 5)ε resulting in the critical pair s←�→ t
with s = inc(tl(0 : inc(nats))) and t = tl(inc(nats)). Its 4-join instances are

((3), (1, 4, 3)) ((3, 1), (1, 4, 3, 1)) ((3, 1), (1, 4, 1, 3)) ((3, 1), (1, 1, 4, 3))
((1, 3), (1, 4, 3, 1)) ((1, 3), (1, 4, 1, 3)) ((1, 3), (1, 1, 4, 3))

Only the first one belongs to J4(s, t) and hence RL4(R) = Φ1
5((3))∧Φ5

1((1, 4, 3))
with Φ1

5((3)) = 5 � 3 ∨ 1 > 3 and

Φ5
1((1, 4,3)) = (1 � 1 ∧ (1 > 4 ∨ 5 > 4) ∧ (1 > 3 ∨ 5 > 3))

∨ (5 > 1 ∧ 1 � 4 ∧ (1 > 3 ∨ 5 > 3)) ∨ (5 > 1 ∧ 5 > 4 ∧ 1 � 3)
∨ (5 > 1 ∧ 5 > 4 ∧ 5 > 3)

This formula is satisfied by taking (e.g.) the order 5 > 3, 4. Hence, the conflu-
ence of R is concluded by local decreasingness with respect to the rule labeling
heuristic using at most 3 steps to close critical pairs.

Theorem 24. A linear TRS R is confluent if RLk(R) is satisfiable for some
k � 0. �!

5 Experimental Results

We tested our methods on a collection of 425 TRSs, consisting of the 103
TRSs in the ACP distribution,3 the TRSs of Examples 5, 17, and 18, and
those TRSs in version 5.0 of the Termination Problems Data Base4 that are
either non-terminating or not known to be terminating. (Systems that have
3 http://www.nue.riec.tohoku.ac.jp/tools/acp/
4 http://termination-portal.org/wiki/TPDB

http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://termination-portal.org/wiki/TPDB

500 N. Hirokawa and A. Middeldorp

extra variables in right-hand sides of rewrite rules are excluded.) The results
are summarized in Table 1. The following techniques are used to produce the
columns: (a) Knuth and Bendix’ criterion [14]: termination and joinability of
all critical pairs, (b) orthogonality, (c) Theorem 24 with k = 4, (d) Theo-
rem 6, (e) Theorem 16, (f) the extension of Theorem 16 mentioned at the
end of Section 3 in which critical pair steps that generate trivial critical pairs
are excluded from CPS(R), and (g) ACP [2]. To obtain the data in columns
(a)–(f) we slightly extended the open source termination tool TTT2. For the
data in column (c) the SAT solver MiniSat [6] is used. Since local confluence
is undecidable (for non-terminating TRSs), in (c)–(f) it is approximated by
←�→ ⊆

⋃
{→i · j← | i, j � 4}.

ACP proves that 198 of the 424 TRSs are not confluent. Of the remaining
226 TRSs, local confluence can be shown using at most 4 rewrite steps from
both terms in every critical pair for 187 TRSs. Moreover, of these 187 TRSs, 148
are left-linear and 76 are linear. As a final remark, the combination of (c) and
(f) proves that 129 TRSs are confluent, (a)+(c)+(f) shows confluence for 134
TRSs, and (c)+(f)+(g) shows confluence for 145 TRSs. These numbers clearly
show that both our results have a role to play.

6 Conclusion

In this paper we presented two results based on the decreasing diagrams tech-
nique for proving confluence of TRSs. For linear TRSs we showed how the rule-
labeling heuristic can be implemented by means of an encoding as a satisfiability
problem and we employed the self-labeling heuristic to obtain the result that an
arbitrary left-linear locally confluent TRS is confluent if its critical pair steps
are relatively terminating with respect to its rewrite rules. We expect that both
results will increase the power of ACP [2].

As future work we plan to investigate whether the latter result can be strength-
ened by decreasing the set CPS(R) of critical pair steps that need to be relatively
terminating with respect to R. We anticipate that some of the many critical pair
criteria for confluence that have been proposed in the literature (e.g. [11,21]) can
be used for this purpose. The idea here is to exclude the critical pair steps that
give rise to critical pairs whose joinability can be shown by the conditions of the
considered criterion. Another direction for future work is to determine whether
the conversion version of decreasing diagrams [22] can increase the power of au-
tomatic confluence tools. Last but not least, in order to certify the output of
such tools, we plan to formalize the confluence results presented in this paper in
the Isabelle proof assistant.

Acknowledgements. We thank Mizuhito Ogawa, Vincent van Oostrom, and
Harald Zankl for commenting on an earlier version of this paper. The detailed
comments of the anonymous referees helped to improve the paper.

Decreasing Diagrams and Relative Termination 501

References

1. Aoto, T., Toyama, Y.: Persistency of confluence. Journal of Universal Computer
Science 3(11), 1134–1147 (1997)

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems au-
tomatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102. Springer,
Heidelberg (2009)

3. Bezem, M., Klop, J., van Oostrom, V.: Diagram techniques for confluence.
I&C 141(2), 172–204 (1998)

4. Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO
termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer,
Heidelberg (2006)

5. Dershowitz, N.: Open Closed Open. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467,
pp. 276–393. Springer, Heidelberg (2005)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2-3), 195–220 (2008)

8. Geser, A.: Relative Termination. PhD thesis, Universität Passau, Available as tech-
nical report 91-03 (1990)

9. Gramlich, B.: Termination and Confluence Properties of Structured Rewrite Sys-
tems. PhD thesis, Universität Kaiserslautern (1996)

10. Gramlich, B., Lucas, S.: Generalizing Newman’s lemma for left-linear rewrite sys-
tems. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 66–80. Springer,
Heidelberg (2006)

11. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems. J. ACM 27(4), 797–821 (1980)

12. Jouannaud, J.P., van Oostrom, V.: Diagrammatic confluence and completion. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 212–222. Springer, Heidelberg (2009)

13. Klop, J., van Oostrom, V., de Vrijer, R.: A geometric proof of confluence by de-
creasing diagrams. Journal of Logic and Computation 10(3), 437–460 (2000)

14. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Computa-
tional Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)

15. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

16. Ohlebusch, E.: Modular Properties of Composable Term Rewriting Systems. PhD
thesis, Universität Bielefeld (1994)

17. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. J. ACM 20(1),
160–187 (1973)

18. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

19. Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future
Generation Computers II, pp. 393–407. North-Holland, Amsterdam (1988)

20. van Oostrom, V.: Confluence by decreasing diagrams. TCS 126(2), 259–280 (1994)
21. van Oostrom, V.: Developing developments. TCS 175(1), 159–181 (1997)
22. van Oostrom, V.: Confluence by decreasing diagrams converted. In: Voronkov, A.

(ed.) RTA 2008. LNCS, vol. 5117, pp. 306–320. Springer, Heidelberg (2008)
23. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201

(2009)

Monotonicity Criteria for Polynomial
Interpretations over the Naturals�

Friedrich Neurauter, Aart Middeldorp, and Harald Zankl

Institute of Computer Science, University of Innsbruck, Austria

Abstract. Polynomial interpretations are a useful technique for proving
termination of term rewrite systems. In an automated setting, termina-
tion tools are concerned with parametric polynomials whose coefficients
(i.e., the parameters) are initially unknown and have to be instantiated
suitably such that the resulting concrete polynomials satisfy certain con-
ditions. We focus on monotonicity and well-definedness, the two main
conditions that are independent of the respective term rewrite system
considered, and provide constraints on the abstract coefficients for lin-
ear, quadratic and cubic parametric polynomials such that monotonicity
and well-definedness of the resulting concrete polynomials are guaranteed
whenever the constraints are satisfied. Our approach subsumes the abso-
lute positiveness approach, which is currently used in many termination
tools. In particular, it allows for negative numbers in certain coefficients.
We also give an example of a term rewrite system whose termination
proof relies on the use of negative coefficients, thus showing that our
approach is more powerful.

1 Introduction

Polynomial interpretations are a simple yet useful technique for proving termi-
nation of term rewrite systems (TRSs). They come in various flavors. While
originally conceived by Lankford [10] for establishing direct termination proofs,
polynomial interpretations are nowadays often used in the context of the depen-
dency pair (DP) framework [1,6,7]. Moreover, the classical approach of Lankford,
who only considered polynomial algebras over the natural numbers, was extended
by several authors to polynomial algebras over the real numbers [3,11].

This paper is concerned with automatically proving termination of term rewrite
systems by means of polynomial interpretations over the natural numbers. In the
classical approach, we associate with every n-ary function symbol f a polyno-
mial Pf in n indeterminates with integer coefficients, which induces a mapping
or interpretation from terms to integer numbers in the obvious way. In order to
conclude termination of a given TRS, three conditions have to be satisfied. First,
every polynomial must be well-defined, i.e., it must induce a well-defined polyno-
mial function fN : Nn → N over the natural numbers. In addition, the interpreta-
tion functions fN are required to be strictly monotone in all arguments. Finally,

� This research is supported by FWF (Austrian Science Fund) project P18763.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 502–517, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Monotonicity Criteria for Polynomial Interpretations over the Naturals 503

one has to show compatibility of the interpretation with the given TRS. More pre-
cisely, for every rewrite rule l → r the polynomial Pl associated with the left-hand
side must be greater than Pr, the corresponding polynomial of the right-hand side,
i.e., Pl > Pr, for all values (in N) of the indeterminates. These three requirements
essentially carry over to the case of using polynomial interpretations as reduction
pairs in the DP framework, but in a weakened form. Most notably, the interpre-
tation functions are merely required to be weakly monotone, and for some rules
Pl ≥ Pr suffices.

In an automated setting, termination tools are concerned with parametric
polynomials whose coefficients (i.e., the parameters) are initially unknown and
have to be instantiated suitably such that the resulting concrete polynomials
satisfy the above conditions. In this paper, we focus on monotonicity (strict and
weak) and well-definedness of linear, quadratic and cubic parametric polynomi-
als, two conditions that are independent of the respective TRS considered. The
aim is to provide exact constraints in terms of the abstract coefficients of a para-
metric polynomial such that monotonicity and well-definedness of the resulting
concrete polynomial are guaranteed for every instantiation of the coefficients
that satisfies the constraints. For example, given the parametric polynomial
ax2 + bx + c, we identify constraints on the parameters a, b and c such that
the associated polynomial function is both well-defined and (strictly) monotone.
Our approach subsumes the absolute positiveness approach [9], which is currently
used in many termination tools. In contrast to the latter, negative numbers in
certain coefficients can be handled without further ado. Previous work allowing
negative coefficients ensures well-definedness and (weak) monotonicity by ex-
tending polynomials with “max” [8,5]. However, all our interpretation functions
are polynomials and our results do also apply to strict monotonicity. Hence in
the sequel we do not consider these approaches.

The remainder of this paper is organized as follows. In Section 2, we introduce
some preliminary definitions and terminology concerning polynomials and poly-
nomial interpretations. The follow-up section is the main section of this paper
where we present our results concerning monotonicity of linear, quadratic and
cubic parametric polynomials. In Section 4, we give a constructive proof show-
ing that our approach is more powerful than the absolute positiveness approach.
Finally, Section 5 presents some experimental results.

2 Preliminaries

For any ring R, we denote the associated polynomial ring in n indeterminates
x1, . . . , xn by R[x1, . . . , xn]. For example, the polynomial 2x2−x+1 is an element
of Z[x], the ring of all univariate polynomials with coefficients in Z. Let P :=∑n

k=0 akx
k be an element of the polynomial ring R[x]. For the largest k where

ak �= 0, we call akx
k the leading term of P , ak its leading coefficient and k its

degree. Moreover, we call a0 the constant coefficient or constant term of P .
A quadratic equation is an equation of the form ax2 + bx+ c = 0, where x is

an indeterminate, and a, b and c represent constants, with a �= 0. The solutions
of a quadratic equation, called roots, are given by the quadratic formula:

504 F. Neurauter, A. Middeldorp, and H. Zankl

−b±
√
b2 − 4ac

2a
In this formula, the expression d := b2−4ac underneath the square root sign is of
central importance because it determines the nature of the roots; it is also called
the discriminant of a quadratic equation. If all coefficients are real numbers, one
of the following three cases applies:

1. If d is positive, there are two distinct roots, both of which are real numbers.
2. If d is zero, there is exactly one real root, called a double root.
3. If d is negative, there are no real roots. Both roots are complex numbers.

The key concept for using polynomial interpretations to establish (direct) ter-
mination of term rewrite systems is the notion of well-founded monotone al-
gebras (WFMAs) since they induce reduction orders on terms. Let F be a
signature. A well-founded monotone F-algebra (A, >) is a non-empty algebra
A = (A, {fA}f∈F) together with a well-founded order > on the carrier A of A
such that every algebra operation fA is strictly monotone in all arguments, i.e.,
if f ∈ F has arity n ≥ 1 then fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an) for
all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai > b.

Concerning the use of polynomial interpretations in the context of the DP
framework, the notion of a well-founded weakly monotone algebra (WFWMA)
is sufficient to obtain a reduction pair. A WFWMA is just like a WFMA,
with the exception that weak rather than strict monotonicity is required; i.e.,
fA(a1, . . . , ai, . . . , an) ≥ fA(a1, . . . , b, . . . , an) whenever ai ≥ b. Here ≥ is the
reflexive closure of >.

Given a monotone algebra (A, >), we define the relations ≥A and >A on
terms as follows: s ≥A t if [α]A(s) ≥ [α]A(t) and s >A t if [α]A(s) > [α]A(t), for
all assignments α of elements of A to the variables in s and t ([α]A(·) denotes the
usual evaluation function associated with A). Now if (A, >) is a WFMA, then
>A is a reduction order that can be used to prove termination of term rewrite
systems by showing that >A orients the rewrite rules from left to right. If, on
the other hand, (A, >) is a WFWMA, then (≥A, >A) is a reduction pair that
can be used to establish termination in the context of the DP framework.

3 Parametric Polynomials

Polynomial interpretations over the natural numbers are based on the well-
founded algebra (N , >), where > is the standard order on the natural numbers
N and N = (N, {fN}f∈F) such that every algebra operation fN is a polyno-
mial with integer coefficients. Depending on whether all algebra operations are
strictly or weakly monotone, (N , >) is either a WFMA or a WFWMA. To be
precise, every n-ary function symbol f ∈ F is associated with a polynomial with
integer coefficients such that the corresponding algebra operation fN : Nn → N
is a well-defined polynomial function which is strictly or weakly monotone in all
arguments. Note, however, that this does not imply that all coefficients of the
polynomials must be natural numbers.

Monotonicity Criteria for Polynomial Interpretations over the Naturals 505

Example 1. The univariate integer polynomial 2x2−x+1 ∈ Z[x] gives rise to the
polynomial function fN : N→ N, x �→ 2x2−x+1, which is obviously well-defined
over N. Moreover, it is also strictly monotone with respect to N. Note, however,
that monotonicity does not hold if we view 2x2 − x + 1 as a function over the
(non-negative) real numbers.

Summing up, an n-ary polynomial function fN used in a polynomial interpreta-
tion is an element of the polynomial ring Z[x1, . . . , xn] and must satisfy:

1. well-definedness : fN(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ N
2. strict (weak) monotonicity: fN(x1, . . . , xi, . . . , xn) >

(−)
fN(x1, . . . , y, . . . , xn) for

all i ∈ {1, . . . , n} and x1, . . . , xn, y ∈ N with xi > y.

Alas, both of these properties are instances of the undecidable problem of check-
ing positiveness of polynomials1 in the polynomial ring Z[x1, . . . , xn] (undecid-
able by reduction from Hilbert’s 10-th problem).

Termination tools face the following problem. They deal with parametric poly-
nomials, i.e., polynomials whose coefficients are unknowns (e.g., ax2 + bx + c),
and the task is to find suitable integer numbers for the unknown coefficients
such that the resulting polynomials induce algebra operations that satisfy both
of the above properties. The solution that is used in practice is to restrict the
search space for the unknown coefficients to the non-negative integers (absolute
positiveness approach [9,2]) because then well-definedness and weak monotonic-
ity are obtained for free. To obtain strict monotonicity in the i-th argument of
a polynomial function fN(. . . , xi, . . .), at least one of the terms (ckxk

i)k>0 must
have a positive coefficient ck > 0.

Obviously, this approach is easy to implement and works quite well in practice.
However, it is not optimal in the sense that it excludes certain polynomials, like
2x2−x+1, which might be useful to prove termination of certain TRSs. So how
can we do better? To this end, let us observe that in general termination tools
only use restricted forms of polynomials to interpret function symbols. There
are restrictions concerning the degree of the polynomials (linear, quadratic, etc.)
and sometimes also restrictions that disallow certain kinds of monomials. Now
the idea is as follows. Despite the fact that well-definedness and monotonicity
are undecidable in general, it might be the case that they are decidable for the
restricted forms of polynomials used in practice. And indeed, that is the case,
as we shall see shortly.

Remark 2. Checking compatibility of a rewrite rule l → r with a polynomial
interpretation means showing that the rule gives rise to a (weak) decrease; i.e.,
Pl − Pr > 0 (Pl − Pr ≥ 0). In N, both cases reduce to checking non-negativity
of polynomials because x > y if and only if x ≥ y + 1. Since well-definedness of
a polynomial as defined above is equivalent to non-negativity of a polynomial
in N, any method that ensures non-negativity of parametric polynomials can
also be used for checking compatibility. However, we remark that the method
presented in this paper is not ideally suited for this purpose as it also enforces
strict monotonicity, which is irrelevant for compatibility.
1 Given P ∈ Z[x1, . . . , xn], decide P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N.

506 F. Neurauter, A. Middeldorp, and H. Zankl

In the sequel, we analyze parametric polynomials whose only restriction is a
bound on the degree. We will first treat linear parametric polynomials. While
this does not yield new results or insights, it is instructive to demonstrate our ap-
proach in a simple setting. This is followed by an analysis of quadratic and finally
also cubic parametric polynomials, both of which yield new results. The follow-
ing lemmas will be helpful in this analysis. The first one gives a more succinct
characterization of monotonicity, whereas the second one relates monotonicity
and well-definedness.

Lemma 3. A (not necessarily polynomial) function fN : Nn → Z is strictly
(weakly) monotone in all arguments if and only if

fN(x1, . . . , xi + 1, . . . , xn) >
(−)

fN(x1, . . . , xi, . . . , xn)

for all x1, . . . , xn ∈ N and all i ∈ {1, . . . , n}.

Lemma 4. Let f : Zn → Z be the polynomial function associated with a polyno-
mial in Z[x1, . . . , xn], and let fN : Nn → Z denote its restriction to N. Then fN is
strictly (weakly) monotone and well-defined if and only if it is strictly (weakly)
monotone and fN(0, . . . , 0) ≥ 0.

In these lemmata, as well as in the remainder of the paper, monotonicity and
well-definedness refer to the two properties mentioned at the beginning of this
section. In particular, monotonicity is meant with respect to all arguments.

3.1 Linear Parametric Polynomials

In this section we consider the generic linear parametric polynomial function
fN(x1, . . . , xn) = anxn + an−1xn−1 + · · ·+ a1x1 + a0, and derive constraints on
the coefficients ai that guarantee monotonicity and well-definedness.

Theorem 5. The function fN(x1, . . . , xn) = anxn + . . . + a1x1 + a0 (ai ∈ Z,
0 ≤ i ≤ n) is strictly (weakly) monotone and well-defined if and only if a0 ≥ 0
and ai > 0 (ai ≥ 0) for all i ∈ {1, . . . , n}.

Proof. Easy consequence of Lemmata 4 and 3. �!

Remark 6. Note that all coefficients must be non-negative and that the con-
straints on the coefficients are exactly the ones one would obtain by the absolute
positiveness approach. Furthermore, these constraints are optimal in the sense
that they are both necessary and sufficient for monotonicity and well-definedness.

3.2 Quadratic Parametric Polynomials

Next we apply the approach illustrated by Theorem 5 to the generic quadratic
parametric polynomial function

fN(x1, . . . , xn) = a0 +
n∑

j=1

ajxj +
∑

1≤j≤k≤n

ajkxjxk ∈ Z[x1, . . . , xn] (1)

Monotonicity Criteria for Polynomial Interpretations over the Naturals 507

Theorem 7. The function fN is strictly (weakly) monotone and well-defined if
and only if a0 ≥ 0, ajk ≥ 0 and aj > −ajj (aj ≥ −ajj) for all 1 ≤ j ≤ k ≤ n.

Proof. By Lemmata 3 and 4, this theorem holds if and only if fN(0, . . . , 0) ≥ 0,
and fN(x1, . . . , xi +1, . . . , xn) >

(−)
fN(x1, . . . , xi, . . . , xn) for all x1, . . . , xn ∈ N and

all i ∈ {1, . . . , n}. Clearly, fN(0, . . . , 0) ≥ 0 holds if and only if a0 ≥ 0, and the
monotonicity condition fN(x1, . . . , xi +1, . . . , xn) > fN(x1, . . . , xi, . . . , xn) yields

ai(xi + 1) + aii(xi + 1)2 +
∑

i<k≤n

aik(xi + 1)xk +
∑

1≤j<i

ajixj(xi + 1)

> aixi + aiix
2
i +
∑

i<k≤n

aikxixk +
∑

1≤j<i

ajixjxi

which simplifies to

ai + aii + 2aiixi +
∑

i<k≤n

aikxk +
∑

1≤j<i

ajixj > 0

This is a linear inequality that holds for all x1, . . . , xn ∈ N if and only if ai+aii >
0 and all other coefficients are non-negative. Taking the quantification over i
into account, this proves the claim for strict monotonicity; the result for weak
monotonicity follows by replacing > with ≥ in the above calculation. �!

Corollary 8. The function fN(x) = ax2 + bx+ c is strictly (weakly) monotone
and well-defined if and only if a ≥ 0, c ≥ 0 and b > −a (b ≥ −a).

Hence, in a quadratic parametric polynomial all coefficients must be non-negative
except the coefficients of the linear monomials. They can be negative; for exam-
ple, the polynomial 2x2 − x+ 1 satisfies the constraints of Corollary 8; hence, it
is both well-defined and strictly monotone.

Remark 9. Not only does our approach improve upon absolute positiveness for
quadratic parametric polynomials, but the constraints derived from it are even
optimal, i.e., necessary and sufficient for monotonicity and well-definedness.

Example 10. The polynomial function fN(x1, x2) = 2x2
1+3x2

2+x1x2−x1−2x2+1
is both well-defined and strictly monotone according to Theorem 7. Yet we can
also infer this result in a more modular and probably more intuitive way by
using Corollary 8. To this end, let fN(x1, x2) = g1(x1) + g2(x2) + x1x2 + 1,
where g1(x1) = 2x2

1−x1 and g2(x2) = 3x2
2− 2x2. Clearly, by Corollary 8, g1(x1)

and g2(x2) are both well-defined and strictly monotone. The same also holds for
their sum, g1(x1) + g2(x2), because g1(x1) and g2(x2) do not share variables.
Finally, we may conclude that fN is then also well-defined and strictly monotone
by observing that the addition of monomials with non-negative coefficients (in
this case: x1x2 and 1) is not harmful.

Another thing that is noteworthy about the previous theorem is that it sub-
sumes the result of Theorem 5. That is to say, if we set the coefficients ajk of

508 F. Neurauter, A. Middeldorp, and H. Zankl

all quadratic monomials in (1) to zero, thereby obtaining the linear parametric
polynomial function f ′

N
(x1, . . . , xn) = a0 +

∑n
j=1 ajxj , then the constraints gen-

erated by Theorem 7 are in fact the ones Theorem 5 would produce when applied
to f ′

N
. In theory, this means that if we want to prove termination of some TRS,

then we do not have to specify a priori whether to interpret a function symbol
by a linear or a quadratic parametric polynomial function; we can always go for
quadratic interpretations, and it is solely determined by the constraint solving
process (i.e., the process that assigns suitable integers to the abstract coefficients
such that all constraints are satisfied) whether the resulting concrete polynomial
function is linear or quadratic. In practice, however, this approach has an im-
portant drawback; that is, it increases both the number of abstract coefficients
and the number of constraints involving these coefficients, which is detrimental
to the performance of the constraint solving process.

3.3 Cubic Parametric Polynomials

Next we apply our approach to cubic parametric polynomials. First, we consider
the univariate polynomial function fN(x) = ax3 + bx2 + cx+ d ∈ Z[x], for which
the monotonicity condition fN(x+ 1) >

(−)
fN(x) for all x ∈ N simplifies to

∀x ∈ N 3ax2 + (3a+ 2b)x+ (a+ b+ c) >
(−)

0 (2)

In the interesting case, where a �= 0, the polynomial P := 3ax2 + (3a + 2b)x +
(a + b + c) is a quadratic polynomial in x whose geometric representation is
a parabola in two-dimensional space, which has a global minimum at xmin :=
−(3a+ 2b)/(6a). Since a is involved in the leading coefficient of P , a must neces-
sarily be positive in order for (2) to hold. Next we focus on strict monotonicity,
that is, the solution of the inequality

∀x ∈ N 3ax2 + (3a+ 2b)x+ (a+ b+ c) > 0 (3)

Now this inequality holds if and only if either xmin < 0 and P (0) > 0 or xmin ≥ 0
and both P (1xmin2) > 0 and P (,xmin-) > 0. However, these constraints use
the floor and ceiling functions, but we would rather have a set of polynomial
constraints in a, b and c (which can easily be encoded in SAT or SMT). It is
possible, however, to eliminate the floor and ceiling functions from the above
constraints, but only at the expense of introducing new variables; e.g., 1xmin2 =
n for some n ∈ Z if and only if n ≤ xmin < n + 1. Thus one obtains a set of
polynomial constraints in a, b, c and the additional variables. But one can also
avoid the introduction of new variables with the following approach. To this end,
we examine the roots of P and distinguish two possible cases:

Case 1 P has no roots in R (both roots are complex numbers),

Case 2 both roots of P are real numbers.

In the first case, (3) trivially holds. Moreover, this case is completely charac-
terized by the discriminant of P being negative, i.e., 4b2 − 3a2 − 12ac < 0. In

Monotonicity Criteria for Polynomial Interpretations over the Naturals 509

the other case, when both roots r1 and r2 are real numbers, the discriminant
is non-negative and (3) holds if and only if the closed interval [r1, r2] does not
contain a natural number, i.e., [r1, r2]∩N = ∅. While this condition can be fully
characterized with the help of the floor and/or ceiling functions, we can also
obtain a polynomial characterization as follows. We require the larger of the two
roots, that is, r2, to be negative because then (3) is guaranteed to hold. This
observation leads to the constraints

4b2 − 3a2 − 12ac ≥ 0 and r2 =
−(3a+ 2b) +

√
4b2 − 3a2 − 12ac
6a

< 0

which can be simplified to

4b2 − 3a2 − 12ac ≥ 0 (4)√
4b2 − 3a2 − 12ac < 3a+ 2b (5)

Due to (4), (5) holds if and only if 4b2−3a2−12ac < (3a+2b)2 and 3a+2b ≥ 0,
which simplifies to a+ b+ c > 0 and 3a+ 2b ≥ 0. Putting everything together,
we obtain the following theorem.

Theorem 11. The function fN(x) = ax3 +bx2+cx+d is strictly monotone and
well-defined if a ≥ 0, d ≥ 0 and either 4b2−3a2−12ac < 0 or 4b2−3a2−12ac ≥ 0,
a+ b+ c > 0 and 3a+ 2b ≥ 0.

Note that these constraints are only sufficient for monotonicity and well-
definedness, they are not necessary. However, they are very close to necessary
constraints, as will be explained below.

Remark 12. Weak monotonicity of ax3 + bx2 + cx+d is obtained by similar rea-
soning. The only difference is that in case 2 we differentiate between distinct real
roots r1 �= r2 and a double root r1 = r2. In the latter case, which is character-
ized algebraically by the discriminant of P being zero, (2) holds unconditionally,
whereas in the former case, where the discriminant of P is positive, it suffices to
require the larger of the two roots to be negative or zero.

Theorem 13. The function fN(x) = ax3 + bx2 + cx+d is weakly monotone and
well-defined if a ≥ 0, d ≥ 0 and either 4b2−3a2−12ac ≤ 0 or 4b2−3a2−12ac > 0,
a+ b+ c ≥ 0 and 3a+ 2b ≥ 0.

In case a = 0, i.e., fN(x) = bx2 + cx+ d, Theorem 11 yields exactly the same con-
straints as Corollary 8, that is, necessary and sufficient constraints. One possible
interpretation of this fact is that the simplification we made on our way to Theo-
rem 11 did not cast away anything essential. Indeed, that is the case. To this end,
we observe that the only case where (3) holds that is not covered by the constraints
of Theorem 11 is when both roots r1 and r2 are positive and [r1, r2]∩N = ∅; e.g.,
the polynomial 2x3−6x2+5x is both strictly monotone and well-defined, but does
not satisfy the constraints of Theorem 11. However, it turns out that this case is
very rare; for example, empirical investigations reveal that in the set of polynomi-
als {3ax2 + (3a + 2b)x + (a + b + c) | 1 ≤ a ≤ 7,−15 ≤ b, c ≤ 15 (a, b, c ∈ Z)}

510 F. Neurauter, A. Middeldorp, and H. Zankl

3937 out of a total of 6727 polynomials satisfy (3), but only 25 of them are of
this special kind. In other words, the constraints of Theorem 11 comprise 3912
out of 3937, hence almost all, polynomials; and this is way more than the 1792
(= 7 × 16 × 16) polynomials that the absolute positiveness approach, where a, b
and c are restricted to the non-negative integers, can handle. The following table
summarizes all our experiments with varying ranges for a, b and c:

a b, c Theorem 11
[1, 7] [−15, 15] 3912 of 3937
[1, 7] [−31, 31] 14055 of 14133
[1, 15] [−31, 31] 34718 of 34980

By design, our approach covers two out of the three possible scenarios mentioned
above. But which of these scenarios can the absolute positiveness approach deal
with? Just like our method, it fails on all instances of the scenario where the
polynomial P := 3ax2 +(3a+2b)x+(a+ b+ c) has two positive roots r1 and r2,
which gives rise to the factorization P = k(x−r1)(x−r2), k > 0. This expression
is equivalent to kx2 − k(r1 + r2)x + kr1r2, the linear coefficient −k(r1 + r2)
of which should be equal to 3a + 2b. Now this gives rise to a contradiction
because a and b are restricted to the non-negative integers whereas −k(r1 + r2)
is a negative number. Concerning the two remaining scenarios, the absolute
positiveness approach can handle only some instances of the respective scenarios
while failing at others. We present one failing example for either scenario:

– If a = 1, b = −1 and c = 1, then P = 3x2 + x + 1, which has no real roots.
Clearly, P is positive for all x ∈ N; in fact this is even true for all x ∈ R.
However, the absolute positiveness approach fails because b is negative.

– If a = 3, b = −1 and c = −1, then P = 9x2 +7x+1, both roots of which are
negative real numbers. Clearly, P is positive for all x ∈ N, but the absolute
positiveness approach fails because b and c are negative.

Generalization to Multivariate Cubic Parametric Polynomials

In this subsection, we elaborate on the question how to generalize the result of
Theorem 11 to the multivariate case. In general, this is always possible by a
very simple approach that we already introduced in Example 10. To this end, let
fN(x1, . . . , xn) denote the n-variate generic cubic parametric polynomial func-
tion, and let us note that we can write it as

fN(x1, . . . , xn) =
n∑

j=1

gj(xj) + r(x1, . . . , xn) (6)

where gj(xj) denotes the univariate generic cubic parametric polynomial func-
tion in xj without constant term and r(x1, . . . , xn) contains all the remaining
monomials. Now, let us assume that all the gj(xj) are both strictly monotone
and well-defined. Then the same also holds for their sum,

∑n
j=1 gj(xj), because

they do not share variables. But when is this also true of fN? By Lemma 3, fN is

Monotonicity Criteria for Polynomial Interpretations over the Naturals 511

strictly monotone in its i-th argument if and only if fN(x1, . . . , xi + 1, . . . , xn)−
fN(x1, . . . , xn) > 0 for all natural numbers x1, . . . , xn. With the help of (6), this
simplifies to: ∀x1, . . . , xn ∈ N

gi(xi + 1)− gi(xi) + r(x1, . . . , xi + 1, . . . , xn)− r(x1, . . . , xi, . . . , xn) > 0 (7)

By assumption, gi(xi +1)− gi(xi) > 0 for all xi ∈ N, such that (7) is guaranteed
to hold if the second summand, r(x1, . . . , xi+1, . . . , xn)−r(x1, . . . , xi, . . . , xn), is
non-negative for all x1, . . . , xn ∈ N, that is, if r(x1, . . . , xn) is weakly monotone in
all arguments. In other words, strict monotonicity of the functions (gj(xj))1≤j≤n

implies strict monotonicity of fN, provided that r(x1, . . . , xn) is weakly mono-
tone in all arguments. Moreover, if all the functions (gj(xj))1≤j≤n are strictly
monotone and well-defined, and if r(x1, . . . , xn) is weakly monotone and well-
defined, then fN is strictly monotone and well-defined; and note that we can
easily make r(x1, . . . , xn) weakly monotone and well-defined by restricting all
its coefficients to be non-negative. Hence, the n-variate generic cubic parametric
polynomial function fN(x1, . . . , xn) is strictly monotone and well-defined if

– all the gj(xj) satisfy the constraints of Theorem 11, and
– all coefficients of r(x1, . . . , xn) are non-negative.

Example 14. Consider the bivariate generic cubic parametric polynomial func-
tion fN(x1, x2) = ax3

1 +bx2
1x2 +cx1x

2
2 +dx3

2 +ex2
1+fx1x2 +gx2

2 +hx1+ ix2 +j =
g1(x1)+g2(x2)+r(x1, x2), where g1(x1) = ax3

1 +ex2
1+hx1, g2(x2) = dx3

2 +gx2
2+

ix2 and r(x1, x2) = bx2
1x2 + cx1x

2
2 + fx1x2 + j. This function is both strictly

monotone and well-defined if ax3
1 + ex2

1 + hx1 and dx3
2 + gx2

2 + ix2 satisfy the
constraints of Theorem 11, and the coefficients of r(x1, . . . , xn) are non-negative,
i.e., b, c, f, j ≥ 0.

4 Negative Coefficients in Polynomial Interpretations

In the previous section, we have seen that in principle we may use polynomial in-
terpretations with (some) negative coefficients for proving termination of TRSs.
Now the obvious question is the following: Does there exist a TRS that can be
proved terminating by a polynomial interpretation with negative coefficients ac-
cording to Theorems 7 and 11, but cannot be proved terminating by a polynomial
interpretation where the coefficients of all polynomials are non-negative?

To elaborate on this question, let us consider the following scenario. Assume
we have a TRS whose signature contains (amongst others) the successor symbol
s, the constant 0 and another unary symbol f, and assume that the interpreta-
tions associated with the former two are the natural interpretations sN(x) = x+1
and 0N = 0, whereas f is supposed to be interpreted by fN(x) = ax2 + bx + c.
Now the idea is to add rules to the TRS which enforce fN(x) = 2x2−x+1. This
can be achieved as follows.

First, note that by polynomial interpolation the coefficients a, b and c of the
polynomial function fN(x) = ax2 + bx+ c are uniquely determined by the image
of fN at three pairwise different locations; for example, the constraints fN(0) = 1,

512 F. Neurauter, A. Middeldorp, and H. Zankl

fN(1) = 2 and fN(2) = 7 enforce fN(x) = 2x2 − x+ 1, as desired. Next we encode
these three constraints in terms of the TRS R1:

s2(0)→ f(0) s3(0)→ f(s(0)) s8(0)→ f(s2(0))

f(0)→ 0 f(s(0))→ s(0) f(s2(0))→ s6(0)

Every constraint gives rise to two rewrite rules; e.g., the constraint fN(0) = 1 is
expressed by f(0)→ 0 and s2(0)→ f(0). The former encodes fN(0) > 0, whereas
the latter encodes fN(0) < 2. So these rewrite rules are polynomially terminating
by construction, with fN(x) = 2x2 − x+ 1.

Moreover, we can use R1 to prove a more general statement that does away
with one of the above assumptions. That is to say that any feasible interpretation
fN must necessarily contain at least one monomial with a negative coefficient. To
this end, let us observe that no linear interpretation for f is feasible because the
set of points {(i, fN(i))}i∈{0,1,2} is not collinear. The case when fN is quadratic
was dealt with above. So let us consider interpretations of degree at least three.
Then the leading term of fN has the shape axk, where a ≥ 1 and k ≥ 3. Since
fN(2) = 7 must be satisfied, the claim follows immediately because for x = 2 the
leading term alone contributes a value of at least 8.

Finally, a thorough inspection of the constraints imposed by R1 reveals that
we can also relax the restrictions concerning the interpretations of s and 0.

Lemma 15. In any polynomial interpretation compatible with R1 that satisfies
sN(x) = x + d for some d ∈ N, fN must contain at least one monomial with a
negative coefficient. In particular, fN is not linear.

Proof. Without loss of generality, let f be interpreted by fN(x) =
∑n

i=0 aix
i

(an ≥ 1) and 0 by some natural number z. Then the compatibility requirement
with respect to R1 gives rise to the following constraints:

z < fN(z) < z + 2d
z + d < fN(z + d) < z + 3d
z + 6d < fN(z + 2d) < z + 8d

Hence, d must be a positive integer, i.e., d ≥ 1. Moreover, no linear interpretation
fN(x) = a1x+a0 satisfies these constraints. To this end, observe that by the first
four constraints a1 = fN(z+d)−fN(z)

d < 3, whereas by the last four constraints
a1 = fN(z+2d)−fN(z+d)

d > 3, which contradicts the former. In other words, the
set of points {(z + id, fN(z + id))}i∈{0,1,2} is not collinear. Next we focus on
fN(z + 2d) < z + 8d. Clearly, if the value of the leading term anx

n at x = z + 2d
is greater than or equal to z + 8d, then fN must contain at least one monomial
with a negative coefficient in order to satisfy fN(z + 2d) < z + 8d. So, when is
an(z + 2d)n ≥ z + 8d? Considering the worst case, i.e. an = 1, let us investigate
for which integers n ≥ 2, z ≥ 0 and d ≥ 1 the inequality (z + 2d)n ≥ z + 8d
holds. If n ≥ 3, then it holds for all z ≥ 0 and d ≥ 1 by the following reasoning
(z + 2d)n ≥ zn + (2d)n ≥ z + 8d. For n = 2, (z + 2d)2 ≥ z + 8d is equivalent to
z2 + (4d− 1)z + 4d(d− 2) ≥ 0 which holds for all z ≥ 0 and d ≥ 1 except z = 0

Monotonicity Criteria for Polynomial Interpretations over the Naturals 513

and d = 1. The latter case corresponds to using the natural interpretations for
the symbols s and 0, namely, sN(x) = x+1 and 0N = 0. But then the six rewrite
rules require the constraints fN(0) = 1, fN(1) = 2 and fN(2) = 7, which uniquely
determine the coefficients of fN(x) = a2x

2 + a1x + a0 as a2 = 2, a1 = −1 and
a0 = 1 by polynomial interpolation. Hence, fN has a negative coefficient. �!

The result of Lemma 15 relies on the assumption that the function symbol s is
interpreted by a linear polynomial sN(x) = x + d. Our next goal is to do away
with this assumption by adding rules that enforce such an interpretation for s.

Lemma 16. In any polynomial interpretation that is compatible with the rewrite
rules g(s(x)) → s(s(g(x))) and f(g(x)) → g(g(f(x))), sN and gN must be linear
polynomials. Moreover, sN(x) = x+ d, for some d > 0, and fN is not linear.

Proof. Without loss of generality, let us assume that the leading terms of sN(x)
and gN(x) are kxi and mxj , respectively, with k, i,m, j ≥ 1. Then the leading
term of the polynomial Plhs := gN(sN(x)) associated with the left-hand side of the
first rule is m(kxi)j = mkjxij . Likewise, the leading term of the corresponding
polynomial Prhs := sN(sN(gN(x))) is k(k(mxj)i)i = ki+1mi2xi2j . Compatibility
demands that the degree of the former must be greater than or equal to the
degree of the latter, i.e., ij ≥ i2j. This condition holds if and only if i = 1.
Repeating this reasoning for the second rule yields j = 1. Substituting these
values into the leading terms of Plhs and Prhs, we get mkx and k2mx, respec-
tively. Hence, Plhs and Prhs have the same degree, such that, in order to ensure
compatibility, the leading coefficient of the former must be greater than or equal
to the leading coefficient of the latter, i.e., mk ≥ k2m. Since m > 0 and k > 0,
this condition is equivalent to k ≤ 1 and hence k = 1. Therefore sN(x) = x + d.
Clearly, d �= 0. Finally, let us assume that f is interpreted by a linear polynomial
fN. Repeating the above reasoning for the second rule yields gN(x) = x + d′.
However, such an interpretation is not compatible with the first rule. Hence, fN
cannot be linear. �!

Having all the relevant ingredients at hand, we are now ready to state the main
theorem of this section, which also gives an affirmative answer to the question
posed at the beginning of the section; that is, there are TRSs that can be proved
terminating by a polynomial interpretation with negative coefficients, but cannot
be proved terminating by a polynomial interpretation where the coefficients of
all polynomials are non-negative.

Theorem 17. Consider the TRS R1 extended with the rewrite rules g(s(x))→
s(s(g(x))) and f(g(x)) → g(g(f(x))). In any compatible polynomial interpreta-
tion, fN must contain at least one monomial with a negative coefficient.

Proof. By Lemmata 15 and 16. �!

Specifying Interpretations by Interpolation

Now let us revisit the motivating scenario presented at the beginning of this
section, in which we leveraged polynomial interpolation to create the TRS R1

514 F. Neurauter, A. Middeldorp, and H. Zankl

in such a way that it enforces the function symbol f to be interpreted by fN(x) =
2x2 − x + 1, a polynomial of our choice. The construction presented there was
based on three assumptions:

1. the successor symbol s had to be interpreted by sN(x) = x+ 1,
2. the constant 0 had to be interpreted by 0N = 0,
3. the function symbol f had to be interpreted by a quadratic polynomial.

Next we show how one can enforce all these assumptions by adding suitable
rewrite rules to R1. This results in a TRS that is polynomially terminating,
but only if the symbols s, f and 0 are interpreted accordingly (cf. Theorem 23).
However, much to our surprise, most of the current termination tools with all
their advanced termination techniques fail to prove this TRS terminating (cf.
Section 5) in their automatic mode.

Concerning the first two of the above assumptions, it turns out that the con-
straints imposed by R1 alone suffice to do away with them, provided that the
successor symbol is interpreted by a linear polynomial of the form x+ d (which
poses no problem according to Lemma 16). This is the result of the next lemma.

Lemma 18. In any polynomial interpretation compatible with R1 such that
sN(x) = x + d and the degree of fN is at most two, the constant 0 must be
interpreted by 0. Moreover, d = 1 and fN is not linear.

Proof. Without loss of generality, fN(x) = ax2 +bx+c subject to the constraints
a, c ≥ 0 and a + b > 0 (cf. Corollary 8). By Lemma 15, fN is not linear; hence
a ≥ 1. Writing z for 0N, the compatibility requirement yields

z < fN(z) < z + 2d
z + d < fN(z + d) < z + 3d
z + 6d < fN(z + 2d) < z + 8d

Hence, d must be a positive integer, i.e., d ≥ 1. Next we focus on the constraint
fN(z + d) < z + 3d and try to derive a contradiction assuming z ≥ 1. We reason
as follows: fN(z+d)− fN(z) = d(2az+ad+b) ≥ d(2az+a+b) ≥ d(2az+1) ≥ 3d.
Hence, fN(z + d) ≥ fN(z) + 3d, which contradicts fN(z + d) < z + 3d together
with the first of the above constraints fN(z) > z. As a consequence, z = 0N = 0.
Finally, it remains to show that d must be 1. We already know that d must
be at least 1. So let us assume that d ≥ 2 and derive a contradiction with
respect to the constraint fN(z + 2d) < z + 8d. This can be achieved as follows:
fN(z+2d) = fN(2d) = 4ad2 +2bd+ c ≥ 4ad2 +2bd = d(4ad+2b) = d((4d−2)a+
2(a+ b)) ≥ d(6a+ 2(a+ b)) ≥ d(6a+ 2) ≥ 8d = z + 8d. �!

Next we will elaborate on how to get rid of the assumption that the function
symbol f has to be interpreted by a polynomial fN of degree at most two. Again,
the idea is to enforce this condition by some additional rewrite rules based on
the following observation. If fN is at most quadratic, then the function fN(x+d)−
fN(x) is at most linear; i.e., there is a linear function rN(x) such that rN(x) >
fN(x + d)− fN(x), or equivalently, fN(x) + rN(x) > fN(x + d), for all x ∈ N. This

Monotonicity Criteria for Polynomial Interpretations over the Naturals 515

can be encoded in terms of the rewrite rule h(f(x), r(x)) → f(s(x)), as soon as
the interpretation of h corresponds to the addition of two natural numbers. Yet
this does not pose a major problem, as will be shown shortly.

Remark 19. Note that the construction motivated above is actually more general
than it seems at first sight. That is, it can be used to set arbitrary upper bounds
on the degree of an interpretation (cf. proof of Lemma 20). Moreover, it can
easily be adapted to establish lower bounds.

Lemma 20. Consider the rewrite rule h(f(x), r(x)) → f(s(x)). In any compat-
ible polynomial interpretation where sN(x) = x + d (d ≥ 1), rN is some linear
polynomial, and hN(x, y) = x+ y + p (p ∈ N), the degree of fN is at most two.

Proof. Without loss of generality, let fN(x) =
∑n

i=0 aix
i (an > 0). By compati-

bility with the single rewrite rule, the inequality

fN(x) + rN(x) + p > fN(x+ d) (8)

must be satisfied for all x ∈ N. Using Taylor’s theorem,

fN(x+ d) =
n∑

k=0

dk

k!
f
(k)
N

(x) = fN(x) + d f′
N
(x) +

d2

2
f′′
N
(x) + . . .+

dn

n!
f
(n)
N

(x)

we can simplify (8) to

rN(x) + p > d f′
N
(x) +

n∑
k=2

dk

k!
f
(k)
N

(x) (9)

As d ≥ 1, the right-hand side of this inequality is a polynomial of degree n− 1
whose leading coefficient dnan is positive, whereas the degree of the left-hand
side is one. But by compatibility, the former must be greater than or equal to
n− 1; i.e., n ≤ 2. �!

It remains to show how the interpretation of h can be fixed to addition.

Lemma 21. Consider the TRS R2 consisting of the rules

g(x)→ h(x, x) s(x)→ h(x, 0) s(x)→ h(0, x)

Any compatible polynomial interpretation that interprets s by sN(x) = x+ d and
g by a linear polynomial satisfies hN(x, y) = x+y+p, p ∈ N. Moreover, if d = 1,
then p = 0 and 0N = 0.

Proof. Without loss of generality, let 0N = z for some z ∈ N. Because gN is linear,
compatibility with the first rule constrains the function h′ : N→ N, x �→ hN(x, x)
to be at most linear. This can only be the case if hN contains no monomials of
degree two or higher. In other words, hN(x, y) = px · x+ py · y + p, where p ∈ N
(because of well-definedness), px ≥ 1 and py ≥ 1 (because of strict monotonicity).

516 F. Neurauter, A. Middeldorp, and H. Zankl

Then compatibility with the second rule translates to x+ d > px · x+ py · z + p
for all x ∈ N, which holds if and only if px ≤ 1 and d > py · z+ p. Hence, px = 1,
and by analogous reasoning with respect to the third rule, py = 1. Finally, if
d = 1 then the condition d > py · z+ p simplifies to 1 > z+ p, which holds if and
only if z = 0 and p = 0 (because both z and p are non-negative). �!

Corollary 22. Consider the TRS R3 consisting of the rules

f(g(x))→ g(g(f(x))) g(s(x))→ s(s(g(x))) h(f(x), g(x)) → f(s(x))

Any polynomial interpretation compatible with R2 ∪ R3 requires degree at most
two for fN.

Proof. By Lemma 16, sN(x) = x+d (d ≥ 1) and gN(x) is linear. Hence, hN(x, y) =
x+ y+p (p ∈ N) according to Lemma 21. Finally, Lemma 20 applied to the rule
h(f(x), g(x))→ f(s(x)) proves the claim. �!

Now, combining Lemma 18 and Corollary 22 yields natural semantics for the
symbols 0 and s and fixes fN(x) = 2x2 − x+ 1, as originally desired.

Theorem 23. Any polynomial interpretation compatible with R1 ∪ R2 ∪ R3
interprets 0 by 0 and s by sN(x) = x+ 1. Moreover, fN(x) = 2x2 − x+ 1.

Proof. From Lemmata 18 and 16 and Corollary 22, we infer that 0N = 0, sN(x) =
x + 1 and fN is a quadratic polynomial. Without loss of generality, fN(x) =
ax2 + bx + c. Next we observe that R1 gives rise to the constraints fN(0) = 1,
fN(1) = 2 and fN(2) = 7, which uniquely determine the coefficients a = 2, b = −1
and c = 1 of fN by polynomial interpolation. �!

In order for Theorem 23 to be relevant, it remains to show that there actually
exists a compatible polynomial interpretation. This is achieved, e.g., by defining
0N = 0, sN(x) = x+1, fN(x) = 2x2− x+1, hN(x, y) = x+ y and gN(x) = 4x+ 5.

Remark 24. One can show that any polynomial interpretation compatible with
the TRS S := R2 ∪ R3 ∪ { s(s(0)) → f(s(0)) } must interpret 0 by 0 and s by
sN(x) = x + 1. Thus we can take our favourite univariate polynomial P , which
must of course be both strictly monotone and well-defined, and design a TRS
such that the interpretation of some unary function symbol k is fixed to it. To
this end, we extend S by suitable rewrite rules encoding interpolation constraints
for the symbol k and additional rules that set an upper bound on the degree of
the interpretation of k, which corresponds to the degree of P .

5 Experimental Results

We implemented the criterion from Theorem 7 in the termination prover TTT2.
2

The problem of finding suitable coefficients for the polynomials is formulated as a
set of diophantine constraints (as in [4]) which are solved by a transformation to
SAT. Simple heuristics are applied to decide which symbols should be interpreted
2 See http://termination-portal.org/wiki/Category:Tools

http://termination-portal.org/wiki/Category:Tools

Monotonicity Criteria for Polynomial Interpretations over the Naturals 517

by non-linear polynomials (e.g., defined function symbols, symbols that appear
at most once on every left and right-hand side, symbols that do not appear
nested). Using coefficients in {−8, . . . , 7} and either of the latter two heuristics,
TTT2 finds a compatible interpretation (i.e., the one mentioned at the end of
Section 4) for the TRS in Theorem 23 fully automatically within five seconds.
We remark that implementing Theorems 7 and 11 is about as expensive as
the absolute positiveness approach, since the size of the search space is mainly
determined by the degree of the polynomials.

Despite the tremendous progress in automatic termination proving during the
last decade, it is remarkable that the other powerful termination tools AProVE2

and JAMBOX2 cannot prove this system terminating within ten minutes. The
same holds for TTT2 without the criterion from Theorem 7. Surprisingly, the 2006
version of TPA2 finds a lengthy termination proof based on semantic labeling.
However, it is straightforward to generate a variant of the TRS from Theorem 23
that is orientable if fN(0) = 0, fN(1) = 1, and fN(2) = 8, suggesting fN(x) =
3x2−2x. While TTT2 can still prove this system terminating, TPA now also fails.
Moreover, due to Remark 24 one can generate myriads of TRSs that can easily
be shown to be polynomially terminating but where an automated termination
proof is out of reach for current termination analyzers.

Acknowledgements. We thank the anonymous referees for their helpful
comments.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
TCS 236(1-2), 133–178 (2000)

2. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-
nation using polynomial interpretations. JAR 34(4), 325–363 (2005)

3. Dershowitz, N.: A note on simplification orderings. IPL 9(5), 212–215 (1979)
4. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

5. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl,
H.: Maximal termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp.
110–125. Springer, Heidelberg (2008)

6. Giesl, J., Thiemann, R., Schneider-Kamp,P.: The dependency pair framework: Com-
bining techniques for automated termination proofs. In: Baader, F., Voronkov, A.
(eds.) LPAR2004.LNCS (LNAI), vol. 3452, pp. 301–331. Springer,Heidelberg (2005)

7. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method.
I&C 199(1-2), 172–199 (2005)

8. Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and fea-
tures. I&C 205(4), 474–511 (2007)

9. Hong, H., Jakuš, D.: Testing positiveness of polynomials. JAR 21(1), 23–38 (1998)
10. Lankford, D.: On proving term rewrite systems are noetherian. Tech. Rep. MTP-3,

Louisiana Technical University, Ruston (1979)
11. Lucas, S.: Polynomials over the reals in proofs of termination: From theory to

practice. TIA 39(3), 547–586 (2005)

Termination Tools in Ordered Completion�

Sarah Winkler and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. Ordered completion is one of the most frequently used calculi
in equational theorem proving. The performance of an ordered comple-
tion run strongly depends on the reduction order supplied as input. This
paper describes how termination tools can replace fixed reduction or-
ders in ordered completion procedures, thus allowing for a novel degree
of automation. Our method can be combined with the multi-completion
approach proposed by Kondo and Kurihara. We present experimental re-
sults obtained with our ordered completion tool omkbTT for both ordered
completion and equational theorem proving.

1 Introduction

Unfailing completion introduced by Bachmair, Dershowitz and Plaisted [2] aims
to transform a set of equations into a ground-confluent and terminating system.
Underlying many completion-based theorem proving systems, it has become a
well-known calculus in automated reasoning. In contrast to standard comple-
tion [7], ordered completion, as it is called nowadays, always succeeds (in theory).
The reduction order supplied as input is nevertheless a critical parameter when
it comes to performance issues.

With multi-completion, Kondo and Kurihara [9] proposed a completion cal-
culus that employs multiple reduction orders in parallel. It is applicable to both
standard and ordered completion, and more efficient than a parallel execution
of the respective processes. Wehrman, Stump and Westbrook [16] introduced a
variant of standard completion that utilizes a termination prover instead of a
fixed reduction order. The tool Slothrop demonstrates the potential of this ap-
proach by completing systems that cannot be handled by traditional completion
procedures. In [11] it was shown how multi-completion and the use of termina-
tion tools can be combined. When implemented in the tool mkbTT, this approach
could cope with input systems that were not completed by Slothrop.

The current paper describes how termination tools can replace reduction or-
ders in ordered completion procedures. In contrast to standard completion using
termination provers, two challenges have to be faced. First of all, ordered com-
pletion procedures require the termination order to be totalizable for the theory.
When using termination tools, the order which is synthesized during the termi-
nation proving process need not have this property. Second, the standard notion
� This research is supported by FWF (Austrian Science Fund) project P18763. The

first author is supported by a DOC-fFORTE fellowship of the Austrian Academy of
Sciences.

J. Giesl and R. Hähnle (Eds.): IJCAR 2010, LNAI 6173, pp. 518–532, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Termination Tools in Ordered Completion 519

of fairness, which determines which (extended) critical pairs need to be com-
puted to ensure correctness, depends on the (final) reduction order, which is
not known in advance. We explain how to overcome these challenges, also in a
multi-completion setting. We further show how ordered multi-completion with
termination tools can be used for equational theorem proving.

The remainder of the paper is organized as follows. Section 2 summarizes
definitions, inference systems and main results in the context of (ordered) com-
pletion which will be needed in the sequel. Section 3 describes the calculus oKBtt
for ordered completion with termination tools. The results obtained in Section 3
are extended to oMKBtt, a calculus for ordered multi-completion with termina-
tion tools, in Section 4. More application-specific, we outline in Section 5 how
oMKBtt can be used for refutational theorem proving. In Section 6 we briefly
describe our tool omkbTT that implements the calculus oMKBtt. Experimental
results are given in Section 7 before we add some concluding remarks in Sec-
tion 8. For reasons of space, several proofs are missing. They can be found in
the report version of the paper which can be obtained from the accompanying
website.1

2 Preliminaries

We consider terms T (F ,V) over a finite signature F and a set of variables V .
Terms without variables are ground. Sets of equations between terms will be
denoted by E and are assumed to be symmetric. The associated equational the-
ory is denoted by ≈E . As usual a set of directed equations l → r is called a
rewrite system and denoted by R, and →R is the associated rewrite relation.
We write s l→r−−→p t to express that s →R t was achieved by applying the rule
l→ r ∈ R at position p. The relations →+

R, →∗
R and ↔R denote the transitive,

transitive-reflexive and symmetric closure of →R. The smallest equivalence re-
lation containing →R, which coincides with the equational theory ≈R if R is
considered as a set of equations, is denoted by ↔∗

R. Subscripts are omitted if
the rewrite system or the set of equations is clear from the context.

A rewrite system R is terminating if it does not admit infinite rewrite se-
quences. It is confluent if for every peak t ∗← s→∗ u there exists a term v such
that t →∗ v ∗← u. R is ground-confluent if this property holds for all ground
terms s. A rewrite system R with the property that for every rewrite rule l → r
the right-hand side r is in normal form and the left-hand side l is in normal
form with respect to R \ {l → r} is called reduced. A rewrite system which is
both terminating and (ground-)confluent is called (ground-)complete. We call R
complete for a set of equations E if R is complete and ↔∗

R coincides with ≈E .
A proper order � on terms is a rewrite order if it is closed under contexts

and substitutions. A well-founded rewrite order is called a reduction order. The
relation →+

R is a reduction order for every terminating rewrite system R. A
reduction order � is complete for a set of equations E if s � t or t � s holds

1 See http://cl-informatik.uibk.ac.at/software/omkbtt

http://cl-informatik.uibk.ac.at/software/omkbtt

520 S. Winkler and A. Middeldorp

deduce2
E ,R

E ∪ {s ≈ t},R if s
r1←l1←−−−− u

l2→r2−−−−→ t where l1 ≈ r1, l2 ≈ r2 ∈
R ∪ E and ri �� li

simplify2
E ∪ {s ≈ t},R
E ∪ {s ≈ u},R if t

lσ→rσ−−−−→ u using l ≈ r ∈ E where t · la and
lσ � rσ

compose2
E ,R∪ {s → t}
E ,R∪ {s → u} if t

lσ→rσ−−−−→ u using l ≈ r ∈ E and lσ � rσ

collapse2
E ,R∪ {t → s}
E ∪ {u ≈ s},R if t

lσ→rσ−−−−→ u using l ≈ r ∈ E where t · l and
lσ � rσ

a · denotes the strict encompassment relation

Fig. 1. Additional inference rules for ordered completion (oKB)

for all ground terms s and t that satisfy s ≈E t. In the sequel we will consider
lexicographic path orders (LPO [6]), Knuth-Bendix orders (KBO [7]), multiset
path orders (MPO [4]) and orders induced by polynomial interpretations [10].
The first two are total on ground terms if the associated precedence is total.
Orders induced by MPOs and polynomial interpretations can always be extended
to an order with that property. Reduction orders that are total on ground terms
are of course complete for any theory.

2.1 Ordered Completion

We assume that the reader is familiar with standard completion, originally pro-
posed by Knuth and Bendix [7] and later on formulated as an inference system [1].
This inference system will in the sequel be referred to as KB. For ordered com-
pletion (oKB) [2] the inference system of standard completion is extended with
the rules depicted in Fig. 1, where � denotes the reduction order used.

An inference sequence (E0,R0) � (E1,R1) � (E2,R2) . . . is called a deduction
with persistent equalities Eω =

⋃
i

⋂
j>i Ej and rules Rω =

⋃
i

⋂
j>iRj .

Definition 1. An equation s ≈ t is an extended critical pair with respect to a
set of equations E and a reduction order � if there are a term u and rewrite steps
u

l1σ→r1σ−−−−−−→ε s and u
l2σ→r2σ−−−−−−→p t such that l1 ≈ r1, l2 ≈ r2 ∈ E and riσ �� liσ.

The set of extended critical pairs among equations in E is denoted by CP�(E).

An oKB deduction is fair if CP�(Eω∪Rω) ⊆
⋃

i Ei. The following theorems from
[2] state the correctness and completeness of oKB.

Theorem 2. Let E be a set of equations and � a reduction order that can be
extended to a reduction order > which is complete for E. Any fair oKB run will
on inputs (E ,∅) and � generate a system Eω ∪Rω that is ground-complete with
respect to >.

Termination Tools in Ordered Completion 521

orient
E ∪ {s ≈ t},R, C

E ,R ∪ {s → t}, C ∪ {s → t} if C ∪ {s → t} terminates

Fig. 2. The orient inference rule in KBtt

An oKB completion procedure is simplifying if for all inputs E0 and � the rewrite
system Rω is reduced and all equations u ≈ v in Eω are both unorientable with
respect to � and irreducible in Rω .

Theorem 3. Assume R is a reduced and complete rewrite system for E that is
contained in a reduction order � which can be extended to a complete reduction
order for E. Any fair and simplifying oKB run that starts from (E ,∅) using �
yields Eω = ∅ and Rω = R.

In the requirement for a reduction order that is totalizable for the theory, ordered
completion differs from standard completion. The more recent approach of Bofill
et al. [3] lacks this restriction, but the obtained completion procedure is only of
theoretical interest as it relies on enumerating all ground equational consequences
of the theory E .

2.2 Completion with Termination Tools

The inference system KBtt [16] for standard completion with termination tools
operates on tuples (E ,R, C) consisting of a set of equations E , and rewrite systems
R and C. The latter is called the constraint system. KBtt consists of the orient
rule depicted in Fig. 2 together with the remaining KB rules where the constraint
component is not modified.

Correctness and completeness of KBtt follow from the fact that any run of
standard completion can be simulated by KB and vice versa [16].

2.3 Completion with Multiple Reduction Orders

Multi-completion (MKB), introduced by Kurihara and Kondo [9] considers a set
of reduction orders O = {�1, . . . ,�n}. To share inferences for different orders,
a special data structure is used.

Definition 4. A node is a tuple 〈s : t, R0, R1, E〉 where the data s, t are terms
and the labels R0, R1, E are subsets of O such that R0, R1 and E are mutually
disjoint, s �i t for all �i ∈ R0, and t �i s for all �i ∈ R1.

The intuition is that given a node 〈s : t, R0, R1, E〉, all orders in the equation
label E consider the data as an equation s ≈ t while orders in the rewrite labels
R0 and R1 regard it as rewrite rules s → t and t → s, respectively. Hence
〈s : t, R0, R1, E〉 is identified with 〈t : s,R1, R0, E〉.

MKB is described by an inference system consisting of five rules. Fig. 3 shows
the orient inference rule. As shown in [9], slight modifications to the rewrite
inference rules allow to perform ordered multi-completion (oMKB).

522 S. Winkler and A. Middeldorp

orient
N ∪ {〈s : t, R0, R1, E R〉}
N ∪ {〈s : t, R0 ∪R, R1, E〉}

if R �= ∅ and s �i t for all �i ∈ R

Fig. 3. orient in MKB

3 Ordered Completion with Termination Tools

This section describes how the ideas of KBtt can be incorporated into ordered
completion procedures. The derived method will in the sequel be referred to as
oKBtt. It is described by an inference system consisting of the rules depicted in
Fig. 4 together with orient, delete, simplify, compose and collapse from KBtt.

deduce2
E ,R, C

E ∪ {s ≈ t},R, C if s ←E∪R u →E∪R t

simplify2
E ∪ {s ≈ t},R, C

E ∪ {s ≈ u},R, C ∪ {lσ → rσ} if t
lσ→rσ−−−−→ u using l ≈ r ∈ E where

t · l and C ∪ {lσ → rσ} terminates

compose2
E ,R∪ {s → t}, C

E ,R ∪ {s → u}, C ∪ {lσ → rσ} if t
lσ→rσ−−−−→ u using l ≈ r ∈ E and

C ∪ {lσ → rσ} terminates

collapse2
E ,R∪ {t → s}, C

E ∪ {u ≈ s},R, C ∪ {lσ → rσ} if t
lσ→rσ−−−−→ u using l ≈ r ∈ E where

t · l and C ∪ {lσ → rσ} terminates

Fig. 4. Ordered completion with termination tools (oKBtt)

An inference sequence (E0,R0, C0) � (E1,R1, C1) � (E2,R2, C2) � · · · with
respect to oKBtt is called an oKBtt run and denoted by γ. Persistent equations
Eω and rules Rω are defined as for oKB. The set Cω =

⋃
i Ci collects persistent

constraint rules. We write (E0,R0) �∗ (Eα,Rα) to express that the run has length
α, where α = ω if it is not finite.

Example 5. If oKBtt is run on the input equations g(f(x, b)) ≈ a and f(g(x), y) ≈
f(x, g(y)) and all termination checks are performed with respect to the polyno-
mial interpretation [f](x, y) = x+ 2y + 1, [g](x) = x+ 1 and [a] = [b] = [c] = 0,
the following system is derived:

E =

⎧⎨⎩ f(f(x, b), a) ≈ f(c, f(y, b))
f(f(x, b), a) ≈ f(f(y, b), a)
f(c, f(x, b)) ≈ f(c, f(y, b))

⎫⎬⎭ R =

⎧⎨⎩ g(f(x, b))→ a
f(x, g(y))→ f(g(x), y)

f(g(x), f(y, b))→ f(x, c)

⎫⎬⎭
However, if the second equation would be oriented from left to right, the oKBtt
run diverges. Since f(x, g(y)) → f(g(x), y) cannot be oriented by any KBO or
LPO which compares lists of subterms only from left to right, ordered completion
tools that do not support other termination methods (e.g. Waldmeister) cannot
derive a ground-complete system.

Termination Tools in Ordered Completion 523

Before showing that oKBtt runs can be simulated by ordered completion runs,
and vice versa, we note that oKBtt is sound in that it does not change the
equational theory.

Lemma 6. For every oKBtt step (E ,R, C) � (E ′,R′, C′) the relations ↔∗
E∪R and

↔∗
E′∪R′ coincide.

Lemma 7. For every finite oKBtt run (E0,R0, C0) �∗ (En,Rn, Cn) such that
R0 ⊆ →+

C0
, there is a corresponding oKB run (E0,R0) �∗ (En,Rn) using the

reduction order →+
Cn

.

Proof. Let �n denote→+
Cn

. We use induction on n. The claim is trivially true for
n = 0. For a run of the form (E0,R0, C0) �∗ (En,Rn, Cn) � (En+1,Rn+1, Cn+1),
the induction hypothesis yields a corresponding oKB run (E0,R0) �∗ (En,Rn)
using the reduction order �n. Since constraint rules are never removed we have
Ck ⊆ Cn+1 for all k ≤ n, so the same run can be obtained with �n+1. Case
distinction on the applied oKBtt rule shows that a step (En,Rn) � (En+1,Rn+1)
using �n+1 is possible.

If orient added the rule s → t then s �n+1 t holds by definition, so oKB can
apply orient as well. In case simplify2, compose2 or collapse2 was applied using
an instance lσ → rσ of an equation in En, we have lσ �n+1 rσ by definition of
the inference rules, hence the respective oKB step can be applied. Clearly, in the
remaining cases the inference step can be simulated by the corresponding oKB
rule since no conditions on the order are involved. �!

Lemma 7 does not generalize to infinite runs; as also remarked in [16], →+
Cω

is
not necessarily a reduction order since an infinite union of terminating rewrite
systems need not be terminating.

Simulating oKB by oKBtt is also complete as stated below. The straightfor-
ward proof can be found in the report version. It uses the fact that the reduction
order supplied to oKB can be used for termination checks.

Lemma 8. For every oKB run (E0,R0) �∗ (Eα,Rα) of length α ≤ ω using a
reduction order �, there exists an oKBtt run (E0,R0, C0) �∗ (Eα,Rα, Cα) such
that Cα ⊆ � holds.

Totalizability

Lemma 7 shows that an oKBtt run resulting in the final constraint system C can
be simulated by ordered completion using the reduction order →+

C . If this order
should play the role of � in Theorem 2 then it has to be contained in a reduction
order > which is complete for the theory. Unfortunately, such an order does not
always exist. In the proof of the extended critical pair lemma [2], totalizability of
the reduction order is needed to guarantee joinability of variable overlaps. Thus,
if an oKBtt procedure outputs E , R and C such that →+

C cannot be extended to
a complete order for the theory, ground-confluence of (E ,R) is not guaranteed.

524 S. Winkler and A. Middeldorp

Example 9. A fair oKBtt run starting from

E0 =
{

f(a + c)≈ f(c + a) a≈ b
g(c + b)≈ g(b + c) x+ y ≈ y + x

}
might produce the following result:

E = {x+ y ≈ y + x} R =

⎧⎨⎩
a→ b

f(b + c)→ f(c + b)
g(c + b)→ g(b + c)

⎫⎬⎭
with C = R ∪ {f(a + c) → f(c + a)}. No reduction order > extending →+

C can
orient the ground instance c + a ≈ a + c from left to right. So a + c > c + a must
hold. This gives rise to the variable overlap b + c ← a + c → c + a → c + b. As
b + c and c + b have to be incomparable in > the overlap is not joinable.

To solve this problem we restrict the termination checks in oKBtt inferences.

Definition 10. An oKBttP procedure refers to any program which implements
the inference rules of oKBtt and employs the termination strategy P for termina-
tion checks in orient, simplify2, compose2 and collapse2 inferences. An oKBtttotal

procedure is an oKBttP procedure where P ensures total termination [15, Section
6.3.2] of the checked system.

Examples of such termination strategies are LPO, KBO and MPO with total
precedences as well as polynomial interpretations over N.

Thus, for any constraint system Cn derived by an oKBtttotal procedure in
finitely many steps, there is a reduction order > extending →+

Cn
which is total

on ground terms.

Fairness

Theorem 2 requires a run to be fair, meaning that all extended critical pairs
among persistent equations and rules are considered. In the context of oKBtt,
the set of extended critical pairs cannot be computed during a run since the final
reduction order →+

C is not known in advance.
We solve this problem by observing that any reduction order > which is

total on ground terms contains the embedding relation emb [18, Proposi-
tion 2]. Since CP>(E) ⊆ CP�(E) whenever � ⊆ >, the idea is now to over-
approximate CP>(Eω ∪Rω) by CP
emb

(Eω ∪Rω). This motivates the following
definition.

Definition 11. A run γ is sufficiently fair if CP
emb
(Eω ∪Rω) ⊆

⋃
i Ei.

It follows that a sufficiently fair run of oKBtttotal is fair with respect to (any
total extension of) the final reduction order →+

C .

Termination Tools in Ordered Completion 525

3.1 Correctness and Completeness

With the above considerations, we can carry over the correctness result of ordered
completion to the oKBtttotal setting.

Theorem 12. If (E ,R, C) �∗ (En,Rn, Cn) is a sufficiently fair, finite oKBtttotal

run with R ⊆ →+
C then En ∪ Rn is ground-complete for E with respect to any

reduction order > total on ground terms that extends →+
Cn

.

Proof. By Lemma 7, there exists a corresponding oKB run γ′ using the reduction
order →+

Cn
. Any reduction order > which is total on ground terms contains the

embedding relation. Hence CP>(En ∪ Rn) ⊆ CP
emb
(En ∪ Rn) and as a conse-

quence the sufficiently fair run γ′ is also fair with respect to >. By correctness
of ordered completion, En ∪Rn is ground-complete for E with respect to >. �!

Lemma 8 states that oKBtt is complete in that any oKB run γ can be simulated
by an oKBtt run γ′. If γ is fair then also γ′ is fair, although it need not be
sufficiently fair. Nevertheless, sufficiently fair oKBtttotal procedures are complete
for deriving complete systems if additional equations are considered.

Theorem 13. Assume R is a complete system for E and � is a reduction order
containing R which can be extended to a reduction order that is total on ground
terms. There exists a sufficiently fair oKBtttotal run starting from (E ,∅,∅) which
produces the result Rω = R and Eω = ∅.

Proof. According to Theorem 3, there exists an oKB run γ producing Rω = R
and Eω = ∅. By Lemma 8 there is a corresponding oKBtt run (E ,∅,∅) �∗
(∅,R, C). This run can be extended to (E ,∅,∅) �∗ (∅,R, C) �∗ (E ′,R, C) by
deducing the remaining equations in E ′ = CP
emb

(Eω ∪Rω) \ CP�(Eω ∪Rω) in
order to make it sufficiently fair. Since R is complete for E , all equations in E ′
can be simplified to trivial ones which allows to derive the result (∅,R, C). �!

4 Ordered Multi-Completion with Termination Tools

Ordered multi-completion with termination tools (oMKBtt) simulates multiple
oKBtt processes. Similar as in MKBtt, inference steps among these processes are
shared. For this purpose, a process p is modeled as a bit string in L((0 + 1)∗). A
set of processes P is called well-encoded if there are no processes p, p′ ∈ P such
that p is a proper prefix of p′.

Definition 14. An oMKBtt node 〈s : t, R0, R1, E, C0, C1〉 consists of a pair of
terms s : t (the data) and well-encoded sets of processes R0, R1, E, C0, C1 (the
labels) such that R0 ∪C0, R1 ∪ C1 and E are mutually disjoint.

The set of processes occurring in a node n and a node set N are denoted by
P(n) and P(N). The projection of a node set N to a process p is defined below.

526 S. Winkler and A. Middeldorp

orewrite1
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

N ∪ { 〈s : t, R0 \ (R ∪ S), R1, E \R, C0, C1〉
〈s : u, R0 ∩ (R ∪ S), ∅, E ∩R, ∅, ∅〉
〈lσ : rσ, ∅, ∅, ∅, S, ∅〉 }

if – 〈l : r, R, . . . , E′′, . . . 〉 ∈ N and t
lσ→rσ−−−−→ u where t and l are variants

– S ⊆ E′′ ∩ R0 such that Cp(N) ∪ {lσ → rσ} terminates for all p ∈ S
– ((R0 ∪E) ∩R) ∪ S �= ∅

orewrite2
N ∪ {〈s : t, R0, R1, E, C0, C1〉}

N ∪ { 〈s : t, R0 \ (R ∪ S), R1 \ (R ∪ S), E \ (R ∪ S), C0, C1〉
〈s : u, R0 ∩ (R ∪ S), ∅, (E ∪R1) ∩ (R ∪ S), ∅, ∅〉
〈lσ : rσ, ∅, ∅, ∅, S, ∅〉 }

if – 〈l : r, R, . . . , E′′, . . . 〉 ∈ N and t
lσ→rσ−−−−→ u where t · l

– S ⊆ E′′ ∩ (R0 ∪R1 ∪E) such that Cp(N) ∪ {lσ → rσ} terminates for
all p ∈ S

– (R0 ∪R1 ∪E) ∩ (R ∪ S) �= ∅

odeduce
N

N ∪ { 〈s : t, ∅, ∅, (R ∪E) ∩ (R′ ∪E′), ∅, ∅〉 }
if – 〈l : r, R, . . . , E, . . . 〉, 〈l′ : r′, R′, . . . , E′, . . . 〉 ∈ N

– s
l→r←−− u

l′→r′
−−−−→ t and (R ∪ E) ∩ (R′ ∪E′) �= ∅

Fig. 5. The orewrite and odeduce inference rules in oMKBtt

Definition 15. Given a node n = 〈s : t, R0, R1, E, C0, C1〉 and a process p, let
Pp denote the set of prefixes of p, and set

Ep(n) =

{
{s ≈ t} if Pp ∩ E �= ∅
∅ otherwise

Rp(n) =

⎧⎪⎨⎪⎩
{s→ t} if Pp ∩R0 �= ∅
{t→ s} if Pp ∩R1 �= ∅

∅ otherwise

The set Cp(n) is defined analogous to Rp(n). Furthermore, we define Ep(N) =⋃
n∈N Ep(n), Rp(N) =

⋃
n∈N Rp(n) and Cp(N) =

⋃
n∈N Cp(n).

Note that the above projections are well-defined if all process sets in N are well-
encoded. The inference system oMKBtt works on sets of nodes N and consists
of the rules given in Fig. 5 together with orient, delete and (optionally) subsume
and gc as defined for MKBtt [12]. Note that all inference rules preserve well-
encodedness and the disjointness condition on labels. Given an oMKBtt run
N0 � N1 � N2 � . . . , the set Nω =

⋃
i

⋂
j>iNj collects persisting nodes. For a set

of equations E , the initial node set NE consists of all nodes 〈s : t,∅,∅, {ε},∅,∅〉
such that s ≈ t belongs to E .

Termination Tools in Ordered Completion 527

Example 16. We illustrate oMKBtt on the equations of Example 5. We start
with the initial node set

N0 =
{
〈g(f(x, b)) : a,∅,∅, {ε},∅,∅〉 (1)
〈f(g(x), y) : f(x, g(y)),∅,∅, {ε},∅,∅〉 (2)

}
In the first step one may orient node (1), where only the direction from left to
right is possible. Concerning the second node, both constraint systems

C0 = { g(f(x, b))→ a, f(g(x), y)→ f(x, g(y)) }
C1 = { g(f(x, b))→ a, f(x, g(y))→ f(g(x), y) }

terminate, the first using LPO with precedence f > g > a and the second with
the polynomial interpretation from Example 5. Hence the process ε is split:

g(f(x, b)) : a, {0, 1},∅,∅, {0, 1},∅〉 (1)
〈f(g(x), y) : f(x, g(y)), {0}, {1},∅, {0}, {1}〉 (2)

Starting from the overlap g(f(x, g(b))) ← g(f(g(x), b)) → a between nodes (1)
and (2), if process 0 is advanced further then infinitely many nodes of the form
〈g(f(x, gn(b))) : a, {0},∅,∅, {0},∅〉 are generated. On the other hand, similarly
as in Example 5, one can deduce f(g(x), f(y, b)) ≈ f(x, c), orient the correspond-
ing new node (3) and add the critical pair (4) between nodes (2) and (3). It
remains to consider the overlaps between node (4) and itself to obtain

〈f(g(x), f(y, b)) : f(x, c), {1},∅,∅, {1},∅〉 (3)
〈f(f(x, b), a) : f(a, f(y, b)),∅,∅, {1},∅,∅〉 (4)
〈f(f(x, b), a) : f(f(y, b), a),∅,∅, {1},∅,∅〉 (5)
〈f(a, f(x, b)) : f(a, f(y, b)),∅,∅, {1},∅,∅〉 (6)

at which point process 1 is saturated. Applying the projections E1(N) and
R1(N) to the current node setN = {(1), . . . , (6), . . . } yields the ground-complete
system (E ,R) derived in Example 5.

Intuitively, orewrite1 simulates the oKBtt inferences compose, simplify and com-
pose2 whenever t and l are variants while orewrite2 models these inference steps
together with collapse, simplify2 and collapse2 if t · l. To express this relation-
ship formally in Lemmata 18 and 19 below, we need notation to refer to process
splitting.

Definition 17. If an oMKBtt inference step N � N ′ applies orient, then the
set of processes S which were divided into two child processes is called the step’s
split set. In the other cases, the split set is empty. For a step with split set S
and p′ ∈ P(N ′), the predecessor of p′ is defined as

predS(p′) =

{
p if p′ = p0 or p′ = p1 for some p ∈ S
p′ otherwise

528 S. Winkler and A. Middeldorp

The longish but straightforward proofs of the following lemmata can be found
in the report version. In Lemma 18, �= denotes the reflexive closure of the oKBtt
inference relation �.

Lemma 18. If N � N ′ is an oMKBtt step with split set S then

(Ep(N), Rp(N), Cp(N)) �= (Ep′ (N ′), Rp′(N ′), Cp′ (N ′))

is a valid oKBtt inference for all p′ ∈ P(N ′), where p = predS(p′). Moreover,
the strict part � holds for at least one p′ ∈ P(N ′).

Lemma 19. Consider an oKBtt inference step (E ,R, C) � (E ′,R′, C′). Assume
there exist a node set N and a process p such that E = Ep(N), R = Rp(N)
and C = Cp(N). Then there are a node set N ′, an inference step N � N ′ with
split set S, and a process p′ ∈ P(N ′) such that p = predS(p′), E ′ = Ep′(N ′),
R′ = Rp′(N ′) and C′ = Cp′(N ′).

Projecting an oMKBtt run γ of length α to a process p ∈ P(Nα) thus yields a
valid oKBtt run, which is denoted by γp in the sequel. Before correctness can be
addressed, we adapt the definition of (sufficient) fairness and note that oMKBtt
is sound.

Definition 20. A run γ of length α is sufficiently fair if either α < ω and
γp is sufficiently fair for at least one process p ∈ P(Nα), or α = ω and γp is
sufficiently fair for all p ∈ P(Nα).

Lemma 21. Consider an oMKBtt step N � N ′ with split set S and a process
q ∈ P(N ′) with predecessor p = predS(q). For E = Ep(N), R = Rp(N) and
E ′ = Eq(N ′), R′ = Rq(N ′) the relations ↔∗

E∪R and ↔∗
E′∪R′ coincide.

Similar to the oKBtt case, an oMKBttP procedure refers to a program that takes
a set of equations E as input and uses the inference rules of oMKBtt to generate
a derivation starting from NE , where termination checks are performed with
respect to a termination strategy P . An oMKBtttotal procedure is any oMKBttP
procedure where P guarantees total termination of the checked systems.

Using the simulation properties expressed in Lemmata 18 and 19, correctness
and completeness easily follow from the corresponding results for oKBtt.

Theorem 22. Let N0 = NE be the initial node set for E and let N0 �∗ Nn be
a finite oMKBtttotal run. If N0 �∗ Nn is sufficiently fair for p ∈ P(Nn) then
Ep(Nn) ∪ Rp(Nn) is ground-complete for a reduction order > that is total on
ground terms and extends →+

C , where C = Cp(Nn).

Theorem 23. Assume R is a complete rewrite system for E and � is a reduc-
tion order containing R which can be extended to a total reduction order. Then
there exists a sufficiently fair and simplifying oMKBtttotal run NE �∗ Nα such
that some process p ∈ P(Nα) satisfies Rp(Nα) = R and Ep(Nα) = ∅.

Termination Tools in Ordered Completion 529

5 Theorem Proving with oMKBtt

The use of ordered completion for refutational theorem proving proposed in [2]
can easily be adapted to the oMKBtt setting. For a term s, we write ŝ to denote
the term where each variable is replaced by its corresponding Skolem constant.
In the sequel, given equations E and a goal s ≈ t, let N s≈t

E denote the set

NE ∪ { 〈equal(x, x) : true,∅,∅, {ε},∅,∅〉, 〈equal(ŝ, t̂) : false,∅,∅, {ε},∅,∅〉 }

As the following results show, theorem proving with oMKBtt is sound, indepen-
dent of the applied termination techniques. To obtain completeness we restrict
to oMKBtttotal procedures.

Lemma 24. If an oMKBtt run starting from N0 = N s≈t
E generates a node

〈true : false, . . . , E, . . . 〉 in some set Ni and E �= ∅ then s ≈ t is valid in E.

Lemma 25. If s ≈ t is valid in E then any sufficiently fair oMKBtttotal run N0 �
N1 � · · · � Nα starting from N0 = N s≈t

E generates a node 〈true : false, . . . , E, . . .〉
in some set Ni such that E �= ∅.

Proof. Since the run is sufficiently fair it is sufficiently fair for some process p.
By Lemma 18 there is a sufficiently fair oKBtt run

(Ep(N0), Rp(N0), Cp(N0)) �∗ (Ep(Nα), Rp(Nα), Cp(Nα))

According to Lemma 7, there is a corresponding fair oKB run using the reduction
order →+

C , where C = Cp(Nα). Moreover, →+
C can be extended to a reduction

order > that is total on ground terms. By [2, Theorem 3], such a fair ordered
completion run starting from E0 = E ∪ {equal(x, x) ≈ true, equal(ŝ, t̂) ≈ false}
will have the contradictory statement true ≈ false in some set Ei ∪ Ri, so there
is a node 〈true : false, . . . 〉 in some Ni. �!

6 Implementation

This section briefly outlines our tool omkbTT. Extending the existing mkbTT

implementation [11,17], it is implemented in OCaml in about 10.000 lines of code.
To check constraint systems for termination, omkbTT either uses an external tool
which is compatible with a minimal interface or interfaces TTT2 [8] internally.

Our tool omkbTT is equipped with a simple command-line interface. The input
system is expected in the TPTP-3 [14] format. Among other options, users can
fix the global time limit and the time limit for a termination call, specify either
an external executable for termination checks or configure how TTT2 should be
used internally, and control which indexing technique, node selection strategy or
goal representation to use. For further details we refer to the website and [17].

In the original presentation of completion-based theorem proving [2], given
a goal s ≈ t the equations equal(x, x) ≈ true and equal(ŝ, t̂) ≈ false are added.

530 S. Winkler and A. Middeldorp

Table 1. Completing theories associated with TPTP UEQ systems

ttt2total kbo lpo poly mpo E
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

et 37 22.8 38 23.5 23 22.1 35 34.1 37 29.0 10 0.04
dt 45 24.5 55 17.4 24 156.5 44 11.5 45 10.5 35 0.06

Waldmeister uses a different representation of the goal [5]. The reducts of ŝ and
t̂ are kept in two sets Rs and Rt. Whenever a term in Rs or Rt can be reduced,
the new reducts are added to Rs or Rt, respectively. The goal is proven as soon
as Rs ∩Rt is non-empty. This approach is supported in omkbTT as well. Sets Rs

and Rt of pairs (u, P) where u is a term and P the set of processes for which
this reduct was derived are maintained. The goal is proven if there exists a term
u such that (u, P) ∈ Rs, (u, P ′) ∈ Rt and P ∩ P ′ is non-empty.

7 Experimental Results

This section summarizes experimental results obtainedwith omkbTT. All testswere
run on a single core of a server equipped with eight dual-core AMD Opteron R© pro-
cessors 885 running at a clock rate of 2.6GHz and 64GB of main memory.

In all of the following tests omkbTT internally interfaces TTT2 for termina-
tion checks. To compare the applicability of different termination techniques,
different TTT2 strategies were used: kbo, lpo and mpo denote the well-known
reduction orders and poly refers to linear polynomial interpretations with coeffi-
cients in {0, . . . , 7}. The strategy where all these techniques performed in parallel
are applied iteratively is denoted by ttt2total. The strategy ttt2fast involves de-
pendency pairs so total termination is not ensured. It is therefore only used for
theorem proving, which is sound according to Lemma 24, although incomplete
because completeness of refutational theorem proving holds only for totalizable
reduction orders [2].

Examples stem from the unit equality division of TPTP 3.6.0 [14]. The test
set e consists of 215 problems rated easy, d contains 565 problems classified as
difficult. The sets et and dt consist of the 204 and 563 different theories associated
with these problems. Table 1 shows ordered completion results obtained with
omkbTT. The columns list (1) the number of successes, (2) the average time
for a successful run in seconds (given a timeout of 600 seconds), and (3) the
percentage of time spent on termination checks. In order to compare with other
ordered completion tools, we ran E [13] on the same test set in auto mode,
such that it heuristically determines the reduction order to use.2 As an example,
omkbTT using ttt2total completes the theory underlying problem GRP447-1 from
TPTP within 3 seconds, while neither E nor mkbTT produce a solution within 1
hour.

2 We did not use Waldmeister here since, according to personal communication with
the developers, its auto mode should not be used for ordered completion.

Termination Tools in Ordered Completion 531

Table 2. Performance of oMKBtt on TPTP UEQ problems

ttt2total kbo lpo poly ttt2fast
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

e 149 43.9 82 163 16.6 8 164 24.3 14 143 59.1 90 138 49.9 80
d 116 66.0 64 148 64.8 4 152 50.6 6 109 95.7 79 121 55.0 17

The over-approximation of extended critical pairs with the embedding rela-
tion, i.e., the use of CP
emb

instead of CP∅ allows for a performance gain of
about 28%.

Table 2 shows theorem proving results obtained with omkbTT. Both Wald-
meister and E solve about 200 problems in e and more than 400 of the d set.3

Although the considered termination strategies are incomparable in power, kbo
handles the most problems, both for ordered completion and theorem proving.
The reason for that is that little time is spent on termination checks, as can be
seen from Table 2. Although the combination of multiple techniques in ttt2total
is theoretically more powerful than each technique separately, the larger number
of processes (25% more than kbo and twice as much as in lpo or poly) decreases
performance and causes more timeouts. The evaluation of different combinations
of termination strategies, such as the incremental use of polynomial interpreta-
tions, is subject to future work.

We compared the simple approach where the goal is represented as two nodes
with the Waldmeister-like approach described in Section 6. According to our
results, the latter is faster and therefore able to prove about 3% more examples.
However, in some cases the simple approach succeeds whereas the Waldmeister-
like approach fails due to a “combinatorial explosion”.

8 Conclusion

We outlined how termination tools can replace a fixed term order in ordered
completion and completion-based theorem proving. This approach can also be
combined with multi-completion. Besides the advantage that no reduction order
has to be provided as input, this novel approach allows to derive ground-complete
systems for problems that are not compatible with standard orders such as LPO
and KBO. Hence our tool omkbTT can deal with input systems that cannot be
solved with other tools, to the best of our knowledge.

In contrast to standard completion, in the case of ordered completion the
reduction order implicitly developed in the inference sequence needs to be ex-
tensible to a reduction order which is complete for the theory. Hence omkbTT

restricts to termination techniques which entail total termination. It is subject to
further research whether the existence of a suitable order > can be guaranteed
by other means such that applicable termination techniques are less restricted.

3 It should be noted that omkbTT cannot (yet) cope with existentially quantified goals.
There are 16 such problems in e and 61 in d.

532 S. Winkler and A. Middeldorp

Acknowledgements. The comments of the anonymous referees helped to im-
prove the paper.

References

1. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof
orderings. Journal of the ACM 41(2), 236–276 (1994)

2. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In:
Aı̈t-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures.
Rewriting Techniques of Progress in Theoretical Computer Science, vol. 2, pp.
1–30. Academic Press, London (1989)

3. Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation and Knuth–
Bendix completion with nontotal and nonmonotonic orderings. Journal of Auto-
mated Reasoning 30(1), 99–120 (2003)

4. Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Sci-
ence 17(3), 279–301 (1982)

5. Hillenbrand, T., Löchner, B.: The next Waldmeister loop. In: Voronkov, A. (ed.)
CADE 2002. LNCS (LNAI), vol. 2392, pp. 486–500. Springer, Heidelberg (2002)

6. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. University
of Illinois (1980) (unpublished manuscript)

7. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
Oxford (1970)

8. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

9. Kurihara, M., Kondo, H.: Completion for multiple reduction orderings. Journal of
Automated Reasoning 23(1), 25–42 (1999)

10. Lankford, D.: On proving term rewrite systems are noetherian. Technical Report
MTP-3, Louisiana Technical University (1979)

11. Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termi-
nation tools (System description). In: Armando, A., Baumgartner, P., Dowek, G.
(eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 306–312. Springer, Heidelberg
(2008)

12. Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Constraint-based multi-
completion procedures for term rewriting systems. IEICE Transactions on Elec-
tronics, Information and Communication Engineers E92-D(2), 220–234 (2009)

13. Schulz, S.: The E Equational Theorem Prover (2009), http://www.eprover.org
14. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of

Automated Reasoning 43(4), 337–362 (2009)
15. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press, Cambridge (2003)
16. Wehrman, I., Stump, A., Westbrook, E.M.: Slothrop: Knuth-Bendix completion

with a modern termination checker. In: Pfenning, F. (ed.) RTA 2006. LNCS,
vol. 4098, pp. 287–296. Springer, Heidelberg (2006)

17. Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Optimizing mkbTT (System
description). In: Lynch, C. (ed.) Proc. 21st RTA. LIPIcs (to appear, 2010)

18. Zantema, H.: Total termination of term rewriting is undecidable. Journal of Sym-
bolic Computation 20(1), 43–60 (1995)

http://www.eprover.org

Author Index

Abourbih, Jonathan A. 354
Aderhold, Markus 263
Aravantinos, Vincent 293, 309
Ayad, Ali 127

Backes, Julian 76
Baelde, David 278
Beierle, Christoph 218
Bensaid, Hicham 369
Bjørner, Nikolaj 316, 400
Blanchette, Jasmin Christian 91
Blaney, Luke 354
Böhme, Sascha 107
Brillout, Angelo 384
Brown, Chad E. 76
Bundy, Alan 354

Caferra, Ricardo 293, 309, 369
Cerrito, Serenella 255
Chaudhuri, Kaustuv 142
Cheval, Vincent 412
Cialdea Mayer, Marta 255
Comon-Lundh, Hubert 412
Cramer, Marcos 434

Delaune, Stéphanie 412
de Moura, Leonardo 400
de Nivelle, Hans 203
Doligez, Damien 142
Dunchev, Tsvetan 427
Dunfield, Jana 15
Dwyer, Matthew B. 156

Finthammer, Marc 218
Friedmann, Oliver 331

Garvin, Brady J. 156
Ghilardi, Silvio 22
Glimm, Birte 457
Goré, Rajeev 46, 225

Hirokawa, Nao 487
Hoder, Kryštof 188
Horrocks, Ian 61, 457

Ihlemann, Carsten 30

Janičić, Predrag 346

Kaminski, Mark 240
Kapur, Deepak 353
Kazakov, Yevgeny 61, 472
Kern-Isberner, Gabriele 218
Koepke, Peter 434
Korovin, Konstantin 196
Kovács, Laura 188
Krauss, Alexander 91
Kroening, Daniel 384
Kühlwein, Daniel 434
Kuncak, Viktor 149
Kupke, Clemens 46

Lamport, Leslie 142
Lange, Martin 331
Latte, Markus 331
Leitsch, Alexander 427
Libal, Tomer 427

Magka, Despoina 61
Marché, Claude 127
Marić, Filip 346
McNeill, Fiona 354
Merz, Stephan 142
Middeldorp, Aart 487, 502, 518
Miller, Dale 278
Motik, Boris 457

Neurauter, Friedrich 502
Nipkow, Tobias 107

Pattinson, Dirk 46
Peltier, Nicolas 293, 309, 369
Pientka, Brigitte 15
Piskac, Ruzica 149

Ranise, Silvio 22
Rümmer, Philipp 384

534 Author Index

Schack-Nielsen, Anders 1
Schröder, Bernhard 434
Schröder, Lutz 46
Schürmann, Carsten 1
Sherman, Elena 156
Smolka, Gert 240
Snow, Zachary 278
Sofronie-Stokkermans, Viorica 30, 171
Sticksel, Christoph 196
Suda, Martin 441

Thimm, Matthias 218

van Benthem, Johan 122
Voronkov, Andrei 188

Wahl, Thomas 384
Weidenbach, Christoph 441
Weller, Daniel 427
Widmann, Florian 225
Winkler, Sarah 518
Wischnewski, Patrick 441
Woltzenlogel Paleo, Bruno 427

Zankl, Harald 502

	Cover
	Title Page
	Preface
	Organization
	Table of Contents
	Logical Frameworks and Combination of Systems
	Curry-Style Explicit Substitutions for the Linear and Affine Lambda Calculus
	Introduction
	Explicit Substitutions
	The Type System
	Contexts
	Types

	Reduction Semantics
	Type Preservation
	σ-Reduction
	Confluence and Termination

	Dependent Types
	Conclusion
	References

	Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description)
	Introduction
	Example: Type Uniqueness
	Related Work
	Implementation
	References

	MCMT: A Model Checker Modulo Theories
	Introduction
	The MCMT Way of Life
	The Input Language for Safety Problems
	The Main Loop: Deductive Backward Reachability
	Experiments
	References

	On Hierarchical Reasoning in Combinations of Theories
	Introduction
	Preliminaries
	Recognizing Ψ-Local Theory Extensions
	Semantical Characterizations of Locality
	Locality Transfer Results
	Locality and Model Completeness

	Combinations of Local Theories
	Case 1: Both Theories Satisfy {\sc (EEmb_{w})}
	Case 2: One Theory Satisfies {\sc (EEmb_{w})}
	Combinations of Ψ-Local Theory Extensions

	Conclusions
	References

	Description Logic I
	Global Caching for Coalgebraic Description Logics
	Global Caching for Hybrid Logics, Informally
	Syntax and Semantics of Coalgebraic Hybrid Logic
	Tableau Rules for Coalgebraic Logics
	Caching Graphs for Coalgebraic Hybrid Logic
	Correctness and Completeness
	Complexity
	Conclusions
	References

	Tractable Extensions of the Description Logic ${\mathcal EL}$ with Numerical Datatypes
	Introduction and Motivation
	Preliminaries
	Numerical Datatypes with Restrictions
	The Classification Procedure and Soundness
	Completeness and Safe NDRs

	Maximal Safe NDRs for ${\mathhbb N}$
	Maximal Safe NDRs for ${\mathbb Z, R}$ and ${\mathbb Q}$
	Related Work
	Conclusions and Future Work
	References

	Higher-Order Logic
	Analytic Tableaux for Higher-Order Logic with Choice
	Introduction
	Preliminaries
	Tableau Calculus
	Evident Sets and Model Existence
	Abstract Consistency and Completeness
	Related Work
	Conclusion
	References

	Monotonicity Inference for Higher-Order Formulas
	Introduction
	Related Work
	Higher-Order Logic
	Monotonicity
	A Simple Calculus
	Extension Relation and Constancy
	Syntactic Criteria

	A Refined Calculus
	Refined Extension Relation
	Type Checking
	Monotonicity Checking
	Type Inference

	Inductive Datatypes
	Evaluation
	Discussion
	Conclusion
	References

	Sledgehammer: Judgement Day
	Introduction
	Related Work

	Sledgehammer
	The Setup
	Success Rates
	{\sf M} May Fail
	The Fully-Typed Translation
	Metis with Full Types

	Time
	Proof Complexity
	Minimization
	Minimization Algorithms
	Benefits

	Conclusions
	References

	Invited Talk
	Logic between Expressivity and Complexity
	Logic and the Balance of Expressive Power and Computational Complexity
	Upward from Modal to Guarded Fragments
	Aside: Downward to ‘Poor Man’s Logics’
	Model Theory in the Small: Lindstr¨om Theory
	Challenge 1: Fixed Point Logics
	Challenge 2: Logic Combinations
	Aside: Let the Structure Help
	Discussion: Practical Perspectives on Expressiveness and Complexity
	References

	Verification
	Multi-Prover Verification of Floating-Point Programs
	Introduction
	The IEEE-754 Standard for Floating-Point Arithmetic
	Behavioral Specifications of Floating-Point Programs
	Modeling FP Computations
	Axiomatization of FP Arithmetics
	A Coq Realization of the AxiomaticModel
	The Defensive Model of FP Computations
	The Full Model of FP Computations

	Discharging Proof Obligations
	Related Works and Perspectives
	References

	Verifying Safety Properties with the TLA+ Proof System
	Overview
	Foundations
	Proof Management
	Backend Verifiers
	Isabelle/TLA+
	Zenon
	Other Backends

	Proof Development
	Example Developments

	References

	MUNCH - Automated Reasoner for Sets and Multisets
	Introduction
	Description of the MUNCH Implementation
	Input Language
	NP vs. NEXPTIME Algorithm in Implementations
	System Overview
	Efficient Computation of Semilinear Sets and Elimination of the ∗ Operator

	Examples and Benchmarks
	References

	A Slice-Based Decision Procedure for Type-Based Partial Orders
	Introduction
	Background and Related Work
	A Fragment of the Theory of Partial Orders
	Deciding Partial Order Queries
	Efficient Type Tests

	Decision Procedure for Type Partial Orders (TPO-DP)
	Soundness and Completeness
	Time and Space Complexity
	Incrementality, Restartability, and Unsatisfiable Cores
	Implementation Choices

	Evaluation
	Categories of Path-Sensitive Analyses
	A Population of TPO Queries
	Comparing to a State-of-the-Art SMT Solver
	Results
	Discussion

	Conclusions and Future Work
	References

	Hierarchical Reasoning for the Verification of Parametric Systems
	Introduction
	Idea and Running Examples

	Decision Problems in Complex Theories
	Verification Problems for Parametric Systems
	Systems Modeled Using Transition Constraints
	Hybrid Automata

	Conclusion
	References

	First-Order Logic
	Interpolation and Symbol Elimination in Vampire
	Introduction
	Colored Proofs, Symbol Elimination and Interpolation
	Tool Overview
	Experiments
	Conclusion
	References

	iProver-Eq: An Instantiation-Based Theorem Prover with Equality
	Introduction
	System Overview
	The Unit Superposition Calculus
	Instances from Unit Superposition Proofs
	Features of the Implementation
	Evaluation
	References

	Classical Logic with Partial Functions
	Introduction
	Completeness
	Conclusions, Future Work
	References

	Non-Classical Logic
	Automated Reasoning for Relational Probabilistic Knowledge Representation
	Introduction
	Background
	Examples and System Overview
	System Architecture and Implementation
	References

	Optimal and Cut-Free Tableaux for Propositional Dynamic Logic with Converse
	Introduction
	Syntactic Preliminaries
	An Overview of our Algorithm
	The Algorithm
	Implementation, Optimisations, and Strategy
	An Example
	References

	Terminating Tableaux for Hybrid Logic with Eventualities
	Introduction
	The Logic
	Clausal Form
	Tableaux for K
	Tableaux for H
	Evidence for H*
	Tableaux for H*
	Tableaux for H* with @
	Optimizations
	References

	Herod and Pilate: Two Tableau Provers for Basic Hybrid Logic
	A Brief Presentation of the Calculi P and H
	Pilate and Herod
	Experimental Results
	Concluding Remarks
	References

	Induction
	Automated Synthesis of Induction Axioms for Programs with Second-Order Recursion
	Introduction
	Programming Language and Terminology
	Quantification Procedures
	Synthesis of Induction Axioms
	Optimization of Induction Axioms
	Optimization of Quantification Procedures
	Optimized Induction Hypotheses For Second-Order Recursion

	Related Work
	Conclusion
	References

	Focused Inductive Theorem Proving
	Introduction
	The Logic μLJ
	Focused Proofs for μLJ
	Tac
	Progress
	Discovering (Co)invariants
	Organization of the {\tt prove} Tactic

	Comparison and Experimental Results
	Comparison with Rewriting Based Approaches
	Comparison with Twelf

	Conclusion
	References

	Decision Procedures
	A Decidable Class of Nested Iterated Schemata
	Introduction
	Schemata of Propositional Formulae
	A Proof Procedure: DPLL*
	Looping Detection
	Equality Up to a Shift
	Refinement Extensions

	A Decidable Class: Regularly Nested Schemata
	Conclusion
	References

	RegSTAB: A SAT Solver for Propositional Schemata
	Introduction
	Regular Schemata: Formal Definitions
	Proof Procedure
	The System
	Implementing the Proof Procedure
	Conclusion
	References

	Linear Quantifier Elimination as an Abstract Decision Procedure
	Introduction
	Related Work

	Preliminaries
	Linear Real Arithmetic
	An Abstract Quantifier Elimination Procedure
	Linear Integer Arithmetic
	Cooper’s Algorithm and the Omega Test
	Divisibility Constraints
	Integer Pivoting

	Elimination of Multiple Variables
	From Bounded Integers to Bit-Vectors
	Implementations and Experimentation
	Benchmarking

	Concluding Remarks
	References

	A Decision Procedure for CTL* Based on Tableaux and Automata
	Introduction
	CTL*
	Tableaux for CTL*
	A Decision Procedure for CTL*
	Using Automata to Recognise Tableau Branches
	Automata for Tableau Branches
	The Reduction to Parity Games

	Comparison with Existing Methods
	An Implementation
	Further Work
	References

	URBiVA: Uniform Reduction to Bit-Vector Arithmetic
	Introduction
	Problem Specification
	Problem Solving
	Implementation
	Examples and Experimental Results
	Conclusions, Related Tools, and Further Work
	References

	Keynote Talk
	Induction, Invariants, and Abstraction
	References

	Arithmetic
	A Single-Significant-Digit Calculus for Semi-Automated Guesstimation
	Introduction
	Guesstimation
	The SINGSIGDIG Calculus
	Hypothesis

	Guesstimation Proof Methods
	Primary Methods
	Secondary Methods
	Towards an Axiomatic Equational {\sc SingSigDig} Theory

	Worked Examples
	Implementation
	Basic Ontology
	Inference System
	The Web Interface
	Customised Ontology
	Information Retrieval

	Evaluation
	Related Work
	Conclusion
	Discussion
	Further Work

	References

	Perfect Discrimination Graphs: Indexing Terms with Integer Exponents
	Introduction
	Definitions and Notations
	Index Graphs
	Construction of the Index Graph
	The Filtering Algorithm
	Conclusion
	References

	An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic
	Introduction
	Preliminaries
	A Motivating Example
	An Interpolating Sequent Calculus for QFPA
	Propositional, Initialization, and Closure Rules
	Rewriting Rules for Equality, Inequality and Divisibility
	Properties of the Calculus

	Strengthening and Mixed Cuts
	Successive Strengthening

	Experimental Evaluation
	Related Work and Conclusions
	References

	Invited Talk
	Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development
	Introduction
	Symbolic Reasoning at Microsoft
	Dynamic Symbolic Execution
	Static Program Analysis
	Software Verification
	Synthesis

	Symbolic Reasoning Support for Models
	Streams of Candidate Models
	Model Checking Quantifiers
	Skeleton Based Model Finding and Synthesis

	Conclusion
	References

	Applications
	Automating Security Analysis: Symbolic Equivalence of Constraint Systems
	Introduction
	Equivalence Properties and Deducibility Constraints
	Function Symbols and Terms
	Frames
	Deducibility Constraints
	Static Equivalence
	Symbolic Equivalence

	Transformation Rules
	Flags
	The Rules
	How to Use the Transformation Rules

	Correctness, Completeness and Termination
	Termination
	Correctness
	Completeness

	Implementation and Experiments
	Conclusion
	References

	System Description: The Proof Transformation System {\tt CERES}
	Introduction
	The System {\tt CERES}
	An Example
	Summary of Recent Improvements and Future Work
	References

	Premise Selection in the Naproche System
	Introduction
	The Naproche System
	An Example Text
	Related Work

	The Premise Selection Algorithm
	Results
	Conclusion and Future Work
	References

	On the Saturation of YAGO
	Introduction
	Preliminaries
	Translation of YAGO into BSHE
	A New Calculus for BSHE
	The Proof System
	Completeness, Soundness, and Termination

	Filtered Context Trees
	Engineering
	Experiments
	Conclusion
	References

	Description Logic II
	Optimized Description Logic Reasoning via Core Blocking
	Introduction
	Preliminaries
	Model Construction Calculi
	The Hypertableau Calculus
	Blocking

	Optimized Blocking Strategies
	Core Blocking
	Applying Core Blocking in a Derivation
	Core Blocking Policies
	Applying Core Blocking in Tableau Calculi

	Empirical Evaluation
	Discussion
	References

	An Extension of Complex Role Inclusion Axioms in the Description Logic ${\mathcal SROIQ}$
	Introduction
	Preliminaries
	Regularity for Sets of Role Inclusion Axioms
	Stratified Sets of Role Inclusion Axioms and Regularity
	Testing If a Set of RIAs Is Stratified
	Related Work and Outlook
	References

	Termination
	Decreasing Diagrams and Relative Termination
	Introduction
	Decreasing Diagrams
	Confluence via Relative Termination
	Automation
	Experimental Results
	Conclusion
	References

	Monotonicity Criteria for Polynomial Interpretations over the Naturals
	Introduction
	Preliminaries
	Parametric Polynomials
	Linear Parametric Polynomials
	Quadratic Parametric Polynomials
	Cubic Parametric Polynomials

	Negative Coefficients in Polynomial Interpretations
	Experimental Results
	References

	Termination Tools in Ordered Completion
	Introduction
	Preliminaries
	Ordered Completion
	Completion with Termination Tools
	Completion with Multiple Reduction Orders

	Ordered Completion with Termination Tools
	Correctness and Completeness

	Ordered Multi-Completion with Termination Tools
	Theorem Proving with {\sf oMKBtt}
	Implementation
	Experimental Results
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

