

Lecture Notes in Computer Science 6182
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roel Wieringa Anne Persson (Eds.)

Requirements Engineering:
Foundation for
Software Quality

16th International Working Conference, REFSQ 2010
Essen, Germany, June 30–July 2, 2010
Proceedings

13

Volume Editors

Roel Wieringa
University of Twente
Enschede, The Netherlands
E-mail: r.j.wieringa@utwente.nl

Anne Persson
University of Skövde
Skövde, Sweden
E-mail: anne.persson@his.se

Library of Congress Control Number: 2010929494

CR Subject Classification (1998): D.2, C.2, H.4, F.3, K.6.5, D.4.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-14191-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14191-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume compiles the papers accepted for presentation at the 16th Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ
2010), held in Essen during June 30 and July 1-2, 2010.

Since 1994, when the first REFSQ took place, requirements engineering (RE) has
never ceased to be a dominant factor influencing the quality of software, systems and
services. Initially started as a workshop, the REFSQ working conference series has
now established itself as one of the leading international forums to discuss RE in its
(many) relations to quality. It seeks reports of novel ideas and techniques that enhance
the quality of RE products and processes, as well as reflections on current research
and industrial RE practices. One of the most appreciated characteristics of REFSQ is
that of being a highly interactive and structured event. REFSQ 2010 was no exception
to this tradition.

In all, we received a healthy 57 submissions. After all submissions had been care-
fully assessed by three independent reviewers and went through electronic discus-
sions, the Program Committee met and finally selected 15 top-quality full papers (13
research papers and 2 experience reports) and 7 short papers, resulting in an accep-
tance rate of 38 %.

 The work presented at REFSQ 2009 continues to have a strong anchoring in prac-
tice with empirical investigations spanning over a wide range of application domains.

As in previous years, these proceedings serve as a record of REFSQ 2010, but also
present an excellent snapshot of the state of the art of research and practice in RE. As
such, we believe that they are of interest to the whole RE community, from students
embarking on their PhD to experienced practitioners interested in emerging knowl-
edge, techniques and methods. At the time of writing, REFSQ 2010 has not taken
place yet. All readers who are interested in an account of the discussions that took
place during the conference should consult the post-conference summary that we
intend to publish as usual in the ACM SIGSOFT Software Engineering Notes.

REFSQ is essentially a collaborative effort. First of all, we thank Klaus Pohl for his
work as General Chair of the conference. We also extend our gratitude to Ernst Sikora
and Mikael Berndtsson who served REFSQ 2010 very well as Organization Chair and
Publication Chair, respectively. Also we thank Andreas Gehlert for serving very well
as Workshop and Poster Chair and Mikael Berndtsson for his work as Publications
Chair.

As the Program Chairs of REFSQ 2010, we deeply thank the members of the Pro-
gram Committee and the additional referees for their careful and timely reviews. We
particularly thank those who have actively participated in the Program Committee
meeting and those who have volunteered to act as shepherds to help finalize promis-
ing papers.

April 2010 Roel Wieringa

Anne Persson

REFSQ 2010 Conference Organization

General Chair

Klaus Pohl University of Duisburg-Essen, Germany

Program Committee Co-chairs

Roel Wieringa University of Twente, The Netherlands
Anne Persson University of Skövde, Sweden

Organizing Chair

Ernst Sikora University of Duisburg-Essen, Germany

Publications Chair

Mikael Berndtsson University of Skövde, Sweden

Program Committee

Ian Alexander Scenarioplus, UK
Aybüke Aurum University New South Wales, Australia
Daniel M. Berry University of Waterloo, Canada
Jürgen Börstler University of Umeå, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
David Callele University of Saskatchewan, Canada
Alan Davis University of Colorado at Colorado Springs, USA
Eric Dubois CRP Henri Tudor, Luxembourg
Jörg Dörr Fraunhofer-IESE, Germany
Christof Ebert Vector, Germany
Anthony Finkelstein University College London, UK
Xavier Franch Universitat Politècnica de Catalunya, Spain
Samuel Fricker University of Zürich and Fuchs-Informatik AG,

Switzerland
Vincenzo Gervasi Università di Pisa, Italy
Martin Glinz University of Zürich, Switzerland
Tony Gorschek Blekinge Institute of Technology, Sweden
Olly Gotel Independent Researcher, New York City, USA
Paul Grünbacher University of Linz, Austria
Peter Haumer IBM Rational, USA
Patrick Heymans University of Namur, Belgium

 Organization VIII

Matthias Jarke RWTH Aachen, Germany
Sara Jones City University, London, UK
Natalia Juristo Universidad Politécnica de Madrid, Spain
Erik Kamsties University of Applied Sciences Dortmund,

Germany
Kim Lauenroth University of Duisburg-Essen, Germany
Søren Lauesen IT University of Copenhagen, Denmark
Seok-Won Lee University of North Carolina at Charlotte, USA
Nazim H. Madhavji University of Western Ontario, Canada
Raimundas Matulevičius University of Tartu, Estonia
Ana Moreira Universidade Nova de Lisboa, Portugal
Haris Mouratidis University of East London, UK
John Mylopoulos University of Toronto, Canada
Cornelius Ncube Bournemouth University, UK
Andreas Opdahl University of Bergen, Norway
Barbara Paech University of Heidelberg, Germany
Oscar Pastor Valencia University of Technology, Spain
Gilles Perrouin University of Luxembourg
Gil Regev EPFL and Itecor, Switzerland
Björn Regnell Lund University, Sweden
Colette Rolland University of Paris-1–– Panthéon Sorbonne,

France
Camille Salinesi University of Paris 1 – Panthéon Sorbonne,

France
Kristian Sandahl Linköping University, Sweden
Peter Sawyer Lancaster University, UK
Kurt Schneider University of Hanover, Germany
Norbert Seyff City University, London, UK
Guttorm Sindre NTNU, Norway
Janis Stirna Royal Institute of Technology, Sweden
Eric Yu University of Toronto, Canada
Didar Zowghi University of Technology Sydney, Australia

External Reviewers

Willem Bekkers
Andreas Classen
Alexander Delater
Oscar Dieste
Arash Golnam
Florian Graf
Wiebe Hordijk
Jennifer Horkow
Cedric Jeanneret
Isabel John

Daniel Kerkow
Dewi Mairiza
Anshuman Saxena
Kevin Vlaanderen
Inge van de Weerd
Richard Berntsson Svensson
Robert Heinrich Rumyana
Proynova Sebastian
Barney Sira Vegas

Table of Contents

Keynote

Keynote Talk Piecing Together the Requirements Jigsaw-Puzzle 1
Ian Alexander

Decision-Making in Requirements Engineering

Understanding the Scope of Uncertainty in Dynamically Adaptive
Systems . 2

Kristopher Welsh and Pete Sawyer

Use of Personal Values in Requirements Engineering – A Research
Preview . 17

Rumyana Proynova, Barbara Paech, Andreas Wicht, and
Thomas Wetter

Requirements and Systems Architecture Interaction in a Prototypical
Project: Emerging Results . 23

Remo Ferrari, Oliver Sudmann, Christian Henke, Jens Geisler,
Wilhelm Schafer, and Nazim H. Madhavji

Scenarios and Elicitation

Videos vs. Use Cases: Can Videos Capture More Requirements under
Time Pressure? . 30

Olesia Brill, Kurt Schneider, and Eric Knauss

Supporting the Consistent Specification of Scenarios across Multiple
Abstraction Levels . 45

Ernst Sikora, Marian Daun, and Klaus Pohl

Product Families I

Requirements Value Chains: Stakeholder Management and
Requirements Engineering in Software Ecosystems 60

Samuel Fricker

Binary Priority List for Prioritizing Software Requirements 67
Thomas Bebensee, Inge van de Weerd, and Sjaak Brinkkemper

X Table of Contents

Requirements Patterns

Towards a Framework for Specifying Software Robustness Requirements
Based on Patterns . 79

Ali Shahrokni and Robert Feldt

A Metamodel for Software Requirement Patterns . 85
Xavier Franch, Cristina Palomares, Carme Quer,
Samuel Renault, and François De Lazzer

Validation of the Effectiveness of an Optimized EPMcreate as an Aid
for Creative Requirements Elicitation . 91

Victoria Sakhnini, Daniel M. Berry, and Luisa Mich

Product Families II

Towards Multi-view Feature-Based Configuration . 106
Arnaud Hubaux, Patrick Heymans, Pierre-Yves Schobbens, and
Dirk Deridder

Evaluation of a Method for Proactively Managing the Evolving Scope
of a Software Product Line . 113

Karina Villela, Jörg Dörr, and Isabel John

Requirements Engineering in Practice

Challenges in Aligning Requirements Engineering and Verification in a
Large-Scale Industrial Context . 128

Giedre Sabaliauskaite, Annabella Loconsole, Emelie Engström,
Michael Unterkalmsteiner, Björn Regnell, Per Runeson,
Tony Gorschek, and Robert Feldt

On the Perception of Software Quality Requirements during the Project
Lifecycle . 143

Neil A. Ernst and John Mylopoulos

Lessons Learned from Integrating Specification Templates,
Collaborative Workshops, and Peer Reviews . 158

Marko Komssi, Marjo Kauppinen, Kimmo Toro,
Raimo Soikkeli, and Eero Uusitalo

A Case Study on Tool-Supported Multi-level Requirements
Management in Complex Product Families . 173

Margot Bittner, Mark-Oliver Reiser, and Matthias Weber

Table of Contents XI

Natural Language

A Domain Ontology Building Process for Guiding Requirements
Elicitation . 188

Inah Omoronyia, Guttorm Sindre, Tor St̊alhane, Stefan Biffl,
Thomas Moser, and Wikan Sunindyo

Tackling Semi-automatic Trace Recovery for Large Specifications 203
Jörg Leuser and Daniel Ott

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources . . . 218
Benedikt Gleich, Oliver Creighton, and Leonid Kof

Ambiguity in Natural Language Software Requirements: A Case
Study . 233

Fabian de Bruijn and Hans L. Dekkers

Security Requirements

On the Role of Ambiguity in RE . 248
Vincenzo Gervasi and Didar Zowghi

Towards a Framework to Elicit and Manage Security and Privacy
Requirements from Laws and Regulations . 255

Shareeful Islam, Haralambos Mouratidis, and Stefan Wagner

Visualizing Cyber Attacks with Misuse Case Maps 262
Peter Karpati, Guttorm Sindre, and Andreas L. Opdahl

Poster

How Do Software Architects consider Non-Functional Requirements:
A Survey . 276

David Ameller and Xavier Franch

Author Index . 279

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, p. 1, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Keynote Talk
Piecing Together the Requirements Jigsaw-Puzzle

Ian Alexander

Scenarioplus Ltd., UK
iany@scenarioplus.org.uk

Software developers have been made to write requirements for their projects since the
1960s. Researchers have investigated every imaginable technique. But requirements
are still not being put together well. Something is going wrong.

One reason is that while different schools of research advocate powerful methods –
goal modeling, scenario analysis, rationale modeling and more – industry still
believes that requirements are stand-alone imperative statements. The mismatch be-
tween the wealth of techniques known to researchers and the impoverished lists of
shall-statements used in industry is striking.

The solution cannot be found by devising yet more elaborate techniques, yet more
complex puzzle-pieces. Even the existing ones are scarcely used in industry. Instead,
we need to work out how to assemble the set of available “puzzle-pieces” – existing
ways of discovering and documenting requirements – into simple, practical industrial
methods.

Another reason is that existing textbooks, and perhaps requirements education and
training too, largely assume that projects are all alike, developing stand-alone
software from scratch. But projects are constrained by contracts, fashion, standards
and not least by existing systems. The problems they must solve, and the techniques
they need to use, vary enormously. Pure and simple “green-field” development is the
exception.

This talk suggests:

• what the pieces of the requirements jigsaw-puzzle are – for example, scenario
analysis and goal modelling;

• how, in general, they can be fitted together – for example, as sequences of activities
and by traceability;

• how, more specifically, projects of different types can re-assemble the pieces to
solve their own puzzles – for example, by tailoring imposed templates, or develop-
ing processes appropriate to their domain and situation.

There are numerous answers to each of these questions. Perhaps the real message is
that there is not one requirements engineering, but many.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 2–16, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Understanding the Scope of Uncertainty in Dynamically
Adaptive Systems

Kristopher Welsh and Pete Sawyer

Computing Department, Lancaster University Lancaster, UK
{welshk,sawyer}@comp.lancs.ac.uk

Abstract. [Context and motivation] Dynamically adaptive systems are
increasingly conceived as a means to allow operation in changeable or poorly
understood environments. [Question/problem] This can result in the selection
of solution strategies based on assumptions that may not be well founded.
[Principle ideas/results] This paper proposes the use of claims in goal models
as a means to reason about likely sources of uncertainty in dynamically adap-
tive systems. Accepting that such claims can’t be easily validated at design-
time, we should instead evaluate how the system will behave if a claim is
proven false by developing a validation scenario. [Contribution] Validation
scenarios may be costly to evaluate so the approach we advocate is designed to
carefully select only those claims that are less certain, or whose falsification
would have serious consequences.

Keywords: self adaptation, dynamically adaptive system, goal models, uncer-
tainty, claims.

1 Introduction

Self-adaptation is emerging as a design strategy to mitigate maintenance costs in sys-
tems where factors such as complexity, mission-criticality or remoteness make off-
line adaptation impractical. Self-adaptation offers a means to respond to changes in a
system’s environment by sensing contextual or environmental change at run-time and
adapting the behaviour of the system accordingly. In this paper we refer to self-
adaptive systems as dynamically adaptive systems (DASs) to reflect their ability to
adapt autonomously to changing context at run-time.

Dynamically adaptive systems have now been deployed in a number of problem
domains [1] yet remain challenging to develop because there is typically a significant
degree of uncertainty about the environments in which they operate. Indeed, this un-
certainty is the primary reason why a DAS must be able to self-adapt; to continue to
operate in a range of contexts with different requirements or requirements trade-offs.
DASs remain challenging to develop, despite advances made at different levels in the
software abstraction hierarchy and by communities as diverse as AI and networking.
At the architectural level [2], for example, compositional adaptation [3] promotes the
re-use of DAS components. Compositional adaptation is one such approach in which
structural elements of the system can be combined and recombined at run-time using
adaptive middleware (e.g. [4]).

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 3

Despite such advances, and the seminal work of Fickas and Feather [5] in require-
ments monitoring, the RE community has only recently started to address the
challenges of dynamic adaptation. Our own recent contribution [6, 7, 8] has been to
investigate the use of goal-based techniques for reasoning about the requirements for
DASs. In [7], we advocated the use of claims from the NFR framework [9] in i* [10]
strategic rationale models to enhance the traceabilty of DAS requirements.

In this paper, we go a step further and argue for the utility of claims in DAS goal
models as markers for uncertainty. This research result has emerged as an unexpected
side-effect of our work on claims for tracing. Design rationale in a DAS is not always
founded on good evidence, but sometimes on supposition about how the system will
behave in different, hard-to predict contexts. Thus claims can serve not only as design
rationale but also as proxies for analysts’ understanding. It is crucial that the conse-
quences of decisions based on assumptions that may subsequently prove to be false
are understood, even if there is insufficient data to validate the assumptions them-
selves. We propose that a validation scenario should be defined to evaluate the effect
of a claim turning out to be false.

The primary contribution of the paper is a simple means for reasoning about hier-
archies of claims to understand how uncertainty propagates throughout these hierar-
chies. We show how this knowledge can be leveraged to improve the robustness of a
DAS’ specification using validation scenarios while minimizing the number of valida-
tion scenarios that need to be defined and evaluated. We demonstrate our approach
using a case study drawn from a sensor grid that was deployed on the River Ribble in
the Northwest of England. This sensor grid has acted as a preliminary evaluation for
our use of claim reasoning in DASs.

The rest of the paper is structured as follows. In the next section, section 2, we
introduce what we mean by claim reasoning and in section 3 we explain how an exist-
ing DAS modeling process may be adapted to include claims. We then use a case
study to illustrate claim reasoning about a DAS in section 4, and conclude with a brief
survey of related work (section 5) and final conclusions (section 6).

2 Claim Reasoning

In [7] we augmented i* models used to model DASs with claims, a concept borrowed
from the NFR toolkit [9]. As is now well-known within RE, i* supports reasoning
about systems in terms of agents, dependencies, goals and softgoals. We showed how
claims can be used to record requirements traceability information by explicitly re-
cording the rationale behind decisions, in cases where the contribution links assigned
to softgoals for different solution alternatives in i* strategic rationale (SR) models
don’t reveal an obvious choice. We argued that this enhances the tracing information
in a way that is particularly important for a system that can adapt at run-time to
changing context.

As described above, claims capture the rationale for selecting one alternative de-
sign over another. As an example and before considering the effect of claims with
respect to self-adaptive behaviour, consider the fragment of a simple SR model of a
robot vacuum cleaner for domestic apartments depicted in Fig 1. The vacuum cleaner
has a goal to clean the apartment (clean apartment) and two softgoals; to avoid

4 K. Welsh and P. Sawyer

causing a danger to people within the house (avoid tripping hazard) and to be eco-
nomical to run (minimize energy costs). The vacuum cleaner can satisfy the clean
apartment goal by two different strategies that have been identified. It can clean at
night or when the apartment is empty. These two strategies are represented by two
alternative tasks related to the goal using means-end relationships. The choice of best
strategy is unclear because at this early stage of the analysis, it is hard to discriminate
between the extent to which each solution strategy satisfices the softgoals. The
balance of –ve and +ve effects on satisficement of the softgoals appears to be ap-
proximately the same for both, but to different softgoals. This is depicted by the con-
tribution links labeled help and hurt. However, the choice is resolved using a claim,
which has the effect of asserting that there is no tripping hazard. The claim thus
breaks the hurt contribution link between the task clean at night and the softgoal
avoid tripping hazard. The break-ing claim nullifies the contribution link to which it
is attached. In this case it nullifies the negative impact that night cleaning was pre-
sumed to have on tripping hazard avoidance. In turn, this has the effect of promoting
the night cleaning strategy over the empty apartment cleaning strategy since it now
appears to better satisfice the two softgoals. The inverse of a break-ing claim is a
make-ing claim, which lends additional credence to a contribution link, implying the
importance of the satisfaction of a softgoal with a helps link or the unacceptability of
failing to satisfy a softgoal with a hurts link1. Note that claims speak of the impor-
tance of the effects captured by the contribution link, not the magnitude of the effect,
which can be captured using fine-grained contribution links.

The no tripping hazard claim is sufficient to select the night cleaning strategy, but
only if there is sufficient confidence in the claim that no hazard is offered. However,
the analyst may have greater or lesser confidence in a claim, so claim confidence
spans a range from axiomatic claims in which full confidence is held, to claims that
are mere assumptions. At the assumption end of the claim confidence range, a claim
is essentially a conjecture about a Rumsfeldian “known unknown” [11] and thus
serves as a marker of something about which uncertainty exists.

If a claim is wrong, the performance of the system may be unsatisfactory, or the
system may exhibit harmful emergent behaviour, or even fail completely. Ideally, the
claims should be validated before the system is deployed. In a DAS, this may be very
hard to do, however. Since the world in which a DAS operates is imperfectly under-
stood, at least some conjectural claims are likely to be impossible to validate at
design-time with complete assurance.

Given this fundamental limitation on claim validation, the behaviour of a system
should be evaluated in cases where claims turn out to be false. To do this, a validation
scenario should be designed for each claim to help establish the effects of claim falsi-
fication, such as whether it causes undesirable emergent behaviour. We do not define
the form of a validation scenario; it may be a test case or some form of static reason-
ing. However, developing and executing validation scenarios for each claim can be
expensive. A validation scenario should be developed for every possible combination
of broken and unbroken claims. Hence, the number of validation scenarios (T) is
T=2n−1 where n represents the number of claims that make or break a softgoal contri-
bution link. One of the three target systems (explained below) of the GridStix system

1 Note that there are several other types of contribution and claim link to those presented here.

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 5

we describe later, would need 31 validation scenarios. Fortunately, it is possible to
reduce this number by focusing attention only on claims towards the assumption end
of the claim confidence range and by using claim refinement models.

While claims provide the rationale for selection of one solution strategy over an-
other, the derivation of a claim may be obscure. A claim derivation is obscure if the
logic of the claim is not obvious from its name. In this case, the rationale for the claim
can be represented explicitly in a hierarchical claim refinement model, with the facts
and assumptions from which the claim is derived also represented as claims. The
claims form nodes in claim refinement model the branches of which can be AND-ed
or OR-ed.

In Fig 1, the no tripping hazard claim is obscure because it appears as an assertion
with no supporting evidence. Fig 2 is a claim refinement model that shows that the no
tripping hazard claim is derived from three other claims: family sleeps at night, vac-
uum is easy to see and vacuum has warning light, arranged as a hierarchy of claims in
a claim refinement model. Note that the root of a hierarchy of claims is at the bottom.
This bottom-level claim is what appears on the SR diagram. The claim vacuum is easy

Fig. 1. A robot vacuum cleaner

Fig. 2. Claim refinement model for no tripping hazard claim

6 K. Welsh and P. Sawyer

to see is derived from the claim vacuum has warning light. The claims family sleeps
at night and vacuum is easy to see together derive the bottom-level claim no tripping
hazard, which is the claim underpinning the selection of the night cleaning strategy
for the vacuum cleaner.

Falsity of any claim will propagate down the claim refinement model to the
bottom-level claim. If the family sleeps at night claim is shown to be untrue or only
partially true, the claim that there is no tripping hazard is upheld by the Or-ed claim
vacuum is easy to see, provided the latter claim is sound. If confidence in all the
claims in a claim refinement model was low, a validation scenario would have to be
produced for every combination of true and false claims. However, some of
the claims in the model may be axiomatic and the logic of claim derivations may give
confidence in the bottom-level claims even where they are in part derived from non-
axiomatic claims. To exploit this, a binary classification of claims, as axiomatic or
conjectural, might be used:

Unbreakable claims are axiomatic and can be removed from consideration. Vac-
uum has warning light is such a claim.

Uncertain claims are conjectural in that it is considered possible that the claim
could prove false at run-time. The claim that the family sleeps at night, and by impli-
cation would not encounter the vacuum cleaner, is conjectural because it cannot be
assumed to be generally true. In contrast to the vacuum is easy to see claim, there is a
significant possibility of this claim being proven false, since even a normally sound
sleeper might awake and visit the bathroom while the vacuum cleaner is operating.

Using this classification a validation scenario should be developed for every bot-
tom-level claim that resolves to uncertain, but need not be developed for one that
resolves to unbreakable. Thus, for the robot vacuum cleaner, a validation scenario is
needed to examine the consequences of the vacuum cleaner operating at night if the
family was not asleep.

Unbreakable and uncertain represent the two extremes of the claim confidence
spectrum. There may be claims that could be falsified but for which it is believed to
be improbable that the system will encounter a situation where the claims are broken.
We propose that such claims be classified as Qualified. However, a qualified claim
should be re-classified uncertain if, despite the low probability of them being falsi-
fied, the consequences of them being so might be serious. Note that a claim with a
high probability of falsification would already be classified uncertain, even if the
consequences were considered minor.

The claim vacuum is easy to see might be classified as a qualified claim. Even a
vacuum cleaner whose visibility is enhanced by a warning light may not be easily
noticeable to people with visual impairment or people who are sleep-walking. How-
ever, sleep-walking is unusual and it is unlikely that robot vacuum cleaners would be
recommended for people for whom they were obviously a hazard.

To propagate claim values (unbreakable, qualified, uncertain), the following rules
apply:
• Where a claim is derived from a single claim (e.g. vacuum is easy to see is derived

directly from vacuum has warning light), the derived claim inherits the value of the
upper-level claim; the upper-level claim makes or breaks the derived claim. Hence,
vacuum is easy to see assumes the value unbreakable directly from vacuum has
warning light.

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 7

• Where a claim is derived from two or more AND-ed claims, it inherits the value of
the weakest of the claims – i.e. the claim least certain to be true. Hence if an un-
breakable and an uncertain claim are AND-ed to derive a bottom-level claim, the
bottom-level claim will be uncertain.

• Where a claim is derived form two or more OR-ed claims, it inherits the value of
the strongest of the claims. Hence no tripping hazard assumes the value unbreak-
able from vacuum is easy to see, despite family sleeps at night being uncertain. In
the example, this has the effect of validating selection of the night-time cleaning
strategy in Fig 1.

The classification of claims cannot be easily formalized or automated. It requires hu-
man judgment by the analyst and stakeholders. However, if claims are classified
thoughtfully and propagated through the claim refinement model, the result can be
considered to be a form of threat modeling [12]. The exercise generates validation
scenarios for the goal models but prunes back the set of all possible validation scenar-
ios to include only claims that are judged plausible or high risk. In the next sections,
we describe how claims can be used to extend LoREM, a previously-reported
approach for modeling DAS requirements [6].

3 Modeling DASs with LoREM

LoREM offers a requirements modeling approach for DASs, following the principles
set out in [13]. Here, to use Michael Jackson’s terminology [14], the DAS represents
the machine, while the environment or context in which it operates represents the
world. The world is considered to comprise a set of discrete environmental states
called domains. The machine is conceptualized as a set of distinct programs called
target systems, each of which is designed to operate in a particular domain. In
LoREM, each target system is explicitly specified, as are the domains and the condi-
tions that trigger the DAS to adapt from one target system to another.

In LoREM, the set of domains is identified as part of the strategic dependency
(SD) model. A different strategic rational (SR) model is then developed for each tar-
get system according to the principle of one target system for each domain, as demon-
strated in the case study in the next section. Underpinning LoREM is an assumption
that a DAS must satisfice a set of NFRs, but that the balance of satisficement and the
consequent trade-offs differs according to domain. Hence, in the GridStix river flood
warning system described below, energy efficiency and fault tolerance are in tension.
Which is prioritized over the others depends on whether the river is (e.g.) quiescent or
in flood. Using LoREM, these key NFRs are identified in the SD model as softgoals
and each target system’s SR model selects a solution strategy that optimizes the
trade-offs in softgoal satisficements.

In [7] we augmented LoREM with claims. Claims are used in the target system SR
models to annotate the contribution links between the tasks that represent the alterna-
tive solutions strategies and the softgoals, in exactly the same way as they were used
for the vacuum cleaner model in Fig 1. The motivation for this was to make the re-
quirements rationale (in terms of alternative selection) explicit and so aid tracing.
Underpinning this rationale was the likelihood that, even with their self-adaptive ca-
pability, to have a usefully long life, a DAS would still be subject to off-line adaptive

8 K. Welsh and P. Sawyer

and corrective maintenance over time. This would be necessary as understanding
about its environment improved, as ways to improve its performance were identified
and as its stakeholder’s goals evolved.

As argued in the previous section, claims can also serve as markers for uncertainty,
with conjectural or uncertain claims forming the focus of validation scenarios. A
validation scenario captures a situation where combinations of uncertain claims are
taken to be false. A claim refinement model is used to propagate the effects of the
negated claims to other, derived claims. The validation scenario thus helps understand
the impact on the validity of the solution strategies that those claims help select, either
by static analysis or by testing.

At design time, the validation scenarios help answer what-if questions about the
impact of the uncertainty that conjectural claims represent. Once the DAS is de-
ployed, it may be possible to resolve many of the underlying uncertainties. If the
validation scenarios have been applied correctly and complete system failure has not
resulted from a broken claim, the resolved uncertainties may be put to good use.

A DAS monitors its environment and uses the monitored data to make adaptation
decisions. In most DASs currently deployed, including those which LoREM was
designed to support, a DAS can adapt in pre-determined ways to changes in its envi-
ronment that were envisioned at design-time, albeit with elements of uncertainty.
Where those envisioned environmental changes and the DAS’s corresponding adapta-
tions are based upon claims, the DAS may accumulate data that can be used to
validate the claims. This is a form of requirements monitoring [5], the data from
which may subsequently be used to inform off-line adaptive or corrective mainte-
nance. Moreover, as we discuss in the conclusions section, it may even be possible to
dynamically adopt an alternative solution strategy at run-time. At present, however,
this is future work.

The next section presents a case study to illustrate the utility of claim reasoning in
DAS goal models.

4 Case Study

To illustrate the use of claims for validation scenario identification in LoREM, we
present a conceptually simple but real DAS and work through the model analysis for a
single target system.

GridStix [15] is a system deployed on the River Ribble in North West England that
performs flood monitoring and prediction. It is a sensor network with smart nodes
capable of sensing the state of the river, processing the data and communicating it
across the network. The hardware available includes sensors that can measure depth
and flow rate, and wireless communication modules for the Wi-Fi and Bluetooth
standards, all supplied with power by batteries and solar panels. The system software
uses the GridKit middleware system [4], which provides the GridKit’s self adaptive
capabilities using component substitution.

The flow rate and river depth data is used by a point prediction model which
predicts the likelihood of the river flooding using data from the local node and data
cascaded from nodes further upstream. The more upstream nodes from which data is
available, the more accurate is the prediction. GridStix acts as a lightweight Grid,

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 9

capable of distributing tasks. This is important because some tasks, such as execution
of the point prediction models, can be parallelized and are best distributed among the
resource-constrained nodes. However, distributing the processing comes at the cost of
increased energy consumption and this is one of the factors that affect satisficement
of the energy efficiency softgoal mentioned previously. Distribution may be effected
by communicating between nodes using either the IEEE 802.11b (refered to as Wi-Fi
in the rest of this paper) or Bluetooth communication standards. Bluetooth has lower
power consumption, but shorter range. Bluetooth-based communication is hence
thought to be less resilient to node failure than Wi-Fi-based communication. The
choice of spanning tree algorithm can also affect resilience. A fewest-hop (FH) algo-
rithm is considered better able to tolerate node failure than the shortest-path (SP) al-
gorithm. However, data transmission via SP typically requires less power due to the
smaller overall distance that the data must be transmitted.

The GridKit middleware can configure itself dynamically to support all the varia-
tions implied above; local node or distributed processing, Wi-Fi or Bluetooth com-
munications and different network topologies, as well as others.

The environment in which GridStix operates is volatile, as the river Ribble drains a
large upland area that is subject to high rainfall. The river is therefore liable to flood-
ing with consequent risk to property and livestock among the communities sited on
the flood plain. Stochastic models provide only an imperfect understanding of the
river’s behaviour. Moreover, events upstream, such as construction sites or vegetation
changes, may alter its behaviour over time. There is therefore significant uncertainty
associated with developing an autonomous sensor network for deployment on the
river.

Fig. 3. Mapping Between GridStix Domains and Target Systems

The River Ribble, then is GridStix’s environment. Hydrologists acting as domain
experts partitioned the environment into three discrete domains: D1 (Normal), D2
(High Flow) and D3 (Flood). The D1 (Normal) domain is characterised by a quiescent
river, with little imminent risk of flood or danger to local residents or the nodes them-
selves. The D2 (High Flow) domain features a fast-flowing river that may presage an
imminent flood event. The D3 (Flood) domain occurs when the depth increases and

10 K. Welsh and P. Sawyer

the river is about to flood. When this happens, GridStix itself is at risk of damage
from node submersion and from water-borne debris.

GridStix is conceptualised as comprising three target systems, S1, S2 and S3 tai-
lored to domains D1, D2 and D3 respectively, as shown in Fig 3.

The LoREM models for the system have previously been published in [6]. Here,
we will focus on only one of the target systems to illustrate the use of claim reason-
ing. The SD model identified a single overall goal Predict flooding, and three soft-
goals; Fault tolerance, Energy efficiency and Prediction accuracy. The SR model for
S3 (Flood) is depicted in Fig 4.

Flood prediction in S3 is operationalised by the task Provide Point Prediction
which can be further decomposed into the (sub)goals: Measure Depth, Calculate
Flow Rate and the task Communicate Data. The Communicate Data task depends on
the Transmit Data and Organize Network subgoals being achieved. Satisfaction of the
Measure Depth and Calculate Flow Rate goals produces Depth and Flow Rate re-
sources respectively. These are used elsewhere in LoREM models which we do not
consider here.

Fig. 4. GridStix Behaviour Model for S3 (Flood)

The Calculate Flow Rate, Organize Network and Transmit Data goals all have
several alternative satisfaction strategies, represented by tasks connected to the re-
spective goals with means-end links. The three softgoals are depicted on the right of
Fig 4, and the impact of selecting individual tasks on the satisficement of each of the
softgoals is represented by contribution the links with values help or hurt.

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 11

The tasks represent alternative solution strategies and those selected to satisfy
goals in S3 are coloured white in Fig 4. Attached to some of the contribution links in
Fig 4 are three claims that make or break the softgoal contributions. The claim
refinement model for S3 is depicted in Fig 5.

Fig. 5. GridStix Claim Refinement Model for S3 (Flood)

The three claims shown in Fig 4 appear at the bottom of Fig 5, connected to the
claims from which they are derived by contribution links. They show, for example,
that Wi-Fi was selected over Bluetooth to satisfy the Transmit Data goal because
Bluetooth was considered too risky in terms of Fault Tolerance. Examining Fig 5
allows the basis for this claim to be established: that Bluetooth is less resilient than
Wi-Fi and that, given the river is about to flood in S3, there is a significant risk of
node failure. Bluetooth is considered less resilient than Wi-Fi because of its poorer
range, which reduces the number of nodes an individual node may communicate with,
so increasing the likelihood of a single node failure hampering communication
throughout the network.

Fig. 6. GridStix Claim Refinement Model for S3 (Flood) Annotated with Claim Classifications

There are three bottom-level claims in Figs 4 & 5, and we would thus need seven
validation scenarios for every combination of claims. An analysis of the claims classi-
fied each according to the scheme presented in section 2. The results are shown in Fig 6.

12 K. Welsh and P. Sawyer

Two claims were considered uncertain. The claims SP is less resilient than FH and
Bluetooth is less resilient than Wi-Fi were both considered uncertain because the ana-
lyst was not certain whether the theoretically more resilient option in each case would
actually prove demonstrably more resilient in the field. Note that the Monitorable tag
(M) denotes a claim that could be directly monitored by the DAS at run-time. We
return to claim monitoring in the conclusions.

Propagating the unbreakable, qualified, and uncertain values through the tree in Fig
6, shows that two of the three bottom-level claims, SP too risky for S3 and Bluetooth
too risky for S3, could be impacted by an uncertain claim and thus be uncertain
themselves. The consequence of this analysis is that three validation scenarios are
necessary. Recall that the purpose of the validation scenarios is to investigate the con-
sequences of false claims, not to validate the claims themselves. The three identified
validation scenarios contrast with the seven that would be necessary if all the claims
were assumed to be falsifiable. The three scenarios are summarized in table 1.

Table 1. Validation scenarios for S3 uncertain claims

Scenario Single-Node[…] not
accurate enough for S3

SP too risky for S3 Bluetooth too risky for S3

1 True True False
2 True False True
3 True False False

Validation scenario 1, for example, would be designed to discover how GridStix

behaved if the Bluetooth turned out to be no less fault-tolerant than Wi-Fi. Reasoning
about the scenario concludes that GridStix’s adaptations from Bluetooth to Wi-Fi
would, at worst, simply waste energy (since Wi-Fi consumes more power than Blue-
tooth) should the Bluetooth too risky for S3 claim indeed turn out to be false in prac-
tice. This is a relatively benign consequence but given the energy constraints on
GridStix, it could be worth devoting effort to investigating the claims’ validity, per-
haps by simulation, or by monitoring the deployed system. In general, if a validation
scenario reveals undesirable effects of a failed claim, there are two courses of action.
As with the Bluetooth too risky for S3 claim, additional effort might be assigned to
understanding the claim’s soundness. Alternatively, or in addition, an alternative solu-
tion strategy that circumvented the problem underlying the failed claim might be
sought, using a new claim to record the rationale for its selection.

The same analysis was performed on the claim refinement models for the other two
GridStix target systems: S1 and S2. The results of the analysis for all three are
depicted in Table 2.

Table 2. GridStix Bottom-Level Claim Distribution by Target System

Target System Unbreakable Claims Qualified Claims Uncertain Claims
S1 2 1 2
S2 1 0 2
S3 0 1 2

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 13

The S1 target system stands out as having the largest number of bottom-level
claims (five), which reflects the complexity of the trade-offs in available solution
strategies for this domain. Table 3 shows the numbers of validation scenarios that
would be needed in each target system for all claims, qualified and uncertain claims,
and uncertain claims only, respectively. This shows that using our strategy, the
number of validation scenarios for S1, even though it has five bottom-level claims,
could be restricted to three for uncertain claims or seven if further assurance was felt
necessary by including qualified claims.

Table 3. Emergent Behaviour Testing Scenarios for GridStix

Target System All Scenarios Qualified & Uncertain Uncertain Scenarios
S1 31 7 3
S2 7 3 3
S3 7 7 3

Total 45 17 9

Thus, devising validation scenarios for all combinations of uncertain claims would

require nine scenarios, and for the qualified and the uncertain claims would require
seventeen scenarios. Devising scenarios for all combinations of claims in the GridStix
system would require forty-five validation scenarios.

The GridStix system, as presented here, is only modestly complex from a model-
ling perspective, with only three softgoals and three target systems. Many DASs will
be significantly more complex. The effort involved in evaluating the consequences of
poorly-informed softgoal trade-offs in a DAS increases rapidly with the number of
potentially-conflicting NFRs involved. The technique described here has the potential
to focus and limit this effort by the use of claims to explicitly record the rationale for
solution strategy selection and by explicitly considering the soundness of those
claims. An undesirable side-effect of using claims is that they add to the problem of
complexity management in i* diagrams [21]. This is partially mitigated by the fact
that we have designed claims to work with LoREM. Using LoREM, an SR model for
a DAS is partitioned, with a separate SR model for each target system.

5 Related Work

There is currently much interest in software engineering for DASs [16]. Much of this
work has been in the design of software architectures that enable flexible adaptations
[2]. Much research in RE for self-adaptation has focused on run-time monitoring of
requirements conformance [5, 17], which is crucial if a DAS is to detect when and
how to adapt at run-time. More recently, attention has turned to requirements model-
ing for DASs, and a number of authors (e.g. [8, 18]) report on the use of goals for
modeling requirements for DASs. Goal models are well suited to exploring the
alternative solution strategies that are possible when the environment changes. Here,
adaptation is seen as the means to maintain goal satisficement, while goal modeling
notations such as KAOS [19] and i* [10] support reasoning about goals and softgoals.

A key challenge posed by DASs for RE is uncertainty about their environments
and a number of modeling approaches for handling uncertainty have been proposed.

14 K. Welsh and P. Sawyer

Letier and van Lamsweerde propose a formal means to reason about partial goal satis-
faction. Cheng et al. [8] use KAOS’s obstacle analysis to reason about uncertainty,
utilizing a small set of mitigation strategies that include directly framing the uncer-
tainty using the RELAX requirements language [20]. In this paper, we propose aug-
menting the i* models used by the LoREM approach to DAS modeling [6] with the
claim construct adapted from the NFR framework [9]. We argue that by using claims
as the rationale for selecting between alternative solution strategies, they can also
serve as explicit markers for uncertainty where rationale is induced from assumed
properties of the environment or the DAS’s own behaviour.

There are two important differences between claims and the belief construct that is
built in to i*. The first is that an i* belief represents a condition that an actor holds to
be true. In our use of claims, the claim may also represent a condition that the analyst
holds to be true. The second difference is that a belief attaches to a softgoal while a
claim attaches to a softgoal’s contribution link. Hence, a claim is able to provide the
explicit rationale for selecting a particular solution strategy.

6 Conclusions

Claims attached to i* softgoal contribution links can be used to provide the rationales
for selecting from several alternative solution strategies. Used this way, claims can be
useful for tracing in DAS goal models [7]. Moreover, as we argue in this paper,
claims may also be used as markers of uncertainty. The utility of claims may extend
beyond DASs, but we focus on DASs because there is often significant uncertainty
about a DAS’s environment. Uncertainty may even extend to the DAS’s own,
emergent behaviour, if (e.g.) adaptation results in unexpected configurations of run-
time-substitutable components.

Not all claims represent uncertainty, however. The confidence level in a claim will
generally fall somewhere on a spectrum from axiomatic to pure conjecture. Conjec-
tural claims represent uncertainty; assumptions that cannot be validated at design-
time. Conjectural claims may therefore be falsified at run-time, possibly leading to a
variety of undesirable effects. Accepting that such claims can’t be easily validated at
design-time, we should instead evaluate how the system will behave if a claim proves
to be false by developing a validation scenario. A validation scenario subsumes a test
case that may be developed for some combination of false claims, but also allows for
static evaluation if the claims are hard to simulate in a test harness.

Validation scenarios may be costly to evaluate so the approach we advocate is
designed to carefully select only those claims that have a significant probability of
being false and those with a low probability of being false but whose falsification
would be serious. To do this we advocate classifying claims as unbreakable, qualified
or uncertain, and then propagating claim values through a claim refinement model.

As future work, we are developing the means to monitor claims at run-time, using
the techniques of requirements monitoring [5]. Data collected about claim soundness
may be used for subsequent off-line corrective maintenance. However, if the goal
models can be treated as run-time entities where they can be consulted by the running
system, the DAS may adapt by dynamically selecting alternative solutions when a
claim is falsified. Such a system introduces new adaptive capabilities but also further

 Understanding the Scope of Uncertainty in Dynamically Adaptive Systems 15

risk of undesired emergent behaviour so the identification of validation scenarios is
acutely necessary. This run-time claim validation accounts for why we have chosen
the name unbreakable rather than (e.g.) axiomatic for those claims at the opposite end
of the spectrum from conjectural claims. Where claims can be validated and acted
upon at run-time, we need to be able to monitor them. Not all claims are monitorable
and the term unbreakable simply reflects that, at run-time, an unmonitorable claim
can never appear to break from the perspective of the claim monitoring logic.
Of course, such an unmonitorable claim may nevertheless be false and this may be
exhibited externally as a failure.

References

1. Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software engineering for self
adaptive systems. In: Dagstuhl Seminar Proceedings (2009)

2. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE 2007:
2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society, Los
Alamitos (2007)

3. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: Composing adaptive software.
Computer 37(7), 56–64 (2004)

4. Grace, P., Coulson, G., Blair, G., Mathy, L., Duce, D., Cooper, C., Yeung, W., Cai, W.:
Gridkit: pluggable overlay networks for grid computing. In: Symposium on Distributed
Objects and Applications (DOA), Cyprus (2004)

5. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: Second IEEE
International Symposium on Requirements Engineering (RE 1995), York, UK (1995)

6. Goldsby, H., Sawyer, P., Bencomo, N., Cheng, B., Hughes, D.: Goal-Based modelling of
Dynamically Adaptive System requirements. In: ECBS 2008: Proceedings of the 15th
IEEE International Conference on Engineering of Computer-Based Systems, Belfast, UK
(2008)

7. Welsh, K., Sawyer, P.: Requirements tracing to support change in Dynamically Adaptive
Systems. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 59–73.
Springer, Heidelberg (2009)

8. Cheng, H., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modelling approach to
develop requirements of an adaptive system with environmental uncertainty. In: MODELS
2009: Procedings of IEEE 12th International Conference on Model Driven Engineering
Languages and Systems, Colorado, USA (2009)

9. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Springer International Series in Software Engineering 5 (1999)

10. Yu, E.: Towards modeling and reasoning support for early-phase requirements engineering.
In: RE 1997: Proceedings of the 3rd IEEE International Symposium on Requirements En-
gineering (RE 1997), Washington DC, USA (1997)

11. Department of Defence: DoD News Briefing - Secretary Rumsfeld and Gen. Myers,
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636

12. Schneier, B.: Attack Trees - Modeling security threats. Dr. Dobb’s Journal (1999)
13. Berry, D., Cheng, B., Zhang, J.: The four levels of requirements engineering for and in

dynamic adaptive systems. In: 11th International Workshop on Requirements Engineering
Foundation for Software Quality, REFSQ (2005)

14. Jackson, M.: Problem frames: analyzing and structuring software development problems.
Addison-Wesley Longman, Amsterdam (2000)

16 K. Welsh and P. Sawyer

15. Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P., Beven,
K.: Gridstix: Supporting Flood prediction using embedded hardware and next generation
grid middleware. In: 4th International Workshop on Mobile Distributed Computing (MDC
2006), Niagara Falls, USA (2006)

16. Cheng, B., et al.: Software engineering for self-adaptive systems: A research road map. In:
Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering
for Self-Adaptive Systems. Dagstuhl Seminar Proceedings, vol. 08031 (2008)

17. Robinson, W.: A requirements monitoring framework for enterprise systems. Require-
ments Engineering 11(1), 17–41 (2006)

18. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards requirements-driven auto-
nomic systems design. In: DEAS 2005: Proceedings of the 2005 Workshop on Design and
Evolution of Autonomic Application Software (DEAS), St. Louis, MO, USA (2005)

19. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. John Wiley & Sons, Chichester (2009)

20. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B., Bruel, J.-M.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: Proc. 17th IEEE
International Conference on Requirements Engineering (RE 2009), Atlanta, Georgia (Au-
gust 2009)

21. Moody, D., Heymans, P., Matulevicius, R.: Improving the Effectiveness of Visual
Representations in Requirements Engineering: An Evaluation of the i* Visual Notation. In:
Proc. 17th IEEE International Conference on Requirements Engineering (RE 2009),
Atlanta, Georgia (August 2009)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 17–22, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Use of Personal Values in Requirements Engineering –
A Research Preview

Rumyana Proynova1, Barbara Paech1, Andreas Wicht2, and Thomas Wetter2

1 University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{proynova,paech}@informatik.uni-heidelberg.de

2 University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
andreas.wicht@uni-heidelberg.de, thomas.wetter@urz.uni-hd.de

Abstract. [Context and motivation] During requirements engineering the stake-
holder view is typically captured by scenario- and goal models focusing on
tasks and goals to be achieved with the software. We believe that it is worth-
while to study more general personal values and attitudes of stakeholders and to
relate them to software requirements. [Question/problem] The main questions
of such an approach are: what values can be expected from stakeholders, how
can they be elicited and what can be learned from them for requirements.
[Principal ideas/results] The purpose of our research is to provide a value
elicitation technique to be combined with existing requirements elicitation tech-
niques in order to infer additional ideas for and constraints on software
requirements. [Contribution] In this paper we give a preview on our approach to
developing such an elicitation technique. We start with an introduction to the
theory of personal values. Then we describe our envisioned approach how val-
ues can be used in the requirements engineering process.

Keywords: requirements elicitation, values.

1 Introduction

It is widely known from practice that the requirements engineering (RE) process is
heavily influenced by soft issues such as politics or personal values of stakeholders,
but there is very little guidance on how to deal with these issues [1] [2]. Goals models
such as i* [3] include goals, softgoals and actor dependencies, but give only little
guidance on how to elicit these intentional elements, and don’t call for a deeper analy-
sis of these elements. Therefore they often capture only quite apparent economic or
operational goals. Scenario-oriented approaches typically incorporate guidelines from
human-computer interaction to focus on user tasks or use cases and to include early
prototyping [4], but they do not capture information about user motivation.

We believe it is important to reveal the fundamental issues behind goals and task
performance and to incorporate them into current RE approaches. Therefore, we pro-
pose to study personal values and their relationship to software requirements. We
chose personal values because they are an important motivation factor, which remains
stable independent of context [5]. We expect that the effect of personal values on
requirements will be especially pronounced in the health care domain where effective
patient treatment is the focus of the work of physicians and nurses.

18 R. Proynova et al.

We have recently launched an interdisciplinary research project with experts from
software engineering and medical informatics whose goal is to examine how personal
values influence software requirements in health care. Our long-term goal is to con-
struct a practical approach for requirements elicitation that incorporates our insights
into personal values. This paper presents the direction of our research. It is structured
as follows: in section 2, we describe the psychological theory we base our ideas on.
We explain briefly what values and attitudes are, how they affect human behavior,
and what methods are commonly used for their elicitation. In section 3, we provide an
overview of the approach we intend to develop in our project. Section 4 outlines other
related work. We conclude with an outlook.

2 Personal Values

Motivation has always been an important research topic in psychology: what makes
an individual behave in a certain way? The widely accepted human value theory intro-
duces the concept of personal values as a major behaviour determinant for the indi-
vidual. Most contemporary publications on value theory build on the work of social
psychologist Shalom Schwartz [6], who validated his theory using extensive empirical
studies. Note that there are behaviour influences other than personal values, such as
economic values or emotions. In our research we focus on personal values, sub-
sequently called “values“.

Schwartz defines values as “desirable, trans-situational goals, varying in impor-
tance, that serve as guiding principles in people’s lives.”[7]. The connotation of
“goal” in this definition is slightly different than the one typically used in RE litera-
ture: personal values like social recognition and free choice are seldom modelled
among stakeholders’ goals. While goal-oriented RE concentrates on stakeholder goals
limited to a single purpose, values function on a much higher level. They are deeply
ingrained in culture and the individuals acquire them during the socialization process.
Individuals generally behave in a way which helps them achieve these values. Excep-
tions from this rule arise in situations where other behavioural determinants are pre-
dominant, such as biological needs or ideological prescriptions. In early studies,
Schwartz discovered ten common values exhibited to a different extent by all partici-
pants. Table 1 lists these values and short explanations for each. Since then, extensive
research has shown that these ten values occur independently of race, nationality,
social and cultural background. This is an important conclusion of value theory: dif-
ferent populations don’t strive for fundamentally different values, but there is a set of
values common to all of us.

Despite sharing the same values, different individuals act differently in similar
situations. The reason is that they place different importance on each value. In a situa-
tion where there is a conflict between values (e.g. donating money to a charity aids
benevolence and universalism, but spending the same money on one’s hobby helps
achieve hedonism), an individual would choose the option consistent with the values
he or she deems more important. So while everyone believes in the desirability of the
same values, each individual has a personal ranking of the values.

 Use of Personal Values in Requirements Engineering – A Research Preview 19

Table 1. The ten values found by Schwartz (based on [7])

Achievement: Personal success through demonstrating competence according to
social standards.
Benevolence: Preservation and enhancement of the welfare of people with whom one
is in frequent personal contact.
Conformity: Restriction of actions, inclinations and impulses likely to accept or harm
others and violate social norms or standards.
Hedonism: Pleasure and sensuous gratification to oneself.
Power: Social status and prestige, control and dominance over people and resources.
Security: Safety, harmony and stability of society, of relationship, and of self.
Self-direction: Independent thought and action-choosing, creating, exploring.
Stimulation: Excitement, novelty and challenge in life.
Tradition: Respect, commitment and acceptance of the customs and ideas that
traditional culture or religion provide the self.
Universalism: Understanding, appreciation, tolerance and protection for the welfare
of all people and for nature.

Values are important in RE because of the way they shape the individual’s interac-

tions with software. They are a criterion for the evaluation: the desirability of a behav-
iour option increases monotonically with the degree in which performing it helps the
individual achieve the (high-ranked) values. The evaluation process may be deliberate
or subconscious. But regardless of the awareness of the actual process, the individual
is usually aware of its outcome. He or she can articulate it as a statement of the kind
“I like X” or “I don’t like Y”. Such judgments of behaviour options (and also judg-
ments of any other entities) are known in psychology as attitudes.

An attitude is defined as “a psychological tendency that is expressed by evaluating
a particular entity with some degree of favour or disfavour” [8]. Unlike the univer-
sally applicable values, an attitude always is about some target entity. It always im-
plies an evaluation, which may use one or more dimensions (like/dislike, good/bad),
but invariably results in an aggregated assessment, positive or negative.

Attitudes are formed through a judgment process. Since values are important crite-
ria for our judgment, attitudes are at least partly based on values. Thus, when informa-
tion on values isn’t available, information on attitudes can be used as an indicator for
the ranking of values [9]. This has important implications for empirical research. As
attitudes are much more salient than values, their self-reporting proves easier than
self-reporting on values. Thus, researchers interested in values can apply instruments
based on attitudes, which are more reliable, and then use the results to draw conclu-
sions about the subjects’ values (see e.g. [10]). But the correlation can also be used in
the opposite direction: once the connection between value rankings and attitudes to-
ward specific targets is supported by empirical evidence, knowledge of an individ-
ual’s value ranking can be used (given some conditions described in [11]) to predict
his or her attitude toward these targets.

20 R. Proynova et al.

3 Relating Personal Values and Requirements

Research on organizational psychology has shown that the way a person works
strongly depends on his or her general motivation factors [12]. Therefore, important
motivation factors such as values are likely to have impact on the user satisfaction
with a specific software product. Our goal is a value elicitation approach which can be
used parallel to existing requirements elicitation methods to discover useful informa-
tion which usually isn’t explicitly stated. As depicted in Figure 1, our approach will
provide a method to elicit values, a method to infer attitudes towards tasks from val-
ues, and a method to elicit requirements details from these attitudes.

Fig. 1. Our proposed value-based elicitation approach

The first step of our approach is the elicitation of values. Existing instruments for
value elicitation might appear too intrusive in requirements engineering practice,
because in this situation users might be reluctant to answer direct questions about
their personality. As stated in section 2, some attitudes strongly correlate with values.
We plan to develop as part of the first method a new attitude-based questionnaire
which gives us information about a user’s values. We want to explore how acceptance
of the original Schwartz questionnaire compares to our instrument.

When the values are known, the requirements analyst can use our second method to
predict the user’s attitudes towards different tasks. The seemingly superfluous round-
trip from attitudes to values and from that to other attitudes is caused by the fact that
directly questioning a user about his or her attitudes towards the hundreds of software
supported tasks involves too much effort. Moreover, the attitudes towards tasks are
situation dependent and likely to change as soon as the context changes. On the other
hand, values are an integral part of the user’s personality and unlikely to change [13].
They allow us to predict how the user’s attitudes will change after a context change.

We plan to identify for our second method correlations between values and atti-
tudes towards tasks at least for the medical domain. But even when a catalogue of
empirically founded statements about value-attitude correlations isn’t available, a
requirements analyst with basic knowledge of value theory can use the information on
the values to reason about expected attitudes. For example, if the value elicitation
shows that the user is primarily motivated by the value stimulation, which is mediated
through novelty, then it is reasonable to assume that whenever faced with a task like
“record patient temperature”, the user would prefer to input the data using a trendy
electronic device instead of scribbling on paper.

 Use of Personal Values in Requirements Engineering – A Research Preview 21

In the third step, the analyst uses the information about attitudes and our third
method to enrich the existing requirements. Our approach does not include the identifi-
cation of tasks and goals; they have to be elicited using classical methods. But knowing
the users’ attitude towards the tasks allows deeper insight into the requirements. It can
be especially useful for uncovering new requirements which weren’t verbalised by the
user: if a physician has a negative attitude towards tasks involving typing, possibly
associated with a value of achievement or power, we can expect him or her to take
notes on patient symptoms on paper and delegate the data input to a nurse. This means
that he or she needs a system which gives nurses writing access to patient records. Of
course, such an inferred requirement cannot be simply included in the specification
without discussing it with the relevant stakeholders. But the merit of the value-based
approach in this example is that it has revealed the existence of an issue which could
be easily overlooked in a traditional process oriented task description.

4 Related Work

By wording, value-based software engineering seems related to our research [14].
However, so far it typically focuses on economic value, not on personal value. Only
recently have personal values been addressed in RE [2]. This publication also dis-
cusses motivation, but it uses a much broader definition of the term “value”, namely
any concept which influences human behaviour is a value. Furthermore, it considers
other soft issues such as emotions or motivations. Our understanding of “value” is
roughly equivalent to their notion of a “motivation”. So while our research has a simi-
lar focus, that publication remains on a much more general level.

Psychology provides plenty of literature on personal values. We name some of the
main sources in this publication. Psychology also offers many studies on the link
between work patterns and personal behavioural determinants like values, beliefs etc.
Some of these studies focus on health care professionals, such as [12], [15]. They
provide valuable insights in the motivation of clinicians, but don’t link them to their
software use or software requirements. Another type of studies concentrates on pro-
fessionals’ attitudes towards computers in general [16], but we aren’t aware of any
results which try to establish a link between attitudes and software requirements.

5 Conclusion and Outlook

We have presented the theory of personal values and our approach on how to support
the RE process. We aim to achieve two results. First, we want to develop a theoretical
description of an approach for eliciting new requirements based on values, as de-
scribed in Section 3. Second, we want to provide knowledge needed for applying our
approach in practice, such as a catalogue with some common relations between values
and requirements.

We are currently preparing first empirical studies. In parallel we expand our litera-
ture study to include information systems literature on technology acceptance such as
[17]. We will use results from our first interview stage to establish hypotheses about
relations between specific values and requirements. In subsequent stages, we will try
to verify our hypotheses by collecting data from new study participants.

22 R. Proynova et al.

References

1. Robertson, S., Robertson, J.: Mastering the Requirements Process, 2nd edn. Addison-Wesley,
Harlow (2006)

2. Thew, S., Sutcliffe, A.: Investigating the Role of ‘Soft Issues’ in the RE Process. In:
Proceedings of the 2008 16th IEEE International Requirements Engineering Conference.
IEEE Computer Society, Los Alamitos (2008)

3. Yu, E.S.K.: From E-R to ‘A-R’ - Modeling strategic actor relationships for business
process reengineering. International Journal of Cooperative Information System 4,
125–144 (1995)

4. Lauesen, S.: Software Requirements: Styles and Techniques. Pearson Education, London
(2001)

5. Wetter, T., Paech, B.: What if “business process” is the wrong metaphor? Exploring the
potential of Value Based Requirements Engineering for clinical software. In: Accepted at
MedInfo 2010, CapeTown (2010)

6. Schwartz, S., Bilsky, W.: Toward a theory of the universal content and structure of values:
Extensions and cross-cultural replications. Journal of Personality and Social Psychol-
ogy 58, 878–891 (1990)

7. Schwartz, S., Melech, G., Lehmann, A., Burgess, S., Harris, M., Owens, V.: Extending the
Cross-Cultural Validity of the Theory of Basic Human Values with a Different Method of
Measurement. Journal of Cross-Cultural Psychology 32, 519–542 (2001)

8. Eagly, A., Chaiken, S.: The psychology of attitudes. Harcourt Brace Jovanovich College
Publishers Fort Worth, TX (1993)

9. Bohner, G., Schwarz, N.: Attitudes, persuasion, and behavior. In: Tesser, A. (ed.) Black-
well handbook of social psychology: Intrapersonal processes, vol. 3, pp. 413–435. Black-
well, Malden (2001)

10. Inglehart, R.: Modernization and Postmodernization: Cultural, Economic, and Political
Change in 43 Societies. Princeton University Press, Princeton (1997)

11. Ajzen, I., Fishbein, M.: The influence of attitudes on behavior. In: Albarracin, D., Johnson,
B., Zanna, M. (eds.) The handbook of attitudes, vol. 173, p. 221. Lawrence Erlbaum,
Mahwah (2005)

12. Larsson, J., Holmstrom, I., Rosenqvist, U.: Professional artist, good Samaritan, servant and
co-ordinator: four ways of understanding the anaesthetist’s work. Acta Anaesthesiol
Scand 47, 787–793 (2003)

13. Rokeach, M.: The nature of human values. Jossey-Bass, San Francisco (1973)
14. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grunbacher, P.: Value-based software

engineering. Springer, New York (2006)
15. Timmons, S., Tanner, J.: Operating theatre nurses: Emotional labour and the hostess role.

International Journal of Nursing Practice 11, 85–91 (2005)
16. van Braak, J.P., Goeman, K.: Differences between general computer attitudes and

perceived computer attributes: development and validation of a scale. Psychological
reports 92 (2003)

17. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on
interventions. Decision Sciences 39, 273 (2008)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 23–29, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Requirements and Systems Architecture Interaction in a
Prototypical Project: Emerging Results

Remo Ferrari1, Oliver Sudmann2, Christian Henke2, Jens Geisler2,
Wilhelm Schafer2, and Nazim H. Madhavji1

1 University of Western Ontario, London, Canada
{rnferrar,madhavji}@csd.uwo.ca

2 University of Paderborn, Paderborn, Germany
{oliversu,henke,jgeisler,wilhelm}@upb.de

Abstract. [Context and Motivation] Subsequent to an exploratory laboratory
study on the effects of Software Architecture (SA) on Requirements Engineer-
ing (RE), in this paper, we present preliminary results of an extension of this
initial study by conducting a case study on a large-scale prototypical rail pro-
ject. [Question/Problem] Specifically, we ask “What is the role of an SA on
Requirements decision-making?”. [Principal Ideas/Results] Specific types of
architectural effects on requirements decisions are identified. The impact of the
affected requirements decisions on downstream processes and the product itself
is also characterized. [Contribution] The understanding gained from this study
has implications on such areas as: project planning, risk, RE, and others.

1 Introduction

A recent, laboratory, study of ours [3] investigated the issue of the impact of an exist-
ing software architecture (SA) in Requirements Engineering (RE), where we identi-
fied four types of RE-SA interaction effects along with their quantitative profile: (i)
constraint (25%), if the existing SA makes a requirement solution approach less (or
in-) feasible; (ii) enabler (30%), if the existing SA makes a solution approach (more)
feasible because of the current architectural configuration; (iii) influence (6%), if the
architectural effect altered a requirements decision without affecting the feasibility of
its solution approaches; and (iv) no effect (39%), if the architecture has no known
effect on a requirements solution.

In this paper, we present emerging results of a replicated case study on a large-
scale prototypical rail project (RailCab) being conducted in Germany. While we
continue the main investigation of [3], here we also investigate the impact of the af-
fected requirements decisions on downstream development processes and the resul-
tant system. The case study, which is still ongoing, involves the investigation of the
history of requirements and architecting decisions in five major components of Rail-
Cab (e.g., drive and brake, suspension/tilt and active guidance). For the emerging
results reported in this paper, data for one of these components (Energy Management)
was collected from project documents and extensive interviews with the RailCab
developers and planners. The results of this study have implications for: project

24 R. Ferrari et al.

planning and risk management, tighter RE-SA integration, RE technology, value-
based traceability, requirements elicitation, and future empirical research in RE.

In the next section we describe the case study; in Section 3 we present the prelimi-
nary results; Section 4 discusses example implications; in Section 5 we summarize
related work; and lastly, Section 6 concludes the paper.

2 The Case Study

In this section, we raise the research questions; overview the RailCab project; and
describe the participants, and empirical procedures.

Research Questions: We ask two pertinent questions,

Q1: What is the impact of an existing system’s architecture on RE decision-making?
This question replicates the investigation in [3] on the impact the presence of an
architecture has on decision-making in RE. Basically, a RE decision denotes a chosen
subset of high-level requirements (or solution strategies) amongst a set of alternatives
in order to achieve a goal. For example, deciding to provide a web-based self-help
service to clients (as opposed to phone-in service or personal contact service) in order
to cut down operational costs. It is through the choice of such high-level business
strategies that detailed requirements are then elicited and established. When individ-
ual requirements are elicited, also considered then are related attributes such as
assumptions and issues (such as cost implications, constraints, actions, etc.) [5].
Thus, an individual requirement is only “indirectly” related to a RE decision through
identified strategies [3]. This notion of requirements decisions is operationalised
through the decision meta-model designed and validated in [3].

A point to note is that all RE decisions are not of same importance; some decisions
may affect the system or development process more significantly than others. Thus,
the primary criterion for establishing whether a RE decision should be included in the
set for data analysis is whether the stakeholders themselves feel that a particular deci-
sion is important for them. In this study, the stakeholders are the participants of the
study and the decisions were extracted from their interviews and project documents,
and later validated by them for completion and accuracy.

The research question Q1 is investigated by collecting and analyzing the data from
two constructs: the requirements decisions and their RE-SA interaction type (e.g.,
constrained, enabled, influenced or neutral – see Section 1).

Furthermore, in this paper we extend the analysis from [3] by probing deeper into
the identified affected decisions, resulting in the following new question:

Q2: What is the impact of the affected requirements decisions on the resultant system
and downstream development activities?
The second question focuses on the affected decisions identified through the investi-
gation of Q1. Note that question Q2 is examined from two angles: product and
process. For each affected decision, we interviewed the project (RailCab) staff to
determine the impact of RE decisions on the system and activities outside of the re-
quirements elicitation process, such as implementation and testing processes, system
reliability, safety, and others.

 Requirements and Systems Architecture Interaction in a Prototypical Project 25

Study Context: The RailCab project has been in development for approximately ten
years at the University of Paderborn in Germany. The goal of the project is to develop
a comprehensive concept for a future railway system. RailCab is considered a “mecha-
tronic” system, i.e., it requires the interdisciplinary expertise in the areas of mechani-
cal, electrical and software engineering fields. The key feature of RailCab is that it is
an autonomous, self-optimizing system, and thus does not require any human operator.
The RailCab consists of five major components: Drive and Brake, Energy Manage-
ment, Active Guidance, Tilt and Suspension, and Motor and Track Design. For this
short paper, we examine the Energy Management component only. The primary pur-
pose of this component is to ensure that each of the RailCab subsystem’s energy de-
mands are fulfilled. Additionally, the component is responsible for recharging the
energy sources as the train operates. Other features include heat and voltage monitor-
ing of battery arrangements for safety purposes, using batteries as main power supply
for driving if track energy is not available, and adjusting energy levels at runtime based
on differing priority levels of subsystems requesting energy. The component involves a
mix of hardware and software elements; the software is executed on an on-board com-
puter and controls the various functions of the component listed above1.

Participants, Data Collection, Data Analysis: In this study, eight senior-level de-
velopers and researchers (with over five years of experience and domain expertise)
were extensively interviewed over a span of four months on a bi-weekly basis for
approximately one hour each interview session. Each developer is primarily responsi-
ble for his/her own major component. Additionally, they provided project documents
and validated emergent findings.

There are numerous qualitative-based data sources in this project: minutes, theses
and reports, research papers, presentation slides, design documents, prototypes, other
project documents. Other primary data source is the RailCab developers interviews.
Over ten hours of audio recordings resulted in over 80 transcribed pages of text. The
interviews focused on: (i) domain understanding, (ii) extracting the requirements
decisions and high-level architecture for the Energy Management component, and (iii)
determining the RE-SA interaction.

Qualitative coding [6] was used to analyse the project documents and interview
data. For example, if a segment of text is describing a current requirement for the
“Active Guidance” module (one of the components of the RailCab system) and how
the requirement is affected by a previous architectural decision made for the “Energy
Management” module then it will be tagged as such. The coded text can then be
counted to create frequency figures of the various categories (i.e., requirements
decisions) which form the basis of the study results.

3 Emerging Results

3.1 Architectural Impact on RE Decision-Making (Q1)

In the Energy Management component, a total of 30 requirements decisions were ex-
tracted from the project documents and interviews with the RailCab staff. A significant

1 Because of space constraints, we are not able to provide comprehensive information regarding

the technical SA details of the RailCab. For more information, the readers are referred to:
http://www.sfb614.de/en/sfb614/subprojects/project-area-d/subproject-d2/

26 R. Ferrari et al.

portion of these decisions was affected in some way by the evolving architecture.
Here, we describe the characteristics of these RE-SA interactions.

Referring to Table 1, overall, 13 out of the 30 decisions (43%) were affected by
previous architectural decisions. Conversely, 17 decisions (57%) were not affected.
Out of the 13 affected decisions, 8 were of the type constrained (27%) and 6 were of
type enabled (20%), almost an even split between these two types. These figures are
similar to what we observed in our previous study [4], where 30% of the effect types
were found to be of type enabled and 25% were of type constrained.

Table 1. RE-SA interaction effect profile

 # of Reqt’s Decisions Constrained Enabled Influenced
Affected 13 (43%) 8 (27%) 6 (20%) 0 (0%)
Not affected 17 (57%)

The effect type influenced was 6% in our previous study [3] to no observations in

the current component study. No new types of RE-SA interaction effects were ob-
served in the component study. The overall affected:not_affected results (43%:57%)
are similar to that in our earlier study in the banking domain (59%:41%). We now
probe into the characteristics of the different types of affected decisions.

Constrained. The 8 out of 30 (27%) constrained decisions can be considered substan-
tive. Of these, two decisions were core or essential for the operation of the RailCab.
These were the availability of the driving of the shuttle vehicle even in case of track
power failure, and that the hydraulic unit receives its own energy converter and sup-
ply. Four of the eight constrained decisions are what can be classified as “consequen-
tial” decisions, i.e., decisions that emerged as a consequence of other decisions made
in the same subsystem, or were triggered by feedback from other implementation-
based development activities. The remaining two decisions were triggered by design
oversights made previously in other components that were not discovered until the
implementation and testing phases of development.

Enabled. The 6 out of 30 (20%) enabled decisions can also be considered substan-
tive. Of these, 4 decisions led to core requirements for the energy subsystem. One
decision was consequential and emerged during more detailed construction and im-
plementation phases. Finally, one decision was the mixed enabled/constrained deci-
sion and its source was both as a core feature of the RailCab, and was also a fix to a
previous design oversight from the motor and track topology design.

Neutral. It is also significant that 17 out of 30 (57%) decisions were not affected by
previous architectural decisions. Basically, these decisions were made during the
early phases of planning, which spanned approximately 2-3 years, and remained sta-
ble for the entire duration of the development process. Furthermore, these decisions
and their subsequent solutions were largely dictated by the system domain and did not
offer many alternative solution strategies.

 Requirements and Systems Architecture Interaction in a Prototypical Project 27

3.2 Impact of Affected Decisions on Processes and System (Q2)

In every case of a constrained decision, the result was increased construction (i.e.,
hardware assembly and software coding) time and effort due to the constrained
decision. The second highest development activity that was severely affected by
constrained decisions was testing, which was observed in 7 out of the 8 cases. This
involved the creation of new test cases as well as testing procedures. The third high-
est development activity was systems architecting, which was affected in terms of
effort spent in 5 out of the 8 cases due to a constrained decision. Other activities (e.g.,
requirements prioritization, costing, and elicitation) were also observed but in only 1
or 2 cases.

For the enabled cases, the impact on other activities is difficult to discern since
there are no counter-cases to compare; the benefit could only really be observed dur-
ing the RE decision making time but later in the implementation, design and testing it
was not reported any different than the not affected decisions.

The impact of the constrained decisions on system properties (i.e., non-functional
attributes) – in the context of this single component study -- was less noticeable. In 5
of the 8 cases, the developers reported a slight degradation of system quality. The
attributes mostly affected were the physical space of the shuttle (in 3 cases) and the
software modifiability of the system (in 2 cases); the only other attribute affected (in 1
case) was the energy efficiency. However, in all of these cases, the system properties
did not deviate significantly from what was originally intended or desired. As with
the previous subsection, it was difficult to discern any positive benefit in the enabled
cases because they followed a similar implementation path as the not affected cases.

These results seem to fit the characteristics of a “prototypical” project where, in a
constrained decision, developers could not simply upgrade or replace hardware com-
ponents because of the cost involved; instead, they had to spend time and effort in
finding alternative solutions that still provided near-desired levels of system quality.
In a production environment, the reaction to constrained decisions may very well
different, depending on budgetary and other factors.

4 Implications

There are a number of implications of the findings. We discuss one example:
Tighter SA-RE integration across different subsystems: With almost 50% of the RE
decisions being affected by an architecture (see Table 1), and many (50%) of the
affected decisions originating outside of the energy management component, it is
strongly encouraged that the SA and RE processes be more tightly integrated [4] to
provide insight on the technical feasibility of the elicited requirements in terms of
constraints and enablers from a non-local sub-system.

In RailCab, RE and SA decisions are predominantly made synonymously within a
single subsystem and no distinction is made between SA and RE roles. For example,
the early decisions for the motor and track topology subsystems led to constraints in
the energy management system which the planners knew about but deferred until
later. Requirements and Design were highly intertwined in the motor and track
subsystem, yet during this early planning phase the focus was almost entirely on the

28 R. Ferrari et al.

motor and track subsystem; high-level requirements were elicited for the energy
subsystem but no detailed RE or SA work was done at that time. After the motor and
track design phases were near completion, the energy subsystem’s detailed RE and
SA phases commenced. However, it was then determined that previously known con-
straints would be more difficult to plan and implement because of tradeoffs intro-
duced in design decisions from the motor and track subsystem. Thus, one lesson
learnt from this is that during the design phase, corresponding detailed RE and SA
work should also have been carried out in the energy subsystem to handle alignment
issues.

5 Related Work

From [3], we summarize below related work on the role of an SA in RE. In 1994,
Jackson [2] gave four key reasons why RE and SA are best treated as interweaving
processes. In 1995, El-Emam and Madhavji [1] found four factors for RE success in
information systems that deal with architecture and/or the system (one of which is
relevant for this study): the adequacy of diagnosis of the existing system (which in-
cludes SA). In 2001, Nuseibeh [4] described the “twin-peaks” model, which captures
the iterative relationship between RE and SA. An important aspect of this model is
that SA can, and should, feed back into the RE process.

6 Conclusion

We describe the impact an existing Systems Architecture has on requirements deci-
sions, determined through a case study on a rail project (RailCab), and is an extension
of an initial exploratory study [3] that was conducted in a “laboratory” setting. The
case study involved the analysis of approximately 10 years worth of project docu-
ments and extensive interviews with RailCab staff – with a focus on one of the six
major RailCab system components (Energy Management). In a nutshell, we found 30
requirements decisions where:

• 13 (43%) were affected by a previous architectural decision.
• 8 of these 13 decisions were constrained by the existing architecture.
• 6 of these decisions were enabled by the existing architecture.

Furthermore, from the identified affected requirements decisions, we qualitatively
determined their impact on other development activities and properties of the resultant
system. Despite being emergent findings, this early evidence suggests that existing
architecture in the Requirements Engineering process does have a serious impact on
requirements decisions.

Acknowledgements. This work was, in part, supported by Natural Science and
Engineering Research Council (NSERC) of Canada. This contribution was also
developed and published in the course of the Collaborative Research Center 614
"Self-Optimizing Concepts and Structures in Mechanical Engineering" funded by the
German Research Foundation (DFG) under grant number SFB 614.

 Requirements and Systems Architecture Interaction in a Prototypical Project 29

References

1. El Emam, K., Madhavji, N.H.: Measuring the Success of RE Processes. In: Proc. of the 2nd
IEEE Int. Symp. on RE, York, England, March 1995, pp. 204–211 (1995)

2. Jackson, M.: The Role of Architecture in RE. In: Proc. of 1st Int. Conf. on RE,
p. 241 (1994)

3. Miller, J., Ferrari, R., Madhavji, N.H.: Architectural Effects on Requirements Decisions: An
Exploratory Study. In: 7th Working IEEE/IFIP Conf. on SA, Vancouver, Canada,
pp. 231–240 (2008)

4. Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Comp. 34(3), 115
(2001)

5. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 2(1), 58–93 (2001)

6. Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in
software engineering. Journal of Emp. Soft. Eng. 14(2), 131–164 (2009)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 30–44, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Videos vs. Use Cases: Can Videos Capture More
Requirements under Time Pressure?

Olesia Brill, Kurt Schneider, and Eric Knauss

Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{olesia.brill,kurt.schneider,eric.knauss}@inf.uni-hannover.de

Abstract. [Context and motivation] Many customers and stakeholders of real-
world embedded systems are difficult to reach with traditional requirements
elicitation and validation techniques. Traditional requirements engineering
methods do not deliver concrete results for validation fast enough; stakeholders
get impatient or misunderstand abstract requirements. [Question/problem] The
problem is to achieve a mutual understanding between customers and the re-
quirements engineer quickly and easily, and to get stakeholders involved ac-
tively. [Principal ideas/results] We propose to use ad-hoc videos as a concrete
representation of early requirements. Videos have been used before in require-
ments engineering: Sophisticated videos were created at high effort. We show,
however, that even low-effort ad-hoc videos can work comparably or better
than use cases for avoiding misunderstandings in the early phases of a project.
[Contribution] We replicated and refined an experiment designed using the
Goal-Question-Metric paradigm to compare videos with use cases as a widely
used textual representation of requirements. During the experiment, even inex-
perienced subjects were able to create useful videos in only half an hour. Vid-
eos helped to clarify more requirements than use cases did under the same
conditions (i.e. time pressure).

Keywords: Empirical Software Engineering, Video-based Requirements
Engineering.

1 Introduction and Context

Recently, the use of videos in Requirements Engineering (RE) has been proposed [1,
2, 3, 12]. Initially, videos were mainly considered dynamic prototypes that show how
the system under construction would finally be used. Videos are valuable in this area,
because they provide stakeholders with a clear vision of what the system should do.
According to Anton et al. this allows stakeholders to give better, i.e. more and less
volatile, feedback [1].

In more recent research, videos were proposed for actually documenting require-
ments as well [2, 3]. These works indicate that it is possible to use videos as require-
ments documents. This is a nice option, because it allows documenting requirements
in a way most useful for stakeholder interaction [2, 3]. We assume that these effects

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 31

are most valuable during elicitation and validation activities. During these activities it
is often hard to reach customers and stakeholders. In addition, customers and stake-
holders have limited time, get impatient, and even misunderstand abstract require-
ments. In order to validate requirements, a concrete representation of requirements
(e.g. a prototype) is needed. Videos as a means of documenting requirements promise
to support stakeholder interaction in a more efficient way, because they are more
concrete and easier to understand by stakeholders. Yet, in literature it remains unclear
if there are any advantages over textual requirements documents. Empirical insights
about costs and benefits of videos are needed.

 In this work we investigate whether videos can replace textual requirements repre-
sentations. We give no guidance for creating good videos – this remains future work.
Instead, we compare ad-hoc videos with use cases as a widely used textual representa-
tion of requirements. Firstly, we compare the efficiency of creating videos and textual
requirements descriptions by subjecting the analysts to time pressure. Secondly, we
investigate the effectiveness, i.e. whether customers can distinguish valid from invalid
requirements when they see them represented as use cases, or in videos. The ability to
recognize requirements fast in a communication medium is a prerequisite for using
that medium successfully during requirements analysis. The results of our experiment
indicate that our subjects were able to capture more requirements with videos in the
same time period. In contrast to others we find that videos can capture more require-
ments than use cases in the same time period.

This paper is organized as follows: In Sect. 2 we discuss possible situations where
videos can be used in RE and describe the context of our investigations more closely.
In Sect. 3 we give an overview of related work. In Sect. 4 we describe the design of
our experiment based on the Goal-Question-Metric paradigm. Our results are pre-
sented in Sect. 5 and their validity is discussed in Sect. 6. Sect. 7 gives our conclu-
sions and discusses questions for future research in video-based RE.

2 Video Opportunities in Requirements Engineering

In our experience, the benefit of using videos in RE depends on the state of require-
ments analysis and the type of stakeholder interaction (see Fig. 1):

Video
Opportunity
I

Video
Opportunity
II

Video
Opportunity
III

Vision
Statement

Elicitation
Meeting

Validation &
Negotiation

Design &
Create

Fig. 1. Opportunities for using videos in Requirements Engineering

32 O. Brill, K. Schneider, and E. Knauss

Videos in elicitation meeting: Analysts gain better understanding of the system under
construction while planning potential use scenarios for videos and by enacting them.
During the elicitation meeting, stakeholders can provide direct feedback on video
scenes. However, very little is known about the system at this stage. The videos that
can be created for elicitation meetings are based on rather abstract and visionary re-
quirements, often derived from marketing [4] (i.e. from the vision statement). Hence,
there is a high risk of creating irrelevant video scenes. Because of this risk, videos
should not be too expensive, but focus on showing typical scenarios and contexts of
usage for discussion with the stakeholders.

Videos for validation and negotiation: These videos are created based on the require-
ments from elicitation meetings. Requirements engineers have identified and inter-
viewed stakeholders and interpreted their requirements in order to add concrete user
goals to the project vision. During validation and negotiation, visualization of re-
quirements in videos makes it easier for stakeholders to recognize their own require-
ments, and identify missing details or misinterpretations. Confirming recognized
requirements and correcting or adding missing ones is equally important in this phase.

Videos in design and construction: Videos portrait the assumed application of a
planned product. It contains assumptions on environmental conditions, the type of
users envisioned, and their anticipated interaction with the system. This information is
useful for system developers. There are approaches to enhance videos with UML
models, which allow using videos as requirements models directly [2, 3]. In this work,
we do not focus on videos in design and construction, but on videos in elicitation,
validation, and negotiation meetings (video opportunities I and II in Fig. 1).

3 Related Work

Karlsson et al. illustrate the situation in market-driven projects [4]. Accordingly, in
such projects developers invent the requirements. Since future customers of marked-
driven products may not be available for elicitation, their feedback during validation
will be especially important for project success. Simple techniques are needed that
allow stakeholders to participate.

In this section we describe related work dealing with scenarios, requirements visu-
alization, and videos as requirements representation techniques.

Scenario-based approaches. In order to support capturing, communicating and un-
derstanding requirements in projects, scenarios have been proposed by several re-
searchers [1, 6, 7]. They allow analyzing and documenting functional requirements
with a focus on the intended human-machine-interaction.

Anton and Potts show how to create scenarios systematically from goals [1]. They
show that once a concrete scenario is captured other scenarios can easily be found.

There are several ways to document scenarios. One classic way is to create use
cases that describe abstract scenarios [6]. The lack of concrete scenario representation
is often observed as weakness, because it prevents stakeholders from understanding
the specification. Therefore, Mannio and Nikula [7] describe the combination of pro-
totyping with use cases and scenarios. They show the application of the method in a
simple case study. In the first phase of their method, use cases are created and in one

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 33

of the later phases a prototype is constructed from multimedia objects like pictures,
animations and sounds. The prototype is used to elicit the stakeholders’ requirements.
The prototyping leads to a more focused session.

A similar approach to support the creation of scenarios was presented by Maiden et
al. [8, 9]: The ART-SCENE tool enables organizations to generate scenarios auto-
matically from use cases and permits guided scenario walkthroughs. Zachos et al.
propose to enrich such scenarios with multimedia content [10]. This facilitates recog-
nizing and discovering new requirements. The evaluation of this approach is promis-
ing, but still additional evaluation is needed to understand the value of videos in RE.

Visualization of Requirements. Truong et al. describe storyboards as a technique to
visualize requirements [22]. Storyboards are able to graphically depict narratives
together with context. Williams et al. argue that a visual representation of require-
ments is important [11]. This visual representation makes RE more playful and enjoy-
able, thus contributing to better stakeholder satisfaction and more effective software
development. They recommend using requirements in comic book style, because this
allows combining visualizations with text. Williams et al. give no empirical evalua-
tion if typical developers or stakeholders are able to create good-enough comic style
requirements specifications. In addition, drawing comics may be time-consuming.

Videos in RE. Apart from comics, videos have been proposed as a good technique for
adding visual representations to scenarios [2, 3, 12]. Broll et al. describe the use of
videos during the RE (analysis, negotiation, validation, documentation) of two pro-
jects [12]. Their approach starts by deriving concrete contexts from general goals.
Concrete scenarios are defined for each context of use. Based on these scenarios,
videos are created. In parallel, the scenarios are analyzed. Both the video material and
the analysis results are used to negotiate requirements in focus groups (small groups
of important stakeholders). Broll et al. do not provide quantitative data about the ef-
fectiveness of their approach, but share qualitative lessons learned. They conclude
that amateur videos created with household equipment are sufficient for RE-purposes.
Based on their experience, they expect video production to be expensive due to the
time-consuming recording of video and audio material. Therefore, they recommend to
consider videos in RE as an option, but to keep the cost minimal. We agree that vid-
eos in sufficient quality can be created by a development team.

Brügge, Creighton et al. present a sophisticated high-end technique for video anal-
ysis of scenarios [2, 3]. Their approach starts with the creation of scenarios. Based on
these scenarios, videos are created and refined to professional scenario movies. The
Software Cinema tool allows enriching videos with UML models. This combination
is a formal representation of requirements, useful for subsequent phases of the soft-
ware development process (i.e. design). They found it feasible to negotiate require-
ments based on videos. However, they did not discuss whether videos are superior to
textual representations of scenarios or not.

Compared to related work, this paper contributes by presenting empirical results
from the comparison of videos and text based scenarios. In contrast to the expecta-
tions of others, our results suggest that videos can be produced faster and at lower
effort than use cases during requirements analysis.

34 O. Brill, K. Schneider, and E. Knauss

4 Experiment Design

Experiments in software engineering are difficult to design. There is a tension: Real
situations are difficult and expensive to reproduce and compare. Very simple effects
may be easier to observe and compare, but have little significance for practical appli-
cations. Zelkowitz et al. present several levels of empirical validation [13]. Anecdotal
evidence is easy to capture, but insufficient to derive conclusive results. Rigid ex-
periments might enable us to apply statistical methods, but controlling all threats to
validity is hardly possible in any non-trivial set-up. In order to improve RE, a careful
balance is needed.

Our experiment is designed to cover a few relevant aspects of working with videos,
while simplify all others. Thus, it combines non-trivial real effects with the attempt to
control threats to validity. The Goal-Question-Metric paradigm (GQM, see [14])
provides guidance for metrication in process improvement. It proposes a goal-oriented
approach to selecting and defining metrics. Due to the real-world constraints (effort,
limited comparability / repeatability), GQM is often applied to study phenomena in a
rigid and disciplined way, without claiming statistical significance or generalizability.

We had eight student volunteers who had all some experience writing and reading
use cases, but no or very limited experience using videos. None had applied videos to
requirements before. Students had a computer science background and were in their
second to fourth year. Two researchers acted as customers. Each of them adopted two
tasks ("project requirements") and explained them to some of the students (see be-
low). The first task was about navigating within the university building in order to
find a person or office (person finder). The second task was about an airport check-in
with the ability to assign waiting tickets to all boarding pass holders - and priority
checking of late passengers who might otherwise miss their planes (adaptive check-
in). Both customers were encouraged to invent more details and requirements about
these visions. None of the subjects was involved in this research before. Customers
did not know what the experiment was about before the evaluation started.

We use a short time slice for requirements elicitation. Use cases vs. ad-hoc videos
are used to document elicited requirements, and to present them to the customers for
validation. Counting recognized requirements is afforded by using lists of explicit
requirements as a reference. In a pre-study, we examined feasibility of that concept
[15]. Based on lessons learned in that pre-study, we made adjustments and refine-
ments for the current experiment design. This new design makes best use of our avail-
able subjects in the above-mentioned context. We are aware of the threats due to stu-
dent subjects and the limited number of repetitions, but consider those limitations
acceptable [16] (see discussion in Sect. 6). We consider our experiment scenarios
appropriate to represent the kind of real-world situations we want to study. They are
relevant for evaluating the potential of videos in RE.

4.1 Goals of Investigation

GQM starts by looking at goals for improvement, and measurement goals. We stated
goals of our investigation and used a number of cognitive tools and techniques to
refine them into questions, hypotheses, and finally metrics that were designed into the
experiment. At the same time, we took systematic precautions to limit and reduce

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 35

threats to validity. Other researchers are invited to use our considerations and design
rationale as a starting point to replicate or extend our experiment. A replication in
industry would be expensive, but particularly welcome. Our questionnaire and ex-
periment kit are available for replications of our study.

Goal of investigation:
Investigate effectiveness and efficiency of creating ad-hoc videos under time pres-
sure for validation of early requirements compared to use cases

Goal 1: Analyze effectiveness and efficiency of use cases (…)
Goal 2: Compare effectiveness and efficiency of videos with respect to use cases (…)
Goal 3: Analyze subjective preferences of videos with respect to use cases (…)

For each goal, a number of characterizing facets were specified. According to GQM
[14] and our own experience in applying it in industry [17], this explicit facet classifi-
cation helps to focus measurement and to avoid ambiguities.

Table 1. Facet classification of the three goals of our investigation

 Purpose

concerning
aspect

of object in context from per-
spective

Goal 1 Analyze Effectiveness
and efficiency

Use cases Customer

Goal 2 Compare Effectiveness
and efficiency

Ad-hoc videos with
respect to use cases

Customer

Goal 3 Analyze Preferences Ad-hoc videos with
respect to use cases

representing
requirements
for validation
under time
pressure

Require-
ments engi-
neers

In the pre-study, we had analyzed both customer and developer perspectives and

what they recognized. They represent requirements analysis and design&create tasks.
In this paper, only the customer is defined to be the reference for recognizing re-
quirements. Requirements that are not perceived by the customer cannot be confirmed
or corrected during validation. Therefore, the customer perspective is adopted for
comparing effectiveness and efficiency for goals 1 and 2 in Table 1. When personal
preferences are solicited for goal 3, however, we focus on the requirements engineers’
perspective: videos only deserve further investigation if requirements engineers ac-
cept them and consider them useful. Similar considerations are stimulated by the other
facets. For example, the purpose of comparing things (goal 2) requires a reference for
that comparison – we planned to apply use cases analyzed in goal 1 for that purpose.

4.2 Research Questions and Hypotheses

In order to reach the goals, a number of questions need to be answered: This is how
our research questions are related to the above-mentioned goals of our investigation.
According to GQM, goals are further refined into questions and hypotheses. Abstrac-
tion sheets [18] may be used to guide the refinement and preparation process. They
force researchers to make decisions on details of their research questions.

36 O. Brill, K. Schneider, and E. Knauss

In goals 1 and 2, “effectiveness and efficiency” are mentioned. We defined effec-
tiveness and efficiency as “representing many requirements” and “representing re-
quirements fast”, respectively. Since the context of all three above-mentioned goals is
specified as “validation of requirements under time pressure”, we decided to merge
both efficiency and effectiveness in this context into “representing many require-
ments in a limited amount of time”.

During validation, detecting a misunderstanding or an error is as valuable as con-
firming a correctly recognized requirement. Therefore, we are interested in the total
number of issues discussed when stimulated by videos (or use cases). It is important
that we know more about an issue afterwards.

In order to make this quality aspect measurable in the experiment, we define two
research questions based on Kano’s widely-known classification of requirements [19]:

- How many of his or her basic/performance/excitement requirements can a cus-
tomer recognize in a given set of use case vs. ad-hoc videos during validation?

- How many errors would a customer detect if use cases vs. videos were created
and presented under time pressure?

According to Kano, we distinguish between basic, performance, and excitement re-
quirements. Basic requirements tend to be neglected and overlooked as “trivial”. Per-
formance requirements are normal requirements that are most likely to be discussed
explicitly. Excitement requirements are unconscious requirements. When they are
fulfilled, customers can get excited. However, implementing a misinterpreted re-
quirement might have the opposite effect.

The rationale for referring to Kano categories (basic/performance/excitement) is
based on hypotheses that were raised by pre-study results:

a. Customers will recognize a similar amount of performance requirements in both
techniques [estimate: +/-10% (#req(use case) - #req(use case)/10 < #req(video) <
#req(use case) + #req(use case)/10].

b. Customers will be able to identify more errors and problems concerning basic
requirements in videos than in use cases [estimate: >50% more]

c. For early requirements on an innovative product, customers will be stimulated to
identify more excitement requirements (correct or false) in videos than in use
cases – when both are built under comparable time pressure [estimate: 1 or 2 ex-
citement requirements with use cases, at least 3 with videos].

While (a) was directly observed in the pre-study, (b) is based on the concrete nature
of videos: Even seemingly “trivial” (basic) requirements must be represented some-
how in a video, while use cases may simply abstract from details or ignore them.
Hypothesis (c) builds on the assumption that a playful multimedia representation such
as videos invites and encourages more exciting interpretations on both the require-
ments engineers’ and the customer’s parts. Interestingly, both confirmed requirements
and uncovered deviations are considered a success during validation: Both contribute
to better mutual understanding and fewer remaining misunderstandings. Estimations
in [parentheses] give a quantitative idea of the effect we expected. GQM requires
such estimates in order to interpret finally measured results. Without estimates, many
practitioners and researchers tend to think they "knew this before" - in hindsight. A
concrete estimate serves as a reference; of course, one must not change estimates after

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 37

seeing actual results. Since most measurements in real-world settings do not provide
statistically significant results, it is even more important for interpretation of results to
define what we mean by "similar", "more" and "remarkably more", respectively.

Goal 3, asking for the subjective preferences of our subjects, was evaluated using a
questionnaire. Basically we asked whether our subjects preferred videos or use cases
for documentation under time pressure.

4.3 Preparing Metrics for the Experiment

Based on explicit questions and hypotheses, metrics can be selected or defined. GQM
is often applied to measuring symptoms of process improvement in real-world envi-
ronments [17]. In those cases, metrics should be integrated into existing practices; this
reduces measurement effort and mitigates the risk to distort the measured object by
the measurement.

Our experiment is designed to reflect non-trivial real-world aspects of validation
under time pressure, and to accommodate measurement at the same time. In order to
fully exploit the available resources (participants, time, effort), experiment tasks were
carefully designed. Measurement is supported by forms and a questionnaire for goal
3: subjective preference. When GQM is applied consistently, metrics results directly
feed back into evaluation and interpretation. The overall setup is shown in Table 2.

Table 2. Setup of experiment using eight subjects (a-h) and two customers (A, W)

 Tasks / projects
person finder adaptive check-in

Customer A config. 1 a,b use cases video e,f config. 2
c,d videos use cases g,h

Customer W config. 3 e, f use cases videos a,b config. 4

g, h videos use cases c,d

Chronological sequence: phase 1 phase 2

Two researchers (A, W) acted as customers. Each phase contained two configura-

tions, one for each customer. A configuration is characterized by the same task, the
same customer, and two pairs of subjects working independently, one applying use
cases, the other applying videos. In the second phase, a different task was presented
by a different customer and the pairs of subjects exchanged techniques. Each configu-
ration followed the same schedule:

10 min. Customer explains task to all subjects of that configuration together
(e.g., a, b, c, d). They may ask clarification questions.

30 min Pairs of subjects conceive and produce use cases vs. videos.
In parallel, customers write down a list of those requirements that
were explicitly mentioned during the 10 minute slot of explanation
and questions.

38 O. Brill, K. Schneider, and E. Knauss

10 min. Pairs clean up their results. They rewrite text and use cases, down-
load video clips from the cameras, rename files etc.

Afterwards Each customer evaluates use cases and videos with respect to the
reference list of explicit requirements (see above). They check and
count all recognized requirements, and count false or additional re-
quirements raised. They use a form to report those counts.

Fig. 2 shows three excerpts from different videos produced during the experiment. All
teams used hand-drawn paper mockups, combined them with available hardware like
existing info terminals or furniture in the university building, or mobile phones. By
interacting with new, pretended functionality, subjects illustrated the envisioned sys-
tem. Most groups enacted scenarios like a passenger in a hurry who benefits from an
advanced ticket system (Fig. 2, center).

Fig. 2. Mockup screen, check-in of passenger in a hurry, advanced eTicket

4.4 Rationale of Experiment Design

In the pre-study, we wanted to explore the feasibility of using video for fast require-
ment documentation. With respect to Table 2, the pre-study resembled one configura-
tion, but with four people interpreting the results of that one configuration.

We wanted to repeat the experiment in order to substantiate our observations. We
were able to add four configurations. Given our research questions, we needed to
investigate the validation capabilities of videos vs. use cases in more detail. It was not
sufficient to recognize intended requirements in the use cases or videos – we wanted
to classify represented requirements based on Kano’s categories [19].

Design inspired by factorial variation can be used in software engineering in order
to exploit the scarce resource of appropriate subjects better, and to avoid threats asso-
ciated with dedicated control groups: All eight subjects carried out two tasks in two
subsequent phases. We varied tasks, customers, and media in a systematic way in
order to improve control of potential influence factors. This design reduces undesired
learning effects and biases for a particular technique. Variation of techniques,
customers, and tasks was used to minimize threats to validity (see Sect. 6).

Pairing subjects has a number of advantages: (a) The ability to communicate in a
pair improves the chance to derive ideas and reflect on them. (b) Two people can do
more work than individuals: write more use cases and make videos of each other,
which amplifies the visible impact of both techniques. (c) Different personalities
and their influence should be averaged out in pairs as opposed to individuals. We

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 39

considered those aspects more relevant than a higher number of configurations con-
taining only individuals instead of pairs.

5 Results

The counts of requirements recognized, and of additional requirements identified on
basic/excitement level are indicated in Table 3. The customer in a configuration pro-
vided the reference for “requirements explicitly stated” during the first 10 minute slot
of explanations and questions. All recognized and represented requirements were
marked in that list by their respective customer based on an audio recording of the
explanation session.

Table 3 presents all use case pairs in the top part, and their corresponding video
pairs in the lower part. The right-hand columns provide the average of additionally
raised requirements and the average percentage of recognized requirements. As addi-
tional requirements we count new basic or excitement requirements were raised and
were confirmed or corrected by the customer. Both types (corrected, confirmed) are
requirements that otherwise would have been forgotten. The sum of requirements
confirmed and corrected is given below the category (basic, excitement).

Table 3. Results of experiment: counts and percentages (average over all configs.)

Avg. Avg.
Config 1 Config 2 Config 3 Config 4 absolute % of total

customer total reference on explicit req. list 15 17 31 16
use case recognized performance reqs. 10 7 20 9 57%

basic reqs. confirmed 1 1 1 0 0,8
basic reqs. corrected 0 1 3 1 1,3

confirmed+corrected basic reqs. 1 2 4 1 2,0
excitem. confirmed 0 2 2 1 1,3
potential exc. corrected 1 1 2 1 1,3

confirmed+corrected excitement reqs. 1 3 4 2 2,5
video recognized performance reqs. 14 12 20 11 74%

basic reqs. confirmed 2 5 0 1 2,0
basic reqs. corrected 0 1 1 1 0,8

corresponds confirmed+corrected basic reqs. 2 6 1 2 2,8
to use case excitem. confirmed 0 3 1 0 1,0
in same potential exc. corrected 0 0 3 0 0,8
column confirmed+corrected excitement reqs. 0 3 4 0 1,8

Configuration: same task, same customer, same phase

The answers to questions regarding goal 3 (subjective preferences of requirements

engineers) were solicited using a questionnaire. Part of that questionnaire was com-
pleted before the experiment started (competencies, previous experience with video,
year of study etc.). The evaluative questions were asked after all four configurations
had produced their results, but before they were published or analyzed. Due to the
design of our experiment, each subject had carried out one video and one use case
task, in different orders. Customers were not told the details, hypotheses, or implica-
tions of the experiment. Questionnaires were completed by all eight subjects. This
small number may limit the statistical power. For that reason, only absolute numbers
are given below. According to GQM, asking for subjective judgement is a legitimate
type of metrics, if one wants to draw conclusions on subjective opinions. It would be

40 O. Brill, K. Schneider, and E. Knauss

much more difficult, artificial, and error-prone to distil satisfaction and preference
data from "objective observations".

We asked for potential preferences of use cases over videos:

• Subjects considered videos more appropriate for an overview. They appeared less
ambiguous and better suited to illustrate functions. Use cases were preferred to
document exceptional behaviour and alternative steps. Pre- and postconditions
were mentioned as advantages, together with a finer level of detail.

• Under time pressure, 7 (total: 8) subjects would prefer videos for documenting
requirements for various reasons: better description of requirements (6), better
coverage of usability aspects (6), more functional requirements per time (3), or
generally more requirements per time (2).

• Without time pressure, still 5 (total: 8) subjects would prefer videos for docu-
menting requirements; only 2 would prefer use cases.

5.1 Interpretation of Results

When GQM is used with explicit expectations, results can be easily compared to the
above-mentioned hypotheses. The most promising expectations and respective actual
results are briefly commented:

• "Customers will recognize a similar amount of performance requirements in both
techniques [estimate: +/-10% (#req(use case) - #req(use case)/10 < #req(video) <
#req(use case) + #req(use case)/10]."

o Customers recognized 57 % of their requirements in use cases and 74% in
videos.

o Although this difference is far higher than the 10% expected, our small
number of configurations (4) limits statistical power and significance.

o Since there was no configuration in which use cases performed better than
videos, the four configurations support the feasibility of video-based re-
quirements validation.

• “Customers will be able to identify more errors and problems concerning basic
requirements in videos than in use cases [estimate: >50% more]”

o Use cases led to an average of 2.0 additional basic requirements being
confirmed or corrected. In comparison, videos raised 2.8.

o Therefore, videos led to 40 % more additional basic requirements than
use cases. Our expectation of more than 50% is not fulfilled.

o Nevertheless, the experiment has approved the tendency that videos
raise more basic requirements than use cases.

• “For early requirements on an innovative product, customers will be stimulated to
identify more excitement requirements (correct or false) in videos than in use
cases – when both are built under comparable time pressure [estimate: 1 or 2 ex-
citement requirements with use cases, at least 3 with videos].”

o Use cases stimulated an average of 2.5 excitement requirements, videos
performed slightly worse at an average of 1.8.

o Our expectation is not supported by the observations and counts. Use
cases scored higher in two of the configurations, in the other two con-
figurations videos and use cases raised the same amount.

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 41

o We conclude that we cannot support this hypothesis. Our assumption
may be wrong: Using an "innovative technique" (videos) for RE does
not necessarily imply a higher rate of creative ideas.

These results respond directly to our questions, which are repeated above. We wanted
to analyze selected aspects of use cases, and compare them to videos. Our interpreta-
tion of results responds to the goals and associated questions in a detailed and well-
defined way. All together, we conclude the analysis and comparison:

• Videos could be used in all four configurations. They did not fail or perform
drastically worse in any configuration.

• Their overall performance of making requirements and errors recognizable was
better for explicit requirements.

• For basic requirements our expectations are supported in tendency. In case of the
excitement requirements our expectations were not met. Instead, use cases led to
more additional excitement requirements than videos.

• Our subjects preferred videos over use cases and assumed they could help to find
and validate more requirements. They did not yet know experiment results.

Although we did not expect to find statistically significant differences, our experiment
shed more light on a situation and a technology (video) that is frequently mentioned
or applied without any empirical evidence.

6 Discussion of Validity

Wohlin emphasizes the necessity to consider threats to validity during experiment
planning [20]. In Sect. 4, the design of our experiment referred to several threats to
validity - and provides rationale how we tried to avoid them. Nevertheless, several
threats remain and should be considered when our results are used.

Our "treatment" is the application of either use cases or videos to the representation
of requirements. We discuss four types of validity in the order of descending priority
that Wohlin considers appropriate for applied research:

Internal validity (do we really measure a causal relationship between videos and
requirements in validation?): We paired subjects randomly under the constraint that
each pair included one student of computer science and one of mathematics. We took
care to build equally strong pairs. The cross-design shown in Table 2 was inspired by
Basili et al. [21] in order to compensate for previous knowledge. Then each pair used
the other technique to compensate for learning during the experiment. Volunteers are
said to be a threat to validity since they tend to be more motivated and curious than
regular employees. This may be true, but our target population may be close enough
to our subjects to reduce that threat (see external validity).

There is a threat to validity we consider more severe: When customers evaluate re-
sults (use cases and videos) for "recognized requirements" and additional findings,
their judgment should be as objective and repeatable as possible. We took great care
to handle this threat: A customer audio-recorded the 10 minute explanation session
and derived the list of 15-31 requirements that were explicitly raised during the
explanation or questions. When customers evaluated results, they used this list as
a checklist, which makes the evaluation process more repeatable. Obviously, the
granularity of what was considered "one" requirement is very difficult and might

42 O. Brill, K. Schneider, and E. Knauss

cause fierce discussions among any two requirements experts. Our attempt to cope
with this threat is using "configurations" in which two pairs (one use case, one video)
operate under the same conditions, no matter what those conditions might be in detail:
same customer, same granularity, same task, participated in same 10-minute session
with same questions asked. By using four configurations, we try to compensate for
random influences in a given situation.

External validity (are the findings valid for the intended target population?): Stu-
dents and volunteers are usually regarded poor representatives of industry employees
[16]. However, our work tries to support the upcoming generation of requirements
engineers who are familiar with video-equipped mobile phones and multimedia hand-
helds. As explained in [15], two new developments encouraged us to explore ad-hoc
video for requirements validation in the first place: (1) the advent of inexpensive, ubiq-
uitous recording devices and (2) a generation of requirements engineers that have
grown up using mobile phones and PDAs voluntarily in their private life. Today's (high
school and) university students might represent that generation even better than current
industry employees who learned to practice RE with DFDs, Doors etc. All of our sub-
jects had completed at least one lecture that included a substantial portion (8h lecture
time) of "traditional" RE. We consider our students valid representatives of upcoming
requirements engineers in practice - which they may actually become in a year or two.

Construct validity (did we model the real phenomena in an appropriate way?): A
major threat to construct validity is a poor understanding of the questions and con-
cepts examined. This can lead to misguided experiment design. By following GQM
carefully, we were forced to specify our goals, questions, and derived metrics in de-
tail. For example, specifying purpose and perspective as goal facets usually helps
clarifying aspects that are otherwise neglected as "trivial". The GQM technique
guided us from the goal of investigation down to the form used by customers to mark
"recognized explicit requirements", and additional findings in the "explicit reqs. list".

Conclusion validity (What is the statistical power of our findings?): Conclusion
validity is considered lowest priority for applied research by Wohlin et al. [20] - large
numbers of subjects and statistical significance are very difficult to get in a real or
realistic setup. GQM is a technique optimized for exploring effects in practice, not so
much for proving them statistically [17]. Nevertheless, even in our small sample of
eight projects (4 tasks* 2 pairs), some differences are large enough to reach statistical
significance: e.g., the recognized number of explicit requirements is higher with vid-
eos than with use cases (statistically significant at alpha=10% in a double-sided paired
t-test). Although the statistical power is not very high, (p=0.86), an effect that even
reaches statistical significance is the exception rather than the rule in GQM.

7 Conclusion and Outlook

Software systems have become a ubiquitous part of everyday life. Many aspects of
modern society rely on mobile phones, PDAs, and sophisticated devices that interact
with each other and support processes via software. Check-in procedures at airports,
personal navigation solutions, and numerous other applications are envisioned and
developed for a growing market. In many cases, those visions need to be turned into
products rather fast, in order to keep a competitive edge.

 Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure? 43

However, traditional RE techniques have not yet embraced the opportunities of
ubiquitous modern technology, such as mobile devices and video cameras. The gen-
eration of future requirements engineers (i.e., current university students) grows up
with the technical ability to record ad-hoc videos at almost no cost or effort. We try to
benefit from these new opportunities, and enhance requirements documentation and
validation under time pressure by using ad-hoc videos.

Our pre-study encouraged us to consider videos a feasible option, compared to use
cases. However, this single experiment needed to be replicated - and enriched to ex-
plore how videos affect the recognition of different Kano types of requirements. Our
experiment was designed to reduce threats to validity. We followed GQM in order to
get plausible and reliable results despite the small number of subjects (8), and the
remaining threats to validity - which is difficult to avoid even in a small validation
setup. Results showed a higher recognition rate for performance requirements, and a
higher rate of identifying basic requirements. To our surprise, excitement require-
ments were not confirmed or falsified at a higher rate than with use cases.

We explored whether videos could make a contribution to coming RE techniques.
For the experiment reported above, we wanted to single out and highlight differences
(including time pressure). For example, one will not use videos alone in an industrial
environment. We develop specific tools for handling video clips, and combining them
with manual sketches, still pictures - and use cases. Despite the many threats to valid-
ity, our pre-study and the results presented above indicate that there is good reason to
take videos seriously. In contrast to expectations in related work, videos can capture
more requirements per time period than use cases. Still, further studies and concepts
are needed to fully integrate them in future RE.

In this experiment, pure use of videos was investigated; in a real project one would
combine the advantages of traditional and innovative techniques. For example, we
develop tools to support handling of video clips, and comparing variants easily. Inte-
grating sketches and pictures into a video, as well as controlling scenarios by use case
steps are more complex examples of supporting requirements validation.

In our future work, we will continue to explore the impact of new opportunities in
RE by experiments. Those opportunities may be exploited by developing adapted
procedures and supportive tools. When the world of ubiquitous applications changes
fast, feedback and validation must exceed traditional channels. Videos seem to be a
viable option, as our experiment shows.

References

1. A.I., Potts, C.: The use of goals to surface requirements for evolving systems. In: ICSE
1998: Proceedings of the 20th International Conference on Software Engineering, Leipzig,
Germany, pp. 157–166. IEEE Computer Society, Los Alamitos (1998)

2. Creighton, O., Ott, M., Bruegge, B.: Software Cinema-Video-based Requirements Engi-
neering. In: RE 2006: Proceedings of the 14th IEEE International Requirements Engineer-
ing Conference, Minneapolis, Minnesota, USA, pp. 106–115. IEEE Computer Society, Los
Alamitos (2006)

3. Bruegge, B., Creighton, O., Reiß, M., Stangl, H.: Applying a Video-based Requirements
Engineering Technique to an Airport Scenario. In: MERE 2008: Proceedings of the 2008
Third International Workshop on Multimedia and Enjoyable Requirements Engineering,
Barcelona, Katalunya, Spain, pp. 9–11. IEEE Computer Society, Los Alamitos (2008)

44 O. Brill, K. Schneider, and E. Knauss

4. Karlsson, L., Dahlstedt, Å.G., Nattoch Dag, J., Regnell, B., Persson, A.: Challenges in
Market-Driven Requirements Engineerng - an Industrial Interview Study. In: Proceedings
of Eighth International Workshop on Requirements Engineering: Foundation for Software
Quality, Essen, Germany (2002)

5. Fischer, G.: Symmetry of Ignorance, Social Creativity, and Meta-Design. In: Creativity
and Cognition 3 - Intersections and Collaborations: Art, Music, Technology and Science,
pp. 116–123 (1999)

6. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, Reading (Janu-
ary 2000)

7. Mannio, M., Nikula, U.: Requirements Elicitation Using a Combination of Prototypes and
Scenarios. In: WER, pp. 283–296 (2001)

8. Zachos, K., Maiden, N., Tosar, A.: Rich-Media Scenarios for Discovering Requirements.
IEEE Software 22, 89–97 (2005)

9. Seyff, N., Maiden, N., Karlsen, K., Lockerbie, J., Grünbacher, P., Graf, F., Ncube, C.: Ex-
ploring how to use scenarios to discover requirements. Requir. Eng. 14(2), 91–111 (2009)

10. Zachos, K., Maiden, N.: ART-SCENE: Enhancing Scenario Walkthroughs With Multi-
Media Scenarios. In: Proceedings of Requirements Engineering Conference (2004)

11. Williams, A.M., Alspaugh, T.A.: Articulating Software Requirements Comic Book Style.
In: MERE 2008: Proceedings of the 2008 Third International Workshop on Multimedia
and Enjoyable Requirements Engineering, Barcelona, Catalunya, Spain, pp. 4–8. IEEE
Computer Society, Los Alamitos (2008)

12. Broll, G., Hußmann, H., Rukzio, E., Wimmer, R.: Using Video Clips to Support Require-
ments Elicitation in Focus Groups - An Experience Report. In: 2nd International Work-
shop on Multimedia Requirements Engineering (MeRE 2007), Conference on Software
Engineering (SE 2007), Hamburg, Germany (2007)

13. Zelkowitz, M.V., Wallace, D.R.: Experimental validation in software engineering. Infor-
mation & Software Technology 39(11), 735–743 (1997)

14. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In: Ency-
clopedia of Software Engineering, pp. 646–661. Wiley, Chichester (1994)

15. Schneider, K.: Anforderungsklärung mit Videoclips. In: Proceedings of Software Engi-
neering 2010, Paderborn, Germany (2010)

16. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in Using Students in Empirical Stud-
ies in Software Engineering Education. In: METRICS 2003: Proceedings of the 9th Inter-
national Symposium on Software Metrics, Sydney, Australia. IEEE Computer Society, Los
Alamitos (2003)

17. Schneider, K., Gantner, T.: Zwei Anwendungen von GQM: Ähnlich, aber doch nicht
gleich. Metrikon (2003)

18. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill Publishing Company, New
York (1999)

19. Kano, N.: Attractive Quality and Must-be Quality. Journal of the Japanese Society for
Quality Control, 39–48 (1984)

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C.: Experimentation In Software Engineer-
ing: An Introduction, 1st edn. Springer, Heidelberg (1999)

21. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., Zelkowitz,
M.V.: The Empirical Investigation of Perspective-Based Reading. Int. Journal of Empirical
Software Engineering 1(2), 133–164 (1996)

22. Truong, K.N., Hayes, G.R., Abowd, G.D.: Storyboarding: An Empirical Determination of
Best Practices and Effective Guidelines. In: DIS 2006: Proceedings of the 6th Conference on
Designing Interactive Systems, Pennsylvania, USA, pp. 12–21. ACM, New York (2006)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 45–59, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Supporting the Consistent Specification of Scenarios
across Multiple Abstraction Levels

Ernst Sikora, Marian Daun, and Klaus Pohl

Software Systems Engineering
Institute for Computer Science and Business Information Systems

University of Duisburg-Essen, 45117 Essen
{ernst.sikora,marian.daun,klaus.pohl}@sse.uni-due.de

Abstract. [Context and motivation] In scenario-based requirements engineer-
ing for complex software-intensive systems, scenarios must be specified and
kept consistent across several levels of abstraction such as system and compo-
nent level. [Question/problem] Existing scenario-based approaches do not
provide a systematic support for the transitions between different abstraction
levels such as defining component scenarios based on the system scenarios and
the system architecture or checking whether the component scenarios are con-
sistent with the system scenarios. [Principal ideas/results] This paper presents
a systematic approach for developing scenarios at multiple abstraction levels
supported by automated consistency checks of scenarios across these abstrac-
tion levels. [Contribution] We have implemented the consistency check in a
tool prototype and evaluated our approach by applying it to a (simplified) adap-
tive cruise control (ACC) system.

Keywords: abstraction levels, consistency, interface automata, scenarios.

1 Introduction

Scenario-based requirements engineering (RE) is a well proven approach for the elici-
tation, documentation, and validation of requirements. In the development of complex
software-intensive systems in the embedded systems domain, scenarios have to be
defined at different levels of abstraction (see e.g. [1]). We call scenarios that specify
the required interactions of a system with its external actors “system level scenarios”
and scenarios that additionally define required interactions between the system com-
ponents “component level scenarios”. For brevity, we use the terms “system scenar-
ios” and “component scenarios” in this paper.

Requirements for embedded systems in safety-oriented domains such as avionics,
automotive, or the medical domain, must satisfy strict quality criteria. Therefore, when
developing system and component scenarios for such systems, a rigorous development
approach is needed. Such an approach must support the specification of scenarios at
the system and component level and ensure the consistency between system and com-
ponent scenarios. Existing scenario-based approaches, however, do not provide this
kind of support.

46 E. Sikora, M. Daun, and K. Pohl

In this paper, we outline our approach for developing scenarios for software-
intensive systems at multiple abstraction levels. This approach includes a methodical
support for defining scenarios at the system level, defining component scenarios
based on the system scenarios and an initial system architecture as well as detecting
inconsistencies between system scenarios and component scenarios. Our consistency
check reveals, for instance, whether the component scenarios are complete and neces-
sary with respect to the system scenarios. To automate the consistency check, we
specify system and component scenarios using a subset of the message sequence
charts (MSC) language [2]. The consistency check is based on a transformation of the
specified MSCs to interface automata [3] and the computation of differences between
the automata or, respectively, the regular languages associated with the automata. We
have implemented the consistency check in a prototypical tool and evaluated our
approach by applying it to a (simplified) adaptive cruise control (ACC) system.

The paper is structured as follows: In the remainder of this section, we provide a
detailed motivation for our approach. Section 2 outlines the foundations of specifying
use cases and scenarios using message sequence charts. Section 3 briefly describes
our approach for specifying system and component scenarios. Section 4 provides an
overview of our technique for detecting inconsistencies between system and compo-
nent scenarios. Section 5 summarises the results of the evaluation of our approach.
Section 6 presents related work. Section 7 concludes the paper and provides a brief
outlook on future work.

1.1 Need for Specifying Requirements at Different Abstraction Levels

Abstraction levels are used to separate different concerns in systems engineering such
as the concerns of a system engineer and the concerns of component developers. We
illustrate the specification of requirements at multiple levels of abstraction by means
of an interior light system of a vehicle. At the system level, the requirements for the
interior light system are defined from an external viewpoint. At this level, the system
is regarded as a black box, i.e. only the externally visible system properties are con-
sidered without defining or assuming a specific internal structure of the system. For
instance, the following requirement is defined at the system level:

− R2 (Interior light system): The driver shall be able to switch on the ambient light.

The level of detail of requirement R2 is typically sufficient for communicating about
the requirements with system users. However, for developing and testing the system,
detailed technical requirements are needed. To define these detailed technical
requirements, the system is decomposed into a set of architectural components and
the requirements for the individual components and the interactions between the com-
ponents are defined based on the system requirements. For instance, the following
requirements are defined based on requirement R2 (after an initial, coarse-grained
system architecture has been defined for the interior light system):

− R2.1 (Door control unit): If the driver operates the ‘Ambient’ button, the door
control unit shall send the message LIGHT_AMB_ON to the roof control unit.

− R2.2 (Roof control unit): If the roof control unit receives the message
LIGHT_AMB_ON, it shall set the output DIG_IO_AMB to ‘high’.

 Supporting the Consistent Specification of Scenarios 47

1.2 Need for Checking Requirements Consistency across Abstraction Levels

If the component requirements define, for instance, an incomplete refinement of the
system requirements, the integrated system will not meet its requirements even if each
component satisfies the requirements assigned to it. For example, if the requirement
R2.2 in the previous section was omitted, the door control unit would send the activa-
tion signal to the roof control unit, yet the roof control unit would not be able to proc-
ess this signal and hence it would not switch on the light.

If the system components are developed by separate development teams or even by
separate organisations, specification errors such as inconsistencies between system
and component requirements may remain hidden until very late stages of the devel-
opment process, typically until system integration. To avoid rework during system
integration caused by such defects (which often leads to project delays), requirements
engineers must check early in the development process whether the component
requirements are consistent with the system requirements. In addition, for safety-
relevant systems, a proof must be provided that each component requirement is
necessary (see e.g. [4]). The necessity of a component requirement can be shown by
demonstrating that this requirement is needed to satisfy a system requirement.

1.3 Main Objectives of the Scenario-Based RE Approach

Based on the above considerations, the following objectives for a scenario-based
approach can be defined:

− O1: Specification of system scenarios. The approach should support the specifica-
tion of scenarios at the system level. For this purpose, it should provide guidelines
defining what kind of information should be contained in the system scenarios. The
way the system scenarios are specified should ease the transition to component
scenarios as well as consistency checking.

− O2: Specification of component scenarios. The approach should support the speci-
fication of component scenarios based on the system scenarios and a coarse-
grained architecture. For this purpose, it should provide guidelines defining what
kind of information is added in the component scenarios. Furthermore, the ap-
proach should allow structuring the component scenarios differently from the sys-
tem scenarios, for instance, to improve readability of the scenarios.

− O3: Consistency checking of system and component scenarios. The approach
should support checking whether the externally visible system behaviour defined at
the system level and the one defined at the component level conforms to a defined
(possibly project-specific) consistency criterion. To support the removal of de-
tected inconsistencies, the approach should provide a detailed account of all de-
tected differences between the system and component scenarios.

2 Specification of Scenarios Using Message Sequence Charts

A scenario documents a sequence of interactions leading to the satisfaction of a goal
of some agent (see e.g. [5]). Multiple scenarios associated with the same goal or set of

48 E. Sikora, M. Daun, and K. Pohl

goals are typically grouped into use cases (see e.g. [6]). Scenarios can be documented
using various formats such as natural language, structured templates, or diagrams.

To facilitate automated verification, we use message sequence charts (see [2]) for
specifying and grouping scenarios, both, at the system and the component level. We
decided to use message sequence charts since they are commonly known in practice
and offer a standardised exchange format. The specification of scenarios using mes-
sage sequence charts is outlined in this section. The formalisation of message se-
quence charts employed in our approach is outlined in Section 4.

2.1 Basic and High-Level Message Sequence Charts

The message sequence charts language defines basic message sequence charts
(BMSCs) and high-level message sequence charts (HMSCs). The essential elements
of a BMSC are instances and messages (see Fig. 1). The essential elements of a
HMSC are nodes and flow lines. A node can refer to a BMSC or another HMSC. A
flow line defines the sequential concatenation of two nodes. Therein, the sequential
order of the nodes may contain iterations and alternatives. Formal definitions of the
(abstract) syntax of BMSCs and HMSCs are given, for instance, in [7]. The graphical
notation of BMSCs and HMSCs used in this paper is shown in Fig. 1.

Environment

instance

Environment

instance

System

instance

interaction

interaction

interaction

BMSC1

BMSC2 HMSC3

Fig. 1. Graphical notation of BMSCs (left-hand side) and HMSCs (right-hand side)

2.2 Specifying Use Cases and Scenarios Using Message Sequence Charts

Fig. 2 shows the documentation and composition of scenarios using message se-
quence charts as opposed to the documentation and grouping of scenarios by means of
use case templates (see e.g. [6]). In our approach, we use message sequence charts in
order to reduce the ambiguity caused by documenting scenarios and their composition
using natural language. We use BMSCs for documenting atomic scenarios (or sce-
nario fragments) and HMSCs for scenario composition. Therein, a HMSC can com-
pose several scenario fragments into a larger scenario, several scenarios into a use
case, or several use cases into a larger use case (Fig. 2, right-hand side). By using
HMSCs, relationships between use cases such as “include” and “extend” as well as
the sequential execution of use cases can be defined. A similar approach based on
UML activity diagrams and UML sequence diagrams is described in [8]. Note that
other information such as use case goals or pre- and post-conditions still need to be
documented in the use case template.

 Supporting the Consistent Specification of Scenarios 49

UC 1

Actor 1

System

«Actor»

Actor 2
UC 2

UC 3

UC 1 UC 2

UC 3

msc System

msc UC 1

Main
scenario

Alternative
scenario 1

Exception
scenario 1

msc UC 1 – Main scenario

Composition of
use cases

Individual
use cases

Use case
scenarios

Anwendungsfall AF
Abstraktionsstufe
Geltungsbereich
Primärer Akteur
Secondary Actors
Mess- und Steuergrößen

Verknüpfte Ziele
Vorbedingungen
Erfolgsgarantie
Minimalgarantie
Erweiterungspunkte
Trigger

Schritt Aktion Hauptszenario

Schritt Aktion Alternativszenarien

Schritt Aktion Fehlerszenarien

Technologie- und Datenvariation -
Besondere Anforderungen -

Anwendungsfall AF
Abstraktionsstufe
Geltungsbereich
Primärer Akteur
Secondary Actors
Mess- und Steuergrößen

Verknüpfte Ziele
Vorbedingungen
Erfolgsgarantie
Minimalgarantie
Erweiterungspunkte
Trigger

Schritt AktionHauptszenario

Schritt AktionAlternativszenarien

Schritt AktionFehlerszenarien

Technologie- und Datenvariation -

Besondere Anforderungen -

Anwendungsfall AF
Abstraktionsstufe
Geltungsbereich
Primärer Akteur
Secondary Actors
Mess- und Steuergrößen

Verknüpfte Ziele
Vorbedingungen
Erfolgsgarantie
Minimalgarantie
Erweiterungspunkte
Trigger

Schritt AktionHauptszenario

Schritt AktionAlternativszenarien

Schritt AktionFehlerszenarien

Technologie- und Datenvariation -

Besondere Anforderungen - …

Use case templates

Use case diagram

Fig. 2. Templates (left) vs. messages sequence charts (right) for documenting scenarios

3 Specification of Scenarios at Two Abstraction Levels

Our overall approach consists of three main activities (see Fig. 3). We outline these
three activities and their major inputs and outputs in the following subsections.

Specification of scenarios at multiple abstraction levels

1. Specification of

system scenarios

2. Specification of

component scenarios

3. Comparison of

scenarios across

abstraction levels

Coarse-grained

system

architecture

System

goals

Required input Required input

System

scenarios

Component

scenarios

Differences

between the

scenarios

Project-specific

consistency rules

Main output

Fig. 3. Overall approach for specifying scenarios at multiple levels of abstraction

3.1 Specification of System Scenarios and Use Cases

The specification of system scenarios includes specifying individual system scenarios
using BMSCs and interrelating the individual scenarios using HMSCs. Systems sce-
narios are identified and defined based on the goals of the external system actors. A
system scenario should document the major interactions between the system and its

50 E. Sikora, M. Daun, and K. Pohl

environment required to satisfy the associated goal. For each system goal, the relevant
system scenarios satisfying this goal should be documented.

When specifying the system scenarios, the requirements engineers need to ensure
that a black box view of the system is maintained. In other words, the specified
system scenarios should only define the external interactions of the system and no
internal interactions since defining the internal interactions is the concern of lower
abstraction levels. Furthermore, system scenarios should be defined at a logical level,
i.e. independently of a specific implementation technology such as a specific interface
design or a specific system architecture. Fig. 4 shows a simple system scenario for the
interior light system example introduced in Section 1.1.

Driver Ambient lightInterior light system

Switch on

ambient light

Activate

Fig. 4. Simple example of a system scenario

In early phases of use case development, the focus should be placed on the main or
normal course of interactions that is performed to satisfy the use case goal(s). In later
stages, alternative and exception scenarios should be added and related to the main
scenario. However, in order to maintain the black box view, alternative and exception
scenarios should be defined only if they are required independently of the internal
structure of the system and the technology used for realising the system.

3.2 Specification of Component Scenarios and Use Cases

The definition of component scenarios comprises the definition of BMSCs and
HMSCs at the component level. Typically, one starts defining component scenarios
based on the defined system scenarios taking the (coarse-grained) system architecture
into account. Furthermore, additional scenarios can be defined at the component level
which are not based on the system scenarios such as scenarios for error diagnosis.

3.2.1 Definition of Component Scenarios Based on System Scenarios
A component scenario can define a possible realisation of a system scenario. For this
purpose, the component scenario must define the interactions among the system com-
ponents required to realise the interactions with the environment defined in the system
scenario. The refinement of an individual system scenario is accomplished by the
following steps (see e.g. [9]):
− Step 1: Identification of the components that are responsible for realising the sys-

tem scenario. The instance representing the system in the system scenario is re-
placed by the identified set of components in the component scenario.

− Step 2: Each scenario step (i.e. each system-actor interaction) defined in the system
scenario is assigned to a component. Therein, either the names of the scenario steps
defined in the system scenario remain unchanged, or a unique mapping between

 Supporting the Consistent Specification of Scenarios 51

the message names is established. This is a necessary condition to facilitate consis-
tency checking across abstraction layers.

− Step 3: The component scenario is completed by adding the required, system-
internal interactions (or signal flows) between the system components.

A simple example of a component scenario is depicted in Fig. 5.

Driver Roof control unitDoor control unit

Switch on

ambient light

LIGHT_AMB_ON

Ambient light

Activate

Fig. 5. Simple example of a component scenario

Note that one system scenario may be detailed by several component scenarios
which define different possibilities for realising the system scenario through different
system-internal interactions.

3.2.2 Definition of Additional Component Scenarios
Typically, additional component scenarios must be defined to deal with specific con-
ditions that are considered at the component level such as temporary or permanent
component failures or error diagnosis functionality (see Fig. 6 for an example). These
scenarios may or may not include interactions with external actors.

Driver Roof control unitDoor control unit

Switch on

ambient light
LIGHT_AMB_ON

Ambient light

IO_FAILURE

Fig. 6. Example of an additional, level-specific scenario

3.2.3 Component-Level Use Cases
Similar to the grouping of system scenarios into system-level use cases, component
scenarios are also grouped into component-level use cases. A necessary condition for
the completeness of the component-level use cases is that each system-level use case
is detailed by at least one component-level use case. However, our approach does not
require that the HMSC structure of the component-level use case is identical with the
HMSC structure of the corresponding system-level use case (see Fig. 7). Rather, we
advise that the component-level use cases are structured in a way that is convenient
for the component level. For instance, it may be convenient to decompose a compo-
nent-level use case into several more fine-grained use cases and relate the composed
use case to the system-level use case. Furthermore, the comprehensibility and change-
ability of component-level use cases can often be improved by extracting and merging
redundant scenario fragments.

52 E. Sikora, M. Daun, and K. Pohl

BMSC 1
(Main

scenario)

BMSC 2
(Alternative
scenario)

HMSC-Structure of
System-level Use Case

BMSC 1a‘ BMSC 2a‘

HMSC-Structure of
Component-level Use Case

BMSC *

BMSC 1/2b‘ BMSC 1/2b‘

<<refines>>

Fig. 7. HMSC structures of a system-level and a component-level use case

3.3 Comparison of System and Component Scenarios

The goal of comparing system and component scenarios is to identify differences in
the specified sequences of interactions at the system level and the component level.
The possible causes of such differences include:

− Omission of a specific system-actor interaction at some abstraction level
− Definition of an additional system-actor interaction at some abstraction level
− Changed order of the interactions at the system or the component level
− Definition of an additional scenario at some abstraction level that causes a differ-

ence in the specified, external behaviour

The comparison is performed for each pair of scenarios related by a “refines” link
(see Fig. 7). The comparison can be applied to individual scenarios (i.e. one system
scenario is compared to one component scenario), to use cases (i.e. a system-level use
case is compared to a component-level use case), or to sets of interrelated use cases
(see Section 2.2). The decision whether a detected difference is considered as an in-
consistency or not is influenced by project-specific consistency rules. These rules can,
for instance, allow or forbid the definition of additional system-actor interactions at
the component level (see Section 4.4).

In case an inconsistency is identified, human judgement is required to determine
necessary corrections. For instance, an additional sequence of interactions at the com-
ponent level may be caused either by a missing system scenario or by an unwanted,
additional component scenario. Hence, the stakeholders must decide whether the
system scenarios, the component scenarios, or even both must be corrected to resolve
a detected inconsistency.

4 Computation of Differences between Scenarios across Two
Abstraction Levels

In this section, we outline our algorithm for computing the differences between sce-
narios defined at two different abstraction levels. Fig. 8 shows an overview of the
major steps of the algorithm. The input of the algorithm comprises two message
sequence chart (MSC) specifications, i.e. a system-level and a component-level
specification, and, in addition, the coarse-grained system architecture. The MSC

 Supporting the Consistent Specification of Scenarios 53

specifications represent a pair of scenarios (or use cases) related to each other by a
“refines” link. Each MSC specification may comprise several HMSCs and BMSCs.
The algorithm is applied to each such pair of MSC specifications individually.
The architecture that is provided as input defines the decomposition of the system into
a set of components. It hence interrelates the instances defined in the two MSC
specifications.

In Step 3.1 (see Fig. 8), the scenarios are normalised in order to ensure that identi-
cal message labels have identical meanings. Step 3.2 transforms the normalised MSCs
into interface automata. It results in a system-level automaton PH (Step 3.2a) and a
component-level automaton PL (Step 3.2b). Step 3.3 computes the differences
between PH and PL. It results in two automata PH-L and PL-H.

The individual steps are explained in more detail in Subsections 4.1 to 4.3. In addi-
tion, we outline the analysis of the computed difference automata in Section 4.4.

3. Comparison of scenarios across abstraction levels

System

scenarios

Component

scenarios

3.2b Computation of

component-level

automaton PL

3.2a Computation of

system-level

automaton PH

3.3 Computation of

difference automata

PH-L and PL-H

Differences

between the

scenarios

PH

PL

Coarse-grained

system

architecture

3
.1

 N
o
rm

a
li
s
a
ti
o
n

o
f
th

e
s
c
e
n
a
ri

o
s

Normalised

scenarios

Normalised

scenarios

Architectural

information

Fig. 8. Main steps of the comparison of system and component scenarios

4.1 Normalisation of the Message Sequence Charts

To compute the differences between the system and component scenarios, the mes-
sage sequence charts documenting the scenarios must match some input criteria. We
assume that each message sent or received by an instance has a label that uniquely
identifies its message type. Furthermore, we assume that messages of a specific type
sent to the environment or received from the environment are labelled identically at
the system level and the component level.

The information which components decompose the system is taken from the archi-
tecture model. For the system scenarios, we assume that the instance representing the
system is named consistently with the representation of the system in the architecture
model. For the component scenarios, we assume that the instances representing sys-
tem components are named consistently with the representations of the components in
the architecture model.

To ensure that the above assumptions hold, a normalisation step is performed in
which the instance names and message labels are checked and adapted, if necessary.

4.2 Transformation of the Scenarios into Interface Automata

To facilitate computing the differences between system and component scenarios, we
employ a transformation of MSCs into automata. Interface automata [3] offer several

54 E. Sikora, M. Daun, and K. Pohl

advantages that make them particularly suitable for our approach. For instance, the set
of actions of an interface automaton is partitioned into a set of input actions, a set of
output actions, and a set of internal actions. This corresponds to the event types de-
fined for MSCs (receive, send, internal). Furthermore, interface automata do not en-
force that each input action is enabled in every state. This is also true for the MSCs in
our approach since we assume that, after reaching a specific location of an instance
line, only the specified events are allowed to occur.

We briefly outline the transformation of the scenarios into interface automata:

1. Construction of instance automata: In this step, an interface automaton is com-
puted for the system (system level) as well as for each component (component
level). For this purpose, first each BMSC is transformed into a set of partial
automata based on the algorithm described e.g. in [10]. Subsequently, the partial
automata are concatenated by inserting τ-transitions (i.e. invisible transitions) as
defined by the HMSC edges. Environment instances are disregarded in this step.

2. Elimination of τ-transitions and indeterminism: In this step, non-deterministic
transitions and the τ-transitions inserted during concatenation are eliminated in
the interface automata that were constructed in the first step. For performing
this step, standard algorithms for automata such as those described in [11] can
be used. The results of this step are the system-level automaton PH and a set of
component-level automata.

3. Composition of the instance automata: In this step, the automata derived from
the component scenarios are composed to a single component-level automaton
PL by means of the composition operator defined for interface automata
(see [3]).

4.3 Computation of the Differences between the Scenarios

The comparison of the automata shall reveal differences between the traces of
the automata with regard to the externally observable system behaviour (similar to
weak trace equivalence; see [12]). For this purpose, the traces consisting only of
input and output actions of the interface automata PH and PL need to be compared
with each other. The set of traces of the automaton PH is called the language of PH
and denoted as LH. The set of traces (of input and output actions) of PL is called the
language of PL and denoted as LL. To compare the two languages, two differences
must be computed:

− LH-L = LH \ LL = LH ∩ ¬LL and
− LL-H = LL \ LH = LL ∩ ¬LH

Hence, for computing the desired differences, the intersection and the complement
operator for automata must be applied [11]. Since the complement operator requires a
deterministic finite automaton as input, PH and PL must be transformed into determi-
nistic automata. Furthermore, the internal actions defined in PL must be substituted by
τ-transitions. Due to space limitations, we omit the details here.

 Supporting the Consistent Specification of Scenarios 55

4.4 Analysis of the Computed Differences

The requirements engineers can interpret the resulting automata in the following way:
− LH-L = ∅ and LL-H = ∅: In this case the externally observable traces of both

automata are identical, i.e. the scenarios at the system level and the component are
consistent to each other.

− LL-H ≠ ∅: In this case, the component scenarios contain traces that are not defined
at the system layer. The requirements engineers have to analyse these in order to
determine which of them are valid or desired and which ones are not. Traces con-
tained in LL-H that are considered valid may indicate missing system scenarios.
However, the project-specific consistency rules may also allow such traces under
certain conditions.

− LH-L ≠ ∅: In this case, the system scenarios contain traces that are not defined at
the component level. The requirements engineers have to analyse these traces in
order to determine which of these traces are valid. Traces contained in LH-L that are
considered valid indicate missing component scenarios.

For supporting the interpretation and analysis of the computed differences, we gener-
ate graphical representations of the difference automata using the environment
described in [13]. The analysis results are used to drive the further development and
consolidation of the system and component scenarios.

5 Evaluation of the Approach

We have performed a preliminary evaluation of our approach by applying it to a
(simplified) adaptive cruise control (ACC) system based on [14]. In a first step, use
cases were identified for the ACC system, both, at the system level and the compo-
nent level. All in all, eleven use cases were identified. Fig. 9 shows an excerpt of the
use case diagram.

UC 4

Deactivate ACC

UC 6

Adjust set speed

UC 5.3

Follow a vehicle

ahead

Driver

Vehicle

ahead

UC 5

Drive with activated

ACC Engine

Brakes

ACC System

<<extends>>

UC 5.2

Detect a vehicle

<<extends>>

UC 5.1

Drive at set speed

<<extends>>

...

Fig. 9. Excerpt of the use case diagram defined for the ACC system

56 E. Sikora, M. Daun, and K. Pohl

Driver Engine ControlACC

Attention:
vehicle
ahead

speedrequest

speedresponse

Engine ControlDrive Control

decelerate

Brake ControlDrive Control

break

Detected vehicle ahead

Attention:
vehicle
Ahead!

Speedrequest! Speedresponse?

Decelerate!

Break!

Driver Engine ControlSpeed ControlHeadway
Control

Distance
Determination

User
Interaction

distance to
vehicle ahead

vehicle
ahead

Attention:
vehicle
ahead

request for actual speed

speedrequest

speedresponse

actual speed

Engine ControlDrive ControlHeadway
control

low speed
difference

decelerate

Brake ControlDrive ControlHeadway
control

high speed
difference

break

Attention:
vehicle
Ahead!

Speedrequest! Speedresponse?

Decelerate! Break!

Speedrequest!
Attention:

vehicle
Ahead!

Speedresponse?

Attention:
vehicle
Ahead!

System-level use case
defined as MSC

Component-level use
case defined as MSC

Component-level automaton PLSystem-level automaton PH

Fig. 10. System- and component-level specifications of an exemplary use case

For the identified use cases, scenarios were specified by means of message se-
quence charts. The specification activity resulted in eleven HMSCs and nineteen
BMSCs at the system level and eleven HMSCs and twenty-five BMSCs at the com-
ponent level. The consistency checking was performed using a prototypical imple-
mentation of the algorithm described in Section 4. Based on the computed differ-
ences, the system scenarios and component scenarios were consolidated to remove
inconsistencies. Fig. 10 depicts an exemplary system-level use case defined for the
ACC system, the corresponding component-level use case as well as the automata PH
and PL computed for these use cases. The difference LH-L for the use case depicted in
Fig. 10 is empty which means that the component-level use case realises all scenarios
defined by the system-level use case. The automaton representing the difference LL-H
is shown in Fig. 11. The sequences of actions which lead from the start state to the
final state of this automaton are included in the component-level use case but are not
defined by the system-level use case and thus may indicate inconsistencies. The
evaluation demonstrated the importance of an automated, tool-supported consistency

 Supporting the Consistent Specification of Scenarios 57

check between system and component scenarios. The simplified ACC system used in
the evaluation was already too complex to detect all inconsistencies between system
and component scenarios manually. The prototypical tool revealed a large number of
inconsistencies in the initial use cases and thus contributed significantly to improving
the consistency of the use cases across the two abstraction levels. However, since the
evaluation has been performed in an academic environment, further investigations
concerning the applicability and usefulness of the approach in an industrial environ-
ment are needed.

Speedresponse?

Decelerate!
Break!

Speedrequest!

Attention:

vehicle

Ahead!

Speedresponse?

Attention:

vehicle

Ahead!

Fig. 11. Difference automaton representing LL-H

Scalability or performance problems did not occur during the consistency check of
the ACC scenarios. For instance, the computation of the difference automaton de-
picted in Fig. 11 took approximately 100 milliseconds. Still, for very complex use
cases (such as a composition of all use cases defined for a system into a single use
case), a more efficient implementation might be needed.

6 Related Work

Although scenario-based approaches exist that support, in principle, the development
of scenarios at different abstraction levels such as FRED [15] and Play-in/Play-out
[16], these approaches do not offer the required rigor for safety-oriented development.
The checking of the consistency of the scenarios across abstraction levels is not sup-
ported by these approaches. Play-in/Play-out merely supports checking whether a set
of “universal” scenarios realise a defined “existential” scenario which is not sufficient
for proving cross-level consistency.

Approaches that support the formal verification of scenarios suffer from other defi-
ciencies limiting their applicability within our approach. Existing techniques that, in
principle, support the verification of MSCs across different abstraction levels provide
insufficient support for HMSCs or do not support HMSCs at all. In [9], severe restric-
tions are imposed by requiring identical HMSC structures at the system level and the
component level. The goal of temporal-logic model checking is typically to reveal a
single counter example. In contrast, our approach computes extensive differences

58 E. Sikora, M. Daun, and K. Pohl

between the scenarios defined at two abstraction levels. Furthermore, to apply tempo-
ral-logic model checking, use cases must be encoded using temporal logic which
limits the applicability of such an approach in practice.

Furthermore, our approach can be regarded as a further step towards a methodical
support for the transition between requirements and design as it facilitates the for-
mally consistent specification of black-box scenarios and design-level scenarios. The
approach thus complements less formal approaches such as [18] which aim at sup-
porting the communication between requirements engineers and architects.

7 Conclusion

The approach presented in this paper closes a gap in the existing, scenario-based re-
quirements engineering methods. It supports the development of scenarios at different
abstraction levels and therein facilitates cross-level consistency checking. Cross-level
consistency is important, for instance, for constructing safety proofs and to avoid
requirements defects which lead to significant rework during system integration.

The approach employs the message sequence charts (MSC) language as a formal,
visual specification language for scenarios and use cases. Individual scenarios are
specified as basic message sequence charts (BMSCs). High-level message sequence
charts (HMSCs) interrelate several BMSCs and allow for iterations and alternatives.
The consistency check offered by our approach aims at detecting differences in the
traces of externally observable events specified at the system level and those specified
at the component level. The approach thus reveals, for instance, whether the traces of
a component-level MSC are complete and necessary with respect to a system-level
MSC. The approach is not based on simple, syntactic correspondences but rather
employs a transformation of MSCs into interface automata. This makes the approach
robust against changes at the syntactic level such as restructuring an MSC.

We have demonstrated the feasibility of our approach by applying it to the specifi-
cation and consistency checking of requirements for an adaptive cruise control sys-
tem. Our approach has proven useful for supporting the specification of the scenarios
at the system and component level. We hence consider objectives O1 and O2 defined
in Section 1.3 to be met. The consistency of the scenarios was checked using a proto-
typical tool. Thereby, a large amount of inconsistencies could be resolved which were
difficult or even impossible to detect manually. We hence consider objective O3 (see
Section 1.3) to be met. The approach can be applied in settings where consistency
across different abstraction levels must be enforced and the use of formal specifica-
tion and verification methods is accepted. A detailed evaluation of the applicability of
our approach in industrial settings is ongoing work.

Acknowledgements. This paper was partly funded by the German Federal Ministry
of Education and Research (BMBF) through the project “Software Platform Embed-
ded Systems (SPES 2020)”, grant no. 01 IS 08045. We thank Nelufar Ulfat-Bunyadi
for the rigorous proof-reading of the paper.

 Supporting the Consistent Specification of Scenarios 59

References

[1] Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineering
Journal (REJ) 11, 79–101 (2006)

[2] International Telecommunication Union. Recommendation Z.120 - Message Sequence
Charts, MSC (2004)

[3] De Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proc. of the ACM SIGSOFT
Symp. on the Foundations of Software Engineering, pp. 109–120 (2001)

[4] RTCA: DO-178B – Software Considerations in Airborne Systems and Equipment
Certification (1992)

[5] Potts, C.: Using Schematic Scenarios to Understand User Needs. In: Proc. of the ACM
Symposium on Designing Interactive Systems – Processes, Practices, Methods and
Techniques (DIS 1995), pp. 247–266. ACM, New York (1995)

[6] Pohl, K.: Requirements Engineering – Foundations, Principles, Techniques. Springer,
Heidelberg (to appear 2010)

[7] Peled, D.: Specification and Verification using Message Sequence Charts. Electr. Notes
Theor. Comp. Sci. 65(7), 51–64 (2002)

[8] Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: Proc. of the
Intl. Conference on Software Engineering, pp. 314–323 (2000)

[9] Khendek, F., Bourduas, S., Vincent, D.: Stepwise Design with Message Sequence Charts.
In: Proc. of the IFIP TC6/WG6.1, 21st Intl. Conference on Formal Techniques for
Networked and Distributed Systems, pp. 19–34. Kluwer, Dordrecht (2001)

[10] Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In: Proc. of the
IFIP WG10.3/WG10.5, Intl. Workshop on Distributed and Parallel Embedded Systems,
pp. 61–71. Kluwer, Dordrecht (1999)

[11] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation, 3rd edn. Addison-Wesley, Reading (2006)

[12] Milner, R.: Communication and Mobile Systems – The Pi Calculus. Cambridge University
Press, Cambridge (1999)

[13] Gansner, E., North, S.: An Open Graph Visualization System and its Applications to
Software Eengineering. Software - Practice and Experience (1999)

[14] Robert Bosch GmbH: ACC Adaptive Cruise Control. The Bosch Yellow Jackets (2003),
http://www.christiani-tvet.com/

[15] Regnell, B., Davidson, A.: From Requirements to Design with Use Cases. In: Proc. 3rd
Intl. Workshop on Requirements Engineering – Foundation for Software Quality, Barce-
lona (1997)

[16] Harel, D., Marelly, R.: Come, Let’s Play – Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

[17] Ohlhoff, C.: Consistent Refinement of Sequence Diagrams in the UML 2.0. Christian
Albrechts Universität, Kiel (2006)

[18] Fricker, S., Gorscheck, T., Byman, C., Schmidle, A.: Handshaking with Impementation
Proposals: Negotiating Requirements Understanding. IEEE Software 27(2), 72–80
(2010)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 60–66, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Requirements Value Chains: Stakeholder Management
and Requirements Engineering in Software Ecosystems

Samuel Fricker

University of Zurich, Department of Informatics
Binzmuehlestrasse 14, 8057 Zurich, Switzerland

fricker@ifi.uzh.ch

Abstract. [Context & motivation] Market-oriented development involves the
collaboration of many stakeholders that do not necessarily directly interact with
a given development project but still influence its results. These stakeholders
are part of the requirements value chain for the concerned software product.
[Question/problem] Understanding the structure and functioning of require-
ments value chains is essential for effective stakeholder management and re-
quirements engineering within the software product’s ecosystem. [Principal
ideas/results] The paper explores and exemplifies fundamental concepts that
are needed to characterize and reason about requirements value chains.
[Contribution] This characterization is used to describe the relevant knowledge
landscape and to suggest research avenues for understanding the principles
needed for managing requirements-based stakeholder collaboration.

Keywords: Requirements value chain; Software ecosystems; Requirements ne-
gotiation; Vision.

1 Introduction

Much requirements engineering research has focused on engineering requirements of
a system with few easily accessible stakeholders [1]. This model of stakeholder in-
volvement is adequate for many bespoke situations, but is too simplistic for market-
driven software development [2, 3], where collaboration among stakeholders is a
central concern [4]. Here, a possibly large number of anonymous and distributed users
of current product versions provide feedback from product use and state new
requirements. Developers state requirements that emerge from attempts to balance
customer satisfaction and development feasibility. Marketing and management
departments define development scope. Other roles pursue further objectives.

Stakeholders and their relationships are a central concern of software ecosystems,
where stakeholder collaboration is organized in two value chains [5]. The require-
ments value chain applies to inception, elaboration, and planning of software, starting
with business and application ideas and ending with an agreed detailed set of re-
quirements for implementation. It is concerned of discovering, communicating, and
matching interests of direct and indirect stakeholders with functionality and quality
properties of the software to be developed [6]. Stakeholders need to be known and
differentiated [7, 8] and conflicting perspectives and goals resolved [9, 10].

 Requirements Value Chains 61

Concluded development of the software allows transiting from the requirements
value chain to the supply chain [5]. The supply chain applies to the execution phase in
the software lifecycle. It is concerned of the production, distribution, selection, com-
position, and operation of the software to make it available to end users [11-13].
Hence, the supply chain is concerned of satisfying the needs discovered and aligned
in the requirements value chain by delivering the results from development and
providing services based thereon in a profitable and sustainable manner [14].

The requirements value chain is little understood so far beyond project stakeholder
management and goal modeling. It is unclear which requirements communication,
collaboration, and decision-making principles lead to efficient, value-creating and
sustainable alignment of interests between interdependent stakeholders across soft-
ware projects and products. Industry cases from large-scale process development [15,
16], inter-company collaboration [17], and global software engineering [18, 19] show
that bringing transparency into the requirements value chain is important. Proper
stakeholder collaboration leads to accepted products and innovation [20].

This paper uses fundamental concepts from negotiation [21] to explore these facets
of requirements value chains. The result provides a basis to reflect on research needed
for an improved understanding of value creation and of collaboration, hence for better
managing the political and strategic context of requirements engineering [22].

The paper is structured as follows. Section 2 explores requirements value chains
from structural and dynamic perspectives and exemplifies. Section 3 discusses emerg-
ing research issues. Section 4 summarizes and concludes.

2 Requirements Value Chains

2.1 A Negotiation-Based View of Requirements Value Chains

Negotiation is an inherent part of decision-making between stakeholders [21]. This
view emphasizes the social and political aspects of requirements engineering and
assumes interest in collaboration and value creation. It has successfully been applied
in project requirements engineering [23]. Value-creating negotiations require proposal
and exploration of alternatives for matching stakeholders’ interests to find win-win
agreements worth more in total than if each party would act on its own.

A win-win negotiation process can be characterized as follows [21]. Two or more
stakeholders get in contact with each other, share their positions in terms of interests
and expectations, seek alternatives, and get to an agreement. Negotiations can be
about alignment of interests or sharing of scarce resources. Negotiations are small-
scale if they just affect the negotiators, or large-scale if they involve a myriad of
players and issues in the so-called secondary, hidden negotiation table.

Social Structure: Stakeholders and Relationships. Social structure relates to stake-
holders, someone or a group of individuals who gains or loses something as a result of
a software project [7], and their relationships. Stakeholders embody direct or indirect
viewpoints towards the software [8]. Direct viewpoints concern software operation
and include the product’s user. Indirect viewpoints influence software success
indirectly and include development execution, financing, and regulation.

62 S. Fricker

Orderer-contractor, group membership, and delegation relationships connect stake-
holders. Orderer-contractor relationships connect two layers in the requirements value
chain with each other [24]. Group membership groups stakeholders with similar inter-
ests, same goals, or interdependencies [25]. Delegation relationships point from a
principal stakeholder to an agent [21]. Agents are employed when they have more
negotiation expertise than the primary stakeholder, deeper domain knowledge, or a
network and special influence that enables rapid achievement of effective agreements.

A central stakeholder in the requirements value chain of a software product is the
product manager [3] that coordinates large-scale negotiations by performing require-
ments management, roadmapping, and release planning. Concerned company-internal
stakeholders include senior managers that supervise the organization, marketing and
sales that interface to customers, development that implements the product, produc-
tion that makes the product available to the supply chain, service and support that
enable effective use of the product, and controlling that measures product perform-
ance. Company-external stakeholders include market intelligence and those of the
supply chain: users, customers, channels, suppliers, and competitors.

Information Structure: Interests and Agreements. Interest are objectives pursued by
stakeholders [21]. They are often related to the stakeholder’s role in the ecosystem.
Company management pursues business goals. Customers profit from benefits
generated by the software, and users from functionality, reliability, usability, and
efficiency the software. Development is interested in solution design and technology.

An agreement is a settling between stakeholders that results from successful nego-
tiation and enables collaboration of the concerned stakeholders. Agreements are a
form of conflict resolution. They describe how selected interests of the negotiation
partners contribute to each other when specifying interest alignment, and plans for
resource use when specifying allocation of scarce resources.

Documents and data stores are used to capture positions and agreements in product
management. Positions of users are captured as needs and support cases, of customers
as market requirements, of research and development as ideas, and of product man-
agement as product vision. Product requirements are used for triage and preparing
negotiations with key stakeholders. Resulting agreements are documented with prod-
uct strategies, roadmaps, and release plans. Development is contracted with imple-
mentation proposals and requirements specifications.

Dynamics: Requirements Value Chain Evolution. Requirements value chains
evolve when stakeholders enter or leave the software ecosystem, specialize and
become members of groups, and establish relationships. Active integration may
involve application for a given role. Passive involvement happens through personal
interests, traits and relationships that make the person attractive for being integrated.

People acquire group membership if they pursue the same goals as other group
members, if they are interdependent with other members, if they interact with other
members, or if they share a set of norms [26]. Group enrolment is active or passive.
The constitution of groups influences negotiation tactics and methods [25].

Software product management establishes and maintains a software ecosystem by
managing stakeholders and studying and aligning their interests. With requirements
triage a product manager decides about relevance of stakeholders and interests.

 Requirements Value Chains 63

Contracting involves the selection of development teams and suppliers. Budgeting
and release planning further constrains stakeholder involvement.

2.2 Example of a Requirement Value Chain

Examples of requirements value chains have been published [15, 16, 18, 19, 25],
mostly characterized ad-hoc. Figure 1 shows an interpretation of one of them using
the notation introduced in [16]. It describes an institutionalized requirements value
chain that was developed in a large-scale requirements engineering process develop-
ment effort [15]. Process development defined the social network and requirements
engineering artifacts by identifying roles (circles in Figure 1), their responsibilities
with respect to the company’s product and technology portfolio, and documentation
to capture agreements between the roles (arrows in Figure 1). Process development
left open the concrete interests to be pursued and aligned.

Fig. 1. Multi-project development case (abbreviations in [15])

Analysis of the requirements value chain in Figure 1 raises questions regarding ef-
ficiency and completeness of the developed process. Software usability, if a concern
for the company’s products, requires alignment of user interests with the software
team leader’s (SW-TL) intentions over four specifications. The effort needed could be
significantly reduced and the quality of the alignment improved by introducing more
direct collaboration with selected users. The requirements value chain excludes rela-
tionships to production and suppliers, which could connect development to the supply
chain and would allow considering requirements that affect product cost, hence a
substantial part of the economic success. Company resources, finally are considered
mere implementation resources. No link points from product management to devel-
opment that would allow gathering innovative ideas [20].

3 Research Issues

Conceptualizing software product stakeholders as a requirements value chain can
bring transparency into how the software ecosystem affects product inception.
Research in this area can provide the fundaments for reasoning on efficiency and
effectiveness of requirements engineering strategy and of innovation.

64 S. Fricker

Requirements value chain analysis can allow understanding power of given stake-
holders, process performance, and ecosystem maturity. Social network theory [27]
provides concepts and models for determining stakeholder power and influence and
for evaluating structural strengths and weaknesses of the stakeholder network. Group
theory [26] gives insights into group effectiveness and the development of specialized
roles. Negotiation theory [21] provides decision-making knowledge.

Stakeholders need to be managed in the software ecosystem to evolve a value
chain. Partners need to be identified, relationships established, stakeholder interac-
tions monitored, and changes in requirements value chain controlled. Partner identifi-
cation may be addressed by directories or by recommendation systems. Established
social networks provide such capabilities, but have not been used for such purposes in
requirements engineering yet. Groups, besides negotiation tactic selection [25], can
also play a role for partner and peer identification. Group management addresses
group lifecycle, performance, and partnering with other groups. Relationships need to
be established to allow partners to start negotiations. Factors like trust and distance
affect the quality of such relationships. Value chain management, opposed to passive
emergence of a chain, involves proactive value chain composition, structuring, and
change to provide value and perspectives to its members and to ensure sustainability
of the software ecosystem.

Information spread in the requirements value chain needs to be managed. The
choice of interest elicitation, expectation setting, and decision documentation ap-
proaches can have effects on the transparency and performance of the value chain.
Computer-supported collaborative work [28], traceability, and audit trails can con-
tribute to understanding effective information sharing and management. Social
network technologies may give unprecedented support for requirements engineering.

Requirements value chain structure can affect innovation, requirements engineer-
ing performance and software success. Negotiations permit local alignment of
interest, but may not be effective for global alignment. Distance, feed-forward and
feedback affect the overall alignment of stakeholder interests and intentions in the
value chain and the motivation of stakeholders to collaborate. A new management
role may be needed, responsible for value chain structure and policies, for guiding
stakeholder behavior, and for controlling progress and success of interest alignment.

4 Summary and Conclusions

This paper proposed a fresh view on stakeholder involvement in requirements engi-
neering. It has introduced and exemplified the concept of requirements value chains
where requirements emerge from and propagate with inter-stakeholder collaboration.
The resulting view on stakeholder management and requirements engineering, which
we recommend to address with negotiation principles, can provide insights for man-
aging the political and strategic aspects of requirements engineering beyond the hori-
zon of a development project. Characteristic for a vision on our field, a lot of research
remains for illuminating our understanding.

 Requirements Value Chains 65

References

1. Cheng, B., Atlee, J.: Research Directions in Requirements Engineering. In: Future of
Software Engineering (FOSE 2007). IEEE Computer Society, Los Alamitos (2007)

2. Regnell, B., Brinkkemper, S.: Market-Driven Requirements Engineering for Software
Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 287–308. Springer, Heidelberg (2005)

3. Ebert, C.: Software Product Management. Crosstalk 22, 15–19 (2009)
4. Karlsson, L., Dahlstedt, Å., Regnell, B., Natt Och Dag, J., Persson, A.: Requirements

engineering challenges in market-driven software development - An interview study with
practitioners. Information and Software Technology 49, 588–604 (2007)

5. Messerschmitt, D., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. The MIT Press, London (2003)

6. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: IEEE Intl. Symp. on Requirements Engineering, Annapolis MD, USA
(1997)

7. Alexander, I., Robertson, S.: Understanding Project Sociology by Modeling Stakeholders.
IEEE Software 21, 23–27 (2004)

8. Kotonya, G., Sommerville, I.: Requirements Engineering with Viewpoints. Software
Engineering Journal 11, 5–18 (1996)

9. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE Transactions on Software Engineering 24, 908–926
(1998)

10. Easterbrook, S., Nuseibeh, B.: Using ViewPoints for Inconsistency Management. Software
Engineering Journal 11, 31–43 (1996)

11. Jansen, S., Brinkkemper, S., Finkelstein, A.: Providing Transparency in the Business of
Software: A Modeling Technique for Software Supply Networks. Virtual Enterprises and
Collaborative Networks (2007)

12. Lauesen, S.: COTS Tenders and Integration Requirements. Requirements Engineering 11,
111–122 (2006)

13. Rayport, J., Sviokla, J.: Exploiting the Virtual Value Chain. Harvard Business Review 73,
75–85 (1995)

14. Gordijn, J., Yu, E., van der Raadt, B.: e-Service Design Using i* and e3value Modeling.
IEEE Software 23, 26–33 (2006)

15. Paech, B., Dörr, J., Koehler, M.: Improving Requirements Engineering Communication in
Multiproject Environments. IEEE Software 22, 40–47 (2005)

16. Fricker, S.: Specification and Analysis of Requirements Negotiation Strategy in Software
Ecosystems. In: Intl. Workshop on Software Ecosystems, Falls Church, VA, USA (2009)

17. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Management
Processes in the Automotive Industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)

18. Damian, D., Zowghi, D.: RE Challenges in Multi-Site Software Development Organisations.
Requirements Engineering 8, 149–160 (2003)

19. Damian, D.: Stakeholders in Global Requirements Engineering: Lessons Learned from
Practice. IEEE Software 24, 21–27 (2007)

20. Gorschek, T., Fricker, S., Palm, K., Kunsman, S.: A Lightweight Innovation Process for
Software-Intensive Product Development. IEEE Software (2010)

21. Thompson, L.: The Mind and Heart of the Negotiator. Prentice-Hall, Englewood Cliffs
(2004)

66 S. Fricker

22. Bergman, M., King, J.L., Kyytinen, K.: Large-Scale Requirements Analysis Revisited: The
Need for Understanding the Political Ecology of Requirements Engineering. Requirements
Engineering 7, 152–171 (2002)

23. Grünbacher, P., Seyff, N.: Requirements Negotiation. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements, pp. 143–162. Springer, Heidelberg
(2005)

24. Fricker, S., Gorschek, T., Byman, C., Schmidle, A.: Handshaking with Implementation
Proposals: Negotiating Requirements Understanding. IEEE Software 27, 72–80 (2010)

25. Fricker, S., Grünbacher, P.: Negotiation Constellations - Method Selection Framework for
Requirements Negotiation. In: Working Conference on Requirements Engineering: Foun-
dation for Software Quality, Montpellier, France (2008)

26. Johnson, D., Johnson, F.: Joining Together: Group Theory and Group Skills. Pearson,
London (2009)

27. Wasserman, S., Faust, K.: Social Network Analysis, Cambridge (2009)
28. Gross, T., Koch, M.: Computer-Supported Cooperative Work. Oldenbourg (2007)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 67–78, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Binary Priority List for Prioritizing Software
Requirements

Thomas Bebensee, Inge van de Weerd, and Sjaak Brinkkemper

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

{tbebense,i.vandeweerd,s.brinkkemper}@cs.uu.nl

Abstract. [Context and motivation] Product managers in software companies
are confronted with a continuous stream of incoming requirements. Due to lim-
ited resources they have to make a selection of those that can be implemented.
However, few prioritization techniques are suitable for prioritizing larger num-
bers of requirements. [Question/problem] Binary Priority List (BPL) is a binary
search based technique for prioritizing requirements. Academics and practitio-
ners have referred to it in previous works. However, it has not been described
and researched in detail. [Principal ideas/results] This paper introduces BPL,
examines how it can be used for prioritizing requirements and assesses its pri-
oritization process quality by comparing it to another prioritization technique. A
facilitating tool was developed and applied in two small Dutch product software
companies. [Contribution] The paper demonstrates that the technique can be
successfully used to prioritize requirements and is especially suitable for a me-
dium amount of low-level requirements.

Keywords: Binary Priority List, Binary Search Algorithm, Requirements Pri-
oritization, Software Product Management, Agile Project Management.

1 Introduction

Product software companies produce packaged software products aimed at a specific
market [1]. In product software companies, the number of requirements from the
market typically exceeds the number of features that can be implemented in one
release due to limited resources. Requirements prioritization is aimed at responding
to this challenge. It is defined as “an activity during which the most important re-
quirements for the system (or release) should be identified” [2]. According to the
reference framework for software product management, in which key processes,
actors, and relations between them are modeled, it is the first step in the release
planning process, “the process through which software is made available to, and
obtained by, its users” [3]. The main actor in prioritization is the product manager,
but other stakeholders (development, sales & marketing, customers, partners etc.)
may influence it as well [3].

68 T. Bebensee, I. van de Weerd, and S. Brinkkemper

One particular important stakeholder in software product management is the cus-
tomer, or rather the representative of a large number of customers (market). Agile
Project Management (APM) takes this into account by “energizing, empowering and
enabling project teams to rapidly and reliably deliver customer value by engaging
customer and continuously learning and adapting to their changing needs and
environments” [4].

In the context of APM, product managers are responsible for requirements man-
agement, in contrast to the “traditional understanding” where it was the developers’
responsibility [5]. The product manager is considered the customers’ voice and in his
role as the interface between the market and the development team. As such, he is
also responsible for the prioritization of requirements [5]. In order to correspond to
the prerequisite of an iterative (re)prioritization, agile prioritization techniques must
reflect this dynamic nature. This enables delivering a maximized business value to the
market throughout the project [5].

1.1 Requirements Prioritization Techniques

Prioritization of requirements is usually done during a prioritization session. Three
stages in a prioritization session are distinguished [6]: (1) the preparation stage to
structure the requirements and prepare the execution of the prioritization; (2) the exe-
cution stage where the actual prioritization is performed; and finally (3) the presenta-
tion stage where the prioritization results are presented.

Racheva et al. [5] review a number of agile requirements prioritization techniques.
Based on the descriptions provided by them, these techniques can be classified into
two main categories: techniques used to prioritize small amounts of requirements
(small-scale) and techniques that scale up very well (medium-scale or large-scale),
thus can be used for the prioritization of larger amounts of requirements (Racheva et
al. talk about several dozen requirements).

Small-scale techniques can usually be used without the aid of a software tool and
are often relatively simply structured. The techniques mentioned by Racheva et al. [5]
are the round-the-group prioritization, the $100 allocation technique, the multi-voting
system, the pair-wise analysis, the weighted criteria analysis, the dot voting technique,
and the Quality Functional Deployment approach.

Medium-scale or large-scale techniques might be based on relatively complex al-
gorithms or at least due to the large amount of requirements need tool support. In this
category, Racheva et al. [5] refer to the MoSCoW technique, the Binary Priority List
(they refer to it as “Binary Search Tree technique”), the Planning Game, and
Wiegers’s matrix approach (cf. [7]).

In addition, there are some techniques that do not fit very well into this scheme.
One is ranking based on product definition, which could be used as a complement to
other techniques to first derive a de-personalized measure of priority. Another tech-
nique is the application of mathematical programming techniques to interlink the
whole release planning process. And yet another one is the Analytic Hierarchy Proc-
ess, which is rather complex but limited to a small number of requirements due to the
high number of comparisons necessary (cf. [8]). This technique has received consid-
erable regard in literature (cf. [8], [6], [9]).

 Binary Priority List for Prioritizing Software Requirements 69

1.2 Research Question

Since product managers in product software companies usually have to prioritize
larger amounts of requirements, medium or large-scale techniques are of special in-
terest to them. In this paper we will therefore discuss how one particular of these
techniques, which we call Binary Priority List (BPL), can be applied by product man-
agers of such companies. Since it is a relatively simple technique, we expect it to be
especially interesting for smaller product software companies that want to formalize
their requirements prioritization process. The research question we want to answer is:

How can BPL be applied as a requirement prioritization technique in small
product software companies and how reliable are its results?

In order to answer the research question, the remainder of the paper is structured as
follows. Section 2 gives a rationale for the research done and explains the research
approach used. In section 3, a detailed description of the BPL and the supporting tool
is provided. Section 4 presents the case study approach and a description of the re-
search sites and the results of the case studies are presented. Finally, in section 5,
conclusions are drawn and areas of further research are indicated.

2 Rationale and Research Approach

Binary search is a popular algorithm to sort and search information [10]. A quick
search on the Internet reveals a sizeable amount of publications on it (cf. [11], [12],
[13]). However, this algorithm can also be used to prioritize software requirements. In
this context we refer to it as Binary Priority List (BPL). There is only little notion of
BPL in literature. Only two papers deal with it in more detail.

Karlsson et al. [6] compared BPL to five other prioritization techniques. In their
research, BPL scored relatively weak in terms of time consumption, ease of use, reli-
ability and fault tolerance. On the other hand, Ahl [8] conducted an experiment in
which he compared BPL with four other prioritization techniques in terms of reliabil-
ity of results, ease of use, time consumption and scalability. In his experiment BPL
was considered the best out of the five techniques. Ahl comes to the conclusion that
BPL scales up very well and is therefore especially interesting for prioritizing larger
amounts of requirements.

A literature research did not reveal any evidence that BPL has been described in
detail. Apparently, it has not been examined in the specific context of product soft-
ware companies yet. We think that this makes it an interesting research object and we
therefore describe how it can be applied in that context.

Our further research approach was the following:

1. Description and tool support: We created a detailed description on how to apply
BPL for prioritizing software requirements. In addition, we developed a tool for
product managers to use BPL as a prioritization technique for their software
requirements.

2. Case studies: In order to validate the technique’s application, we conducted case
studies at two product software companies. The goal of these case studies was to
test whether BPL can be applied as a requirements prioritization technique and

70 T. Bebensee, I. van de Weerd, and S. Brinkkemper

how it is perceived by experience software product managers. In addition, the
technique’s prioritization process quality, expressed by the factors reliability, time
consumption and ease of use, was evaluated by comparing it to Wieger’s prioritiza-
tion approach.

This research approach has been designed according to the guidelines proposed by
Hevner, March, Park, and Ram [14]. Case studies (cf. [15]) are considered very suit-
able for industrial evaluations of techniques [16].

3 Binary Priority List

Binary Search Tree (BST) is a widely used algorithm to sort and search information
but it can also be used to prioritize requirements [6]. Applied to the context of re-
quirements prioritization we refer to it as Binary Priority List (BPL). A systematical
structure of the technique is shown in Figure 1.

Fig. 1. Systematic structure of Binary Priority List

The figure shows a list of requirements containing three example requirements (R1,
R2 and R3) and a number of sub-lists (L1, L2, L3 and L4) containing more require-
ments. In accordance with a binary tree structure (cf. [17] and [6]) requirements that
are further up are more important than requirements further down. Therefore, R1’s
priority is lower than that of R2 but higher than that of R3. Subsequently, all require-
ments listed in the sub-lists L1 and L3 have higher and all requirements in L2 and L4
have a lower priority than their root requirement, R2 and R3 respectively.

The steps of applying the technique are (cf. [5], [6] and [8]):

1. Pile all requirements that have been collected from various sources.
2. Take one element from the pile, and use it as the root requirement.

 Binary Priority List for Prioritizing Software Requirements 71

3. Take another requirement and compare it in terms of priority to the root
requirement.

4. If the requirement has a lower priority than the root requirements, compare it to the
requirement below the root and so forth. If it has a higher priority than the root,
compare it to the requirement above the root and so forth. This is done until the re-
quirement can finally be placed as sub-requirement of a requirement without an
appropriate sub-requirement.

5. Steps 2 to 4 are repeated for all requirements.
6. Finally, traverse the list from top to down to get the prioritized order of the

requirements.

BPL can be applied by placing a number of cards, which represent the requirements,
on a blackboard. However, when large numbers of requirements have to be processed,
a software tool becomes necessary. Such a tool is also useful when the structure of the
list is supposed to be altered in the future and should be stored electronically.

Fig. 2. Screenshot of the BPL tool

We developed a simple spreadsheet tool based on Microsoft Excel (see Figure 2).
A macro guides the user through the prioritization process by asking him to compare
different requirements and deciding which one is respectively more important than the
other. The list structure is saved in an implicit form in a hidden spreadsheet, which
allows saving it and changing it at a later time without having to run the whole priori-
tization again.

Due to its simple nature we expect BPL to be especially useful in environments
where no formal prioritization techniques have yet been used to assist the product
manager in prioritizing his criteria. This type of environment is mostly likely to be
found in small product software companies that have recently grown in terms of
requirements to be processed.

72 T. Bebensee, I. van de Weerd, and S. Brinkkemper

4 Case Studies

4.1 Approach

The case studies were divided into three phases: (1) a prioritization with BPL, (2) a
prioritization with Wiegers’s technique, and (3) an evaluation of the two techniques.
To reduce the number of confounding factors as proposed by Wohlin and Wesslen
[16], the same way of input, namely Excel spreadsheets, were used.

We conducted case studies in two small product software companies in which we
compared BPL with Wiegers’s technique in terms of the following three factors:

1. Time consumption: indicates the time necessary to prioritize a certain number of
requirements.

2. Ease of use: describes how easy it is to use the examined prioritization technique
assessed by the respective product manager.

3. Subjective reliability of results: indicates how reliable the result of the prioritiza-
tion technique is in the opinion of an experienced product manager and thus how
applicable the technique is to the respective company.

The ultimate goal was to show that BPL can be applied by product managers in small
product software companies to systematize their requirement prioritization practices. In
order give an additional indication of the technique’s relative prioritization process
quality, we compared it with Wieger’s approach, a commonly used prioritization tech-
nique that is applied to similar numbers of requirements as BPL (cf. [7], [18] and [19]).

4.2 Research Sites

The first case study took place at Edmond Document Solutions (below referred to as
Edmond), a small Dutch product software company. Edmond is a specialist in providing
document processing solutions to document intensive organizations. The company em-
ploys 15 people whereof six are involved in software development. The software devel-
opment process is based on Scrum (cf. [20]), an agile software development method.

The current release planning process takes place in two stages. High-level require-
ments are discussed once a year among the product manager, the operations manager
and the sales director. The selection and order of requirements is defined in an infor-
mal discussion between the three. To gain a good understanding of the market, they
visit exhibitions, read journals and communicate with major customers. The product
manager estimates the required resources and makes sure the needed resources do not
exceed the resources available.

In the second stage of the release planning process, the product manager derives
low-level requirements from the high-level requirements defined in the first stage.
To manage requirements together with tasks, bugs, improvements and impediments
he uses JIRA (cf. [21]), a bug and issue tracking software. Prioritization of low level
requirements takes place by comparing them in pairs with each other. In this process
no formal technique is used. Subsequently, he assigns the requirements to Scrum
sprints, periods of four weeks where developers work on a certain number of
requirements.

The second case study took place at Credit Tools (below referred to as CT), a small
Dutch product software company. CT produces encashment management software.

 Binary Priority List for Prioritizing Software Requirements 73

Five out of the company’s 25 employees are software developers. In addition, there
are two outsourced software developers. The company’s development method is
Rapid Application Development (cf. [22]).

Requirements are generated from customer requests, from information acquired
through consultants and from ideas generated by the company’s owners. JIRA is used
to collect requirements and to communicate with the outsourcing developers. There is
no formal process of requirements prioritization and not all requirements are system-
atically noted down.

4.3 Results

At Edmond, the product manager had prepared a list of 68 low-level requirements.
This number of requirements was not chosen intentionally but corresponded to the
number of requirements to be prioritized at that moment. To perform a prioritization
based on the Wiegers’s approach, he had also estimated for each requirement its
relative benefit, its relative penalty, its relative costs, and its relative risk. At CT, 46
low-level requirements were prioritized instead. Again, this corresponded to the
product manager’s current requirements list.

In the first phase of each case study, the list of requirements was copied into the
BPL spreadsheet tool. The product manager then went through the prioritization proc-
ess, in which he was asked to perform a pair-wise comparison of the requirements’
importance following the BST algorithm.

In the second phase, the requirements and the corresponding values estimated
before were copied into a spreadsheet prepared for Wiegers prioritization. The spread-
sheet automatically calculated relative priorities based on the estimates provided.
Subsequently, the requirements were sorted by increasing priority.

In the evaluation phase, the product managers were asked for their opinion on the
two compared prioritization techniques, especially with regard to ease of use and
reliability. In addition, the time needed to perform a prioritization based on the two
techniques was compared. The results are shown in Table 1.

Table 1. Comparison of the two techniques

 BPL Wiegers
 Edmond CT Edmond CT

Ease of use 8/10 8/10 7/10 4/10
Subjective reliability 7/10 7/10 4/10 5/10

Time consumption 30 min 20 min 120 min 50-60 min

The product managers of both companies had a quite positive impression of BPL,

which is reflected by their rating of the technique in terms of ease of use and reliability
(see Table 1). One indicated that the ten most highly prioritized requirements
corresponded exactly to his own manual prioritization. Lower priority requirements,
however, partly differed from it. He supposed that this could be caused by accidentally
giving wrong answers while going through the prioritization process and proposed to
improve the user interface by including a possibility to correct a wrong choice.
The second product manager indicated that the informal approach to prioritizing

74 T. Bebensee, I. van de Weerd, and S. Brinkkemper

requirements that they had used so far has many similarities with BPL. Therefore, he
considered it as quite suitable for his company.

To compare the results of two techniques, Table 2 shows the ten requirements with
the highest priority according to both techniques.

Table 2. The ten most highly prioritized requirements according to both techniques

 Edmond CT
Priority BPL Wiegers BPL Wiegers

1 5 54 18 19
2 2 23 35 43
3 28 21 25 11
4 27 61 14 18
5 3 63 24 29
6 6 12 16 42
7 23 28 11 3
8 12 45 42 22
9 16 50 33 24

10 7 53 2 13
Avg. Diff. 14.75 8.54

Figure 2 (Edmond case) and Figure 3 (CT case) show the priorities of all require-

ments assigned by Wiegers’s techniques plotted over the priorities assigned by BPL,
which is also represented by the straight line. The stronger the two graphs in each
figure differ, the bigger the difference between the priorities assigned by the two
techniques.

1

11

21

31

41

51

61

1 11 21 31 41 51 61

P
ri

o
ri

ty

Priority based on BPL

BPL

Wiegers

Fig. 3. Edmond Case: comparison of the two prioritization techniques

 Binary Priority List for Prioritizing Software Requirements 75

1

6

11

16

21

26

31

36

41

46

1 11 21 31 41

P
ri

o
ri

ty

Priority based on BPL

BPL

Wiegers

Fig. 4. CT Case: comparison of the two prioritization techniques

In general, in both case studies, the results from both techniques differed strongly
from each other. Interestingly, however, in the second case study, the results of the
two techniques are close to each other for the requirements with the lowest priority.
The average difference of the priorities based on the two techniques was 14.75 in the
first case study and 8.54 in the second case study. The maximal difference between
BPL and Wiegers’s technique was 56 in the first case and respectively 31 in the sec-
ond. Both product managers rate Wiegers’s technique rather low in terms of reliability
(see Table 1). However, the product manager of Edmond noted that a better calibra-
tion might have resulted in an improvement. In their rating of ease of use of
Wiegers’s technique, the two product managers differ considerably. The product
manager of CT mentioned that he found it difficult to estimate values for relative risk
and penalty.

4.4 Discussion

The two techniques compared in these case studies differ in the way the prioritization
criterion is articulated. In contrast to Wiegers’s technique, BPL does not make the
underlying inputs for the prioritization explicit. The results are rather based on the
spontaneous intuition of the person applying it. However, ideally the product manager
bases his considerations during the BPL prioritization on the same inputs, namely
benefit, penalty, costs and risk as in Wiegers’s technique or even considers other
important factors, as for instance attractiveness for development.

In order to make sure that this happens, the question asked in the prioritization dia-
logue of the BPL tool should be formulated accordingly. During the case study the

76 T. Bebensee, I. van de Weerd, and S. Brinkkemper

question was “Is req. X more important than req. Y?” Now, we would suggest formu-
lating it as “Do you want to implement req. X before req. Y?” instead. This formula-
tion more explicitly suggests considering other factors than just importance. However,
we still recommend avoiding prioritization of requirements that differ considerably in
terms of costs to be implemented.

The difference in how explicitly the two techniques require the product manager to
express the factors that determine his considerations also explains the different time
consumption of the two techniques. The prioritization with BPL consequently only
takes one quarter (Edmond case) to one third (CT case) of the time of Wiegers’s
technique.

BPL was perceived the easier of the two techniques. This can also be related to its
simple structure. The user basically only has to compare two requirements at the time
and can apply an own set of criteria.

The strong difference between the two techniques’ prioritization suggests that the
result of a prioritization session depends heavily on the respective technique used.
The accordance of the two techniques’ results for requirements with low priority is
actually the only point where both techniques correspond considerably with each
other. It might be explained by the fact that the product manager considered the last
four requirements as so unimportant that he assigned very low scores to three of the
determining factors of Wiegers’s technique to them.

Both product managers considered the result of BPL considerably more reliable
than that of Wiegers’s technique. This may be attributed to the fact that they could
directly apply their own comparison criteria. As a consequence, the result always
stays relatively close to his intuition. However, Wiegers’s technique might become
more reliable when it is fine-tuned to the circumstances of the environment it is
applied in by changing the weights of the four input factors. To test this, we would
suggest repeating the prioritization with a small amount of requirements and subse-
quently adjust the weights in such a way that the prioritization result corresponds to
the manual one.

Altogether, the results from the two case studies suggest that BPL is an appropriate
technique to prioritize a few dozen requirements as they typically occur in small
product software companies although we cannot generalize from the case studies due
to the limited number of replication. In such an environment, the technique’s overall
prioritization process quality, considering the quality of the process itself and the
quality of its results, seems to be higher than that of Wieger’s technique. BPL could
help small software product companies without a formal prioritization process to
systemize it. The best results are expected when requirements are compared that are
similar in terms of development costs. The technique was used by one single person.
It remains open if it is also suitable with a group of people performing a prioritization
as e.g. in the situation mentioned in the Edmond case study where three people are in
charge of prioritizing the high-level requirements.

However, the case studies also revealed some limitations of the technique. First of
all, BPL does not consider dependencies between requirements. Instead, the user has
to keep them in mind while prioritizing or refining the prioritization list afterwards as
also suggested in the requirements selection phase of the release planning as also
indicated in the reference framework for software product management [3]. In addi-
tion, due to the simple structure there might be a tendency to base the prioritization

 Binary Priority List for Prioritizing Software Requirements 77

just on one single criterion, such as importance rather than consider other factors such
as costs, penalty and risk.

In terms of scalability, the first case study revealed that a pair-wise comparison of
68 requirements can already be quite tiring and lead to mistakes in terms of the com-
parison. Balancing the binary tree and incorporating other BST optimization tech-
niques [11] could reduce the number of comparisons necessary. However, we expect
BPL not to be practicable for numbers much more than 100 requirements.

5 Conclusion and Further Research

The research question, as proposed in section 1, states:
How can BPL be applied as a requirement prioritization technique in small prod-

uct software companies and how reliable are its results?
We conducted case studies in two small Dutch product software companies to vali-

date the applicability of the technique. The product managers of these companies used
the technique to prioritize a few dozen low-level requirements. To assess the reliabil-
ity of the results they did the same with another well-known prioritization technique,
the Wiegers matrix. Subsequently, the results of the two techniques were compared in
terms of time consumption, ease of use and subjective reliability of the results. In both
cases, BPL scored higher than Wiegers’s technique in all aspects of the comparison.

We can conclude that BPL is a suitable technique for prioritizing medium amounts
of requirements and could especially help smaller software product companies to
formalize their requirements prioritization process. This finding complements re-
search performed by Ahl [8] who compared BPL with other techniques in an experi-
ment with a relatively small amount of requirements. BPL seems especially applica-
ble when applied for prioritizing low-level requirements of similar size.

Some limitations of the technique that became apparent are (1) the missing consid-
eration of dependencies between requirements and (2) the fact that the BPL prioritiza-
tion might have the tendency to only be based on one criterion, as for instance benefit,
rather than considering other factors (e.g. costs, penalty, and risk) as well. This effect
might, however, be mitigated by improving the tool user-interface and making the
user aware that he should base his comparison of two requirements on a number of
criteria.

Besides the limitation that two case studies are not a large base of generalizability,
they only investigated the applicability of the technique in prioritization performed by
one person. Further research should examine if BPL can be used in a group prioritiza-
tion, e.g. in situations that require a discussion between different stakeholders. It is
likely that techniques making the prioritization inputs more explicit, such as the
Wiegers matrix, are more appropriate for this kind of prioritization since they provide
a ground for discussion.

We have already referred to the limitation concerning the comparability of re-
quirements with considerably different costs. Further research could investigate what
possibilities exist to further mitigate this limitation. One possibility would be to use
BPL to explicitly prioritize requirements in terms of a number of factors, such as
benefit, penalty, costs and risk, and weight these sub-results in order to compute an
overall prioritization.

78 T. Bebensee, I. van de Weerd, and S. Brinkkemper

References

1. Xu, L., Brinkkemper, S.: Concepts of product software. European Journal of Information
Systems 16(5), 531–541 (2007)

2. Berander, P., Khan, K.A., Lehtola, L.: Towards a Research Framework on Requirements
Prioritization. In: Proceedings of the Sixth Conference on Software Engineering Research
and Practise in Sweden, pp. 39–48 (2006)

3. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a reference framework for software product management. In: Proceedings of the 14th
International Requirements Engineering Conference, pp. 312–315 (2006)

4. Augustine, S.: Managing Agile Projects. Prentice Hall, New Jersey (2005)
5. Racheva, Z., Daneva, M., Buglione, L.: Supporting the Dynamic Reprioritization of

Requirements in Agile Development of Software Products. In: Proceedings of the Second
International Workshop on Software Product Management 2008, Barcelona, pp. 49–58
(2008)

6. Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software
requirements. Information and Software Technology 39(14-15), 939–947 (1997)

7. Wiegers, K.: First things first: prioritizing requirements. Software Developmen 7(9),
48–53 (1999)

8. Ahl, V.: An Experimental Comparison of Five Prioritization Methods. Master’s Thesis.
Department of Systems and Software Engineering, Blekinge Institute of Technology,
Ronneby (2005)

9. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE
Software 14(5), 67–74 (1997)

10. Knuth, D.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1997)
11. Knuth, D.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)
12. Bentley, J.L.: Multidimensional binary search trees used for associative searching.

Communications of the ACM 18(9), 509–517 (1975)
13. Bell, J., Gupta, G.: An evaluation of self-adjusting binary search tree techniques. Software:

Practice and Experience 23(4), 369–382 (1993)
14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. Management Information Systems Quarterly 28(1), 75–106 (2004)
15. Yin, R.K.: Case study research: Design and methods. Sage, Thousand Oaks (2009)
16. Wohlin, C., Wesslen, A.: Experimentation in software engineering: an introduction.

Kluwer, Norwell (2000)
17. Smith, J.D.: Design and Analysis of Algorithms. PWS-KENT, Boston (1989)
18. Young, R.R.: Recommended requirements gathering practices, CrossTalk, pp. 9–12 (April

2002)
19. Herrmann, A., Daneva, M.: Requirements Prioritization Based on Benefit and Cost

Prediction: An Agenda for Future Research. In: Proceedings of the 16th IEEE International
Requirements Engineering Conference, pp. 125–134 (2008)

20. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall, Upper
Saddle River (2001)

21. JIRA Bug tracking, issue tracking and project management software,
http://www.atlassian.com/software/jira/

22. McConnell, S.: Rapid Development: Taming Wild Software Schedules, 1st edn. Microsoft
Press, Redmond (1996)

Towards a Framework for Specifying Software
Robustness Requirements Based on Patterns

Ali Shahrokni and Robert Feldt

Department of Computer Science & Engineering
Chalmers University of Technology

{nimli,robert.feldt}@chalmers.se

Abstract. [Context and motivation] With increasing use of soft-
ware, quality attributes grow in relative importance. Robustness is a
software quality attribute that has not received enough attention in re-
quirements engineering even though it is essential, in particular for em-
bedded and real-time systems. [Question/Problem] A lack of struc-
tured methods on how to specify robustness requirements generally has
resulted in incomplete specification and verification of this attribute
and thus potentially a lower quality. Currently, the quality of robust-
ness specification is mainly dependent on stakeholder experience and
varies wildly between companies and projects. [Principal idea/results]
Methods targeting other non-functional properties such as safety and
performance suggest that certain patterns occur in specification of re-
quirements, regardless of project and company context. Our initial anal-
ysis with industrial partners suggests robustness requirements from dif-
ferent projects and contexts, if specified at all, follow the same rule.
[Contribution] By identifying and gathering these commonalities into
patterns we present a framework, ROAST, for specification of robust-
ness requirements. ROAST gives clear guidelines on how to elicit and
benchmark robustness requirements for software on different levels of
abstraction.

1 Introduction

With software becoming more commonplace in society and with continued in-
vestments on finding better ways to produce it the maturity of both customers’
requirements and our ability to fulfill them increases. Often, this leads to an in-
creased focus on non-functional requirements and quality characteristics, such as
performance, design and usability. But there is also less of a tolerance for faults
and failures; by coming more reliant on software our society also increasingly
requires it to be reliable and robust. Robustness as a software quality attribute
(QA) is defined as [1]: ”The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions.”

The industrial project which is referred to in this paper is the development
of a robust embedded software platform for running internal and third party
telematics services [2]. The platform and services in this context need to be

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 79–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

80 A. Shahrokni and R. Feldt

dependable in presence of erroneous input. Avoiding disturbance to a service
or the platform by other services is another essential property. Considering the
industrial context, robustness is interpreted as stability in presence of erroneous
input and execution stability in presence of stressful environment created by
external services or modules.

Robustness requirement specification is relatively unexplored in the academic
literature. Much has happened in the software engineering field since the few
papers that focus on robustness specification have been published [3]. However,
There are common grounds between robustness and other more explored QA
that can help understanding robustness better. Statements, requirements and
checklists found in the literature about safety, security and dependability re-
quirements can in some cases be applied to robustness too. This fact has been
used to acquire a framework for robustness requirement (RR) specification in
this paper. This commonality depends on the fact that lack of robustness is in
most cases experienced and manifested as lack of other QAs or even functionality
in the system. According to Lutz and Newmann [4,5], by including requirements
for robustness or ”defensive design” in the specifications many safety-related er-
rors can be avoided. In this study Lutz shows that the majority of safety-related
software errors in Voyager and Galileo spacecraft were interface(robustness) and
functional errors.

Many failures associated with requirements are due to incompleteness [3].
This fact has motivated this study and act as a guideline to create a relevant
framework that helps improving the quality of requirement specification process
and ensures better completeness of the set of requirements.

In this paper we propose a framework called ROAST for specifying RR. This
framework is the result of gathering data from different industrial and academic
sources and applying it to the industrial project mentioned earlier. During the
process a number of gaps in the existing work in the field of RR specification
were identified. ROAST is the result of these steps and it can be used as a guide
for RR specification and testing.

2 The ROAST Framework

In this section the framework ROAST for eliciting RR and aligning specification
and testing of RR is shortly described. ROAST is based on identifying patterns
for specification of robustness at different abstraction levels. As mentioned ear-
lier, robustness is not a strictly defined term and can refer to both low-level
(interface and input validation, failure handling) and high-level (service degra-
dation, availability, reliability and dependability) requirement types.

There are three main ideas behind the method: (a) specification levels, (b)
requirement patterns, and (c) alignment from requirements to testing. The first
2 parts are shortly described in this paper and the alignment from requirements
to testing will be discussed in future publications.

Like many NFRs, RR are often summative in nature. This means that they
specify general attributes of the developed system and not specific attributes for

Towards a Framework for Specifying Software Robustness Requirements 81

specific, ‘local’ situations. For example, while a functional requirement (FR) for
a certain feature of a telematics system (‘system should support being updated
with applications during runtime’) can be judged by considering if that specific
feature is present or not, a RR (‘system should be stable at all times, it cannot
shut down because of erroneous inputs or components’) requires testing of a large
number of different system executions. So while a FR talks about one specific
situation, or a definite sub-set of situations, a RR summarizes aspects of the
expected system behavior for a multitude of situations.

To make RRs testable they need to be refined into specific behaviors that
should (positive) or should never happen (negative). Early in the development
of a software system users or developers may not be able to provide all details
needed to pinpoint such a behavior (or non-behavior). However, it would be a
mistake not to capture more general RRs. Our method thus describes different
information items in a full specification of a robustness behavior and describes
different levels in detailing them. This is similar to the Performance Refinement
and Evolution Model (PREM) as described by [6,7], but specific to robustness
instead of performance requirements. The different levels can be used to judge
the maturity of specifying a requirement or as a specific goal to strive for.

Since RR are often summative, i.e. valid for multiple different system situ-
ations, they are also more likely, than specific functional requirements, to be
similar for different systems. We can exploit this similarity to make our method
both more effective (help achieve a higher quality) and efficient (help lower costs).
By creating a library of common specification patterns for robustness, industrial
practitioners can start their work from that library. Thus they need not develop
the requirements from scratch and can use the pattern to guide the writing of a
specific requirement. This can both increase quality and decrease time in devel-
oping the requirements. Our approach and the pattern template we use is based
on the requirements patterns for embedded systems developed by Konrad and
Cheng, that are in turn based on the design patterns book [8, 9].

The verification of different robustness behaviors should be aligned with the
RR. Based on the level of requirement and the pattern the requirement is based
on different verification methods are applicable and relevant. We make these
links explicit in order to simplify the verification and testing process. Note that
the verification method that is relevant for a certain pattern at a certain level
may not actually be a testing pattern. For pattern levels that are not quantifiable
or testable, the verification method may be a checklist or similar technique.

Figure 1 gives an overview of the method we propose, and shows both the
levels, robustness areas with patterns and attached verification methods. In the
following we describe each part in more detail.

2.1 Robustness Requirements Levels

To have a similar model for RR as presented in [7], we need to identify the factors
that can affect robustness. These factors are generally not the same as the ones
affecting performance. We also need to specify these factors in more detail for
them to be useful for practitioners. Since these factors might be simulated at

82 A. Shahrokni and R. Feldt

many different levels of fidelity it is important to realize that level 2 is rather a
continuum of lower or higher fidelity approximations of level 3. We also use our
patterns to clarify different ways for quantifying qualitative requirements.One
important such quantification is transforming a qualitative requirement for the
system as a whole into a local variant specific to certain components and/or
sub-systems. We have introduced named levels for these two different types of
qualitative requirement types.

Figure 1 shows these different levels of a requirement in a diagram. The two
main axis of this model are ‘Specificity’ and ‘Realism’. The former increases when
we detail the scope of the requirement, from a global, system-wide requirement
to be localized to a component or sub-system. It also increases when we quantify
how and to what degree the requirement is to be fulfilled. The ‘Realism’ axis
increases when we mimic the realism of the factors that affects system execution
and its robustness. When we do no or little specification of these factors the
requirement is a RR-3 requirement, i.e. specific but not realistically specified. As
we describe the factors more realistically we increase realism into a RR-4. We
can strive to reach RR-5 by using real-world values and workloads in describing
the factors.

Fig. 1. Robustness Requirements Levels and Typical Refinement

2.2 Robustness Specification Patterns

Konrad and Cheng introduced requirements patterns for embedded systems [8].
They modify the original template introduced by Gamma et al by adding infor-
mation items for ‘Constraints’, ‘Behavior’ and ‘Design Patterns’ and by deleting
the ‘Implementation’ and ‘Sample Code’ items. The focus for Konrad and Cheng

Towards a Framework for Specifying Software Robustness Requirements 83

is to specify the connection from requirements to the design as specified in UML
diagrams. Even though this can be a worthy goal also for our method in the long-
term we would rather keep design alternatives out of the robustness patterns.
Primarily because multiple different designs will be able to support RR; pre-
specifying the allowed solutions would be too restrictive for developers. The
connection from the patterns to verification and test methods that we propose
is more natural since each requirement will typically need to be tested and
each verification activity should be motivated by some requirement. We have
thus modified the template by Konrad and Cheng to reflect this difference in
purpose. A pattern captures a whole family of related requirements but that can
vary according to our levels.

Some of the patterns in ROAST are similar to the ones introduced by Lutz
[4] which account for the majority of safety-related errors Galileo and Voyager
However, when working on a platform in the presence of many services, with
little runtime control, it is essential to predict not only how the system can be
affected through interfaces but even how it behaves when sharing resources with
other services. The 14 identified robustness patterns are presented in table 1
where IS is Input Stability, ES Execution Stability and M stands for Means to
achieve robustness:

Table 1. Robustness Specification Patterns

N Pattern Category

1 Specified response to out-of-range and invalid inputs IS
2 Specified response to timeout and latency IS
3 Specified Response to input with unexpected timing IS
4 High input frequency IS
5 Lost events IS
6 High output frequency IS
7 Input before or during startup, after or during shut down IS
8 Error recovery delays IS
9 Graceful degradation M
10 All modes and modules reachable M
11 run-time memory access in presence of other modules and services ES
12 Processor access in presence of other modules and services ES
13 Persistent memory access in presence of other modules and services ES
14 Network access in presence of other modules and services ES

The patterns presented in this section are partly elicited by studying ear-
lier requirement documents from similar projects and partly through expertise
provided by the participants in the project who are mainly experienced people
in the field of requirement engineering. Earlier academic work presented above
helped us complete and reformulate already identified patterns.

84 A. Shahrokni and R. Feldt

3 Conclusion

The state of the art and practice concerning robustness requirements and testing
is rather immature compared to that of other quality attributes. The proposed
framework, ROAST, is a unified framework for how to interpret robustness and
specify and verify robustness requirements.

ROAST follows a requirement as it often evolves from a high level requirement
to a set of verifiable and concrete requirements. Therefore ROAST consists of
different levels of specification that follow the most typical requirement specifi-
cation phases practiced in the industry. As presented in ROAST, requirements
engineering process tends to start from high level requirements and break them
down into more specific and measurable ones. Therefore, ROAST can be incor-
porated into the activities of most companies with minimal change to the rest
of the process. The commonality often seen between robustness requirements
in different projects is captured in patterns. For different patterns and levels
different verification methods will be more or less useful.

Initial evaluation of ROAST has been carried out in an industrial setting.
Preliminary results are promising and show that the resulting requirements are
more complete and more likely to be verifiable. Further evaluation is underway.

References

1. IEEE Computer Society, IEEE standard glossary of software engineering terminol-
ogy. IEEE, Tech. Rep. Std. 610.12-1990 (1990)

2. Shahrokni, A., Feldt, R., Petterson, F., Back, A.: Robustness verification challenges
in automotive telematics software. In: SEKE, pp. 460–465 (2009)

3. Jaffe, M., Leveson, N.: Completeness, robustness, and safety in real-time software
requirements specification. In: Proceedings of the 11th International Conference on
Software Engineering, pp. 302–311. ACM, New York (1989)

4. Lutz, R.R.: Targeting safety-related errors during software requirements analysis.
Journal of Systems and Software 34(3), 223–230 (1996)

5. Newmann, P.: The computer-related risk of the year: weak links and correlated
events. In: Proceedings of the Sixth Annual Conference on Computer Assurance,
COMPASS 1991, Systems Integrity, Software Safety and Process Security, pp. 5–8
(1991)

6. Ho, C.-W., Johnson, M., Maximilien, L.W.E.: On agile performance requirements
specification and testing. In: Agile Conference 2006, pp. 46–52. IEEE, Los Alamitos
(2006)

7. Ho, C.-W.: Performance requirements improvement with an evolutionary model.
PhD in Software Engineering, North Carolina State University (2008)

8. Konrad, S., Cheng, B.H.C.: Requirements patterns for embedded systems. In: Pro-
ceedings of the IEEE Joint International Conference on Requirements Engineering
(RE 2002), Essen, Germany (September 2002)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston (January 1995)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 85–90, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Metamodel for Software Requirement Patterns∗

Xavier Franch1, Cristina Palomares1, Carme Quer1, Samuel Renault2,
and François De Lazzer2

1 Universitat Politècnica de Catalunya (UPC)
UPC – Campus Nord, Omega building, 08034 Barcelona (Spain)

{franch,cpalomares,cquer}@essi.upc.edu
2 CITI, CRP Henri Tudor

29 avenue John F Kennedy, Luxembourg (Luxembourg)
{samuel.renault,francois.delazzer}@tudor.lu

Abstract. [Context and motivation] Software Requirement Patterns (SRP) are
a type of artifact that may be used during requirements elicitation that also
impact positively in other activities like documentation and validation. In our
experiences, SRP show a great percentage of reuse for the non-functional
requirements needed in call-for-tender requirement specifications. [Question /
problem] We are facing the need of formulating the accurate definition of SRP
for their use in call-for-tender processes to allow reasoning rigorously and know
more about their semantics and applicability. [Principal ideas / results] In this
paper we present a metamodel for SRP around three main concepts: 1) the
structure of SRP themselves; 2) the relationships among them; 3) the
classification criteria for grouping them. [Contribution] We provide a rigorous
definition that shows the concepts that are of interest when defining and
applying SRP.

Keywords: software requirement patterns, requirements reuse, metamodel.

1 Introduction

Reuse is a fundamental activity in all software development related processes. Of
course, requirements engineering is not an exception to this rule [1]. The reuse of
software requirements may help requirement engineers to elicit, validate and docu-
ment software requirements and as a consequence, obtain software requirement speci-
fications of better quality both in contents and syntax [2].

There are many approaches to reuse. Among them, patterns hold a prominent posi-
tion. According to their most classical definition, each pattern describes a problem
which occurs over and over again, and then describes the core of the solution to that
problem, in such a way that it can be used a million times over, without ever doing it
the same way twice [3]. Software engineers have adopted the notion of pattern in
several contexts, remarkably related with software design (e.g., software design and
architectural patterns), but also in other development phases, both earlier and later.

∗ This work has been partially supported by the Spanish project TIN2007-64753.

86 X. Franch et al.

We are interested in the use of patterns for the software analysis stage, namely Soft-
ware Requirement Patterns (SRP).

As [4] shows, there are not much proposals for SRP in the literature, in fact their
exhaustive review lists just 4 catalogues out of 131, compared to 47 design catalogues
and 39 architecture catalogues. Our own literature review has found some more ap-
proaches but still this unbalance is kept. The existing approaches differ in criteria like
the scope of the approach, the formalism used to write the patterns, the intended main
use of patterns and the existence of an explicit metamodel. Table 1 shows the classifi-
cation of these approaches with respect to the mentioned criteria. In the last row we
describe our own method as general-purpose, representing patterns in natural language,
aiming at writing sofware requirements specifications (SRS) and metamodel-based.

About the two approaches that propose a metamodel, [8] focus on reuse of semi-
formal models (e.g., UML class diagrams and sequence diagrams), thus the kind of
concepts managed are quite different. Concerning [6], their focus is on variability
modeling for handling the different relationships that requirements may have. From
this point of view, it is a very powerful approach, but other aspects that we will tackle
here, like the existence of different forms that a pattern may take, or multiple classifi-
cation criteria, are not present in their metamodel.

Table 1. Comparison of approaches to software requirement patterns

 Scope Notation Application Metamodel?
[5] General purpose Natural language Req. elicitation Just templates
[6] General purpose Object models Variability modeling Yes
[7] Business applications Event-Use case Identify patterns No
[8] General purpose Semi-formal models Writing req. models Yes
[9] Embedded systems Logic-based From informal to formal reqs. No

[10] Security requirements UML class diagrams Security goals elicitation No
[11] Security requirements Natural language Req. elicitation in SOC No
[12] General purpose Natural language Writing SRS Just template
[13] General purpose Problem frames + i* Knowledge management No

Ours General purpose Natural language Writing SRSs Yes

The idea of using SRP for reusing knowledge acquired during this stage arose from

the work of the CITI department of the Centre de Recherche Publique Henri Tudor
(CRPHT) on helping SME with no background in requirements engineering to handle
requirements analysis activities and to design SRS in order to conduct call-for-tender
processes for selecting Off-The-Shelf (OTS) solutions [14]. More than 40 projects ran
successfully following the CITI methodology, but the only technique of reuse they
applied was starting a new project by editing the most similar requirement book.
These techniques demonstrated their weaknesses especially in relation to mobility of
IT experts and consultants. It became necessary to provide better means to capitalize
requirements in a high-level manner by creating reusable artifacts like patterns, sup-
porting consultants’ need of creating new SRS.

As a response to this need, we built an SRP catalogue with 29 patterns. The patterns
were all about non-functional requirements since this type of requirements are the less
sensitive to changes in the problem domain. The research method used to build this
catalogue and the underlying metamodel was based on the study of SRS from 7

 A Metamodel for Software Requirement Patterns 87

call-for-tender real projects conducted by CITI; experts’ knowledge, being these ex-
perts: IT consultants, CITI facilitators and UPC researchers; background on require-
ments engineering literature and especially on requirement patterns. We undertook
then a first validation in two real projects. In this paper we focus on the metamodel,
that is, the structure of our proposed SRPs and its classification to facilitate the selec-
tion of patterns. The PABRE process of application of SRP in the context of CITI and
the validation of our current SRP catalogue have been described in [15], therefore
neither the process nor the catalogue’s content are part of the objectives of this paper.

2 Structure of a Requirement Pattern

The first fundamental question to answer is what the structure of a SRP is. Figure 1
shows an example of SRP that illustrates the most significant components. Note the
statement of the goal as a kind of problem-statement of the pattern; goals play a cru-
cial part in the PABRE method built on top of these patterns [15]. SRP metadata (e.g.,
description, author) are not included for the sake of brevity.

Requirement Pattern Failure Alerts

Goal Satisfy the customer need of having a system that provides alerts when system failures occur

Template
The system shall trigger different types of alerts depending

on the type of failure
Fixed Part

Extended Parts

Constraint
multiplicity(Alerts for Failure Types) = 0..*

Template
The system shall trigger %alerts% alerts in case of

 %failures% failures

Parameter Metric

alerts: non-empty set

of alert types

alerts: Set(AlertType)

AlertType: Domain of possible types of alerts

Requirement

Form
Heterogeneous

Failure Alerts

Extended

Part
Alerts for

Failure Types

 failures: non-empty

set of failure types

failures: Set(FailureType)

FailureType: Domain of possible types of failures

Template The system shall trigger an alert in case of failure.

Fixed Part Extended Parts

Constraint

multiplicity(AlertsTypes) = 0..1 and

multiplicity(Failure Types) = 0..1

Template The solution shall trigger %alerts% alerts in case of failure
Parameter Metric Extended Part

Alert Types alerts: non-empty set

of alert types

alerts: Set(AlertType)

AlertType: Domain of possible types of alerts

Template
The system shall trigger alerts in case of %failures%

failures
Parameter Metric

Requirement
Form
Homogeneous

Failure Alerts

Extended Part

Failure Types
failures: non-empty

set of failure types

failures: Set(FailureType)

FailureType: Domain of possible types of failures

Fig. 1. An example of software requirement pattern (parameters appear among ‘%’)

88 X. Franch et al.

Figure 2 shows the metamodel for SRP. It represents the metaclasses for the basic
concepts that appear in the example above and others introduced later. We may ob-
serve that the concept represented by a Requirement Pattern may take different Pat-
tern Forms. Each form is applicable in a particular context, i.e. it is the most appro-
priate form to achieve the pattern’s goal in a particular type of software project. In the
example of Fig. 1, the second form is more adequate if the types of alerts that the
client wants in the system will be the same for all types of failures, if not the first
form must be applied. Applying a SRP, then, means choosing and applying the most
suitable form.

At its turn, each form has a Fixed Part that characterizes it which is always applied
if the form is selected, together with zero or more Extended Parts that are optional
and help customizing the SRP in the particular project. In general, extended parts
must conform to some Constraint represented by means of a formula over some pre-
defined operators (e.g., for declaring multiplicities or dependencies among extended
parts, as excludes, requires). For instance, in the example we may see that the first
form allows repeated application of its single extended part, whilst the second form
allows one application at most of each of its extended parts (since in this form it has
not sense to state more than once the types of alerts and failures).

Both fixed and extended parts are atomic Pattern Items that cannot be further de-
composed. Each pattern item contains a template with the text that finally appears in
the SRS when applied. In this text, some variable information in the form of Parame-
ters may (and usually, do) appear. Parameters establish their Metric, eventually a
correctness condition inv, and also may be related to other parameters (belonging to
other patterns) such that they must have the same value; an example is the parameter
failures that also appears in some form of other SRP in the catalogue, namely the
pattern Recovery Procedures.

Fig. 2. The metamodel for software requirement patterns

 A Metamodel for Software Requirement Patterns 89

SRPs are not isolated units of knowledge, instead there are several types of rela-
tionships among them. For instance, Withall structures his SRP catalogue using a
more detailed proposal of relationships, that may be purely structural like “has”,
“uses” and “is-a”, or with a semantic meaning like “displays” and “is across” [12].
Even generic (unlabelled) relationships are used. A thorough analysis of the SRS
written by CITI shows that relationships may appear at three different levels:
– Pattern Relationship. The most general relationship that implies all the forms

and all the forms’ parts of the related patterns.
– Form Relationship. A relationship at the level of forms implies all the parts of

the related forms.
– Part Relationship. The relationship only applies to these two parts.

In any case, if A is related to B and A is applied in the current project, the need of
applying or avoiding B must be explicitly addressed. The types of relationships are
not predetermined in the metamodel to make it more flexible. The superclass Rela-
tionship includes an attribute to classify each relationship.

A fundamental issue when considering patterns as part of a catalogue is the need of
classifying them over some criteria for supporting their search. In fact, it is important
to observe that different contexts (organizations, projects, standards, etc.) may, and
usually do, define or require different classification schemas. History shows that try-
ing to impose a particular classification schema does not work, therefore we decouple
SRPs and Classifiers as shown in the metamodel. The catalogue is thus considered as
flat and the Classification Schemas just impose different structuring schemas on top
of it. Classifiers are organized into a hierarchy and then SRP are in fact bound to
Basic Classifiers, whilst Compound Classifiers just impose this hierarchical structure.
The use of aggregation avoids cycles without further integrity constraints. Last, a
derived class Root is introduced as a facilitation mechanism.

The metamodel shows that a SRP may be bound to several classification schemas,
and even to more than one classifier in a single classification schema (since no further
restrictions are declared). Also note that we do not impose unnecessary constraints
that could lead the catalogue to be rigid. For instance, we may mention that a classifi-
cation schema may not cover all existing SRP (i.e., some SRP may not be classified).
Although this situation could be thought as a kind of incompleteness, in fact we are
allowing having dedicated classification schemas for particular categories of patterns,
e.g. a performance classification schema, a classification schema just for the non-
technical criteria [16] and then allowing to compound them for having a multi-source
global classification schema. Also we remark that the PABRE method [15] benefits
from this existence of multiple classification schemas since nothing prevents chang-
ing from one schema to another during catalogue browsing.

3 Conclusions and Future Work

In this paper we have presented a metamodel for software requirement patterns (SRP).
This metamodel is the natural evolution of the preliminary proposal of SRP presented
at [17] and shows the current concepts used by the PABRE method [15]. The meta-
model helps to fix the concepts behind our proposal of SRP, improving the quality of
the current SRP catalogue and process and has been be taken as starting point of the
data model of an ongoing support tool. The metamodel has been validated with

90 X. Franch et al.

respect to several software requirement specifications (SRS) written by CITI-CRPHT
in the context of call-for-tender processes as well as in two processes themselves. The
contents of the catalogue have been validated as explained in [15]; the catalogue itself
can be found at the website http://www.upc.edu/gessi/PABRE.

Future work spreads over three main directions. Concerning validation, we are
planning to run new case studies to debug all the PABRE components: metamodel,
catalogue contents and process. We intend to experiment deeper the application of the
SRP catalogue in several contexts (public IT procurement projects and Small- and
Medium-Sized companies’ projects). We also want to study the suitability of the cur-
rent presented metamodels for other types of requirement patterns, that is, patterns for
functional and non-technical requirements. Last, we will analyze the possibility of
converting the current metamodel of a SRP catalogue into a metamodel for a patterns
language which would eventually make possible the adoption of the approach in con-
texts with different needs than those presented here. Although the idea is appealing, it
would require more engineering effort and thus needs careful analysis.

References

1. Lam, W., McDermid, J.A., Vickers, A.J.: Ten Steps Towards Systematic Requirements
Reuse. REJ 2(2) (1997)

2. Roberson, S., Robertson, J.: Mastering the Requirements Process, 2nd edn. Addison-
Wesley, Reading (2006)

3. Alexander, C.: The Timeless Way of Building. Oxford Books (1979)
4. Henninger, S., Corrêa, V.: Software Pattern Communities: Current Practices and Chal-

lenges. In: PLoP 2007 (2007)
5. Durán, A., Bernárdez, B., Ruíz, A., Toro, M.: A Requirements Elicitation Approach Based

in Templates and Patterns. In: WER 1999 (1999)
6. Moros, B., Vicente, C., Toval, A.: Metamodeling Variability to Enable Requirements Re-

use. In: EMMSAD 2008 (2008)
7. Robertson, S.: Requirements Patterns Via Events/Use Cases. In: PLoP 1996 (1996)
8. López, O., Laguna, M.A., García, F.J.: Metamodeling for Requirements Reuse. In: WER

2002 (2002)
9. Konrad, S., Cheng, B.H.C.: Requirements Patterns for Embedded Systems. In: RE 2002 (2002)

10. Matheson, D., Ray, I., Ray, I., Houmb, S.H.: Building Security Requirement Patterns for
Increased Effectiveness Early in the Development Process. In: SREIS 2005 (2005)

11. Mahfouz, A., Barroca, L., Laney, R.C., Nuseibeh, B.: Patterns for Service-Oriented Infor-
mation Exchange Requirements. In: PLoP 2006 (2006)

12. Withall, J.: Software Requirements Patterns. Microsoft Press, Redmond (2007)
13. Yang, J., Liu, L.: Modelling Requirements Patterns with a Goal and PF Integrated Analysis

Approach. In: COMPSAC 2008 (2008)
14. Krystkowiak, M., Bucciarelli, B.: COTS Selection for SMEs: a Report on a Case Study

and on a Supporting Tool. In: RECOTS 2003 (2003)
15. Renault, S., Méndez, O., Franch, X., Quer, C.: A Pattern-based Method for building Re-

quirements Documents in Call-for-tender Processes. IJCSA 6(5) (2009)
16. Carvallo, J.P., Franch, X., Quer, C.: Managing Non-Technical Requirements in COTS

Components Selection. In: RE 2006 (2006)
17. Méndez, O., Franch, X., Quer, C.: Requirements Patterns for COTS Systems. In: ICCBSS

2008 (2008)

Validation of the Effectiveness of an
Optimized EPMcreate as an Aid for
Creative Requirements Elicitation

Victoria Sakhnini1, Daniel M. Berry1, and Luisa Mich2

1 Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, N2L 3G1 Canada

vsakhnin@uwaterloo.ca, dberry@uwaterloo.ca
2 Department of Computer and Management Sciences, University of Trento

I-38100 Trento, Italy
luisa.mich@unitn.it

Abstract. [Context and Motivation] Creativity is often needed in requirements
elicitation, and techniques to enhance creativity are believed to be useful. [Ques-
tion/Problem] This paper describes a controlled experiment to compare the
requirements-elicitation effectiveness of three creativity enhancement techniques:
(1) full EPMcreate; (2) Power-Only EPMcreate, an optimization of full EPMcre-
ate; and (3) traditional brainstorming. [Principal ideas/Results] Each technique
was used by teams of students each of which applied its technique to generate
ideas for requirements for enhancing a high school’s public Web site. [Contri-
bution] The results of this first experiment indicate that Power-Only EPMcreate
is more effective, by the quantity and quality of the ideas generated, than full
EPMcreate, which is, in turn, more effective than brainstorming.

1 Introduction

Many have observed the importance of creativity in requirements engineering, e.g.,
[1,2,3]. Many techniques, e.g., brainstorming [4], Six Thinking Hats [5], and the Cre-
ative Pause Technique [6], have been developed to help people be more creative. Some
of these techniques have been applied to requirements engineering [7,2], and some of
these techniques have also been subjected to experimental validation of their effective-
ness [7,8]. A fuller discussion of these techniques can be found elsewhere [9].

This paper investigates a variant of the creativity enhancement technique (CET),
EPMcreate (EPM Creative Requirements Engineering [A] TEchnique) [9,10], that is
based on the Elementary Pragmatic Model (EPM) [11] and on a general-purpose CET
developed to increase individual creativity [12]. The feasibility of applying EPMcreate
to idea generation in requirements elicitation was established by experiments on two
computer-based system (CBS) development projects with very different characteristics.
Each experiment compared the requirements idea generation of two analysis teams, one
using EPMcreate and the other using brainstorming [9]. Because EPMcreate was a new
CET being applied to requirements elicitation, it had been necessary to define both the
input of a requirements elicitation session with EPMcreate and the process. The main
inputs of such a session are:

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 91–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 V. Sakhnini, D.M. Berry, and L. Mich

– the problem statement or any other information useful for the CBS to be developed,
and

– an understanding of the viewpoints of different stakeholders of the CBS, as defined
by EPM, i.e., based on a systematic enumeration of all possible combinations of
the stakeholders’ viewpoints.

The definition of the process describes the steps and the activities to be performed at
each step.

Effectiveness was chosen as the first research question: Is EPMcreate at least as
effective as brainstorming? Brainstorming was chosen as the basis for a comparative
measure of effectiveness, because: (1) it is well known [1,13]; and (2) there are at least
two studies of its application in requirements elicitation [7,14], one experimental and
the other anecdotal.

The results of the first experiments confirmed that, in at least the situations of the
experiments, EPMcreate:

1. can be used by analysts, both junior and senior, requiring only minimal training and
2. produces more ideas and, in particular, more innovative ideas than does brainstorm-

ing.

Another investigation [10] compared the quality of the ideas produced by the two treat-
ments in these same experiments and concluded that EPMcreate produced more ideas
related to content and service requirements than did brainstorming.

The first experiments exposed a number of issues to be explored in the future. These
include:

Are there optimizations of EPMcreate, which involve fewer steps than EPM-
create, that are at least as effective as EPMcreate in helping to generate ideas
for requirements for CBSs?

Since an optimization of EPMcreate requires fewer steps than the full EPMcreate, if the
optimization is only at least as effective as the full EPMcreate, the optimization is still
an improvement.

The purpose of this paper is to take up this question. This paper describes one opti-
mization of EPMcreate and demonstrates its effectiveness as a creativity enhancement
technique (CET). It reports on a controlled experiment that compares the optimization
with both the original EPMcreate and brainstorming when they are used to help elicit
requirements for an improved version of a Web site.

In the rest of this paper, Section 2 describes the EPMcreate technique, including
the optimization. Section 3 describes the experiment, including its hypotheses and its
steps. Section 4 gives the results of the experiment, analyzes them and determines if the
hypotheses are supported. Section 5 discusses limitations of the results, and Section 6
concludes the paper.

2 The EPMcreate Technique

A page limitation forces the description of EPMcreate in this section to be brief. How-
ever, EPMcreate is described fully elsewhere [9].

Validation of Effectiveness of Optimized EPMcreate 93

2.1 Basic, Full EPMcreate

EPMcreate supports idea generation by focusing the search for ideas on only one logi-
cal combination of two stakeholders’ viewpoints at a time. Sixteen such combinations
are possible, each corresponding to one of the Boolean functions, fi for 0 ≤ i ≤ 15,
of two variables. Some representative function names and their corresponding tables,
in which “V n” means “Stakeholder n’s Viewpoint” and “C” means “combination”, are:

f0
V 1 V 2 C

0 0 0
0 1 0
1 0 0
1 1 0

f3
V 1 V 2 C

0 0 0
0 1 0
1 0 1
1 1 1

f5
V 1 V 2 C

0 0 0
0 1 1
1 0 0
1 1 1

f10
V 1 V 2 C

0 0 1
0 1 0
1 0 1
1 1 0

f15
V 1 V 2 C

0 0 1
0 1 1
1 0 1
1 1 1

The interpretation of these tables in terms of combining the viewpoints of stakeholders
SH1 and SH2 are:

f0 represents disagreeing with everything, independently of either stakehol-
der’s viewpoint.

f3 represents agreeing with SH1 completely.
f5 represents agreeing with SH2 completely.

f10 represents disagreeing with SH2 completely, independently of SH1’s view-
point.

f15 represents agreeing with everything, independently of either stakeholder’s
viewpoint.

If there are more than two stakeholders, the technique can be applied several times, for
each relevant pair of stakeholders.

2.2 EPMcreate in Practice

EPMcreate can be applied in any situation in which ideas need to be generated, e.g., at
any time that one might apply a CET, such as brainstorming. EPMcreate is by no means
the only technique for identifying requirements; it is but one of many that can be used.

When a requirements elicitor (elicitor) determines that EPMcreate is an appropriate
technique during requirements engineering for a CBS under consideration, she first
chooses two kinds of stakeholders, SH1 and SH2, usually users of the CBS, as those
whose viewpoints will be used to drive the application of EPMcreate. She may ask
the CBS’s analysts for assistance in this choice. She then convenes a group of these
analysts. Figure 1 shows a diagram that the elicitor will show the chosen stakeholders
as part of her explanation of EPMcreate. In this diagram, the two ellipses represent two
different stakeholders’ viewpoints. Thus, for example, the intersection region represents
the stakeholders’ shared viewpoints.

The elicitor tells all convened,

Today, we are going to generate requirement ideas in 16 idea generation steps.
In each step, all of you will pretend to think from the viewpoints of two stake-
holders, SH1 and SH2, and for each viewpoint,

94 V. Sakhnini, D.M. Berry, and L. Mich

Stakeholder 1 Shared Viewpoints Stakeholder 2

Other Viewpoints

Fig. 1. Venn Diagram of Two Stakeholders’ Viewpoints

– In Step 0, you will blank out your minds.
– In Step 1, you will try to come up with ideas for problem solutions that are

needed by both SH1 and SH2.
– In Step 2, you will try to come up with ideas for problem solutions that are

needed by SH1 but not by SH2.
– In Step 3, you will try to come up with ideas for problem solutions that are

needed by SH1 without concern as to whether they are needed by SH2.
– In Step 4, you will try to come up with ideas for problem solutions that are

needed by SH2 but not by SH1.
...

– In Step 8, you will try to come up with ideas for problem solutions that are
needed neither by SH2 nor by SH1, but are needed by other stakeholders.
...

– In Step 15, you will try to come up with ideas for problem solutions without
concern as to whether they are needed by either SH1 or SH2.

In the event that the elicitor believes that more than two stakeholders’ viewpoints
should be considered, she will convene more EPMcreate sessions, one for each pair
of stakeholder viewpoints she believes to be useful. Her experience tells her how to
identify subsets of stakeholders and stakeholder pairings that will yield the most new
ideas for the fewest pairs.

2.3 Power Only EPMcreate

The optimization of EPMcreate that the research described in this paper studied is
called the “Power-Only EPMcreate (POEPMcreate)”, because it does only the four
steps whose names are powers of two, namely f1, f2, f4, and f8. Their tables are:

f1
V 1 V 2 C

0 0 0
0 1 0
1 0 0
1 1 1

f2
V 1 V 2 C

0 0 0
0 1 0
1 0 1
1 1 0

f4
V 1 V 2 C

0 0 0
0 1 1
1 0 0
1 1 0

f8
V 1 V 2 C

0 0 1
0 1 0
1 0 0
1 1 0

This optimization, which does only four of the 16 original steps, was theorized to
be at least as effective as the full EPMcreate, because the Boolean function of each of
the rest of the steps can be achieved as a possibly empty disjunction of the functions of
these four power-of-two steps.

Validation of Effectiveness of Optimized EPMcreate 95

3 Experiment Design and Planning

The main objective of this paper is to demonstrate the effectiveness of POEPMcreate as
a creativity enhancement technique (CET). Since the effectiveness of EPMcreate was
demonstrated by comparing it to brainstorming, the effectiveness of POEPMcreate is
demonstrated by comparing it to each of EPMcreate and brainstorming. Therefore, we
conducted an experiment and compared the requirement ideas for one CBS generated
by six groups, two of which used POEPMcreate, two of which used EPMcreate, and
two of which used brainstorming. The same number of subjects participated in the ex-
periment for the same amount of time in each group. Each group was to generate, using
its assigned CET, ideas for requirements for an improved version of an existing Web
site [15]. The Web site was that of a Canadian high school with information directed to
students, parents, teachers, and administrators. The site was chosen for its accessibil-
ity, lack of intellectual property restrictions, and the fact that as educators, the authors
could be considered domain experts. We decided that the two types of stakeholders
whose viewpoints would be adopted by the EPMcreate and POEPMcreate groups were
students and parents. The quantity and quality of the requirement ideas generated by
every group were evaluated.

3.1 Hypotheses

The hypotheses to be tested with the experiment were:

H1. The POEPMcreate is more effective than the full 16-step EPMcreate in helping to
generate requirement ideas.

H2. The full 16-step EPMcreate is more effective than brainstorming in helping to gen-
erate requirement ideas.

Note that H1 is stronger than needed since all we require is that, as an optimization, the
POEPMcreate is at least as effective as the full EPMcreate. Therefore, if H1 were not
supported, it would be acceptable if its corresponding null hypothesis, that there is no
difference in the effectiveness of the two CETs, were supported. As it turned out, H1
is supported. However, it is always nice when an optimization proves to be better than
required.

We considered the hypothesis H2 because the original experiments [9] addressing
this same hypothesis did not get generalizable results, although the results were sig-
nificant for the CBSs and subjects studied in the experiments. The generalization is
addressed by testing the effectiveness of EPMcreate to help generate requirement ideas
for a different CBS with different subjects.

3.2 Measuring the Effectiveness of a CET

The effectiveness of a CET is measured by two numbers about the ideas generated when
using the CET,

1. the quantity, i.e., the raw number, of ideas and
2. the number of high quality ideas.

96 V. Sakhnini, D.M. Berry, and L. Mich

The raw number of ideas generated was used because one of the CETs evaluated, brain-
storming, encourages quantity over quality in its first step.

The basis for evaluating the quality of an idea is the notion that a creative idea is both
new and useful [8]. Therefore, as suggested by Mich et al. [9], the quality of an idea
was evaluated by classifying it into one of 4 rankings:

1. new and realizable
2. new and not realizable
3. not new and not realizable
4. not new and realizable

with 1 being the highest ranking and 4 being the lowest ranking.
An idea is considered new if the idea is not already implemented in the current

Web site. “Realizable” includes several notions: (1) useful for at least one stakeholder,
(2) technically implementable, and (3) socially and legally implementable, thus also
excluding privacy invading ideas.

This ranking embodies three independent assumptions:

– that a new idea is better than a not new idea,
– that a realizable idea is better than a not realizable idea, and
– among the not new ideas, a not realizable one is more creative since it is more

outside the box1.

To evaluate the quality of the ideas, each of two domain experts, namely the first
two authors of this paper, independently classified each idea into one of 4 rankings.
In order to reduce the chances that the authors’ desired results might affect the quality
evaluation, we merged the requirement ideas generated by the 6 groups into one file.
We then sorted the ideas alphabetically to produce the list of ideas to be evaluated. With
the merged and sorted list, it was impossible for any evaluator to see which group, with
its known CET, generated any idea being evaluated. After each evaluator had assigned
a ranking to each idea, the rankings were copied to the original idea files, in order to be
able to evaluate the quality of the requirement ideas of each group separately.

3.3 Steps of the Experiment

The steps for the experiment and their approximate times were:

Step 1: 20 minutes for each subject to filling a general information form, to allow us to
know his or her background: The form included questions about his or her age, gen-
der, native language, computer science (CS) courses, qualifications related to CS,
employment history in CS, and knowledge of the CETs: brainstorming, EPMcreate,
and POEPMcreate.

1 Some might disagree with the ordering of Ranks 3 and 4. However, past experiments used this
ordering of the ranks, and we needed to maintain consistency with the past experiments. In any
case, only ideas receiving Ranks 1 and 2 were considered high quality. Therefore, the ordering
of Ranks 3 and 4 has no effect on the results. Of course, in retrospect, “high quality” means
simply “new”. However, at the time we planned the experiment, we did not know exactly
which ranks would be considered high quality.

Validation of Effectiveness of Optimized EPMcreate 97

Step 2: 30 minutes for each subject to take a creativity assessment test, the modified
Williams test described in Section 3.4.

Step 3: 10 minutes for us to deliver to each group an explanation about the experiment
and the CET it was to use:

– To the EPMcreate and POEPMcreate groups, the explanation was basically the
last two paragraphs of Section 2.2 of this paper. The full-EPMcreate groups
were given the full list of steps, and the POEPMcreate groups were given only
Steps 1, 2, 4, and 8.

– To the brainstorming groups, the explanation emphasized that the main goal of
a brainstorming session is to generate as many ideas as possible. Our recom-
mendations and requests were:
1. Don’t judge, be open to all ideas, and consider them carefully and respect-

fully in an unprejudiced manner.
2. Encourage the unusual with no limits placed on your imaginations.
3. The more ideas you generate, the better.
4. Improve on the ideas of others; no one is the exclusive owner of any idea.
5. Try to produce as many ideas as possible; don’t evaluate any idea and

don’t inhibit anyone from participating.
Each group was told that it had only 120 minutes for its session and that it
could finish session earlier if its members agreed that no other aspects could be
discussed. Then, each group was given a short training session, with practice,
about the CET it was to use.

Step 4: 120 minutes for each group to carry out its requirements elicitation session
using the group’s CET: Each group consisted of 4 subjects and was provided with
two laptops: one to access the Web site that the group was to improve, and the other
to write the requirement ideas generated by the group.
Each group, except one, used the full 120 minutes for requirements elicitation.
Group 5, a brainstorming group, finished 25 minutes early, claiming that its mem-
bers could not generate any more new ideas, but it was not the group that generated
the fewest ideas.

Steps 1 and 2 were to be done in one 50-minute meeting and privately with each
respondent to our advertisement for subjects, and Steps 3 and 4 were to be done in
sessions attended by one or more groups.

3.4 Assigning Subjects into Balanced Groups

To find subjects, we asked hundreds of University of Waterloo undergraduate and grad-
uate students by e-mail or in person to participate in the experiment for an honorarium
of $20.00 (Canadian). Twenty-six students replied, and of these, 24 ended up being sub-
jects in the experiment. We planned for 24 subjects, to make 6 groups of 4 each, plus
2 alternates in case a promised subject did not show. As it turned out, both alternates
were needed.

Among the 24 subjects, 8 were female and 18 were male. The ages of the 24 ranged
from 17 through 39. All the subjects had taken several Computer Science (CS) courses;
12 had taken more than 10 courses, and 12 had taken 3–5 courses. Sixteen subjects had

98 V. Sakhnini, D.M. Berry, and L. Mich

some professional work experience, and 8 did not. Eleven subjects had English as a
native language, and 13 did not. All the subjects were familiar with brainstorming, but
none had heard about any form of EPMcreate. Therefore, one might expect the groups
using brainstorming to have an advantage; as it turned out, any such advantage proved
to be of no help.

Six groups were created for the experiment: Groups 1 and 2 used POEPMcreate as
their CET, Groups 3 and 4 used the full 16-step EPMcreate as their CET, and Groups 5
and 6 used brainstorming as their CET.

In order to create homogeneous groups in the experiment with equivalent spreads of
CS knowledge, English fluency, work experience, and native creativity, we used data we
had gathered about each subject in Steps 1 and 2. The data that we used were the number
of CS courses the subject had taken, the subject’s native language, whether the subject
had worked professionally, and the results of the subject’s taking an adult version of Frank
Williams’s Creativity Assessment Packet [16], hereinafter called the Williams test.

As in past experiments [9,17], the Williams test was administered to each subject to
measure his or her native creativity. The subjects’ test scores were to be used ensure
that any observed differences in the numbers of ideas were not due to differences in the
native creativity of the subjects. In order to avoid having to interpret specific scores,
we used the subjects’ Williams test scores as one of the factors to consider in forming
knowledge-, skill-, experience-, and native-creativity-balanced groups.

The properties of the groups are shown in Table 1. Note that the average Williams
test scores for the 6 groups were in the small range from 70.25 to 71.6 out of a possible
100. We did not consider gender or age in creating the groups because it would have
been very difficult to balance these factors while balancing the other factors. Moreover,
we did not believe that these factors are relevant; and even if they are, they are probably
less relevant than the ones we did consider. Note that the table shown is not exactly the
original table calculated during the formation of the groups; it is the final table produced
taking into account the two alternates that replaced the two original assigned subjects
that did not show. Fortunately, the alternates did not change the balance of the groups.

Table 1. Characteristics of Groups and Their Subjects

G Technique # # # # not # # # # not Aver- Aver-
r Males Fe- native native taken taken worked worked age age
o males in in ≥ 10 3–5 profes- profes- age Wil-
u Eng- Eng- CS CS sion- sion- liams
p lish lish courses courses ally ally test

score

1 POEPMcreate 3 1 1 3 2 2 2 2 25.5 70.66
2 POEPMcreate 2 2 2 2 2 2 3 1 23.8 71.00
3 EPMcreate 2 2 2 2 1 3 3 1 21.5 70.75
4 EPMcreate 3 1 1 3 2 2 1 3 23.4 70.60
5 Brainstorming 4 0 3 1 1 3 1 3 20.2 71.60
6 Brainstorming 2 2 2 2 3 1 3 1 25 70.25

Validation of Effectiveness of Optimized EPMcreate 99

After assigning the subjects to each of the 6 groups, we drew lots for the groups
to determine which groups were going to use each of the three CETs. The first two
columns of Table 1 show the resulting assignment of groups to CETs.

Each group contained the same number of subjects and participated in its session for
the same period of time so that the resources for the all groups would be the same. We
tried to schedule all the groups into one session, but could not find a single time slot that
all could attend. So we allowed each group to choose a time slot that was convenient
for all of its members. So, while the session times for the groups differ, all times were
at the subjects’ convenience. Thus, we believe that differences in the subjects’ moods
and energy levels that might arise from differences in session times were minimized.
Finally, all groups generated requirement ideas for the same Web site. Thus, only the
numbers and quality of the creative ideas generated need to be compared in order to
compare the effectiveness of the three CETs.

4 Experimental Results and Analysis

The experiment was conducted in 4 sessions: Group 2 and Group 3 met on 16 November
2009, Group 6 met on 17 November, Group 1 and Group 4 met on 18 November, and
Group 5 met on 20 November. The sessions went well and offered no surprises. In
particular, the Web site underwent no change in between the first and last sessions.

The rooms were big enough, and each group worked quietly enough that no group
benefited from another. Moreover, since Steps 1 and 2 were done with each subject
privately, no subject knew another subject until the subjects of a group met each other
at the beginning of its elicitation session in which it did Steps 3 and 4. Thus, there was
no information flow between subjects that could have affected the results.

The quantity and quality of the requirement ideas that were generated by the 6
groups, using EPMcreate, POEPMcreate, and brainstorming as CETs were evaluated,
as described in Section 3.

4.1 Evaluation of the Quantity of the Requirement Ideas

As is shown in Figure 2,

– the two POEPMcreate groups generated 74 and 76 ideas,
– the two EPMcreate groups generated 63 and 60 ideas, and
– the two brainstorming groups generated 47 and 36 ideas.

These data show differences between the CETs.
A two-sample T-test for unequal variances allowed determining how significant these

differences are. The claim that POEPMcreate helps generate a larger quantity of require-
ment ideas than does EPMcreate is statistically significant at the α = 0.05 level, with
P = 0.0087. The claim that EPMcreate helps generate a larger quantity of requirement
ideas than does brainstorming is statistically significant not, at the α = 0.05 level, but
only at the α = 0.10 level, with P = 0.088. It so happens that the claim that POEPM-
create helps generate a larger quantity of requirement ideas than does brainstorming is
statistically significant at the α = 0.06 level, with P = 0.053.

100 V. Sakhnini, D.M. Berry, and L. Mich

4.2 Evaluation of the Quality of the Requirement Ideas

The classification of the generated requirement ideas into the four ranks was carried out
as described in Section 3.2 by two domain experts. The Pearson test showed that the
correlation between the two experts’ classifications was r = 0.68, a strongly positive
correlation that is significant at the .01 level. Therefore, it is reasonable to use each
expert’s classification and ranking of the quality of the generated ideas.

Figure 3 shows the number of ideas generated by each group that received each
quality classification, according to the first expert, and Figure 4 shows the number of
ideas generated by each group that received each quality classification, according to the
second expert. In the following analysis, a new idea is one classified with a 1 or 2. These
data show that:

– Of the 74 and 76 ideas the two POEPMcreate groups generated, the average expert
classified 70.5 (95%) and 70.5 (90.3%) of them, respectively, as new.

– Of the 63 and 60 ideas the two EPMcreate groups generated, the average expert
classified 62 (98%) and 56 (93%) of them, respectively, as new.

– Of the 47 and 36 ideas the two brainstorming groups generated, the average expert
classified 45 (96%) and 32 (88%) of them, respectively, as new.

Also these data show differences between the CETs.
The same T-test allowed determining how significant these differences are. The claim

that POEPMcreate helps generate more high quality requirement ideas than does EPM-
create is statistically significant at the α = 0.085 level, with P = 0.081. The claim that
EPMcreate helps generate more high quality requirement ideas than does brainstorming
is statistically significant at the α = 0.12 level, with P = 0.11. Again, it so happens that
the claim that POEPMcreate helps generate more high quality requirement ideas than
does brainstorming is statistically significant at the α = 0.07 level, with P = 0.064.

4.3 Analysis of Corroboratory Data

During the sessions, the subjects volunteered observations and opinions about the CETs
they were using and that they saw others using. More than one POEPMcreate user said
that the POEMcreate is easy to apply and the four foci were helpful. One EPMcre-
ate user complained of having to rush and to change focus 16 times. More than one
POEPMcreate and EPMcreate user said that they felt productive and that they felt that
they had not missed anything as they might have in brainstorming. (Recall that ev-
ery subject knew about brainstorming as a CET.) More than one brainstorming user
said that they felt unfocused, that they jumped among ideas, and that they might have
missed ideas. These observations and opinions corroborate the results of the data and
suggest reasons that EPMcreate and its optimization work as well as they do.

Indeed, one might ask “Why is EPMcreate more effective in helping to generate
requirement ideas than brainstorming?” and “Why is POEPMcreate more effective in
helping to generate requirement ideas than EPMcreate?” After having observed subjects
using these CETs, we suspect that any space-covering variation of EPMcreate is more
effective than brainstorming, because EPMcreate gives a way to systematically visit the
entire idea space. With brainstorming, one may wander aimlessly, overvisiting some

Validation of Effectiveness of Optimized EPMcreate 101

74
76

63
60

47

35

0

10

20

30

40

50

60

70

80

POEPMcreate POEPMcreate EPMcreate EPMcreate Brainstorming Brainstorming

Creativity Enhancement Technique

N
u

m
b

e
r

o
f

Id
e
a
s
 G

e
n

e
ra

te
d

Fig. 2. Graph of the Requirement Ideas Generated by the Groups

66

48 49

42

33

26

23

13 14 13

6

0 0 0 1 0 0

3
5

1
3

1
3

5

0

10

20

30

40

50

60

70

P
O
E
P
M

cr
ea

te

P
O
E
P
M

cr
ea

te

E
P
M

cr
ea

te

E
P
M

cr
ea

te

B
ra

in
st
or

m
in
g

B
ra

in
st
or

m
in
g

New and Realizable

New and Not Realizable

Not New and Not Realizable

Not New and Realizable

Fig. 3. First Expert’s Classifications of Requirement Ideas Generated by Groups

69

57 56

50

36

28

1

13

6 6
8

4

0 0 0 1 0 0

4
6

1
3 3 3

0

10

20

30

40

50

60

70

80

P
O
E
P
M

cr
ea

te

P
O
E
P
M

cr
ea

te

E
P
M

cr
ea

te

E
P
M

cr
ea

te

B
ra

in
st
or

m
in
g

B
ra

in
st
or

m
in
g

New and Realizable

New and Not Realizable

Not New and Not Realizable

Not New and Realizable

Fig. 4. Second Expert’s Classifications of Requirement Ideas Generated by Groups

102 V. Sakhnini, D.M. Berry, and L. Mich

parts of the space and undervisiting other parts of the space. We suspect that POEPM-
create is more effective than EPMcreate because it gives a way to visit the entire space
in fewer steps, with fewer mind shifts between the steps.

4.4 Summary of Analysis

In spite of the small number of data points, that might argue against significance, the
data about both the quantity and the quality of the ideas generated do produce results
that, based on a two-sample T-test for unequal variances, are statistically significant
at various levels ranging from 0.05 to 0.12. The statistical results are corroborated by
the observations and opinions of the subjects. These results thus indicate that POEPM-
create helps to generate more and better requirement ideas than EPMcreate does and
that EPMcreate helps to generate more and better requirement ideas than brainstorm-
ing does. We therefore conclude that Hypotheses H1 and H2 are supported and that the
experiment should be replicated.

5 Threats to Validity and Limitations

The results, despite being somewhat statistically significant, do suffer from the small
numbers of subjects, groups, and thus data points involved in the experiment. It was
difficult to convince students in our School of Computer Science to be subjects. Never-
theless, the results are so promising that we are planning to conduct more experiments.
We will advertise for subjects in the whole university and will use smaller groups. These
differences will give us a chance to see if the results are independent of the subject’s
major field and of the size of the groups.

Regardless, the small number of data points causes the threat of a so-called Type I
error, that of accepting a non-null hypothesis, making a positive claim, when it should
be rejected. Even if the data yield statistically significant results, the small number of
data points increases the probability that the positive observations were random false
positives. The only remedy for this threat is to have more data points or to replicate the
experiment, which we are already planning to do.

Construct validity is the extent to which the experiment and its various measures test
and measure what they claim to test and measure. Certainly, the groups were trying
to be creative in their idea generation. Counting of raw ideas is correct, because as
mentioned, at least one of the CETs compared has as a principal goal the generation of
as many ideas as possible. The method to evaluate the quality of an idea, determining
its novelty and its usefulness, is based squarely on an accepted definition of creativity,
that it generates novel and useful ideas.

The shakiest measure used in the experiment is the Williams test of native creativity.
With any psychometric test, such as the Williams test and the standard IQ tests, there
is always the question of whether the test measures what its designers say it measures.
The seminal paper describing the test discusses this issue [16], and the test seems to be
accepted in the academic psychometric testing field [18]. The original test was designed
for testing children, and the test seems to be used in U.S. schools to identify gifted
and talented students [19]. We modified the test to be for adults attending a university

Validation of Effectiveness of Optimized EPMcreate 103

or working [9,17]. Each of the authors has examined the test and has determined for
him- or herself that the test does examine at least something related to creativity if not
native creativity itself. Finally, the same modified-for-adults Williams test, in Italian
and English versions, has been used in all of our past experiments about CETs and will
be used in all of our future experiments about CETs. Therefore, even if the test does not
measure native creativity exactly or fully, the same error is made in all our experiments
so that the results of all of these experiments should be comparable.

Internal validity is whether one can conclude the causal relationship that is being
tested by the experiment. In this case, we are claiming that the differences in CETs
caused the observed differences in the quantity and quality of the requirement ideas
generated by use of the CETs. We know from being in the room with the groups that
each group was actively using its assigned CET while it was generated its ideas. We
carefully assigned subjects to the groups so that the groups were balanced in all per-
sonal factors, especially native creativity, that we thought might influence the subjects’
abilities to generate requirement ideas. Therefore, we believe that the only factor that
can account for the differences in the number of ideas is the CET being used by the
groups. The opinions volunteered by the subjects during the sessions corroborate this
belief.

External validity is whether the results can be generalized to other cases, with differ-
ent kinds of subjects, with different kinds of CBS. Certainly the small number of data
points stands in the way of generalization.

One threat to external validity is the use of students as subjects instead of require-
ments elicitation or software development professionals. However, our student subjects
had all studied at least a few courses in computer science and software engineering.
Moreover, each group had at least one subject with professional experience in comput-
ing. One could argue that the subjects were equivalent to young professionals, each at
an early stage in his or her career [20].

Another threat to external validity is the particular choice of the types of stakeholders
whose viewpoints were used by EPMcreate and POEPMcreate sessions. Would other
choices, e.g., of teachers, work as well?

Yet another threat to external validity is the single Web site as the CBS for which to
generate requirement ideas. Would a different Web site or even a different kind of CBS
inhibit the effectiveness of any CET?

In any case, our plans for future experiments, to use different kinds of subjects, dif-
ferent sized groups, different stakeholder viewpoints, and different CBSs for which to
generate requirement ideas, address these threats to external validity.

These threats limit the strength of the conclusion of support for the hypotheses and
dictate the necessity to replicate the experiments.

6 Conclusions

This paper has described an experiment to compare the effectiveness of three CETs,
EPMcreate, POEPMcreate, and brainstorming. The experiment tested two hypothe-
ses that say that POEPMcreate is more effective in helping to generate new require-
ment ideas than EPMcreate, which is in turn more effective in helping to generate new

104 V. Sakhnini, D.M. Berry, and L. Mich

requirement ideas than brainstorming. The data from the experiment support both hy-
potheses, albeit not with uniformly high significance, due to the low number of subjects
participating in the experiment. However, the support is strong enough that it is worth
conducting more experiments to test these hypotheses, with more subjects and different
CBSs about which to generate requirement ideas. Should you want to conduct these
experiments, please avail yourself of the experimental materials we used [21].

It is necessary also to compare POEPMcreate with CETs other than EPMcreate and
brainstorming. We suggest also to evaluate the effectiveness of other optimizations of
EPMcreate and of other orderings of the steps of EPMcreate, POEPMcreate, and the
other optimizations.

Mich, Berry, and Alzetta [17] have compared the effectiveness of EPMcreate applied
by individuals to the effectiveness of EPMcreate applied by groups. It will be interesting
to do a similar comparison for POEPMcreate and other optimizations that prove to be
effective.

Finally, recall that Hypothesis H1 was stronger than needed. All that was required
to satisfy us is that POEPMcreate be at least as effective than EPMcreate. While the
support for H1 is not as strong as desired, the support for a logical union of H1 and its
null hypothesis would be stronger. As an optimization, POEPMcreate is easier to apply
and easier to teach than EPMcreate. POEPMcreate’s fewer steps means that either it
requires less time to use or there is more more time in each step for idea generation.
POEPMcreate’s fewer steps means that less time is wasted shifting the user’s mental
focus.

Acknowledgments

The authors thank William Berry for his advice on matters of statistical significance.
They thank the referees and shepherds for their comments, and in particular, they thank
Sam Fricker for his persistence and his conciseness improving suggestions. Victoria
Sakhnini’s and Luisa Mich’s work was supported in parts by a Cheriton School of
Computer Science addendum to the same Canadian NSERC–Scotia Bank Industrial
Research Chair that is supporting Daniel Berry. Daniel Berry’s work was supported
in parts by a Canadian NSERC grant NSERC-RGPIN227055-00 and by a Canadian
NSERC–Scotia Bank Industrial Research Chair NSERC-IRCPJ365473-05.

References

1. Gause, D., Weinberg, G.: Exploring Requirements: Quality Before Design. Dorset House,
New York (1989)

2. Maiden, N., Gizikis, A., Robertson, S.: Provoking creativity: Imagine what your require-
ments could be like. IEEE Software 21, 68–75 (2004)

3. Nguyen, L., Shanks, G.: A framework for understanding creativity in requirements engineer-
ing. J. Information & Software Technology 51, 655–662 (2009)

4. Osborn, A.: Applied Imagination. Charles Scribner’s, New York (1953)
5. Bono, E.D.: Six Thinking Hats. Viking, London (1985)
6. Bono, E.D.: Serious Creativity: Using the Power of Lateral Thinking to Create New Ideas.

Harper Collins, London (1993)

Validation of Effectiveness of Optimized EPMcreate 105

7. Aurum, A., Martin, E.: Requirements elicitation using solo brainstorming. In: Proc. 3rd Aus-
tralian Conf. on Requirements Engineering, pp. 29–37. Deakin University, Australia (1998)

8. Jones, S., Lynch, P., Maiden, N., Lindstaedt, S.: Use and influence of creative ideas and
requirements for a work-integrated learning system. In: Proc. 16th IEEE International Re-
quirements Engineering Conference, RE 2008, pp. 289–294. IEEE Computer Society, Los
Alamitos (2008)

9. Mich, L., Anesi, C., Berry, D.M.: Applying a pragmatics-based creativity-fostering technique
to requirements elicitation. Requirements Engineering J. 10, 262–274 (2005)

10. Mich, L., Berry, D.M., Franch, M.: Classifying web-application requirement ideas gener-
ated using creativity fostering techniques according to a quality model for web applications.
In: Proc. 12th Int. Workshop Requirements Engineering: Foundation for Software Quality,
REFSQ 2006 (2006)

11. Lefons, E., Pazienza, M.T., Silvestri, A., Tangorra, F., Corfiati, L., De Giacomo, P.: An al-
gebraic model for systems of psychically interacting subjects. In: Dubuisson, O. (ed.) Proc.
IFAC Workshop Information & Systems, Compiegne, France, pp. 155–163 (1977)

12. De Giacomo, P.: Mente e Creatività: Il Modello Pragmatico Elementare Quale Strumento
per Sviuppare la Creatività in Campo Medico, Psicologico e Manageriale. In: Franco Angeli,
Milano, Italy (1995) (in Italian)

13. Leffingwell, D., Widrig, D.: Managing Software Requirements: a Unified Approach, 5th edn.
Addison-Wesley, Boston (1999)

14. Telem, M.: Information requirements specification I & II: Brainstorming collective decision-
making approach. Information Processing Management 24, 549–557, 559–566 (1988)

15. Administrator: Sir John A MacDonald High School Web Site (Viewed November 16-20,
2009), http://sja.ednet.ns.ca/index.html

16. Williams, F., Taylor, C.W.: Instructional media and creativity. In: Proc. 6th Utah Creativity
Research Conf., New York, NY, USA. Wiley, Chichester (1966)

17. Mich, L., Berry, D.M., Alzetta, A.: Individual and end-user application of the epmcreate
creativity enhancement technique to website requirements elicitation. Technical report,
School of Computer Science, University of Waterloo (2009),
http://se.uwaterloo.ca/∼dberry/FTP SITE/tech.reports/
MichBerryAlzetta.pdf

18. Dow, G.: Creativity Test: Creativity Assessment Packet (Williams, 1980), R546 Instructional
Strategies for Thinking, Collaboration, and Motivation, AKA: Best of Bonk on the Web
(BOBWEB). Technical report, Indiana University (Viewed March 7, 2010)

19. West Side School District: Gifted and Talented Program. Technical report, West Side Public
Schools, Higden, AR, USA (Viewed March 7, 2010)

20. Berander, P.: Using students as subjects in requirements prioritization. In: Proceedings of the
International Symposium on Empirical Software Engineering (ISESE 2004), pp. 167–176.
IEEE Computer Society, Los Alamitos (2004)

21. Sakhnini, V., Berry, D., Mich, L.: Materials for Comparing POEPMcreate, EPMcreate,
and Brainstorming. Technical report, School of Computer Science, University of Waterloo
(Viewed March 7, 2010),
http://se.uwaterloo.ca/∼dberry/FTP SITE/
software.distribution/EPMcreateExperimentMaterials/

http://sja.ednet.ns.ca/index.html
http://se.uwaterloo.ca/$\sim $dberry/FTP_SITE/tech.reports/MichBerryAlzetta.pdf
http://se.uwaterloo.ca/$\sim $dberry/FTP_SITE/tech.reports/MichBerryAlzetta.pdf
http://se.uwaterloo.ca/$\sim $dberry/FTP_SITE/software.distribution/EPMcreateExperimentMaterials/
http://se.uwaterloo.ca/$\sim $dberry/FTP_SITE/software.distribution/EPMcreateExperimentMaterials/

Towards Multi-view Feature-Based Configuration

Arnaud Hubaux1, Patrick Heymans1, Pierre-Yves Schobbens1, and Dirk Deridder2

1 PReCISE Research Centre, Faculty of Computer Science, University of Namur
Namur, Belgium

{ahu,phe,pys}@info.fundp.ac.be
2 Software Languages Lab, Vrije Universiteit Brussel,

Brussels, Belgium
Dirk.Deridder@vub.ac.be

Abstract. [Context & motivation] Variability models, feature diagrams ahead,
have become commonplace in software product line engineering as a means to
document variability early in the lifecycle. Over the years though, their appli-
cation span has been extended to aid stakeholders in the configuration of soft-
ware products. [Question/problem] However, current feature-based configura-
tion techniques hardly support the tailoring of configuration views to the profiles
of heterogeneous stakeholders. [Principal ideas/results] In this paper, we intro-
duce a lightweight mechanism to leverage multidimensional separation of con-
cerns in feature-based configuration. [Contribution] We propose a technique to
specify concerns in feature diagrams and to build automatically concern-specific
configuration views, which come with three alternative visualisations.

1 Introduction

An increasing number of software developments adopt the paradigm of software prod-
uct line engineering (SPLE) [1]. The goal of SPLE is to rationalise the development of
families of similar software products. A key idea is to institutionalise reuse throughout
the development process to accomplish economies of scale.

SPLE is a very active research area at the crossroads between many software de-
velopment related disciplines, including requirements engineering (RE). An important
research topic in SPLE and RE is feature diagrams (FDs) [2,3]. FDs are a simple graph-
ical formalism whose main purpose is to document variability in terms of features, i.e.
high-level descriptions of the capabilities of the reusable artefacts.

FDs have been given a formal semantics [3], which opened the way for safe and effi-
cient automation of various, otherwise error-prone and tedious, tasks including consis-
tency checking [4,5], decision propagation [4] and process control [6,7,8]. A repertoire
of such automations can be found in [9]. The kind of automation that we focus on in this
paper is feature-based configuration (FBC). FBC is an interactive process during which
one or more stakeholders select and discard features to build specific products. FBC is
one of the principal means to elicit product requirements in SPLE. In practice, there
can be thousands of features whose legal combinations are governed by many and often
complex rules [4]. It is thus of crucial importance to be able to simplify and automate
the decision-making process as much as possible.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 106–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Multi-view Feature-Based Configuration 107

Two challenges that FBC techniques fail to address in a satisfactory way are (1) tai-
loring the configuration environment according to the stakeholder’s profile (knowledge,
role, preferences. . .) and (2) managing the complexity resulting from the size of the FD.

In this paper, we outline a solution strategy to address those two challenges. We do
so by extending FDs with multiple views that can be used to automatically build FD
visualisations. A view is a streamlined representation of a FD that has been tailored
for a specific stakeholder, task, or, to generalize, a combination of such elements—
which we call a concern. Views facilitate configuration in that they only focus on those
parts of the FD that are relevant for a given concern. Using multiple views is thus a
way to achieve separation of concerns (SoC) in FDs. SoC helps making FD-related
tasks less complex by letting stakeholders concentrate on the parts that are relevant to
them while hiding the others. Further tailoring of the visualisations is suggested through
the selection of three alternative visualisations: (1) “greyed out”, (2) “pruned” and (3)
“collapsed”.

In the rest of this paper, we elaborate on these ideas. Section 2 introduces FDs.
A motivating example is given in Section 3. Section 4 presents our basic strategy for
constructing views.

2 Feature Diagram

Schobbens et al. [3] defined a generic formal semantics for a wide range of FD dialects.
We only recall the basic concepts. In essence, a FD d is a hierarchy of features (typi-
cally a tree) topped by a root feature. Each feature has a cardinality 〈i..j〉 attached to
it, where i (resp. j) is the minimum (resp. maximum) number of children (i.e. features
at the level below) required in a product (aka configuration). For convenience, com-
mon cardinalities are denoted by Boolean operators, as shown in Table 1. Additional
constraints that crosscut the tree can also be added and are defined, without loss of
generality, as a conjunction of Boolean formulae. The semantics of a FD is the set of
products. The full syntax and semantics as well as benefits, limitations and applications
of FDs are extensively discussed elsewhere [3,9].

FBC tools use FDs to pilot the configuration of customisable products. These tools
usually render FDs in an explorer-view style [10,4], as in the upper part of Table 1.
The tick boxes in front of features are used to capture decisions, i.e. whether the
features are selected or not. We now illustrate this more concretely with a motivating
example.

Table 1. FD decomposition operators

Concrete
syntax

Boolean
operator and: ⋀

Cardinality ⟨n..n⟩

or: ⋁

⟨1..n⟩

xor: ⨁

⟨1..1⟩ ⟨i..j⟩

f
g
h

non
standard

f
g
h

f
g
h

X
f

g
h

⟨i..j⟩ g

optional

⟨0..1⟩

108 A. Hubaux et al.

3 Motivating Example

Spacebel is a Belgian software company developing software for the aerospace industry.
We collaborate with Spacebel on the development of a SPL for flight-grade libraries
implementing the CSSDS File Delivery Protocol (CFDP) [8]. CFDP is a file transfer
protocol designed for space requirements, such as long transmission delays and specific
hardware characterised by stringent resource limitations. Spacebel built a SPL of CFDP
libraries, where each library can be tailored to the needs of a specific space mission.

The FD of the CFDP SPL counts 80 features, has a maximal depth of four and con-
tains ten additional constraints. A simplified excerpt of this FD appears in the upper part
of Figure 11. The principal features provide the capability to send (Send) and receive
(Receive) files. The Extended feature allows a device to send and receive packets via
other devices. The Reboot feature allows the protocol to resume transfers safely after
a sudden system reboot. PUS stands for Packet Utilisation Standard, part of the ESA

System Engineer

TMTC Integrator

Network Integrator

CFDP

PUS (P)

Extended (E)

Reboot (O)

Send (S)

Receive (R)

Reboot Entity (OE)
Reboot PUS (OP)

Send Acknowledged mode (SA)

Receive Filestore Operations (RF)
Receive Acknowledged mode (RA)

PUS Copy (PC)
PUS Rename (PR)

Send Filestore Operations (SF)

CollapsedPrunedGreyed

Send Filestore Operations

CFDP

PUS

Extended
Reboot

Send

Receive

Reboot Entity
Reboot PUS

Send Acknowledged mode

Receive Filestore Operations
Receive Acknowledged mode

PUS Copy
PUS Rename

CFDP

PUS

PUS Copy
PUS Rename

CFDP

PUS Copy
PUS Rename

⟨0..1⟩

Visualisations

Fig. 1. FD of the CFDP with three alternative visualisations for the view of the TMTC integrator

1 An online version designed with SPLOT, an open source web-based FBC tool, is available at
http://www.splot-research.org/.

http://www.splot-research.org/

Towards Multi-view Feature-Based Configuration 109

standard for transport of telemetry and telecommand data (TMTC). The PUS feature
implements the CFDP related services of this standard.

CFDP typically handles four different stakeholder profiles. Spacebel decides which
features are mature enough for the mission, while leaving as much variability as possi-
ble. The system engineer makes initial high-level choices and passes the task of refining
these choices on to the network integrator and the TMTC integrator who handle the
technical aspects of the CFDP. The configuration options of interest for each of these
profiles are thus different and limited in scope.

A major problem is that access rights to these configuration options are currently
informally defined and FDs offer no way to do so. In the absence of clear access speci-
fications, a simplistic policy has been implemented: all profiles have access to all con-
figuration options. A reported consequence is that sometimes the system engineer does
not have sufficient knowledge to fully understand low-level options and make decisions.
The results were incorrect settings, e.g., inappropriate CPU consumption or excessive
use of memory for a given hardware. Similarly, the integrators were not aware of gen-
eral decisions and could make inconsistent choices wrt. the missions’ goals.

The changing context also demands flexible definitions of access policies. For in-
stance, there can be variations in the access rights (e.g., the integrators are granted
access to more features) or stakeholder profiles (e.g. a dedicated File System integrator
might be needed in some projects).

This situation provided the initial motivation for the solution outlined in this paper.
However, as we will see, the solution is applicable to a wider variety of problems than
the sole definition of configuration access rights. Its ambition is to extend FDs with
support for multiple perspectives.

4 Multi-view Feature Diagrams

Solving the problem described in the previous section requires being able to specify
which parts of the FD are configurable by whom. This can be achieved easily by aug-
menting the FD with a set V of views, each of which consists of a set of features. Each
view vi ∈ V contains some features of the FD. A view can be defined for any concern
that requires only partial knowledge of the FD. Also, as a general policy, we consider
that the root is part of each view.

View specification. There are essentially two ways of specifying views. The most
obvious is to enumerate, for each view, the features that appear in it, or equivalently,
to tag each feature of the FD with the names of the views it belongs too. These are
extensional definitions, which might be very time-consuming and error-prone if the
FD is too big and there is no appropriate tool support. A natural alternative is thus to
provide a language for intensional definitions of views that takes advantage of the FD’s
tree structure to avoid lengthy enumerations. A simple query language like XPath would
be a good candidate to define views and retrieve the corresponding features.

In Figure 1, views have been illustrated by coloured areas. The first area (blue) con-
sists of the high-level features that should be accessible to the system engineer. The last

110 A. Hubaux et al.

two areas (red and orange) respectively contain the technical features that should be
accessible to the TMTC and network integrators.
View coverage. An important property to be guaranteed by a FBC system is that all
configuration questions be eventually answered [7], i.e. that a decision be made for each
feature of the FD. A sufficient condition is to check that all the features in the FD are in
the views of V . The FD of Figure 1 fulfils that condition. But this is not necessary since
some decisions can usually be deduced from others.

A necessary and sufficient condition can be defined using the notion of propositional
defineability [11]. We need to ensure that the decisions on the features that do not appear
in any view can be inferred from (are propositionally defined by) the decisions made
on the features that are part of the view. This can be achieved by translating the FD
into an equivalent propositional formula and apply the algorithm described in [11].
Features that do not belong to any view and that do not satisfy the above condition will
have to be added to existing views, or new views will have to be created to configure
them.

View interactions. Another important property of FBC is that it should always lead to
valid configurations [7]. In our case, doing the configuration through multiple views is
not a problem per se. This is because, although stakeholders only have partial views, the
FBC system knows the whole FD and is thus capable of propagating the choices made
in one view to the others. However, problems can arise when the selection of a feature
in one view depends on the selection of another feature in another view. If overriding
of decisions across views is not allowed, then we must introduce some form of conflict
resolution mechanisms. This is a complex issue for which various strategies can be
elaborated. One is to introduce priorities on views [12]. Another one is to constrain the
order in which views are configured [8].

Visualisation. Views are abstract entities. To be effectively used during FBC, they need
to be made concrete, i.e. visual. We call a visual representation of a view a visualisa-
tion. The goal of a visualisation is to strike a balance between (1) showing only features
that belong to a concern and (2) including features that are not in the the concern but
that allow the user to make informed decisions. For instance, the PUS copy feature is
in the view of the TMTC integrator, but its parent feature PUS is not: How will that in-
fluence the decision making process? To tackle this problem, we see three visualisation
alternatives with different levels of details (see lower part of Figure 1).

The greyed visualisation is a mere copy of the original FD in which the features
that do not belong to the view are greyed out (e.g. P , S, SF and SA). Greyed out
features are only displayed but cannot be manually selected/deselected. In the pruned
visualisation, features that are not in the view are pruned (e.g. S, SF and SA) un-
less they appear on a path between a feature in the view and the root, in which case
they are greyed out (e.g. P). Pruning can have an impact on cardinalities. As shown
in Figure 1, the cardinality of CFDP is 〈0..1〉 whereas it is 〈1..5〉 (or-decomposition)
in the FD. It has to be recomputed to ensure the consistency of the FD. In the col-
lapsed visualisation, all the features that do not belong to the view are pruned. A feature
in the view whose parent or ancestors are pruned is connected to the closest ancestor

Towards Multi-view Feature-Based Configuration 111

that is still in the view. If no ancestor is in the view, the feature is directly connected to
the root (e.g. PC and PR). Similarly, cardinalities have to be recomputed for
consistency reasons.

5 Conclusion

In this paper, we have outlined an approach to specify views on feature diagrams in or-
der to facilitate feature-based configuration, one of the main techniques to define prod-
uct requirements in software product lines. Three alternative visualisations were pro-
posed, each offering different levels of detail. This work was motivated by an ongoing
collaboration with the developers of Spacebel, a Belgian software company developing
software for the aerospace industry. A preliminary evaluation with the developers of an
open source web-based meeting management system is also in progress [13].

A number of future work can be envisioned. First, a more thorough evaluation should
be carried out. Second, we will have to address the problem of conflictual configuration
decisions across views. Third, the formalisation needs to be refined and the implemen-
tation to be pursued. Currently, we only have standalone algorithms implementing our
transformations. The rest of our approach needs to be developed, integrated in a feature
modelling and configuration environment, and properly validated.

Acknowledgements

This work is sponsored by the Interuniversity Attraction Poles Programme of the Bel-
gian State, Belgian Science Policy, under the MoVES project.

References

1. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (July 2005)

2. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon
University (November 1990)

3. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A Survey and
A Formal Semantics. In: RE 2006, pp. 139–148 (September 2006)

4. Mendonça, M.: Efficient Reasoning Techniques for Large Scale Feature Models. PhD thesis,
University of Waterloo (2009)

5. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice 10(1), 7–29 (2005)

6. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through specialization
and multi-level configuration of feature models. Software Process: Improvement and Prac-
tice 10(2), 143–169 (2005)

7. Classen, A., Hubaux, A., Heymans, P.: A formal semantics for multi-level staged configura-
tion. In: VaMoS 2009. University of Duisburg-Essen (January 2009)

8. Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration workflow.
In: SPLC 2009, San Francisco, CA, USA (2009)

112 A. Hubaux et al.

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: A literature review. IST (2010) (preprint)

10. pure-systems GmbH: Variant management with pure: variants. Technical White Paper
(2006),
http://www.pure-systems.com/fileadmin/downloads/
pv-whitepaper-en-04.pdf

11. Lang, J., Marquis, P.: On propositional definability. Artificial Intelligence 172(8-9), 991–
1017 (2008)

12. Zhao, H., Zhang, W., Mei, H.: Multi-view based customization of feature models. Journal of
Frontiers of Computer Science and Technology 2(3), 260–273 (2008)

13. Hubaux, A., Heymans, P., Schobbens, P.Y.: Supporting mulitple perspectives in feature-based
configuration: Foundations. Technical Report P-CS-TR MPFD-000001, PReCISE Research
Centre, Univ. of Namur (2010),
http://www.fundp.ac.be/pdf/publications/69578.pdf

http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.fundp.ac.be/pdf/publications/69578.pdf

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 113–127, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Evaluation of a Method for Proactively Managing
the Evolving Scope of a Software Product Line

Karina Villela, Jörg Dörr, and Isabel John

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{Karina.Villela,Joerg.Doerr,Isabel.John}@iese.fraunhofer.de

Abstract. [Context and motivation] PLEvo-Scoping is a method intended to
help Product Line (PL) scoping teams anticipate emergent features and distin-
guish unstable from stable features, with the aim of preparing their PL for likely
future adaptation needs. [Question/problem] This paper describes a quasi-
experiment performed to characterize PLEvo-Scoping in terms of adequacy and
feasibility. [Principal ideas/results] This quasi-experiment was performed by
two scoping teams in charge of scoping the same PL, where one scoping team
applied first an existing PL scoping approach and then PLEvo-Scoping, while
the other scoping team interweaved activities from both. The two approaches
achieved similar results: The method could be applied in just one day, and it
was considered adequate and feasible. [Contribution] Ideas on how to improve
the method and its tool support have been obtained, and similar results are ex-
pected from other professionals facing the problem of evolution-centered PL
scoping. However, further empirical studies should be performed.

Keywords: Quasi-experiment, Empirical Study, Product Line Scoping,
Requirements Volatility Analysis, Product Line Evolution Planning.

1 Introduction

Product Line (PL) Engineering is a software development approach that aims at ex-
ploiting commonalities and predicted variabilities among software products that
strongly overlap in terms of functionality [1,2]. According to Knauber and Succi [3],
PLs are already intended to capture the evolution of software products and to last for a
fairly long time. In this context, one of the most important aspects to consider is the
ability of PLs themselves to evolve and change [3]. However, Savolainen and
Kuusela [4] emphasize that any given design can only handle a limited number of
different kinds of changes and, therefore, it is crucial to predict what kind of changes
will be required during the lifespan of a PL.

Current PL engineering methods [1,2,5] address pre-planned and more straightfor-
ward proactive changes across products or different versions of products. They do
not support the prediction of the not-so-straightforward future changes in products
and features, which are often triggered by change requests from inside or outside the
organization (such as a change due to the decision of a technology provider to

114 K. Villela, J. Dörr, and I. John

discontinue the production of a hardware component). Therefore, a good commonal-
ity and variability analysis is not enough [6].

PL scoping is the PL requirements engineering step in charge of deciding in which
parts of an organization’s products systematic reuse is economically useful and should
thus be supported by a PL infrastructure [7,8]. When focusing on this phase, it is cus-
tomary to use the identified requirements that are outside the current scope as candidates
for future addition as well as to use those requirements to evaluate the design of the
current PL. However, this does not go as far as an explicit volatility analysis.

The method PLEvo-Scoping (Product Line Evolution Support at Scoping) was de-
fined to complement and extend PL scoping approaches by helping the PL scoping
team anticipate emergent features and distinguish unstable from stable PL features.
The aim is to prepare the PL for likely future adaptation needs by planning for
changes beforehand. Thus, the PL scoping approach can keep its focus on current,
planned, and potential PL products and features, while PLEvo-Scoping addresses the
prediction and planning for the evolution of these products and features, while also
contributing to the discovery of further innovative features.

This article describes a quasi-experiment performed to characterize the adequacy
and feasibility of PLEvo-Scoping with a twofold purpose: 1) obtaining feedback from
PL practitioners on how to improve the method; and 2) providing first empirical data
to help PL organizations decide about trying out the method. Two scoping teams
(each composed of three professionals) had the task of scoping the same PL by using
PLEvo-Scoping together with an existing PL scoping approach, but with two different
arrangements of sub-tasks. We believe this quasi-experiment has been a relevant step
towards the evaluation of the method against other potential approaches, because any
PL organization is only willing to test a new method if there is initial evidence that
the benefits to be obtained are worth the effort required to apply it. It is not the goal of
this paper to describe the state of the art related to PLEvo-Scoping or the method
itself in detail; this information can be found in [9] and [10].

In the reported quasi-experiment, PLEvo-Scoping was applied in the Ambient As-
sisted Living (AAL) domain for the second time. Products in this domain support
elderly people in staying at home longer instead of moving to a nursing home. How-
ever, the two applications of the method in this domain were completely different.
The first one [9] can be considered an assertion study [11], in which one of the au-
thors applied the method herself after studying the application domain, while domain
experts just validated the method results, indicating the necessary corrections. The
object was the specific AAL services to be provided by an AAL demonstrator.
Concerning the quasi-experiment, the method was exclusively applied by the two PL
scoping teams and the object was the AAL platform PL. An AAL platform is an archi-
tectural component that provides infrastructure services on top of which the specific
AAL services are provided.

In the next sections, we provide an overview of PLEvo-Scoping (Section 2) and
briefly discuss how it interfaces with existing PL scoping approaches (Section 3), so
that the quasi-experiment can be understood better. Section 4 reports the quasi-
experiment and is organized as follows: definition, planning, operation, data analysis,
and comments and interpretation of the results. The last section contains our
conclusions and the next stages of this research.

 Evaluation of a Method for Proactively Managing the Evolving Scope 115

2 Method Overview

PLEvo-Scoping consists of four steps to be carried out by the PL scoping team, which
is generally composed of people with the following roles [8]: scoping expert, PL
manager, and domain expert, the latter with either the technical or the market point of
view.

The first step is Preparation for Volatility Analysis, which establishes the basis for
the volatility analysis and is made up of the following activities:
− Activity 1: Establish the timeframe that restricts the current volatility analysis, and
− Activity 2: Identify/update the types of system components that are generally in-

volved in the assembly of the planned PL products.
The second step is called Environment Change Anticipation and has the purpose of
identifying and characterizing facts that may take place in the PL’s environment
within the pre-established timeframe, and that may allow or require adaptations in the
PL. This step comprises the following activities:
− Activity 3: Identify the actors that play a role in the PL’s environment and who

give rise to or realize facts that may affect the PL,
− Activity 4: Identify and characterize facts that may be caused or realized by the

identified actors and have the potential for changing the PL’s environment,
− Activity 5: Verify the perspective of new actors playing a part in the PL’s environ-

ment within the volatility analysis timeframe and characterize how these actors
may change such an environment, and

− Activity 6: Classify the previously characterized facts according to their relevance,
in order to decide whether and when they should have their impact in terms of ad-
aptation needs analyzed.

The next step is called Change Impact Analysis. Its purpose is to analyze the impact
of the identified facts on the PL and consists of:
− Activity 7: Identify the adaptation needs that may be allowed or required in the PL

as a consequence of the previously identified facts,
− Activity 8: Characterize the adaptation needs by identifying the PL features to be

affected by them, and by estimating their business impact, technical penalty, and
technical risk, and

− Activity 9: Classify the adaptation needs according to relevance, in order to decide
whether and when the inclusion of an adaptation need should be planned.

Once the most relevant adaptation needs have been selected, it is time for PL Evolu-
tion Planning. The idea is to establish when and how relevant adaptation needs are
expected to be introduced into the PL, and prepare it for accommodating the adapta-
tion needs beforehand. The activities that make up this step are:
− Activity 10: Determine when and in which products relevant adaptations are ex-

pected to be introduced, which gives rise to the PL Evolution Map,
− Activity 11: Analyze the alternative solutions for dealing with relevant adaptation

needs, in terms of effort, cost, effectiveness, and strategic alignment,
− Activity 12: Select the best alternatives for dealing with the adaptation needs, and
− Activity 13: Revise the PL Evolution Map in order to adjust it to the alternative

solutions selected, if necessary.

116 K. Villela, J. Dörr, and I. John

Procedural descriptions, checklists, guidelines, and templates of documents are pro-
vided to support the PL scoping team in carrying out each activity of the method. In
addition, optional activities have been identified in order to address the different lev-
els of experience in the domain that different teams may have, and also to take into
account time restrictions, by providing a light-weight variant of the method. Most
optional activities use systematic reasoning to identify and characterize facts and
adaptation needs that otherwise would have to be identified from scratch. Therefore,
they are very important in terms of the completeness of the method results, especially
when the PL scoping team is not very experienced in the application domain. The
other optional activities aim at making the method scalable when too many facts or
adaptation needs are identified.

After applying the method, the most relevant adaptation needs likely to be allowed
or required within the volatility analysis timeframe are expected to be identified and
included in a plan for PL evolution. Excerpts from output documents can be found in
[9] and [10].

3 Integration into the Scoping Process

PLEvo-Scoping is expected to be carried out after or in parallel to the standard PL
scoping process, provided the mandatory method inputs are available (Description of
Products and List of PL Features). Broadly speaking, the method takes those manda-
tory inputs together with relevant information for reasoning on requirements
volatility, and helps to identify a set of adaptations likely to be requested or allowed
in an established future timeframe, pointing out on a map how the PL features will be
affected by these adaptations. New features may arise; others may become obsolete; it
may be revealed that a feature will be affected by many potential future adaptations
and therefore is an unstable feature; or it may be revealed that an adaptation will af-
fect many different features and thus requires special attention. Therefore, the List of
PL Features can be improved, by including the newly identified features, characteriz-
ing the PL features according to their volatility, and changing the priority of some PL
features based on their volatility or relevance for a certain adaptation need. The Prod-
uct Release Plan, which is not a mandatory but a much desired method input, is
augmented with the indication of when and in which products relevant adaptation needs
are expected to be introduced. Furthermore, the analysis of alternative solutions for
dealing with the adaptation needs may affect the prioritization of assets to be built for
the PL and will indicate what kind of evolvability should be built into them.

PuLSE-Eco [7,8] is the technical component of the PuLSE® methodology [5] in
charge of supporting PL scoping. This technical component, which is the best known
and best documented scoping approach so far, is used below to illustrate the integra-
tion between PLEvo-Scoping and a concrete PL scoping process, because this
approach was used in the quasi-experiment that will be described in the next sections.

PuLSE-Eco’s generic process comprises three phases: Product Line Mapping,
Domain Potential Assessment, and Reuse Infrastructure Scoping (see the top part of
Figure 1). During the Product Line Mapping phase, the products and features of a PL
are identified and the distribution of features to products is established. The goal is to
provide an overview of the PL. During the Domain Potential Assessment phase,

 Evaluation of a Method for Proactively Managing the Evolving Scope 117

sub-domains are analyzed according to assessment dimensions in order to support the
decision on whether to include these sub-domains in the PL infrastructure or not.
During the Reuse Infrastructure Scoping phase, existing and planned assets are identi-
fied and their reuse potential is quantified. The aim of this last phase is to plan the PL
infrastructure and identify development needs. Figure 1 shows the main outputs of
these phases and indicates in which PLEvo-Scoping activities they are requested
(mandatory inputs) or can make a contribution (optional inputs). On the other hand,
the outputs of PLEvo-Scoping are used to update the (Quantified) Product Feature
Matrix and the Product Release Plan as already explained, once the (Quantified) Prod-
uct Feature Matrix contains the List of PL Features; as well as to augment the Domain
Assessment Report with additional information about the stability of the domains, one
of the assessment dimensions proposed in PuLSE-Eco [7]. PLEvo-Scoping can also
be integrated into other scoping processes, as they all provide similar results [7].

Fig. 1. Interface between a PL scoping process and PLEvo-Scoping

4 Quasi-experiment

4.1 Definition

The goal of this quasi-experiment was to characterize the adequacy and feasibility of
PLEvo-Scoping, by collecting the perception of the quasi-experiment participants as
well as some quantitative measures. These empirical data are expected to support PL
organizations in making the decision to try out the method, which will give us the
opportunity to perform further empirical studies, such as a case study in a software
company. In addition, feedback provided by the quasi-experiment participants should
be used to improve the method. According to the template proposed in the

118 K. Villela, J. Dörr, and I. John

Goal/Question/Metric method [12], the goal of this quasi-experiment can be
represented as follows: Analyze the PLEvo-Scoping method for the purpose of charac-
terization with respect to its adequacy and feasibility from the point of view of the
researchers, PL managers, and domain experts in the context of Fraunhofer IESE’s
employees in charge of scoping an Ambient Assisted Living PL.

Concerning the context, Fraunhofer IESE has a research program on Ambient As-
sisted Living (AAL), which is funded by various sources in the form of independent
projects. Since there are a lot of overlaps between the different projects and the AAL
platform is of strategic interest for the institute, the research program leader needed
scoping of an AAL platform PL, so that a PL infrastructure capable of supporting the
reuse of the commonalities could be created. He also agreed to using PLEvo-Scoping to
extend Fraunhofer’s approach for PL scoping (PuLSE-Eco [7,8]), since a simplified
version of the method had already been applied to anticipate the evolution of a single
product in this domain and actually provided insightful ideas on features for the next
version of the product [9]. Therefore, there was a real problem to be solved by profes-
sionals at Fraunhofer IESE, which, on the one side, strongly limited the degree of
control over the quasi-experiment, but, on the other side, increased the possibility of
generalizing the quasi-experiment results to other companies with PL competencies.
The AAL Platform PL scoping was not carried out as part of a research project, but
rather as an internal project of strategic relevance.

4.2 Planning

From the goal definition, two propositions were defined: P1) PLEvo-Scoping is ade-
quate, and P2) PLEvo-Scoping is feasible. It was established for this quasi-experiment
that PLEvo-Scoping would be considered adequate (P1) if its immediate benefits (in
terms of changes in the outputs of the scoping process and information made available
to guide further activities and decisions) were considered to support PL evolution, ac-
cording to the judgment of the quasi-experiment participants; and feasible (P2) if the
obtained benefits were worth the effort required for applying the method, which would
also be judged by the quasi-experiment participants. In both cases, the quasi-experiment
participants should be provided with the results of the scoping process and support their
judgment with both qualitative and quantitative information.

By using the Goal/Question/Metric method [12], the quasi-experiment propositions
were broken down into questions and metrics. Each metric was defined in terms of
meaning, type of measure, measure scale, source, and collecting procedure [13]. The
acceptance criteria were also defined during the planning of the quasi-experiment and
will be presented in Subsection 4.4 (Data Analysis).

This quasi-experiment was designed to be performed in two days by two scoping
teams in charge of separately scoping the AAL platform as a PL. Group 1 applied
treatment 1, which consisted of first using PuLSE-Eco to conduct the scoping process,
already taking into consideration the evolution concern, and then applying PLEvo-
Scoping; while Group 2 applied treatment 2, which consisted of interweaving the activi-
ties of PuLSE-Eco and PLEvo-Scoping. The purpose of treatment 1 was to allow a clear
distinction between the results before and after applying PLEvo-Scoping, while the
purpose of treatment 2 was to avoid the confounding factor (present in treatment 1) of
providing the scoping team with extra time to think about PL scope evolution after

 Evaluation of a Method for Proactively Managing the Evolving Scope 119

applying PuLSE-Eco. This confounding factor would put in doubt whether the obtained
benefits were a result of this extra time or a result of the application of PLEvo-Scoping.
In addition, the application of PLEvo-Scoping in the two treatments aimed at strength-
ening the validity of the results through corroboration. Two days were allocated to each
treatment due to time restrictions.

Each group consisted of three people: one PL manager and two domain experts,
one with the technical point of view and the other one with the market point of view.
All participants were selected by the leader of the AAL research program, taking into
account their profiles and involvement in AAL research projects. Two experts on the
respective two methods (PuLSE-Eco and PLEvo-Scoping) were allocated to guide the
pertinent part of the scoping process in both treatments. Neither the PuLSE-Eco nor
the PLEvo-Scoping expert was involved in the AAL research program, so their role in
the scoping process was comparable to that of an external consultant.

As PL scoping teams are not generally composed of many people, all necessary
roles were represented, and the PL scoping process was to take just a couple of days
[8]; this design was realistic compared to industrial settings.

The threats to the validity of this quasi-experiment have been analyzed based on
the set of threats to validity provided in [14]. We have addressed most validity threats:
− Fishing: Subjective classifications and measures were only provided by the partici-

pants of the quasi-experiment; two types of open questions were included; two
people with no special expectations in the quasi-experiment results were involved
in its data analysis.

− Reliability of measures: The quasi-experiment participants defined subjective
measures and/or provided values for them based on objective measures; the in-
struments were revised by three people with different profiles (one M.Sc. student,
one PL professional, and one expert in empirical studies).

− Mono-method bias: Both quantitative and qualitative measures were used; meas-
ures were cross-checked whenever possible; one group’s contributions were con-
firmed by the other group.

− Interaction of selection and treatment: One representative of each expected role
was allocated to each group and all participants answered a profile questionnaire to
check whether they were really appropriate representatives of the roles they were
expected to have.

A discussion of further threats (reliability of treatment implementation, diffusion or
imitation of treatments, hypothesis guessing, compensatory rivalry, and resentful
demoralization) can be found in [13]. As is common in (quasi-)experiments, some
validity threats had to be accepted:
− Low statistical power: The number of subjects in this quasi-experiment made it

impossible to perform any statistical analysis.
− Random heterogeneity of subjects: As the allocation of people to the treatments

was based on convenience, the two groups might not have had similar knowledge
and backgrounds.

− Selection: Participants were selected by the research program leader according to the
expected profiles; the PLEvo-Scoping expert, who was not a Fraunhofer employee at
that time, had had previous contact with those two participants; the PuLSE-Eco
expert was from the same organization as the quasi-experiment participants.

120 K. Villela, J. Dörr, and I. John

We decided to deal with the lack of statistical tests as proposed by Yin [15], who
claims that an effective way of strengthening the results of empirical studies when no
statistical test is applicable is to perform them further. Table 1 and its related com-
ments and interpretation (see Subsection 4.5, first paragraph) show that the two
groups were comparable indeed, and people with the same role in the different groups
had similar profiles (knowledge and background). Therefore, the threat of Random
heterogeneity of subjects did not appear to be real. Concerning the threat of Selection,
a question in the profile questionnaire was added that asked about the participant’s
motivation for taking part in the scoping process of the AAL platform. In addition, the
scoping activities were conducted as they would have been conducted with any exter-
nal customer. Ultimately, this threat did not appear to be real either, because some of
the worst evaluations were made by one of the two quasi-experiment participants who
had previous contact with the PLEvo-Scoping expert. Regarding the PuLSE-Eco
expert, it should be noted that PuLSE-Eco was not the object of study of this quasi-
experiment and any possible bias would have affected both treatments.

4.3 Operation

The quasi-experiment took place in the form of one two-day workshop for each
treatment. The first part of each workshop was dedicated to the presentation of the
application domain, the quasi-experiment’s task, as well as relevant information for
assuring a common understanding of the PL to be scoped. After that, each member of
the scoping team completed the profile questionnaire.

Due to time restrictions, the PLEvo-Scoping expert suggested that the groups divide
tasks in some activities according to the participants’ role. Group 1 used this approach
when identifying and characterizing facts (activity 4, part of the step Environment
Change Anticipation), when identifying adaptation needs (activity 7, part of the step
Change Impact Analysis), and when performing the step PL Evolution Plan as a whole.
Group 2 decided to perform all activities as a group.

Group 2 received extra training and extra time to improve their lists of facts and
adaptation needs because the initial number of these was very low (15 and 9, respec-
tively). As scoping the AAL platform PL was a real problem, the goal of this quasi-
experiment from the viewpoint of the leader of the AAL research program was to get
the highest number and the best quality of results possible from each group. During
the analysis of the impact of the adaptation needs on the set of PL features (part of
activity 8, in the Change Impact Analysis step), the method expert asked Group 1 to
define a criterion to distinguish unstable features from stables ones, based on the
number of adaptation needs causing changes in the PL features. Group 1 defined that
features affected by at least five adaptation needs would be considered unstable. The
method expert asked Group 2 to adopt the same criterion.

Another remark concerning the quasi-experiment execution is related to the activi-
ties of analyzing the alternative solutions for dealing with relevant adaptation needs
and selecting the best alternatives, which are part of the PL Evolution Plan step (see
Section 2, activities 11 and 12). Due to time restrictions, only the most appropriate
alternative solution for each adaptation need was analyzed.

 Evaluation of a Method for Proactively Managing the Evolving Scope 121

4.4 Data Analysis

Table 1 summarizes the profiles of the quasi-experiment participants. In order to make
data summarization and presentation easier, the 5-point ordinal scales were converted
into a numerical scale (the higher the number, the better experience, knowledge, or
motivation). The domain expert from Group 1 who had the technical viewpoint (column
Group 1 - TE) did not answer the question about his capability of providing an overview
of the AAL PL and its goals. This has little relevance for the data analysis, because it
was not expected that the technical representative would have this capability.

Table 1. Profile of the scoping teams

Group 1 Group 2 Profile Item
TE ME PLM TE ME PLM

Experience in AAL 3 4 4 2,5 3 4
Knowledge of the AAL platform 5 2 2 5 3 2
Experience in PL Scoping 2 2 1 1 2 4
Technical knowledge in the AAL context 4 3 4 3 4 4
Market knowledge in the AAL context 2 4 4 3 4 4
Capability of providing an overview of
the AAL PL and its goals

 4 3 2 3 4

Motivation 4 4 4 4 4 5

TE: domain expert with technical viewpoint; ME: domain expert with market viewpoint;
PLM: product line manager.

Table 2 presents a quantitative overview of the scoping process results. The values

in parentheses represent the number of facts or adaptation needs that had been given
as examples during the extra training and were confirmed by Group 2.

Table 2. Quantitative overview of the workshops

PuLSE-Eco Group 1 Group 2
Number of features 52 57
Number of products 7 7
Number of assessed domains 8 7
PLEvo-Scoping Group 1 Group 2
Number of facts 30 15 + (11)
Number of adaptation needs 20 12 + (3)
Number of adaptation needs that were planned 8 5

Data Analysis related to Adequacy. Table 3 shows the participants’ subjective
evaluation of the three levels of support provided by PLEvo-Scoping (see legend at
the bottom of Table 3 for details). Each cell gives the number of participants from a
certain group who selected the value on the left side to evaluate the support in question.
No participant selected the value “Not necessary, nor sufficient” for any level of sup-
port, which would be equivalent to 1 on the numeric scale. Participants were asked to
indicate missing or annoying information when selecting those values. The annoying
(not necessary, but required or provided) information related to Perception of Support 1

122 K. Villela, J. Dörr, and I. John

(column Support 1 - ST1) was “The relationship between actors’ goals and facts is not
so clear. Actors, facts, and adaptation needs would have provided enough support”. The
missing (necessary, but not required or provided) information related to Perception of
Support 3 (column Support 3 - ST2) was “The basic alternative solutions have to be
tailored to the concrete situation, which makes the activity difficult”. Therefore, the
values of # Annoying Information 1 for Group 1 and # Missing Information 3 for Group
2 were both 1, while the remaining quantitative metrics related to missing and annoying
information had the value 0 (see conditions 2 and 3 in Table 5).

Table 3. PLEvo-Scoping support

Support 1 Support 2 Support 3 Selected Value
ST1 ST2 ST1 ST2 ST1 ST2

Missing information (2) 1
Annoying information (3) 1
Mostly necessary and sufficient (4) 1 2 2 2 1 1
Necessary and sufficient (5) 1 1 2 1

Support 1: support for identifying relevant adaptation needs
Support 2: support for deciding when to introduce an adaptation need and to which products
Support 3: support for analyzing the alternative solutions.

From Table 3, one can calculate, by converting the original ordinal values obtained

from the questionnaires into numeric values and applying the arithmetic mean, the
values of Perception of Support 1 (3.5 for Group 1 and 4 for Group 2), Perception of
Support 2 (4.33 for both Group 1 and Group 2), and Perception of Support 3 (4.67 for
Group 1 and 3.67 for Group 2). All of them correspond to the ordinal value of either
“Mostly necessary and sufficient” (4) or “Necessary and Sufficient” (5).

Table 4 shows the values obtained for the quantitative metrics. Adaptation needs
and technical progress items were not confirmed by the other scoping team if consid-
ered irrelevant or outside the scope of the AAL platform PL. Technical progress items
are facts related to technology evolution that the PL organization wants to pursue in
order to get innovative features to the market as soon as possible.

Table 4. Values of quantitative metrics

Metrics Group 1 Group 2
Added Features 12 3
Confirmed Added Features 7 2
Technical Progress Items 8 12
Confirmed Technical Progress Items 6 6
Unstable Features 3 8
Change in Priority due to Volatility 2 0

A few days after the workshop, the quasi-experiment participants were provided

with a report on the respective results and asked to provide their perception of PLEvo-
Scoping’s adequacy using a 5-point ordinal scale. The ordinal values were converted
into numeric ones, and the arithmetic mean was applied. The values obtained for the
metric Perception of Adequacy were 4.5 (High) according to Group 1, and 4.33

 Evaluation of a Method for Proactively Managing the Evolving Scope 123

(Medium to High) according to Group 2. No participant selected the values “Low” (1)
and “Low to Medium” (2) for the adequacy of the method.

From the defined acceptance criterion (see Table 5) and the above data analysis,
proposition P1 (PLEvo-Scoping is adequate) was accepted in the context of both
groups. While Group 1’s results even satisfied the non-obligatory condition (condition
5), the results of Group 2 did not satisfy it.

Table 5. Acceptance criterion for Adequacy

(1) Perception of Support 1, Perception of Support 2 and Perception of Support 3 ∈
Positive-Scale1, and

(2) (# Missing Information 1 + # Missing Information 2 + # Missing Information 3) <= 4
or they can be easily added (1 day of effort), and

(3) (# Annoying Information 1 + # Annoying Information 2 + # Annoying Information 3)
<= 4 or they are already indicated as optional information, and

(4) Perception of Adequacy ∈ Positive-Scale2, and
(5) ideally, but not obligatory, # Changes in Priority due to Volatility / # Unstable

Features > 0,50 where
− Positive-Scale1 = {Mostly Necessary and Sufficient, Necessary and Sufficient}, and
− Positive-Scale2 = {Medium to High, High}.

Data Analysis related to Feasibility. The effort for applying both approaches (PuLSE-
Eco and PLEvo-Scoping) is described in Table 6, which neither takes into consideration
the learning effort nor the scoping experts’ effort. The learning effort related to PLEvo-
Scoping was 2.48 person-hours for Group 1 and 2.68 person-hours for Group 2. The
scoping experts’ effort represents no loss of information for the quasi-experiment,
because the PLEvo-Scoping expert herself did not carry out any activity. The values in
parentheses in Table 6 refer to the extra time Group 2 used to improve their lists of facts
and adaptation needs, after additional training by the PLEvo-Scoping expert. The PL
manager’s effort (column PLM) is also presented factored out of the total effort,
because the PL manager from Group 2 managed to take part in more activities of the
scoping process than the minimum previously established.

Table 6. Usage effort in person-hours

Phase Group 1 PLM Group 2 PLM
Product Line Mapping 5.95 1.98 8.60 2.87
Domain Potential Assessment 5.23 0.20 4.02 0.35
Total PuLSE-Eco 11.18 2.18 12.62 3.22
Preparation for Volatility Analysis 0.93 1.50 0.50
Environment Change Anticipation 2.70 3.83 + (0.32) 0.60
Change Impact Analysis 5.25 0.6 6.02 + (0.50) 0.63 + (0.2)
PL Evolution Plan 2.10 1.10 3.90 1.30
Total PLEvo-Scoping 10.98 1.7 15.25 + (0.82) 3.03 + (0.2)
Total Effort (PuLSE + PLEvo) 22.16 3.88 27.87 + (0.82) 6.25 + (0.2)

The quasi-experiment participants evaluated the difficulty of carrying out the

PLEvo-Scoping activities. Again, conversion of ordinal values into numeric ones and
the arithmetic mean were used. The values obtained for General Perception of

124 K. Villela, J. Dörr, and I. John

Difficulty were 3.27 for Group 1 and 2.83 for Group 2, which represent the ordinal
value “Neither Difficult nor Easy”.

Furthermore, the quasi-experiment participants were asked to give their perception of
the feasibility of PLEvo-Scoping using a 5-point ordinal scale, after being provided with
the effort metrics and the method results. The ordinal values were converted into nu-
meric ones, and the arithmetic mean was applied. The values obtained for the metric
Perception of Feasibility were 4 (Medium to High) according to Group 1, and 3.67
(Medium to High) according to Group 2. No participant selected the values “Low” (1)
and “Low to Medium” (2) for the method’s feasibility.

Taking into consideration the acceptance criteria defined in Table 7 and the
reported data analysis, proposition P2 (PLEvo-Scoping is feasible) was accepted in
the scope of both scoping teams.

Table 7. Acceptance criterion for Feasibility

(6) General Perception of Difficulty ∈ NDifficult-Scale, and
(7) Perception of Feasibility ∈ Positive-Scale2 where
− NDifficult-Scale = {Neither Difficult nor Easy, Easy, Very Easy}.

Feedback from the Quasi-Experiment Participants. The quasi-experiment
participants were encouraged to register in the questionnaires any comments related to
the support provided by PLEvo-Scoping or to the conditions in which the quasi-
experiment was performed. The feedback collected was:
− They would like to have 1) more time to perform some activities, 2) a more de-

tailed explanation of PLEvo-Scoping concepts and their relationships (“one slide
was not enough”), 3) better tool support for applying the method. PLEvo-Scoping
application in this quasi-experiment was supported by an Excel file and the quasi-
experiment participants reported it was difficult to switch between different sheets
during the execution of an activity.

− They would like to have “a list of adaptation needs that usually apply to all kinds
of products or development” (see Section 2, activity 7).

− They reported the difficulty of estimating the business impact and the technical risk
of an adaptation need and suggested registering the rationale behind the assignment
of values to the attributes (see Section 2, activity 8).

− When elaborating the PL Evolution Map (see Section 2, activity 10), it would be
useful to have the relationships between the adaptation needs.

− They think “further possibilities to deal with adaptation needs would be reason-
able”; alternative solutions are probably missing (see Section 2, activity 11).

Additionally, after having applied PuLSE-Eco only, Group 1 said that it was not easy
to think about technical progress, because “it is quite different from thinking about
domains, products, and features. We need to switch our minds”. PLEvo-Scoping is
expected to help them do that.

4.5 Comments and Interpretation of Results

From the values presented in Table 1, we concluded that each participant had the
competencies required to perform the role he/she had been assigned to by the AAL

 Evaluation of a Method for Proactively Managing the Evolving Scope 125

research program leader (technical knowledge on the part of the domain expert with
the technical viewpoint, market knowledge on the part of the domain expert with the
market viewpoint, and the capability of providing an overview of the AAL PL on the
part of the PL managers). The values related to Motivation were very similar. While
Group 1 had higher values for Experience in AAL, Group 2 had higher values for
Knowledge of the AAL platform. Therefore, overall, their domain knowledge can be
considered similar as well. The main difference between the two groups is related to
Experience in PL Scoping, because the PL manager of Group 2 had already partici-
pated in a scoping process. As the time spent by the PL managers in the workshops
was limited, as PLEvo-Scoping was a new method, and as Group 2 applied the
interwoven approach, we do not believe this experience had much influence.
Consequently, we considered the two groups to be comparable.

The number of facts and adaptation needs identified by Group 2 (see Subsection
4.3 and Table 2), which initially was too low, and the subsequent extra training and
complementary activities to improve it may have been caused by Group 2’s choice of
performing all activities as a group, not allowing any parallelism. Another factor that
may have influenced Group 2’s performance is the interweaving of activities from
both methods, because the group had to switch their minds between scoping and evo-
lution activities. Despite the differences in Tables 2 and 4, which are justified above,
the two approaches for integrating the method into an existing PL scoping process
showed similar general results: The method could be applied in just one day, and it
was considered adequate, feasible, and neither difficult nor easy to apply.

Concerning the annoying information that was pointed out by a member of Group
1 (see Subsection 4.4 - Data Analysis related to Adequacy), the identification of ac-
tors’ goals is optional and therefore cannot be considered an annoying request. Fur-
thermore, this information was very useful when Group 2 had identified only 15 facts
and 9 adaptation needs and needed some help. The method expert used the actors’
goals that had been identified by the group to derive some possible examples of facts
and adaptation needs; some of these were considered relevant by the group and ac-
cepted. The missing information that was pointed out by a member of Group 2 is
really missing information and cannot be added easily. The best way to address it is to
build an experience base of alternative solutions for the PL organization.

Contrary to our expectations, the interweaving of activities in treatment 2 did not
provide any benefit. We expected that some activities of PuLSE-Eco (especially, the
activity Assess Domains) would provide insights into some PLEvo-Scoping activities
and vice versa, but the workshop format (two consecutive days) and time pressure did
not allow the quasi-experiment participants to really benefit from previous activities.
The interaction between the two methods must be investigated further.

With regard to the difficulty of applying PLEvo-Scoping, the value for General
Perception of Difficulty (Neither Difficult nor Easy) is acceptable due to the inherent
difficulty of some activities. Furthermore, this result might have been influenced
negatively by the short time available for training.

In order to address the feedback obtained from the quasi-experiment participants, we
have included in the PLEvo-Scoping activities of characterizing adaptation needs (Sec-
tion 2, activity 8) and analyzing alternative solutions (Section 2, activity 11) the register
of the rationales behind the assignment of values to the attributes. We plan to provide
tool support for applying PLEvo-Scoping, which should make the registered and

126 K. Villela, J. Dörr, and I. John

derived relationships between adaptation needs more explicit for the scoping team when
elaborating the PL Evolution Map (Section 2, activity 10). Concerning the problem of
missing alternative solutions, we want to continue to investigate alternative solutions for
dealing with adaptation needs together with PL architects and, at the same time, start to
collect real occurrences in an experience base of alternative solutions. However, we do
not believe it is possible to compile “a list of adaptation needs that usually apply to all
kinds of products or development”, because adaptation needs are expected to be applica-
tion-specific and change over time. PLEvo-Scoping provides a list of 35 generic facts
instead, so that the scoping team can reflect on whether and how they may apply to the
application domain and those facts should lead to the adaptation needs. Moreover, the
difficulty of estimating the business impact and the technical risk of an adaptation need
cannot be addressed completely, because it is inherent to the problem. Depending on the
experience the scoping team has in the domain and with the required technologies, this
difficulty is higher or lower.

5 Conclusion

PLEvo-Scoping is a method for supporting PL scoping teams in systematically
reasoning about the driving forces of evolution in a certain domain, especially
reasoning about who is behind these forces and how their decisions, needs, or
achievements may affect the PL infrastructure. Our method allows the PL scoping
team to proactively identify and prioritize the adaptation needs that will probably be
required in the PL infrastructure and decide about how to deal with them.

The contribution of this paper is the characterization of the adequacy and feasibil-
ity of PLEvo-Scoping in practice, meaning according to professionals in charge of
scoping an AAL PL. A quasi-experiment was performed to obtain feedback from PL
practitioners on how to improve the method and to provide first empirical data on the
usage of PLEvo-Scoping, so that other PL organizations can decide on whether to try
out the method or not. The method could be applied in just one day, and overall, the
quasi-experiment participants perceived it as being adequate and feasible. Those re-
sults were really positive, taking into consideration that predicting the future is hard,
the quasi-experiment participants applied the method for the first time, the learning
effort had to be minimal, and there was no specific tool support.

Although PLEvo-Scoping was applied for just one day, we recommend two to
three days for its application, in order to give the PL scoping team enough time to
understand the method’s underlying concepts and carry out its activities without so
much time pressure. This recommendation addresses two of the comments provided
by the quasi-experiment participants. In addition, PLEvo-Scoping can also be applied
interactively, where the method expert would guide the PL scoping team in perform-
ing their activities. The intervention of the PLEvo Scoping expert in this quasi-
experiment was kept to a minimum in order not to affect the results.

We think that performing a quasi-experiment is a good means for providing em-
pirical evidence on Product Line engineering technologies, because, compared to case
studies and experiment, its intermediate degree of control makes it easier to have PL
professionals as subjects while still allowing manipulation of variables and compari-
son of treatments on some level. In this way, it is possible to convince practitioners as

 Evaluation of a Method for Proactively Managing the Evolving Scope 127

to the applicability of a method in real settings and, at the same time, to provide
researchers with scientific evidence on the value of the method.

We intend to perform further empirical studies in order not only to corroborate the
results reported in this paper, but also to further analyze the interaction between
PLEvo-Scoping and the scoping approach.

Acknowledgments. The authors acknowledge the Alexander von Humboldt Founda-
tion for its financial support and the BelAmi project (BMBF grant number HUN
04/A02) for the opportunity to evaluate PLEvo-Scoping.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2001)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

3. Knauber, P., Succi, G.: Perspectives on Software Product Lines. Software Engineering
Notes 27(2), 40–45 (2002)

4. Savolainen, J., Kuusela, J.: Volatility Analysis Framework for Product Lines. In: Proc.
SSR 2001, Toronto, pp. 133–141 (2001)

5. Bayer, J., Flege, O., Knauber, P., et al.: PuLSE: A Methodology to Develop Software
Product Lines. In: Proc. SSR 1999, Los Angeles, pp. 122–131 (1999)

6. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Analyzing Software Architectures for
Modifiability. TR HK-R-RES00/11-SE, University of Karlskrona/Ronneby. Ronneby
(2000)

7. Schmid, K.: Planning Software Reuse – A Disciplined Scoping Approach for Software
Product Lines. PhD Theses in Experimental Software Engineering. Fraunhofer IRB (2003)

8. John, I., Knodel, J., Lehner, T., et al.: A Practical Guide to Product Line Scoping. In: Proc.
SPLC 2006, Baltimore, pp. 3–12 (2006)

9. Villela, K., Dörr, J., Gross, A.: Proactively Managing the Evolution of Embedded System
Requirements. In: Proc. RE 2008, Barcelona, pp. 13–22 (2008)

10. John, I., Villela, K., Gross, A.: AAL Platform Product Line – Scoping Results and
Recommendations. TR 074.09/E, Fraunhofer IESE, Kaiserslautern (2009) (available upon
request)

11. Zelkowitz, M., Wallace, D.: Experimental Models for Validating Technology. IEEE
Computer 31(5), 23–31 (1998)

12. Basili, V., Caldiera, G., Rombach, H.: Goal Question Metrics Paradigm. Encyclopedia of
Software Engineeering 1, 528–532 (1994)

13. Villela, K., John, I.: Usage of PLEvo-Scoping in the Ambient Assisted Living Domain: A
Quasi-Experiment Package. TR 093.09/E, Fraunhofer IESE, Kaiserslautern (2010)

14. Wohlin, C., Runeson, P., Höst, M., et al.: Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, Norwell (2000)

15. Yin, R.: Case Study Research: Design and Methods, 3rd edn. Sage Publications, Thousand
Oaks (2003)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 128–142, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context

Giedre Sabaliauskaite1, Annabella Loconsole1, Emelie Engström1,
Michael Unterkalmsteiner2, Björn Regnell1, Per Runeson1, Tony Gorschek2,

and Robert Feldt2

1 Department of Computer Science, Lund University, Sweden
2 Blekinge Institute of Technology, Sweden

{Giedre.Sabaliauskaite,Annabella.Loconsole,Emelie.Engström,
Björn.Regnell,Per.Runeson}@cs.lth.se

{Michael.Unterkalmsteiner,Tony.Gorschek,Robert.Feldt}@bth.se

Abstract. [Context and motivation] When developing software, coordination
between different organizational units is essential in order to develop a good
quality product, on time and within budget. Particularly, the synchronization be-
tween requirements and verification processes is crucial in order to assure that
the developed software product satisfies customer requirements. [Ques-
tion/problem] Our research question is: what are the current challenges in
aligning the requirements and verification processes? [Principal ideas/results]
We conducted an interview study at a large software development company.
This paper presents preliminary findings of these interviews that identify key
challenges in aligning requirements and verification processes. [Contribution]
The result of this study includes a range of challenges faced by the studied or-
ganization grouped into the categories: organization and processes, people,
tools, requirements process, testing process, change management, traceability,
and measurement. The findings of this study can be used by practitioners as a
basis for investigating alignment in their organizations, and by scientists in de-
veloping approaches for more efficient and effective management of the align-
ment between requirements and verification.

Keywords: requirements engineering, software verification, software testing,
coordination.

1 Introduction

Are we sure that the tests performed are based on requirements and not on technical
specifications supplied by developers? Are we sure that the test coverage is adequate?
In order to assure that customer requirements are realized as intended these questions
must be asked and answered. However, this is not an easy task, since requirements
tend to change over time [13], and in many cases the requirement specifications are
not updated during the development of a product making it hard to use them as a solid
base for creating e.g. test cases [7, 15]. In small systems with just a few requirements
it could still be possible to handle the changes manually, but it gets extremely hard in

 Challenges in Aligning Requirements Engineering and Verification 129

complex systems with thousands of requirements. Therefore, there is a need for a
mechanism to manage coordination between the requirements and the verification
processes. We call such coordination alignment.

In this paper, we examine the challenges in aligning the requirements and the veri-
fication processes. We present preliminary results of an interview study performed in
a large software company in Sweden. The overall goal of our research is to under-
stand how alignment activities are performed in practice, what the important problems
are and what can be improved to gain better alignment. The results presented in this
paper are a set of challenges that can help practitioners and researchers. Practitioners
can, for instance, allocate more resources in the areas that are challenging when align-
ing the requirements and the verification processes. Researchers can also benefit from
our results by focusing their research on the areas that are the most challenging. The
results are valid in the context of the company under investigation. We are currently
extending the case study to other companies. By comparing the results of this case
with other case studies it will be possible to get a more general picture of challenges
in different kinds of organizations and in different domains.

The paper is structured as follows. In Section 2, we present related work in the
area. In Section 3, we describe the research approach used in this qualitative case
study. Section 4 describes the alignment challenges found. Finally conclusions and
future work are presented in Section 5.

2 Related Work

In [17], authors presented the findings of the discussions with test managers and engi-
neers in software development organizations regarding difficulties of integrating in-
dependent test agencies into software development practices. The company where we
have performed interviews does not commonly use independent test agencies, how-
ever it has separate requirements, development, and testing units. Therefore it would
be interesting to compare the results of having independent test agency and independ-
ent test unit within the company under study.

Findings related to change management emphasize the importance of synchroniza-
tion between the development and test with respect to modifications of functionality
[17]. The results of our study confirm these findings. One of the most recurrent chal-
lenges identified in our study is that requirements are not being updated on time.

Findings related to people interactions and communication stress the need of com-
munication between development and test organizations. If testers do not know who
wrote or modified the code, they do not know whom to talk to when potential faults
are detected. On the other hand, it could be difficult for developers to inform testers
on upcoming functionality changes, if they don’t know whose test cases will be af-
fected [17]. Our study confirms these results as well. Most of the interviewees suggest
that alignment could be greatly improved if requirements and testing people would
interact more with each other.

Several surveys on requirements related challenges are present in the literature:
problems in the requirements engineering process [9], requirements modeling [6],
quality requirements [7], requirements prioritization [1], and requirements interde-
pendencies [8]. Among these, Karlsson et al. [1] have results similar to ours, i.e. tool
integration is difficult and it is a challenge to write quality requirements.

130 G. Sabaliauskaite et al.

Most of the studies above do not focus on the alignment between the requirements
and the verification processes. Research in connecting requirements and testing has
been performed by several authors, for instance Uusitalo et al. [4], Post et al. [3], and
Damian and Chisan [10]. Uusitalo et al [4], have conducted a series of interviews in
order to investigate best practices in linking requirements and testing. Among the best
practices, authors mention early tester involvement in requirements activities. They
conclude by suggesting to strengthening the links between requirements engineers
and testers, since it is difficult to implement traceability between them; a conclusion
supported by this study (see Section 4.7).

The importance of linking requirements and verification is also stressed by Post et
al. [3]. They describe a case study showing that formalizing requirements in scenarios
make it easier to trace them to test sets. Damian and Chisan [10] present a case study
where they introduce a new requirements engineering process in a software company.
Among the practices in the process, they include traceability links between require-
ments and testing, cross-functional teams, and testing according to requirements.
They show that an effective requirements engineering process has positive influence
on several other processes including testing process.

The case studies above [3, 4, 10] are performed in a medium scale requirements
engineering context [11], while our study is performed in a large/very large scale
context and includes many aspects of aligning requirements and verification.

3 Research Approach

The approach used in this study is qualitative. Qualitative research consists of an
application of various methods of collecting information, mainly interviews and focus
groups. This type of research is exploratory [16]. Participants are asked to respond to
general questions, and the interviewers explore their responses to identify and define
peoples' perceptions and opinions about the topic being discussed. As the study was
meant to be deep and exploratory, interviews were the best tool since surveys are not
exploratory in nature. The interviews were semi-structured to allow in-depth, explora-
tory freedom to investigate non-premeditated aspects.

In this study, we interviewed 11 professionals in a large software development
company in Sweden, based on the research question: What are the current challenges
in aligning the requirements and the verification processes?

The viewpoint taken in this research is from a process perspective. The researchers
involved do not work directly with artifacts, but with processes and have expertise in
fields like requirements, testing, quality, and measurement.

Based on our pre-understanding of the processes involved in aligning requirements
and verification, a conceptual model has been designed (see Figure 1). This model
was used as a guide during the interviews. In this model, we consider three dimen-
sions of requirements and test artifacts, connected through work processes. One is the
Abstraction level dimension, from general goals down to source code, which is similar
both for the requirements and the testing side. Test artifacts are used to verify the
code, but also for verifying the requirements. The arrows are relationships that can be
both explicit and implicit, and can be both bi- or uni-directional. Then, we have the
Time dimension, in which the processes, the products, and the projects change and

 Challenges in Aligning Requirements Engineering and Verification 131

Fig. 1. Conceptual Model

evolve. This has an effect on the artifacts. There is also the dimension of Product
lines, which addresses variability, especially applicable when the development is
based on a product line engineering approach [2].

Case Context. Our results are based on empirical data collected through interviews at
a large anonymous company, which is using a product-line approach. The company is
developing embedded systems for a global market, and has more than 5000 employ-
ees. A typical project in this company lasts about 2-years, involves circa 800-1000
men per year, and has around 14000 requirements and 200000 test cases. The tool
DOORS is used for requirements management, and the tool Quality Center for test
management. Further information about the company is not disclosed for confidential-
ity reasons.

The interviews have been distributed in time between May and October 2009.

3.1 Research Methodology

In this study, challenges and problems, as well as, current good practices and im-
provement suggestions regarding alignment between the requirements and verifica-
tion processes have been identified through interviews with software engineering
practitioners. The results from 11 interviews are included in this paper. Employees
with different roles have been interviewed: quality management related roles (quality
manager and quality control leader), requirements related roles (requirements process
manager, requirements architect and requirements coordinator), developer and testing
related roles (test leader, tester). The research was conducted in several steps:

1. Definition of interview guide;
2. Interview planning and execution;

132 G. Sabaliauskaite et al.

3. Transcription of interviews, and division of transcriptions into sections;
4. Definition of codes (keywords) to be assigned to transcriptions’ sections;
5. Coding of interview transcriptions using predefined codes;
6. Sorting of coded transcriptions to group transcription sections according to codes;
7. Analysis of the results;
8. Validation of results by feedback to the organization.

Step 1. We constructed an interview guide, which is a document containing 30
questions to be asked during the interviews. The first version of the interview guide
contained 22 questions, defined based on the research questions. The questions were
validated during 2 pilot interviews. This led to the updated list of questions, grouped
into several topics, such as general questions about requirements and testing,
questions on quality requirements, etc. An overview of the interview guide is
available in Table 11.

Table 1. Overview of the interview guide

Interview topics Description

Software requirements Handling of functional and quality requirements, customer involvement
Software testing Handling of testing artifacts, customer involvement, testing of functional

and quality requirements
Alignment between
requirements &
verification processes

Alignment importance, current alignment method (documents, processes,
methods, tools, principles, practices, etc.), alignment responsible,
problems & challenges, improvement ideas & expected benefits

Measurements and
feedback gathering

Alignment related measurements, performance indicators, customer
satisfaction evaluation

Product line engineering Handling of requirements and testing, maintaining alignment
Outsourcing Maintaining alignment in case of outsourcing

Step 2. Eleven professionals were interviewed; each interview lasted for about one
and a half hour. All interviews were recorded in audio format and notes were taken. A
semi-structured interview strategy [16] has been used in all interviews, where the
interview guide acted as a checklist to make sure that all important topics were
covered. 2-3 interviewers interviewed one interviewee. One of the interviewers lead
the interview, while the others followed the interview guide, took notes, and asked
additional questions. The selection of the interviewees has been made based on
recommendations by requirements managers, test managers, and the interviewees
themselves. (At the end of each interview we asked the interviewees if they could
recommend a person or a role in a company whom we could interview in order to get
alignment related information).

Step 3. Interviews were transcribed into text in order to facilitate the analysis. The
transcriptions were then divided into text sections containing 1-2 sentences. All the

1 The complete version of the interview guide and coding guide are available at:

http://serg.cs.lth.se/research/experiment_packages/interview_study_on_requirements_
verification_alignment/

 Challenges in Aligning Requirements Engineering and Verification 133

text sections have been numbered in order to keep the order of the sentences. The size
of the transcriptions ranged from 4000 words to about 9000 words per interview.

Step 4. As suggested by C.B. Seaman [12], codes (keywords) were assigned to the
transcriptions’ sections in order to be able to extract all the sections related to a spe-
cific topic. However, the definition of the coding scheme turned out to be a non-trivial
task. We started by making an initial list of possible codes, which included codes
related to our research questions, alignment methods, quality requirements [14] and
software development process activities. In order to extend and tailor this initial list of
codes to our interview context, we decided to perform exploratory coding [16], which
included six researchers analyzing several interview transcriptions individually and
assigning suitable codes to the text sections.

The result of exploratory coding was a list with 169 codes. In the next stage, we
reviewed the codes resulting from the exploratory coding, grouped them into several
categories at different abstraction levels and developed a coding guide. The coding
guide is a document containing the list of codes and detailed instructions of how to
code a transcription. In order to validate the coding guide, seven researchers used it to
code the same interview transcription (let’s call it X) individually, and then had a
meeting to discuss differences in coding and possible improvements of the coding
guide. Kappa inter-rater agreement [18] has been used as a metric to evaluate im-
provement in homogeneity of coding by different researchers. Consequently, the
coding guide was updated and the interview transcription (X) was coded again using
the updated version of the coding guide to make sure that the differences between
different coders were minimized. The coding guide included codes at three abstrac-
tion levels: high, medium, and low (see Table 2). The high-level codes were based on
research questions. The medium-level codes included different categories relevant to
our research, and the low-level codes were the coder’s interpretation of the transcrip-
tion’s section. A summary of the codes is presented in Table 2.

Table 2. Overview of the codes assigned to transcription’s sections (see footnote 1 for a com-
plete list of codes)

Abstraction level Description
High Codes related to research questions, i.e. alignment practices, problems and

challenges, improvement ideas and benefits
Medium Two groups of codes: Group 1 – thirteen categories, which include

requirements, testing, traceability, configuration management, organization
processes, interactions, product quality aspects, and measurements among others.
Group 2 – additional categories, e.g. product-line engineering, outsourcing,
open source.

Low Coder’s interpretation of the transcription’s section, a brief summary of the
information described in the section

Step 5. Eleven interview transcriptions were randomly assigned to four researchers,
who coded them using the final version of the coding guide. The template used during
coding is shown in Table 3.

134 G. Sabaliauskaite et al.

Table 3. Template used during coding

High-Level Coding Medium-Level Coding

Group 1 No Text
Research Questions

Primary Secondary
Group 2

Low-Level
Coding,

Comments

Step 6. Coded interview transcriptions were merged into one file, making it possible
to group transcription sections according to codes.

Step 7. The identified transcription’s sections of each group were analyzed by two
researchers. In order to identify alignment challenges, researchers studied all the tran-
scription’s section coded as “challenges” with the goal to extract challenges from the
information provided by interviewees. Some challenges were similar and therefore
could be reformulated or merged together, while others were kept apart as they were
different.

Step 8. The results of the analysis were validated by feedback from the organization
where the interviews have been conducted.

3.2 Validity Discussion

A discussion of possible threats to validity will help us to qualify the results and high-
light some of the issues associated with our study. As suggested by P. Runeson and
M. Höst [5], we have analyzed the construct validity, external validity, and reliability.
Internal validity is concerned with threats to conclusions about cause and effect rela-
tionships, which is not an objective of this study. A detailed list of possible threats is
presented in [16].

Threats to Construct Validity. The construct validity is the degree to which the
variables are accurately measured by the measurement instruments used in the study
[5]. The main construct validity threat in this study regards the design of the meas-
urement instrument: are the questions formulated so that the interviews answer our
research questions? Our main measurement instrument is the interview guide (see
Section 3.1, Step 1), which includes the questions to be asked. Two researchers have
constructed it by analysing the research questions and creating sub-questions. Five
researchers have reviewed it to check for completeness and consistency; therefore we
believe that the interview guide is accurate. The other measurement instrument is the
coding guide. As described in Section 3.1, Step 4, this instrument has been validated
by seven researchers in order to make sure that the result of the coding activity had
minimal individual variations.

The questions in the interview guide were tailored on the fly to the interviewees
since the professionals participating in the interviews had different roles and different
background. Our study is qualitative; the goal is not to quantify answers of the same
type, rather to explore the different activities in the company, which could be done
best by investigating deeply the role of each interviewee.

 Challenges in Aligning Requirements Engineering and Verification 135

Another potential threat in this study is that different interviewees may interpret the
term "alignment" differently. For this reason, the conceptual model (see Figure 1) has
been shown to the subjects during the interviews, in order to present our definition of
alignment between requirements and verification.

Threats to External Validity. The threats to external validity concern generalisation.
The purpose of this study is not to do any statistical generalization of the results to
other contexts, but to explore the problems and benefits of alignment in the context of
the specific company. The study was performed in an industrial environment where
the processes were real, and the subjects were professionals. Hence, we believe that
the results can be analytically generalized to any company of similar size and applica-
tion domain. The company might not be representative; therefore more companies
will be interviewed in order to get results independent of the kind of company.

Reliability. Reliability issues concern to what extent the data and the analysis are
dependent on the researchers. Hypothetically, if another researcher later on conducts
the same study the results should be the same. In this study, all finding have been
derived by at least two researchers, and then reviewed by at least three other research-
ers. Therefore, this threat has been made smaller.

In our study, the investigation procedures are systematic and well documented (see
Section 3). The interview guide, the researchers’ view (the conceptual model), and
the coding scheme were reviewed independently by seven researchers with different
background.

The presented observations reflect the views of the participants. The interviews
have been recorded and transcribed. The transcriptions could contain errors due to
misinterpretation, mishearing, inaccurate punctuation or mistyped words. In order to
minimize these threats, the transcriber has also been present at the interview. More-
over, the transcriptions were sent to the interviewees so that they could correct possi-
ble misinterpretation of their answers.

One factor affecting the reliability of the data collected can be the fact that the in-
terviews capture the subjective opinion of each interviewee. However, we interviewed
11 professionals, which we believe is a sufficient amount to capture the general view
of the company. Influence among the subjects could not be controlled and we could
only trust the answers received. The choice of the subjects in the company might not
give a representative picture of the company; however, the subjects had different roles
and we tried to cover diverse roles within the company.

Regarding the coding activity, it is a classification of pieces of text, which are
taken out of context; hence there is a risk of misinterpretation. This risk was mini-
mized by checking the whole context of the text while doing data analysis.

To summarize, we believe that the validity threats of our results are under control,
although the results should not be generalized to all organizations.

4 Analysis and Result

The result of this study includes a range of challenges faced by the studied company
grouped into these categories: organization and processes, people, tools, requirements

136 G. Sabaliauskaite et al.

process, testing process, change management, traceability, and measurement. The
grouping is rough: if the challenge belonged to several categories, we assigned it to
the category which was the most relevant. The choice of the categories was based on
the medium level codes (see Table 2). All challenges are rooted in the interview tran-
scriptions. The challenges of each group are presented in Subsections 4.1-4.8.

4.1 Organization and Processes Related Issues

This section summarizes the alignment problems and challenges related to the com-
pany’s organizational structure and processes.

• The requirements and verification processes are separate processes and are not
aligned. Furthermore, processes can use different standards of documentation,
which negatively influence the hand-over between different parts of organization.
Moreover, some parts of the company follow a documented development process
while other parts do not.

• Frequent process changes negatively influence alignment. It would take time for
people to learn and use the new process. Sometimes, people are reluctant to use a
process knowing that it will change soon. Also, some good practices could be lost
due to the process changes.

• Distance in time between the development of requirements and test artifacts can
create alignment problems. Requirements can be approved without having test
cases associated with them. This can result in having non-testable requirements.

• In a large company, gaps in communication across different organizational units
often occur, especially at the high level. Furthermore, as stated by an employee “it
is hard to find who is accountable for things because depending on who you ask
you get very different answers”. Therefore, this could affect the alignment, espe-
cially at the high abstraction level of the requirements and verification processes.

• Implementation of process improvements is time consuming, especially when the
improvements are involving several units. Several issues related to the manage-
ment can affect the alignment, e.g. decisions are not documented, lessons learnt are
not always collected and processes depends on individual commitment.

Summarizing the challenges, the requirements and the verification processes are not
aligned and are distant in time. There are also communication problems across differ-
ent organizational units and the decisions are not documented, therefore it is hard to
know who is accountable for a decision. The organizational structure and the proc-
esses, as well as changes in these are influencing the alignment. One reason could be
that the company is very large and many organizational units are involved, and not
every unit follows the documented process, and the standard for documentation.

4.2 People Related Issues

This subsection presents a list of issues that are related to people, their skills and
communication with each other.

• Professionals do not always have good technical knowledge and understanding
about the work of other units. Requirements engineers sometimes lack knowledge

 Challenges in Aligning Requirements Engineering and Verification 137

about implementation as well as testing, while testers lack knowledge of require-
ments. Also, professionals are sometimes unwilling to move within the company in
order to gain this knowledge. This has a negative effect on alignment between re-
quirements and verification processes.

• Lack of cooperation between requirements people, developers and testers is affect-
ing the alignment. In some cases, requirements engineers and developers have a
good communication, as well as developers and testers. However, when there is a
lack of direct communication between requirements and testing people, alignment
is influenced negatively.

The main challenge in this area is communication, cooperation, and understanding of
each other’s work within the company. This can be hard when working under tight
deadlines; there is no time to communicate and understand each other’s work. Ade-
quate technical knowledge, communication and cooperation between requirements
people, developers and testers greatly influence the alignment.

4.3 Tools Issues

Software tools play a crucial role in maintaining alignment between different artifacts.
The following are several tool related issues.

• The lack of appropriate tools influences the alignment. It is very important to have
reliable and easy to use requirements and verification tools. If the tool is difficult to
use, or it is not reliable, people are not willing to use them. Having a good
requirements management tool, which includes not only information about
requirements, but also the flow of requirements, is crucial for testers. Otherwise,
testers try to get this kind of information from other sources, for instance the
developers. Tools for managing quality requirements are needed, otherwise there is
a risk that quality requirements are not implemented and/or tested.

• It is important to keep the requirements database updated. If requirements are not
up to date, testers will test according to old requirements and will find issues,
which are not really failures, but valid features.

• If there is no tool to collect customer needs, it is difficult to keep them aligned with
requirements, hence with test cases as well. And this leads to misalignment be-
tween customer needs and requirements, and consequently affects customer satis-
faction with the final product.

• In cases when requirements and testing artifacts are stored in different tools, there
is a need of good interfaces between these tools, and access of all interested parties
to the tools. Otherwise, it becomes very difficult to maintain alignment. Especially
when there are many-to-many relationships between requirements and test cases.

• If the mapping between requirements and test cases is not presented in a clear way,
it could contain too much redundant information, and therefore it could be difficult
for requirements people and testers to use it.

Most of the interviewees stated the lack of adequate software tools, which would
allow to handle requirements, verification, and to measure the alignment between
them. Furthermore, the interface of the tools and tool integration is not always good.

138 G. Sabaliauskaite et al.

The consequence of this is that people become reluctant to use them and do not up-
date the information stored in them. This is greatly affecting the alignment.

4.4 Requirements Process Related Issues

This subsection presents a list of issues that are related to the requirements process.

• Requirements sometimes are not given enough attention and consideration by other
organizational units, such as development and testing units. According to an em-
ployee “Developers do not always review the requirements, and discover require-
ments that can not be implemented during development, even when having agreed
on the requirements beforehand”. This could be due to the lack of involvement of
developers and testers in requirements reviews.

• Not having a good way of managing customers’ needs makes it more difficult to
define requirements, especially requirements at a high abstraction level.

• Requirements engineers do not think about testability of requirements. Therefore,
requirements could turn out to be non-testable.

• Dealing with quality requirements is a difficult task. Quality requirements tend to
be badly structured or vague. Furthermore, it is difficult to assign quality require-
ments to different development groups for implementation, since several groups
are usually involved in implementing a quality requirement, and none wants to take
a full responsibility for that.

• It is difficult to maintain alignment in organizations working with a large set of
requirements, when the number of requirements reaches tens of thousands or more.
Furthermore, in the organizations, which are using a product lines engineering [2]
approach, maintaining alignment between domain and application requirements
and test cases could be a challenge.

As we can see, there are numerous challenges related to requirements process, which
affect alignment. Most of the interviewees stress the importance of updating require-
ments as soon as changes occur, and finding adequate ways of defining and managing
quality requirements. These two are the most recurrent requirements process related
challenges.

4.5 Testing Process Related Issues

The following are the issues that related to the testing process.

• Sometimes testers lack clear directions on how to proceed with testing. Especially
while testing high-level requirements, such as roadmaps for example. It is difficult
to test that the products adhere to roadmaps, since such testing takes a long time
and is costly. Usually short loops are preferred.

• In case several organizational units are involved in testing, the cooperation be-
tween them is crucial. It is particularly relevant to the companies, which have a
product line engineering approach, since different organizational units could be
performing domain and application testing, and the faults detected in applications
should be removed from domain as well.

 Challenges in Aligning Requirements Engineering and Verification 139

• There is a lack of verification at early development stages, especially of quality
requirements verification. This results in lower quality of the product, as well as
added cost and time spent on removal of defects at later development phases.

• It is inefficient to maintain alignment of requirements and test cases due to the
large amount of test cases; sometimes their number reaches hundreds of thousands.

• It is difficult to get requirements people interested in having good quality test
cases. Requirement people’s involvement in reviewing test cases contributes to
alignment, since this would help to assure that test cases comply with require-
ments.

As we can see from the above-mentioned challenges, there are numerous testing proc-
ess related issues that can affect alignment. Having a well defined testing process at
different development stages, and good cooperation between testing units could help
improve the alignment.

4.6 Change Management Issues

The following are the challenges related to change management.

• It is sometimes difficult to find the people responsible, if a change occurs, if a
defect is found, or if there is a need of further information. Thus, requirements en-
gineers do not always inform related developers and testers in case of a require-
ments change. Furthermore, if a failure is found during maintenance phase, it is ex-
tremely difficult for maintenance people to find requirements people who can give
information regarding requirements, or whom to inform about implemented
changes. Therefore, maintenance people sometimes need to use testers as a source
of information about requirements.

• There is a lack of strategy in deciding which changes to implement in case there is
not enough time or resources to implement all changes.

• The information about changes is not always timely updated in the requirements
database. Therefore it is difficult for developers and testers to know that the change
has occurred.

Updating the requirements on time is one of the most recurrent challenges. It is there-
fore important to find ways to cope with changes immediately so that the traceability
with testing can be maintained. In addition, delta handling and good tracking and
reporting on the requirements and test case tools is needed to easily track changes and
verify completeness.

4.7 Traceability Issues

The following are the challenges related to traceability between requirements and
testing artifacts.

• There is a lack of links between requirements and test cases. Some test cases are
very complex; therefore it is difficult to trace them back to requirements.

• If traceability between requirements and test cases is not maintained, testers keep
testing requirements that have been removed. The reasons for lack of traceability

140 G. Sabaliauskaite et al.

could be the difficulty to implement traceability, and the lack of resources to
maintain it.

• Having large legacies implies that a lot of test cases do not have requirements
linked. This complicates implementation of alignment.

• Ideally, alignment should be implemented and maintained at all abstraction levels
of requirements and verification processes. However, if it cannot be done for vari-
ous reasons, such as lack of resources or time constraints, it is necessary to clearly
define at which level to implement alignment.

The main challenge is the large volumes and complexity of requirements, test cases
and test results. These are negatively influencing traceability. Better tools could help
in managing the traceability in large scale requirements engineering and testing.

4.8 Measurements Issues

The following are the measurements related challenges.

• Due to the lack of experience in using measurements, it is difficult to define appro-
priate metrics or indicators.

• There is a lack of alignment related metrics. For example, one of the alignment
metrics is requirements coverage by test cases, which is measured by calculating a
percentage of requirements that have associated test cases. However, if a require-
ment has several test cases associated to it, it still could lack complete test cover-
age. Therefore, additional metrics are needed in order to get more complete infor-
mation about requirements coverage.

• Key Performance Indicators (KPI) and metrics should be appropriate at both opera-
tive, as well as, top management level. Sometimes KPIs are useful only at top
management level, but do not provide important information at the operative level
regarding the things that could be improved.

• Sometimes target values for metrics and indicators are defined without a business
case, not based on historical measurement data. Therefore, they could be in-
achievable.

Among challenges regarding measuring the alignment that are mentioned, the most
recurrent is the difficulty of defining metrics to measure the alignment, especially the
requirements coverage. Definition and use of adequate alignment metrics could help
improve the alignment.

5 Conclusions and Further Research

In this paper, we have presented results of an interview study performed in a large
software development company in Sweden. The goal of the study was to explore the
current challenges in aligning requirements and verification processes.

One of the main challenges found regards software tools, both for managing re-
quirements and for managing test cases. Often tools are not easy to use, and when
different tools are used, the interface between them is poor. The consequence is that
employees tend to not update the requirements stored in the tools and the information

 Challenges in Aligning Requirements Engineering and Verification 141

stored becomes obsolete and not useful. Traceability is also a challenge, and its
importance is corroborated by other studies [3, 14]. Communication and cooperation
across different units within the company is also a major challenge, confirming the
results in [1, 17]. As a consequence of the challenges, company has decided to
improve it’s development process.

Our results can inspire other practitioners in their alignment improvement efforts
since they can learn from this case what can be the most salient challenges in manag-
ing large quantities of requirements and test information in natural language.
Researchers can also learn from this study since they can focus their research on
existing challenges of potentially general interest.

We are extending this study to other companies of different size and domain. This
will further enhance a general picture of alignment issues.

Acknowledgements. This work was funded by the Industrial Excellence Center
EASE - Embedded Applications Software Engineering, (http://ease.cs.lth.se). Many
thanks to the anonymous interviewees for their dedicated participation in this study,
and reviewers of the paper for their valuable comments.

References

1. Karlsson, L., Dahlstedt, Å.G., Regnell, B., Natt Och Dag, J., Persson, A.: Requirements
Engineering Challenges in Market-Driven Software Development – An Interview Study
with Practitioners. Information and Software Technology 49(6), 588–604 (2007)

2. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, Heidelberg (2005)

3. Post, H., Sinz, C., Merz, F., Gorges, T., Kropf, T.: Linking Functional Requirements and
Software Verification. In: 17th IEEE International Requirements Engineering Conference,
pp. 295–302. IEEE Computer Society, Atlanta (2009)

4. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking Requirements and
Testing in Practice. In: 16th IEEE International Requirements Engineering Conference,
pp. 265–270. IEEE Computer Society, Barcelona (2008)

5. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in
Software Engineering. Empirical Software Engineering 14(2), 131–164 (2009)

6. Lubars, M., Potts, C., Richter, C.: A Review of the State of the Practice in Requirements
Modeling. In: 1st IEEE International Symposium on Requirements Engineering, pp. 2–14.
IEEE Computer Society, San Diego (1993)

7. Berntsson Svensson, R., Gorschek, T., Regnell, B.: Quality Requirements in Practice: An
Interview Study in Requirements Engineering for Embedded Systems. In: Glinz, M.,
Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 218–232. Springer, Heidelberg
(2009)

8. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt Och Dag, J.: An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In: 5th
IEEE International Symposium on Requirements Engineering, pp. 84–91. IEEE Computer
Society, Toronto (2001)

9. Chatzoglou, P.D.: Factors Affecting Completion of the Requirements Capture Stage of
Projects with Different Characteristics. Information and Software Technology 39(9),
627–640 (1997)

142 G. Sabaliauskaite et al.

10. Damian, D., Chisan, J.: An Empirical Study of the Complex Relationships between Re-
quirements Engineering Processes and Other Processes That Lead to Payoffs in Productiv-
ity, Quality and Risk Management. IEEE Transactions on Software Engineering 32(7),
433–453 (2006)

11. Regnell, B., Berntsson Svensson, R., Wnuk, K.: Can We Beat the Complexity of Very
Large-Scale Requirements Engineering? In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 123–128. Springer, Heidelberg (2008)

12. Seaman, C.B.: Qualitative Methods. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide
to Advanced Empirical Software Engineering, ch. 2. Springer, Heidelberg (2008)

13. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of Requirements Volatility during
Software Development Life Cycle. In: 2004 Australian Software Engineering Conference,
p. 28. IEEE Computer Society, Washington (2004)

14. ISO/IEC 9126 – Software and System Engineering – Product quality – Part 1: Quality
model (1999-2002)

15. Fricker, S., Gorschek, T., Byman, C., Schmidle, A.: Handshaking: Negotiate to Provoke
the Right Understanding of Requirements. IEEE Software (2009)

16. Robson, C.: Real World Research, 2nd edn. Blackwell, Malden (2002)
17. Jones, J.A., Grechanik, M., Van der Hoek, A.: Enabling and Enhancing Collaborations

between Software Development Organizations and Independent Test Agencies. In:
Cooperative and Human Aspects of Software Engineering (CHASE), Vancouver (2009)

18. Lombard, M., Snyder-Duch, J., Campanella Bracken, C.: Content Analysis in Mass Com-
munication - Assessment and Reporting of Intercoder Reliability. Human Communication
Research 28(4), 587–604 (2002)

On the Perception of Software Quality
Requirements during the Project Lifecycle

Neil A. Ernst and John Mylopoulos

Department of Computer Science
University of Toronto
Toronto, ON, Canada

{nernst,jm}@cs.toronto.edu

Abstract. [Context and motivation] A key requirements considera-
tion in software development is the system’s quality requirements. Qual-
ity is usually defined in terms of global properties for a software system,
such as “reliability”, “usability” and “maintainability”. In the context
of software maintenance they are particularly relevant: maintenance ac-
tivities are performed to ensure software quality. [Question/problem]
Recently an expanded view of RE has been emerging, wherein require-
ments artifacts play a role throughout a system’s lifecycle. How impor-
tant are quality requirements as the lifecycle progresses? We examine
two questions: whether requirements are discussed more as the software
matures; secondly, whether different software projects have similar levels
of interest about quality requirements. [Principal ideas/results] We
use a software repository mining technique we call signifier extraction,
and empirically investigate the treatment of software quality in software
projects. Signifiers are keywords about quality requirements that we gen-
erate using a controlled taxonomy based on ISO9126. Using source data
extracted from eight open-source software projects we extract the signi-
fier frequencies over weekly intervals. We analyze the signifier occurrence
patterns statistically and historically. [Contribution] Our results show
that quality requirements are discussed differently in different projects.
Furthermore, there is no correlation between project age and the im-
portance of software quality requirements. Finally, we show that these
occurrences provide a roadmap to reconstruct the historical changes
of qualities as responses to external forces, such as release cycles and
usability audits.

Keywords: Evolution, software quality requirements, repositorymining.

1 Introduction

Software quality requirements are a key concern throughout the software
lifecycle. Requirements research is increasingly focused on supporting systems
beyond the initial design phase, captured by Finkelstein’s term ‘reflective require-
ments’ [6]. Quality requirements are usually defined in terms of global properties
for a software system, such as “reliability”, “usability” and “maintainability”;

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 143–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 N.A. Ernst and J. Mylopoulos

we think of them as describing the ‘how’, rather than the ‘what’. In this sense
“functionality” can also be considered a quality, insofar as it describes how well
a given artifact implements a particular function (such as security). The impor-
tance of quality requirements lies in their inter-system comparability. Because of
their global nature, quality requirements are hard to build into a design and are
often treated post facto in terms of metrics that are applied to the final product.

If requirements are important throughout the life-cycle (and we believe strongly
that they are), a better understanding of requirements after the initial release is
important. Are requirements discussed post-release? One way of answering this
question is to examine current practices using a standardized requirements tax-
onomy. In particular, we are interested in finding out whether there is any notice-
able pattern in how software project participants conceive of quality requirements.
Our study is conducted from the perspective of project participants (e.g., develop-
ers, bug reporters, users). We use a set of eight open-source software (OSS) prod-
ucts to test two specific questions about software quality requirements. The first
is whether software quality requirements are of more interest as a project ages, as
predicted in Lehman’s ‘Seventh Law’ that “the quality of systems will appear to
be declining unless they are rigorously maintained and adapted to environmental
changes [15, p. 21].” Our second question is whether quality is of similar concern
among different projects. That is, is a quality such as Usability as important to
one project’s participants as it is to another?

To assess these questions, we need to define what we mean by software qual-
ity requirements. Our position is that requirements for software quality can be
conceived as a set of labels assigned to the conversations of project participants.
These conversations take the form of mailing list discussions, bug reports, and
commit logs. Consider two developers in an OSS project who are concerned
about the software’s performance. To capture this quality requirement, we look
for indicators, which we call signifiers, which manifest the concern. We then label
the conversations with the appropriate software quality, using text analysis. Our
qualities are derived from a standard taxonomy the ISO 9126-1 software qual-
ity model [9]. The signifiers are keywords that are associated with a particular
quality. For example, we label a bug report mentioning the slow response time
of a media player with the Efficiency quality.

We discuss related approaches in Section 2. Section 3 describes how we derive
these signifiers and how we built our corpora and toolset for extracting the
signifiers. We then present our observations and a discussion about significance
in Section 4. Finally, we examine some threats to our approach and discuss future
work.

2 Related Work

Part of our effort with this project is to understand the qualitative and inten-
tional aspects of requirements in software evolution, a notion we first discussed
in [11]. That idea is derived from work on narratives of software systems shown
in academic work like [1].

On the Perception of Software Quality Requirements 145

Cleland-Huang and her colleagues published work on mining requirements
documents for non-functional requirements (quality requirements) in [8]. One
approach they tried was similar to this one, with keywords mined from NFR
catalogues found in [7]. They managed recall of 80% with precision of 57% for
the Security NFR, but could not find a reliable source of keywords for other
NFRs. Instead, they developed a supervised classifier by using human experts
to identify an NFR training set. There are several reasons we did not follow
this route. One, we believe we have a more comprehensive set of terms due to
the taxonomy we chose. Secondly, we wanted to compare across projects. Their
technique was not compared across different projects and the applicability of
the training set to different corpora is unclear. A common taxonomy allows us
to make inter-project comparison (subject to the assumption that all projects
conceive of these terms in the same way). Finally, the source text we use is less
structured than their requirements documents.

Massey [16] and Scacchi ([19,20]) looked at the topic of requirements in open-
source software. Their work discusses the source of the requirements and how
they are used in the development process. German [13] looked at GNOME specif-
ically, and listed several sources for requirements: leader interest, mimicry, brain-
storming, and prototypes. None of this work addressed quality requirements in
OSS, nor did it examine requirements trends.

The difference between projects in level of interest in particular quality re-
quirements was detailed in several case studies described in [10], which describes
a methodology which starts with ISO9126 and ‘tailors’ the requirements analysis
to specific NFRs.

3 Methodology

Overview: We first construct a set of signifiers, which produces a word list to
extensionally define the software quality of interest, e.g., Efficiency. We then
query corpora from each project with these lists to identify events. Events are
timestamped occurrences of our signifiers in the corpora.

3.1 Step I Establishing the Corpora

Our corpora are from a selection of eight Gnome projects, listed in Table 1.
Gnome is an OSS project that provides a unified desktop environment for Linux
and its cousins. Gnome is both a project and an ecosystem: while there are
co-ordinated releases, each project operates somewhat independently. In 2002,
Koch and Schneider [14] listed 52 developers as being responsible for 80% of the
Gnome source code. In our study, the number of contributors is likely higher,
since it is easier to participate via email (e.g., feature requests) or bug reports.
For example, in Nautilus, there were approximately 2,000 people active on the
mailing list, whereas there were 312 committers to the source repository. 1

1 Generated using Libresoft, tools.libresoft.es

146 N.A. Ernst and J. Mylopoulos

Table 1. Selected Gnome ecosystem products (ksloc = thousand source lines of code)

Product Language Size (ksloc) Age (years)

Evolution C 313 10.75
Nautilus C 108 10.75
Metacity C 66 7.5

Ekiga C++ 54 7
Totem C 49 6.33

Deskbar Python 21 3.2
Evince C 66 9.75

Empathy C 55 1.5

The projects used in this paper were selected to represent a variety of lifespans
and codebase sizes (generated with [21]). All projects were written in C/C++,
save for one in Python (Deskbar). For each project we created a corpus from that
project’s mailing list, subversion logs and the bug comments, as of November
2008. From the corpus, we extracted ‘messages’, that is, the origin, date, and
text (e.g, the content of the bug comment), and placed this information into
a MySQL database. A message consists of a single bug report, a single email
message, or a single commit. If a discussion takes place via email, each indi-
vidual message about that subject is treated separately. Our dataset consists of
over nine hundred thousand such messages, across all eight projects. We do not
extract information on the mood of a message: i.e., we cannot tell whether this
message expressed a positive attitude towards the requirement in question (e.g.,
“This menu is unusable”). Furthermore, we are not linking these messages to
the implementation in code; we have no way of telling to what extent the code
met the requirement beyond participant comments.

Table 2. Qualities and quality signifiers – Wordnet version (WN). Bold text indicates
the word appears in ISO/IEC 9126.

Quality Signifiers

Maintainability testability changeability analyzability stability maintainabil-
ity maintain maintainable modularity modifiability understandability

Functionality security compliance accuracy interoperability suitability func-
tional practicality functionality

Portability conformance adaptability replaceability installability portable
movableness movability portability

Efficiency resource behaviour time behaviour efficient efficiency

Usability operability understandability learnability useable usable ser-
viceable usefulness utility useableness usableness serviceableness ser-
viceability usability

Reliability fault tolerance recoverability maturity reliable dependable re-
sponsibleness responsibility reliableness reliability dependableness
dependability

On the Perception of Software Quality Requirements 147

3.2 Step II Defining Qualities with Signifiers

In semiotics, Peirce drew a distinction between signifier, signified, and sign [2].
In this work, we make use of signifiers words like ‘usability’ and ‘usable’ to
capture the occurrence in our corpora of the signified in this example, the
concept Usability. We extract our signified, concept words from the ISO 9126
quality model [9], which describes six high-level quality requirements (listed in
Table 2). There is some debate about the significance and importance of the
terms in this model. However, it is “an international standard and thus provides
an internationally accepted terminology for software quality [3, p. 58],” which is
sufficient for the purposes of this research.

We want to preserve domain-independence, such that we can use the same
set of signifiers on different projects. This is why we eschew more conventional
text-mining techniques that generate keyword vectors from a training set.

We generate the initial signifiers from Wordnet [12], an English-language ‘lexi-
caldatabase’ that contains semantic relations between words, including meronymy
and synonymy. We extract signifiers using Wordnet’s synsets, hypernyms, and
related forms (stems), and related components using the two-level hierarchy in
ISO9126. When we account for spelling variations, we associate this wordlist with
a top-level quality, and use that to find unique events. This gives us a repeatable
procedure for each signified quality. We call this initial set of signifiers WN.

Expanding the signifiers – The members of the set of signifiers will have a big
effect on the number of events returned. For example, the term ‘user friendly’ is
one most would agree is relevant to discussion of usability. However, this term
does not appear in Wordnet. To see what effect an expanded list of signifiers
would have, we generated a second set (henceforth ext), by expanding WN with
more software-specific signifiers. The ext signifier sets are shown in Table 3.

To construct our expanded sets, we first used Boehm’s 1976 software quality
model [4], and classified his eleven ‘ilities’ into their respective ISO9126 qualities.
We did the same for the quality model produced by McCall et al. [17]. Finally,
we analyzed two mailing lists from the KDE project to enhance the specificity
of the sets. Like Gnome, KDE is an open-source desktop suite for Linux, and
likely uses comparable terminology. We selected KDE-Usability, which focuses
on usability discussions for KDE as a whole; and KDE-Konqueror, a list about a
long-lived web browser project. For each high-level quality in ISO9126, we first
searched for our existing (WN) signifiers; we then randomly sampled twenty-
five mail messages that were relevant to that quality, and selected co-occurring
terms relevant to that quality. For example, we add the term ‘performance’ to
the synonyms for Efficiency, since this term occurs in most mail messages that
discuss efficiency.

There are many other possible sources for quality signifiers, but for compar-
ative purposes with the Wordnet lists, we felt these sources were sufficient.

We discuss the differences the two sets create in Section 4.

148 N.A. Ernst and J. Mylopoulos

Table 3. Qualities and quality signifiers – extended version (ext). Each quality consists
of terms in (a) in addition to the ones listed.

Quality Signifiers

Maintainability WN + interdependent dependency encapsulation decentralized mod-
ular

Functionality WN + compliant exploit certificate secured buffer overflow policy ma-
licious trustworthy vulnerable vulnerability accurate secure vulnera-
bility correctness accuracy

Portability WN + specification migration standardized l10n localization i18n in-
ternationalization documentation interoperability transferability

Efficiency WN + performance profiled optimize sluggish factor penalty slower
faster slow fast optimization

Usability WN + gui accessibility menu configure convention standard feature
focus ui mouse icons ugly dialog guidelines click default human con-
vention friendly user screen interface flexibility

Reliability WN + resilience integrity stability stable crash bug fails redundancy
error failure

3.3 Step III Querying the Corpora

Once we constructed our sets of signifiers, we applied them to the message cor-
pora (the mailing lists, bug trackers, and repositories) to create a table of events.
An event is any message (row) in the corpus table which contains at least one
term in the signifier set. A message can contain signifiers for different qualities,
and can this generate as many as six events (e.g., a message about maintain-
ability and reliability). However, multiple signifiers for the same quality only
generate a single event for that quality. We produced a set of events (e.g., a
subversion commit message), along with the associated time and project. We
group events by week for scalability reasons. Note that each email message in
a thread constitutes a single event. This means that it is possible that a single
mention of a signifier in the original message might be replied to multiple times.
We assume these replies are ‘on-topic’ and related to the original concern.

We normalize the extracted event counts to remove the effect of changes in mail-
ing list volume or commit log activity (some projects are much more active). The
calculation takes eachsignifier’s event count for thatperiod,anddividesby theover-
all number ofmessages in the sameperiod.We also remove low-volumeperiods from
consideration.This is because aweek inwhichonly onemessage appeared, that con-
tained a signifier, will present as a 100%match. From this datasetwe conducted our
observations and statistical tests. Table 4 illustrates some of the sample events we
dealt with, and our subsequent mapping to software quality requirements.

3.4 Step IV Precision and Recall

We verified the percentage of terms retrieved that were unrelated to a signified
software quality to understand the precision of our method. For example, we

On the Perception of Software Quality Requirements 149

Table 4. Classification examples. Signifiers causing a match are highlighted.

Event Quality

...By upgrading to a newer version of GNOME you could receive bug
fixes and new functionality.

None

There should be a feature added that allows you to keep the current
functionality for those on workstations (automatic hot-sync) and then
another option that allows you to manually initiate .

Functionality

Steps to reproduce the crash: 1. Can’t reproduce with accuracy.
Seemingly random.

Reliability,
Functionality

How do we go disabling ekiga’s dependency on these functions, so that
people who arn’t using linux can build the program without having to
resort to open heart surgery on the code?

Maintainability

U () is equivalent of () but returns Unicode (UTF-8) string. Update
your xml-i18n-tools from CVS (recent version understands U), update
Swedish translation and close the bug back.

Portability

On some thought, centering dialogs on the panel seems like it’s prob-
ably right, assuming we keep the dialog on the screen, which should
happen with latest metacity.

Usability

These calls are just a waste of time for client and server, and the Nau-
tilus online storage view is slowed down by this wastefulness.

Efficiency

encountered some mail messages from individuals whose email signature included
the words “Usability Engineer”. If the body of the message wasn’t obviously
about usability, we coded this as a false-positive. Our error test was to randomly
select messages from the corpora and code them as relevant or irrelevant. We
assessed 100 events per quality, for each set of signifiers (ext and WN). Table 5
presents the results of this test. False-positives averaged 21% and 20% of events,
for ext and WN respectively (i.e., precision was 79% and 80%).

Recall, or completeness, is defined as the number of relevant events retrieved
divided by the total number of relevant events. Superficially we could describe
our recall as 100%, since the query engine returns all matches we asked for,
but true recall should be calculated using all events that had that quality as
a topic. To assess this, we randomly sampled our corpora and classified each

Table 5. False positive rates for the two signifier sets

Signified quality F.P. Rate ext F.P. Rate WN

Usability 0.47 0.22
Portability 0.11 0.20

Maintainability 0.22 0.31
Reliability 0.15 0.19

Functionality 0.14 0.18
Efficiency 0.16 0.07
Mean 0.21 0.20

150 N.A. Ernst and J. Mylopoulos

event into either a signifier (Usability, Reliability, etc.) or None. For extended
signifier lists, we had an overall recall of 51%, and a poor 6% recall for the
Wordnet signifiers. We therefore dispensed with the Wordnet signifiers. This
is a very subjective process. For example, we classified a third of the events
as None; however, arguably any discussion of software could be related, albeit
tangentially, to an ISO9126 quality. We think a better understanding of this issue
is more properly suited to a qualitative study, in which project-specific quality
models can be best established.

4 Observations and Discussion

This section first explains the frequency distributions of the data we collected.
We then use that data to answer the two questions raised in the introduction:
1) Is there a correlation between discussion of quality requirements and project
age? 2) Are quality requirements of similar importance relative to each project?

4.1 Data Distribution

Fig. 1 shows an example frequency distribution for the quality requirement Us-
ability, product Evolution, with non-normalized data. The distributions seem to
follow a power-law distribution, that is, a majority of weeks had few events, with
the ‘long tail’ consisting of those weeks with many events. We verified that this
pattern also existed for the remaining qualities and project combinations.

Fig. 1. Frequency distribution for Evolution-Usability. x-axis represents number of
events (66 events wide), y-axis the number of weeks in that bin.

4.2 Examining Quality Discussions over Time

Our first question was whether, as predicted in the literature, there was a corre-
lation between the importance of software quality requirement and the age of a
project. We examined this in three ways. First, we looked at the overall trends
for a project. Secondly, we used release windows, the time between the release

On the Perception of Software Quality Requirements 151

Table 6. Selected summary statistics, normalized. Examples from Nautilus and Evo-
lution for all qualities using extended signifiers.

Project Quality r2 slope N (weeks)

Evolution

Efficiency 0.06 -0.02 439
Portability 0.08 -0.05 448

Maintainability 0.04 -0.02 320
Reliability 0.20 0.25 492

Functionality 0.03 -0.02 439
Usability 0.14 0.27 515

Nautilus

Efficiency 0.16 -0.10 420
Portability 0.16 -0.07 331

Maintainability 0.27 -0.09 216
Reliability 0.19 0.26 454

Functionality 0.12 -0.05 390
Usability 0.08 0.29 459

of one version, and the release of the next (major) version. Finally, we explored
qualitative explanations for patterns in the data.

Using project lifespan – We examined whether, over a project’s complete
lifespan, there was a correlation with quality event occurrences. Recall that we
define quality events as occurrences of a quality signifier in a message in the
corpora. We performed a linear regression analysis and generated correlation
coefficients for all eight projects and six qualities. Figure 2 is an example of our
analysis. It is a scatterplot of quality events vs. time for the Usability quality in
Evolution. For example, in 2000/2001, there is a cluster around the 300 mark,
using the extended (ext) set of signifiers. Note that the y-axis is in units of
(events/volume * 1000) for readability reasons.

The straight line is a linear regression. The dashed vertical lines represent
Gnome project milestones, with which the release dates of the projects we study
are synchronized. Release numbers are listed next to the dashed lines. Due to

Table 7. Selected summary statistics, normalized. Examples from Usability and Effi-
ciency (performance) for selected products using extended signifiers.

Quality Project r2 slope N (weeks)

Usability

Deskbar 0.08 -0.97 126
Evolution 0.14 0.27 515
Nautilus 0.08 0.29 459
Totem 0.20 0.63 314

Efficiency

Deskbar 0.00 -0.11 34
Evolution 0.06 -0.02 439
Nautilus 0.16 -0.10 420
Totem 0.10 -0.16 158

152 N.A. Ernst and J. Mylopoulos

0
10
0

20
0

30
0

40
0

O
cc

ur
re

nc
es

 (n
or

m
al

iz
ed

)

1998 2000 2002 2004 2006 2008

Evolution -- Usability (R2 = 18%)

Year

G
no

m
e

1.
2

G
no

m
e

1.
4

G
no

m
e

2.
0

G
no

m
e

2.
2

G
no

m
e

2.
4

G
no

m
e

2.
6

G
no

m
e

2.
8

no
m

e
2.

10
no

m
e

2.
10

G
no

m
e

2.
10

G
no

m
e

2.
12

G
no

m
e

2.
16

G
no

m
e

2.
20

G
no

m
e

2.
24

G
no

m
e

1.
0

Fig. 2. Signifier occurrences per week, Evolution – Usability

space constraints, Table 6 lists only Nautilus and Evolution as products, and
r2 squared correlation value, or coefficient of determination and slope (trend)
values for each quality within that project. r2 varies between 0 and 1, with a
value of 1 indicating perfect correlation. The sign of the slope value indicates
direction of the trend. A negative slope would imply a decreasing number of
occurrences as the project ages. Table 7 does a similar analysis for all products
and the Usability and Efficiency (performance) qualities.

The results are inconclusive. In all cases the correlation coefficient indicating
the explanatory power of our linear regression model is quite low, well below the
0.9 threshold used in, for example, [18]. There does not seem to be any reason to
move to non-linear regression models based on the data analysis we performed.
We conclude that our extended list of signifiers does not provide any evidence
of a relationship between discussions of software quality requirements and time.
In other words, either the occurrences of our signifiers are random, or there is
a pattern, and our signifier lists are not adequately capturing it. The former
conclusion seems more likely based on our inspection of the data.

Using release windows – It is possible that the event occurrences are more
strongly correlated with time periods prior to a major release, that is, that there
is some cyclical or autocorrelated pattern in the data. We defined a release win-
dow as the period from immediately after a release to just before the next release.
We investigated whether there was a higher degree of correlation between the
number of quality events and release age, for selected projects and keywords. Was
this release window correlation better than the one we found for project lifespan
as a whole? For space reasons we do not include these results, but there was
no improvement in correlation. There is no relationship between an approaching
release date and an increasing interest in software quality requirements.

On the Perception of Software Quality Requirements 153

0
10

20
30

40
50

O
cc

ur
re

nc
es

 (a
ct

ua
l)

2000 2001 2002 2003 2004 2005

Year

Nautilus -- Reliability (R2 = 4%)

G
no

m
e

1.
4

G
no

m
e

1.
2

G
no

m
e

2.
0

G
no

m
e

2.
2

G
no

m
e

2.
4

G
no

m
e

2.
6

G
no

m
e

2.
8

G
no

m
e

2.
12

G
no

m
e

2.
10

Fig. 3. Signifier occurrences per week, Nautilus – Reliability

Analysis of key peaks in selected graphs – The final explanation we ex-
plore is that the data are unrelated to software age or release cycle, and are instead
responding to external events, such as a usability audit. We chose to look at Evolu-
tion, a mail and calendar client, and Nautilus, a web browser and file manager, for
more detailed ‘historical’ analysis. We tried two approaches: one used the normal-
ized data, and identified periods where our signifier occurred more frequently with
respect to everyday volume. The second approach used the actual signifier counts
to see why that signifier occurred more frequently than other periods.

We looked at the normalized Usability events in Evolution, shown in Fig. 2. To
eliminate bug reports and triaging events, we excluded these types of data from
our query. Many bug reports are auto-generated, and contribute more noise than
signal. For instance, one initial peak we examined was related to the “Mass close
of stale bugs ¿ = 4 months old.” This generated a lot of noise as the signifiers
in these reports are considered once more by our algorithm (since we treat any
discussion on a bug similarly to mail threads).

With these events removed as noise, Fig. 2 shows a cluster of points in early
2000. Mailing list discussions at that time turned to a question about the default
option for forwarding mail messages, e.g., “... I know this was discussed a few
weeks ago ... could it be implemented as an advanced option that has to be
turned on and is off by default?” Later that year, in October, another spike
in our graph can be attributed to a feature-freeze on Evolution and associated
UI cleanups. As Evolution 1.4 is released in mid-2003, there is a small upward
trend. Events at that time reflect problems with the new release, reflecting some
UI changes. We still see some effects due to volume, such as the outlier near the
end of 2003, where nearly one third of mailing messages were usability related.
The issue here is one of overall volume over the winter holidays. In this case a
single mail thread about keyboard shortcuts consumed the discussions.

154 N.A. Ernst and J. Mylopoulos

For our second approach, we used the actual signifier event counts, and tar-
geted Reliability events for Nautilus. In November, 2000, 50 events occur. In-
specting the events, one can see that a number have to do with bug testing
the second preview release that was released a few days prior. For example, one
event mentions ways to verify reliability requirements using hourly builds: “As
a result, you may encounter a number of bugs that have already been fixed. So,
if you plan to submit bug reports, it’s especially important to have a correct
installation!”. Secondly, in early 2004 there is a point with 29 events just prior
to the release of Gnome 2.6. Discussion centers around the proper treatment
of file types that respects reliability requirements. It is not clear whether these
discussions are in response to the external pressure of the deadline or are just
part of a general, if heated, discussion.

These investigations show that there is value to examining the historical record
of a project in detail, beyond quantitative analysis. While some events are clearly
responding to external pressures such as release deadlines, other events are often
prompted by something as simple as participant interest, which seems to be
central to the OSS development model.

4.3 Quality Importance and Project

Recall that in our second question, we wanted to examine whether certain
projects would be more concerned with software quality requirements than oth-
ers. We characterized the importance of a requirement to a project by calculating
the mean normalized occurrences of the signifier (such as Usability) over time.
This controls for both project longevity and project size.

Table 8 lists our results; for space considerations, only three (representative)
qualities are listed. We show the mean number of occurrences per week, normal-
ized by dividing by the overall number of ‘events’ in that period, to eliminate
the effect of volume. We would like to know, in other words, what proportion of
all messages in that week were talking about the requirement of interest.

We used the extended signifier set (ext). We cannot compare between qualities,
because the signifier sets are not the same size. However, there is a difference
among projects. We chose to focus on Nautilus and Evolution (both projects
of similar longevity, focused on file management and mail respectively). The

Table 8. Quality per project. Numbers indicate normalized occurrences per week.

Quality Project Occurrences

Efficiency Evolution 0.012
Nautilus 0.026

Usability Evolution 0.192
Nautilus 0.285

Portability Evolution 0.010
Nautilus 0.011

On the Perception of Software Quality Requirements 155

Efficiency quality occurs in Nautilus discussions at a rate of 0.026 occurrences
per week, and in Evolution at 0.012 occurrences per week less than half as often.
Usability is discussed 1.5 times as often in Nautilus, while other requirements,
including Portability, show no difference. One possible explanation is that Evolu-
tion participants have a conceptual model of Efficiency that is a poorer fit to our
signifier lists than the model Nautilus participants use. However, it does seem
fair to conclude that projects have different interests with respect to software
quality. We intend to do further testing to explore how communities conceptu-
alize these fairly abstract ‘-ilities’.

4.4 Threats to Validity

Construct validity. The main threat to construct validity is that our signi-
fiers may omit relevant terms or phrases., e.g., “can’t find the submit button”
vs. “usability”. Our qualities are not directly comparable, since their respective
signifier set sizes differ. Usability, for example, has 24 terms in its bubble, versus
Functionality with 10. We conducted the error analysis to determine how accu-
rate our bubbles are. Our error validation should be conducted by more people to
ensure inter-rater reliability. Many events are tricky to classify. Furthermore, we
are assuming that projects share the ontology of software quality expressed in the
quality model (ISO9126). A more domain-specific taxonomy would be useful.

Internal validity. When we perform our regression analysis, assuming a linear
relationship may not be a good model of the actual pattern these discussions
follow. We focused on the linear model as it is the simplest explanation of the
pattern we would expect to see if quality discussions were increasing with time.
Our source data may not capture all discussions regarding quality requirements
– we omitted IRC chats, for instance. However, these data sources are most
amenable to large-scale analysis. Follow-up with qualitative studies would be
useful.

External validity. Our data originated from open-source projects, less than
ten years old, from the Gnome ecosystem. Of these, the open-source nature
of the project seems most problematic for external validity. Capra et al. [5],
for example, show a higher software quality in OSS projects than commercial
projects. It would be interesting to determine whether a top-down directive to
focus on software quality, or some other methodological change, would present
as a noticeable spike on the event occurrence graph.

4.5 Models of Quality Requirements

There is a rich history of discussion regarding software quality requirements,
and quality models in particular. The main problem that arose in our study was
that the quality models are (by design) very high-level. They provide a useful
baseline from which to derive more specific models. However, it is useful to have a
cross-product quality requirements model which can be used to compare software
systems. Many questions are left unanswered when confronted by actual data:

156 N.A. Ernst and J. Mylopoulos

for instance, what is the relationship between product reliability and product
functionality?

The challenge for researchers is to align software quality models, at the high
level, with the product-specific requirements models developers and community
participants work with, even if these models are implicit. One reason discussions
of quality requirements were difficult to identify is that, without explicit models,
these requirements are not properly considered or are applied haphazardly. We
need to establish a mapping between the platonic ideal and the reality on the
ground. This will allow us to compare maintenance strategies for product quality
requirements across domains, to see whether strategies in, for example, Gnome,
can be translated to KDE, Apple, or Windows software.

5 Conclusions and Future Work

This paper presents a novel analysis technique for conducting empirical research
in Requirements Engineering. The technique has been applied to study two spe-
cific questions concerning quality requirements. In accordance with Lehman’s
laws of software evolution, we hypothesized that there is growing interest in qual-
ity requirements within a developer community as a project matures. However,
our analysis provides no evidence for this hypothesis. However, it is sometimes
possible to use external events to explain patterns in the data. We then showed
that there is a difference in how different projects treat software qualities with
some projects discussing certain quality requirements more than others. We have
not presented a formal hypothesis about what this might suggest.

Our ultimate goal is to be able to extract, from available sources, a list of
requirements for a project, so that we can trace not just the ‘physical’ changes
in the codebase, but also the evolving features and goals inherent in a project. We
plan to continue our experiments with repository mining with this in mind. We
have begun work using multi-label classifiers on more domain-specific taxonomies
(e.g., database systems). We think ‘ground-truthing’ our results with qualitative
studies would be useful to make our results inform a theory about quality in
software, such that techniques could be predictive as well as descriptive.

Appendix and Acknowledgements

We appreciate the comments of the software engineering group at the Uni-
versity of Toronto and Abram Hindle, and the comments of anonymous re-
viewers. Source code, processed data, and related discussions are available at
http://neilernst.net/tag/msr/.

References

1. Antón, A.I., Potts, C.: Functional paleontology: system evolution as the user sees it.
In: International Conference Software Engineering, Toronto, Canada, pp. 421–430
(2001)

On the Perception of Software Quality Requirements 157

2. Atkin, A.: Peirce’s Theory of Signs (October 2006),
http://plato.stanford.edu/entries/peirce-semiotics/

3. Bøegh, J.: A New Standard for Quality Requirements. IEEE Soft. 25(2), 57–63
(2008)

4. Boehm, B., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality.
In: International Conference Software Engineering, pp. 592–605 (1976)

5. Capra, E., Francalanci, C., Merlo, F.: An Empirical Study on the Relationship
Between Software Design Quality, Development Effort and Governance in Open
Source Projects. Trans. Soft. Eng. (2008)

6. Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software Engineer-
ing for Self-Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos,
R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive
Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

7. Chung, L., Nixon, B.A., Yu, E.S., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. International Series in Software Engineering, vol. 5. Kluwer
Academic Publishers, Boston (October 1999)

8. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The Detection and Classification
of Non-Functional Requirements with Application to Early Aspects. In: Interna-
tional Conference Requirements Engineering, pp. 39–48. IEEE, Minneapolis (2006)

9. Coallier, F.: Software engineering – Product quality – Part 1: Quality model. Tech.
Rep. ISO9126, International Standards Organization - JTC 1/SC 7 (2001)

10. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-Functional Re-
quirements in Industry - Three Case Studies Adopting an Experience-based NFR
Method. In: International Conference Requirements Engineering, pp. 373–384
(2005)

11. Ernst, N.A., Mylopoulos, J.: Tracing software evolution history with design goals.
In: International Workshop on Software Evolvability at ICSM, Paris, France (Oc-
tober 2007)

12. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

13. German, D.M.: The GNOME project: a case study of open source, global software
development. Soft. Process: Improvement and Practice 8(4), 201–215 (2003)

14. Koch, S., Schneider, G.: Effort, co-operation and co-ordination in an open source
software project: GNOME. Inf. Sys. J. 12, 27–42 (2002)

15. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics
and laws of software evolution-the nineties view. In: Int. Soft. Metrics Symp.,
Albuquerque, NM, pp. 20–32 (1997)

16. Massey, B.: Where Do Open Source Requirements Come From (And What Should
We Do About It)? In: Workshop on Open Source Software Engineering at ICSE,
Orlando, FL, USA (2002)

17. McCall, J.: Factors in Software Quality: Preliminary Handbook on Software Qual-
ity for an Acquisition Manager. General Electric, vol. 1-3 (November 1977)

18. Mens, T., Fernandez-Ramil, J., Degrandsart, S.: The evolution of Eclipse. In: Inter-
national Conference Software Maintenance, Shanghai, China, pp. 386–395 (October
2008)

19. Scacchi, W.: Understanding the requirements for developing open source soft-
waresystems. IET Software 149(1), 24–39 (2002)

20. Scacchi, W., Jensen, C., Noll, J., Elliott, M.: Multi-Modal Modeling, Analysis
and Validation of Open Source Software Requirements Processes. In: International
Conference on Open Source Software, Genoa, Italy, vol. 1, pp. 1–8 (July 2005)

21. Wheeler, D.: SLOCcount (2009), http://www.dwheeler.com/sloccount/

http://plato.stanford.edu/entries/peirce-semiotics/
http://www.dwheeler.com/sloccount/

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 158–172, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Lessons Learned from Integrating Specification
Templates, Collaborative Workshops, and Peer Reviews

Marko Komssi1,2, Marjo Kauppinen1, Kimmo Toro2, Raimo Soikkeli3,
and Eero Uusitalo1

1 Software Business and Engineering Institute, Aalto University School of Science and
Technology, P.O. Box 9210, 02015 TKK, Finland

2 F-Secure Corporation, Finland
3 Ilmarinen Mutual Pension Insurance Company, Finland

{Marko.Komssi,Marjo.Kauppinen,Eero.Uusitalo}@tkk.fi,
Kimmo.Toro@f-secure.com, Raimo.Soikkeli@ilmarinen.fi

Abstract. [Context & motivation] Specifying requirements and ensuring their
quality are critical for the success of software development projects. A variety
of practices have been suggested to manage these activities, including specifica-
tion templates, collaborative workshops, and peer reviews, but few empirical
studies exist on their inter-connection. [Question/problem] We studied the les-
sons learned from integrating these three practices: “what are the problems
faced with the use of the three practices?” and “what kind of approach supports
the integrated use of the three practices?” [Principal ideas/results] In the Fin-
nish companies included in the study, the key problems with the use of the three
practices seemed to be the following: 1) the use of the three practices was typi-
cally inadequately established to meet the needs of the particular projects and 2)
the requirements were communicated to key participants late and insufficiently.
To avoid these types of problems, it was found useful to use the practices in an
integrated manner, so that the forms of collaboration between key participants
were determined and the appropriate types of practices were selected and tai-
lored in a project-specific way. [Contribution] The paper describes the success
factors of the integration. The setup workshop is introduced to support the tai-
loring and integration of the practices.

Keywords: Requirements engineering, setup workshop, action research, indus-
trial experience, integration, specification, quality control, best practices.

1 Introduction

Requirements engineering (RE) is a central part of software development, but despite
this fact, actual knowledge of the RE process is lacking [1]. A large part of RE re-
search concentrates on methods or techniques supporting a single activity instead of
promoting an integrated view of RE and lacks reports on the connections between
various good practices [1, 2].

Several best RE practices have been identified that contribute to software project
success [1]. However, having the best RE practices in place may not be enough. A
best RE practice may include various techniques. The proper selection and tailoring of

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 159

a technique is typically needed in order to find an appropriate fit to a particular soft-
ware project that has its own characteristics [3, 4]. Unfortunately, most RE literature
does not sufficiently describe the suitable target areas or limitations of specific tech-
niques [3]. Moreover, the lack of empirical research in method tailoring is surprising
in the applied field of software engineering [4].

According to Katasonov and Sakkinen [2], requirements quality control is mostly a
matter of communicating requirements. They emphasize that requirements are not
discovered but constructed, and there is often some disagreement between stake-
holders about goals. They argue that requirements quality control cannot be seen
simply as a mechanical process of checking documents but should instead be studied
as a coherent entity. Moreover, to overcome the deficiencies of requirements docu-
ments, communication links between stakeholders and requirement owners are
needed [5].

This paper focuses on linking three practices of RE – specification templates, col-
laborative workshops, and peer reviews – to support a coherent view of specifying
requirements with quality control. Our industrial research study was based on the
following question: what lessons have been learned from integrating these three prac-
tices? In order to answer the question, an action research study was conducted in five
companies that have applied the practices in their software projects.

Drawing on the lessons learned, this paper presents an approach to integrating the
above-mentioned three practices. This approach allows the practices to be tailored to
fit the operating environment of a software project and form a coherent whole that
enables the practices to overcome each other’s deficiencies. A key part of the ap-
proach is the setup workshop, where the application and timing of these practices is
analyzed and decided upon collaboratively.

The paper is organized as follows. Section 2 presents the related work from the
three practices and Section 3 explains the research design. Section 4 presents the
problems faced with the use of the three practices. Section 5 presents the success
factors of the integration ands proposes the setup workshop as a crucial component of
the integration. Finally, Section 6 concludes the findings with suggestions for future
research.

2 Related Work

It is important first to find out the strengths and weaknesses of individual practices in
order to understand how these practices can work together. In this section, the previ-
ously reported characteristics of specification templates, collaborative workshops, and
peer reviews are presented.

2.1 Specification Templates

The use of specification templates is a common practice that supports, in particular,
the early phase of specification activity in software projects. Several specification
templates, such as IEEE Recommended Practice for Software Requirements Specifi-
cations [6] and the Volere Requirements Specification Template [7], are available to

160 M. Komssi et al.

provide a comprehensive structure for documentation. These templates contain prede-
fined sections with instructions and examples as the basis for document writing.

Successful teams have frequently transformed specification templates and
examples from previous projects into rational RE activities [1]. In this study, the
specification templates were identified as one of the best practices in RE. Specifica-
tion templates have also been identified as one of the top ten RE guidelines and
recommend their implementation in all organizations [8].

Although the use of specification templates is accepted as one of the best RE prac-
tices and most of the software companies apply specification templates in their soft-
ware projects, the literature seems to provide surprisingly few empirical results from
the use of specification templates in software projects. The benefits and strengths of
specification templates are mainly introduced in RE books. The specification templates
are intended to act as a guide to essential content and to help requirements analysts
determine what belongs in the specification [7, 9]. The specification templates should
contribute to documents that have a higher quality and lower cost [8]. Furthermore, the
use of specification templates promotes consistent communication and helps software
practitioners ask questions that they might otherwise ignore [10]. Peer reviewers can
also capitalize on software templates that relate to reviewing work [8].

A few disadvantages and weaknesses of specification templates have been pre-
sented. One limitation is that they are not scalable for all types of projects. In other
words, the templates often lack the flexibility that is required to respond to variability
in the intended readership of a document [11]. Another drawback with specification
templates is that they can lead to the production of specifications that are superficially
attractive but limited in their content [12].

Some suggestions have been made about ways to improve the usefulness of speci-
fication templates. For example, it has been proposed that a suitable specification
template with embedded guidance texts should be defined for each project type [10]
or, similarly, that software practitioners should predefine a set of situation types and
suggest an appropriate requirements document style for each type [13]. In addition, in
order to develop a useful structure for a specification template, the existing documents
of the organization should be investigated and ideas should be collected from
document users [8].

2.2 Collaborative Workshops

The use of collaborative workshops seems to be a less common RE practice in soft-
ware projects than the use of specification templates or peer reviews [1]. Collaborative
workshops can vary from informal to formal and from short to long and can be used
for several purposes to support different RE activities. In particular, a collaborative
workshop can provide an efficient, controlled, and dynamic setting where the partici-
pants can quickly elicit, prioritize, and agree on a set of project requirements [14].

One formal approach to specifying requirements is the collaborative construction
of the entire requirements document. For example, the RaPiD7 collaborative docu-
ment authoring technique has been developed at Nokia [15]. In this technique, a
document is created by a team in consecutive workshops, which reduces the risk of
the document’s content being based primarily on the judgment of the author. The
RaPiD7 technique is supposed to enhance the communication and commitment of a

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 161

project team and improve document quality. The reason for these advantages is the
early involvement of the team in documentation work. RaPiD7 speeds up the docu-
ment creation process in terms of calendar time.

RaPiD7 is similar to a more widespread method called Joint Application Develop-
ment (JAD), which was developed at IBM in 1977 [16]. JAD enables technical and
business specialists to learn about each other’s domain knowledge, improves commu-
nication among interested parties, facilitates consensus management, and increases
user acceptance of specifications [17].

One challenge these two techniques present is the common time required for work-
shop meetings. For example, a JAD procedure typically lasts for three to five days
[18] and stakeholders have difficulty allocating common time. In fact, it was neces-
sary to adapt the JAD technique in some organizations because the staff were some-
times unable or unwilling to commit to full-time participation in JAD workshops [19].

Cockburn [20] proposes a more informal process for a collaborative workshop, in
which people work in a full group when there is a need to align or brainstorm and use
the rest of their time in pairs or alone. Cockburn explains that a group is able to brain-
storm and reach a consensus effectively, but when the group is split, more text is
produced.

2.3 Peer Reviews

Peer reviews are a core practice of requirements quality control [2, 21]. A peer review
consists of someone other than the author of a document examining it in order to
discover defects and identify improvement opportunities [22]. Eventually, a software
development organization may need to acquire deeper knowledge from the types,
formalities, and feasibilities of peer reviews. In particular, mature software develop-
ment organizations are advised to develop capability to determine what types of peer
reviews are conducted and to tailor the peer reviews in the organizations’ software
projects [21]. Wiegers has defined several review techniques and types, both formal
and informal [23], which are listed below using his definitions.

The most formal technique of a review, inspection, has several characteristics that
distinguish it from other review techniques. For example, a trained moderator leads
meetings and co-operates with a trained team. The moderator defines the goals, col-
lects quality data, and distributes results using a reporting process.

A team review is slightly more informal and imprecise than an inspection. Team
reviews concentrate more on detecting defects than preventing them. A team review
may be chosen if no trained inspection leaders are available.

In a walkthrough, the author of the document explains it to colleagues and asks for
their feedback. This review type is generally informal and does not involve data col-
lection and reporting. However, the process steps and the role of each participant may
be clearly defined.

In a passaround, the author of the document sends it to several colleagues and
gathers their feedback. The passaround technique is useful, for instance, for obtaining
ideas and corrections for a new project plan.

In a peer deskcheck, only one checker examines the document. While this review
technique requires the smallest amount of resources, it is only appropriate for prod-
ucts that do not have very high quality expectations or are not to be reused.

162 M. Komssi et al.

In an ad hoc review, the author of the program presents a problematic part of the
design to a fellow worker and asks for help. Although quite informal, this review type
is useful for short and tricky cases.

A team can identify the strengths and weaknesses of the review types [23]. The
purpose of this is to select the proper review type for each case with regard to
the organizational culture, time constraints, and business objectives. In particular, the
team is advised to select the least expensive review type that fulfills the objectives of
the review [22].

3 Research Design

The goal of this study is to present lessons learned from the integration of specifica-
tion templates, collaborative workshops, and peer reviews. The study was conducted
using an action research approach in five Finnish companies. The data were collected
from the case study companies during a period of ten years (1999 to 2009) and
analyzed iteratively in three phases.

3.1 Research Approach

In order to gain a deep understanding of the three practices and their integration, we
applied an action research approach. This research method was selected for two rea-
sons: it has a unique ability to link research to practice, and as a qualitative method, it
is also effective for explaining what is happening in a company [24]. The action re-
search approach allows researchers to address complex real-life matters and study
selected issues in detail [25]. Additionally, an “industry-as-laboratory” research
approach, where researchers identify problems through close involvement with indus-
trial projects and create and evaluate practices addressing the problem, is suggested in
[26]. This lets researchers emphasize what people actually do or can do in practice,
rather than what is possible in principle.

To access insider and historical data, as well as to engage practitioners in research,
we also applied the insider action research approach [27]. In the insider action
research approach, some of the researchers are internal members of practitioner or-
ganizations. As internal members of the organization, practitioner-researchers have
the opportunity to collect data that are richer than what they would collect as external
researchers. Gummesson [28] points out that a lot of information is stored in the
minds of practitioners, who have often undergone central and dramatic changes.
Therefore, Gummesson urges practitioners to act as researchers and reflect on what
they had learned retrospectively.

3.2 Case Study Companies

Our research was conducted in five Finnish companies, which are introduced in
Table 1. Three of the companies were of medium size, one was small, and one was
large. Companies A, C, and E are internationally known and have a significant global
market share in their fields. These three companies focus mainly on solutions devel-
oped for a large number of customers. Company B provides pension insurance

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 163

Table 1. Case study companies

Company Number of
employees

Application domain

A 700 Computer and information security solutions for companies
and consumers

B 600 Earnings-related pension insurance services
C 500 Information management systems for buildings, public

infrastructure, and energy distribution designers
D 50 Language technologies and services for companies and

consumers
E 24000 Transportation systems and services for buildings

services in Finland, and Company D offers language technology solutions, mainly to
large companies.

Table 2 summarizes the practices the case study companies have applied. Each of
the companies defined at least one specification template for requirements. In order to
shorten the requirements documents, some of the organizations opted for two tem-
plates – one for high-level requirements and one for more detailed requirements. We
were able to gather data related to collaborative workshops from two companies, even
though they were practiced in all of the companies to some extent. In particular,
Company B had a long tradition of using workshops to define requirements collabora-
tively. All of the case study companies had applied some kind of peer reviews, with
the most common being team reviews.

Table 2. Practices investigated in each company

 A B C D E
Specification templates X X X X X
Collaborative Workshops X X
Peer Reviews X X X X X

3.3 Data Collection and Analysis

Our study was based on the following question: “what are the lessons learned from
the integration of these three practices?“ Applying the “industry-as-laboratory” re-
search approach [26], we divided the question into two more specific questions as
follows: “what are the problems faced with the use of the three practices?” and “what
kind of approach supports the integrated use of the three practices?” Figure 1
illustrates the three main phases of the study: 1) identification of problems faced in
software projects and development of the integration approach, in Company A, 2)
retrospective analysis of the problems faced in the five companies and refinement
of the integration approach, and 3) validation of findings and refinement of the inte-
gration approach, in Company B.

164 M. Komssi et al.

Fig. 1. Three research phases of the study

Phase 1 was performed in Company A between the years 2003 and 2006. Per-
ceived problems of eleven software projects were first identified, and the related im-
provement ideas were collected and analyzed. Subsequently, a preliminary approach
to the integration of the three RE practices was developed and piloted iteratively.

The goal of Phase 2 was to compare the preliminary results gained from Company
A during Phase 1 with the experiences from the other four companies (B, C, D, and
E). In this phase, retrospective analysis was used to examine previously collected
data. The data had been collected in three ways. First, four of the authors had worked
in one or two of the case study companies (A, B, D, and E), participating in software
development projects and requirements process improvement work. Second, the
authors conducted two research projects with the case study companies during 1999-
2005. Within these research projects, data from Companies A, C, and E was gathered.
Third, the authors interviewed a person who had been in charge of specification
templates and peer reviews in Company A ten years ago. Based on the analysis, the
authors refined the findings related to the problems faced with the use of the three
practices and reflected on the approach to integration.

Phase 3 was conducted with Company B from 2006 to 2009. The company’s goal
was to develop a consistent yet tailorable set of RE practices that could be applied
company-wide. This was accomplished by a series of 12 workshops and 19 meetings,
where the findings of the previous phases were built on. The result of these activities
was an approach that enables an organization to tailor and integrate specification
templates, collaborative workshops, and peer reviews into a coherent entity. The
approach was piloted during its development in 9 software projects. In addition, the
company organized two training sessions, in which 28 project managers, requirements
specialists, and group leaders participated. After the training, we asked for partici-
pants’ comments on how suitable they perceive the approach as being for the types of
projects they typically participate in. We used both a feedback form and group discus-
sion to collect the data. In this phase, the collected data were analyzed and the

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 165

findings were clustered into the previous findings iteratively. The findings were vali-
dated and new findings were merged with them. The final findings are described as
the lessons learned. These lessons are described in the following sections.

Table 3 summarizes the data collection activities performed in the case study
companies. The results of this study are based on the data collected through observa-
tions, formal semi-structured interviews, informal conversations, the analysis of
requirements specification templates, the analysis of requirements documents, and
questionnaires.

Table 3. Data collection activities of the study

 A B C D E
Observation X X X X X
Interviews X X X X
Informal conversations X X X X X
Analysis of specification templates X X X X X
Analysis of requirements documents X X X X X
Questionnaires X X X

3.4 Threats to Validity

We apply the explanations of Yin [29] to construct and external validity. In our study,
a threat to construct validity is the possibility that we were not able to correctly collect
and evaluate the problems related to the use of the three practices and the benefits and
success factors from applying the integration approach. As a result, our inferences
concluded as lessons learned might not represent reality, in the companies. The threat
to external validity is the possibility that lessons we have learned cannot be general-
ized to other software development organizations.

To reduce the threat to construct validity of the study, we used of multiple sources
of evidence and triangulation. We used a number of information sources and data
collection techniques. We applied triangulation of data sources and data collection
techniques by utilizing interviews, informal conversations, participant observation,
and document analysis. In addition, the study covers a long period of time that im-
proves the construct validity of our findings, as it was possible to analyze and validate
the findings at different times. Finally, key informants from two companies reviewed
our findings several times.

To reduce the threat to external validity of the research results, the study involved
five separate case study organizations of different characteristics, such as size,
solutions, and business environments. The integration approach was developed and
piloted in two companies that have very different types of software development and
business environments and solutions.

4 Problems Faced with the Use of the Three RE Practices

The use of specification templates fosters individual specification work. The ap-
plication of specification templates was quite common in the companies. Software

166 M. Komssi et al.

developers who used a specification template typically specified a document alone,
which tended to lead to the writing of overly comprehensive specifications. Software
developers often spent a lot of time on the writing phase when using a specification
template. A significant problem was that they focused too much on writing require-
ments with high volatility. In addition, specification templates were occasionally
found to cause superficially attractive specifications that satisfied guidelines but in-
cluded irrelevant content. For example, interviews and informal conversations with
practitioners in a case study company revealed to us that they, as document readers,
had often met and disregarded long documents whose readership was unclear. The
problem was identified as a result of an individual specifying work that was based on
a specification template.

The timing of a peer review is typically too late. Several reviewers were dissatisfied
with the fact that participating in a review of the requirements document was often
their first involvement in the development of a software system or product. The peer
review usually took place once the writer felt the document was, to all intents and
purposes, finished. However, the late timing of reviews was often harmful for both
the writer and the reviewers. Writers were often opposed to suggestions for major
changes at that point and the reviewers’ interest in suggesting changes for the docu-
ment seemed to decrease as well. One company employee said, “Typically, the con-
tent of the document is so refined that I do not even dare to raise any issues in the
review.” In practice, documents that were too polished reduced reviewers’ motivation
to suggest changes, even if the reviewers had discovered several weaknesses in the
documents’ contents.

The difference between collaborative workshops and peer reviews is not clear in
practice. Even if peer reviews were originally introduced to discover defects in the
documents, the practitioners of three of the case study companies gradually began to
use peer reviews more for sharing information and solving problems. The reasoning
for this is as follows: For some key stakeholders, such as software testers and techni-
cal support personnel, a late peer review was often the first exposure to the project’s
requirements. Hence, the needs of these stakeholders were not aligned with the
original intent of discovering defects, but rather gaining understanding or expressing
their own views on the requirements. On the other hand, some collaborative work-
shops that the project teams held in the late phases of specifying requirements
included aspects of peer reviews; in these projects, the teams skipped the actual peer
reviews. Hence, the purpose of the two activities changed or became vague. The main
difference seemed to be the timing. The term “collaborative workshop” was often
used in the early phase and the term “peer review” in the late phase of specifying
requirements.

The purpose and content of collaborative workshops and peer reviews are poorly
communicated. Practitioners in one case study company were applying peer reviews
for three different purposes, depending on the degree of completion of the documents.
The purposes were to obtain comments from the domain experts, to share information
with several stakeholders, and to achieve acceptance of the document. However, the
fact that the practitioners referred to each of the three different types of sessions as
‘reviews’ caused confusion. In particular, the reviewers were irritated when the

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 167

meeting was different than they had expected or wanted. In another company, reviews
were part of the development process and the participants typically perceived the
reviews as little more than a rubber stamp at the end of the software development
procedure. On the other hand, collaborative workshops were not a defined practice in
the case study companies. Undefined workshops were applied in one company and
this was identified as a reason for the frustration of the participants. In particular, the
goals of the workshops were not communicated and this meant that the participants
had expectations of the course of action and outcomes of workshops that differed
from those of the facilitators.

5 Integrating the Three RE Practices

In an attempt to mitigate the problems faced with the use of the three practices, we
developed an approach for integrating these practices. In this section, we present the
lessons we have learned from integrating the three practices. First, three success fac-
tors of the integration are presented. Second, we introduce the setup workshop as the
means to perform the actual integration.

5.1 Success Factors of the Integration

Teamwork. We identified teamwork as the first success factor of the integration. By
definition, teamwork produces synergy as people with different skills work together
towards a common goal. Team members create shared meanings and arrange this
knowledge into common frames. We found out that teamwork was essential for the
identification of: 1) the project-specific needs of the requirements specification; 2) the
project-specific needs for co-operation and communication; 3) the key information
streams (informants and targets) in different stages of the project, and 4) the types of
practices that are beneficial for the project. As a consequence of teamwork, the deci-
sions were based on an extensive knowledge base and debate, they were far more
willingly accepted by group members, and the reasons behind them were commonly
understood.

Correct timing of the RE practices. The second success factor of the integration is
the correct timing of the RE practices, so that each practice is used at the right phase
of the project – maybe a seemingly trivial task, but not so. As an example, one
specialist commented that the utilization of the specification template too early
restricts the creative work and collaboration too much. The selection of the proper
sequence of the practices also involves planning when and how the different stake-
holders are to be engaged in specifying requirements. Without this kind of planning,
the first involvement of some key stakeholders was often in peer reviews, late in the
phase of specifying requirements, causing frustration on the part of the stakeholders
and extra development costs.

Tailoring the RE practices. Tailoring the selected practices was crucial, as none of
them was found to be optimal as such. Here, tailoring means a purposeful activity in
which a practice or practices are adapted to fit a particular purpose. We found out that
two types of tailoring were used. First, the case study organizations performed

168 M. Komssi et al.

company-level tailoring of the practices. The most typical type of company-level
tailoring was to define the structures and scrutinize examples of different types of
specification templates by adapting a standard version like the IEEE Recommended
Practice for Software Requirements Specifications [6]. Second, project-specific
tailoring was needed.

Purposeful, project-specific tailoring seemed to require at least one skilled person
to take ownership of the tailoring. In particular, tailoring the three practices as inte-
grated required an understanding of their overlapping characteristics. Increased
knowledge about the variety of practices and their strengths and weaknesses seemed
to help the team to choose the appropriate types of practices and adapt them to their
context. When software project teams participated in collaborative workshops to a
greater degree, specification templates were less necessary for guiding the writing
work and peer reviews for information sharing.

As a result of the tailoring, the variability of the collaborative workshops increased.
The goals and required participants of the collaborative workshops varied. Hence, it
was considered crucial to choose and communicate the type, procedure, and goal of
each collaborative workshop in order to avoid unnecessary participants and false
expectations.

5.2 Setup Workshop as a Crucial Component of the Integration

A setup workshop is a collaborative and facilitated workshop used for planning and
communicating how to utilize the three practices in the creation of requirements
specification in software projects. The setup workshop was originally developed and
piloted in Company A, and later refined and piloted in Company B. The setup work-
shop seems to be a key component for integrating the three practices. The current
version of the setup workshop is presented in the following and illustrated in Figure 2.

Fig. 2. Using a setup workshop for planning the integrated deployment of the three RE
practices

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 169

The setup workshop is performed in the early stages of specifying requirements. In
the setup workshop, the facilitator enables the participants to identify or clarify the
following:

• the business objectives of software project,
• the key and minor informants of requirements in different stages of the project,
• the project-specific goals of the requirements specification and the needs of its

readers,
• the criticality of the requirements specification and the role of oral communica-

tion, and
• the life-cycle of the requirements specification and the estimated volatility of

requirements.

Immediately after identifying the above factors, the facilitator supports the partici-
pants in determining the types of practices, the ways they are tailored, and their se-
quence. At the same time, they determine the participants for the planned collabora-
tive workshops and peer reviews.

The benefits of this approach were obvious. First, the readers of the requirements
specification considered that this approach improved the relevance of specifications.
Second, from setup workshop participants’ point of view, proper planning and com-
munication of the goals of each collaborative workshop and peer review was consid-
ered to reduce false expectations and frustration on the part of participants and to
promote early information sharing between stakeholders. Overall, 20 out of 28 practi-
tioners who participate in specifying requirements for information systems in Com-
pany B perceived the idea of the setup workshop as very useful for their work. The
remaining eight practitioners perceived it as useful. Remarkably, all three team lead-
ers and seven out of eight project managers found the setup workshop very useful.

A setup workshop was found useful, at least, in software projects where a require-
ments specification had an important role. An informant commented that the use of
the three practices in an intertwined way was also found beneficial in certain software
projects in Company B, even without applying the setup workshop as such. This im-
plies that the integration of the practices can be successfully performed in several
ways and the setup workshop is just one approach to perform it.

During our study, Company A was transformed from a traditional software organi-
zation to an agile one, which changed the company’s software development culture.
Moreover, the software developers increasingly opposed documentation and peer
reviews. Consequently, the use of requirements specification was reduced and peer
reviews nearly discontinued. As a result of these changes, we were not able to fully
apply setup workshops as initially piloted; oral communication took the key role as
the main information channel. Interestingly, software developers appeared to apply
collaborative workshops informally. Even though the applicability of setup work-
shops as such can be limited in agile software organizations, we, in fact, suggest their
use as a tool to help agile software development teams towards efficient information
sharing between cross-functional teams.

170 M. Komssi et al.

6 Discussion and Conclusions

Although specification templates, collaborative workshops, and peer reviews have all
been recommended, they are typically treated as independent RE practices in the
literature. Our findings indicate that the independence of the practices leads to several
problems in practice. The use of specification templates often leads to individual
specifying work, resulting in relatively long documents. Peer reviews are typically
performed too late and reviewers are not motivated to contribute.

The integration of the three practices was identified as a rational way to reduce
such problems. As each of the three practices has strengths and weaknesses that partly
overlap, using the practices in a tailored and intertwined way helps the team to reduce
the negative influences of their weaknesses. As a means to perform integration, our
findings suggest using the setup workshop for planning the workflow of specifying
requirements, identifying project-specific ways to collaborate, and selecting and tai-
loring the appropriate types of practices. The use of a setup workshop can improve the
applicability of specification templates and promote early information sharing
between stakeholders. Proper planning and communication of the goals of each col-
laborative workshop and peer review should reduce false expectations and frustration
on the part of participants.

The proposed integration approach includes limitations and challenges when
adopting it in a software organization. Software developers may not easily adopt the
proposed integration approach, if they already oppose meetings, documentation, and
peer reviews. In addition, the tailoring of the RE practices, as a key element of the
integration, requires more RE skills than the use of standardized practices. A software
organization needs to consider whether they have the necessary skills or willingness
to acquire them. Furthermore, the integration approach will increase the variability of
the used RE practices in the software organization. The work practices and require-
ment specifications in different software projects will become less comparable. Con-
sequently, a process owner and management may find it more difficult to observe the
progress and quality of software projects.

The significance of our findings is to be confirmed in future studies. The role of
certain authors as active participants in the companies may have affected the construct
validity of the results. It should be noted that the development of the integration
approach partly occurred as everyday work in two companies and was not solely
organized to support the research purpose. Furthermore, we were able to apply the
integration approach only in two out of the five companies. This weakens the external
validity of the findings. New studies in several organizations are needed to evaluate
whether the integration approach really addresses to the problems faced with use of
the three RE practices.

While this paper presented the three RE practices as integrated, in future, it would
also be worth studying how to integrate larger sets of RE practices that are adopted
for use in software companies. Indeed, evaluating the usefulness of the setup work-
shop for planning and tailoring the entire RE process of a software project appears to
be a promising idea.

 Lessons Learned from Integrating Specification Templates, Collaborative Workshops 171

References

1. Hofmann, H.F., Lehner, F.: Requirements Engineering as a Success Factor in Software
Projects. IEEE Software 18(4), 58–66 (2001)

2. Katasonov, A., Sakkinen, M.: Requirements Quality Control: a Unifying Framework.
Requirements Engineering 11(1), 42–57 (2006)

3. Tsumaki, T., Tamai, T.: Framework for Matching Requirements Elicitation Techniques to
Project Characteristics. Software Process Improvement and Practice 11(5), 505–519
(2006)

4. Fitzgerald, B., Russo, N.L., O’Kane, T.: Software Development Method Tailoring at
Motorola. Communications of the ACM 46(4), 64–70 (2003)

5. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking Requirements and Test-
ing in Practice. In: Proceedings of the 16th IEEE International Requirements Engineering
Conference, pp. 265–270. IEEE CS Press, Barcelona (2008)

6. IEEE Recommended Practice for Software Requirements Specifications (IEEE Std-830),
pp. 207–244 (1998)

7. Robertson, S., Robertson, J.: Mastering the Requirements Process, 2nd edn. Addison-
Wesley, Boston (2006)

8. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley,
Chichester (1997)

9. Davis, A.M.: Just Enough Requirements Management: Where Software Development
Meets Marketing. Dorset House Publishing, New York (2005)

10. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
11. Brockmann, R.J.: Where Has the Template Tradition in Computer Documentation Led Us?

In: Proceedings of the 2nd Annual International Conference on Systems Documentation,
pp. 16–18. ACM, Seattle (1983)

12. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned from Software Testing–A Context-
driven Approach. Wiley, New York (2002)

13. Power, N., Moynihan, T.: A Theory of Requirements Documentation Situated in Practice?
In: Proceedings of the 21st Annual International Conference on Documentation, pp. 86–92.
ACM, San Francisco (2003)

14. Gottesdiener, E.: Requirements by Collaboration: Getting It Right the First Time. IEEE
Software 20(2), 52–55 (2003)

15. Kylmäkoski, R.: Efficient Authoring of Software Documentation Using RaPiD7. In:
Proceedings of the 25th International Conference on Software Engineering, pp. 255–261.
IEEE Computer Society Press, Portland (2003)

16. Carmel, E., Whitaker, R.D., George, J.F.: PD and Joint Application Design: a Transatlantic
Comparison. Communications of the ACM 36(6), 40–48 (1993)

17. Purvis, R., Sambamurthy, V.: An Examination of Designer and User Perceptions of JAD
and the Traditional IS Design Methodology. Information & Management 32(3), 123–135
(1997)

18. Wood, J., Silver, D.: Joint Application Development, 2nd edn. Wiley, New York (1995)
19. Davidson, E.J.: Joint Application Design (JAD) in Practice: The Journal of Systems and

Software 45(3), 215–223 (1999)
20. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Upper Saddle River (2001)
21. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and

Product Improvement. Addison-Wesley, Boston (2003)
22. Wiegers, K.E.: Peer Reviews in Software: A Practical Guide. Addison-Wesley, Massachusetts

(2001)

172 M. Komssi et al.

23. Wiegers, K.: When Two Eyes Aren’t Enough. Software Development 9(10), 58–61 (2001)
24. Avison, D., Lau, F., Myers, M.D., Nielsen, P.A.: Action Research. Communications of the

ACM 42(1), 94–97 (1999)
25. Avison, D.E., Baskerville, R., Myers, M.D.: Controlling Action Research Projects.

Information Technology & People 14(1), 28–45 (2001)
26. Potts, C.: Software-Engineering Research Revisited. IEEE Software 10(5), 19–28 (1993)
27. Coghlan, D.: Insider Action Research Projects: Implications for Practising Managers.

Management Learning 32(49), 49–60 (2001)
28. Gummesson, E.: Qualitative Methods in Management Research, 2nd edn. Sage Publica-

tions Inc., Thousand Oaks (2000)
29. Yin, R.K.: Case Study Research – Design and Methods, 3rd edn. Sage Publications Inc.,

Thousand Oaks (2003)

A Case Study on Tool-Supported
Multi-level Requirements Management

in Complex Product Families

Margot Bittner, Mark-Oliver Reiser, and Matthias Weber

Technische Universität Berlin
Fakultät IV - Softwaretechnik, Sekr. TEL 12-3
Ernst-Reuter-Platz 7, D-10587 Berlin, Germany

{margot,moreiser,we}@cs.tu-berlin.de

Abstract. [Context & Motivation] Despite numerous advancements
in product family engineering over the past decade, the management of
highly complex product families still remains a significant challenge. In
our previouswork,we presented the multi-level approach for pragmatically
planning and managing variability and reuse across independent product
ranges, thus avoiding the unmanageable complexity of a rigid product line
infrastructure on the global level above these individual product ranges.
[Question/problem] The multi-level approach has not yet been exten-
sively validated in industry in the area of requirements management of
product families. [Principal ideas/results]A major tool-supported case
study from the automotive domain in the area of body comfort electronics
was set up and performed in order to validate the multi-level approach for
requirements management in complex product families. [Contribution]
The results from the industrial case study demonstrate the applicability of
themulti-level approach and emphasize its benefits in an industrial setting.
Furthermore, important lessons were learned leading to numerous refine-
ments and extensions both in concept and tool support.

1 Introduction

Product-line oriented development is one of the new paradigms of software de-
velopment proposed over the past decades [1,2]. According to this paradigm, the
focus of development is shifted from individual software products to the over-
all set of products a software manufacturer has on offer, i.e. his product line or
product family. Instead of developing the products in parallel and independently
from one another, only a single, but variable product—called the product line
infrastructure—is built; the actual products offered to the customer are then
derived from that infrastructure through configuration. A key objective of all
product line approaches is to make the product line itself a genuine, tangible en-
tity within the development and evolution process and to strategically manage
the commonality and variability between individual product instances within
the product line’s scope.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 173–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

174 M. Bittner, M.-O. Reiser, and M. Weber

This basic idea of product line orientation well suits the situation in auto-
motive industry, with its huge product ranges and its extensive variability. The
same applies to many other industrial domains of software-intensive systems.
However, when applying traditional product line methods and techniques to a
highly complex product family, such as that of a global automotive manufacturer,
the engineer is faced with a dilemma: managing everything as a single, gargan-
tuan product line is virtually impossible owing to its enormous complexity; but
when dividing the range of available products into several smaller independent
product lines, systematic reuse and strategic variability management across these
portions—two of the key benefits of product line orientation—are lost. It is the
purpose of the multi-level approach, as presented in [3,4], to avoid this strict al-
ternative by offering a compromise between a single global and several smaller,
independent product lines. With this technique, it is possible to split up a huge
product line into smaller, independent sublines but still, to strategically steer
their commonalities and variabilities on a global level.

In this paper we present the results of an automotive case study of tool-
supported multi-level requirements management and we will discuss the experi-
ences and the lessons learned from it and show how they motivated refinements
and extensions to the existing approach and tool. After a brief overview of the
multi-level approach in the coming section and a short description of the applied
tool-support in Section 3, we describe the background, scope and the quantita-
tive results of the case study in Section 4. In the main part of this article we
will then describe in detail the experiences from the case study and the resulting
refinements and extensions to the approach and its tool-support (Section 5). The
last section finishes with a summary and several concluding remarks.

2 The Multi-level Approach

The basic intention of the multi-level approach is to allow for strategic planning
and to manage development across several smaller, independent product lines,
without introducing a large, rigid product line infrastructure on the global level.
To achieve this, we turn to the development artifacts of two or more independent,
lower-level product lines and initially assume that these artifacts are defined
and evolved independently for each lower-level product line. To now allow for a
coordination on the global level, we introduce an additional artifact of the same
type which has the sole purpose of making proposals for the content of the lower-
level artifacts, thus serving as a template for them; the individual proposals in
this template may or may not be adopted within the lower-level artifacts. The
template artifact on the global level is called a reference artifact, whereas the
lower-level artifacts are called referring artifacts; whenever a lower-level artifact
diverges from a proposal in its reference artifact, we speak of a deviation.

In addition to this, the proposals in the reference artifact are marked as op-
tional or obligatory, which allows one to recognise deviations in the referring
artifacts as legitimate deviations, that constitute a deviation from an optional
proposal, or illegitimate deviations, that deviate from an obligatory proposal. If

A Case Study on Tool-Supported Multi-level Requirements Management 175

a referring artifact contains no deviations at all or only legitimate deviations,
then we say that this artifact conforms to its reference artifact. This is also called
the conformance state of a referring artifact.

With this mechanism at hand, we can now use the reference artifact to steer
the contents of the referring artifacts: we can start by making optional proposals
in order to give the development teams working on the referring artifacts a chance
to leisurely tailor their local content towards the global template; later, we can
turn these, step by step, into obligatory proposals in order to enforce a tighter
alignment to this global vision. All along the way, we can track the current
progress of individual lower-level product lines by investigating the deviations
within the corresponding referring artifact.

This general idea of a multi-level management of artifacts can be applied,
in principle, to any type and form of artifact. For the purpose of this article,
however, we concentrate on experiences from a case study involving requirements
specifications.

A detailed description of the technical realization of this conception cannot
be given here. Instead, we provide a rough overview as a basis for the discus-
sions in the following sections. Each artifact may point to another artifact as its
reference artifact and is then called a referring artifact. Each element within a
referring artifact may point to an element of the reference artifact as its reference
element, and is then called a referring element. We thus have two types of so-
called reference links1: the first, from a referring artifact to its reference artifact
and, the second, from a referring element to its reference element. With these
reference links we can find out which element of the reference artifact serves
as a template for a particular element of the referring artifact. In addition, all
conceivable forms of deviation within the lower-level artifact are identified and
so-called deviation permissions, which can be used to mark the content of the
reference artifact as optional or obligatory by allowing or disallowing certain
forms of deviation, are provided.

The possible forms of deviation as well as the semantics of the deviation per-
missions were defined formally [4] and can therefore be used to automatically
derive logical constraints on the referring artifacts, which need to be met by
each referring artifact in order to conform to its reference artifact. These log-
ical constraints can then be checked automatically to highlight legitimate and
illegitimate deviations and to determine the overall conformance state of a re-
ferring artifact. All this was presented in detail in [4], so more information on
the technical realization of the multi-level approach can be found there.

3 Tool Support Used in the Case Study

The generic multi-level approach to development artifacts in general, as outlined
in the previous section, was, in a second step, specifically tailored to requirements
1 The notion of reference links should not be confused with the notion of configuration

links [5]; the latter serve to establish a logical relation between the configurations of
two or feature models.

176 M. Bittner, M.-O. Reiser, and M. Weber

Reference

Module

Referring Module

Devitation

Permissions

Feedback of

Conformance-
Check

Fig. 1. The tool for multi-level Doors modules. The lower screen shot shows the feed-
back of the conformance-check algorithm for each object: its conformance, differences
to its reference object (if any), review status, and recent changes.

specifications, defined and managed within the commercial tool Rational Doors.
To denote this special instantiation of the multi-level approach we speak of multi-
level Doors modules, instead of multi-level requirements artifacts, following the
terminology in Doors where a single requirement specification container is called
a “module”. The tool support for this specialized multi-level technique was imple-
mented as an extension to Doors. It has been applied in the N-Lighten case study
as mentioned above.

The reason for building on an existing commercial tool was that this tool is
widely used in the automotive industry and it provides a very flexible extension
mechanism in the form of the Doors Extension Language (DXL), which actually
constitutes a complete programming language.

A screen shot of Doors running the tool for multi-level requirements manage-
ment is shown in Figure 1. The upper window shows a reference module which is
referred to by the module in the lower window, the specification presented in the
upper window thus serves as a template for the one in the lower window. As can
be seen in the upper window, the deviation permission attributes all go in one
single column, i.e. a single Doors custom attribute was created for them. The

A Case Study on Tool-Supported Multi-level Requirements Management 177

attribute lists the values of all deviation permission attributes that differ from
the default value. In the lower window, on the other hand, it can be seen that
the feedback of the algorithm checking the conformance of the referring module
is also presented in a dedicated column/attribute, called Conformance. The con-
formance state for each object can be found here. Conformance violations are
highlighted by a special background color.

In other implementations of the multi-level approach mentioned in [4], the
reference link from a referring model to a reference model is defined inside the
referring model. In contrast, in the implementation presented here the links re-
ferring to reference modules are kept in one or several separate Doors modules,
called synchronization module(s), solely dedicated to the purpose of defining
what modules are used as reference modules and what other modules are refer-
ring modules that have to conform to them. This way, it is not necessary to put
special objects into referring modules.

Further details on the tool will be given in Section 5 where the extensions
resulting from the case study will be described.

4 The N-Lighten Case Study

The case study mentioned at the beginning of this article, the so-called N-Lighten
case study, was intended for further evaluation and refinement of the multi-level
approach both on a conceptual level as well as on the level of its supporting
tool implementation. The study was specifically focused on requirements spec-
ifications maintained in the tool Rational Doors. In this section, we first give
an account of this case study’s background, content and objectives before going
into the details of the lessons learned in Section 5.

The N-Lighten case study was based on several technical specifications of
an automotive body electronics system. The lights and illumination function
group, was chosen as the subject of investigation, hence the name of the case
study. It covers such functionalities as blinker lights, interior lights and coming-
home lights. The involved specifications contained between 1.300 and 3.500 re-
quirements, which represents a scale sufficient for evaluating the concepts under
realistic conditions. The actual editing of the requirements during the case study
was conducted by persons who were not involved in the conceptual development
of the multi-level approach and were therefore initially unfamiliar with the con-
cepts and tool. This was a valuable challenge in order to assess the approach’s
understandability and its overall feasibility under realistic conditions.

At the beginning of the survey, three existing technical specifications were
used. These were available as three Doors modules: one for the lights and
illumination functionality of a car platform A, one for the same functionality of
a car platform B, and a third which originally served as the template of the other
two, i.e. from which the other two modules were once derived by way of copy and
paste (cf. Figure 2). In the following, these three Doors modules will be referred
to as platform A module, platform B module and base module respectively.

178 M. Bittner, M.-O. Reiser, and M. Weber

Platform A Platform B

Copy &
Paste

Common Base used as
reference
module

Fig. 2. The three Doors modules involved in the case study

This initial setting perfectly matches the intention of subscoping and the
multi-level approach: the overall product line, comprised of platform A and
platform B cars, is split up in two sublines, namely platform A and platform
B, and each subline is enhanced independently; the multi-level management
now allows the commonalities and differences between these two sublines to be
tracked and strategically coordinated without the necessity of introducing a rigid
product line organization. As one of the most important intentions and bene-
fits of the multi-level approach, the variability between platform A and platform
B no longer appears as variation points within the platform A and platform
B specifications, which substantially reduces the complexity of these individual
specifications.

In order to set up a multi-level hierarchy with all three specifications, an
auxiliary synchronization module (as described in Section 3) which provided the
tool prototype with the necessary meta-information had to be created. This is
very straightforward and mainly defines the hierarchy of reference and referring
Doors modules involved, in this case the base module as a single reference
module and the platform A and platform B modules as referring modules. Then,
the reference links between the requirements in the platform A and platform
B modules and their corresponding reference requirements in the base module
had to be established and defined in Doors in a form suitable for the tool
prototype. This was a more daunting task as is discussed below. Together, these
preparations allowed the two referring specifications to be managed according
to the multi-level approach, for example to define deviation permissions in the
base module, to reveal illegitimate deviations in the platform A and platform
B modules or to propagate changes, e.g. a newly added object, from one of the
referring modules to the base module.

The platform A module contained 1.351 objects whereas the platform B
module contained 3.501. This alone shows the remarkable difference in sys-
tem complexity between a low-end and a medium-class vehicle, not to mention
luxury-class models. Table 1 presents some statistics of the case study that fur-
ther characterizes the specification modules involved. Out of such a statistic,
several interesting facts become immediately obvious—an important benefit of
the multi-level concept. For example, the number of non-referring objects, i.e.
objects without a reference object, adequately measures how much additional
information is introduced in a subline, compared to the base module. In order

A Case Study on Tool-Supported Multi-level Requirements Management 179

to provide such information in a normalized form, we introduce two statistic
measures: coverage and innovation.

Definition. Given a reference artifact R with nR elements and a re-
ferring artifact A with nA elements of which nref have a reference link
defined, the value covR

A defined as

covR
A =

nref

nR

is called R-coverage of A.

A referring artifact’s coverage is an adequate measure of how much information
from the base module found its way into the referring module: a value of 1
signifies that all information from the superline is somehow represented in the
subline artifact (but it may have been extensively changed, as indicated by the
number of deviations) whereas a value of 0 indicates that no information from
the superline is left in the subline2.

In addition to an artifact’s coverage, it is possible formulate a measure for the
artifact’s inventiveness:

Definition. Given a reference artifact R and a referring artifact A with
nA elements of which nref have a reference link defined, the value innovR

A

defined as

innovR
A =

nA − nref

nA

is called R-innovation of A.

An artifact’s innovation reflects how much additional information was introduced
in a subline, in comparision with the information taken from the superline. A
value of 1 means that the subline artifact consists purely of newly introduced in-
formation, whereas a value of 0 shows that no information was newly introduced
in the artifact.

Another interesting fact to note about the two specifications, is that the struc-
turing of the original base module was conversely changed in the two subline
specifications: in the platform A module the hierarchy was flattened and in the
platform B module it was deepened. This caused a conspicuous difference in the
ratio of refinements to reductions in the two subline modules. From a case study
perspective, this was an interesting additional test for the multi-level concept;
in practice however, it will usually only occur in early phases of adopting the
concepts, where the structure of the base module is still fairly unconsolidated.

2 Please note that this definition assumes that the advanced concepts of split and
merge, as introduced later in this article, are not allowed; however, even if split and
merge occurs in an artifact this definition is usually sufficiently accurate.

180 M. Bittner, M.-O. Reiser, and M. Weber

Table 1. Statistics for the platform A and platform B specifications

Doors Modules
Base Platform A Platform B

Objects, thereof ... 1,908 1,351 3,501
- without reference object 590 43.7% 1,714 49.0%
- with reference object 761 56.3% 1,787 51.0%

Coverage 0.399 39.9% 0.937 93.7%
Innovation 0.437 43.7% 0.490 49.0%

Deviations:
- Refinement 33 2.4% 107 3.1%
- Reduction 24 1.8% 18 0.5%
- Move 5 0.4% 36 1.0%
- Reorder – 2 0.1%
- Textual Changes 220 16.3% 241 6.9%
- Merge – 2 0.1%
- Split 65 4.8% 16 0.5%

5 Lessons Learned and Extensions

Based on the results of the N-Lighten case study, it was possible to draw several
interesting conclusions, which in turn led to a number of significant extensions
to the multi-level concept. These will be detailed in this section. Fortunately, we
only extended and did not have to change the technique, i.e. the basic idea of the
multi-level approach remained unaltered, and therefore the earlier publications
on the subject remain valid without modifications.

Creating Reference Links. As briefly indicated above, one of the necessary
activities for setting up the multi-level hierarchy proved to be a rather tedious
task: the creation of reference links on the object level, i.e. from the objects in the
platform A and platform B modules to their corresponding reference object in
the base module. The most difficult part is deciding which object from the base
module is the correct reference object for a certain lower-level object, or if no such
object exists. Except for the cases where an equal object is found in the reference
module, this requires that the detailed semantics of the two specifications are
taken into consideration. Given the large number of 1.351 to 3.501 objects in the
two lower level specifications, this difficulty is of high practical relevance.

However, for several reasons this difficulty does not invalidate the basic idea
and concept of the multi-level approach:

1. The problem described here only occurs if a multi-level hierarchy is set up on
the basis of preexisting legacy specifications. If the platform A and platform
B modules were initially created with the multi-level tool support in mind,
then the reference links would have been established automatically when
copying the base module, i.e. when creating a new subline.

2. But even in the case of legacy specifications, the problem can be alleviated
by providing appropriate tool support. A tool could pre-define the reference

A Case Study on Tool-Supported Multi-level Requirements Management 181

links based on an appropriate similarity measure and assist the user in re-
viewing and adapting them by way of an appropriate on-screen presentation.
While in the case study some ad-hoc scripting was used to mechanize some of
the link creation, the design of a more sophisticated linking assistant would
be relatively straightforward; experience in the model transformation field
where a similar issue exists, could be applied. It is realistic to assume that
the linking problem could be reduced quite substantially in this way.

3. However, even without such a linking assistant, the task of manually es-
tablishing a substantial number of reference links is absolutely manageable,
as the case study clearly showed. And this was the case, even though the
persons defining the reference links did not know the content of the three
specifications before starting work on this case study.

Therefore this difficulty does not actually represent a critical problem for this
approach.

Set of Reference Modules. In our earlier publications, it was assumed that
each referring artifact may only have a single reference artifact (or in the con-
text of Doors each referring Doors module may only have a single reference
module). This way, the explanations and examples could be kept as straight-
forward as possible. However, it is perfectly viable to also allow more than one
reference artifact/module for a single referring artifact/module. This additional
flexibility does not mean any significant changes for the basic concept of multi-
level management because the detailed definition of deviations and deviation
permissions does not rely on the reference link of the entire artifact, but on the
reference links of individual objects within the artifact, and these may still only
point to a single reference object each (at least for now; that restriction will be
discussed in the next paragraph). This additional flexibility merely provides the
possibility of merging the objects from several modules on the reference level in
a single referring module, i.e. to package the elements differently into models.
For example, it is possible to take one subtree of the containment hierarchy in
a referring Doors module from reference module model A and another subtree
from another reference module B.

Split and Merge. One of the most important observations from the case study
was that a splitting and merging of objects in a referring module is of great prac-
tical relevance, leading to referring objects with more than one reference object
and vice versa. Let us first investigate the precise meaning of split an merge in our
context. When a Doors object has more than one reference object, this means
that two separate objects from the reference level were semantically merged into
a single object in the referring module. Since this in itself always represents a
change in the lower-level artifact with respect to the reference artifact, we can
perceive this as an new form of deviation called “merge”:

Definition. When a referring element has more than one reference ele-
ment, the referring element is assumed to comprise the semantic meaning
of all reference elements. This form of deviation is called a merge.

182 M. Bittner, M.-O. Reiser, and M. Weber

Similarly, several referring objects may point to one and the same object as
their reference object. The usual practical motivation for this is that a single
object’s semantic meaning is distributed within the referring module among
several distinct objects. Again, this necessarily constitutes a deviation in itself:

Definition. When several referring elements have the same reference
element, the referring elements are assumed to jointly comprise the se-
mantic meaning of the reference element. This form of deviation is called
a split.

These two novel forms of deviation now complement the types of deviation for-
mally defined in Section 4.3 of [4].

Having precisely defined split and merge, we can now turn to the technical
details of the concept. Most importantly, the fact that splitting and merging
is now allowed has an impact on the precise definition of the other deviations.
For example, if an object o with name “abc” has two reference objects oA with
name “abc” and oB with name “xyz”, how do we decide if a change in o’s name
has occurred? As a general rule, we use a logical disjunction of the old definition
evaluated separately for each referring object (in case of a split) or each reference
object (in case of a merge). In the given example this means that we assume
that o’s name has changed if its name is different from oA’s name or its name
is different from oB’s name. In the above example this would be true. With this
general semi-formal rule, the logical constraints from our earlier publications can
be straightforwardly applied to split and merge as well (cf. Table 2 in [4]).

Standard Permissions and Vetoes. In the early, prototypical version of
the tool, it was necessary to define the deviation permission for each object
separately. In order to reduce effort and to simplify maintenance of the deviation
permissions, but also to allow enforcement of a strict process of handling multi-
level systems, the tool now provides a mechanism to define standard permissions
for a DOORS module which are then assigned to all objects contained in the
module.

Changes Within a Subline Module. The multi-level concept is useful for
identifying and managing changes in a referring module with respect to the
reference module. However, during the case study a similar question often oc-
curred: what changes were introduced in a referring module, e.g. the platform
A module, with respect to an earlier version of this same referring (platform A)
module. After some consideration, this issue was deemed outside of the scope of
the multi-level concept. It can and should be solved orthogonally to the multi-
level concept, plainly on the level of a change management facility. While this
observation did not lead to an extension of the multi-level approach, it was still
beneficial in further clarifying the distinction between the multi-level approach
and traditional change management.

Review Status. This was introduced to make the multi-level approach manage-
able for very large referring modules, which are typically reviewed or reworked

A Case Study on Tool-Supported Multi-level Requirements Management 183

over such long a period of time (e.g. weeks or even months) that new changes in
the reference module occur during the review. To provide support for such use
cases, each reference relation has two status attributes attached: ReviewStatus
and NewChanges. The first attribute has the default value “not reviewed” and
can be manually set to “reviewed”, for example after a review of the conformance
analysis and a possible adaptation of the synchronization settings. The date of
this setting is displayed in the attribute (last review date). If the correspond-
ing reference object has been changed since the date of the review, then (after
synchronization) the attribute ReviewStatus is set to “need to revisit”, and the
attribute NewChanges contains a delta description of what has been changed. As
previously, the user can then inspect these changes and reset the review status
to “reviewed” once more.

Bidirectional Synchronization. The multi-level approach is mainly intended
as a means of strategically steering the content of the referring modules by provid-
ing voluntary or obligatory templates within the reference module(s). To realize
this technically, the deviation permissions (attached to the reference module’s ob-
jects) were defined formally and can thus be used to automatically derive logical
constraints on the referring modules which need to be met by these referring mod-
ules in order to conform to the reference module (cf. Section 2; all detailed in [3,4]).
The automatic checking of these logical constraints, called conformance checking,
was the main functionality already provided by early, prototypical versions of the
tool for multi-level requirements management. The editing of the reference and
referring modules, however, was initially seen as a purely manual process.

However, experience from the case study showed that in addition to the con-
formance check algorithm another functionality is often desired: to automatically
resolve conformance violations and to propagate newly introduced changes from
the referring module to the reference module or vice versa. This can be seen as
a two-way synchronization mechanism with which changes on referring level or
reference level can be propagated up or down, respectively. For example, when
new requirements for some innovative car functionality are being added to the
platform B module (i.e. the referring module for the platform B vehicle range),
these additional requirements first appear as a deviation of the platform B mod-
ule and can then be automatically propagated to the reference level if they are
to become a (voluntary or obligatory) template for the platform A model as
well; from this moment on, the lack of this new requirement will show up as a
(legitimate or illegitimate) deviation in the platform A model.

This two-way synchronization was realized in the tool by way of so-called syn-
chronization actions, i.e. instructions telling the synchronization algorithm if and
how a certain deviation is to be propagated up or down. These actions are spec-
ified by the user in an additional, dedicated Doors attribute within the source
module. In particular, the following propagation (or synchronization) actions
are provided: restore attributes, restore node (i.e. restore an object which was
deleted), restore position, restore order, remove extensions, restore reductions,
remove out-link extensions, and restore out-link reductions. As can be seen, for
each of the forms of deviations identified for Doors modules and for each of

184 M. Bittner, M.-O. Reiser, and M. Weber

the deviation permission attributes, a corresponding synchronization action is
provided.

Furthermore, these synchronization actions can be set automatically based on
the result of a pervious conformance analysis. Two different schemes of automat-
ically setting synchronization actions are available: (1) “restore conformance”
sets all synchronization actions so as to ensure that all referring objects become
fully conforming, i.e. all remaining deviations become legitimate; (2) the scheme
“overwrite all” erases any deviation in the referring module, effectively resetting
its content to that of the reference module (obviously, this scheme should be
used with due care).

Finally, the same mechanisms that have been introduced for defining standard
deviation permissions, c.f. “Standard Permissions and Vetoes” above, have also
been introduced for synchronization actions. Taken together, these various mech-
anisms allow for very powerful analysis and synchronization settings with a wide
range of practical applications (e.g. document generation, requirements exchange
between manufacturer and supplier) which we are just beginning to explore.

In addition to these rather conceptual observations, there are also several more
technical aspects to note:

Comparison of OLE Objects. In order to uncover deviations in a subline
module, it is of paramount importance to compare two attribute values and,
if they are unequal, to show what has been changed. Doors provides a special
functionality for editing attribute values which proved to be a daunting challenge
in this regard: the value of a text attribute may contain OLE objects. OLE stands
for “Object Linking and Embedding” and is the name of a distributed object
system and protocol on the Microsoft Windows platform [6], which provides a
mechanism to embed editable objects of various types and origins within the
document of a third-party tool. For example, an image drawn in Microsoft Pow-
erPoint or a table created in Microsoft Excel can easily be included in the text
of a textual attribute in Doors.

The problem is that a Doors DXL script cannot easily compare two attribute
values for equality which contain such OLE objects, because this would mean to
comparing the content of the OLE objects, which in turn would require full sup-
port of the objects’ internal format, for example the data format of an MS Excel
sheet. Since OLE objects can have an arbitrary data format, it is not possible
to find a principle solution here, and even implementing a comparision for only
the most important types of OLE objects would be an enormous effort. Further-
more, OLE objects in Doors are used extensively in practice and avoiding them
is absolutely unrealistic.

Fortunately, a solution was found at least for comparing two OLE objects for
exact equality. This is sufficient for checking whether any change occurred, but
not for finding out or presenting to the user, what was changed or whether the
change was only superficial and should rather be ignored, e.g. a differing column
width in a table. Given the fact that the OLE objects used in Doors requirement
specifications are usually not too complex—due to the imperative of requirement

A Case Study on Tool-Supported Multi-level Requirements Management 185

atomization [7]—this partial solution proved sufficient for practical use. However,
in full-fledged tool support, a more sophisticated comparison mechanism for the
most common types of OLE object, probably diagrams and tables imported from
Microsoft Word or Excel, is desirable.

Visibility of Reference Links. Since the tool DOORS does support filtering
on the objects of a requirements container but not on the (incoming or outgoing)
links displayed in a module, it becomes confusing for the user to see which links
leaving or entering his module are reference links connected to the multi-level
system and which links are outside this system. While this is a general DOORS
issue, we found that the Multi-Level approach should at least not aggravate it.
Therefore, the multi-level tool support allows the user to “hide” all reference
links in an additional special attribute and only display them as required.

Conformance and Review Summary. Initially, the tool was designed only
to present the conformance state inside the referring module (as a dedicated
Doors attribute of each referring object). While this is the most obvious place
for it and suitable in many use cases, it has turned out that it is often very
convenient for attaining an overview of all conformance states in all referring
modules at a glance. Therefore, a functionality was implemented in the tool to
show a special view summarizing the conformance states in all its referring mod-
ules: for each object in the reference module this view displays the conformance
state within the reference module and the review status for its referring object
in each referring module, each in a separate column (cf. Figure 3).

In summary, the following general conclusions could be drawn regarding the
feasibility of the overall multi-level approach:

Forms of Deviation are Appropriate. During the conceptual design of the
multi-level approach, several different forms of deviation were identified and
corresponding deviation permissions had to be attached to the tree structure of
Doors objects. A multitude of different distinctions and constructions would
have been conceivable here; the aim was to find a solution which is as simple
as possible and still sufficiently differentiated to allow the formulation of all
distinctions required in practice.

The case study showed that the forms of deviation and how they cover changes
of the hierarchical structure of the specification artifacts matches the deviationswe
came across in the three investigated authentic specifications very well. The only
important exception is the merging and splitting of objects, but appropriate forms
of deviation were defined and added to the approach, as was discussed above.

Reference Links are Real-World Entities. Semantically relating the objects
of the subline modules (i.e. platform A and platform B modules) to objects in
the base module through reference links, did not pose any substantial problems
from a conceptual point of view. It might be a lot of work to initially define those

186 M. Bittner, M.-O. Reiser, and M. Weber

Fig. 3. Areferencemodule showing a conformance summary for several referringmodules

links (as discussed above), but for any two particular objects it can usually be
decided easily and definitely if one of the two should serve as the reference object
of the other. This was the case, even though the structure of the base module
had been changed substantially in the subline modules; even if an object was
put in a different section, it was still possible to clearly decide which reference
object it should receive.

This suggests that a reference link is not an artificial concept, introduced
solely to make the multi-level approach work, but rather it captures an actual
conceptual relation which naturally occurs in real-word use cases.

Adequate Usability. The overall usability of the tool for multi-level Doors
modules proved to be quite reasonable. Even though it was not specifically de-
signed for usability in the first place, it was still quite convenient for performing the
typical actions, such as spotting deviations, editing deviation permissions, finding
out whether deviations are illegitimate, or propagating deviations up and down.

Considering these observations and the overall size of the specifications—over
three thousand objects in the case of the platform B module—we are confident
that together with the improved tool support the multi-level approach is now
immediately applicable in practice.

6 Conclusion

This article presented the so-called N-Lighten case study which was conducted on
industrial specifications and by engineers who were not involved in the

A Case Study on Tool-Supported Multi-level Requirements Management 187

development of the multi-level approach. This means that the approach had
to be taught to them beforehand, putting the understandability and feasibility
of the concepts as well as the related tool support to the test.

Initially, the tool described in Section 3 was mainly intended as a research
prototype for experimentation purposes. Thanks to the above study, some inter-
nal case studies and the resulting refinements and extensions, part of which were
described in Section 5, we are convinced that both the concepts as well as the
tool support are now ready for application in industrial development projects.
The tool is publicly accessable on a website, together with documentation and
a tutorial [8].

Acknowledgments. The research leading to these results has received funding
from the European Community’s 7th Framework Programme under grant agree-
ment no. 224442. In addition, the authors would like to thank Martin Becker for
his commitment and valuable feedback.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2002)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

3. Reiser, M.-O., Weber, M.: Managing highly complex product families with
multi-level feature trees. In: Proceedings of the 14th IEEE International Require-
ments Engineering Conference (RE 2006), pp. 146–155. IEEE Computer Society,
Los Alamitos (2006)

4. Reiser, M.-O., Weber, M.: Multi-level feature trees – a pragmatic approach
to managing highly complex product families. Requirements Engineering 12(2),
57–75 (2007)

5. Reiser, M.-O.: Core concepts of the Compositional Variability Management frame-
work (CVM). Technische Universität Berlin, Technical Report, no. 2009-16 (2009)

6. Chappell, D.: Understanding ActiveX and OLE. Strategic Technology Series.
Microsoft Press, Redmond (August 1996)

7. Pohl, K.: Requirements Engineering — Grundlagen, Prinzipien, Techniken. Dpunkt
Verlag (2007)

8. DOORS Multi-Level Tool Web-Site (2010), www.mule-re.org

www.mule-re.org

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 188–202, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Domain Ontology Building Process
for Guiding Requirements Elicitation

Inah Omoronyia1, Guttorm Sindre1, Tor Stålhane1,
Stefan Biffl2, Thomas Moser2, and Wikan Sunindyo2

1 Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
{inah.omoronyia,guttorm.sindre,tor.stalhane}@idi.ntnu.no

2 Institute of Software Technology and Interactive Systems
Vienna University of Technology

Vienna, Austria
{stefan.biffl,thomas.moser,wikan}@tuwien.ac.at

Abstract. [Context and motivation] In Requirements Management, ontologies
are used to reconcile gaps in the knowledge and common understanding among
stakeholders during requirement elicitation, and therefore significantly improve
the quality of the elicited requirements. [Question/problem] However, a pre-
condition of state-of-the-art ontology approaches for requirements elicitation is
an existing domain ontology. While this is not a trivial precondition, there are
only a few reports on approaches to systematically and efficiently build domain
ontologies, and these approaches are often highly biased towards their intended
use. [Principal ideas/results] In this paper, we investigate an approach for
building domain ontologies suitable for guiding requirements elicitation. We
evaluate the feasibility of the approach based on a real-world industrial use case
by analyzing natural language text from technical standards. [Contribution] A
major outcome is that the proposed approach can help reduce the effort of
building domain ontologies from the scratch.

Keywords: Requirements elicitation, domain ontology, semantic analysis, natu-
ral language processing, domain engineering.

1 Introduction

The RE process [17] starts out with a specification which is informal, opaque, and
dominated by personal views, while the goal is to have a specification, which is for-
mal, complete, and reflects the stakeholders’ common view. The use of an ontology
can help to tackle these challenges: from opaque to complete because an ontology can
encode knowledge about the domain, thus ensuring that important requirements are
not forgotten, and from personal to common view because an ontology defines a stan-
dard terminology for the domain, which mitigates misunderstandings about terms. If
the ontology is defined in a formal language, it will also help regarding the formality

 A Domain Ontology Building Process for Guiding Requirements Elicitation 189

dimension. There has been an increasing interest in using ontologies to aid the RE
process.

Ontologies are specifications of a conceptualization [4] in a certain domain. An on-
tology seeks to represent basic primitives for modeling a domain of knowledge or
discourse. These primitives are typically concepts, attributes, and relations among
concept instances. The represented primitives also include information about their
meaning and constraints on their logically consistent application [5]. A domain ontol-
ogy for guiding requirements elicitation depicts the representation of knowledge that
spans the interactions between environmental and software concepts. It can be seen as
a model of the environment, assumptions, and collaborating agents, within which a
specified system is expected to work. From a requirements elicitation viewpoint,
domain ontologies are used to guide the analyst on domain concepts that are appropri-
ate for stating system requirements.

There are a number of research approaches to elicit and analyze domain require-
ments based on existing domain ontologies. For example, Lee and Zhao [13] used a
domain ontology and requirements meta-model to elicit and define textual require-
ments. Shibaoka et al. [18] proposed GOORE, an approach to goal-oriented and on-
tology-driven requirements elicitation. GOORE represents the knowledge of a spe-
cific domain as an ontology and uses this ontology for goal-oriented requirements
analysis [12]. A shortcoming of these approaches is the need for a pre-existing ontol-
ogy, as to our knowledge there is no suitable method for building this ontology for
requirements elicitation in the first place in an at least semi-automated way. In indus-
trial settings, the task of building domain ontologies from scratch can be daunting,
mostly due to the size of technical standard documents that need to be interpreted by
domain experts and the wide range of domain concepts coverage that will be the input
to such ontologies. Therefore, the domain ontology building task can greatly be lever-
aged by tool support.

This paper explores the challenge in building a domain ontology that is sufficient
for guided requirements elicitation. Firstly, we investigate an approach for building
domain ontologies from existing technical standards which the specified requirements
need to be compliant with. Our investigation is based on a set of heuristics used for
extracting semantic graphs from textual technical standards to generate compatible
baseline domain ontologies. Secondly, we present an evaluation of the feasibility of
our approach and provide insights on the challenges of semi-automatically building
domain ontologies using natural language texts. The remainder of this paper is struc-
tured as follows: section 2 presents related work and motivates the research issues;
section 3 discusses the characteristics of a suitable ontology for requirements elicita-
tion and also proposes an approach for achieving such ontologies. Section 4 presents
the evaluation of our approach and a discussion of lessons learned during this re-
search. Finally, section 5 concludes the paper and presents some ideas for further
work.

2 Related Work and Research Issues

Natural Language Processing (NLP) techniques are important when analyzing text to
extract domain ontologies for requirements elicitation. NLP generally refers to a

190 I. Omoronyia et al.

range of theoretically motivated and computational techniques for analyzing and
representing naturally occurring texts. The core purpose of NLP techniques is to
achieve human-like language processing for a range of tasks or applications [15]. The
core NLP models used in this research are part-of-speech (POS) tagging and sentence
parsers. POS tagging involves marking up the words in a text as corresponding to a
particular part of speech, based on its definition, as well as its context. On the other
hand, sentence parsers transform text into a data structure (also called parse tree).
Such data structure provides insight into the grammatical structure and implied hier-
archy of the input text [1]. Standford parser/tagger1 and OpenNLP2 are the core set of
NLP tools used in this research. Tag meanings used are from the Penn Treebank pro-
ject, which involved the annotation of a corpus consisting of over 4.5 million words
of English. Words were annotated for part-of-speech (POS) information and skeletal
parse structure [16].

Research on domain engineering is also critical to understand an approach to ana-
lyze text with the aim of extracting an ontology for requirements elicitation. Domain
engineering highlights the process of reusing domain knowledge in the production of
new software systems. Domain engineering particularly aims to support systematic
reuse, focusing on modeling common knowledge in a problem domain [2]. Sowa’s
work on conceptual structures [19] introduces a synthesis of logic, linguistics, and
Artificial Intelligence as a mechanism for domain knowledge representation.

A closely related research contribution regarding textual extraction of domain on-
tologies from natural language style requirement documents is the case study on the
application of natural language processing to domain modeling presented by Kof [10].
Kof views the domain ontology itself as a valuable and reusable requirements engi-
neering product. He presented three steps for the extraction of a domain ontology
which include: term extraction, term clustering and taxonomy building as well as
finding associations between extracted terms. The domain model to be extracted is
built using the extracted terms as well as the associations between them. Kof [12] also
proposed an approach using NLP techniques to construct an initial system model by
extracting knowledge from existing requirement texts. Kof [9, 11] furthermore pre-
sents mechanisms for analyzing textual scenarios using computational linguistics. The
outcome of this analysis process is the identification of whether communicating ob-
jects or whole actions are missing in a text. The viewpoint of computational linguis-
tics here is inclusive of NLP and theories about the linguistic knowledge that humans
need for generating and understanding written language. Flores [3] has also explored
an approach that uses semantic filtering techniques for the analysis of textual require-
ments descriptions. Flores postulated that filtering relevant text fragments according to
semantic criteria enhances large textual requirements description processing. In
addition, Flores proposed the use of a linguistic technique known as the Contextual
Exploration Method, to extract semantically relevant sentences in order to support
requirements analysis and validation. Four semantic viewpoints were considered
and included: concepts relationships, aspecto-temporal organisation, control and
causality statements.

1 http://nlp.stanford.edu/software/lex-parser.shtml
2 http://opennlp.sourceforge.net/

 A Domain Ontology Building Process for Guiding Requirements Elicitation 191

Although Kof’s and Flores’ methods are based on analysing natural language texts
to extract an a ontology that can subsequently be used for requirement elicitation, no
analysis has been done on the suitability or usefullness of the resulting ontology for
such purpose. The association of concepts in a domain ontology can be described by
its taxonomy or by the use of axioms. The taxonomy is a hierarchical system of con-
cepts, while axioms are rules, principles, or constraints guarding the relations amongst
concepts. Furthermore, the level of granularity to which the axioms are specified is
highly influenced by its intended use within the ontology [6]. From the viewpoint of
using domain ontologies for requirements elicitation, axioms specify the extent to
which such an ontology can be useful for the categories of questions to which the
ontology can provide answers.

Again, existing related works lack insight into the potential challenges of extract-
ing a domain ontology from a textual source. For instance, such text might not suffi-
ciently describe the domain of concern or contain terms that are not unique to the
domain being described. Furthermore, derived ontology from analyzed text can con-
tain unique concepts/relations in the domain of interest which do not contribute to the
requirements elicitation process. In such a case, the text analyzed contains valid do-
main terms that do not necessarily contribute to useful domain ontology. In this re-
search, we reckon that each of these challenges needs to be investigated as to how it
can be mitigated.

To address the research issues identified in closely related work, this paper dis-
cusses the semantic features of suitable domain ontologies for requirements elicitation
and proposes a process for systematic and efficient domain ontology building. We
then evaluate the feasibility of our approach based on a real-world industrial use case
by analyzing text from technical standards.

3 Ontology Suitable for Guided Requirements Elicitation

For a domain ontology suitable for requirements elicitation, its competence as deter-
mined by its axioms is vital. This is particularly true when investigating the use of
such ontologies for tracing high-level goals to concrete requirement representations as
well as for obtaining insight into the quality of the written requirements. Axioms
specified on a relation between two concepts in an ontology aim at providing more
meaning to the relation or involving concepts. Richer relational axioms thus suggest
more insight on written requirements that reflects corresponding concepts. In this
section we highlight three semantic features for enriching the axioms for requirements
elicitation ontology.

• Explicit relational expression: In addition to the inherent properties of relations
such as transitivity, symmetry and sub-classes, requirements elicitation ontologies
also aim at associating specific semantic attributes that have domain specific im-
plications. This approach is in contrast for instance to the work of Kitamura et al.
[8], who used static predefined stereotypes in naming relations. For example, the
relation between the two concepts agent and message using stereotypes is repre-
sented by agent<requires>message. The predefined stereotype <requires> hides
the semantic implication of the nature of the relation (e.g., the relation could imply
send, receives, blocks etc.). Such otherwise hidden semantics could be useful in

192 I. Omoronyia et al.

guiding the analyst in determining the relevance of a prescribe trace inference from
the ontology to the system being specified.

• Qualified identification of relations: Ontologies used to support computers in rea-
soning will normally identify relations by the use of a single so-called interesting or
performative verb. These are verbs whose action is accomplished merely by saying
them. Performative verbs such as requires, sends, or request, explicitly convey the
kind of act being performed by a concept by virtue of an involving relation. But
considering an ontology for guided requirements elicitation, the semantic implica-
tions of such performative verbs are normally described in an adjoining qualifier
such as adjectives and conjunctions. Thus, it is more insightful to name the relation
between agent and message using the identifier “periodically sends” rather than
only using “send”. In this research we explore the use of performative verbs in
combination with their qualifiers to semantically identify relations between
concepts.

• Temporal and spatial expressions: For using domain ontologies for requirements
elicitation, we need insight into temporal and spatial implications of relations that
exist between concepts. For example, assume A, B and C are concepts in a domain
and the description “A requires B during C” is a feature used to characterize a do-
main. For semantic insight during requirements elicitation, it is important that the
explicit relation that exists between A and B as well as the temporal relation that A
has with C are captured by the ontology and made obvious to the analyst.

Building domain ontologies with the above semantic features is challenging as it
requires domain experts to describe and document their knowledge about the domain
with the meaning of concepts and implied relations in a detailed manner, which will
be time-consuming. In this research, we explore a rule-based approach that uses NLP
techniques to evaluate the possibility of automatically capturing initial or baseline
domain ontology from existing text.

3.1 Rule-Based Baseline Ontology Extraction

The basis of this approach is: given some pre-processed textual document and some
predefined heuristics based on NLP, it is possible to extract ontology concepts and
relations that are semantically meaningful for requirements elicitation. The pre-
processing of the document is normally a manual process and ensures that the text
from which concepts and relations are to be extracted is suitable for sentence-based
analysis. This includes the removal of symbols or formatting from text that will oth-
erwise alter the meaning of extracted concepts or relations. It is worth mentioning that
the more detailed a document is pre-processed, the more effective domain ontologies
can be extracted from the natural language text. In contrast, for large documents such
detailed preprocessing is difficult, as it requires more effort from the domain experts.
This challenge for large documents necessitates an (semi-)automated pre-processing
approach to help improve the resulting ontology. In the first instance, the rule-based
ontology extraction investigates two automated document pre-processing mechanisms
known as bracket trailing and bridged-term completion. Subsequently, Subject-
Predicate-Object extraction, association mining and concept clustering is executed on
the pre-processed text.

 A Domain Ontology Building Process for Guiding Requirements Elicitation 193

Bracket trailing: Textual descriptions normally use bracket pairs or dashes as
punctuation marks to set apart or interject supplementary text within other texts. A
common use for brackets in the writing of technical standards is to indicate a refer-
ence within the text. They are, however, also frequently used to provide explanatory
words or phrases. It is most common for the bracketed text to be used within a single
sentence and these texts can be seen as pointers to the concepts represented in a
particular sentence [14]. Given the sentence: “A PLC with a safe transmission protocol
(see figure x) shall be restricted to the communication end devices (F-Host, F-CPU, F-
Device and F-I/O-Module)”, the aim of bracket trailing is to filter out pre-determined
reference pointers such as “figure x” from existing brackets. Subject/object concepts
are then extracted from the remaining text within the bracket. Extracted sub-
jects/objects are finally related to the head subject or object depending on whether the
bracket is used within the noun phrase (NP) or verb phrase (VP) of the sentence. Re-
lations derived via bracket trailing are semantically identified using the stereotype
<refers to>. For the example, the concepts “F-Host”, “F-CPU”, “F-Device” and “F-
I/O-Module” are extracted by bracket trailing and related to the concept “devices”.

Bridged-term completion: Given the phrase “an input or output device is required by
the system”, NLP analysis will generate “input”, “output device” and “system” as
potential concepts. For this example, an understanding of the context of the phrase,
suggests that the combined terms “input device” rather than just “input” more com-
pletely describe the concept in an unambiguous way. Such ambiguity in concept iden-
tification is common in text and it is normally left to the reader of the text to decipher
their contextual implications. In this research, an ambiguous term is referred to as
bridged-term, indicating that a human interpretation is required to capture its semantic
implication. Bridge-term completion involves a semi-automated process of discover-
ing and correcting bridged-terms in textual documents using observed patterns in a
sentence parse tree. The occurrence of a learned pattern in an analyzed text raises a
flag to the domain expert highlighting possible concept ambiguity and a potential
more complete set of terms that better describes the concept.

Figure 1 shows the NP tree patterns in which bridged-terms can occur. The leaf
nodes in case 1 consist of a singular noun node or a sequence of singular nouns (NN)
nodes separated with commas (,) on the left of and/or conjunction. Left of the and/or
conjunction are a sequence of initial NN nodes where the last node is a NN, plural
noun (NNS), proper singular noun (NNP) or proper plural noun (NNPS). On the right
hand side of the and/or conjunction there are no commas. The NP pattern labeled case
2 is similar to case 1. The core distinction is that in case 2 the first leaf node to the left
of and/or conjunction can also be a JJ qualifier and there is no comma separating the
first two leaf nodes in the sequence. During Bridged-term completion, the NP pattern
described in figure 1 is parsed, and a recommended set of more complete terms to
describe the subject/object concept in the NP tree is deduced based on node combina-
tion (see shaded section of figure 1). The example above corresponds to case 1 and
yields “input device” and “output device” as potential subject concepts. A flag indi-
cating possible concept ambiguity with the recommended set of more complete terms
describing the concept is then brought to the notification of the domain expert.

194 I. Omoronyia et al.

Fig. 1. NP parse tree pattern for bridged-terms

Subject-Predicate-Object (SPO) extraction: SPO is a parsing process that involves
navigating the phrase tree of a sentence to extract declarative clauses with their predi-
cate, associated subject and object. Each sentence clause can be said to consist of a
noun phrase (NP) and a verb phrase (VP). The NP contains the subject, which can be
identified by a noun POS variant (e.g., singular, plural or proper noun) as leaf nodes
and can further be semantically qualified by adjectives (JJ) and associated quantities
(CD). The VP contains the predicate and the object. The identified subjects and
objects are both concepts in the baseline ontology, while the predicate defines the
semantics of the relation between the concepts.

When parsing the VP to extract predicate relation, verb variant leaf nodes (e.g.,
past tense (VBP), present tense (VBZ), etc.) and their first sibling proceed-
ing/preceding qualifiers (e.g. JJ, adverb (RB) and preposition (IN)) are extracted.
Similarly, a NP or VP is parsed to extracted noun variation, qualifier and quantity.
Extracted nodes are concatenated to a string representation of either the potential
predicate relation, subject or object concept. Finally, subject/object concepts extracted
during SPO analysis are characterized as head/derived concepts during association
mining. The head subjects and objects act as the domain and range of a relation iden-
tified by extracted predicates.

Association mining: Association mining identifies head and derived subjects/objects
from the set generated during subject/object extraction. It also extracts other types of
relations that are not captured during the predicate extraction process. While the rela-
tions between subjects and objects in the predicate extraction are explicitly defined
based on the terms that exist in the VP, the relations extracted during association
mining are inferred based on any prepositional phrase (PP) whose first preceding
sibling node is a noun phrase.

Prepositional phrases normally consist of a preposition and an object of a preposi-
tion. Terms that exist in the potential subject/object set and also act as an object in the
propositional phrase, are considered as derived subjects/objects. The subjects/objects
contained in the first preceding NP are considered as the head subjects/objects. Ob-
jects/subjects in a sentence without PP are by default head objects/subjects. From a
semantic viewpoint, a preposition is used to illustrate temporal or spatial relationship

 A Domain Ontology Building Process for Guiding Requirements Elicitation 195

between the objects/subjects of the prepositional phrase and objects/subjects of the
preceding sibling NP. Such inferred relational semantics are identified and repre-
sented by the stereotype <temporally infers> and <spatially infers> respectively. Con-
sider the example above “A PLC with a safe transmission protocol…” where the con-
cept “PLC” is the head subject while “safe transmission protocol” us a derived sub-
ject. The preposition “with” suggests a spatial relation between the two identified
concepts.

Concept clustering: SPO analysis and association mining is likely to result in replica-
tion of concepts and relations across sentences. During concept clustering, lexical
similarity matching is used to firstly merge the different semantic graphs to eliminate
repetitive concepts and relations, and secondly to generate a taxonomy tree based on
similarity between terms used to represent different concepts. Vector Space Model
techniques have been investigated as the lexical similarity matching approach.

Overall, the rule-based baseline ontology for requirements elicitation involves the
following steps: (1) Manual textual document pre-processing to ensure that the text
being analyzed is suitable for sentence-based analysis; (2) Automatic bracket trailing
filters out predefined reference pointers and extracting relevant concepts referring to a
head concept within the sentence; (3) Semi-automated bridged-terms updating to
remove ambiguous concepts; (4) Automatic sentence analysis that extracts sub-
jects/objects and predicates as concepts and relation amongst concepts; (5) Automatic
association mining to extract temporal and spatial references amongst concepts; and
(6) Automatic concept clustering to build a taxonomy of concept.

4 Evaluation and Discussion

This section discusses an initial empirical study of the proposed approach for extract-
ing domain ontologies suitable for requirements elicitation. By using real-world in-
dustrial technical standards – in our case from the domains of transport, Adaptive
Cruise Control (ACC) - we compare the domain ontology generated by our rule-based
approach with a manually generated domain ontology to understand the implications
of our approach. We focus on the challenge of irrelevant terms that are not unique to
the domain being described and thus do not contribute to the requirements elicitation
process. We also evaluate if the different extracted concepts and relations from the
analyst, domain expert or via rule-based approach were semantically intuitive and
meaningful for guided requirements elicitation. Finally, we present lessons learned.

4.1 Manually Generated and Rule-Based Comparison of Elicitation Ontology

The manual generation of the requirements elicitation ontology involved two experi-
enced participants. The first, who acted as the analyst, had only a vague understand-
ing of ACC but were knowledgeable about requirements elicitation processes, while
the second participant had a much deeper insight into the ACC domain and acted as
the domain expert. Both participants were knowledgeable of how concepts and rela-
tions amongst concepts can be used to generate an ontology.

Paragraphs from two representative sections in ISO 15622 – ACC systems technical
standard [7] were presented to both participants (see figure 2 labeled case 1 and 2).

196 I. Omoronyia et al.

Our selection criterion was a document section that was representative and at the
same time provided insights independent of the initial manual pre-processing. This is
because the level of manual document pre-processing carried out by a third-party on
the selected text can influence the quality of domain ontologies generated using the
rule-based approach. Both participants were asked to extract concepts and generate
relations among the concepts from the text. To understand the implications of our
approach, we feed the same natural language texts into an implemented prototype for
automated rule-based ontology approach.

Fig. 2. Sample text presented to participants (Source: ISO 15622 [7])

Table 1. Number of concepts and relations extracted from sample text

 Concepts Relations

 Assumed Explicit Assumed Explicit Parent-Child

Rule-based 7 30 16 15 21
Analyst 0 26 0 25 0
Domain expert 3 18 8 13 6

Table 1 shows the number of concepts and relations extracted from the sample text.
Explicit concepts/relations are directly inferred from the text, while assumed con-
cepts/relations are inferred using reasoned based on concept clustering for the rule-
based approach or based on understanding and knowledge of the analyst respectively
the domain expert. For each of the categories, a higher number of concepts and rela-
tions were identified using the rule-based approach compared to those identified by
the domain expert or analyst. Insight from participants showed that since the analyst
had a limited understanding of the domain, concept/relation extraction was strictly
based on his/her understanding of the sample text. On the other hand, the domain
expert relied more on his/her general understanding of the domain to assimilate the
meaning and implication of each concept/relation from the sample text. Both partici-
pants used one hour to analyze and document a domain ontology based on the sample
text. The automated rule-based approach used all the required steps besides the initial
manual document pre-processing step. Based on the above sample text, this result is
an initial indicator that the automated rule based approach can help reduce the effort
in generating requirements elicitation ontology and at the same time achieve a greater
coverage of domain concepts. On the other hand, it is also important to understand if

 A Domain Ontology Building Process for Guiding Requirements Elicitation 197

the additional concepts and relations extracted by the rule-based approach are valid,
semantically meaningful and necessary and not simply an over specification.

Using the ontology extracted by the rule-based approach and manually by the ana-
lyst and domain expert, this study focuses on getting insights into the over specifica-
tion (extracting concepts and relations that are not necessary) or under specification
(missing concepts and relations that are otherwise necessary) using our rule-based
approach; and if the extracted concepts and relations were semantically intuitive for
guided requirements elicitation. We discuss each of these factors and pinpoint how
they can be possibly ameliorated.

Fig. 3. Rule-based and manually generated ontology

Ontology over specification: It is difficult to state if an ontology is over specified
since there is normally no initial understanding of the concepts and relations
contained in the domain ontology to be used for a specific requirements elicitation
task. Rather, the purpose of this study is to get an understanding of how over specifi-
cation of concepts and relations can occur for a requirements elicitation domain on-
tology based on our rule-based semantic analysis of natural language text. Rule-based
analysis of the section of sample text “…adaptively to a forward vehicle by using

198 I. Omoronyia et al.

information about: (1) ranging to forward vehicles…” (see figure 2 case 1) results in
the over specification of the concepts “forward vehicle” and “forward vehicles”.
Apart from the understanding that one concept is singular while the other is plural, the
two concepts point to the same semantic meaning. Thus, not much additional insight
is obtained by modeling the two as separate concepts. A case of relational over speci-
fication using the rule-based approach is demonstrated in the modeling of the relation
between “driver”, “clutch pedal” and “clutch” concepts (see the shaded section of
figure 3a and marked X). In this case, only the relation “depresses” between “driver”
and “clutch pedal” is meaningful, while the relation “depressing” between “driver”
and “clutch” is not required, given that the former relation implies the later one.

The two cases of over specification pointed out above can be eliminated using
stemming/lemmatizing of concept terms to their root words or a more rigorous con-
cept and relational clustering methods. In the first case, the term “vehicles” can be
stemmed to its root form “vehicle”, while in the second case, the relation “depresses”
and “depressing” can be merged to a single relation between “driver” and “clutch
pedal” or “clutch”. On the other hand, modeling of generic terms such as “control”,
“use” and “forward” in the rule-based approach as concepts can be considered an over
specification for domain ontologies suitable for requirements elicitation. Such generic
terms are more suitably defined in general ontologies such as Wordnet 3and can hence
be filtered out from specific domain ontologies.

Ontology under specification: Initial insight into under specification when using the
rule-based approach can be carried out by checking if all semantically meaningful
concepts and relations captured by the analyst and domain expert can be directly or
indirectly inferred from the domain ontology generated by the rule-based approach.
24 of the 26 concepts captured by the analyst were also capture by the rule-based
approach. As further discussed below, the two remaining concepts “motion of vehicle”
and “transition to ACC-stand-by” is considered wrongfully modeled or less meaning-
ful. 20 of the 21 concepts captured by the domain expert were also captured by the
rule-based approach. The remaining concept “ACC state” is the concept captured by
domain expert which was not represented in the rule-based approach. A follow-up of
this finding from the domain expert suggested that “ACC state” was informed by
his/her understanding that although ACC-stand-by and ACC-active were only men-
tioned in the text, the two concepts were the possible states of ACC system. Hence the
concept “ACC state” captured as the parent of ACC-stand-by and ACC-active by the
domain expert. On the other hand, it had only been possible for the rule based ap-
proach to conceptualize “ACC state” if the sample document (case 2 figure 2) was
rewritten as “… but remain in the ACC-active state or transition to ACC-stand-by
state…”. In this case, both “ACC-stand-by state” and “ACC-active state” would be
identified and represented by the rule-based approach as concepts while ACC state
would be represented as a parent concept.

Three relations present in the ontology created by the domain expert were not cap-
tured by the rule-based approach. These include: “vehicle” has “driver”, “vehicle” has
“brakes” and “ACC system” same as “Adaptive Cruise Control”. In all three cases,
the sample text was not sufficient and did not contain possible references to suggest

3 http://wordnet.princeton.edu/

 A Domain Ontology Building Process for Guiding Requirements Elicitation 199

such relation among concepts and was hence impossible to infer for an automated
approach. Overall, insights from this study demonstrate that the challenge of under
specification using rule-based approach can be reduced by either rigorous manual
preprocessing of text document; providing sufficient text for rule-base analysis or by
domain experts manually adding the missing concepts and relations.

Semantically intuitive and meaningful ontology: For the ontology generated by the
analyst, the concept “motion of vehicle” is wrongly modeled. The reason for this is
that in the sample text, the concept “information” is precisely related to “the motion of
the subject vehicle” and not to every “vehicle”. Similarly, the concept “transition to
ACC-stand-by” confounds the already modeled relation between “transition to” that
exist between the concepts “system” and “ACC-stand-by”. The concepts “actuators”
and “longitudinal control strategy” are similarly modeled using the relation “carry
out” and “carrying out” for the domain ontology generated by the analyst and by the
rule-based approach respectively. However, from a linguistic viewpoint, the expres-
sion “actuators carry out longitudinal control strategy” is a complete self-defining
phrase, while the expression “actuators carrying out longitudinal control strategy”
suggests the need for an additional support phrase. In this example, the defined rela-
tion between “actuators” and “longitudinal control strategy” from the analyst is se-
mantically more intuitive than the relation generated by the rule based approach. Such
linguistic issues in the definition of relations for the rule-based approach can possibly
be reduced if during the predicate extraction phase of the SPO analysis, the root form
of the verb gerund or present participle (VBG) is used.

The outcome of the study also suggests that domain ontologies originating from the
rule-based approach and from the domain expert should complement each other. This
is because concepts and relations are sometime better modeled using the rule-based
approach than the domain ontology created by the domain expert, and vice versa. A
core observation of the comparison of the domain ontology created by the rule-based
approach and the one created by the domain expert is that relations between concepts
can sometimes be represented in a rather concise but semantically equivalent and
meaningful way. For example, as shown in figure 3a, the relation between the
concepts “Automatic brake maneuver” and “clutch pedal” is identified using an in-
termediate concept “use” with <temporally infers> and “can be continued during”
relational identifiers between them. In the domain ontology created by the domain
expert (figure 3c), a more concise relational identifier “can use” links the two con-
cepts “Automatic brake maneuver” and “clutch pedal”. On the other hand, the rule-
base approach also demonstrates cases where the use of concepts as intermediaries
provides more insights into the relational semantics. For instance, the ontology cre-
ated by the domain expert (figure 3c) relates the two concepts “controller” and
“driver” via the relation “informs”. While this is a semantically valid relation, the
token that is transmitted from controller to driver is not an explicit characteristic of
the relation. Rather, in the rule-based ontology, the “controller” and “driver” concepts
are related via an intermediate concept “status information” with <spatially infers>
and a “sends” relational identifier between them. In this case, the conceptualization of
“status information” provides more details on the token that is transmitted from the
controller to driver.

200 I. Omoronyia et al.

4.2 Lessons Learned and Limitations of Rule-Based Approach

The core lesson learned in this research is that domain ontologies for supporting re-
quirements elicitation can be achieved by extracting knowledge from technical docu-
ments. The domain ontology manually generated by an analyst has shown to be more
prone to error when identifying concepts and relations than the ontology that is auto-
matically generated. This is understandable, since analysts usually have no knowledge
of the ontology domain. The ontologies created by the rule-based approach and by the
domain expert can be used to complement each other. Thus, a viable technique for
building requirements elicitation domain ontologies is to generate a baseline ontology
using the rule-based approach based on the technical documents and then let it be
verified and refined by domain experts.

Furthermore, manual document pre-processing before carrying out sentence based
NLP analysis that extracts concepts and relations is critical but in non-trivial cases
difficult to achieve. This is because the generated ontology is highly dependent on the
quality and format of source text. Our general experience is that domain standard
texts tend to conform to good linguistic style and in some cases use controlled lan-
guage subsets. This is normally not the case when source of the text is informal
documents such as emails, interview transcripts and web pages. The successful appli-
cation of the rule-based ontology generation approach has so far been validated for a
domain standard text, and hence might not be a valid approach for informal text
sources. Automated document pre-processing such as bracket trailing and bridged-
term completion, where possibly ambiguous terms are brought to the notice of the
domain expert, are viable options to reducing manual preprocessing effort.

Bridged-terms completion can sometimes raise false alerts. For instance, the sen-
tence “Safety communication and standard communication shall be independent” will
alert the domain expert on possible concept term ambiguity, even though “safety
communication and “standard communication” are both completely defined concepts.
As part of our future work, we plan to investigate a machine learning approach to
reduce such false positives. Bracket trailing relies on the assumption that it is com-
mon for the supplementary material in a bracketed text to provide more information
on the particular single sentence. Such an assumption cannot hold for writing styles
where a bracketed text is used to provide supplementary material that references mul-
tiple sentences.

As in most text analysis techniques, a 100% precision/recall is difficult to achieve
although a high precision/recall rate for the rule-based approach can be inferred for
the text used for the initial study. In the first case, a high precision is inferred based on
the analysis of sample text for over specification. Two cases of concept over specifi-
cation were captured out of 37 concepts (95% concept precision). Similarly, two rela-
tions were over specified out of 51 relations (96% relational precision). In the second
case, a high recall is inferred based on the analysis of sample text for under specifica-
tion. The analysis showed that 20 of the 21 concepts captured by the domain expert
were also captured by the rule-based approach (95% concept recall). Similarly, three
relations present in the domain expert ontology were not captured by the rule-based
approach (94% relational recall). Given that this is an initial preliminary study using a
relatively small subset of technical standard text, more studies will be required to
generalize this outcome for a much larger subset.

 A Domain Ontology Building Process for Guiding Requirements Elicitation 201

This preliminary study reveals a scalability concern. Using the rule-based ap-
proach, a small snippet of domain standard text can produce large ontology models
(figure 3a). An initial insight applying our approach to a larger text suggests that at
the early stage, the size of the ontology had a relatively linear growth as text from
different sections of the domain standard was analysed. As the volume of text ana-
lysed increased, a peak growth is reached when no new concepts were introduced by
simply adding text from new sections of the document.

5 Conclusion and Further Work

In Requirements Management, ontologies are used to reconcile gaps in the knowledge
and common understanding among stakeholders during requirement elicitation and
therefore significantly improve the quality of the elicited requirements. However, a
precondition of state-of-the-art ontology approaches for requirements elicitation is an
existing domain ontology.

This paper identified three core properties of domain ontologies suitable for re-
quirements elicitation. These include explicit relational expression, qualified relation
identification and explicit temporal and spatial expressions. We have investigated a
rule-based approach for building such domain ontologies from natural language tech-
nical documents. We first introduced bracket trailing and bridged-terms mechanism to
help reduce the time and effort that is invested into pre-processing of documents so
that they will be suitable for sentence-based analysis. The foundation of this approach
lies in the use of NLP techniques to extract subjects and objects as concepts, while the
predicate defines the relation between these extracted concepts. Association mining
techniques seek to extract other types of relations that are semantically implied in the
sentence, but cannot be captured by the predicate extraction process.

We evaluated the feasibility of the rule-based approach based on a real-world in-
dustrial use case by analyzing natural language text from technical standards. The
study demonstrated that the rule-based approach is a viable technique for building a
baseline requirements elicitation domain ontology, which can then be verified and
refined by the domain expert. The study showed that requirement analysts were more
prone to wrongly identifying concepts and relations to be used in domain ontologies.
On the other hand, domain ontologies created by the rule-based approach and the
domain expert complement each other. The evaluation provides insights into how
over specification and under specification can occur for a requirements elicitation
domain ontology based on analysis of natural language text.

In the short term, our further work focuses on getting more insight into the poten-
tial of using stemming/lemmatizing to reduce over specification. Future work will
also focus on investigating effort reduction measures when extracting requirements
elicitation domain ontologies using the rule-based approach. For instance, we seek to
understand how domain experts deal with false positive alerts of ambiguous concepts
during automated concept terms completion. It is also important to investigate the
different modalities for baseline ontology verification and refinement. We are particu-
larly interested in an ontology verification and refinement process that is based on
understanding the risk posed by baseline ontology concepts and relations that have
not been verified or refined.

202 I. Omoronyia et al.

References

1. Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proceedings
of the 1st North American Chapter of the Association for Computational Linguistics
Conference. Morgan Kaufmann Publishers Inc., Seattle (2000)

2. Falbo, R.d.A., Guizzardi, G., Duarte, K.C.: An ontological approach to domain engi-
neering. In: Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering (2002)

3. Flores, J.J.G.: Semantic Filtering of Textual Requirements Descriptions. In: Natural
Language Processing and Information Systems, pp. 474–483 (2004)

4. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

5. Gruber, T.R.: Ontology. In: Liu, L., Ozsu, M.T. (eds.) Encyclopedia of Database Systems.
Springer, Heidelberg (2008)

6. Ikeda, M., Seta, K., Mizoguchi, R.: Task ontology makes it easier to use authoring tools.
In: Proceedings of the 15th International Joint Conference on Artifical Intelligence (1997)

7. ISO standard: Transport information and control systems -Adaptive Cruise Control
Systems - Performance requirements and test procedures. 15622 (2002)

8. Kitamura, M., et al.: A Supporting Tool for Requirements Elicitation Using a Domain
Ontology. In: Proceedings Software and Data Technologies (2009)

9. Kof, L.: Scenarios: Identifying Missing Objects and Actions by Means of Computational
Linguistics. In: Proceedings RE 2007 (2007)

10. Kof, L.: An Application of Natural Language Processing to Domain Modelling - Two Case
Studies. International Journal on Computer Systems Science Engineering 20, 37–52 (2005)

11. Kof, L.: Translation of Textual Specifications to Automata by Means of Discourse Context
Modeling. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 197–211.
Springer, Heidelberg (2009)

12. Kof, L.: Using Application Domain Ontology to Construct an Initial System Model. In:
IASTED International Conference on Software Engineering (2004)

13. Lee, Y., Zhao, W.: An Ontology-Based Approach for Domain Requirements Elicitation
and Analysis. In: Proceedings of the First International Multi-Symposiums on Computer
and Computational Sciences (2006)

14. Lennard, J.: But I Digress: The Exploitation of Parentheses in English Printed Verse.
Clarendon Press, Oxford (1991)

15. Liddy, E.D.: Natural Language Processing. In: Encyclopedia of Library and Information
Science, 2nd edn. Marcel Decker, Inc., New York (2001)

16. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of
English: the penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

17. Pohl, K.: The three dimensions of requirements engineering: a framework and its applica-
tions. Inf. Syst. 19(3) (1994)

18. Shibaoka, M., Kaiya, H., Saeki, M.: GOORE: Goal-Oriented and Ontology Driven
Requirements Elicitation Method. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M.,
Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H.,
Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.)
ER Workshops 2007. LNCS, vol. 4802, pp. 225–234. Springer, Heidelberg (2007)

19. Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-
Wesley Longman Publishing Co., Inc., Amsterdam (1994)

Tackling Semi-automatic Trace Recovery for
Large Specifications

Jörg Leuser and Daniel Ott

Daimler AG, Group Research & Advanced Engineering,
P.O. Box 2360, 89013 Ulm, Germany

{joerg.leuser,daniel.ott}@daimler.com

Abstract. [Context and motivation] Traceability is not as well estab-
lished in the automobile industry as it is for instance in avionics. However,
new standards require specifications to contain traces. Manually creating
and maintaining traceability in large specifications is cumbersome and ex-
pensive. [Question/problem] This work investigates whether it is pos-
sible to semi-automatically recover traceability within natural language
specifications (e.g. requirement and test specifications) using information
retrieval algorithms. More specifically, this work deals with large, German
specifications from the automobile industry. [Principal ideas/results]
Using optimized algorithms, we are able to retrieve most of the traces.
The remaining problem is the reduction of false-positive candidate traces.
[Contribution] We identified optimizations that improve the retrieval
quality: Use of meta-data, filtering of redundant texts, use of domain lan-
guage, and dynamic identification of signals.

Keywords: Traceability, Traceability Recovery, German Specifications,
Large Specifications, Natural Language, Information Retrieval.

1 Introduction

Currently, there are no regulations that require the automobile industry to main-
tain explicit traceability through their development cycle. But this is going to
change for safety critical components with the upcoming ISO 26262 [14]. Cur-
rent specifications do not contain complete trace sets but will require them to be
available when they are reused. Creating traceability manually is quite arduous
as the specifications are large. Konrad and Gall [16] report that manually trac-
ing 4,000 user requirements is quite a challenge. The US DoD reportedly spends
four percent of life cycle costs on requirements traceability [22].

Other researchers proposed semi-automatic solutions that successfully apply
information retrieval algorithms in order to create and maintain traceability
after-the-fact [1,6,13,19,20,25]. However, publications of existing research focused
on small, English specifications (< 1,000 elements) while the specifications in the
German automobile industry are larger and often in German. The size and lan-
guage pose a problem for the semi-automatic methods. We propose and describe
optimizations to decrease the impact of these obstacles. The next section will
describe the problem and current solutions in more detail.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 203–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

204 J. Leuser and D. Ott

2 The Problem

In the automotive industry, three main abstraction layers exist: Vehicle, systems,
and components. For each of these layers, requirement and test specifications ex-
ist. Specifying a car easily requires around 100 system and multiple hundred
component specifications. The classification of Regnell et al. [24] places many
specifications into the category ‘large-scale RE’ (order of magnitude of 1,000
requirements). Some specifications contain up to 50,000 individual elements (ap-
proximately 2,000 pages) and therefore fall in the category ‘very large-scale RE’
(order of magnitude of 10,000 requirements). The sum of all specifications for a
system easily reaches this category.

Two main kinds of traceability are important: Traces within or between re-
quirement specifications and traces between requirement and test specifications.
Their creation and maintenance is quite a challenge. Semi-automatic methods us-
ing information retrieval (IR) algorithms promise to reduce this effort. However,
these methods are not ready for industry use as they do not reduce the manual
effort enough. We outlined a number of challenges [17] for traceability in our
context. Two of these directly affect the use of semi-automatic methods: The
size and language of specifications. The optimizations described in this paper
(Sect. 5) mainly address the size of specifications.

Research on the use of IR methods for recovery of traceability focused on three
IR models: Vector Space Model (VSM) [1,6,13], Probabilistic Model [6], and
Latent Semantic Indexing (LSI) [9,13,19,20,25]. The datasets used for validation
are comparably small and mainly in English. Winkler’s [25] dataset ‘AB’ is
reasonably large. It contains hundreds of elements on two abstraction layers, but
only an unspecified subset is used. As De Lucia et al. [9] point out and we could
confirm [18], with the size of the dataset, the number of candidate traces grows
fast and the ratio between actual links and false positives deteriorates rapidly.
The language is another problem we face: Braschler and Ripplinger [5] showed
for classic IR that the German language needs different preprocessing than for
example English. We found this also to be true for the search for traceability [18].
German grammar is more complex than English grammar. This leads to a larger
number of word forms that have to be dealt with. German also allows nearly
unrestricted compounding of words. Compounding is widely used for technical
terms. For example ‘Dachbedieneinheit’ (overhead control unit) is compounded
of three words. The English equivalent consists of three individual words. These
language properties have to be dealt with and worsen the precision of the results.

For a better grasp of the problem, we analyzed a subset of German requirements
specifications of the Daimler AG. The analyzed 70 system and 106 component
specifications contained a total of 62,116 different words. The system specifica-
tions have an average length of 441 requirements (15 words each), the component
specifications of 848 requirements (16 words each). This illustrates that the real
world specifications are larger than the previously published datasets. The state-
ments about size are based on user generated meta-data which tags specification
elements to be of a certain kind, e.g. ‘requirement’ or ‘information’ (see column
‘object type’ in Fig. 1). The quality of this meta-data varied.

Tackling Semi-automatic Trace Recovery for Large Specifications 205

2.1 The Datasets

The described optimizations to algorithms (Sect. 5) are validated with a num-
ber of datasets taken from the passenger car division of Daimler AG. The orig-
inal specifications often contain multiple variants of the specified systems or
components [4]. We extracted single-variant specifications out of the otherwise
unaltered original specifications. Datasets were selected based on these criteria:

– Large specification, mainly written in German
– Different kind of traceability that is different kinds of specifications

(system → system, system → component, system → test)
– Availability of a (reference) trace set (which must have been createdmanually).

Based on the criteria, two datasets were selected for analysis: Dataset OLC con-
sists of a system specification for an Outside Light Control. Dataset LSC con-
sists of different specifications of a Loading Space Cover: A system specification,
a test and two component specifications providing parts of the functionality.

Where needed, we extended the available trace sets towards reference sets. This
task took about 34 hours. Table 1 describes the datasets. The ‘other’ category
contains elements that have no or a different type than ‘requirement’ or ‘heading’.
CS 1 in dataset LSC has many ‘other’ elements due to incomplete meta-data. The
component specifications in dataset LSC belong to components that have many
functions. Only some of these functions are related to the system LSC, resulting
in the low number of traces. A third dataset (approx. 5,500 elements in two docu-
ments) was excluded as it was initially too large for our tool.

Table 1. Descriptive statistics of the datasets

OLC LSC

System specification (SysS) requirements 2,095 109
headings 1,166 65
other 30 83

Component specification 1 (CS 1) requirements – 61
headings – 915
other – 1,181

Component specification 2 (CS 2) requirements – 756
headings – 301
other – 241

Test specification (TS) test cases – 18
test steps – 52
other – 27

Reference traceability set

SysS ↔ SysS 1,109 67
SysS ↔ CS 1 – 14
SysS ↔ CS 2 – 6
SysS ↔ Test – 27

206 J. Leuser and D. Ott

3 Information Retrieval

The goal of the information retrieval (IR) algorithms is to retrieve the desired
data – in our case correct traces – without retrieving unwanted data. The search
for results is based on a four-step process: Preprocessing, application of algo-
rithms, creation of a candidate trace list, and its inspection by a human analyst.

We focus on the vector space model (VSM) as this is the IR model that our
research tool is based on. We chose the VSM as the probabilistic model as alterna-
tive currently does not show an overall superiority [3, p. 34]. In the preprocessing
stage, the document’s raw texts (e.g. requirements) are tokenized. Common fur-
ther steps are removal of stop words (words not helpful for the retrieval) and
stemming. Due to the large number of compounds, the decomposition of such
words is beneficial for German texts [18]. The result of the preprocessing stage
is a list of index terms {t1, ..., tn}.

In the VSM, documents (e.g. individual requirements) are interpreted as vec-
tors. Each index term ti represents a dimension. Each document dj is trans-
formed into a vector dj = {freqt1 , ..., freqtn}. freqti is the number of occur-
rences of index term ti in dj . All document vectors build the so called term-
document matrix Aij(freqti,j). This matrix can be processed differently depend-
ing on the algorithm, resulting in matrix Bij(wi,j) with term-weights instead of
frequencies.

The similarity of two documents can be calculated as the cosine between
the two document vectors in Bij . The assumption is that the more similar the
documents (smaller angle), the more likely a trace exists. Creating the candidate
trace list therefore consists of calculating the similarities and ordering the results.
For practical reasons, the candidate trace list only contains document pairs that
have a similarity larger than the so called cutoff point. The quality of the list
can be determined using two measures: recall and precision. Recall measures how
well the correct results (traces of the reference trace set) are retrieved. Precision
measures the amount of correct traces in the candidate list. We use generalized
forms for multiple queries like for example De Lucia et al. [7] do as well:

Recall =
∑

i |correct tracesi ∩ found tracesi|∑
i |correct tracesi| (1)

Precsion =
∑

i |correct tracesi ∩ found tracesi|∑
i |found tracesi| (2)

Hayes et al. [12] argue that recall > 60% is acceptable, > 70% good and > 80%
excellent. For precision, > 20% is acceptable, > 30% good and > 50% excellent.
Like De Lucia et al. [8], we share this assessement. This scale demonstrates
that a complete semi-automatically retrieved trace set is currently unlikely. The
already mentioned semi-automatic solutions (e.g. [8,12,25]) typically reach good
to excellent recall with acceptable to good precision for small specifications.

Term Frequency/Inverse Document Frequency (tf/idf). A weighting al-
gorithm in the VSM is the so called tf/idf algorithm [3]. It calculates the weights

Tackling Semi-automatic Trace Recovery for Large Specifications 207

wi,j in the term-document matrix based on two factors: the term frequency factor
tf (Eq. 3) and the inverse document frequency factor idf (Eq. 4). tfi,j indicates
how well ti characterizes the document. idfi represents the importance of ti in
the whole document corpus. k = index of t with maximum occurrence, N =
number of documents, ni = number of documents containing index term ti.

tfi,j =
freqi,j

freqtk,j
, freqtk,j = maxifreqti,j (3) idfi = log

N

ni
(4)

The final weight for index term ti in document dj is calculated as follows:

wi,j = tfi,j · idfi (5)

4 The TraceTool

The research tool we use is called TraceTool which is described in more detail
in [17]. The TraceTool is able to access ‘live’ data in Doors databases. It imple-
ments the two IR algorithms tf/idf and LSI [3]. Using those algorithms, a list of
candidate traces is created. In this paper, we just employ the tf/idf algorithm.
For a more intuitive similarity measure for the user, the raw cosine similarities
are transformed into the interval [0%,100%]. This measure is called trust level.

In order to evaluate the proposed optimizations (Sect. 5), we introduced a
functionality to automatically change and measure different configurations. A so
called Measurement Run Set defines what optimizations to activate and what
parameters to set. It executes the processing and records measures like precision
and recall on different cutoff-point levels. Thus, a large number of configurations
can be tested automatically. This is important as (pre-)processing a configuration
of the larger datasets takes between a quarter of an hour up to 6 hours, depending
on algorithm and optimizations. For example evaluating the influence of the
weight of one optimization (Sect. 5) in the interval [0,10] (step size 0.1) on dataset
OLC (Sect. 2.1) using tf/idf with all other parameters fixed takes approximately
a day on our fastest machine. Only the thesaurus which changes the similarity
calculation (Sect. 5.2) extends the processing time significantly.

5 Investigated Optimizations

We focused on the tf/idf algorithm with our optimizations. The main reason
is that the correlation of changes to the algorithm (e.g. wi,j) and changes in
the results (the resulting similarities) are more comprehensible than with LSI
which processes Bij heavily. Furthermore, LSI could make use of the extended
tf/idf by using the differently weighted term-document matrix. We investigated
different kinds of optimizations: First, filters to discard candidate traces based
on document text or meta-data. Secondly, the weighting of the tf/idf algorithm
(Eq. 5) was modified by exploiting knowledge about individual index terms.

208 J. Leuser and D. Ott

Some of the optimizations can be applied at different processing stages like
preprocessing (earliest) or candidate trace list creation (latest). The filter depend-
ing on meta-data (Sect. 5.4) can either be applied before preprocessing (filtered
documents are not included in Aij) or when the candidate list is created. Results
showed that the use of the optimizations depend on the dataset so we opted for
the latest possibility when there was a choice. Due to this decision, the user is
able to change the filters’ preferences quickly. After preference changes, only the
creation of the list of candidate traces has to be repeated.

5.1 Dynamic Signal Weighting (DSW)

Systems in the automotive context are distributed. Therefore, the different com-
ponents have to communicate using communication buses (e.g. CAN, FlexRay).
The communication is specified using (logical) signals, i.e. named information
containers, which can be transferred via bus systems. Analyzing reference traces,
we found signals to be an important criterion in the existence of traces. Therefore,
we reasoned that supplying this knowledge could improve the retrieval results.
Although the exact signal names are not known beforehand, we are able to dy-
namically identify them (via a regular expression) as they follow a known naming
scheme. Knowing the signals, we are able to attach an additional weight xi to
such signals; sw: parameter to be set; anticipated optimum value at sw > 1:

wi,j = tfi,j · idfi · xi (6) xi =
{

swi, if ti ∈ signals
1, else

Signals with Value Assignment (VA). Hayes et al. [11] found that incor-
porating phrases, that is index terms with more than one word, can improve
retrieval results. We found signals with value assignment that seem to be similar
to phrases: For example, requirements might contain ‘LoBM FLT = 0’ which
differs from ‘LoBM FLT = 1’ although the signal name is the same. The iden-
tification of such index terms is done during preprocessing. From there on, the
index terms are treated like ‘normal’ index terms.

5.2 Domain Language (D)

Although the idea behind tf/idf is that more important index terms get a higher
term-weight, we thought that having exact knowledge about individual terms
could have advantages. In the following sections, we will describe different ap-
proaches to handle domain language.

Word Classes. It is evident that not all words are created equally: Some have
more semantic than others. Stopwords, for example, are not seen as helpful for
the retrieval task and are therefore discarded. We propose two additional word
classes besides stopwords and ‘normal’ words: weak words (mostly as commonly
used in requirements engineering, e.g. [10]: ‘oft’ (often), ‘gering’ (small)) and
domain words (e.g. ‘Temperaturregler’ (thermostat)). The signals (Sect. 5.1)

Tackling Semi-automatic Trace Recovery for Large Specifications 209

could be seen as a special form of domain words. We assume that weak words
contain less meaning than ‘normal’ words (ww < 1) and domain words contain
more (dw > 1). Therefore, we created a list of domain words (D(dw), 9,648
words) and a list of weak words (D(ww), 1,039 words) out of our extensive word
list we extracted during our initial analysis. We change the term-weights wi,j as
seen in Eq. 6 with the following weight xi; ww, dw: parameters to be set:

xi =

⎧
⎨

⎩

ww, if ti ∈ weak words
dw, if ti ∈ domain words
1, else

Thesaurus (Th). Hayes et al. [13] report improved retrieval results when a
thesaurus is included into the similarity calculation of the IR algorithms. En-
couraged by these results, we wanted to test the inclusion of a thesaurus. As in
their solution, we built a thesaurus T with entries of the form 〈tk, tl, αkl〉 using
our initial word list as basis. αkl is the similarity coefficient for the two terms tk
and tl. The created thesaurus contains 286 entries. It is applied as an extension
to the basic cosine similarity in the similarity calculation as in Eq. 7:

sim(dj , q) =

∑t
i=1 wi,j · wi,q +

∑
〈tk,tl,αkl〉∈T αkl · (wk,j · wl,q + wl,j · wk,q)

√∑t
i=1 w2

i,j ·
√∑t

i=1 w2
i,q

(7)

Synonym Normalization (SN). As the similarity calculation already is re-
sponsible for a large part of the processing time, we thought about a faster way to
make use of a thesaurus. We found that our thesaurus contains mainly synonyms.
For example different names for car components. A component in the rear of the
car called SAM is sometimes referred to as ‘SAM-R’, ‘SAM R’, and sometimes
as ‘SAM REAR’. We propose to normalize such synonyms in the preprocessing
stage. This means, whenever one of the synonyms is found, it is always replaced
by the same synonym (e.g. always SAM-R). This replacement is faster than the
solution by Hayes et al. [13]. Of course, this solution only works for synonyms.

5.3 Filtering Redundant Texts (frt)

The specifications created by Daimler are based on different templates. These
templates provide structure as well as content. Not all specifications require the
whole template. However, the rules require some structural elements (that is
headings) to be present even when they contain no content. These headings are
marked irrelevant by placing predefined, redundant texts below them. Fig. 1
illustrates such a redundant text. Traces between such texts are found with a
high confidence as the texts are identical. Such traces are obviously unwanted.
Therefore, we allow filtering candidate traces when at least one end contains
such a text. Preliminary results showed other filterable texts: Introductory texts
to listings like ‘The following error messages have to be processed:’.

210 J. Leuser and D. Ott

Fig. 1. Illustration of a heading followed by a redundant placeholder text. The texts
were translated for illustration purposes.

Filtering Empty Headings (feh) The filtering of empty headings is an ex-
tension of the previous filter. While specifications may contain empty headings,
that is headings that do not contain any child elements, the main case of this
filter is another one: When redundant texts in a section mark it as not relevant,
the heading of this section also becomes unimportant. It may not be ‘physically’
empty but semantically. An example is the heading in Fig. 1. The proposed filter
will remove traces to such headings from the candidate link list.

5.4 Filtering According to Meta-data (fmd)

The elements in specifications do not only contain texts but also a number of
meta-data. Such meta-data is for example a classification of the different el-
ements (see column ‘object type’ in Fig. 1). Requirement specifications may
group its content into requirements, headings, and explanations. This proposed
filter removes candidate traces to defined types of elements as for example only
traces to headings and requirements are wanted.

6 Results

Our prior work [18] indicates better recall when stemming and decomposition
is activated for German specifications. Therefore, all measurements were done
with those two steps activated. Additionally, two filters were activated: The first
filter removes candidate traces between sibling elements, i.e. elements that share
the same parent (e.g. a heading). The second filter removes candidate traces
where one end of the trace is a direct parent of the other end, for example a
trace between the heading and the requirement in Fig. 1 would be removed.
The two filters are based on the knowledge that these relationships are already
documented by the document structure. Both filters have shown an increase in
precision with a minimal loss of recall [18]. These filters are only effective when
searching within one specification. When a dataset contained more than one
specification we created pairwise subsets.

To find the best possible results for each optimization we used our ‘Measure-
ment Run Sets’ (Sect. 4) to iterate through many possible parameter values
(where available). We opted for 0.1 as step size for the parameters. The search
space was [0,10]. It was extended to 20 when the results indicated, that higher

Tackling Semi-automatic Trace Recovery for Large Specifications 211

parameter values would produce better results. Our search space produced a
large number of results. The best result was picked by the following schema:

– Take the results with the 15% best recall values in low-confidence traces
(5-25% cutoff point; < 5% was not measured)

– Rank the selected results according to the slope of the regression line and
take the result with the slowest decline

– When the last selection step resulted in more than one possible result, we
looked at the precision in the same way

This selection scheme is based on a couple of assumptions: First, the most im-
portant task of the TraceTool is to recover traces, hence the focus on recall.
Secondly, the curve with the best maximum recall might deteriorate worse than
curves with slightly less maximum recall. We believe that a good recall over all
cutoff points (slow deterioration) is preferable over partially good results (e.g.
only good at the cutoff point that yields the maximum recall). This way, an ana-
lyst can expect similar recall at all cutoff points. As we experienced unacceptable
precision values in our datasets before, we opted for precision as the last factor
only. When applying our selection schema, we checked, if promising results were
discarded by the first selection step. When such a result existed it was manually
added. This was the case for the weak word optimization in dataset LSC in its
subset Sys → CS 1.

For the filtering approaches (Sect. 5.3, 5.4), we adapted the filters to the datasets.
Additional dataset specific values were included. The filter for redundant texts
originally contained 10 predefined texts but was extended to up to 35 entries.

Table 2. Results for dataset OLC. Traces within the system specification.

Optimization recall precision candidate traces
max Ø max Ø max Ø

tf/idf 89.36% 64.91% 3.95% 1.99% 800,780 111,105
+DSW(x=1.4) 89.36% 64.97% 3.95% 2.04% 778,374 107,272
+VA(x=1.5) 89.36% 64.90% 3.95% 2.06% 762,395 105,023
+DSW(x=1.4)+VA(x=1.5) 89.36% 64.93% 3.95% 2.08% 740,177 102,394
+D(ww=3.0) 88.82% 65.29% 3.93% 1.67% 704,469 130,445
+D(dw=1.1) 89.36% 64.91% 3.96% 1.98% 798,869 112,139
+D(ww=3.0, dw=1.1) 88.91% 65.17% 3.95% 1.68% 731,132 130,871
+Th 89.45% 65.35% 3.88% 1.95% 822,606 115,437
+SN 89.45% 65.01% 3.95% 1.98% 813,389 112,509
+frt 87.56% 64.05% 6.70% 2.93% 572,109 80,656
+feh 68.98% 50.05% 9.24% 4.16% 442,354 59,227
+fmd 89.09% 64.86% 3.99% 2.01% 793,642 110,119

DSW: Dynamic signal weighting, VA: value assignment (Sect. 5.1); D: Domain lan-
guage, ww: weak words, dw: domain words, Th: Thesaurus, SN: synonym normal-
ization (Sect. 5.2); frt: filter redundant texts, feh: filter empty headings (Sect. 5.3);
fmd: filter according to meta-data (Sect. 5.4).

212 J. Leuser and D. Ott

0%

20%

40%

60%

80%

100%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Cutoff Point

tf/idf

D(ww = 3)

DSW(x = 1.4),
VA(x = 1.5)

frt

feh

(a) Recall

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Cutoff Point

tf/idf

D(ww = 3)

DSW(x = 1.4),
VA(x = 1.5)

frt

feh

(b) Precision

0

100 000

200 000

300 000

400 000

500 000

600 000

700 000

800 000

900 000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Cutoff Point

tf/idf

D(ww = 3)

DSW(x = 1.4),
VA(x = 1.5)

frt

feh

(c) Number of candidate Traces

Fig. 2. Results for dataset OLC. Traces within the system specification.

Due to the limited space, the results of dataset OLC only are presented as
graphs. Table 2 displays all results. Fig. 2(a) shows the recall over the cutoff
point range 5% - 100% (low - high confidence). Fig. 2(b) shows the accompanying
precision curves. Fig. 2(c) depicts the number of candidate traces. The results
are reported with the best parameters selected according to our schema. For
better readability, only results are included that differ from the original tf/idf
or from one of the other curves visibly. Table 3 displays the results of dataset
LSC with its subsets. As its system specification contains no signals with value
assignment, the appropriate optimization is not applicable.

Tackling Semi-automatic Trace Recovery for Large Specifications 213

Table 3. Results for dataset LSC

Optimization recall precision candidate traces
max Ø max Ø max Ø

SysS → SysS
tf/idf 80.60% 24.85% 33.33% 11.32% 4,832 570
+DSW(x=2.7) 80.60% 24.93% 33.33% 11.17% 4,578 538
+D(ww=0.1) 80.60% 26.19% 33.33% 11.94% 4,541 558
+D(dw=0.8) 80.60% 25.07% 33.33% 11.51% 4,910 573
+D(ww=0.1, dw=0.8) 80.60% 26.64% 33.33% 11.29% 4,651 558
+Th 80.60% 25.30% 25.00% 9.45% 5,185 616
+SN 80.60% 24.03% 33.33% 11.22% 4,854 572
+frt 80.60% 24.85% 33.33% 11.58% 4,685 550
+feh 80.60% 24.85% 33.33% 11.58% 4,685 550
+fmd 37.31% 13.96% 33.33% 11.75% 2,139 281

SysS → CS 1
tf/idf 57.14% 25.36% 1.03% 0.48% 45,561 4,377
+DSW(x=14.5) 57.14% 25.36% 1.04% 0.48% 40,336 3,991
+D(ww=3.5) 57.14% 27.86% 0.87% 0.28% 44,646 7,420
+D(dw=0) 64.29% 27.14% 0.47% 0.24% 56,606 7,184
+D(ww=3.5, dw=0) 57.14% 30.36% 0.47% 0.14% 47,610 9,845
+Th 57.14% 25.36% 0.98% 0.45% 46,224 4,555
+SN 57.14% 25.00% 1.03% 0.47% 46,156 4,440
+frt 57.14% 25.36% 1.11% 0.57% 40,814 3,816
+feh 57.14% 25.36% 1.36% 0.68% 40,267 3,709
+fmd 28.57% 9.64% 0.37% 0.21% 29,579 2,904

SysS → CS 2
tf/idf 83.33% 19.17% 0.87% 0.19% 16,908 1,524
+DSW(x=15) 83.33% 19.17% 0.88% 0.20% 15,260 1,405
+D(ww=0.8) 83.33% 19.17% 0.85% 0.19% 16,396 1,483
+D(dw=0.7) 83.33% 19.17% 0.83% 0.14% 17,452 1,592
+D(ww=0.8, dw=0.7) 83.33% 19.17% 0.85% 0.15% 17,000 1,547
+Th 83.33% 19.17% 0.69% 0.16% 17,055 1,583
+SN 83.33% 19.17% 0.85% 0.19% 17,056 1,535
+frt 83.33% 19.17% 1.19% 0.26% 15,500 1,358
+feh 83.33% 19.17% 1.30% 0.28% 15,270 1,333
+fmd 16.67% 1.67% 0.03% 0.00% 9,150 839

SysS → TS
tf/idf 74.07% 23.52% 100.00% 39.64% 1,853 209
+DSW(x=5.2) 74.07% 24.63% 100.00% 33.01% 1,664 185
+D(ww=0.8) 74.07% 23.15% 100.00% 39.39% 1,763 200
+D(dw=1.6) 74.07% 23.33% 100.00% 42.68% 1,600 212
+D(ww=0.8, dw=1.6) 74.07% 23.52% 100.00% 42.83% 1,542 208
+Th 74.07% 23.52% 100.00% 39.65% 1,870 210
+SN 74.07% 23.52% 100.00% 39.58% 1,857 210
+frt 74.07% 23.52% 100.00% 39.63% 1,792 205
+feh 74.07% 23.52% 100.00% 39.73% 1,784 203
+fmd 62.96% 21.85% 100.00% 39.67% 1,334 167

214 J. Leuser and D. Ott

7 Discussion

There is only one interpretation: The results are not adequate for use in industry.
However, there is light: With most of our datasets, we were able to retrieve most
of the reference traces. The remaining problem is the precision. Although we
reach 10% precision in some sets, this is not enough when compared with the
huge amount of candidate traces that have to be analyzed. These results are due
to the large size of the datasets in terms of semi-automatic trace retrieval. The
precision in the smaller subsets (see e.g. SysS → TS in Tab. 3) is considerably
better. For even larger datasets not uncommon in industry, even worse precision
results are expected. Although the results show mostly little impact on precision
and recall in absolute terms, these changes become important through the size
of our datasets: The number of candidate traces needing inspection show large
differences. If we take dataset LSC with SysS → CS 1, we see an increase of the
average precision of 0.09 only between tf/idf and the filtering of redundant texts
(frt). However, in absolute terms, the difference is more obvious: 561 traces less
(−12.8%) need inpection per cutoff point – without loss of recall.

The different optimizations performed unequally. Dynamic signal weighting
(DSW) either affected the recall mildly positively or not at all. It always lead
to fewer candidate traces. This might be due to the fact that signals are an im-
portant factor for the existence of traces. The additional consideration of signals
with value assignment (DSW+VA) did not increase the recall but improved the
precision further. However, the optimal weight parameter varies quite a bit.

The handling of domain vocabulary in form of weak and domain words was
not very successful. Although weak words (D(ww)) helped to increase the recall
in most datasets, the precision worsened. In case SysS → SysS of dataset LSC
only, the precision was improved. We expected the parameter for weak words to
be < 1 as weak words should be semantically less important than other words.
However, this was not always the case. Similar unexpected ‘behavior’ of weak
words was observed when the quality of automotive specifications was rated by
requirements engineers: The higher the amount of weak words, the better the
perceived quality [26]. Domain words (D(dw)) improved the recall most of the
time while always increasing the number of candidate traces. The combination
of both word classes did not perform well as especially the precision suffers.

The use of a thesaurus improved or kept the recall. The precision was reduced
in all but one set. The synonym normalization (SN) – a simpler form of the the-
saurus (Th) – performed slightly worse on the recall side. However, the precision
was not as badly influenced as with the thesaurus. For large datasets, SN seems
to be the better choice as it is faster.

The filtering of redundant texts (frt) is especially helpful for the search of traces
within one document, or more specifically within one document template. This
might be due to the fact that the different templates use different redundant texts.
It should be noted that beside in dataset OLC, the removal of redundant texts did
not diminish the recall but always improved the precision. The extension that re-
moves (semantically) empty heading (feh) can improve the precision further. As
with frt, the recall is reduced in dataset OLC only, while the precision is doubled.

Tackling Semi-automatic Trace Recovery for Large Specifications 215

The filtering according to meta-data (fmd) resulted in mixed results. They
depend heavily on the quality of available meta-data. Precision was improved in
about half our measurements. Recall was always reduced what indicates weak-
nesses in the available meta-data. Notable is the result in dataset LSC between
the SysS and CS 2: nearly all reference traces were filtered out, rendering this
filter useless in this set.

8 Related Work

Research into optimizations for semi-automatic methods recovering traces lead
to different approaches and results.

Multiple researchers studied finding traces between artifacts without common
language. McMillan et al. [21] propose identifying traces by taking an indirection:
When two documents are related to the same part of code, it is assumed that
the documents also are related to each other. Asuncion and Taylor [2] propose
deriving candidate traces by monitoring the way the user interacts with artifacts.
They reason that when a user concurrently or sequentially modifies artifacts, they
might be related. Their approach is based in the e-Science domain but should
be transferable to model based specifications.

Contrary to model based development with code generation, model based spec-
ifications are not very common in the automobile domain. Should this change, the
proposals of De Lucia et al. [9] and Cleland-Huang et al. [6] promise to retrieve
traces between requirements and models. Kof [15] uses natural language process-
ing to build message sequence charts and automata from textual scenarios. He
therefore provides means to automatically formalize parts of natural language
specifications. Such transformations allow tracing the different representations.

For later phases of development, Marcus and Maletic [20] show that traces
into code can be retrieved. Ratanotayanon et al. [23] support tracing between
feature-descriptions and code and are able to automatically update traces on
code changes. Winkler [25] proposes to extend the IR approaches in order to
reuse the analyst’s decision about candidate traces even when an artifact changes.
Although his approaches are beneficial when ‘good’ decisions were made, they
also preserve ‘bad’ decisions.

9 Conclusions

Finding traces in some sets is like looking for a needle in a haystack. For example,
finding 6 traces between the LSC system specification and CS 2 in about 1,500
elements is not that easy. Unsurprisingly, sets with traces into component speci-
fications have bad precision results. One of the reasons might be that just a very
small part of the component specifications is relevant for the system. Obviously,
only traces to the relevant parts should be retrieved. Therefore, we tested remov-
ing the irrelevant parts. The results improved – as expected – enormously: For
example for SysS → CS 1, the recall went up to 28.57% and precision to 4.27%.
The precision of the new results of the original tf/idf is nearly 10-times as good

216 J. Leuser and D. Ott

as the previously achieved 0.48%. As our goal is to work with unaltered specifi-
cations, we propose extending the filtering mechanisms or the user interaction
in a way to facilitate finding traces between subparts of specifications.

The use of dynamic signal weighting always reduced the number of candidate
traces without loss or even with gain in recall. If applicable, the consideration of
signals with value assignment also has positive effects. The introduction of two
word classes ‘weak words’ and ‘domain words’ with additional weights generally
improved the recall but often at the cost of reduced precision. The same is true
for the use of a thesaurus or the faster form of synonym normalization.

It is evident to us that the current results are not good enough for an industrial
application. However, we also see that we were able to improve the number of
candidate traces needing inspection. The filtering approaches based on redundant
texts, empty headings, and meta-data generally improved the precision. Often, it
is possible to remove false positive candidate traces without any loss of recall. As
this depends on the dataset, our decision to apply the filters as late as possible
in the processing chain seems to be correct. Hence the analyst can decide at
analysis time what filters to activate.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Identifying the Starting
Impact Set of a Maintenance Request: a Case Study. In: Proceedings of the Fourth
European Software Maintenance and Reengineering, pp. 227–230 (2000)

2. Asuncion, H.U., Taylor, R.N.: Capturing Custom Link Semantics among Heteroge-
neous Artifacts and Tools. In: ICSE Workshop on Traceability in Emerging Forms
of Software Engineering (2009)

3. Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information Retrieval, reprint edn.
Pearson Addison-Wesley (2006)

4. Boutkova, E.: Variantendokumentation in Lastenheften: State-of-the-Practice
(Variant Documentation in Requirement Specifications). In: Systems Engineering
Infrastructure Conference (November 2009)

5. Braschler, M., Ripplinger, B.: How Effective is Stemming and Decompounding for
German Text Retrieval? Information Retrieval 7(3-4), 291–316 (2004)

6. Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing Supporting Evidence
to Improve Dynamic Requirements Traceability. In: 13th IEEE International Con-
ference on Requirements Engineering, pp. 135–144. IEEE CS, Los Alamitos (2005)

7. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an Artefact Man-
agement System with Traceability Recovery Features. In: 20th IEEE International
Conference on Software Maintenance, pp. 306–315. IEEE CS, Los Alamitos (2004)

8. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Can Information Retrieval Tech-
niques effectively Support Traceability Link Recovery? In: 14th IEEE International
Conference on Program Comprehension, pp. 307–316 (2006)

9. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering Traceability Links
in Software Artifact Management Systems Using Information Retrieval Methods.
ACM Transactions on Software Engineering and Methodology 16(4), 13 (2007)

10. Dreher, M.: Konstruktive und analytische Methoden zur Qualitätssicherung von
Anforderungen in der Softwareentwicklung (Constructive and Analytical Methods
for Quality Assurance of Requirements in SW Development). Stuttgart Media
University, Diplomarbeit (2004)

Tackling Semi-automatic Trace Recovery for Large Specifications 217

11. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving Requirements Tracing via
Information Retrieval. In: 11th IEEE International Requirements Engineering
Conference, pp. 138–147 (2003)

12. Hayes, J.H., Dekhtyar, A.: Humans in the Traceability Loop: Can’t Live with ’em,
Can’t Live without ’em. In: Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 20–23. ACM, New
York (2005)

13. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing Candidate Link Generation
for Requirements Tracing: The Study of Methods. IEEE Transactions on Software
Engineering 32(1), 4–19 (2006)

14. ISO/DIS 26262: Road Vehicles – Functional Safety. ISO (2009)
15. Kof, L.: Translation of Textual Specifications to Automata by Means of Discourse

Context Modeling. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512,
pp. 197–211. Springer, Heidelberg (2009)

16. Konrad, S., Gall, M.: Requirements Engineering in the Development of Large-Scale
Systems. In: 16th IEEE International Conference on Requirements Engineering,
pp. 217–222 (2008)

17. Leuser, J.: Challenges for Semi-automatic Trace Recovery in the Automotive
Domain. In: ICSE Workshop on Traceability in Emerging Forms of Software
Engineering, pp. 31–35 (May 2009)

18. Leuser, J.: Herausforderungen für halbautomatische Traceability-Erkennung (Chal-
lenges for Semi-automatic Trace Recovery). In: Systems Engineering Infrastructure
Conference (November 2009)

19. Lormans, M., van Deursen, A.: Can LSI Help Reconstructing Requirements
Traceability in Design and Test? In: Proceedings of the Conference on Software
Maintenance and Reengineering, pp. 47–56. IEEE CS, Los Alamitos (2006)

20. Marcus, A., Maletic, J.I.: Recovering Documentation-to-Source-Code Traceabil-
ity Links Using Latent Semantic Indexing. In: 25th International Conference on
Software Engineering, 3rd edn., pp. 3–10 (2003)

21. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining Textual and Structural
Analysis of Software Artifacts for Traceability Link Recovery. In: ICSE Workshop
on Traceability in Emerging Forms of Software Engineering, pp. 41–48 (May 2009)

22. Powers, T., Stubbs, C.: A Study on Current Practices of Requirements Traceabil-
ity in Systems Development. Masterthesis, Naval Postgrad. School Monterey CA
(1993)

23. Ratanotayanon, S., Sim, S.E., Raycraft, D.J.: Cross-Artifact Traceability Using
Lightweight Links. In: ICSE Workshop on Traceability in Emerging Forms of Soft-
ware Engineering, pp. 57–64 (May 2009)

24. Regnell, B., Svensson, R.B., Wnuk, K.: Can we Beat the Complexity of very Large-
Scale Requirements Engineering? In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 123–128. Springer, Heidelberg (2008)

25. Winkler, S.: Trace Retrieval for Evolving Artifacts. In: ICSE Workshop on Trace-
ability in Emerging Forms of Software Engineering, pp. 49–56 (May 2009)

26. Yakoubi, R.: Empirische Bewertung von Qualitätsindikatoren für Anforderungs-
dokumente (Empirical Assessment of Quality Indicators for Requirement
Specifications). Ulm University, Diplomarbeit (2009)

Ambiguity Detection: Towards a Tool Explaining
Ambiguity Sources

Benedikt Gleich1, Oliver Creighton2, and Leonid Kof3

1 Fakultät für Angewandte Informatik, Universität Augsburg,
Universitätsstr. 6a, D-86159 Augsburg, Germany

benedikt.nikolaus.gleich@student.uni-augsburg.de
2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81730 München

oliver.creighton@siemens.com
3 Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748, Garching bei München, Germany

kof@informatik.tu-muenchen.de

Abstract. [Context and motivation] Natural language is the main represen-
tation means of industrial requirements documents, which implies that require-
ments documents are inherently ambiguous. There exist guidelines for ambiguity
detection, such as the Ambiguity Handbook [1]. In order to detect ambiguities
according to the existing guidelines, it is necessary to train analysts.

[Question/problem] Although ambiguity detection guidelines were exten-
sively discussed in literature, ambiguity detection has not been automated yet. Au-
tomation of ambiguity detection is one of the goals of the presented paper. More
precisely, the approach and tool presented in this paper have three goals: (1) to au-
tomate ambiguity detection, (2) to make plausible for the analyst that ambiguities
detected by the tool represent genuine problems of the analyzed document, and
(3) to educate the analyst by explaining the sources of the detected ambiguities.

[Principal ideas/results] The presented tool provides reliable ambiguity de-
tection, in the sense that it detects four times as many genuine ambiguities as than
an average human analyst. Furthermore, the tool offers high precision ambiguity
detection and does not present too many false positives to the human analyst.

[Contribution] The presented tool is able both to detect the ambiguities and
to explain ambiguity sources. Thus, besides pure ambiguity detection, it can be
used to educate analysts, too. Furthermore, it provides a significant potential for
considerable time and cost savings and at the same time quality improvements in
the industrial requirements engineering.

Keywords: requirements analysis, ambiguity detection, natural language
processing.

1 Requirements Documents Are Ambiguous

The overwhelming majority of requirements documents are written in natural language,
as the survey by Mich et al. shows [2]. This implies that requirements are imprecise,
as precision is difficult to achieve using mere natural language as the main presentation
means. In software development, the later an error is found, the more expensive its

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 218–232, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 219

correction is. Thus, the imprecision of requirements should be detected early in the
development process.

Ambiguity (i.e., the possibility to interpret one phrase in several ways) is one of
the problems occurring in natural language texts. An empirical study by Kamsties et
al. [3] has shown that “. . . ambiguities are misinterpreted more often than other types of
defects; ambiguities, if noticed, require immediate clarification”. In order to systematize
typical ambiguous phrases, Berry et al. introduced the Ambiguity Handbook [1]. A tool
that detects ambiguities listed in the handbook surely contributes to early detection of
problematic passages in requirements documents. According to Kiyavitskaya et al. [4],
a tool for ambiguity detection should not only detect ambiguous sentences, but also
explain, for every detected sentence, what is potentially ambiguous in it. Such a tool is
presented in this paper.
Contribution: The tool described in the presented paper is a big step towards the am-
biguity detection tool satisfying the requirements by Kiyavitskaya et al: this tool is able
not only to detect ambiguities but also to explain ambiguity sources. When detecting
ambiguities, it basically relies on a grep-like technique, which makes it highly reliable,
applicable to different languages, and independent from error-prone natural language
parsing. For every detected ambiguity the tool provides an explanation why the detec-
tion result represents a potential problem. Furthermore, due to web-based presentation
and a lightweight linguistic engine on the server side, the tool is fast and highly portable,
which makes it applicable for real projects. Therefore, it can cause considerable time
and cost savings while at the same time enabling higher quality, as it simplifies early
detection of potentially critical errors.
Outline: The remainder of the paper is organized as follows: First, Section 2 sketches
part-of-speech tagging, the computational linguistics technique used in our tool. Then,
Section 3 introduces the types of ambiguities that can be detected by our tool. These
types include ambiguity classes introduced in the Ambiguity Handbook and ambiguity
classes derived from writing rules used internally at Siemens. Section 4 presents the
tool itself, especially the technique used to detect ambiguities and the presentation of
the detected ambiguities to the tool user. Section 5 provides the results of the tool eval-
uation. Finally, Sections 6 and 7 present an overview of related work and the summary
of the paper, respectively.

2 Computational Linguistics Technique: Part-of-Speech Tagging

Part-of-speech (POS) tagging marks every word of a given sentence with one of the
predefined parts-of-speech (substantive, adjective, . . .) by assigning a POS tag. For ex-
ample, the words of the sentence “Failure of any other physical unit puts the program
into degraded mode” are marked in the following way: Failure◦NN◦failure
of◦IN◦of any◦DT◦any other◦JJ◦other physical◦JJ◦physical
unit◦NN◦unit puts◦VBZ◦put the◦DT◦the program◦NN◦program
into◦IN◦into degraded◦VBN◦degrade mode◦NN◦mode. Here, NN means a
noun, DT a determiner, JJ an adjective, VBZ a verb, and IN a preposition. Additionally
to part-of-speech tags, the tagger can provide the basic form for every word, as in the
example presented above. Basic forms will be important for us to detect passive voice,

220 B. Gleich, O. Creighton, and L. Kof

where we will look for the verb “be”. Following tags are the most important ones in the
context of the presented work: (1) any tag starting with “VB”, identifying different verb
forms, (2) tag “VBN”, identifying verbs in the past participle form (“been”, “done”),
(3) any tag starting with “NN”, identifying different noun forms, (4) tag JJ, identifying
adjectives, and (5) tag RB, identifying adverbs. Complete information on tag meanings
can be found in the official specifications of tagsets [5,6]. Tagging technology is rather
mature: there are taggers available with a precision of about 96%, such as the TreeTag-
ger [7,8], used in the presented work. The applied tagger (TreeTagger) provides support
for English, German, and further languages, and thus allows to extend the presented
work to really multilingual ambiguity detection.

3 Types of Ambiguities Detected by the Tool

The Ambiguity Handbook [1] lists several types of ambiguities, namely lexical, syntac-
tic, semantic, and pragmatic ambiguities. Additionally, the Ambiguity Handbook states
vagueness and language errors as further sources of problems. All these sources of
problems are briefly introduced below. The citations in the below list are taken from the
Ambiguity Handbook.

Lexical ambiguity: “Lexical ambiguity occurs when a word has several meanings.”
This can be the case, for example, when one word has several meanings (like
“green” meaning “of color green” or “immature”), or two words of different origin
come to the same spelling and pronunciation (like “bank” meaning “river bank”
and “bench”).

Syntactic ambiguity: “Syntactic ambiguity, also called structural ambiguity, occurs
when a given sequence of words can be given more than one grammatical structure,
and each has a different meaning.” This can be the case, for example, when the
sentence allows different parse trees, like “small car factory” that can mean both
“(small car) factory” and “small (car factory)”.

Semantic ambiguity: “Semantic ambiguity occurs when a sentence has more than one
way of reading it within its context although it contains no lexical or structural
ambiguity.” This can be the case, for example, when several quantifiers occur in
the same sentence, like in “all citizens have a social security number” that can be
interpreted in two ways:

– every citizen has an individual social security number:
∀x.citizen(x) ⇒ ∃y.social security number(y) ∧ has(x, y)

– all citizens have the same social security number:
∃y.(social security number(y) ∧ ∀x.(citizen(x) ⇒ has(x, y)))

Pragmatic ambiguity: “Pragmatic ambiguity occurs when a sentence has several
meanings in the context in which it is uttered.” This can be the case when refer-
ences occurring in the text can be resolved in several ways. For example, “they” in
“The trucks shall treat the roads before they freeze” can refer both to the roads and
to the trucks.

Vagueness: Vagueness occurs when a phrase has a single meaning from grammatical
point of view, but still leaves room for interpretation, when considered as a require-
ment. “The system should react as fast as possible” provides an example of such a
vague phrase.

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 221

Language error: Language errors represent grammatically wrong constructions, like
“Every light has their switch.” The above construction can be interpreted in dif-
ferent ways, both as “Every light has its own switch” and as “All lights have their
common switch” and cause problems later.

Independently from the ambiguity type, we can apply ambiguity detection on the same
four levels, namely lexical, syntactic, semantic, and pragmatic. These are the levels tra-
ditionally used in natural language processing, cf. [9]. Analysis tasks and result types
for every kind of analysis are sketched in Table 1. A survey performed in our previous
work [10] shows that solely lexical and syntactic analyses are possible at the moment
for fully-fledged English. If the grammar used in the text can be restricted to a certain
subset of English, semantical analysis becomes possible, too. Attempto Controlled En-
glish [11] gives an example of such a restricted language and a processing tool for this
language. Pragmatic analysis is not possible yet. In order to keep our tool applicable to
different documents, written without any grammatical restrictions, as well as to make
the tool efficient, we focus on lexical and lightweight syntactical analysis, based on
part-of-speech tagging. The applied analysis rules are presented below in Section 4.

Table 1. Classification of text analysis techniques

Analysis type Analysis tasks Analysis results
lexical identify and validate the terms set of terms used in the text
syntactic identify and classify terms, build

and validate a domain model
set of terms used in the text and a model
of the system described in the text

semantic build a semantic representation of
every sentence

logical representation of every sentence,
formulae

pragmatic build a representation of the text,
including links between sentences

logical representation of the whole text,
formulae

The patterns for ambiguity detection have been extracted from the Ambiguity Hand-
book and an Siemens-internal guidelines for requirements writing. The Ambiguity
Handbook lists a total of 39 types of ambiguity, vagueness or generality. Some of these
patterns were not integrated into our tool: 4 out of 39 types were isolated cases, i.e., ex-
amples of ambiguous expressions without explicit statements, which linguistic patterns
can be used to identify the ambiguity. “Mean water level” is an example of such an
expression: to make it unambiguous, it is necessary to define precisely, how “mean” is
determined, but we cannot generalize this expression to an ambiguity detection pattern.
7 further ambiguities are on a semantic or pragmatic level and are not amenable to state-
of-the-art computational linguistics. Elliptic ambiguities like “Perot knows a richer man
than Trump” provide an example of such a high level ambiguity. Lastly, ambiguities in
formalisms (counted as one of 39 ambiguity types too) were not included in our tool,
as we aim at the analysis of requirements written in natural language.

The remaining 27 patterns were integrated into our tool. In addition, all 20 patterns
from the Siemens guidelines could be integrated, as they all can be easily detected on
lexical or syntactic level. 9 out of 20 Siemens patterns are already covered by 8 patterns

222 B. Gleich, O. Creighton, and L. Kof

Table 2. Ambiguity patterns with source and level of detection. Sources: AH=Ambiguity Hand-
book, S=Siemens

Ambiguity Source Ambiguity level Level of detection

“up to”, without explicit “includ-
ing/excluding”

AH semantic syntactic

they AH pragmatic lexical
everybody followed by their/its AH, S semantic syntactic
Ambiguous words like include,
minimum, or, . . .

AH semantic, pragmatic lexical

Vague words like acceptable,
easy, efficient...

AH semantic, pragmatic lexical

Dangerous plural: all, each, ev-
ery...

AH, S semantic, pragmatic syntactic

Dangerous plural with ambiguous
reference (e.g. every ... a)

AH, S semantic, pragmatic syntactic

Both at the beginning of a sen-
tence

AH semantic, pragmatic syntactic

many, few AH semantic, pragmatic lexical
only, also, even AH, S syntactic lexical
otherwise, else, if not AH semantic, pragmatic lexical
not AH, S semantic, pragmatic lexical
not because AH semantic, pragmatic lexical
“and” and “or” in the same sen-
tence

AH, S syntactic, semantic syntactic

until, during, through, after, at AH semantic, pragmatic lexical
could, should, might S semantic, pragmatic lexical
usually, normally S semantic, pragmatic lexical
actually S semantic, pragmatic lexical
100%, all errors S pragmatic lexical
he, she, it AH, S pragmatic lexical
brackets S syntactic, semantic, pragmatic lexical
Slashes S syntactic, semantic, pragmatic lexical
tbd, etc S semantic, pragmatic lexical
fast S semantic, pragmatic lexical
passive S semantic, pragmatic syntactic, with

part-of-speech tags
“this” (ambiguous reference) AH, S semantic, pragmatic lexical
vague or ambiguous adjectives AH lexical, semantic and pragmatic syntactic, with

part-of-speech tags
vague or ambiguous adverbs AH lexical, semantic and pragmatic syntactic, with

part-of-speech taggs

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 223

from the Ambiguity Handbook, so we had the total of 27+20-9=38 patterns included in
the tool. The detection patterns that were finally implemented in the tool are presented
in Table 2. To make the table compact, we merged similar patterns to a single line of
the table, so there is no 1:1 correspondence between table lines and patterns. Here, it
is important to emphasize that many of the ambiguity detection patterns implemented
in our tool represent semantic or pragmatic ambiguities, although we perform solely
lexical and syntactic analysis. This is also easy to see in Table 2.

4 Ambiguity Detection and Presentation

Technically, our ambiguity detection tool is basically similar to the Unix tool grep: it
investigates the input text line by line, checks whether the analyzed line matches certain
regular expressions, and, in the case of matching, marks the found match (ambiguity)
in the analyzed line. The tool implementation goes beyond pure grep by modularizing
the definitions of ambiguity types and regular expressions used to detect these ambi-
guity types. This allows for tool extensions even by people not familiar with the tool
architecture. Tables 3-5 present the keywords and regular expressions used for ambi-
guity detection. For this presentation, we use standard notation for regular expressions,
with “.” denoting any character, “|” denoting set union, and “*/+” denoting iteration.

The ambiguities are grouped by the detection techniques:

– Table 3 (lexical patterns) presents the ambiguities resulting from the fact that cer-
tain words always entail several interpretations. Such ambiguities can be detected
on the lexical level, so Table 3 presents single keywords used for ambiguity de-
tection. The only constraint when searching for these keywords is that we have to
search for whole words only, and must ignore keywords occurring as constituents
of longer words. Otherwise, the tool would match “or” with “more”. Thus, the tool
implements special measures for whole word matchings.

– Table 4 (word combinations) presents ambiguities resulting either from co-
occurrence of certain words or from occurrence of certain word in special positions.
As for Table 3, the tool matches whole words or phrases only.

– Table 5 (syntactic patterns) presents three ambiguities whose detection requires
part-of-speech tagging: passive voice and usage of adjectives and adverbs. As the
output of the TreeTagger consists of triples (e.g. is◦VB◦be), the regular expres-
sions are rather complex, since they have to cover complete triples to ensure a
correct presentation of the error messages.
Passive voice: To detect passive voice, we proceed as follows: the basic idea is to

search for the verb “to be”, followed by the past participle form. This search
pattern can be expressed in the regular expression “be.*VBN”, where the tag
VBN denotes the participle form. Explicit search for different forms of the verb
“to be” is unnecessary, as the applied POS-Tagger provides not only the tag,
but also the basic form for every word. The problem is, however, that the above
regular expression matches too much in compound sentences. For example, in
the sentence “it is an interesting idea that can be further explored”, it matches
the whole text piece from “is” to “explored”. In order to make the match more
precise, we refined the detection rule to the following: passive is detected by

224 B. Gleich, O. Creighton, and L. Kof

occurrence of the verb “to be”, followed by the past participle, but no further
verbs are allowed to occur between “be” and the participle. Such a word se-
quence can be matched by the regular expression presented in Table 5.

Adjectives and adverbs: The list of vague adjectives and adverbs in the Ambi-
guity Handbook is incomplete, as it contains “etc”. When analyzing manual
evaluations (cf. Section 5) we came to the conclusion that there are a lot more
adjectives and adverbs that are perceived as ambiguous, than listed in the Am-
biguity Handbook. So, we decided to trade in some precision for recall and to
mark every adjective and every adverb as a potential ambiguity. Marking of
adjectives as a potential ambiguity source is also in line with the statement by
Rupp [12] that any adjective in comparative form (“better”, “faster”) can result
in misinterpretations.

Tables 3-5 clearly show that most ambiguities result from single ambiguous words (not
from word combinations) and, thus, can be detected on the lexical level. To apply the
tool to German documents, we use the same regular expressions, with the only differ-
ence that the keywords are translated and the regular expression for passive detection is
altered to fit German grammar.

The tool marks every found ambiguity occurrence either red or orange or blue, de-
pending on the severity of the found ambiguity. This marking idea is similar to errors
and warnings produced by most compilers: An ambiguity is marked red, if it definitely
represents a problem, and either orange or blue, if it, depending on the context, can be

Table 3. Keywords used to detect ambiguities on the lexical level

until, during, through, after, at These expressions do not spec-
ify the “outside” behaviour.

Maintenance shall be per-
formed on sundays vs. only on
sundays.

could, should, might These expressions are not con-
cise.

The system should avoid er-
rors.

usually, normally Unnecessary speculation The system should not display
errors normally.

actually Requirements shall avoid pos-
sibilities

Actually, this requirement is
important.

100 percent, all errors Wishful thinking The system must be 100 per-
cent secure.

he, she, it Potentially unclear reference. The system uses encryption. It
must be reusable.

(,) Unclear brackets The system shall use HTML
(DOC) documents.

/ Unclear slashes The System shall use
HTML/DOC documents.

tbd, etc These expressions denote that
something is missing

The system shall support
HTML, DOC etc.

fast Vague non functional require-
ment

The system shall be fast.

this Potentially unclear reference. This is very important.

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 225

Table 3. (Continued)

until, during, through, after, at These expressions do not spec-
ify the “outside” behaviour.

Maintenance shall be per-
formed on sundays vs. only on
sundays.

could, should, might These expressions are not con-
cise.

The system should avoid er-
rors.

usually, normally Unnecessary speculation The system should not display
errors normally.

actually Requirements shall avoid pos-
sibilities

Actually, this requirement is
important.

100 percent, all errors Wishful thinking The system must be 100 per-
cent secure.

he, she, it Potentially unclear reference. The system uses encryption. It
must be reusable.

(,) Unclear brackets The system shall use HTML
(DOC) documents.

/ Unclear slashes The System shall use
HTML/DOC documents.

tbd, etc These expressions denote that
something is missing

The system shall support
HTML, DOC etc.

fast Vague non functional require-
ment

The system shall be fast.

this Potentially unclear reference. This is very important.

Table 4. Regular expressions used to detect ambiguities resulting from word combinations

Regular expression Matched ambiguity Example

up to (?!including|
excluding)

Up to with unclear inclusion The system shall support up to five
concurrent users.

everybody .* their, Either language error or
ambiguous plural

Everybody uses their login id.
everybody .* its
ˆboth At the beginning of the sentence,

both has a unclear reference
Both should be documented.

(all|each|every) .* Dangerous plural with ambiguous
reference

Every student thinks she is a
genius.(a|his|her|its|their|they)

and .* or, The combination of “and” and
“or” leads to unclear associativity

The system shall read HTML and
PDF or DOC files.or .* and

potentially unambiguous, too, cf. Table 3. The difference between blue and orange is
based on our experiments with the tool: patterns that get blue markings are more likely
to result in false positives. For every sentence that contains a detected ambiguity, the
tool places a pictogram next to the sentence. If the user clicks on the pictogram, he/she
will get an explanation for every marking in the sentence under analysis. Additionally,
the tool user gets a short explanation if he/she places the mouse pointer over the marked
text. Figure 1 shows an example of the presentation of found ambiguities to the user.

226 B. Gleich, O. Creighton, and L. Kof

Table 5. Regular expressions involving Part-of-Speech tags

Regular expression Matched ambiguity Example

\b\w+?◦V[ˆ◦]*◦be
(\W[ˆ◦]+?◦(?!VB.)[ˆ◦]*◦[ˆ]+?)*
\W\w+?◦VBN◦\w+

Authors should state requirements
in active form, as passive conceals
who is responsible for the action.

The system will be
tested.

\w+?◦JJ.?◦[ˆ]+ All adjectives. The system shall be fast
and configurable.

\w+?◦RB.?◦[ˆ]+ All adverbs. The system shall save
data permanently.

Fig. 1. Sample tool output, applied to the text used for evaluation (cf. Section 5)

5 Evaluation

In order to evaluate the tool, we created a reference data set consisting of approximately
50 German and 50 English sentences. The sentences were not specially crafted for the
tool evaluation, but taken at random from real requirements documents. Table 6 shows
an excerpt from the reference data set.

We asked 11 subjects to mark ambiguities in the data set. We had subjects from
different backgrounds:

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 227

Table 6. Reference data set, excerpt

1. The system should be easy to use.
2. The system shall have a world class industrial design.
3. The system shall be as light as possible.

– 5 full-time requirements engineers and software consultants at Siemens,
– 2 software engineering master students at the University of Augsburg,
– 3 PhD students and 1 postdoc at the Technische Universität München, all doing

research in requirements engineering.

The subjects were not trained in ambiguity detection, nor were they provided with the-
oretical backgrounds like the Ambiguity Handbook. Our subjects were given the fol-
lowing instructions1:

You should find deficiencies in the provided text, especially ambiguities or
imprecise passages, that negatively influence the requirements.

The found errors can be marked on paper or submitted in some other way.
It is important just to mark the text passage that you find problematic and to
estimate the criticality of the passage, on the scale from 1=very little relevance
to 10=highly crucial.

The report on text deficiencies can have, the following form, for example:

. . . this should be actually done by the system . . .
Found problem: fuzzy phrasing; criticality: 3

Table 7 shows the same excerpt form the reference data set as Table 6, with markings by
our subjects. It is easy to see that the same ambiguities were marked in different ways
by different subjects: Subject 1 found the phrases from Table 6 unambiguous, Subject 2
marked single words or short phrases, and Subject 3 mostly marked extensive phrases.
Furthermore, Subjects 2 and 3 attached different criticality values to thesame ambiguities.

We considered an ambiguity as present in the evaluation text if it was marked by
at least one subject, and defined the extents of the ambiguous phrase as the longest
continuous word sequence marked by some subject. This means that we considered
“easy to use” as the ambiguous phrase in Sentence 1 from Table 6. To define a criticality
of a given ambiguity, we assigned the average criticality value provided by our subjects.

The rationale for this decision was that we wanted to evaluate the reliability of the
tool. More precisely, we wanted to evaluate whether manual analysis still remains nec-
essary after tool application. In the case that the tool is absolutely reliable, the human
analyst would solely have to decide whether potential ambiguities found by the tool are
genuine ambiguities, but he/she would not have to search for other ambiguities manu-
ally. Thus, as a first approximation, it was necessary to treat every ambiguity marked by
some subject as a genuine ambiguity.

To evaluate the tool performance, we used the following definitions: Let E be the
set of ambiguities found by human evaluators, T be the set of ambiguities detected

1 The original instructions were in German, here we provide an English translation

228 B. Gleich, O. Creighton, and L. Kof

Table 7. Reference data set with markings by our subjects, excerpt

Subject Markings Criticality
1. The system should be easy to use. —

Subject 1 2. The system shall have a world class industrial design. —
3. The system shall be as light as possible. —
1. The system should be easy to use. 7

Subject 2 2. The system shall have a world class industrial design. 7
3. The system shall be as light as possible. 7

1. The system should be easy to use . 10

Subject 3 2. The system shall have a world class industrial design . 10

3. The system shall be as light as possible . 8

by the tool, and S = T ∩ E. In the most simple form, we calculated recall and pre-
cision as Precision = |S|

|T | and Recall = |S|
|E| . Additionally, we used the criticality

values to calculate weighted recall. We defined Recallweighted = weight(S)
weight(E) , where

weight(A)
def
=

∑
a∈A criticality(a). Weighted precision makes no sense, as we would

have to mix unrelated criticality values coming from different sources.
When calculating recall and precision according to the above definitions, we ob-

served two interesting phenomena:

1. There exist text passages that were marked as problematic, but these markings rep-
resent no ambiguities but are purely stylistic. Furthermore, they are contradictory
to explicitly stated best practices by Siemens or the suggestions of the Ambigu-
ity Handbook. For example, one of our subjects marked “shall” as ambiguous, al-
though the use of “shall” is not ambiguous at all and is even an explicitly stated best
practice by Siemens. On the other hand, another subject marked every requirement
that was in indicative mode, which is more a matter of taste than a real ambiguity.
In the following definitions we will refer to such ambiguities as “BP−” (falsely
marked ambiguities that are not ambiguities according to best practices). Here, it is
important to emphasize that no ambiguity was absorbed into BP− simply because
it was not contained in the Ambiguity Handbook or Siemens guidelines. Marked
ambiguities were absorbed into BP− only if they were purely stylistic and in con-
tradiction with best writing practices.

2. There exist ambiguities that were missed by every subject (thus, these ambiguities
were not in E), which are still genuine ambiguities in the sense of the Ambigu-
ity Handbook or the Siemens-guidelines. For example, many occurrences of pas-
sive voice were missed by the subjects. In the following definitions we will refer
to such ambiguities as “BP+” (genuine ambiguities according to best practices,
which were not found by our subjects).

In order to attenuate the influence of human evaluators’ performance on the tool evalua-
tion, we evaluated the tool not only with the original set of marked ambiguities (E), but
also with E∪BP+, E\BP− and (E∪BP+)\BP− as reference sets. As the sets BP+

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 229

Table 8. Evaluation results

Language Reference set Precision (%) Recall, simple (%) Recall, weighted (%)

English

E 47 55 64
E ∪ BP+ 95 71 78
E\BP− 95 75 77

(E ∪ BP+)\BP− 95 86 86

German

E 34 53 52
E ∪ BP+ 97 76 74
E\BP− 97 69 70

(E ∪ BP+)\BP− 97 86 86

and BP− are disjoint, it makes no sense to evaluate (E\BP−) ∪ BP+ separately, as
it coincides with (E ∪ BP+)\BP−. Evaluation results are presented in Table 8.

For an ambiguity detection tool, the recall value is definitely more important than
precision. In the ideal case, the recall should be 100%, as it would allow to relieve
human analysts from the clerical part of document analysis [4]. For our tool, while the
raw recall value of about 50% is rather low, the revised values ((E ∪ BP+)\BP−) of
86% show that the tool is fit for practical use, as it marks six of seven errors detected
by humans and consistent with best practices. The precision is high, especially when
BP+ is taken into account. Not every error detected by our tool is also detected by
humans, but nearly every (95-97%) error found by the tool is based on a best practice
from literature.

As for the errors marked by human evaluators but missed by the tool, manual anal-
ysis has shown that they represent either language errors, or pragmatic ambiguities
where we could not identify explicit lexical or part-of-speech patterns that would allow
to automate error detection. Language errors were presented by missing subject in two
sentences: in “It assumed that for image call-up. . . ” and in “Wants to have picture pa-
rameters. . . ” A test with the C&C parser [13] has shown that one of these errors can be
detected due to the incompleteness of the resulting parse (not yielding a complete parse
tree), whereas the other would require a more thorough analysis of the resulting parse
tree. Due to the computational complexity of the required analysis, C&C is rather slow,
especially for interactive applications, when compared with the TreeTagger. Because of
this and a rather small gain (at most two new errors from the reference data set would
become detectable), we decided not to extend our tool in order to include parsing.

Pragmatic ambiguities not detected by the tool are more subtle: they occur in per-
fectly sensible and grammatically correct sentences, and profound knowledge of the ap-
plication domain is necessary to spot the ambiguity. For example, our subjects marked
ambiguities in following sentences:

– “If archiving of data failed even after a reasonable number of retries, the system

shall store data locally and inform the user that it is currently not possible to

archive data.” (Evaluator’s comment: what is the difference between archiving
and storing?)

– “It assumed that for image call-up via a native client application installed on the
Office PC there is the need to install some imaging components on the Office PC

230 B. Gleich, O. Creighton, and L. Kof

(primarily parts of the OEM application).” (Evaluator’s comment: “need to install”:
who should perform the installation?)

– “The system shall allow taking at least 2 pictures per second .” (Evaluator’s com-
ment: “When does a picture count as taken: when the button is pressed or when the
picture is stored?”)

Unfortunately, detection of such ambiguities is far beyond the capabilities of the state-
of-the-art computational linguistics.

In addition to calculating the recall and precision of the tool, we calculated the recall
of the human evaluators, taking E (set of ambiguities marked by at least one human
evaluator) as the reference set. Surprisingly, it turned out that the average recall of a
human analyst was at just 19%. Many of our subjects admitted, when submitting eval-
uation results, that attentiveness rapidly decreases when reading as little as 3 pages and
that their markings were most probably influenced by this effect. However, a χ2 test
did not support the hypothesis that evaluators’ performance decreased during reading
of the provided text. Nevertheless, due the perceived performance decrease, an applica-
tion of automated ambiguity detection can be helpful. Furthermore, although our tool
is not perfect (recall below 100%), it detects a lot more genuine ambiguities than an
average human analyst. Due to the large number of ambiguities that were not perceived
by human analysts as such, it would be an interesting direction for future research, to
investigate if a completely disambiguated text would still be perceived as a natural text.

6 Related Work

Lightweight text processing techniques (techniques not involving natural language pars-
ing) are very popular in requirements analysis, as they are easy to implement and, never-
theless, can provide valuable information about document content. Such techniques can
be used, for example, to identify application specific concepts. Approaches by Goldin
and Berry [14], Maarek and Berry [15], and Sawyer et al. [16] provide good examples of
concept extraction techniques: they analyze occurrences of different terms, and basing
on occurrence frequency, extract application-specific terms from requirements docu-
ments. The focuses of these approaches and our approach are different, though: we do
not perform any concept extraction but focus exclusively on ambiguity detection.

Ambiguity detection approaches are closer to the presented tool and should be ana-
lyzed more thoroughly. Apart from the approaches by Berry et al. [1] and Kiyavitskaya
et al. [4], used as the basis for the presented tool, ambiguity detection approaches were
introduced by Fabbrini et al. [17], Kamsties et al. [18], and Chantree et al. [19]. The
approach by Fabbrini et al. introduces a list of weak words and evaluates requirements
documents on the basis of weak word presence. Weak word detection is already in-
cluded in our tool, and adding further weak words to the detection engine is just a
matter of extending the weak words database. The ambiguity types classified by Kam-
sties et al. became a part of the Ambiguity Handbook later, so our tool already covers
most ambiguities presented there. The approach by Chantree et al. deals exclusively
with the coordination ambiguity. Our tool, although not specially designed to detect co-
ordination ambiguity, is able to detect coordination ambiguity, too, and, in addition to
that a lot more other types of ambiguities.

Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources 231

The tool presented in this paper has one important advantage when compared to
other existing ambiguity detection approaches: It can not only detect ambiguities, but
also explain the rationale for the detected ambiguity. Thus, apart from pure ambiguity
detection, the presented tool can be used to educate requirements analysts, too.

7 Summary

Ambiguous requirements introduce conflict potential to a software project, as different
stakeholders can interpret them in different ways, and then argue, whose interpretation
is the correct one. One way to avoid such problems is to detect ambiguities early in
requirements analysis. The presented tool, although performing lexical and syntactic
analysis only, is able to detect ambiguities on all levels, from lexical to pragmatic.
Although not able yet to detect all ambiguities, as listed in the Ambiguity Handbook,
the tool represents an important milestone in the development of a tool completely
satisfying the requirements to ambiguity detection tools by Kiyavitskaya et al. [4]: The
presented tool is able not only to detect ambiguities, but also to provide explanations
for detected ambiguities. This makes the presented tool suitable not only for ambiguity
detection, but also for education purposes. In the industrial requirements engineering,
these benefits have the potential for considerable time and cost savings while enabling
a higher quality of requirements at the same time. The modular and lightweight design
of our tool facilitates integration and customization for many practical applications.

Acknowledgments

We want to thank the participants of our empirical evaluation and other people who
helped to improve this paper: Bernhard Bauer, Naoufel Boulila, Andreas Budde, Roland
Eckl, Dominik Grusemann, Christian Leuxner, Klaus Lochmann, Asa MacWilliams
Daria Malaguti, Birgit Penzenstadler, and Carmen Seyfried.

References

1. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software specification:
Linguistic sources of ambiguity (2003),
http://se.uwaterloo.ca/˜dberry/handbook/ambiguityHandbook.pdf
(accessed 27.12.2009)

2. Mich, L., Franch, M., Novi Inverardi, P.: Market research on requirements analysis using
linguistic tools. Requirements Engineering 9, 40–56 (2004)

3. Kamsties, E., Knethen, A.V., Philipps, J., Schätz, B.: An empirical investigation of the defect
detection capabilities of requirements specification languages. In: Proceedings of the Sixth
CAiSE/IFIP8.1 International Workshop on Evaluation of Modelling Methods in Systems
Analysis and Design (EMMSAD 2001), pp. 125–136 (2001)

4. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity iden-
tification and measurement in natural language requirements specifications. Requir. Eng. 13,
207–239 (2008)

http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

232 B. Gleich, O. Creighton, and L. Kof

5. Santorini, B.: Part-of-speech tagging guidelines for the Penn Treebank Project. Technical
report, Department of Computer and Information Science, University of Pennsylvania (3rd
revision, 2nd printing) (1990)

6. Schiller, A., Teufel, S., Stöckert, C., Thielen, C.: Guidelines für das Tagging deutscher
Textcorpora mit STTS. Technical report, Institut fur maschinelle Sprachverarbeitung,
Stuttgart (1999)

7. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the
International Conference on New Methods in Language Processing, pp. 44–49 (1994)

8. Schmid, H.: Improvements in part-of-speech tagging with an application to german. In:
Proceedings of the ACL SIGDAT-Workshop, pp. 47–50 (1995)

9. Russell, S., Norvig, P.: Communicating, perceiving, and acting. In: Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs (1995)

10. Kof, L.: On the identification of goals in stakeholders’ dialogs. In: Paech, B., Martell,
C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 161–181. Springer, Heidelberg
(2008)

11. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English (ACE) language
manual, version 3.0. Technical Report 99.03, Department of Computer Science, University
of Zurich (1999)

12. Rupp, C.: Requirements-Engineering und -Management. Professionelle, iterative An-
forderungsanalyse für die Praxis, 2nd edn. Hanser–Verlag (2002), ISBN 3-446-21960-9

13. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: ACL 2004:
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics,
Morristown, NJ, USA, p. 103. Association for Computational Linguistics (2004)

14. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software Eng. 4, 375–412 (1997)

15. Maarek, Y.S., Berry, D.M.: The use of lexical affinities in requirements extraction. In:
Proceedings of the 5th International Workshop on Software Specification and Design,
pp. 196–202. ACM Press, New York (1989)

16. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in early
phase requirements engineering. IEEE Trans. Softw. Eng. 31, 969–981 (2005)

17. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool. In: 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, Maryland, pp. 97–105. IEEE Computer Society,
Los Alamitos (2001)

18. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents
using inspections. In: Workshop on Inspections in Software Engineering, Paris, France,
pp. 68–80 (2001)

19. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: RE 2006: Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE 2006), Washington, DC, USA, pp. 56–65. IEEE
Computer Society, Los Alamitos (2006)

Ambiguity in Natural Language Software
Requirements: A Case Study

Fabian de Bruijn and Hans L. Dekkers

University of Amsterdam,The Netherlands
��������	
��������������������

Abstract. [Context and motivation] Ambiguous requirements are often seen
as a cause for project failure, however there is little empirical data to support
this claim. [Question/problem] In this research we study the effect of a highly
ambiguous requirements document on project success. [Principal ideas/results]
The studied project was a complex data processing system that took about 21
man year to develop. First, we determined the level of ambiguity by three inde-
pendent tests. Next, we did a root cause analysis on a selection of the main issues
to establish if ambiguous requirements were a significant cause. Surprisingly, this
case study shows that only one of the examined failures was caused by ambigu-
ous requirements. Both the independent test team and the third party development
team found ways to cope with the high level of ambiguity. For the development
team this required a substantial investment to clarify requirements. [Contribu-
tion] The main contributions of this paper are the counterintuitive findings, the
collected empirical data and the method used to collect these data.

Keywords: Requirements specification, Ambiguity, Natural language,
Empirical.

1 Introduction

Requirement specifications serve as contract, a starting point for development, and a
focal point for quality control. It is generally considered to be vital that requirements are
unambiguous [2,4,9,12,15]. Formal languages serve this purpose, however, since formal
languages are not well understood by most stakeholders, natural language requirements
are the de facto standard. Berry et al.[4] make a strong case for writing unambiguous
natural language specifications and provide a handbook which describes a taxonomy of
different types of ambiguity and how to avoid them. Since natural language is inherently
ambiguous [3], avoiding ambiguity is by no means a trivial task.

We wonder just how important it is to minimize ambiguity and how much effort
should be invested. The agile movement puts the focus on communication and feed-
back. They stress that writing unambiguous requirements is an illusion[16] and that
even if requirements are unambiguous, problems of validity, volatility, and correct in-
terpretation remain. Still, the general practice of tenders and contracts for outsourced
projects demands a requirement specification. In this research we study the effect of a
highly ambiguous requirements document on project success.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 233–247, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

234 F. de Bruijn and H.L. Dekkers

1.1 Research Question

Our main research question is:

What is the effect of ambiguity in the requirement specification on project
success?

The initial step we have taken is to analyze a real life project:

1. How many requirement statements are ambiguous?
2. How many problems were caused by ambiguous requirements?

2 The Importance of Unambiguous Requirements

2.1 Communication in Requirements Engineering

Requirements engineering is the process in which stakeholder needs are elicited, gath-
ered, analyzed and in which decisions are made on the requirement set for the product
to be built. Requirements are an abstraction and a perception of the true needs of the
stakeholders. It is the result of a creative process where communication is crucial[17].
It is not evident that the requirement set as a whole is feasible, complete or correct.

In the context of this paper it is important to distinguish between the stakeholder
need, the requirement statement and the way it is understood[20]. We study the effect
of ambiguous requirement statements on the understanding of the developers. This un-
derstanding also depends on context information (goals, rationale, domain description),
domain knowledge and personal factors.

Requirement specifications are not standardized and many different types of require-
ments exist [1,12,17,15]. It is good practice to write requirements in the problem do-
main, leaving the design space open for the development team. This poses the inter-
esting problems of how to be specific and how to determine if a solution satisfies the
requirements. To illustrate this consider usability requirements. Usability can be mea-
sured by the number of tick and clicks and user errors. But how to set a norm: what is
an optimal solution, when is a suboptimal solution still acceptable?

2.2 Related Work

In software engineering literature there is no single definition of ambiguity. Several
authors have given different interpretations and different causes for ambiguity. For in-
stance, Davis[8] states that when a requirement can be interpreted in two or more ways
then this requirement is ambiguous. Schneider et al.[19] mention that ambiguity is
caused by an essential part in a software requirement that has been left undefined or
defined in a way that causes confusion among humans. Berry et al.[4] focus on ambi-
guities which are caused by expression inadequacies.

There is general consensus that requirements should be unambiguous or at least that
ambiguity should be recognized and intended. Much work has been done to achieve
quality in requirements [2,12,15,18] and reduce the ambiguity in natural language soft-
ware requirements. In [4,13,14] methods and rules are discussed to surface ambiguity
in natural language text including techniques like checklist and scenario based reading.

Ambiguity in Natural Language Software Requirements: A Case Study 235

Fabbrini et al. [10,9] present a tool to analyze the quality of natural language require-
ments written in English. The tool Alpino[5] can be used to automatically parse texts
written in Dutch, to find the most probable interpretation.

3 Research Method

To answer the research question "What is the effect of ambiguity of software require-
ments on project success?" we studied a real life project that failed. First we established
the level of ambiguity in the requirements specification. Next we established if ambi-
guity was a significant cause for the reported issues.

3.1 Case Study Project Information

The project started in December 2007 and was canceled in May 2009 after acceptance
tests by an independent test team found over 100 blocking issues. The contractor was
convinced that ambiguity was an important cause of many of the reported issues. The
case study is referred to as Project X. For reasons of confidentiality we cannot fully
disclose requirements. Project X was the development of an Oracle system that was
composed of a GIS component, a data processing component and a rule engine con-
nected by an enterprise service bus. Two of these components were existing systems
that were adapted for this project. Project X took well over 40.000 man hours, roughly
21 man year; a significant budget overrun given the initial estimation of 10.000 hours.
80 persons worked on the project.

The requirement specification was in Dutch. From the start the requirements were
considered to be unclear. To get more clarity workshops were organized and an elabo-
rate design was made, however, when asked, the customer did not formally agree with
the design. The independent test team based its findings on the initial requirements
document.

3.2 Establishing Ambiguity

We consider a requirement to be ambiguous when it has at least two different valid
interpretations. To establish ambiguity three independent tests were performed on a
sample set of the requirements:

– three professionals searched for differences in interpretations;
– a systematic review by two software engineers based on the taxonomy of [4];
– an automatic analysis by natural language analysis tool Alpino [5] .

3.2.1 Sample Data
The sample size was set to 1021from a total of 279 requirements. A stratified random
sample [6] was chosen from the requirement specification. All tests to detect ambiguity

1 After the first day of reviewing a sample of 100 requirements was considered feasible. To get
an even distribution over the requirement categories we took the % and rounded this. E.g. if a
requirements category consisted of 5.6% of the complete number of requirements, we took 6
requirements from this set. This resulted in a complete sample of 102.

236 F. de Bruijn and H.L. Dekkers

were performed on this sample. Table 1 lists the different requirements categories, % of
total is the total number of requirements in the category / total no. of requirements.

Table 1. Requirement categories

ID Category % of total sample size

1 Functionality A 19,00% 19
2 Functionality B 13,98% 14
3 Functionality C 8,96% 9
4 Functionality D 8,60% 9
5 Functionality E 7,53% 8
6 Infrastructure 6,81% 7
7 Maintainability 5,02% 5
8 Software features 5,02% 5
9 Functionality F 4,66% 5
10 Usability 4,30% 4
11 Security 3,94% 4
12 Data model 3,94% 4
13 Reliability 3,23% 3
14 Performance 2,51% 3
15 Functionality G 2,51% 3

3.2.2 Review Panel Interpretations
The requirement statements were re-
viewed by two requirement engineers
and one software engineer. The review-
ers were experienced professionals with
no prior knowledge of Project X and with
a similar domain knowledge as the devel-
opment team. During 2 1

2 days they stud-
ied each requirement and wrote down
the interpretation they thought was most
fit. To determine if interpretations dif-
fered, a joint session was organized by
the first author, taking half a day. Review-
ers shared their interpretations and could
judge if they had the same understanding.
To make sure that interpretations were
plausible and truly different the review-
ers had to present some form of argument
or example.

3.2.3 Systematic Review
The review was carried out by the first
author and a software engineer with no
prior knowledge of Project X. A check-
list was used, based on the linguistic ambiguity taxonomy of Berry et al.[4]. The re-
viewers had no linguistic background. The review protocol was as follows.

1. Each reviewer individually determines the ambiguity types present in a requirement
statement.

2. The results are merged, showing the identified ambiguity types.
3. Each reviewer can adjust his findings based on the merged results.
4. Finally consensus was reached in a face to face meeting.

3.2.4 Automatic Analysis
To get an objective measure for ambiguity each requirement was parsed by the tool
Alpino2[5]. Alpino recognizes lexical and structural (or syntactical) ambiguity. The
output showed the possible parse trees. The number of possible parses was used as in-
dicator for ambiguity. Not all of these parses have a clear semantics or are semantically
different. The limit of parses was set to a maximum of 50.

2 Alpino version 14888 for the x86 Linux platform was used in this experiment.

Ambiguity in Natural Language Software Requirements: A Case Study 237

3.3 Relating Issues to Ambiguous Requirements

Table 2. Root cause conditions

Label Root cause condition

RCC1 The implementation satisfies the
requirement.

RCC2 The test team rejects this because
of a different but also valid
interpretation of the requirement.

RCC3 Test team respects the design
space of the contractor3.

RCC4 Disambiguation of the
requirement would have prevented
these differences in interpretation

To establish if ambiguity was a sig-
nificant cause for project failure, we
did a systematic root cause analysis
on a sample of issues found by an in-
dependent test team. The issue track-
ing system used by Project X was
JIRA. Issues have fields to describe
and reproduce the issue (e.g. descrip-
tion, version, component); to cap-
ture the status of the issue (e.g. type,
status, priority) and a chronological
log showing the comments on the is-
sues and steps to clarify and solve
these by the developers. Sometimes
attachments were presented contain-
ing snapshots of the system, or a specification of desired behavior by the test team.

In total 256 issues were reported, we focused on the 125 issues that were consid-
ered blocking or urgent. 16 of these were addressing problems like incomplete prod-
uct documentation and were excluded from our research. The 109 remaining issues
were related to the requirement categories. While reading the issues to relate them to
requirement categories, 5 issues surfaced that were likely to have been caused by am-
biguity. These issues were either labeled as such or there was a discussion about the
interpretation. A root cause analysis was performed on these five issues and on a ran-
dom selection of 35 issues. The issues were annotated by discussion threads of the
contractor which were also studied. All issues were analyzed by each of the reviewers
individually.

We consider ambiguity to be the cause of an issue if all conditions in table 2 are
satisfied.

4 Results

4.1 Measured Ambiguity

4.1.1 Review Panel Interpretations
The review panel of three different persons qualified 36 requirements as unambigu-
ous, 41 requirements had two different interpretations, and finally 25 requirements had
three different interpretations. Figure 1 shows for each requirement category how many
requirements were ambiguous and how many were unambiguous.

3 Many requirements are formulated in the problem domain, explicitly leaving the choice of
solution to the contractor. In some cases the test team prefers a solution different from the one
that is implemented while it is apparent that the requirement is interpreted in the same way as
the contractor. These issues are not considered to be caused by ambiguity.

238 F. de Bruijn and H.L. Dekkers

Fig. 1. x-axis: requirement categories, see table1. y-axis: % of requirements.

Table 3. Ambiguity types top 5 found in requirements sample

Ambiguity type # Requirements

Vagueness 58
Language error 32

Coordination Ambiguity 11
Scope Ambiguity 9

Attachment Ambiguity 8

Fig. 2. x-axis: requirement categories, see table1. y-axis: % of requirements.

Fig. 3. x-axis: requirements categories, see table 1. y-axis: average number of parse trees per
requirement.

4.1.2 Systematic Review
The systematic review found 20 of the requirements to be unambiguous. 82 requirements
were found to be ambiguous. In 36 of the requirements multiple types of ambiguity were

Ambiguity in Natural Language Software Requirements: A Case Study 239

discovered. Table 3 lists in how many requirement statements the most common ambigu-
ity types were found. Note that the number of ambiguities within one single requirement
statement is not counted. Figure 2 shows for each requirement category how many
requirements were ambiguous and how many were unambiguous.

4.1.3 Alpino Tool Interpretations
For 94 of the requirements Alpino found more than one parse tree, meaning that these
are syntactical ambiguous. Seven requirements could not be parsed. Alpino calculated
an average of 33 different parse trees for each requirement4. The median was 47 and the
standard deviation was 19. Only one requirement had one parse tree. This requirement
was also understood in one way by the review panel members. Figure 3 shows the
average number of interpretations for each requirement category.

4.2 Issue Causes

40 issues were analyzed. The root cause of these issues is presented in table 4. We
found one issue to be caused by ambiguity. The issue was "Processing batch file takes
too long”. The corresponding ambiguous requirement was "The processing of the batch
programs should be completed within a reasonable time frame without affecting the
performance of the application and therefore without impeding the usual business." For
the contractor it was and still is not clear when the processing time is acceptable. The
performance was improved, the effort is discussed in section 5.

Table 4. Results issue root cause analysis

Root cause No. of issues Explanation

Ambiguity 1 Issue caused by ambiguity
Feature not found 3 Feature had been implemented, but the

implementation was not known to the test team.
Missing requirement 5 For these issues no requirement could be

identified.
New feature request 1 The reported issue is not required by the current

requirements.
Incorrect implementation 27 Acknowledgment by contractor that the issue

reports undesired behavior
Not reproducible 3 These issues could not be reproduced
Total no. issues 40 From 109 blocking or urgent issues

To make our reasoning process transparent we illustrate this in table 5. The pre-
sented issue was selected because it raised some discussion and gives good insight in
our analysis. Determining if the implementation satisfied the requirements was some-
times straightforward, sometimes it was hard to ascertain. The issue and requirements
were in Dutch and there is some risk that ambiguity is lost in translation. Also the issue
description and annotations are too large to be presented.

4 Calculations over the set of requirements that could be parsed.

240 F. de Bruijn and H.L. Dekkers

Table 5. Reasoning process details: issue I23

(a) Context information

Issue caption The application can not be controlled by the keyboard.
Note: the test team provides some examples of expected key controls.

Requirement The whole system has a consistent user interaction. The application can both
be controlled by keyboard and by mouse, based on a completely WEB
oriented graphical user interface.

(b) Reasoning process

RCC1 TRUE A consistent keyboard interface has been implemented. To use the
application the mouse is not required. The development team agrees that the
keyboard control can be improved upon, however this is considered to be a

new feature request.
RCC2 TRUE The test team provides some examples of keyboard controls that they had

expected to be implemented but were not.
RCC3 FALSE The comments and examples of the test team show that they interpret the

requirement identically to the development team. From the issue text it
becomes clear that the test team is not knowledgeable of the keyboard

controls that have been implemented. There is no indication if they find the
current implementation acceptable.

RCC4 FALSE The requirement is specific enough to judge the present implementation. The
vagueness in the requirement leads to misunderstanding. However this

vagueness is intended, so the contractor can choose the specific solution.
Conclusion Feature not found. For the test team it was not apparent how this requirement

was implemented. As they did not find this feature, they filed an issue report.
The issue specification is not required by the current set of requirements.

5 Evaluation

Research question: How many requirement statements are ambiguous?

Table 6 shows that the studied requirements sample of 102 requirements revealed a lot
of ambiguous requirements. Alpino considered all but 1 requirement to be ambiguous.
The systematic review considered 83 out of 102 requirements to be ambiguous. The
review panel considered 66 of the 102 requirements to be ambiguous. That the review
panel has a single reading for an ambiguous statement corresponds with the notion of
innocuous ambiguity[7].

Research question: How many problems were caused by ambiguous require-
ments?

Only one of the forty inspected issues was caused by ambiguity in the requirements.
This issue was not a costly one. From our study we cannot conclude that ambiguous
requirements caused the failure of this project.

How come there weren’t more issues caused by ambiguous requirements?

Ambiguity in Natural Language Software Requirements: A Case Study 241

Table 6. Ambiguity of requirements according to review panel, systematic review, and Alpino

Review panel Systematic review Alpino Requirements (#)

Unambiguous Ambiguous Unambiguous 1
Unambiguous Unambiguous Ambiguous 9
Unambiguous Ambiguous Ambiguous 27
Ambiguous Unambiguous Ambiguous 10
Ambiguous Ambiguous Ambiguous 48
Ambiguous Ambiguous Parse Error 7

Although the requirements specification from project X was highly ambiguous most of
the examined issues could not be attributed to ambiguity. Project X used workshops
involving the customer to clarify the requirements. Yet, even workshops and discussion
don’t guarantee a good interpretation. Given the complexity of this project, the many
issues, and the lack of contact between test team and development team we were sur-
prised by this finding. This is in line with the observation of [11] that the biggest danger
is unconscious disambiguation. The software engineer interprets an ambiguous require-
ment differently then the customers intention, but is unaware of this. In this project the
contractor was from the start aware of the high level of ambiguity.

What is the cost of ambiguous requirements?

The issue that was caused by ambiguity is about performance, potentially a costly issue.
However the architecture of the application was set up to process vast amounts of data
in reasonable time. To get a reasonable performance took roughly 550 hours5. The issue
was considered to be resolved however from the issue annotations it was apparent that
still much was and is unclear about the real time scenarios (how much data in what time
slots) and what performance is considered to be acceptable.

The project suffered a major budget overrun of 30.000 hours. The 550 hours for
the issue caused by ambiguity is limited. The workshops to clarify ambiguity were
included in the budget (180 hours). The project data does not show what part of the
budget overrun is caused by ambiguity.

6 Threats to Validity

6.1 Validity of the Tests to Determine Ambiguous Requirements

Is the sample set of requirements representative?

Throughout the research project we have read and interpreted the complete set of re-
quirements intensively. The requirement sample was characteristic for the whole set of
requirements. For the different types of requirements the requirement statements follow
a similar pattern and use similar words. We found no occurrences of requirements that
were more specific than the ones studied in our sample. Since the different requirement
types are in different requirement categories, we consider our sample to be representa-
tive for the complete set of requirements.

5 According to the project manager one software engineer worked on the performance optimiza-
tion for three months.

242 F. de Bruijn and H.L. Dekkers

6.1.1 Threats to Validity of Ambiguity Tests

6.1.1.1 The Interpretations by the Review Panel. The good thing about this test is that
ambiguity that does not lead to misinterpretations will not be reported. However, the re-
viewers might have an invalid interpretation or a different interpretation from the actual
project team or customer. This test is not just an indicator of ambiguity, it also says some-
thing about the interpretation process of the reviewers. The final threat to validity is that
the review panel is under the impression they have a different interpretation, while they
actually share the same interpretation (false positive). This last threat could have been
avoided by making the interpreters formalize their interpretation as described in [13].

6.1.1.2 The Systematic Review. Detecting ambiguities by humans is a hard task. The
reviewers were no trained linguists and unconscious disambiguation makes it easy to
miss ambiguity types. We expect that the number of false negatives is rather high. The
ambiguities found complied with the taxonomy of [4] and the test protocol ensured that
the found ambiguities were analyzed well. We expect that the number of false positives
is rather low.

6.1.1.3 Alpino Scan. Alpino was used to get objective measures for ambiguity. When
a requirement has at least two parse trees then the requirement has structural or lexical
ambiguity. As described in [7] many of these ambiguities have a single reading by
humans and are innocuous. Alpino features a maximum-entropy based disambiguation
component to select the best parse for a given sentence. From our discussion with the
Alpino research group it became clear that there is not a clear threshold that can be used
to automatically determine which of the parse trees is a plausible interpretation. This
would have enabled us to automatically distinguish between nocuous and innocuous
ambiguity. Also to date Alpino has no feature to report the different types of ambiguity.
The parse trees of Alpino are used to detect false negatives.

6.1.2 False Positives of the Ambiguity Tests

6.1.2.1 Unambiguous by Review Panel and Ambiguous in Systematic Review. Since
the systematic review showed that 80% of the requirements were ambiguous it is es-
pecially interesting to learn about false positives. We did two checks. The first was to
assess if the reviewers had a correct understanding of vagueness. This was the ambi-
guity type that was most discovered (in 58 requirement statements, see table 3). The
analysis was done by the second author and a researcher with a linguistic background.
Three requirements were analyzed and we could conclude that the classification vague
was used according to the taxonomy presented in [4].

False positives are most likely to occur in the requirements where only one ambiguity
type was revealed and which the review panel found to be unambiguous. The second
author examined five of these requirements to see if the found ambiguity types were
according to the taxonomy presented in [4]. Fourteen requirements, see figure 4, met
this condition. Eleven of these had ambiguity type "vague", two were of type "language
error", one had the type "attachment".

Ambiguity in Natural Language Software Requirements: A Case Study 243

Fig. 4. x-axis: the number of different ambiguity types. y-
axis: the number of requirements.

The requirements of type lan-
guage error contained two plu-
rals but both requirement state-
ments contained no verb. The
lack of a verb leaves it to the
reader to guess about it. De-
pending on the verb it could be
a language error or it could be a
scope ambiguity.

The requirement with ambi-
guity type attachment was of the
form "overview of old and new values with difference percentages". The difference per-
centages could indeed be attached to new values alone, or to old and new values and
to the difference between old and new values. It is also logical that the review panel
interpreted this unambiguously as the difference between old and new presented in %.
However we would expect that there is still some ambiguity not considered by the re-
view panel. One of the formalizations could be (new value - old value) / old value, now
it is easy to see what variations are allowed by this requirement: should we divide by
old value or by new value. Should we subtract the old value from the new value or vice
versa or take the absolute difference. Clearly an ambiguous statement. Also the two
vague requirements were true positives. That the review panel considered these to be
unambiguous can be explained that the vagueness was caused by IT terms which were
understood identically by the review panel because of their identical IT background.

This analysis revealed no false positives.
6.1.2.2 Ambiguous by Review Panel and Unambiguous in Systematic Review. False
positives are also likely to occur in the requirements that were considered to be am-
biguous by review panel and unambiguous by the systematic review. Ten requirements
met this condition; five of these requirements were analyzed. From the transcripts of
the review panel it was apparent that four of these five requirements were understood in
a different way and these can be considered to be true positives. In three of these cases
the requirement contained an ambiguity type that was unnoticed during the systematic
review (these were of types scope and coordination ambiguity). In the fourth case one of
the interpreters made a simplification of the requirement that left out important details.
This difference in interpretation was not caused by ambiguity.

The fifth case was a possible false positive. This concerned a requirement of the
form "Possibility to change the start and end date of a specific process". During the
analysis the reviewers were convinced that each of them had a different interpretation.
The transcript with their interpretations showed some differences in the sense that the
start date can be changed if and only if the end date is changed as well. However it is
hard to conceive that the reviewers would have constructed a truly different solution for
this requirement.

This analysis revealed one false positive.

244 F. de Bruijn and H.L. Dekkers

6.1.3 False Negatives of the Ambiguity Tests

6.1.3.1 Unambiguous by Review Panel and Unambiguous in Systematic Review. To
identify false negatives we analyzed requirements found to be unambiguous by both
the review panel and by systematic review. The second author examined these nine
occurrences using the checklist of the systematic review. This inspection found two
requirements to be ambiguous, both of type attachment. It was easy to see why these
were missed the first time; the semantics of the requirement only allowed one sensi-
ble interpretation. For four requirements for which the second author also could not
identify an ambiguity type the Alpino parses were analyzed. This revealed no new am-
biguous requirements. Alpino had multiple parse trees for compound words (finding
the right grouping), for words that in Dutch are sometimes used as verb and sometimes
as adjective and with the use of ":" as classifier. The different parse trees have the same
semantics, and are examples of innocuous ambiguity[7].

This analysis revealed no false negatives as the ambiguous requirements only had
one interpretation.

6.2 Validity of the Root Cause Analysis

Is the sample set of issues representative?

A first read of all blocking and urgent issues revealed five issues that were likely to have
been caused by ambiguity. Indeed all of these five issues sparked a lot of discussion.
Initially we extended this set of five with a random sample of 20 issues. When our first
analysis revealed that only 1 issue was caused by ambiguity, another 15 issues were
randomly selected and analyzed. The analysis showed that the new set of 15 issues had
similar causes as the initial set of 20 randomly selected issues. This strengthens our
belief that the sample was representative

6.2.1 Threats to Validity
Since few issues were found to be caused by ambiguity, there is limited danger of false
positives. To reduce the number of false negatives the root cause analysis followed a
formalized protocol and was carried out autonomously by both authors. The contro-
versial issues have been discussed in depth and clear reasons were found to eliminate
ambiguity as root cause.

6.2.2 False Negatives
The category least discussed is the category in which the contractor clearly acknowl-
edges that the implementation is not conform the requirements. This was also the
biggest category with 27 of the 40 researched issues. Thirteen of these issues were
inspected further. To our surprise for 9 of the 13 cases no requirements were found.
The contractor was given a lot of freedom in choosing the design. The issues could
be seen as improvements or comments on the design choices made. Even though the

Ambiguity in Natural Language Software Requirements: A Case Study 245

improvements and comments were not specified by the requirements, the contractor felt
that the improvements and comments were reasonable and without much discussion
qualified each issue as bug. Most issues had been resolved at the time of the research.
Our analysis would classify these 9 issues as "new feature request". This analysis of 13
issues revealed no false negatives.

7 Other Observations

Is the number of words an indicator for ambiguity?

We were curious about the effect of length of a requirement statement on ambiguity.
The longer the requirements the more prone it is to syntactical ambiguity. However
the length could also indicate that extra information was presented that would help to
interpret the requirement. For this analysis the requirements were partitioned by re-
quirement size in 8 groups ranging from 6 to 45 words. Each group has a span of 5
words. Figure 5 shows that the more words were used the more interpretations were
given by the review panel. The average word count for unambiguous requirements was
11, the average word count for ambiguous requirements with two interpretations was
20. It is tempting to say that requirements should be written as short as possible, but
it could very well be that the requirements were so lengthy because the message being
expressed was complicated. What we can learn is that lengthy requirements demand
extra attention.

Will disambiguation decrease the different interpretations among stakehold-
ers?

Five randomly selected requirements were rewritten with the help of the rules described
in Berry et al.[4]. The selected requirements were found to be ambiguous by both the
review panel and by the systematic review. Furthermore, the average word count of
these requirements was 25. Rewriting these five requirements took about half a day,
however this did not include a check that the new description expressed the intention of
the customer. The rewritten requirements were reviewed again by the same protocol as
specified in subsection 3.2.2.

Fig. 5. x-axis: requirements with no. of words. y-axis: % ambiguous vs unambiguous.

246 F. de Bruijn and H.L. Dekkers

This test found that four of the five requirements were unambiguous. The fifth re-
quirement was still ambiguous, caused by a vague word. Disambiguating required man-
dating a specific solution, limiting the design space more than the customer required.

The rewritten requirements contained more words than the original requirements. In
fact, the average word count was 46 for the rewritten requirements, the requirements
contained more and shorter sentences. The review panel members mentioned they had
no problems in comprehending the rewritten requirements. This shows that length is
not the most important indicator for ambiguities.

8 Conclusion

In this research we studied the effect of a highly ambiguous requirements document on
project success. The studied project was the development of a complex system that took
about 21 man years to develop and was canceled after an independent test team found
over 100 blocking issues. The perception of the contractor was that many of these issues
were caused by ambiguity in the requirements. Independent tests by humans showed
that 91% of the requirements were ambiguous. An automated test revealed that 92%
of the requirements were ambiguous. A root cause analysis on 40 of the main issues
showed that only one of the examined issues was caused by ambiguous requirements.
This issue was resolved and explained 2% of the budget overrun.

In this project, ambiguous requirements were not the main cause of the issues found
by the external test team, and cannot explain the failure of the project. Both the inde-
pendent test team and the third party development team found ways to cope with the
high level of ambiguity.

We can only speculate to the reason why the project was canceled. As a fixed price
project it wasn’t because of the budget overrun. Studying the bug reports we saw that
the number of open defects and newly found defects remained high throughout the
acceptance test. This resulted in a loss of confidence in the product by the customer. A
possible explanation for most of the issues is that due to schedule pressure not enough
care was given to implementation details. Also, as Brooks already knew, adding people
to a project that is already late is usually not effective.

9 Future Work

We speculate that a requirements document that is perceived to be of low quality trig-
gers a process of better understanding requirements. It would be interesting to see
what the effect is of ambiguity in a requirements document that is perceived to be
of high quality. This might result in false confidence that all requirements are cor-
rect. The development team will be less inclined to question these requirements and
the problems have a bigger chance to go unnoticed. It would be interesting to re-
peat this research for such projects. It is also interesting to repeat this research in
projects where communication is challenged by organizational, structural and politi-
cal factors. In these cases we speculate that ambiguous requirements will have a bigger
impact.

Ambiguity in Natural Language Software Requirements: A Case Study 247

References

1. Abran, A., Moore, J.W., Bourque, P., Dupuis, R.: SWEBOK: Guide to the software engineer-
ing Body of Knowledge. IEEE Computer Society, Los Alamitos (2004)

2. Alexander, I.F., Stevens, R.: Writing better requirements. Addison-Wesley, Reading (2002)
3. Berry, D.M.: Ambiguity in Natural Language Requirements Documents. In: Paech, B.,

Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 1–7. Springer, Heidel-
berg (2008)

4. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software specification:
Linguistic sources of ambiguity. Univ. of Waterloo Technical Report (2003)

5. Bouma, G., Van Noord, G., Malouf, R.: Alpino: Wide-coverage computational analysis of
Dutch. In: Computational Linguistics in the Netherlands 2000. Selected Papers from the
11th CLIN Meeting (2001)

6. Campbell, M.J., TDV Swinscow: Statistics at square one. John Wiley & Sons, Chichester
(2002)

7. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: 14th IEEE International Conference Requirements Engi-
neering, pp. 59–68 (2006)

8. Davis, A., et al.: Identifying and measuring quality in a software requirementsspecification.
In: Proceedings of First International Software Metrics Symposium, pp. 141–152 (1993)

9. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: Achieving quality in natural
language requirements. In: Proceedings of the 11 th International Software Quality Week
(1998)

10. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation for natural lan-
guage requirements. In: Proceedings of the Seventh International Workshop on Requirements
Engineering: Foundation for Software Quality REFSQ, vol. 1, pp. 4–5 (2001)

11. Gause, D.C.: User DRIVEN design - The luxury that has become a necessity. In: A Workshop
in Full Life-Cycle Requirements Management. ICRE (2000)

12. Hull, E., Jackson, K., Dick, J.: Requirements engineering. Springer, Heidelberg (2005)
13. Kamsties, E.: Surfacing ambiguity in natural language requirements. PhD thesis, Fachbereich

Informatik, Universitat Kaiserslautern, Kaiserslautern, Germany (2001)
14. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents us-

ing inspections. In: Proceedings of the first Workshop on Inspection in Software Engineering
(WISE 2001), pp. 68–80 (2001)

15. Lauesen, S.: Software requirements: styles and techniques. Addison-Wesley, Reading (2002)
16. Mullery, G.: The perfect requirement myth. Requirements Engineering 1(2), 132–134 (1996)
17. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE 2000: Pro-

ceedings of the Conference on The Future of Software Engineering, pp. 35–46. ACM, New
York (2000)

18. Robertson, S., Robertson, J.: Mastering the requirements process. Addison-Wesley Profes-
sional, Reading (2006)

19. Schneider, G.M., Martin, J., Tsai, W.T.: An experimental study of fault detection in user
requirements documents. ACM Transactions on Software Engineering and Methodology
(TOSEM) 1(2), 188–204 (1992)

20. Schramm, W.: How communication works, p. 51. Mass Media & Society (1997)

On the Role of Ambiguity in RE

Vincenzo Gervasi1,2 and Didar Zowghi2

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Faculty of Eng. and Inf. Technology, University of Technology, Sydney, Australia

Abstract. [Context and motivation] Ambiguity has long been pic-
tured as one of the worst enemies of the specifier, especially with refer-
ence to ambiguity in natural language (NL) requirements specifications.
[Question/problem] In this paper, we investigate the nature of ambi-
guity, and [Principal ideas/result] advocate that the simplistic view
of ambiguity as merely a “defect” that has to be avoided at all costs does
not do justice to the complexity of this phenomenon. We also provide
a finer classification of several types of ambiguities, distinguishing their
different causes and effects in the development process. [Contribution]
This better understanding can help in the analysis of practical experi-
ences and in the design of more effective methods to detect, mark and
handle ambiguity.

Keywords: Ambiguity, natural language, abstraction, absence.

1 Introduction

The study of properties of software requirements specifications (SRS) has been
an important and recurring theme throughout the evolution of requirements
engineering (RE) research. Fundamental issues concerning the contents of re-
quirements, such as how to avoid or detect inconsistencies in SRS (and how to
remove or tolerate them), or how to ensure completeness of the requirements,
have been a mainstay in RE. The reasons are clear: no implementation can sat-
isfy an inconsistent SRS, and an incomplete SRS, once implemented, will not
satisfy all the needs of the users.

Another related stream of research has been concerned with properties of
the form of requirements. Properties such as understandability, conciseness, etc.
have been studied and discussed, and techniques to ensure an SRS exhibits
such properties (or to identify and fix their negative dual properties) have been
proposed.

In this paper, we focus mainly on ambiguity, i.e. the phenomenon by which
multiple distinct meanings can be assigned to the same requirement (or, more
generally, sets of requirements), and discuss the relationships between ambiguity
and certain other phenomena which are often observed

We do not provide in this work advice on how to avoid introducing ambiguity
in an SRS, nor on how to remedy it when it is detected. Rather, we focus on
understanding what ambiguity is (with particular reference to its role in RE), on

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 248–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Role of Ambiguity in RE 249

how, when and by whom it is introduced in SRS, and on what the effects of its
various forms are. Armed with this understanding, we discover that ambiguity
is not necessarily a defect, and in fact can play an important positive role both
in the requirements as a document, and in the requirements elicitation process.

2 Ambiguity and Interpretation

Ambiguity is a complex, multi-level phenomenon. While the general concept of
“having multiple meanings” is relatively easy to describe, locating the original
source – or root cause – of the ambiguity may be more challenging. Moreover,
ambiguity may or may not be detected by the several parties involved in require-
ments elicitation or analysis, and could be intentional or accidental; its extent
can be confined to a minor detail or encompass some major aspect of the system.

It is clear that the simple intuitive definition of “having multiple meanings”
is insufficient for a deep understanding of ambiguity. We will instead use as
reference frame that of the classical denotational approach, where semantics is
given by a function mapping from a source domain (the text of the requirements)
to a target domain (the denotation of their semantics), which can be arbitrary
(e.g., input/output semantics, performances, development cost estimates, etc.).
In requirements engineering, all these three elements are fuzzy at best. The
source domain can include, in addition to written text, spoken information,
observed behavior, etc. The target domain should in theory be such that it is
possible to determine if a given implementation satisfies the requirements, but
in practice it is often vague in itself. And finally, the mapping is ill-defined, and
often – even when a strict formal definition exists – may well be misunderstood
by at least some of the stakeholders (e.g., an end-user will probably be incapable
of understanding the meaning of a fragment of Z from a complex requirements
specification). This last point is worth stressing: for the purpose of assessing the
effects of ambiguity, it is not the intrinsic meaning of a requirement or set thereof

The system shall
delete the user and
send the notification
within a month

Text Syntax Denotation

Syntactic mapping Semantics mapping

The Real World

Im
plem

entation

Notification

Month

System
User

Correctness

Symbols

Reality

Fig. 1. The theoretical framework for the occurrence of ambiguity

250 V. Gervasi and D. Zowghi

that is of interest (even when we have such a thing, e.g. in formal languages),
but the interpretation placed on it by a cognitive agent or interpreter.

Figure 1 shows the various transformations which can lead to multiple mean-
ings. The denotation of the semantics of the requirements is then what drives the
implementation, whose purpose is to build a computer-based system which will
interact with its environment in such a way that the original intent is satisfied.

3 Sources of Ambiguity

Ambiguity is essentially a linguistic phenomenon, thus it is appropriate to an-
alyze its sources according to the usual paradigm of lexicon, syntax, semantics
(we omit pragmatics due to space constraints). We briefly outline the main
issues here, not delving into all the details.

Lexical level. Ambiguity in lexicon occurs typically when the same term is
used to denote different things. This can be an inherent feature of the language
being used (for example: homonyms in NL), or happen even in more formal
languages due to lack of or imprecise designations. In fact, even in formal lan-
guages such designations are invariably rooted in the informal “real” world, and
all stakeholders must a-priori agree on their meaning (thus establishing a com-
mon base of reference). In Figure 1, terms appearing in the requirement, such
as “user” or “month” are just lexical tokens. They can correspond to different
designations, e.g. “month” could mean a 30-days period, or a 31-days period,
or till the same-numbered day in the next month, etc.1 Without a more precise
designation, the term “month” is seriously ambiguous: for example, which date
is “a month from today”?

Syntactic level. Ambiguity on the syntactic level is easier to define. It stems
from there existing multiple parse trees for a sentence; to each possible parse
tree, a different meaning is attached, hence the ambiguity. In Figure 1, multiple
possible parse trees exist for our sample requirement. In fact, the sentence could
be parsed as “The system shall delete the user and (send the notification within
a month)” or as “The system shall (delete the user and send the notification)
within a month”, where the parentheses have been used to indicate the two
critically different parsings.

Semantic level. Semantic ambiguity happens when the source text is uniquely
determined in both lexicon and syntax, and still multiple meanings can be as-
signed to the sentence. In this case, the ambiguity lies not in the source, but in
the function assigning meaning to the source, labeled in Figure 1 as the semantics
mapping function. In Figure 1, even if we have precise designations for “month”,
“system”, “user” etc., and even if we are told which of the two syntactic interpre-
tation to take, we could still have doubts on the intended semantics. For example,
“shall send a notification” means the system will attempt to do it, but how? Is it
sufficient to print out a form and hope that someone will put it in an envelope and
mail it? What if the notification is sent, but not delivered? Is there some sort of
1 The Bahá’́ı calendar, for example, has 19 months of 19 days each, plus 4 intercalary

days (5 in leap years) which are not part of any month.

On the Role of Ambiguity in RE 251

acknowledgment to be expected? Maybe the notification could be sent via a text
message to the user’s mobile phone? And so on (endlessly).

4 Ambiguity, Abstraction, Absence

We have seen in the previous section how even a simple sentence like our example

The system shall delete the user and send the notification within a month.

which could appear among the requirements, say, for a library loan system when
membership expires, is actually riddled by various types of ambiguity, so that its
correct implementation, missing further information, is probably beyond hope.

One could then believe that ambiguity is thus a pernicious defect, to be erad-
icated with ruthless determination from any self-respecting requirements spec-
ification. Unfortunately, this noble determination often leads to the practical
impossibility of writing, analyzing, and implementing, the requirements for even
the simplest of software systems, while huge amounts of effort are devoted to
writing beautifully complex and extensive specifications. We believe instead that
ambiguity can also play a positive role in requirements specifications, beyond its
well-known “political” role in negotiations (which we consider to be a form of
pragmatic ambiguity). To this end, we need first to distinguish among three
related concepts:

Ambiguity is the existence of multiple semantics denotations for the same
source text. Whether this is caused by syntactic ambiguity (Fig. 2, right) or
by semantics ambiguity (Fig. 2, left), or by lexical or pragmatic issues (or any
combination thereof) is irrelevant: the essence of the phenomenon is in having
multiple (distinct) semantics for the same source. Ambiguity has often been con-
sidered a defect in requirements, in account for the lack of a single, well-defined,
shared semantics that can be used to drive implementation and verification.

The system shall
delete the user and
send the notification
within a month

Text Syntax Denotation
Semantics mapping

Semantics mapping

Syntactic mapping

The system shall
delete the user and
send the notification
within a month

Text Syntax Denotation
Semantics mapping

Syntactic mapping

Syntactic mapping

Fig. 2. Cases of ambiguity: semantics ambiguity (left), syntactic ambiguity (right)

Abstraction is the omission of some details (or more properly, of some in-
formation content). Ambiguity can be used as a means of abstraction, in that
the omitted detail is the information needed to discriminate between multiple
semantics in order to identify the “right” one (in the eye of the requirement
author). Abstraction is generally considered a desirable quality in requirements,
up to a point, in that it avoids overspecification and simplifies the requirements,
keeping them manageable and allowing stakeholders to focus on the important
parts.

252 V. Gervasi and D. Zowghi

Absence is the total lack of information on some specific aspect; as such,
it is the extreme case of abstraction, where certain information content is ab-
stracted to nothingness. Being a special case of abstraction, absence as well can
be related to ambiguity as discussed above. Absence is the major motivation
for requirements elicitation: knowledge “holes” are usually considered dangerous
in specifications, and need to be filled-in by investigating the problem and its
domain in more depth.

Our sample requirement also contains instances of abstraction and absence.
Using the term “month” can be seen as a not very precise way to refer to some
specific duration of time, essentially conveying the idea of “I don’t care about
the exact duration, but it should be close to 30 days”, that being a case of
abstraction. At the same time, nothing is said about the actual contents of the
“notification”, e.g. which text should be sent. Of course, the implemented system
will have to send some specific text (we cannot keep the message abstract), so
the missing information is needed, and hence this is really a case of absence.

Since ambiguity can play both negative and positive roles, the question arises
naturally: when is “bad” ambiguity turned into “good” abstraction, and when
is the latter turned again into “bad” absence? We believe this question, in this
crude form, is too simplistic, and more about the intentions of the stakeholders
working on and with the requirements must be considered.

As a first step, let us identify two roles in working with requirements, those of
author and of reader. The author is the stakeholder that commits a requirement
to a written form; the reader is a participant to the development process who
needs the information conveyed by the requirements in order to perform his or
her own job. Both writers and readers may or may not recognize the ambiguity
which is present in a requirement. This gives rise to the combinations shown in
Table 1.

Table 1. Recognized and unrecognized ambiguity

Reader
recognized unrecognized

W
ri

te
r re
co

gn
iz

ed (a) ambiguity used by writer as
abstraction device, recognized as
such: good use of ambiguity, any
implementation correct.

(b) writer used ambiguity as ab-
straction device, reader only rec-
ognized one possible meaning: loss
of design space.

un
re

co
gn

iz
ed (c) writer wrote ambiguous

requirement without realizing,
reader assumed all meanings are
acceptable: potential incorrect
implementation.

(d) ambiguity gone unnoticed: if
both reader and writer agree on
meaning, correct implementation
“by chance”, otherwise incorrect
implementation.

We assume here for simplicity that recognizing an ambiguity means being
cognizant of all the possible meanings, whereas not recognizing it means consid-
ering only one meaning (which may or may not be the intended one), and not
realizing that there is a potential ambiguity. Naturally, in practice we can be

On the Role of Ambiguity in RE 253

faced with fuzzy cases, in which we suspect there is an ambiguity but cannot
determine for certain.

When the ambiguity is recognized by the writer (cases (a) and (b) in Table 1),
we can assume that it is intentional: the writer uses ambiguity as a means of
abstracting away unnecessary details, signifying that all possible meanings are
all equally acceptable to her as correct implementations of the requirements.
In our example the clause “within a month” could be intentionally ambiguous,
meaning that the writer (e.g., the customer) is not interested in the exact limit,
as long as there is a fixed term, and the term is approximately a month. In case
(a), the reader (e.g., the implementor) also recognizes the ambiguity, and is free
to choose, among all possible implementations that satisfy the requirement in
any of its possible ambiguous meanings, the one that best suits him: for example,
a simple limit=today()+30; in code will suffice. In case (b), the reader may not
realize that the writer has given him freedom to implement a vague notion of
month, and might implement a full calendar, taking into account leap years and
different month lengths, possibly synchronizing with time servers on the Internet
to give precise-to-the-second months, etc. The resulting implementation will be
correct, but unnecessarily complex. The design space for the solution has been
restricted without reason, and maybe opportunities for improving the quality
of the implementation in other areas (e.g., robustness or maintainability) have
been lost.

If the ambiguity is not recognized by the writer (cases (c) and (d) in Table 1),
we can assume it is not intentional: in a sense, it has crept in against the writer’s
intention. Hence, only one of the possible meanings is correct, whereas others are
incorrect. The implementation can still be correct, but only by chance (because,
among the possible interpretations, the correct one was chosen). Moreover, when
multiple readers are involved, as is the case in every real-life project, the chances
of every reader taking up the same correct interpretation is slim: so, this type
of ambiguity will probably lead to a wrong implementation, or to a correct
implementation which is tested against the wrong set of test cases, or to a correct
implementation which is tested correctly but then erroneously documented in
users’ manuals according to a wrong interpretation, etc.

The critical issue becomes: how can one be certain if a given instance of am-
biguity is intentional or not? The answer lies in a generalized concept of marked-
ness. In linguistics, a normal, default form (the one which more naturally would
be used) is considered unmarked, whereas a non-standard form is considered
marked (the more un-natural the form is, the more marked it is considered). For
example, instead of a more natural (and unmarked) “within a month”, a require-
ment could be written as “within a period of approximately one month”. This
second form is less naturally occurring, hence more marked, and thus provides
evidence that the ambiguity was intended by the writer (one could also say that
it dispels ambiguity by explicitly stating vagueness).

NL does not offer a specific way of marking intentional ambiguity from un-
intentional one, but conventions could be established to that effect. Notice that
using more contrived forms (e.g., adding “approximately”) does constitute a case

254 V. Gervasi and D. Zowghi

of markedness, but it is totally unsystematic, and thus cannot be relied upon
by the reader. In contrast, what would be needed is a systematic marking of
ambiguity.

5 Conclusions

We presented an analysis of the role of ambiguity in requirements, discussing
how ambiguity is intimately linked to two other relevant phenomena (abstraction
and absence of information), and how it can play a positive role in requirements
authoring and analysis when used in conjunction with the concept of markedness
to convey abstraction. In fact, we argue that each instance of ambiguity is not
useful or damaging, nocuous or innocuous, “good” or “bad” just by itself, but
that these characteristics can only be defined with reference to a particular set
of stakeholders.

We believe that an improved understanding of the nature and effect of ambigu-
ity can help clear the way for a more positive view of ambiguity in requirements,
and suggest ways to improve the current state of practice. In particular, tools
and techniques aimed at identifying instances of ambiguity in requirements could
incorporate the classification presented, and focus more on assessing naturale-
ness and markedness in the NL form of requirements, in addition to identifying
inherently vague terms or ambiguous parsing structures. The final goal would
be assisting their users focus on identifying and properly handling the different
types of ambiguity, particularly the really critical and risky cases.

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 255–261, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards a Framework to Elicit and Manage Security
and Privacy Requirements from Laws and Regulations

Shareeful Islam1, Haralambos Mouratidis2, and Stefan Wagner3

1,3 Institut für Informatik, Technische Universität München, Germany
{islam,wagnerst}@in.tum.de

2 School of Computing, IT and Engineering, University of East London, Great Britain
haris@uel.ac.uk

Abstract. [Context and motivation] The increasing demand of software sys-
tems to process and manage sensitive information has led to the need that soft-
ware systems should comply with relevant laws and regulations, which enforce
the privacy and other aspects of the stored information. [Question/problem]
However, the task is challenging because concepts and terminology used for
requirements engineering are mostly different to those used in the legal domain
and there is a lack of appropriate modelling languages and techniques to sup-
port such activities. [Principal ideas/results] The legislation need to be ana-
lysed and align with the system requirements. [Contribution] This paper mo-
tivates the need to introduce a framework to assist the elicitation and manage-
ment of security and privacy requirements from relevant legislation and it
briefly presents the foundations of such a framework along with an example.

Keywords: Security requirements, privacy requirements, Secure Tropos, mod-
elling, and evolving legislation.

1 Introduction

Software systems are now widely used for applications including financial services,
industrial management, and medical information management. Therefore, it is now
necessary that software for critical applications must comply with the relevant legisla-
tion. Sensitive system information must not be open to unauthorised access, process-
ing, and disclosure by legitimate users and/or external attackers. This situation makes
security to one of the key components involved in ensuring privacy [1]. Information
security and data privacy laws are in general complex and ambiguous by nature and in
particular relatively new and evolving [2, 10].

Such laws often undergo evolution to support the demands of the volatile world.
Several factors such as the introduction of new restrictions, regulation mandates
to increase security, privacy and quality of service, technology evolution, and new
threats and harms are commonly responsible for the amendment of legislation.
An amended legislation enforces an organization to review their internal policies and
to adopt the changes in their software systems. Especially legally relevant require-
ments (security and privacy in our case) should be adapted to avoid corresponding
risks. Therefore, research should be devoted to the development of techniques that

256 S. Islam, H. Mouratidis, and S. Wagner

systematically extract and manage requirements from laws and regulations in order to
support requirements compliance to such laws and regulations. We believe evolution
at requirements level is critical in order to meet the needs of its stakeholders and the
constraints such as legal requirements so that change can be traced further through the
life cycle. Due to the above situation, the elicitation of legally compliant requirements
is a challenging task.

This paper, as an extension of our previous work [9], discusses the need to intro-
duce a framework to allow the elicitation and management of security and privacy
requirements from relevant laws and regulations and it briefly presents the founda-
tions of a novel framework that assists in eliciting security and privacy requirements
from relevant legislation and it supports the adoption of changes in the system’s
requirements to support the evolution of the laws and regulations. Our contribution
addresses the current research problem of handling evolution of laws, regulation and
their alignment to the requirements.

2 Overview of the Framework

The framework is based on the Secure Tropos modelling language [4, 5] and goal-
driven security risk management (GSRM) [8]. It includes four main activities and each
consists of several steps that support the purpose of the activity and produces artefacts.
One of the main input elements required for performing the activities are relevant legal
texts. Therefore business specifications including business goals, process, and an initial
set of user requirements are required to identify the relevant legal text. Figure 1 shows
an overview of the framework with the input documents, activities, and steps in the
activity, artefacts produced from the activities, and the associated links.

Model Evolving Privacy Legislation
Identify & refine goals
Identify actor,tasks, resources
Extract legal rights, constraints
Adapt change to privacy artefacts

Business
proces, goals,

domain

Initial user
requirements

Relevant
legal text

Amendment
text

Map Terminology
Identify & refine security
goals
Map actors
Map constraints

Elicit Requirements
Model security & privacy
dependencies
Elicit security & privacy
requirements

Analyse Requirements
Identify attacker intentions
& attacks
Estimate risk level
Identify countermeasures
Refine requiremetns

compliance

de
pe

nd
en

cy

re
fin

em
en

t

goal,actor,
task, right,privacy

constraints

goal, actor,task,
security

constratins

actor model,
requ.

traceability

security attack
scenario, risk

detailed, refined req.

Fig. 1. Overview of the framework

 Towards a Framework to Elicit and Manage Security and Privacy Requirements 257

Activity 1: Model Evolving Regulation. The first step in that activity is to identify
and refine the goals from the privacy legislation by analysing why the regulation and
specific sections of the regulation were introduced to support the specific context. We
follow a basic legal taxonomy proposed by Hohfeld [11] to identify the terms of pri-
vacy legislation. The taxonomy is based on legal rights and classifies in several
elementary concepts including privilege, claim, power, immunity, duty, no-right,
liability, and disability. The next step involves the identification of the relevant
actors, their performed tasks, and the required resources in the system environment to
support the goals. Legal rights are concerned with the actions that the actors are
allowed or permitted to perform [10, 11]. The rights should focus on certain consent,
enforcement, notice, awareness, and participation relating to the privacy taxonomy
[1]. We use activity and purpose patterns [10] along with a sub-set of the Secure
Tropos language to support these steps [4]. The final step involves the adoption of
privacy artefacts with the legislation evolution. We consider the privacy artefacts
identified previously to support the analysis of the requirements’ change and we
structure our analysis into three possible ways, with which legal text evolves [7]:
addition of a new clause, modification of an existing clause, deletion of a clause.

Activity 2: Map Terminology. During this activity legal terms are mapped to the
terms used for security and privacy requirements. In particular, the legal artefacts
identified from the previous activity are systematically mapped to the security arte-
facts. An initial step is to identify and refine the security goals. Security goals are
identified by analysing the business and initial user requirements of the system envi-
ronment, and by following the privacy taxonomy [1]. The main focus is to ensure
critical security properties such as confidentiality, integrity, availability, authenticity,
and non-repudiation as well as the privacy goals from the previous activity within the
overall system environment. Once the goals are identified, the next step is to map the
actors from the legal concepts to the security concepts by following both security and
privacy goals. Finally we need to map the privacy and security constraints for the goal
satisfaction by following goals, actors, and task.

Activity 3: Elicit Requirements. During the first step of this activity, we model the
secure and privacy dependencies through the Secure Tropos actor model [4], by fol-
lowing the identified actors, goals, tasks, and constraints. This allows us to establish
the compliance link from the legal concepts to security concepts. Finally security and
legal requirements are identified by elaborating both security and privacy constraints
and traceability from legal concepts to security is attained through the identified arte-
fact; in particular by following the relevant goals, tasks, and actors.

Activity 4: Analyse Requirements. This final activity refines the initial requirements
by following risk and evolution techniques. Security threats and privacy harms that
obstruct the relevant goals and influence the relevant non-compliance issues are iden-
tified and analysed. To support the analysis, we combine goal-driven risk manage-
ment [8] with Security Attack Scenarios (SAS) [5]. The activity starts by identifying
the attacker’s intentions and attacks. This allows us to identify the potential resources
of the system that might be attacked. In our framework, we model the goals of an at-
tacker, attacks and possible resources of the system that might be attacked with an
extended set of attack links [5]. The next step of the activity is to estimate the risk
level based on the analysis techniques of GSRM so that risks are categorised as high,

258 S. Islam, H. Mouratidis, and S. Wagner

medium, and low by focusing on the risk likelihood and impact. Once the risks are
estimated then it is important to identify the countermeasures to prevent the potential
attacks and non-compliances issues. Finally the initial requirements are refined (if
needed) to accommodate provisions for the countermeasure of attacks that cannot be
prevented with the existing set of requirements.

3 Example

The presented example briefly illustrates the applicability of our framework to a spe-
cific application context, where a German bank that offers its customers use of a
smart card (EC card) for payments. We have chosen relevant privacy regulations by
considering the EU directive 95/46/EC [6] and German Federal Data Protection Act
(FDPA) [3] that are related for the context. In the text below, normative phrases (such
as “must”, “shall”) and conditional phrases (such as “and”, “or”) are in bold; a sub-
ject for an action is underlined; an action is italicized; an object is in bold and under-
lined; a measurement parameter is in bold, italicized, and underlined.
Directive 95/46/EC, Article 17 (partial), Security of processing (partial)
1. Member States shall provide that the controller must implement appropriate techni-
cal and organizational measures to protect personal data against accidental or unlaw-
ful destruction or accidental loss, alteration, unauthorized disclosure or access, in par-
ticular where the processing involves the transmission of data over a network, and
against all other unlawful forms of processing. Having regard to the state of the art
and the cost of their implementation, such measures shall ensure a level of security
appropriate to the risks represented by the processing and the nature of the data to be
protected.
German Federal Data Protection Act, Annex (partial)

1. To prevent unauthorised persons from gaining access to data processing systems
with which personal data are processed or used (access control).

Activity 1: Model Evolving Regulation. The goal of 95/46/EC is to ensure personal
data protection, which is refined with security in processing and supported by appro-
priate technical and organisational measures in article 17. The FDPA supports the
goal of 95/46/EC by including high level requirements such as access control in its
annex. The customer and application providers are the two main actors. Customer
data is the main resource, which contains personally identifiable information such as
the customer name and sensitive information such as card and account details. The
resource is shared for common tasks such as collect customer data, and update ac-
count balance. Among the identified legal rights is that the providers have the liabil-
ity to take appropriate measure to ensure privacy protection and to protect from any
accidental and unlawful activities. To simplify the illustration of our framework, at
this stage, we have not considered any evolution of legal texts but we consider it dur-
ing the analysis activity below.

Activity 2: Map Terminology. The security goal for the application context is al-
ready considered by the legal goals. Therefore, we directly refine the goals to support
the security properties. For example, access control is refined to identification and
adequate authorisation. Goals such as data integrity and secure communication as
well as tasks like providing customised reports about balance are necessary for this

 Towards a Framework to Elicit and Manage Security and Privacy Requirements 259

context. To map actors, for simplicity, we consider high level actors such as bank and
card issuer and assume their roles support the security constraints. The security con-
straints supported by the actors are: only legitimate customer, keep communication
secure, transfer minimum data, and preserve anonymity. Finally, security and privacy
constraints are mapped to align with the goals, such as providers’ liability to consider
any technical measure as privacy constraints and only legitimate customer, keep
communication secure as security constraints support goals like access control, and
secure communication.

Activity 3: Elicit Requirements. Once the security and privacy constraints are ana-
lysed, this activity initially models their dependencies and then elicit relevant re-
quirements such as; i) The customer shall be identified and authenticated before al-
lowed to perform any transaction through the card; ii) The bank shall only provide the
minimum of required data to the retailer that supports the business purpose.

Activity 4: Analyse Requirements. Finally, the elicited requirements are analysed
based on the security threat, privacy harm, and legislation evolution. We consider
data retainment from directive 2006/24/EC [6] as evolution by adding new con-
straints from the legislation to the application context.
Article 6 partial (Periods of retention)
Member States shall ensure that the categories of data specified in Article 5 are re-
tained for periods of not less than six months and not more than two years from the
date of the communication.

The amendment of the legal text introduces the bank’s liability to retain the customer
data for a certain period to time. At this stage, we need to identify the attacker inten-
tions and attacks for the non-compliance issues in the environment. Among the sev-
eral attackers’ goals, we consider here obtain sensitive data, by external attackers
through unauthorised access to the system or eavesdropping, and by internal attackers
through misuse. Furthermore, amendment of legislation also supports the attacker’s
goal, as the longer data is retained, the higher the likelihood of accidental disclosure,
data theft, and other illegal activities. Commonly the impacts of the factors are high
once the attacker successfully performs any attack. Therefore, for simplicity we con-
sider the risk level as high for both high and medium likelihoods of the risk factors.
Finally, requirements are refined such as, the data shall be categorised in a manner
that some sensitive data would not transfer even to the trusted business partners, and
new requirements are elicited, such as “The system shall preserve the customer cate-
gorised data for the minimum amount of time to support the business purpose and to
meet the legal compliance” to ensure security and privacy goals.

4 Related Work

Mouratidis et al. [4] presented Secure Tropos for eliciting security requirements in
terms of security constraints and the approach of Islam [8] extended it with security
attack scenarios, where possible attackers, their attacks, and system resources are
modelled. Islam [8] also proposed a goal-based software development risk manage-
ment model (GSRM) to assess and manage risks from the RE phase. Antón et al. [1]

260 S. Islam, H. Mouratidis, and S. Wagner

introduce two classes of privacy related software requirements through two classes:
privacy protection goals such as integrity & security and privacy harms based on vul-
nerabilities relating to information monitoring, aggregation, storage, transfer, collec-
tion, and personalization. Breaux et al. [10] consider activity, purpose, and rule sets to
extract rights, obligations, and constraints from legal texts. Ghanavati et al. [7] use
User Requirement Notation based on Goal-oriented Requirement Language for a re-
quirement management framework by modelling hospital business process and pri-
vacy legislation in terms of goals, tasks, actors, and responsibilities. Siena et al. [2]
focus on Hohfeld’s legal taxonomy and map the legal rights with the i* goal model-
ling language to extract legal compliance requirement. In [8], we use Secure Tropos
to model regulation, based on Hohfeld’s legal taxonomy, in order to extract require-
ments that comply with legislation.

As foundation for our work we use SecureTropos, GSRM, activity and purpose pat-
terns, and rule sets. Our framework contributes that it enables the analysis of privacy
regulations beyond the only permitted and required actions and it facilitates the con-
sideration of non-compliance issues and risk management since the early stages of the
development process. Furthermore, it supports adopting security and privacy re-
quirements to a change of legislation.

5 Conclusion

Security and privacy practices are important for software that manages sensitive in-
formation and for stakeholders when selecting software or service providers to serve
their business needs. Therefore, organisations responsible to manage sensitive data
cannot escape the obligation to implement the requirements established by privacy
regulations and changes therein. This paper advances the current state of the art by
contributing the foundations of a framework that aligns security and privacy require-
ments with relevant legislation.

References

[1] Antón, A., Earp, J., Reese, A.: Analyzing website privacy requirements using privacy
goal taxonomy. In: Proc. of the IEEE Joint International Conference on RE, pp. 23–31
(2002)

[2] Siena, J., Mylopoulos, A., Susi, A.: Towards a framework for law-compliant software
requirements. In: Proc. of the 31st International Conference on Software Engineering
(ICSE 2009), Vancouver, Canada (2009)

[3] Bundesdatenschutzgesetz - Federal Data Protection Act (as of November 15, 2006)
[4] Mouratidis, H., Giorgini, P.: Secure Tropos: A Security-Oriented Extension of the Tro-

pos Methodology. International Journal of Software Engineering and Knowledge Engi-
neering. © World Scientific Publishing Company

[5] Mouratidis, H., Giorgini, P.: Security Attack Testing (SAT) - testing the security of in-
formation systems at design time. Inf. Syst. 32(8), 1166–1183 (2007)

[6] Information society, Summary of legislation, European Commission

 Towards a Framework to Elicit and Manage Security and Privacy Requirements 261

[7] Ghanavati, S., Amyot, D., Peyton, L.: A Requirements Management Framework for Pri-
vacy Compliance. In: Workshop on Requirements Engineering (WER 2007), Toronto,
Canada (2007)

[8] Islam, S.: Software development risk management model: a goal driven approach. In:
Proceedings of the Doctoral Symposium for ESEC/FSE on Doctoral Symposium, Am-
sterdam, The Netherlands (2009)

[9] Islam, S., Mouratidis, H., Jürjens, J.: A Framework to Support Alignment of Secure
Software Engineering with Legal Regulations. Journal of Software and Systems Model-
ing (SoSyM) Theme Section NFPinDSML (to appear 2010), doi:10.1007/s10270-010-
0154-z

[10] Breaux, T.D., Antón, A.I.: Analyzing Regulator Rules for privacy and Security Require-
ments. IEEE Transactions on Software Engineering 34(1) (January-February 2008)

[11] Hohfeld, W.N.: Fundamental Legal Conceptions as Applied in Judicial Reasoning. Yale
Law of Journal 23(1) (1913)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 262–275, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Visualizing Cyber Attacks with Misuse Case Maps

Peter Karpati1, Guttorm Sindre1, and Andreas L. Opdahl2

1 Department of Computer and Information Science
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

{kpeter,guttors}@idi.ntnu.no
2 Department of Information Science and Media Studies,

University of Bergen, Bergen, Norway
Andreas.Opdahl@uib.no

Abstract. [Context and motivation] In the development of secure software,
work on requirements and on architecture need to be closely intertwined, be-
cause possible threats and the chosen architecture depend on each other mutu-
ally. [Question/problem] Nevertheless, most security requirement techniques
do not take architecture into account. The transition from security requirements
to secure architectures is left to security experts and software developers, ex-
cluding domain experts and other groups of stakeholders from discussions of
threats, vulnerabilities and mitigations in an architectural context. [Principal
idea/results] The paper introduces misuse case maps, a new modelling tech-
nique that is the anti-behavioural complement to use case maps. The purpose of
the new technique is to visualize how cyber attacks are performed in an archi-
tectural context. [Contribution] The paper investigates what a misuse case map
notation might look like. A preliminary evaluation suggests that misuse case
maps may indeed make it easier for less experienced stakeholders to gain an
understanding of multi-stage intrusion scenarios.

Keywords: security, requirements elicitation, misuse case, use case map, mis-
use case map.

1 Introduction

Much effort in the security area focuses on surveillance and fire-fighting, which are
undoubtedly crucial aspects of the “cops and robbers” game of security. A comple-
mentary approach is prevention by design. Instead of detecting and mitigating attacks,
prevention by design strives to eliminate security vulnerabilities in the early phases of
software development. Vulnerabilities can take many shapes. One time, a well-
known, long-used mechanism is misused in an unexpected way. Another time, an
obscure part of the software system is exposed and exploited by an attacker. In order
to eliminate vulnerabilities early during software development, it is essential to under-
stand the attackers’ perspectives and their ways of working, as pointed out by many
authors (e.g., [1-3]).

Much research has been performed on modelling the technical aspect of complex
attacks, targeting security experts and security-focused software developers. Our
premise is that secure software development may benefit from involving a wider

 Visualizing Cyber Attacks with Misuse Case Maps 263

group of stakeholders, such as domain experts (who know the subject and usage
worlds of the proposed software system) and regular software developers who have
no special security training. Ideally, this would happen during the requirements phase
of software development, which is a common ground for domain experts, software
experts and security experts to meet. Also, clarifying security issues already during
the requirements phase results in a security conscious design that saves many troubles
(money, effort, time, reputation etc.) later on.

There are already several techniques and methods available for dealing with secu-
rity requirements in the early software development phases. But there is no technique
or method that addresses security requirements in relation to design of secure archi-
tectures. In practice, however, the two cannot be completely separated: possible
threats will depend on the chosen architecture; the choice of architecture might de-
pend on what threats are considered the most dangerous ones; different architecture
choices offer different mitigations strategies etc. Our idea is that domain experts,
regular software developers and others should be allowed and encouraged to reason
about security concerns in an architectural context. For this purpose, suitable repre-
sentations are needed that combine user, designer and security perspectives on the
proposed software system, so that all stakeholders can understand the issues and con-
tribute their ideas and background knowledge to the security discussions.

Hence, the purpose of this paper is to introduce a new attack modelling technique
that combines an attacker's behavioural view of the proposed software system with an
architectural view. The technique is intended to be useful for a variety of stake-
holders. The technique is called misuse case maps (MUCM). It is inspired by use case
maps [4, 5], into which it introduces anti-behaviours. The technique is illustrated
through a multi-stage intrusion from the literature [6]. Results from a preliminary
evaluation are also reported.

The rest of the paper is organized as follows. We present related work in Sec. 2.
Misuse case maps are introduced in Sec. 3. Misuse case maps are applied to an exam-
ple from the literature in Sec. 4. A preliminary evaluation is presented in Sec. 5. Fi-
nally, we conclude and point out future directions for our work in Sec. 6.

2 Modelling Techniques for Security Requirements

2.1 Security Requirements

There are already many techniques and methods available that focus on elicitation and
analysis of security requirements during early RE. Attack trees [7] and threat trees [8]
are trees with a high level attack (or threat) at the root, which is then decomposed
through AND / OR branches. Secure i* [9] is an extension of the i* modelling lan-
guage, where malicious actors and their goals are modelled with inverted variants of
the usual icons. Abuse frames [10], extend problem frames with anti-requirements
that might be held by potential attackers. Abuse cases [11], misuse cases [12], and
security use cases [13] are security-oriented variants of regular use cases. Abuse and
misuse cases represent behaviours that potential attackers want to perform using the
software system, whereas security use cases represent countermeasures intended to
avoid or repel these attacks. The difference between abuse and misuse cases is that the

264 P. Karpati, G. Sindre, and A.L. Opdahl

latter show use and misuse in the same picture, whereas abuse cases are drawn in
separate diagrams. We will return to misuse cases in Sec. 2.4.

There are also techniques and methods that attempt to cover later development
phases. Secure Tropos [14] extends the Tropos method with security-related con-
cepts, whereas KAOS has been extended with anti-goals [15]. The CORAS project
[16] combined misuse cases with UML-based techniques into a comprehensive
method for secure software development. Other security-focused extensions of
UML include UMLsec [17] and SecureUML [18]. Languages for secure business
process modelling have also been proposed based on BPMN [19] and UML activity
diagrams [20]. Security patterns describe recommended designs for security [21],
and the formal specification language Z has been used to specify security-critical
systems [22, 23].

Despite the many techniques and methods available for dealing with security in the
early phases of software development, there is so far no technique or method that
links security requirements and architecture. There is, however, a technique that links
software functionality in general with architecture, which we now present.

Fig. 1. Notation and interpretation of UCMs (from [4])

2.2 Use Case Maps (UCM)

The use case map (UCM) notation [4,5,24,25] was introduced by Buhr and his team at
Carleton University in 1992. It quickly gained popularity. UCMs have been used in
both research and industry, in particular in the telecommunications sector. It is a part
of the User Requirements Notation (URN) standardized by the International Tele-
communication Union (ITU).

UCMs provide a combined overview of a software system’s architecture and its
behaviour by drawing usage scenarios paths (aka use cases) as lines across boxes that
represent architectural run-time components. The boxes can be nested to indicate hi-
erarchies of components. The scenario paths are connected to the components they
run across by responsibilities drawn as crosses. Fig. 1 illustrates and explains the ba-
sic UCM notation. This UCM shows multiple scenarios as multiple paths across the
architecture components.

 Visualizing Cyber Attacks with Misuse Case Maps 265

Fig. 2. Variants of UCMs (from [4])

Fig. 2 shows how a UCM binds responsibilities, paths, and components together.
In this simple example, “…a user (Alice) attempts to call another user (Bob) through
some network of agents. Each user has an agent responsible for managing subscribed
telephony features such as Originating Call Screening (OCS). Alice first sends a con-
nection request (req) to the network through her agent. This request causes the called
agent to verify (vrfy) whether the called party is idle or busy (conditions are between
square brackets). If he is, then there will be some status update (upd) and a ring signal
will be activated on Bob's side (ring). Otherwise, a message stating that Bob is not
available will be prepared (mb) and sent back to Alice (msg).” [4] The example also
shows how sections of scenario paths can be split and joined to indicate alternative or
parallel paths.

In this manner, UCMs offer high-level views for software and systems develop-
ment [4, 24]. They combine an architectural overview with behavioural detail and
thus facilitate discovery of problems within collections of scenarios or use cases.
UCMs can also serve as synchronization means among the scenarios/use cases to
check them for completeness, correctness, consistency, ambiguity or consistent ab-
straction levels. UCMs provide several additional notations for visualizing more com-
plex behaviours and more refined relationships between scenarios and architecture
components. We do not present all of them here. The UCM notation also offers vari-
ants that use only two of the three core components (scenario paths, architecture com-
ponents and responsibilities) [4, 25]. In particular, paths and components can be used
without responsibilities for presenting very-high level overviews and for “napkin-
type” sketching of ideas.

2.3 Use Case Maps and Anti-functional Requirements

Security has been discussed in relation to UCMs in connection with performance-
related completions (“additions, including annotations, component insertions, envi-
ronment infrastructure, deployment, communication patterns, design refinements and
scenario or design transformations which correspond to a given deployment style”)
[26] and in connection with RE for data sharing in health care in [27]. UCMs are
used to represent an example of early aspects at the requirements level in [28]. Secu-
rity appears there as a MUCM component, first in the main UCM and later in a plug-
in (or sub-map) of the main UCM. However the aim of the example is to demonstrate
the UCM notation and not to address security as such.

266 P. Karpati, G. Sindre, and A.L. Opdahl

Beyond these contributions, we have not found any direct considerations of the se-
curity perspective in UCMs. But there are two contributions that address safety in a
UCM context. We review them here because security and safety requirements are
both examples of anti-functional requirements, i.e., requirements that state what the
software system should not do. Hence they are similar to functional requirements in
that they are both concerned with the software system's behaviour, but they have
opposite modalities. Wu and Kelly [29] present an approach to derive safety require-
ments using UCMs. The approach aims to provide assurance on the integrity of
requirements elicitation and formulation. First they formulate the problem context in
their process, followed by analysis of deviations, assessment of risks, choice of miti-
gations and formulation of safety requirements. The initial set of requirements is re-
fined iteratively while a software system architecture is also developed incrementally.
The authors conclude (1) that UCMs are effective for capturing the existing architec-
tural context (structure and specific operational modes) beside the intended behaviour
and (2) that the explicit architectural references extend the scope of the deviation
analysis compared with the one over functions or use cases. In [30], Wu and Kelly
extend their approach into a negative scenario framework (along with a mitigation
action model), which has a wider theoretical background and is more general than the
proposal in [29]. The UCM no longer plays the central role, and the approach to iden-
tifying deviations is less specific. Although their framework targeted safety-critical
systems, the authors suggest that it is applicable for other systems as well, such as
security- and performance-critical ones.

Despite the interest in combining UCMs with anti-functional requirements, no rep-
resentation technique has so far been proposed that provide a combined overview of
the attackers' and the architects' views of a proposed software system. However, there
is a technique that shows how to extend and combine representations of wanted soft-
ware system behaviour, as covered by UCMs, with an attacker's attempts to cause
harm, which we now present.

2.4 Misuse Cases (MUC)

Misuse cases (MUC) [12] extend use cases (UC) for security purposes with misusers,
misuse cases and mitigation use cases, as well as the new relations threatens and
mitigates. They represent security issues by expressing the point of view of an
attacker [31]. Whereas regular UCs describe functional requirements to the software
system, MUCs thereby represent anti-functional requirements, i.e., behaviours
the software should prohibit. They thus encourage focus on security early during
software development by facilitating discussion between different stakeholder groups,
such as domain experts, software developers and security experts. MUCs have also
been investigated for safety [32-34] and other system dependability threats [35] and
compared with other similar techniques like FMEA, Attack Trees and Common Crite-
ria [33, 36, 37]. MUCs can be represented in two ways, either diagrammatically or
textually. Diagrammatically, MUC symbols inverts the graphical notations used in
regular UC symbols, and UC and MUC symbols can be combined in the same
diagram. Textually, both lightweight and an extensive template are offered [12, 34].

 Visualizing Cyber Attacks with Misuse Case Maps 267

3 Misuse Case Maps (MUCM)

3.1 The Need for Misuse Case Maps

The previous section shows that there are many techniques and methods available for
dealing with security requirements in the early software development phases, both
during RE and in the transition to later phases. But there is no technique or method
that addresses security requirements in relation to design of secure architectures. Yet
it is well known that requirements and architecture can rarely be considered in com-
plete isolation. Contrarily, architecture is essential for security in several ways. The
types of architecture components suggest typical weaknesses and attack types for the
component (e.g., a router can be scanned for open ports). The specifics of architecture
components suggest specific weaknesses (e.g., a particular router model is likely to
have a particular standard password). The path each function takes through the soft-
ware architecture suggests which general and specific weaknesses a user of that func-
tion might try to exploit. Furthermore, when weaknesses have been identified, archi-
tectural considerations are equally important for mitigating the threats. To alleviate
these and other problems, there is a need for a security requirements technique that
combines an attack-oriented view of the proposed software with an architectural view.

3.2 Basic Concepts

MUCMs extend regular UCMs for security purposes with exploit paths in much the
same way that MUCs extend regular UCs with misuse cases. As in regular UCMs, the
exploit paths in a MUCM are drawn across nested boxes that represent hierarchically-
organized architecture components. In addition to regular responsibilities, the inter-
section of an exploit path and a component can constitute a vulnerability, which is a
behavioural or structural weakness in a system. A component can be a vulnerability
too. A threat combines one or more weaknesses to achieve a malicious intent. Vulner-
abilities can be mitigated, where a mitigation counters a threat and translates to a se-
curity requirement. Both regular scenario paths and exploit paths can be combined in
the same MUCM, just like a MUC diagram can also show UCs.

Fig. 3. A simple MUCM example

Fig. 3 shows an excerpt of a MUCM comprising one component, a server, along
with a regular scenario path and an exploit path. The excerpt is part of the bigger ex-
ample presented in Sec. 4. We will reveal further details of the notation below.

268 P. Karpati, G. Sindre, and A.L. Opdahl

3.3 Notation

The MUCM notation is based on the regular UCM notation, just like the MUC nota-
tion is based on the UC notation. The MUC notation uses inversion of use-case sym-
bols to distinguish wanted from unwanted behaviour. This is not easy to do for use
case maps, where the start and end points of regular scenario paths are already shown
with filled icons and where the paths themselves are drawn as whole lines. Instead,
we have explored using colours and different icon shapes to distinguish between
wanted and unwanted behaviours in MUCMs.

The leftmost column of Fig. 4 shows the basic MUCM symbols. An exploit path
starts with a triangle and ends in a bar (as in UCMs) if no damage happened. Other-
wise the path ends in a lightning symbol. Exploit paths can be numbered to show the
order of stages in a complex intrusion, where the stages will mostly be causally re-
lated, in the sense that each of them builds on the results of previous ones. A vulner-
able responsibility (e.g., an authentication point) or component (e.g., an unpatched
server) is indicated by a closed curve, and a mitigation of the resulting threat (e.g.,
secure password generation, routines for patching servers) is shown by shading the
interior of the closed curve. Responsibilities can be left out whenever they are not
relevant from the intrusion’s point of view. Through these basic symbols, MUCMs
offer a basic notation that is close to the simplified UCM notation suggested for very-
high level overviews and for “napkin-type” sketching of ideas. We expect this to be
the most prominent use of MUCMs in practice.

Yet at this early stage it is worth exploring more detailed notation alternatives too.
For example, the rightmost column of Fig. 4 shows how a time glass can be used to
indicate that an exploit path must wait for a regular scenario path to reach a certain
point. The example in Fig. 3 used this notation to show how an attacker, who have
secured access to a Citrix server at an earlier intrusion stage, installs a keylogger on
the server in order to snatch the administrator’s password. The hour glass indicates
that the attacker has to wait for an administrator to log in before the keylogger can
snatch the password.

Fig. 4. The proposed MUCM notation, with the basic symbols shown on the left and further
tentative extensions on the right

 Visualizing Cyber Attacks with Misuse Case Maps 269

Get, put and remove arrows can be used to show how an exploit path interacts with
a component. An example involving the get arrow is when the attacker accesses the
password hash files. An example of a put arrow is when the attacker installs a sniffer
program on one of the servers. An example using the remove arrow is when the at-
tacker deletes his/her traces from a system. We will see in the complex example that
not all the information is available about the case. Similarly, when (re)creating an
intrusion, some parts of it may be unclear at first. The question marks can be used as
reminders about unclear issues.

Labels can be attached to symbols. For example, a label at the start of a UCM path
might indicate the role of the actor if it affects a connected exploit path; a label at the
end of an exploit path might be labelled with the result of the exploit if it is not clear
from the path alone; and get, put or remove arrows can be labelled with the types of
data or software that are accessed. These arrows are part of the regular UCM notation
as well, where they have a slightly different meaning. Hence, their interpretation de-
pends on the context. Further work should consider using distinct symbols, such as a
wave arrow, to differentiate the notations.

Like in regular UCMs, the granularity of the intrusion representation can change
by combining or exploding steps. Consider a case where the attacker downloads a file
of password hashes from one machine, cracks them in his/her own computer and pro-
ceeds to log into another machine with a cracked password. This could be shown as
individual steps or as a composite step – a MUCM stub – that hide the cracking proc-
ess and leads the exploit path from the first machine with the hashes to the one logged
into with the cracked password.

As already explained, we expect the basic MUCM symbols to be the ones most
used in practice, and we expect the notation we suggest here to evolve further. In this
paper, however, we will stay with the symbols we have used in the preliminary
evaluation to be presented in Sec. 5.

4 A Complex Intrusion Example

MUCMs and the associated notation have been developed through a series of model-
ling exercises using hacker stories from [6]. We have so far developed MUCMs for 5
of the 12 relevant intrusion cases described there, 3 of them in full detail. We present
one of them here to illustrate MUCMs and the first version of the associated notation.

4.1 The Bank Intrusion Case

The bank intrusion is a multi-stage intrusion presented in [6, Chapter 7]. We suggest
following the intrusion on the MUCM in Sec. 4.2 while reading through the intrusion
steps.

First, the intruder found an interesting bank by browsing a web site with organiza-
tions and IP ranges assigned. Next, he probed for further details about the IP ad-
dresses of the bank and found a server that was running Citrix MetaFrame (remote
access software). He then scanned other networked computers for the remote access
port to Citrix terminal services (port 1494). The attacker knew he might be able to
enter the server with no password, as the default Citrix setting is “no password

270 P. Karpati, G. Sindre, and A.L. Opdahl

required”. He searched every file on the computer for the word “password” to find the
clear text password for the bank's firewall. The attacker then tried to connect to
routers and found one with default password. He added a firewall rule allowing in-
coming connections to port 1723 (VPN).

After successfully authenticating to the VPN service, the attacker’s computer was
assigned an IP address on the internal network, which was flat, with all systems on a
single segment. He discovered a confidential report written by security consultants
containing a list of network vulnerabilities. He also found operation manuals to the
bank's IBM AS/400 server on a Windows domain server. The default password

Fig. 5. A misuse case map for the bank intrusion. The whole red line depicts the attacker’s
footprint whereas the dashed black line shows the regular users’ activities.

 Visualizing Cyber Attacks with Misuse Case Maps 271

worked for the AS/400. The intruder installed a keylogger on the Citrix server, waited
for an administrator to log in and snarfed the administrator's password. He now had
access to training manuals for critical AS/400 applications, giving him the ability to
perform any activity a teller could. He also found that the database of the Department
of Motor Vehicles was accessible from the bank's site. He accessed the Primary
Domain Controller (which authenticates login requests to the domain) and added a
disguised script that extracted password hashes from a protected part of the system
registry in the administrator’s startup folder. He then waited for a domain administra-
tor to log in so the script would be triggered and password hashes written to a hidden
file. He then cracked the appropriate password. The most sensitive parts of the bank's
operations could now be accessed (generating wire transfers, moving funds etc.). A
manual he had already found described how to complete a wire transfer form.

The attacker was a “white-hat” hacker who claimed not to harm the bank or its
customers as a result of the intrusion.

4.2 MUCM

Fig. 5 shows a MUCM for the bank intrusion. Some details were omitted, either be-
cause they were not given in the original text (e.g., how the access to some of the
components was secured) or because the details were intuitive and would only over-
load the map (e.g., to access the internal computers, the attacker always went through
the VPN).

5 Preliminary Evaluation

To preliminary evaluate MUCMs and the MUCM notation, we sent out a written
evaluation sheet to more than 20 colleagues and other contacts. We received 12 re-
sponses. All respondents had MSc or PhD degrees, except one MSc student who, on
the other hand, had professional experience as a system administrator. All the degrees
were in computing. 6 of the respondents were working as academics, 4 in industry
and 2 in both academia and industry.

The evaluation sheet had three sections. The first section explained the aim and the
required conditions of the experiment. There was no time limit, but the respondents
were asked to perform the evaluation without interruption. The second section gave
an introduction to UCM and MUCM. The third section included a copy of the textual
description of the bank intrusion from [6], along with the corresponding MUCM (Fig.
5). The third section also comprised three sets of questions, regarding (a) the back-
ground of the participants, (b) the participants’ understanding of the case, and (c) the
user acceptance of the technique. The user acceptance questions were inspired by the
Technology Acceptance Model (TAM) [38], reflecting the three TAM-variables per-
ceived usefulness, perceived ease of use and intention to use with 2 items each, giving
six items (or questions) in all. At the end of the sheet, open comments were invited. In
addition, the respondents were asked how much time they spent on the evaluation
sheet and which aids they relied on when answering the questions about understand-
ing of the case (either the textual description, the misuse case map or memory).

272 P. Karpati, G. Sindre, and A.L. Opdahl

The participants spent between 20 and 60 minutes on the task (37 minutes on aver-
age). We split the responses in the following four groups, depending on which aids
they reported to have relied on when answering the questions about understanding of
the case. The four groups were TD (9 valid responses relying on the textual descrip-
tion), MEM (6 valid responses relying on memory), MUCM (6 valid responses rely-
ing on the misuse case map) and NON-M (4 valid responses not using the misuse case
map). Because most respondents reported relying on more than one aid, the groups
overlap considerably. Nevertheless, a comparison of the responses gives a useful first
indication of the strengths and weaknesses of MUCM as an aid for understanding a
complex intrusion scenario.

Table 1 summarizes the responses according to group. The TD and MUCM groups
spent most time on the task, the MEM and NON-M groups the least. With regard to
background experience, the groups were quite similar, with average scores between
3.6 and 3.9 on a scale from 1 to 5 (with 5 being highest). The TD and MUCM groups
reported slightly lower experience on average than the MEM and NON-M groups,
suggesting that less experienced respondents relied more on external aids. This may
explain in part why they used more time too. The MUCM group had the highest aver-
age percentage (77%) of correct answers to the questions about understanding,
whereas the NON-M group had the lowest one (68%). Although time may have
played a part, we take this to be an indication that MUCM may indeed be a beneficial
aid for understanding complex intrusions. The TD group also had a high average
score on understanding, and the MEM group a lower one.

Table 1. Responses to the evaluation sheet, grouped according to the aids used when answer-
ing the questions about understanding of the case

Group Responses
Time
(min)

Back-
ground

Under-
standing PU PEOU ITU

TD 9 36 3.6 74% 3.8 2.9 3.9

MEM 6 30 3.9 71% 3.9 2.5 3.8

MUCM 6 37 3.7 77% 3.9 3.3 3.9

NON-M 4 30 3.8 68% 3.9 2.5 4

On average, the four groups rated the perceived usefulness (PU) of MUCMs simi-
larly, from 3.8 to 3.9 (again on a scale from 1 to 5 with 5 being highest). The average
ratings on perceived ease of use (PEOU), however, were considerably higher for
MUCM (3.3) than for NON-M (2.5), suggesting that perceived ease of use played an
important role in the respondents' decisions whether to use the MUCM or not when
answering questions about the case. The TD group also had a high average rating and
MEM a low one, on PEOU. In general, the scores on PU were higher than for PEOU,
indicating that the somewhat elaborate MUCM notation used in the evaluation was
perceived as complex. On intention to use (ITU), however, the average ratings were
nearly identical between the groups (from 3.8 to 4.0). Surprisingly, intention to use

 Visualizing Cyber Attacks with Misuse Case Maps 273

misuse case maps in the future was highest for the NON-M group that had not used
MUCMs at all. Because the evaluation was preliminary, we do not address validity
issues here.

We received written and oral comments on the following issues: the notation was
hard to understand although it could become easier to read with time; the map con-
tained too much detail; the map contained too little detail; UML sequence diagrams
may be a better alternative; the component concept is unclear because it mixes physical
and logical entities; and MUCMs are good for analysis but maybe not for communica-
tion. We plan to address these comments in the further development of the technique.

6 Conclusions and Future Work

The paper has introduced a new attack modeling technique, misuse case maps
(MUCM), that combines an attacker's behavioral view of the proposed software sys-
tem with an architectural view. The purpose of misuse case maps is to offer a repre-
sentation technique with the potential to include a wider group of stakeholders, such
as domain experts and regular software developers, in security considerations already
during the earliest development phases. The technique and its notation was illustrated
through a multi-stage bank intrusion described in the literature. Results from a pre-
liminary evaluation were also reported, indicating that MUCM may indeed be a bene-
ficial aid for understanding complex intrusions.

Of course, the preliminary evaluation is severely limited. It used only a small ex-
ample, which precluded statistical analysis. The evaluation was not controlled, and
the subjects were colleagues and other contacts who might have been positively bi-
ased towards our proposal. Hence, further empirical evaluations are clearly needed,
for example investigating different complex intrusion scenarios for the future like in
[39, Chapter 3]. They should involve more subjects working under more controlled
conditions.

Future work on MUCMs should address issues such as how to avoid overly com-
plex, spaghetti-like maps, how to best communicate intrusions to domain experts and
regular software developers, and how to involve them in the vulnerability exploring
and mitigating process. Further evaluations and practical studies will use MUCMs in
increasingly realistic settings. We intend to combine MUCM with other attack model-
ling and security analysis techniques. We also plan to provide practical guidelines to
establish a security requirements method and provide tool support for it. The method
should perhaps be further extended to consider anti-functional requirements in gen-
eral, addressing safety requirements in particular in addition to security. Important
questions to address will be when and how to apply the security and safety experts'
knowledge and how to manage the different types of information that is generated
from the cooperation between customers, domain experts and developers.

Acknowledgement. This work was performed as part of the ReqSec project
(www.idi.ntnu.no/~guttors/reqsec/) and funded by the Norwegian Research Council.

274 P. Karpati, G. Sindre, and A.L. Opdahl

References

1. Barnum, S., Sethi, A.: Attack Patterns as a Knowledge Resource for Building Secure
Software. In: OMG Software Assurance Workshop (2007)

2. Koziol, J., et al.: The shellcoder’s handbook: discovering and exploiting security holes.
John Wiley & Sons, Chichester (2004)

3. Hoglund, G., McGraw, G.: Exploiting Software: How to Break Code. Addison-Wesley,
Boston (2004)

4. Amyot, D.: Use Case Maps Quick Tutorial (1999),
http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial.pdf

5. Buhr, R., Casselman, R.: Use case maps for object-oriented systems. Prentice-Hall, Inc.,
Upper Saddle River (1995)

6. Mitnick, K.D., Simon, W.L.: The art of intrusion: the real stories behind the exploits of
hackers, intruders & deceivers. Wiley, Chichester (2005)

7. Schneier, B.: Secrets & lies: digital security in a networked world. John Wiley & Sons,
Chichester (2000)

8. Amoroso, E.G.: Fundamentals of computer security technology. Prentice-Hall, Inc., Upper
Saddle River (1994)

9. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. In: Proc. RE 2003, vol. 3, pp. 151–161 (2003)

10. Lin, L., et al.: Using abuse frames to bound the scope of security problems (2004)
11. McDermott, J., Fox, C.: Using abuse case models for security requirements analysis (1999)
12. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requirements

Engineering 10(1), 34–44 (2005)
13. Firesmith, D.J.: Security use cases. Technology 2(3) (2003)
14. Giorgini, P., et al.: Modeling security requirements through ownership, permission and

delegation. In: Proc. of RE, vol. 5, pp. 167–176 (2005)
15. Van Lamsweerde, A., et al.: From system goals to intruder anti-goals: attack generation

and resolution for security requirements engineering. In: Requirements Engineering for
High Assurance Systems (RHAS 2003), vol. 2003, p. 49 (2003)

16. Dimitrakos, T., et al.: Integrating model-based security risk management into eBusiness
systems development: The CORAS approach. In: Monteiro, J.L., Swatman, P.M.C.,
Tavares, L.V. (eds.) Proc. 2nd Conference on E-Commerce, E-Business, E-Government
(I3E 2002), pp. 159–175. Kluwer, Lisbon (2002)

17. Jurjens, J.: UMLsec: Extending UML for secure systems development. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer,
Heidelberg (2002)

18. Lodderstedt, T., et al.: SecureUML: A UML-based modeling language for model-driven
security. In: Jézéquel, J.-M., Hussmann, H., Cook, S., et al. (eds.) UML 2002. LNCS,
vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

19. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Towards an integration of security re-
quirements into business process modeling. In: Proc. of WOSIS, vol. 5, pp. 287–297
(2005)

20. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Capturing Security Requirements in
Business Processes Through a UML 2.0 Activity Diagrams Profile. In: Roddick, J.,
Benjamins, V.R., Si-said Cherfi, S., Chiang, R., Claramunt, C., Elmasri, R.A., Grandi, F.,
Han, H., Hepp, M., Lytras, M.D., Mišić, V.B., Poels, G., Song, I.-Y., Trujillo, J.,
Vangenot, C. (eds.) ER Workshops 2006. LNCS, vol. 4231, pp. 32–42. Springer,
Heidelberg (2006)

 Visualizing Cyber Attacks with Misuse Case Maps 275

21. Schumacher, M., et al.: Security Patterns: Integrating Security and Systems Engineering.
Wiley, Chichester (2005)

22. Boswell, A.: Specification and validation of a security policy model. IEEE Transactions on
Software Engineering 21(2), 63–68 (1995)

23. Hall, A., Chapman, R.: Correctness by construction: Developing a commercial secure
system. IEEE Software, 18–25 (2002)

24. Buhr, R.J.A.: Use case maps for attributing behaviour to system architecture. In: 4th
International Workshop of Parallel and Distributed Real-Time Systems (1996)

25. Buhr, R.J.A.: Use case maps as architectural entities for complex systems. IEEE Transac-
tions on Software Engineering 24(12), 1131–1155 (1998)

26. Woodside, M., Petriu, D., Siddiqui, K.: Performance-related completions for software
specifications. In: 24th International Conference on Software Engineering (2002)

27. Liu, X., Peyton, L., Kuziemsky, C.: A Requirement Engineering Framework for Electronic
Data Sharing of Health Care Data Between Organizations. In: MCETECH (2009)

28. Mussbacher, G., Amyot, D., Weiss, M.: Visualizing Early Aspects with Use Case Maps.
In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III. LNCS, vol. 4620, pp. 105–143.
Springer, Heidelberg (2007)

29. Wu, W., Kelly, T.P.: Deriving safety requirements as part of system architecture defini-
tion. In: Proceedings of the 24th International System Safety Conference, Albuquerque
(2006)

30. Wu, W., Kelly, T.: Managing Architectural Design Decisions for Safety-Critical Software
Systems. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 59–77. Springer, Heidelberg (2006)

31. Alexander, I.: Misuse cases: Use cases with hostile intent. IEEE Software 20(1), 58–66
(2003)

32. Sindre, G.: A look at misuse cases for safety concerns. International Federation for Infor-
mation Processing Publications - IFIP, vol. 244, p. 252 (2007)

33. Stålhane, T., Sindre, G.: A comparison of two approaches to safety analysis based on use
cases. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 423–437. Springer, Heidelberg (2007)

34. Stålhane, T., Sindre, G.: Safety Hazard Identification by Misuse Cases: Experimental
Comparison of Text and Diagrams. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 721–735. Springer, Heidelberg
(2008)

35. Sindre, G., Opdahl, A.L.: Misuse Cases for Identifying System Dependability Threats.
Journal of Information Privacy and Security 4(2), 3–22 (2008)

36. Diallo, M.H., et al.: A comparative evaluation of three approaches to specifying security
requirements. In: Proc. REFSQ 2006, Luxembourg (2006)

37. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse cases for
security threat identification. Information and Software Technology 51(5), 916–932 (2009)

38. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of informa-
tion technology. MIS quarterly 13(3), 319–340 (1989)

39. Lindqvist, U., Cheung, S., Valdez, R.: Correlated Attack Modeling, CAM (2003)

R. Wieringa and A. Persson (Eds.): REFSQ 2010, LNCS 6182, pp. 276–277, 2010.
© Springer-Verlag Berlin Heidelberg 2010

How Do Software Architects Consider Non-Functional
Requirements: A Survey

David Ameller and Xavier Franch

Universitat Politècnica de Catalunya (UPC)
{dameller,franch}@essi.upc.edu

Abstract. [Context and motivation] Non-functional requirements (NFRs) play
a fundamental role when software architects need to make informed decisions.
Criteria like efficiency or integrity determine up to a great extent the final form
that the logical, development and deployment architectural views take. [Ques-
tion/problem] Continuous evidence is needed about the current industrial prac-
tices of software architects concerning NFRs: how do they consider them, and
what are the most influential types in their daily work. [Principal ideas/results]
We ran a web survey addressed to software architects about these issues. We
got 60 responses that give some light to the questions above. [Contribution]
Some empirical data has been gathered from industry. The results of this survey
may serve as input for researchers in order to decide in which types of NFRs
may be necessary to invest more research effort.

Keywords: Non-Functional Requirements, Software Architectures, Web
Survey.

1 The Survey

The survey has been developed following an iterative methodology. Each iteration
has been revised by IT experts and researchers of the area. For the implementation we
chose LimeSurvey, an open source project for developing surveys.

For the dissemination of the survey we used two strategies. On the one hand,
personal contact with software architects and on the second hand, advertisement in
IT communities hosted in common sites such as LinkedIn and Facebook. We have
contacted more than 10 software architects and advertised in the International Asso-
ciation of Software Architects (IASA) group. The survey was running during the
year 2009.

The survey had questions about software development. Concretely, we asked
about the used architectural styles, the type of developed applications, the techno-
logic platforms used in them, and questions about Non-Functional Requirements
(NFRs).

In this work we show the results about NFRs and their relationship to the used
architectural style, the type of developed application, and the used technologic
platform.

 How Do Software Architects consider Non-Functional Requirements: A Survey 277

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical No answer

Maintainability

Reusability

Efficiency

Reliability

Usability

Portability

Cost

Standards compliance

Organizational

Fig. 1. Importance for architects of the different types of NFRs

2 The Results

We had 60 responses to the survey. The main results of this survey about NFR may be
summarized as follows:

• Respondents answered about the importance of NFRs in their habitual software
development practices: while 96% of respondents consider NFR (73% at the same
level as functional requirements), only 57% use NFR to make architectural and
technological decisions.

• Respondents rated nine types of NFRs with respect to the importance to their pro-
jects as shown in Fig. 1. Requirements such as maintainability, reusability, effi-
ciency, reliability, and usability have a tendency of being more important for archi-
tects than portability, cost, standard compliance, and organizational NFR.

• 80% of respondents declared that the development tools that they use are not well-
suited for analysing the compliance with the specified NFRs, whilst 70% would
like to have them. For us this is a clear indicator that there is an unsatisfied need in
software industry.

Other results (e.g., some relations between NFRs and used architectural styles) were
also found when analyzing the data gathered.

3 Conclusions

This survey can be seen as an instrument to show the differences in software devel-
opment practices between research and industry. In particular, we show the impact of
NFRs in the software development practices.

Our position is that a way to obtain empirical evidence about the current state of
software architectures usage in IT companies and organizations is asking the involved
actors.

Author Index

Alexander, Ian 1
Ameller, David 276

Bebensee, Thomas 67
Berry, Daniel M. 91
Biffl, Stefan 188
Bittner, Margot 173
Brill, Olesia 30
Brinkkemper, Sjaak 67

Creighton, Oliver 218

Daun, Marian 45
de Bruijn, Fabian 233
Dekkers, Hans L. 233
De Lazzer, François 85
Deridder, Dirk 106
Dörr, Jörg 113

Engström, Emelie 128
Ernst, Neil A. 143

Feldt, Robert 79, 128
Ferrari, Remo 23
Franch, Xavier 85, 276
Fricker, Samuel 60

Geisler, Jens 23
Gervasi, Vincenzo 248
Gleich, Benedikt 218
Gorschek, Tony 128

Henke, Christian 23
Heymans, Patrick 106
Hubaux, Arnaud 106

Islam, Shareeful 255

John, Isabel 113

Karpati, Peter 262
Kauppinen, Marjo 158
Knauss, Eric 30
Kof, Leonid 218
Komssi, Marko 158

Leuser, Jörg 203
Loconsole, Annabella 128

Madhavji, Nazim H. 23
Mich, Luisa 91
Moser, Thomas 188
Mouratidis, Haralambos 255
Mylopoulos, John 143

Omoronyia, Inah 188
Opdahl, Andreas L. 262
Ott, Daniel 203

Paech, Barbara 17
Palomares, Cristina 85
Pohl, Klaus 45
Proynova, Rumyana 17

Quer, Carme 85

Regnell, Björn 128
Reiser, Mark-Oliver 173
Renault, Samuel 85
Runeson, Per 128

Sabaliauskaite, Giedre 128
Sakhnini, Victoria 91
Sawyer, Pete 2
Schafer, Wilhelm 23
Schneider, Kurt 30
Schobbens, Pierre-Yves 106
Shahrokni, Ali 79
Sikora, Ernst 45
Sindre, Guttorm 188, 262
Soikkeli, Raimo 158
St̊alhane, Tor 188
Sudmann, Oliver 23
Sunindyo, Wikan 188

Toro, Kimmo 158

Unterkalmsteiner, Michael 128
Uusitalo, Eero 158

280 Author Index

van de Weerd, Inge 67
Villela, Karina 113

Wagner, Stefan 255
Weber, Matthias 173

Welsh, Kristopher 2
Wetter, Thomas 17
Wicht, Andreas 17

Zowghi, Didar 248

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote
	Keynote Talk Piecing Together the Requirements Jigsaw-Puzzle

	Decision-Making in Requirements Engineering
	Understanding the Scope of Uncertainty in Dynamically Adaptive Systems
	Introduction
	Claim Reasoning
	Modeling DASs with LoREM
	Case Study
	Related Work
	Conclusions
	References

	Use of Personal Values in Requirements Engineering – A Research Preview
	Introduction
	Personal Values
	Relating Personal Values and Requirements
	Related Work
	Conclusion and Outlook
	References

	Requirements and Systems Architecture Interaction in a Prototypical Project: Emerging Results
	Introduction
	The Case Study
	Emerging Results
	Architectural Impact on RE Decision-Making (Q1)
	Impact of Affected Decisions on Processes and System (Q2)

	Implications
	Related Work
	Conclusion
	References

	Scenarios and Elicitation
	Videos vs. Use Cases: Can Videos Capture More Requirements under Time Pressure?
	Introduction and Context
	Video Opportunities in Requirements Engineering
	Related Work
	Experiment Design
	Goals of Investigation
	Research Questions and Hypotheses
	Preparing Metrics for the Experiment
	Rationale of Experiment Design

	Results
	Interpretation of Results

	Discussion of Validity
	Conclusion and Outlook
	References

	Supporting the Consistent Specification of Scenarios across Multiple Abstraction Levels
	Introduction
	Need for Specifying Requirements at Different Abstraction Levels
	Need for Checking Requirements Consistency across Abstraction Levels
	Main Objectives of the Scenario-Based RE Approach

	Specification of Scenarios Using Message Sequence Charts
	Basic and High-Level Message Sequence Charts
	Specifying Use Cases and Scenarios Using Message Sequence Charts

	Specification of Scenarios at Two Abstraction Levels
	Specification of System Scenarios and Use Cases
	Specification of Component Scenarios and Use Cases
	Comparison of System and Component Scenarios

	Computation of Differences between Scenarios across Two Abstraction Levels
	Normalisation of the Message Sequence Charts
	Transformation of the Scenarios into Interface Automata
	Computation of the Differences between the Scenarios
	Analysis of the Computed Differences

	Evaluation of the Approach
	Related Work
	Conclusion
	References

	Product Families I
	Requirements Value Chains: Stakeholder Management and Requirements Engineering in Software Ecosystems
	Introduction
	Requirements Value Chains
	A Negotiation-Based View of Requirements Value Chains
	Example of a Requirement Value Chain

	Research Issues
	Summary and Conclusions
	References

	Binary Priority List for Prioritizing Software Requirements
	Introduction
	Requirements Prioritization Techniques
	Research Question

	Rationale and Research Approach
	Binary Priority List
	Case Studies
	Approach
	Research Sites
	Results
	Discussion

	Conclusion and Further Research
	References

	Requirements Patterns
	Towards a Framework for Specifying Software Robustness Requirements Based on Patterns
	Introduction
	The ROAST Framework
	Robustness Requirements Levels
	Robustness Specification Patterns

	Conclusion
	References

	A Metamodel for Software Requirement Patterns*
	Introduction
	Structure of a Requirement Pattern
	Conclusions and Future Work
	References

	Validation of the Effectiveness of an Optimized EPMcreate as an Aid for Creative Requirements Elicitation
	Introduction
	The EPMcreate Technique
	Basic, Full EPMcreate
	EPMcreate in Practice
	Power Only EPMcreate

	Experiment Design and Planning
	Hypotheses
	Measuring the Effectiveness of a CET
	Steps of the Experiment
	Assigning Subjects into Balanced Groups

	Experimental Results and Analysis
	Evaluation of the Quantity of the Requirement Ideas
	Evaluation of the Quality of the Requirement Ideas
	Analysis of Corroboratory Data
	Summary of Analysis

	Threats to Validity and Limitations
	Conclusions
	References

	Product Families II
	Towards Multi-view Feature-Based Configuration
	Introduction
	Feature Diagram
	Motivating Example
	Multi-view Feature Diagrams
	Conclusion
	References

	Evaluation of a Method for Proactively Managing the Evolving Scope of a Software Product Line
	Introduction
	Method Overview
	Integration into the Scoping Process
	Quasi-experiment
	Definition
	Planning
	Operation
	Data Analysis
	Comments and Interpretation of Results

	Conclusion
	References

	Requirements Engineering in Practice
	Challenges in Aligning Requirements Engineering and Verification in a Large-Scale Industrial Context
	Introduction
	Related Work
	Research Approach
	Research Methodology
	Validity Discussion

	Analysis and Result
	Organization and Processes Related Issues
	People Related Issues
	Tools Issues
	Requirements Process Related Issues
	Testing Process Related Issues
	Change Management Issues
	Traceability Issues
	Measurements Issues

	Conclusions and Further Research
	References

	On the Perception of Software Quality Requirements during the Project Lifecycle
	Introduction
	Related Work
	Methodology
	Step I Establishing the Corpora
	Step II Defining Qualities with Signifiers
	Step III Querying the Corpora
	Step IV Precision and Recall

	Observations and Discussion
	Data Distribution
	Examining Quality Discussions over Time
	Quality Importance and Project
	Threats to Validity
	Models of Quality Requirements

	Conclusions and Future Work
	References

	Lessons Learned from Integrating Specification Templates, Collaborative Workshops, and Peer Reviews
	Introduction
	Related Work
	Specification Templates
	Collaborative Workshops
	Peer Reviews

	Research Design
	Research Approach
	Case Study Companies
	Data Collection and Analysis
	Threats to Validity

	Problems Faced with the Use of the Three RE Practices
	Integrating the Three RE Practices
	Success Factors of the Integration
	Setup Workshop as a Crucial Component of the Integration

	Discussion and Conclusions
	References

	A Case Study on Tool-Supported Multi-level Requirements Management in Complex Product Families
	Introduction
	The Multi-level Approach
	Tool Support Used in the Case Study
	The N-Lighten Case Study
	Lessons Learned and Extensions
	Conclusion
	References

	Natural Language
	A Domain Ontology Building Process for Guiding Requirements Elicitation
	Introduction
	Related Work and Research Issues
	Ontology Suitable for Guided Requirements Elicitation
	Rule-Based Baseline Ontology Extraction

	Evaluation and Discussion
	Manually Generated and Rule-Based Comparison of Elicitation Ontology
	Lessons Learned and Limitations of Rule-Based Approach

	Conclusion and Further Work
	References

	Tackling Semi-automatic Trace Recovery for Large Specifications
	Introduction
	TheProblem
	The Datasets

	Information Retrieval
	TheTraceTool
	Investigated Optimizations
	Dynamic Signal Weighting (DSW)
	Domain Language (D)
	Filtering Redundant Texts (frt)
	Filtering According to Meta-data (fmd)

	Results
	Discussion
	Related Work
	Conclusions
	References

	Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources
	Requirements Documents Are Ambiguous
	Computational Linguistics Technique: Part-of-Speech Tagging
	Types of Ambiguities Detected by the Tool
	Ambiguity Detection and Presentation
	Evaluation
	Related Work
	Summary
	References

	Ambiguity in Natural Language Software Requirements: A Case Study
	Introduction
	Research Question
	The Importance of Unambiguous Requirements
	Communication in Requirements Engineering
	RelatedWork

	Research Method
	Case Study Project Information
	Establishing Ambiguity
	Relating Issues to Ambiguous Requirements

	Results
	Measured Ambiguity
	Issue Causes

	Evaluation
	Threats to Validity
	Validity of the Tests to Determine Ambiguous Requirements
	Validity of the Root Cause Analysis

	OtherObservations
	Conclusion
	Future Work
	References

	Security Requirements
	On the Role of Ambiguity in RE
	Introduction
	Ambiguity and Interpretation
	Sources of Ambiguity
	Ambiguity, Abstraction, Absence
	Conclusions

	Towards a Framework to Elicit and Manage Security and Privacy Requirements from Laws and Regulations
	Introduction
	Overview of the Framework
	Example
	Related Work
	Conclusion
	References

	Visualizing Cyber Attacks with Misuse Case Maps
	Introduction
	Modelling Techniques for Security Requirements
	Security Requirements
	Use Case Maps (UCM)
	Use Case Maps and Anti-functional Requirements
	Misuse Cases (MUC)

	Misuse Case Maps (MUCM)
	The Need for Misuse Case Maps
	Basic Concepts
	Notation

	A Complex Intrusion Example
	The Bank Intrusion Case
	MUCM

	Preliminary Evaluation
	Conclusions and Future Work
	References

	Poster
	How Do Software Architects Consider Non-Functional Requirements: A Survey
	The Survey
	The Results
	Conclusions

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

