
SAT Solving with Reference Points�

Stephan Kottler

Wilhelm–Schickard–Institute, University of Tübingen, Germany

Abstract. Many state-of-the-art SAT solvers use the VSIDS heuristic to
make branching decisions based on the activity of variables or literals. In
combination with rapid restarts and phase saving this yields a powerful
decision heuristic in practice. However, there are approaches that moti-
vate more in-depth reasoning to guide the search of the SAT solver. But
more reasoning often requires more information and comes along with
more complex data structures. This may sometimes even cause strong
concepts to be inapplicable in practice.

In this paper we present a suitable data structure for the DMRP
approach to overcome the problem above. Moreover, we show how DMRP
can be combined with CDCL solving to be competitive to state-of-the-art
solvers and to even improve on some families of industrial instances.

1 Introduction

Research in satisfiability checking (SAT) has managed to bridge the gap between
theory and practice in many aspects. There are several kinds of real-world prob-
lems that are actually tackled by modelling those problems as SAT instances
like hardware and software verification [21,10], planning [11], automotive prod-
uct configuration [13] and haplotype inference in bioinformatics [15] (cf. [16]).

In the domain of SAT solving there are different schemes and even more
variants of these schemes to decide whether there exists a satisfying assignment
to the variables of a Boolean formula in CNF or if a formula cannot be satisfied by
any assignment. Both experiments and applications show that there is no perfect
SAT solving approach that is suited for all different categories and families of
problem instances. However, conflict-driven solving has proven itself to be very
successful on a wide range of benchmarks. In this paper we study the quite new
DMRP algorithm (decision making with a reference point) [8,9] from a practical
point of view. Moreover, a hybrid approach that combines DMRP and CDCL
solving is presented which is also motivated by experimental evaluations.

The paper is organised as follows: In section 2 we sketch related work in the
domain of CDCL and DMRP solving. Section 3 examines the DMRP approach
from a practical point of view and we introduce a new implementation for this
approach. In section 4 we motivate the combination of CDCL and DMRP to a
new hybrid approach. In section 5 some experimental results are presented.

� This work was supported by DFG-SPP 1307, project “Structure-based Algorithm
Engineering for SAT-Solving”.

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 143–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 S. Kottler

2 Related Work

In this chapter two different SAT solving approaches are sketched. The state-of-
the-art conflict-driven solving and the quite recent DMRP approach that oper-
ates on complete assignments. By V(F) resp. Γ (F) we state the set of variables
resp. clauses of a formula F (we omit F if evident). A clause consists of literals
li that are variables v or their negations v. The polarity of a literal is true or
false respectively. var(l) indicates the variable of literal l.

Conflict-Driven Solving. Conflict-driven solving with clause learning (CDCL)
is a leading approach and is especially but not only successful for industrial prob-
lems. It is based on the GRASP algorithm [17] which extends the original DPLL
branch-and-bound procedure [5,4] by the idea of learning from conflicting assign-
ments. Moreover, conflicts are analysed to jump over parts of the search space
that would cause further conflicts. There are several improvements to the original
algorithm like the two-watched-literal data structure and the VSIDS (variable
state independent decaying sum) variable selection heuristic [18]. In recent years
further improvements have been achieved by developing different restart strate-
gies like the concept of rapid and adaptive restarts [3,2] and so-called Luby
restarts [14]. In combination with phase-saving [19] frequent restarts constitute
a strong concept especially for industrial SAT instances.

Decision Making with a Reference Point. DMRP is a new SAT solving ap-
proach that was proposed by Goldberg in [8,9]. Even though DMRP uses Boolean
constraint propagation (BCP) with backtracking and learning from conflicting
assignments it is not a simple variant of CDCL. In difference to CDCL solvers
DMRP additionally holds a complete assignment (a so-called reference point).
The algorithm aims for modifying the current reference point P to P ′ in order
to satisfy a clause under consideration. Furthermore, it is crucial that all clauses
being satisfied by P remain satisfied by the modified reference point P ′.

Algorithm 1 gives an overview of the DMRP approach, though this notation
varies in some ways from the original notation in [9]. One invocation of the
DMRP subsolver (line 7 of Algorithm 1) takes a clause and a reference point as
arguments. It may either compute a modification to the reference point or it may
learn the empty clause or else it times out. The latter case causes the surrounding
algorithm to call the DMRP subsolver with another unsatisfied clause.

3 A Closer Look at DMRP

Taking the set of clauses that are not satisfied by a current assignment as basis
for branching decisions requires the solver to know this set of clauses. This could
be realized analogously to how it is implemented in many local search approaches
[20,7] where the solver keeps track of clauses that change their state from ’sat-
isfied’ to ’not satisfied’ and vice versa whenever the value of a variable changes.
However, for any variable v this implies the solver to know all clauses where v

SAT Solving with Reference Points 145

Algorithm 1. Sketch of the DMRP approach
Require Formula F in CNF with V, Γ the set of variables and clauses, a
reference point P and any two timeout criteria T1, T2

Function solveDMRP(F,P , T1, T2)
M← {C ∈ Γ (F) | C not satisfied by P} ;
while ¬T1 do

if M = ∅ then return ’Satisfiable’;
6 C ← remove any clause from M ;
7 res← dmrpTryModifyPoint(F \M, C,P , T2) ;

if res = ’Unsatisfiable’ then return ’Unsatisfiable’;
else if res = ’Timeout’ thenM←M∪ {C} ;
else
P ← modify(P , res) ; /* adapt ref. point */

M← {C ∈ Γ | C not satisfied by P} ;

Require (Sub)formula F ′, a clause C that shall be satisfied by modification of
the current point P , and a timeout criteria T

14 Function dmrpTryModifyPoint(F ′ , C,P , T)
D ← {C} Pt ← P ;
while ¬T do

if D = ∅ then return Pt ; /* found valid modification of P */

C ← choose any clause from D ;
l ← l ∈ C | Pt \ {l} ∪ {l} satisfies maximal number of clauses in D ;
< res,Pt >← boolean-constraint-propagation(F ′, l := true,Pt) ;
while res = ’Conflict’ do

22 lemma← analyze-conflict(F ′, res) ;
if lemma = ∅ then return ’Unsatisfiable’;

24 Pt ← backtrack-reset-point(F ′, lemma) ;
25 < res,Pt >← learn-and-propagate(F ′, lemma,Pt) ;

D ← {C ∈ Γ (F ′) | C not satisfied by Pt} ;

return ’Timeout’

resp. v occurs in. Since the two watched literals scheme was introduced [18] most
CDCL based solvers do not maintain complete occurrence-lists of variables.

In this section we present a data structure that allows for a fast computation
of the most frequently required information in the DMRP approach by simulta-
neously avoiding the maintenance of complete occurrence-lists.

3.1 Different States of Variables

In CDCL solvers each variable v can actually have three values: val(v) ∈ {true,
false, unknown}. In general, any variable whose value is known has either been
chosen as decision variable or its value was implied by BCP. To undo decisions
and their implications both types of assignments (decisions and implications)
are placed on a stack (often called trail) in the order they are assigned [6,3].

In the DMRP algorithm we introduce two different kinds of values expressed
by the functions pval and tval: The DMRP algorithm maintains a reference

146 S. Kottler

point P which is an assignment to all the variables in the formula. Hence, for
any variable v in the formula the reference point P either contains v or its
negation v. For a variable v we refer to its value in P by pval(v) ∈ {true, false}.
The second kind of value tval(v) is used to state a temporary modification of
pval(v). The default of tval(v) ∈ {true, false, ref} is ref which indicates that
the corresponding variable is not affected by the current temporary modification
of P and hence the value given by pval(v) is valid. During the search for a
modification of P to P ′ (line 14 of Algorithm 1) that reduces the set of unsatisfied
clausesM toM′ ⊂M the temporary value tval(v) �= ref hides pval(v) for any
variable v. For any literal l with polarity b the function pval(l) (resp. tval(l))
is true iff pval(var(l)) = b (resp. tval(var(l)) = b) and it is tval(l) = ref iff
tval(var(l)) = ref .

3.2 Clauses Satisfied by the Reference Point

In addition to standard SAT solving the algorithm has to maintain a reference
point P . Obviously, if all clauses Γ are satisfied by P the algorithm has found
a model for the formula. Hence, for the remaining section we assume the set of
clausesM that contains all clauses not satisfied by P to be non-empty.

After any initialisation of P the setM can be computed by simply traversing
Γ . However, whilst the algorithm tries to modify P in order to satisfy more
clauses of M we have to keep track of those clauses in Γ \ M that become
temporarily unsatisfied by a temporarily modified reference point. These clauses
are put onto a stack D which is described further below. The first matter is
how to compute the clauses that become unsatisfied by a modification of the
reference point.

Similar to the concept of watched literals [18] for each clause C in Γ \M we
choose one literal l ∈ P to take on responsibility for C regarding its satisfiability
by the current reference point P . By definition for any clause in Γ \ M at
least one such literal l ∈ C has to exist with pval(l) = true. We say a literal l is
responsible for a set of clauses R(l). Whenever the value of a variable v := var(l)
changes from tval(v) = ref to ¬pval(v) all clauses in R(l) have to be traversed.
For each clause C ∈ R(l) a new literal from the current (modified) reference
point has to be found that takes on responsibility for C.

Note that - in addition to the responsibilities regarding the reference point -
there are also two literals per clause that watch this clause in the sense of the
usual two-watched-literal scheme [18]. This is necessary to notice whenever a
temporary modification (tval) generates a unit clause or completely unsatisfies
a clause. Let the set of clauses that are watched by a literal l be W (l). We
examine this in more detail now.

Whenever the value of a variable is changed whilst searching for a modified
reference point P ′ (tval is changed) we have to take care of W (l) and R(l) of
the corresponding literal l that became false under tval. When examining W (l)
the usual three cases may happen for any affected clause C that is watched by l
and any other literal lw ∈ C. For these cases only the values of tval act a part:

SAT Solving with Reference Points 147

W.1 Another literal lj ∈ {C \ lw} with tval(lj) �= false can watch C.
W.2 There is no other literal in {C \ lw} that is not false. Hence tval(lw) has

to be set to true to satisfy C.
W.3 If in the second case above tval(lw) is already set to false a conflict-

ing assignment is generated and the algorithm jumps back to resolve the
conflict.

The following update is done after the list W (l) was examined successfully:

R.1 If tval(l) equals pval(l) nothing has to be done.
R.2 tval(l) differs from pval(l) and another literal in C can be found to take

responsibility for C. This might be any literal lj ∈ C for which it is
tval(lj) = ref and pval(lj) = true. In that case C is removed from R(l)
and put into R(lj). Or we might find a literal with tval(lj) = true. In
that case C remains in R(l) since tval(lj) was obviously assigned before
the current modification of l in the reference point.

R.3 tval(l) differs from pval(l) but no other literal ∈ C satisfies C under
the current temporary point. In that case C is put on the stack D that
keeps track of all clauses that are not satisfied by the current temporary
reference point. Note that since W (l) was examined first there are at least
two literals li, lj ∈ C for which tval(li) = tval(lj) = ref and pval(li) =
pval(lj) = false. If this did not hold one of the cases W.2, W.3 or R.2
would apply.

Note that this implementation (sketched in Algorithm 2) allows for backtracking
without any updates of the sets R(l) of any literal l. The responsibility list1R(l)
only has to be examined when tval of a variable changes from ref to true or
false not for the opposite case. Moreover, the data structure is sound in the
sense that no clause that becomes unsatisfied by P will be missed.

3.3 Keeping Track of Temporarily Unsatisfied Clauses

While trying to modify a reference point P to P ′ to reduce the setM of clauses
that are unsatisfied by P to M′ ⊂ M a data structure D is used to store
those clauses that are unsatisfied by any temporary reference point Pt. In the
subsection above we described when clauses are added to D. The data structure
D has to meet three main demands:

– Clauses that are not satisfied by the current point Pt have to be found in
reasonable time without having to traverse the clause’s literals at each look-
up in the data structure.

– Backjumping over parts of the temporary modification (due to a conflict -
see case W.3) has to be very fast with least possible overhead to update D.

1 For any literal l the list R(l) is only meaningful if pval(l) = true. To save memory,
responsibility lists can be associated with variables in practice.

148 S. Kottler

Algorithm 2. Update data structure when the value of a variable changed
Require A variable v ∈ V where tval(v) was changed from ref to
b ∈ {true, false}. Let lc be the literal of v with tval(lc) = false.
Function onChangeOfVariableTVal(v)

forall C ∈ W (lc) do
lw ← other watcher of C (lw �= lc) ;
if tval(lw) = true then continue;
if ∃ ln ∈ C : tval(ln) �= false ∧ ln �= lw then

W (lc)←W (lc) \ {C}; W (ln)←W (ln) ∪ {C}
else if tval(lw) = false then return ’conflict’;
else tval(lw)← true; ; /* usual two watched literal scheme */

if tval(v) = pval(v) then return ’ok’ ; /* R.1 */

forall C ∈ R(lc) do
if ∃ l0 ∈ C : tval(l0) = ref ∧ pval(l0) = true then

R(lc)← R(lc) \ {C}; R(l0)← R(l0) ∪ {C} ; /* R.2.1 */

else if ∃ l0 ∈ C : tval(l0) = true then continue ; /* R.2.2 */

else push C at D ; /* R.3 */

– When a temporarily unsatisfied clause C is chosen from D by the decision
procedure the set ΛC = {l ∈ C : tval(l) = ref} contains those literals
whose value in Pt may possibly be modified to satisfy C (as stated in case
R.3 above it is |ΛC | ≥ 2). Our data structure has to support finding that
literal of ΛC which satisfies the most clauses in D.

Fast Backjumping. The main data structure is depicted in Figure 1. Since the
second issue above is fundamental we use a stack to realise D which has one entry
pL for each decision level. Each entry itself basically points to a set of clauses L
that became unsatisfied by the current point Pt at this level. In addition each
L has a flag that indicates if the referred clauses still have to be considered
to belong to D. This allows for very fast backjumping: For each level we jump
back the according flag in L is set to false, the set of clauses in L is deleted
and pL is popped from the stack. This means a negligible overhead compared to
backjumping in CDCL solving. Note, that an entry pL which is removed from
the stack does not destroy the corresponding set L which allows other data still
to refer to L. These invalid references may be updated lazily later on. Another
important advantage of this implementation will become evident further below.

Finding clauses not satisfied by Pt. To find those clauses in D that still
have to be satisfied by further modifications of the current point Pt the clause
sets L that are referred by entries pL of the stack have to be traversed. Let this
procedure be called findUnsat(D). We do not remove any satisfied clause C from
any set L that is still flagged to be valid since this would require to put such
clauses back into L whenever the satisfying modification to C is undone. Instead,
we additionally cache a literal for each clause in L as a kind of representative.

SAT Solving with Reference Points 149

Fig. 1. Basic data structure to represent D

Thus any entry in L (besides the flag) is an element LC which itself consists of
a clause C and one representative literal l ∈ C. When a clause C in a set L is
found to be satisfied by a temporary point Pt the representative literal l is set
to that one which actually satisfies this clause (tval(l) = true).

When searching for unsatisfied clauses in D we first check the state of the
representative literal before the entire clause is checked. On the one hand this
guarantees that a satisfied clause is not checked twice unless a modification
makes this necessary. On the other hand significant changes of Pt to the satisfi-
ability state of any clause are not missed. The latter issue would require extra
maintenance if only Boolean flags were used to mark satisfied clauses. To find
clauses in D that are still unsatisfied by the current point Pt we traverse the
stack from its top2 to its bottom. This prefers the most recently added clauses.
The first clause that is found to be unsatisfied by Pt is taken as basis for the
next branching decision.

Computation of the MakeCount of variables. Given a clause C∗ that is
unsatisfied under the current point Pt the algorithm has to find that literal of
ΛC∗ = {l ∈ C∗ : tval(l) = ref} which satisfies most clauses in D (or optionally
D ∪M) when its value in Pt is changed. To compute this so-called MakeCount
of a variable we use another data structure that interplays with the above one.
This data structure allows for lazy computation of the MakeCount of a variable
and is basically organised as follows:

Each variable v that is not yet affected by the temporary modification of
the reference point Pt (tval(v) = ref) is associated with a list Ωv of elements
M . Each element represents a clause in D that can be satisfied by flipping the
current value of v in the point Pt. Due to the laziness of the data structure it
might be that an element M is out of date. More precisely (see Figure 2) each
element M (representing a clause C) in a list of variable v consists of two fields:

The first field references the set L of clauses in which C is contained. The
second field is an index into L that indicates the particular clause C (i.e. the
according element LC) that can be satisfied by flipping the value of v in Pt.

2 An index into D can be cached such that search only starts from the top of D if a
conflict occurred at the previous decision.

150 S. Kottler

Fig. 2. Computation of the MakeCount of variables

Whenever case R.3 from above applies for a clause C a pointer to C and any
representing literal are wrapped into an object LC. This data is appended to
the set of clauses L which is referenced from the topmost entry on the stack D.
At this point we also add an entry M to the Make-lists (Ωv) of all variables v of
ΛC = {l ∈ C : tval(l) = ref}. We take a closer look at the different cases when
computing the valid MakeCount from the possibly out-of-date information:

– It might be that an element M refers to a clause that has already been
removed from D. In that case the flag of the structure L referenced by M
has been invalidated during backtracking. Hence, this case can be realised
immediately and M can also be deleted from the list.

– We can assume now that the clause C indirectly referenced by M is still
contained in D. Let us assume for now that C is already satisfied by a
further modification of the point Pt. Recall, that what we actually get from
M is a reference to LC - the clause C and a representing literal l of C. We
can distinguish between two cases:
• C might have been already considered by the procedure findUnsat(D) to

find unsatisfied clauses in D as described above. In that case findUnsat()
has changed the representative literal l such that by checking the value
(tval) of l in Pt we know that C is satisfied and we are done.
• If C was not considered by findUnsat(D) yet, the satisfiability state of

the clause has to be computed by checking its literals. Given that C is
satisfiable under Pt a literal that satisfies C will be found and will be
made the representative literal for this clause in LC. This allows for fast
detection of the satisfiability of C later on and will relieve findUnsat(D)
from checking all literals of C. The representing literal guarantees that
for each temporary point Pt there is at most one traversal through all
literals of a clause to recognise that this clause is satisfied by Pt.

– In case C is not satisfied by the current point Pt this is recognised by a check
of all literals in C.

The realisation of the set D and the data structure to compute MakeCounts of
variables follows the concept of lazy data structures and avoids to store complete
occurrence lists for literals. MakeCount lists do not require any update operation
on backjumping. Even though indices in M become undefined when the referred

SAT Solving with Reference Points 151

set L is cleared during backjumping, this is not problematic since an index is
only used after L is asserted to be still valid by its flag.

The size of a list Ωv of a variable v gives an upper bound ̂Ωv on the valid
MakeCount of v. Hence, to determine the variable with maximum MakeCount of
a clause, the variables are traversed in descending order regarding ̂Ω. This allows
for early termination when ̂Ω becomes smaller than the actual valid maximum
MakeCount.

3.4 Learning

Two aspects that have to be considered for the realisation of the DMRP approach
are related to learning (Algorithm 1, line 22) as mentioned in case W.3:

Whenever a unit clause C = (l) is learned the algorithm jumps back to deci-
sion level 0, assigns l to be true and propagates all implications of this assign-
ment. This also requires a modification of the current reference point P to P ′

with a difference to previously described modifications: The set of clauses M′

unsatisfied by P ′ does not necessarily have to be a subset of M – the set of
clauses unsatisfied by the previous reference point P .

Secondly, for any learned lemma that is generated when a conflict is analysed
the data structure has to be updated properly. We use the following property.

Property: Any lemma generated by the function analyze-conflict in line 22 of
Algorithm 1 contains at least one literal l with l ∈ P (pval(l) = true) regarding
the current valid reference point P . In other words: No generated lemma extends3

the current setM.

Proof: We prove this property by the construction of learned lemmata. The
surrounding function dmrpTryModifyPoint (lines 7, 14 of Algorithm 1) only con-
siders clauses in Γ \M∪C where a modification of P is wanted that additionally
satisfies C. Since C is always the base for the decision at the first decision level
any temporary point Pt �= P will always satisfy C during one execution of dm-
rpTryModifyPoint. Hence, C can never be an assign-reason to an assignment of
a variable, since assign-reasons are clauses that become unit during the search.
Thus, all assign-reasons are clauses from the set Γ \M that, by definition, are
satisfied by at least one literal ∈ P .

Running into a conflict means that for a clause C0 (conflicting clause) all
literals are set to false. The lemma λ∗ is generated by recursively resolving
out variables (that were no decisions) from the conflicting clause by using the
according assign-reasons. C0 can be seen as the first version (λ0) of the generated
lemma λ∗. Given that C0 ∈ Γ \ M one of the literals of λ0 is in P . Let l∗ be
one literal ∈ λi with l∗ ∈ P (pval(l∗) = true). If any literal l′ �= l∗ is resolved
out from λi the resolvent λi+1 still contains literal l∗. If on the other hand l∗ is
resolved out by the use of its assign reason C∗, clause C∗ has to contain literal l∗.
Since C∗ ∈ Γ \M it also has to contain a literal l� ∈ P . Moreover, with l∗ ∈ P
it is l� �= l∗ and the new resolvent λi+1 contains literal l� ∈ P . By induction the
final lemma contains at least one literal that is in P . �	
3 Note the difference that generated lemmata always extend the formula.

152 S. Kottler

For any generated lemma λ∗ we chose that literal l ∈ P ∩λ∗ which was assigned
at the highest decision level d (most recently). By the above property at least
one such literal l has to exist. Literal l takes on responsibility for λ∗: R(l) ←
R(l) ∪ {λ∗}. The functions in lines 24 and 25 of Algorithm 1 determine a new
point Pt. If l /∈ Pt the lemma λ∗ is also appended to the list L that is referred by
the stack D for decision level d and considered for the MakeCounts as described
in the previous section 3.3. These two actions guarantee a proper update of the
entire data structure and no more special treatments are needed.

4 Combining DMRP and CDCL to a Hybrid Solver

In Algorithm 1 we assume the initial reference point to be given from outside. In
the original paper [9] reference points are chosen at random and are then tried
to modify by a call to function solveDMRP. In case no result can be computed
within a certain amount of time (i.e. number of conflicts) solveDMRP will be
invoked with a new initial point. This is similar to local search restarts but
with the difference that the DMRP algorithm itself carefully reasons on how to
modify a reference point. However, the choices of initial points are crucial for
the algorithm as presented in section 5.

As mentioned in section 2 CDCL solvers perform restarts quite frequently.
At a restart activity values of variables or literals are kept and also a subset
of the learned clauses is carried along for the next start. However, the current
partial assignment (all literals in the trail) is almost completely rejected, even
though phase saving keeps some information. This motivates a hybrid approach
that reasonably alternates the CDCL and the DMRP algorithms. The DMRP
approach offers a suitable possibility to take a closer look at the drawback of
a partial assignment before it is rejected. It may focus on the not yet satisfied
clauses.

Our recent implementation that is shown in Algorithm 3 combines both ap-
proaches by the use of the Luby et al. restart strategy [14] which proved itself
successful in both theory and practice. The Luby strategy assumes that the al-
gorithm does not have any external information and does not know when it is
best to perform a restart. In that case the available computation time is shared
almost equally among different restart strategies [14]. The function maxConflict-
Count in Algorithm 3 returns the number of conflicts for the next run due to the
Luby strategy. That is the product of a constant factor f and the next number
of the sequence (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, . . .) (see [14] for details).

The function chooseAlgo decides on which algorithm to use for the next run.
On average we achieved the best results when running the DMRP algorithm
exactly for the smallest conflict limit (when cl = f).

Since the DMRP algorithm requires a reference point i.e. an assignment to
all variables the last partial assignment of the CDCL solver has to be extended
to a complete assignment (extendPartialAssignmToRefPoint). This is done by
continuing the previous CDCL search with the last partial assignment. However,
within this execution only binary clauses are considered during search until all

SAT Solving with Reference Points 153

Algorithm 3. The hybrid approach
Require Formula F in CNF with V, Γ the set of variables and clauses
Function solveHybrid(F)

last← ’CDCL’ res← ’Unknown’ ;
while res = ’Unknown’ do

cl ← maxConflictCount() ; /* Use Luby strategy */

algo← chooseAlgo(cl) ; /* Apply CDCL or DMRP ? */

if algo = ’DMRP’ then
if last = ’CDCL’ then

< res,P >← extendPartialAssignmToRefPoint() ;
if res = ’Unsatisfiable’ then return res;

res← solveDMRP(F,P , cl, cl);

else res← solveCDCL(F, cl);
last← algo ;

return res;

variables are assigned a value. This assignment constitutes the initial reference
point for the DMRP algorithm. In this phase the solver may also realise that
the formula is unsatisfiable. For the case the partial assignment is empty (at
algorithm start) this function simply computes a reference point that satisfies
all binary clauses. Taking care of binary clauses at first is also motivated by
the work in [22] and [1] where the idea to primarily focus on binary clauses has
also improved solving for some families of instances. This also guarantees an
additional invariant for our data structure that a binary clause can neither be
contained in the setM nor in the delta stack D (resp. its elements).

Some Adaptions for the Hybrid Approach

In addition to standard CDCL solving each clause of the formula is assigned an
activity value initialised to zero at the beginning. Whenever a clause is involved
in a conflict (i.e. it is used for resolution during the generation of a lemma)
its activity value is increased. In some solvers (for instance [6]) this technique
is common for learned clauses to clear the clause database of inactive learned
clauses periodically. Our hybrid solver maintains an activity value for every
clause.

This activity value of a clause is taken into account when the next clause from
set M has to be chosen (line 6 of Algorithm 1) to be handled by the function
dmrpTryModifyPoint. We always choose the clause with the highest activity
value for the next attempt to modify the current reference point. However, if the
call to dmrpTryModifyPoint times out or for two subsequent calls to solveDMRP
the next clause with the second highest activity value is chosen.

In contrast to the original DMRP algorithm the conflict limit (timeout) for
the function solveDMRP depends on the success of its subroutine dmrpTryModi-
fyPoint in line 7 of Algorithm 1. If the current reference point could be improved
the initial conflict limit is reset.

154 S. Kottler

The solver also differs in the computation of the MakeCount of a variable. For
the MakeCount one can count only the clauses currently in D to get the most
local improvement or all clauses in D ∪M can be considered to make decisions
more globally. For variables that have the same MakeCount ties can be broken
in favour of different issues which is explained in more detail in the next section.

5 Experiments and Evaluation

For the evaluation presented in this section we have run our solver for all in-
dustrial (application) instances of the SAT competitions resp. SAT Races of the
years 2006 - 2009 that add up to 564 non-trivial4 instances. Each instance is
preprocessed in advance and the timeout for the solvers was set to 1200 seconds.
As a reference and also to check results we have run our CDCL solver using the
Luby restart strategy (without DMRP) and MiniSAT 2.0 [6].

Figure 3 shows the results of different configurations of the hybrid approach.
Furthermore, there are results that show performance of a pure DMRP solver.
The presented configurations differ in the following issues that are related to
decision making: As mentioned above the MakeCount may consider all clauses
in D ∪M (global) or only clauses in D (local). If two variables have the same
MakeCount ties are broken in favour of the variable v that:

(Act) has the highest activity value similar to the VSIDS heuristic [18].
(BC) has the smallest set R(v). This can be seen as a simple approximation

of the BreakCount of the variable. In difference to the MakeCount the
BreakCount of a variable v states the number of clauses that become
unsatisfied by a flip of the value of variable v.

(DC) was chosen least often for DMRP decisions. This avoids flipping always
the same variables back and forth in different calls to solveDMRP.

The left plot of Figure 3 shows clearly that pure DMRP solving could not com-
pete with CDCL solving. Both pure DMRP configurations (global and local
MakeCount) solve around 224 of 564 instances within 1200 seconds. Initial ref-
erence points are always chosen at random. Timeouts for the analysis of one
reference point (one call to solveDMRP) are changed according to the Luby se-
quence. Modifying the strategy on how to choose initial reference points showed
quite some impact. Our assumption was that DMRP requires a better guidance
on where to start search and how to choose its initial reference points. That
motivates our hybrid approach where DMRP gets its initial reference points
indirectly from the CDCL solver. As the plots show this clearly improves the
performance of the solver.

A previous version of our hybrid approach [12] has taken part in the SAT com-
petition 2009. That version mainly differs from the presented one regarding the
restart strategy and the choice of when to perform DMRP resp. CDCL solving. It
also implemented a more extensive solving of particular subsets of clauses which

4 Instances that are not solved by preprocessing.

SAT Solving with Reference Points 155

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

T
im

e
[s

]

Number of Instances

DMRP vs. CDCL vs. Hybrid

DMRP [local MC > DC]
DMRP [global MC > DC]

MiniSAT 2.0
CDCL

Hybrid [global MC > DC]
Hybrid [global MC > Act]
Hybrid [local MC > BC]

Hybrid [global MC > BC]
Hybrid [local MC > Act]
Hybrid [local MC > DC]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 25 30 35 40 45 50

T
im

e
[s

]

Number of Instances

CDCL vs. Hybrid for industrial Velev instances

CDCL
Hybrid [local MC > DC]

Fig. 3. The left plot compares DMRP, CDCL and our hybrid approach on 564 in-
dustrial benchmarks. The right plot compares CDCL and the hybrid approach on 51
instances from hardware verification. A point (x, y) states that x instances were solved
within y sec. by that solver. Legends are ordered regarding the number of solved in-
stances after 1200 seconds. Using local (resp. global) MakeCount and smaller decision
count (resp. Activity or BreakCount) to break ties is indicated by [local MC > DC].

is only done for binary clauses in this improved approach. However, the results
indicate that the older version did not utilize the DMRP approach in a sufficient
way. Compared to MiniSAT 2.0 our hybrid approach also performs much better.
Admittedly, this is not only due to the hybridisation with DMRP. This version of
MiniSAT does neither use the Luby restart strategy nor phase saving. However,
the hybrid approach also clearly outperforms our CDCL implementation with
Luby restarts and phase saving.

The hybrid configuration where the MakeCount is computed locally outper-
formes the other configurations. It is interesting to notice that using the activity
of variables to break ties does not achieve the best results. It turns out that it
is better to prefer variables that were flipped least often at the current call of
solveDMRP.

The right plot of Figure 3 compares pure CDCL with the hybrid approach
on the 51 “Velev” instances of last years SAT competitions. For these instances
that stem from the domain of hardware verification the hybrid approach clearly
outperforms pure CDCL by solving 8 more instances.

Even though the hybrid implementation beats our pure CDCL solver on the
entire benchmark set it turns out that for the most instances solved by the
hybrid solver the answer was given by the CDCL part. Only about 6% were
finally solved by the DMRP subsolver. Moreover, the improvement due to the
hybridisation was mainly for unsatisfiable instances (17 more unsat results).

Our conjecture about this phenomenon is that DMRP generates some impor-
tant lemmata: When the CDCL solver reaches the (current) maximum number
of conflicts it delivers work to the DMRP solver. DMRP starts with an extension
R of the last partial assignment P of the CDCL solver and hence focuses on a

156 S. Kottler

nearby part of the search space. When analysing this part it purposely examines
clausesM that are not satisfied by R. In CDCL these clauses inM could likely
become conflicting clauses if decisions were made similar to the values in R.
Up to a certain point phase saving would do this after a normal CDCL restart.
However, DMRP immediately considers clauses inM for search and resolution.

6 Conclusion

In this paper we have presented a data structure to implement the DMRP ap-
proach in an efficient way. Similar to the two-watched-literals scheme we choose
one literal for each clause. The literal takes on responsibility so that a clause
which is satisfied by a reference point is also satisfied by a modification of the
point. Moreover, we present a way how to determine that variable which satisfies
the most previously unsatisfied clauses when its value is flipped (MakeCount).
Based on this implementation we motivate a hybrid SAT solver that combines
CDCL and DMRP solving. Experiments have shown that our hybrid approach
is competetive to the highly optimised state-of-the-art CDCL solvers and that
the maintenance of complete assignments may definitely turn to account.

References

1. Bacchus, F.: Exploring the computational tradeoff of more reasoning and less
searching. In: SAT 2002, pp. 7–16 (2002)

2. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008)

3. Biere, A.: Picosat essentials. JSAT 4, 75–97 (2008)
4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.

ACM Commun. 5(7), 394–397 (1962)
5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.

ACM 7(3), 201–215 (1960)
6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
7. Fukunaga, A.S.: Efficient Implementations of SAT Local Search. In: SAT (2004)
8. Goldberg, E.: Determinization of resolution by an algorithm operating on complete

assignments. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 90–
95. Springer, Heidelberg (2006)

9. Goldberg, E.: A decision-making procedure for resolution-based SAT-solvers. In:
Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 119–132.
Springer, Heidelberg (2008)

10. Ivancic, F., Yang, Z., Ganai, M., Gupta, A., Ashar, P.: Efficient SAT-based bounded
model checking for software verification. Theoretical Computer Science 404(3)
(2008)

11. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth
European Conference on Artificial Intelligence ECAI 1992, pp. 359–363 (1992)

12. Kottler, S.: Solver descriptions for the SAT competition (2009),
satcompetition.org

satcompetition.org

SAT Solving with Reference Points 157

13. Küchlin, W., Sinz, C.: Proving consistency assertions for automotive product data
management. J. Automated Reasoning 24(1-2), 145–163 (2000)

14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
In: ISTCS, pp. 128–133 (1993)

15. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: Making the case with haplotype
inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–
141. Springer, Heidelberg (2006)

16. Marques-Silva, J.P.: Practical Applications of Boolean Satisfiability. In: Workshop
on Discrete Event Systems, WODES 2008 (2008)

17. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC (2001)

19. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

20. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: Tenth National Conference on Artificial Intelligence (1992)

21. Velev, M.N.: Using rewriting rules and positive equality to formally verify wide-
issue out-of-order microprocessors with a reorder buffer. In: DATE 2002 (2002)

22. Zheng, L., Stuckey, P.J.: Improving SAT using 2SAT. In: Proceedings of the 25th
Australasian Computer Science Conference, pp. 331–340. E (2002)

	SAT Solving with Reference Points
	Introduction
	Related Work
	A Closer Look at DMRP
	Different States of Variables
	Clauses Satisfied by the Reference Point
	Keeping Track of Temporarily Unsatisfied Clauses
	Learning

	Combining DMRP and CDCL to a Hybrid Solver
	Experiments and Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

