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Preface

This volume contains the papers presented at SAT 2010, the 13th International
Conference on Theory and Applications of Satisfiability Testing. SAT 2010 was
held as part of the 2010 Federated Logic Conference (FLoC) and was hosted by
the School of Informatics at the University of Edinburgh, Scotland. In addition
to SAT, FLoC included the conferences CAV, CSF, ICLP, IJCAR, ITP, LICS,
RTA, as well as over 50 workshops. Affiliated with SAT were the workshops
LaSh (Logic and Search, co-affiliated with ICLP), LoCoCo (Logics for Com-
ponent Configuration), POS (Pragmatics Of SAT), PPC (Propositional Proof
Complexity: Theory and Practice), and SMT (Satisfiability Modulo Theories,
co-affiliated with CAV). SAT featured three competitions: the MAX-SAT Eval-
uation 2010, the Pseudo-Boolean Competition 2010, and the SAT-Race 2010.

Many hard combinatorial problems such as problems arising in verification
and planning can be naturally expressed within the framework of propositional
satisfiability. Due to its wide applicability and enormous progress in the perfor-
mance of solving methods, satisfiability has become one of today’s most impor-
tant core technologies. The SAT 2010 call for papers invited the submission of
original practical and theoretical research on satisfiability. Topics included but
were not limited to proof systems and proof complexity, search algorithms and
heuristics, analysis of algorithms, combinatorial theory of satisfiability, random
instances vs structured instances, problem encodings, industrial applications,
applications to combinatorics, solvers, simplifiers and tools, case studies and em-
pirical results, exact and parameterized algorithms. Satisfiability is considered in
a rather broad sense: besides propositional satisfiability, it includes the domain
of Quantified Boolean Formulae (QBF), Constraint Programming Techniques
(CP) for word-level problems and their propositional encoding and particularly
Satisfiability Modulo Theories (SMT).

The conference received 75 submissions, including 56 regular papers with a
page limit of 14 pages and 21 short papers with a page limit of 6 pages. Each
submission was reviewed by at least four members of the Program Committee.
The committee decided to accept 21 regular papers and 14 short papers. Six out
of the 14 submitted short papers were accepted; eight papers accepted as short
papers had been submitted as regular papers. Three of the short papers were
given a slightly larger page limit for the final version.

The program included 30-minute presentations of the accepted regular pa-
pers and 20-minute presentations of the accepted short papers. The program
also included invited talks by Yehuda Naveh and Ramamohan Paturi (extended
abstracts can be found in this volume) and presentations of the results of the
three affiliated competitions. In addition, this year’s program included an in-
vited tutorial on SMT by Daniel Kroening and a joint session with the SMT
workshop.
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The Big Deal: Applying Constraint Satisfaction

Technologies Where It Makes the Difference

Yehuda Naveh

IBM Research – Haifa, Haifa University Campus, Haifa 31905, Israel
naveh@il.ibm.com

Abstract. In my talk, I will present a few industrial-scale applications
of satisfaction technology (constraint programming and satisfiability),
all of which are of prime importance to the respective business. The
talk will focus on high-end solutions to unique but immense problems.
This, as opposed to off-the-shelf solutions which are suitable for more
commoditized problems. I argue that the former case is where cutting-
edge satisfaction technology can bring the most significant impact. The
following is an extended abstract of my talk.

1 Introduction

Constraint satisfaction technologies, including satisfiability (SAT) and its youn-
ger sibling constraint programming (CP), have fascinated the computer science
community for decades. One of the most intriguing aspects is their declarative
nature, bridging the gap between the front-end specification of the problem,
and the back-end algorithm which solves it. Thus, the unique position of the
discipline at the crossways of artificial intelligence, programming models, logic,
algorithms, and theory accounts for much of the charm of this area.

Furthermore, the declarative nature of constraint satisfaction is also the basis
of its strong practical importance, and provides the linkage to operations research
areas, in particular linear and non-linear optimization. The ability of the user
to specify the problem in a language which emerges from the actual application
domain may be of critical importance, especially in domains which are complex,
dynamic, and require a fast response.

The purpose of my talk is to present a few application domains which exhibit
those criteria, and to show how constraint satisfaction is applied in these do-
mains. The common theme of all applications I will describe is their immensity.
In fact, all applications have only a small number of instances worldwide (for
example, there are only a few high-end truck manufacturers in the world). How-
ever, each such instance is of a huge strategic importance to its company. My
claim is that it is those cases in which it is beneficial for the company to invest
a large effort (or a large amount of resources) in building a high-end constraint-
satisfaction-based solution. This, in contrast to the more traditional operations
research solutions, which are of a more commoditized nature, and which serve
to solve problems more commonly exhibited in many small and medium sized
businesses.

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 1–7, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 Y. Naveh

2 Hardware Verification

Hardware verification is perhaps the prime example of the application of satis-
faction technologies at a huge industrial scale. Here, the goal is to ensure that
a hardware design works according to its specification while still at the design
phase, before cast into silicon. The goal is so important that all large hardware
manufacturers, as well as electronic design tool vendors, have for years invested
a large amount of resources in the R&D of satisfaction technologies for this
domain.

2.1 Model Checking

Model checking [1] for hardware verification is beyond the scope of this talk
because the audience is intimately familiar with this topic. It is by far the largest
and most important industrial application of SAT technology.

2.2 Stimuli Generation

While model checking and other formal verification techniques have their clear
advantages, most notably the ability to formally prove functional correctness of
the design, they can hardly cope with modern complex designs at the level of
a single unit or larger. To this end, simulation-based verification, in which the
design behavior is checked by simulating it over external inputs, accounts for
roughly ninety percent of the overall verification efforts and resources.

The major challenge in such methods is in creating inputs, or ’stimuli’, which
are (1) valid according to the hardware specification and the simulation envi-
ronment, (2) interesting in the sense that they are likely to excite prone to bugs
areas of the design, and (3) diverse [2,3].

Item (1) is dealt with by modeling the entire hardware specification, as well as
that of the simulation environment, as a set of mandatory constraints over the
simulated variables (memory addresses, data transferred, processor instruction
parameters, and so on). Item (2) is dealt with in two ways: first, generic expert
knowledge is modeled as a set of soft, non-mandatory, constraints (for example,
a soft constraint may require the result of operation a+b to be zero, because this
is a known prone-to-bugs area of the floating point processing unit). In addition,
the verification engineer, who is directly responsible for creating the stimuli, may
add mandatory and non-mandatory constraints to any particular run, directing
the stimuli into required scenarios.

Figure 1 illustrates this scheme by considering two variables: the effective ad-
dress and the real address of a ’load’ instruction. These two variables are related
by architectural constraints (complex translation scheme), expert knowledge (re-
quirement to reuse cache rows), and specific verification scenarios.

Once modeled, this set of mandatory and non-mandatory constraints can be
fed into a constraint solver, which comes up with a solution to the constraint
problem in the form of a valid and interesting stimulus. In order to achieve
target item (3), the solver typically has a built-in diversification mechanism,
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Effective Address: 0x0B274FAB_0DBC0000

Real Address: 0x0002FFC5_90A4D000

User: EA aligned to 64K
RA in some corner memory space

Expert knowledge: Reuse cache row

Validity: Complex EA to RA translation

Fig. 1. Stimuli generation constraints on effective and real address values

meaning that each time it is called on the same input (same set of constraints),
a sufficiently different output (stimuli) is returned.

3 Workforce Management

Not many companies have a professional services workforce on the scale of tens of
thousands of professionals. However, those who are in this business face a critical
challenge [4]. How do they identify and assign a team of professionals who best
fit a specific customer engagement? Each of the professionals in the team must
be skilled — but not over-skilled — to do the job, must be available at the area,
or otherwise able to work remotely, must be free of their current engagement
and not committed to further projects before the expected end of the work, and
must have a personal affinity for the job. The team as a whole must have the
correct distribution of skills and of experience levels, must conform to the budget
requirements, and needs to be composed of professionals able to work together
with each other. In addition, at any given time we need to staff as many projects
as possible.

All those ’musts’ and ’needs’ better be met, or the projects would suffer the
consequences of assigning under-qualified or over-qualified teams. These con-
sequences include prolonged project durations, excessive compensation costs,
fines and interests, unnecessary commute, and disruption to other projects. In
addition to monetary losses, a poorly staffed project may result in an unsat-
isfied customer and demotivated professionals, leading eventually both to cus-
tomer churn and employee attrition, which may become a death stroke for the
business.

The above problem translates into a constraint problem, where some of the
constraints have a clear mathematical foundation, while others are softer in the
sense that they describe human attributes and as such are handled in a less strict
manner.

The most obvious example of the first kind of constraints is that the same
professional cannot be assigned to two different projects if the projects over-
lap in time. This consideration leads to a new type of global constraint, the
some-different constraint [5]. The second type of constraints is best dealt
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Fig. 2. User interface for specifying hard matching rules and soft priorities for the
workforce management problem of service professionals

with as a set of preferences. For example, is it more important for the business
to engage professionals with the exact required skill levels, or should geograph-
ical proximity of the professionals be the prime concern? similarly, is it more
important to have best fits to individual projects, or is it better to maximize
the overall number of engagements at the cost of compromising each individual
engagement? These sets of rules and preferences are defined by the user in a
list as in Fig. 2, and is then translated into a set of hard and soft constraints,
respectively, which in turn are solved by a constraint solver.

The ability of constraint programming to account for the rigid mathematical
constraints at the same level with the soft human aspects of the problem, is what
provides for the unique business advantage of this approach.

4 Truck Configuration

Unlike regular automobiles, for which we enter our local neighborhood dealer
and once we decide on a model we get a few options to choose from, large
trucks, which cost a few hundred thousand dollars a piece, are highly configurable
according to specific business needs of the customers. In fact, unless ordered as a
batch from a single customer, there are no two identical large trucks on the road.

The customer, when ordering a truck, has some very specific needs in mind,
and will not happily compromise on them. For example, a large dairy company
may require a cargo area able to reach a specific temperature while driving in
the desert, a drive-train suitable for mountainous terrain, a cabin with space
and accessories to meet agreements with the drivers union, and a position for a
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Jack is either telescopic 12 T, or regular 25 T

If fuel prefilter is with heated water separator, air-intake cannot be behind cab
with round filter

If front axle design is straight, then front axle weight is 7.5 T, and there is no
front override guard

Fig. 3. Examples of rules which must be met by any truck configuration

crane of up to half-ton leverage. Those requirements need to be all met, while
still conforming to a multitude of engineering, manufacturing, marketing, and
legal constraints. An inability to satisfy the customer’s needs may result in the
customer ordering the truck from a competitor. Conversely, conforming to the
specified requirements, may lead to a happy customer and another million-dollar
deal.

Given the thousands of configurable variables, and the tens of thousands of
constraints on those variables (see some examples in Fig. 3), and given that
the configuration problem is NP-complete, it may well be the case that a valid
configuration which satisfies the customer’s requirements exists, but is not found
by the configurator at hand. Therefore, this is a classic example where a stronger
technology, incorporating the best algorithms and heuristics available, can truly
make the difference.

5 Systems Engineering

Complex systems design (the canonical example is that of an airplane) involves
many different disciplines such as requirements engineering, system architec-
ture, mechanical engineering, software engineering, electronic engineering, test-
ing, parametric analysis, and more. In each of these disciplines a model of the
product is managed, see Fig. 4. Today all of those models are managed sepa-
rately. At best, there is an integration of two models, usually done by simple
copy or export. This limits the possibilities to maintain traceability between the
different teams and project parts, allow synchronization of the data, perform
impact analysis when part of the model changes, and achieve optimal design.

One of the major obstacles limiting the ability to combine all sub-models
into a single coherent model is the complexity of creating and maintaining a
valid and consistent structure. The issue is the various validity rules which the
models must conform to (for example, a given methodology may require that
each functional feature must be associated with at least one, but not more than
three, tests). Attempts to link the various models together may very fast lead
to inconsistencies with respect to those rules.

Constraint satisfaction technology can ensure that the links are created in ac-
cordance with the design methodology, detect discrepancies between the
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Fig. 4. Inter-relations between models of different disciplines in systems engineering

models, and deduce the existence or absence of links, thus assisting the creation
of a unified model.

6 Additional Areas

Above I discussed thriving applications of satisfaction technologies. Space lim-
itation allowed only mere description of the problems, and some flavor of their
criticality to the business. It also forbids me from detailing other applications
of similar nature, but which are currently only at various levels of prototyping.
These include placement of virtual machines on physical hosts at data centers,
job-scheduling for massively parallel processors (also known as supercomputers,
e.g., IBM’s BlueGene), pricing of services engagements, and variability manage-
ment of product lines.

7 Conclusions

I hope to have delivered the message that in cases where a main part of the
business is at stakes, companies would rightfully be willing to invest a large effort
in R&D, and specifically in constraint satisfaction technologies. This is the case
in hardware verification (shipping functionally correct hardware to the market),
services project staffing (ensuring assignments of the correct professional teams),
truck configuration (supplying the customer with the truck they need), systems
engineering (better management of complex, airplane-size, models), and more.
In all those huge-application cases, constraint satisfaction technology can be the
means to achieve better, cutting edge, results, and thus provide the competitive
advantage at the most critical aspect of the business.



The Big Deal: Applying Constraint Satisfaction Technologies 7

Epilogue and Acknowledgments

The applications described above are all part of IBM’s current activities. Ob-
viously, only a strong team of motivated and experienced researchers can reach
such achievements. The model at IBM Research is to develop a generic solver
as a single technological core, while each application is then developed as an
independent module using the same core solver as others. When an application
requires an improved algorithm, the application and solver teams together find
the right level of generalization of the requirements, and it is then implemented
in the solver. This way, all other applications benefit from the original applica-
tion’s needs.

The number of past and present researchers who contributed to this work in the
past fifteen years is too large to enumerate here. Many contributors to the stimuli
generation activities can be found as authors of the references in [2,3]. As for the
other applications discussed, the contributors generally come from the Constraint
Satisfaction group at IBM Research – Haifa. The group consists of the solver team:
Merav Aharoni, Ari Freund, Wesam Ibraheem, and Nathan Fridlyand; Optimatch
(workforce management) team: Sigal Asaf, Michael Veksler, and Haggai Eran;
truck configuration: Yael Ben-Haim; and systems engineering: Odellia Boni. In
addition, Mage, our independent SAT Solver, is developed by Tanya Veksler and
her team at the Formal Verification group. I thank all those contributors who are
at the basis of this talk. I am also grateful to Odellia for her writeup of the System
Engineering Section of this work.
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Exact Algorithms and Complexity
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Over the past couple of decades, a series of exact exponential-time algorithms
have been developed with improved run times for a number of problems including
IndependentSet, k-SAT, and k-colorability using a variety of algorithmic tech-
niques such as backtracking, dynamic programming, and inclusion-exclusion.
The series of improvements are typically in the form of better exponents com-
pared to exhaustive search. These improvements prompt several questions, chief
among them is whether we can expect continued improvements in the exponent.
Is there a limit beyond which one should not expect improvement? If we assume
NP �= P or other appropriate complexity statement, what can we say about the
likely exact complexities of various NP-complete problems?

Besides the improvement in exponents, there are two other general aspects to
the algorithmic developments. Problems seem to differ considerably in terms of
the improvements in the exponents. Secondly, different algorithmic paradigms
seem to work best for different problems. These aspects are particularly inter-
esting given the well-known fact that all NP-complete problems are equivalent
as far as polynomial-time solvability is concerned. How do the best possible ex-
ponents differ for different problems? Can we explain the difference in terms of
the structural properties of the problems? Are the likely complexities of various
problems related? What is relative power of various algorithmic paradigms?

One approach would be to consider natural, though restricted, computational
models. For example, consider the class OPP of one-sided error probabilistic
polynomial-time algorithms. OPP captures a common design paradigm for ran-
domized exact exponential-time algorithms: to repeat sufficiently many times
a one-sided error probabilistic polynomial-time algorithm that is correct with
an exponentially small probability so that the overall algorithm finds a witness
with constant probability. This class includes Davis-Putnam-style backtracking
algorithms developed in recent times to provide improved exponential-time up-
per bounds for a variety of NP-hard problems. While the original versions of
some of these algorithms are couched as exponential-time algorithms, one can
observe from a formalization due to Eppstein that these algorithms can be con-
verted into probabilistic polynomial-time algorithms whose success probability
is the reciprocal of the best exponential-time bound. The class is interesting not
just because of ubiquity, but because such algorithms are ideal from the point

� This research is supported by NSF grant CCF-0947262 from the Division of Com-
puting and Communication Foundations.
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of view of space efficiency, parallelization, and speed-up by quantum compu-
tation. What are the limitations of such algorithms for deciding NP-complete
problems? Could the best algorithm for specific NP-complete problems be in
this class?

On the other hand, the recent algorithms for k-colorability for k ≥ 3 use
inclusion-exclusion principle in combination with dynamic programming to
achieve the bound of 2n. This raises a natural question whether we can expect
an OPP algorithm for k-colorability whose success probability is at least 2−n.
More generally, can we expect OPP-style optimal algorithms for k-colorability?
Does there exist any OPP algorithm for k-colorability whose success probability
is at least c−n where c is independent of k? Negative answers (or evidence to
that effect) for these questions would provide convincing proof (or evidence) that
exponential-time inclusion-exclusion and dynamic programming paradigms are
strictly more powerful than that of OPP. On the other hand, algorithmic results
that would place k-colorability in the class OPP with c−n success probability
would be exciting.

The current state of the art in complexity theory is far from being able to
resolve these questions, especially the question of best exponents, even under
reasonable complexity assumptions. However, recent algorithmic and complex-
ity results are interesting and they provide food for thought. In this talk, I
will present key algorithmic results as well as our current understanding of the
limitations.
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Abstract. This paper introduces a new SLS-solver for the satisfiability
problem. It is based on the solver gNovelty+. In contrast to gNovelty+,
when our solver reaches a local minimum, it computes a probability
distribution on the variables from an unsatisfied clause. It then flips
a variable picked according to this distribution. Compared with other
state-of-the-art SLS-solvers this distribution needs neither noise nor a
random walk to escape efficiently from cycles. We compared this algo-
rithm which we called Sparrow to the winners of the SAT 2009 competi-
tion on a broad range of 3-SAT instances. Our results show that Sparrow
is significantly outperforming all of its competitors on the random 3-SAT
problem.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied
NP-complete problems in computer science. Given a propositional formula in
conjunctive normal form (CNF) with variables {x1, . . . , xN} the SAT-problem
consists in finding an assignment for the variables so that all clauses are satis-
fied. In this paper we will focus on SLS-solvers for SAT and describe how their
performance can be improved with a new probability distribution.

SLS-solvers operate on complete assignments trying to find a solution by flip-
ping variables according to a given heuristic. Most SLS-solvers are based on the
following scheme: First a random assignment is chosen. If the formula is satisfied
by the assignment the solution is found. If not, a variable is chosen according
to a (possibly probabilistic) variable selection heuristic, which we further call
pickVar. The variable is flipped and the process starts over again until a solu-
tion is found. Depending on the heuristic used in pickVar, SLS-solvers can be
divided into three categories: GSAT, WalkSAT and dynamic local search (DLS).
The currently best-performing solvers are mainly combinations of heuristics from
these categories. For example the winner of the 2009 SAT Competition category
random (TNM ) uses in a first stage a GSAT-scheme. When reaching a local
minimum a WalkSAT-like heuristic is used to escape. gNovelty+2, which won
the second place in the 2009 SAT Competition, additionally uses an additive
clause weighting scheme like DLS-solvers.

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 10–15, 2010.
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Most SLS-solvers use different measures in their pickVar -heuristic. For ex-
ample Novelty+ uses the score and the age of variables (the number of steps
since the variable was last flipped). The score of variable xi is defined as the
number of clauses that xi will satisfy minus the number of clauses that will be-
come unsatisfied by flipping xi. To choose a variable Novelty+ picks a random
unsatisfied clause and then selects the best and the second best variable rela-
tive to their score. If the best variable is not the one with the lowest age-value
then this variable is always chosen. Otherwise it is only chosen with probability
(1−noise) and with probability noise the second best variable is selected. With
probability wp a random walk is performed. Neither the difference between the
scores nor the age-difference is taken into account. This lack of differentiation is
a big disadvantage in our opinion.

In this paper we would like to address this weakness and improve a state-
of-the-art solver like gNovelty+. We will replace the adaptNovelty+-heuristic
from gNovelty+ with a novel heuristic based on a probability distribution that
takes into account the difference between the scores and the age of variables. We
implemented these improvements in a solver called Sparrow. To show its superior
performance we compare Sparrow with the winners of the last SAT-Competition
on a wide range of 3-SAT formulas from the SAT 2009 random benchmark.
Sparrow is able to outperform all winners of the SAT 2009 Competition.

2 Sparrow

2.1 gNovelty+

Because our solver Sparrow is based on gNovelty+ we first want to describe it
briefly. gNovelty+ is one of the best performing SLS-solvers (winner of the SAT
2007 Competition category random). Our work is based on the SAT 2007 version
of the solver which can be decomposed in three components.

1. gradient-walk like G2WSAT [4]
2. adaptNovelty+ [3]
3. additive weigthing-scheme as used in PAWS [8]

The functionality of the components and their interactions are described in detail
in [6]. gNovelty+’s pickVar -heuristic works in three phases, that all take into
account the weights of the clauses. In the first phase it uses the gradient-walks
until there are no more promising variables to flip. This state characterizes a
local minimum. To escape from this local minimum a variable is chosen according
to the adaptNovelty+-heuristic. AdaptNovelty+ is a walk-SAT algorithm which
behaves like Novelty+ and additionally uses an adaptive scheme for the noise
described in [3] and includes a random walk. Whenever an adaptNovelty+-step
is performed the weights of the clauses are updated according to an additive
weighting scheme.

The first two phases of gNovelty+ without weights are the core of the G2WSAT -
algorithms. It is well known that the performance of this kind of algorithm heavily
relies on the adaptNovelty+-component.
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2.2 Defining a Probability Distribution

One drawback of algorithms that use adaptNovelty+-like heuristics to escape
from local minima is the lack of differentiation between the variables. While al-
ways selecting the best variable in gradient-steps seems to work very well, a more
advanced heuristic is needed when a local minimum is reached. We therefore kept
the gradient-walk as well as the adaptive weighting scheme but removed the
adaptNovelty+-component and replaced it by a new heuristic which is based on
a probability distribution over the variables from a random unsatisfied clauses.

When defining this probability distribution we focused on two aspects: First
we wanted to keep the features that made adaptNovelty+ a very well-performing
solver. Second we wanted to perform better in those cases when adaptNovelty+
fails to make the best decision. As we already discussed, we think that this is
mainly due to insufficient differentiation.

Let {xi1 , . . . , xiu} be the variables from a random unsatisfied clause. We now
define the probability of choosing a variable xij as

p(xij ) :=
ps(xij ) ∗ pa(xij )∑u

k=1 ps(xik
) ∗ pa(xik

)
(1)

where ps(xij ) is a function of score(xij ) and pa(xij ) is a function of age(xij ).
We now have the possibility to directly let the score and the age of a variable

influence its probability of getting flipped. This offers a much better differenti-
ation between the individual variables than just by deciding whether they have
the best score or the lowest age in their clause.

In particular we have chosen the following functions for our implementation:

ps(xij ) := c
score(xij

)

1 pa(xij ) :=
(

age(xij )
c3

)c2

+ 1 (2)

This yields a probability distribution p which grants bigger values to variables
with higher score and age (like adaptNovelty+ does). If we choose c1 as a power
of 2 we can efficiently implement ps by binary shifts. pa can also be efficiently
implemented for c2 ∈ Z. As it can easily be seen from the formula, already
small changes in score have a huge impact on the probability because of the
exponential character of the function. On the other hand the age of a variable
only slowly starts to influence the probability but is also able to have a great
impact once an age of c3 is exceeded. The degree of influence depends on c2. We
are going to specify values for these constants in our empirical results section.

Further we do not need any noise because repeating the same flips over and
over again is automatically avoided by the growing age of variables that were not
flipped due to other variables with higher score. We also don’t need an explicit
implementation of a random walk since our new scheme can efficiently escape
cycles.
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3 Empirical Results

3.1 Soft- and Hardware

The gNovelty+2T (the code from the competition uses a tabu scheme and we
added a T in the name because of this), TNM and the hybridGM3 code we
used for the comparison were the ones submitted to the SAT 2009 Competition
[7]. For our solver we used the following settings for all runs: sp = 35, c1 = 2,
c2 = 4, c3 = 105. The solvers were run on a part of the bwGrid [2], where we
were provided with Intel Harpertown quad-core CPUs with 2.83 GHz.

3.2 The Benchmark Formulae

For our tests we set up a two benchmarks. The first one contains 64 instances from
random large category of the SAT 2009 Competition (2000≤#variables≤ 18000).
The second contains all formulas of the additional benchmark [7] of the same cat-
egory (20000≤#variables≤ 26000). All instances have a clause/variable-ratio of
4.2. The solvers were run 100 times (50 for the second benchmark) on each instance
and the mean values for the running time and the number of flips were calculated.
The time limit was set to 1200 seconds (2400 for the second benchmark). On those
instances where one of the compared solvers did not finish within the time limit in
all 100 (50) runs the number of successful runs was plotted.

3.3 Results

The results of the benchmarks can be seen in figure 1. TNM and hybridGM3
are compared to Sparrow on the regular benchmark first and on the additional
benchmark in the following row. For gNovelty+2T we did not plot the additional
benchmark.

In the first two rows, we compare Sparrow to TNM. As we can see, Sparrow
is superior to TNM considering the number of flips as well as considering the
runtime on all instances. This becomes even more obvious when we take a look at
the success runs in the third column. Escpecially taking a look at the additional
benchmark in row two, we can see that TNM had difficulties solving the more
difficult instances while Sparrow still performs very well.

The next row shows Sparrow compared to gNovelty+2T. It is easy to see
that Sparrow dominates gNovelty+2T on our benchmark in flipcount as well
as in runtime. The success rates show that many instances of our benchmark
indeed are very difficult to solve even for a state-of-the-art-solver. We did not
include the results of gNovelty+2T on the additional benchmark in figure 1
since gNovelty+2T was not able to solve any of the instances in all runs and the
success rate was constantly very low.

In the last two rows we compare Sparrow to hybridGM3, a hybrid SLS-solver
using a DPLL-component [1]. HybridGM3 can compete with Sparrow on some
instances but also loses ground with increasing difficulty.

Altogether there were only 4 instances on which Sparrow did not finish within
the time limit on all 100 runs. Except in 1 of them the success rate was nearly
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Fig. 1. Sparrow compared to TNM, gNovelty+2T and hybridGM3 on 104 randomly
selected large-size 3SAT-instances

100%. This however was also one of the most difficult instances for all solvers
and their success rate was far below the one of Sparrow. We are confident that
Sparrow would be able to solve even larger instances.

4 Related Work

There were many attempts to modify the Novelty-heuristic to increase its perfor-
mance on different benchmarks. The first time the difference between the score of
the variables was taken into account was in the solver R-Novelty by McAllester
et. al. in [5]. However the variables taken into consideration were still only the
first and the second best one. The third variable had always probability zero.
The Novelty++-heuristic by Li [4] introduced a further parameter dp (diversifi-
cation probability) to the Novelty+-heuristic to enable choosing the least flipped
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variable from a clause. This permits the heuristic to choose the third variable
from a clause but there is no differentiation between the scores nor between the
age of the variables. The solver TNM by Wei which won SAT Competition 2009
in the random category uses two noise mechanisms and switches between them
whenever the weights of variables meet a given criteria. We are not aware of a
heuristic that assigns probabilities to all variables depending on the difference
between the score and between the age of variables.

5 Conclusions and Future Work

We presented in this paper a probability distribution that is a function of the
score and the age of all variables from a random unsat clause and which takes
into consideration the difference between these values. An advantage of such a
heuristic is that it needs no noise nor a random walk, which are incorporated by
definition. The parameters of the distribution are quite stable and do not need
to be tuned manually.

We conducted an empirical study on different 3SAT-problems from the SAT
2009 Competition benchmark to show the good performance of this approach.
As a future work it would be of interest to incorporate more information into
the probability distribution. Also we would like to test our approach on other
classes of instances including crafted and industrial instances.
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Abstract. It has been observed empirically that clause learning does
not significantly improve the performance of a SAT solver when restricted
to learning clauses of small width only. This experience is supported by
lower bound theorems. It is shown that lower bounds on the runtime
of width-restricted clause learning follow from resolution width lower
bounds. This yields the first lower bounds on width-restricted clause
learning for formulas in 3-CNF.

1 Introduction

Most SAT solvers are based on extensions of the basic backtracking procedure
known as the DLL algorithm [10]. The recursive procedure is called for a formula
F in conjunctive normal form and a partial assignment α (which is empty in the
outermost call). If α satisfies F , then it is returned, and if α causes a conflict,
i.e., falsifies a clause in F , then the call fails. Otherwise a variable x unset by
α is chosen according to some heuristic, and the procedure is called recursively
twice, with α extended by x := 1 and by x := 0. If one recursive call returns
a satisfying assignment, then it is returned, otherwise — if both recursive calls
fail — the call fails.

Contemporary SAT solvers employ several refinements and extensions of the
basic DLL algorithm. One of the most successful of these extensions is clause
learning [22], which works as follows: When the procedure encounters a conflict,
then a sub-assignment α′ of α that suffices to cause this conflict is computed.
This sub-assignment α′, thought of as the reason for the conflict, can then be
stored in form of a new clause C added to the formula, viz. the unique largest
clause C falsified by α′. This way, when in a later branch of the search another
partial assignment extending α′ occurs, the procedure can backtrack earlier since
then the added clause C becomes falsified and causes a conflict.

When clause learning is implemented, a heuristic is needed to decide which
learnable clauses to keep in memory, because learning a large number of clauses
leads to excessive consumption of memory, which slows the solver down rather
than helping it. Many early heuristics for clause learning were such that the
width, i.e., the number of literals, of learnable clauses was restricted, so that the
solver learned only clauses whose width does not exceed a certain threshold.
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Experience has shown that such heuristics are not very helpful, i.e., learning
only short clauses does not significantly improve the performance of a DLL
algorithm for hard formulas. The present paper continues a line of work that
aims at supporting this experience with rigorous mathematical analyses in the
form of lower bound theorems.

The first lower bound for width-restricted clause learning was shown [9] for the
well-knownpigeonholeprincipleclausesPHPn.Theseformulasrequiretime2Ω(n log n)

to solve when learning clauses of width up to n/2 only, whereas they can be solved in
time 2O(n) when learning arbitrary clauses. While this example in principle shows
that learning wide clauses can yield a speed-up, it is not fully satisfactory, since even
with arbitrary learning, the time required is exponential in n.

Another lower bound was shown [15] for a a set of clauses Ordn based on the
ordering principle on n elements. These formulas can be solved in polynomial
time when learning arbitrary clauses, but require exponential time to solve when
learning clauses of size up to n/4 only.

Both lower bounds are asymptotically the same as the known lower bounds
[14,8] on the time for solving the respective formulas by DLL algorithms without
clause learning.

In these previous lower bounds, the hard example formulas themselves contain
clauses of large width. Since it is conceivable that the necessity to learn wide
clauses is merely due to the presence of these wide initial clauses, the question
arose whether similar lower bounds can be shown for formulas of small width.
We answer this question by proving lower bounds on width-restricted clause
learning for small width formulas.

The lower bounds are shown by proving the same lower bounds on the length
of refutations in a certain resolution based propositional proof system called RTL
(see Section 2). The relationship of this proof system to the DLL algorithm with
clause learning has been established in several earlier works [9,12]. We will show
that for formulas of small width, lower bounds for this proof system follow from
lower bounds on the width of resolution proofs. This also gives an easier proof of
a slightly weaker form of the previous lower bound [15] for the formulas Ordn.

The lower bound for clause learning algorithms on formulas requiring large
resolution width is somewhat dual to a result of Atserias et al. [4], who give a
small polynomial upper bound on the runtime of a clause learning algorithm
with restarts on formulas having resolution refutations of small width.

We will now informally describe our proof method, see Section 2 for precise
definitions of the terms appearing below. Let F be an unsatisfiable formula
in conjunctive normal form (CNF) over n variables. For the sake of simplicity
assume that F is a 3-CNF, i.e., each clause in F contains at most 3 literals.
Suppose furthermore that F requires large resolution refutation width, i.e., every
resolution refutation of F must contain a clause with a large number w of literals,
where e.g. w ≈ √n. Finally, suppose we try to solve F using a DLL algorithm
augmented with clause learning, where the width of learned clauses is limited to
be less than w, say w/3. In other words, the maximal width of a learned clause
is significantly smaller than the minimal refutation width of F .
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Inspired by the combinatorial characterization of resolution width due to At-
serias and Dalmau [3] we classify the learned clauses of small width into two
categories. The useless clauses are those that can be derived from F via a reso-
lution derivation of width less than w, whereas the useful clauses are those that
can only be derived by going through a clause of width at least w. Our main
observation (Theorem 6) roughly says that learning useless clauses will not sig-
nificantly reduce the running time needed to obtain the first useful clause. In
fact, we show that 2w/3 steps will be needed before our algorithm learns its first
useful clause.

Using known constructions [8,21,3] of families of unsatisfiable 3-CNF formulas
that have short resolution refutations of polynomial in n size, but which require
large refutation width of about w ≈ √n, we obtain in Section 5 a number of
results which show that, in certain cases, width-restricted clause learning DLL
algorithms will require exponentially longer running time than clause learning
algorithms with unrestricted width.

2 Preliminaries

A literal a is a variable a = x or a negated variable a = x̄. A clause C is a
disjunction C = a1 ∨ . . . ∨ ak of literals ai. The width of C is k, the number of
literals in C.

A formula in conjunctive normal form (CNF) is a conjunction F = C1∧. . .∧Cm

of clauses, it is usually identified with the set of clauses
{
C1, . . . , Cm

}
. A formula

F in CNF is in k-CNF if every clause C in F is of width w(C) ≤ k.
We consider resolution-based refutation systems for formulas in CNF, which

are known to be strongly related to DLL algorithms. These proof systems have
two inference rules: the weakening rule, which allows to conclude a clause D
from any clause C with C ⊆ D, and the resolution rule, which allows to infer
the clause C ∨D from the two clauses C ∨x and D∨ x̄, provided that the variable
x does not occur in either C or D, pictorially:

C ∨ x D ∨ x̄

C ∨ D

We say that the variable x is eliminated in this inference.
A resolution derivation of a clause C from a CNF-formula F is a directed

acyclic graph (dag) with a unique sink, in which every node has in-degree at
most 2, where every node v is labeled with a clause Cv such that:

1. The sink is labeled with C.
2. If a node v has one predecessor u, then Cv follows from Cu by the weakening

rule.
3. If a node v has two predecessors u1, u2, then Cv follows from Cu1 and Cu2

by the resolution rule.
4. A source node ν is labeled by a clause C in F .
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A resolution refutation of F is a resolution derivation of the empty clause from F .
Resolution is sound and complete: a CNF-formula F has a resolution refutation
if and only if it is unsatisfiable.

We call a derivation tree-like if the underlying unlabeled dag is a tree, other-
wise we may call it dag-like for emphasis. As usual, for a dag that is a tree we
refer to the sink as the root, to the predecessors of a node as its children and to
a source node as a leaf.

The size of a resolution derivation is the number of nodes in the dag. The width
of a resolution refutation R is the maximal width of a clause occurring in R. The
resolution width of F is the minimal width of a resolution refutation of F .

Ben-Sasson and Wigderson [7] have shown the following relation between
resolution width and size of tree-like resolution:

Theorem 1. If a d-CNF formula F requires resolution width at least w, then
every tree-like resolution refutation of F is of size at least 2w−d.

In the literature, resolution proof systems are sometimes defined without the
weakening rule, but since applications of this rule can be eliminated from a
tree-like resolution refutation without increasing the size or width, all lower
bounds shown for tree-like resolution without weakening apply to the system
with weakening as well.

Let X be a set of variables. A restriction ρ of X is a partial assignment
X → {0, 1}. A restriction ρ is extended to literals by setting

ρ(x̄) :=

{
1 if ρ(x) = 0
0 if ρ(x) = 1

For a clause C in variables X , we define

C�ρ :=

⎧⎪⎨⎪⎩
1 if ρ(a) = 1 for some a ∈ C∨
a∈C, ρ(a) �=0

a otherwise,

where the empty disjunction is identified with the constant 0. For a CNF-formula
F over X , we define

F �ρ :=

⎧⎪⎨⎪⎩
0 if C�ρ = 0 for some C ∈ F∧
C∈F, C�ρ�=1

C�ρ otherwise,

where the empty conjunction is identified with 1.

Proposition 2. Let R be a (tree-like) resolution derivation of C from F of size
s, and ρ a restriction. Then there is a (tree-like) resolution derivation R′ of C�ρ
from F �ρ of size at most s.

In particular, if C�ρ = 0 then R′ is a resolution refutation of F �ρ. As usual, we
denote the derivation R′ by R�ρ.
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A resolution derivation is called regular if on every path through the dag, no
variable is eliminated twice. This condition is inessential for tree-like resolution
since minimal tree-like refutations are always regular [24], but regular dag-like
refutations can necessarily be exponentially longer than general ones [1].

Tree-like resolution exactly corresponds to the DLL algorithm by the follow-
ing well-known correspondence: the search tree produced by the run of a DLL
algorithm on an unsatisfiable formula F forms a tree-like resolution refutation
of F , and from a given tree-like regular resolution refutation of F one can con-
struct a run of a DLL algorithm showing the unsatisfiability of F that produces
essentially the given search tree.

In order to define proof systems that correspond to the DLL algorithm with
clause learning in the same way, we define resolution trees with lemmas (RTL).
In these proof systems, the order of branches in the proof tree is significant, thus
the underlying trees need to be ordered.

An ordered binary tree is a rooted tree in which every node has at most 2
children, and where every node with 2 children has a distinguished left and right
child. The post-ordering ≺ of an ordered binary tree is the order in which the
nodes of the tree are visited by a post-order traversal, i.e., u ≺ v holds for nodes
u, v if u is a descendant of v, or if there is a common ancestor w of u and v such
that u is a descendant of the left child of w and v is a descendant of the right
child of w.

An RTL-derivation of a clause C from a CNF-formula F is an ordered binary
tree, in which every node v is labeled with a clause Cv such that:

1. The root is labeled with C.
2. If a node v has one child u, then Cv follows from Cu by the weakening rule.
3. If a node v has two children u1, u2, then Cv follows from Cu1 and Cu2 by

the resolution rule.
4. A leaf v is labeled by a clause D in F , or by a clause C labeling some node

u ≺ v. In the latter case we call C a lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width w(C) ≤
k. An RTL-refutation of F is an RTL-derivation of the empty clause from F .

A subsystem WRTI of RTL was defined by Buss et al. [9], which exactly
corresponds to a general formulation of the DLL algorithm with clause learning:
the size of a refutation of an unsatisfiable formula F in WRTI has been shown [9]
to be polynomially related to the runtime of a schematic algorithm DLL-L-UP on
F . This schema DLL-L-UP subsumes most clause learning strategies commonly
used in practice, including first-UIP [22], all-UIP, decision [25] and rel-sat [5].
A variant of DLL-L-UP which incorporates these learning strategies and also
allows for non-chronological backtracking [5] was described by Hoffmann [13]
and shown to be likewise simulated by WRTI.

In addition to clause learning, most state-of-the-art satisfiability solvers also
use restarts [11], therefore their performance is not modeled by RTL. The run-
time of a DLL algorithm with clause learning and restarts was shown to be
polynomially related to the size of general dag-like resolution refutations, for
certain particular learning strategies [6] and more recently also for most natural
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learning strategies [20]. However, these simulations of general dag-like resolu-
tion proofs, as well as the clause learning algorithm of Atserias et al. [4] that
simulates resolution proofs of small width, use a particular restart policy: they
perform a restart after every conflict. An interesting question is whether general
resolution proofs can be simulated with more natural restart policies.

It follows from the mentioned results of Buss et al. [9] that if an unsatisfiable
formula F can be solved by a DLL algorithm with clause learning in time t, then
it has an RTL-refutation of size polynomial in t. Moreover, if the algorithm learns
only clauses of width at most k, then the refutation is in RTL(k). In this work
we prove lower bounds on the size of RTL(k)-refutations, which thus yield lower
bounds on the runtime of DLL algorithms with width-restricted clause-learning.

3 Resolution Width and Systems of Restrictions

Let X be a set of variables, and w ∈ N with w ≤ |X |. A w-system of restrictions
over X is a non-empty set H of restrictions with the following properties:

– |ρ| ≤ w for all ρ ∈ H,
– downward closure: if ρ ∈ H and ρ′ ⊆ ρ, then ρ′ ∈ H,
– the extension property: if ρ ∈ H with |ρ| < w, and x ∈ X \dom ρ, then there

is ρ′ ∈ H with ρ′ ⊇ ρ and x ∈ dom ρ′.

We say that H avoids a clause C if C�ρ �= 0 for every ρ ∈ H, and H avoids a
formula F if H avoids every clause C ∈ F .

The notion was introduced by Atserias and Dalmau [3], who showed the fol-
lowing characterization of resolution width:

Theorem 3. A formula F requires resolution width at least w if and only if
there is a w-system of restrictions over var(F ) that avoids F .

Atserias and Dalmau [3] called a w-system of restrictions avoiding F a winning
strategy for the Duplicator in the Boolean existential w-pebble game on F , which
is explained by the origin of the notion in the existential k-pebble game [16] in
finite model theory. Since we make no use of the model-theoretic background,
we chose to use a shorter name for the concept.

For our application we shall use the concept of a system of restrictions being
restricted by one of its elements, which we define now.

Lemma 4. If H is a w-system of restrictions over X, and ρ ∈ H with |ρ| = r <
w, then the set

H�ρ :=
{

σ ; dom σ ⊆ X \ dom ρ and σ ∪ ρ ∈ H and |σ| ≤ w − r
}

is a (w − r)-system of restrictions over X \ dom ρ.

Note that H�ρ would be empty, and hence not a system of restrictions in the
sense of the definition, if the definition were extended to restrictions ρ /∈ H: if
there is a σ ∈ H�ρ, then by definition σ ∪ ρ ∈ H, and by downward closure
ρ ∈ H.
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Proof. Every σ ∈ H�ρ has |σ| ≤ w − r by definition. If σ ∈ H�ρ and σ′ ⊆ σ,
then σ′ ∪ ρ ⊆ σ ∪ ρ, and thus by downward closure of H we have σ′ ∪ ρ ∈ H.
Therefore σ′ ∈ H�ρ, hence H�ρ is downward closed.

If σ ∈ H�ρ is a restriction with |σ| < w − r and x ∈ X \ ρ is a variable with
x /∈ dom σ, then |σ ∪ ρ| < w, and hence by the extension property of H there is
σ′ ⊇ σ∪ρ in H with x ∈ dom σ′. Then σ′ \ρ ⊇ σ is in H�ρ, and x ∈ dom(σ′ \ρ).
Therefore H�ρ has the extension property, and hence is a (w − r)-system of
restrictions over X \ dom ρ. ��
Lemma 5. If H is a w-system of restrictions that avoids F , and ρ ∈ H, then
H�ρ avoids F �ρ.

Proof. Assume that H�ρ does not avoid F �ρ, i.e., there is a clause C in F �ρ
and a restriction σ ∈ H�ρ such that C�σ = 0. Since C is in F �ρ, there is a
clause D with D�ρ = 0 such that C ∨ D ∈ F . By definition, σ′ = σ ∪ ρ ∈ H and
(C ∨ D)�σ′ = C�σ ∨ D�ρ = 0, hence H does not avoid F , in contradiction to the
hypothesis. ��

4 The Lower Bound

We now prove our main theorem, which shows that lower bounds for RTL(k)-
refutations of F follow from lower bounds on the resolution width of F , for
formulas F of sufficiently small width.

Theorem 6. If F is a d-CNF that requires resolution width at least w to refute,
then for any k, every RTL(k)-refutation of F is of size at least

2w−(k+max{d,k}) ≥ 2w−(2k+d).

Proof. Let R be an RTL(k)-refutation of F . By Theorem 3, there is a w-system
of restrictions H that avoids F .

Let C be the first clause in R of small enough width w(C) ≤ k to be used as
a lemma, and that is not avoided by H. In particular, every lemma in R derived
before C is avoided by H. Let ρ be the smallest restriction in H with C�ρ = 0,
so that we have r := |ρ| = w(C) ≤ k.

Let RC be the subtree of R below C, so RC is an RTL(k)-derivation of C
from F . Let G be the set of lemmas used in RC , so RC is a tree-like resolution
derivation of C from F ∧ G, and thus R′ := RC�ρ is a tree-like resolution refu-
tation of F ′ := (F ∧ G)�ρ. Note that every clause in F is of width d, and every
clause in G is of width k, therefore w(F ′) ≤ w(F ∧ G) ≤ max{d, k}.

By the choice of C we know that H avoids every clause in G, and hence H
avoids F ∧ G. It follows by the lemmas above that H�ρ is a (w − r)-system of
restrictions that avoids F ′.

Therefore, by Theorem 3, F ′ requires resolution width w − r ≥ w − k, and
thus by Theorem 1, the refutation RC�ρ, and therefore R, is of size at least
2(w−k)−w(F ′) ≥ 2w−(k+max{d,k}) as claimed. ��
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5 Applications

We now instantiate our general lower bound to prove several lower bounds for
RTL(k)-refutations of certain concrete formulas.

Ordering Principle

The ordering principle expresses the fact that every finite linear ordering has a
maximal element. Its negation is expressed in propositional logic by the following
set of clauses Ordn over the variables xi,j for 1 ≤ i, j ≤ n with i �= j:

x̄i,j ∨ x̄j,i for 1 ≤ i < j ≤ n (Ai,j)
xi,j ∨ xj,i for 1 ≤ i < j ≤ n (Ti,j)
x̄i,j ∨ x̄j,k ∨ x̄k,i for 1 ≤ i, j, k ≤ n pairwise distinct (Δi,j,k)∨
1≤j≤n,j �=i

xi,j for 1 ≤ i ≤ n (Mi)

The clauses Ai,j , Ti,j and Δi,j,k state that in a satisfying assignment, the values
of the variables define a linear ordering on n points. The clause Mi expresses that
i is not a maximum in this ordering, therefore the formula Ordn is unsatisfiable.

The formulas Ordn were introduced by Krishnamurthy [17] as potential hard
example formulas for resolution, but short regular resolution refutations for them
were constructed by St̊almarck [23].

Proposition 7. There are dag-like regular resolution refutations of Ordn of size
O(n3).

Note that the size of the formula Ordn is Θ(n3), so the size of these refutations
is linear in the size of the formula. A general simulation of regular resolution
by WRTI [9] yields WRTI-refutations of Ordn of polynomial size. On the other
hand, a lower bound for RTL(k)-refutations of Ordn was shown by the second
author [15]:

Theorem 8. For k < n/4, every RTL(k)-refutation of Ordn is of size 2Ω(n).

Thus this lower bound shows the necessity to use wide lemmas to refute them
efficiently. But since the formula Ordn itself contains wide clauses, it is conceiv-
able that it is these wide clauses that cause this necessity. We therefore apply
our general lower bound to derive similar lower bounds for variants of the or-
dering principle formulas having small width. The most straightforward way to
obtain a formula of small width from any formula is to expand it into a 3-CNF,
as described below:

For a CNF-formula F , the 3-CNF-expansion E3(F ) of F is obtained as follows:
for every clause C = a1 ∨ . . . ∨ ak in F of width w(C) = k ≥ 4, introduce k + 1
new extension variables yC,0, . . . , yC,k, and replace C by the clauses:

yC,0 ȳC,i−1 ∨ ai ∨ yC,i for 1 ≤ i ≤ k ȳC,k
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The formula E3(F ) is obviously in 3-CNF and is satisfiable if and only if F is
satisfiable.

Bonet and Galesi [8] show a lower bound of n/6 on the resolution width of the
3-CNF expansion E3(Ordn) of the ordering principle. We show a larger lower
bound by exhibiting a suitable system of restrictions:

Theorem 9. The formula E3(Ordn) requires resolution width at least n/2.

For ease of notation, we denote the clauses in the 3-CNF expansion E3(Mi) of
the formula Mi as follows:

yi,0 . . . ȳi,i−1 ∨ xi,i+1 ∨ yi,i+1 . . . ȳi,n

For a non-empty set D ⊆ {1, . . . , n}, a total ordering ≺ on D and a partial
mapping s : D → D with the properties

– s(i) is defined for every i ∈ D except max≺ S,
– i ≺ s(i) for every i ∈ dom s,

we define a restriction ρ(D,≺, s) as follows:

xi,j �→
{

1 if i, j ∈ D and i ≺ j

0 if i, j ∈ D and j ≺ i

yi,j �→
{

1 if i ∈ D, s(i) is defined and j ≥ s(i)
0 if i ∈ D, s(i) is defined and j < s(i)

and is undefined in all other cases. Now let Hord be the set of restrictions σ such
that |σ| ≤ n/2 and σ ⊆ ρ(D,≺, s) for some subset D ⊆ {1, . . . , n}, ordering ≺
on D and suitable mapping s : D → D. Theorem 9 now follows immediately
from the following lemma by Theorem 3.

Lemma 10. Hord is an n/2-system of restrictions that avoids E3(Ordn).

Proof. Obviously, Hord is non-empty, and the size bound |σ| ≤ n/2 for all σ ∈
Hord and downward closure hold by definition. The clauses Ai,j , Ti,j and Δi,j,k

are avoided since the variables xi,j are set according to the ordering ≺. The
clauses in E3(Mi) containing a variable xi,j for j �= s(i) are avoided since both
extension variables are set to the same value, and one of them occurs positively
and the other negatively. The clause in E3(Mi) containing xi,s(i) is avoided since
this variable cannot be set to 0.

It remains to show that Hord has the extension property. If σ ∈ σ ∈ Hord is
of size |σ| < n/2, then there is a set D of size |D| ≤ n− 2, an ordering ≺ on D
and a mapping s : D → D such that σ ⊆ ρ := ρ(D,≺, s). Let v /∈ dom σ be a
variable left unset by σ.

If v = xi,j , then we set D′ := D ∪ {i, j}. If D′ = D, then ρ(v) is already
defined, and we set ≺′=≺ and s′ = s. Otherwise, if i ∈ D′ \ D, we extend ≺
and s to ≺′ and s′ by setting i ≺′ k for every k ∈ D and s′(i) := min≺ D, and
similarly for j.
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If v = yi,j and i ∈ D, then ρ(v) is already defined unless i = max≺ D. In the
latter case, we pick an arbitrary k /∈ D and set D′ := D ∪ {k}, extend ≺ to ≺′

by setting i ≺′ k and s to s′ by setting s′(i) = k.
If v = yi,j and i /∈ D, then we set D′ := D ∪ {i}, and we extend ≺ to ≺′ by

setting i ≺′ k for all k ∈ D and s to s′ by setting s′(i) = min≺ D.
In all cases ρ′ := ρ(D′,≺′, s′) is an extension ρ′ ⊇ ρ with v ∈ dom ρ′. Let

σ′ := σ∪{(v, ρ′(v))}, then we have |σ′| ≤ n/2, and σ′ ⊆ ρ′, hence we have found
σ′ ∈ Hord with v ∈ dom σ′. ��
By Theorem 6, a lower bound for RTL(k)-refutations of E3(Ordn) follows from
Theorem 9: by choosing k = n/6 and observing that for n ≥ 18 we get k ≥ 3,
we obtain from Theorem 6 a lower bound of 2n/2−2n/6 = 2n/6.

Corollary 11. For n ≥ 18, every RTL(n/6)-refutation of E3(Ordn) is of size
2n/6.

It follows that a DLL algorithm with clause learning requires exponential time to
solve the formulas E3(Ordn) when only clauses of width n/6 are learned. On the
other hand, from the short regular resolution refutations of Ordn, short regular
refutations of E3(Ordn) are obtained easily. From those, one can construct a run
of a DLL algorithm with arbitrary clause learning on E3(Ordn) in polynomial
time. Hence we have an example of 3-CNF formulas for which learning wide
clauses is necessary to solve them efficiently.

Since the clauses Mi have tree-like derivations from E3(Mi) of size n, an
RTL(k)-refutation of Ordn of size s can be converted into an RTL(k)-refutation
of E3(Ordn) of size sn. Hence the Corollary 11 also yields an easier proof of a
slightly weaker variant of the lower bound from Theorem 8: every RTL(n/6)-
refutation of Ordn is of size at least 2n/6−log n.

Graph Ordering Principle

A different way to obtain a small width formula from the ordering principle is
to consider the restriction of it to a graph, as introduced by Segerlind et al.
[21]. The only wide clauses in Ordn are the clauses Mi stating that there is an
element larger than i, for every i. A formula of small width can be obtained by
defining for every i a small set of elements and requiring that one element in
this set is larger than i.

For a graph G = (V, E) on n vertices V = {1, . . . , n}, the formula Ord(G)
consists of the clauses Ai,j , Ti,j and Δi,j,k of Ordn, plus the following restricted
version of the clauses Mi:∨

j∈N(i)

xi,j for 1 ≤ i ≤ n (M ′
i)

Here N(i) denotes the neighborhood of i in G, i.e.., the set {j ∈ V ; {i, j} ∈ E}.
The formula requires that for every vertex, there is a larger one in the ordering
among its neighbors. Thus in this notation, the formula Ordn is Ord(Kn) for the
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complete graph Kn on n vertices. If the graph G has maximum degree d ≥ 3,
then Ord(G) is a d-CNF.

A graph G on n vertices is called ε-neighborly, if for all pairs of disjoint subsets
A, B ⊆ V with |A|, |B| ≥ εn there is an edge {a, b} ∈ E with a ∈ A and b ∈ B. A
lower bound on the resolution width of Ord(G) depending on the neighborliness
of G was shown by Segerlind et al. [21]:

Theorem 12. If G is a connected graph on n vertices that is ε-neighborly for
0 < ε < 1/3, then Ord(G) requires resolution width at least (1−3ε

6 )n.

The following lemma follows from known results about expander graphs that can
e.g. be found in the book of Alon and Spencer [2, Section 9.2]. In what follows a
family of graphs {Gn; n ∈ N} is said to be explicitly constructible if there exists
a polynomial time Turing machine that on input 1n outputs a description (say,
by means of its adjacency matrix) of the graph Gn.

Lemma 13. For every 0 < ε < 1/3 there is a constant d = O(1/ε2) such that
there is an explicitly constructible family of ε-neighborly graphs {Gn; n ∈ N} on
n vertices of maximal degree d.

Proof. As explained in the mentioned book [2, Section 9.2] (and using the no-
tation there), the works of Lubotzky et al. [18] and of Margulis [19] explicitly
construct for every integer d of the form d = p+ 1, where p is a prime congruent
to 1 modulo 4, and for every sufficiently large n, a d-regular expander graph
Gn, with all eigenvalues of the adjacency matrix except for the largest being
bounded in absolute value by 2

√
d− 1 (such graphs are known as “Ramanujan”

expander graphs). For such graphs one may apply Corollary 9.2.5 in the book
[2] which implies that every two disjoint subsets of the vertices of Gn of size at
least 2n√

d
must be connected by an edge, i.e., Gn is 2√

d
-neighborly. ��

The lemma yields, e.g., a family of graphs Gn on n vertices of maximal degree
d = 150 that are 1/6-neighborly, and for these graphs Gn the formula Ord(Gn)
is a d-CNF that requires resolution width n/12. By invoking Theorem 6 with
k = n/36 we obtain the following lower bound for n large enough that k ≥ 150:

Corollary 14. For sufficiently large n, every RTL(n/36)-refutation of Ord(Gn)
for the graphs Gn is of size at least 2n/36.

As above, it follows that a DLL algorithm with clause learning requires expo-
nential time to solve Ord(Gn) when only clauses of width n/36 are learned. On
the other hand, short regular resolution refutations of Ord(Gn) are contained in
the refutations of Ordn. From those, one can again construct a run of a DLL
algorithm with arbitrary clause learning on Ord(Gn) in polynomial time. Hence
the formulas Ord(Gn) are another example of formulas of small width for which
learning wide clauses is necessary to solve them efficiently.

Dense Linear Ordering Principle

The dense linear ordering principle yields another family of formulas that have
short regular resolution refutations, but require large resolution width. It says
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that a finite linear ordering cannot be dense. It gives rise to an unsatisfiable set
of clauses DLOn, in the variables xi,j representing the ordering as in Ordn, and
additional variables zi,j,k intended to express that j is between i and k in the
ordering. It consists of the clauses Ai,j , Ti,j and Δi,j,k of Ordn, plus new clauses
containing the variables zi,j,k:

x̄i,j ∨ x̄j,k ∨ zi,j,k for 1 ≤ i, j, k ≤ n pairwise distinct
z̄i,j,k ∨ xi,j for 1 ≤ i, j, k ≤ n pairwise distinct
z̄i,j,k ∨ xj,k for 1 ≤ i, j, k ≤ n pairwise distinct

x̄i,k ∨
∨

1≤j≤n,j �=i,k

zi,j,k for 1 ≤ i, k ≤ n with i �= k (Di,k)

The first three groups of clauses enforce that the values of the variables zi,j,k

define the relation “j is between i and k”, and the clause Di,k states that if
i ≺ k, then there exists an element between i and k. Therefore the formula
DLOn expresses that there is a dense linear ordering on n points, and is thus
unsatisfiable.

Atserias and Dalmau [3] show a lower bound on the resolution width of the
3-CNF expansion E3(DLOn) of the dense linear ordering principle:

Theorem 15. The formula E3(DLOn) requires resolution width at least n/3.

Using Theorem 6 with k = n/9, it follows:

Corollary 16. For n ≥ 27, every RTL(n/9)-refutation of E3(DLOn) is of size
at least 2n/9.

Again, it follows that a DLL algorithm with clause learning requires exponential
time to solve E3(DLOn) when only clauses of width n/9 are learned. On the
other hand, short resolution refutations of DLOn and of E3(DLOn) are given
by Atserias and Dalmau [3], and these refutations are easily seen to be regu-
lar. Hence there is a run of a DLL algorithm with arbitrary clause learning on
E3(DLOn) in polynomial time, and thus learning wide clauses is necessary to
solve these formulas efficiently.
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Abstract. Default logic is one of the most popular and successful for-
malisms for non-monotonic reasoning. In 2002, Bonatti and Olivetti in-
troduced several sequent calculi for credulous and skeptical reasoning in
propositional default logic. In this paper we examine these calculi from
a proof-complexity perspective. In particular, we show that the calcu-
lus for credulous reasoning obeys almost the same bounds on the proof
size as Gentzen’s system LK . Hence proving lower bounds for credulous
reasoning will be as hard as proving lower bounds for LK . On the other
hand, we show an exponential lower bound to the proof size in Bonatti
and Olivetti’s enhanced calculus for skeptical default reasoning.

1 Introduction

Trying to understand the nature of human reasoning has been one of the most
fascinating adventures since ancient times. It has long been argued that due to
its monotonicity, classical logic is not adequate to express the flexibility of com-
monsense reasoning. To overcome this deficiency, a number of formalisms have
been introduced (cf. [19]), of which Reiter’s default logic [20] is one of the most
popular and widely used systems. Default logic extends the usual logical (first-
order or propositional) derivations by patterns for default assumptions. These
are of the form “in the absence of contrary information, assume . . . ”. Reiter
argued that his logic adequately formalizes human reasoning under the closed
world assumption. Today default logic is widely used in artificial intelligence and
computational logic.

The semantics and the complexity of default logic have been intensively stud-
ied during the last decades (cf. [6] for a survey). In particular, Gottlob [12]
has identified and studied two reasoning tasks for propositional default logic:
the credulous and the skeptical reasoning problem which can be understood as
analogues of the classical problems SAT and TAUT. Due to the stronger ex-
pressibility of default logic, however, credulous and skeptical reasoning become
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harder than their classical counterparts—they are complete for the second level
Σp

2 and Πp
2 of the polynomial hierarchy, respectively [12].

Less is known about the complexity of proofs in default logic. While there
is a rich body of results for propositional proof systems (cf. [16]), proof com-
plexity of non-classical logics has only recently attracted more attention, and a
number of exciting results have been obtained for modal and intuitionistic logics
[13–15]. Starting with Reiter’s work [20], several proof-theoretic methods have
been developed for default logic (cf. [1, 10, 17, 18, 21] and [8] for a survey).
However, most of these formalisms employ external constraints to model non-
monotonic deduction and thus cannot be considered purely axiomatic (cf. [9]
for an argument). This was achieved by Bonatti and Olivetti [3] who designed
simple and elegant sequent calculi for credulous and skeptical default reason-
ing. Subsequently, Egly and Tompits [9] extended Bonatti and Olivetti’s calculi
to first-order default logic and showed a speed-up of these calculi over classical
first-order logic, i.e., they construct sequences of first-order formulae which need
long classical proofs but have short derivations using default rules.

In the present paper we investigate the original calculi of Bonatti and Olivetti
[3] from a proof-complexity perspective. Apart from some preliminary observa-
tions in [3], this comprises, to our knowledge, the first comprehensive study of
lengths of proofs in propositional default logic. Our results can be summarized
as follows. Bonatti and Olivetti’s credulous default calculus BOcred obeys almost
the same bounds to the proof size as Gentzen’s propositional sequent calculus
LK , i.e., we show that upper bounds to the proof size in both calculi are poly-
nomially related. The same result also holds for the proof length (the number
of steps in the system). Thus, proving lower bounds to the size of BOcred will
be as hard as proving lower bounds to LK (or, equivalently, to Frege systems),
which constitutes a major challenge in propositional proof complexity [4, 16].
This result also has implications for automated theorem proving. Namely, we
transfer the non-automatizability result of Bonet, Pitassi, and Raz [5] for Frege
systems to default logic: BOcred-proofs cannot be efficiently generated, unless
factoring integers is possible in polynomial time.

While already BOcred appears to be a strong proof system for credulous de-
fault reasoning, admitting very concise proofs, we also exhibit a general method
of how to construct a proof system Cred(P ) for credulous reasoning from a
propositional proof system P . This system Cred(P ) bears the same relation to
P with respect to proof size as BOcred does to LK . Thus, choosing for example P
as extended Frege might lead to stronger proof systems for credulous reasoning.

For skeptical reasoning, the situation is different. Bonatti and Olivetti [3] con-
struct two proof systems for this task. While they already show an exponential
lower bound for their first skeptical calculus, we obtain also an exponential lower
bound to the proof length in their enhanced skeptical calculus.

This paper is organized as follows. In Sect. 2 we start with some background in-
formation on proof systems and default logic. The calculi of Bonatti and Olivetti
[3] consist of four main ingredients: classical sequents, antisequents to refute non-
tautologies, a residual calculus, and default rules. Thus we start our investigation
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in Sect. 3 by analyzing the preliminary antisequent and residual calculi. Our main
results on the proof complexity of credulous and skeptical default reasoning fol-
low in Sects. 4 and 5, respectively. In Sect. 6, we conclude with a discussion and
some open questions.

Due to space constraints, some proofs are only sketched.

2 Preliminaries

We assume familiarity with propositional logic and basic notions from complexity
theory (cf.[16]). By L we denote the set of all propositional formulae over some
fixed standard set of connectives. For T ⊆ L, the set of all logical consequences
of T will be denoted by Th(T ).

2.1 Proof Systems

Cook and Reckhow [7] defined the notion of a proof system for an arbitrary
language L as a polynomial-time computable function f with range L. A string
w with f(w) = x is called an f -proof for x ∈ L. Proof systems for L = TAUT
are called propositional proof systems. The sequent calculus LK of Gentzen [11]
is one of the most important and best studied propositional proof systems. It is
well known that LK and Frege systems mutually p-simulate each other(cf. [16]).

There are two measures which are of primary interest in proof complexity. The
first is the minimal size of an f -proof for some given element x ∈ L. To make
this precise, let sf (x) = min{|w| | f(w) = x} and sf (n) = max{sf (x) | |x| ≤ n}.
We say that the proof system f is t-bounded if sf (n) ≤ t(n) for all n ∈ N. If t is a
polynomial, then f is called polynomially bounded. Another interesting parameter
of a proof is the length defined as the number of proof steps. This measure only
makes sense for proof systems where proofs consist of lines containing formulae
or sequents. This is the case for LK and most systems studied in this paper.
For such a system f , we let tf (ϕ) = min{k | f(π) = ϕ and π uses k steps} and
tf (n) = max{tf(ϕ) | |ϕ| ≤ n}. Obviously, it holds that tf (n) ≤ sf (n), but the
two measures are even polynomially related for a number of natural systems as
extended Frege (cf. [16]).

For sequent calculi one distinguishes between dag-like and tree-like proofs
where in the latter notion each derived sequent can be used at most once as a
prerequisite of a rule. While for LK these two measures are equivalent [16], we
will concentrate here only on the stronger dag-like model.

2.2 Default Logic

Default logic is an extension of classical logic that has been proposed by Reiter
[20]. The logic is non-monotonic in the sense that an increase in information
may decrease the number of consequences. A default theory 〈W, D〉 consists of
a set W of propositional sentences and a set D of defaults. A default (rule) δ is

an inference rule of the form α : β
γ

, where α and γ are propositional formulae
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and β is a set of propositional formulae. The prerequisite α is also referred to as
p(δ), the formulae in β are called justifications (referred to as j(δ)), and γ is the
conclusion that is referred to as c(δ). Stable extensions are originally defined in
terms of a fixed-point equation [20], but we use the following characterization as
a starting definition:

Theorem 1 (Reiter [20]). Let E ⊆ L be a set of formulae and 〈W, D〉 be a
default theory. Furthermore let E0 = W, and

Ei+1 = Th(Ei) ∪ {c(δ) | δ ∈ D, Ei � p(δ),¬j(δ) ∩ E = ∅} ,
where ¬j(δ) denotes the set of all negated sentences contained in j(δ). Then E
is a (stable) extension of 〈W, D〉 if and only if E =

⋃
i∈N

Ei.

A default theory 〈W, D〉 can have none or several stable extensions (cf. [12] for
examples). A sentence ψ ∈ L is credulously entailed by 〈W, D〉 if ψ holds in some
stable extension of 〈W, D〉. If ψ holds in every extension of 〈W, D〉, then ψ is
skeptically entailed by 〈W, D〉.

Default rules with empty justification are called residues. We use the nota-
tion Lres = L∪

{
α
γ | α, γ ∈ L

}
for the set of all formulae and residues. Residues

can be used to alternatively characterize stable extensions. For a set D of de-
faults and E ⊆ L let RES(D, E) =

{
p(δ)
c(δ) | δ ∈ D, E ∩ ¬j(δ) = ∅

}
. Appar-

ently, RES(D, E) is a set of residues. We can then build stable extensions via
the following closure operator. For a set R of residues we define Cl0(W, R) =
W and Cli+1(W, R) = Th(Cli(W, R)) ∪

{
γ | α

γ ∈ R, α ∈ Th(Cli(W, R))
}

. Let

Cl(W, R) =
⋃∞

i=0 Cli(W, R). Then we obtain for the sets Ei from Theorem 1:

Proposition 1 (Bonatti, Olivetti [3]). Let 〈W, D〉 be a default theory and let
E ⊆ L. Then Ei = Cli(W, RES(D, E)) for all i ∈ N. In particular, E is a stable
extension of 〈W, D〉 if and only if E = Cl(W, RES(D, E)).

If D only contains residues, then there is an easier way of characterizing Cl:

Lemma 1 (Bonatti, Olivetti [3]). For D ⊆ Lres \ L, W ⊆ L, and for i ∈ N

let C0 = W and Ci+1 = Ci ∪
{

γ | α
γ ∈ D, α ∈ Th(Ci)

}
. Then γ ∈ Cl(W, D) if

and only if there exists k ∈ N with γ ∈ Th(Ck).

3 Complexity of the Antisequent and Residual Calculi

Bonatti and Olivetti’s calculi for default logic use four main ingredients: usual
propositional sequents and rules of LK , antisequents to refute formulae, residual
rules, and default rules. In this section we will investigate the complexity of the
antisequent calculus AC and the residual calculus RC .

We start with the definition of Bonatti’s antisequent calculus AC from [2].
A related refutation calculus for first-order logic was previously developed by
Tiomkin [22]. In AC we use antisequents Γ � Δ, where Γ, Δ ⊆ L. Intuitively,
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Γ � Σ, α
(¬ �)

Γ,¬α � Σ

Γ, α � Σ
(� ¬)

Γ � Σ,¬α

Γ, α, β � Σ
(∧ �)

Γ, α ∧ β � Σ

Γ � Σ, α
(� •∧)

Γ � Σ, α ∧ β

Γ � Σ, β
(� ∧•)

Γ � Σ, α ∧ β

Γ � Σ, α, β
(� ∨)

Γ � Σ, α ∨ β

Γ, α � Σ
(•∨ �)

Γ, α ∨ β � Σ

Γ, β � Σ
(∨• �)

Γ, α ∨ β � Σ

Γ, α � Σ, β
(�→)

Γ � Σ, α→ β

Γ � Σ, α
(• →�)

Γ, α→ β � Σ

Γ, β � Σ
(→ • �)

Γ, α→ β � Σ

Fig. 1. Inference rules of the antisequent calculus AC

Γ � Δ means that
∨

Δ does not follow from
∧

Γ . Axioms of AC are all sequents
Γ � Δ, where Γ and Δ are disjoint sets of propositional variables. The inference
rules of AC are shown in Fig. 1. For this calculus, Bonatti [2] shows:

Theorem 2 (Bonatti [2]). The calculus AC is sound and complete.

Concerning the size of proofs in the antisequent calculus we observe:

Proposition 2. The antisequent calculus AC is polynomially bounded.

Proof. Observe that the calculus contains only unary inference rules, each of
which reduces the logical complexity of one of the contained formulae (if per-
ceived bottom-up). Thus each use of an inference rule decrements the size of the
formulae by at least one. After a linear number of steps we end up with only
propositional variables which we cannot reduce any further. Each antisequent is
of linear size, hence the complete derivation has quadratic size. ��
The above observation is not very astounding, since, to verify Γ � Δ we could
alternatively guess assignments to the propositional variables in Γ and Δ and
thereby verify antisequents in NP.

We now turn to the residual calculus RC of Bonatti and Olivetti [3]. Its objects
are residual sequents 〈W, R〉 � Δ and residual antisequents 〈W, R〉 � Δ where
W, Δ ⊆ L and R ⊆ Lres . The intuitive meaning is that Δ does (respectively
does not) follow from W using the residues R. The rules of RC comprise of the
inference rules from Fig. 2 together with the rules of LK and AC . However, the
use of rules from LK and AC is restricted to purely propositional (anti)sequents.
For this calculus, Bonatti and Olivetti [3] showed:

Theorem 3 (Bonatti, Olivetti [3]). The residual calculus RC is sound and
complete, i.e., for all default theories 〈W, R〉 with R ⊆ Lres and all Δ ⊆ L,

1. 〈W, R〉 � Δ is derivable in RC if and only if
∨

Δ ∈ Cl(W, R);
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Γ � Δ(Re1)
Γ, α

γ
� Δ

Γ � α Γ, γ � Δ
(Re2)

Γ, α
γ
� Δ

Γ �� Δ Γ �� α
(Re3)

Γ, α
γ
�� Δ

Γ, γ �� Δ
(Re4)

Γ, α
γ
�� Δ

Fig. 2. Inference rules of the residual calculus RC

2. 〈W, R〉 � Δ is derivable in RC if and only if
∨

Δ /∈ Cl(W, R).

To bound the lengths of proofs in this calculus we exploit the property that
residues only have to be used at a certain level and are not used to deduce any
formulae afterwards (cf. Lemma 1). Using this we prove that the complexity of
RC is tightly linked to that of LK .

Lemma 2. There exist a polynomial p and a constant c such that sRC (n) ≤
p(n) · sLK (cn) and tRC (n) ≤ p(n) · tLK (cn).

Proof. The proof consists of two parts. First we will show the bounds stated
above for sequents. In the second part we will then show that antisequents even
admit polynomial-size proofs in RC .

Assume first that we want to derive the sequent 〈W, R〉 � Δ, where W, Δ ⊆ L
and R = {r1, . . . , rk} is a set of residues with ri = αi

γi
. Let R′ ⊆ R be minimal

with respect to the size |R′| such that 〈W, R′〉 � Δ. We may w.l.o.g. assume that
R′ = {r1, . . . , rk′} and k′ ≤ k. Furthermore, by Lemma 1, we may assume that
the rules ri are ordered in the way they are applied when computing the sets Ci.
In particular, this means that for each i = 1, . . . , k′,

W ∪ {γ1, . . . , γi−1} � αi

is a true propositional sequent for which we fix an LK -proof Πi. We augment
Πi by k′ − i applications of rule (Re1) to obtain

〈W ∪ {γ1, . . . , γi−1}, {ri+1, . . . , rk′}〉 � αi .

Let us call the proof of this sequent Π ′
i.

The proof tree depicted in Fig. 3 for deriving 〈W, R〉 � Δ unfurls as follows.
We start with an LK -proof for the sequent W ∪{γ1, . . . , γk′} � Δ and then apply
k′-times the rule (Re2) in the step

〈W ∪ {γ1, . . . , γi−1}, {ri+1, . . . , rk′}〉 � αi 〈W ∪ {γ1, . . . , γi}, {ri+1, . . . , rk′}〉 � Δ

〈W ∪ {γ1, . . . , γi−1}, {ri, . . . , rk′}〉�Δ

to reach 〈W, R′〉 � Δ. To derive the left prerequisite we use the proof Π ′
i . Finally

we use k − k′ applications of the rule (Re1) to get 〈W, R〉 � Δ.
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Π ′
1

Π ′
2

Π ′
k′ 〈W ∪ {γ1, . . . , γk′}, ∅〉 � Δ

(Re2)
...

〈W ∪ {γ1, γ2}, {r3, . . . , rk′}〉 � Δ
(Re2)〈W ∪ {γ1}, {r2, . . . , rk′}〉 � Δ

(Re2)〈W,R′〉 � Δ
(Re1)

...

〈W,R〉 � Δ

Fig. 3. Proof tree for the sequent 〈W,R〉 � Δ in the residual calculus

Our proof for 〈W, R〉 � Δ uses at most (k′ + 1) · tLK (n) + k′(k′+1)
2 + k steps,

i.e., tRC (n) ≤ O(n ·tLK (n)+n2). Each sequent is of linear size. Hence, sRC (n) ≤
p(n) · sLK (n) for some polynomial p.

In the second part of the proof we have to show that any true antisequent has
an RC -proof of polynomial size. We omit the details. ��
Let us remark that while the RC -proof of 〈W, R〉 � Δ in Fig. 3 is tree-like, this
is not true for our dag-like RC -proof of 〈W, R〉 � Δ constructed in the second
part of the proof of Lemma 2.

4 Proof Complexity of Credulous Default Reasoning

Now we turn to the analysis of Bonatti and Olivetti’s calculus for credulous de-
fault reasoning. An essential ingredient of the calculus are provability constraints
which resemble a necessity modality. Provability constraints are of the form Lα
or ¬Lα with α ∈ L. A set E ⊆ L satisfies a constraint Lα if α ∈ Th(E).
Similarly, E satisfies ¬Lα if α �∈ Th(E).

We can now describe the calculus BOcred of Bonatti and Olivetti [3] for cred-
ulous default reasoning. A credulous default sequent is a 3-tuple 〈Σ, Γ, Δ〉, de-
noted by Σ; Γ |∼Δ, where Γ = 〈W, D〉 is a default theory, Σ is a set of provability
constraints and Δ is a set of propositional sentences. Semantically, the sequent
Σ; Γ |∼Δ is true, if there exists a stable extension E of Γ which satisfies all of
the constraints in Σ and

∨
Δ ∈ E. The calculus BOcred uses such sequents and

extends LK , AC , and RC by the inference rules in Fig. 4.
For this calculus Bonatti and Olivetti [3] show the following:

Theorem 4 (Bonatti, Olivetti [3]). BOcred is sound and complete, i.e., a
credulous default sequent is true if and only if it is derivable in BOcred .

We now investigate lengths of proofs in BOcred . Our next lemma shows that
upper bounds on the proof size of RC can be transferred to BOcred .

Lemma 3. For any function t(n), if RC is t(n)-bounded, then BOcred is p(n) ·
t(n)-bounded for some polynomial p. The same relation holds for the number of
steps in RC and BOcred .
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Γ � Δ(cD1)
; Γ |∼Δ

Γ � α Σ; Γ |∼Δ
(cD2)

Lα, Σ; Γ |∼Δ

Γ �� α Σ; Γ |∼Δ
(cD3) ¬Lα, Σ; Γ |∼Δ

where Γ ⊆ Lres in rules (cD1), (cD2), and (cD3)

L¬βi, Σ; Γ |∼Δ
(cD4)

Σ; Γ, α: β1...βn
γ

|∼Δ

¬L¬β1 . . .¬L¬βn, Σ; Γ, α
γ
|∼Δ

(cD5)
Σ; Γ, α: β1...βn

γ
|∼Δ

Fig. 4. Inference rules for the credulous default calculus BOcred

Proof. Let Σ; Γ |∼Δ be a true credulous default sequent. We will construct a
BOcred-derivation of Σ; Γ |∼Δ starting from the bottom with the given sequent.
Observe that we cannot use any of the rules (cD1) through (cD3) as long as
Γ contains proper defaults with nonempty justification. Thus we first have to
reduce all defaults to residues plus some set of constraints using (cD4) or (cD5).
As one of these rules has to be applied exactly once for each appearance of some
default in Γ we end up with Σ′; Γ ′|∼Δ, where |Σ′| is polynomial in |Γ ∪Σ| and
Γ ′ is equal to Γ on its propositional part and contains some of the corresponding
residues instead of the defaults from Γ . From this point on we can only use rules
(cD2) and (cD3) until we have eliminated all constraints and then finally apply
rule (cD1) once. Thus, BOcred -proofs look as shown in Fig. 5 where RC indicates

RC

RC

RC
(cD1)

Γ ′|∼Δ
(cD2) or (cD3)

σ;Γ ′|∼Δ
(cD2) or (cD3)

...

Σ′′; Γ ′|∼Δ
(cD2) or (cD3)

Σ′; Γ ′|∼Δ
(cD4) or (cD5)

...
Σ; Γ |∼Δ

Fig. 5. The structure of the BOcred -proof in Lemma 3

a derivation in the residual calculus and σ is the remaining constraint from Σ
after applications of (cD2) or (cD3). Hence we obtain the bounds on sBOcred

and tBOcred
. ��

Combining Lemmas 2 and 3 we obtain our main result in this section stating a
tight connection between the proof complexity of LK and BOcred .
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Theorem 5. There exist a polynomial p and a constant c such that sLK (n) ≤
sBOcred

(n) ≤ p(n) · sLK (cn) and tLK (n) ≤ tBOcred
(n) ≤ p(n) · tLK (cn).

In the light of this result, proving either non-trivial lower or upper bounds to the
proof size of BOcred seems very difficult—as such a result would mean a major
breakthrough in propositional proof complexity (cf. [2, 16]).

4.1 On the Automatizability of BOcred

Practitioners are not only interested in the size of a proof, but face the more
complicated problem to actually construct a proof for a given instance. Of course,
in the presence of super-polynomial lower bounds to the proof size this cannot
be done in polynomial time. Thus, in proof search the best one can hope for is
the following notion of automatizability:

Definition 1 (Bonet, Pitassi, Raz [5]). A proof system P for a language L
is automatizable if there exists a deterministic procedure that takes as input a
string x and outputs a P -proof of x in time polynomial in the size of the shortest
P -proof of x if x ∈ L. If x �∈ L, then the behaviour of the algorithm is unspecified.

For practical purposes automatizable systems would be very desirable. Searching
for a proof we may not find the shortest one, but we are guaranteed to find one
that is only polynomially longer. Unfortunately, for BOcred there are strong
limitations towards this goal as our next result shows:

Theorem 6. BOcred is not automatizable unless factoring integers is possible
in polynomial time.

Proof. First we observe that automatizability of BOcred implies automatizability
of Frege systems. For this let ϕ be a propositional tautology. By assumption, we
can construct a BOcred -proof of ∅|∼ϕ. This BOcred-proof contains an LK -proof
of ∅ � ϕ by rule (cD1). As LK is polynomially equivalent to Frege systems [16],
we can construct from this LK -proof a Frege proof of ϕ in polynomial time.
By a result of Bonet, Pitassi, and Raz [5], Frege systems are not automatizable
unless Blum integers can be factored in polynomial time (a Blum integer is the
product of two primes which are both congruent 3 modulo 4). ��

4.2 A General Construction of Proof Systems for Credulous
Default Reasoning

In this section we will explain a general method how to construct proof systems
for credulous default reasoning. These proof systems arise from the canonical
Σp

2 algorithm for credulous default reasoning (Algorithm 1). Algorithm 1 first
guesses a generating set Gext for a potential stable extension and then verifies
by the stage construction from Theorem 1 that Gext indeed generates a stable
extension which moreover contains the formula ϕ. Algorithm 1 is a Σp

2 procedure,
i.e., it can be executed by a nondeterministic polynomial-time Turing machine
M with access to a coNP-oracle. The nondeterminism solely lies in line 1 and
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Algorithm 1. A Σp
2 procedure for credulous default reasoning

Require: 〈W,D〉, ϕ

1: guess D0 ⊆ D and let Gext ←W ∪
{

γ | α:β
γ
∈ D0

}
2: Gnew ←W
3: repeat
4: Gold ← Gnew

5: for all α:β
γ
∈ D do

6: if Gold |= α and Gext �|= ¬β then
7: Gnew ← Gnew ∪ {γ}
8: end if
9: end for

10: until Gnew = Gold

11: if Gnew = Gext and Gext |= ϕ then
12: return true
13: else
14: return false
15: end if

the oracle queries are made in lines 6 and 11 to the coNP-complete problem of
propositional implication IMP = {〈Ψ, ϕ〉 | Ψ ⊆ L, ϕ ∈ L, and Ψ |= ϕ}.

Algorithm 1 can be converted into a proof system for credulous default reason-
ing as follows. We fix a propositional proof system P and define a proof system
Cred(P ) for credulous default reasoning where proofs are of the form

〈W, D, ϕ, comp, q1, . . . , qk, a1, . . . , ak〉 .

Here comp is a computation of M on input 〈W, D, ϕ〉 and q1, . . . , qk are the
queries to IMP during this computation. If the IMP-query qi = 〈Ψi, ϕi〉 is an-
swered positively, then ai is a P -proof of

(∧
ψ∈Ψi

ψ
)
→ ϕi, otherwise ai is an

assignment falsifying this formula. For this proof system we obtain the following
bounds:

Theorem 7. Let P be a propositional proof system. Then Cred(P ) is a proof
system for credulous default reasoning with sP (n) ≤ sCred(P )(n) ≤ O(n2sP (n)).

Proof. The first inequality holds because we can use Cred(P ) to prove proposi-
tional tautologies ϕ by choosing W = D = ∅.

For the second inequality, we observe that Algorithm 1 has quadratic running
time. In particular, a computation of Algorithm 1 contains at most a quadratic
number of queries to IMP. Each of these queries is of linear size because it only
consists of formulae from the input. If the query is answered positively, then
we have to supply a P -proof and there exists such a P -proof of size ≤ sP (n).
For a negative answer we just include an assignment of linear size. This yields
sCred(P )(n) ≤ O(n2sP (n)). ��
Theorem 7 tells us that proving lower bounds for proof systems for credulous de-
fault reasoning is more or less the same as proving lower bounds to propositional
proof systems. In particular, we get:
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Corollary 1. There exists a polynomially bounded proof system for credulous
default reasoning if and only if there exists a polynomially bounded propositional
proof system.

5 Lower Bounds for Skeptical Default Reasoning

Bonatti and Olivetti [3] introduce two calculi for skeptical default reasoning. As
before, objects are sequents of the form Σ; Γ |∼Δ, where Σ is a set of constraints,
Γ is a propositional default theory, and Δ is a set of propositional formulae. But
now, the sequent Σ; Γ |∼Δ is true, if

∨
Δ holds in all extensions of Γ satisfying

the constraints in Σ.
The first calculus BOskep consists of the defining axioms of LK and AC , the

inference rules of LK , AC , RC , and the rules from Fig. 6. Bonatti and Olivetti

Γ � Δ(sD1)
Σ; Γ |∼Δ

Γ � α(sD2) ¬Lα, Σ; Γ |∼Δ

Γ �� α
(sD3)

Lα, Σ; Γ |∼Δ

where Γ ⊆ Lres in rules (sD1), (sD2), and (sD3)

¬L¬β1, . . . ,¬L¬βn, Σ; Γ, α
γ
|∼Δ L¬β1, Σ; Γ |∼Δ . . . L¬βn, Σ; Γ |∼Δ

(sD4)
Σ; Γ, α:β1...βn

γ
|∼Δ

Fig. 6. Inference rules for the skeptical default calculus BOskep

show that each true sequent is derivable in BOskep , i.e., the calculus is sound and
complete. However, they already remark that proofs in BOskep are of exponential
size in the number of default rules in the sequent. This is due to the residual
rules for they cannot be applied unless all defaults with nonempty justifications
have been eliminated using rule (sD4).

To get more concise proofs, Bonatti and Olivetti [3] suggest an enhanced cal-
culus BO ′

skep where the rules (sD1) to (sD3) are replaced by rules (sD1′) to
(sD3′) and rule (sD4) is kept (see Fig. 7). Bonatti and Olivetti prove soundness
and completeness for BO ′

skep . Moreover, they show that BO ′
skep is exponen-

tially separated from BOskep , i.e., there exist sequents (Sn)n≥1 which require
exponential-size proofs in BOskep but have linear-size derivations in BO ′

skep . In
our next result we will show an exponential lower bound to the proof length
(and therefore also to the proof size) in the enhanced skeptical calculus BO ′

skep .

Theorem 8. The calculus BO ′
skep has exponential lower bounds to the lengths

of proofs. More precisely, there exist sequents Sn of size O(n) such that every
BO ′

skep-proof of Sn uses 2Ω(n) steps. Therefore, sBO′
skep

(n), tBO′
skep

(n) ∈ 2Ω(n).
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Σ′, Γ ′ � Δ
(sD1’)

Σ; Γ |∼Δ

Σ; Γ |∼α
(sD2’) ¬Lα, Σ; Γ |∼Δ

Γ ′′ �� α
(sD3’)

Lα, Σ; Γ |∼Δ

¬L¬β1, . . . ,¬L¬βn, Σ; Γ, α
γ
|∼Δ L¬β1, Σ; Γ |∼Δ . . . L¬βn, Σ; Γ |∼Δ

(sD4)
Σ; Γ, α:β1...βn

γ
|∼Δ

where Σ′ ⊆ {α | Lα ∈ Σ}, Γ ′ ⊆ Γ ∩ Lres , and Γ ′′ = (Γ ∩ L) ∪
{

p(δ)
c(δ)

∣∣∣ δ ∈ Γ
}
.

Fig. 7. Inference rules for the enhanced skeptical default calculus BO ′
skep

Proof. (Sketch) We construct a sequence (Sn)n≥1 = (Σn; Γn|∼ψn)n≥1 such that
for some constant c, every BO ′

skep-proof of Sn has length at least 2Ω(n). We
choose Σn = ∅, ψn = x2n, and Γn = 〈∅, D2n〉, where D2n consists of the defaults
listed in Fig. 8. The default theory Γn possesses 2n+1 stable extensions. Observe
that each of these contains x2n, but that each pair of stable extensions differs
in truth assigned to the propositional variables x0, . . . , xn. We claim that every
proof of Sn has exponential length in n. More precisely, we show that rule (sD4)
has to be applied an exponential number of times.

: x0

x0

: ¬x0

¬x0

xi : xi+1

xi+1

¬xi : xi+1

xi+1

xi : ¬xi+1

¬xi+1

¬xi : ¬xi+1

¬xi+1

xn+j : xn−j−1

xn+j+1

¬xn+j : xn−j−1

xn+j+1

xn+j : ¬xn−j−1

¬xn+j+1

¬xn+j : ¬xn−j−1

¬xn+j+1

for i = 0, . . . , n− 1 and j = 0, . . . , n− 2

x2n−1 : x0

x2n

¬x2n−1 : x0

x2n

x2n−1 : ¬x0

x2n

¬x2n−1 : ¬x0

x2n

Fig. 8. The defaults in D2n in the proof of Theorem 8

We point out that our argument does not only work against tree-like proofs,
but also rules out the possibility of sub-exponential dag-like derivations for
D2n|∼x2n. The lower bound is obtained from the fact that to derive x2n, we
have to derive xi and ¬xi for each n < i < 2n, each of which can only be
achieved from ancestors with mutually different proof constraints. This, by def-
inition of BOskep , leads to mutually disjoint sets of ancestor sequents. ��
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6 Conclusion

In this paper we have shown that with respect to lengths of proofs, proof systems
for credulous default reasoning and for propositional logic are very close to each
other. Although deciding credulous default sequents is presumably harder than
deciding tautologies (the former is Σp

2-complete [12], while the latter is com-
plete for coNP), the difference disappears when we want to prove these objects
(Sect. 4.2).

For skeptical reasoning this is less clear. While skeptical default reasoning has
polynomially bounded proof systems if and only if this holds for TAUT, we leave
open whether this equivalence extends to other bounds. However, in the light
of our exponential lower bound for BO ′

skep (Theorem 8), searching for natural
proof systems for skeptical default reasoning with more concise proofs will be a
rewarding task for future research.

In this direction Bonatti and Olivetti [3] themselves introduced two rules to
supplement their enhanced calculus. These are the cut rule

Σ; Γ |∼α Σ; Γ, α|∼Δ
(Cut)

Σ; Γ |∼Δ

and the following version of the rule (sD4)

Σ0, Σ; Γ, α
γ
|∼Δ Σ1, Σ; Γ |∼Δ . . . Σn, Σ; Γ |∼Δ

(sD4′)
Σ; Γ, α:β1...βn

γ
|∼Δ

where Σi = L¬βπ(i),¬L¬βπ(i+1), . . . ,¬L¬βπ(n) for an arbitrary permutation π
of {1, . . . , n}. While it is not hard to see that our lower bound in Theorem 8 still
remains true if we add (sD4′) to BO ′

skep , we leave open the problem to show
super-polynomial lower bounds in the presence of the cut rule.
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14. Jeřábek, E.: Frege systems for extensible modal logics. Annals of Pure and Applied
Logic 142, 366–379 (2006)
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Abstract. Robustness and correctness are essential criteria for SAT and
QBF solvers. We develop automated testing and debugging techniques
designed and optimized for SAT and QBF solver development. Our fuzz
testing techniques are able to find critical solver defects that lead to
crashes, invalid satisfying assignments and incorrect satisfiability results.
Moreover, we show that sequential and concurrent delta debugging tech-
niques are highly effective in minimizing failure-inducing inputs.

1 Introduction

Satisfiability solving has been shown to be a competitive problem solving tech-
nique that is used in many different domains such as verification, test case gener-
ation, scheduling, computational biology and artificial intelligence. For a recent
survey on satisfiability solving we refer the reader to [8]. Recent advances of
propositional satisfiability (SAT) solvers and quantified boolean formula (QBF)
solvers are driven by competitions and real industrial applications such as formal
hardware and software verification.

Essential criteria of satisfiability solvers are robustness and correctness. SAT
and QBF solvers are used as core decision engines and the clients heavily de-
pend on these important criteria. For instance, an incorrect SAT solver used as
decision engine in a formal verification framework may lead to incorrect veri-
fication results, i.e. either the system may be spuriously proven to be correct
or the verification framework generates a spurious counter-example. Moreover,
wrong satisfying assignments (models) may be mapped to spurious verification
counter-examples that hinder the overall verification process.

While a large part of current research focuses on speeding up SAT and QBF
solving with various techniques such as improved decision heuristics and low-
level optimizations, there are, to the best of our knowledge, no rigorous sci-
entific publications about automated testing and debugging techniques for SAT
and QBF solvers. This paper tries to improve this situation by introducing auto-
mated state-of-the-art testing and (multi-threaded) delta debugging techniques,
designed and optimized for SAT and QBF solvers. Our experimental results are
available at http://fmv.jku.at/brummayer/fuzz-dd-sat-qbf.tar.7z. Every
tool is available at http://fmv.jku.at/software/.
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2 Fuzzing

Fuzzing is an automated negative testing technique, typically used in software
security and quality assurance [45,46]. The original idea is to treat software as
a black-box and repeatedly “attack” it with random inputs in order to find
critical defects, e.g. buffer overflows. Fuzz testing methods such as “monkey
testing” were already used around 1980 [46]. Miller, one of the fuzzing pioneers,
demonstrated that fuzz testing could find many critical defects in UNIX applica-
tions [36]. The lack of a formal model and the brute force nature of the approach
lead to the situation that papers about fuzz testing were often offended. Miller
simply responded that he was just trying to find bugs [46], which is also exactly
what we want to achieve with our fuzzing techniques, explicitly designed and
optimized for SAT and QBF solvers.

The goal of previous work on random generation of SAT and QBF instances
was to study the phase transition phenomenon [22,40,23,16] and to generate
hard instances [27,48,1]. However, our work focuses on generating random in-
stances in order to find defects in current state-of-the-art solver implementations.
We propose to use grammar-based black-box fuzzing in order to test SAT and
QBF solvers. A fuzzer repeatedly generates syntactically valid inputs. Solvers
are treated as black-boxes, which makes our approach highly flexible. They are
run on the generated inputs in order to detect critical defects such as segmenta-
tion faults and aborts. Moreover, reported satisfiability results are validated in
order to find defects that lead to incorrect results and models.

One of the main success factors of fuzz testing is a high test throughput,
e.g. testing a solver with five instances per hour is unlikely to be successful.
Therefore, generating hard instances solely is counter-productive. On the other
hand, trivial instances are unlikely to trigger interesting defects. Ideally, a fuzzer
should be able to generate a variety of different inputs that lead to the execution
of different paths in the tested solver. The majority of the generated instances
should be easy to solve in order to maintain a sufficiently high test throughput.
The combination of automation, diversity and high throughput makes fuzz test-
ing an effective negative testing technique. Our experiments in section 2.3 show
that this technique can be successfully applied to SAT and QBF solvers.

In the following we describe our novel fuzzing techniques for SAT and QBF
solvers, implemented in our fuzzers CNFuzz, FuzzSAT and QBFuzz. Due to the
probabilistic nature of fuzzing, our fuzzers use magic constants found through
direct experimentation. All fuzzing approaches use a random number generator.
We assume that picks during fuzzing are performed uniformly at random.

2.1 SAT Fuzzing

3SATGen. Easy to solve instances do not exercise solvers enough. Therefore,
it is unlikely to find interesting defects with easy instances alone. However, as
research [22] on the phase transition in random 3-SAT suggests, it is straight-
forward to write a random CNF generator that generates reasonable hard in-
stances. In our view, this is an important application of [22].
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Our 3SAT generator 3SATGen is based on this technique and works as follows.
First, the number of variables m is picked, typically between 10 and 400 variables.
The next step is to determine a clause variable ratio r, which should be around
the hardness threshold, typically between 3 and 5. Finally, m · r random ternary
clauses are generated, where each literal is picked uniformly.

CNFuzz. Random 3-SAT formulas are lacking structure. However, the success
of SAT solvers in industry seems to rely on their ability to use structure, at least
implicitly, even though we do not actually know how to describe this connection
in a more formal way. This rather vague argument implies that 3SAT does not
exercise all the interesting features of an industrial SAT solver. Therefore, we
were looking for other ways to generate ”more structured“ instances. Our fuzzer
CNFuzz enforces certain locality restrictions and thus generates instances that
contain more internal structure than the simple 3SAT approach.

The CNF generated by CNFuzz consists of l ∈ [1, 20] layers of maximum width
w ∈ [10, 70]. Both numbers are picked randomly within these ranges. The i-th
layer with i ∈ [1, l] introduces ni ∈ [10, w] new variables, again chosen randomly.
Each layer is associated with a separately ”picked-clause-variable-ratio“ ri ∈
[3, 4.5] from which the number ci = riwi of clauses in layer i is calculated. Clauses
are at least ternary, and with exponentially decreasing probability longer: 2/3
are expected to be ternary, 1/3 · 2/3 of length 4, (1/3)2 · 2/3 of length 5, etc.
Variables are picked either from the same or from smaller layers. The layer from
which a variable is picked is determined in a similar way as the length of clauses.
A variable from layer i is picked with probability 1/2, from layer i − 1 with
probability 1/4, from layer i − 2 with probability 1/8, etc., down to the first
layer, which accumulates the remaining probabilities. As a further refinement of
the iterative clause generation process, variables that have not been selected are
preferred within the same layer.

FuzzSAT. The even more structured approach of FuzzSAT is based on the
translation of boolean circuits into CNF. To be more precise, a directed acyclic
graph (DAG) representation of a random boolean circuit is generated. The gen-
erated DAG is converted into CNF by using the Tseitin transformation [47]
afterwards.

The boolean circuit DAG is constructed as follows. First, v ∈ [1, 100] boolean
input nodes are generated and inserted into a global set n, which is a container for
all nodes generated during the construction process. Then, in the core routine
of our DAG generation approach, we randomly select a boolean operator op
from the set of operators O ={AND, OR, XOR, IFF}. Moreover, we select two
operands o1 and o2 from n, negate each operand with probability 1/2, generate
the new operator node, and insert it into n. This process is repeated until each
original input variable is referenced at least t times, where t is usually 1.

Then, we take the set r of all boolean roots, i.e. generated operators that
are not referenced by other operators, and combine them to one boolean root
as follows. We select a boolean operator op from O, select two operands r1 and
r2 from r, negate each of them with probability 1/2, remove r1 and r2 from r,
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generate the new root, and insert it into r. This process is repeated until there
is only one root left. Then, we perform the Tseitin transformation on this root.

Let c be the number of clauses generated so far and let p be a probability
∈ [0.01, 0.1]. Finally, c · p random clauses of varying size s ∈ [2, 6] are added to
the CNF in order to increase diversity. The size of the additional random clauses
is picked for each clause individually.

2.2 QBF Fuzzing

A quantified boolean formula (QBF) F = B1 . . . Bn. φ in prenex conjunctive
normal form (PCNF) consists of a propositional formula φ in CNF over a set of
variables V and a quantifier prefix B1 . . . Bn. The quantifier prefix is a linearly
ordered set of blocks Bi where B1 < . . . < Bn, forming a partition on V .

A block Bi is existential (q(Bi) = ∃) if it is associated with an existential
quantifier and universal (q(Bi) = ∀) otherwise. For two adjacent blocks Bi and
Bi+1 where 1 ≤ i < n, q(Bi) �= q(Bi+1).

A clause C is forall-reduced [12] if for every literal l ∈ C with l ∈ Bi and
q(Bi) = ∀ there is a literal k ∈ C with k ∈ Bj and q(Bj) = ∃ and i < k.

In the following we describe two different approaches for QBF fuzz testing.
All generated formulas are in PCNF and contain forall-reduced clauses only.

Random QBF model. We have implemented a QBF fuzzer BlocksQBF which
generates random QBFs in PCNF according to the model described in [14]. This
model is an extension of an approach originally introduced in [13], which was
further improved in [23].

The model [14] used in our fuzzer has the following parameters: the number
of clauses nc, the number of quantifier blocks nb in the prefix B1 . . . Bnb

, the
number of variables nv,1, . . . , nv,i, . . . , nv,nb

in each block Bi for 1 ≤ i ≤ nb and
the number of literals nl,1, . . . , nl,i, . . . , nl,nb

taken from a block Bi to appear in
each clause, where nl,i ≤ nv,i for 1 ≤ i ≤ nb. By convention, always q(Bnb

) = ∃,
i.e. all clauses are forall-reduced by construction and have the same length.

We generate exactly nc distinct clauses one after the other as follows. From
each block Bi for 1 ≤ i ≤ nb we select and negate exactly nl,i literals where nl,i ≤
nv,i. Different from the description given in [14], complementary or duplicate
literals in a clause are always discarded until a new literal is generated which
can be added to the clause. This is possible as we never add more literals from
a block Bi than there are variables in Bi (since nl,i ≤ nv,i for 1 ≤ i ≤ nb).

Newly generated clauses are added to the formula only if there is no duplicate
clause already present. Otherwise the new clause is discarded and another at-
tempt is carried out. This process continues until exactly nc distinct clauses are
generated, which is different from [14]. For improper parameter settings such as
big nc and very small nv,i it can be impossible to generate exactly nc distinct
clauses, but this was avoided in our experiments, where we used the following
settings: nc = 160, nb = 3 (i.e. quantifier prefix ∃∀∃), block sizes nv,1 = 15,
nv,2 = 10, nv,3 = 25 and nl,1 = nl,2 = 2, nl,3 = 1 literals taken from each block.
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QBFuzz. The second QBF fuzzer QBFuzz we used in our experiments generates
QBFs in PCNF which do not follow an exact model such as [13,23,14], leading
to a higher diversity. The following parameters are maximum values: number of
clauses nc, number of variables nv and number of blocks nb. Further, minimum
min and maximum number max of literals in a clause and the ratio r ∈ [0, 1] of
existential variables in the formulas and in each clause is specified.

Formulas according to the given setting are generated as follows: first a quan-
tifier prefix is selected according to values of nb, nv and r, where the number
of variables per block is selected at random. Next nc clauses are generated of
length len ∈ [min , max ] and each containing r.len existential variables. Different
from BlocksQBF, literals are selected from any block and are negated uniformly
at random. As described above, duplicate and complementary literals are dis-
carded. After generated clauses have been forall-reduced, duplicate clauses and
unused variables are removed from the formula. We used the following settings
in our experiments: nc = 80, nv = 40, nb = 15, min = 5, max = 15 and r = 0.4.

2.3 Experiments

In order to evaluate our fuzzing techniques, we performed fuzz testing experi-
ments with a selected subset of complete SAT solvers that participated in the
SAT competition 2007 and 2009. Moreover, we fuzz tested several state-of-the-
art QBF solvers. We ran our experiments under Ubuntu Linux on an Intel Core
2 Quad machine with 2.66 GHz and 8 GB RAM. Our fuzzing test framework
used each of the four cores. The results of our fuzzing experiments with SAT
solvers are shown in Tab. 1 and Tab. 2. The QBF results are shown in Tab. 3.

The results of our fuzz testing experiments with SAT solvers in Tab. 1 and
Tab. 2 clearly show the overall effectiveness of our fuzz testing techniques. We
were able to find serious defects such as segmentation faults, aborts, assertion
failures, invalid models and incorrect results. We classified the defects into the
following categories. Unexpected termination without providing a result was
classified as an error. Cases where solvers reported an incorrect satisfiability
status, i.e. a solver reported that an instance is unsatisfiable although the in-
stance is provably satisfiable, were classified as incorrect. Finally, providing the
correct satisfiability status but an invalid satisfying assignment was classified as
invalid model, labeled model in tables Tab. 1 and Tab. 2. Notice that multiple
observable failures may be caused by the same solver defect.

We used our tool PrecoCheck to validate models. Cases where we could not
fully decide which satisfiability status is correct, e.g. some solvers claim that the
instance is unsatisfiable and some others claim that instance is satisfiable, but
provide an invalid model, did not occur. If all solvers agreed that the current
instance is unsatisfiable, we did not further validate the unsatisfiability status
as it is highly unlikely that all solvers are wrong.

We were able to find six defective solvers that participated in the SAT com-
petition 2007. Notice that we did not test all solvers. We selected only a subset
of the most competitive complete SAT solvers in order to demonstrate the effec-
tiveness of our fuzzing techniques. Moreover, in order to keep our set of solvers
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small, we did not test incomplete and portfolio-based solvers. Notice that our
fuzz testing and delta debugging techniques can be applied to any kind of solver.

Five of the six SAT competition 2007 solvers shown in Tab. 1 have defects that
lead to incorrect results, which we consider as the worst case that can happen.
Incorrect results reported by the multi-threaded SAT solver MiraXTv3 are non-
deterministic. Depending on the thread scheduling and the actual utilization
of the individual processing cores, MiraXTv3 either reports that an instance is
satisfiable or unsatisfiable. Moreover, our fuzzers detected that two SAT solvers
generate invalid models. Notice that RSat respectively PicoSAT, were ranked
first respectively second in the industrial category (satisfiable and unsatisfiable
instances). Moreover, notice that March ks was the second best solver in the
random category (satisfiable and unsatisfiable instances).

Our fuzzing techniques were able to find three defective solvers that partici-
pated in the SAT competition 2009. We found critical defects causing segmen-
tation faults in MiniSat-9z, the winner of the MiniSat hack track. Moreover, we
found non-deterministic crashes in ManySat, which was the winner of the paral-
lel solver application track. Finally, our fuzzer FuzzSAT was able to reveal that
Mirch hi, second best solver (SAT + UNSAT) and best solver (UNSAT) in the
random track, sometimes generates invalid models.

None of the fuzzing techniques is clearly superior to the others, except that
CNFuzz and FuzzSAT were able to find more varying defects as the simple 3SAT
generator 3SATGen. The restriction to 3SAT CNF instances may miss failures
that occur if the input contains clauses of arbitrary size. Nevertheless, the 3SAT
generator was still able to find defects in three of the six solvers, which is rather
surprising as SAT solvers are typically tested with 3SAT instances. Interestingly,
while CNFuzz was the only fuzzer that found defects in Barcelogic-fixed and
incorrect results of Barcelogic, FuzzSAT was the only fuzzer that was able to

Table 1. Experimental results of fuzz testing SAT solvers from SAT competition 2007.
The 3SAT generator 3SATGen and our fuzzers CNFuzz and FuzzSAT generated 10000
CNF instances, respectively. We fuzz tested Barcelogic [9] and Barcelogic-fixed [9],
CMUSAT [30], March ks [26], MiniSat [18], MiraXTv3 [34], MXC [10], PicoSAT [7],
RSat [41], Sat7 [32], SAT4J [4], Spear [2] and Tinisat [29]. All solver binaries were
taken from the SAT competition 2007. Only solvers for which defects have been found
are shown in the table. The testing time was about two hours for the 3SAT generator
and FuzzSAT, respectively, and one hour for CNFuzz. For each solver and each CNF
instance a time limit of thirty seconds was used.

3SATGen CNFuzz FuzzSAT

solver error incorrect model error incorrect model error incorrect model

Barcelogic 0 0 0 1 3 1 1 0 1
Barcelogic-fixed 0 0 0 0 1 1 0 0 0
March ks 24 2 0 5 0 0 2 2 0
MiraXTv3 26 7 0 91 13 0 286 2 0
PicoSAT 0 0 0 0 0 0 0 2 0
RSat 56 0 0 27 0 0 3 0 0
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Table 2. Experimental results of fuzz testing SAT solvers from SAT competition
2009. The 3SAT generator 3SATGen and our fuzzers CNFuzz and FuzzSAT generated
10000 CNF instances, respectively. We fuzz tested CirCUs [5], Clasp [20], Cumr p [5],
Glucose [5], LySATi [5], ManySAT [25], March hi [26], MiniSat [18], MiniSat-9z [5],
MXC [5], PicoSAT [7], PrecoSAT [5], RSat [5], SApperloT-base [5], SAT4J [4] and
Varsat-industrial [28]. All solvers binaries were taken from the SAT competition 2009.
Only solvers for which defects have been found are shown in the table. No discrepancies
were found, i.e. all solvers agreed on the satisfiability status of each CNF instance. The
testing time was about two hours for the 3SAT generator, three hours for FuzzSAT and
one hour and thirty minutes for CNFuzz. For each solver and each instance a time limit
of thirty seconds was used.

3SATGen CNFuzz FuzzSAT

solver error model error model error model

ManySat 2 0 56 0 836 0
March hi 0 0 0 0 0 24
MiniSat-9z 2 0 58 0 852 0

Table 3. Experimental results of fuzz testing QBF solvers with BlocksQBF and QBFuzz.
Both generated 10000 CNF instances, respectively. We fuzz tested an internal version
of DepQBF [35], MiniQBF-090608 [43], QMRES [39], Quantor-3.0 [6], QuBE6.0 [24],
QuBE6.5 [24], QuBE6.6 [24], Semprop-010604 [33], sKizzo-0.8.2 [3], SQBF-1.0 [44],
Squolem-1.03 [31] and yQuaffle-021006 [53]. The fuzz testing time was one hour and
fifteen minutes for QBFuzz and one hour and twenty minutes for BlocksQBF. Only
solvers for which defects have been found are shown in the table. For each solver and
each instance a time limit of thirty seconds was used.

BlocksQBF QBFuzz

solver error incorrect error incorrect

Quantor 0 0 1 0
QuBE 6.0 0 684 5 7
QuBE 6.5 0 0 4 0
sKizzo 0 0 2 29
SQBF 0 0 35 0
yQuaffle 0 0 94 0

generate instances on which PicoSAT reports an incorrect satisfiability status.
Moreover, the Barcelogic errors found by CNFuzz and FuzzSAT are different.
Additionally, FuzzSATwas able to find an assertion failure of March ks, which the
other fuzzers were not able find. Our experimental results suggest that a portfolio
of fuzzers should be used in order to find different solver defects. Notice that we
listed the defects that each of our fuzzers were able to find in only one hour,
which shows the impressing effectiveness of fuzz testing. Moreover, a portfolio of
fuzzers could be run on a cluster for days or even weeks, which would strongly
increase the probability of finding defects that could not be found so far.
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The fuzz testing results for QBF solvers listed in Tab. 3 shows that also our
QBF fuzzing techniques were able to find many critical defects in state-of-the-art
QBF solvers. As validating QBF solver results is much harder than validating
SAT solvers, we used a majority voting in order to determine the correct result.
If at least 90% of the QBF solvers agreed on the satisfiability status, then all
solvers reporting the opposite were classified as incorrect.

Our QBF fuzzer QBFuzz is clearly superior to the QBF generator BlocksQBF.
The higher diversity of instances generated by QBFuzz enabled finding defects
that BlocksQBF was not able to detect.

3 Delta Debugging

The overall goal of delta debugging [51,50,15,37] is to minimize failure-inducing
inputs. Typically, minimized inputs simplify the debugging process as irrelevant
input parts have been removed. In principle, delta debugging SAT and QBF
solvers works as follows. First, the delta debugger runs the solver on the origi-
nal failure-inducing input in order to observe the failure induced by the original
input, e.g. the solver crashes or reports an incorrect satisfiability status. Then,
the delta debugger repeatedly tries to simplify the failure-inducing input. After
each simplification, the delta debugger runs the solver on the simplified input.
If the solver shows the same observable behavior, the delta debugger treats the
simplification as success and continues simplifying the reduced input. Otherwise,
the delta debugger undoes the last simplification, and continues with other sim-
plifications. The delta debugger repeats this process until a given time limit or
fix-point is reached.

In general, it is not guaranteed that delta debugging generates a minimal
failure-inducing input. However, this feature is rarely needed in practice. Instead,
greedy minimization techniques are used to simplify the input as much and as
fast as possible in order to generate a small failure-inducing input that can be
used for effective debugging. In the following we present our delta debugging
techniques for SAT and QBF.

3.1 SAT Delta Debugging

Our first CNF delta-debugger cnfdd is based on a variant of the algorithm de-
scribed in [50]. With increasing granularity it iteratively tries to remove subsets
of the whole clause set, without changing the exit code of the solver on the
reduced formula. Eventually the delta-debugger will try to remove individual
clauses. Thus cnfdd applied to solving an unsatisfiable instance, using a sound
SAT solver of course, simply simulates a binary search for minimal unsatisfiable
cores. In contrast to [50], complements of subsets are not considered to be re-
moved, and cnfdd is also not restarted after a successful removal of a subset
of clauses. This makes cnfdd greedier than the original DDMIN approach [51].
These changes lead to a reduction of the actual number of calls to the SAT solver
during delta debugging, leading to improved performance.
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However, and this is a key insight, only removing clauses, will just make the
formula easier to satisfy. This will rarely lead to sufficient overall reduction. It is
essential, to also strengthen the formula, of course without removing the failure.
Our current version tries to remove individual literal occurrences, which is rather
costly and an opportunity for future improvement. After this phase of removing
individual literals, and if at least one literal was removed, the delta debugger
tries to reduce the variable range, and the whole procedure is restarted.

There is also a multi-threaded version mtcnfdd which tries to remove clauses
and literals in parallel. In the clause removal phase all sets of clauses of the
current granularity are split into as many parts as threads are available. Each
thread checks in parallel whether some subsets of the clauses of its part can
be removed. For the clause removal phase, the worker threads are synchronized
after all subsets of the current granularity have been tried. Successful removals
are merged sequentially by the master thread, starting with the local view of
a thread that was able to remove the largest number of clauses. In the literal
removal phase, which is far less frequently successful than clause removal, clauses
are split among the threads as well. Successful literal removal attempts will be
tried to be merged immediately. They become permanent if the attempt of a
worker thread to merge its reduced local view with the global view succeeded.
Otherwise the global view takes precedence and is copied as local view.

3.2 QBF Delta Debugging

Our tool qbfdd is a highly configurable delta debugger for QBF instances in
PCNF. It supports different variants of delta debugging strategies such as the
original DDMIN [51] approach (default), DDMIN with complements only [50],
and a simple strategy based on one-by-one elimination. Similar to cnfdd, it tries
to remove subsets of the whole clause set. Then, it tries to remove individual
literals. Optionally, it can move variables between quantifier sets, which may en-
able further simplifications. If any simplification was possible, the delta debugger
continues with a new simplification round, and terminates otherwise.

3.3 Experiments

We ran our experiments on the same hardware as our fuzzing experiments. The
results of our delta debugging experiments for SAT solvers are shown in Tab. 4.
The experimental results clearly show the overall effectiveness of our delta de-
bugging techniques in shrinking failure-inducing CNF instances. With the ex-
ception of RSat, our delta debugger could eliminate huge parts of the original
failure-inducing parts. In the case of PicoSAT the delta debugger was able to
shrink the original failure-inducing CNF instances containing more than one
thousand clauses to a tiny CNF with only a few clauses as shown in Fig. 1. The
defects found for RSat, which are aborts and segmentation faults, could not be
minimized significantly. This in contrast to delta debugging crash-inducing in-
stances of other solvers. For instance, segmentation faults for MiniSat-9z could
be delta debugged efficiently with an average reduction of 98.8%. Therefore, we
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suppose that the defects of RSat are non-trivial and cannot be triggered by a
small CNF easily. For example, the failures could need a minimum number of
unit propagations in order to occur.

During our experimental evaluation we observed that RSat and March hi
sometimes needed an unexpected long time (several hours) to solve instances
generated during delta debugging. For instance, March hi generated an invalid
solution for the original failure-inducing instance almost immediately, but it
needed hours to solve simplified instances proposed by the delta debugger. In
order to speed up delta debugging, we used a time limit as proposed in [11]. We
used a time limit of ten seconds to each call to Rsat and March hi during delta
debugging. If the solver exceeds the limit the delta debugger simply treats this
case as if the current failure-inducing input does not lead to the same observable
failure as the original input, i.e. the current simplification was not successful.

Our multi-threaded delta debugger mtcnfdd clearly outperforms our single-
threaded delta debugger cnfdd. It is significantly faster on the failure-inducing
instances of Barcelogic, Barcelogic-fixed, March hi and RSat. Moreover, mtcnfdd
tends to generate smaller instances than cnfdd.

Notice that we did not show experimental results of delta debugging failure-
inducing inputs for ManySAT and MiraXTv3 as they showed non-deterministic
behavior. For instance, MiraXTv3 reported different satisfiability results when
all four cores of our computer were utilized. Due to space constraints we omit
our preliminary results on delta debugging non-deterministic solvers.

In order to delta debug incorrect results, we used MiniSAT from SAT com-
petition 2009 for SAT and Qube6.6 for QBF as reference solvers. The delta
debugger calls a wrapper script instead of calling the incorrect solver directly.
The script calls the reference solver and the incorrect solver on the current in-
stance proposed by the delta debugger. If both solver agree on the satisfiability
status, the script returns 1, and 0 otherwise. The possibility of calling scripts
instead of solvers directly makes our delta debuggers highly flexible. Optionally,
satisfiability results could be validated with techniques as proposed in [21,52].

In order to illustrate the success of our delta debuggers, we show some selected
examples of minimized instances in Fig. 1. PicoSAT from SAT competition 2007
prints the solution 1 2 3 -4 for the first instance shown left, although it is
obviously unsatisfiable. March ks from SAT competition 2007 prints the solution
1 2 3 for the second unsatisfiable example. Moreover, it claims that the solution
has been verified, which shows the demand for external checking tools such as [52]
for the unsatisfiable case. The QBF solver yQuaffle aborts with an assertion
failure when run on the third instance. QuBE 6.0 claims that the fourth instance
(shown right) is satisfiable although it contains a universal unit clause.

3.4 Related Work

The work most closely related is [11]. The authors showed that fuzz testing and
delta debugging techniques can be successfully applied to Satisfiability Mod-
ulo Theories (SMT) solvers. In this paper, we introduce techniques that have
been explicitly designed and optimized for pure SAT and QBF. The SMT-LIB
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Table 4. Experimental results of delta debugging SAT solvers from SAT competition
2007 and 2009. We evaluated our single-threaded delta debugger cnfdd and our multi-
threaded delta debugger mtcnfdd, configured to use six threads. From left to right, the
table shows the solver name (solver), the number of failure-inducing files (files), the
number of bug classes (classes), the average delta debugging time (time) in seconds,
the average file size (size) of the reduced instances in bytes and the average file size
reduction (red) achieved by the delta debugger. Notice that the delta debugging time
includes the time needed for the solver calls. We used a time limit of three hours for
delta debugging each CNF instance. The delta debugger cnfdd exceeded this time limit
three times (one instance of march hi and two instances of RSat). The multi-threaded
delta debugger mtcnfdd exceeded the time limit two times (the same RSat instances
as cnfdd). Moreover, we used a time limit of ten seconds for each call to RSat and
March hi during delta debugging.

cnfdd mtcnfdd

solver files classes time size red time size red

Barcelogic 7 4 39 432 95.8% 20 378 96.4%
Barcelogic-fixed 2 2 41 361 99.0% 29 360 99.0%
March hi 24 1 638 1982 88.4% 277 2507 85.4%
March ks 35 3 4 147 97.8% 3 130 98.0%
MiniSat-9z 912 1 <1 10 98.8% <1 10 98.8%
PicoSAT 2 1 2 39 99.8% 2 40 99.8%
RSat 86 2 1478 17068 32.5% 762 16971 32.9%

Table 5. Experimental results of delta debugging QBF solvers. The columns have the
same meaning as in Tab. 4. The delta debugging time includes the time needed for the
solver calls. In order to effectively delta debug failure-inducing inputs on which SQBF
crashed almost immediately, we used a time limit of two seconds for each call to SQBF
during delta debugging.

qbfdd

solver files classes time size red

Quantor 1 1 35 446 83.0%
QuBE 6.0 696 2 150 33 99.0%
QuBE 6.5 4 1 84 363 83.8%
sKizzo 31 2 330 497 76.2%
SQBF 35 1 57 289 86.7%
yQuaffle 94 1 26 31 98.8%

format [42] is much more complex than the DIMACS and QDIMACS format as it
supports specifying formulas in several fragments of first order logic. However, in
contrast to the flat CNF in SAT and QBF instances, the structural information
in SMT-LIB instances can be used to apply Hierarchical Delta Debugging [37]
(HDD), which is hardly possible in SAT as hierarchical information is typically
lost during the translation to CNF.
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c Picosat07 c March_ks07 c yQuaffle09 c QuBE6.0

p cnf 4 4 p cnf 3 5 p cnf 1 2 p cnf 2 2

-2 -1 0 1 0 e 1 a 1 0

-2 1 0 2 -1 -3 0 1 0 e 2 0

2 0 -2 -1 3 0 -1 0 2 0

-3 -4 0 -3 -2 0 1 0

3 2 0

Fig. 1. Examples of delta debugged failure-inducing inputs for SAT and QBF

Freeman mentions in his thesis [19] that he uses a 3SAT generator to test
his SAT solver. However, to the best of our knowledge, there does not exist any
rigorous scientific publication about automated testing and debugging SAT and
QBF solvers. Nevertheless, there are a few publications that treat the problem
of validating solvers. For instance, in [21,52,49] the authors instrument DPLL-
based [17] solvers in order to verify unsatisfiability claims by checking traces.
Recent work focuses on QBF solver validation with the help of certificates [38,31].

4 Conclusion

Essential criteria of SAT and QBF solvers are robustness and correctness. We
have demonstrated that our fuzzing techniques were able to find critical defects
that lead to crashes, incorrect results and invalid models in state-of-the-art SAT
and QBF solvers. In particular, our fuzzers detected critical defects in top-ranked
solvers at the SAT competition 2007 and 2009. Therefore, we propose to use fuzz
testing in an extra qualification phase in SAT and QBF competitions in order
to increase the reliability of competition results. Moreover, we showed that our
delta debugging techniques are very effective in minimizing failure-inducing in-
puts for SAT and QBF solvers. All tools are available as open source and provide
support for automated testing and debugging of SAT and QBF solvers.

Acknowledgements. We would like to thank T. Hribernig, M. Preiner and
A. Niemetz for the implementations of mtcnfdd, QBFuzz and qbfdd.
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Abstract. We extend quantified 2-CNF formulas by also allowing lit-
erals over free variables which are exempt from the 2-CNF restriction.
That means we consider quantified CNF formulas with clauses that con-
tain at most two bound literals and an arbitrary number of free literals.
We show that these Q2-CNFb formulas can be transformed in polyno-
mial time into purely existentially quantified CNF formulas in which the
bound literals are in 2-HORN (∃2-HORNb).

Our result still holds if we allow Henkin-style quantifiers with ex-
plicit dependencies. In general, dependency quantified Boolean formulas
(DQBF) are assumed to be more succinct at the price of a higher com-
plexity. This paper shows that DQ2-CNFb has a similar expressive power
and complexity as ∃2-HORNb. In the special case that the 2-CNF restric-
tion is also applied to the free variables (DQ2-CNF∗), the satisfiability
can be decided in linear time.

1 Introduction

Quantified Boolean formulas (QBF) generalize propositional formulas by allow-
ing variables to be quantified universally or existentially. In this paper, we also
allow free variables which are not quantified and indicate this with a star (QBF∗).
An interesting property of quantified Boolean formulas with free variables is that
it is possible to define an equivalence between such formulas and propositional
formulas. We say that Φ ∈ QBF∗ is equivalent to ψ ∈ PROP (Φ ≈ ψ) if and
only if the free variables in Φ correspond to the propositional variables in ψ and
both formulas have the same truth value for each assignment to the free/propo-
sitional variables. This means that quantified variables inside of Φ are not taken
into consideration here, so these can be thought of as local or auxiliary variables.
An important application of auxiliary variables is to introduce abbreviations for
repeating parts in a given formula, such as multiple copies of transition or reach-
ability relations in verification problems [9, 14]. Accordingly, QBF∗ representa-
tions are often much more compact than equivalent propositional encodings,
in addition to the advantage that many problems have a natural forall-exists
semantics which can elegantly be modeled by quantifiers [20].
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Unfortunately, quantified Boolean formulas appear to be much harder to solve
than propositional formulas, with QBF and QBF∗ satisfiability being PSPACE-
complete. This makes it worthwhile to investigate subclasses with a lower deci-
sion complexity. An interesting idea is to consider QBF∗ formulas in clausal form
with additional restrictions only on the quantified literals. Let Φ = Q

∧
i(φ

b
i ∨φf

i )
be a quantified Boolean formula with quantifiers Q, such that φb

i is a clause over
bound variables (called bound part) and φf

i a clause over free variables (the free
part). Then we require that Q

∧
i φb

i ∈ QK for a formula class QK, while the free
parts φf

i may have arbitrary structure. Such formulas, which we call QKb for a
base class QK, can be surprisingly powerful.

For example, QHORNb denotes quantified Horn formulas in which the Horn
property is only enforced on the quantified variables, which means each clause
has at most one positive and arbitrarily many negative literals over quantified
variables, but an arbitrary number of free literals with arbitrary polarity. Obvi-
ously, every propositional CNF formula is also a QHORNb formula, but this class
is significantly more capable. For example, QHORNb formulas can compactly
encode Boolean circuits with arbitrary fan-out (and vice versa) [1, 15], while
it is generally assumed that there exist circuits with fan-out greater than 1 for
which every equivalent propositional formula is exponentially larger. Further-
more, while there are propositional formulas for which every equivalent CNF
formula is exponential, every propositional formula has a poly-size equivalent
QHORNb formula, e.g. by the one-sided Tseitin transformation [22, 19] when
the newly introduced variables are bound by existential quantifiers. In fact, such
poly-size CNF transformations can even be accomplished with ∃2-HORNb for-
mulas, that is, existentially quantified formulas in clausal form with at most two
bound literals per clause, one of which may be positive [8]. At the same time,
QHORNb satisfiability is not significantly more difficult than propositional sat-
isfiability, because the universal quantifiers can easily be eliminated [15], which
makes QHORNb satisfiability NP-complete.

Besides HORN, another standard restriction on the structure of clauses is
2-CNF. The goal of this paper is to investigate the implications of enforcing a
2-CNF restriction on the bound parts of QBF∗ formulas in clausal form. That
means we have clauses with at most two bound and arbitrarily many free liter-
als, called Q2-CNFb in line with the above terminology. This class is surprisingly
powerful and indeed exponentially more expressive than propositional CNF be-
cause of the above remark about ∃2-HORNb ⊆ Q2-CNFb formulas being suffi-
cient for poly-size CNF transformation.

Normally, 2-CNF formulas are not more difficult than HORN formulas. In
the propositional case, it is well known that the satisfiability problem for both
classes can be solved in linear time ([11, 2] and [13, 10]). For quantified 2-CNF
formulas with free variables, the satisfiability problem is still linear [2], whereas
the best known algorithms for determining the satisfiability of a quantified Horn
formula Φ with |∀| universal quantifiers require time O(|∀| · |Φ|) [12] (|Φ| is the
length of Φ, counting all occurrences of variables, including those in quantifier
definitions).
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Is it possible to make similar statements about the complexity and expressive
power of Q2-CNFb in comparison to QHORNb formulas? Our goal is to show
that Q2-CNFb formulas can be transformed in polynomial time into equivalent
∃2-HORNb formulas. This immediately implies that Q2-CNFb satisfiability is
NP-complete, like QHORNb satisfiability.

An intermediate result that we present is the elimination of all universal quan-
tifiers from a Q2-CNFb formula Φ in time and space O(|∀|2|Φ|). This might be
useful for QBF solvers, since a Q2-CNFb formula can be embedded as a subfor-
mula in a QBF formula if we consider variables which are bound by preceding
quantifiers as free variables. For example, let Φ = Q((Q′ φ) ∧ ϕ) ≈ QQ′ (φ ∧ ϕ)
be a QBF formula in CNF where each clause in φ contains at most two literals
over variables that are bound in Q′, whereas the variables from Q can appear
without restrictions in φ and ϕ. Then the transformation presented below allows
the elimination of all universals in the Q2-CNFb formula Q′ φ.

2 Dependency Quantified Boolean Formulas

In QBF, an existentially quantified variable can have different values depend-
ing on the values of universal variables whose quantifiers occur further outside.
This imposes an ordering on the quantifiers where each existentially quanti-
fied variable depends on all preceding universal variables. Even if we waive
the usual requirement that all quantifiers have to appear at the beginning in
a dedicated quantifier prefix, it is not possible for two existential variables
which occur in common clauses to depend on disjoint non-empty sets of univer-
sally quantified variables. Dependency quantified Boolean formulas (DQBF or
DQBF∗ with free variables) [18] make this possible by explicitly stating for each
existentially quantified variable on which universals it depends. For example,
Φ = ∀x1∀x2∃y1(x1)∃y2(x2)∃y3(x1, x2) φ(x1, x2, y1, y2, y3) is a DQBF formula in
which y1 depends only on x1, y2 only on x2 and y3 on both x1 and x2.

Can we apply our poly-time transformation from Q2-CNFb to ∃2-CNFb also
to DQ2-CNFb formulas, which means formulas with dependency quantifiers as in
the example above and at most two bound literals per clause? The fact that uni-
versal variables can be eliminated cheaply from Q2-CNFb formulas implies that
2-CNF is such a strong restriction that the ordering of quantifiers in the prefix
loses much of its relevance. For DQHORNb, the situation is similar: it is indeed
possible to eliminate all dependency quantifiers with less than quadratic formula
growth [6] (that proof is for DQHORN∗, but it also applies to DQHORNb, since
it does not rely on a particular structure of the free variables).

In general, however, DQBF∗ encodings are assumed to be exponentially more
compact in the best case than QBF∗ encodings. Whereas QBF can be seen as
a two-player game with an existential player reacting to moves of a universal
player, DQBF corresponds to a three-player game where a universal player chal-
lenges two existential players with different inputs. Disjoint dependencies, like
for y1 and y2 in the example above, guarantee that both existential players work
independently. Such variables can still occur together in the same clauses, which
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is a vital feature that is not possible with QBF, even in non-prenex form. It
allows the universal player to compare the results of independent existential
players. This corresponds to a multi-prover interactive proof system [4], which
is a very powerful concept, but also causes another jump in complexity, with
DQBF∗ satisfiability being NEXPTIME-complete [18].

Before we can develop a transformation from DQ2-CNFb to ∃2-CNFb, we need
a few basics. We require DQBF∗ formulas to be in prenex form with a quantifier-
free matrix, as negations of existential dependency quantifiers would be prob-
lematic. Because of the explicit dependencies, DQBF∗ formulas can always be
written with a ∀∗∃∗ prefix. To quickly enumerate the dependencies of a given ex-
istential variable yi, we use indices di,1, ..., di,ni which point to the ni universals
on which yi depends. For example, given the existential quantifier ∃y4(x3, x5),
we say that y4 depends on xd4,1 and xd4,2 with d4,1 = 3 and d4,2 = 5. We also
use a shorter notation ∃yi(xdi) where we abbreviate xdi := (xdi,1 , ..., xdi,ni

). It
is allowed to have empty dependencies with ni = 0, i.e. existential quantifiers
∃yi() that do not depend on any universals.

The semantics of DQBF and DQBF∗ is defined by associating dependency
quantified existentials ∃yi(xdi,1 , ..., xdi,ni

) with functions fyi(xdi,1 , ..., xdi,ni
):

Definition 1. (Satisfiability Model)
For Φ ∈ DQBF with existential variables y = (y1, ..., ym), let M = (fy1 , ..., fym)
map each existential yi to a propositional formula fyi over the universal vari-
ables xdi,1 , ..., xdi,ni

on which yi depends.
M is a satisfiability model for Φ if and only if Φ[y/M ] := Φ[y1/fy1 , ..., ym/fym ]
is true, i.e. if a tautological formula is obtained when simultaneously each exis-
tential variable yi is replaced with fyi and the existential quantifiers are dropped
from the prefix.

Definition 2. (DQBF and DQBF∗ Semantics)
A DQBF formula Φ is true if and only if it has a satisfiability model.
A DQBF∗ formula Ψ(z) with free variables z = (z1, ..., zr) is satisfiable if and
only if there exists a truth assignment τ(z) = (τ(z1), ..., τ(zr)) ∈ {0, 1}r to the
free variables such that Ψ(τ(z)) ∈ DQBF is true, i.e. replacing all occurrences
of free variables with their assigned truth value produces a true formula.

3 Transformation from DQ2-CNFb to ∃2-CNFb

There are two powerful concepts that we need for transforming DQ2-CNFb for-
mulas into ∃2-CNFb: universal expansion and minimal falsity/unsatisfiability.

Universal expansion in QBF∗ is the elimination of universal quantifiers by the
well-known equivalence ∀x Φ(x, z) ≈ Φ(0, z) ∧ Φ(1, z), an operation which has
been used successfully in various solvers, e.g. [3, 5, 7]. Care must be taken to
duplicate also subsequent existential quantifiers which are in the scope of the
expanded quantifier, in order to retain the ability to assign different values to
an existential for different values of a preceding universal. In general, repeated
application of this method obviously produces exponential formulas, even though
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the amount of duplication can often be significantly reduced in practice [5, 7,
17, 21]. We are going to show that the 2-CNF restriction on the bound variables
allows us to always apply universal expansion in a tractable fashion.

Universal expansion also works for DQBF∗, and the dependency lists imme-
diately indicate which existentials must be duplicated when a universal variable
is expanded. The correctness of universal expansion is bit more difficult to verify
for DQBF∗ because of the more implicit semantics definition by using model
functions.

Lemma 1. (Correctness of Universal Expansion for DQBF∗)
Let Φ be a DQBF∗ formula in which we want to expand the universal quantifier
∀xn. Without loss of generality, assume that the existentials are arranged in two
blocks, depending on whether they are dominated by xn or not:

Φ(z) = ∀x1...∀xn∃y1(xd1)...∃yk(xdk
)∃yk+1(xdk+1 , xn)...∃ym(xdm , xn)

φ(x1, ..., xn, y1, ..., ym, z)

with xn �∈ xdi for all 1 ≤ i ≤ m. Then Φ(z) ≈ Φ′(z) for the expanded formula

Φ′(z) = ∀x1...∀xn−1∃y1(xd1)...∃yk(xdk
)

∃yk+1,(0), yk+1,(1)(xdk+1)...∃ym,(0), ym,(1)(xdm)
φ(x1, ..., xn−1, 0, y1, ..., yk, yk+1,(0), ..., ym,(0), z)∧
φ(x1, ..., xn−1, 1, y1, ..., yk, yk+1,(1), ..., ym,(1), z) .

Proof. We must prove that Φ(τ(z)) = 1⇔ Φ′(τ(z)) = 1 for any truth assignment
τ(z) := (τ(z1), ..., τ(zr)) ∈ {0, 1}r to the free variables z = (z1, ..., zr). For fixed
τ(z), we can consider Φ(τ(z)) and Φ′(τ(z)) as closed DQBF formulas.

From left to right: let M = (fy1 , ..., fym) be a satisfiability model for Φ(τ(z)).
Define G(0) := (gy1 , ..., gyk

, gyk+1,(0) , ...., gym,(0)) with gyi := fyi for i = 1, ..., k
and gyi,(0)(xdi,1 , ..., xdi,ni

) := fyi(xdi,1 , ..., xdi,ni
, 0) for i = k + 1, ..., m.

Then ∀x1...∀xn−1 φ(x1, ..., xn−1, 0, gy1, ..., gym,(0) , τ(z)) = 1. With an analogous
definition of G(1) with functions gyi,(1)(xdi,1 , ..., xdi,ni

) := fyi(xdi,1 , ..., xdi,ni
, 1)

for i = k + 1, ..., m, G = (gy1 , ..., gyk
, gyk+1,(0) , gyk+1,(1) , ..., gym,(0) , gym,(1)) is a

satisfiability model for Φ′(τ(z)).
From right to left: let G = (gy1 , ..., gyk

, gyk+1,(0) , gyk+1,(1) , ..., gym,(0) , gym,(1)) be
a satisfiability model for Φ′(τ(z)). We now construct a model M = (fy1 , ..., fym)
that satisfies Φ(τ(z)). Let fyi := gyi for i = 1, ..., k, and for i = k + 1, ..., m, let

fyi(xdi,1 , ..., xdi,ni
, xn) := (xn ∨ gyi,(0)(xdi

) ∧ (¬xn ∨ gyi,(1)(xdi
))

such that fyi [xn/0] := fyi(xdi,1 , ..., xdi,ni
, 0) ≈ gyi,(0)(xdi,1 , ..., xdi,ni

), and thus:

∀x1...∀xn−1 φ(x1, ..., xn−1, 0, fy1, ..., fyk
, fyk+1[xn/0], ..., fym [xn/0], τ(z))

≈ ∀x1...∀xn−1 φ(x1, ..., xn−1, 0, gy1, ..., gyk
, gyk+1,(0) , ..., gym,(0) , τ(z))

The latter is true, since G is a satisfiability model for Φ′(τ(z)). The case xn = 1
is analogous, so ∀x1...∀xn−1∀xn φ(x1, ..., xn−1, xn, fy1 , ..., fym , t(z)) = 1. ��
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The expressive power of DQBF∗ and QBF∗ formulas in clausal form depends
essentially on the structure of the minimal unsatisfiable subformulas of the bound
part of the matrix, so we first recall some well-known properties. A CNF formula
φ is called minimal unsatisfiable if and only if φ is unsatisfiable and the removal
of an arbitrary clause produces a satisfiable formula. A (dependency) quantified
Boolean formula Φ = Q

∧
1≤i≤q φi with CNF matrix and without free variables

is called minimal false if and only if Φ is false and removing an arbitrary clause
φi leads to a true formula. If Φ is purely existentially quantified, it is minimal
false if and only if the matrix is minimal unsatisfiable. A clause L ∨K is called
an ∃-unit clause for a formula Φ ∈ DQ2-CNF if and only if L is a literal over
an existentially quantified variable and either L = K or K is a universally
quantified literal.

A well-known fact about minimal unsatisfiable propositional 2-CNF formulas
is that they contain at most two unit clauses (see, e.g., [16]). This result can be
lifted to minimal false DQ2-CNF formulas:

Lemma 2. (Number of ∃-unit clauses)

1. A minimal unsatisfiable 2-CNF formula contains at most two unit clauses.
2. A minimal false DQ2-CNF formula contains at most two ∃-unit clauses.

Proof. Ad 1: Suppose there is some minimal unsatisfiable formula α with at least
three unit clauses, say L1, L2 and L3. Then there are clauses ¬L1 ∨ P j1

1 ,¬L2 ∨
P j2

2 ,¬L3 ∨ P j3
3 for 1 ≤ j1 ≤ t1, 1 ≤ j2 ≤ t2, 1 ≤ j3 ≤ t3. Please notice that

α contains no complementary unit clause ¬Li and no clauses Li ∨Ki for some
literal Ki. Furthermore, all the literals P 1

1 , ..., P t3
3 must be distinct. Let α be

such a formula with a minimal number of variables.
After applying unit resolution on the Li and removing the parent clauses, we
obtain a minimal unsatisfiable formula with at least three unit clauses. These are
the clauses P 1

1 , ..., P t3
3 . The variables of Li do not occur in the resulting formula,

which is a contradiction to our initial assumption that α has a minimal number
of variables.

Ad 2: Let Φ = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) φ be a minimal false formula
in DQ2-CNF with at least three ∃-unit clauses. By expansion of the universal
variables, we obtain an existentially quantified formula ∃y′φ′ ∈ ∃2-CNF whose
matrix φ′ is unsatisfiable. A subset of the clauses in φ′ forms a minimal unsat-
isfiable formula φ′′. From the first part of the lemma, we know that φ′′ contains
at most two unit clauses, say L1 and L2. These literals are unit clauses in the
original formula or come from clauses U1 ∨ L1 or U2 ∨L2 with universal literals
U1, U2. That means two ∃-unit clauses in φ are sufficient to produce two unit
clauses L1 and L2 in φ′′. All the other ∃-unit clauses in φ can be removed without
making the formula satisfiable, which contradicts our initial assumption that φ
is minimal false. ��
Subsequently, we assume that all DQ2-CNFb formulas are normalized to have
no clauses without an existentially quantified literal. This is justified by the
fact that clauses without bound variables can be moved in front of the prefix
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while preserving the equivalence. And in a 2-clause that contains a universal
and a free variable, the universal variable can be omitted. Obviously, clauses
consisting only of universal variables are unsatisfiable. We can also assume that
there are no clauses φi without free literals. Otherwise, we could replace such a
clause with clauses φi ∨ z and φi ∨ ¬z for a free variable z that already occurs
in the formula. But the transformations also work if we assume φf

i := 0 for such
clauses without free literals.

The following lemma introduces a handy representation in which the minimal
false subsets of the quantified bound parts determine which combinations of the
free parts must be true.

Lemma 3. (MF Skeleton)
Let Φ = Q

∧
1≤i≤q(φb

i ∨ φf
i ) be a formula in DQ2-CNFb with non-empty bound

parts φb
i and free parts φf

i . Let

S(Φ) :=
{
Φ′ | Φ′ = Qφb

i1 ∧ ... ∧ φb
ir

is minimal false, 1 ≤ i1, ..., ir ≤ q
}

be the set of minimal false subformulas of the quantified bound parts of Φ. Then
we have the following equivalence:

Φ ≈
∧

(Qφb
i1
∧...∧φb

ir
)∈S(Φ)

(φf
i1
∨ . . . ∨ φf

ir
)

Proof. Let M(Φ) :=
∧

(Qφb
i1

∧...∧φb
ir

)∈S(Φ)(φ
f
i1
∨ . . . ∨ φf

ir
) be the right side of

the equivalence. From right to left, let M(Φ) be true for a truth assignment τ
to the free variables. Suppose τ(Φ) is false. Let Qφ′ := Q(φb

i1
∧ . . . ∧ φb

ir
) be

the quantified bound parts for which τ(φf
ik

) is false for 1 ≤ k ≤ r. Under the
assumption that τ(Φ) is false, Qφ′ is also false and contains therefore a minimal
false subformula, say Qφ∗ := Q(φb

j1 ∧ . . . ∧ φb
jt

). Since τ(M(Φ)) is true, one of
the free parts φf

j1
, ..., φf

jt
must be true for τ . That is a contradiction.

From left to right, let Φ be true for a truth assignment τ to the free variables.
Suppose τ(M(Φ)) is false. Then there is a clause φ′ := (φf

i1
∨ . . . ∨ φf

ir
) in M(Φ)

for which τ(φf
ik

) is false for 1 ≤ k ≤ r. Since Q(φb
i1
∧ . . . ∧ φb

ir
) is minimal false,

we can conclude that τ(Φ) is false in contradiction to our assumption. ��
On the basis of Lemmas 2 and 3, we now establish a poly-time transformation

from DQ2-CNFb to ∃2-CNFb.

Theorem 1. (DQ2-CNFb =poly−time ∃2-CNFb)
Every DQ2-CNFb formula Φ can be transformed in time O(|∀|2|Φ|) into an equiv-
alent ∃2-CNFb formula of length at most O(|∀|2|Φ|), where |∀| is the number of
universal quantifiers in Φ.

Proof. In the following, we treat conjunctions of clauses as sets of clauses. Let
Φ = Q{(φb

i ∨φf
i ) | 1 ≤ i ≤ q} be a formula in DQ2-CNFb with non-empty bound

parts φb
i and free parts φf

i . We assume that Φ is forall-reduced, which means
each clause contains at most one literal over a universal variable. For universal
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variables u1, u2 (not necessarily distinct), we let Φ|u1, u2 denote the formula
which contains only those clauses of Φ in which the universal literal is over u1

or u2 and those clauses without universals:

Φ|u1, u2 := Q{(φb
i ∨ φf

i ) | every universal literal in φb
i is u1 or u2, 1 ≤ i ≤ q}

According to Lemma 3, we have

Φ ≈
∧

(Qφb
i1
∧...∧φb

ir
)∈S(Φ)

(φf
i1
∨ . . . ∨ φf

ir
)

where S(Φ) is the set of minimal false subformulas of the quantified bound parts
of Φ. Lemma 2 implies that each minimal false formula in S(Φ) has at most two
∃-unit clauses. In analogy to the above notation, we let S(Φ)|u1, u2 ⊆ S(Φ) be
those minimal false formulas in which every ∃-unit clause with a universal literal
contains either a literal over u1 or a literal over u2. Then the union of S(Φ)|u1, u2

for all pairs of universals u1, u2 equals S(Φ):

Φ ≈
∧

u1,u2∈∀var(Φ)

∧
(Qφb

i1
∧...∧φb

ir
)∈S(Φ)|u1,u2

(φf
i1
∨ . . . ∨ φf

ir
)

It is not difficult to see that S(Φ)|u1, u2 = S(Φ|u1, u2). Then by applying
Lemma 3 backwards, we obtain:

Φ ≈ ∧
u1,u2∈∀var(Φ)

∧
(Qφb

i1
∧...∧φb

ir
)∈S(Φ)|u1,u2

(φf
i1
∨ . . . ∨ φf

ir
)

≈ ∧
u1,u2∈∀var(Φ)

∧
(Qφb

i1
∧...∧φb

ir
)∈S(Φ|u1,u2)

(φf
i1
∨ . . . ∨ φf

ir
)

≈ ∧
u1,u2∈∀var(Φ)

Φ|u1, u2

The prefix of each formula Φ|u1, u2 can be simplified, because only u1 and u2

occur as universal variables in the matrix, so the other universal quantifiers can
be dropped. By universal expansion of u1, u2 in Φ|u1, u2, we obtain an equiva-
lent existentially quantified formula. Its size is at most four times the length of
Φ|u1, u2. We perform this expansion for every formula Φ|u1, u2 and rename the
bound variables, such that different pairs of universal variables u1, u2 have dis-
tinct bound variables. Now, all existential variables can be moved up front, and
the result is an equivalent formula in ∃2-CNFb. Since there are at most |∀|2 pairs
of |∀| universal variables, the resulting formula has a length of O(|∀|2|Φ|). ��
If the whole formula matrix, including the free variables, is in 2-CNF, we write
DQ2-CNF∗ instead of DQ2-CNFb. In this special case, the above transformation
produces an existentially quantified formula with matrix in 2-HORN, which can
easily be solved in linear time. Together with the costs of the transformation,
we would have a complexity of O(|∀|2|Φ|) for determining the satisfiability of
a DQ2-CNF∗ formula. There is, however, a faster way to solve such formulas
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without the above transformation. Without loss of generality, we can focus on
DQ2-CNF formulas without free variables, because a DQBF∗ formula with prefix
Q = ∀x1...∀xn∃y1(xd1)...∃ym(xdm) and free variables z1, ..., zr is satisfiable if and
only if the formula with prefix Q′ = ∀x1...∀xn∃z1()...∃zr()∃y1(xd1)...∃ym(xdm)
and the same matrix is true.

As outlined in [2], a quantified 2-CNF formula Φ can be represented as a
directed graph G(Φ). The idea is to associate with every clause L∨K the edges
¬L → K and ¬K → L for the nodes L,¬L, K and ¬K. Nodes are called
existential or universal if the corresponding variable is existentially or universally
quantified. For a unit clause L, we introduce the edge ¬L → L. By computing
the strongly connected components of the resulting graph, the satisfiability of
the formula can be determined in linear time: it is unsatisfiable if and only if
one of the following conditions holds:

1. There is a complementary pair of existential nodes, say y and ¬y, in some
strongly connected component, which is equivalent to the graph having a
path from y to ¬y and a path from ¬y to y.

2. A universal node over x is in the same strong component as an existential
node over y, and ∃y precedes ∀x in the prefix of Φ.

3. There exists a path from one universal node to another universal node (pos-
sibly both over the same variable).

This idea can also be applied to DQ2-CNF formulas. The only necessary mod-
ification is to replace condition 2 with the following condition 2’: “A universal
node over x is in the same strong component as an existential node over y, and
y does not depend on x.”

For Φ = Qφ ∈ DQ2-CNF, notice that if L1 → L2 is a path in G(Φ) then Φ is
true if and only if Q(φ∧(¬L1∨L2)) is true. This can be shown by induction on the
path length with the observation that for two clauses ¬L∨V and ¬V ∨K (both
not purely universal) in φ, we have Q φ = 1 if and only if Q (φ∧ (¬L∨K)) = 1,
where V may be a universal or an existential literal. Then it is easy to see that
each of the conditions implies the unsatisfiability of the given formula.

To show the satisfiability of the formula if none of the above conditions hold,
the same marking algorithm as in [2] can be used, with the only modification
that we stop for condition 2’ instead of 2 if a strong component contains both
a universal and an existential node. Then it follows that the marking has the
same properties as the one in [2], except that a component containing a universal
node over some x contains only existential nodes over variables that depend on
x. Then it is clear that we can satisfy the formula in the same way as in the
original proof by assigning 0 or 1 to existential variables in purely existential
components. The truth value of the other existential variables is derived only
from those universals on which they depend, so the quantifier dependencies are
respected, and we immediately have the following theorem.

Theorem 2. DQ2-CNF∗ satisfiability is solvable in linear time.
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4 Transformation from ∃2-CNFb to ∃2-HORNb

In the following, we consider graphs with the structure from the last section also
for ∃2-CNFb formulas Φ = ∃y1...∃ym

∧
1≤i≤q(φb

i ∨ φf
i ). The idea is to associate

only the bound literals with nodes in the graph, whereas the free parts become
the labels of the corresponding edges. A clause L ∨ K ∨ φf

i with bound part
φb

i = L ∨K and free part φf
i is then associated with the labeled edges ¬L φf

i−→K

and ¬K φf
i−→L. A clause L ∨ φf

i where the bound part is a unit literal is mapped
to an edge ¬L φf

i−→L. Figure 1 (left) shows the graph for the following example:

Φ = ∃a∃b (a ∨ b ∨ z1) ∧ (¬a ∨ b ∨ z2) ∧ (a ∨ ¬b ∨ z3) ∧ (¬a ∨ ¬b ∨ z4) .

ba
z2

z3

¬a¬b

z4 z1 z4 z1

z2

z3

ba
z2

z3

¬a¬b

z4 z1 z4 z1

z2

z3
¬b2z2

z3

a2b2

z4 z1 z4 z1

z2

z3

Fig. 1. Example graph (left) and unfolding for variable a (right)

We now translate such graphs into ∃2-HORNb clauses by mapping an edge
L φf

i−→K to a clause ¬L∨K ∨φf
i . The input formula Φ is satisfiable if and only if

there exists an assignment of truth values to the free variables such that for all
paths from a node yk to ¬yk and back to yk, at least one edge label evaluates
to true. The trick is now to encode this check separately for each quantified
variable. That means we create a subformula which is false if and only if there
is a path from y1 to ¬y1 and back to y1 with all edge labels being false, another
subformula for paths from y2 to ¬y2 and back to y2, and so on. Furthermore,
we unfold the graph for each yk by “mirroring” it around ¬yk, so that instead
of checking for a cycle, it is sufficient to detect a simple path from yk to ¬yk

and from there to the mirrored copy of yk. Suitable renamings make sure that
all nodes in the unfolded graph have unique names. Figure 1 (right) shows how
the graph for the previous example is unfolded for the variable a.

Theorem 3. (∃2-CNFb =poly−time ∃2-HORNb)
Every ∃2-CNFb formula Φ with |∃| existential quantifiers can be transformed in
time and space O(|∃| · |Φ|) into an equivalent ∃2-HORNb formula.
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Proof. Let Φ = ∃y1...∃ym

∧
1≤i≤q(φb

i ∨ φf
i ) ∈ ∃2-CNFb. In addition to the previ-

ously stated assumption that the bound parts φb
i are not empty, we also assume

that the quantified bound parts ∃y1...∃ym

∧
1≤i≤q φb

i yield an unsatisfiable for-
mula. Otherwise, Φ would be true for any truth assignment to the free variables
and therefore be a tautology. Furthermore, we do not allow multiple occurrences
of identical bound parts. If the formula contains clauses L∨K∨φf

i and L∨K∨φf
j

with the same bound part L∨K, we can replace the first clause with the clauses
L ∨ y ∨ φf

i and ¬y ∨K ∨ φf
i for a new existentially quantified variable y.

Let G be the graph associated with Φ as outlined above. The following pro-
cedure transforms G into a formula Φ∗ ∈ ∃2-HORNb:
For all bound variables y, compute the graphs G(y) and G(¬y) by the following
renamings with new names ay, a¬y, by:

G(y) is obtained from G by renaming y into ay and ¬y into a¬y,
all the other nodes are given new unique names.
G(¬y) is obtained from G by renaming ¬y into a¬y and y into by,
all the other nodes are given new unique names.

For all bound variables y,
compute the combined graph H(y) := G(y) ∪G(¬y),
with vy being the set of names of all nodes in H(y),
build the formula F (y) := ∃vy ay ∧ ¬by ∧

∧
(L

σ−→K)∈H(y)
(¬L ∨K ∨ σ).

Combine the formulas F (yi) for the bound variables y1, ..., ym in Φ into
Ψ := ∃vy1 ...∃vymF (y1) ∧ ... ∧ F (ym). Clearly, Ψ ∈ ∃2-HORNb.

In order to prove that Φ ≈ Ψ , we use the equivalent representations from
Lemma 3:
M(Φ) :=

∧
(∃φb

i1
∧...∧φb

ir
)∈S(Φ)(φ

f
i1
∨ ... ∨ φf

ir
) ≈ Φ

M(Ψ) :=
∧

(∃ψb
j1

∧...∧ψb
js

)∈S(Ψ)(ψ
f
j1
∨ ... ∨ ψf

js
) ≈ Ψ

Since the matrix of an existentially quantified minimal false formula is minimal
unsatisfiable, we represent the formulas M(Φ) and M(Ψ) as follows:
M(Φ) = {(φf

i1
∨ ... ∨ φf

ir
) | (φb

i1 ∧ ... ∧ φb
ir

) minimal unsat, φb
ik

bound part in Φ}
M(Ψ) = {(ψf

j1
∨ ...∨ψf

js
) | (ψb

j1 ∧ ...∧ψb
js

) minimal unsat, ψb
jl

bound part in Ψ}
Ad M(Ψ) |= M(Φ): Let ϕ := φf

i1
∨ ... ∨ φf

ir
be a clause in M(Φ). Then

β := φb
i1 ∧ ... ∧ φb

ir
is minimal unsatisfiable, and according to [2], there must be

some variable y in β for which a path from y to ¬y and from ¬y to y exists in
the graph representing the propositional 2-CNF formula β. Since the graph G
has the same structure, it contains the same path. For fixed y, this path must
be unique and have length r, because β would not be minimal unsatisfiable
otherwise. Accordingly, there is also exactly one path of length r from ay to a¬y

and then to by in H(y), which implies that the corresponding bound parts of
the formula F (y) are minimal unsatisfiable and thus define a clause in M(Ψ).
By construction, the path in H(y) is labeled with the same free parts as the
corresponding path in G, namely {φf

i1
, ..., φf

ir
}. This shows that M(Ψ) contains

the clause ϕ, so M(Ψ) |= M(Φ).
Ad M(Φ) |= M(Ψ): This direction is essentially the inverse of the preceding

case. Let ϕ := ψf
j1
∨ ...∨ψf

js
be a clause in M(Ψ). Due to the unique node names,
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a minimal unsatisfiable subset of bound parts ψb
j1
∧ ... ∧ ψb

js
in Ψ can only arise

within a single formula F (y) for some variable y. The existence of such a minimal
unsatisfiable subset of bound parts implies a path of length s from ay to a¬y

and to by in H(y). The path is labeled with {ψf
j1

, ..., ψf
js
} and corresponds to a

path from y to ¬y and back to y in G with the same edge labels. Such a path
implies that there is an unsatisfiable set of bound parts φb

i1
∧ ... ∧ φb

is
in Φ. A

subset of these is minimal unsatisfiable, and the corresponding free parts are a
subset of the edge labels on the path. It follows that a subset of each clause ϕ
in Ψ is a clause in Φ, and thus M(Φ) |= M(Ψ). ��

5 Conclusion

We have shown that the formula class DQ2-CNFb is not significantly more ex-
pressive than ∃2-HORNb and that DQ2-CNFb satisfiability is also NP-complete.
An important intermediate result was a poly-time elimination of all universal
quantifiers in a DQ2-CNFb or Q2-CNFb formula, which might also be useful for
QBF solvers fighting against the exponential blowup caused by universal expan-
sion in the general case. Along the lines, we have also shown that DQ2-CNF∗

satisfiability can be decided in linear time and that universal expansion is also
correct for DQBF∗.

While there are formulas for which DQ2-CNFb and ∃2-HORNb are known to
be exponentially more concise than propositional CNF, the relationship between
∃2-HORNb and ∃HORNb remains unclear. The latter class has the same expres-
sive power as Boolean circuits with arbitrary fan-out, which are assumed to be
more powerful than propositional formulas. It is not known whether such circuits
can also be compactly encoded as poly-size ∃2-HORNb formulas or, equivalently,
whether every ∃HORNb formula has an equivalent ∃2-HORNb formula of poly-
nomial length. Perhaps, the poly-time equivalence between (D)Q2-CNFb and
∃2-HORNb can help to shed some light onto this problem. It would also be in-
teresting to investigate whether the transformation between the two classes can
be carried out with lower costs than with the procedure that is presented here.
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Abstract. Non-trivial linear straight-line programs over the Galois field
of two elements occur frequently in applications such as encryption or
high-performance computing. Finding the shortest linear straight-line
program for a given set of linear forms is known to be MaxSNP-complete,
i.e., there is no ε-approximation for the problem unless P = NP .

This paper presents a non-approximative approach for finding the
shortest linear straight-line program. In other words, we show how to
search for a circuit of XOR gates with the minimal number of such gates.
The approach is based on a reduction of the associated decision problem
(“Is there a program of length k?”) to satisfiability of propositional logic.
Using modern SAT solvers, optimal solutions to interesting problem in-
stances can be obtained.

1 Introduction

Straight-line programs over the Galois field of two elements, often denoted
GF(2), have many practically relevant applications. The most prominent ones
are probably in high performance computing (inversion of sparse binary matri-
ces), networking and storage (error detection by checksumming), and encryption
(hashing, symmetric ciphers).

In this paper, we focus on linear straight-line programs over GF(2) with ap-
plications in cryptography. The motivation behind this choice is that modern
symmetric ciphers like AES can be implemented by lookup tables and addition
in GF(2). Multiplication and addition in GF(2) correspond to the Boolean AND
and XOR operations, respectively. In other words, we are looking at straight-line
programs composed of array lookups and sequences of XOR operations.

The goal of this paper is, given a specification of a linear function from a
number of inputs to a number of outputs, to find the shortest linear straight-line
program over GF(2) that satisfies the specification. In other words, we show
how to find a XOR circuit with the minimal number of gates that connects
inputs to outputs. Finding such shortest programs is obviously interesting both
for software and for hardware implementations of, for example, the symmetric
cipher Advanced Encryption Standard (AES) [13].
� Supported by the G.I.F. grant 966-116.6 and the Danish Natural Science Research
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While there are heuristic methods for finding short straight-line linear pro-
grams [4] (see also [3] for the corresponding patent application), to the best of
our knowledge, there is no feasible method for finding an optimal solution. In
this paper, we present an approach based on reducing the associated decision
problem (“Is there a program of length k?”) to satisfiability of propositional
logic. The reduction is performed in a way that every model found by the SAT
solver represents a solution. Recent work [11] has shown that reductions to sat-
isfiability problems are a promising approach for circuit synthesis. By restricting
our attention to linear functions, we now obtain a polynomial-size encoding.

The structure of this paper is as follows. In Section 2, we formally introduce
our optimization problem and show how linear straight-line programs can be
used to compute a given set of linear forms. Section 3 presents a novel encoding
for the associated decision problem to SAT. Then, we discuss in Section 4 how
to tackle our optimization problem by reducing it to the associated decision
problem using a customized search for k.

In Section 5 we present an empirical case study where we try to optimize an
important component of AES. To prove optimality of the solution found, the case
study prompts us to improve the performance of our encoding for the decision
problem in the unsatisfiable case. For this, we discuss different approaches in
Section 6. We conclude with a summary of our contributions in Section 7.

2 Linear Straight-Line Programs

In this paper, we assume that we have n inputs x1, . . . , xn and m outputs
y1, . . . , ym. Then the linear function to be computed can be specified by m
equations of the following form:

y1 = a1,1 · x1 ⊕ a1,2 · x2 ⊕ . . .⊕ a1,n · xn

y2 = a2,1 · x1 ⊕ a2,2 · x2 ⊕ . . .⊕ a2,n · xn

. . .
ym = am,1 · x1 ⊕ am,2 · x2 ⊕ . . .⊕ am,n · xn

We call each equation a linear form. Note that each a�,j is a constant from GF(2)
= {0, 1}, each xj is a variable over GF(2), and ⊕ and · denote standard addition
and multiplication on GF(2), respectively. In this paper, we always assume that
the linear forms are pairwise different.

Our goal is to come up with an algorithm that computes these linear forms
given x1, . . . , xn as inputs. More specifically, we would like to express this al-
gorithm via a linear straight-line program (or, for brevity, just program). Here,
every line of the program has the shape u := e · v ⊕ f · w with e, f ∈ GF(2)
and v, w variables. Some lines of the program will contain the output, i.e., as-
sign the value of one of the desired linear forms to a variable. The length of a
program is the number of lines the program contains. Without loss of generality,
we perform write operations only to fresh variables, so no input is overwritten
and no intermediate variable is written to twice. A program is optimal if there
is no shorter program that computes the same linear forms.
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Example 1. Consider the following linear forms:

y1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

y2 = x1 ⊕ x2 ⊕ x3 ⊕ x4

y3 = x1 ⊕ x2 ⊕ x3 ⊕ x5

y4 = x3 ⊕ x4 ⊕ x5

y5 = x1 ⊕ x5

A shortest linear program for computing these linear forms has length 6. The
following linear program is an optimal solution for this example.

v1 = x1 ⊕ x5 [y5]
v2 = x2 ⊕ v1

v3 = x3 ⊕ v2 [y3]
v4 = x4 ⊕ v3 [y1]
v5 = x5 ⊕ v4 [y2]
v6 = v2 ⊕ v5 [y4]

It is easy to check that for each output y� there is a variable vi that contains
the linear form for y�. In the above program, this mapping from intermediate
variables to outputs is given by annotating the program lines with the associated
output in square brackets.

Note that finding the shortest program over GF(2) is not an instance of the
common subexpression elimination problem known from program optimization.
The above shortest program makes extensive use of cancellation, i.e., of the fact
that for all x in GF(2), we have x ⊕ x = 0. For example, the output y4 is
computed by adding v2 and v5. These two variables are described by the linear
forms x1 ⊕ x2 ⊕ x3 ⊕ x4 and x1 ⊕ x2 ⊕ x5, respectively. By adding these two
linear forms, we obtain the desired x3 ⊕ x4 ⊕ x5 since x1 ⊕ x1 ⊕ x2 ⊕ x2 = 0
for all values of x1 and x2. Without cancellations, a shortest linear straight-line
program has length 8, i.e., it uses 25% more XOR gates.

The goal that we are now pursuing in this paper is to synthesize an optimal
linear straight-line program for a given set of linear forms both automatically
and efficiently. Formally, this problem can be described as follows:

Given n variables x1, . . . , xn over GF(2) and m linear forms y� = a�,1 ·
x1⊕ . . .⊕a�,n ·xn, find the shortest linear program that computes all y�.

Note that here we are aiming at a (provably) optimal solution. This is opposed
to allowing approximations with more lines than actually necessary, which is
currently the state of the art [2].

As a step towards solving this optimization problem, first let us consider the
corresponding decision problem:

Given n variables x1, . . . , xn over GF(2), m linear forms y� = a�,1 · x1 ⊕
. . . ⊕ a�,n · xn and a natural number k, decide if there exists a linear
program of length k that computes all y�.
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Of course, if the answer to this question is “Yes”, we do not only wish to get this
answer, but we would also like to obtain a corresponding program of length (at
most) k. In line i, the variable vi is defined as the sum of two other variables.
Here, one may read from the variables x1, . . . , xn and also from the intermediate
variables v1, . . . , vj with j < i, i.e., from those intermediate variables that have
been defined before.

To facilitate the description of our encoding in the following section, we re-
formulate the problem via matrices over GF(2). Here, given a natural number
k, we represent the given coefficients of the m linear forms over n inputs with
y� = a�,1 ·x1⊕a�,2 ·x2⊕ . . .⊕a�,n ·xn (1 ≤ � ≤ m) as rows of an m× n-matrix A.
The �-th row thus consists of the entries a�,1a�,2 . . . a�,n from GF(2).

Likewise, we can also express the resulting program via two matrices:

– A matrix B = (bi,j)k×n over GF(2), where bi,j = 1 iff in line i of the program
the input variable xj is read.

– A matrix C = (ck,k)k×k over GF(2) where ci,j = 1 iff in line i of the program
the intermediate variable vj is read.

To represent for example the program line v3 = x3⊕ v2 from Example 1, all b3,j

except for b3,3 and all c3,j except for c3,2 have to be 0. Thus, the third row in B
is
(

0 0 1 0 0
)

while in C it is
(

0 1 0 0 0 0
)
.

Now, for the matrices B and C to actually represent a legal linear straight-
line program, for any row i there must be exactly two non-zero entries in the
combined i-th row of B and C. That is, the vector

(
bi,1 . . . bi,n ci,1 . . . ci,k

)
must

contain exactly two 1s.
Furthermore, for the represented program to actually compute our linear

forms, we have to demand that for each desired output y�, there is a line i in the
program (and the matrices) such that vi = y� where y� = a�,1 ·x1⊕ . . .⊕a�,n ·xn

and vi = bi,1 · x1 ⊕ . . . ⊕ bi,n · xn ⊕ ci,1 · v1 ⊕ . . . ⊕ ci,i−1 · vi−1. Note that we
only use the lower triangular matrix as a program may only read intermediate
values that have already been written. To represent the mapping of intermediate
variables to outputs, we use a function f : {1, . . . , m} �→ {1, . . . , k}.
Example 2. Consider again the linear forms from Example 1. They are repre-
sented by the following matrix A. Likewise, the program is represented by the
matrices B and C and the function f .

A =

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
0 0 1 1 1
1 0 0 0 1

⎞⎟⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ C =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 �→ 4
2 �→ 5
3 �→ 3
4 �→ 6
5 �→ 1

Obviously, all combined rows of B and C contain exactly two non-zero elements.
Furthermore, by computing the vi and the y�, we can see that each of the linear
forms described by A is computed by the program represented by B and C.
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3 Encoding to Propositional Logic

Now that the scenario has been set up and the matrix formulation has been
introduced, we start by giving a high-level encoding of the decision problem as
a logical formula in second order logic. Then we perform a stepwise refinement
of that encoding where in each step we eliminate some elements that cannot
directly be expressed by satisfiability of propositional logic.

For our first encoding, the carrier is the set of natural numbers, and we use
predicates over indices to represent the matrices A, B, and C as well as the
vectors x, y, and v. We also use a function f to map indices of outputs from y
to indices of intermediate variables from v. Finally, we make use of cardinality
constraints by predicates exactlyk that take a list of variables and check that
the number of variables that are assigned 1 is exactly k.

First, we need to ensure that B and C represent a legal linear straight-line
program. This is encoded by the following formula α1:

α1 =
∧

1≤i≤k

exactly2(B(i, 1), . . . , B(i, n), C(i, 1), . . . , C(i, i− 1))

Second, we demand that the values for the intermediate variables from v are
computed by using the values from B and C:

α2 =
∧

1≤i≤k

⎛⎝v(i) ↔
⊕

1≤j≤n

B(i, j) ∧ x(j) ⊕
⊕

1≤p<i

C(i, p) ∧ v(p)

⎞⎠
Third, we ensure that the value of the intermediate variable determined by f for
the �-th output actually takes the same value as the �-th linear form:

α3(�) = v(f(�))↔
⊕

1≤j≤n

A(�, j) ∧ x(j)

Here, v(f(�)) denotes the intermediate variable which stores the result of the
linear form y(�). In other words, the (existentially quantified) function f maps
the index � of the linear form y� to the index i = f(�) of the variable vi in v
which contains the result of y�.

Now we can give our first encoding by the following formula α:

α = ∃B.∃C.∃f.∀x.∃v. α1 ∧ α2 ∧
∧

1≤�≤m

α3(�)

Note that we indeed use the expressivity of second order logic as all our quantifi-
cations are over predicates and functions. Fortunately, all these only need to be
defined on finite domains. In order not to have to deal with quantification over
predicates representing matrices and vectors, we can just introduce a finite num-
ber of Boolean variables to represent the elements of the matrices and vectors
and work on these directly. For example, for the k × n matrix B we introduce
the k · n Boolean variables b1,1 . . . , bk,n.
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Similarly, for the function f we introduce m · k Boolean variables f�,i that
denote that the �-th linear form is computed by the i-th intermediate variable.
To make sure that these variables actually represent a function, we need to
encode well-definedness: for each � there must be exactly one i with f�,i.

We obtain the refined overall constraint β, which is a formula from QBF:

β1 =
∧

1≤i≤k

exactly2(bi,1, . . . , bi,n, ci,1, . . . , ci,i−1)

β2 =
∧

1≤i≤k

⎛⎝vi ↔
⊕

1≤j≤n

bi,j ∧ xj ⊕
⊕

1≤p<i

ci,p ∧ vp

⎞⎠
β3(�) =

∧
1≤i≤k

⎛⎝f�,i →
⎛⎝vi ↔

⊕
1≤j≤n

a�,j ∧ xj

⎞⎠⎞⎠ ∧ exactly1(f�,1, . . . , f�,k)

β = ∃b1,1. . . . ∃bk,n.∃c1,1. . . . ∃ck,k.∃f1,1. . . . ∃fm,k.∀x1. . . .∀xn.∃v1. . . .∃vk.
β1 ∧ β2 ∧

∧
1≤�≤m β3(�)

The above formula β is in prenex normal form and has a quantifier prefix of
the shape ∃+∀+∃+. This precludes us from using a SAT solver on β directly.
For this, we would need to have a quantifier prefix of the shape ∃+ alone. Thus,
unless we want to use a QBF solver, we need to get rid of the ∀+∃+ suffix of the
quantifier prefix of β. In other words, we need to get rid of the quantifications
over x1, . . . , xn and v1, . . . , vk.

We observe that β explicitly contains the computed values vi of the interme-
diate variables. We can eliminate them by unrolling the defining equations of an
intermediate variable vi to be expressed directly via x1, . . . , xn. In other words,
we do not regard the intermediate variables for “computing” the result of the
linear forms y�, but we directly use a closed expression that depends on the bi,j

and the ci,p. Here, we introduce the auxiliary formulae ϕ(i) for 1 ≤ i ≤ k whose
truth value should correspond to the value taken by the corresponding vi:

ϕ(i) = (
⊕

1≤j≤n

bi,j ∧ xj)⊕ (
⊕

1≤p<i

ci,p ∧ ϕ(p))

We now reformulate β to obtain a refined encoding γ. Note that we do not need
to redefine β1 and we do not need an equivalent of β2 as we unroll the definition
of the vi into γ3 using ϕ(i).

γ3(�) =
∧

1≤i≤k

⎛⎝f�,i →
⎛⎝ϕ(i)↔

⊕
1≤j≤n

a�,j ∧ xj

⎞⎠⎞⎠ ∧ exactly1(f�,1, . . . , f�,k)

γ = ∃b1,1. . . .∃bk,n.∃c1,1. . . .∃ck,k.∃f1,1. . . . ∃fm,k.∀x1. . . . ∀xn.β1∧
∧

1≤�≤m γ3(�)

Note that it looks as though for each i we had obtained many redundant copies of
the subformulae ϕ(i), which would entail a blow-up in formula size. However, in
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practical implementations it is beneficial to represent propositional formulae not
as trees, but as directed acyclic graphs with sharing of common subformulae.
This technique is also known as structural hashing [6]. We perform standard
Boolean simplifications (e.g., ϕ ∧ 1 = ϕ), we share Boolean junctor applications
modulo commutativity and idempotence (where applicable), and we use varyadic
∧ and ∨. In contrast, the junctors ↔ and ⊕ are binary and associate to the left.

Nevertheless, we still have universal quantification over the inputs as part
of our encoding. This states that regardless of the input values for x1, . . . , xn,
our program should yield the correct result. Fortunately, we can now benefit
from linearity of the operation ⊕ on GF(2), which means that the absolute
positiveness criterion for polynomials [10] (a simple technique commonly used in
automated termination provers, cf. e.g. [7]) is not only sound, but also complete.
Essentially, the idea is that two linear forms compute the same function iff their
coefficients are identical. In this way, we can now drop the inputs x1, . . . , xn.

For 1 ≤ j ≤ n and 1 ≤ i ≤ k, we introduce the auxiliary formulae ψ(j, i),
which should denote the dependence of the value for vi with respect to xj (i.e.,
whether the value of vi toggles if xj changes or not):

ψ(j, i) = bi,j ⊕
⊕

1≤p<i

ci,p ∧ ψ(j, p)

We finally get an encoding δ in prenex normal form that can be used as input for a
SAT solver (by dropping explicit existential quantification, encoding cardinality
constraints using [5,1], and performing Tseitin’s transformation [14]).

δ3(�) =
∧

1≤i≤k

⎛⎝f�,i →
∧

1≤j≤n

(ψ(j, i)↔ a�,j)

⎞⎠ ∧ exactly1(f�,1, . . . , f�,k)

δ = ∃b1,1. . . .∃bk,n.∃c1,1. . . . . . .∃ck,k.∃f1,1. . . . ∃fm,k. β1 ∧
∧

1≤�≤m

δ3(�)

For the implementation of δ we used the SAT framework in the verification
environment AProVE [8] and the Tseitin implementation from SAT4J [12].

3.1 Size of the Encoding

Given a decision problem with an m×n matrix and a natural number k (where
w.l.o.g. m ≤ k holds since for m > k, we could just set δ = 0), our encoding δ
has size O(n ·k2) if the cardinality constraints are encoded in space linear in the
number of arguments [5]. To see this, consider the following size estimation for
δ where due to the use of structural hashing we can look at δ3 and ψ separately.

|δ| = O(k · n + k · k + m · k + |β1|+ m · |δ3|+ n · k · |ψ|)
For β1 and δ3 we obtain the following estimations where g is a function describing
the size of the cardinality constraint:

|β1| = O(k · g(n + k)) |δ3| = O(k · n + g(k))
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For ψ we immediately obtain the size estimation |ψ| = O(k). Now, we can
simplify the estimation for δ by using m ≤ k:

|δ| = O(k · n + k · k + m · k + k · g(n + k) + m · (k · n + g(k)) + n · k · k)
= O(n · k2 + k · g(n + k) + m · g(k))

3.2 Tuning the Encoding

The models of the encoding δ from this section are all linear straight-line pro-
grams of length k that compute the m linear forms y1, . . . , ym. The programs can
be decoded from a satisfying assignment of the propositional formula by simply
reconstructing the matrices B and C.

In this paper, we are interested in finding short programs. Thus, we can ex-
clude many programs that perform redundant computations. We do so by adding
further conjuncts that exclude those undesired programs. While we change the
set of models, note that we do not change the satisfiability of the decision prob-
lem. That is, if there is a program that computes the given linear forms in k steps,
we will find one which does not perform these kinds of redundant computation.

The first kind of redundant programs are programs that compute the same
linear form twice, i.e., there are two different intermediate variables that contain
the same linear form. We exclude such programs by demanding that for all
distinct pairs of intermediate variables vi and vp, there is also some xj that
influences exactly one of the two variables:∧

1≤i≤k

∧
1≤p<i

∨
1≤j≤n

(ψ(j, p)⊕ ψ(j, i))

The second kind of redundant programs are programs that compute the constant
0 or a linear form just depending on the value of one input variable. To exclude
such programs, we add cardinality constraints stating that each compute linear
form must depend on at least two input variables.∧

1≤i≤k

atLeast2(ψ(1, i), . . . , ψ(n, i))

In fact, statements that compute linear forms that only depend on two input
variables can be restricted not to use any other intermediate variables (as they
could be computed in one step from the inputs).∨

1≤j<i

ci,j →
∧

1≤i≤k

atLeast3(ψ(1, i), . . . , ψ(n, i))

Apart from disallowing redundant programs, we additionally include implied
conjuncts to further constrain the search space. In this way, the SAT solver
becomes more efficient as unit propagation can be employed in more situations.

As stated in Section 2, we require that the input does not contain duplicate
linear forms. Consequently, we may require f to be injective, i.e., any interme-
diate variable covers at most one linear form.
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1≤i≤k

atMost1(f1,i, . . . , fm,i)

Often, CDCL-based SAT solvers are not very good at solving the pigeonhole
problem. Additional constraints facilitate better unit propagation in these cases.
Since f maps from {1, . . . , m} to {1, . . . , k}, only at most k of the f�,i may
become true.

atMostk(f1,1, . . . , fm,k)

Similarly, we can even state that at least m of the f�,i need to become true as
we have to compute all given (distinct) m linear forms.

atLeastm(f1,1, . . . , fm,k)

4 From Decision Problem to Optimization

A simple approach for solving an optimization problem given a decision proce-
dure for the associated decision problem is to search for the parameter to be
optimized by repeatedly calling the decision procedure.

In our case, for minimizing the length k of the synthesized linear straight-
line program, we start by observing that this minimal length must be at least
the number of linear forms. At the same time, if we compute each linear form
separately, we obtain an upper bound for the minimal length. More precisely, we
know that the minimal length kmin is in the closed interval from m to |A|1 −m
where | · |1 denotes the number of 1s in a matrix.

Without further heuristic knowledge about the typical length of shortest pro-
grams, the obvious thing to do is to use a bisecting approach for refining the
interval. That is, one selects the middle element of the current interval and calls
a decision procedure based on our encoding from Section 3 for this parameter.
If there is a model, the interval is restricted to the lower half of the previous
interval and we continue bisecting. If there is no model and δ is unsatisfiable,
the interval is restricted to the upper half of the previous interval. When the
interval becomes empty, the lower limit indicates the minimal parameter kmin .

The above approach requires a logarithmic number of calls to the decision
procedure, approximately half of which will return the result “unsatisfiable”.
This approach is very efficient if we can assume that our decision procedure takes
approximately the same time for a positive answer as for a negative answer. As
we will see in the case study of the following section, though, for realistic problem
instances the negative answers may require orders of magnitude more time.

Thus, to minimize the number of calls to the decision procedure resulting in
a negative answer, we propose the following algorithm for refining the length k.

1. Start with k := |A|1 −m− 1.
2. Call the decision procedure with k.
3. If UNSAT, return k + 1 and exit.
4. If SAT, compute used length kused from B and C.
5. Set k := kused − 1 and go to Step 2.
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Here, the used length of a program is the number of variables that are needed
directly or indirectly to compute the m linear forms. For given matrices B and
C and a function f , the set of used variables used is the least set such that:

– if f(�) = i, then vi ∈ used and
– if vi ∈ used and ci,j = 1, then vj ∈ used .

The used length can then be obtained as the cardinality of the set used .
This algorithm obviously only results in exactly one call to UNSAT – directly

before finding the minimal solution. The price we pay for this is that in the worst
case we have to call the decision procedure a linear number of times. In practice,
though, for k > kmin , there are many solutions and the solution returned by the
SAT solver typically has kused < k. Consequently, at the beginning the algorithm
typically approaches kmin in rather large steps.

While it seems natural to use MaxSAT for our optimization problem instead
of calling the SAT solver repeatedly, the decision problems close to the optimum
are already so hard that solving these as part of a larger instance seems infeasible.

5 Case Study: Advanced Encryption Standard

As mentioned in the introduction, a major motivation for our work is the mini-
mization of circuits for implementing cryptographic algorithms. In this section,
we study how our contributions can be applied to optimize an important com-
ponent of the Advanced Encryption Standard (AES) [13].

The AES algorithm consists of the (repeated) application of four steps. The
main step for introducing non-linearity is the SubBytes step that is based on a
so-called S-box. This S-box is a transformation based on multiplicative inverses
in GF(28) combined with an invertible affine transformation. This step can be
decomposed into two linear parts and a minimal non-linear part.

For our case study, we consider the first of the linear parts (called the “top
matrix” in [4]) which is represented by the following 21× 8 matrix A:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, the matrices B and C represent a solution with length k = 23. This
solution was found in less than one minute using our decision procedure from
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Section 3 with MiniSAT v2.1 as backend on a 2.67 GHz Intel Core i7. We strongly
conjecture that kmin = 23 and, indeed, the shortest known linear straight-line
program for the linear forms described by the matrix A has length k = 23 [4].
This shows that our SAT-based optimization method is able to find very good
solutions in reasonable time. The UNSAT case is harder, though. For k = 20
(which is trivially unsatisfiable due to the pigeonhole problem), without the
tunings from Section 3 we cannot show unsatisfiability within 4 days. But with
the tunings enabled we can show unsatisfiability in less than one second.

Unfortunately, proving the unsatisfiability for k = 22 proves to be much more
challenging. Indeed, we have run many different SAT solvers (including but not
limited to glucose, ManySat, MiniSat, MiraXT with 8 threads, OKsolver, PicoSAT,
PrecoSAT, RSat, SAT4J) on the CNF file for this instance of our decision problem.
Some of the more promising solvers for this instance were run for more than 40
days without returning either SAT or UNSAT.

In an effort to prove unsatisfiability of this instance and thereby prove op-
timality of the solution with k = 23, we have asked for and received a lot of
support and good advice from the SAT community (see the Acknowledgements
at the end of this paper). Still, to this day the unsatisfiability of this instance

k result time
8 UNSAT 0.4
9 UNSAT 0.5

10 UNSAT 1.2
11 UNSAT 5.0
12 UNSAT 76.8
13 SAT 1.0
14 SAT 3.4
15 SAT 2.8
16 SAT 1.5
17 SAT 4.3
18 SAT 2.7
19 SAT 2.5
20 SAT 3.0
21 SAT 3.0
22 SAT 3.5
23 SAT 3.6
24 SAT 5.5
25 SAT 5.9

remains a conjecture. Using pre-processing techniques, the
number of variables of this instance can be reduced from more
than 45000 to less than 5000 in a matter of minutes. The
remaining SAT problem seems to be very hard, though.1

To analyze how difficult these problems really are, we con-
sider a small subset of the linear forms to be computed for
the top matrix. The table to the right shows how the run-
times in seconds of the SAT solver are affected by the choice
of k for the case that we consider only the first 8 out of 21
linear forms from A. In order to keep runtimes manageable
we already incorporated the symmetry breaking improvement
described in Section 6. Note that unsatisfiability for k = 12
is still much harder to show than satisfiability for kmin = 13.

To conclude this case study, we see that while finding
(potentially) minimal solutions is obviously feasible, proving
their optimality (i.e., unsatisfiability of the associated deci-
sion problem for k = kmin−1) is challenging. This observation
confirms observations made in [11]. In the following section
we present some of our attempts to improve the efficiency of
our encoding for the UNSAT case.

6 Towards Handling the UNSAT Case

Satisfiability of propositional logic is an NP-complete problem and, thus, we
can expect that at least some instances are computationally expensive. While
1 The reader is cordially invited to try his favorite SAT solver on one of the instances

available from: http://aprove.informatik.rwth-aachen.de/eval/slp.zip

http://aprove.informatik.rwth-aachen.de/eval/slp.zip
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SAT solvers have proven to be a Swiss army knife for solving practically relevant
instances of many different NP-complete problems, our kind of program synthesis
problems seems to be a major challenge for today’s SAT solvers even on instances
with “just” 1500 variables.

In this section we discuss three different approaches based on unary SAT
encodings, on Pseudo-Boolean satisfiability, and on symmetry breaking.

6.1 Unary Encodings

As remarked by [9], encoding arithmetic in unary representation instead of the
more common binary (CPU-like) representation can be very beneficial for the
performance of modern conflict-driven SAT solvers on the resulting instances.
Unfortunately, encoding the computations not via XOR on GF(2), but rather
in unary representation on Z with a deferred parity check turned out to be
prohibitively expensive as the (integer) values for the i-th line are bounded only
by O(fib(i)) where fib is the Fibonacci function.

6.2 Encoding to Pseudo-Boolean Constraints

Instead of optimizing and tuning our encoding to SAT, we also implemented a
straight-forward encoding to Pseudo-Boolean constraints. The hope was that,
e.g., cutting plane approaches could be useful for showing unsatisfiability.

We experimented with MiniSat+, Pueblo, SAT4J, and SCIP but were not able
to obtain any improvements for e.g. the first 8 linear forms of the top matrix.

6.3 Symmetry Breaking

In general, having many solutions is considered good for SAT instances as the
SAT solver is more likely to “stumble” upon one of them. For UNSAT instances,
though, having many potential solutions usually means that the search space to
exhaust is very large.

One of the main reasons for having many solutions is symmetry. For example,
it does not matter if we first compute v1 = x1 ⊕ x2 and then v2 = x3 ⊕ x4 or
the other way around. Limiting these kinds of symmetries can be expected to
significantly reduce the runtimes for UNSAT instances.

In our concrete setting, being able to reorder independent program lines is one
of the major sources of symmetry. Two outputs in a straight-line program are
said to be independent if neither of them depends on the other (directly through
the matrix C or indirectly).

Now, the idea for breaking symmetry is to impose an order on these lines:
the line which computes the “smaller” linear form (w.r.t. a total order on linear
forms, which can e.g. be obtained by lexicographic comparison of the coefficient
vectors) must occur before the line which computes the greater linear form.

We can encode the direct dependence of vi on vp:∧
1≤i≤k

∧
1≤p<i

c(i, p)→ dep(i, p)
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Likewise, the indirect dependence of vi on vp can be encoded by transitivity:∧
1≤i≤k

∧
1≤p<i

∧
p<q<i

c(i, q) ∧ dep(q, p)→ dep(i, p)

We also need to encode the reverse direction, i.e.:

∧
1≤i≤k

∧
1≤p<i

⎛⎝dep(i, p)→
⎛⎝c(i, p) ∨

∨
p<q<i

(c(i, q) ∧ dep(q, p))

⎞⎠⎞⎠
Now we can enforce that for i > p, the output vi depends on the output vp or
vi encodes a greater linear form than vp:∧

1≤i≤k

∧
1≤p<i

(dep(i, p) ∨ [ψ(1, i), . . . , ψ(n, i)] >lex [ψ(1, p), . . . , ψ(n, p)])

Here lexicographic comparison of formula tuples is encoded in the usual way (see
for example the encodings in [7,5]).

While this approach eliminates some otherwise valid solutions of length k
and thus reduces the set of admissible solutions, obviously there is at least one
solution of length k which satisfies our constraints whenever solutions of length k
exist at all. This way, we greatly reduce the search space by breaking symmetries
that are not relevant for the result, but may slow down the search considerably.

Consider again the restriction of our S-box top matrix to the first 8 linear
forms. With symmetry breaking, we can show unsatisfiability for the “hard”
case k = 12 in 76.8 seconds. In contrast, without symmetry breaking, we cannot
show unsatisfiability within 4 days.

7 Conclusion

In this paper we have shown how shortest linear straight-line programs for given
linear forms can be synthesized using SAT solvers. To this end we have presented
a novel polynomial-size encoding of the associated decision problem to SAT and
a customized white-box method for again turning this decision procedure into
an optimization algorithm.

We have evaluated the feasibility of this approach by a case study where we
minimize an important part of the S-box for the Advanced Encryption Standard.
This study shows that our SAT-based approach is indeed able to synthesize
shortest-known programs for realistic problem settings within reasonable time.

Proving the optimality of the programs found by showing unsatisfiability of
the associated decision problem leads to very challenging SAT problems. To im-
prove the performance for the UNSAT case, we discussed three approaches based
on unary encodings, on a port to Pseudo-Boolean satisfiability, and on symmetry
breaking. We have shown that symmetry breaking significantly reduces runtimes
in the UNSAT case.

In future work, we consider to apply our method to other problems from cryp-
tography. Also, we plan to further enhance our encoding and specialize existing
SAT solvers to further improve performance in the UNSAT case.
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10. Hong, H., Jakuš, D.: Testing positiveness of polynomials. Journal of Automated
Reasoning (JAR) 21(1), 23–38 (1998)

11. Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding efficient circuits using
SAT-solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44.
Springer, Heidelberg (2009)

12. Le Berre, D., Parrain, A.: SAT4J, http://www.sat4j.org
13. Federal Information Processing Standard 197. The advanced encryption standard.

Technical report, National Institute of Standards and Technology (2001)
14. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in

Constructive Mathematics and Mathematical Logic, pp. 115–125 (1968); Reprinted
in Automation of Reasoning 2, 466–483 (1983)

http://www.sat4j.org


sQueezeBF: An Effective Preprocessor for QBFs

Based on Equivalence Reasoning

Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano

DIST - Università di Genova
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Abstract. In this paper we present sQueezeBF, an effective preproces-
sor for QBFs that combines various techniques for eliminating variables
and/or redundant clauses. In particular sQueezeBF combines (i) vari-
able elimination via Q-resolution, (ii) variable elimination via equivalence
substitution and (iii) equivalence breaking via equivalence rewriting. The
experimental analysis shows that sQueezeBF can produce significant re-
ductions in the number of clauses and/or variables - up to the point that
some instances are solved directly by sQueezeBF - and that it can signif-
icantly improve the efficiency of a range of state-of-the-art QBF solvers -
up to the point that some instances cannot be solved without sQueezeBF
preprocessing.

1 Introduction

Quantified Boolean Formulas are a powerful extension of the Satisfiability (SAT)
problem in which variables are universally as well as existentially quantified.
Adding the quantification makes QBFs a more compact language than SAT,
but this comes with a price: QBFs are in practice much harder to solve than
SAT formulas. Many different problems can be efficiently encoded into QBF
instances —such as in Verification [1,17], Planning (Synthesis) [5,14], and Rea-
soning about Knowledge [13]— and recently there has been great interest and
progress in developing efficient solvers for effectively dealing with such instances.
Preprocessing formulas has been proven to be very effective for solving SAT in-
stances: it can reduce the size of the formula considerably and decrease the
solving time substantially, even taking into account the time spent on prepro-
cessing (see for example [7,18]). Recently two preprocessors have been presented
for QBFs: preQuel [15,16] and proverbox [4]. preQuel derives as many binary
clauses as possible via Q-resolution [12] and then it eliminates variables and
clauses applying binary equality reduction and clause subsumption. proverbox,
instead, eliminates universal variables by expansion and existential variables at
the innermost quantification level by Q-resolution [12]. In order to limit the
size of the resulting formula, only a conveniently selected subset of universally
quantified variables with bounded expansion costs, is expanded by proverbox.

In this paper we present sQueezeBF, an effective preprocessor for QBFs that
combines: (i) variable elimination via Q-resolution, (ii) variable elimination via

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 85–98, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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equivalence substitution and (iii) equivalence breaking via equivalence rewrit-
ing. Variable elimination via Q-resolution aims to eliminate a variable v Q-
resolving [12] all the clauses where v occurs positively with all the clauses where
v occurs negatively. The resulting clauses, if not tautological, are learned while
the original clauses where v occurs are deleted. This can be performed only when
the resulting clauses verify a size criterion. Variable elimination via Q-resolution
in sQueezeBF is an extension of the one used by proverbox [4]: In proverbox only
the variables at the innermost quantifier level are eliminated, while in sQueezeBF
variables at any quantifier level can be eliminated. Variable elimination via equiv-
alence substitution replaces each defined literal in the formula with its definition.
This well known technique in SAT (see, e.g., [7,18]), has been implemented also
in QBF solvers but only for binary equivalences (see, e.g., [2,3]). However, if the
size of the resulting formula is greater than the original one, then the substitu-
tion does not take place. When substitution increases the size of the formula, we
apply equivalence rewriting: This technique introduces a new variable aiming to
break the equivalence, the size of the resulting formula is increased of at most a
binary clause, and —under particular conditions— it allows to eliminate half of
the equivalence thus decreasing the size of the resulting formula. As we will see,
equivalence rewriting can be very effective, especially when coupled with pure
literal detection.

The experimental analysis shows that sQueezeBF significantly improves the
efficiency of various state-of-the-art QBF solvers. In particular, sQueezeBF: (i)
reduces the size of the preprocessed formula, (ii) resolves by itself some in-
stances and (iii) when coupled with a QBF solver, is able to improve the solver
efficiency significantly. The experimental analysis also shows that equivalence
rewriting among all the preprocessing techniques implemented in sQueezeBF
is the one leading to the greatest increase in the number of problems solved.
However, the best overall performances are obtained when variable elimination
via Q-resolution and equivalence substitution are also activated. Finally, com-
paring sQueezeBF with preQuel and proverbox we see that most of the time
sQueezeBF outperforms them both in terms of size reduction of the resulting
formula, and number of problem solved when coupled with various state-of-the-
art QBF solvers.

This paper is organized as follows. First we review the basics of QBF satis-
fiability. Then we discuss the algorithm of sQueezeBF. We end the paper with
the experimental analysis and the conclusions.

2 Basic Definitions

Consider a set P of variables. A literal is a variable or the negation of a variable.
In the following, for any literal l,

– |l| is the variable in l; and
– l is l if l is a variable, and is |l| otherwise.
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A clause C is an n-ary (n ≥ 0) disjunction of literals such that, for any two
distinct disjuncts l, l′ in C, it is not the case that |l| = |l′|. A propositional
formula is a k-ary (k ≥ 0) conjunction of clauses.

A (closed) QBF is an expression of the form

Q1z1 . . . QnznΦ (n ≥ 0) (1)

where

– every Qi (1 ≤ i ≤ n) is a quantifier, either existential ∃ or universal ∀,
– z1, . . . , zn are distinct variables in P, and
– Φ is a propositional formula in the variables z1, . . . , zn.

In (1), Q1z1 . . . Qnzn is the prefix, Φ is the matrix, and Qi is the binding quanti-
fier of zi. Further, we say that a literal l is existential if ∃|l| belongs to the prefix,
and is universal otherwise. In the following, we will use true and false as
abbreviations for the empty conjunction and the empty disjunction respectively.

We define

– the level of a variable zi in the prefix QjzjQj+1zj+1 with j ≥ i and Qj �=
Qj+1 is the number of alternating quantifier blocks from left to right (starting
with 1);

– the level of a literal l, to be the level of |l|;
– the level of the formula (1), to be the level of z1.

If ϕ is a QBF and l is a literal, ϕl is the QBF

1. whose matrix Φ is obtained from the matrix of ϕ by deleting the clauses C
such that l ∈ C, and removing l from the others, and

2. whose prefix is obtained from the prefix of ϕ by deleting each variable and
corresponding bounding quantifier not occurring in Φ.

The semantics of a QBF ϕ can be defined recursively as follows. If the prefix is
empty, then ϕ’s satisfiability is defined according to the truth tables of proposi-
tional logic. If ϕ is ∃xψ (respectively ∀xψ), ϕ is satisfiable if and only if ϕx or
(respectively and) ϕx are satisfiable. If ϕ = Qxψ is a QBF and l is a literal, ϕl

is the QBF obtained from ψ by substituting l with true and l with false . It
is easy to see that if ϕ is a QBF without universal quantifiers, the problem of
deciding the satisfiability of ϕ reduces to SAT.

A literal l,

1. occurs positively in (1), if l is a disjunct of a clause in Φ,
2. occurs negatively in (1), if l is a disjunct of a clause in Φ,
3. occurs in (1), if l occurs positively or negatively in (1).

Further, in (1), we say that a literal l is

– Unit if l is existential, and, for some m ≥ 0,
• a clause (l ∨ l1 ∨ . . . ∨ lm) belongs to Φ, and
• each literal li (1 ≤ i ≤ m) is universal and has a lower level than l.
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0 function sQueezeBF(ϕ)
1 do
2 ϕ’ = ϕ
3 ϕ = Simplify(ϕ)
4 ϕ = Eq-Subs(ϕ)
5 ϕ = Eq-Rw(ϕ)
6 ϕ = Q-resolution(ϕ)
7 if ϕ ≡ true return ϕ
8 if ϕ ≡ false return ϕ
9 while ϕ’ �= ϕ
10 return ϕ

Fig. 1. The algorithm of sQueezeBF

– Pure (or monotone) if
• either l is existential and l does not negatively occur in Φ,
• or l is universal and l does not positively occur in Φ.

Given a set of clauses S we define the size |S| of S as the number of literals in
S. Finally given a QBF ϕ, a literal l and a set of clauses α, ϕ(l/α) is the QBF
obtained from ϕ by substituting each occurrence of l in Φ with α1.

3 sQueezeBF

In Fig. 1 we present the main algorithm of sQueezeBF. The algorithm takes as
input a QBF, and it returns a simplified QBF, that can either be empty (i.e.,
equivalent to true ) or contains an empty clause (i.e., equivalent to false ).
sQueezeBF starts saving the current state of the formula at line 2, and then
it applies four operations sequentially, i.e., Simplify(ϕ), Eq-Subs(ϕ), Eq-Rw(ϕ),
Q-resolution(ϕ), till no further simplification is possible (line 9).

Simplify(ϕ) (line 3) gets in input the formula and simplifies it propagating
all the unit and pure literals. Given a formula ϕ and a literal l, which is unit or
pure in ϕ, ϕ is equivalent to ϕl. Moreover, it also eliminates subsumed clauses,
i.e. clauses that are a superset of another clause in ϕ (see for more details [21]),
or self-subsumed clauses as in [7]. Eq-Subs(ϕ), Eq-Rw(ϕ) and Q-resolution(ϕ)
are explained in details in the next subsections.

From now on, we abuse notation and write QBFs with arbitrary matrix, not
necessarily in CNF, with the intended meaning to represent the CNF obtained
by applying standard rewriting rules without introducing additional variables.
For example, given a CNF α, we write (l ∨ α) as an abbreviation for the CNF
obtained adding l to each disjunct of α.

1 Strictly speaking the result is not a QBF. We assume that the resulting expression is
suitably converted into a QBF without introducing additional variables. For instance,
in ϕ(l/α) each clause C ∨ l in ϕ is substituted by the clauses in {C ∨ C′ : C′ ∈ α}.
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Fig. 2. Dependency graph

3.1 Variable Elimination via Equivalence Substitution

The variable elimination via equivalence checking was introduced for SAT in [7].
It is an algorithm that works in two steps: (i) identification of equivalences and
(ii) literal substitution. In the first step Eq-Subs looks for the following set of
clauses in the formula:

(l ∨ l1 ∨ . . . ∨ ln−1 ∨ ln) ∧ (l ∨ l1) ∧ . . . ∧ (l ∨ ln−1) ∧ (l ∨ ln) (2)

(l ∨ l1 ∨ l2) ∧ (l ∨ l1 ∨ l2) ∧ (l ∨ l1 ∨ l2) ∧ (l ∨ l1 ∨ l2) (3)

where in both the formulas (2) and (3) l is existential and with level lower
than the level of each |li| occurring in the equivalence. Notice that the set (2)
corresponds to the equivalence:

l⇔ (l1 ◦ . . . ◦ ln−1 ◦ ln) where ◦ ∈ {∨,∧} and n ≥ 1 (4)

and the set (3) corresponds to the equivalence:

l ⇔ l1 ⇔ l2 (5)

Once Eq-Subs finds an equivalence of the form (4) or (5), then it eliminates the
equivalence and it substitutes each occurrence of l with its definition. Notice that
after a substitution of a literal l with its definition α in a formula ϕ, the resulting
formula ϕ(l/α) is not guaranteed to be in CNF, and a CNF conversion step may
be necessary, using standard distribution laws2. Notice that it is well known
that the size of ϕ(l/α) can be significantly greater than the size of ϕ. However,
by eliminating redundant literals or clauses in the produced set of clauses, such
increase often does not happen. In case it does, we discard the changes, and the
substitution does not take place. This ensures the formula to never increase in
size after each equivalence substitution. Indeed, for binary equivalences of the
form l ⇔ l1, l can be safely replaced by l1 and the size does not increase. Binary
equivalences are substituted as soon as they are detected.

For non-binary equivalences some care as to be taken. Indeed, not all such
equivalences can be substituted. Take for example:
2 Indeed, other CNF conversion methods are possible, e.g., based on renaming, but

these methods would introduce back new variables.
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ϕ = α ∧ (l1 ⇔ l2 ∨ l4) ∧ (l2 ⇔ l3 ∨ l4) ∧ (l3 ⇔ l1 ∨ l5)
if l1 is eliminated first, then when l3 is substituted in the formula, l1 is rein-
troduced, and an analogous phenomenon happens no matter which variable is
substituted first. This problem arises since at least a variable occurs in the defi-
nitions of the others (notice that this can only happen if the literals are all at the
same level). In order to solve the problem of circularity, Eq-Subs constructs a
dependency graph where each node represents a defined variable, and each edge,
connecting two nodes, represents the dependency between their definitions. So
for example, Fig. 2:A represents the dependency graph of the example above,
where the edge from the node l3 and the node l1 depict the fact that l1 occurs
in the definition of l3. Notice that the edges have a direction, meaning that the
pointed node belongs to the definition of the starting one. In Fig. 2:A, l1 occurs
in the definition of l3. After the graph is created, then the algorithm looks for
circular paths and, if any is found, then the path is cut removing one of the
definition from it. Looking at Fig. 2:A, in order to eliminate the circular path
the algorithm deletes one of the three definitions, for example l2 (Fig. 2:B). At
this point we can substitute first l3, and then l1 and the formula is simplified
eliminating two variables. Notice that the order matters, since if we substitute l1
first, when l3 is substituted l1 will be reintroduced: Substituting literals starting
from the ones with no entering edges solves the problem.

3.2 Equivalence Breaking via Equivalence Rewriting

Equivalence substitution may increase substantially the size of the QBF. For
this reason not all the equivalences are substituted in a QBF, but a bound on
the new size of the formula is always considered. Yet, keeping equivalences in a
QBF may slow down the search. For example consider a QBF with matrix:

ϕ = (l ∨ α) ∧ (l⇔ γ) ∧ φ. (6)

where α, γ and φ are CNFs in which l does not occur. During the search when-
ever α becomes true, then the only occurrency of l is in the definition of the
equivalence, and thus the equivalence can be safely eliminated. However, (6) is
equivalent to (l ∨ α) ∧ (l ⇒ γ) ∧ φ and thus (l ⇒ γ) can be eliminated by pure
literal detection as soon as α becomes true. The fact that (l ⇔ γ) can be replaced
by (l ⇒ γ) in (6) is formally stated by the following theorem.

Theorem 1. Let ϕ be a QBF with matrix

Φ = (l ∨ α) ∧ (l⇔ γ) ∧ φ (7)

where

1. l is an existential literal which does not occur in α, γ and φ, and
2. l has prefix level lower than the prefix level of the literals in γ.

ϕ is equivalent to the QBF obtained by substituting (l ⇔ γ) with (l ⇒ γ).

In the hypothesis of the theorem, rewriting equivalences gives two advantages to
the solver:
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– Less clauses to deal with, i.e. smaller QBFs: Suppose that γ ≡ l1 ◦ . . . ◦ ln
then after rewriting the set of clauses γ → l is deleted. If ◦ is ∧, a single but
long clause is deleted. If ◦ is ∨, n binary clauses are deleted.

– More pruning during the search: Whenever α becomes true l occurs both
positively and negatively in (7), while in the rewritten formula l occurs only
negatively and thus can be simplified by pure literal detection.

The theorem above can be generalized to the case in which the l occurs also
negatively in ϕ.

Theorem 2. Let ϕ be a QBF with matrix

Φ = (l ∨ α) ∧ (l ∨ β) ∧ (l ⇔ γ) ∧ φ (8)

where

1. l is an existential literal which does not occur in α, γ, β and φ, and
2. l has prefix level lower than the prefix level of the literals in γ.

ϕ is equivalent to the QBF ϕ′ obtained from ϕ substituting:

1. (l ⇔ γ) with (l ⇒ γ) ∧ (γ ⇒ l′), and
2. l ∨ β with l′ ∨ β,

where l′ is a new existentially quantified variable introduced at the same quanti-
fier level of l.

The matrix of the QBF rewritten after Theorem 2 has the same size of the
original one, but still gives the benefit due to the pure literal detection:

1. Whenever α (resp. β) becomes true, the matrix of ϕ can be simplified to
(l∨β)∧ (l ⇔ γ)∧φ (resp. (l∨α)∧ (l ⇔ γ)∧φ) while in the matrix Φ′ of ϕ′,
l (resp. l′) becomes pure, and Φ′ can be simplified to (l′ ∨ β) ∧ (γ ⇒ l′) ∧ φ
(resp. (l ∨ α) ∧ (l ⇒ γ) ∧ φ).

2. Whenever both α and β become true, the matrix of ϕ can be simplified to
(l ⇔ γ) ∧ φ, while in the matrix Φ′ of ϕ′, l and l′ become pure, and Φ′ can
be simplified to φ.

The last item shows that we obtain an effect analogous to the “don’t care prop-
agation” in non-CNF reasoning (see, e.g., [19]): Indeed, there is more than an
analogy and it can be proved that given a non-CNF formula ϕ, if ϕ′ is the CNF
formula obtained by first converting ϕ using Tseitin conversion [20] and then
applying equivalence rewriting to the result, if a subformula ψ of ϕ gets assigned
by “don’t care propagation”, the clauses corresponding to ψ in ϕ′ get assigned
by pure literal detection [9]. Also notice that whenever γ becomes true (resp.
false), in the rewritten formula l (resp. l′) becomes pure, and the matrix can
be simplified to β (resp. α) as in the original case. However, when α (resp. β)
becomes false, the matrix of ϕ can be simplified to β ∧ γ ∧ φ, (resp. α ∧ γ ∧ φ
), while in the matrix Φ′ of ϕ′, l (resp. l′) is unit, and Φ′ can be simplified to
(l′ ∨ β) ∧ γ ∧ (γ ⇒ l′) ∧ φ. (resp. (l ∨ α) ∧ (¬γ) ∧ (l ⇒ γ) ∧ φ). In particular,
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from γ ∧ (γ ⇒ l′), it might the case that l′ is not derived by unit propagation.
In order to obtain such a propagation, we may add the efficiency clause l ∨ l′ to
the matrix of ϕ′, as sanctioned by the following Corollary.

Corollary 1. In the hypothesis of Theorem 2, ϕ′ is equivalent to the QBF ob-
tained adding the new clause (l ∨ l′) to the matrix of ϕ′.

Indeed, the efficiency clause is entailed by (l ⇒ γ) ∧ (γ ⇒ l′).
Finally, Eq-Rw applies Theorem 1 when a defined literal l occurs only pos-

itively, and the Corollary of Theorem 2 when a defined literal l occurs both
positively and negatively.

3.3 Variable Elimination via Q-Resolution

Variable elimination via Q-resolution is a technique used in many state-of-the-
art SAT solvers, first introduced in [6] during the search and also used in [18]
as preprocessor. In QBF variable elimination via Q-resolution has been first
introduced by Quantor [3]: During the search Quantor eliminates by Q-resolution
the existential variables with the lowest prefix level. sQueezeBF instead can
remove any existential variable, and starts from those quantified at the lowest
level.

Given an existential variable x and two clauses C1 = {x ∨ l1 ∨ . . . ∨ ln} and
C2 = {x ∨ l′1 ∨ . . . ∨ l′m} such that li �= l′j when li or l′j has a lower level than
x, the clause C = {l1 ∨ . . . ∨ ln ∨ l′1 ∨ . . . ∨ l′m} is called the resolvent of C1 and
C2 (on the variable x), and is denoted by C1 ⊗ C2. If Sx (resp. Sx) is the set of
clauses in which x (resp. x) occurs, we define Q-resolution between Sx and Sx

as the set of clauses

Sx ⊗ Sx : {Cx ⊗ Cx|Cx ∈ Sx, Cx ∈ Sx}. (9)

Assuming we can perform the resolution of each clause in Sx with each clause in
Sx, we can replace the clauses in Sx ∪ Sx with the clause in Sx ⊗ Sx, and delete
|l| and its quantifier from the prefix, resulting in an equivalent problem.

As an example of how the algorithm works, consider

Sx = {{x ∨ a}, {x ∨ a ∨ c}, {x ∨ d}}

and
Sx = {{x ∨ b}, {x∨ b ∨ d}}.

Then the resolvent between the two set of clauses is

Sx ⊗ Sx = {{a ∨ b}, {a ∨ b ∨ d}, {a ∨ c ∨ b}, {a ∨ c ∨ b ∨ d}, {b ∨ d}}.

In order to eliminate the variable x from ϕ, all the clauses in Sx ∪ Sx have to
be deleted from ϕ, adding all the clauses in Sx ⊗ Sx and obtaining the formula
ϕ′. Notice that in the example, the size of ϕ′ is greater then the size of ϕ, since
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|Sx ∪ Sx| = 12, and |Sx ⊗ Sx| = 14. In order to avoid an increase in the size of
the formula, sQueezeBF eliminates a variable x by Q-resolution if and only if

|Sx ∪ Sx| ≥ |Sx ⊗ Sx| (10)

Notice that the size of the resolvent can not be calculated in advance on the
basis of |Sx| and |Sx|: Indeed, Sx ⊗ Sx may contain tautological clauses which
can be discarded, or a same literal l can belong to a clause C1 ∈ Sx and a clause
C2 ∈ Sx. For these reasons, sQueezeBF first calculates the size of the original
set of clauses, and then it computes the resolvent, discarding it if (10) is not
satisfied.

4 Experimental Analysis

As environment, we use a cluster made of 4 IBM HS21 computing nodes, each
with 2 Quad Core Xeon 2.5 GHz, 16 GB RAM, running Linux CentOS 5; the
time limit was set to 600 s and the memory limit to 2 GB, where for each
node we run 4 processes at the time. We compare sQueezeBF with preQuel and
proverbox on the pool of (3326) fixed-structure QBF instances selected for the
QBF Evaluation 2008 from QBFLIB [10]. We first compare their effectiveness
comparing the size of each formula before and after the preprocessing. This is
reported in Table 1, where for each row3 is reported (i) in the first column the
family name and its number of problems and (ii) a group of three columns with
the averages number of the variables (V), clauses (C), and literals per clause
(L/C) of the original formula, and (iii) for each preprocessor, a group of three
columns, i.e. the average variation in the number of variables (V%) and clauses
(C%), with respect to the column “original”, and the average literals per clause
(L/C). Notice that a negative value stands for a decrease in the QBF with
respect to the original one. For example for the first row, “Abduction” is the
family name which contains 300 instances, having, on average 1632 variables,
4529 clauses each with 2.51 literals on average. After proverbox is run on the
“Abduction” family, the resulting QBFs have 14.78% less variables, 16.76% less
clauses, but each clause now consists of 4.84 literals on average.

Considering only the preprocessors, we can say that:

– proverbox was able to solve by itself 141/3326 problems and on 112 instances
was not able to terminate due to Memory or Time Out. On the remaining
QBFs, as shown in Table 1, proverbox results to be the least effective pre-
processor: In fact even if the number of literals per clause most of the time
decreases, the number of families with a size reduction is very low: on 22/32
families proverbox fails to reduce both the number of variables and clauses;

3 For the sake of compactness, in some cases families are grouped into larger
sets. This is the case of “k x n” (respectively “k x p”) that includes the fami-
lies k branch n, k d4 n, k dum n, k grz n, k lin n, k path n, k ph n, k poly n and
k t4p n (k branch p, k d4 p, k dum p, k grz p, k lin p, k path p, k ph p, k poly p,
k t4p p), and “Scholl-Becker” that includes C432, C499, C5315, C6288, C880, comp,
term1, and z4ml.
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Table 1. Size-reduction comparison between different preprocessors. “V”, “C” and
“L/C” denote the average number of variables, clauses, and literals per clause.
sQueezeBF is the preprocessor with all the techniques enabled. In the first column
the number written in parentheses is the number of instances in the family.

Family original proverbox preQuel sQueezeBF

V C L/C V% C% L/C V% C% L/C V% C% L/C

Abduction (300) 1632 4529 2.51 -14.78 -16.76 4.84 -2.54 -3.53 2.48 -5.88 -8.18 2.84

Adder (31) 5196 7052 5.54 -46.93 14.93 8.29 -11.65 -0.42 5.54 -65.57 -46.41 6.19

blackbox design (28) 4082 9496 2.34 -64.55 -16.71 3.71 -53.83 -21.07 2.33 -80.37 -78.57 3.3

blackbox-01X-QBF (295) 20823 54282 2.32 -80.25 -25.13 4.76 -74.07 -30.58 2.33 -87.48 -83.89 3.24

Blocks (13) 485 6810 2.97 11.70 9.73 2.98 -41.73 -58.39 2.93 -28.65 -56.35 3.05

BMC (58) 18824 53922 3.31 -57.66 5.99 3.94 -44.42 -34.72 3.64 -56.32 -50.84 4.06

circuits (45) 15885 22367 2.58 -57.04 -3.56 4.37 -48.61 -11.40 2.6 -60.42 -50.97 3.27

Conformant Planning (19) 1467 21738 5.77 91.05 110.92 4.41 -1.91 -1.03 5.78 -33.36 -29.26 6.14

Counter (22) 6205 16518 3 -1.74 31.33 3.26 -3.13 -2.48 2.99 -5.38 -6.44 3.16

evader-pursuer-4x4-l (7) 1961 12973 3.72 14.08 60.21 3.97 -16.20 -13.77 3.87 -24.64 -26.71 3.87

evader-pursuer-4x4-s (7) 7454 67639 3.25 43.63 44.00 3.41 -4.41 -12.79 3.35 -28.24 -50.28 3.76

evader-pursuer-6x6-l (8) 5121 41564 3.9 7.08 71.34 4.52 -16.22 -13.55 4.1 -25.04 -28.03 4.07

evader-pursuer-6x6-s (1) 16385 212391 2.98 83.41 29.67 3.17 -4.24 -24.35 3.15 -52.48 -88.79 4.56

evader-pursuer-8x8-l (8) 9633 85906 3.96 12.47 72.49 4.66 -18.97 -16.89 4.19 -24.92 -28.51 4.15

FPGA PLB FIT FAST (5) 69 658 6.52 36.24 72.70 5.41 -0.46 -0.11 6.39 0.73 -1.88 6.09

FPGA PLB FIT SLOW (3) 72 522 6.59 36.63 89.70 5.6 -0.95 -0.30 6.52 -0.51 -0.92 6.22

irqlkeapcite (46) 9635 37515 2.53 -37.89 44.95 4.39 -14.50 -7.60 2.52 -37.54 -33.84 2.8

jmc quant (10) 1441 3893 2.61 -3.59 27.72 3.06 -7.70 -6.58 2.61 -48.24 -65.73 3.54

jmc quant squaring (10) 1604 4264 2.62 4.47 35.43 3.01 -6.96 -6.03 2.62 -46.44 -65.98 3.6

k x n (161) 1915 14454 2.62 87.16 333.03 2.92 62.45 165.07 2.62 -4.38 46.56 2.83

k x p (138) 1678 11154 2.58 37.35 67.89 2.83 1.18 11.43 2.58 -38.07 -29.54 2.83

Mutex (6) 3744 4847 2.46 -63.85 -6.80 5.38 -0.11 -0.08 2.46 -79.88 -66.69 3.87

Sakallah (141) 14060 35871 2.64 -22.86 -23.44 3.25 -16.27 -16.99 2.66 -25.25 -46.30 3.27

Scholl-Becker (64) 1769 5001 2.36 -6.37 34.43 2.89 -48.75 -22.45 2.41 -35.91 -38.96 2.88

Sorting networks (84) 2902 5935 2.57 -26.14 13.58 3.48 -10.82 -1.78 2.58 -37.86 -26.18 2.79

SzymanskiP (6) 69879 84653 2.6 -15.94 -13.98 3.37 -0.25 -0.26 2.6 -69.30 -57.42 3.42

terminator (564) 3568 11837 2.47 -14.17 37.97 3.85 -46.13 -2.70 2.46 -84.05 -87.75 3.02

tipdiam (169) 6286 18144 2.33 -30.61 17.57 3.26 -42.41 -34.95 2.32 -64.99 -67.71 3.15

tipfixpoint (387) 8391 24077 2.33 -49.49 17.69 3.55 -26.24 -19.53 2.32 -60.17 -61.35 2.92

Toilet (7) 638 2816 2.37 -18.76 -3.66 2.66 -30.07 -21.60 2.4 -47.15 -35.21 2.79

uclid (3) 2900 7869 2.31 -60.22 -21.77 3.76 -10.32 -7.96 2.33 -77.77 -77.29 3.32

wmiforward (62) 1125 3675 2.5 7.71 35.51 2.87 -43.51 -18.15 2.49 -59.85 -58.50 2.74

– preQuel solves by itself 273/3326 instances and did not terminate on 70
instances. It also reduces the size of almost each formula, in terms of number
of variables and clauses. preQuel also keeps low the ratio between the number
of literals and the number of clauses;

– sQueezeBF solves by itself 287/3326 instances and was not able to terminate
on 73 instances. Its performances are comparable to those of preQuel when
considering the number of families having a reduction in the number of vari-
ables and clauses: only 2 families were not reduced by sQueezeBF. However,
in terms of percentage of variables and clause reduction, sQueezeBF is the
most effective preprocessor, since it eliminates half of the formula on average.
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Table 2. Number of instances solved and cumulative time (in parentheses) by using
different preprocessors. Time (in thousands of seconds) includes both preprocessing
and solving : a penalty of 600s is added in case the solver or the preprocessor ran
out of time or memory. The first column refers to solving without the help of any
external preprocessing. sQueezeBF labels mean: sQueezeBF is the preprocessor with
all its techniques enabled, “–Eq-*”, “–Eq-Rw” and “–Eq-Subs” stand for sQueezeBF
without both equivalence substitution and equivalence rewriting, without equivalence
rewriting, or without equivalence substitution, respectively.

sQueezeBF

Solver no-prepro preQuel proverbox –Eq-* –Eq-Rw –Eq-Subs –

QuBE 1008 (1407) 1094 (1358) 1208 (1311) 1223 (1285) 1294 (1241) 1849 (923) 2195 (716)

QuBE-np 737 (1565) 755 (1557) 938 (1459) 930 (1464) 988 (1427) 1014 (1415) 1100 (1357)

yQuaffle 937 (1449) 996 (1410) 781 (1549) 976 (1427) 1014 (1406) 1147 (1326) 1176 (1309)

sSolve 1503 (1117) 1096 (1355) 890 (1487) 1155 (1323) 1216 (1292) 1717 (996) 1790 (949)

Quantor 767 (1542) 1002 (1406) 778 (1541) 849 (1497) 901 (1472) 1354 (1196) 1429 (1151)

sKizzo 1585 (1081) 1494 (1132) 2005 (872) 1397 (1199) 1365 (1211) 1352 (1224) 1712 (1000)

In Table 2 we present the results of the preprocessor when coupled with differ-
ent state-of-the-art QBF solvers. The first column (Solver) shows the name of the
solver, namely QuBE (Release QuBE6.6 where its own preprocessor has been dis-
abled) [11], yQuaffle (Version 021006) [23,22], and sSolve (Version sSolveC from
QBFEVAL 08) [8] as search-based solvers; Quantor (Version 3.0.) [3] as a reso-
lution based solver; and sKizzo (Version sKizzo-0.10-qck from QBFEVAL 07) [2]
as a symbolic skolemization based solver. We have also run a version of QuBE in
which the pure literal detection was disabled (QuBE-np in the tables). The sec-
ond column, (no-prepro) presents the results of the solver when no preprocessor is
applied. The third and fourth columns present the results for preQuel and prover-
box, respectively. The last four columns present the results when sQueezeBF is
applied in different versions: in the last column ”-”), we show the results for the
full-featured preprocessor (i.e. with no technique disabled), columns “–Eq-Subs”,
“–Eq-Rw” and “–Eq-*” represent a version of sQueezeBF featuring all the tech-
niques but variable elimination via equivalence substitution, equivalence breaking
via equivalence rewriting, or without both, respectively, i.e. performing only Q-
resolution. The table reports the number of problems solved and the cumulative
solving time, for each solver (on the rows) when coupled with the correspond-
ing preprocessor written in the column. Table 2 witnesses that sQueezeBF is the
only one able to constantly improve the efficiency of a range of state-of-the-art
QBF Solvers. In particular the column “–” shows that the use of sQueezeBF im-
proves up to a factor two the number of problems solved by a given solver. Using
sQueezeBF as a preprocessor affects also the solving time of each solver, decreas-
ing it substantially. Moreover, Table 2 also shows which technique has more im-
pact on which solver. For example, it looks like that disabling variable elimination
by equivalence rewriting, QuBE and all the other solvers but sKizzo, can no longer
solve many problems. It is also interesting that sQueezeBF on this set of bench-
marks, makes QuBE the most effective solver. On the other hand, it may be the
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Table 3. Size-reduction comparison between different versions of sQueezeBF. The
header has the same meaning of the one in Table 1, but the reference values are those
of sQueezeBF.

Family sQueezeBF – Eq-Subs – Eq-Rw – Eq-*

V C L/C V% C% L/C V% C% L/C V% C% L/C

Abduction (300) 1505 4162 2.84 0.45 0.65 2.82 -0.96 -0.17 2.83 -1.26 -0.47 2.82

Adder (31) 1313 3264 6.19 -2.42 -1.13 6.2 -1.44 -0.69 6.19 -1.81 -0.88 6.18

blackbox design (28) 795 1970 3.3 8.16 11.46 3.1 9.07 53.29 3.24 16.03 57.93 3.06

blackbox-01X-QBF (295) 2630 8640 3.24 4.03 0.94 3.16 42.67 98.09 3.19 64.54 115.44 2.97

Blocks (13) 360 3271 3.05 -0.18 -0.05 3.04 -21.83 -4.11 3.08 -1.21 31.93 3.05

BMC (58) 7545 25108 4.06 5.06 4.77 3.97 -28.02 -11.64 4.25 -14.68 -0.89 4.08

circuits (45) 4060 7336 3.27 -0.74 -1.00 3.42 -5.35 -4.72 3.37 -5.37 -4.73 3.43

Conformant Planning (19) 1005 16956 6.14 1.13 0.08 6.13 -3.05 2.47 6.1 -3.10 2.13 6.09

Counter (22) 6177 16368 3.16 4.35 2.54 3.11 -3.56 -1.70 3.18 0.10 1.26 3.09

evader-pursuer-6x6-s (1) 7786 23805 4.56 0.03 0.01 4.56 0.00 29.83 3.96 0.01 29.84 3.96

evader-pursuer-4x4-l (7) 1509 9867 3.87 0.16 0.04 3.87 -4.92 0.36 3.84 -4.42 0.52 3.84

evader-pursuer-4x4-s (7) 5675 37477 3.76 0.05 0.02 3.76 0.00 13.94 3.53 0.03 13.95 3.53

evader-pursuer-6x6-l (8) 3928 31360 4.07 0.06 0.01 4.07 -4.33 0.16 4.04 -4.14 0.21 4.04

evader-pursuer-8x8-l (8) 7402 64521 4.15 0.03 0.01 4.15 -4.07 0.54 4.13 -3.96 0.57 4.13

FPGA PLB FIT FAST (5) 69 646 6.09 0.00 0.00 6.06 -1.17 -0.27 6.07 -1.17 -0.16 6.14

FPGA PLB FIT SLOW (3) 71 518 6.22 0.00 0.00 6.2 -0.44 -0.05 6.21 -0.44 -0.05 6.18

irqlkeapcite (46) 6105 25189 2.8 7.78 3.45 2.73 -16.76 -0.69 2.85 -18.75 -3.16 2.85

jmc quant (10) 696 1436 3.54 1.34 2.73 3.63 -6.41 65.71 3.36 -0.05 75.72 3.12

jmc quant squaring (10) 797 1539 3.6 2.83 3.64 3.5 -5.65 71.91 3.34 0.74 80.13 3.13

k x n (161) 1136 7882 2.83 32.77 156.76 3.08 19.39 26.91 2.9 83.45 274.02 2.93

k x p (138) 959 5009 2.83 100.17 190.65 3.03 24.94 32.18 2.86 91.64 275.44 2.99

Mutex (6) 757 1681 3.87 -0.07 -0.03 3.84 0.71 0.40 3.84 0.45 0.24 3.81

Sakallah (141) 11278 20941 3.27 4.55 4.86 3.46 -5.97 29.32 3.35 8.31 50.42 3.54

Scholl-Becker (64) 1142 3022 2.88 1.80 5.47 2.86 -33.38 -13.68 2.92 -27.19 -7.90 2.9

Sorting networks (84) 2036 4640 2.79 3.51 0.95 2.74 -1.75 3.41 2.84 -1.58 3.47 2.84

SzymanskiP (6) 21313 36083 3.42 -2.23 -1.42 3.44 -2.64 -1.66 3.44 -2.88 -1.75 3.44

terminator (564) 585 1521 3.02 108.96 119.67 2.76 250.52 476.68 2.75 302.49 576.40 2.67

tipdiam (169) 1599 4392 3.15 24.67 20.13 2.96 -24.95 5.55 3.18 -12.29 28.54 3.04

tipfixpoint (387) 3301 9197 2.92 26.58 29.87 2.9 -34.55 -7.73 3.02 -26.38 11.08 2.97

Toilet (7) 369 2109 2.79 4.81 -1.57 2.73 -4.43 0.71 2.83 22.85 11.40 2.86

uclid (3) 632 1852 3.32 3.96 2.01 3.2 27.15 66.41 3.22 65.04 97.45 3.03

wmiforward (62) 524 1734 2.74 6.27 1.86 2.68 -21.81 -5.17 2.92 -7.61 9.03 2.82

case that a solver performs worse when coupled with a preprocessor. This is not
that surprising: given that many solvers have a built-in preprocesor, or are tuned
to perform best when dealing with “plain encoded” formulas. In order to better
understand the impact that the three techniques implemented in sQueezeBF have
on QBFs we also collect the data presented in Table 1 disabling one at the time
the three techniques in sQueezeBF.

In Table 3 we show the results where in each column, instead of a preproces-
sor, we show a variant of sQueezeBF. In particular, the first column (sQueezeBF)
represents the full-featured preprocessor (i.e. no technique disabled); the suffixes
“–Eq-Subs”, “–Eq-Rw” and “–Eq-*” represent a version of sQueezeBF featur-
ing (i) all the techniques but variable elimination via equivalence substitution;
(ii) all the techniques but equivalence breaking via equivalence rewriting; and
(iii) all the techniques but equivalence substitution and rewriting. For example,
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looking at row “Abduction” and column sQueezeBF, the three values (V, C,
L/C)= (1505, 4162, 2.84) represent respectively the number of variables and
clauses on average, and the literals per clause on average. The next columns
state the variations with respect to the first one, i.e. looking at the first row
(Abduction), the column –Eq-Subs shows the values (V%, C%, L/C) = (0.45%,
0.65%, 2.82), representing the fact that running the preprocessor without vari-
able elimination via equivalence substitution makes the formula larger, having
0.45% more variables (i.e. almost 1511 variables on average) and 0.65% more
clauses (i.e. almost 4189 clauses on average).

Table 3 shows that disabling one technique at the time usually leads to a greater
formula, as witnessed by the small number of negative numbers in the table. Fur-
ther, looking at the single families, we see that the reduction of variables is mostly
affected by Equivalence Substitution, and that the number of variables decreases
also in a few cases when disabling Equivalence Rewriting: This is not surprising
because, at least in principle, the goal of Equivalence Substitution is to eliminate
the defined variables, while Equivalence Rewriting can introduce additional vari-
ables (which can then later be eliminated, e.g., by pure literal detection).

About the time needed by the different preprocessors, these are cumulatively
presented in Table 2, where it is shown also the effect of the different prepro-
cessors (sQueezeBF, proverbox, preQuel) when coupled with different solvers
(QuBE, sSolve, yQuaffle, sKizzo and Quantor). In general, the preprocessing
time is negligible wrt the whole task of preprocess and solve, but for some large
instances it can be more expensive to try to simplify the formula rather than
solving it. The cumulative preprocessing times are approximately 199, 105s for
proverbox, 98, 338s for preQuel, and 70, 271s for sQueezeBF.

5 Conclusions

In this paper we presented sQueezeBF, a very effective preprocessor for QBFs.
We took into account many benchmarks from different families and two other
different preprocessing tools, preQuel and proverbox. We shaw that sQueezeBF
is much more effective in terms of formula reduction, since most of the times
it decreases the size of the formula preprocessed, and never increases the size
of the formula, while this is not always true for preQuel and proverbox. We
also compare five different state-of-the-art solvers: The proposed techniques offer
robust improvements across the different solvers on all the tested benchmark
families. To the best of our knowledge thanks to sQueezeBF the solvers are able
to solve 136 problems that have never been resolved before.
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Abstract. We give a new insight into the upper bounding of the 3-SAT
threshold by the first moment method. The best criteria developed so
far to select the solutions to be counted discriminate among neighboring
solutions on the basis of uniform information about each individual free
variable. What we mean by uniform information, is information which
does not depend on the solution: e.g. the number of positive/negative
occurrences of the considered variable. What is new in our approach
is that we use non uniform information about variables. Thus we are
able to make a more precise tuning, resulting in a slight improvement
on upper bounding the 3-SAT threshold for various models of formulas
defined by their distributions.

1 Introduction

We consider the phase transition phenomenon that occurs in some random sat-
isfiability problems, where the probability of satisfiability for a random formula
suddenly goes from 1 to 0 at a given ratio #clauses

#variables. It was first experimentally
observed that this transition would occur at a ratio near 4.25 for the standard
3-SAT model (see [1]). The same kind of transition was also observed in some
variants of the standard model, e.g. when occurrences and signs of variables are
balanced (see [2]).

The first important step towards the quest of the threshold is the work of
Friedgut and Bourgain [3] establishing that the width of the transition window
tends to zero as the number of variables tends to infinity.

An important breakthrough was then made by Achlioptas and Peres [4]: using
a sophisticated technique based on the second moment method they located
asymptotically the threshold of k-SAT for large constant k at 2k ln 2 − O (k).
However in the particular case of 3-SAT, there remains a gap between established
lower and upper bounds.

The cornerstone method used for 25 years in order to establish upper bounds
of the 3-SAT threshold is the so called first moment method. Indeed we are
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interested in the probability that a formula has some solutions, but that prob-
ability is currently out of reach of human-tractable calculations; however the
moments under this probability are much easier to estimate. The first moment
method consists in bounding the probability we are interested in by the first
moment of a certain quantity X under this probability. The simplest quantity
X one can imagine as a candidate for the first moment method is the number
of solutions. This gives an upper bound of 5.191 [5], which is far above the ex-
perimentally observed threshold at around 4.25. There has been ever since lots
of efforts [6,7,8,9,10] intended to lower this upper bound by removing as many
solutions as possible from the counted quantity X , the only requirement of the
first moment method being to count at least 1 solution whenever a formula is
satisfiable; thus the technique is to count only particular solutions, designed to
be present whenever there is a solution, and not too complicated to count.

0010 0100 1000

0110 1100 1001

1110

b c a b d

a c

Fig. 1. Graph of solutions for for-
mula F . The label of an edge is the
name of the variable differing be-
tween both solutions.

We obtain some new upper bounds in a
variety of models of 3-CNF formulas (which
we introduce later in section 2.1). In the par-
ticular case of the standard model we get an
upper bound of 4.500. We must mention here
the work of Díaz et al. [11]; gathering the
technique of [10,12] with a pure literal elim-
ination and a filtering on the typicality of
clauses, they got an upper bound of 4.490.
The fact is that our new technique is quite
compatible with the pure literal elimination
and the filtering on the typicality of clauses,
but we only aim at emphasizing the positive
effect of our new technique for selecting solu-
tions, by comparing it to previous analogous
techniques in several models of formulas.

The best implementations of the first mo-
ment method approximating the threshold of
3-SAT use local relationships between solutions, which involves solutions agree-
ing on the values of all variables but a constant number of them, in general one
variable [8] or two [9].

We shall consider the set of solutions with local relationship as a graph which
nodes are the solutions and an edge exists between two solutions if and only if
both solutions agree on the values of all variables except one. Each edge will be
labelled by the variable differing between both solutions.

For example the formula

Φ =
{
a ∨ b ∨ c, a ∨ c ∨ d, a ∨ c ∨ d, a ∨ b ∨ d, b ∨ c ∨ d, a ∨ b ∨ d, a ∨ b ∨ c

}
has 7 solutions that can be represented by the non oriented graph of figure 1.

The techniques used so far amount to making an acyclic orientation of the
above graph and to counting only the minimal solutions (those that do not have
outgoing edges). The least is the number of minimal solutions the best is the
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upper bound obtained. In general, any graph can be oriented so as to obtain
only one minimal element for every connected component (e.g. by a depth first
search), but this orientation is obtained thanks to a sophisticated algorithm that
is aware of the whole graph while in our case, the orientation must be decided
locally.

The very first orientation [8,9] consisted in orienting an edge from the solution
where the label variable is assigned 0 to the one where it is 1 regardless of which
variable is considered. Later, in [12,11], an edge is oriented towards the value
that makes true the most literals and this can be known thanks to the syntactic
property of the number of occurrences of each variable in the formula. In both
these types of orientation, the edges having the same labels are oriented the
same way (e.g. from 0 to 1) anywhere in the graph. So we call such orientations
uniform (see Figure 2(a)).

0010 0100 1000

0110 1100 1001

1110

b c a b d

a c

(a) Uniform orientation. For exam-
ple b has 2 positive occurrences and
3 negative ones, so every edge la-
beled by b is oriented from 1 to 0.

0010 0100 1000

0110 1100 1001

1110

b c a b d

a c

(b) Non uniform orientation, ob-
tained in this example by minimiz-
ing 4β1 +2β2 +β3 (see definition in
section 2). Both edges labeled by b
are oriented differently (i.e. from 0
to 1 as well as from 1 to 0).

Fig. 2. Two different orientations for the solutions of formula Φ. Minimal solutions are
in gray.

The orientation that we use in this paper is less rigid: two edges labelled
with the same variable can be oriented differently depending on the solutions
involved (that is what we call non uniform orientation, see Figure 2(b)). Indeed
we keep track of a set of 5 numbers associated with each variable and use it to
discriminate among neighboring solutions. These 5 numbers provide information
on the repartition of true and false occurrences of each variable in each type of
clauses (clauses having 1, 2 or 3 true literals). Our intuition is that we should
select solutions in which the least occurrences of true literals are critical. The less
a clause has true literals, the more its true literals are critical. Such a property
is by nature non uniform.

We develop our technique in a general framework allowing us to apply it to a
wide variety of 3-CNF models of formulas defined by their distributions; thus we
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derive new bounds for some known models of formulas [2]. The existence of other
non uniform orientations that may give a smaller number of minimal elements
and then better bounds remains to be investigated.

In section 2 we present our framework and four different models of formulas;
in section 3 we show how we make our non uniform selection of solutions, and
sum up the bounds we obtain for each model. We give details on the calculation
of the first moment and its constraints in section 4, as well as some hints on
what led us to the weights we took for our non uniform selection.

2 Definitions and Notations

We consider a generic random model of 3-CNF formulas having n variables and
cn clauses. Models are parametrized by a probability distribution (dp,q)p,q∈N

such that
∑

p,q∈N dp,q = 3c. In each model a satisfiability threshold will appear
for a specific value of c we want to estimate. Before we get formulas we draw
configurations as follows:

1. each of the n variables is given p labelled positive occurrences and q labelled
negative occurrences in a way that the overall proportion of variables with
p positive occurrences and q negatives occurrences is dp,q;

2. a configuration can be seen as a matrix of 3cn bins containing literals occur-
rences; the repartition of literals into the 3cn bins is drawn uniformly among
all (3cn)! permutations of labelled literals occurrences.

A legal formula is a configuration where occurrences are unlabelled and each
clause contains at most one occurrence of each variable. For the models we
consider in this paper and described in section 2.1, it was shown that an upper
bound on the satisfiability threshold obtained for configurations also applies to
legal formulas (see [11] for the standard model and [2] for models where p and q
are bounded). So we shall work on configurations all along this paper.

2.1 Overview of Models

Standard Model: all literals are drawn uniformly and independently; it was
shown in [12,11] that the resulting distribution is the 2D Poisson distribution:
dp,q =

(
p+q

p

)
e−3c

(p+q)!

(
3c
2

)p+q.

By analogy with the standard model we now define several other models where
we force an equilibrium between variables occurrences and/or signs. These can
be seen as regular variants of 3-SAT (just like regular graphs). The equilibrium
cannot be perfect because of parity or truncation reasons, but we circumvent it
as follows. Of course one can check that all of these distributions sum up to 1
and have an average of 3c.

Model with Almost Balanced Signs: every variable appear with (almost)
the same number of positive and negative occurrences; we define dp,q by
dp,p = e−3c(3c)2p

(2p)! and dp+1,p = dp,p+1 = 1
2

e−3c(3c)2p+1

(2p+1)! (and zero elsewhere).
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Model with Almost Balanced Occurrences: every variable appear with (al-
most) the same number occurrences; let t∗ = #3c$ and r∗ = 3c−t∗; we define

dp,q by dp,t∗−p = (1− r∗) (t∗
p )

2t∗ and dp,t∗+1−p = r∗ (t∗+1
p )

2t∗+1 (and zero elsewhere).

Model with Almost Balanced Signs and Occurrences: every variable ap-
pear with (almost) the same number occurrences and have strictly the same
number of positive as negative occurrences (this model was examined in [2]);
let p∗ = # 3c

2 $ and r∗ = 3c
2 − p∗. We define dp,q by dp∗,p∗ = 1 − r∗ and

dp∗+1,p∗+1 = r∗ (and zero elsewhere).

2.2 Types of Clauses and Variables

Our selection method is based on different types of clauses: given any assignment,
we call clause of type t a clause having t true literals under this assignment, and
βt the proportion of clauses of type t.

Moreover we want to have some control on the number of occurrences of
variables in the different types of clauses; to do so we need 6 numbers per variable,
so we say that a variable is of type (i, j, k, l, m, v) if it is assigned v and has:

i true occurrences in clauses of type 1;
j true occurrences in clauses of type 2;
k true occurrences in clauses of type 3;
l false occurrences in clauses of type 1;
m false occurrences in clauses of type 2;

i l

j m

k β3

β2

β1

true

false

Remark 1. For each variable we have i + j + k = p and l + m = q or vice versa
(according to the value v assigned to the variable).

Then we put some weights onto the solutions as follows: in a given solution
each variable of type (i, j, k, l, m, v) receives a weight ωi,j,k,l,m,v. The weight of
a solution will be the product of the weights of all variables. It turns out that
in the end we shall take binary weights, yielding in fact an orientation between
solutions. We explain the choice of the weights in sections 3 and 4.4. Then we
apply the first moment method to the random variable X equal to the sum of
the weights of the solutions.

3 Selection of Solutions

Let us recall how the first moment method works: we want to show that Pr (Y ≥ a)
is small but we don’t have access to Pr (Y ≥ a). Instead we use some EX . It
suffices then to ensure that Pr (Y ≥ a) ≤ EX . For our problem 3-SAT, Y is
the number of solutions, a = 1 and X is the total weight on the solutions.
Since X ≥ 0, Markov’s inequality yields that Pr (X ≥ 1) ≤ EX ; so if we choose
X such that Y ≥ 1 implies X ≥ 1, we have Pr (Y ≥ 1) ≤ Pr (X ≥ 1) ≤ EX .
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Then our goal will be to tune the weights so that EX → 0 for the least ratio
c = #clauses

#variables .

3.1 Construction of a Correct Weighting Scheme

Of course we must put some constraints onto the weights in order that the
weighting scheme can be correct for the first moment method: namely the sum of
the weights of the solutions of a satisfiable formula must be at least 1. However
the constraints we choose here might not be necessary for the first moment
method to hold.

Let us recall that given a solution, a variable is called free when the assignment
obtained by inverting its value (0/1) remains a solution. Thus in our framework,
a variable is free iff its i number is 0. How does the tuple (0, j, k, l, m, v) for
a free variable x behave when the value v is inverted to 1 − v? i (x) ← 0,
j (x)↔ l (x),k (x)↔ m (x) and v (x)← 1− v (x).

1. the first constraint we put is that ωi,j,k,l,m,v = 1 as soon as i ≥ 1; that is, we
put significant weights only onto free variables. The reason for this is that
free variables allow to move between solutions.

2. the second constraint is that

ω0,j,k,l,m,v + ω0,l,m,j,k,1−v = 1 ; (1)

that is, the sum of the weights of a free variable in a couple of solutions
differing only on that variable is 1. We impose this condition by analogy
with the conditions on weights given in [13].

As suggested by the analysis given in section 4.4, we shall take ω0,j,k,l,m,v =
1P (j,k,l,m,v) for a certain predicate P (j, k, l, m, v) linked with the sign of α1ρj,l +
α3ρk,m (where α1 and α3 are any real constants and ρ is an operator defined as
ρa,b = a− b).

The fact that we imposed ω0,j,k,l,m,v + ω0,l,m,j,k,1−v = 1 tells us that given a
solution and a free variable x at the value v, the predicate P is satisfied by x at
the value v or (exclusively) by x at the value 1 − v. Thus we are able to define
an orientation between neighboring solutions.

Let us say that variable x is obedient when P is satisfied. We put an arc
between 2 solutions differing only on 1 (free) variable x from the solution Sd

(where x is disobedient) to the solution So (where x is obedient), and we call
that relation Sd > So. The notation > is not randomly chosen.

Namely our weighting scheme counts 1 for a solution when it does not have any
disobedient free variables, and 0 otherwise; but what can ensure that whenever
there is a solution, there is also a solution where all free variables are obedient?
It suffices that the relation > is circuit-free. Then the transitive closure of >
is an order, and we are precisely counting the minimal solutions in that order.
Minimal solutions exist because the set of all solutions is finite. So let us see how
we can make the relation > circuit-free.
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Recapitulation of Existing Methods

All Solutions: This method consists in computing the first moment on all so-
lutions: P (j, k, l, m, v) ≡ 1.

Negatively Prime Solutions (NPS): This method consists in counting only
solutions which free variables are assigned 1. That is P (j, k, l, m, v) ≡ v > 0.
This method was introduced in [8].

NPS with Imbalance: This method was introduced in [12] and combined to
some other ingredients in [11]. This method consists in allowing free variables
to take only a value such that the number of true occurrences is larger than
the number of negative occurrences of this variable (and in case of equality,
ties are broken in favor of the value 1). In other words P (j, k, l, m, v) ≡
(ρj,l + ρk,m, v) >lex (0, 0), where >lex denotes the lexicographical order.

Our Method. May we choose arbitrary real coefficients α1 and α3 in the ex-
pression of α1ρj,l + α3ρk,m in order that the first moment method should hold?
It turns out that it is the case, and here is a proof of it.

We make the following observation: how does the population of the 3 different
types of clauses evolve when a free variable x is flipped? β1+ = ρj,l (x), β2+ =
(ρk,m − ρj,l) (x) and β3+ = −ρk,m (x).

Thus α1ρj,l+α3ρk,m is the variation of α1β1−α3β3; so we may define our pred-
icate P in the following way: P (j, k, l, m, v) ≡ (α1ρj,l + α3ρk,m, v) >lex (0, 0);
thanks to v we break ties when α1ρj,l + α3ρk,m = 0, so that the underlying
relation > between solutions is circuit-free: namely going from Sd to So when
Sd > So strictly increases (−α1β1 + α3β3, v) for >lex.
Moreover the exclusion between P (j, k, l, m, v) and P (l, m, j, k, 1− v) is sat-
isfied, which means that whenever there is a solution with a disobedient free
variable, it suffices to flip the value of this variable so that it becomes obedient.
We investigated the best ratio between α1 and α3 by numerical experiments.

3.2 Summary of Results

As one can see in table 1, our method yields in all models a slight improvement
on the bounds obtained by former methods. Note that for some models there is
a range of values for α which give the same upper bound.

In the model where signs as well as occurrences are balanced, the method
of NPS+imbalance is of course the same as the method of NPS, whereas our
method is somewhat better than the method of NPS.

The bound we obtain in the standard model is 4.500; this is not better than
the bound of 4.490 obtained by Díaz et al. in [11]. Their calculation adds 2
ingredients to the method of [12]: typicality of clauses and elimination of pure
literals. These 2 ingredients might be combined to our approach to improve on
the 4.490, but this would involve too complicated calculations with respect to
the expected improvement. However in models where signs are balanced it is
irrelevant to eliminate pure literals.
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Table 1. Summary of our results

model standard almost
balanced signs

almost
balanced

occurrences

almost
balanced signs

and
occurrences

all solutions 5.040 3.858 5.046 3.783

NPS
v > 0

4.552 3.521 4.662 3.548

NPS+imbalance
(ρj,l + ρk,m, v) >

(0, 0)

4.506 3.514 4.628 3.548

our method
(αρj,l + ρk,m, v) >

(0, 0)

4.500 3.509 4.623 3.546

our α α = 2.00 1.01 ≤ α ≤
1.16

2.01 ≤ α ≤
2.24

α ≥ 1.01

4 The First Moment Method

4.1 Types of Variables

We split the set of variables into several sets and subsets of variables. In order
to be able to match the original random 3-CNF model of formulas where all
literals are drawn independently, we should consider p and q to range in N . For
convenience of our forthcoming maximization, we only take into account bounded
values of p and q. So we are going to consider 2 kinds of variables, according to
their numbers of occurrences. We follow the notations of [11]. We denote by M
some integer whose value will be determined according to the required accuracy
of the calculations; in practice we shall take M = 21. M enables us to define 2
kinds of variables:

1. the set of light variables, that is variables which indices are in the set
L =

{
(p, q) ∈N2, p ≤M ∧ q ≤M ∧ dp,q > 0

}
; they are the most important

variables since almost all variables are light in the models we consider; we
call δp,q the proportion of light variables having p positive occurrences,
q negative occurrences, and assigned 1. As a further refinement, we call
πi,j,k,l,m,v the proportion of variables of type (i, j, k, l, m, v) whose corre-
sponding weight ωi,j,k,l,m,v is non zero, and omit the other ones because
we shall need all active πi,j,k,l,m,v to be non zero. To connect πi,j,k,l,m,v’s
with δp,q’s we introduce the following set of tuples of integers: Qp,q ={

(i, j, k, l, m) ∈ N5, i + j + k = p ∧ l + m = q
}
; thus we have∑

(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1 = δp,q ; (2)

∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0 = dp,q − δp,q . (3)



Non Uniform Selection of Solutions 107

Note that equality 3 involves Qq,p whereas equality 2 involves Qp,q.
2. the set of heavy variables, that is all other variables; their indices are thus in

the set H =
{

(p, q) ∈N 2, p > M ∨ q > M ∨ dp,q = 0
}
; we weaken the notion

of satisfiability by considering that heavy variables are always satisfied, re-
gardless of their signs and values. Doing so is harmless for the validity of the
first moment method because we can only increase the number of solutions.
In other words we are going to consider heavy variables as undistinguishable
members of a tote bag. We call τ the global scaled number of heavy variables:
τ =
∑

(p,q)∈H dp,q.

We also need to distinguish some types of occurrences of heavy variables. We
call H the global scaled number of occurrences of heavy variables:
H =

∑
(p,q)∈H (p + q) dp,q = 3c−∑(p,q)∈L (p + q) dp,q. According to the types of

clauses where occurrences appear, H is divided into Ht’s, where Ht is the scaled
number of occurrences of heavy variables in clauses of type t.

We are now ready to write down the expression of the first moment of X , the
weight of all solutions.

4.2 Expression of the First Moment and Its Constraints

We recall that all occurrences of literals are drawn according to the distribution
dp,q (see section 2). Thus the sample space we consider consists in the (3cn)!
permutations of labelled occurrences of literals, and our parameters are n, c, dt,p,
τ , H and ωi,j,k,l,m,v’s (although we must carefully choose the weights ωi,j,k,l,m,v,
as explained below in section 4.4).

All other quantities: βt, Ht, δt,p and πi,j,k,l,m,v are variables, and the first
moment of X can be split up into a big sum over all variables of the product of
the following factors depending on variables: number of assignments, weight of
an assignment and probability for an assignment to be a solution.

1. number of assignments: each variable is assigned 0 or 1: 2τn
∏

(p,q)∈L
(
dp,qn
δp,qn

)
;

2. weight of an assignment:
∏

(p,q)∈L
∏

(i,j,k,l,m)∈Qp,q

v∈{0,1}
ω

πi,j,k,l,m,vn
i,j,k,l,m,v ;

3. probability for an assignment to be a solution: quotient of the number of
satisfied configurations by the total number of configurations:
(a) number of satisfied configurations: a configuration can be seen as a set

of bins filled with occurrences of literals:
i. each of the 3cn bins is first given a truth value:

there are
(

cn
β1cn,β2cn,β3cn

)
3(β1+β2)cn possibilities, and the following

constraint appears:

β1 + β2 + β3 = 1 . (4)

ii. each light literal is given a tuple (i, j, k, l, m) consistently with dp,q

and δp,q. This gives a series of constraints:∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1 +
∑

(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0 = dp,q . (5)
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Note that δp,q =
∑

(i,j,k,l,m)∈Qp,q
πi,j,k,l,m,1. Thus, given a family

(πi,j,k,l,m,v), there are

∏
(p,q)∈L

(
δp,qn

. . . πi,j,k,l,m,1n . . .

)
(i,j,k,l,m)∈Qp,q

·
∏

(p,q)∈L

(
(dp,q − δp,q) n

. . . πi,j,k,l,m,0n . . .

)
(i,j,k,l,m)∈Qq,p

possible allocations. Moreover the following constraints appear, so
that all occurrences of literals can fit into the destined types of
clauses: ∑

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}

iπi,j,k,l,m,v + H1 = β1c ; (6)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q

v∈{0,1}

jπi,j,k,l,m,v + H2 = 2β2c ; (7)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q

v∈{0,1}

kπi,j,k,l,m,v + H3 = 3β3c ; (8)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q

v∈{0,1}

lπi,j,k,l,m,v = 2β1c ; (9)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q

v∈{0,1}

mπi,j,k,l,m,v = β2c . (10)

iii. all occurrences of light variables are allocated to the 5 regions:∏
(p,q)∈L

(i,j,k,l,m)∈Qp,q

v∈{0,1}

((
i+j+k
i,j,k

)(
l+m
l,m

))πi,j,k,l,m,vn

allocations are possible;

iv. all occurrences of heavy variables are allocated to the 3 satisfied
regions, which yields

(
Hn

H1n,H2n,H3n

)
possible allocations; and we must

add the following constraint:

H1 + H2 + H3 = H . (11)

v. all permutations of occurrences of literals are possible inside the 5
regions: their number is (β1cn)! (2β2cn)! (3β3cn)! (2β1cn)! (β2cn)!;

(b) total number of configurations: the occurrences of literals can be in any
order: (3cn)! permutations are possible.
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We denote by P the set of all families ζ of non negative numbers⎛⎜⎝(πi,j,k,l,m,v) (p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}

, (H1, H2, H3) , (β1, β2, β3)

⎞⎟⎠ (12)

satisfying the above constraints; note that P is convex (by linearity of con-
straints). We denote by I (n) the intersection of P with the multiples of 1

n ; we
get the following expression of the first moment: EX =

∑
ζ∈I(n) T (n) where

T (n) = 2τn

(
Hn

H1n, H2n, H3n

)(
cn

β1cn, β2cn, β3cn

)
3(β1+β2)cn

· (β1cn)! (2β2cn)! (3β3cn)! (2β1cn)! (β2cn)!
(3cn)!

·
∏

(p,q)∈L

(
dp,qn

δp,qn

) ∏
(p,q)∈L

(
δp,qn

. . . πi,j,k,l,m,1n . . .

)
(i,j,k,l,m)∈Qp,q

·
∏

(p,q)∈L

(
(dp,q − δp,q) n

. . . πi,j,k,l,m,0n . . .

)
(i,j,k,l,m)∈Qq,p

·
∏

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}

(
ωi,j,k,l,m,v

(
i + j + k

i, j, k

)(
l + m

l, m

))πi,j,k,l,m,vn

. (13)

We get rid of all factorials thanks to the following Stirling’s inequalities due to
Batir [14]:

(
k
e

)k√
2π
(
k + 1

6

)
< k! <

(
k
e

)k√
2π
(
k +
(

e2

2π − 1
))

.
The boundedness of the set L of light variables (and thus the boundedness of

the sets Qp,q) allows to write that T (n) ≤ poly1 (n) Fn where

F = 2τ HH

HH1
1 HH2

2 HH3
3

(
1
3

(2β1)β1 (2β2)β2 (3β3)β3

)2c

∏
(p,q)∈L

ddp,q
p,q

∏
(p,q)∈L

(i,j,k,l,m)∈Qp,q

v∈{0,1}

(
ωi,j,k,l,m,v

(
i+j+k
i,j,k

)(
l+m
l,m

)
πi,j,k,l,m,v

)πi,j,k,l,m,v

. (14)

Once again, by the lightness property, I (n) consists of a bounded number of
variables, each of which can take at most n+1 values (as a multiple of 1

n ranging
between 0 and 1). It follows that the size of I (n) is bounded by a polynomial
poly2 (n). And since I (n) ⊆ P , we have EX ≤ poly2 (n) poly1 (n) (maxζ∈P F )n.
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4.3 Maximization of ln F

This is the technical part of our work. We mainly use the same techniques as
[11]. For lack of space here we only give the sketch of our proof, but the details
are available in [15].

1. In order to maximize ln F under our constraints, we use the standard La-
grange multipliers technique. This is appendix A of [15]. The following equa-
tions come from the Lagrange derivations and are important for our study:

πi,j,k,l,m,1 = ωi,j,k,l,m,1

(
i + j + k

i, j, k

)(
l + m

l, m

)
ri+j+k,l+mx2i

1 xj
2y

l
1y

2m
2 (15)

πi,j,k,l,m,0 = ωi,j,k,l,m,0

(
i + j + k

i, j, k

)(
l + m

l, m

)
rl+m,i+j+kx2i

1 xj
2y

l
1y

2m
2 (16)

x1, x2,y1 and y2 are Lagrange multipliers, that is positive numbers; moreover
rp,q is defined as follows:

rp,q =
dp,q

Ap,q
; (17)

Ap,q =
∑

(i,j,k,l,m)∈Qp,q

ωi,j,k,l,m,1

(
p

i, j, k

)(
q

l, m

)
x2i

1 xj
2y

l
1y

2m
2

+
∑

(i,j,k,l,m)∈Qq,p

ωi,j,k,l,m,0

(
q

i, j, k

)(
p

l, m

)
x2i

1 xj
2y

l
1y

2m
2 . (18)

2. In order to justify the use of this technique we must show that the function
ln F does not maximize on the boundary of the polytope of constraints; to
do so we show that starting at a boundary point there is always a “good”
direction inside the polytope which makes ln F greater. This is appendix B
of [15].

3. Finally we must ensure that the solution we found by the Lagrange mul-
tiplier technique is indeed a global maximum; to do so we make a sweep
over different values of the parameters βt; indeed when these βt are fixed
the function ln F is strictly concave relative to the remaining variables, thus
easier to maximize. This is appendix C of [15].

4.4 Minimization of Global Weight

Let us see how one can minimize F (or equivalently ln F ) by a good choice of
the weights. The following reasoning is not rigorous; we only aim at giving some
hints to explain the choice of the weights we made in section 3.

Remember that F is given by equation 14. We want to minimize ln F by tuning
the weights ω0,j,k,l,m,v, so we are going to differentiate ln F with respect to an
individual ω0,j,k,l,m,1. Of course due to the constraints every variable depend on
ω0,j,k,l,m,1 in the process of maximizing ln F under these constraints. But we
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consider that the variations on all variables are negligible except for π0,j,k,l,m,1

(because of equation 15) and π0,l,m,j,k,0 (because of equations 16 and 1), so we
can write:

∂ (ln F )
∂ω0,j,k,l,m,1

& ∂ (ln F )
∂π0,j,k,l,m,1

∂π0,j,k,l,m,1

∂ω0,j,k,l,m,1
+

∂ (ln F )
∂π0,l,m,j,k,0

∂π0,l,m,j,k,0

∂ω0,j,k,l,m,1
. (19)

Using equations 15, 16 and 1 we find that:

∂ (ln F )
∂ω0,j,k,l,m,1

& −
(

j + k

j, k

)(
l + m

l, m

)
rj+k,l+mxj

2y
l
1y

2m
2 ln

(
rj+k,l+mxj

2y
l
1y

2m
2

)
+
(

j + k

j, k

)(
l + m

l, m

)
rj+k,l+mxl

2y
j
1y

2k
2 ln

(
rj+k,l+mxl

2y
j
1y

2k
2

)
.(20)

Now due to equations 17 and 18 and numerical experiments we make the following
approximations: rj+k,l+mxj

2y
l
1y

2m
2 ' 1 and rj+k,l+mxl

2y
j
1y

2k
2 ' 1. As the func-

tion x �→ x ln (ax) is strictly decreasing between 0 and 1
ea , we can infer the follow-

ing property: ∂(ln F )
∂ω0,j,k,l,m,1

> 0 iff xl
2y

j
1y

2k
2 < xj

2y
l
1y

2m
2 , i.e.

(
y1
x2

)j−l (
y2
2

)k−m
< 1.

Now let us consider we are at the minimum point of ln F . If ∂ ln(F )
∂ω0,j,k,l,m,1

�= 0,
then ω0,j,k,l,m,1 must be at the boundary, i.e. 0 or 1.

∂(ln F )
∂ω0,j,k,l,m,1

> 0 iff α1ρj,l + α3ρk,m < 0, where α1 = ln y1
x2

and α3 = ln
(
y2
2

)
.

Thus:

1. if α1ρj,l + α3ρk,m < 0, then ω0,j,k,l,m,1 = 0;
2. if α1ρj,l + α3ρk,m > 0, then ω0,j,k,l,m,1 = 1;
3. if α1ρj,l + α3ρk,m = 0, nothing can be said about ω0,j,k,l,m,1.

What about ω0,j,k,l,m,0?

1. if α1ρj,l + α3ρk,m < 0, then α1ρl,j + α3ρm,k > 0, thus ω0,l,m,j,k,1 = 1, so
ω0,j,k,l,m,0 = 0;

2. if α1ρj,l + α3ρk,m > 0, then by the same argument, ω0,j,k,l,m,0 = 1;
3. if α1ρj,l + α3ρk,m = 0, nothing can be said about ω0,j,k,l,m,0.

5 Conclusion

We hope that the new track we opened will help gain some more insight and
some more decimals in the quest of the 3-SAT threshold. In particular note that
we required the relation > between solutions to be circuit-free although this
might not be necessary; indeed we only used the fact that this relation had at
least one minimal element. The same remark holds for the constraints we put
onto the weights of two neighboring solutions as introduced in equation 1, since
this might be too strong. Thus there may be better orientations or weighting
schemes than ours.
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Abstract. The past few years have seen significant progress in algo-
rithms and heuristics for both SAT and symmetry detection. Addition-
ally, the thesis that some of SAT’s intractability can be explained by
the presence of symmetry, and that it can be addressed by the intro-
duction of symmetry-breaking constraints, was tested, albeit only to a
rather limited extent. In this paper we explore further connections be-
tween symmetry and satisfiability and demonstrate the existence of in-
tractable SAT instances that exhibit few or no symmetries. Specifically,
we describe a highly scalable symmetry detection algorithm based on a
decision tree that combines elements of group-theoretic computation and
SAT-inspired backtracking search, and provide results of its application
on the SAT 2009 competition benchmarks. For SAT instances with sig-
nificant symmetry we also compare SAT runtimes with and without the
addition of symmetry-breaking constraints.

1 Introduction

Over the past several years a fruitful interplay developed between the algorithms
for graph automorphism and those of CNF satisfiability. The initial trigger was
the black-box use of the nauty graph automorphism and canonical labeling pack-
age [12,11] to detect the symmetries in CNF formulas. This was accomplished by
encoding a CNF formula as a colored graph [5,6,3] that was processed by nauty
to produce an irredundant set of generators for the graph’s automorphism group,
and hence the formula’s symmetries. These symmetries were subsequently used
to augment the original formula with symmetry-breaking predicates that pre-
clude a SAT solver from redundant search in symmetric portions of the solution
space. It quickly became apparent, however, that the graphs of typical CNF
formulas were too large (hundreds of thousands to millions of vertices) and un-
wieldy for nauty which was more geared towards small dense graphs (hundreds
of vertices). The obvious remedy, changing the data structure for storing graphs
from an incidence matrix to a linked list, yielded the saucy system which demon-
strated the viability of graph automorphism detection on very large sparse graphs
[7]. Unlike nauty, which also solved the canonical labeling problem, saucy was
limited to just finding an irredundant set of symmetry generators. Canonical
labeling seeks to assign a unique signature to a graph that captures its structure
and is invariant under all possible labelings of its vertices. The bliss tool [10]
adopted, and improved upon, saucy’s sparse data structures and solved both

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 113–127, 2010.
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the symmetry detection and canonical labeling problems for both small dense
and large sparse graphs. Close analysis of the search trees used in nauty and
bliss revealed that they were primarily designed to solve the canonical labeling
problem, and that symmetry generators were detected “along the way.” Both
tools employed sophisticated group-theoretic pruning heuristics to narrow the
search for the canonical labeling of an input graph. The detection of symmetries
benefited from these pruning rules, but also helped prune the “canonical label-
ing” tree since labelings that are related by a symmetry (i.e., a permutation of
graph vertices that preserve the graph’s edge relation) yield the same signature.

The next version of the saucy tool [8] introduced a major algorithmic change
that delinked the search for symmetries from the search for a canonical labeling.
This yielded a remarkable 1000-fold improvement in run time for many large
sparse graphs with sparse symmetry generators, i.e., generators that “move”
only a tiny fraction of the graph’s vertices. This change also made the search
for symmetries resemble, at least superficially, the search for satisfying assign-
ments by a SAT solver. In this paper we further explore the connection between
symmetry detection and satisfiability to better understand and improve sym-
metry detection algorithms. We present the saucy 2.1 algorithm and highlight
its key feature, namely the organization of its search for symmetries along lines
similar to those of CNF satisfiability. We also present and analyze the results of
applying saucy 2.1 on the entire suite of SAT 2009 competition benchmarks. Fi-
nally, we examine the effect of static symmetry breaking on the most challenging
benchmarks in this suite.

2 Preliminaries

We assume familiarity with basic notions from group theory, including such
concepts as subgroups, cosets, group generators, group action, orbit partition,
etc. Most of these concepts can be found in standard textbooks on abstract al-
gebra, e.g. [9]. We will mainly focus on the automorphism group of a colored
graph, i.e., the group of vertex permutations that preserve the graph’s edge rela-
tion. We assume an n-vertex graph whose vertices are labeled with the integers
{0, 1, · · · , n − 1}. For the rest of the paper, we will use V to denote this set.
Permutations of V are bijections from V to V and are combined by functional
composition. We will use γ and η to refer to permutations and employ both tabu-
lar and cycle notation to express them. The identity permutation will be denoted
as ι. When clear from context γη will mean γ◦η where ◦ denotes functional com-
position. Finally, we will denote the symmetric group on the m-element set T as
Sm(T ). The order of Sm(T ) is m!.

An ordered partition π = [W1|W2| · · · |Wm] of V is an ordered list of non-
empty pair-wise disjoint subsets of V whose union is V . The subsets Wi are
referred to as cells of the partition. Ordered partition π is unit if m = 1 (i.e.,
W1 = V ) and discrete if m = n (i.e., |Wi| = 1 for i = 1, · · · , n). An ordered
partition pair Π is specified as
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Π =
[

πT

πB

]
=
[
T1 |T2 |· · · |Tm

B1 |B2 |· · · |Bk

]
with πT and πB referred to, respectively, as the top and bottom ordered parti-
tions of Π . An ordered partition pair (OPP for short) Π is isomorphic if m = k
and |Ti| = |Bi| for i = 1, · · · , m; otherwise it is non-isomorphic. In other words,
an OPP is isomorphic if its top and bottom partitions have the same number
of cells, and corresponding cells have the same cardinality. An isomorphic OPP
is matching if its corresponding non-singleton cells are identical. We will refer
to an OPP as discrete (resp. unit) if its top and bottom partitions are discrete
(resp. unit).

3 Implicit Representation of Permutation Sets

OPPs play a central role in the saucy symmetry detection algorithm we describe
in this paper since they provide a compact implicit representation of sets of per-
mutations. Specifically, a discrete OPP represents a single permutation, whereas
a unit OPP represents all n! permutations of V . In general, an isomorphic OPP

Π =
[

T1

B1

∣∣∣∣ T2

B2

∣∣∣∣ · · ·· · ·
∣∣∣∣ Tm

Bm

]
(1)

represents
∏

1≤i≤n |Ti|! permutations. On the other hand, note that it is not
possible to obtain well-defined mappings between the top and bottom partitions
of a non-isomorphic OPP. Thus, non-isomorphic OPPs conveniently serve as
empty sets of permutations.

Example 1. Here are several example OPPs and the permutation sets they en-
code.

– Discrete OPP:
[

2
1

∣∣∣∣ 0
2

∣∣∣∣ 1
0

]
= {(0 2 1)}

– Unit OPP:
[

0, 1, 2
0, 1, 2

]
= {ι, (0 1) , (0 2) , (1 2) , (0 1 2) , (0 2 1)}

– Isomorphic OPP:
[

2
1

∣∣∣∣ 0, 1
2, 0

]
= {(1 2) , (0 2 1)}

– Matching OPP:
[

1
3

∣∣∣∣ 0, 2, 4
0, 2, 4

∣∣∣∣ 3
1

]
= (1 3) ◦ S3 ({0, 2, 4})

– Non-isomorphic OPPs:
[

0, 2| 1
1| 2, 0

]
= ∅,

[
2| 0| 1
1| 2, 0

]
= ∅

4 Basic Enumeration of the Permutation Search Space

OPPs play a role similar to partial variable assignments in CNF-SAT solvers.
Recall that a partial variable assignment on n Boolean variables can be encoded
by an n-element array whose ith element indicates the value of the ith variable:
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0, 1, or X for unassigned. A complete assignment is one in which all variables
have been assigned a binary value; otherwise the assignment is partial and corre-
sponds to a set of complete assignments that can be enumerated by considering
all possible 0, 1 combinations of the unassigned variables. A backtracking SAT
solver extends a given partial assignment by choosing an unassigned variable and
assigning to it one of the two binary values. This is referred to as a decision step
and SAT solvers use a variety of decision heuristics to determine which variable
to assign next and what value to assign to it. SAT solvers also employ propaga-
tion to avoid making decisions on variables whose values are implied (forced) by
prior decisions. Finally, SAT solvers backtrack from “conflicts”, i.e. assignments
that cause the formula being checked to become unsatisfied.

As described earlier, a non-discrete OPP can be viewed as a representation
of a set of permutations. The basic skeleton of a permutation enumeration algo-
rithm can thus be patterned after a backtracking SAT algorithm that finds all
satisfying assignments to a given CNF formula. An OPP is extended by:

– choosing a non-singleton cell (the target cell) from the top partition,
– choosing a vertex from the target cell (the target vertex), and
– mapping the target vertex to a vertex from the corresponding cell of the

bottom partition.

The mapping step is accomplished by splitting the target cell so that the target
vertex is in a cell of its own. The corresponding cell of the bottom partition is
split similarly, placing the vertex to which the target vertex is mapped in a new
singleton cell. Symbolically, given the isomorphic OPP in (1) assume that the
ith cell is the target cell and let j ∈ Ti be the target vertex. Mapping j to k ∈ Bi

refines the m-cell OPP Π to the following (m + 1)-cell OPP Π ′:

Π ′ =
[

T ′
1

B′
1

∣∣∣∣ T ′
2

B′
2

∣∣∣∣ · · ·· · ·
∣∣∣∣ T ′

i

B′
i

∣∣∣∣ T ′
i+1

B′
i+1

∣∣∣∣ · · ·· · ·
∣∣∣∣ T ′

m+1

B′
m+1

]
where

T ′
l = Tl B′

l = Bl l = 1, · · · , i− 1
T ′

i = Ti − {j} B′
i = Bi − {k}

T ′
i+1 = {j} B′

i+1 = {k}
T ′

l = Tl−1 B′
l = Bl−1 l = i + 2, · · · , m + 1

To illustrate, consider the search tree in Figure 1(a) which enumerates all permu-
tations of V = {0, 1, 2} and checks which are valid symmetries of the indicated
3-vertex 2-edge graph. Each node of the search tree corresponds to an OPP which
is the root of a subtree obtained by mapping a target vertex in all possible ways.
For example, the unit OPP at the root of the search tree is extended into a 3-way
branch by mapping target vertex 1 to 0, 1, and 2. It is important to point out
that the choice of target vertex at each tree node and the order in which each
of its possible mappings are processed does not affect the final set of permuta-
tions produced at the leaves of the search tree. It does, however, alter the order
in which these permutations are produced. Note that valid automorphisms can
be viewed as satisfying assignments whereas invalid ones are analogous to SAT
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0 2 1 0 1

0 1 2, ,

0 1 2, ,

0 2 0 1 2 1 2

1 0 1 2

0 2, 1

1 2 , 0

0 2,  1

0 2 , 1

1 1

0 2, 1

0 1 , 2

0 2 0 1

2 0 1

1 2 0

2 0 1

2 1 0

2 0 2 2 2 0 2 1

0 2 1

2 0 1

0 2 1

0 2 1

0 2 1

1 0 2

0 2 1

0 1 2

0

2 1

1

2 0

0

1 2

2

1 0

1

0 2

0

1 2

2

0 1

0 1

0 0

0 1 2, ,

0 1 2, ,
    

0 1, 2

0 1 , 2

1 0 2

1 0 2

1 0 2

0 1 2

0 1

0

1 2

0

1 2

1

0 2

Refine

(a) (b)

Fig. 1. Search trees for the automorphisms of a 3-vertex “line” graph. The target vertex
(“decision variable”) at each tree node is highlighted. (a) without partition refinement.
(b) with partition refinement.

conflicts. The permutation search tree can be pruned significantly by performing
partition refinement [1,7,12] before selecting and branching on a target vertex.
This is analogous to Boolean constraint propagation in the SAT space and is
standard in all algorithms for graph automorphism and canonical labeling. In
the present context, partition refinement is applied simultaneously to the top
and bottom partitions of the current OPP. This is illustrated in Figure 1(b)
where vertex 2 is split from vertices 0 and 1 because it has a different degree.

As in SAT search, partition refinement is invoked after each decision assign-
ment to determine the consequences of that decision. In some cases, this allows
for the early detection of conflicts, i.e., concluding that the subtree rooted at the
current tree node does not contain valid permutations. To illustrate, consider
the 7-vertex graph in Figure 2 and assume that the decision to map vertex 0 to
vertex 4 has just been made. This decision triggers partition refinement which
causes the top and bottom partitions of the OPP to refine non-isomorphically
proving that there are no automorphisms of this graph that map vertex 0 to
vertex 4.
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4

6 5

10

23

?

[
1, 2, 3, 4, 5, 6
0, 1, 2, 3, 5, 6

∣∣∣∣ 0
4

]
⇒
[

2, 4, 5, 6
0, 1, 2, 3

∣∣∣∣ 1, 3
5, 6

∣∣∣∣ 0
4

]
⇒
[

4, 5, 6| 2
0, 1, 2, 3

∣∣∣∣ 1, 3
5, 6

∣∣∣∣ 0
4

]

Fig. 2. Example of non-isomorphic refinement. Attempting to map vertex 0 to vertex
4 causes the top and bottom partitions to split non-isomorphically into 4 and 3 cells,
respectively.

5 Group-Theoretic Pruning

There are two primary pruning mechanisms anchored in group theory: coset
pruning and orbit pruning. Both are routinely employed by symmetry detection
and canonical labeling algorithms. The choice of OPPs to encode permutation
sets introduces further opportunities to prune the search space as we show later
in this section. To understand how coset and orbit pruning are employed in the
search for a set of irredundant group generators requires the introduction of a
few more group-theoretic concepts.

Let G be the automorphism group of our graph. The action of G on the graph
vertices V is a map ∗ : G × V → V such that a) ιi = i for all i ∈ V , and b)
(γη)(i) = γ(ηi) for all i ∈ V and all γ, η ∈ G. This group action induces an
equivalence relation ∼ on the vertex set such that i ∼ j if and only if there
exists γ ∈ G with γi = j. The resulting equivalence partition is referred to as
the orbit partition and will be denoted by �

π. The orbit of i ∈ V under G is the
cell in �

π that contains i and is conventionally written as Gi.
Let Gi denote the subgroup of G that “fixes” i, i.e., Gi = {γ ∈ G|γi = i}.

This is referred to as the stabilizer subgroup of i. The (left) coset of Gi in G
containing η is defined as the set {ηγ|γ ∈ Gi}. Note how this definition implies
that any coset element can generate the entire coset by composing that element
with the elements of Gi. The set of (left) cosets of Gi partitions G into equal-sized
subsets. Now assume that Z is a set of irredundant generators for Gi. A set of
generators for the parent group G can be obtained by augmenting Z with a single
representative from each coset of Gi. This set may, however, contain redundant
generators that must be eliminated with the aid of the orbit partition.

To place these pruning mechanisms in the context of the permutation search
tree, consider a tree node that represents a group G and assume that the subtree
under G is expanded by mapping vertex i to vertices i, i1, i2, · · · , ik in that order
(see Figure 3). As above, the permutation subset corresponding to mapping i to
itself is Gi, the stabilizer subgroup of i. The other subsets will be denoted by
Hi�→ij and correspond to those permutations that, among other things, map i
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G

Gi H
i i1

i i

H
i i2

H
i ik

i iki i2i i1

i i1 i i2 i ik

Fig. 3. Structure of the permutation search tree

to ij . To find a set of irredundant generators for G we must now “solve” up to
k independent problems where problem ij seeks to determine whether the set of
permutations Hi�→ij is a coset of Gi. This is accomplished by searching Hi�→ij for
a single permutation that “satisfies” the graph edge relation, i.e., a permutation
that is an automorphism of the graph. If no such permutation exists, then Hi�→ij

is “unsatisfiable”, i.e., it is not a coset of Gi. This problem is remarkably similar,
structurally, to the problem of finding a satisfying assignment to a CNF formula
or proving that no such assignment exists.

Let permutation ηi�→ij denote the “solution” to problem ij . Clearly, ηi�→ij

serves as a coset representative for Hi�→ij and can be added to the set of genera-
tors for G. Additionally, vertices i and ij must now be in the same orbit. Thus,
if the orbit of ij contains vertex il with l > j, then problem il can be skipped
since its corresponding coset must necessarily contain redundant generators.

A key pruning mechanism that is enabled by the OPP encoding of permutation
sets is the quick discovery of candidate coset representatives. This occurs when
the OPP at a given tree node is matching. For example, the matching OPP[

1
3

∣∣∣∣ 0, 2
0, 2

∣∣∣∣ 4, 6, 7
4, 6, 7

∣∣∣∣ 3
5

∣∣∣∣ 5
1

]
encodes the permutation set:

(1 3 5) ◦ S2 ({0, 2}) ◦ S3 ({4, 6, 7})

which clearly include the permutation (1 3 5). If this permutation is found to be
a symmetry of the graph, we can terminate the search in this coset and return
this permutation as the coset representative. Significantly, if this permutation
is found not to be a symmetry of the graph, then we can also terminate the
search in this subtree since all other permutations in this subset are composed
with this permutation! For large graphs, this pruning mechanism leads to a
drastic reduction in the size of the search tree and a commensurate reduction in
run time.



120 H. Katebi, K.A. Sakallah, and I.L. Markov

Finally, it is interesting to note that in addition to finding a set of irredundant
generators for G, symmetry detection algorithms can also compute the order of
G using the orbit-stabilizer and Lagrange theorems [9]: |G| = |Gi| · |Gi|.

6 The Algorithm

The symmetry detection algorithm is basically a depth-first traversal of the
permutation search tree. To enable coset and orbit pruning, the left-most tree
path must correspond to a sequence of subgroup stabilizers ending in the identity
(a so-called subgroup decomposition). In other words, “decisions” along this path
must map each selected target vertex to itself. This requirement does not apply to
decisions in other parts of the tree. The tree is pruned by systematic application
of the four pruning rules elaborated earlier, namely:

– Coset pruning which terminates the search in a coset subtree as soon as a
coset representative is found.

– Orbit pruning which avoids searching the subtree of coset Hi�→j if j is
already in the orbit of i.

– Matching OPP pruning which can identify a candidate permutation at a
tree node without the need to explore the subtree rooted at that node.

– Non-isomorphic OPP pruning which indicates that there are no per-
mutations in the subtree rooted at that node which are symmetries of the
graph.

It is important to note that coset and orbit pruning are, in some sense, intrinsic
and can (should?) be viewed as part of the “specification” of the automorphism
problem. In other words, any graph automorphism algorithm must return a set of
irredundant generators, and thus, must employ coset and orbit pruning. The two
other pruning rules, based on the OPP encoding of permutation sets, represent
algorithmic enhancements that assist in eliminating unnecessary search.

This algorithm has been implemented in the saucy 2.1 symmetry detection
tool. A trace of the algorithm illustrating all four pruning mechanisms is shown
in Figure 4.

7 Experimental Evaluation

We ran symmetry detection using saucy 2.1 on the complete set of 1183 SAT
2009 competition benchmarks and checked satisfiability with symmetry-breaking
on the 47 most difficult ones (see below). Experiments were conducted on a
SUN workstation equipped with a 3GHz Intel Dual-Core CPU, a 6MB cache
and an 8GB RAM, running the 64-bit version of Redhat Linux. The run time
results are shown in Figure 5. With a time-out of 500 seconds, saucy fin-
ished on all but 18 benchmarks from the crafted category belonging to three
families: connum (6 instances), equilarge (3 instances), and mod2-rand3bip (9
instances). By varying the branching heuristics, saucy was able to quickly
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Pruning Rules Legend:

Coset pruning

Orbit pruning

Matching OPP pruning

Non-isomorphic OPP pruning

Initialization:
�
π = {0| 1| 2| 3| 4| 5| 6}, Z = ∅.

1. Fix vertex 0 and refine
2. Fix vertex 1
3. Fix vertex 4
4. Fix vertex 5; G5 = {ι}
5. Search for representative of coset H5 �→6;

Z = {(5 6)}; �
π = {0| 1| 2| 3| 4| 5, 6}; |G4| = |G5| · |G5| = 1 · 2 = 2

6. Search for representative of coset H4 �→5

7. Found representative of coset H4 �→5;
Z = {(5 6), (4 5)}; �

π = {0| 1| 2| 3| 4, 5, 6}
8. Coset pruning: no need to explore since we have already found a coset represen-

tative for H4 �→5

9. Orbit pruning: no need to explore since 6 is already in the orbit of 4.
|G1| = |G4| · |G4| = 2 · 3 = 6

10. Search for representative of coset H1 �→3;
Matching OPP pruning: found representative of coset H1 �→3.
Z = {(5 6), (4 5), (1 3)}; �

π = {0| 2| 1, 3| 4, 5, 6}; |G0| = |G1| · |G1| = 6 · 2 = 12
11. Search for representative of coset H0 �→1

12. Matching OPP pruning: found representative of coset H0 �→1.
Z = {(5 6), (4 5), (1 3), (0 1)(2 3)}; �

π = {0, 1, 2, 3| 4, 5, 6}
13. Coset pruning: no need to explore since we have already found a coset represen-

tative for H0 �→1

14. Orbit pruning: no need to explore since 2 and 3 are already in the orbit of 0.
15. Non-isomorphic OPP pruning: 0 cannot map to 4.
16. Orbit pruning: no need to explore since 5 and 6 are already in the orbit of 4.
|G| = |G0| · |G0| = 12 · 4 = 48

Fig. 4. Search tree for graph automorphisms of the “square and triangle” graph and
relevant computations at each node. The shaded region corresponds to subgroup de-
composition.
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Fig. 5. saucy 2.1 run time, in seconds, as a function of graph size for the SAT 2009
competition benchmarks. A time-out of 500 seconds was applied.

solve the six connum instances (in less than 5 seconds each) but still failed
to process the remaining twelve even with a much larger time-out limit. In
general, instances from the crafted category were more challenging for saucy
than similarly-sized instances from the random or application suites. The largest
benchmark post-cbmc-zfcp-2.8-u2-noholes, an application instance with
about 11 million variables and 33 million clauses, was modeled by a graph with
over 32 million vertices and required about 231 seconds to process. As the figure
shows, there is a weak trend towards larger run times for larger graphs. However,
run time seems to also depend on other attributes of a graph besides its absolute
size (number of vertices.) In any case, saucy is extremely fast, finishing in less
than one second on 93% (1101) of all benchmarks.

The “amount” of symmetry present (order of the automorphism group) in
each benchmark is shown in Figure 6. In total, only 323 benchmarks exhibited
non-trivial symmetries, and the order of the largest automorphism group (for
benchmark hsat vc11813) was an astronomical 5.091978× 10142761. The figure
only lists those benchmarks whose automorphism group has an order between
2 (meaning one non-trivial symmetry) and 1060 (a total of 293 out of 323.) Of
the 610 benchmarks in the random category, 606 had no symmetry at all, and
the remaining four had just one symmetry. In the application category, saucy
reported the presence of symmetry in about 50% of the benchmarks (144 out of
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Fig. 6. saucy 2.1 group order for the SAT 2009 competition benchmarks

292), and it found symmetry in about two-thirds (175 out of 263) of the crafted
benchmarks which it was able to process within the time-out limit.

Figure 7 shows the relation between the order of the automorphism group and
the number of generators returned by saucy for the 293 benchmarks. Symmetry
detection algorithms, including saucy, guarantee to produce no more than n−1
generators for an n-vertex graph. The number of reported generators in these
results is significantly less than n−1. This, however, is not inconsistent with the
well-known fact that the number of (irredundant) generators is exponentially
smaller than the order of the corresponding symmetry group.

To evaluate the effectiveness of static symmetry breaking, we applied shatter
[2] to 47 “difficult” benchmarks. These included 13 application and 34 crafted
benchmarks that had significant symmetry and either could not be solved by
any of the SAT 2009 competition solvers (38 benchmarks), or required at least
1000 seconds to be solved (9 benchmarks). The shatter flow consists of running
saucy on a CNF instance to obtain its symmetry generators, followed by the
creation of CNF symmetry-breaking predicates (SBPs) using the encoding in
[4], and finally passing the original instance augmented with the SBPs to a SAT
solver. Figures 8(a) and 8(b) depict the increase in instance size (variables and
clauses) for each of these benchmarks due to the addition of the SBPs. For 29
of the benchmarks, the number of added SBP clauses was quite insignificant
(less than 4%). The additional clauses for the remaining 18 benchmarks ranged
from 25% to 133% of the original number. The number of variables increased
by less than 1% for 23 benchmarks and by 9% to an order of magnitude for the
remaining 24 benchmarks.
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Fig. 8. Number of variables and clauses before and after the addition of SBPs

To obtain meaningful statistical data, we used a script that re-orders the
variables and clauses in a CNF instance using a random seed1 to create twenty
different versions of each benchmark: ten for the original and ten for the SBP-
augmented benchmark. We then applied the best solver for a given benchmark,
based on the 2009 competition results, to these twenty versions. The run time
1 We obtained the reorder.c script and a seed generator from Laurent Simon. The script

was originally written by Edward Hirsh and later modified by Simon to handle large
benchmarks.
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Fig. 9. SAT solver run time results before and after the addition of SBPs. The first
4 benchmarks are from the crafted category with a time-out limit of 5,000 seconds,
whereas the last 8 are from the application category with a time-out limit of 10,000
seconds. minisat 2.0 was used for benchmarks 10 and 11 and glucose 1.0 was used
for the others. The data for each benchmark (original or with SBPs) show the mean
and standard deviation over the ten runs, including the runs that timed out. Since
time-outs skew the statistics, the number of runs that timed out is indicated below
the “error” bars (absence of a number indicates that all ten runs finished within the
time-out limit.).

results comparing search times with and without the addition of SBPs for 12
of the 47 benchmarks are shown in Fig. 9; experiments on the remaining 35
benchmarks were still running at press time. For this limited subset, the SBP-
augmented versions generally led to fewer time-outs and, in all but three cases,
were solved faster than the original versions. Four of these benchmarks (2, 4,
8, and 9) which were reported to be unsolvable within the time-out limits of
the competition, were solved with the addition of SBPs. Interestingly, though,
benchmarks 2, 8, and 9 were solved on our experimental machine even without
the addition of SBPs. These anomalies are possibly due to the use of different
machines with varying configurations in the SAT 2009 competition and merely
point out that we must be careful not to draw incorrect conclusions from empir-
ical data.

8 Conclusions

It has been conjectured that symmetries in CNF formulas contribute to the
intractability of SAT. The availability of extremely-efficient scalable symmetry
detection algorithms, such as saucy 2.1, has enabled the testing of this hy-
pothesis on very large CNF formulas. The question, however, remains open.
Many intractable CNF instances (e.g., random instances) possess no or little
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symmetry. Those that possess significant symmetry may or may not benefit
from static symmetry breaking for a number of possible reasons. For example,
the generators produced by a symmetry detection algorithm may not be the
most suitable for symmetry breaking. Better branching heuristics while search-
ing the permutation space might yield more useful generators for SAT solving.
A more promising direction is the integration of symmetry detection within
the SAT solver itself [13]. The raw speed of modern symmetry detectors like
saucy suggests that they can be invoked during the SAT search with minimal
overhead. And unlike static symmetry breaking, dynamic symmetry detection
does not require the addition of large SBPs, and can uncover hidden/conditional
symmetries adaptively. We plan to pursue this in our future research.
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A Non-prenex, Non-clausal QBF Solver

with Game-State Learning
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Abstract. We describe a DPLL-based solver for the problem of quan-
tified boolean formulas (QBF) in non-prenex, non-CNF form. We make
two contributions. First, we reformulate clause/cube learning, extending
it to non-prenex instances. We call the resulting technique game-state
learning. Second, we introduce a propagation technique using ghost liter-
als that exploits the structure of a non-CNF instance in a manner that is
symmetric between the universal and existential variables. Experimental
results on the QBFLIB benchmarks indicate our approach outperforms
other state-of-the-art solvers on certain benchmark families, including
the tipfixpoint and tipdiam families of model checking problems.

Keywords: QBF, DPLL, non-clausal, non-prenex, clause learning.

1 Introduction

Many problems in formal verification (among other areas) are naturally ex-
pressed in the language of QBF. Traditionally, QBF solvers have used conjunc-
tive normal form (CNF). Although CNF works well for SAT solvers, it hinders
the work of QBF solvers by impeding the ability to detect and learn from satis-
fying assignments. In fact, a family of problems that are trivially satisfiable in
negation-normal form (NNF) were experimentally found to require exponential
time (in the problem size) for existing CNF solvers [18].

Various techniques have been proposed for avoiding the drawbacks of a CNF
encoding. Zhang et al. have investigated dual CNF-DNF representations in
which a boolean formula is transformed into a combination of an equi-satisfiable
CNF formula and an equi-tautological DNF [18]. Sabharwal et al. have developed
a QBF modeling approach based a game-theoretic view of QBF [14]. Ansotegui
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et al. have investigated the use of indicator variables [1]. These approaches all
help to alleviate the problems of a pure CNF encoding, but we argue that a
fully non-clausal approach can lead to even greater improvements, especially for
instances produced from deeply-nested circuits.

In addition to combined CNF-DNF techniques, fully non-clausal techniques
have recently been investigated. A prenex circuit-based DPLL solver with “don’t
care” reasoning and clause/cube learning has been developed by Goultiaeva et
al. [8]. A non-prenex NNF-based DPLL solver with dependency-directed (non-
chronological) backtracking, but without learning, was developed by Egly, Seidl,
and Woltran [4]. Non-clausal techniques using symbolic quantifier expansion
(rather than DPLL) have been developed by Lonsing and Biere [10] and by
Pigorsch and Scholl [13]. Giunchiglia et al. have developed a technique for mini-
scoping quantifiers (pushing quantifiers inward so as to minimize their scope)
[7]. Non-clausal representations have also been investigated in the context of
SAT solvers [9,16,5].

Most existing DPLL-based QBF solvers perform clause/cube learning. How-
ever, traditional clause/cube learning was designed for prenex QBF instances,
and it is not optimal for (or even directly applicable to) non-prenex QBF in-
stances. We reformulate clause/cube learning and extend it to the non-prenex
case. Additionally, we develop a new propagation technique using ghost liter-
als. Experimental results indicate that our approach can beat other state-of-
the-art solvers on fixed-point computation instances of the type found in the
tipfixpoint benchmark family.

2 Preliminaries

We consider non-prenex QBF formulas in negation-normal form1, as described
by the following abstract grammar:

φ ::= ei | ¬ei | ui | ¬ui | φ ∨ ... ∨ φ | φ ∧ ... ∧ φ | ∃ei φ | ∀ui φ

We label each conjunction and disjunction with a gate variable of the form gi,
as illustrated in Figure 1. The conjunction/disjunction labelled gi, together
with its quantifier prefix (if any), is labelled with the primed gate variable g′i,
as illustrated in Figure 1. As indicated in the abstract grammar, each labelled
conjunction/disjunction may have any number of conjuncts/disjuncts.

The term “gate variable” arises from the circuit representation of a proposi-
tional formula, in which a gate variable labels a logic gate.

Let “InFmla” denote the formula that the QBF solver is given as input. We
impose the following restriction on InFmla: Every variable in InFmla must be
quantified exactly once, and no variable may occur free (i.e., outside the scope of
its quantifier). The variables that occur in InFmla are said to be input variables.

1 Our solver does not require the use of strict NNF. Subformulas containing no quan-
tifiers can be represented in circuit form.
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∃e10

[
[ ∃e11 ∀u21

g1︷ ︸︸ ︷
(e10 ∧ e11 ∧ u21) ]︸ ︷︷ ︸

g′1

∧ [ ∀u22 ∃e30

g2︷ ︸︸ ︷
(e10 ∧ u22 ∧ e30) ]︸ ︷︷ ︸

g′2

]

Fig. 1. Example QBF instance with gate labels

We represent an assignment π by the set of literals assigned true by π. For
example, the assignment {e1,¬u2} assigns e1 true and assigns u2 false, while
leaving all other variables unassigned. We write “π(�)” to denote the value
(true, false, or undef) that π assigns to �, as defined as follows: π(�) = true if
� ∈ π, π(�) = false if ¬� ∈ π, and π(�) = undef otherwise. For any variable x,
we treat ¬¬x as equivalent to x. An assignment may not include both a variable
and its negation. An input assignment is an assignment in which every assigned
variable is an input variable (as opposed to a gate variable).

Definition 1 (Reduction). The reduction of a formula f under an input as-
signment π, denoted by “f |π”, is constructed from f as follows: For each vari-
able x which is assigned a value by π, we delete the quantifier of x and replace
each occurrence of x with its assigned value. For example, if π = {e1}, then
[∃e1. ∀u2. (e1 ∧ u2)]|π = [∀u2. (true ∧ u2)]. Formally:

�|π =

{
π(�) if π(�) �= undef

� if π(�) = undef

(f1 ∧ ... ∧ fn)|π = (f1|π) ∧ ... ∧ (fn|π)

(f1 ∨ ... ∨ fn)|π = (f1|π) ∨ ... ∨ (fn|π)

(∃x.f)|π =

{
f |π if π(x) �= undef

∃x.(f |π) if π(x) = undef

(∀x.f)|π =

{
f |π if π(x) �= undef

∀x.(f |π) if π(x) = undef

Given two input literals x and y, we say that x is upstream of y iff the scope of
the quantifier of x contains the quantifier of y. We say that a gate literal g is
upstream of an input literal y iff every variable that occurs in the subformula g
is upstream of y.

2.1 QBF as a Two-Player Game

It is helpful to view QBF as a game between two players, Player E and Player U.
We make the following formal definitions:

– The existentially quantified variables are owned by Player E.
– The universally quantified variables are owned by Player U.

Informally, the game formulation goes as follows. Throughout the course of the
game, the two players assign values to the variables that they own. The order
in which the players assign variables is the quantification order of the variables.
On each turn of the game, the owner of the outermost-quantified unassigned
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variable assigns it a value. The goal of Player E is to make InFmla true, and
the goal of Player U is to make InFmla false. For non-prenex instances, we
say that each quantifier-prefixed subformula (e.g., g′1 and g′2 in Figure 1) is a
subgame. It may happen that two or more variables are quantified outermost;
e.g., in Figure 1 on page 130, after e10 is assigned a value, both e11 and u22 are
quantified outermost. In this case, two subgames have become independent of
each other; they may be played in parallel or in series.

Definition 2 (Winning under an assignment). Player U wins a formula f
under π iff f |π is false. Player E wins a formula f under π iff f |π is true. (See
Definition 1 for the meaning of f |π.) (It would be more proper to say “has a
winning strategy for” instead of “wins”, but for brevity, we’ll say simply “wins”.)

For example, in Figure 1, Player U wins g′2 under the empty assignment, and
Player E wins g′2 under {e10 : true, u22 : true}.

Proposition 1. Player E wins [∃x φ] under π if he wins φ under either π ∪ {x}
or π ∪ {¬x}. Player U wins [∀x φ] under π if he wins φ under either π ∪ {x} or
π ∪ {¬x}.

3 Symbolic Game States

In this section, introduce game-state learning, a reformulation of clause/cube
learning. For prenex instances, the game-state formulation is isomorphic to
clause/cube learning; the differences are merely cosmetic. However, the game-
state formulation is more convenient to extend to the non-prenex case.

To motivate the notation of game-state learning, we start by reviewing certain
aspects of clause learning. Suppose the input formula InFmla is a prenex CNF
QBF whose first clause is (e1 ∨ e3 ∨ u4 ∨ e5). Under an assignment π, if all the
literals in the clause are false, then clearly InFmla|π is false. Moreover, if, under
π, all the clause’s existential literals are assigned false and none of the clause’s
universal literals are assigned true (i.e., they may either be assigned false or be
unassigned), then InFmla|π is false, since the universal player can win by making
all the universal literals in the clause false.

As shown in [19], when the QBF clause learning algorithm is applied to

∃e1∃e3∀u4∃e5∃e7. (e1 ∨ e3 ∨ u4 ∨ e5) ∧ (e1 ∨ ¬e3 ∨ ¬u4 ∨ e7) ∧ ...

it can yield the tautological learned clause (e1 ∨ u4 ∨ ¬u4 ∨ e5 ∨ e7). Although
counter-intuitive, this learned clause can be interpreted in the same way as a
non-tautological clause: Under an assignment π, if all the clause’s existential
literals are assigned false and none of the clause’s universal literals are assigned
true, then InFmla|π is false.

Learned cubes are similar: Under an assignment π, if all the cube’s universal
literals are assigned true and none of the cube’s existential literals are assigned
false, then InFmla|π is true. With game-state learning, we explicitly separate the
“must be true” literals from the “may be either true or unassigned” literals. (For
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non-prenex instances, the division is more complicated than just existential-vs-
universal.) Instead of writing a cube (e1 ∨ u2 ∨ ¬e3), we will write a game-state
sequent 〈{u2}, {e1,¬e3}〉 |= (E wins InFmla).

Definition 3. A symbolic game state is a tuple 〈Lnow, Lfut〉, where Lnow is a set
of literals and Lfut is a set of input literals. 〈Lnow, Lfut〉 symbolically represents
(or matches) exactly those input assignments under which:

1. every literal in Lnow reduces to true, and
2. no literal in Lfut is assigned false — i.e., for every literal � in Lfut, either

� is already true or � has not yet been assigned a value (and therefore may
become true in the future).

For example, consider again the QBF instance in Figure 1 on page 130. The assign-
ment {¬e10} matches both 〈{¬g′1}, ∅〉 and 〈{¬g′1}, {u21,¬u21}〉 (because ¬e10

implies ¬g′1), but not 〈{¬g′1}, {e10}〉. No assignment matches 〈{¬e10}, {e10}〉.

Definition 4 (Winning under a game state). We say that player P wins
a formula f under a game state GS, written “GS |= (P wins f)”, iff P wins f
under all assignments that match GS. Additionally, we say that P loses f under
GS, written “GS |= (P loses f)”, iff the opponent of P wins f under GS.
For example, for the QBF instance in Figure 1:

– Neither player wins g′1 under the game state 〈∅, ∅〉, because Player U loses
under the matching assignment {e10, e11, u21} and Player E loses under the
matching assignment {¬e10}.

– Player U wins g′1 under 〈∅, {¬u21}〉. For example, under the assignment
π = {e11}, g′1|π is [∀u21 (e10 ∧ true ∧ u21)], which evaluates to false.

– Player E wins g′1 under 〈{u21}, {e10, e11}〉.
In our solver, instead of learning clauses or cubes, we maintain a game-state
database with sequents of the form GS |= (P wins g′i). It turns out that when-
ever we learn a new game-state sequent for a prenex instance, the literals owned
by the winner all go in Lfut, and the literals owned by the loser and the gate liter-
als go in Lnow. The relationship between learned game-state sequents and learned
clauses/cubes (for prenex instances) is as follows. 〈Lnow, Lfut〉 |= (U wins InFmla)
is equivalent to the learned clause [¬�1∨ ...∨¬�n] where {�1, ..., �n} = Lnow∪Lfut

(where Lnow contains the loser/gate literals and Lfut contains the winner literals).
This equivalence is easily verified using the interpretation of learned clauses
developed on the previous page. Likewise, 〈Lnow, Lfut〉 |= (E wins InFmla) is
equivalent to the learned cube [�1 ∧ ... ∧ �n] where {�1, ..., �n} = Lnow ∪ Lfut.

Proposition 2. If 〈Lnow ∪ {�}, Lfut〉 |= (P wins f), and � is owned by Player P
and the quantifier of � is inside f , then 〈Lnow, Lfut∪{�}〉 |= (P wins f), provided
that ¬� /∈ Lfut.

For example, consider the QBF instance ∀u1. ∃e2. (u1 ⊕ e2), where “u1 ⊕ e2”
means “(u1 ∧ ¬e2) ∨ (¬u1 ∧ e2)”. If Player E wins under 〈{u1,¬e2}, ∅〉, then
Proposition 2 tells us that Player E wins under 〈{u1}, {¬e2}〉.
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4 Algorithm

An overview of the top-level solver algorithm is provided in Figure 2. Initially,
the current assignment CurAsgn is empty. For non-prenex instances, we may
temporarily target in on a subgame of the input formula InFmla and ignore the
rest; the subgame being targetted is recorded in the TargFmla global variable.
On each iteration of the main loop, we first test to see if we know who wins
TargFmla under the current assignment. There are two cases:
– If the winner of TargFmla is unknown, then we call DecideLit, which picks

an unassigned input variable (from the first available quantifier block in the
prefix of TargFmla) and assigns it a value in CurAsgn. If there are no more
unassigned variables in the quantifier prefix of the current TargFmla, then
we pick a new TargFmla from among the unassigned immediate subformulas
of TargFmla and try again. After adding a new literal to CurAsgn, we call
Propagate to perform boolean constraint propagation (BCP).

– If the winner is known, then we call LearnNewGS to learn a new game-
state sequent, adding it to the database. If the new game-state sequent
reveals that InFmla evaluates to a value v under the empty assignment,
then we return v as our final answer. Otherwise, we backtrack. We follow
the well-known non-chronological backtracking technique, with the addition
that we must also undo changes to TargFmla as appropriate. (That is, if we
backtrack to the beginning of the kth decision level, then we must restore
TargFmla to the value that it held at the beginning of the kth decision level.
For this purpose, we maintain an array UndoTarg that maps each decision
level to the value of TargFmla to be restored.) After backtracking, the
newly-learned game-state sequent will force a literal, so we call Propagate

func Solve() {
CurAsgn = ∅;
TargFmla = InFmla;
while (true) {

if (the winner of TargFmla under CurAsgn is unknown) {
DecideLit(); // Picks new TargFmla if necessary.
Propagate();

} else {
GS = LearnNewGS();
if (TargFmla == InFmla and ∅ matches GS) return winner;
Backtrack to the earliest point at which GS will force a literal;
Propagate();

}
}

}

Fig. 2. Overview of top-level solver algorithm
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to perform BCP. (Is a literal forced even when we leave a subgame b by
restoring an old value of TargFmla during backtracking? Yes; ghosts of b
are forced, as per case 1(b) in Section 4.3.)

4.1 Ghost Literals

Goultiaeva et al. [8] introduce a powerful propagation technique for QBF that
significantly improves on existing QBF solvers on a variety of benchmarks. With
their technique, if the solver notices that a gate literal g must be true in order
for the existential player to win, then g becomes forced. However, this technique
is asymmetric between the existential and universal players. A gate literal g is
forced if it is needed for the existential player to win, but not if it is needed for the
universal player to win. We adapt this technique so that the universal variables
benefit from the same propagation technique as do the existential variables and
so that the learning procedure for satisfying assignments is just as powerful as
for falsifying assignments.

In a prenex solver, for each gate variable g, we would introduce two ghost
variables, g〈U〉 for Player U and g〈E〉 for Player E. A ghost literal g〈P 〉 would be
forced whenever we detect that Player P cannot win unless g is made true.

For our non-prenex solver, we need to consider subgames (quantifier-prefixed
subformulas, such as g′1 and g′2 in Figure 1). We introduce ghost variables of the
form g〈U, b〉 and g〈E, b〉 where b is a subgame which contains g as a subformula.
A ghost literal g〈P, b〉 becomes forced when we detect that Player P cannot win
subgame b without g being true. For example, consider the below QBF instance
(where g1 is some propositional formula involving e1, u2, and e3):

∃e1 ∀u2 ∃e3 ∀u4. [[∀u5. g1 ∨ u5]︸ ︷︷ ︸
g′2

∧u4] ∨ [∀u6. ¬g1 ∨ u6]︸ ︷︷ ︸
g′3

Under the empty assignment, g1〈E, g′2〉 is forced (because Player E cannot win
g′2 under ∅ unless g1 is true) and likewise ¬g1〈E, g′3〉 is forced.

In order to simplify the propagation and learning procedures, we allow game
states to contain ghost literals. A game state with a ghost literal is said to
match the same input assignments as if the game state contained the corre-
sponding non-ghost gate literal; e.g., 〈Lnow ∪ {g〈P, b〉}, Lfut〉 matches the same
input assignments as 〈Lnow ∪ {g}, Lfut〉.

4.2 Initialization of Game-State Database

In CNF-based QBF solvers, the existential player owns the gate variables2, and
there are clauses (generated from the Tseitin transformation [17]) that ensure
that the existential player loses if he assigns a value to a gate variable that turns
out to be inconsistent with the inputs to the gate. For example, if g = e1 ∧ e2,
then Player E would lose if he assigns g = true and e1 = false.
2 For CNF solvers, gate variables are introduced when formulas are converted to CNF

via the Tseitin transformation [17]; these gate variables are existentially quantified.
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In our solver, instead of generating clauses via the Tseitin transformation, we
generate game-state sequents. In a prenex solver, we would generate game-state
sequents that ensure that a player P loses if he assigns a ghost gate variable
a value inconsistent with the gate’s inputs. In our non-prenex solver, for each
subgame b, we generate game-state sequents that ensure that a player P loses
subgame b if he assigns a ghost gate variable g〈P, b〉 a value inconsistent with the
gate’s inputs. For example, if g = e1∧e2 and subformula g appears in a subgame
b, then Player E would lose b if he assigns g〈E, b〉 = true and e1 = false. We
construct such game-state sequents as follows. For every gate literal g, if g
labels a formula �1 ∧ ... ∧ �n (or ¬g labels a formula ¬�1 ∨ ... ∨ ¬�n), we add the
following game-state sequents for each player P ∈ {E, U} and each quantifier-
prefixed formula b which contains g as a subformula:

– 〈{�1, ..., �n,¬g}, ∅〉 |= (P loses b)
– 〈{¬�i, g}, ∅〉 |= (P loses b) for every i ∈ {1, ..., n}

For example, if g3 = ¬e1 ∨ ¬u2 and g3 is a subformula of a subgame g′7, then
we add game-state sequents 〈{e1, u2, g3}, ∅〉 |= (E loses g′7), 〈{¬e1,¬g3}, ∅〉 |=
(E loses g′7), and 〈{¬u2,¬g3}, ∅〉 |= (E loses g′7), among others.

After adding the game-state sequents to the database, we normalize them as
follows. Consider a game-state sequent of the form 〈Lnow, Lfut〉 |= (P loses b).
First, we use Proposition 2 (on page 132) to move input literals owned by the
winning player from Lnow to Lfut. Second, we replace each gate literal g in
Lnow with the ghost literal g〈P, b〉. For example, consider a game-state sequent
〈{e1, u2, g3}, ∅〉 |= (E loses g′7). We move u2 using Proposition 2 (assuming
that the quantifier of u2 is within the formula g′7) and replace g3 with g3〈E, g′7〉,
yielding 〈{e1, g3〈E, g′7〉}, {u2}〉 |= (E loses g′7).

Recall that a ghost literal g〈P, b〉 should become forced when g must be true in
order for P to win b. Thus, for every quantifier-prefixed subformula b, the ghost
literals ¬b〈U, b〉 and b〈E, b〉 should be forced. To ensure that the propagation
procedure in Section 4.3 forces these literals, we add the following game-state
sequents for every gate variable b that labels a quantifier-prefixed formula:

– 〈{b〈U, b〉}, ∅〉 |= (U loses b) (to force ¬b〈U, b〉)
– 〈{¬b〈E, b〉}, ∅〉 |= (E loses b) (to force b〈E, b〉)

4.3 Propagation and Forced Literals

CurAsgn may contain forced ghost literals, so in general we can’t say CurAsgn
is a match for a game-state in the sense of Definition 3, because CurAsgn is not
necessarily an input assignment. Instead, let us say that CurAsgn is a ghost
match for a game-state sequent 〈Lnow, Lfut〉 |= (P loses b) iff every literal in Lnow

is assigned true by CurAsgn and no literal in Lfut is assigned false by CurAsgn.
During the Propagate procedure, conceptually we examine each learned game-

state sequent GS of the form 〈Lnow, Lfut〉 |= (P loses b) in which none of the
literals in Lnow ∪ Lfut are assigned false and b is a subformula of TargFmla.
There are three cases:
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1. If all literals in Lnow are true, then CurAsgn is a ghost match for GS, so P
loses b under the current assignment.3 There are two subcases to consider:

(a) If b = TargFmla, then we know who wins TargFmla under the current
assignment, so we stop propagation and return to the Solve procedure.

(b) If b �= TargFmla, then for all subgames s that contain b, the ghost vari-
ables b〈E, s〉 and b〈U, s〉 are forced to be false (if P=E) or true (if P=U).

2. If there is exactly one unassigned literal �U in Lnow, then ¬�U is forced if:
(1) �U is owned by P or is a ghost literal of the form g〈P, b〉, and
(2) �U is upstream of all unassigned literals in Lfut, and
(3) �U does not appear outside subgame b if �U is an input literal

(so that forcing ¬�U can’t cause P to lose a different subgame).
For example, consider again the QBF instance in Figure 1 on page 130. The
game-state sequent 〈{u22,¬g2〈U, g′2〉}, {e10, e30}〉 |= (U loses g′2) will force
¬u22 if CurAsgn = {¬g2〈U, g′2〉, e10}. However, ¬u22 will not be forced if
CurAsgn = {¬g2〈U, g′2〉, e30}, since e10 is upstream of u22, and thus Player U
can delay assigning a value to u22 until E has assigned a value for e10.

3. If more than one literal in Lnow is unassigned, then GS doesn’t force a literal.

When a game-state sequent GS forces a literal �, we set antecedent[�]=GS .

Watched Literals. We use a straightforward adaptation of the watched-literals
rule [11,6]. For each game-state sequent 〈Lnow, Lfut〉 |= (P wins g), we watch two
literals in Lnow and one literal in Lfut.

Optimized Implementation of Ghost Literals. If a subformula g occurs
in a subgame b, and b itself occurs in a larger subgame s, then we say that this
occurrence of g is an indirect occurrence in s. For example, in Figure 1, e10

occurs directly in g′1 and g′2 but occurs only indirectly in InFmla.
If a subformula g occurs directly in only a single subgame b, then we only

need to explicitly record only two ghost variables, g〈U, b〉 and g〈E, b〉. For any
other quantified formula s that contains g as a subformula,

we infer g〈P, s〉 ∈ CurAsgn︸ ︷︷ ︸
(P needs g to win s)

iff g〈P, b〉 ∈ CurAsgn︸ ︷︷ ︸
(P needs g to win b)

and b〈P, s〉 ∈ CurAsgn︸ ︷︷ ︸
(P needs b to win s)

since the only way g can influence the value of s is via b. If a subformula g
occurs directly in multiple subgames, then we must record two ghost variables
(existential and universal) for each subgame in which it directly occurs.

3 Let CurAsgnI = {� | � ∈ CurAsgn and � is an input literal}. If all literals in Lnow are
input literals, then CurAsgnI matches GS, because all literals in Lnow are assigned
true by CurAsgnI and no literals in Lfut are assigned false by CurAsgnI . If there
are ghost literals in Lnow, then P is still doomed to lose b, because P needs the
corresponding gate literals to be true in order to win, but if these gate literals
become true, then CurAsgnI will match GS and P loses under GS.



A Non-prenex, Non-clausal QBF Solver with Game-State Learning 137

4.4 Learning New Game States

As shown in Figure 2 on page 133, when it becomes known which player wins
TargFmla under the current assignment, we call LearnNewGS to learn a new
game-state sequent. The only way for it to become known who wins TargFmla
under CurAsgn is for CurAsgn to become a ghost match for a game-state sequent
in the database (see case 1(a) in Section 4.3). Thus, when we enter LearnNewGS,
the current assignment is a ghost match for some game state.

func LearnNewGS() {
GS = GetMatchingGS().copy();
do { � = (most recently forced literal in GS not owned by winner);

if (� is quantified outside TargFmla) break;
Discharge(GS, �);

} until (GS.now.IsEmpty() || HasGoodUIP(GS));
return GS;

}

func Discharge(GS, �) {
GS.now.remove(�);
GS.now = (GS.now ∪ (antecedent[�].now - {¬�}));
GS.fut = (GS.fut ∪ antecedent[�].fut);

}

Fig. 3. Overview of Learning Algorithm

The procedure for learning a new game-state sequent is shown in Figure 3.
We first make a copy of the existing game state that is a ghost match for the
current assignment. We then remove the most recently forced literal in Lnow

(not owned by the winner) by discharging it via its antecedent, as detailed in
Figure 3. We continue to discharge until the Lnow slot either is empty or has a
good unique implication point (UIP), as determined by the criteria from [20]4,
or until we hit a literal quantified outside TargFmla.

For prenex instances, the procedure for discharging a forced literal is similar to
resolution in clause learning: If [x1∨...∨xn∨�] and [¬�∨y1∨...∨ym] are true, then
[x1 ∨ ...∨xn ∨ y1∨ ...∨ ym] is also true. The basic argument for the soundness of
the discharge method goes as follows. Let 〈Lnow

A ∪{�}, Lfut
A 〉 |= (P wins f) be GS,

and let 〈Lnow
B ∪{¬�}, Lfut

B 〉 |= (P wins h) be the antecedent of �. Discharging � via

4 Specifically, an input literal � (owned by the loser) in 〈Lnow, Lfut〉 is a good UIP if
(1) the decision variable of �’s decision level belongs to the losing player, (2) every
literal in (Lnow \ {�}) belongs to an earlier decision level than �, and (3) every literal
in Lfut that is upstream of � belongs to a decision level earlier than that of �.
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Example. Consider the QBF below.

g′5︷ ︸︸ ︷
∃e10

[
[ ∃e11 ∀u21.

g1︷ ︸︸ ︷
(e11 ∧ u21)∨

g2︷ ︸︸ ︷
(e11 ∧ ¬u21) ]︸ ︷︷ ︸

g′3

∨ [ ∀u22∀u23. e10 ∧ u22 ∧ u23 ]︸ ︷︷ ︸
g′4

]

Fig. 4. Example non-prenex QBF instance

1. The initial assignment includes g〈E, g′〉 and ¬g〈U, g′〉 for g ∈ {g3, g4, g5}.
2. 〈{g1〈U, g′3〉,¬g3〈U, g′3〉}, ∅〉 |= (E wins g′3) forces ¬g1〈U, g′3〉.
3. 〈{g2〈U, g′3〉,¬g3〈U, g′3〉}, ∅〉 |= (E wins g′3) forces ¬g2〈U, g′3〉.
4. Player E decides to assign e10 = true.
5. All the variables in the outermost quantifier prefix are now assigned, so

we must pick a subformula to investigate. We pick g′3 as the new target
subformula.

6. Player E decides to assign e11 = true.
7. 〈{u21,¬g1〈U, g′3〉}, {e11}〉 |= (E wins g′3) forces ¬u21.
8. 〈{¬u21,¬g2〈U, g′3〉}, {e11}〉 |= (E wins g′3) is a (ghost) match for the cur-

rent assignment. Since g′3 is the current TargFmla, we learn a game state.
We discharge ¬u21, then ¬g2〈U, g′3〉, then ¬g1〈U, g′3〉, and finally ¬g3〈U, g′3〉,
yielding the new game-state sequent 〈∅, {e11}〉 |= (E wins g′3).

9. We now backtrack, removing e11 and e10 from the current assignment and
reverting TargFmla to InFmla.

10. Having backtracked, our newly learned game-state sequent now forces
g3〈U, g′5〉.

11. 〈{g3〈U, g′5〉,¬g5〈U, g′5〉}, ∅〉 |= (E wins InFmla) matches current assignment.
12. We learn the new game-state sequent 〈∅, {e11}〉 |= (E wins InFmla).
13. The empty assignment matches this new game-state, so our final answer is

that InFmla = true.

its antecedent yields 〈Lnow
A ∪Lnow

B , Lfut
A ∪Lfut

B 〉 |= (P wins f). To simplify matters,
let us assume that � is upstream of every literal in Lfut

B , so that � is forced under
any assignment that matches 〈Lnow

B , Lfut
B 〉. Since P wins f under any assignment

that matches 〈Lnow
A ∪ {�}, Lfut

A 〉, we conclude that if an assignment π matches
both 〈Lnow

B , Lfut
B 〉 and 〈Lnow

A , Lfut
A 〉 (i.e., if π matches 〈Lnow

A ∪Lnow
B , Lfut

A ∪Lfut
B 〉) then

� is forced and P wins f .
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5 Experimental Results

We implemented the ideas in this paper in a solver which we call GhostQ. In
our experimental results, GhostQ always did at least as well as CirQit and it
outperformed Qube on the k, tipdiam, and tipfixpoint families.

Table 1. Comparison between GhostQ and CirQit

Family inst. GhostQ CirQit

Seidl 150 150 (1606 s) 147 (2281 s)
assertion 120 12 (141 s) 3 (1 s)
consistency 10 0 (0 s) 0 (0 s)
counter 45 40 (370 s) 39 (1315 s)
dme 11 11 (13 s) 10 (15 s)
possibility 120 14 (274 s) 10 (1707 s)
ring 20 18 (28 s) 15 (60 s)
semaphore 16 16 (4 s) 16 (7 s)

Total 492 261 (2435 s) 240 (5389 s)

Table 2. Comparison between GhostQ and Qube

Family inst. GhostQ Qube
bbox-01x 450 171 (133 s) 341 (1192 s)
bbox design 28 19 (256 s) 28 (15 s)
bmc 132 43 (266 s) 49 (239 s)
k 61 42 (355 s) 13 (55 s)
s 10 10 (1 s) 10 (5 s)
tipdiam 85 72 (143 s) 60 (235 s)
tipfixpoint 196 165 (503 s) 100 (543 s)
sort net 53 0 (0 s) 19 (176 s)
all other 121 9 (38 s) 23 (227 s)

Total 1136 531 (1695 s) 643 (2687 s)

We ran GhostQ on the non-CNF instances from QBFLIB on 2.66 GHz ma-
chine with a timeout of 300 seconds. For comparison we show the results for
CirQit published in [8] (which were conducted on a 2.8 GHz machine with a time-
out of 1200 seconds). (CirQit is not publicly available.) As shown in Table 1,
GhostQ performs better CirQit on every benchmark family except consistency.
The ring and semaphore families consist of prenex instances. The other families
are non-prenex, so our solver took advantage of its ability to perform non-prenex
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Table 3. Comparison between GhostQ and Non-DPLL Solvers

Timeout 60 s Timeout 600 s
Family inst. GhostQ Quantor sKizzo GhostQ AIGsolve
bbox-01x 450 171 130 166 178 173
bbox design 28 19 0 0 22 23
bmc 132 43 106 83 51 30
k 61 42 37 47 51 56
s 10 10 8 8 10 10
tipdiam 85 72 23 35 72 77
tipfixpoint 196 165 8 25 170 133
sort net 53 0 27 1 0 0
all other 121 9 49 31 17 35

Total 1136 531 388 396 571 537

In Tables 1–2, we give the number of instances solved and the time needed to
solve them. (Times shown do not include time spent trying to solve instances
where the solver timed out.) In Table 3, we give the number of instances solved.

game-state learning. During testing of our solver, it was noted that non-prenex
learning was especially helpful on the dme family.5

We compared GhostQ to the state-of-the-art solvers Qube 6.6 [7], Quantor
3.0 [3], and sKizzo 0.8.2 [2]. We ran these solvers on the QBFLIB QBFEVAL
2007 benchmarks [12] on a 2.66 GHz machine, with a time limit of 60 seconds
and a memory limit of 1 GB. The results are shown in Tables 2 and 3. We
also show the results for AIGsolve published in [13], but these numbers are not
directly comparable because they were obtained on a different machine and with
a timeout of 600 seconds.

For the CNF benchmarks, we wrote a script to reverse-engineer the QDIMACS
file to circuit form and convert it to our solver’s input format. (This is similar
to the technique in [13], but we also looked for “if-then-else” gates of the form
g = (x ? y : z).) Of the four other solvers shown in Tables 2 and 3, Qube is
the only other DPLL-based solver, so it is most similar to our solver. Our
experimental results show that GhostQ does better than Qube on the tipdiam
and tipfixpoint families (which concern diameter and fixpoint calculations for
model checking problems on the TIP benchmarks) and on the k family.

The use of ghost literals can help GhostQ in two ways: (1) By treating the
gate literals specially instead of treating them as belonging to the existential
player, we can more readily detect satisfactions and we can learn more powerful
cubes; (2) By using universal ghost literals, we have a more powerful propagation
procedure for the universal input literals. (We did not perform unprenexing on

5 The dme family instances were originally given in prenex form, but we pushed the
quantifiers inward as a preprocessing step. The unprenexing time was about 0.8
seconds per instance and is included in our solver’s total time shown in the table.
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any of the originally-CNF benchmarks, so our use of game-state learning doesn’t
improve performance here.) To further investigate, we turned off downward
propagation of universal ghost literals; on most families the effect was negligible,
but on tipfixpoint we solved only 149 instances instead of 165.

6 Conclusion

In this paper, we have made two contributions. First, we have introduced the
concept of symbolic game states and used this concept to reformulate clause/cube
learning and extend it to the non-prenex case. Using game states, we have also
been able to reformulate the techniques for conflict/satisfaction analysis, BCP,
and non-chronological backtracking. In all cases, we give a unified presentation
which is applicable to both the existential and universal players, instead of using
separate terminology and notation for the two players. Further, game states are
‘well-behaved’ theoretically, in that we no longer need learn and store tautologi-
cal clauses (or contradictory cubes). Our second contribution is introducing the
concept of ghost literals, allowing us to improve upon the propagation technique
introduced in [8] by eliminating the asymmetry between the players so that
the technique can reduce the search space for both the universal and existen-
tial players (instead of only the existential player). Experiments show that our
techniques work particularly well on certain benchmarks related to formal veri-
fication. For future work, it may be worthwhile to investigate whether the ideas
of dynamic partitioning [15] can be extended to allow dynamic unprenexing.
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Abstract. Many state-of-the-art SAT solvers use the VSIDS heuristic to
make branching decisions based on the activity of variables or literals. In
combination with rapid restarts and phase saving this yields a powerful
decision heuristic in practice. However, there are approaches that moti-
vate more in-depth reasoning to guide the search of the SAT solver. But
more reasoning often requires more information and comes along with
more complex data structures. This may sometimes even cause strong
concepts to be inapplicable in practice.

In this paper we present a suitable data structure for the DMRP
approach to overcome the problem above. Moreover, we show how DMRP
can be combined with CDCL solving to be competitive to state-of-the-art
solvers and to even improve on some families of industrial instances.

1 Introduction

Research in satisfiability checking (SAT) has managed to bridge the gap between
theory and practice in many aspects. There are several kinds of real-world prob-
lems that are actually tackled by modelling those problems as SAT instances
like hardware and software verification [21,10], planning [11], automotive prod-
uct configuration [13] and haplotype inference in bioinformatics [15] (cf. [16]).

In the domain of SAT solving there are different schemes and even more
variants of these schemes to decide whether there exists a satisfying assignment
to the variables of a Boolean formula in CNF or if a formula cannot be satisfied by
any assignment. Both experiments and applications show that there is no perfect
SAT solving approach that is suited for all different categories and families of
problem instances. However, conflict-driven solving has proven itself to be very
successful on a wide range of benchmarks. In this paper we study the quite new
DMRP algorithm (decision making with a reference point) [8,9] from a practical
point of view. Moreover, a hybrid approach that combines DMRP and CDCL
solving is presented which is also motivated by experimental evaluations.

The paper is organised as follows: In section 2 we sketch related work in the
domain of CDCL and DMRP solving. Section 3 examines the DMRP approach
from a practical point of view and we introduce a new implementation for this
approach. In section 4 we motivate the combination of CDCL and DMRP to a
new hybrid approach. In section 5 some experimental results are presented.
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2 Related Work

In this chapter two different SAT solving approaches are sketched. The state-of-
the-art conflict-driven solving and the quite recent DMRP approach that oper-
ates on complete assignments. By V(F ) resp. Γ (F ) we state the set of variables
resp. clauses of a formula F (we omit F if evident). A clause consists of literals
li that are variables v or their negations v. The polarity of a literal is true or
false respectively. var(l) indicates the variable of literal l.

Conflict-Driven Solving. Conflict-driven solving with clause learning (CDCL)
is a leading approach and is especially but not only successful for industrial prob-
lems. It is based on the GRASP algorithm [17] which extends the original DPLL
branch-and-bound procedure [5,4] by the idea of learning from conflicting assign-
ments. Moreover, conflicts are analysed to jump over parts of the search space
that would cause further conflicts. There are several improvements to the original
algorithm like the two-watched-literal data structure and the VSIDS (variable
state independent decaying sum) variable selection heuristic [18]. In recent years
further improvements have been achieved by developing different restart strate-
gies like the concept of rapid and adaptive restarts [3,2] and so-called Luby
restarts [14]. In combination with phase-saving [19] frequent restarts constitute
a strong concept especially for industrial SAT instances.

Decision Making with a Reference Point. DMRP is a new SAT solving ap-
proach that was proposed by Goldberg in [8,9]. Even though DMRP uses Boolean
constraint propagation (BCP) with backtracking and learning from conflicting
assignments it is not a simple variant of CDCL. In difference to CDCL solvers
DMRP additionally holds a complete assignment (a so-called reference point).
The algorithm aims for modifying the current reference point P to P ′ in order
to satisfy a clause under consideration. Furthermore, it is crucial that all clauses
being satisfied by P remain satisfied by the modified reference point P ′.

Algorithm 1 gives an overview of the DMRP approach, though this notation
varies in some ways from the original notation in [9]. One invocation of the
DMRP subsolver (line 7 of Algorithm 1) takes a clause and a reference point as
arguments. It may either compute a modification to the reference point or it may
learn the empty clause or else it times out. The latter case causes the surrounding
algorithm to call the DMRP subsolver with another unsatisfied clause.

3 A Closer Look at DMRP

Taking the set of clauses that are not satisfied by a current assignment as basis
for branching decisions requires the solver to know this set of clauses. This could
be realized analogously to how it is implemented in many local search approaches
[20,7] where the solver keeps track of clauses that change their state from ’sat-
isfied’ to ’not satisfied’ and vice versa whenever the value of a variable changes.
However, for any variable v this implies the solver to know all clauses where v
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Algorithm 1. Sketch of the DMRP approach
Require Formula F in CNF with V, Γ the set of variables and clauses, a
reference point P and any two timeout criteria T1, T2

Function solveDMRP(F,P , T1, T2)
M← {C ∈ Γ (F ) | C not satisfied by P} ;
while ¬T1 do

if M = ∅ then return ’Satisfiable’;
6 C ← remove any clause from M ;
7 res← dmrpTryModifyPoint(F \M, C,P , T2) ;

if res = ’Unsatisfiable’ then return ’Unsatisfiable’;
else if res = ’Timeout’ thenM←M∪ {C} ;
else
P ← modify(P , res) ; /* adapt ref. point */

M← {C ∈ Γ | C not satisfied by P} ;

Require (Sub)formula F ′, a clause C that shall be satisfied by modification of
the current point P , and a timeout criteria T

14 Function dmrpTryModifyPoint(F ′ , C,P , T )
D ← {C} Pt ← P ;
while ¬T do

if D = ∅ then return Pt ; /* found valid modification of P */

C ← choose any clause from D ;
l ← l ∈ C | Pt \ {l} ∪ {l} satisfies maximal number of clauses in D ;
< res,Pt >← boolean-constraint-propagation(F ′, l := true,Pt) ;
while res = ’Conflict’ do

22 lemma← analyze-conflict(F ′, res) ;
if lemma = ∅ then return ’Unsatisfiable’;

24 Pt ← backtrack-reset-point(F ′, lemma) ;
25 < res,Pt >← learn-and-propagate(F ′, lemma,Pt) ;

D ← {C ∈ Γ (F ′) | C not satisfied by Pt} ;

return ’Timeout’

resp. v occurs in. Since the two watched literals scheme was introduced [18] most
CDCL based solvers do not maintain complete occurrence-lists of variables.

In this section we present a data structure that allows for a fast computation
of the most frequently required information in the DMRP approach by simulta-
neously avoiding the maintenance of complete occurrence-lists.

3.1 Different States of Variables

In CDCL solvers each variable v can actually have three values: val(v) ∈ {true,
false, unknown}. In general, any variable whose value is known has either been
chosen as decision variable or its value was implied by BCP. To undo decisions
and their implications both types of assignments (decisions and implications)
are placed on a stack (often called trail) in the order they are assigned [6,3].

In the DMRP algorithm we introduce two different kinds of values expressed
by the functions pval and tval: The DMRP algorithm maintains a reference
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point P which is an assignment to all the variables in the formula. Hence, for
any variable v in the formula the reference point P either contains v or its
negation v. For a variable v we refer to its value in P by pval(v) ∈ {true, false}.
The second kind of value tval(v) is used to state a temporary modification of
pval(v). The default of tval(v) ∈ {true, false, ref} is ref which indicates that
the corresponding variable is not affected by the current temporary modification
of P and hence the value given by pval(v) is valid. During the search for a
modification of P to P ′ (line 14 of Algorithm 1) that reduces the set of unsatisfied
clausesM toM′ ⊂M the temporary value tval(v) �= ref hides pval(v) for any
variable v. For any literal l with polarity b the function pval(l) (resp. tval(l))
is true iff pval(var(l)) = b (resp. tval(var(l)) = b) and it is tval(l) = ref iff
tval(var(l)) = ref .

3.2 Clauses Satisfied by the Reference Point

In addition to standard SAT solving the algorithm has to maintain a reference
point P . Obviously, if all clauses Γ are satisfied by P the algorithm has found
a model for the formula. Hence, for the remaining section we assume the set of
clauses M that contains all clauses not satisfied by P to be non-empty.

After any initialisation of P the setM can be computed by simply traversing
Γ . However, whilst the algorithm tries to modify P in order to satisfy more
clauses of M we have to keep track of those clauses in Γ \ M that become
temporarily unsatisfied by a temporarily modified reference point. These clauses
are put onto a stack D which is described further below. The first matter is
how to compute the clauses that become unsatisfied by a modification of the
reference point.

Similar to the concept of watched literals [18] for each clause C in Γ \M we
choose one literal l ∈ P to take on responsibility for C regarding its satisfiability
by the current reference point P . By definition for any clause in Γ \ M at
least one such literal l ∈ C has to exist with pval(l) = true. We say a literal l is
responsible for a set of clauses R(l). Whenever the value of a variable v := var(l)
changes from tval(v) = ref to ¬pval(v) all clauses in R(l) have to be traversed.
For each clause C ∈ R(l) a new literal from the current (modified) reference
point has to be found that takes on responsibility for C.

Note that - in addition to the responsibilities regarding the reference point -
there are also two literals per clause that watch this clause in the sense of the
usual two-watched-literal scheme [18]. This is necessary to notice whenever a
temporary modification (tval) generates a unit clause or completely unsatisfies
a clause. Let the set of clauses that are watched by a literal l be W (l). We
examine this in more detail now.

Whenever the value of a variable is changed whilst searching for a modified
reference point P ′ (tval is changed) we have to take care of W (l) and R(l) of
the corresponding literal l that became false under tval. When examining W (l)
the usual three cases may happen for any affected clause C that is watched by l
and any other literal lw ∈ C. For these cases only the values of tval act a part:
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W.1 Another literal lj ∈ {C \ lw} with tval(lj) �= false can watch C.
W.2 There is no other literal in {C \ lw} that is not false. Hence tval(lw) has

to be set to true to satisfy C.
W.3 If in the second case above tval(lw) is already set to false a conflict-

ing assignment is generated and the algorithm jumps back to resolve the
conflict.

The following update is done after the list W (l) was examined successfully:

R.1 If tval(l) equals pval(l) nothing has to be done.
R.2 tval(l) differs from pval(l) and another literal in C can be found to take

responsibility for C. This might be any literal lj ∈ C for which it is
tval(lj) = ref and pval(lj) = true. In that case C is removed from R(l)
and put into R(lj). Or we might find a literal with tval(lj) = true. In
that case C remains in R(l) since tval(lj) was obviously assigned before
the current modification of l in the reference point.

R.3 tval(l) differs from pval(l) but no other literal ∈ C satisfies C under
the current temporary point. In that case C is put on the stack D that
keeps track of all clauses that are not satisfied by the current temporary
reference point. Note that since W (l) was examined first there are at least
two literals li, lj ∈ C for which tval(li) = tval(lj) = ref and pval(li) =
pval(lj) = false. If this did not hold one of the cases W.2, W.3 or R.2
would apply.

Note that this implementation (sketched in Algorithm 2) allows for backtracking
without any updates of the sets R(l) of any literal l. The responsibility list1R(l)
only has to be examined when tval of a variable changes from ref to true or
false not for the opposite case. Moreover, the data structure is sound in the
sense that no clause that becomes unsatisfied by P will be missed.

3.3 Keeping Track of Temporarily Unsatisfied Clauses

While trying to modify a reference point P to P ′ to reduce the setM of clauses
that are unsatisfied by P to M′ ⊂ M a data structure D is used to store
those clauses that are unsatisfied by any temporary reference point Pt. In the
subsection above we described when clauses are added to D. The data structure
D has to meet three main demands:

– Clauses that are not satisfied by the current point Pt have to be found in
reasonable time without having to traverse the clause’s literals at each look-
up in the data structure.

– Backjumping over parts of the temporary modification (due to a conflict -
see case W.3) has to be very fast with least possible overhead to update D.

1 For any literal l the list R(l) is only meaningful if pval(l) = true. To save memory,
responsibility lists can be associated with variables in practice.
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Algorithm 2. Update data structure when the value of a variable changed
Require A variable v ∈ V where tval(v) was changed from ref to
b ∈ {true, false}. Let lc be the literal of v with tval(lc) = false.
Function onChangeOfVariableTVal(v)

forall C ∈ W (lc) do
lw ← other watcher of C (lw �= lc) ;
if tval(lw) = true then continue;
if ∃ ln ∈ C : tval(ln) �= false ∧ ln �= lw then

W (lc)←W (lc) \ {C}; W (ln)←W (ln) ∪ {C}
else if tval(lw) = false then return ’conflict’;
else tval(lw)← true; ; /* usual two watched literal scheme */

if tval(v) = pval(v) then return ’ok’ ; /* R.1 */

forall C ∈ R(lc) do
if ∃ l0 ∈ C : tval(l0) = ref ∧ pval(l0) = true then

R(lc)← R(lc) \ {C}; R(l0)← R(l0) ∪ {C} ; /* R.2.1 */

else if ∃ l0 ∈ C : tval(l0) = true then continue ; /* R.2.2 */

else push C at D ; /* R.3 */

– When a temporarily unsatisfied clause C is chosen from D by the decision
procedure the set ΛC = {l ∈ C : tval(l) = ref} contains those literals
whose value in Pt may possibly be modified to satisfy C (as stated in case
R.3 above it is |ΛC | ≥ 2). Our data structure has to support finding that
literal of ΛC which satisfies the most clauses in D.

Fast Backjumping. The main data structure is depicted in Figure 1. Since the
second issue above is fundamental we use a stack to realise D which has one entry
pL for each decision level. Each entry itself basically points to a set of clauses L
that became unsatisfied by the current point Pt at this level. In addition each
L has a flag that indicates if the referred clauses still have to be considered
to belong to D. This allows for very fast backjumping: For each level we jump
back the according flag in L is set to false, the set of clauses in L is deleted
and pL is popped from the stack. This means a negligible overhead compared to
backjumping in CDCL solving. Note, that an entry pL which is removed from
the stack does not destroy the corresponding set L which allows other data still
to refer to L. These invalid references may be updated lazily later on. Another
important advantage of this implementation will become evident further below.

Finding clauses not satisfied by Pt. To find those clauses in D that still
have to be satisfied by further modifications of the current point Pt the clause
sets L that are referred by entries pL of the stack have to be traversed. Let this
procedure be called findUnsat(D). We do not remove any satisfied clause C from
any set L that is still flagged to be valid since this would require to put such
clauses back into L whenever the satisfying modification to C is undone. Instead,
we additionally cache a literal for each clause in L as a kind of representative.
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Fig. 1. Basic data structure to represent D

Thus any entry in L (besides the flag) is an element LC which itself consists of
a clause C and one representative literal l ∈ C. When a clause C in a set L is
found to be satisfied by a temporary point Pt the representative literal l is set
to that one which actually satisfies this clause (tval(l) = true).

When searching for unsatisfied clauses in D we first check the state of the
representative literal before the entire clause is checked. On the one hand this
guarantees that a satisfied clause is not checked twice unless a modification
makes this necessary. On the other hand significant changes of Pt to the satisfi-
ability state of any clause are not missed. The latter issue would require extra
maintenance if only Boolean flags were used to mark satisfied clauses. To find
clauses in D that are still unsatisfied by the current point Pt we traverse the
stack from its top2 to its bottom. This prefers the most recently added clauses.
The first clause that is found to be unsatisfied by Pt is taken as basis for the
next branching decision.

Computation of the MakeCount of variables. Given a clause C∗ that is
unsatisfied under the current point Pt the algorithm has to find that literal of
ΛC∗ = {l ∈ C∗ : tval(l) = ref} which satisfies most clauses in D (or optionally
D ∪M) when its value in Pt is changed. To compute this so-called MakeCount
of a variable we use another data structure that interplays with the above one.
This data structure allows for lazy computation of the MakeCount of a variable
and is basically organised as follows:

Each variable v that is not yet affected by the temporary modification of
the reference point Pt (tval(v) = ref) is associated with a list Ωv of elements
M . Each element represents a clause in D that can be satisfied by flipping the
current value of v in the point Pt. Due to the laziness of the data structure it
might be that an element M is out of date. More precisely (see Figure 2) each
element M (representing a clause C) in a list of variable v consists of two fields:

The first field references the set L of clauses in which C is contained. The
second field is an index into L that indicates the particular clause C (i.e. the
according element LC) that can be satisfied by flipping the value of v in Pt.

2 An index into D can be cached such that search only starts from the top of D if a
conflict occurred at the previous decision.
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Fig. 2. Computation of the MakeCount of variables

Whenever case R.3 from above applies for a clause C a pointer to C and any
representing literal are wrapped into an object LC. This data is appended to
the set of clauses L which is referenced from the topmost entry on the stack D.
At this point we also add an entry M to the Make-lists (Ωv) of all variables v of
ΛC = {l ∈ C : tval(l) = ref}. We take a closer look at the different cases when
computing the valid MakeCount from the possibly out-of-date information:

– It might be that an element M refers to a clause that has already been
removed from D. In that case the flag of the structure L referenced by M
has been invalidated during backtracking. Hence, this case can be realised
immediately and M can also be deleted from the list.

– We can assume now that the clause C indirectly referenced by M is still
contained in D. Let us assume for now that C is already satisfied by a
further modification of the point Pt. Recall, that what we actually get from
M is a reference to LC - the clause C and a representing literal l of C. We
can distinguish between two cases:
• C might have been already considered by the procedure findUnsat(D) to

find unsatisfied clauses in D as described above. In that case findUnsat()
has changed the representative literal l such that by checking the value
(tval) of l in Pt we know that C is satisfied and we are done.
• If C was not considered by findUnsat(D) yet, the satisfiability state of

the clause has to be computed by checking its literals. Given that C is
satisfiable under Pt a literal that satisfies C will be found and will be
made the representative literal for this clause in LC. This allows for fast
detection of the satisfiability of C later on and will relieve findUnsat(D)
from checking all literals of C. The representing literal guarantees that
for each temporary point Pt there is at most one traversal through all
literals of a clause to recognise that this clause is satisfied by Pt.

– In case C is not satisfied by the current point Pt this is recognised by a check
of all literals in C.

The realisation of the set D and the data structure to compute MakeCounts of
variables follows the concept of lazy data structures and avoids to store complete
occurrence lists for literals. MakeCount lists do not require any update operation
on backjumping. Even though indices in M become undefined when the referred
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set L is cleared during backjumping, this is not problematic since an index is
only used after L is asserted to be still valid by its flag.

The size of a list Ωv of a variable v gives an upper bound Ω̂v on the valid
MakeCount of v. Hence, to determine the variable with maximum MakeCount of
a clause, the variables are traversed in descending order regarding Ω̂. This allows
for early termination when Ω̂ becomes smaller than the actual valid maximum
MakeCount.

3.4 Learning

Two aspects that have to be considered for the realisation of the DMRP approach
are related to learning (Algorithm 1, line 22 ) as mentioned in case W.3:

Whenever a unit clause C = (l) is learned the algorithm jumps back to deci-
sion level 0, assigns l to be true and propagates all implications of this assign-
ment. This also requires a modification of the current reference point P to P ′

with a difference to previously described modifications: The set of clauses M′

unsatisfied by P ′ does not necessarily have to be a subset of M – the set of
clauses unsatisfied by the previous reference point P .

Secondly, for any learned lemma that is generated when a conflict is analysed
the data structure has to be updated properly. We use the following property.

Property: Any lemma generated by the function analyze-conflict in line 22 of
Algorithm 1 contains at least one literal l with l ∈ P (pval(l) = true) regarding
the current valid reference point P . In other words: No generated lemma extends3

the current set M.

Proof: We prove this property by the construction of learned lemmata. The
surrounding function dmrpTryModifyPoint (lines 7, 14 of Algorithm 1) only con-
siders clauses in Γ \M∪C where a modification of P is wanted that additionally
satisfies C. Since C is always the base for the decision at the first decision level
any temporary point Pt �= P will always satisfy C during one execution of dm-
rpTryModifyPoint. Hence, C can never be an assign-reason to an assignment of
a variable, since assign-reasons are clauses that become unit during the search.
Thus, all assign-reasons are clauses from the set Γ \M that, by definition, are
satisfied by at least one literal ∈ P .

Running into a conflict means that for a clause C0 (conflicting clause) all
literals are set to false. The lemma λ∗ is generated by recursively resolving
out variables (that were no decisions) from the conflicting clause by using the
according assign-reasons. C0 can be seen as the first version (λ0) of the generated
lemma λ∗. Given that C0 ∈ Γ \ M one of the literals of λ0 is in P . Let l∗ be
one literal ∈ λi with l∗ ∈ P (pval(l∗) = true). If any literal l′ �= l∗ is resolved
out from λi the resolvent λi+1 still contains literal l∗. If on the other hand l∗ is
resolved out by the use of its assign reason C∗, clause C∗ has to contain literal l∗.
Since C∗ ∈ Γ \M it also has to contain a literal l� ∈ P . Moreover, with l∗ ∈ P
it is l� �= l∗ and the new resolvent λi+1 contains literal l� ∈ P . By induction the
final lemma contains at least one literal that is in P . ��
3 Note the difference that generated lemmata always extend the formula.
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For any generated lemma λ∗ we chose that literal l ∈ P ∩λ∗ which was assigned
at the highest decision level d (most recently). By the above property at least
one such literal l has to exist. Literal l takes on responsibility for λ∗: R(l) ←
R(l) ∪ {λ∗}. The functions in lines 24 and 25 of Algorithm 1 determine a new
point Pt. If l /∈ Pt the lemma λ∗ is also appended to the list L that is referred by
the stack D for decision level d and considered for the MakeCounts as described
in the previous section 3.3. These two actions guarantee a proper update of the
entire data structure and no more special treatments are needed.

4 Combining DMRP and CDCL to a Hybrid Solver

In Algorithm 1 we assume the initial reference point to be given from outside. In
the original paper [9] reference points are chosen at random and are then tried
to modify by a call to function solveDMRP. In case no result can be computed
within a certain amount of time (i.e. number of conflicts) solveDMRP will be
invoked with a new initial point. This is similar to local search restarts but
with the difference that the DMRP algorithm itself carefully reasons on how to
modify a reference point. However, the choices of initial points are crucial for
the algorithm as presented in section 5.

As mentioned in section 2 CDCL solvers perform restarts quite frequently.
At a restart activity values of variables or literals are kept and also a subset
of the learned clauses is carried along for the next start. However, the current
partial assignment (all literals in the trail) is almost completely rejected, even
though phase saving keeps some information. This motivates a hybrid approach
that reasonably alternates the CDCL and the DMRP algorithms. The DMRP
approach offers a suitable possibility to take a closer look at the drawback of
a partial assignment before it is rejected. It may focus on the not yet satisfied
clauses.

Our recent implementation that is shown in Algorithm 3 combines both ap-
proaches by the use of the Luby et al. restart strategy [14] which proved itself
successful in both theory and practice. The Luby strategy assumes that the al-
gorithm does not have any external information and does not know when it is
best to perform a restart. In that case the available computation time is shared
almost equally among different restart strategies [14]. The function maxConflict-
Count in Algorithm 3 returns the number of conflicts for the next run due to the
Luby strategy. That is the product of a constant factor f and the next number
of the sequence (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, . . .) (see [14] for details).

The function chooseAlgo decides on which algorithm to use for the next run.
On average we achieved the best results when running the DMRP algorithm
exactly for the smallest conflict limit (when cl = f).

Since the DMRP algorithm requires a reference point i.e. an assignment to
all variables the last partial assignment of the CDCL solver has to be extended
to a complete assignment (extendPartialAssignmToRefPoint). This is done by
continuing the previous CDCL search with the last partial assignment. However,
within this execution only binary clauses are considered during search until all
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Algorithm 3. The hybrid approach
Require Formula F in CNF with V, Γ the set of variables and clauses
Function solveHybrid(F )

last← ’CDCL’ res← ’Unknown’ ;
while res = ’Unknown’ do

cl ← maxConflictCount() ; /* Use Luby strategy */

algo← chooseAlgo(cl) ; /* Apply CDCL or DMRP ? */

if algo = ’DMRP’ then
if last = ’CDCL’ then

< res,P >← extendPartialAssignmToRefPoint() ;
if res = ’Unsatisfiable’ then return res;

res← solveDMRP(F,P , cl, cl);

else res← solveCDCL(F, cl);
last← algo ;

return res;

variables are assigned a value. This assignment constitutes the initial reference
point for the DMRP algorithm. In this phase the solver may also realise that
the formula is unsatisfiable. For the case the partial assignment is empty (at
algorithm start) this function simply computes a reference point that satisfies
all binary clauses. Taking care of binary clauses at first is also motivated by
the work in [22] and [1] where the idea to primarily focus on binary clauses has
also improved solving for some families of instances. This also guarantees an
additional invariant for our data structure that a binary clause can neither be
contained in the set M nor in the delta stack D (resp. its elements).

Some Adaptions for the Hybrid Approach

In addition to standard CDCL solving each clause of the formula is assigned an
activity value initialised to zero at the beginning. Whenever a clause is involved
in a conflict (i.e. it is used for resolution during the generation of a lemma)
its activity value is increased. In some solvers (for instance [6]) this technique
is common for learned clauses to clear the clause database of inactive learned
clauses periodically. Our hybrid solver maintains an activity value for every
clause.

This activity value of a clause is taken into account when the next clause from
set M has to be chosen (line 6 of Algorithm 1) to be handled by the function
dmrpTryModifyPoint. We always choose the clause with the highest activity
value for the next attempt to modify the current reference point. However, if the
call to dmrpTryModifyPoint times out or for two subsequent calls to solveDMRP
the next clause with the second highest activity value is chosen.

In contrast to the original DMRP algorithm the conflict limit (timeout) for
the function solveDMRP depends on the success of its subroutine dmrpTryModi-
fyPoint in line 7 of Algorithm 1. If the current reference point could be improved
the initial conflict limit is reset.
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The solver also differs in the computation of the MakeCount of a variable. For
the MakeCount one can count only the clauses currently in D to get the most
local improvement or all clauses in D ∪M can be considered to make decisions
more globally. For variables that have the same MakeCount ties can be broken
in favour of different issues which is explained in more detail in the next section.

5 Experiments and Evaluation

For the evaluation presented in this section we have run our solver for all in-
dustrial (application) instances of the SAT competitions resp. SAT Races of the
years 2006 - 2009 that add up to 564 non-trivial4 instances. Each instance is
preprocessed in advance and the timeout for the solvers was set to 1200 seconds.
As a reference and also to check results we have run our CDCL solver using the
Luby restart strategy (without DMRP) and MiniSAT 2.0 [6].

Figure 3 shows the results of different configurations of the hybrid approach.
Furthermore, there are results that show performance of a pure DMRP solver.
The presented configurations differ in the following issues that are related to
decision making: As mentioned above the MakeCount may consider all clauses
in D ∪M (global) or only clauses in D (local). If two variables have the same
MakeCount ties are broken in favour of the variable v that:

(Act) has the highest activity value similar to the VSIDS heuristic [18].
(BC) has the smallest set R(v). This can be seen as a simple approximation

of the BreakCount of the variable. In difference to the MakeCount the
BreakCount of a variable v states the number of clauses that become
unsatisfied by a flip of the value of variable v.

(DC) was chosen least often for DMRP decisions. This avoids flipping always
the same variables back and forth in different calls to solveDMRP.

The left plot of Figure 3 shows clearly that pure DMRP solving could not com-
pete with CDCL solving. Both pure DMRP configurations (global and local
MakeCount) solve around 224 of 564 instances within 1200 seconds. Initial ref-
erence points are always chosen at random. Timeouts for the analysis of one
reference point (one call to solveDMRP) are changed according to the Luby se-
quence. Modifying the strategy on how to choose initial reference points showed
quite some impact. Our assumption was that DMRP requires a better guidance
on where to start search and how to choose its initial reference points. That
motivates our hybrid approach where DMRP gets its initial reference points
indirectly from the CDCL solver. As the plots show this clearly improves the
performance of the solver.

A previous version of our hybrid approach [12] has taken part in the SAT com-
petition 2009. That version mainly differs from the presented one regarding the
restart strategy and the choice of when to perform DMRP resp. CDCL solving. It
also implemented a more extensive solving of particular subsets of clauses which

4 Instances that are not solved by preprocessing.
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Fig. 3. The left plot compares DMRP, CDCL and our hybrid approach on 564 in-
dustrial benchmarks. The right plot compares CDCL and the hybrid approach on 51
instances from hardware verification. A point (x, y) states that x instances were solved
within y sec. by that solver. Legends are ordered regarding the number of solved in-
stances after 1200 seconds. Using local (resp. global) MakeCount and smaller decision
count (resp. Activity or BreakCount) to break ties is indicated by [local MC > DC].

is only done for binary clauses in this improved approach. However, the results
indicate that the older version did not utilize the DMRP approach in a sufficient
way. Compared to MiniSAT 2.0 our hybrid approach also performs much better.
Admittedly, this is not only due to the hybridisation with DMRP. This version of
MiniSAT does neither use the Luby restart strategy nor phase saving. However,
the hybrid approach also clearly outperforms our CDCL implementation with
Luby restarts and phase saving.

The hybrid configuration where the MakeCount is computed locally outper-
formes the other configurations. It is interesting to notice that using the activity
of variables to break ties does not achieve the best results. It turns out that it
is better to prefer variables that were flipped least often at the current call of
solveDMRP.

The right plot of Figure 3 compares pure CDCL with the hybrid approach
on the 51 “Velev” instances of last years SAT competitions. For these instances
that stem from the domain of hardware verification the hybrid approach clearly
outperforms pure CDCL by solving 8 more instances.

Even though the hybrid implementation beats our pure CDCL solver on the
entire benchmark set it turns out that for the most instances solved by the
hybrid solver the answer was given by the CDCL part. Only about 6% were
finally solved by the DMRP subsolver. Moreover, the improvement due to the
hybridisation was mainly for unsatisfiable instances (17 more unsat results).

Our conjecture about this phenomenon is that DMRP generates some impor-
tant lemmata: When the CDCL solver reaches the (current) maximum number
of conflicts it delivers work to the DMRP solver. DMRP starts with an extension
R of the last partial assignment P of the CDCL solver and hence focuses on a
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nearby part of the search space. When analysing this part it purposely examines
clausesM that are not satisfied by R. In CDCL these clauses inM could likely
become conflicting clauses if decisions were made similar to the values in R.
Up to a certain point phase saving would do this after a normal CDCL restart.
However, DMRP immediately considers clauses inM for search and resolution.

6 Conclusion

In this paper we have presented a data structure to implement the DMRP ap-
proach in an efficient way. Similar to the two-watched-literals scheme we choose
one literal for each clause. The literal takes on responsibility so that a clause
which is satisfied by a reference point is also satisfied by a modification of the
point. Moreover, we present a way how to determine that variable which satisfies
the most previously unsatisfied clauses when its value is flipped (MakeCount).
Based on this implementation we motivate a hybrid SAT solver that combines
CDCL and DMRP solving. Experiments have shown that our hybrid approach
is competetive to the highly optimised state-of-the-art CDCL solvers and that
the maintenance of complete assignments may definitely turn to account.

References

1. Bacchus, F.: Exploring the computational tradeoff of more reasoning and less
searching. In: SAT 2002, pp. 7–16 (2002)

2. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
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Abstract. Many search-based QBF solvers implementing the DPLL al-
gorithm for QBF (QDPLL) process formulae in prenex conjunctive nor-
mal form (PCNF). The quantifier prefix of PCNFs often results in strong
variable dependencies which can influence solver performance negatively.
A common approach to overcome this problem is to reconstruct quanti-
fier structure e.g. by quantifier trees. Dependency schemes are a gener-
alization of quantifier trees in the sense that more general dependency
graphs can be obtained. So far, dependency graphs have not been ap-
plied in QBF solving. In this work we consider the problem of efficiently
integrating dependency graphs in QDPLL. Thereby we generalize re-
lated work on integrating quantifier trees. By analyzing the core parts of
QDPLL, we report on modifications necessary to profit from general de-
pendency graphs. In comprehensive experiments we show that QDPLL
using a particular dependency graph, despite of increased overhead, out-
performs classical QDPLL relying on quantifier prefixes of PCNFs.

1 Introduction

The satisfiability problem of quantified boolean formulae (QBF) is the canon-
ical PSPACE-complete decision problem. QBF often allows many practically
relevant-problems from the domains of model checking or automated planning
to be encoded succinctly. As propositional logic (SAT), which is widely applied
for modelling NP-complete problems in practice, QBF requires efficient and scal-
able decision procedures to be accepted for practical application.

Many QBF solvers process formulae in prenex conjunctive normal form
(PCNF), hence QBF encodings of problems have to be converted into PCNF
first. Such conversion often comes with a loss of structural properties of the
original formula. This can influence solver performance negatively.

Structure can be partially recovered to tackle this problem. A special case
in this respect is the analysis of quantifier structure in QBFs, either before
[8,16] or after [2] conversion to PCNF. Such approaches allow a QBF solver to
overcome the restrictions of linear quantifier prefixes in PCNFs to some extent.
This applies to search- and elimination-based solvers, e.g. [4,7,12,19,20,28,32].

Exploiting tree-shaped quantifier structure is well-known and has been applied
in different contexts. This can be achieved either by reconstructing quantifier
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trees from PCNFs [2], which is closely related to minimizing quantifier scopes
by miniscoping [1], or by analyzing tree structure present in non-PCNF formulae
as e.g. in [8,16]. The latter corresponds to directly considering the parse tree of
a formula and can be integrated in non-PCNF solvers such as [9,18,28].

Dependency schemes [30] based on [4,5], which are relations over variables,
can be regarded as a generalization of tree-shaped quantifier structure. Given a
dependency scheme D, a variable x is associated with all the variables y that
“depend” on x with respect to D. Informally, if y depends on x, i.e. y ∈ D(x),
then the result obtained from assigning y before x in a search-based solver may
not be sound in general. Quantifier prefixes of PCNFs as well as quantifier trees
fit into that framework since dependency schemes can be obtained from the prefix
or the tree, respectively. Sophisticated dependency schemes were introduced in
[30], all of which can be computed efficiently by syntactically analyzing PCNFs.

1.1 From Quantifier Trees to Dependency Graphs

A well-known drawback when reconstructing quantifier trees in PCNFs is non-
determinism [2,8,9,16]. This is related to preferring some variable over another,
which can result in different trees and hence in different sets of dependencies.

E
b

E

a

E

c

A

x

E

A

y

d

E

A

E

E

A

E

c

x

a

b

y

d

Fig. 1. Quantifier trees for the PCNF ∃a, b∀x, y∃c, d. (a∨b)∧(a∨x∨c)∧(b∨c)∧(b∨y∨d).
Minimizing the scope of ∃a in the left tree yields the tree on the right. See also Ex. 1.

Example 1. Consider the PCNF ∃a, b∀x, y∃c, d. (a ∨ b) ∧ (a ∨ x ∨ c) ∧ (b ∨ c) ∧
(b∨y∨d). Minimizing the scopes of ∃c, ∃d, ∀x and ∀y is deterministic and yields
∃a, b.(a ∨ b) ∧ (∀x∃c.(a ∨ x ∨ c) ∧ (b ∨ c)) ∧ (∀y∃d.(b ∨ y ∨ d)). Now there is the
non-deterministic choice of whether to first minimize ∃a and then ∃b (right tree
in Fig. 1) or vice versa (left tree in Fig. 1). Note that the left tree induces a
dependency between a and y which is not the case in the right tree. Further, the
left tree can be transformed into the tree on the right by first swapping ∃a and
∃b according to the rule ∃a∃b.φ ≡ ∃b∃a.φ and then minimizing ∃a.

In addition to the problem described in Ex. 1, analyzing tree-shaped quanti-
fier structure in general is not optimal among syntactic methods for structure
analysis. This applies to reconstructed quantifier trees as well as considering tree-
shaped structure present in non-PCNFs. For example, the standard dependency
scheme Dstd [30] is superior to tree-based approaches since it is deterministic
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and yields less dependencies.1 This was pointed out in Ex. 2 in [24]. Dstd can be
efficiently constructed by analyzing connections between variables over clauses.

For those reasons and given the drawbacks of tree-shaped quantifier struc-
ture, we suggest to apply the more general concept of dependency schemes for
analyzing quantifier structure in PCNFs. Similar to quantifier trees, which have
already been implemented in QBF solvers, we apply directed acyclic dependency
graphs (DAGs) in QBF solving. This generalizes quantifier trees. Dependency
DAGs can be obtained from dependency schemes such as the ones introduced
in [30]. When integrating dependency DAGs in QBF solvers, the drawbacks of
tree-shaped quantifier structure as pointed out above can be overcome.

The core parts of our work presented here are as follows. We focus on search-
based QBF solvers for PCNF which implement the DPLL algorithm for QBF [7]
(QDPLL) with learning like [12,32,33]. By considering the main parts of QDPLL
such as boolean constraint propagation, decision making or learning, we show
how to integrate dependency DAGs into QDPLL in order to profit from depen-
dency schemes in practice (Sec. 3 and 4). This analysis is closely related to [16]
which aims at exploiting tree-based quantifier structure in QDPLL. Our work
generalizes observations made in [16] to arbitrary dependency schemes. Further
we address implementation-related issues indispensable for practical efficiency of
dependency DAGs. Although we focus on PCNF and QDPLL, our results are,
just as quantifier trees, relevant for any QBF solver.

We provide a comprehensive experimental evaluation (Sec. 5) of dependency
DAGs in practice. For this purpose we have implemented QDPLL with learning
in a new QBF solver DepQBF [23] which tightly integrates dependency DAGs.
We analyze the costs of moving from relatively simple structures like linear
quantifier prefixes of PCNFs or trees to more general dependency DAGs. This
is closely related to practical applicability. Finally, we evaluate dynamic effects
on QDPLL when using dependency DAGs for different dependency schemes.

In DepQBF we implemented a common framework for dependency DAGs
which can represent linear quantifier prefixes and trees as well, thus enabling
us to compare these approaches. Apart from that, we have implemented Dstd

as suggested in [30]. The remarks on how to profit from dependency schemes in
QDPLL (Sec. 4) are general and hold independently from our implementation.

We show in experiments (Sec. 5) that, despite increased overhead, QDPLL
with a DAG representation of Dstd outperforms QDPLL relying on quantifier
prefixes and trees. Our results indicate the potential of using dependency schemes
in QDPLL in terms of more powerful rules for detecting unit literals and learning.

2 Preliminaries

For a set of propositional variables V , a literal is either a variable x ∈ V or its
negation ¬x where v(x) = x and v(¬x) = x denotes the variable of a literal. A
clause (cube) is a disjunction (conjunction) over literals. A propositional formula
1 Note that here we ignore variable polarities in dependency analysis. Otherwise, quan-

tifier trees would have to be compared to the polarity-aware triangle scheme D� [30].
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is in conjunctive normal form (CNF) if it consists of a conjunction over clauses. A
quantified boolean formula (QBF) F = S1 . . . Sn. φ in prenex conjunctive normal
form (PCNF) consists of a propositional formula φ in CNF over a set of variables
V and a quantifier prefix S1 . . . Sn. The quantifier prefix is a linearly ordered set
of scopes Si forming a partition on V . A scope Si is existential (q(Si) = ∃) if it
is associated with an existential quantifier and universal (q(Si) = ∀) otherwise.
For scopes Si and Si+1, q(Si) �= q(Si+1) for 1 ≤ i < n. The set of existential
and universal variables is denoted by V∃ =

⋃
Si for q(Si) = ∃ and V∀ =

⋃
Si

for q(Si) = ∀. For a literal x with v(x) ∈ Si, q(x) = q(Si) is the type of x. For a
clause (cube) C and Q ∈ {∀, ∃}, LQ(C) := {l ∈ C | q(l) = Q}. For literals l, k
with v(l) ∈ Si and v(k) ∈ Sj , l ≤ k if, and only if i ≤ j for 1 ≤ i, j ≤ n.

3 Dependency Schemes in Theory

Due to space limitations, we introduce dependency schemes only informally and
refer to the original definition in [30]. As we focus on QDPLL with learning
[12,22,32,33] (see Sec. 4.1), we confine the theoretical framework in that respect.

Definition 1. For a PCNF F , a dependency scheme is a relation D ⊆ ((V∃ ×
V∀)∪(V∀×V∃)) with the following property when applied in QDPLL: for variables
x and y with y �∈ D(x), the result of QDPLL when assigning y before x will be
sound. The inverse of D is D := {(y, x) | (x, y) ∈ D}.
Def. 1 is related to the semantical evaluation of a QBF by QDPLL and corre-
sponds to cumulative dependency schemes as defined in [30], which guarantees
soundness of assigning y before x if y �∈ D(x). It is based on independence
(y �∈ D(x)), rather than dependence (y ∈ D(x)). In practice, independence be-
tween x and y with respect to D allows y to be assigned earlier. Consequently, if
y ∈ D(x) then the result of QDPLL when assigning y before x as a decision vari-
able is not sound in general2. At the same time it is not always unsound. This
is due to different amounts of independence identified by different dependency
schemes. For a PCNF there could be dependency schemes D and D′ such that
y ∈ D′(x) but y �∈ D(x). Hence dependency schemes can be compared according
to the amount independence.

Definition 2. For a PCNF F and dependency schemes D and D′, D is less
restrictive if, and only if |D| ⊆ |D′|.
Example 2. For the QBF from Ex. 1, let Dtriv be the trivial dependency scheme
obtained from the prefix of F : y ∈ Dtriv(x) if, and only if q(x) �= q(y) and x ≤ y.
Let Dtree be obtained from the left tree in Fig. 1: y ∈ Dtree(x) if, and only if
q(x) �= q(y) and y is a successor of x in the tree. Then Dtree is less restrictive
than Dtriv since Dtree ⊆ Dtriv. For example, d ∈ Dtriv(x) but d �∈ Dtree(x).

A dependency scheme induces a partial order on the set of variables V which
can be represented as a directed acyclic graph (DAG) over V .
2 Assignments by unit and pure literals [7] are always sound independently from D.
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Definition 3. Given a dependency scheme D, the dependency graph for D is
a DAG G(D) with vertices V and edges E := {(x, y) | y ∈ D(x)}.

4 Dependency Schemes in QDPLL

Many implementations of QDPLL rely on the quantifier prefixes of PCNFs,
which corresponds to Dtriv as defined in Ex. 2. In this section we analyze the
core parts of QDPLL. We point out how to modify those parts in order to profit
from less restrictive dependency schemes other than Dtriv in QDPLL. In our
analysis, we generalize observations from using quantifier trees in QDPLL [16].
Our results are independent from a particular dependency scheme (Def. 1).

In the following, let D be an arbitrary dependency scheme for a PCNF. For
literals x, y, we write x ≺ y if v(y) ∈ D(v(x)). G denotes the dependency graph
for D. D is integrated into QDPLL by means of G, which is used to check if
x ≺ y. This corresponds to checking if there is an edge (x, y) in G. However,
D has O(V 2) elements and storing all edges of G can be prohibitive. Instead,
transitive edges are discarded and variables are merged into equivalence classes.
Checking x ≺ y is done by checking successor relation between x and y in G. As
shown (Sec. 5), these optimizations are indispensable for efficiency in practice.

4.1 QDPLL with Learning

We briefly introduce QDPLL with conflict-driven clause and solution-driven cube
learning based on [33]. For a PCNF S1 . . . Sn. φ, an additional disjunction ψ over
learnt cubes is stored: S1 . . . Sn. (φ∨ψ), also called augmented CNF. Fig. 2 shows
a high-level view. Clauses and cubes (constraints) are derived by clause resolu-
tions [6] and cube resolutions [13,22,33] (constraint resolutions). Cube “resolu-
tion” is actually consensus. Different from [32,33] we do not consider to learn
constraints containing complementary literals and rather follow the algorithms
from [15]. Further details can also be found in e.g. [13,22].

The core of algorithm qdpll in Fig. 2 is propagation of implications (unit and
pure literals) which is carried out in bcp until saturation. If neither a conflicting
(conflict), nor a satisfying assignment (solution) was found, i.e. the formula state
is undefined under the current assignment, then a variable x is assigned as next
decision in select dec var. Decisions are numbered ascendingly by decision
levels dl(x), starting at 1. Having assigned x as decision, all implications y are
propagated by bcp again, where dl (y) := dl(x).

Otherwise the solver has either derived a conflict or a solution. This situation
corresponds to a leaf in the search tree enumerated by QDPLL. For conflicts the
formula contains an empty clause (see Def. 5) returned by get initial reason
in analyze leaf. By means of successive clause resolutions, the backtrack level
and a learnt clause (called asserting clause, see Def. 8) containing a forced literal
are computed which is unit at the backtrack level (also called asserting level).
We assume that qdpll learns asserting clauses only. The current clause R is
resolved (constraint res) with the antecedent clause (get antecedent) of an
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existential unit literal (get pivot) in R. The antecedent clause is the clause
where that literal became unit. If R is asserting then resolution stops (stop res).

For handling solutions, get initial reason either returns a satisfied learnt
cube (see Def. 5) already present in the cube set ψ of the formula or a new one
generated from the current assignment. Dually to clauses, an asserting cube is
learnt by cube resolutions using antecedent cubes of universal unit literals.

After backtracking and unassigning variables (backtrack), the forced literal
is assigned as unit at the backtrack level and the learnt constraint is added to the
formula. Again bcp propagates all implications. If an empty clause or satisfied
cube is derived by resolutions then qdpll terminates (btlevel == INVALID).

State qdpll ()

while (true)

State s = bcp ();

if (s == UNDEF)

// Make decision.

v = select_dec_var ();

assign_dec_var (v);

else

// Conflict or solution.

// s == UNSAT or s == SAT.

btlevel = analyze_leaf (s);

if (btlevel == INVALID)

return s;

else

backtrack (btlevel);

DecLevel analyze_leaf (State s)

R = get_initial_reason (s);

// s == UNSAT: ’R’ is empty clause.

// s == SAT: ’R’ is sat. cube...

// ..or new cube from assignment.

while (!stop_res (R))

p = get_pivot (R);

A = get_antecedent (p);

R = constraint_res (R, p, A);

add_to_formula (R);

assign_forced_lit (R);

return get_asserting_level (R);

Fig. 2. Pseudo-code of QDPLL with conflict-driven clause and solution-driven cube
learning [13,22,33]. Code blocks are indicated by indentation level. See also Sec. 4.1.

In the following, we generalize unit literals and learning (Def. 4, 6, 8) to arbi-
trary dependency schemes. Soundness is explained by reordering the quantifiers
in the prefix of a PCNF F based on D by Def. 1 to obtain an equivalent PCNF
F ′ [30]. This is possible, as Def. 1 corresponds to cumulative schemes [30]. Then
original versions of Def. 4, 6, 8 in the context of prefixes (i.e. Dtriv in Def. 2)
apply to F ′. Finally, F ′ can be converted back to F by reordering.

4.2 Unit Literal Detection

Unit literals were introduced in [7] for clauses and extended to cubes in [13,33].
The original definition is based on quantifier prefixes of PCNFs, i.e. on Dtriv as
defined in Ex. 2, and can be generalized to arbitrary dependency schemes.

Definition 4. A clause (cube) C is unit if, and only if no l ∈ C is assigned
true (false), exactly one le ∈ L∃(C) (lu ∈ L∀(C)) is unassigned, and for all
unassigned lu ∈ L∀(C) (le ∈ L∃(C)): lu �≺ le (le �≺ lu).
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Analogously, Def. 4 generalizes the definition based on quantifier trees from [16].
If a clause (cube) C is unit according to Def. 4 then le (lu) can be assigned as a
unit literal (bcp in Fig. 2). Detecting unit literals involves checking dependencies.
Using a two-literal watching scheme based on [10,26], this can be achieved lazily
as follows. In each clause two unassigned literals l1 and l2 are watched such that
either q(l1) = q(l2) = ∃ or q(l1) = ∀, q(l2) = ∃ and l1 ≺ l2. If watched literals
are updated during BCP then condition l1 ≺ l2 needs to be checked in the latter
case only. Literal watching in cubes can be handled dually.

4.3 Constraint Learning

In QDPLL as shown in Fig. 2, new constraints are added to the formula whenever
a conflicting or satisfying assignment was found. These constraints are derived
by successive resolutions, each potentially eliminating literals from the resolvent.

Definition 5. A clause (cube) C is empty ( satisfied) if, and only if no l ∈ C
is assigned true (false), and all l ∈ L∃(C) (l ∈ L∀(C)) are assigned false (true).

Definition 6. Universal reduction ( existential reduction) eliminates from a
clause (cube) C all lu ∈ L∀(C) (le ∈ L∃(C)) for which there is no le ∈ L∃(C)
(lu ∈ L∀(C)) with lu ≺ le (le ≺ lu).

Definition 7. For universally-reduced clauses (existentially-reduced cubes) C1

and C2 with v ∈ C1 and ¬v ∈ C2 for a variable v, let C := (C1 ∪ C2) \ {v,¬v}.
If C does not contain complementary literals then let C′ be the result of applying
universal (existential) reduction to C; C′ is the resolvent of C1 and C2 on v.

Soundness of universal reduction as part of clause resolution for QBF was proved
in [6]. Existential reduction for cube resolution was applied in [13,33]. Def. 6
generalizes the reduction rules from Dtriv to arbitrary dependency schemes. In
[16] such generalization was given for quantifier trees.

Among several learning strategies which add and remove learnt constraints
according to particular quality measures [13,22,33], QDPLL as shown in Fig. 2
learns exactly one constraint for each conflict or solution. The learnt constraint
is asserting, i.e. it is unit at the level QDPLL backtracks to, and hence will
trigger a unit literal to be assigned at the backtrack level. Resolution continues
until the current resolvent is asserting. This is controlled by a stop criterion.

Definition 8. Let R denote the clause (cube) derived after some resolution steps
in the learning process. For Q := ∃ (Q := ∀), let d := max ({dl(l) | l ∈ LQ(R)}).
Then R is asserting at level a := max ({dl(l) | l ∈ R ∧ dl (l) < d}) if, and only if

1. the decision variable at level d is existential (universal).
2. there is exactly one l ∈ L∃(R) (l ∈ L∀(R)) with dl (l) = d
3. for all lu ∈ L∀(R) (le ∈ L∃(R)) where lu ≺ l (le ≺ l): lu (le) must be assigned

false (true) with dl(lu) < d (dl(le) < d).

Def. 8 generalizes the stop criteria for generating asserting constraints given
in [15,33] from Dtriv to arbitrary dependency schemes. This affects condition 3
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in Def. 8 only, where dependency has to be checked. In practice, this check is
deferred as far as possible by checking conditions 1 and 2 before condition 3.

4.4 Decision Making

The quantifier prefix of PCNFs restricts the freedom of QDPLL to select decision
variables, as variables must be assigned “from left to right” according to the
prefix (i.e. Dtriv). In the context of dependency schemes (see Def. 1), a variable
y may be assigned as decision as soon as all variables in D(y) have been assigned.

Definition 9. A variable y is enabled in QDPLL if, and only if all variables in
D(y) are assigned. Otherwise, y is disabled. A variable is a (decision) candidate
if, and only if it is unassigned and enabled.

Example 3. For the PCNF ∃a∀x, y∃b. φ, Dtriv(a) = ∅, Dtriv(x) = Dtriv(y) = {a}
and Dtriv(b) = {x, y}. Variable a is always enabled, b is enabled as soon as both
x and y are assigned and if a is assigned then both x and y are enabled.

Following from Def. 1 and 9, assigning disabled variables as decisions is not sound
in general. Using less restrictive dependency schemes (see Def. 2) than e.g. Dtriv

allows more freedom to select candidates in QDPLL because D is smaller and
hence variables become enabled earlier.

One candidate is heuristically selected as next decision by select dec var in
Fig. 2. In practice, it is prohibitive to maintain the exact candidate set explicitly.
First, this set is needed precisely in select dec var and not e.g. in bcp. Further,
not every assignment enables, not every backtrack disables new variables.

Based on these observations, we apply the dependency graph G and maintain
the set of decision candidates (DC ) incrementally as follows. Before QDPLL
starts, DC := {x ∈ V | D(x) = ∅}, i.e. DC corresponds to the roots of G.
Each time a decision is made (i.e. each time select dec var in Fig. 2 is called),
DC is updated by taking into account the effects of assignments l1, . . . , lk made
since the previous decision only. Each li in l1, . . . , lk is processed one after the
other. The assignment li possibly enables some, not necessarily all variables in
D(v(li)). There might be other variables x �= v(li) with D(x) = D(v(li)). If any
such x is still unassigned at the time li is processed then li will not enable any
variable in D(v(li)). This observation can be exploited by constructing G as a
graph [24] over equivalence classes [x] of variables: x ≈ y ⇔ D(x) = D(y) for
x, y ∈ V . Assuming li ∈ [x], no variable will be enabled unless all variables in
[x] are assigned. Only if this is the case, set D(v(li)) is inspected by traversing
successors of [x] in G and new candidates are added to DC . If successor [y] with
D(y) ⊆ D(v(li)) is visited, then it is checked if [y] is fully assigned.

When backtracking in backtrack, assignments li in l1, . . . , lk made between
the backtrack level and the current decision level are cleared one after the other,
which possibly disables variables in D(v(li)). Assuming li ∈ [x], this can happen
only if all variables in [x] are assigned at the time li is cleared. Only if this is
the case, set D(v(li)) is inspected and disabled variables are removed from DC .
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Maintaining DC as described is independent from any decision heuristic for
QBF and therefore can be integrated in any implementation of select dec var.
Furthermore, this approach generalizes quantifier watching [10] from quantifier
prefixes to arbitrary dependency schemes.

5 Experimental Results

We have implemented QDPLL with dependency schemes as described in Sec. 4
in our PCNF-based solver DepQBF [23], which also participated in QBFEVAL’10
[11]. It differs from other search-based solvers mainly in a tight integration of de-
pendency schemes. Apart from that, approaches implemented comprise watched
data structures for detection of unit and pure literals [10,14,26], conflict-driven
clause and solution-driven cube learning [13,22,32,33], assignment caching [29],
activity heuristics based on VSIDS [26] and partial restarts based on [3].

As pointed out in Sec. 4, dependency graphs G in DepQBF are represented as
compact graphs over equivalence classes of variables. The data structure evolved
from previous work in [24]. Although originally being tailored to the standard
dependency scheme Dstd, we also implemented dependency graphs for Dtriv

and Dtree (see Ex. 2) within the same framework. This enables us to directly
compare QDPLL using those three schemes without changing any other part
of the solver. To build one out of possibly many non-deterministic dependency
graphs (i.e. trees) for Dtree, we adapted the approach from [2] to our framework.

Table 1. Performance comparison of DepQBF with quantifier prefixes (Dtriv), quanti-
fier trees (Dtree) and the standard dependency scheme (Dstd), which is less restrictive
than the other two. Average run times are given in seconds. Benchmarks include all
structured formulae from QBFEVAL’07, QBFEVAL’08 and from set Herbstritt [11].
The three versions of DepQBF do not apply preprocessing and differ only in the inte-
grated dependency schemes, all other parts are exactly the same. For external reference,
statistics of PCNF-based QuBE6.6 [12] with and without preprocessing (QuBE6.6-np)
are listed. We did not add other solvers as we focus on evaluating QDPLL with de-
pendency schemes and, given the results of QBF competitions [11], QuBE6.x is the
state-of-the-art QDPLL-based solver.

QBFEVAL’08 (3326 formulae)

Dtriv Dtree Dstd QuBE6.6-np QuBE6.6

solved 1223 1221 1252 1106 2277

time 579.94 580.64 572.31 608.97 302.49

QBFEVAL’07 (1136 formulae)

solved 533 548 567 458 734

time 497.12 484.69 469.97 549.29 348.05

Herbstritt (478 formulae)

solved 321 357 357 296 395

time 316.06 248.20 248.07 357.52 173.53
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Table 2. Comparing combinations of DepQBF with quantifier prefixes (Dtriv), quan-
tifier trees (Dtree) and the standard dependency scheme (Dstd). Only formulae solved
by both solvers (∩) were considered. E.g. in section “Dtriv ∩ Dstd”, the left column
reports statistics for Dtriv, the right one for Dstd. Average values are given for run time
in seconds, ratio of implications among all assignments, number of backtracks, ratio of
satisfied learnt cubes among all identified solutions and size (i.e. number of literals) of
learnt constraints. See also Sec. 4.1 for terminology.

QBFEVAL’08 (solved only)

Dtriv ∩Dtree Dtriv ∩Dstd Dtree ∩Dstd

solved 1172 1196 1206

time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%

backtracks 32431 27938 34323 31085 25106 26136

sat. cubes/sol. 1.8% 2.9% 1.8% 2.6% 3.6% 3.1%

learnt constr. size 157 99 150 96 102 95

QBFEVAL’07 (solved only)

solved 501 513 537

time 31.22 34.46 32.76 32.66 33.31 28.33

implied/assigned 89.0% 89.2% 87.7% 89.5% 89.9% 91.9%

backtracks 35131 22334 39906 26362 21945 22323

sat. cubes/sol. 4.0% 10.0% 4.0% 9.5% 10.8% 9.9%

learnt constr. size 150 101 134 113 100 96

Herbstritt (solved only)

solved 312 308 348

time 26.86 19.28 24.41 19.28 20.46 20.83

implied/assigned 96.6% 97.4% 96.2% 97.4% 97.4% 97.4%

backtracks 26565 1329 26733 1482 1615 1800

sat. cubes/sol. 0% 0% 0% 0% 0% 0%

learnt constr. size 174 306 173 323 407 410

Tab. 1 shows a comparison3 of DepQBF with Dtriv, Dtree and Dstd on struc-
tured formulae from previous QBF competitions [11]. Dependency checking as
needed in Def. 4, 6 and 8 was optimized in Dtriv: for x, y ∈ V , x ≺ y if, and only
if x < y, which can be checked in constant time. This is impossible for arbitrary
schemes where x ≺ y if, and only if q(x) �= q(y) and y is a successor of x in G. De-
spite that additional overhead, QDPLL with Dstd is best on QBFEVAL’07 and
QBFEVAL’08 and is slightly faster than Dtree on set Herbstritt. There is a large
performance gap to QuBE6.6 which, different from DepQBF, uses preprocessing.
However, any version of DepQBF outperforms QuBE6.6 when preprocessing is
disabled. Note that, in our terminology, QuBE6.6 uses Dtriv.

A more detailed comparison of all three versions of DepQBF considering the
intersection of solved formulae is shown in Tab. 2. Dtriv is slightly faster on the

3 Setup for all experiments reported: Ubuntu Linux 9.04, Intel R© Q9550@2.83 GHz, 3
GB/900 sec. mem and time limit. Data: http://fmv.jku.at/papers/sat10qbf.7z

http://fmv.jku.at/papers/sat10qbf.7z
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QBFEVAL sets. On the other hand, Dtriv yields more backtracks than Dtree and
Dstd on all sets. On set Herbstritt, the difference in this respect is a factor of up to
20. Dtree and Dstd, both being less restrictive than Dtriv, produce smaller learnt
constraints on the QBFEVAL sets. Furthermore, Dstd triggers more implications
on all sets and Dtriv fewer satisfied learnt cubes. These effects can be attributed
to more powerful rules for unit detection and constraint reduction (Def. 4, 6).

The results from Tab. 2 indicate that moving from Dtriv to more sophisticated
dependency DAGs incurs run time overhead (except on set Herbstritt), but also
allows QDPLL to produce shorter runs in terms of backtracks. As mentioned
above, checking if x ≺ y, which is required in unit literal detection and constraint
learning, is not a constant-time operation in general dependency DAGs. Instead,
G must be inspected. However, QDPLL still seems to profit from using less
restrictive dependency schemes such as Dtree and Dstd, as indicated in Tab. 1.

In order to assess both the costs and benefits of integrating dependency DAGs
in QDPLL in more detail, we carried out the following experiment. In addition
to the dependency DAG which is used for dependency checking and constraint
reduction in QDPLL, called primary DAG G1, another dependency DAG, the
secondary DAG G2, is maintained independently and in parallel for statistical
computations. The idea is to compare the effects of using different DAGs dy-
namically, i.e. during a solver run. This setup allows to compute more fine-grain

Table 3. Comparing costs and benefits of different dependency schemes in DepQBF
(all benchmarks, time out 900 sec.). The solver maintains two dependency DAGs G1

(primary) and G2 (secondary) in parallel. E.g. in section “Dtriv
�Dstd”, G1 is obtained

from Dtriv (left column), G2 from Dstd (right column). Note that columns “Dstd” in
“Dstd

� Dtriv” and “Dstd
� Dtree” are incomparable since G2 influences run time,

i.e. “Dstd
� Dtriv” and “Dstd

� Dtree” may run at different speeds. Numbers of deci-
sion candidates (DC , see Sec. 4.4, Def. 9) when using different DAGs are compared.
Each time before decision making, the number of DC under the current assignment
is computed. Row “DC/d” shows the total sum of DC over the total number of de-
cisions in the benchmark set after max. 900 sec. run time. Average costs are listed
for (un)assigning an li as defined in Sec. 4.4 for updating DC (DC-updt.), dependency
checks (≺) as needed in unit detection (Def. 4) and for the stop criterion (Def. 8), and
constraint reduction (C-red.) per resolution. The latter are irrelevant for G2 (“-”).

QBFEVAL’08 (3326 formulae)

Dtriv
� Dstd Dstd

� Dtriv Dtree
� Dstd Dstd

� Dtree

DC/d 13801.0 13801.6 11409.7 11409.0 8932.5 8933.0 15625.6 15625.3

DC-updt. 3.23 3.16 3.30 3.43 3.38 3.37 3.30 3.36

≺ 1 - 6.21 - 7.15 - 6.26 -

C-red. 1.18 - 535.62 - 538.30 - 540.94 -

Herbstritt (478 formulae)

DC/d 21.3 26.55 20.14 20.13 20.67 20.67 20.16 20.16

Pan (384 formulae) ∪ Sorting-Networks (84 formulae)

DC/d 75.81 93.87 117.50 109.66 86.89 86.90 120.03 119.98
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statistics than overall run time or number of backtracks, as listed in Tab. 1 and
2. During a run of QDPLL, it is interesting to compare the numbers of deci-
sion candidates (DC ) with respect to G1 and G2 under the current assignment.
These numbers are computed each time before a decision is made and reflect
the degree of freedom resulting from less restrictive dependency schemes (see
Sec. 4.4). E.g. we expect Dstd to allow more candidates than Dtriv and Dtree.
Apart from that, we want to measure average costs of dependency checking and
candidate maintenance for DAGs resulting from different dependency schemes.

Tab. 3 shows results of the experiments described above. For G1 and G2, we
compared Dstd to Dtriv and Dtree , where all four combinations were run to
even out biased solver behaviour. Due to limited computational resources, we
did not compare Dtriv to Dtree and omitted QBFEVAL’07. As indicated for sets
QBFEVAL’08 and Herbstritt, the difference in DC statistics is very small in
general, sometimes less than 1 candidate on average per decision. However, it
seems that this is already enough for QDPLL with Dstd to outperform Dtriv and
Dtree by Tab. 1. Further, DC statistics are also family-dependent, as shown by
the results for sets Pan and Sorting-Networks in Tab. 3.

Cost statistics in Tab. 3 (rows “DC-updt.”, “≺”, “C-red.”) are correlated to
the number of variables that have to be visited (i.e. pointer dereferences in our
implementation) when inspecting a dependency DAG. Average costs for depen-
dency checking and (un)assigning variables for updating DC before decisions
or during backtracking are small. This is due to the class-based approaches de-
scribed in Sec. 4. On the other hand, costs of constraint reduction are very high
for Dtree and Dstd. These effects are closely related to implementation. When
using Dtriv, all constraints C can be kept sorted according to scope order, which
allows efficient reduction. This was implemented in DepQBF with Dtriv and is
reflected by low costs in Tab. 3. In general, such an approach is not possible
and we rather reduce constraints based on classes in the dependency DAG for
Dtree and Dstd. Classes are collected for all literals in C before reduction, where
the size of C (particularly for cubes) can be large. The statistics in Tab. 3 also
include that effort. Instead of collecting from scratch, the set of classes could
also be maintained incrementally for all constraints, which is currently not im-
plemented in DepQBF. However, despite that overhead in Dtree and Dstd, overall
performance by Tab. 1 is still better than with Dtriv .

6 Conclusion

Structure analysis of formulae can improve QBF solvers considerably. A common
approach is the analysis of quantifier structure in PCNFs by quantifier trees.
Dependency schemes generalize trees and allow to overcome related drawbacks.

In this work, we considered the problem of efficiently integrating dependency
DAGs into search-based QBF solvers (QDPLL) for PCNFs. Dependency DAGs
result from dependency schemes and, just as trees, represent quantifier structure.
By analyzing core parts of QDPLL, we have pointed out how to profit from
DAGs. Thereby we generalized related work on quantifier trees in QDPLL. The
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results of our analysis are independent from a particular dependency scheme.
Further, quantifier DAGs are relevant for QBF solvers of any kind.

Our experiments demonstrate that a careful implementation of QDPLL inte-
grating the standard dependency scheme Dstd outperforms classical approaches
based on quantifier prefixes and trees. Despite increased overhead, our results
indicate the potential of using less restrictive dependency schemes in QDPLL,
which is supported by DepQBF’s performance in QBFEVAL’10 [11]. More pow-
erful unit literal detection and constraint reduction produce more implications
and shorter learnt constraints. However, we also argue that the effects to a large
extent differ with respect to problem domains and QBF encodings.

As future work we want to extend our implementation to arbitrary depen-
dency schemes. Particularly, the triangle dependency scheme seems to be promis-
ing since it is provably less restrictive than Dstd [27,30].

Finally, we want to thank Paolo Marin and Enrico Giunchiglia for providing
us with a version of QuBE6.6 without preprocessing.
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Abstract. We present an exact algorithm for a PSPACE-complete prob-
lem, denoted by CONNkSAT, which asks if the solution space for a given
k-CNF formula is connected on the n-dimensional hypercube. The prob-
lem is known to be PSPACE-complete for k ≥ 3, and polynomial solvable
for k ≤ 2 [6]. We show that CONNkSAT for k ≥ 3 is solvable in time
O((2− εk)n) for some constant εk > 0, where εk depends only on k, but
not on n. This result is considered to be interesting due to the follow-
ing fact shown by [5]: QBF-3-SAT, which is a typical PSPACE-complete
problem, is not solvable in time O((2− ε)n) for any constant ε > 0, pro-
vided that the SAT problem (with no restriction to the clause length) is
not solvable in time O((2− ε)n) for any constant ε > 0.

1 Introduction

There are so many NP-hard problems around the world, which are considered to
be intractable. To deal with those intractable problems, efficient algorithms with
good approximation ratio or working well on average, have been proposed. An-
other approach to dealing with intractable problems is to develop algorithms that
exactly solve the problems, so-called exact algorithms, where exact algorithms
usually run in super-polynomial time, but exponentially faster than trivial ones.
See [20,17] for surveys on this topic. A number of exact algorithms for typical
NP-hard problems have been proposed, and novel techniques for bounding the
running time have been found: E.g., [1,7,2] for the traveling salesman problem,
[4,9,3] for graph partitioning problems such as the graph coloring problem, and
[14,13,16,8,15] for the satisfiability problem.

Viewing this approach in terms of computational complexity, we are concerned
with the following question: Given an NP-hard problem of solution length n or
witness length n, (for example, n denotes the number of vertices of a graph
for the traveling salesman problem, or the number of variables of a formula for
the satisfiability problem) is there an exact algorithm for the problem in time
O(2n), or O((2−ε)n) for some constant ε > 0 ? Here, we assume that the length of
instances with solution length n or witness length n is bounded by a polynomial
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in n. Moreover, as usual, we omit the polynomial factor in the O-notation when
concerning with an upper bound of exponential-time.

The oldest result for this kind of questions is for the traveling salesman prob-
lem by Bellman [1] and by Held and Karp [7]. Given an undirected graph
G = (V, E) and a length function � : E → R+, the problem asks for find-
ing a shortest Hamilton cycle. It is easy to see that the problem is solvable in
time O(n!). However, it is indeed not so easy to see that it is solvable in time
O(2n). These two papers [1,7] gave an affirmative answer to this question. There
are several results that give such an affirmative answer: for example, [4,9] for
the k-coloring problem showed that it is solvable in time O(2n) for any k (not
necessarily constant) while it is trivially solvable in time O(kn), and [19] for the
maximum satisfiability problem where the clause length of an instance is at most
two showed that it is solvable in time O(1.731n) while it is trivially solvable in
time O(2n).

One of the most notable questions of this kind, which are still open, is for the
satisfiability problem (SAT). This problem asks if there is a satisfying assignment
for a given conjunctive normal form (CNF) formula ϕ with no restriction to the
clause length. It is clear that the problem is solvable in time O(2n). However, it
is still open whether it is solvable in time O((2 − ε)n) for some constant ε > 0.
Another well-known open question is to ask whether the traveling salesman
problem is solvable in time O((2 − ε)n) for some constant ε > 0.

While developing exact algorithms for NP-complete problems and their opti-
mization problems, we rarely see exact algorithms for decision problems in com-
plexity classes beyond NP, such as the second and higher levels of PH, PSPACE,
EXP, etc. There is one exceptional problem as far as we know: the quantified
Boolean formula (QBF) problem, that is a typical PSPACE-complete problem,
even if given Boolean formulas are restricted to 3-CNF. Williams [18] proposed
an exact algorithm for this problem. However, he analyzed the running time
with respect to the number of clauses, but not the number of variables. (Apart
from decision problems, there are several problems solvable in time O((2− ε)n),
e.g., #k-SAT problem, which is #P-complete for k ≥ 2. For this problem, we
easily obtain an O((2− ε))n-time exact algorithm, by using a simple backtrack-
ing algorithm for k-SAT. The best upper bound for #3-SAT, for example, can
be found in [10].)

In this paper, we show that the following PSPACE-complete problem, denoted
by CONNkSAT, is solvable in time O((2 − ε)n) for n variables: given a k-CNF
formula ϕ over n variables, decide whether the solution space of ϕ is connected
on the n-dimensional hypercube. (See the next section for the precise definition.)
This problem was proposed by Gopalan, Kolaitis, Maneva, and Papadimitriou
to investigate connectivity properties on Boolean formulas. It is known that the
problem is PSPACE-complete for k ≥ 3, while it is in P for k ≤ 2 [6]. Moreover,
it is known to be coNP-complete, if given formulas are restricted to Horn 3-CNF
[12]. We show that CONNkSAT for k ≥ 3 is solvable in time O((2 − εk)n) for
some constant εk > 0, where εk depends only on k, but not on n. It seems to be
the first nontrivial result that gives an O((2 − ε)n)-time algorithm for a certain
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PSPACE-complete problem in terms of the number of variables. Furthermore,
this result is considered to be interesting because Calabro, Impagliazzo, and
Paturi [5] recently showed the following fact on Π2-3-SAT: this problem, which
is a typical ΠP

2 -complete problem, is the QBF problem over 3-CNF formulas,
where the quantifier starts with ∀, and the number of changes between two
types of consecutive quantifiers is at most one. They showed that Π2-3-SAT
is not solvable in time O((2 − ε)n) for any constant ε > 0, provided that the
SAT problem (with no restriction to the clause length) is not solvable in time
O((2− ε)n) for any constant ε > 0. It means that the (general) QBF over 3-CNF
formulas, which is a typical PSPACE-complete problem, is not solvable in time
O((2 − ε)n) for any constant ε > 0 under the same assumption.

2 Preliminaries

In this paper, we deal with k-CNF formulas, where the length of each clause of
a formula is at most k. Let X = {x1, . . . , xn} be a set of Boolean variables. An
assignment to X is an element of {0, 1}n. A partial assignment to X is an element
of {0, 1, ∗}n, where we regard a variable assigned ∗ as unassigned. We alternately
express partial assignments by pulling out coordinates assigned 0 or 1, e.g., a
partial assignment (x1 = 1, x2 = ∗, x3 = 0, x4 = ∗, . . . , xn = ∗) ∈ {0, 1, ∗}n
is denoted by (x1 = 1, x3 = 0). For two assignments t1, t2 ∈ {0, 1}n to X , the
Hamming distance d between t1 and t2 is d(t1, t2) = |{i ∈ [n] : t1(i) �= t2(i)}|. We
extend this notion to partial assignments as follows1: for two partial assignments
t1, t2 ∈ {0, 1, ∗}n, the Hamming distance d between t1 and t2 is

d(t1, t2) def=
∣∣∣∣{i ∈ [n] : t1(i) �= ∗, t2(i) �= ∗, and

t1(i) �= t2(i)

}∣∣∣∣ .
Given a partial assignment t, we simplify ϕ in the standard way, that is, elim-
inating any clause from ϕ if a literal of the clause is assigned 1 under t, and
eliminating any literal from ϕ if the literal is assigned 0 under t. The result-
ing formula is denoted by ϕ|t. For later use, we present a typical algorithm for
k-SAT, denoted by simple-sat, in Fig. 1 below.

Proposition 1. Given a k-CNF formula ϕ, the running time of simple-sat(ϕ)
is O(cn

k ) for some constant ck < 2 depending only on k.

This is the historically first non-trivial exact algorithm for k-SAT proposed by
Monien and Speckenmeyer [11]. They showed that the running time is O(αn

k ) for
k-SAT, where αk satisfies αk = 2− 1/αk−1

k . (For example, α3 = 1.618.)
We slightly modify this algorithm for our purpose. First, we omit the second

“return YES” from the algorithm, that is, we just run simple-sat(ϕ|t) for each
partial assignment t ∈ S. Second, we therefore omit the second “return NO” from
the algorithm. Note that Proposition 1 also holds for this modified algorithm.
1 It might be better to give it another term since the extension is no longer “distance”:

it does not satisfy the triangle inequality.
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simple-sat(ϕ) // ϕ is a k-CNF formula

if ∅ ∈ ϕ (i.e., ϕ �∈ SAT), return NO

if ϕ = {} (i.e., ϕ ∈ SAT), return YES

Choose a clause (�1 ∨ · · · ∨ �k′) ∈ ϕ arbitrarily (k′ ≤ k)

Let S = {(�1 = 0, . . . , �i−1 = 0, �i = 1) : 1 ≤ i ≤ k′} ⊂ {0, 1, ∗}k′

for each partial assignment t ∈ S
if simple-sat(ϕ|t) returns YES, then return YES

end-for-each

return NO

Fig. 1. A simple backtracking algorithm for k-SAT

However, the base constant of the running time is worse than what Monien and
Speckenmeyer [11] gave: we only obtain the running time of O(βn

k ), where βk is
the largest real number x > 0 that satisfies xk−xk−1−· · ·−x2−x−1 = 0. (For
example, β3 = 1.840.) This modification comes from our strategies for solving
CONNkSAT: we enumerate all satisfying partial assignments. In what follows,
we call this modified algorithm simple-sat.

Given a k-CNF formula, a binary decision diagram is constructed by the exe-
cution of simple-sat(ϕ). It is viewed as a rooted binary tree shown in Fig. 2: we
only depict one part of the binary tree, where a recursive call of simple-sat(ϕ|t)
with t = (l1 = 0, . . . , lk′−1 = 0, lk′ = 1) for some k′ ≤ k is executed. In such a
binary tree, each non-leaf vertex represents a variable, and each edge is labelled
with 0 or 1. Alternatively, in such a representation, every vertex can be viewed
as a partial assignment. The depth of a vertex v in a binary tree is the number
of ancestors of v.

l1 = 1

l1 = 0, l2 = 1

l1 = 0, l2 = 0, l3 = 1

l1 = 0, ..., l -1= 0, l = 1k’k’

1 0

1 0

1

1

l1

l2

l3

lk’

Fig. 2. A binary tree
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Given a k-CNF formula, let Tϕ be the rooted binary tree obtained by running
simple-sat(ϕ). Let SATϕ be the set of leaves of Tϕ that satisfy ϕ. We alter-
natively view SATϕ as the set of partial satisfying assignments. For simplicity,
we assume that every leaf of Tϕ corresponds to a partial satisfying assignment
so that SATϕ is exactly the set of leaves of Tϕ. This is because such a tree is
constructed by erasing from Tϕ all sub-trees every leaf of which are not sat-
isfying assignments. Moreover, this construction is done in time O(βn

k ), where
βk ≤ 2− εk for our target bound O((2− εk)n). Then, we note the following two
facts about SATϕ.

Note 1. For any pair of distinct vertices u, v ∈ SATϕ, d(u, v) ≥ 1.

Note 2. The vertex set SATϕ is a partition of the set of all satisfying assignments
of ϕ, that is, for any satisfying assignment t ∈ {0, 1}n of ϕ, there is a unique
vertex v ∈ SATϕ (i.e., v is a satisfying partial assignment) such that d(t, v) = 0.

Given a k-CNF formula ϕ over n variables, let SATϕ be as above, and let Hϕ

be the graph induced from the n dimensional hypercube by SATϕ. The solution
space induced by S ⊂ SATϕ is the graph induced from Hϕ by S, that is, by
{t ∈ {0, 1}n : ∃s ∈ S[d(s, t) = 0]}. We here note the following two facts, which
are easily shown.

Note 3. The solution space induced by a single vertex of SATϕ is connected.

Note 4. Let v1, v2 be distinct vertices of SATϕ. Suppose that d(v1, v2) = 1. Then,
the solution space induced by {v1, v2} is connected.

Given a k-CNF formula ϕ over n variables, the connectivity problem which we
study, denoted by CONNkSAT, is to ask if the graph Hϕ is connected.

Theorem 1 (Gopalan et al. [6]). CONNkSAT is PSPACE-complete for k ≥
3. On the other hand, CONNkSAT is in P for k ≤ 2.

3 An Exact Algorithm for CONNkSAT

We present an exact algorithm for CONNkSAT, and show the running time is
O((2− εk)n) for some constant εk > 0. The algorithm, denoted by conn-sat(ϕ)
given a k-CNF formula ϕ, is shown in Fig. 3, where βk is the constant specified
in the preliminary section.

The idea of this algorithm is to enumerate all satisfying partial assignments,
and to construct a graph over those assignments such that there is an edge
between two satisfying partial assignments if and only if the Hamming distance
between them is exactly one. (Recall Note 1 that d(u, v) ≥ 1 for any pair of
distinct vertices u, v ∈ SATϕ.) Then, we can easily check the connectivity of the
graph. The crucial point is to bound the number of edges of the graph. We will
show that it is at most O((2 − ε)n) for some constant ε > 0.
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conn-sat(ϕ) // parameter α is a real number that satisfies (2βk)αn = βn
k

Run simple-sat(ϕ)
Let Tϕ and SATϕ be as defined above
Let Vϕ = V (Tϕ) be the set of vertices of Tϕ,

Let Eϕ = ∅
Construct an undirected graph GSAT = (SATϕ, Eϕ) as follows:
(1) for each pair of vertices u, v ∈ SATϕ with depth at most (1− α)n

if d(u, v) = 1, then add (u, v) to Eϕ

(2) for each u ∈ SATϕ with depth more than (1− α)n
Visit v ∈ Vϕ in the depth-first search manner
starting from the root of Tϕ that

if d(u, v) ≥ 2, then do not visit vertices below v any
longer

else if v ∈ SATϕ and v �= u, then add (u, v) to Eϕ

if GSAT = (SATϕ, Eϕ) is connected, output YES, else output
NO

Fig. 3. An exact algorithm for CONNkSAT

Lemma 1. Given a k-CNF formula ϕ, let GSAT = (SATϕ, Eϕ) be the final
GSAT obtained by constructing Eϕ. Let v1, v2 ∈ SATϕ be distinct vertices. Then,

d(v1, v2) = 1 ⇐⇒ (v1, v2) ∈ Eϕ.

Proof. Note first that d(v1, v2) ≥ 1, which comes from Note 1. It is easy to see
that (u, v) ∈ Eϕ implies d(u, v) = 1 since our algorithm adds an edge (u, v) to
Eϕ only if d(u, v) = 1.

Suppose that d(u, v) = 1. We see that it means our algorithm adds an edge
(u, v) to Eϕ because of the following observation: if d(u, v) = 1, then d(u, w) ≤ 1
for any ancestor w of v. ��
Lemma 2. Given a k-CNF formula ϕ, let GSAT = (SATϕ, Eϕ) be the final
GSAT obtained by constructing Eϕ. Then,

ϕ ∈ CONNkSAT ⇐⇒ GSAT is connected.

Proof. We first consider the case of |SATϕ| ≤ 1. In this case, it is obvious that
GSAT = (SATϕ, Eϕ) is connected. Moreover, ϕ ∈ CONNkSAT holds because of
Note 3. Thus, this lemma holds for |SATϕ| ≤ 1.

Next, we assume that |SATϕ| ≥ 2. Suppose that GSAT is connected. We
will show that any pair of two satisfying assignments of ϕ is connected on Hϕ.
Let t1, t2 ∈ {0, 1}n be distinct satisfying assignments of ϕ. Let v1 ∈ SATϕ

(resp. v2 ∈ SATϕ) be a vertex of GSAT corresponding to t1 (resp. t2), that is,
d(v1, t1) = 0 (resp. d(v2, t2) = 0). From Note 2, there is such a vertex which is
unique. We may assume v1 �= v2 since otherwise it is the same as the case of
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|SATϕ| ≤ 1. Since GSAT is connected, there is a path between v1 and v2 (on
GSAT). Consider any pair of adjacent vertices on the path, say, u1, u2 ∈ SATϕ,
From the previous lemma, d(u1, u2) = 1 since (u1, u2) ∈ Eϕ. Moreover, from
Note 4, the solution space of Hϕ induced by {u1, u2} is connected. Applying this
argument repeatedly to every pair of adjacent vertices on the path, we see that
the solution space of Hϕ induced by all vertices on the path is connected, and
hence t1 and t2 are connected on Hϕ. This holds for any pair of two satisfying
assignments of ϕ. Thus, we conclude ϕ ∈ CONNkSAT.

Suppose that ϕ ∈ CONNkSAT. We will show that any pair of two vertices of
SATϕ is connected on GSAT. Let v1, v2 ∈ SATϕ be distinct vertices of GSAT. Let
t1 (resp. t2) be an arbitrary satisfying assignment of ϕ such that d(t1, v1) = 0
(resp. d(t2, v2) = 0). Since ϕ ∈ CONNkSAT, there exists a path t1 = a0 → a1 →
· · · → a� = t2 on Hϕ. Consider any pair of ai and ai+1. There are two cases: (1)
there is a vertex u ∈ SATϕ such that d(ai, u) = d(ai+1, u) = 0, and (2) there are
distinct vertices u1, u2 ∈ SATϕ such that d(ai, u1) = d(ai+1, u2) = 0. Consider
the second case. (We do not need to care for the first case.) Since d(ai, ai+1) = 1,
we must have d(u1, u2) = 1. (We do not have d(u1, u2) = 0 since u1 �= u2.) From
the previous lemma, it means (u1, u2) ∈ Eϕ. Applying this argument repeatedly
to every pair of adjacent vertices on the path, we see that v1 and v2 are connected
on GSAT. This holds for any pair of two vertices of SATϕ. Thus, we conclude
that Gϕ is connected. ��
From this lemma, we conclude that the output of conn-sat(ϕ) is correct for any
ϕ. It remains to show the upper bound on the running time of conn-sat(ϕ).

Lemma 3. The running time of conn-sat(ϕ) is O((2−εk)n) for some constant
εk > 0 depending only on k.

Proof. Given a k-CNF formula ϕ, let Tϕ be the rooted binary tree obtained by
running simple-sat(ϕ). Let GSAT = (SATϕ, Eϕ) be the final GSAT obtained by
constructing Eϕ. Note here that the running time of constructing Tϕ is O(βn

k ),
where βk is the constant specified in the preliminary section. For showing the
worst-case running time, it suffices to estimate an upper bound of |Eϕ|. For any
α : 0 ≤ α ≤ 1, let

U
def= {u ∈ SATϕ : depth(u) ≤ (1− α)n},

W
def= {w ∈ SATϕ : depth(w) > (1− α)n},

where depth(u) is the depth of u in Tϕ. Then,

|Eϕ| = |E1|+ |E2|, where
{

E1 = Eϕ ∩ (U × U),
E2 = (Eϕ ∩ (U ×W )) ∪ (Eϕ ∩ (W ×W )) .

Claim. For any α : 0 ≤ α ≤ 1,

1. |E1| ≤
(
β

(1−α)n
k

)2 (
= β

2(1−α)n
k

)
,

2. |E2| ≤
∑

0≤t≤αn

βn−t
k

(
(n− t)2t

) (
≤ n2 · 2αn · β(1−α)n

k

)
.
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Proof. The first inequality comes from the fact that the number of vertices of
Tϕ with depth at most (1− α)n is at most β

(1−α)n
k .

Fix t with 0 ≤ t ≤ αn arbitrarily. Consider an arbitrary vertex w ∈ W with
depth n − t. We will estimate the possible number of edges (w, v) ∈ Eϕ where
v ∈ SATϕ. Let ri be the ancestor of w at depth i (0 ≤ i < n − t). Let r′i be
the child vertex of ri that is not an ancestor of w. Let Tw,i be the sub-tree of
Tϕ rooted at r′i. Then, the number of assignments (not necessarily satisfying
ones) a ∈ {0, 1}n such that d(r′i, a) = 0 and d(w, a) ≤ 1 is exactly 2t since the
number of variables assigned ∗ under w is t. Let A ⊂ {0, 1}n be the set of those
assignments. Then, the number of leaves v of Tw,i such that d(w, v) ≤ 1 is at
most 2t since each assignment a ∈ A corresponds to a unique leaf v if a is a
satisfying assignment. Thus, for any w ∈ W with depth n − t, the number of
leaves v such that d(w, v) ≤ 1 is at most (n− t)2t. Since the number of vertices
w ∈W with depth n− t is at most βn−t

k , the second inequality holds. ��

From this claim, we have |Eϕ| ≤ β
2(1−α)n
k + n22αnβ

(1−α)n
k for any 0 ≤ α ≤ 1.

By fixing α to a constant satisfying β
2(1−α)n
k = 2αnβ

(1−α)n
k , which is equivalent

to (2βk)αn = βn
k , we obtain an upper bound on |Eϕ| as follows:

|Eϕ| ≤ 2 · poly(n) · 2αnβ
(1−α)n
k .

We see that the formula on the right-hand-side is O((2− εk)n) for some constant
εk > 0 (depending only on k) since βk is a constant less than 2. ��
From Lemma 2, we see that our algorithm solves CONNkSAT. From Lemma 3,
we see that our algorithm runs in time O((2 − εk)n) for some constant εk > 0.
Therefore, we obtain the following theorem:

Theorem 2. The problem CONNkSAT is solvable in time O((2 − εk)n) for
some constant εk > 0 depending only on k. (For example, it is O(1.914n) for
k = 3.)

4 Conclusion

We have presented an O(2− εk)n-time exact algorithm for CONNkSAT. One of
our future work is to improve the analysis of the running time of our algorithm,
and to obtain the upper bound O(βn

k ) which is same as the running time of
simple-sat: our bound is slightly worse than O(βn

k ). Instead of doing that, we
may be able to reduce the running time just by replacing simple-sat with a
more sophisticated backtrack-type algorithm A that satisfies the following: all
leaves of the rooted binary tree constructed by A constitute a partition of all
satisfying assignments. However, we encounter the same problem as above: we
cannot derive the running time as much as that of A from our analysis.
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Abstract. Recently, several unsatisfiability-based algorithms have been
proposed for Maximum Satisfiability (MaxSAT) and other Boolean Op-
timization problems. These algorithms are based on being able to itera-
tively identify and relax unsatisfiable sub-formulas with the use of fast
Boolean satisfiability solvers. It has been shown that this approach is
very effective for several classes of instances, but it can perform poorly
on others for which classical Boolean optimization algorithms find it easy
to solve. This paper proposes the use of Pseudo-Boolean Optimization
(PBO) solvers as a preprocessor for unsatisfiability-based algorithms in
order to increase its robustness. Moreover, the use of constraint branch-
ing, a well-known technique from Integer Linear Programming, is also
proposed into the unsatisfiability-based framework. Experimental results
show that the integration of these features in an unsatisfiability-based
algorithm results in an improved and more effective solver for Boolean
optimization problems.

1 Introduction

The success of Propositional Satisfiability (SAT) solvers has increased the in-
terest in several generalizations of SAT, namely in Boolean optimization prob-
lems. As a result, several techniques first proposed for SAT algorithms have
been extended for Pseudo-Boolean Optimization (PBO), Maximum Satisfiabil-
ity (MaxSAT) and the more general problem of Weighted Boolean Optimization
(WBO). Moreover, the acknowledgment of the strong relation between all these
problems has led to the development of new algorithms based on the translation
between these Boolean formalisms [8,12,15].

Algorithms based on the identification of unsatisfiable sub-formulas have also
been developed and are now able to tackle all these Boolean optimization prob-
lems. The first proposal of unsatisfiability-based algorithm [13] was restricted
to MaxSAT and partial MaxSAT problems. However, recent work has been
done on improving this algorithmic solution [21] and generalizing it for weighted
MaxSAT, PBO and WBO [2,19].

The proposal in this paper is for a further integration of procedures in an
unique Boolean optimization framework. Hence, it is proposed the encoding into
PBO and the use of a PBO solver as a preprocessing step for finding a tight
upper bound on the optimal solution before applying an unsatisfiability-based
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algorithm. Moreover, the use of constraint branching, a well-known technique ini-
tially presented for (Mixed) Integer Linear Programming, can also be integrated
with success in an unsatisfiability-based algorithm for Boolean optimization.

The paper is organized as follows: in section 2 several formalisms used for
Boolean optimization are introduced, namely Weighted Boolean Optimization
(WBO), pseudo-Boolean Optimization (PBO) and the Maximum Satisfiabil-
ity (MaxSAT) problem and its variants. Furthermore, several relations between
these formalisms are reviewed, as well as the most common algorithmic solutions.
In section 3, it is proposed the use of pseudo-Boolean solvers as a preprocessing
step for an unsatisfiability-based algorithm. Next, in section 4, it is shown how
to integrate constraint branching into an unsatisfiability-based solver for WBO.
Finally, experimental results are presented in section 5 and the paper concludes
in section 6.

2 Preliminaries

In this section several Boolean optimization problems are defined, starting with
the more general Weighted Boolean Optimization problem. Next, translations
between several formalisms are reviewed and the most common algorithmic so-
lutions are briefly described. The approach based on the identification of un-
satisfiable sub-formulas is presented in more detail since it will be extensively
referred in the remaining of the paper.

2.1 Weighted Boolean Optimization

Weighted Boolean Optimization (WBO) is a natural extension of other Boolean
problems, such as Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Opti-
mization (PBO). In WBO, constraints can be any linear inequality with integer
coefficients (also known as pseudo-Boolean constraints) defined over a set of
Boolean variables. In general, one can define a pseudo-Boolean constraint as
follows: ∑

j∈N

aj lj ≥ b (1)

where aj and b are positive integers and lj is a propositional literal that either
denotes a variable xj or its complement x̄j . It is well-known that all other types
of linear constraints with Boolean variables can be easily translated into this
one [7]. Notice that propositional clauses are a particular case of pseudo-Boolean
constraints where all coefficients aj and the right-hand side b are equal to 1. If all
aj are equal to 1 and b > 1, then the constraint is called a cardinality constraint.

A WBO formula ϕ is defined as the conjunction of two pseudo-Boolean formu-
las ϕh and ϕs, where ϕh contains the hard constraints and ϕs contains the soft
constraints. Moreover, each soft constraint ωi has an associated positive weight
ci that represents the cost of not satisfying constraint ωi. The WBO problem can
be defined as finding an assignment to problem variables that satisfies all hard
constraints in ϕh and minimizes the total weight of unsatisfied soft constraints
in ϕs.
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Example 1. Consider the following example of a WBO formula:

ϕh = { x1 + x2 + x3 ≥ 2, 2x̄1 + x̄2 + x3 ≥ 2}
ϕs = { (x1 + x̄2 ≥ 1, 2), (x̄1 + x̄3 ≥ 1, 3)} (2)

In this example, there are only two possible assignments that satisfy all hard
constraints in ϕh. These assignments are x1 = x3 = 1, x2 = 0 and x1 = 0, x2 =
x3 = 1. However, for each of these assignments, at least one soft constraint in
ϕs is made unsatisfied. Therefore, the solution to the WBO instance would be
x1 = 0, x2 = x3 = 1 since it is the assignment that minimizes the total cost of
unsatisfied soft constraints while satisfying all hard constraints.

2.2 Relating with MaxSAT and Pseudo-Boolean Optimization

One should note that WBO is a direct generalization of the Maximum Satisfi-
ability (MaxSAT) problem and variants. The MaxSAT problem can be defined
as finding an assignment that minimizes the number of unsatisfied clauses in a
given CNF formula ϕ. Hence, a WBO instance where ϕh = ∅ and ϕs contains
only propositional clauses with weight 1 is in fact a MaxSAT instance.

The partial MaxSAT problem differs from MaxSAT since there is a set of
clauses declared as hard and a set of clauses declared as soft. The objective in
partial MaxSAT is to find an assignment such that all hard clauses are satisfied
while minimizing the number of unsatisfied soft clauses. Again, a WBO formula
where all constraints in ϕh and ϕs are propositional clauses and all soft clauses
have weight 1 is a partial MaxSAT instance. Finally, there are also variants of
MaxSAT and partial MaxSAT with weights greater than 1 which are respectively
known as weighted MaxSAT and partial weighted MaxSAT. Clearly, the resulting
instances are also specific cases of WBO instances.

Another well-known Boolean optimization formalism is Pseudo-Boolean Opti-
mization (PBO), also known as 0-1 Integer Linear Programming (0-1 ILP). The
PBO problem can be defined as finding an assignment to the Boolean variables
such that a set of pseudo-Boolean constraints is satisfied and the value of a linear
cost function is minimized. Formally, it is possible to define PBO as follows:

minimize
∑

j∈N

cj xj

subject to
∑

j∈N

aij lj ≥ bi,

lj ∈ {xj , x̄j}, xj ∈ {0, 1}, aij, bi, cj ∈ N+
0

(3)

It is also possible to encode a PBO instance into the WBO formalism. The
constraint set of the PBO instance can be directly mapped into the set of hard
constraints ϕh of the resulting WBO instance, while the objective function is
mapped using soft constraints. For each term cjxj in the objective function, a
new soft constraint x̄j ≥ 1 is added to ϕs with weight cj. The optimal solution
to the resulting WBO instance will also be an optimal solution to the original
PBO instance [19].
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2.3 Algorithmic Solutions

For each of these Boolean formalisms (WBO, MaxSAT and PBO), there is a
wide variety of algorithmic solutions. One classical approach is the use of a
branch and bound algorithm where an upper bound on the value of the objective
function is updated whenever a better solution is found and lower bounds on
the value of the objective function are estimated considering a set of variable
assignments. Whenever the lower bound value is higher or equal to the upper
bound, the search procedure can safely backtrack since it is guaranteed that the
current best solution cannot be improved by extending the current set of variable
assignments. Several MaxSAT and PBO algorithms follow this approach using
different lower bounding procedures [16,17,3,14,18].

Algorithm 1. Unsatisfiability-based Algorithm for MaxSAT and partial
MaxSAT

FUMALIKALG(ϕ)

1 while true
2 do (st, ϕC) ← SAT(ϕ)
3 if st = UNSAT
4 then VR ← ∅
5 for each ω ∈ ϕC ∧ soft(ω)
6 do r is a new relaxation variable
7 ωR ← ω ∪ {r}
8 ϕ ← ϕ\{ω} ∪ {ωR}
9 VR ← VR ∪ {r}

10 if VR = ∅
11 then return UNSAT
12 else ϕ ← ϕ ∪ CNF(

P
r∈VR

r = 1)

13 � Additional clauses for Equals1 constraint are marked as hard clauses
14 else return Satisfiable assignment to ϕ

Another approach used in PBO solvers is to perform a linear search on the
value of the objective function by iterating on the possible upper bound val-
ues [7]. Whenever a new solution to the problem constraints is found, the upper
bound value is updated and a new constraint is added such that all solutions
with an higher value are discarded. Several state of the art PBO solvers use
this approach such as Pueblo [26], minisat+ [12], among others [8,1]. These
solvers rely on the generalization of the most effective techniques already used
in SAT solvers, such as Boolean Constraint Propagation, conflict-based learning
and conflict-directed backtracking [18,10].

There are other successful solvers that perform conversions of one Boolean for-
malism to another and subsequently use a specific solver on the new formalism.
For instance, PBO solver minisat+ [12] converts all pseudo-Boolean constraints
to propositional clauses and uses a SAT solver to find an assignment that satis-
fies the problem constraints; SAT4J MAXSAT [8] converts MaxSAT instances into
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Algorithm 2. Unsatisfiability-based Weighted Boolean Optimization algorithm

wbo(ϕ)

1 while true
2 do (st, ϕC)← PB(ϕ)
3 if st = UNSAT
4 then minc ←∞
5 for each ω ∈ ϕC

6 do if soft(ω) and cost(ω) < minc

7 then minc ← cost(ω)
8 VR ← ∅
9 for each ω ∈ ϕC ∧ soft(ω)

10 do r is a new relaxation variable and ω =
∑

ajlj ≥ b
11 VR ← VR ∪ {r}
12 ωR ← (b r +

∑
ajlj ≥ b)

13 cost(ωR)← minc

14 if cost(ω) > minc

15 then ϕ← ϕ ∪ {ωR}
16 cost(ω)← cost(ω)−minc

17 else ϕ← ϕ\{ω} ∪ {ωR}
18 if VR = ∅
19 then return UNSAT
20 else ϕW ← ϕW ∪ {∑r∈VR

r = 1}
21 else return Satisfiable assignment to ϕ

a PBO instance; Toolbar [15] converts MaxSAT instances into a weighted con-
straint network and uses a Constraint Satisfaction Problem (CSP) solver, among
other solvers [23,24].

A recent approach initially proposed by Fu and Malik [13] for MaxSAT and
partial MaxSAT problems is based on the iterated use of a SAT solver to identify
unsatisfiable sub-formulas. Algorithm 1 presents the pseudo-code for the original
Fu and Malik’s proposal. Consider that ϕ is the Boolean working formula where
constraints are marked as either soft or hard. At each iteration, a SAT solver is
used and its output is a pair (st, ϕC) where st denotes the resulting status of the
solver (satisfiable or unsatisfiable) and ϕC contains the unsatisfiable sub-formula
provided by the SAT solver if ϕ is unsatisfiable. In this latter case, for each soft
constraint in ϕC , a new relaxation variable is added. Moreover, ϕ is changed to
encode that exactly one of the new relaxation variables can be assigned value 1
(Equals1 constraint in line 12) and the algorithm continues to the next iteration.
Otherwise, if ϕ is satisfiable, the SAT solver was able to find an assignment which
is an optimal solution to the original MaxSAT or partial MaxSAT problem [13].

Different algorithms have been proposed for MaxSAT and partial MaxSAT
based on this approach. For instance, effective encodings for the Equals1 con-
straint have been proposed with better results [21,20] than the pairwise encoding
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of the original algorithm [13]. Moreover, different strategies have been used re-
garding the total number of relaxation variables needed [20,2].

Finally, the unsatisfiability-based approach has also been extended for weighted
and partial weighted MaxSAT [2,19] and generalized to WBO [19] by using a
pseudo-Boolean solver instead of a SAT solver. Algorithm 2 presents the pseudo-
code for the WBO solver and one can clearly notice that it follows the same struc-
ture as Algorithm 1. However, in this case, ϕ is now a WBO formula, i.e. constraints
can be any type of pseudo-Boolean constraints and a positive cost is associated
with each soft constraint. One difference from Algorithm 1 is in lines 4-7 where
minc denotes the cost associated to the unsatisfiable sub-formula ϕC , defined as
the minimum cost of soft constraints in ϕC . Moreover, if the weight of a soft con-
straint in ϕC is larger than minc, then the relaxation also differs since the original
constraint is kept, but with a smaller weight as shown in lines 9-17. Finally, notice
that the Equals1 constraint in line 20 does not need to be encoded into CNF, since
a pseudo-Boolean solver is used instead of a SAT solver.

3 Improving Unsatisfiability-Based Algorithms

As shown previously, unsatisfiability-based algorithms are able to tackle sev-
eral Boolean optimization problems. These algorithms work by making a linear
search on the lower bounds of the optimal solution value. However, it has been
shown that in some cases, it is preferable to search on the upper bounds of the
optimal solution.

In this section, we propose to translate Weighted Boolean Optimization (WBO)
to the more specific Pseudo-Boolean Optimization (PBO) problem before apply-
ing an unsatisfiability-based algorithm. This approach has two main goals: (i)
to apply simplification techniques that are used as preprocessing procedures in
PBO and (ii) to find a tight upper bound on the optimal solution. Afterwards, the
problem is again translated into WBO and solved using an unsatisfiability-based
algorithm.

3.1 Pseudo-Boolean Optimization as Preprocessing

We start by reviewing the translation from WBO formulas into PBO. Clearly,
hard constraints ϕh can be directly mapped as constraints into the resulting PBO
formula. However, for soft constraints in ϕs, additional variables are needed.
Each soft constraint of the form

∑
aj lj ≥ b, is mapped into a new PBO con-

straint b r +
∑

aj lj ≥ b, where r is a new relaxation variable. The objective
function will be to minimize the weighted sum of the relaxation variables. The
coefficient of variable r in the objective function is the weight of the original
constraint associated with variable r.

Example 2. Consider the following WBO formula:

ϕh = { x1 + x2 + x3 ≥ 2, 2x̄1 + x̄2 + x3 ≥ 2, x1 + x4 ≥ 1}
ϕs = { (x1 + x̄2 ≥ 1, 2), (x̄1 + x̄3 ≥ 1, 3), (x̄4 ≥ 1, 4)} (4)
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The resulting PBO instance would be:

minimize 2r1 + 3r2 + 4r3

subject to x1 + x2 + x3 ≥ 2
2x̄1 + x̄2 + x3 ≥ 2
x1 + x4 ≥ 1
r1 + x1 + x̄2 ≥ 1
r2 + x̄1 + x̄3 ≥ 1
r3 + x̄4 ≥ 1

(5)

Notice that in this example variable r3 is not necessary in the resulting PBO
instance. Since x̄4 ≥ 1 is a unit clause in (4), one can remove this constraint
and just add x4 with weight 4 to the objective function, which would result
in minimizing 2r1 + 3r2 + 4x4. This is an important simplification, as many
industrial instances have unit clauses as soft constraints [4].

After translating the WBO formula to PBO, two steps are applied:

1. Simplification techniques are used in the PBO formula;
2. The PBO formula is solved using tight limits.

In the first step we use a generalization of Hypre [5] for pseudo-Boolean formulas.
As a result, literal equivalence detection and hyper-binary resolution are used
to eliminate variables from the formula. In fact, besides these techniques, other
preprocessing procedures could have also been used, such as clause and variable
subsumption, among others [22].

After the first step, a search procedure is carried out using a pseudo-Boolean
solver and making the classical linear search on the upper bound of the optimal
solution [7,1,26]. However, our use of the pseudo-Boolean solver is limited to
10% of the time limit given to solve the formula. Given a tight time limit, the
pseudo-Boolean solver will not find the optimal solution in most cases. Therefore,
if the solver is unable to prove optimality, the problem instance is encoded back
to WBO (as described in section 2.2) and solved using an unsatisfiability-based
algorithm. Moreover, learned conflict constraints by the PBO solver can be kept
as hard constraints on the WBO instance, thus pruning the search space. Addi-
tionally, remember that the unsatisfiability-based algorithm will make a search
on the lower bound of the optimal solutions, but in this case it will be already
limited on the upper bound side. We note that searching on both the upper and
the lower bound on the value of the objective function is not new [21], but to
the best of our knowledge, the presented approach is novel.

Although the objective is to find a tight upper bound, it is possible that the
PBO solver proves the optimality of the found upper bound. In that case, the
optimal solution to the original problem has been found without having to make
the search on the lower bound value. However, even if the solver is unable to
prove optimality, small clauses learned by the pseudo-Boolean solver are kept in
the WBO formula as hard clauses, further constraining the search space.
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4 Using Constraint Branching

One of the main problems of using unsatisfiability-based algorithms for WBO is
that after a given number of iterations, the number of relaxation variables can
be much larger than the initial number of problem variables [21]. This might oc-
cur even when using a pseudo-Boolean solver where the encoding of the Equals1
constraint to CNF is not necessary. Furthermore, when solving a formula with
several Equals1 constraints, setting a single variable to 0 or 1 may cause a dra-
matic difference on the number of propagations that results from this assignment.

Remember that in each iteration of Algorithm 2, a new Equals1 constraint is
added (line 20), thus constraining that only one of the new relaxation variables
can be assigned value 1. Consider that, at any given iteration, k new relaxation
variables are added. As a result, a new Equals1 constraint is added as follows:

k∑
i=1

ri = 1 (6)

Notice that, by assigning one variable ri with value 1, all other variables rj �= ri

(with 1 ≤ j ≤ k) must be assigned value 0. However, if ri is assigned value 0,
no propagation occurs due to (6). As a result, assigning a value to any of these
variables tends to produce very different search trees, in particular for large
values of k. Therefore, if the solver assigns one single variable that appears in
these constraints early in the search tree, that assignment might be too strong
or too weak depending on the chosen value. This problem has already been
observed in (Mixed) Integer Linear Programming problems [6] and one way to
balance the search tree is to use constraint branching [25].

Constraint branching is a well-known technique used in specific cases of (Mixed)
Integer Linear Programming in which the formula to be solved is split into two
sub-problems such that new constraints are added to each branch. In our case, we
would like to take advantage of the Equals1 constraints in order to assign large
sets (hundreds or even thousands) of variables in a single step. Therefore, it is
proposed the use of a branching step due on Equals1 constraints and integrate it
into an unsatisfiability-based algorithm.

By using constraint branching on an Equals1 constraint, instead of assigning
just one variable, half of the k variables in (6) are assigned value 0. Without loss
of generality, assume that variables r1 to rk/2 are assigned value 0. This is done
by adding the following constraint to the working formula ϕ:

ωc1 :
k/2∑
i=1

ri = 0 (7)

This means that the variable to be assigned value 1 is one of rk/2+1 to rk. If the
formula ϕ ∪ {ωc1} is not satisfiable, then it is possible to infer that one of the
variables from r1 to rk/2 must be assigned value 1, while all others from rk/2+1

to rk must be assigned value 0. Hence, if ϕ∪{ωc1} is unsatisfiable, the following
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constraint can be safely inferred:

ωc2 :
k∑

i=k/2+1

ri = 0 (8)

Algorithm 3. Using Constraint Branching in Unsatisfiability-based WBO
Algorithm

compute core(ϕ)

1 � Compute an unsatisfiable sub-formula from ϕ
2 if (no large Equals1 constraint exist in ϕ)
3 then (st, ϕC)← PB(ϕ)
4 return (st, ϕC)
5 else Select a large Equals1 constraint ω from ϕ
6 k = size(ω)

7 ωc1 :
∑k/2

i=1 ri = 0
8 (st, ϕC1)← compute core(ϕ ∪ {ωc1})
9 if (st = SAT ∨ ωc1 /∈ ϕC1)

10 then return (st, ϕC1)

11 else ωc2 :
∑k

i=k/2+1 ri = 0

12 (st, ϕC2)← compute core(ϕ ∪ {ωc2})
13 if (st = SAT ∨ ωc2 /∈ ϕC2)
14 then return (st, ϕC2)
15 else return (st, ϕC1 ∪ ϕC2)

Algorithm 3 illustrates the use of constraint branching in the computation of
unsatisfiable sub-formulas. This procedure can replace the call for the pseudo-
Boolean solver in line 2 of Algorithm 2. In Algorithm 3 we start by selecting
a large1 Equals1 constraint in order to maximize the number of variables to
be assigned due to ωc1. Notice that ϕC1 denotes an unsatisfiable sub-formula
from ϕ ∪ {ωc1}. If ϕC1 does not include ωc1, then ϕC1 is also an unsatisfiable
sub-formula from ϕ and the procedure returns. The same applies to ϕC2 when
it does not include ωc2. Otherwise, if both ϕC1 and ϕC2 include the respective
added constraints, then an unsatisfiable sub-formula for ϕ is ϕC1 ∪ ϕC2.

Finally, it should be noticed that, in practice, this technique is applied par-
simoniously. It was observed that if we were to make constraint branching on
all large Equals1 constraints, then the resulting unsatisfiable sub-formula would
usually be much larger than a single call to the pseudo-Boolean solver. This
occurs, since the search space is explored differently in each sub-problem and
the set union of both unsatisfiable sub-formulas results in a larger unsatisfiable
1 An Equals1 constraint with than 100 relaxation variables is considered large in the

context of our solver.
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sub-formula for the main problem. Hence, before making a constraint branching
step, the solver is called with a limited number of conflicts (approx. 30,000). Af-
terwards, if the solver has been unable to produce an unsatisfiable sub-formula,
a constraint branching step is applied.

5 Experimental Results

In order to evaluate the techniques proposed in the paper, solver wbo was modi-
fied to include pseudo-Boolean optimization techniques described in section 3, as
well as the use of constraint branching, presented in section 4. The new version
of solver wbo is 1.2, while version 1.0 is the one submitted to the last MaxSAT
evaluation [4].

For the experimental evaluation, the industrial benchmark sets of the partial
MaxSAT problem (a specific case of WBO) were selected. Besides wbo, we also
run other solvers among the most effective for these benchmark sets, namely
MSUncore [21,19], SAT4J MaxSAT [8] and pm2 [2]. Experiments were run on a set
of Intel Xeon 5160 servers (3.0GHZ, 1333Mhz, 3GB) running Red Hat Enterprise
Linux WS 4. For each instance, the CPU time limit was 1800 seconds.

Table 1. Solved Instances for Industrial Partial MaxSAT

Benchmark set #I MSUncore SAT4J (MS) pm2 wbo1.0 wbo1.2

bcp-fir 59 49 10 58 40 47

bcp-hipp-yRa1 176 139 140 166 144 137

bcp-msp 148 121 95 93 26 95

bcp-mtg 215 173 196 215 181 207

bcp-syn 74 32 21 39 34 33

CircuitTraceCompaction 4 0 4 4 0 4

HaplotypeAssembly 6 5 0 5 5 5

pbo-mqc 256 119 250 217 131 210

pbo-routing 15 15 13 15 15 15

PROTEIN INS 12 0 2 3 1 2

Total 965 553 731 815 577 755

Table 1 shows the number of solved instances by each solver for all benchmark
sets. The improvements from version 1.0 to version 1.2 of wbo are clear. The over-
all number of solved instances is vastly improved as it now solves more instances
than MSUncore and SAT4J MaxSAT. Nevertheless, version 1.2 of wbo is not as
effective as the current version of pm2. However, wbo has an additional over-
head since it is a more general solver able to tackle any WBO problem instance,
whereas pm2 is specific for partial MaxSAT and it cannot handle formulas with
weights. Furthermore, pm2 needs to use the encoding of cardinality constraints
to CNF that depends on the number of iterations, but since the number of iter-
ations for most instances is not large, the respective CNF encoding should tend
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to produce manageable CNF formulas. Finally, wbo is built on top of minisat
2.0 [11], while pm2 is built on the more effective PicoSAT solver [9].

The improvements of wbo are due to different reasons for the several bench-
mark sets. For example, improvements in bcp-fir are due to the use of constraint
branching technique, while in bcp-msp several instances are trivially solved by
the use of a PBO solver at preprocessing. Preprocessing techniques from PBO are
also extensively applied in the CircuitTraceCompaction where the initial for-
mula can be significantly reduced. Overall, the integration of all these techniques
into an unsatisfiability-based algorithm improve its performance and robustness
for several sets of industrial instances.

Observe that it was chosen not to present results from other industrial cate-
gories from the MaxSAT evaluation for two main reasons: (i) version 1.0 of the wbo
solver was already able to solve all instances from the partial weighted MaxSAT
problem and (ii) the proposed techniques do not apply on the industrial MaxSAT
instances without hard constraints for which wbo was already one of the best per-
forming solvers [4]. Note that PBO preprocessing techniques can only be applied
when literal implications can be extracted from the formula and that does not oc-
cur for those benchmark sets. Furthermore, most of industrial MaxSAT instances
are solved after finding a single unsatisfiable sub-formula. Hence, there are not
enough iterations to apply constraint branching and overall results from version
1.0 and 1.2 for solver wbo would be the same for these sets of instances.

6 Conclusions

This paper proposes to extend an unsatisfiability-based algorithm for Weighted
Boolean Optimization, by first encoding the problem into pseudo-Boolean Opti-
mization such that powerful inference preprocessing techniques can be used. Fur-
thermore, the pseudo-Boolean solver can also be used to learn hard constraints
and deal with problem instances that are trivially solved using a linear search on
the upper bound value of the solution. Moreover, the paper also shows how to
selectively apply constraint branching in the unsatisfiability-based framework.

Preliminary experimental results show that these techniques significantly im-
prove the performance of our unsatisfiability-based algorithm when solving in-
dustrial instances of the partial MaxSAT problem (a special case of Weighted
Boolean Optimization). As a result, our solver is now competitive with dedicated
algorithms for the partial MaxSAT problem.

The success obtained on solving these problem instances with the integration
of techniques from Pseudo-Boolean Optimization and constraint branching, first
proposed for (Mixed) Integer Linear Programming, provide a strong stimulus for
further integration of several Boolean optimization techniques into an unique
framework.

Acknowledgement. This work was partially supported by FCT grant PTDC-
/EIA/76572/2006 and FCT (INESC-ID multiannual funding) through the PID-
DAC Program funds.



192 V. Manquinho, R. Martins, and I. Lynce

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.A.: Generic ILP versus specialized
0-1 ILP: An update. In: International Conference on Computer-Aided Design, pp.
450–457 (2002)
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Abstract. This paper focuses on bounded invariant checking for partially spe-
cified circuits – designs containing so-called blackboxes – using the well known
01X- and QBF-encoding techniques. For detecting counterexamples, modeling
the behavior of a blackbox using 01X-encoding is fast, but rather coarse as it lim-
its what problems can be verified. We introduce the idea of 01X-hardness, mainly
the classification of problems for which this encoding technique does not provide
any useful information about the existence of a counterexample. Furthermore, we
provide a proof for 01X-hardness based on Craig interpolation, and show how the
information contained within the Craig interpolant or unsat-core can be used to
determine heuristically which blackbox outputs to model in a more precise way.
We then compare 01X, QBF and multiple hybrid modeling methods. Finally, our
total workflow along with multiple state-of-the-art QBF-solvers are shown to per-
form well on a range of industrial blackbox circuit problems.

Keywords: BMC, blackbox, SAT, QBF, Craig interpolation, unsat-core.

1 Introduction

Recently, Bounded Model Checking (BMC) has become an important method for find-
ing errors in sequential circuits [1,2]. BMC accomplishes this by iteratively unfolding
a circuit k times for k = 0, 1, . . ., adding the negated property, and then finally con-
verting the BMC instance into a SAT formula so that a SAT-solver can be used. If
the SAT-solver finds the k-th problem instance satisfiable, a path of length k violating
the property has been found. In this paper we focus on BMC for incomplete designs,
meaning that certain parts of the circuit (combined into a so-called blackbox) are not
specified. The interest on verifying incomplete designs is becoming popular as larger
system-on-chip (SoC) designs, that contain multiple blackbox IP cores, become more
prevalent. Blackboxes can also add a layer of abstraction if a design is too large to verify
in its entirety. Additionally, blackboxes allow us to start the verification process earlier
in the design stages of a chip when certain components are only partially completed.

In these cases we want to answer the question of unrealizability, that is, is there a
path of length k violating the property regardless of the implementation of the blackbox.
If so, the property is unrealizable. For example, a processor with a blackbox covering
the ALU is shown in Figure 1. Since the behavior of blackbox outputs is unknown we
need to model them in an adequate way. One option is to use 01X-logic. This approach
applies the value X to all blackbox outputs, and then encodes the circuit as done e.g.

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 194–208, 2010.
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Fig. 1. Example MIPS type processor with blackboxes

in [8] by Jain et al. This again yields a propositional SAT formula, and a modern SAT-
solver can be used. Counterexamples found by this approach are independent of the
blackbox’s behavior. However, using 01X-logic may be to coarse to prove the unreal-
izability of the property when the counterexamples depend on the blackbox’s behavior.
Therefore, we must sometimes model the blackbox outputs in a more precise way by
universally quantifying them. This results in a quantified boolean formula (QBF).

QBF formulas are hard (PSPACE-Complete), and in this work we introduce im-
provements with respect to encoding a blackbox BMC problem using a combination of
01X-logic and QBF. Further, we present a method based on Craig interpolation to prove
that using 01X-logic is too coarse to provide any information about the existence of a
counterexample (problems of this type will be called 01X-hard). For such problems,
we show that it is usually not the case that all blackbox outputs of the incomplete de-
sign have to be encoded using QBF to obtain a counterexample. We then introduce two
techniques for obtaining which blackboxes need to be modeled using QBF. The first
is based on exploiting the computed Craig interpolants, and the second method uses
the clauses from the unsatisfiable core to illuminate the problematic blackboxes. Our
work, which incorporates all this into one tool, allows us to automatically combine the
advantages of both 01X- and QBF-encodings so that we can verify more problems.

The paper is structured as follows. In Section 2 we introduce the concepts and related
work for BMC of incomplete designs, Z-modeling using 01X-logic, Zi-modeling using
QBF as well as the combination of these modeling techniques. Section 3 then introduces
our tool, optimizations, definitions for 01X-hard and 01X-easy, as well as new ideas for
heuristically combining Z- and Zi-modeling. Results and analysis of multiple industrial
circuits are given in Section 4, and Section 5 concludes the paper.

2 Bounded Model Checking for Incomplete Designs

Standard BMC has been shown to be able to refute invariants on industrial sequential
circuits [1,2]. Starting with the initial state of the circuit, BMC iteratively unfolds the
system k times with k = 0, 1, . . . and checks in every iteration whether a counterex-
ample for the given invariant exists or not. The algorithm stops, if a counterexample is
found or a predefined unfolding limit is reached. Let I0 characterize the initial state,
Ti,i+1 the transition relation, which is true, if there is a transition from a state at time
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Fig. 2. Example modeling of blackbox outputs (01X vs. Zi)

step i to a state at time step i + 1. Let Pk represent the invariant (property) at depth k.
Then, the BMC formula (1) is satisfied iff there exists a counterexample of length k that
violates the property.

I0 ∧ T0,1 ∧ . . . ∧ Tk−1,k ∧ ¬Pk (1)

In this paper we focus on bounded invariant checking of incomplete designs. An ex-
ample of this is shown in Figure 1. In this pipelined processor, the ALU is not yet
completed. To deal with this, we replace the ALU with a blackbox. The simplest way to
model a blackbox is to assign one extra value denoting the unknown behavior to each
blackbox output. With accordance to [18] we call this Z-modeling. For encoding the
BMC problem this way we can make use of 01X-logic, an extension to propositional
logic by a third logical value X , denoting an unknown state. This means that all signal
lines in a circuit are now encoded using two bits instead of one. This allows each bus in
the circuit to take on one of the three possible logic values (0,1, or X). For the blackbox
outputs this is shown in the left part of Figure 2.

Encoding all blackbox outputs using 01X-logic is only sufficient for finding coun-
terexamples that are independent of the blackbox’s behavior. However, these problem
can be encoded as a propositional SAT formula at the expense of additional variables
and clauses. To encode all gates and buses using 01X-logic and Jain encoding [8], we
use the following transformation functions:

AND01X((ghigh, glow), (fhigh, f low)) := (ghigh · fhigh, glow + f low)
OR01X((ghigh, glow), (fhigh, f low)) := (ghigh + fhigh, glow · f low)

NOT01X((ghigh, glow)) := (glow, ghigh)

These transformation functions define the functional relationship of each gate using
01X-logic and our two bit encoding. This allows us to define the functionality of the
AND01X gate when one or both of its inputs are in the X (the unknown) state. For
example, “0 AND01X X” is always 0. However, “1 AND01X X” results in X because
the output of the AND01X gate depends on the X input. Using this encoding, we can
now convert the circuit and property into CNF form so that a high performance SAT-
solver can be used.
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Once a problem is encoded, the SAT-solver tries to find a counterexample that vi-
olates the property Pk, or prove that no such counterexample exists. Some counterex-
amples for an invariant can depend on the behavior of the blackbox. Unfortunately,
these types of counterexample cannot be found using Z-modeling. The reason for this
is that the X values assigned to the blackbox outputs propagate to the relevant signals
checked by the invariant. Finding out if blackbox outputs cause this issue motivates our
definition of 01X-hardness in Section 3.2.

To compute counterexamples of incomplete designs which depend on the blackbox’s
behavior, a more precise modeling method is needed. Similar to [18] we call this tech-
nique Zi-modeling, and it is shown on the right side of Figure 2. This technique intro-
duces one universally quantified variable for each blackbox output resulting in a QBF
formula. QBF extends propositional formulas by allowing variables to be either univer-
sally (∀) or existentially (∃) quantified. Using the QBF formulation, there is no longer
a need for three valued logic and the X state, as we can check all possible logic values
of the blackbox outputs (0 and 1) using universal quantifiers.

Since we are interested in one input sequence, such that for every blackbox be-
havior the invariant is violated, we build the quantifier prefix stepwise as follows: let
x0, . . . , xn be the primary inputs and Z0, . . . , Zm the blackbox outputs of the design. A
second index denotes the unfolding depth of the variable (e.g. Z3,2 is blackbox output
Z3 at unfolding depth 2). Further let Hi be the set of additional Tseitin-variables needed
to encode the circuit at unfolding depth i. We end up in the following quantifier prefix
(referred to as pref 1 and presented in [6]):

∃x0,0, . . . , xn,0∀Z0,0, . . . , Zm,0∃H0︸ ︷︷ ︸
depth 0

. . . ∃x0,k, . . . , xn,k∀Z0,k, . . . , Zm,k∃Hk︸ ︷︷ ︸
depth k

CNF

(pref 1)

By combining both these methods we now can encode a combination of Z- and Zi-
modeled blackbox outputs. This allows use to reduce the number of universal variables
in the problem with the aim of making the resulting QBF problems easier to solve.
Concerning the combined Z/Zi-modeling in [6], and unlike Figure 2, they used two
variables for each Zi-modeled blackbox output, one universally and one existentially
quantified. This resulted in two quantifier alternations per Zi-modeled blackbox out-
put. This allowed them to keep transformation functions constant for both Z- and Zi-
modeled blackboxes. However, the resulting QBF formula was very complex, and could
contain thousands of quantifier alternations. In Section 3 we introduce new transforma-
tion functions that remove these unneeded quantifier alternation and variables.

Finally, other work similar to [6] examined the BMC problem of incomplete designs
in the context of BDD based model checking [12,13]. However, most previous work
used randomly placed blackboxes, and random selection of which type of model (Z or
Zi) each blackbox output should use. In this work, we place blackboxes for specific
circuit components (e.g. adders, multiplier units, control units, ...), and not just random
gates. Moreover, we introduce heuristics to automatically find which blackbox outputs
must be modelled using Zi and QBF, and which can remain using 01X-logic.
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3 Workflow

Our blackbox BMC tool is called Bounce. Bounce supports multiple 01X, QBF, and
hybrid encoding modes, as well as multiple QBF-solvers. The basic workflow of our
tool is shown in Figure 3. This workflow consist of three major stages: a BMC problem
encoder and a SAT-solver with Craig interpolation and unsat-core support; a heuristic
search based component that in the case of 01X-hardness, finds the reasons for this; and
thirdly, a hybrid Z/Zi BMC problem encoder and QBF-solver.

In the first stage of the workflow, a behavioral level VHDL or Verilog circuit de-
scription is taken, and blackboxes are inserted for the components that are not fully
specified. Then a small VHDL wrapper is added to the circuit so the reset (and/or other)
functionality can be controlled. This allows us to initialize a circuit into a predefined
state which is sometimes required. For instance, some circuits are only guaranteed to
operate correctly if initialized properly. Once this completed, the circuit is then com-
piled with Synopsys Design Compiler (Version B-2008.09) and linked to a gate library
containing only basic one and two input logic gates and storage elements.

The resulting gate level HDL code is then used to generate the BMC equation from
Section 2. This is then sent to our multi-threaded SAT-solver MiraXT [9] which includes
additional support for Craig interpolation and unsat-core production. If the solver for a
specific unrolling returns true, the resulting variable assignment is our counterexample
and the problem is classified as 01X-easy. Otherwise, if the solver continually returns
false for each unrolling, then at some point a fixed-point should be reached. When a
fixed-point is found, we say the problem is 01X-hard, and will show in Section 3.2 that
this means no satisfiable solution using 01X-encoding will be possible.

For 01X-hard instances, we then can use the Craig interpolants (or alternatively the
unsat-core of the problem at the fixed-point depth), to find the reasons why the instance
is unsatisfiable. This is done by tracing the Craig interpolants backwards to the black-
box outputs, or scanning the unsat-core for blackbox related variables. The strategies
Bounce uses for this are discussed in Sections 3.3 and 3.4. Note, however, that these
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strategies are not guaranteed to find all necessary blackbox outputs (see Section 3.5)
but on practical problems they seem to perform well enough.

Finally, once a list of blackbox outputs that need to be modeled precisely is identi-
fied, we can then use our optimized techniques (discussed in Section 3.1) to produce
hybrid problems containing both Z- and Zi-modeled blackboxes, hopefully resulting
in an easier to solve QBF formula (due to less universally quantified variables). If the
QBF-solver returns true, we know that the invariant will always be unsatisfied within
the current design, irrelevant of the implementation of the blackbox (i.e. the circuit can-
not be fixed by adding functionality to the blackbox). Otherwise, when a QBF-solver
continually returns false for every unrolling of the problem, we cannot prove anything
about the current invariant, unless we are able to prove the maximum depth of the cir-
cuit, which in practice can be infeasible.

3.1 Optimizing Blackbox Bounded Model Checking

The 01X transformation scheme maps the three logical values 0, 1 and X to the binary
tuples (0,1), (1,0) and (0,0), respectively. However, in [5,6,7] all signals were encoded
using 01X-logic. This resulted in a doubling of the number of variables in SAT formula
that transformation functions would produce. We have extended this mapping so that
signals not associated with the blackbox require only the regular one bit encoding. To
combine 01X- with 01-logic, we introduce the new transformation functions:

AND01X((ghigh, glow), f) := (ghigh · f, glow + ¬f)
OR01X((ghigh, glow), f) := (ghigh + f, glow · ¬f)

Note, that in contrast to [6] we allow arbitrary sequential behavior of every blackbox
(i.e. a blackbox output can produce different output values for the same input values
at different time steps). Hence we do not care about the blackbox inputs. Furthermore,
with respect to Z/Zi-modeling in [6], and covered in Section 2, each Zi-modeled black-
box output introduced two variables and quantifier alternations. However, using our new
transformation functions this is no longer required, and we can encode all Zi-modeled
blackbox outputs with only one bit as shown on the right side of Figure 2.

When encoding the problems as QBF, we have an additional optimization that can
reduce quantifier alternations even further. In pref 1 equation from Section 2, the in-
puts in each step can ’react’ to the values of the blackbox outputs from the previous
steps. However, in total this quantifier prefix yields at most 2 · (k + 1) quantifier alter-
nations when unfolding k times. This number can be lowered to 2 when restricted to
uniform counterexamples [14], having one block of the existential quantified inputs of
all unfolding depths followed by all universally quantified blackbox outputs and then
all existentially quantified Tseitin-variables.

∃x0,0, . . . , xn,k︸ ︷︷ ︸
primary inputs depth 0. . . k

∀Z0,0, . . . , Zm,k︸ ︷︷ ︸
blackbox outputs depth 0. . . k

∃H0, . . . , Hk︸ ︷︷ ︸
Tseitin depth 0. . . k

CNF (pref 2)

This formulation implies the first one, since every uniform counterexample is also
a counterexample resulting from the first formulation, but we avoid the number of
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quantifier alternations increasing with the unfolding depth. However, this formulation
is not as exact, and may not be able to verify as many problems or invariants.

3.2 Craig Interpolation and Proving 01X-Hardness

In this section we will introduce Craig interpolants [3] and how interpolation can lift a
classical BMC procedure to a complete model checking technique to prove invariants
[11]. Later we describe how we benefit from this procedure.

Theorem 1 (Craig). Given two propositional formulas A and B with the property that
A∧B is unsatisfiable, then there exists a Craig interpolant C for A and B. This Craig
interpolant has the following properties:

– C contains only variables which occur in A and B (AB-common variables).
– |= A⇒ C
– |= C ⇒ ¬B

Craig interpolants in BMC are used as an over-approximated forward image of reach-
able states in a transition system. If the computed over-approximated forward image
reaches a fixed-point, that is no new states are reachable, and the given invariant still
holds, no counterexample is possible for any unrolling depth. Let Ik be the initial state,
Pk the invariant to disprove and Ti,i+1 the transition relation from a state at time step i
to a state at time step i+11. After showing that I0∧¬P0 is unsatisfiable (that is initially
the property is not violated), the procedure first solves the BMC formula Φ = A ∧ B,
where A := R0 ∧ T0,1, B := ¬P1 and initially R0 := I0. If Φ is unsatisfiable then a
Craig interpolant C1 for the formulas A and B is computed2. By A ⇒ C1, the inter-
polant C1 is an over-approximation of the states reachable in one step from R0. If this
over-approximation shifted to the zeroth instantiation of the variables (as described by
C0) is a subset of the so far reachable states, that is C0 ⇒ R0, then further transitions
can only lead to states already characterized by R0. As a consequence, the target states
are unreachable and the verification procedure terminates. Otherwise, we expand the
set of reachable states such that it also covers the reachable states given by the shifted
interpolant, that is R0 := R0 ∨ C0. Then, the procedure is iterated until the above
termination criterion holds. For a more detailed account, confer [11].

As we are focusing on BMC problems for hardware designs, the only variables oc-
curring in both formulas A and B are the latch variables. Now we describe how this
procedure can be used to classify incomplete designs. This not only prevents the 01X
BMC tool from endlessly returning false, but also provides us with a proof that we must
use a more precise, but harder to solve QBF formulation.

Proving 01X-Hardness. For a pure 01X-encoded BMC problem, unsatisfiability for
every unfolding depth has two possible reasons. First, as demonstrated earlier, Z-
modeling all blackbox outputs may be too coarse. Second, there may exist no coun-
terexample. However, in both of these cases 01X-encoding is not suitable to get to a
result. This motivates the following definition of 01X-hardness.

1 In the following a lower index denotes the timed instantiation of a boolean formula.
2 Note, that C1 only contain AB-common variables.
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Definition 1 (01X-hardness). An incomplete design combined with an invariant is
01X-hard iff the pure 01X-encoded BMC problem is unsatisfiable for all unfoldings.

Example. Figure 4 shows a 01X-hard incomplete design with two storage elements q0

and q1, two primary inputs x0 and x1 and one blackbox with two outputs Z0 and Z1.
For this design we want to disprove the invariant AG(¬q0∨¬q1) stating that this circuit
never reaches a state where both storage elements are true at the same time.

FF0

FF0

q0

q1

q′0

q′1

x0

Black
Box

x1

Z0

Z1

Fig. 4. 01X-hard incomplete design

Using Z-modeling for blackbox output Z1, one can see that the assigned X value
propagates to the storage element q1 independent of the value x1. Obviously this fact
holds for every unroll depth.

In order to apply BMC with Craig interpolation to this example, the entire circuit
is Jain encoded. Figure 5 illustrates the first unfolding I0 ∧ T0,1 ∧ ¬P1. The gates
responsible for the unsatisfiability (unsat-core) are highlighted in gray. Applying the
construction rules for Craig interpolants to this unsat-core yields the formula C0

1 =
¬(q′h1 ). This formula represents an over-approximation of the reachable states after one
transition step. Using this set of states as new initial states, the Craig interpolant C1

1

derived from C0
0 ∧ T0,1 ∧ ¬P1 is equivalent to the one computed before and thus a

fixed-point is reached and the 01X-hardness is proven.
Here, the Craig interpolant C0

1 = ¬(q′h1 ) forces the storage element q′1 = (q′h1 , q′l1)
to be either 001X = (0, 1) or X01X = (0, 0). In 01X-logic, X represents both 0 and 1
simultaneously, meaning it is not possible to determine under which circumstances the
values 0 and 1 appear. This can only be determined using Zi-modeling. In our example,
when Z1 is Zi-modeled, the output of the OR-gate is a constant 1 for all values of Z1.
The resulting QBF formula is then satisfiable after one transition step. Furthermore, this
shows it is sufficient to model only the first blackbox output using QBF.

Now, we are in the advantageous situation to gather information about the reason
for the unsatisfiability of every unrolling depth. This information is located in the Craig
interpolant and also in the underlying unsat-core. How this information can be exploited
to refine our encoding, will be discussed in the next sections.
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3.3 Exploiting Craig Interpolants

For a given incomplete design and an invariant we apply the unbounded model checking
procedure described in the previous section with all blackbox outputs Z-modeled and
thus 01X-encoded. Once a fixed-point is reached the last Craig interpolant is analyzed.

This interpolant only contains latch variables3, which are collected in a set L. All
blackbox outputs affecting these latches are one reason for the 01X-hardness. Start-
ing from each latch in L, a recursive backward traversal on the incomplete design is
performed. If a blackbox output is reached, this blackbox output is marked to be Zi-
modeled. When we reach a latch which is not yet an element of L, we add it to L and
continue the backward traversal until a fixed-point in L is reached. With this algorithm
we identify at least all blackbox outputs having influence on the latches in L.

Coming back to our example in Figure 5, traversing backward from L = {q′h1}
only blackbox output Z1 is marked to be Zi-modeled, which is sufficient to prove the
unrealizability applying the combined modeling technique presented in Section 3.1.

3.4 Utilizing Unsatisfiable Cores

Instead of exploiting the Craig interpolant as described above we also can make use of
the unsat-core that the SAT-solver produces. After proving 01X-hardness we determine
the unsat-core of the BMC problem of the unrolling depth where the fixed-point was
found (it is clear that this problem must be unsat as the 01X-hardness was already
proven). To determine the unsat-core, the solver’s conflict analysis routine is modified
so that each new conflict clause contains a link to the original problems clauses it was
derived from. Simply put, this means the unsat-core contains all the clauses needed by
the underlying SAT-solver to derive the empty clause. Among these clauses we detect
every literal that represents a Jain-encoded blackbox output. All these outputs will now
be marked to be Zi-modeled.

In our example the clauses derived from the gray highlighted gates build the unsat-
core and thus Z1 is immediately detected to be Zi-modeled. With this approach we

3 Due to the 01X-encoding these latches are still Jain encoded.
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only identify blackbox outputs which directly have an influence on the unsatisfiability,
whereas the backward traversal of the method based on Craig interpolants also can
identify blackbox outputs which may not effect any relevant latch.

3.5 Challenges and Limitations

For a 01X-hard system there is not necessarily only one single proof or unsat-core. This
fact can result in situations, where not all necessary Zi-modeled blackbox outputs are
identified in order to find a counterexample. If we know the structure of the circuit in
detail this problem can be avoided by decomposing the circuit and applying our method
for each component. Since in general this is not a trivial task, a further approach is to
collect the latch variables of all computed interpolants during the proof, not only those
involved in the successful fixed-point-check. This is motivated by the heuristic search of
the underlying SAT-solver computing the Craig interpolants. However, it will be shown
in Section 4 that our unsat-cores seem to be sufficient on our industrial benchmarks to
prove unrealizability.

Further, it is not guaranteed that a fixed-point will be found. If so, we can not prove
the 01X-hardness of the system, but we can continue our procedure by aborting at a
given timeout or depth, and analyzing the Craig interpolants or unsat-cores computed
so far. After several unrollings, this technique would hopefully allow us to still identify
the required blackbox outputs. However, as will be shown in Section 4, both of these
limitations did not present problems in any of the circuits that were tested.

4 Experimental Results

To evaluate our methods we used industrial opensource FPGA verified designs from
opencores.org [15] and some instances of the VLIW ALU benchmark suite presented
in [14]. This allows us to test our ideas on implementable circuits designs that are
very similar to the ones used in industry. In our current design flow, the blackboxes
were inserted into the behavioral VHDL source code of each design allowing us to
select and replace specific entities (i.e. entire multipliers, shifters, dividers) from each
circuit. The same method was used to insert errors into some circuits. A description
of each benchmarks circuit is given below. To compile the behavioral VHDL source
code of each design, Synopsys Design Compiler Version B-2008.09 was used along
with a minimized gate library containing only one and two input basic logic gates and
latches. All benchmarks were run on a dual AMD Opteron(tm) 250 processor machine
(2.4GHz) with 4GB of RAM, running the 2.6.24 SMP enabled Linux kernel. Lastly, for
all benchmarks a timeout (TO) value of 3600 seconds was used.

– Plasma - A simple opensource pipelined 32-bit RISC microprocessor supporting all
MIPS Version I user mode instructions. The multiplier and shifter inside the ALU
were replaced with blackboxes, and the boot loader was simplified. Proper func-
tionality and reliability of the boot loader are being verified. The circuit contains
16,603 gates and 2,463 latches.
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– FPU - An IEEE-754 compliant pipelined double precision floating point unit that
supports four operations (+, -, *, /) and multiple rounding modes and exceptions.
VHDL and gate level faults were inserted into the FPU. The multiplication and
division units were replaced with blackboxes and some of the functionality of the
remaining units was tested. The remaining circuit contains 21,280 gates and 2,701
latches.

– UART - A configurable, pipelined serial transmitter/receiver UART pair. Here, by
defining the UART controller as a blackbox, we verify that all possible 8 bit inputs
to the UART will be transmitted and received properly at different bit rates. The
circuit contains 555 gates and 70 latches.

– QALU - A SoC design containing a configurable VLIW ALU and Timer. The
VLIW ALU consists of four separate functional units (1xLogic, 2xArithmetic,
1xLoad/Store) and multiple working registers. The 12 bit Timer has set, reset, ex-
ception, and overflow functionality. Blackboxes replaced different arithmetic units
in the two ALU sizes and some of the parts of the Timer. The functionality of the
remaining Timer and ALU logic unit which contains gate level design errors are be-
ing verified. QALU 32 contains 31,866 gates, 538 latches, and QALU 64 contains
35,496 gates and 1,054 latches.

The results for the first stage of our tool are presented in Table 1. Here, the first column
is the benchmark name, followed by the found counterexample or fixed-point depth and
time (CE/FP Depth and Time). If the benchmark is 01X-hard, the number of detected
blackbox outputs for both the Craig interpolant and unsat-core methods are given (#
Detected Craig and Unsat). The first fact that is apparent from this table is that almost
half of the properties we check are 01X-easy, meaning they can be solved using only
a SAT-solver. Secondly, if problems are 01X-hard, only a small fraction of blackbox
outputs are selected to be modeled using QBF. Overall, unsat-core method seems to
outperform Craig interpolation. Finally, for all these benchmarks the first phase of our
tools does not require a significant amount of time even though this circuits are quite

Table 1. Initial 01X results

CE/FP 01X # Detected
Bench. Depth Time Hard Craig Unsat

FPU-ec01 27 67.39 no — —
FPU-ec02 28 70.36 no — —
FPU-ee01 27 75.16 no — —
FPU-hc01 33 54.78 yes 3/141 6/141
FPU-hc02 33 58.87 yes 3/141 6/141
FPU-he01 32 57.14 yes 139/141 6/141
FPU-he02 49 433.52 yes 141/141 34/141
Plasma-ec01 15 8.86 no — —
Plasma-ee01 10 6.32 no — —
Plasma-hc01 24 22.82 yes 64/64 12/64
Plasma-hc03 46 55.09 yes 64/64 12/64
Plasma-he01 28 26.11 yes 64/64 10/64
UART-ec01 126 19.93 no — —

CE/FP 01X # Detected
Bench. Depth Time Hard Craig Unsat

UART-ec02 245 74.44 no — —
UART-ec03 475 354.3 no — —
UART-hc01 8 0.29 yes 01/16 01/16
UART-hc02 47 3.93 yes 08/16 08/16
UART-hc03 4 0.12 yes 01/16 01/16
UART-hc04 133 39.88 yes 08/16 08/16
UART-hc05 15 0.76 yes 01/16 01/16
UART-hc06 121 23.07 yes 08/16 08/16
UART-hc07 4 0.14 yes 01/16 01/16
qualu32-e 4 1.37 no — —
qualu64-e 4 1.45 no — —
qualu32b-h 4 2.46 yes 2/66 2/66
qualu64b-h 2 1.93 yes 2/386 2/386
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Table 2. pref 1 encoding results

CE AIGsolve QMiraXT QuBE
Bench. Depth Craig Unsat All Zi Craig Unsat All Zi Craig Unsat All Zi

FPU-hc01 27 33.41 74.44 52.88 14.10 8.00 7.93 44.5 44.88 42.13
FPU-hc02 28 54.99 35.77 64.79 13.79 11.12 10.69 54.61 53.98 49.41
FPU-he01 27 64.96 62.15 57.96 16.13 9.01 8.76 TO 143.83 TO
FPU-he02 27 TO TO TO TO 74.03 TO TO TO TO
Plasma-hc01 10 0.03 0.05 0.05 0.06 0.03 0.03 0.04 0.03 0.04
Plasma-hc03 15 0.09 0.05 0.07 0.08 0.07 0.09 0.05 0.04 0.03
Plasma-he01 10 0.06 0.04 0.04 0.09 0.03 0.05 0.05 0.04 0.05
UART-hc01 126 0.70 0.70 1.13 0.82 0.91 0.90 1.27 1.31 1.53
UART-hc02 126 2.12 2.21 2.12 0.78 0.86 0.88 1.80 1.78 1.76
UART-hc03 245 2.49 2.52 4.85 2.06 2.3 2.33 4.85 4.80 5.49
UART-hc04 245 13.42 13.38 13.38 2.1 2.29 2.42 5.78 6.05 6.30
UART-hc05 475 8.61 8.69 25.75 5.86 5.9 5.87 19.02 19.04 22.78
UART-hc06 475 177.98 178.07 177.74 6.18 6.12 6.17 23.58 23.57 23.93
UART-hc07 1,860 156.97 157.56 1,103.54 66.86 68.14 66.37 400.66 419.00 582.14
qualu32b-h 9 105.28 105.58 TO TO TO TO TO TO 258.60
qualu64b-h 9 576.94 575.45 TO TO TO TO TO TO 718.29

Total Solved 15 15 13 13 14 13 12 13 14
Total Time 1,198.05 1,216.66 1,504.3 128.91 188.81 112.49 556.21 718.35 1,712.48

complex. For example, a circuit with 30,000 gates could require well over 100,000
clauses for the transition relation Ti,i+1 described in Section 2 alone. In fact, some of
the benchmarks contain over a million variables. Also, as an important side note, the
inclusion of blackboxes in the FPU allows an extra level of abstraction that makes this
verification possible. If the FPU contained the pipelined multiplier and divider, we are
no longer able to verify the functionality of adder or subtractor as the entire circuit is
too complex. This highlights another application of blackbox modeling and our tool.

For the remaining 01X-hard problems we ran the second phase of our tool using the
two different QBF prefix introduced as pref 1 and pref 2 in Section 2 and 3. The results
for each type of prefix are shown in Tables 2 and 3. In both tables, we test three different
QBF-solvers, mainly: AIGsolve [16]; QMiraXT [10]; and QuBE [4]. QuBE was chosen
as it was the only solver from the 2007 and 2008 QBF Competitions [17] that offered
good performance on the blackbox benchmark set. AIGsolve and QMiraXT are newer
solvers that have also been shown to perform well on blackbox benchmarks. For each
of these solvers, we compared the performance using the Craig interpolation and unsat-
core blackbox detection techniques, and the case where all blackboxes were modeled
using Zi. Finally the counterexample depth for each circuit is given (CE Depth).

In Table 2, when we are using the more complex, but also more accurate QBF prefix,
AIGsolve seems to perform the best, followed by QMiraXT and QuBE. Note, that on
the problems that QMiraXT was able to solve, it is generally the fastest. Also, with
the exception of QuBE, the unsat-core technique performs best, and the All Zi case
performs the worst with respect to time and problems solved. The reason for the reverse
performance trends with QuBE remain unclear, especially considering it as a DPLL
based QBF-solver like QMiraXT. More interesting, is that this table shows that large
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Table 3. pref 2 encoding results

CE AIGsolve QMiraXT QuBE
Bench. Depth Craig Unsat All Zi Craig Unsat All Zi Craig Unsat All Zi

FPU-hc01 27 75.91 34.04 54.48 8.26 8.61 7.88 47.27 47.19 42.41
FPU-hc02 28 58.81 35.74 65.06 11.49 11.15 27.07 55.68 58.41 50.87
FPU-he01 27 62.61 55.66 59.92 9.19 9.15 17.01 TO 119.65 TO
FPU-he02 27 TO TO TO 113.46 TO 116.30 TO TO TO
Plasma-hc01 10 0.05 0.03 0.04 0.06 0.04 0.07 0.04 0.03 0.06
Plasma-hc03 15 0.04 0.04 0.06 0.07 0.07 0.06 0.06 0.03 0.06
Plasma-he01 10 0.05 0.02 0.05 0.05 0.06 0.08 0.05 0.02 0.04
UART-hc01 126 0.68 0.67 1.15 0.95 0.81 1.00 1.30 1.37 1.52
UART-hc02 126 2.19 2.07 2.17 0.88 0.9 0.77 1.64 1.79 1.62
UART-hc03 245 2.57 2.43 4.81 2.7 2.48 2.53 5.04 4.89 5.51
UART-hc04 245 13.38 13.23 13.34 2.58 2.66 2.81 5.59 5.75 5.60
UART-hc05 475 8.76 8.84 25.60 7.09 6.92 7.45 18.54 18.64 22.13
UART-hc06 475 177.83 177.72 177.9 7.14 7.25 7.04 22.99 22.90 22.87
UART-hc07 1,860 161.98 163.47 1,078.84 TO TO TO 411.46 412.71 565.46
qualu32b-h 9 108.77 108.85 97.55 18.77 18.69 4.41 TO TO 28.20
qualu64b-h 9 604.72 606.06 242.69 134.6 134.55 9.27 TO TO 85.20

Total Solved 15 15 15 15 14 15 12 13 14
Total Time 1,278.35 1,208.87 1,823.66 317.29 203.34 203.75 569.66 693.38 831.55

benchmarks, as well as really deep (i.e. high depth) benchmarks can be solved with
current QBF-solvers in a reasonable amount of time.

Table 3 then shows the results for our more compact encoding style. For all these
benchmarks the number of quantifier alternations is restricted to 2, unlike the results
in Table 2 where some benchmarks contain thousands of alternations. The new simpler
prefix seems to be more effective overall. This is shown by the fact that in Table 3 there
are only 16 unsolved instances, where as in Table 2 there are 22. This is especially true
for QMiraXT and AIGsolve as in almost all cases pref 2 performs better. QuBE benefits
from this as well, but only in the All Zi case where the total solve time is cut in half.
Finally, even though pref 2 is less accurate than pref 1, it did not effect the results as in
all cases pref 2 was still exact enough to solve all the benchmarks.

Lastly, when considering the larger picture, the use of blackbox verification tech-
niques is now feasible. In Table 1 we showed that using 01X-logic alone is good enough
to verify many properties. Furthermore, this table and the results in Tables 2 and 3 show
that our blackbox detection procedures perform well, with our optimized encoding in
Table 3 performing better. Finally, we showed that modern QBF-solvers perform well
on a range of benchmarks, showing that they are finally ready for industrial uses.

5 Conclusion

In this work, we presented our tool Bounce that can automatically and efficiently verify
a wide array of blackbox BMC problems. We introduced a novel and efficient encod-
ing for the BMC problem of incomplete designs when combining Z- and Zi-modeling
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techniques. We also provided a procedure for proving the 01X-hardness of an incom-
plete design with the help of Craig interpolation. Furthermore, we showed how the
Craig interpolants and unsat-cores of a problem can be used for heuristically determin-
ing which blackbox outputs should be Zi-modeled in order to find a counterexample.
Moreover, we showed that all these techniques and our tool perform well on a large set
of industrial problems. Lastly, we compared our tools performance when connected to
three different state-of-the-art QBF-solvers.

Our results show that blackbox verification is becoming feasible, and that it can be
used for the testing of designs with incomplete information. These include early stage
prototypes where every component is not yet developed, or SoC designs where the
exact functionality of a component is unknown. Furthermore, the ability of blackbox
methods to verify designs that are to complex if the entire design is considered also
poses multiple interesting applications. Additionally, we are currently looking at ways
to make the blackboxes gray by introducing the ability to give each blackbox certain
properties, opening up many more opportunities for our tool in the future.
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Abstract. Evaluating improvements to modern SAT solvers and com-
parison of two arbitrary solvers is a challenging and important task.
Relative performance of two solvers is usually assessed by running them
on a set of SAT instances and comparing the number of solved instances
and their running time in a straightforward manner. In this paper we
point to shortcomings of this approach and advocate more reliable, sta-
tistically founded methodologies that could discriminate better between
good and bad ideas. We present one such methodology and illustrate its
application.

1 Introduction

Many SAT solvers have been developed and various improvements to them have
been proposed over the years, especially in the domain of heuristic components.
Solver comparisons as a method for detecting good ideas are widely recognized in
the SAT community. This is the main purpose of competitions of SAT solvers.1

Their importance is growing, especially because of the significant number of
new ideas and solvers that appear each year. Nevertheless, main responsibility
for evaluation of new ideas is on the researchers themselves.

In order to assess the quality of a proposed modification, one usually runs a
modified and the base version of the solver on some set of SAT instances. The
solver that solves more instances, or the same number of instances in less time
is considered to be better. This approach can be flawed because solving times
of instances can significantly vary depending only on trivial properties of the
formula like ordering of clauses and literals, or on random seeds used, which can
lead to different experimental results by chance.

We performed experiments to investigate this claim. Four solvers were chosen
from the MiniSAT hack track of the SAT 2009 competition — the first, the
last, the baseline and one of the medium performance according to the results
of the track.2 We used two benchmark sets. The first consisted of 292 industrial
instances used at the MiniSAT hack track and the second of 300 graph coloring
� This work was partially supported by Serbian Ministry of Science grant 144030.
1 http://www.satcompetition.org/,http://baldur.iti.uka.de/sat-race-2008/
2 http://www.cril.univ-artois.fr/SAT09/results/ranking.php?idev=25

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 209–222, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.satcompetition.org/, http://baldur.iti.uka.de/sat-race-2008/
http://www.cril.univ-artois.fr/SAT09/results/ranking.php?idev=25


210 M. Nikolić

Table 1. Number of solved instances for ”lucky” and ”unlucky” case of each solver

Industrial Graph coloring

Solver Lucky Original Unlucky Lucky Unlucky

MiniSAT 09z 161 142 111 180 157

minisat cumr r 156 139 107 190 180

minisat2 141 121 93 200 183

MiniSat2hack 144 121 93 200 183

instances from the SAT 2002 competition. Each solver was run on 50 shuffled
variants of each benchmark (obtained by reordering the clauses, literals in each
clause, and renaming the variables) with cutoff time of 1200 seconds.

First we checked how much the number of solved formulae can vary. A solver
was ”lucky” if for each formula it was given the shuffled variant that it solves in
the shortest time. The solver was ”unlucky” if for each formula it was given the
shuffled variant that it solves in greatest time (unsolved if such variant exists).
For each benchmark set and each solver, results for both the ”lucky” and the
”unlucky” case are presented in Table 1. For industrial formulae, the number of
formulae solved in their original form is also given. The graph coloring instances
were already shuffled, so we don’t give such information for them. One can see
from the table that the variation of the number of solved formulae can be large.

Second, we investigated the effect of this variation on solver comparison. We
checked that for each two solvers, on the industrial instances it is possible to
suitably select shuffled variants of each instance to make one benchmark set
on which the first solver is better than the second, and another on which the
second is better than the first (in this case, both solvers are run on the same
shuffled variant of each formula). However, the probability of such event should
be also taken into the consideration. For each pair of solvers we performed 10000
simulated pairwise comparisons with shuffled variants chosen on random for each
formula in order to estimate the probabilities of each solver in the comparison
being the winner. For most of the pairs, changing the outcome of the comparison
turned out to be very unlikely. However, when comparing MiniSAT 09z and
minisat cumr r on industrial instances the odds of winning are 92% to 8%,
when comparing minisat2 and minisat2hack on industrial instances the odds are
6% to 94%, and when comparing minisat2 and minisat2hack on graph coloring
instances the odds are 74% to 26%. It is interesting to notice that on industrial
instances, the solver that appears to be the best, can be beaten in practice as a
result of chance. Also, ordering of minisat2 and minisat2hack would be different
from the one obtained at the competition in most of the cases.

Sometimes the use of shuffling is disputed. Its use is not essential for the
methodology that will be proposed. The purpose of shuffling is to make a solver
choose different paths of the solving process on different runs, and thus obtain
information about its runtime distribution. Such an effect could also be achieved
without shuffling by changing the random seed the solver uses, and we certainly
don’t prefer some random seeds to the others. We also performed the similar
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experiment with random seeds instead of shuffling. The ”lucky version” of Min-
iSAT solved 144 instances, and the ”unlucky” one solved 96, which is close to the
results obtained by shuffling. Note that the use of randomization is a common
practice in modern SAT solvers.

In addition to the problem just discussed, there is a problem of drawing con-
clusions from the available experimental results. Sometimes, the results are pre-
sented by tables showing that the new SAT solver is performing better than the
base one on some subsets of instances, and worse on the others, without clear
conclusion about the overall effect. Also, SAT solver comparisons are concluded
without discussion if the observed differences could be obtained by chance or are
a consequence of a genuine effect.

The goal of this work is the formulation of statistically founded methodology
of SAT solver comparison that would i) eliminate chance effects from the re-
sults, ii) give an answer if there is a positive (or negative) overall effect of the
proposed modification to SAT solver performance, and iii) give an information
of statistical significance of that effect. Such a methodology would enable more
reliable discrimination between good and bad ideas, enabling the community to
focus on the more promising ones.

There are several issues that have to be addressed in devising such method-
ology. The first is a presence of censored data. If the formula is not solved in
a given cutoff time, it is only known that it needs more time to be solved, but
not how much exactly. The second is a need to compare runtime distributions
instead of single solving times that are unreliable. The third issue is finding a
way to combine conclusions for different formulae to derive an overall conclusion.

The methodology we propose was conceived for detection of improvements
over some base solver, but it can be used without limitation to comparison of
two arbitrary solvers. Also, it will be shown how it can be extended for ranking of
several solvers. This methodology is not concerned with selection of benchmarks.
One should choose the benchmarks representative for the problems of interest.

The rest of the paper is organized as follows. In Sect. 2, a brief information
on relevant concepts and techniques is given. The proposed methodology is de-
scribed in Sect. 3 and the experimental results are given in Sect. 4. In Sect. 5,
related work is discussed. In Sect. 6 final conclusions are drawn and some di-
rections of possible further work are pointed to. In the appendix, a proof of the
theorem from Sect. 3 is given.

2 Preliminaries

In this section we describe concepts and techniques important for understanding
the proposed methodology and introduce needed notation.

2.1 Distributions of Solver Running Times

It is well known that solving times for a propositional formula can vary substan-
tially from one solver run to another if the solver uses some random decisions
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during its work. Also, solving times can change substantially if a syntactical rep-
resentation of the formula is changed. Distributions of these solving times have
been a subject of intensive study [GSCK00, FRV97], resulting in important theo-
retical insights and understanding of randomized restarts. A runtime distribution
of a solver on some instance bears much more information about solver perfor-
mance than a single run, but it is considerably more expensive to obtain.

2.2 Statistical Hypothesis Testing and the Notion of the Effect Size

Statistical hypothesis testing is concerned with determining if a proposed hy-
pothesis about some populations hold, based on sample data from those pop-
ulations. The test is performed by trying to reject the null hypothesis H0. H0

is usually a statement of “no effect” claiming that the effect considered is not
present in the populations.

In order to test if H0 holds, one computes a value t of some test statistic T
(depending on the purpose and formulation of the test) with a known probability
distribution. The probability of obtaining the computed or more extreme value
of the statistic, assuming that H0 is true, is called a p value. If the p value is
less than some predetermined threshold α (usually 0.05), the observed event is
considered to be too improbable to be observed if H0 holds, and the hypothesis
H0 is rejected. Such a result is said to be statistically significant at the level α.
Otherwise (p > α), one cannot reject the hypothesis H0.

The smaller the p value, the greater the confidence that the observed effect is
not obtained by chance. Nevertheless, a small p value is not enough to conclude
that the effect is large, because it depends both on the size of the effect and the
sample size. Even if the effect is statistically highly significant, it can still be too
small to be of any practical importance. In order to measure the magnitude of the
underlying effect, an effect size has to be computed. There are several standard
effect size statistics [Ros91, GK05]. One, commonly used when comparing two
samples, is a point biserial correlation (often referred to as Pearson’s r) [Ros91].

2.3 Point Biserial Correlation

Point biserial correlation ρpb between two random variables is the correlation
between their outcomes and an indicator variable with value 1 for outcomes of
the first random variable, and value −1 for the outcomes of the other. Its sample
estimate rpb is calculated by the formula:

rpb =
∑N

i=1(Xi − X)(Yi − Y )√∑N
i=1(Xi − X)2

√∑N
i=1(Yi − Y )2

where Xi denote observations from both samples, and Yi are indicator variables.
X and Y are the means of Xi and Yi. N is the total number of observations.
Quantities ρpb and rpb have values ranging from −1 to +1. Absolute values closer
to 1 mean that the distributions of random variables exhibit better separation.
Values near 0 indicate great overlapping between distributions.
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If there is no information about the distribution of the data, the data are often
transformed by ranking — each observation in either sample is replaced by its
rank in the sorted sample. If there are tied (equal) observations, each of them is
assigned the average rank of the ranks that would be attributed to them. The
point biserial correlation calculated on ranked data has different properties to
the original statistic and is an instance of the Spearman correlation coefficient
[DKS51, DM61].

The estimate rpb is asymptotically normally distributed with the mean ρpb.
The variance of rpb is not easy to determine if the ranking is used and if the
distribution of the data is not normal except for the case ρpb = 0 [DKS51, DM61].
Nevertheless, it can be estimated by methods like bootstrapping or jackknife
[Efr79, ES81]. The variance of rpb is strongly dependent on value of ρpb, and
rpb is usually used in statistical tests only after the Fisher’s variance stabilizing
transformation z(x) = arctanh(x) is applied [Hot53]. Also, the transformed
variable is much closer to normal distribution than the original one. It has the
mean z(ρpb) and its variance can be estimated by var(rpb)(1 − r2

pb)−2.
In order to interpret the magnitude of rpb, one can follow commonly accepted

recommendations by Cohen [Coh88] — effects with |rpb| in the intervals [0,0.1),
[0.1,0.3), [0.3,0.5), and [0.5,1], are considered respectively, negligible, small,
medium, and large. However, note that these are not strict rules, but rather, rea-
sonable guidelines.

2.4 Accounting for Censored Data

By censored data we mean data known to be greater than some threshold value,
but of unknown exact value. One well-known test for comparison of two samples
which include censored data is the Gehan test [Geh65]. The statistic used in this
test can be formulated as follows [Man67]. The pooled sample is the sample that
includes elements of both samples that are compared. Note that the repetitions of
elements are possible. Let Ui be the number of observations in the pooled sample
than which the i-th observation in the pooled sample is strictly greater minus
the number than which it is strictly less. In the case of unique censoring time,
censored observations are treated as equal and greater than all the uncensored
observations.3 Then Gehan statistic is defined by

WG =
1

|A1||A2|
∑
i∈A1

Ui

where Aj is a set of indices in the pooled sample of the observations from the
j-th sample (j = 1, 2). As shown by Gehan [Geh65], using the theory of U
statistics [Hoe48, Leh51], Gehan statistic is a consistent estimate of ω = P (X >
Y ) − P (X < Y ). It is asymptotically normally distributed with the mean ω.
The variance of WG is easy to calculate if ω = 0. In other cases bootstrapping
or jackknife estimates can be used [Efr79, ES81]. As in case of rpb, the variance
depends on ω, diminishing as ω approaches extreme values −1 or 1.
3 In the case of varying censoring times, more sophisticated statistics might be used.
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3 The Methodology

An overall idea of the proposed methodology for comparing two solvers is simple.
For each SAT instance from some benchmark set one should calculate suitably
defined difference of performance of two solvers on that instance. If the perfor-
mances of two solvers are approximately the same for the benchmark set, then
the differences on considered instances should mainly cancel out, and the aver-
age of the differences couldn’t be too large. Note that the concept of runtime
distribution is important for our methodology, but in formulation of the method-
ology we leave the sampling mechanism unspecified. The methodology will be
applicable regardless of that choice. First, we outline the methodology, and then,
discuss its various aspects.

3.1 The Outline of the Proposed Methodology

Let random variable τ j represent runtimes of the solver Sj (j = 1, 2) on SAT
instance F . Since solving times can be too large for practical evaluation, a cutoff
time T is used, and thus distributions of random variables τ j are truncated
to the right at the point T . The difference of SAT solver performances should
be defined by some function δ(τ1, τ2) measuring the suitably chosen difference
between distributions of these variables. Since the random variables themselves
are not available, inferences about them are made using samples of runtimes.
The value of the function δ should be approximated by a difference d between
samples. The differences δi of random variables corresponding to formulae Fi can
be averaged to obtain a value δ which measures the overall difference between
solvers on given corpus of formulae. Sample estimate of δ, the average of di

values, will be denoted d. Distribution of the average of d under the hypothesis
δ = 0 will be denoted by Θ.

The methodology is outlined in Fig. 1. It can be considered as a statistical
test with the null hypothesis that there is no overall effect — H0: δ = 0.

Obviously, in order to use this methodology, its various aspects must be dis-
cussed. The most important ones are the choice of the function d, estimation of
distribution Θ, and interpretation of the magnitude of d. We will propose some
choices for each of these aspects.

3.2 Choosing Function d

The role of function d is to quantify the difference in performance of two solvers
on one instance based on samples of corresponding solving times. For that we
use effect size measures for difference between two samples. Three possible effect
size measures will be introduced, and their relations will be analyzed.

Probably the most intuitive indicator of two solvers performing equally on
some instance F would be that the probability that the first solver solves the
instance in more time than the second solver is equal to the probability that
the second solver solves the instance in more time than the first solver. More
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– INPUT: Solvers S1 and S2, and the set of benchmark instances
– OUTPUT: Information if one solver is better than the other and estimate of

the effect size
– Choose the level of statistical significance α (α < 1)
– For each formula Fi from corpus F consisting of M instances:
• Take a sample T j

i of size N of random variable τ j
i (j = 1, 2)

• Calculate the difference di = d(T 1
i , T 2

i ) between obtained solving times
– Calculate the average d of values di

– Estimate Θ — the distribution of d under the null hypothesis
– Calculate the p value for d according to the distribution Θ
– If p ≤ α
• Declare the first solver to be better if d < 0
• Declare the second solver to be better if d > 0
• Report d as the estimate of the magnitude of the difference between

performances of two solvers
– otherwise, declare the difference insignificant

Fig. 1. Outline of the proposed methodology

formally
P (τ1 > τ2) = P (τ1 < τ2)

or equivalently
ω = P (τ1 > τ2) − P (τ1 < τ2) = 0

where τ j is a random variable representing solving times of the solver Sj on
instance F . These two probabilities need not sum to 1 in case that censored
data are present. In that case

π =
1 − ω

2
= P (τ1 < τ2) +

1
2
P (τ1 = τ2)

which is a quite intuitive measure that combines the evidence of one solver per-
forming better than the other with the uncertainty that appears if both solvers
haven’t solved the same benchmarks. Namely, the case τ1 = τ2 is possible only
for censored observations since, practically, all uncensored solving times differ
even slightly if measured with enough precision. The value π is a known effect
size measure [GK05]. Recall that ω is estimated by WG and π is estimated by
(1 − WG)/2. Drawback of using ω or π is a lack of variance stabilizing transfor-
mation like the one available for the point biserial correlation (see Sect. 2).

Point biserial correlation ρpb is a commonly used and well understood effect
size measure (as described in Sect. 2). It is estimated by rpb. Since there is no
information about distribution of the data, estimate should be calculated on
ranked data (see Sect. 2). Technical advantage of using this measure is avail-
ability of Fisher’s transformation which stabilizes the variance and makes the
distribution closer to normal. This makes determining statistical significance
much more reliable. On the other hand, it is not obvious if this measure makes
sense with censored data. Also, without prior experience with this measure, one
might feel uncomfortable interpreting its magnitude.
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To establish a relation between estimates of technically more suitable ρpb,
and more intuitive ω and π, we present the following theorem, showing that
all three can be used interchangeably (the proof is given in the appendix). For
observations Xi of a random variable X , by S2

X we denote
∑

(Xi − X)2 where
X is an average of observations Xi.

Theorem 1. Let T 1 and T 2 be two samples of two random variables τ1 and
τ2. Let Xi be the i-th element in the sorted pooled sample, Ri its rank in that
sample, Yi the corresponding indicator variable, and rpb the sample point biserial
correlation between Ri and Yi. Then, if there are no ties in uncensored data and
the censoring time is unique, the following relation holds

WG = rpbSRSY /|T 1||T 2| (1)

Additionally, if |T 1|/|T 2| approaches finite positive constant when |T 1| → ∞,

var(WG) → var(rpb)S2
RS2

Y /|T 1|2|T 2|2 (2)

also holds when |T 1| → ∞.

Note that the assumptions of the theorem are fulfilled in the context of SAT
solving. As already noticed, the assumption of no ties is quite realistic for un-
censored data. The assumption of unique censoring time is standard in SAT
solving. The last assumption is trivially satisfied as one can always use samples
of equal size. This theorem allows us to use either of the proposed effect size
measures for function d since one can be easily calculated from the other. Since
p value depends on the value of the test statistic and its variance, the second
relation ensures that p value estimates are practically the same for large samples
regardless which of the proposed measures is used.

For our primary effect size measure, we take point biserial correlation due to
its technical advantages concerning the computation of statistical significance,
but ω and π can also be reported for the effect size.

3.3 Determining Statistical Significance and the Effect Size

We say that two solvers perform the same on one instance if ρpb = 0, or if rpb

is not significantly different from 0 in sense of statistical testing. Also, for the
measure of difference di between samples of random variables τ1

i and τ2
i we can

take ri — the estimate of ρpb for Fi. Statistical significance testing based on rpb

values is usually done after the Fisher transformation (see Sect. 2). To check the
statistical significance of the overall test, for each ri, value z(ri) is computed,
and those values are averaged. Since all the z(ri) are asymptotically normally
distributed, it is easy to see (using the properties of the normal distribution and
asymptotics) that the average z is also asymptotically normally distributed:

z ∼ N
(

1
M

M∑
i=0

z(ρi),
1

M2

M∑
i=1

var(ri)
(1 − r2

i )2

)
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where ρi is the population parameter estimated by ri. To see if the null hypothesis
δ = 0 holds, one should check if the difference of obtained average z from z(δ) = 0
is statistically significant with respect to distribution of z. The p value (two
tailed) is 2(1−Φ(z/

√
var(z))), where Φ is the distribution function of standard

normal distribution. Note that we don’t directly use the distribution Θ of d
because the use of transformed values is more reliable.

The estimate of the effect size d is the average of values ri, and its magnitude
is interpreted in the way described in Sect. 2.

3.4 Ranking Several Solvers

If one is comparing several solvers, even if all pairwise comparison results are
known one still needs a ranking method.

Important issue with application of statistical tests in general is their potential
nontransitivity. Namely, there are examples of random variables A, B, and C such
that P (A < B) > 1

2 and P (B < C) > 1
2 hold, but P (A < C) > 1

2 does not.
Note that this counterintuitive behavior is not a flaw of any test, but rather a
natural probabilistic phenomenon. A popular example are Efron’s dice [BH02].

There is still no proof that the proposed comparison procedure is transitive.
As with Efron’s dice it might be even meaningless to demand transitivity, but
this should be a subject of a further study. To overcome this difficulty, one can
use Kendal-Wei method for ranking based on pairwise comparisons [Ken55]. This
method is designed for situations characterized by nontransitivity property.

4 Experimental Results

In this section we present two experiments. The first one is concerned with the
number of shuffled variants appropriate for the application of the methodology,
and the second one shows results of the application of the methodology. In both
experiments we use the same 4 solvers and 2 benchmark sets as in Sect. 1. For
the level of statistical significance α we take the usual value of 0.05. We sample
from the runtime distributions by solving 50 shuffled variants of each formula
with cutoff time of 1200 seconds. Though the shuffling is quite acceptable for the
solvers used, one could also change the random seed. If all the shuffled variants of
the benchmark were solved in less than 0.1 seconds4 by both solvers or no shuffled
variant was solved by any solver, the benchmark was discarded as uninformative.
For function d we choose rpb. The variance of rpb is estimated by bootstrapping
[Efr79] with 100000 bootstraps.5

First important question concerning the application of the proposed method-
ology is its computational cost reflected by the number of shuffled variants one
has to use in order to obtain reliable estimates of the effect size and statistical
4 At most 1 industrial and 30 graph coloring instances were discarded in any compar-

ison on the basis of this criterion.
5 Source code of software used for all the statistical calculations is available from
http://www.matf.bg.ac.rs/~nikolic/solvercomparison/sc.zip

http://www.matf.bg.ac.rs/~nikolic/solvercomparison/sc.zip
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Fig. 2. Plots of rpb for industrial (left) and graph coloring (right) benchmark sets as a
function of the number of shuffled variants used

Table 2. Estimates of ρpb when comparing various solvers. Following labels are used
A = MiniSAT 09z, B = minisat cumr r, C = minisat2, D = MiniSat2hack.

Industrial Graph coloring

A B C D A B C D

A - -0.097 -0.249 -0.229 - 0.206 0.453 0.461

B 0.097 - -0.241 -0.208 -0.206 - 0.327 0.333

C 0.249 0.241 - 0.072 -0.453 -0.327 - -0.001

D 0.229 0.208 -0.072 - -0.461 -0.333 0.001 -

significance. Also, increasing the number of shuffled variants leads to smaller
p values due to larger sample size without the increase of the effect size. It is
advised that the sample size is not increased beyond the point at which the
effect size estimate stabilizes [Coh95]. To check the number of needed shuffled
variants, for each two solvers, we plotted the value of rpb as the number of used
shuffled variants ranges from 1 to 50. The plot for each benchmark set is given
in Fig. 2. The plots indicate that the number of shuffled variants that should be
used is around 10 to 15. As expected, the results of the experiments based on
the estimates of ω and π instead of ρpb are the same.

In Table 2 we present estimates of ρpb for comparisons of each pair of solvers
using 15 shuffled variants. The obtained results are not surprising with respect
to those shown in Table 1. In all the comparisons the p values (two tailed)
are less than 0.001 except when comparing original MiniSAT version and Min-
iSat2hack on graph coloring instances when it is 0.945. Nevertheless, note that
some statistically significant differences can be considered negligible with respect
to guidelines provided in Sect. 2. Note that no problems with transitivity ap-
peared. The ranking is easy to establish. It is ABDC on industrial and CDBA
on graph coloring instances, where the same labels are used as in Table 2.
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5 Related Work

There are already several papers concerning the comparison of SAT solvers.
Le Berre and Simon recognize the importance of this question [LS04]. Also,
the possibility that shuffling can change the order of solvers was noticed. It is
suggested that the corpora could include shuffled variants of formulae. On the
other hand, this paper is concerned with the usual way of solver comparison.
Audemard and Simon further analyze the impact of the shuffling on the number
of solved formulae, and conclude that it can be large [AS08].

Etzoni and Etzoni propose the use of statistical tests for censored data for
evaluation of speedup learning systems, but the comparison of runtime distribu-
tions of instances is not discussed in their context [EE94]. Brglez et al. stress the
importance of statistical approach for SAT solver comparison [BLS05, BO07].
Also the importance of runtime distributions for SAT solver comparison is rec-
ognized. Statistical tests are used to compare performances of two solvers, but
only on one instance. Full methodology that could use a corpus of instances and
combine results of testing on individual instances is not devised. Moreover, we
exploit the notion of the effect size which is important for such methodology and
propose the extension to ranking several solvers using method which takes the
nontransitivity issue into account.

Pulina gives an excellent empirical analysis of ranking methods for systems
used in automated reasoning and more importantly establishes reasonable prop-
erties that those ranking methods should possess [Pul06].

6 Conclusions and Future Work

We demonstrated that comparison methods that are widely used can be un-
reliable, and depend on variable naming, ordering of clauses and literals, and
random seeds used (see Sect. 1). A new, statistically founded, methodology is
proposed for comparison of SAT solvers. It is based on the comparison of run-
time distributions instead of single solving times and uses standard effect size
measures to quantify the difference between those distributions.

We showed that the needed number of shuffled variants to estimate the effect
size between solvers is around 10 to 15. The testing corpora could be somewhat
reduced to compensate for this increase of solving time, thus trading some bench-
marks for thorough analysis. We regard this approach better, since the results
presented in Sect. 1 do not suggest that the use of large corpora eliminates the
significant chance effects on number of solved formulae. The new methodology
is able to practically eliminate the chance effects from the comparison (up to p
value) and provide information on statistical significance and effect size in the
way usual for statistical testing which standard approach does not.

As for the future work, important issue is finding the assumptions that guarantee
the transitivity of proposed comparison procedure, and checking if nontransitive
effects can appear in SAT solving. Also, proposed ranking method is yet to be an-
alyzed in the light of the criteria established by Pulina [Pul06].
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Appendix

Proof of Theorem 1.
Let n1 = |T 1|, n2 = |T 2|, and N = n1+n2. The numbers of censored observations
in each sample are denoted by c1 and c2, and C = c1 + c2. Let I1 and I2 be the
sets of indices in the pooled sample of uncensored observations from samples T 1

and T 2 respectively. Let I = I1 ∪ I2. The set of indices in the pooled sample of
all the observations of the first sample is denoted by A1.

First we show that the relation (1) holds. We will consider expressions n1n2WG

and SRSY rpb and will conclude that they are equal. We use Mantel’s version of
WG [Man67] noting that it can be decomposed in terms of ranks of uncensored
observations plus the term for censored observations.

n1n2WG =
∑
i∈A1

Ui =
∑
i∈I1

[(Ri − 1) − (N − Ri)] + c1(N − C)

= 2
∑
∈I1

Ri − (n1 − c1)(N + 1) + c1(N − C)

= 2
∑
∈I1

Ri − (n1 − 2c1)(N + 1) − c1(C + 1)

Let us consider SRSY rpb:

SRSY rpb =
N∑

i=1

(Ri − R)(Yi − Y ) =
N∑

i=1

RiYi −
N∑

i=1

RiY −
N∑

i=1

RYi +
N∑

i=1

RY

where R and Y are the means of Ri and Yi. Note that the last three sums are
equal, and hence

SRSY rpb =
N∑

i=1

RiYi −
N∑

i=1

RiY =
N∑

i=1

RiYi − E1
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where E1 = (N + 1)(n1 − n2)/2 and is obtained using the fact that the sum of
ranks is constant and equals N(N + 1)/2 and that Y = (n1 −n2)/N . Separating
censored and uncensored observations yields

SRSY rpb =
∑
i∈I

RiYi + E2 − E1 =
∑
i∈I1

Ri −
∑
i∈I2

Ri + E2 − E1

where E2 = (2N − C + 1)(c1 − c2)/2 since (2N − C + 1)/2 is the average rank
of the censored observations. Since all the uncensored observations are less than
censored ones, and since the sum of their ranks is constant, the second sum can
be expressed in terms of the first sum:

SRSY rpb = 2
∑
i∈I1

Ri − (N − C)(N − C + 1)/2 + E2 − E1

After elementary calculations we obtain:

SRSY rpb = 2
∑
∈I1

Ri − (n1 − 2c1)(N + 1) − c1(C + 1)

thus proving the relation (1).
To prove the relation (2), we note that SY is constant, and that SR is constant

for fixed c1 and c2. For convenience, we will talk in terms of ratios a1 = c1/n1

and a2 = c1/n2. Using (1), the conditional variance of WG is var(WG|a1, a2) =
S2

RS2
Y

n2
1n2

2
var(rpb). We need to prove var(WG)/var(WG|a1, a2) → 1 when n1 → ∞.

We will follow the reasoning of Gehan [Geh65]. By the law of total variance we
have

var(WG) = El1,l2var(WG|l1, l2) + varl1,l2E(WG|l1, l2)

By the law of large numbers, a1 and a2 converge in probability to their expecta-
tions α1 and α2 when n1 → ∞. Since the probabilities of li such that |li−αi| ≥ ε
vanish for all ε > 0 when n1 → ∞, it holds

n−3
1 El1,l2var(WG|l1, l2)
n−3

1 var(WG|a1, a2)
→ 1

when n1 → 1. The last relation is obtained using the convergence theorems by
Cramér and Slutsky [Cra46] which can be used since it is known that
n−3

1 var(WG|a1, a2) = O(1) when n1 → ∞ [Geh65].
Regarding the second term in the expansion of unconditional variance, by

definition

varl1,l2E(WG|l1, l2) = El1,l2E
2(WG|l1, l2) − (El1,l2E(WG|l1, l2))2

which converges to 0 by similar reasoning as for the first term. This proves the
convergence (2). ��
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Abstract. Algorithms based on local search are popular for solving
many optimization problems including the maximum satisfiability prob-
lem (MAX-SAT). With regard to MAX-SAT, the state of the art in
performance for universal (i.e. non specialized solvers) seems to be vari-
ants of Simulated Annealing (SA) and MaxWalkSat (MWS), stochastic
local search methods. Local search methods are conceptually simple, and
they often provide near optimal solutions. In contrast, it is relatively rare
that local search algorithms are analyzed with respect to the worst-case
approximation ratios. In the first part of the paper, we build on Mas-
trolilli and Gambardella’s work [14] and present a worst-case analysis
of tabu search for the MAX-k-SAT problem. In the second part of the
paper, we examine the experimental performance of determinstic local
search algorithms (oblivious and non-oblivious local search, tabu search)
in comparison to stochastic methods (SA and MWS) on random 3-CNF
and random k-CNF formulas and on benchmarks from MAX-SAT com-
petitions. For random MAX-3-SAT, tabu search consistently outperforms
both oblivious and non-oblivious local search, but does not match the
performance of SA and MWS. Initializing with non-oblivious local search
improves both the performance and the running time of tabu search. The
better performance of the various methods that escape local optima in
comparison to the more basic oblivious and non-oblivious local search
algorithms (that stop at the first local optimum encountered) comes at
a cost, namely a significant increase in complexity (which we measure
in terms of variable flips). The performance results observed for the un-
weighted MAX-3-SAT problem carry over to the weighted version of the
problem, but now the better performance of MWS is more pronounced.
In contrast, as we consider MAX-k-SAT as k is increased, MWS loses its
advantage. Finally, on benchmark instances, it appears that simulated
annealing and tabu search initialized with non-oblivious local search out-
perform the other methods on most instances.

1 Introduction

The maximum satisfiability problem (MAX-SAT) is of great interest in both
theoretical[8] and applied computer science[18]. The MAX-SAT problem is NP-
hard. Current state-of-the-art algorithms can solve the problem optimally within
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a reasonable amount of time only for input instances of moderate size[5]. These
methods are often based on branch and bound techniques with rather sophisti-
cated rules that try to exploit the structure of the problem. MAX-SAT appli-
cations often involve instances of far larger scale than what exact solvers can
handle. As a result, a number of approximation algorithms have been developed
[6]. Local search based algorithms have gained popularity for their conceptual
simplicity and approximation performance. Furthermore, local search methods
can be used as a preprocessing step in a branch and bound method so as to
eliminate non-productive branches.

In the exact MAX-k-SAT problem each clause is restricted to have exactly
k literals, and the same variable cannot repeat within the same clause whether
negated or not. In the weighted version of the problem, each clause has a real-
valued positive weight, and the objective is to find a truth assignment that
maximizes the total weight of satisfied clauses.

A “basic” local search algorithm for the MAX-SAT problem starts with an
arbitrary truth assignment. The neighborhood of a solution consists of all the
truth assignments obtained by flipping the truth value of one or a small number
of the variables. At each step, the basic local search algorithm looks through
the neighborhood for a truth assignment that increases the number of satis-
fied clauses. If it finds such an assignment, the algorithm flips the value of the
corresponding variable(s) and continues. Otherwise, the algorithm terminates.

Many heuristic methods are aimed at improving the performance of the basic
local search, such as tabu search, random restarts, plateau moves, boosting, and
others [1]. In spite of the popularity and success of local search, these algorithms
are rarely analyzed with respect to either worst-case or “average-case” perfor-
mance. Mastrolilli and Gambardella seem to be the first to analyze the worst-case
performance of tabu search for the unweighted exact MAX-2-SAT problem[14].
In the first part of this paper, we extend their work to the exact MAX-k-SAT
problem. Tabu search guarantees a better approximation ratio than “oblivious
local search” but loses significantly to the Khanna et al [13]) “non-oblivious local
search” that uses a related potential function in the neighborhood search. In the
second part of the paper, we study the experimental performance of local search
methods for the MAX-SAT problem. Our experiments indicate that tabu search
and the stochastic local search methods consistently outperform both the obliv-
ious and non-oblivious local searches. However, initializing tabu search with the
truth assignment obtained by non-oblivious local search leads to results more
competitive with the stochastic methods. But perhaps of equal interest is the
fact that tabu search and the stochastic methods require substantially more time,
and if the goal is simply to obtain a reasonable approximation then the basic
methods have an advantage in terms of significantly reduced time complexity.

2 Local Search Algorithms for MAX-k-SAT

The input for each of the following algorithms is a boolean formula in CNF with
m clauses over n variables.
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2.1 Oblivious Local Search

For a given truth assignment τ , its one-flip neighborhood is the set of all truth
assignments at Hamming distance one from τ . Oblivious local search (OLS)
starts with an arbitrary fixed truth assignment. At each step, it searches the one-
flip neighborhood of the current assignment for neighbors that achieve a better
value of the given objective function. If such a neighbor exists, the algorithm
replaces the current truth assignment with a truth assignment from the one-
flip neighborhood that satisfies the most number of clauses. Ties are broken
arbitrarily. If such a neighbor does not exist, OLS terminates.

For unweighted MAX-SAT the objective function is simply the number of
satisfied clauses. The running time of OLS is polynomial in this case, as each
step improves the value of the objective function by at least one, and the optimal
value is bounded above by m. For weighted MAX-SAT the objective function is
the total weight of the satisfied clauses. Without any restrictions on weights, the
running time of OLS is no longer necessarily polynomial. This can be remedied
by insisting that improvements at each step are sufficiently large.

2.2 Non-oblivious Local Search

The idea behind non-oblivious local search (NOLS) [13] is to introduce a related
potential function and use it in the neighborhood search. This potential function
gives preference to the clauses satisfied by many literals, as they are likely to
stay satisfied even if the algorithm flips many variables in the future. Let Cj

denote the set of clauses satisfied by j literals. Then the potential function
for MAX-2-SAT is 3/2|C1| + 2|C2|. For the case of MAX-k-SAT with k > 2,
the reader is referred to Section 6 titled “The Power of Non-Oblivious Local
Search” of Khanna et al paper [13]. Replacing |Cj | by the total weight of Cj in
the potential function extends NOLS to the weighted case of MAX-SAT. The
running time analysis of this algorithm is similar to that of OLS.

2.3 Tabu Search

Oblivious and non-oblivious local searches terminate as soon as they achieve a
local optimum for the given objective (respectively, the related potential) func-
tion. Tabu search (TS) offers a determinstic method for attempting to improve
upon the current local optimum. Each iteration of TS consists of two stages.
In the first stage, given a current truth assignment, OLS is used to compute a
local optimum. In the second stage, tabu search maintains an additional data
structure - a list of size t. This list is referred to as a taboo list. and t is called
taboo tenure. When TS reaches a local optimum, it tries to escape it as follows.
The algorithm records (xi, ti) pairs for the last t steps in the list, where xi is a
variable flipped at step ti. During some of these steps, the current truth assign-
ment can worsen, during other steps it can improve. If at some point, the current
truth assignment improves over the local optimum found in stage 1, then stage 1
is repeated starting from the improved truth assignment. If during stage 2, tabu
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search does not find a solution that improves over the current local optimum,
the algorithm terminates.

Each step of TS in the escape phase consists of flipping a variable. The al-
gorithm follows the following rules (in given order) to decide which variable to
flip: 1) aspiration condition - if flipping a variable improves the best value
of the objective function found so far, then the best such variable is chosen; 2)
taboo - if there are variables that appear in unsatisfied clauses and that were
not flipped in the last t steps, i.e. they are not in the taboo list, the algorithm
chooses the best such variable; 3) LRU - if all variables that appear in un-
satisfied clauses also appear in the taboo list, then the least recently used such
variable is selected. In the above rules, the best variable means that flipping
it results in the largest increase of the objective function, or smallest decrease
in the objective function, if no variable can improve it. All ties are broken ar-
bitrarily. Taboo tenure controls the number of allowed steps during the escape
phase. Mastrolilli and Gambardella argued that n is a reasonable choice for
taboo tenure. The proof of a worst-case approximation ratio of TS relies on this
requirement.

The same algorithm works for the weighted MAX-k-SAT problem, except that
the weights of clauses are used in consideration of which variable to flip. In the
unweighted case, TS with taboo tenure of n runs in polynomial time, because
it improves the objective by at least one for every n steps, and m is an upper
bound on the value of the objective function. As before, in the weighted case
we can guarantee strongly polynomial running time by considering only large
enough improvement for the stopping conditions in phase 1.

2.4 Simulated Annealing

We present a version of simulated annealing (SA) that appears in [17] and was
found to work well for the satisfiability problem. SA was motivated by an analo-
gous physical process, and the parameters of this algorithm have a corresponding
semantic meaning. SA keeps track of the current “temperature”. Initially, the
temperature is high and the algorithm explores the solution space uniformly at
random. As the temperature starts to cool down, SA gradually starts to prefer
solutions that achieve better values of the objective function, concentrating on
more promising parts of the solution space. The rule that specifies how temper-
ature changes with time is called temperature schedule. In our implementation it
is specified by three parameters: 1) MT - initial maximum temperature, 2) DR
- decay rate per step, and 3) mT - minimum temperature for stopping. At step
s SA computes the current temperature T = MT exp(−s ·DR). If T < mT , SA
terminates. Otherwise, values pi = 1/(1 + exp(−Δ(i)/T )) are computed, where
Δ(i) is the change in the objective function when variable i is flipped. SA then
flips variable i with probability pi. After all variables have been processed, SA
moves to the next step s + 1. We use the parameters MT = 0.3, mT = 0.01, and
DR = 1/n as suggested in [17].
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2.5 MaxWalkSat

There are many variants of MaxWalkSat (MWS) algorithms. In general, given
any current truth assignment for the unweighted MAX-SAT problem, an unsat-
isfied clause is chosen uniformly at random among all unsatisfied clauses. Various
heuristics are then used to select a literal from this clause, and the truth value of
that literal is flipped. Our experiments indicate that overall, the “productsum”
heuristic performs best, and hence we restrict our attention to it. Suppose MWS
decides to choose a literal in a clause C = z1 ∨ z2 . . .∨ zk. Let b(i) = the number
of clauses that become unsatisfied if the literal zi is flipped. Then “productsum”
assigns a value vi =

(∏
j �=i b(j)

)(∑
j �=i b(j)

)
for each literal zi in clause C and

flips literal zi with probability vi∑
1≤j≤k vj

. In the weighted case, MWS considers
clauses of highest weight to be “hard” clauses. Given any truth assignment, it
chooses a random unsatisfied hard clause and applies “pickproductsum” heuris-
tic to it with b(i) = the weight of clauses that become unsatisfied if zi is flipped.
If all hard clauses are satisfied, MWS chooses a random unsatisfied clause and
applies “pickproductsum” heuristic. After this step, some hard clauses might
become unsatisfied, and MWS will try to fix them in the very next step.

3 Background

Unless otherwise stated, MAX-k-SAT will mean exact MAX-k-SAT. Oblivious
local search with 1-flip neighborhood achieves the approximation ratio of k

k+1
for the unweighted (and weighted) MAX-k-SAT problem, and this ratio is tight
[8]. Non-oblivious local search provides a better worst-case guarantee of 2k−1

2k for
the same problem [13]. For the MAX-2-SAT problem, tabu search was shown to
have the tight approximation ratio of 3

4 [14]. This ratio matches that of NOLS
for MAX-2-SAT, which raises a question as to whether the two algorithms have
the same approximation ratio for MAX-k-SAT for all k ≥ 2. This paper answers
this question in negative, showing that tabu search has a weaker approximation
guarantee than non-oblivious local search for MAX-k-SAT with k > 2.

A general inapproximability result says that if P 
= NP , then 2k−1
2k is (es-

sentially) the best possible approximation ratio achievable by any polynomial
time algorithm for MAX-k-SAT with k > 2 [9]. A simple randomized algorithm,
that picks a truth assignment uniformly at random, satisfies 2k−1

2k of all clauses
in the exact MAX-k-SAT formula in expectation. Derandomization of this al-
gorithm leads to a simple greedy algorithm achieving the approximation ratio
of 2k−1

2k [11]. The case k = 2 is special in the MAX-SAT world. Currently, the
best approximation ratio for MAX-2-SAT is .931 (Feige and Goemans[7]) using
an algorithm based on semidefinite programming relaxation and rounding. An
inapproximability result for MAX-2-SAT states that for any ε > 0 it is NP-hard
to approximate MAX-2-SAT within a factor of 21

22 + ε ≈ 0.955 + ε[9].
A natural extension of the 1-flip neighborhood is a larger p-flip neighborhood

for p > 1. The size of this neighborhood is
∑p

j=1

(
n
j

)
for a formula over n vari-

ables. Even for “small” constant values of p, it still requires a substantial amount
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of time to search through the entire neighborhood, and experimentally the qual-
ity of solutions seems to be not much better than those obtained through a 1-flip
neighborhood. From the worst-case point of view, [13] shows that oblivious local
search with an o(n)-flip neighborhood has the tight approximation ratio of 2

3 for
MAX-2-SAT - the same as with a 1-flip neighborhood. In general, these larger
neighborhoods are not practical, and so this paper focuses on algorithms with
the 1-flip neighborhood.

The second part of this paper deals with an empirical evaluation of different
algorithms based on local search. We consider both benchmark examples from
the “Second Evaluation” of MAX-SAT solvers (see [10] for a detailed description
of these benchmark instances) and random k-SAT instances. Random exact k-
SAT instances were generated by choosing formulas uniformly at random with
the clause density around the estimated phase transition. There is a discrep-
ancy between what has been proven rigorously about the threshold values for
k-SAT in contrast to what has been experimentally shown and justified by well
motivated analysis. See [4], [15] and [3] for current results concerning threshold
values. The situation for 3-SAT represents a glaring gap in our current knowl-
edge, namely, the best lower bound on ĉ3 (for which clause density c < ĉ3 implies
satisfiability with high probability) is a constructive bound ĉ3 > 3.52 obtained
by a myopic (i.e. greedy) algorithm [12]. The provable upper bound is ĉ3 < 4.51.
Experimentally, the conjectured threshold is approximately 4.24 (see [16]).

4 Worst-Case Analysis of Tabu Search

Our version of tabu search, as described in Section 2, uses the length of taboo
list equal to the number of variables. Tabu search contains oblivious local search
as a subroutine, so an analysis of OLS occurs as a part of worst-case analysis of
TS. In both weighted and unweighted cases of the exact MAX-k-SAT problem,
oblivious local search achieves a worst-case approximation ratio of k

k+1 . In fact,
Khanna et al [8] prove the following stronger result on the “totality ratio”.

Lemma 1. At a local optimum, oblivious local search satisfies at least k
k+1 of

the total number of clauses in the formula.

Khanna et al show that the k
k+1 bound is tight. Adapting the proof of Lemma 1 to

tabu search, Mastrolilli and Gambardella showed a 3/4 approximation guarantee
of TS for the MAX-2-SAT problem. We extend their result to the MAX-k-SAT
problem for all k ≥ 2.

Theorem 1. Tabu search outputs a truth assignment that satisfies at least k+1
k+2

of the total number of clauses.

Proof. Suppose, oblivious local search is given a formula φ in k-CNF form with
m clauses over n variables. The initial truth assignment is X0. Let Xs be the
truth assignment output by tabu search and let Ct

j denote the set of clauses that
have exactly j literals satisfied by Xs at step t. By the halting condition, the
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algorithm terminated at step s + n. There exist t, such that 0 < t ≤ n, and each
variable from an unsatisfied clause at step s + t was flipped exactly once during
the last t steps. To prove this claim, consider two possibilities at step s + n. If n
variables were flipped during last n steps, then the claim follows trivially with
t = n. If less than n variables were flipped between steps s and s + n, then at
least one variable was flipped at least twice during last n steps. In this case,
choose a variable that is flipped the second time at the earliest step and let that
step be s + d + 1.

Then t = d satisfies the claim. To see that, consider step s + d. This is
the step immediately before the chosen variable was flipped the second time.
The algorithm had to repeat a variable, because all variables from unsatisfied
clauses were in the taboo list at step s + d. In particular, each of these variables
was flipped at least once during the d last steps, and each of them could not be
flipped more than once, since s + d + 1 is the earliest step, when a variable is
flipped for the second time.

Taking t as in the above claim, a clause with an unsatisfied literal at step s is
satisfied at step s+ t. Then a clause at step s+ t is unsatisfied by all literals only
if it is satisfied by all literals at step s, i.e. Cs+t

0 ⊆ Cs
k. This provides a lower

bound on the number of Ck-clauses at the solution: |Cs
0 | ≤

∣∣Cs+t
0

∣∣ ≤ |Cs
k|, where

the first inequality follows because the solution does not improve in between
steps s and s + n. Together with Xs being a local optimum and the Lemma 1 ,
we get m = Σk

i=0 |Cs
i | ≥ |Cs

0 | + |Cs
1 | + |Cs

k| ≥ |Cs
0 | + k |Cs

0 | + |Cs
0 | = (2 + k) |Cs

0 |.
Thus |Cs

0 | ≤ m
k+2 and the theorem follows.

The approximation ratio guaranteed by TS for MAX-2-SAT matches that of
NOLS, suggesting that tabu search might have the same worst-case performance
as NOLS. However, we show that for k > 2, although TS improves over OLS, it
has a significantly weaker approximation guarantee than NOLS.

Theorem 2. The worst-case approximation (and totality) ratio of tabu search
with tabu tenure n is at most 3k−3

3k−2 of the total number of clauses.

Proof. Fix k. The goal is to construct a satisfiable formula, such that the truth as-
signment that tabu search finds satisfies 3k−3

3k−2 of the total number of clauses in the
formula. The formula is over 2k − 1 variables, which we denote x1, x2, . . . , x2k−1.
The formula consists of 5 sets of clauses:

S1 = {x̄1 ∨ x̄2 ∨ . . . ∨ x̄k},

S2 =
k⋃

i=1

{xi ∨
k+i−1∨
j=i+1

x̄j},

S3 =
2k−2⋃

i=k+1

{xi ∨
2k−1∨
j=i+1

x̄j ∨
i−k∨
j=1

xj},

S4 =
k−2⋃
i=1

{x̄i ∨
i+k−1∨
j=i+1

xj},

S5 = {x1 ∨ x2 ∨ . . . ∨ xk−1 ∨ x2k−1}.

The adversary chooses the initial truth assignment to be all-variables-true. In
case of a tie, the adversary chooses a variable to flip. Initially, one clause from S1
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is unsatisfied, and all the other clauses in the formula are satisfied. During the
next n = 2k − 1 steps, TS does not improve upon the initial truth assignment.
To show this, we trace the execution of tabu search step by step.

In Table 1, allowed variables to flip are the variables that occur in unsatisfied
clauses, but not in the taboo list. The chosen variable is the one chosen by the
adversary. It is straightforward to verify that at each step exactly one clause is
unsatisfied. Moreover, flipping any of the allowed variables does not change this
condition, so the aspiration conditions never hold. During the execution of tabu
search, the truth values of variables will be flipped in order x1, x2, . . . , x2k−1.
In general, S1 contains an initially unsatisfied clause. Clauses from S2 are re-
quired for flipping truth assignments of variables x1, . . . , xk. Clauses from S3 are
required for flipping truth values of variables xk+1, . . . , x2k−1. Clauses from S4

guarantee that aspiration conditions are never met. Finally, the clause from S5

is unsatisfied after the execution of tabu search.

Table 1. Execution of tabu search step by step

Step No Allowed variables to flip Chosen variable Taboo list

0 x1, x2, . . . , xk x1 ∅
1 ≤ i ≤ k xi+1, xi+2, . . . , xi+k−1 xi+1 {x1, . . . , xi}

k + 1 ≤ i ≤ 2k − 2 xi+1, xi+2, . . . , x2k−1 xi+1 {x1, . . . , xk, . . . , xi}

This proves the theorem, since TS stops after n steps, the formula contains
3k − 2 clauses, and an optimal truth assignment satisfies all the clauses. For
example, the truth assignment that assigns value true to x1 and false to all the
other variables is an optimal one, as can be readily checked.

5 Experimental Results

In addition to the three deterministic and two randomized algorithms from sec-
tion 2, we consider tabu search first initialized with a truth assignment found by
non-oblivious local search1. We consider a system-independent definition of the
running time of a local search algorithm, namely simply counting the number of
variable flips. The complexity of our determinstic algorithms is identified when
a local optimum is reached. In contrast, for simulated annealing (SA), the com-
plexity is bounded by the setting of parameters, and for MaxWalkSat (MWS),
the stopping time is determined by an ad-hoc limit on the number of flips. All
algorithms will immediately terminate if a satisfying assignment is found.

1 We excluded experimental results of a simple greedy algorithm based on de-
randomizing the naive randomized method since the greedy algorithm did not com-
pare favorably to any of the other methods. Furthermore initializing other methods
using this greedy algorithm did not substantially improve performance.
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Fig. 1. Average performance on random instances of exact MAX-3-SAT

The relative performance of all algorithms is evaluated with respect to both
benchmarks and random exact MAX-k-SAT instances2. We first compare the
performance of algorithms for random instances of the unweighted MAX-3-SAT
problem. The number of variables in a formula varies from 50 to 1100 in incre-
ments of 50. The number of clauses is always chosen to be slightly above the
conjectured phase transition for MAX-3-SAT, i.e. m = 4.25n. For a given n, the
performance of each algorithm is averaged over 500 trials. Each trial is an exe-
cution of the algorithm on a random formula starting at the all-variables-false
truth assignment. For large n, it is not feasible to compute the exact solution
and the true approximation ratio. Instead, we calculate the “totality ratio” of
the satisfied clauses by a given algorithm to the total number of clauses. This
is only a lower bound on the approximation ratio. Given our choice of clause
density around the phase transition, the formulas are “almost” satisfiable, so
the true maximum is around m, and the computed bound is a good estimate of
the true approximation ratio. All algorithms are executed on the same formulas
with the same initial truth assignment which allows for a relative comparison of
performance. Given that the totality ratios are close to 1, we compare perfor-
mance in terms unsat ratio, the “unsatisfiability ratio”, defined as the ratio of
the number of unsatisfied clauses to the total number of clauses.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their per-
formance. The behavior of non-oblivious local search (NOLS) and its oblivious

2 We generate a random formula with m clauses over n variables as follows. For each
of the clauses, we select k out of n variables uniformly at random without replace-
ment, and negate each of them with probability 1/2. A more recent set of bench-
marks called “maxsat crafted” and additional experimental results can be found at
http://people.cs.uchicago.edu/\char126\relaxpankratov/maxsat.html .

http://people.cs.uchicago.edu/\char 126\relax pankratov/maxsat.html
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four determinstic algorithms.

50 250 450 650 850 1050
0

0.5

1

1.5

2

Number of variables

N
um

be
r 

of
 fl

ip
s

× 105

 

 
SA
MWS
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two stochastic algorithms.

Fig. 2. Average completion time for executing on random instances of MAX-3-SAT
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Fig. 3. In this experiment, algorithms run for exactly the same number of flips as the
specified deterministic algorithm

counterpart (OLS) matches their relative standings in the worst-case scenario.
However, in spite of a weaker worst-case guarantee, tabu search (TS) beats
NOLS very comfortably. In addition, if TS is initialized with a truth assignment
found by NOLS, the resulting hybrid method (NOLS+TS) outperforms plain
tabu search. Simulated annealing and MaxWalkSat are the overall leaders and
they get very close (on average) to the optimal 0 unsat ratio. The fact that for
SA and MSW the unsat ratio is high for small n is due to the relatively small
number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most .00082.
As we will see in Figures 2 and 3 the better performance of the SA and MSW
algorithms comes at a greater computational cost.

Techniques providing better results tend to require more time. An exception
is the hybrid algorithm, which finds better truth assignments than regular TS
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Fig. 4. Average performance when executing on random weighted instances of exact
MAX-3-SAT

and for large n uses slightly fewer computations. The running time for all our
determinstic techniques scales well with the size of the formula. The running time
of simulated annealing for the given temperature schedule blows up dramatically,
and MaxWalkSat was given a fixed stopping time of 100,000 flips. The average
running time of MWS is less than 100,000 flips for small n values, because the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
The notation “A/B” means that algorithm A is terminated when it uses the
number of flips made by B. The normalized results indicate that NOLS and the
hybrid method are efficient choices when only a “good” approximation is needed.

For weighted MAX-3-SAT experiment, we fix n = 500 and m = 4.25n. A ran-
dom formula is generated, and for each clause an integer weight value is chosen
uniformly at random between one and a prescribed maximum weight value. The
unsat ratio in figure 4 now refers to the ratio of the weight of unsatisfied clauses
to the total weight of all clauses. As before, the performance of each algorithm
is averaged over 500 trials. The performance of MWS now becomes dramatically
better than the performance of the other algorithms. As explained in section 2.5,
MWS is designed to focus on weighted clauses and is successful in this regard.
The unsat ratio for MWS is for the most part decreasing as a function of the max
weight W having (for example) ratio .000245 at W = 10 and ratio .000153 at
W = 100. The hybrid method becomes the best of the deterministic algorithms
and also has the best performance with respect to normalized performance.

The performance of all deterministic methods and MWS improves as the
maximum weight attainable in a formula increases from 1 to 30. In contrast,
over the same range the performance of SA declines, and NOLS+TS starts to
slightly outperform SA, but remains significantly worse than MWS. Another
phenomenon concerns relative performances of oblivious and non-oblivious local
searches. OLS outperforms NOLS in formulas with large enough weights. As the
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Fig. 5. Average performance when executing on random instances around the threshold
of exact k-SAT (3 ≤ k ≤ 7)

weights of clauses grow, the scaling weights used in the potential function have
less and less effect, to the point that they hurt the performance of the algorithm.

Next we consider random MAX-k-SAT instances for k > 3. We choose the
number of clauses to be m = ckn, where ck is slightly above the estimated
threshold [15] for random k-SAT and n = 200 is fixed. Achlioptas et al [2] ana-
lyze how random 3-SAT instances behave very differently from k-SAT instances
around the threshold value as k increases. Figure 5 also demonstrates a dramatic
change in the relative performance of algorithms as k increases. For k ≥ 5, SA
and the hybrid method outperform all other methods. As further evidence that
the performance of MWS suffers as k increases, in figure 5 we consider weighted
instances of MAX-k-SAT with weights chosen uniformly in the range [1, 10].
Again in marked contrast to the weighted MAX-3-SAT case, MWS is outper-
formed at k ≥ 5, and TS and the hybrid method yield the best performance.
The alternating performance (between even and odd k) of NOLS is an interest-
ing phenomena that is overcome when followed by tabu search. In general as k
increases, we expect the unsat ratios of the algorithms under consideration to
decrease, because even a random assignment in expectation satisfies all but a
fraction 1/2k of the clauses in an exact k-SAT formula.

Finally, we consider the relative performance of algorithms on benchmark
instances. In contrast to many of the results concerning random instances, MWS
does not fare as well as SA or our hybrid algorithm. We ran the six algorithms
on the benchmarks from the Second Evaluation of MAX-SAT Solvers (MAX-
SAT 2007) and recorded how many times one technique improved over another
one. The benchmarks contain instances generated in many different ways. Some
are random just like the ones considered in the previous experiments, others
were obtained by encoding different problems (for example, MAX-CUT) as an
instance of the MAX-SAT problem. In table 2 we see two off-diagonal zeros
where one technique is subsumed by the other, namely, OLS is a part of TS, and
NOLS is a part of the hybrid algorithm. All the other off-diagonal entries are
non-zero. For some instances even OLS, arguably the weakest of the considered
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Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0

algorithms, improves over SA and MWS, arguably the strongest of the algorithms
for random 3-SAT instances. The hybrid algorithm improves over the NOLS in
most instances, which shows the usefulness of the tabu phase. As for the two
major rivals, SA and the hybrid algorithm, their performances are similar. The
hybrid method improves over OLS, NOLS and MWS slightly more often than
does SA, while SA improves over tabu search more often than the hybrid method.

6 Summary and Future Work

Beyond improved performance, the NOBL+TS hybrid method is somewhat
faster than TS by itself. Our experiments indicate that no one method dominates
in all MAX-SAT instances. For small k, e.g. k = 3, MaxWalkSat has the best
performance, and especially so in the weighted case. However, this performance
comes at a cost of higher computational complexity. As k increases, MWS loses
its advantage and is overtaken in performance by all the other methods with the
hybrid method and simulated annealing performing best. The performance of
the hybrid method and SA is further witnessed in the benchmark experiments.

We conclude with several open questions. A tight bound on the approxima-
tion or totality ratio of tabu search is still open. For all local search methods,
rather than worst-case approximation (unsat) ratios, it would be insightful to be
able to prove expected ratios where the expectation is taken over random initial
assignments. A challenging direction is to provide theoretical results correspond-
ing to the experiments. For example, what is the expected approximation ratio
achieved by any of the deterministic local search based methods under a uniform
random model of k-SAT formulas with clause densities near the hypothesized
threshold? In particular, for densities above the known algorithmic lower bound
[12] can anything be said about the expected MAX-SAT approximation? If the
length of the taboo list is infinite, tabu search enters a cycle. What is the ex-
pected number of steps that tabu search makes before entering a cycle? Is there
a theoretical explanation why NOLS seems to provide such a substantial im-
provement when used to initialize tabu search but does not seem to help (for
example) MaxWalkSat.
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Abstract. In this paper we report about QBFEVAL’10, the seventh in a series of
events established with the aim of assessing the advancements in reasoning about
quantified Boolean formulas (QBFs). The paper discusses the results obtained
and the experimental setup, from the criteria used to select QBF instances to the
evaluation infrastructure. We also discuss the current state-of-the-art in light of
past challenges and we envision future research directions that are motivated by
the results of QBFEVAL’10.

1 Introduction

For almost a decade now, competitive events in the field of Boolean reasoning have
influenced related research agendas and shaped the course of tool developments. Nowa-
days, organized evaluations are popular for several subfields of Boolean reasoning, in-
cluding propositional satisfiability (SAT) [1,2], quantified Boolean formula (QBF), and
satisfiability modulo theory (SMT) solving [3]. While in all these events the organizers
are trying to answer the question “Which solver should I use?” [4] using transparent
and fair evaluation methods, researchers and practitioners look at the outcomes as the
preferred way to understand the current state of the art in each subfield. Often, it is
not just the best solver for the given application which is sought, but also some feeling
about what makes a solver suitable for one kind of problem or another. It is therefore
important, in any such event, to motivate and explain thoroughly the testing methods
which led to the latest results. Whenever possible, the organizers should try to answer
the question “Which solver is best, for which task and why?”, which is far more relevant
than just assessing the winner(s) of the event.

In this spirit, we report about the 2010 evaluation of QBF solvers (QBFEVAL’10),
the seventh in a series of events established with the aim of assessing the advancements
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format of non-prenex non-CNF formulas.
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Table 1. QBFEVAL’10 at a glance. “# Solvers” and “# Formulas” denote the total amount of
solvers and formulas involved in a given track, respectively.

Track
MAIN 2QBF SH RND NPNCNF

# Solvers 11 9 10 9 2
# Formulas 568 200 50 550 478

in QBF reasoning. An important expansion with respect to the last evaluation (QBFE-
VAL’08) is the introduction of five different tracks, each with its own rules, solvers and
instances. Overall, QBFEVAL’10 received 13 solver submissions from 8 different de-
veloping teams. Also, a pool of 136 formulas was submitted about module extraction
in description logics [5]. These formulas have been made available both with a prenex
CNF encoding and a non-prenex non-CNF encoding.

Table 1 shows QBFEVAL’10 at a glance. The main competition (MAIN in the fol-
lowing) is comprised only of prenex CNF formulas obtained by encoding various auto-
mated reasoning tasks into QBF. This track is competitive, i.e., we declare a winner in
the end, whereas all the remaining tracks are non-competitive. This is because evalua-
tion of QBFs in prenex CNF is a fairly mature area, faring more than ten years of active
research into algorithms, heuristics and optimizations. On the other hand, we preferred
to have non-competitive tracks for formulas with a single ∀∃ alternation (2QBF), “small
but hard” instances (SH), and random generated formulas (RND), because these tracks
are meant to experiment with specific features for which solvers may have (not) been
specifically optimized. All of the above tracks feature formulas in prenex CNF, and the
intersection between the test sets of these tracks is empty, i.e., there is no formula tested
in two different tracks. In the case of non-prenex non-CNF encodings (NPNCNF), since
this is only the third time in which non-prenex non-CNF solvers are evaluated, and the
research contributions in this area are currently still limited in number, we felt that the
topic is not mature enough for a proper competition. We devote part of Section 2 to
describe in some detail the five tracks, including solvers and formulas.

As in every event of this kind, it is important to choose carefully the test set(s) in
order to get meaningful results while completing the evaluation in a reasonable time.
In order to fulfil these two requirements, in the MAIN track we have extracted the final
test set by sampling the pool of instances available to us – currently, more than 15000
instances and 551 families – to extract a much smaller, yet representative, test set. In
all the remaining tracks we chose the test set according to the topic of the track, and
we tried to cover as much as possible the variety of the instances available to us, either
by sampling (2QBF, SH) or by controlled generation (RND). In the NPNCNF track, we
considered all the instances available to us. Finally, we ran the solvers on a farm of
identical PCs, imposing different resource bounds according to the track. Section 2 is
chiefly devoted to the description of the above selection methods and the computing
infrastructure.

We present an analysis of QBFEVAL’10 data in two stages. In the first stage – Sec-
tion 3 – we consider all the solvers and the instances in each track to give a rough, but
complete, picture of the state of the art in QBF. By analyzing the results for problems
and discrepancies among the solvers, we were able to isolate some solvers which turned
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out to be problematic, and we have removed them from subsequent analysis. In the sec-
ond stage – Section 4 – we analyze the results with the aim of understanding the relative
strengths and weaknesses of the various solvers, as well as the reasons why some for-
mulas turn to be harder than others. Here we try to extract a narrow, but crisp, picture
of the current state of the art. We also try to put things in perspective, by comparing the
current results with past challenges [6] and envisioning possible future developments.
For the MAIN track, we also provide the final ranking of the solvers according to the
YASMv2 scoring method [7]. Finally, in Section 5 we conclude with an analysis of the
evaluation and suggestions for future events of this kind.

2 Setup: Solvers, Instances and Infrastructure

Table 2 summarizes the solvers submitted to QBFEVAL’10. The salient features of
the participants are briefly described in the following. The input format description is
assumed to be prenex CNF format, unless otherwise specified.

AIGSOLVE [8] uses And-Inverter Graphs (AIGs) as the main data structure, and AIG-based
operations to reason about the input formula. The solver includes preliminary phases devoted
to simplification, structure extraction and early quantification of the input formula.

AQME’10 [9] is a multi-engine solver, i.e., a tool using Machine Learning techniques to se-
lect among its reasoning engines the one which is more likely to yield optimal results. The
reasoning engines of AQME’10 are a subset of those submitted to QBFEVAL’06, namely
2CLSQ, QUANTOR2.11, QUBE3.1, SKIZZO, and SSOLVE. Engine selection is performed
according to the adaptive strategy described in [9].

CIRQIT2.1 [10] is a solver for non-prenex non-CNF formulas using a circuit-based data struc-
ture to represent and reason about the input formula. Search is performed on the internal
representation using unit and Don’t Care propagation. It performs term- and clause-learning,
and it leverages a variable-state independent heuristic.

DEPQBF is a search-based solver leveraging compact dependency graphs to represent the prefix,
instead of the standard linear representation – see [11]. The difference of DEPQBF-PRE from
the basic version is the use of QUANTOR3.1 as a preprocessor.

Table 2. The QBFEVAL’10 systems. The table is structured as follows. The first column
(“Solver”) reports the name of the solver, the second column (“Track”) indicates the track in
which the given solver is involved, while the last column (“Author(s)”) reports solvers’ authors.

Solver Track Author(s)

AIGSOLVE MAIN, SH F. Pigorsch, C. Scholl
AQME’10 MAIN, 2QBF, SH, RND L. Pulina, A. Tacchella
CIRQIT2.1 NPNCNF A. Goultiaeva, V. Iverson, F. Bacchus
DEPQBF MAIN, 2QBF, SH, RND F. Lonsing
DEPQBF-PRE MAIN, 2QBF, SH, RND F. Lonsing
NENOFEX MAIN, 2QBF, SH, RND F. Lonsing, A. Biere
QMAIGA MAIN S. Reimer, F. Pigorsch, M. Lewis, B. Becker, C. Scholl
QPRO NPNCNF U. Egly, M. Seidl, S. Woltran
QUANTOR3.1 MAIN, 2QBF, SH, RND A. Biere
QUBE7 MAIN, 2QBF, SH, RND E. Giunchiglia, P. Marin, M. Narizzano
QUBE7-C MAIN, 2QBF, SH, RND E. Giunchiglia, P. Marin, M. Narizzano
QUBE7-M MAIN, 2QBF, SH, RND E. Giunchiglia, P. Marin, M. Narizzano
STRUQS’10 MAIN, 2QBF, SH, RND L. Pulina, A. Tacchella
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NENOFEX [12] is an expansion-based solver which operates on negation normal form (NNF)
formulas. NNF formulas are represented as structurally restricted trees, and expansions are
scheduled based on expansion cost estimates.

QMAIGA merges two “orthogonal” approaches. Its core is AIGSOLVE, but when AIGSOLVE is
stuck in a sub-problem, the search-based solver QMiraXT [13] takes over the entire solution
process.

QPRO [14] is a search-based solver for non-prenex non-CNF formulas implementing dependency-
directed backtracking.

QUANTOR3.1 [15] is based on variable elimination and expansion, plus a number of features,
such as equivalence reasoning, subsumption checking, pure literal detection, unit propaga-
tion, and also a scheduler for the elimination step.

QUBE7 is based on the composition of two reasoning tools: the preprocessor sQueezeBF [16],
combining various techniques for reducing the size of the input QBF, and the search-based
solver QUBE3.1 [17].

STRUQS’10 [18] main feature is a dynamic combination of search – with solution- and conflict-
backjumping – and variable-elimination. The key point in this approach is to implicitly
leverage graph abstractions of QBFs to yield structural features which support an effective
decision between search and variable elimination.

Further details about the solvers can be found in the short papers submitted by their au-
thors and made available through the QBFEVAL’10 website [19]. Concerning the for-
mulas, there was a single submission by Roman Kontchakov. The “Kontchakov” suite,
as it is named in the following, consists of 136 formulas obtained by encoding min-
imal query inseparability module extraction in DL-Lite [5]. The formulas have been
made available both with a prenex CNF encoding and their corresponding non-prenex
non-CNF encoding. All the remaining formulas used in the evaluation have been ex-
tracted from QBFLIB [20]. These include the “Wintersteiger” suite – 372 encodings
concerning ranking function synthesis problems [21] – submitted after QBFEVAL’08,
and thus not extensively tested so far. The complete test set used in QBFEVAL’10 can
be downloaded from the QBFEVAL’10 website [19]. In the following, we describe in
some detail the choice of the test sets for each of the five tracks. Tables 6 and 7 in
Section 4 show further details about the selected formulas.

In order to construct a meaningful comparison between solvers, we constructed the
test set for the MAIN track according to the following guidelines:

1. Balance the mix of different kinds of formulas, considering both syntactic features,
e.g., number of variables and quantifier alternations, and structural features, e.g.,
density of the associated variable dependency graph.

2. Balance the empirical hardness of formulas so that the whole spectrum between
easy and hard formulas is covered, where we consider QBFEVAL’08 results as a
yardstick to assess formula hardness.

3. Balance between true and false formulas, again considering QBFEVAL’08 results.
4. Balanced the mix of formulas coming from different application domains, so that

no application domain is neglected or overrepresented.
5. Finally, ensure that no more than 10% of the total test set comes from a single

submitter whenever the formula submitter is also authoring a competing solver.

To satisfy requirement (1) above, we start with a pool of 2734 formulas extracted from
QBFLIB, i.e., all the publicly available prenex CNF QBFs which have not been gen-
erated using some probabilistic model, excluding the ones eligible for 2QBF and SH
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tracks (see below). For each formula, we compute the same set of syntactic features
used in AQME’10 [9] to automate engine selection, plus an approximation of quantified
treewidth as described in [22]. Then, we extract a representative subset of the original
pool by (i) clustering the formulas according to their features, and (ii) random sampling
without repetitions the members of each cluster. The result of the above procedure is a
pool of 432 formulas to which we add formulas from the “Kontchakov” suite to yield a
final test set of 568 formulas. It turns out that such test set satisfies also requirements (2-
5) above. In particular, the hardness mix turns out to be balanced – at least considering
the formulas which were tested in QBFEVAL’08. If we consider requirement (3), we
can see that the final selection consists of 166 and 170 formulas which are known to be
true and false, respectively. Among the 232 formulas whose truth value has not been es-
tablished, we have newly submitted formulas, hard formulas from QBFEVAL’08 (48),
and formulas that were not used in the previous evaluation (48). As for requirement (4),
we notice that the final test set is composed by 197 instances of formal verification prob-
lems, 101 instances of planning problems, 136 instances of module extraction problems
and 134 instances of miscellaneous problems, so there is already some balance among
application domains. In the following, for the sake of simplicity, we will consider mod-
ule extraction problems as part of the miscellaneous category. Finally, also requirement
(5) is implicitly satisfied by our selection of formulas.

2QBFs, i.e., formulas with a single ∀∃ alternation in the prefix, arise frequently in
applications such as conformant planning, symbolic diameter calculation of finite state
machines and, more in general, problems having Σp

2 complexity. If we consider the
pool of prenex CNF formulas that we used to extract the test set for the MAIN track, we
see that about 40% of them are 2QBFs. Clearly, any general-purpose QBF solver can
deal with 2QBFs, but they are also appealing for special-purpose approaches, e.g., co-
operation of two state-of-the-art SAT solvers or encoding to other logics, like, e.g., Dis-
junctive Logic Programming. Moreover, it could be the case that even general-purpose
solvers behave differently on 2QBFs with respect to the unbound-alternation case. In-
deed, no formulas were submitted specifically for this track. Therefore, we selected
200 formulas from QBFLIB, trying to meet the same requirements mentioned previ-
ously for the MAIN track. Even if we followed the same procedure outline above, we
did not manage to get an overall balance between the formulas. This is because two
suites – “Basler” and “Wintersteiger”, both made up by encoding of formal verification
problems – are numerically dominating the category. However, we know from QBFE-
VAL’08 that most of the formulas in the suite “Basler” were solved by either 1 or 2
solvers, so they represent a reasonably difficult test set. The suite “Wintersteiger” is
interesting in its own right, since it was submitted after QBFEVAL’08 and it has never
been evaluated extensively.

Because solving QBFs is a hard combinatorial problem, we expect that while
heuristic-based solvers can deal with QBFs of increasing “size”, there will always be
“small” instances that turn out to be extremely hard to solve in practice. The focus of
this track is precisely on “small but hard” instances, i.e., relatively small QBFs that
resisted solution attempts in previous QBF evaluations. Clearly, a key factor in select-
ing these formulas is deciding on a “size” parameter. The formulas composing the test
set for the SH track have been picked up from QBFLIB according to the following
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procedure. We focus on formulas that no participant was able to solve in QBFEVAL’08.
We rank such formulas in ascending order according to (i) number of variables, (ii)
number of clauses and (iii) total number of literals. We consider only the first 100 en-
tries in each ranking, and then each formula is scored using the Borda method. The
position of the formula in each of the rankings above is considered as a preference ex-
pressed by a voter, and the individual preferences are added up to yield the final score.
The 50 highest ranking formulas are selected in the end.

As for the RND track, since no new formulas/generators were submitted specifically
for this track, we composed the test set considering QBFEVAL’05 and ’06 experience –
the last two events in which were ran random formulas. In particular, we selected 55 in-
stances with ten samples each, obtaining a total amount of 550 formulas. Our selection
considers both generators – the “Chen-Interian” probabilistic model [23] – and families
of formulas available in QBFLIB. In the latter case, we made a selection from Nest-
edCounterFactual category, Miscellanea category (family “ASP Program Inclusion”),
and Planning category (suite “Narizzano” and family “Strategic Companies”). Finally,
the test set of the NPNCNF is composed by 342 formulas already available in QBFLIB
at the time of the submission, together with 132 newly submitted ones – the suite
“Kontchakov” mentioned above.

In the MAIN track, the only competitive one, formulas have been preprocessed using
a satisfiability-preserving shuffling of the variables in the prefix, literals in the clauses,
and clauses in the matrix, respectively. For each track, the CPU time limit is set to 1200
seconds for all the tracks, except the SH track where we allowed 43200 seconds (12
hours) of runtime. To prevent memory swapping, we also set a memory limit at 2GB.
If a solver exceeds the resource bounds while attempting to solve a formula, it is killed
and the corresponding result is left undefined. In the MAIN track, we rank the solvers
using the YASMv2 [7] in order to declare the winner. As shown in [7], YASMv2 is
more robust than other common scoring methods, including simple criteria based on
the number of problems solved and the CPU time spent solving them. The evaluation
runs on a farm of 9 identical PCs locally available at the University of Genoa. The PCs
are equipped with a processor Intel Core2Duo running at 2.13 GHz, with 4 GB of RAM,
and running GNU Linux Debian 2.6.18.5.

3 Evaluation: First Stage Results

Table 3 presents the raw results of the evaluation, considering all the prenex CNF
solvers and the four tracks where prenex CNF QBFs were tested. In the following,
when we say that “solver A dominates solver B” we mean that the set of problems
solved by B is a subset of those solved by A. Looking at the results, we can see that in
the MAIN track all the competitors were able to solve at least 33% of the test set. On
the other hand, NENOFEX, QUANTOR3.1 and STRUQS’10 were not able to solve more
than 50% of the instances. In terms of number of problems solved, the best solver is
AQME’10, which can solve about 76% of the test set. This is interesting if we consider
that AQME’10 combines solvers that used to be state-of-the-art four years ago. How-
ever, we can also see that some solvers that do not exploit a multi-engine paradigm like,
e.g., QUBE7, DEPQBF and QMAIGA are getting close to the performances of AQME’10.
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Table 3. First stage results for all prenex CNF solvers. For each track, we report the number of
formulas solved within the time limit (“#”) and the total CPU time (“Time”) spent on the solved
instances. Results in boldface are those of the best three solvers in each track – according to
number of problems solved and total time only. NA means that the solver did not participate in a
track. Solvers marked with an asterisk are those whose output gave rise to discrepancies.

Solver MAIN 2QBF SH RND

# Time # Time # Time # Time
AIGSOLVE 329 22786.60 NA NA 37 1140.01 NA NA

AQME’10 434 33346.60 128 2323.11 11 30132.40 407 20078.90
DEPQBF 370 21515.30 24 690.42 4 41448.00 342 12895.10
DEPQBF-PRE 356 18995.90 51 877.02 4 33371.90 343 9438.62
NENOFEX 225 13786.90 50 3545.65 3 30194.20 149 34502.80
QMAIGA 361 43058.10 NA NA NA NA NA NA

QUANTOR3.1 205 6711.37 48 3689.30 5 57960.90 134 2830.97
QUBE7∗ 410 52142.10 173 1981.88 9 80570.70 359 27092.90
QUBE7-C∗ 389 34926.80 172 3340.89 16 27207.10 339 29495.20
QUBE7-M∗ 393 40786.30 171 4109.16 16 21458.50 340 29393.30
STRUQS’10 240 32839.70 132 1399.30 5 26257.30 117 15480.40

This indicates a clear progress in the field over the past four years. The performance of
the solvers is also quite diverse: there are 229 instances – 40% of the test set – separating
the strongest solver, from the weakest one.

Still looking at Table 3, in the track 2QBF we can see that QUBE7, QUBE7-M and
QUBE7-C are able to solve more than 85% of the test set, while STRUQS’10 and
AQME’10 both solve slightly more than 60% of the test set. On the other hand, all the
remaining solvers cannot do better than a mere 25%. This indicates that given the cur-
rent state of the art in QBF reasoning, the performance demand of these encodings is
still exceeding the capabilities of most solvers. As for the SH track, we see that AIG-
SOLVE was able to solve a considerable number of previously open problems, whereas
all the remaining solvers did not perform particularly well. On one hand, this indicates
that AIGSOLVE is particularly suited for this kind of problems – probably due to its in-
ternals which are fairly different from all the other solvers that participated in the track.
On the other, it also shows a clear progress over previous QBFEVAL events. Looking at
the results on random instances, we can see that all the solvers, with the only exception
of STRUQS’10 and QUANTOR3.1, were able to conquer at least 25% of the instances
in this category, and six solvers were able to conquer more than 50% of the instances.
Only AQME’10 is able to solve 74% of the instances. Overall it seems that the choice
of parameters for the generation of random instances yielded a performance demand
within the capabilities of most solvers. Considering the contestants which solved more
than 50% of the test set, but excluding the multi-engine solver, we see that the perfor-
mance of the solvers is similar: only 19 instances separate the worst solver (QUBE7-M)
from the best (QUBE7). Finally, if we consider the NPNCNF results – not shown in Ta-
ble 3 – we have that CIRQIT2.1 solved 291 instances and QPRO solved 153 instances,
i.e., 61% and 32% of the test set, respectively. Even if CIRQIT2.1 solves much more
instances than QPRO, it does not dominate it, because QPRO is able to solve 30 instances
uniquely.

As we have anticipated in Section 1, a few discrepancies in the results of the solvers
were detected during the analysis of the first stage results. A total of 3 discrepancies
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were detected in the MAIN track, and 4 discrepancies in the SH track. For each of
the discrepancies we reran the solvers reporting a result different from the majority
of the other solvers and/or the expected result of the instance. We also inspected the
instances, looking for weird syntax and other pitfalls that may lead a correct solver to
report an incorrect result. In particular, the instances which gave rise to discrepancies
belong to three different suites: “Letombe”, “Katz” and “Mneimneh-Sakallah”. We ran
on such instances state-of-the-art QBF certifiers in order to get a definite answer on
them. The only instance for which we obtained a push-button result is par8-4-90
(suite “Letombe”), certified by QBD [24] as FALSE. By performing some manually-
assisted reasoning, we found out that test3 quant2 is FALSE as well. At the end
of this analysis we excluded from the second stage the following solvers: QUBE7,
QUBE7-M and QUBE7-C, responsible for all discrepancies detected, and answering
TRUE on the formulas above. Clearly, for instances that were conquered by just one
solver, and for which we do not know the satisfiability status in advance, the possibility
that the solver is wrong still exists, but we consider this as unavoidable given the current
state of the art.

4 Evaluation: Second Stage Results

Table 4 shows the results obtained computing YASMv2 on the competitive track. Look-
ing at the table, we declare DEPQBF as the winner of QBFEVAL’10, followed by
DEPQBF-PRE, and AQME’10. Notice that, even if AQME’10 is able to solve more prob-
lems than both DEPQBF and DEPQBF-PRE, the setup time of the engine-selection strat-
egy may considerably increase the runtime in most short-to-solve instances, and
YASMv2 is designed to penalize this behavior. In the remainder of the section, we
look in detail at each track, considering both solver- and instance-centric views.

Solver-centric view. Table 5 shows the results of the MAIN track dividing the formulas
into three categories. As we can see, in terms of number of problems solved, AQME’10
is the strongest solver: it leads the count in Formal Verification and Planning, and it is
second best in Miscellanea category. Overall, the strongest solver in Formal Verifica-
tion category is able to solve 68% of the total number of instances, while DEPQBF-PRE

is able to solve about 82% of the Miscellanea category, and AQME’10 solves 80% of
instances in Planning category. Focusing on Formal Verification category, 68 instances
separate the strongest solver from the weakest one. If we consider the problems that are

Table 4. Final ranking of QBFEVAL’10. The first column (“Solver”) reports the solvers partic-
ipating in MAIN, while the second one (“Points”) is filled with the points computed by using
YASMv2.

Solver Points

DEPQBF 2896.68
DEPQBF-PRE 2508.96
AQME’10 2467.96
QMAIGA 2117.55

Solver Points

AIGSOLVE 2037.22
QUANTOR3.1 1235.14
STRUQS’10 947.83
NENOFEX 829.11
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Table 5. MAIN track second stage results. “Category” reports the application domain, and for
each solver, the table shows the number of instances solved (“#”) and the total CPU time spent
to solve them (“Time”). Total number of formulas solved (“Total”) is also split into true, false,
and uniquely solved formulas (“True”, “False” and “Unique”, respectively). A dash means that a
solver did not solve any instance in the related group. Solvers are sorted according to the number
of instances solved, and, in case of a tie, according to CPU time.

Category Solver Total True False Unique
# Time # Time # Time # Time

AQME’10 134 9056.00 49 3938.94 85 5117.06 3 639.97
QMAIGA 130 10611.28 55 5374.21 75 5237.07 – –
AIGSOLVE 123 7129.58 56 4189.91 67 2939.67 2 1006.30

Formal STRUQS’10 92 16501.98 39 8722.64 53 7779.34 6 2205.45
Verification DEPQBF 89 4109.93 17 959.61 72 3150.31 5 505.70

(197) QUANTOR3.1 73 4236.95 31 3096.88 42 1140.07 – –
NENOFEX 70 7928.03 27 4744.43 43 3183.60 3 350.89
DEPQBF-PRE 65 4195.32 20 1032.27 45 3163.05 – –

DEPQBF-PRE 222 12179.63 117 10735.33 105 1444.31 – –
AQME’10 219 20210.17 95 11698.52 124 8511.64 1 5.22
DEPQBF 208 14063.50 110 12234.42 98 1829.08 – –

Miscellanea QMAIGA 162 27280.91 89 13087.86 73 14193.05 1 859.00
(270) AIGSOLVE 145 13569.84 81 6386.08 64 7183.76 – –

STRUQS’10 90 11597.60 39 3751.63 51 7845.97 – –
NENOFEX 88 4786.58 45 2985.23 43 1801.35 – –
QUANTOR3.1 62 1087.27 31 678.05 31 409.22 – –

AQME’10 81 2824.92 40 188.10 41 2636.81 2 892.65
DEPQBF 73 3341.86 37 577.74 36 2764.12 1 434.81
QUANTOR3.1 70 1387.15 38 355.70 32 1031.46 1 585.96

Planning DEPQBF-PRE 69 2620.92 35 686.16 34 1934.76 – –
(101) QMAIGA 69 5165.87 36 2234.56 33 2931.31 – –

NENOFEX 67 1072.33 37 512.21 30 560.12 – –
AIGSOLVE 61 2087.13 34 1515.49 27 571.64 – –
STRUQS’10 58 4740.17 31 1331.23 27 3408.94 – –

uniquely solved, and the five best solvers, then we see that no solver is dominated by the
others, with the noticeable exception of QMAIGA (dominated by AQME’10). Finally, we
report that DEPQBF yields the smallest average CPU time (about 46s). In the Miscel-
lanea category, the first thing to be observed is that the strongest solver is DEPQBF-PRE,
which ranks last in the Formal Verification category. The first three solvers are pretty
much in the same capability ballpark: only 14 instances separate the first one from the
third one. Finally, considering the Planning category, we can see that only 23 instances
separate the strongest solver from the weakest one. We also report that QUANTOR3.1
seems to perform better in the Planning category with respect to the other ones.

Considering now the 2QBF1 track, we have that the test set is mostly composed by
Formal Verification formulas (177 out of 200). STRUQS’10 turns out to be the strongest
solver in this category in the 2QBF track, with 126 instances solved (71% of the test set).
AQME’10 trails with 111 instances solved, and NENOFEX is third best with 44 instances
solved. STRUQS’10 is very close to dominate all remaining solvers: it uniquely solves
20 formulas, but both AQME’10 and NENOFEX are also able to uniquely solve 1 for-
mula. If we compare this result with the main track, where AQME’10, QMAIGA and
AIGSOLVE are stronger than STRUQS’10, then we may conjecture that this is due to

1 For the lack of space, we do not show tables about the non-competitive tracks, and we made
them available on-line at [19].
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STRUQS’10 becoming less effective when the number of alternations increases. As for
the remaining formulas in the 2QBF track, we have that STRUQS’10, QUANTOR3.1,
AQME’10, and NENOFEX were able to solve all the 6 instances in the “Miscellanea” cat-
egory, whereas DEPQBF-PRE is able to solve all 17 formulas in the “Planning” category,
and it also dominates all the other solvers. In particular, QUANTOR3.1, NENOFEX, and
STRUQS’10 were not able to solve any formula in this category. These formulas are
all sortnetsortXX.AE (Family “Sorting Network”, suite “Rintanen”), which, ac-
cording to previous QBFEVAL results, are best solved by search-based solvers. Also in
the SH track Formal Verification formulas are prevalent (42 out of 50). The main result
of this track is that AIGSOLVE is able to globally solve 37 open problems of QBFE-
VAL’08. In particular, 35 out of 37 fall in the Formal Verification category, mainly
belonging in “Biere” and “Katz” suite.

Looking at the RND track, and focusing on the Chen-Interian family, we report that
AQME’10 is the strongest solver, and it is able to solve about 60% of the test set. It
also dominates all remaining solvers. It is followed by a group of three solvers, namely
DEPQBF-PRE, DEPQBF, and STRUQS’10, which are able to solve the same set of 100
formulas. The remaining solvers are not able to deal with more than 25% of the test set.
There are also 61 formulas uniquely solved by AQME’10 (by using SSOLVE), which
are the ones supposedly close to the phase transition in the random generation model.
No other solver is able to return a solution in this range of formulas. Concerning other
random formulas, we report that in the family “ASP Program Inclusion”, DEPQBF-PRE,
AQME’10 (mainly using QUBE3.1), and DEPQBFare able to solve 100% of the test set,
while the remaining three are not able to solve any formula. We also report that in the
family “NestedCounterFactual” the strongest solver is DEPQBF-PRE, able to cope with
all the test set. The other solvers able to solve at least 50% of the test set are DEPQBF,
which solves 79 out of 80 instances, and AQME’10, with 58 out of 80 solved instances.
Finally, regarding the Planning category, the picture is very close to the one described
for the Chen-Interian category. The strongest solver is AQME’10, coping with 92% of
the dataset, followed by DEPQBF-PRE and DEPQBF, having solved both 77% of the
dataset. In this case, AQME’10 also dominates all the remaining solvers. The noticeable
difference with “Chen-Interian” family is that now STRUQS’10 ranks last, solving only
15 formulas.

Concluding, in the NPNCNF track there are two categories of formulas, namely “For-
mal Verification”, composed by 342 out of 478 instances, and “Miscellanea”, composed
by the suite Kontchakov. For both categories, the strongest solver is CIRQIT2.1. Con-
cerning “Formal Verification”, CIRQIT2.1 solves 205 formulas, against 72 solved by
QPRO, which is also dominated by CIRQIT2.1. The picture slightly changes in the case
of “Miscellanea” because, even if CIRQIT2.1 is still the strongest solver (86 solved
instances), being the gap with QPRO of only 5 formulas. Finally, for the Miscellanea
category we also report that CIRQIT2.1 and QPRO uniquely solve 35 and 30 formulas,
respectively. Therefore, no solver dominates the other in this category.

Instance-centric view. In Table 6 we show the classification of formulas included in
MAIN according to the solvers admitted to the second phase. In the table, the number
of instances solved and the cumulative time taken for each family is computed consid-
ering the “SOTA solver”, i.e., the ideal solver that always fares the best time among
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Table 6. Classification of MAIN formulas considering second stage data. The table consists of
seven columns where for each family of instances we report the name of the family in alphabetical
order (column “Family”), the number of instances included in the family, and the number of
instances solved (group “Overall”, columns “N”, “#”, respectively), the CPU time taken to solve
the instances (column “Time”), the number of easy, medium and medium-hard instances (group
“Hardness”, columns “EA”, “ME”, “MH”).

Family Overall Time Hardness Family Overall Time Hardness
N # EA ME MH N # EA ME MH

Abduction 52 50 25.19 14 35 1 k grz p 3 3 3.16 1 2 –
Adder 15 15 568.79 – 12 3 k lin n 5 5 283.95 – 5 –
blackbox-01X-QBF 59 53 807.66 8 39 6 k lin p 4 4 0.40 2 2 –
blackbox design 2 2 82.35 – 1 1 k path n 3 3 0.12 – 3 –
Blocks 5 5 16.05 1 4 – k path p 4 4 0.14 – 4 –
BMC 18 17 64.16 7 10 – k ph n 6 6 7.86 6 – –
C432 4 4 0.52 1 3 – k ph p 4 2 6.11 2 – –
C499 2 2 0.90 – 2 – k poly n 4 4 0.09 – 4 –
C5315 7 3 3.80 1 2 – k poly p 2 2 0.06 – 2 –
C6288 4 2 21.09 – 1 1 k t4p n 4 4 5.62 – 4 –
C880 1 1 0.20 – 1 – k t4p p 5 5 3.01 – 5 –
Chain 1 1 0.02 – 1 – Logn 1 1 1.12 – 1 –
circuits 3 3 18.00 1 2 – mqm 136 136 7953.95 – 136 –
comp 2 2 0.03 2 – – s1196 1 – – – – –
conformant planning 15 10 1042.32 2 7 1 s1269 1 – – – – –
Connect4 11 9 125.77 6 3 – s27 1 1 0.02 – 1 –
Counter 4 4 937.36 – 3 1 s298 4 4 158.09 – 4 –
Debug 5 4 462.59 – 4 – s3330 2 – – – – –
evader-pursuer-4x4-logarithmic 3 2 2.86 – 2 – s386 1 1 715.71 – 1 –
evader-pursuer-4x4-standard 7 1 5.75 – 1 – s499 2 2 160.23 – 2 –
evader-pursuer-6x6-logarithmic 4 3 721.25 – 2 1 s510 3 2 403.96 – 2 –
evader-pursuer-6x6-standard 2 2 892.65 – – 2 s713 2 1 60.28 – 1 –
evader-pursuer-8x8-logarithmic 6 4 40.12 – 4 – s820 2 – – – – –
FPGA PLB FIT FAST 2 2 0.05 1 1 – Sorting networks 6 6 51.65 2 4 –
FPGA PLB FIT SLOW 1 1 1.61 – 1 – SzymanskiP 2 2 527.78 – 1 1
Impl 1 1 0.00 1 – – term1 3 3 0.34 1 2 –
jmc quant 2 2 1.15 – 2 – tipdiam 14 14 102.15 1 13 –
jmc quant squaring 1 1 8.38 – 1 – tipfixpoint 24 22 2282.68 4 12 6
k branch n 4 4 870.06 – 3 1 Toilet 4 4 0.49 3 1 –
k branch p 7 7 380.20 – 7 – ToiletA 10 10 0.72 7 3 –
k d4 n 10 10 15.63 – 10 – ToiletC 23 23 1.32 22 1 –
k d4 p 5 5 1.63 1 4 – ToiletG 4 4 0.01 4 – –
k dum n 2 2 0.04 – 2 – VonNeumann 2 2 5.92 1 1 –
k dum p 4 4 0.74 – 4 – z4ml 1 1 0.00 1 – –
k grz n 4 4 4.86 2 2 –

all the participants. An instance is thus solved if at least one of the solvers solves it,
and the time taken is the best among the times of the solvers that solved the instances.
The instances are classified according to their hardness with the following criteria: easy
instances are those solved by all the solvers, medium instances are those non-easy in-
stances that could still be solved by at least two solvers, medium-hard instances are
those solved by one reasoner only, and hard instances are those that remained unsolved.

According to the data summarized in Table 6, MAIN consisted of 568 instances, 523
of which have been solved, resulting in 105 easy, 393 medium, 25 medium-hard, and
45 hard instances. These results indicates that the selected instances are not trivial for
current state-of-the-art QBF – only 18% of the test set are easy instances. At the same
time, the test set is not overwhelming, since most of the non-easy instances (about
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Table 7. Classification of formulas related to 2QBF, SH, RND, and NPNCNF tracks, considering
second stage data. The table is organized as Table 6, with the only difference that in the leftmost
column (“Track”) is reported the related track.

Track Family Overall Time Hardness Family Overall Time Hardness
N # EA ME MH N # EA ME MH

irqlkeapclte 7 1 0.46 – 1 – Sorting networks 17 17 107.19 – 11 6
2QBF MutexP 7 7 5.08 3 4 – terminator 57 51 427.64 – 38 13

Qshifter 6 6 2.51 2 4 – wmiforward 46 27 159.21 11 15 1
RankingFunctions 60 55 72.50 – 47 8

Abduction 2 2 142.85 – 2 – k branch n 2 2 9.50 – 2 –
C499 3 3 17.92 – – 3 Sorting networks 4 3 5133.28 – 2 1
C880 6 4 54.19 – – 4 tipdiam 1 1 0.44 – – 1

SH circuits 1 1 187.02 – 1 – tipfixpoint 13 9 102.25 – 4 5
Counter 4 4 429.15 – 1 3 uclid 2 1 12.09 – – 1
jmc quant 5 5 6.61 – – 5 wmiforward 2 2 0.67 – – 2
jmc quant squaring 5 5 32.44 – – 5

ASP Program Inclusion 40 40 47.99 – 40 – RobotsD3 30 29 259.31 – 29 –
RND CounterFactual 80 80 205.06 2 77 1 RobotsD4 30 30 202.22 5 22 3

q2k3k3 270 161 12317.15 30 70 61 RobotsD5 30 30 290 7 23 –
RobotsD2 30 29 1292.02 – 26 3 Strategic Companies 40 30 1300.85 3 12 15

NPNCNF mqm 136 116 14943.18 51 – 65 QLTL safety 250 116 38217.74 6 – 110
NuSMV diam 92 89 385.37 66 – 23

69%) are solved by at least two solvers. Some “old” instances are still pretty hard for
current state-of-the-art solvers, like the ones coming from the Mneimneh-Sakallah suite
(families s641, s1196, s1269, and s3330). As a final consideration, we report that the
main contributors to the SOTA solver, in percentage, were DEPQBF, DEPQBF-PRE, and
QUANTOR3.1, with 28%, 18%, and 15%, respectively. This is the main explanation of
the differences in the ranking positions between Table 3 and Table 4.

Concerning the 2QBF track, looking at the Table 7, we can see that, out of 200 in-
stances, 164 have been solved, resulting in 16 easy, 120 medium, 28 medium-hard, and
36 hard instances. In particular, we report that the families in the suite “Basler” are the
ones with the highest number of open formulas, while 92% of the formulas in the new
family “RankingFunctions” (suite “Wintersteiger”) are solved. Notice that 100% of the
formulas in “legacy” families, i.e., “MutexP”, “Qshifter”, and “Sorting networks” are
solved by the SOTA solver. Finally, the three main contributors to the SOTA solver
are STRUQS’10, AQME’10 and DEPQBF-PRE with 54%, 21%, and 20%, respectively.
As regards the SH track, we can see in Table 7 that, out of 50 instances, 42 have been
solved, resulting in 12 medium, 30 medium-hard, and 8 hard instances. These 8 open
instances are mostly located in the “tipfixpoint” family (4). Notice that 1 hard instance
is in the “uclid” family, that was submitted to the first QBFEVAL in 2003. The SOTA
solver is mainly composed by AIGSOLVE, while other contributions do not exceed 5%.
Looking now at the classification of formulas included in RND, in the related section of
Table 7 we can see that, out of 550 instances, 429 have been solved, resulting in 47 easy,
299 medium, 83 medium-hard, and 121 hard instances. We report that the main con-
tributors to the SOTA solver are AQME’10 and DEPQBF-PRE, with 42% for each one.
Finally, concerning NPNCNF track, in Table 7 we can see that, out of 478 instances, 321
have been solved, resulting in 123 easy, 198 solved by only one solver, and 157 hard
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instances. The contribution of CIRQIT2.1 and QPRO to the SOTA solver is 64% and
36%, respectively. Noticeably, there has been a leap forward in solving the
“QLTL safety”. In QBFEVAL’08, only 6 instances were solved2, while we now report
116 solved formulas with “only” a factor 2× in the CPU time limit. Another interesting
observation is about “mqm” formulas. If we compare the total amount of solved formu-
las with the one reported in Table 6, we can see that, even if the results achieved using
prenex CNF solvers are better than those achieved with non-prenex non-CNF solvers,
the two values are comparable.

5 Conclusions

The final balance of QBFEVAL’10 can be summarized as follows:

– 13 solvers participated, 11 requiring QBFs in prenex CNF format.
– 136 formulas obtained by encoding minimal query inseparability module extrac-

tion in DL-Lite were submitted, both with an encoding in prenex CNF and their
corresponding non-prenex non-CNF.

– State-of-the-art solvers for each track have been identified; also, a total of 367 chal-
lenging hard instances have been identified to set the reference point for future
developments in the field.

All the information contained in this paper can be retrieved at the QBFEVAL’10 web
portal [19]. Despite some long-standing limitations it is our opinion that the develop-
ment of QBF solvers has reached its maturity, in the sense that QBF solvers are now
dependable and effective tools which have a concrete potential for applications. The
main question to be addressed by future research is whether the current state-of-the-art
solvers, alone or in combinations among them, can solve industrial-sized and practi-
cally relevant problems. While QBF-based automation techniques can be regarded as
a promising research direction, the lack of applications may discourage further devel-
opments, so it is important for researchers in the field to come out with “killer appli-
cations” wherein QBF solvers have an edge over competing technologies, e.g., SAT
solvers or BDDs.
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Abstract. We investigate the computational complexity of the exact
satisfiability problem (XSAT) restricted to certain subclasses of linear
CNF formulas. These classes are defined through restricting the number
of occurrences of variables and are therefore interesting because the com-
plexity status does not follow from Schaefer’s theorem [14,7]. Specifically
we prove that XSAT remains NP-complete for linear formulas which are
monotone and all variables occur exactly l times. We also present some
complexity results for exact linear formulas left open in [9]. Concretely,
we show that XSAT for this class is NP-complete, in contrast to SAT
or NAE-SAT. This can also be established when clauses have length at
least k, for fixed integer k ≥ 3. However, the XSAT-complexity for ex-
act linear formulas with clause length exactly k remains open, but we
provide its polynomial-time behaviour at least for every positive integer
k ≤ 6.

Keywords: exact satisfiability, linear formula, NP-completeness, finite
projective plane, regularity.

1 Introduction

Recently in [12] the propositional satisfiability problem (SAT) was studied when
restricted to the class of linear formulas in conjunctive normal form (CNF). By
definition, each pair of distinct clauses of a linear formula has at most one vari-
able in common. Thus linear formulas overlap only sparsely and there is some
evidence that linear formulas form the algorithmically hard kernel for CNF-SAT
making this class specifically interesting also regarding other variants of SAT.
Here we essentially focus on a well-known variant of SAT, namely, the exact sat-
isfiability problem (XSAT). A truth assignment solving XSAT has to set exactly
one literal in each clause of the input formula to 1, and the other literals to 0.
XSAT is NP-complete for unrestricted CNF formulas [14]. Moreover it remains
NP-complete also for formulas without negated variables (monotone formulas).
Monotone XSAT essentially is closely related to the well-known NP-complete
problems Set Partitioning and Exact Hitting Set [4] having many applications
in combinatorial optimization. As shown in [9], XSAT is NP-complete for mono-
tone and k-uniform linear formulas. In the present paper we investigate the com-
putational complexity of XSAT restricted to some subclasses of linear formulas
� The first author was partially supported by the DFG project under grant No. SP

317/7-1.

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 251–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



252 S. Porschen, T. Schmidt, and E. Speckenmeyer

defined through bounding the number of occurrences of variables. Moreover we
fill-in some gaps of [9] regarding exact linear formulas. Exact linear means that
every two distinct clauses share exactly one variable.

Recall that Schaefer’s theorem in [14] classifies generalized satisfiability prob-
lems (including XSAT) w.r.t. their complexity. However, this dichotomy theorem
does not automatically apply if restrictions on the number of occurrences of vari-
ables in CNF formulas are made. E.g. in [7] it is shown that whereas unrestricted
k-SAT is NP-complete, for k ≥ 3, it can be solved easily (i.e. all formulas are
satisfiable) if each clause has length exactly k and no variable occurs in more
than f(k) clauses; it becomes NP-complete if variables are allowed to occur at
most f(k) + 1 times. Here f(k) asymptotically grows as �2k/(e · k)�; this bound
has meanwhile been improved by other authors.

Here we show the NP-completeness of XSAT for CNF formulas which are
l-regular meaning that every variable occurs exactly l times, where l ≥ 3 is a
fixed integer. On that basis we can provide also the NP-completeness of XSAT
for the subclass of linear and l-regular formulas. This result carries over to the
monotone case.

Using some connections to finite projective planes we can also show that
XSAT remains NP-complete for linear and l-regular formulas that in addition
are l-uniform (all clauses have the same length l) whenever l = q + 1, where q is
a prime power. Thus XSAT most likely is NP-complete also for other values of
l ≥ 3.

The XSAT-complexity for monotone and exact linear formulas remained open
in [9]. Here we show its NP-completeness which we can also establish for the sub-
classwhere clauses have length at least k, k ≥ 3. This result is surprising, since both
SAT and not-all-equal SAT are polynomial-time solvable for exact linear formu-
las [12,9]. However, a difficulty arises when trying to transfer the NP-completeness
proof to the case where, in addition, all clauses are required to have length exactly k,
for arbitrary k ≥ 3. It might be possible that XSAT for these classes is polynomial-
time solvable, which we can only show for k ∈ {3, 4, 5, 6} so far. Finally, we draw
some nice conclusions regarding the complexity of Exact Hitting Set and Set Par-
titioning for linear and regular, respectively exact linear, hypergraphs. Recall that
in a linear, respectively exact linear, hypergraph each pair of distinct hyperedges
shares at most one, respectively exactly one, vertex [1].

2 Basic Definitions and Notations

Let CNF denote the set of duplicate-free conjunctive normal form formulas over
propositional variables x ∈ {0, 1}. A positive (negative) literal is a (negated) vari-
able. For a formula C, clause c, by V (C), V (c) we denote the set of its variables
(neglecting negations), respectively. In this paper we assume that clauses neither
contain duplicate literals nor a pair of complementary literals. Clauses, respec-
tively formulas are regarded as sets of literals, respectively clauses. Thus by |c|
we denote the number of literals in a clause c, and by |C| the number of clauses
in formula C. XSAT is the variant of SAT asking for a truth assignment setting
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exactly one literal in each clause of a CNF formula to 1 and all other literal(s)
to 0; such a truth assignment is called an x-model. C is called x-(un)satisfiable
if it has an (has no) x-model. The counterpart not-all-equal SAT (NAE-SAT) is
defined similarly, but for a solution it is required that in each clause at least one
literal is set to 1, and at least one literal is set to 0.

A CNF formula C is called linear if for all c1, c2 ∈ C : c1 
= c2 we have
|V (c1)∩V (c2)| ≤ 1. C is called exact linear if for all c1, c2 ∈ C : c1 
= c2 we have
|V (c1) ∩ V (c2)| = 1. A monotone formula has no negated variables. A formula
C is k-uniform if all its clauses have length exactly k; it is l-regular if each
of its variables occurs exactly l times in C. By wC(x) we denote the number
of occurrences of variable x in C (disregarding negations). Let LCNF denote
the class of linear formulas and XLCNF the class of exact linear formulas. Let
C ∈ {CNF, LCNF, XLCNF} be fixed. Then k-C, (≥ k)-C, (≤ k)-C denotes the
subclass of formulas in C with the additional property that all clauses have length
exactly k, at least k, at most k, respectively. Similarly Cl, C≥l, C≤l denotes the
subclass of formulas in C with the additional property that all variables occur
exactly l times, at least l times, at most l times, respectively. C+ denotes the
subclass of monotone formulas in C. Let C be an x-satisfiable formula. A variable
y ∈ V (C) is called an x-backbone variable of C, if y has the same value in each
x-model of C. We call a monotone, k-uniform and exact linear formula that in
addition is k-regular a k-block formula; such formulas are closely related to finite
projective planes [12].

3 XSAT on Linear Formulas with Regularity Conditions

In this section we focus on the following classes:

CNF+ ⊃ k-CNF+ ⊃ k-CNF≤l
+ ⊃ k-CNFl

+ ⊃ (≤ l)-LCNF≥l
+ ⊃ (≤ l)-LCNFl

+

CNF+ ⊃ CNFl
+ ⊃ LCNFl

+ ⊃ (≤ l)-LCNFl
+

Clearly, the same inclusion relations are also valid for the non-monotone coun-
terparts. XSAT and NAESAT can be solved in polynomial time for all classes
mentioned above with parameters k and l at most 2. This even holds for the
variable-weighted optimisation versions of these problems [11]. The remaining
cases are believed to be NP-complete. Whereas for several of them concrete re-
ductions will be provided in the sequel, for others the NP-completeness proofs are
left open. Specifically, the classes k − LCNFl can be verified to be NP-complete
only when regularity parameter l and uniformity parameter k are equal and
in addition l − 1 is a prime power. This clearly provides evidence that NP-
completeness holds for all values of l = k, but we have no rigorous proof. The
same lack is present if l and k have distinct values.

We start with non-linear CNF classes serving as reduction base for what
follows. To that end, recall that for CNF+ and k-CNF+ the NP-completeness
of XSAT is well known. For LCNF+, k-LCNF+ and (≥ k)-LCNF+ the NP-
completeness was shown in [9]. For the remaining classes we prove the
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NP-completeness of XSAT in this section. The next two results treat the non-
linear case, which will be referred to later.

Theorem 1. XSAT remains NP-complete for k-CNF≤l
+ and k-CNF≤l, k, l ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF+-XSAT (which
is NP-complete [4]) to k-CNF≤l

+ establishing NP-completeness of the latter and
thus of k-CNF≤l. To that end, let C be an arbitrary formula in k-CNF+. For
each x ∈ V (C) with wC(x) > l, we introduce p := wC(x)− (l− 1) new variables
x1, x2, . . . , xp. Let the first l− 1 occurrences of x remain unchanged and replace
the p remaining occurrences of x by the variables x1, x2, . . . , xp. Let C′ be the
resulting formula. Next we introduce new, pairwise different variables aij , for
i = 1, . . . , p, j = 1, . . . , k − 1, and add the following clauses to C′ which ensure
XSAT-equivalence of the newly introduced variables x1, x2, . . . , xp with x.

(x ∨ a11 ∨ a12 ∨ . . . ∨ a1,k−1) ∧ (x1 ∨ a11 ∨ a12 ∨ . . . ∨ a1,k−1)
∧(x1 ∨ a21 ∨ a22 ∨ . . . ∨ a2,k−1) ∧ (x2 ∨ a21 ∨ a22 ∨ . . . ∨ a2,k−1)
∧ . . .

∧(xp−1 ∨ ap1 ∨ ap2 ∨ . . . ∨ ap,k−1) ∧ (xp ∨ ap1 ∨ ap2 ∨ . . . ∨ ap,k−1)

Hence C and C′ are XSAT-equivalent, and obviously no variable occurs more
than l times in C′. ��
Theorem 2. XSAT remains NP-complete for k-CNFl

+ and k-CNFl, k, l ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF≤l
+ -XSAT (which

is NP-complete) to k-CNFl
+-XSAT similar to the technique in [7]. Let C be an

arbitrary formula in k-CNF≤l
+ with variable set V (C) = {x1, . . . , xn}. We intro-

duce l pairwise variable-disjoint copies C1, . . . , Cl of C, such that the variables
in Ci are {xi

1, . . . , x
i
n}, for i = 1, . . . , l. For each xj ∈ V (C) with wC(xj) < l we

construct the formulas Dxj,1, . . . , Dxj,l−wC(xj) with

Dxj ,i =
l∧

r=1

(
xr

j ∨ ai,1 ∨ . . . ∨ ai,k−1

)
for 1 ≤ i ≤ l−wC(xj). Note that ai,j occurs exactly l times in Dxj,i and nowhere
else, for i = 1, . . . , l − wC(xj), j = 1, . . . , k − 1. Defining

C′ =
l∧

i=1

Ci ∧
∧

xj∈V (C)

l−wC(xj)∧
i=1

Dxj,i

we observe that xi
j occurs wC(xj) times in Ci and once in each Dxj ,i, for i =

1, . . . , l−wC(xj). Thus each xi
j occurs l times in C′. So C′ belongs to k-CNFl

+.
C ∈ XSAT if and only if C′ ∈ XSAT: Let C be x-satisfiable, then we can use

a fixed x-model t of C to x-satisfy the copies C1, . . . , Cl of C. If t(xj) = 1, we
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set xr
j = 1, for r = 1, . . . , l, and ai,1 = . . . = ai,k−1 = 0 yielding an x-model for

Dxj,i, for all xj ∈ V (C) and 1 ≤ i ≤ wC(xj). If t(xj) = 0, we set xi
j = 0, for

i = 1, . . . , l and we assign ai,1 = 1 as well as ai,2 = . . . = ai,k−1 = 0 yielding a
x-model for Dxj,i, for all xj ∈ V (C) and 1 ≤ i ≤ wC(xj). The reverse direction
is obvious. ��
The situation is different from the SAT case where k and l are, for k, l ≥ 3, such
that k-CNFl-SAT is polynomial-time solvable as mentioned in the introduction
[7]. Now we are able to attack the linear and l-regular classes.

Theorem 3. XSAT remains NP-complete for LCNFl
+, and LCNFl, l ≥ 3.

Proof. We provide a polynomial-time reduction from CNFl
+-XSAT (which is

NP-complete) to LCNFl
+-XSAT. Let C be an arbitrary formula in CNFl

+. Is
C not linear, we proceed as follows for each variable xi ∈ V (C): Since each
fixed variable xi ∈ V (C) has exactly l occurrences in C, namely in the clauses
cj1 , . . . , cjl

, we introduce a new variable yjs
xi


∈ V (C), for each such occurrence
2 ≤ s ≤ l, except for the first occurrence of xi in cj1 . Then we replace each
occurrence of xi in cjs (except in cj1) with yjs

xi
, for 2 ≤ s ≤ l. Let C′ be the re-

sulting formula. Then C′ is obviously linear, monotone and each variable occurs
exactly once in C′. For each xi ∈ V (C), we introduce new, pairwise different vari-
ables zxi

1 , . . . , zxi

l−1 
∈ V (C′). Next we add the following 2-clauses to C′ providing
XSAT-equivalence of the variables xi, y

j2
xi

, . . . , yjl
xi

:

Pxi =(xi ∨ zxi
1 ) ∧ (xi ∨ zxi

2 ) ∧ . . . ∧ (xi ∨ zxi

l−1)

∧(yj2
xi

∨ zxi
1 ) ∧ (yj2

xi
∨ zxi

2 ) ∧ . . . ∧ (yj2
xi

∨ zxi

l−1)

∧(yj3
xi

∨ zxi
1 ) ∧ (yj3

xi
∨ zxi

2 ) ∧ . . . ∧ (yj3
xi

∨ zxi

l−1)

∧ . . .

∧(yjl
xi

∨ zxi
1 ) ∧ (yjl

xi
∨ zxi

2 ) ∧ . . . ∧ (yjl
xi

∨ zxi

l−1)

Observe that C′′ :=
∧

xi∈V (C) Pxi∧C′ is l-regular: wC′′ (zxi
r ) = l, for r = 1, . . . , l−

1, wC′′(yjs
xi

) = l, for s = 2, . . . , l, and wC′′(xi) = l, for each xi ∈ V (C). Since
every variable appears only once in C′, C′ is linear. Obviously P is linear; and
the variables zxi

1 , . . . , zxi

l−1 do not occur in C′, so P ∧ C′ = C′′ is linear, too. C
is XSAT-equivalent with C′′, because of the XSAT-equivalence of the variables
xi, y

j2
xi

, . . . , yjl
xi

and Pxi are always x-satisfiable, for all i. ��
Finding a concrete reduction for the NP-completeness proof of XSAT for k-
LCNFl

+ is a tricky problem. We are only able to show NP-completeness of XSAT
for k-LCNFl where l = q + 1 and q is a prime power. This results from the fact
that we can exploit block formula patterns providing backbone-variables. A k-
block formula directly corresponds to a finite projective plane of order k − 1.
Unfortunately it is a hard open question to decide whether a projective plane
exists for a given k ∈ N [13]. However, it is a well known fact in combinatorics
that for prime power orders the corresponding projective planes can easily be
computed.
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Theorem 4. XSAT remains NP-complete for l-LCNFl, for l = q + 1, where q
is a prime power.

Proof. We provide a polynomial-time reduction from l-CNFl
+ to l-LCNFl, for

l = q + 1, where q is a prime power. Let C ∈ l-CNFl
+ be an arbitrary formula

and V (C) = {x1, x2, . . . , xn} the set of its variables. For each variable xi ∈
V (C) we proceed like in the beginning of the proof of Theorem 3 obtaining the
corresponding formulas C′ and P =

∧
xi∈V (C) Pxi . Next we enlarge each 2-clause

of P by exactly l − 2 many x-backbone variables all of which must be assigned
to 0 and obtain l-clauses this way. The x-backbone variables are provided via
l-block formulas as follows: Each such l-block formula Bl is l-regular, l-uniform
and exists whenever l = q + 1, for q prime power [12]. Bl is not x-satisfiable
but removing an arbitrary clause of Bl yields a x-satisfiable formula, where the
variables of the removed clauses are x-backbone variables which have to be set
to 1 [9]. Therefore we provide n(l − 1)(l − 2) many l-block formulas which are
pairwise variable-disjoint. Removing a clause of each of them in total yields
n(l− 1)(l− 2)l distinct x-backbone variables. Since in P we have n(l− 1)l many
2-clauses, each of which needs l − 2 variables to become an l-clause, this fits
perfectly. Let P ′ be the formula obtained from P this way. Then C′′ := C′ ∧ P ′

is l-regular and l-uniform by construction. Moreover, C′′ is x-satisfiable if, and
only if, C is x-satisfiable because P provides the XSAT-equivalence of the original
variables with the replaced ones which is preserved by P ′ through the x-backbone
0 variables. Note that C′′ is non-monotone as we have to negate the x-backbone
variables when adding them to the clauses of P . ��
This result provides evidence that NP-completeness also holds for all values of
l ≥ 3. Unfortunately the proof does not easily transfer to the monotone case
due to the fact that we have not been able to find suitable formulas providing
backbone variables which must be set to 0. However considering the monotone
case we are able to treat the following larger classes.

Theorem 5. XSAT is NP-complete for (≤ l)-LCNFl
+, (≤ l)-LCNFl, l ≥ 3.

Proof. We provide a polynomial time reduction from l-CNFl
+-XSAT (which

is NP-complete according to Theorem 2) to (≤ l)-LCNFl
+-XSAT. Let C be an

arbitrary formula in l-CNFl
+. If C is not linear, we proceed as in the begin-

ning of the proof of Theorem 3 obtaining the corresponding formulas C′ and
P =

∧
xi∈V (C) Pxi . Again C′′ :=

∧
xi∈V (C) Pxi ∧ C′ is l-regular and linear by

construction. Moreover each clause of C′′ has a clause length of at most l, be-
cause in C′ each clause has a length of exactly l and P consists of 2-clauses only.
C′′ is XSAT-equivalent with C ensured by P . ��

4 XSAT for Exact Linear Formulas

Exact linear formulas are quite small instances since the number of clauses never
exceeds the number of variables [8,12]. Moreover it is known that SAT is linear-
time solvable for XLCNF [12]. According to [9] also NAE-SAT restricted to
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XLCNF is polynomial-time solvable. Treating the XSAT-complexity of XLCNF
remained open in [9]. This section is mainly devoted to consider XSAT for exact
linear formulas. Besides proving the NP-completeness of XLCNF-XSAT we also
provide polynomial-time subclasses. The next result is remarkable in the sense
that XSAT is the problem with the smallest search space among XSAT, NAESAT
and SAT, but has the highest complexity (under the assumption NP 
= P ) on
the rather small class of exact linear formulas.
Theorem 6. XSAT remains NP-complete for XLCNF+ and XLCNF.
Proof. We give a polynomial-time reduction from LCNF+-XSAT to XLCNF+-
XSAT. Let C = c1 ∧ c2 ∧ . . . ∧ cm ∈ LCNF+ be an arbitrary formula that is
not exact linear, otherwise we are done. As long as there is a pair of clauses
ci, cj ∈ C, i, j ∈ {1, . . . , m} which do not share a variable, introduce a new
variable z that does not occur in the current formula and augment both ci and
cj by the variable z. The resulting formula C′ obviously is exact linear. Let Z
denote the collection of newly introduced variables this way. Next, we add at
least m+1 further clauses collected in D whereas C′ is modified to C̃′ so that the
resulting formula C′′ := C̃′∧D stays exact linear and becomes XSAT-equivalent
to C.

The construction of D and the modification of C′ proceeds hand in hand:
Initially, D is empty. As long as there is a variable z ∈ Z not occurring in any
clause of D, add a new clause d to D containing z and a new distinguished
variable u (which is required to be contained in each clause of D). For each
clause ci of the current formula C′ such that V (d) ∩ V (ci) = ∅ introduce a new
variable wd,i and add it to d and ci. Let W denote the collection of all these
newly introduced variables.

When all variables in Z occur in D, but D still contains less than m+1 clauses
then add sufficiently many new clauses to D each containing u. Each such new
clause e is filled-up by m new variables ye,1, . . . , ye,m such that ye,r is added to
W and to the rth clause of the first m clauses, 1 ≤ r ≤ m. Finally, all newly
introduced variables in Z ∪ W occur in D and in the final version C̃′ of C′ and
the formula is exact linear.

Let C be x-satisfiable with x-model t. Obviously, t can be extended to all
variables of C′′ by setting all newly introduced variables of W ∪ Z to 0 and
u = 1. This yields a x-model for C′′.

Let C be x-unsatisfiable, and assume that C′′ is x-satisfiable. Then C̃′ can
only be x-satisfied by setting at least one variable x ∈ Z ∪ W to 1. As each
variable of Z ∪ W also occurs in D, there must be a clause di ∈ D with x ∈ di.
Hence u = 0 in di, and thus, to x-satisfy D, exactly one variable from Z ∪ W
must be set to 1 in each of its clauses. As D has at least m+1 clauses, there must
be at least m + 1 distinct variables from Z ∪ W set to 1 in D. Since all these
variables occur in C̃′, but C̃′ has exactly m clauses, the pigeonhole principle
implies that there is a clause in C̃′ containing at least two variables set to 1.
This yields a contradiction, hence C′′ is x-unsatisfiable, too.

To illustrate this reduction, consider the input formula

C = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ (x1 ∨ x7 ∨ x8) ∈ LCNF+
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First we obtain C′ by making the clauses of C exact linear introducing the new
variables Z = {z1, z2}:

C′ =(x1 ∨ x2 ∨ x3 ∨ z1)
∧(x4 ∨ x5 ∨ x6 ∨ z1 ∨ z2)
∧(x1 ∨ x7 ∨ x8 ∨ z2)

Next we add clauses D = {d1, d2} each containing a fixed variable u such that
all variables in Z occur in the new clauses. To preserve exact linearity we need
to introduce new variables W = {w1, w2}:

(x1 ∨ x2 ∨ x3 ∨ z1 ∨ w2)
∧(x4 ∨ x5 ∨ x6 ∨ z1 ∨ z2)
∧(x1 ∨ x7 ∨ x8 ∨ z2 ∨ w1)
∧ (u ∨ z1 ∨ w1)︸ ︷︷ ︸

=:d1

∧ (u ∨ z2 ∨ w2)︸ ︷︷ ︸
=:d2

In this example D has only two clauses, so we have to add two more clauses
e1, e2 to ensure XSAT-equivalence and preserve exact linearity, finally yielding
W = {w1, w2, y1, . . . , y6}, and:

C′′ =(x1 ∨ x2 ∨ x3 ∨ z1 ∨ w2 ∨ y1 ∨ y4)
∧(x4 ∨ x5 ∨ x6 ∨ z1 ∨ z2 ∨ y2 ∨ y5)
∧(x1 ∨ x7 ∨ x8 ∨ z2 ∨ w1 ∨ y3 ∨ y6)
∧(u ∨ z1 ∨ w1)
∧(u ∨ z2 ∨ w2)
∧ (u ∨ y1 ∨ y2 ∨ y3)︸ ︷︷ ︸

=:e1

∧ (u ∨ y4 ∨ y5 ∨ y6)︸ ︷︷ ︸
=:e2

∈ XLCNF+ ��

It is not hard to see that the result above sharpens the long-standing NP-
hardness result for clique packing of a graph maximizing the number of covered
edges of Hell and Kirkpatrick [5]. Recently Chataigner et al. have provided nice
approximation (hardness) results regarding the clique packing problem [3]. It
could be interesting to investigate whether similar approximation results can be
gained for XSAT on (X)LCNF in the future.

Next we are interested in XSAT for (≥ k)-XLCNF+, with k ≥ 3. To prove its
NP-completeness, we need first to consider the class (≥ |C|)-LCNF+ consisting
of all monotone and linear formulas C such that each clause has at least length
|C|.
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Lemma 1. Every formula in (≥ |C|)-LCNF+ is x-satisfiable.

Proof. Let C be a formula in (≥ |C|)-LCNF+ with m := |C| clauses and assume
there is a clause c0 ∈ C containing at least the variables x1, . . . , xm such that
wC(xi) ≥ 2, for 1 ≤ i ≤ m. Due to linearity this implies that there are clauses
ci, 1 ≤ i ≤ m, such that xi ∈ V (ci), thus |C| ≥ |{c0, c1, . . . , cm}| ≥ m + 1
yielding a contradiction. It follows that each clause c of C contains at least one
literal which occurs only once in C. Hence, setting exactly these variables to 1
x-satisfies C. ��
Let (k, |C| − 1)-LCNF+, k ≥ 3, denote the class of all monotone and linear
formulas C such that each clause has length k at least and |C| − 1 at most.
According to Theorem 4 in [9] XSAT is NP-complete for (≥ k)-LCNF+, for each
fixed k ≥ 3. According to Lemma 1 (≥ |C|)-LCNF+ behaves trivially for XSAT.
Since XSAT is NP-complete for k-LCNF+ and k-LCNF+ ⊆ (k, |C|−1)-LCNF+,
XSAT is NP-complete for (k, |C| − 1)-LCNF+, too.

We were not able to establish the NP-completeness for k-XLCNF+, i.e. uni-
form formulas, regarding XSAT. However, on behalf of the NP-completeness of
(k, |C| − 1)-LCNF+-XSAT just shown, we can provide the next result by using
the same technique as in the proof of Theorem 6 starting with a formula in
(k, |C| − 1)-LCNF+.

Theorem 7. XSAT remains NP-complete for (≥ k)-XLCNF+, for each k ≥ 3.

There are some difficulties in establishing the complexity of XSAT for arbitrary
k-uniform, exact linear formulas. We instead present the polynomial-time solv-
ability of XSAT for the k-uniform subclasses k-XLCNF+, where k ≤ 6. For that
purpose we introduce several lemmas.

Lemma 2. Let C ∈ k−XLCNF+. If there is a variable x ∈ V (C) with w(x) > k,
then x ∈ V (c), for all c ∈ C.

Proof. Suppose there is a clause ci ∈ C that is not an x-clause. Then ci must
share exactly one variable with each x-clause. There are more than k many x-
clauses, but ci is only k-uniform. Hence C contains only x-clauses. ��
Lemma 3. [9] The class k-XLCNFk

+ is not x-satisfiable.

Lemma 4. Let C ∈ k-XLCNF+ containing a clause c = (x1∨x2∨ . . .∨xk) ∈ C
such that w(x1) = w(x2) = . . . = w(xk) = k − 2. Then we can decide XSAT for
C in polynomial time.

Proof. Let C ∈ k-XLCNF+ and c1 = (x1 ∨ x2 ∨ . . . ∨ xk) ∈ C with w(x1) =
w(x2) = . . . = w(xk) = k−2. XSAT-evaluating C according to the setting xi = 1,
for any fixed i ∈ {1, . . . , k}, yields a formula C[xi] in 2-LCNF+ because of exact
linearity and k-uniformity. Therefore XSAT for C[xi] can be decided in linear-
time [11]. Hence, in the worst case we have to check every such formula C[xi],
1 ≤ i ≤ k, yielding a polynomial-time worst-case running time of O(k · ||C||). ��
Lemma 5. Let C ∈ k-XLCNF+ and let x ∈ V (C) be a variable with w(x) =
k − 1 in C. Then C is x-satisfiable.
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Proof. Let C ∈ k-XLCNF+ and x ∈ V (C) with w(x) = k − 1. Let c1, . . . , ck−1

be the clauses containing x. We set x = 1 in c1, . . . , ck−1 and assign 0 to the
other variables in these clauses. This way we x-satisfy the clauses c1, . . . , ck−1

and remove these from the formula C. Now we consider the remaining clauses
cj ∈ C − {c1, . . . , ck−1}, which satisfy V (cj) ∩ (V (ci) − {x}) 
= ∅, for all i =
1, . . . , k−1. Hence each of the remaining clauses contains k−1 distinct variables
already assigned to 0. When we remove these from all of the remaining clauses
cj ∈ C − {c1, . . . , ck−1} the remaining formula consists of unit clauses only, and
thus C is x-satisfiable. ��
Lemma 6. [11] Let C ∈ CNF with w(x) ≤ 2 for all x ∈ V (C). Then we can
decide XSAT for C in polynomial time.

No we are ready to establish a Theorem which may be useful to design better
exact exponential algorithms for k-SAT: The case resolved by the polynomial-
time algorithm may occur in some branching rule of the exponential algorithm
being designed.

Theorem 8. The classes k-XLCNF+, for k ∈ {1, 2, 3, 4, 5, 6}, can be x-solved
in polynomial time.

Proof. We only treat case k = 6. Let C ∈ 6-XLCNF+ be an arbitrary formula
with variable set V (C). We set wC(x) := w(x) since C is fixed, and provide a
case analysis guided by the number of occurrences of variables in V (C).

– If there is a variable x ∈ V (C) with w(x) ≥ 7, then x ∈ c for all c ∈ C
according to Lemma 2. In this case we set x = 1 and assign 0 to all the other
variables in V (C). This way we get an x-model for C.

– If w(x) = 6, for all x ∈ V (C), then C is x-unsatisfiable according to Lemma
3.

– If there is a variable x ∈ V (C) with w(x) = 5 then C is x-satisfiable according
to Lemma 5.

– If w(x) = 4, for all x ∈ V (C), then we can decide XSAT for C in polynomial
time according to Lemma 4.

– If there a variable x ∈ V (C) with w(x) = 6 as well as a variable y ∈ V (C)
with w(y) 
= 6: If C only consists of clauses containing x, then we set x = 1
and all other variables in V (C) to 0 obtaining an x-model for C. Otherwise,
there is a variable x ∈ V (C) with w(x) ≥ 4. Setting x to 1, and all other
variables in the clauses containing x to 0 yields a formula only containing
clauses of length ≤ 2. Such a formula can be checked for XSAT in polynomial
time. This way we treat each variable z ∈ V (C) with w(z) ≥ 4 until an x-
model is found. In the negative case we proceed as follows:
(a) If there is no variable x ∈ V (C) with w(x) = 3, we set all the variables

x with w(x) ≥ 4 to 0. Hence the resulting formula C′ contains only
variables occurring ≤ 2 times in C′ and by using Lemma 6 we can solve
C′ in polynomial time.

(b) If there is a variable x ∈ V (C) with w(x) = 3, then after having set x
to 1 and all other variables to 0 in the clauses containing x, we obtain a
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formula C′ which is in 3-LCNF+. If there is no further variable occurring
three times in C′, we set all variables occurring ≥ 4 times to 0 and
can decide x-satisfiability of C′ in polynomial time according to Lemma
6. Otherwise, there is a variable y with w(y) = 3 in C′. Then we set
y = 1 and to 0 all other variables in the clauses containing y. Now
all y-clauses are x-satisfied and there are at most three clauses in the
remaining formula that do not share any variable with any of the clauses
containing y. Hence all clauses, except for at most three, do share at
least one variable with one clauses containing y. Since these variables
are all set to 0, the remaining formula only contains clauses of length
two at most (except for at most three clauses) which can be decided for
XSAT in polynomial time.

– If w(x) ≤ 3, for all x ∈ V (C), and there x ∈ V (C) with w(x) = 3: After
having set x to 1 and all other variables in the clauses containing x to 0,
the remaining formula C′ is in 3-LCNF+. If all variables occur at most twice
in C′, we can decide x-satisfiability of C′ in polynomial time according to
Lemma 6. Otherwise there is still a variable y with w(y) = 3 in C′. In that
case we set y = 1 and all variables in the clauses containing y to 0. Now all
of y-clauses are x-satisfied and there are at most three clauses which do not
share any variable with at least one of the y-clauses. Hence we can decide
XSAT in polynomial time as above.

– If w(x) ≤ 2, for all x ∈ V (C), we can decide XSAT for C in polynomial time
according to Lemma 6. ��

5 Concluding Remarks and Open Problems

XSAT has been shown to be NP-complete when restricted to certain linear k-
uniform and l-regular CNF classes, for k, l ≥ 3.

Our results imply the NP-completeness of some subversions of the well-known
combinatorial optimization problems Set Partitioning and Exact Hitting Set on
regular and linear hypergraphs. Recall that Set Partitioning takes as input a
finite hypergraph with vertex set M and a set of hyperedges M (i.e. subsets
of M). It asks for a subfamily T of M such that each element of M occurs in
exactly one member of T . It is easy to see that monotone XSAT coincides with
Set Partitioning when the clauses overtake the roles of vertices in M and the
variables are regarded as the hyperedges in M in such a way that a variable
contains all clauses in which it occurs.

Exact Hitting Set, however, is just the same as monotone XSAT only trans-
lated to the hypergraph (or set system) terminology; implying that Exact Hitting
Set remains NP-complete for linear, l-regular hypergraphs. And a simple dualiza-
tion argument implies that the same is true for Set Partitioning on that specific
class of hypergraphs.

Regarding the exact linear case, we have shown that XSAT for unrestricted
exact linear formulas is NP-complete in contrast to SAT, respectively NAE-SAT,
which both are polynomial-time solvable on this class. Therefore it easily follows
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that Exact Hitting Set is NP-complete for exact linear hypergraphs. In summary
we have:

Theorem 9. (1) Exact Hitting Set and Set Partitioning both are NP-complete
for linear, l-regular hypergraphs.
(2) Exact Hitting Set is NP-complete for exact linear hypergraphs.

Observe that Set Partitioning for exact linear hypergraphs is trivial in the sense
that it has no solution either the input hypergraph consists of one hyperedge
only.

There are several problems left open for future work, so the complexity status
for XSAT restricted to the classes k-LCNFl

+, for arbitrary values of k, l ≥ 3.
Moreover, we do not know the complexity of XSAT restricted to k-uniform exact
linear formulas, for k ≥ 7. The same lack is present for the case where the number
of occurrences is bounded, meaning that the XSAT-complexity of XLCNFl

+ and
k-XLCNFl

+ are open, for k, l ≥ 3.
Finally from the point of view of exact algorithmics, it would be desirable

to gain progress for XSAT restricted to linear formulas beyond the so far best
bound of O(20.2325·n), for unrestricted CNF-XSAT over n variables, provided by
Byskov et al. [2]. Note that for NAE-SAT, such progress seems to be hard to
achieve since NAE-SAT can be shown to be as hard as SAT itself for unrestricted
CNF formulas [6,10]. It is open whether NAE-SAT or even SAT can be solved
in less than 2n steps for linear formulas.

Acknowledgement. We want to thank the anonymous referees for their valu-
able comments.
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Abstract. We consider the regular model of formula generation in conjunctive
normal form (CNF) introduced by Boufkhad et. al. in [6]. In [6], it was shown that
the threshold for regular random 2-SAT is equal to unity. Also, upper and lower
bound on the threshold for regular random 3-SAT were derived. Using the first
moment method, we derive an upper bound on the threshold for regular random
k-SAT for any k ≥ 3 and show that for large k the threshold is upper bounded by
2k ln(2). We also derive upper bounds on the threshold for Not-All-Equal (NAE)
satisfiability for k ≥ 3 and show that for large k, the NAE-satisfiability threshold
is upper bounded by 2k−1 ln(2). For both satisfiability and NAE-satisfiability, the
obtained upper bound matches with the corresponding bound for the uniform
model of formula generation [9, 1].

For the uniform model, in a series of break through papers Achlioptas, Moore,
and Peres showed that a careful application of the second moment method yields
a significantly better lower bound on threshold as compared to any rigorously
proven algorithmic bound [3,1]. The second moment method shows the existence
of a satisfying assignment with uniform positive probability (w.u.p.p.). Thanks to
the result of Friedgut for uniform model [10], existence of a satisfying assign-
ment w.u.p.p. translates to existence of a satisfying assignment with high prob-
ability (w.h.p.). Thus, the second moment method gives a lower bound on the
threshold. As there is no known Friedgut type result for regular random model,
we assume that for regular random model existence of a satisfying assignments
w.u.p.p. translates to existence of a satisfying assignments w.h.p. We derive the
second moment of the number of satisfying assignments for regular random k-
SAT for k ≥ 3. There are two aspects in deriving the lower bound using the sec-
ond moment method. The first aspect is given any k, numerically evaluate the
lower bound on the threshold. The second aspect is to derive the lower bound as
a function of k for large enough k. We address the first aspect and evaluate the
lower bound on threshold. The numerical evaluation suggests that as k increases
the obtained lower bound on the satisfiability threshold of a regular random for-
mula converges to the lower bound obtained for the uniform model. Similarly,
we obtain lower bounds on the NAE-satisfiability threshold of the regular ran-
dom formulas and observe that the obtained lower bound seems to converge to
the corresponding lower bound for the uniform model as k increases.
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1 Regular Formulas and Motivation

A clause is a disjunction (OR) of k variables. A formula is a conjunction (AND) of a
finite set of clauses. A k-SAT formula is a formula where each clause is a disjunction of
k literals. A legal clause is one in which there are no repeated or complementary literals.
Using the terminology of [6], we say that a formula is simple if it consists of only legal
clauses. A configuration formula is not necessarily legal. A satisfying (SAT) assignment
of a formula is a truth assignment of variables for which the formula evaluates to true.
A Not-All-Equal (NAE) satisfying assignment is a truth assignment such that every
clause is connected to at least one true literal and at least one false literal. We denote
the number of variables by n, the number of clauses by m, and the clause density, i.e.
the ratio of clauses to variables, by α = m

n . We denote the binary entropy function by
h(·), h(x) � −x ln(x)− (1− x) ln(1− x), where the logarithm is the natural logarithm.

The popular, uniform k-SAT model generates a formula by selecting uniformly and
independently m-clauses from the set of all 2k

(n
k

)
k-clauses. In this model, the literal

degree can vary. We are interested in the model where the literal degree is almost con-
stant, which was introduced in [6]. Suppose each literal has degree r. Then 2nr = km,
which gives α = 2r/k. Hence α can only take values from a discrete set of possible val-
ues. To circumvent this, we allow each literal to take two possible values for a degree.
For a given α, let r = kα

2 and r = �r�. Each literal has degree either r or r+ 1. Also
a literal and its negation have the same degree. Thus, we can speak of the degree of a
variable which is the same as the degree of its literals. Let the number of variables with
degree d be nd , d ∈ {r,r+1}. Let X1, . . . ,Xnr be the variables which have degree r and
Xnr+1, . . . ,Xn be the variables with degree r+ 1. Then,

nr = n +rn−
⌊

kαn
2

⌋
, nr+1 =

⌊
kαn

2

⌋
−rn

and nr + nr+1 = n. As we are interested in the asymptotic setting, we will ignore the
floor in the sequel. We denote the fraction of variables with degree r (resp. r+ 1) by
Λr (resp. Λr+1) which is given by

Λr = 1 +r− kα
2

, Λr+1 =
kα
2

−r. (1)

When Λr or Λr+1 is zero, we refer to such formulas as strictly regular random formulas.
This implies that there is no variation in literal degree. If Λr,Λr+1 > 0, then we say that
the formulas are 2-regular random formulas.

A formula is represented by a bipartite graph. The left vertices represent the literals
and right vertices represent the clauses. A literal is connected to a clause if it appears in
the clause. There are kαn edges coming out from all the literals and kαn edges coming
out from the clauses. We assign the labels from the set E = {1, . . . ,kαn} to edges on
both sides of the bipartite graph. In order to generate a formula, we generate a random
permutation Π on E . Now we connect an edge i on the literal node side to an edge
Π(i) on the clause node side. This gives rise to a regular random k-SAT formula. Note
that not all the formulas generated by this procedure are simple. However, it was shown
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in [6] that the threshold is the same for this collection of formulas and the collection
of simple formulas. Thus, we can work with the collection of configuration formulas
generated by this procedure.

The regular random k-SAT formulas are of interest because such instances are com-
putationally harder than the uniform k-SAT instances. This was experimentally ob-
served in [6], where the authors also derived upper and lower bounds for regular random
3-SAT. The upper bound was derived using the first moment method. The lower bound
was derived by analyzing a greedy algorithm proposed in [13]. To the best of our knowl-
edge, there are no known upper and lower bounds on the thresholds for regular random
formulas for k > 3.

Using the first moment method, we compute an upper bound α∗
u on the satisfiability

threshold α∗ for regular random formulas for k ≥ 3. We show that α∗ ≤ 2k ln(2), which
coincides with the upper bound for the uniform model. We also apply the first moment
method to obtain an upper bound α∗

u,NAE on the NAE-satisfiability threshold α∗
NAE of

regular random formulas. We show that α∗
NAE ≤ 2k−1 ln(2) which coincides with the

corresponding bound for the uniform model.
In order to derive a lower bound α∗

l on the threshold, we apply the second moment
method to the number of satisfying assignments. The second moment method shows
the existence of a satisfying assignment with uniform positive probability (w.u.p.p.).
Due to the result of Friedgut for uniform model [10], existence of a satisfying assign-
ment w.u.p.p. translates to existence of a satisfying assignment with high probability
(w.h.p.). Thus, the second moment method gives lower bound on the threshold for
uniform model. As there is no known Friedgut type result for regular random model,
we assume that for regular random model existence of a satisfying assignments w.u.p.p.
translates to existence of a satisfying assignments w.h.p. This permits us to say that sec-
ond moment method gives valid lower bound on the threshold. We compute the second
moment of the number of satisfying assignments for regular random model. Similar to
the case of the uniform model, we show that for the second moment method to succeed
the term corresponding to overlap n/2 should dominate other overlap terms. We observe
that the obtained lower bound α∗

l converges to the corresponding lower bound of the

uniform model, which is 2k ln(2)− (k + 1) ln(2)
2 − 1 as k increases. Similarly, by com-

puting the second moment of the number of NAE-satisfying assignments we obtain that
αl,NAE converges to the corresponding bound 2k−1 ln(2)−O(1) for the uniform model.
The lower bounds are not obtained explicitly as computing the second moment requires
finding all the positive solutions of a system of polynomial equations. For small values
of k, this can be done exactly. However, for large values of k we resort to a numerical
approach. Our main contribution is that we obtain almost matching lower and upper
bounds on the satisfiability (resp. NAE-satisfiability) threshold for the regular random
formulas. Thus, we answer in affirmative the following question posed in [1]: Does the
second moment method perform well for problems that are symmetric “on average”?
For example, does it perform well for regular random k-SAT where every literal appears
an equal number of times?.

In the next section, we obtain an upper bound on the satisfiability threshold and NAE
satisfiability threshold.
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2 Upper Bound on Threshold via First Moment

Let X be a non-negative integer-valued random variable and E(X) be its expectation.
Then the first moment method gives: P(X > 0) ≤ E(X). Note that by choosing X to
be the number of solutions of a random formula, we can obtain an upper bound on the
threshold α∗ beyond which no solution exists with probability one. This upper bound
corresponds to the largest value of α at which the average number of solutions goes to
zero as n tends to infinity. In the following lemma, we derive the first moment of the
number of SAT solutions of the regular random k-SAT for k ≥ 3.

Lemma 1. Let N(n,α) (resp. NNAE(n,α)) be the number of satisfying (resp. NAE satis-
fying) assignments for a randomly generated regular k-SAT formula. Then1,

E(N(n,α)) = 2n

((
kαn

2

)
!
)2

(kαn)!
coef

((
p(x)

x

)αn

,x
kαn

2 −αn
)

, (2)

E(NNAE(n,α)) = 2n

((
kαn

2

)
!
)2

(kαn)!
coef

((
pNAE(x)

x

)αn

,x
kαn

2 −αn
)

, (3)

where
p(x) = (1 + x)k −1, pNAE(x) = (1 + x)k −1− xk, (4)

and coef
(

p(x)αn,x
kαn

2

)
denotes the coefficient of x

kαn
2 in the expansion of p(x)αn.

Proof. Due to symmetry of the formula generation, any assignment of variables has the
same probability of being a solution. This implies

E(N(n,α)) = 2n P (X = {0, . . . ,0} is a solution) .

The probability of the all-zero vector being a solution is given by

P(X = {0, . . . ,0} is a solution) =
Number of formulas for which X = {0, . . . ,0} is a solution

Total number of formulas
.

The total number of formulas is given by (kαn)!. The total number of formulas for
which the all-zero assignment is a solution is given by((

kαn
2

)
!

)2

coef
(

p(x)m,x
kαn

2

)
.

The factorial terms correspond to permuting the edges among true and false literals.
Note that there are equal numbers of true and false literals. The generating function
p(x) corresponds to placing at least one positive literal in a clause. With these results
and observing that

coef
(

p(x)αn,x
kαn

2

)
= coef

((
p(x)

x

)αn

,x
kαn

2 −αn
)

,

1 We assume that kαn is an even integer.
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we obtain (2). The derivation for E(NNAE(n,α)) is identical except that the generating
function for clauses is given by pNAE(x). ��
We now state the Hayman method to approximate the coef-term which is asymptotically
correct [11].

Lemma 2 (Hayman Method). Let q(y) = ∑i qiyi be a polynomial with non-negative
coefficients such that q0 
= 0 and q1 
= 0. Define

aq(y) = y
dq(y)

dy
1

q(y)
, bq(y) = y

daq(y)
dy

. (5)

Then,

coef(q(y)n,yωn) =
q(yω)n

(yω)ωn
√

2πnbq(yω)
(1 + o(1)), (6)

where yω is the unique positive solution of the saddle point equation aq(y) = ω.

We now use Lemma 2 to compute the expectation of the total number of solutions.

Lemma 3. Let N(n,α) (resp. NNAE(n,α)) denote the total number of satisfying (resp.

NAE satisfying) assignments of a regular random k-SAT formula. Let q(x) = p(x)
x ,

qNAE(x) = pNAE

x , where p(x) and pNAE(x) is defined in (4). Then,

E(N(n,α)) =

√
k

4bq(xk)
en(ln(2)−kα ln(2)+α ln(q(xk))−( kα

2 −α) ln(xk))(1 + o(1)), (7)

E(NNAE(n,α)) =
√

ken(ln(2)(1−kα)+α ln(qNAE(xk,NAE))−( kα
2 −α) ln(xk,NAE))√

4bqNAE(xk,NAE)
(1 + o(1)), (8)

where xk (resp. xk,NAE) is the positive solution of aq(x) = k
2 −1 (resp. aqNAE(x) = k

2 −1).
The quantity aq(x), aqNAE(x), bq(x), and bqNAE(x) are defined according to (5).

In the following lemma we derive explicit upper bounds on the satisfiability and NAE
satisfiability thresholds for k ≥ 3.

Lemma 4 (Upper bound). Let α∗ (resp. α∗
NAE) be the satisfiability (resp. NAE satisfia-

bility) threshold for the regular random k-SAT formulas. Define α∗
u (resp. α∗

u,NAE) to be
the upper bound on α∗ (resp. α∗

NAE) obtained by the first moment method. Then,

α∗ ≤ α∗
u ≤ 2k ln(2)(1 + ok(1)), α∗

NAE ≤ α∗
u,NAE = 2k−1 ln(2)− ln(2)

2
−ok(1). (9)

Proof. We observe that the solution xk of the saddle point equation aq(x) = k
2 −1 satis-

fies: xk = argminx>0
q(x)

x
k
2 −1

, where aq(x) is defined according to (5). This implies that we

obtain the following upper bound on the growth rate of E(N(n,α))) for any x > 0,

lim
n→∞

ln(E(N(n,α)))
n

≤ ln(2)− kα ln(2) +α ln(q(x))−
(

kα
2

−α

)
ln(x). (10)
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We substitute x = 1− 1
2k in (10). Then we use the series expansion of ln(1− x), 1/i ≥

1/2i, and −1/i ≥−1 to obtain the following upper bound on the threshold,

α∗ ≤ 2k ln(2)
1(

1− 1
2k+1

)k + k
2k+4 + 1

2k+2
(

1− 1
2k+1

)2k − 1
2k+1 .

(11)

The summation of the last three terms in the denominator of (11) is positive. This can be
easily seen for k ≥ 8. For 3 ≤ k < 8, it can be verified by explicit calculation. Dropping
this summation in (11), we obtain the desired upper bound on the threshold. To derive
the bound for NAE satisfiability, we note that xk,NAE = 1 for k ≥ 3. By substituting this
in the exponent of E(NNAE) and equating it to zero, we obtain the desired expression for
α∗

u,NAE. ��

In the next section we use the second moment method to obtain lower bounds on the
satisfiability and NAE satisfiability thresholds of regular random k-SAT.

3 Second Moment

A lower bound on the threshold can be obtained by the second moment method. The
second moment method is governed by the following equation

P(X > 0) ≥ E(X)2

E(X2)
. (12)

In this section we compute the second moment of N(n,α) and NNAE(n,α). Our computa-
tion of the second moment is inspired by the computation of the second moment for the
weight and stopping set distributions of regular LDPC codes in [14, 15] (see also [4]).
We compute the second moment in the next lemma.

Lemma 5. Let N(n,α) be the number of satisfying solutions to a regular random k-SAT
formula. Define the function f (x1,x2,x3) by

f (x1,x2,x3) = (1 + x1 + x2 + x3)k − (1 + x1)k − (1 + x3)k + 1. (13)

If the regular random formulas are strictly regular, then

E
(
N(n,α)2)=

n

∑
i=0

2n
(

n
i

) ((r(n− i))!)2 ((ri)!)2 coef
(

f (x1,x2,x3)αn,xr(n−i)
1 xri

2 xr(n−i)
3

)
(kαn)!

. (14)

If the regular random formulas are 2-regular, then

E
(
N(n,α)2)=

nr

∑
ir=0

nr+1

∑
ir+1=0

2n
(

nr
ir

)(
nr+1

ir+1

)((
kαn

2
−rir− (r+ 1)ir+1

)
!

)2

((rir + (r+ 1)ir+1)!)2

(kαn)!
coef
(

f (x1,x2,x3)αn,(x1x3)
kαn

2 −rir−(r+1)ir+1xrir+(r+1)ir+1
2

)
.

(15)
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For both the strictly regular and the 2-regular case, the expression for E
(
NNAE(n,α)2

)
is

the same as that for E
(
N(n,α)2

)
except replacing the generating function f (x1,x2,x3)

by fNAE(x1,x2,x3), which is given by

fNAE(x1,x2,x3) = (1 + x1 + x2 + x3)k−(
(1 + x1)k + (1 + x3)k −1 + (x1 + x2)k − xk

1 + (x2 + x3)k − xk
2 − xk

3

)
. (16)

Proof. Let 11XY be the indicator variable which evaluates to 1 if the truth assignments
X and Y satisfy a randomly regular k-SAT formula. Then,

E(N(n,α)2) = ∑
X ,Y∈{0,1}n

E (11XY) = 2n ∑
Y∈{0,1}n

P (0 and Y are solutions) .

The last simplification uses the fact that the number of formulas which are satisfied by
both X and Y depends only on the number of variables on which X and Y agree. Thus,
we fix X to be the all-zero vector.

We now consider the strictly regular case. The probability that the all-zero truth
assignment and the truth assignment Y both are solutions of a randomly chosen regular
formula depends only on the overlap, i.e., the number of variables where the two truth
assignments agree. Thus for a given overlap i, we can fix Y to be equal to zero in the
first i variables and equal to 1 in the remaining variables. This gives,

E(N(n,α)2) =
n

∑
i=0

2n
(

n
i

)
P (0 and Y are solutions) . (17)

In order to evaluate the probability that both 0 and Y are solutions for a given overlap
i, we observe that there are four different types of edges connecting the literals and the
clauses. There are r(n− i) type 1 edges which are connected to true literals w.r.t. the
0 truth assignment and false w.r.t. to the Y truth assignment. The ri type 2 edges are
connected to true literals w.r.t. both the truth assignments. There are r(n− i) type 3
edges which are connected to false literals w.r.t. the 0 truth assignment and true literals
w.r.t. to the Y truth assignment. The ri type 4 edges are connected to false literals
w.r.t. both the truth assignments. Let f (x1,x2,x3) be the generating function counting
the number of possible edge connections to a clause, where the power of xi gives the
number of edges of type i, i ∈ {1,2,3}. A clause is satisfied if it is connected to at least
one type 2 edge. Otherwise, it is satisfied if it is connected to at least one type 1 and
at least one type 3 edge. Then the generating function f (x1,x2,x3) is given as in (13).
Using this, we obtain

P(0 and Y are solutions) =

((r(n− i))!)2 ((ri)!)2 coef
(

f (x1,x2,x3)αn,xr(n−i)
1 xri

2 xr(n−i)
3

)
(kαn)!

, (18)

where (kαn)! is the total number of formulas. Consider a given formula which is satis-
fied by both truth assignments 0 and Y . If we permute the positions of type 1 edges on
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the clause side, we obtain another formula having 0 and Y as solutions. The argument
holds true for the type i edges, i ∈ {2,3,4}. This explains the term (r(n− i))! in (18)
which corresponds to permuting the type 1 edges (it is squared because of the same
contribution from type 3 edges). Similarly, (ri)!2 corresponds to permuting type 2 and
type 4 edges. Combining (17) and (18), we obtain the desired expression for the second
moment of the number of solutions as given in (14).

We now consider the two regular case. Note that in this case the equivalent equation
corresponding to (17) is

E(N(n,α)2) =
nr

∑
ir=0

nr+1

∑
ir+1=0

2n
(

nr
ir

)(
nr+1

ir+1

)
P((0,Y ) is a solution) , (19)

where ir (resp. ir+1) is the variable corresponding to the overlap between truth assign-
ments 0 and Y among variables with degree r (resp. r+ 1). Similarly, the equivalent of
(18) is given by

P(0 and Y are solutions) = ((r(nr− ir) + (r+ 1)(nr+1− ir+1))!)2

× ((rir + (r+ 1)ir+1)!)2

(kαn)!

× coef
(

f (x1,x2,x3)αn,(x1x3)r(nr−ir)+(r+1)(nr+1−ir+1)xrir+(r+1)ir+1
2

)
. (20)

Combining (19) and (20), and observing that rnr + (r+ 1)nr+1 = kαn
2 , we obtain (15).

The derivation of E
(
NNAE(n,α)2

)
is identical except the generating function for NAE-

satisfiability of a clause is different. This can be easily derived by observing that a clause
is not NAE-satisfied for the following edge connections. Consider the case when a
clause is connected to only one type of edge, then it is not NAE-satisfied. Next consider
the case when a clause is connected to two types of edges. Then the combinations of
type 1 and type 4, type 3 and type 4, type 1 and type 2, or type 2 and type 3 do not NAE-
satisfies a clause. This gives the generating function fNAE(x1,x2,x3) defined in (16). ��
In order to evaluate the second moment, we now present the multidimensional saddle
point method in the next lemma [5]. A detailed technical exposition of the multidimen-
sional saddle point method can be found in Appendix D of [18].

Theorem 1. Let i := (i1, i2, i3), j := ( j1, j2, j3), and x = (x1,x2,x3)

0 < lim
n→∞

i1/n, 0 < lim
n→∞

i2/n, 0 < lim
n→∞

i3/n.

Let further f (x) be as defined in (13) and t = (t1, t2, t3) be a positive solution of the

saddle point equations a f (x) �
{

xi
∂ ln( f (x1,x2,x3))

∂xi

}3

i=1
= i

αn . Then coef
(

f (x)αn,xi
)

can

be approximated as ,

coef
(

f (x)αn,xi)=
f (t)αn

(t)i
√

(2παn)3 |B(t)| (1 + o(1)),

using the saddle point method for multivariate polynomials, where B(x) is a 3×3 matrix

whose elements are given by Bi, j = x j
∂a f i(x1,x2,x3)

∂x j
= B j,i and a f i(x) is the ith coordinate
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of a f (x). Also, coef
(

f (x)αn,x j) can be approximated in terms of coef
(

f (x)αn,xi
)
. This

approximation is called the local limit theorem of j around i. Explicitly, if u := 1√
αn( j−

i) and ‖u‖ = O((lnn)
1
3 ), then

coef
(

f (x)αn,x j) = ti− j exp

(
−1

2
u ·B(t)−1 ·uT

)
coef
(

f (x)αn,xi)(1 + o(1)).

Because of the relative simplicity of the expression for the second moment, we ex-
plain its computation in detail for the strictly regular case. Then we will show how the
arguments can be easily extended to the 2-regular case. The derivation for the NAE-
satisfiability is identical for both cases.

Theorem 2. Consider the strictly regular random k-SAT model with literal degree r.
Let S(i) denote the ith summation term in (14), and γ = i/n. If S(n/2) is the dominant
term i.e.,

lim
n→∞

ln
(
S
(

n
2

))
n

> lim
n→∞

ln(S(γn))
n

, γ ∈ [0,1],γ 
= 1
2
, (21)

then with positive probability a randomly chosen formula has a satisfying assignment,
i.e.

lim
n→∞

P(N(α,n) > 0) ≥
2
√
|B f (xk,x2

k ,xk)|
σsbq(xk)

√
k

, (22)

where xk is the solution of the saddle point equation aq(x) = k
2 −1 defined in Lemma 3,

aq(x) and bq(x) are defined according to (5), B f (xk,x2
k ,xk) is defined as in Theorem 1,

and the “normalized variance” σ2
s of the summation term around S

(
n
2

)
is given by

σ2
s =

1

4 + kr
2 ([−1,1,−1] ·B f (xk,x2

k ,xK)−1 · [−1,1,−1]T )−8r
. (23)

Let r∗ be the largest literal degree for which S(n/2) is the dominant term, i.e. (21)
holds, then the threshold α∗ is lower bounded by α∗ ≥ α∗

l � 2r∗
k .

Proof. From (14) and Theorem 1, the growth rate of S(γn) is given by,

s(γ) � lim
n→∞

ln(S(γn))
n

=

(1− kα)(ln(2) + h(γ)) +α ln( f (t1,t2,t3))−r(1−γ)(ln(t1) + ln(t3))−rγ ln(t2),
(24)

where t1,t2,t3 is a positive solution of the saddle point equations as defined in Theo-
rem 1,

a f (t) �
{

t1
∂ ln ( f (t1,t2,t3))

∂t1
, t2

∂ ln( f (t1,t2,t3))
∂t2

, t3
∂ ln( f (t1,t2,t3))

∂t3

}
={

k
2

(1−γ),
k
2
γ,

k
2

(1−γ)
}

. (25)
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In order to compute the maximum exponent of the summation terms, we compute its
derivative and equate it to zero,

ds(γ)
dγ

= (1− kα) ln

(
1−γ

γ

)
+r ln(t1)−r ln(t2) +r ln(t3) = 0. (26)

Note that the derivatives of t1,t2 and t3 w.r.t. γ vanish as they satisfy the saddle point
equation. Every positive solution (t1,t2,t3) of (25) satisfies t1 = t3 as (25) and f (t1, t2,t3)
are symmetric in t1 and t3. If γ = 1/2 is a maximum, then the vanishing derivative
in (26) and equality of t1 and t3 imply t2 = t2

1 . We substitute γ = 1/2, t1 = t3, and
t2 = t2

1 in (25). This reduces (25) to the saddle point equation corresponding to the
polynomial q(x) defined in Lemma 3 whose solution is denote by xk. Then by observing
f (xk,x2

k ,xk) = p(xk)2, we have

S(n/2) =
k3/2

27/2
√

πn
√
|B f (xk,x2

k ,xk)|
en(2 ln(2)(1−kα)+2α ln(p(xk))−kα ln(xk))(1 + o(1)).

(27)
Using the relation that q(x) = p(x)

x , we note that the exponent of S(n/2) is twice the
exponent of the first moment of the total number of solutions as given in (7). In order
to compute the sum over S(γn), we now use Laplace’s method, a detailed discussion of
which can be found in [12,7,8]. We want to approximate the term S(n/2+Δi) in terms
of S(n/2). For the coef terms, we make use of the local limit theorem given in Theorem
1 and for the factorial terms we make use of Stirling’s approximation. This gives,

S(n/2 +Δi) = S(n/2)e
− Δi2

2nσ2
s (1 + o(1)), where Δi = O(n1/2ln(n)1/3). (28)

Note that in the exponent on the R.H.S. of (28), the linear terms in Δi are absent as
the derivative of the exponent vanishes at γ = 1/2. As the deviation around the term
S(n/2) is Θ(

√
n) and the approximation is valid for Δi = O(

√
n ln(n)1/3), the dominant

contribution comes from −Θ(
√

n) ≤ Δi ≤ Θ(
√

(n)). We are now ready to obtain the
estimate for the second moment.

E(N2(α,n))
(28)
=

c
√

n

∑
Δi=−c

√
n

S(n/2)e
− Δi2

2nσ2
s (1 + o(1)), (29)

= S(n/2)
∫ ∞

δ=−∞
e
− δ2

2nσ2
s dδ(1 + o(1)). (30)

= S(n/2)
√

2πnσ2
s (1 + o(1)). (31)

We can replace the sum by an integral by choosing sufficiently large c. Using the second
moment method given in (12) and combining Lemma 3, (27), and (31), we obtain

P(N(α,n) > 0) ≥ E(N(α,n)2)
E(N(α,n)2)

=
2
√
|B f (xk,x2

k ,xk)|
σsbq(xk)

√
k

(1 + o(1)). (32)
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Letting n go to infinity, we obtain (22). Clearly, if the supremum of the growth rate of
S(γn) is not achieved at γ = 1/2, then the lower bound given by the second moment
method converges to zero. This gives the desired lower bound on the threshold. ��
We can easily extend this result to the 2-regular case. In the following theorem we
accomplish this task. Due to space limitation, we omit explanation of some steps which
can be found in [17].

Theorem 3. Consider the 2-regular random k-SAT model where the number of vari-
ables with degree r (resp. r+ 1) is nr = Λrn (resp. nr+1 = Λr+1n). Let S(ir, ir+1) �
S(γrnr,γr+1nr+1) be the summation term on the R.H.S. of (15) corresponding to over-
lap ir(resp. ir+1) on the degree r(resp. r+1) literals. Let g(γr,γr+1) be the growth rate

of S(γrnr,γr+1nr+1) i.e. g(γr,γr+1) � limn→∞
ln(S(nrγr,nr+1))

n . If

g

(
1
2
,

1
2

)
> g(γr,γr+1),γr ∈ [0,1],γr+1 ∈ [0,1],γr 
= 1

2
,γr+1 
= 1

2
,

then with positive probability a randomly chosen formula has a solution. More pre-
cisely,

lim
n→∞

P(N(α,n) > 0) ≥
√
|B f (xk,x2

k ,xk)|ΛrΛr+1

bq(xk)
√

k|Σ| . (33)

The definition of xk, bq(xk), and B f (xk,x2
k ,xk) is same as in the Theorem 2. The 2× 2

matrix Σ is defined via,

Cf = [−1,1,−1].(B f (xk,x
2
k ,xk))−1.[−1,1,−1]T , A =

4
Λr

+ 2r2
(

Cf

2α
− 4

kα

)
,

B =
4

Λr+1
+

2(r+ 1)2

α

(
Cf

2
− 4

k

)
, C =

2r(r+ 1)
α

(
Cf

2
− 4

k

)
, thenΣ =

[
A B
B C

]−1

.

(34)

The threshold α∗ is lower bounded by α∗
l , where α∗

l is defined by

α∗
l = sup

{
α : g

(
1
2
,

1
2

)
> g(γr,γr+1),γr ∈ [0,1],γr+1 ∈ [0,1],γr 
= 1

2
,γr+1 
= 1

2

}
.

Proof. Define Γ (γr,γr+1) = rΛrγr +(r+ 1)Λr+1γr+1. Then by using Theorem 1 and
Stirling’s approximation, we obtain

g(γr,γr+1) = ln(2) +Λrh(γr) +Λr+1h(γr+1)

+ (kα−2Γ (γr,γr+1)) ln

(
kα
2

−Γ (γr,γr+1)
)

+ 2(Γ (γr,γr+1)) ln(Γ (γr,γr+1))− kα ln(kα)

+α ln
(

f ((t))
)
−
(

kα
2

−Γ (γr,γr+1)
)

ln(t1t3)− (Γ (γr,γr+1)) ln(t2), (35)
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where t = {t1,t2,t3} is a positive solution of the saddle point point equations as given
in Theorem 1,

a f (t) =
{

k
2
− Γ (γr,γr+1)

α
,
Γ (γr,γr+1)

α
,

k
2
− Γ (γr,γr+1)

α

}
, (36)

corresponding to the coefficient term of power of f (x1,x2,x3). In order to obtain the
maximum exponent, we take the partial derivatives of g(γr,γr+1) with respect to γr
and γr+1 and equate them to zero. This gives the following equations.

ln

(
1−γr

γr

)
−2r ln

(
kα
2

−Γ (γr,γr+1)
)

+ 2r ln(Γ (γr,γr+1))+r ln

(
t1t3
t2

)
= 0,

ln

(
1−γr+1

γr+1

)
−2(r+ 1) ln

(
kα
2

−Γ (γr,γr+1)
)

+ 2(r+ 1) ln(Γ (γr,γr+1)+ (r+ 1) ln

(
t1t3
t2

)
= 0. (37)

Note that t1 = t3 = xk, t2 = x2
k , γr = 1

2 , and γr+1 = 1
2 is a solution of (36), (37), which

corresponds to S
( nr

2 ,
nr+1

2

)
, where xk is the solution of the saddle point equation cor-

responding to q(x) defined in Lemma 3. We recall that for the second moment method
to work, the maximum exponent should be equal to twice the exponent of the aver-
age number of solutions. Indeed by the proposed solution, the term S

(nr
2 ,

nr+1
2

)
has an

exponent which is twice that of the average number of solutions. If this is also the max-
imum, then we have the desired result. Assuming that S

( nr
2 ,

nr+1
2

)
has the maximum

exponent, we now compute the second moment of the total number of solutions. By
using Stirling’s approximation and the local limit result of Theorem 1, we obtain

S (ir +Δir, ir+1 +Δir+1)
S (ir, ir+1)

= e−
1
2n [Δir,Δir+1]·Σ−1·[Δir,Δir+1]T (1 + o(1)), (38)

where the matrix Σ is defined in (34). Using the same series of arguments as in Theorem
2, we obtain

E
(
N(α,n)2)= ∑

Δir ,Δir+1

S
(nr

2
,

nr+1

2

)
e−

1
2n [Δir ,Δir+1]·Σ−1·[Δir,Δir+1]T (1 + o(1)), (39)

= S
(nr

2
,

nr+1

2

)∫ ∞

−∞

∫ ∞

−∞
e−

1
2n [xr,xr+1]·Σ−1·[xr,xr+1]T dxrdxr+1(1 + o(1)), (40)

=

√|Σ|k 3
2

4
√
|B f (xk,x2

k ,xk)|ΛrΛr+1

e2n(ln(2)−kα ln(2)+α ln(p(xk))− kα
2 ln(xk))(1 + o(1)). (41)

By using the second moment method, we obtain the bound given in (22). Note that
the second moment method fails if the term S

(nr
2 , nr+1

2

)
is not the dominant term. This

gives the lower bound α∗
l on α∗. ��

In the next section we discuss the obtained lower and upper bounds on the satisfiability
threshold and NAE-satisfiability threshold.
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4 Bounds on Threshold

In Table 1, lower bounds and upper bounds for the satisfiability threshold are given.
The upper bound is computed by the first moment method. As expected, we obtain
the same upper bound for regular random 3-SAT as given in [6]. The lower bound is
derived by the second moment method for strictly regular random k-SAT. In order to
apply the second moment method, we have to verify that s(γ), defined in (24), attains its
maximum at γ = 1

2 over the unit interval. This requires that γ = 1
2 is a positive solution

of the system of equations consisting of (25) and (26) and it corresponds to a global
maximum over γ ∈ [0,1]. Also, σ2

s defined in (23) should be positive. The system of
equations (25), (26) is equivalent to a system of polynomial equations. For small value
of k, we can solve this system of polynomial equations and verify the desired conditions.
In Table 1 this has been done for k = 3,4. The obtained lower bound for 3-SAT is 2.667
which is an improvement over the algorithmic lower bound 2.46 given in [6]. For larger
values of k, the degree of monomials in (26) grows exponentially in k. Thus, solving
(25) and (26) becomes computationally difficult. However, s(γ) can be easily computed
as its computation requires solving only (25), where the maximum monomial degree
is only k. Thus, the desired condition for maximum of s(γ) at γ = 1

2 can be verified
numerically in an efficient manner.

Note that the difference between the lower bound obtained by applying the second
moment method to the strictly regular case can differ by at most 2/k from the corre-
sponding lower bound for the 2-regular case. We observe that as k increases the lower
bound seems to converge to 2k ln(2)− (k +1) ln(2)

2 −1, which is the lower bound for the
uniform model.

We observe similar behavior for the NAE-satisfiability bounds. As expected, we ob-
serve that the upper bound on the NAE-satisfiability threshold for the regular random
model converges to 2k−1 ln(2)− ln(2)

2 . The lower bound obtained by applying the sec-
ond moment method to the regular random model seems to converge to the value ob-
tained for the uniform model. Thus, the NAE-threshold for the regular random model is
2k−1 ln(2)−O(1). This suggests that as k increases, the threshold of the regular model
does not differ much from the uniform model.

Table 1. Bounds on the satisfiability threshold for strictly regular random k-SAT. α∗
l and r∗

are defined in Theorem 2. The upper bound α∗
u is obtained by the first moment method.

α∗
l,uni = 2k ln(2)− (k + 1) ln(2)

2 −1 is lower bound for uniform model obtained in [3]. The quan-
tities r∗NAE,αl,NAE,αu,NAE are analogously defined for the NAE-satisfiability.

k r∗ α∗
l α∗

u α∗
l,uni −α∗

l r∗NAE α∗
l,NAE α∗

u,NAE
3 4 2.667 3.78222 0.492216 3 2 2.40942
4 16 8 9.10776 0.357487 8 4 5.19089
7 296 84.571 85.8791 0.378822 152 43.4286 44.0139
10 3524 704.8 705.9533 0.170403 1770 354 354.545
15 170298 22706.4 22707.5 0.101635 85167 11355.6 11356.2
17 772182 90844.94 90845.9 0.007749 386114 45425.2 45425.7
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Our immediate future work is to derive explicit lower bounds for the regular ran-
dom k-SAT model for large values of k as was done for the uniform model in [3, 1].
The challenge is that the function s(γ) depends on the solution of the system of poly-
nomial equations given in (25). Thus determining the maximum requires determining
the behavior of the positive solution of this system of polynomial equations. Another
interesting direction is the maximum satisfiability of regular random formulas. For the
uniform model, the maximum satisfiability problem was addressed in [2] using the sec-
ond moment method. In [16], authors have derived lower and upper bounds on the
maximum satisfiability threshold of regular random formulas.
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Abstract. We introduce a new conceptual model for representing and design-
ing Stochastic Local Search (SLS) algorithms for the propositional satisfiability
problem (SAT). Our model can be seen as a generalization of existing variable
weighting, scoring and selection schemes; it is based upon the concept of Vari-
able Expressions (VEs), which use properties of variables in dynamic scoring
functions. Algorithms in our model are constructed from conceptually separated
components: variable filters, scoring functions (VEs), variable selection mech-
anisms and algorithm controllers. To explore the potential of our model we in-
troduce the Design Architecture for Variable Expressions (DAVE), a software
framework that allows users to specify arbitrarily complex algorithms at run-
time. Using DAVE, we can easily specify rich design spaces of SLS algorithms
and subsequently explore these using an automated algorithm configuration tool.
We demonstrate that by following this approach, we can achieve significant im-
provements over previous state-of-the-art SLS-based SAT solvers on software
verification benchmark instances from the literature.

1 Introduction

The propositional satisfiability problem (SAT) is an important subject of study in many
areas of computer science and is a prototypical NP-complete problem. Among the
best known methods currently available for solving certain types of SAT instances are
Stochastic Local Search (SLS) procedures; these are typically incomplete, i.e., they can-
not determine with certainty that a given propositional formula is unsatisfiable, but they
often find models of satisfiable formulae surprisingly effectively [9]. SLS algorithms
for SAT typically start by randomly assigning to every variable appearing in a given
formula a value of either true or false; then, in each subsequent search step a variable is
selected to have its truth assignment flipped from true to false or vice versa. The method
of selecting the variable to be flipped in each step is usually guided by a scoring function
that minimizes the number of currently unsatisfied clauses.

In this work, we propose a new conceptual model for specifying SLS algorithms for
SAT, and provide a software framework to aid in the development of new algorithms.
Our model was developed to provide a clean conceptual separation between the scoring
function(s) and the Variable-Selection Mechanism (VSM) of an algorithm. We introduce
the concept of Variable Expressions (VEs) to generalize scoring functions; while VEs
are ultimately used for variable selection, they can transcend the traditional notion of
score. VEs are mathematical expressions that compute numerical values from one or

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 278–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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more properties of a variable in combination with constants, operators and functions.
The variable properties that can appear in VEs include well-known concepts from the
literature, such as GSAT’s score property [17] and the age property used by NOV-
ELTY and WALKSAT/TABU [14]. A VE can be a simple property (e.g., 〈age〉) or any
mathematical expression with one or more properties, such as 〈score + 3 · log(age)〉.
Most existing SLS algorithms for SAT select variables based on scoring functions that
correspond to a single, rather simplistic VE; in this paper we present evidence that po-
tentially complex VEs can be very effective.

To explore the potential of our model, we introduce the Design Architecture for
Variable Expressions (DAVE), a software extension of our versatile UBCSAT archi-
tecture [18]. No programming is required to develop new algorithms in DAVE; the
complete algorithm specification (including arbitrarily complex VEs) can be provided
at run-time. We provided this flexibility in DAVE from the outset, with the goal of lever-
aging existing automated algorithm configuration tools (henceforth, configurators) such
as PARAMILS [11]. With the combination of DAVE and a configurator, designers have
an unprecedented amount of flexibility and power to help automate the design of new
high-performance SLS algorithms and algorithm hybrids.

The remainder of the paper is structured as follows. In Section 2, we describe our ex-
perimental methodologies. In Section 3, we introduce more advanced VEs and demon-
strate their efficacy. In Section 4, we present our general conceptual model and briefly
discuss its implementation (DAVE). In Section 5, we introduce a new, highly paramet-
ric algorithm named VE-SAMPLER to demonstrate how DAVE facilitates the
automated design of SLS algorithms. In Section 6, we discuss related work from the
literature, and in Section 7, we summarize the contributions made in this work and out-
line directions for future research.

2 Experimental Details and Methodology

In the experiments presented throughout this study, we used the PARAMILS automated
algorithm configurator by Hutter et al. [11] to optimize the parameter settings of various
SLS-based SAT algorithms for performance on a particular instance set. To ensure that
our results generalize to instances other than those used during the optimization process,
we randomly split each set into two halves, a training set and a test set, where an optimal
configuration is found by conducting experiments on the training set. Instances in the
test set were only used for the final performance measurements presented in this paper.

In our experiments, we mostly focused on the CBMC software verification instance
set generated, and used as a benchmark, by KhudaBukhsh et al. [12]. The instances were
generated by a Bounded Model Checking (BMC) tool [4] and were pre-processed with
SATELITE [5]. This set is interesting to us primarily because it has some of the struc-
tural properties of larger and more complicated software verification problems (that are
still somewhat intractable for SLS solvers). For example, many of the complete solvers
from the 2009 SAT Competition (such as PICOSAT [3]) can solve the hardest CBMC
instance in less than one second, whereas well-known state-of-the-art SLS solvers from
the competition such as ADAPTG2WSAT and GNOVELTY+ require over an hour to
solve the same instance. At the same time, a significant number of the instances can be
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solved by SLS algorithms within a low enough time to allow for extensive experiments.
In Section 5 we also provide for the first time experimental data for SLS algorithms
on the software verification benchmark set SWV generated by the CALYSTO static
checker [2] and used as a benchmark for complete solvers by Hutter et al. [10].

A more detailed description of our experimental methodologies, PARAMILS set-
tings, specifications of our run-time environment, further details of our instance sets and
algorithm configurations in DAVE can be found in a supplementary online appendix,
available at the UBCSAT website [19].

3 Advanced Variable Expressions

Various variable properties and VEs play a prominent role in SLS-based solvers known
from the literature. Perhaps the most popular VE currently used by SLS algorithms is
〈score〉, which is equivalent to the VE 〈make − break〉 where the properties make
and break measure the number of clauses that would become satisfied and unsatisfied,
respectively, if the variable were to be flipped. The WALKSAT/SKC algorithm [16] was
the first algorithm to use the even simpler VE 〈break〉 for scoring variables and also
introduced a Boolean freebie property that is true if, and only if, break equals zero.
Algorithms with dynamic clause penalties, such as SAPS, use a (penalized) property
penScore that reflects the dynamic clause penalty values (weights). The G2WSAT
algorithm uses a Boolean promising property that indicates a positive score property
value, but only under certain circumstances (see [13] for details).

Another variable property that is prominently used in existing SLS algorithms for
SAT is age; it is defined as the number of search steps that have occurred since the
given variable was last flipped. The age property is closely related to the flips property
(a.k.a. flipcount) used by the HSAT algorithm [7] as a tie-breaking mechanism; the
flips property measures how many times a variable has been flipped. An interesting and
effective combination of the freebie, break, age and flips properties is used in the
VW2 algorithm [15].

3.1 Deconstructing VW2

In many ways, Prestwich’s VW2 algorithm [15] provided the starting point for our work
on VEs, and we describe VW2 in the following.1 Each variable is assigned a weight
(which we call the vw2w property) initialized to zero. At each search step the flip
candidates are those variables that appear in a randomly selected unsatisfied clause. If
there are any candidates with a freebie value of one, one of those is selected; otherwise,
with probability p, a candidate is selected uniformly at random, and in the remaining
cases (i.e., with probability (1− p)), the candidate is selected with the smallest value of
the VE:

break + c · (vw2w − vw2w) , (1)

1 For consistency with other parts of our study, we chose to use our notations instead of Prest-
wich’s when describing VW2.
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where the constant c is a parameter and vw2w denotes the average of the vw2w property
across all variables. When a variable is flipped, its vw2w property is updated accord-
ing to:

vw2w := (1 − s) · (vw2w + 1) + s · step , (2)

where s is another constant parameter, and step is the current step iteration value.
A variant of VW2 that we call VW2-SAT05 received the bronze medal in the satis-

fiable random category of the 2005 SAT competition. This variant eliminates the three
VW2 parameters (s, c, p) by setting p to zero and introducing a randomized mechanism
to change the behaviour of c and s during the search; it has been included recently in the
SATENSTEIN-LS [12] and HYBRID [20] algorithms. However, in our experiments, we
found that the original VW2 procedure with parameter settings optimized for a given set
of benchmark instances will often outperform VW2-SAT05. In particular, we observed
this performance difference on the CBMC software verification instances described in
Section 2. In experiments not presented here (see [19] for details), we found that VW2
with parameters (s, c, p) = (0, 0.01, 0.2) is the best-performing SLS-based SAT algo-
rithm currently known for CBMC, which motivated us to study it in more depth.

Upon closer examination of the VW2 VE shown in Equation 1 above, we noticed
that the vw2w term can be removed without changing the behaviour of VW2, since this
term is constant over all variables and therefore does not affect the variable selection.
In the vw2w property update procedure, the s parameter is a smoothing parameter. if
s is set to one, the VE becomes equivalent to 〈break − c · age〉. If s is set to zero, as
in the optimal setting for CBMC, the variable property vw2w becomes equivalent to
〈break + c · flips〉.

For very small values of c, it may appear as though the vw2w property acted as a
tie-breaking mechanism, and Prestwich observed that when s is zero, VW2 behaves
like HSAT [7]. While it may be easy to dismiss the mechanics of VW2 as a simple
tie-breaking scheme, this simplification does not seem justified when considering the
parameter settings obtained for VW2 and the length of typical runs required for solving
CBMC instances. In our analysis of VW2 on the hardest CBMC instance, we observed
that for over half of the search steps the break and flips properties were interacting in
a complex way, and VW2 was making trade-offs between satisfying additional clauses
(intensification) and changing the values of rarely flipped variables (diversification).

3.2 VW2+VE: Modifying the VE in VW2

Considering this type of complementarity in the role of the break and flips properties
and the strong performance of VW2, it seemed promising to explore different ways
of constructing a VE based on those two properties. Because the difference in scale
between the two properties becomes increasingly larger as the search progresses, we
decided to normalize the values of these properties to the interval [0, 1]. We achieved
this using the formula p

max(p) , where max(p) refers to the maximum value of the prop-
erty p for all flip candidates, which for VW2 would be those variables in the currently
selected clause.

In addition to normalizing the property values, we also allowed for non-linear in-
teraction between the two properties. Our motivation was that the relative difference in
magnitude between two different property values could have an important impact on



282 D.A.D. Tompkins and H.H. Hoos

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

10
6

10
7

V
W

2
+

V
E

 [
st

ep
s]

VW2 [steps]

10
-3

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
1

V
W

2
+

V
E

 [
s]

VW2 [s]

Fig. 1. VW2+VE vs VW2 on CBMC. Each point corresponds to the median run-length (left)
and run-time (right) from 25 runs on an instance in the CBMC test set. The mean values of
those medians are indicated by the dashed lines. The ratio of the means (which we denote as the
speedup factor s.f.) is 2.47 (left) and 2.10 (right).

the behaviour of the algorithm. Since the values have already been normalized, we used
a simple polynomial transformation on the normalized values of the flips property, to
obtain the generalized VE:

break
max(break)

+ c ·
(

flips
max(flips)

)a

, (3)

which we used to replace the scoring function of VW2. We refer to the resulting variant
of VW2, in which we also disabled smoothing, as VW2+VE. Automated configuration
of this algorithm for our CBMC training set using PARAMILS yielded the parameter
configuration (c, a, p) = (0.95, 8, 0.05) (see [19] for details).

As can be seen from Figure1, the use of this generalized VE leads to improved per-
formance in terms of local search steps required for solving the CBMC instances (as
always, we show results for the test set, which is disjoint from the training set used for
parameter optimization). However, the VE is more complex, and evaluating it requires
an additional initial iteration to determine the maximum values. This leads to a less
pronounced improvement in terms of time performance, which is illustrated in Figure 1
(right). Still, VW2+VE performs better than VW2 on the CBMC benchmark, which
– based on our earlier findings – makes it the best SLS-based SAT algorithm for that
benchmark currently available.

3.3 Normalization in VEs

In VW2+VE, we normalized the break and flips properties so they would fall within
the interval [0, 1]. We will now generalize this further, using from here on the notation
‖x‖ in VEs to indicate that the value x has been normalized using one of several differ-
ent methods. The method used in VW2+VE, ‖x‖ = x

max(x) , preserves ratios between

the values being normalized. Alternatively, a flat normalization ‖x‖ = x−min(x)
max(x)−min(x)
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forces the maximum and minimum to be one and zero, respectively, and a summa-
tion normalization ‖x‖ = x

sum(x) forces the sum of the values to be one. Of course,
numerous other normalizations are possible, including non-linear normalizations and
normalizations more suitable for both positive and negative values.

In the literature, some scoring functions are designed to select variables with the
minimum value (such as VW2’s), whereas others select the variable with the maximum
value (such as the traditional 〈make − break〉). Both cases are common, and which
one should be used is usually obvious from the context; however, this may not always
be the case as we consider more complicated VEs. To address this issue, we first note
that the question of favouring minimum or maximum values already arises for vari-
able properties: for example, a small value of flips is considered favourable, while the
opposite is true for age. To facilitate the construction of more complex VEs, we will
require that all properties be transformed to favour maximum values. To this end, we
revise our notation for normalization so that ‖p‖ will indicate that p has been normal-
ized and transformed (if necessary). A simple transformation and normalization would
be (1 − ‖p‖), and we found that ‖max(p) + min(p) − p‖ worked quite effectively in
practice.

When normalizing the make and break properties, we observed that they can also
be normalized w.r.t. the number of clauses in which the variable appears. We will intro-
duce the variable properties relMake and relBreak to correspond to the relative num-
ber (fraction) of clauses that become satisfied or unsatisfied, respectively, as a result of
flipping a given variable. For example, if the positive literal x occurs in numPosOcc
clauses and the negative literal ¬x occurs in numNegOcc clauses, then the value of rel-
Make is equivalent to 〈make/numPosOcc〉when x is false and 〈make/numNegOcc〉
when x is true. While for randomly generated instances with uniform structure, normal-
izing the score in this manner would have no material effect, for structured formulae,
such as the CBMC instances, there is often large variability in the number of clauses
each variable appears in, and consequently, this normalization can make a substantial
difference. Ansótegui et al. explored the scale-free structure of industrial instances and
the impact of this structure on complete solvers [1], and we believe that there is potential
for SLS algorithms to exploit this structure as well.

Another observation we made is that existing algorithms combine make and break
symmetrically, but there may be an advantage to constructing VEs in which they are
weighted differently. We therefore consider the generalized VE 〈c1 ·make−c2 ·break〉,
which uses simple scaling to weight the two variable properties differently. We note
that WALKSAT/SKC [16] can be seen as using a special case of this VE where c1 = 0.
While it is possible that in many cases choosing c1 = 1 may lead to the best perfor-
mance, there is no reason to assume that this would always be the case.

Finally, we observed that the summation normalization ( x
sum(x) ) behaved quite dif-

ferently than the one we used in VW2+VE ( x
max(x)), even though at first glance it

would appear that they should only differ by a constant factor. However, that constant
factor is the clause length, which is constant for any particular search step, but can differ
between search steps. In other words, we discovered that normalization w.r.t. the clause
length can be beneficial, and we believe that such normalizations merit further study.
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Fig. 2. WALKSAT+VE vs VW2 on CBMC. The s.f. is 7.25 (left) and 3.07 (right). (The data is
presented analogously to that in Figure 1).

3.4 WALKSAT+VE: Modifying the VE in WALKSAT

To investigate the potential latent in the generalizations introduced up to this point, we
constructed a new SLS algorithm we call WALKSAT+VE. This algorithm is obtained
from the original WALKSAT/SKC algorithm by replacing the VE 〈break〉 with the
following VE that makes use of scaling, normalizations and non-linear transformations:

c1 · ‖make‖a1 + c2 · ‖relMake‖a2 + c3 · ‖break‖a3 + c4 · ‖relBreak‖a4 . (4)

Whereas VW2+VE benefited from the flips property providing diversification, this VE
uses only greedy components (make and break) and a standard random walk mecha-
nism. To test the effectiveness of our new algorithm, we ran PARAMILS to optimize the
values of the constants and the normalization parameters (hidden in the ‖p‖ notation)
on the CBMC training set (see [19] for details).

The performance of the configuration thus obtained on the CBMC test set is illus-
trated in Figure 2. Our new WALKSAT variant significantly outperforms the previously
best known SLS algorithm for this benchmark (VW2) and solves it more than 1 000
times faster than WALKSAT/SKC. These results are especially impressive when ex-
amining step performance, but because of the complexity involved with this advanced
VE, the results w.r.t. time performance are somewhat less impressive, but still signifi-
cant. We were genuinely surprised that with this relatively modest modification to the
venerable, but rather dated WALKSAT/SKC algorithm, we were able to outperform all
known SLS algorithms. This experiment clearly demonstrate the potential of complex
VEs as a basis for the development of new, high-performance SLS algorithms.

4 Modeling and Designing SLS Algorithms with VEs

Now that we have motivated our interest in VEs, we will present our VE-based model.
Our model, as illustrated in Figure 3, includes an algorithm controller and three core
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Filter Variables Evaluate VEs Select Variable

Algorithm Controller: Determine the Filter, VEs & VSM

Flip Selected Variable & Update State Information / Bookkeeping

Fig. 3. Our conceptual SLS algorithm model

stages: a variable filter stage, a VE evaluation stage and a variable selection stage. There
is a final stage that simply flips the selected variable and updates the state information
resulting from the flip (e.g., property values) and any algorithm state information (such
as the noise value in algorithms with adaptive noise). We will first describe the three
core stages and then describe the algorithm controller.

The Variable Filter Stage outputs a list of variables that are candidates to be flipped
in this search step. For example, the clause-based filter used in WALKSAT/SKC [16]
and VW2 [15] selects an unsatisfied clause uniformly at random, and then only the vari-
ables that appear in that clause are flip candidates. Other examples include the GSAT
algorithm [17], which considers all variables, the SAPS algorithm, which includes all
variables that appear in unsatisfied clauses, and the G2WSAT algorithm [13], which
includes a filter that only allows variables with a promising property value of one.

The VE Evaluation Stage is very straightforward. The input is the list of n flip
candidates from the filter stage and k VEs from the controller, and the output is an
array of n × k values where each of the VEs are evaluated for each candidate.

The Variable Selection Stage makes the final decision as to which of the candi-
dates will be flipped, based on the array of values from the VE evaluation stage. For
simplicity, we will assume that a single candidate is selected and flipped in each step,
but in practice, the VSM could select zero or many candidates. For most existing SLS
algorithms, the variable selection mechanism (VSM) is a simple max (or min) opera-
tion, where the candidate with the maximum value of the first VE is selected; additional
VEs can be used for tie-breaking, and any remaining ties will be broken randomly. The
NOVELTY algorithm [14] is an example of an algorithm with a VSM that incorporates
multiple VEs (score and age).

The Algorithm Controller controls the behaviour at each step by determining the
components of each of the three stages: the filter, the set of VEs and the VSM. The
controller may use the same components for every step, make independent random
decisions for each step or it may use a more sophisticated decision mechanism. The
GSAT algorithm [17] represented in our model uses a simple controller, where the
components are the same at every step: no filter (consider all variables), use a simple VE
of 〈score〉 and a max VSM. The GWSAT algorithm added a random walk to GSAT,
and is represented in our model by a randomized controller that with some probability
selects an alternate filter (only variables that appear in unsatisfied clauses) and a VSM
that selects candidates randomly. In Figure 3, we indicate control flow from the filter
back to the controller to allow for controllers that may wish to re-filter the variables or
defer the determination of the VEs or VSM until after the filter results are known. For
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example, as a form of clause normalization (see Section 3.3), a controller could use a
random-clause-based filter and choose VEs based on the length of the selected clause.

In our model, complex controllers can be constructed that do not directly decide
the components for the three stages, but instead utilize a number sub-controllers. Since
each sub-controller can correspond to a unique algorithm (or the same algorithm with
different parameter settings), this allows the construction of hybrid algorithms. A hy-
brid algorithm can switch between different algorithms randomly, periodically, when
some criteria is met (e.g., search stagnation is detected) or according to some other cus-
tomized mechanism. G2WSAT is one such hybrid algorithm, where if any variables
have a promising property of one, a GSAT-based step occurs, otherwise, a WALK-
SAT-based step occurs [13].

Now that we have presented our highly flexible model, we will briefly outline our
Design Architecture for Variable Expressions (DAVE), based on our versatile UBC-
SAT architecture [18]. (For a complete and up-to-date description of DAVE, consult
the UBCSAT website [19].) One of the design goals of DAVE was to reduce (and
potentially eliminate) the programming component of algorithm design by allowing
the entire algorithm behaviour to be specified at run-time. The user can specify the al-
gorithm controller (and sub-controllers), the filter(s), the VE(s) and the VSM(s). The
only programming required is to introduce new variable properties, controllers, filters
or VSMs. Because the configuration space of DAVE is actually an algorithm speci-
fication space, when we use DAVE in combination with an automated configurator,
we can find optimized algorithm specifications automatically. To further facilitate the
use of a configurator, DAVE supports a sophisticated macro-based syntax that allows
controllers, filters, VEs, and VSMs to be highly paramaterized.

In DAVE, most variable properties depend on the current value of the variable. We
use the notation p′ to correspond to the property value for the negation of a given vari-
able. For example, the flips property in DAVE is actually half of the total flip count
(flips + flips′); similarly, age′ ignores the most recent flip and measures the number of
search steps that have occurred since the flip prior to the most recent flip.

The only other implementation detail of DAVE that we will address here, as it is
specifically relevant to the presentation and understanding of the performance results
we report later, is the interpreted nature of the algorithms specified in DAVE. Since
DAVE receives the algorithm specification and VEs at run-time, the code is not na-
tively compiled, but instead, each operation is individually interpreted and executed.
This means that an algorithm in DAVE will not achieve the same performance as the
equivalent algorithm in compiled source code w.r.t. CPU time, which is why we en-
courage measuring DAVE algorithms by their step performance where there is no such
penalty. In preliminary experiments, we have seen algorithms in DAVE run 1.5-3 times
slower than their native implementations, where the speed of DAVE is often more a
function of the number of operators used in the VE, as opposed to the true complexity
of the algorithm. This is one reason why we present DAVE as a design architecture
that facilitates the exploration of new algorithmic ideas; it is our intent that new and ro-
bust algorithms that are developed in DAVE will subsequently be incorporated directly
in UBCSAT as stand-alone optimized algorithms. We are currently in the preliminary
stages of developing a software tool that can automatically generate fast, native source
code that will implement an algorithm specified in DAVE.
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5 VE-SAMPLER: Exploring New SLS Methods Using DAVE

In this section we introduce a new algorithm framework we call VE-SAMPLER. VE-
SAMPLER uses a randomized controller that selects between six sub-controllers, where
each sub-controller is selected with a probability proportional to a configurable weight.
Each of the six sub-controllers uses a simple max VSM, and has a configurable clause-
based filter, where the unsatisfied clause selected is either random, the clause unsatisfied
the longest, or the clause most frequently unsatisfied. The VE of the first sub-controller
is 〈freebie〉, similar to the random walk in WALKSAT/SKC [16]; the max VSM will
select all freebie candidates, or all candidates if no freebies exist, and then break ties
randomly. The VEs for the other five sub-controllers are all of the form:

‖p1‖a1 + clw(s, m, l) · ‖p2‖a2 , (5)

where p1 and p2 are configurable, and correspond to variable properties (or a ratio
of properties) selected from lists we describe below. The clw function represents a
simple mechanism we created to addresses clause normalization (briefly discussed in
Section 3.3) in a practical, yet interesting way; the three configurable parameters of
clw(s, m, l) correspond to scaling coefficients that depend on whether the clause length
is small (< 3), medium (= 3), or large (> 3); i.e., if the clause length is two then
clw(s, m, l) = s.

The VE described in Equation 5 is similar to the VEs in VW2+VE and WALK-
SAT+VE w.r.t. the normalization and non-linear transformation used. We chose to use
only two properties to avoid the reduction in CPU time performance we saw with four
properties in WALKSAT+VE; however, we believe that our approach of using multi-
ple VEs via a controller can provide a similar level of algorithm robustness without
significantly degrading per-step time complexity. Of the five sub-controllers, one was
configured to have only greedy properties similar to WALKSAT+VE, while the re-
maining four were configured to have one greedy property (p1) and one diversification
property (p2) similar to VW2+VE. The five greedy properties available were score,
make, relMake, break and relBreak.

We wanted diversification properties that were independent of the greedy variable
properties and required little or no computational overhead to maintain. For VE-
SAMPLER we created the following new properties: flitCount is incremented every
search step where the variable (with its current value) has appeared in the list of flip
candidates, relFiltCount is similar, but increases by 1/clauselen, and goodFlips and
badFlips are incremented every time the variable (with its current value) is flipped
and the number of satisfied clauses goes up or down, respectively. In total, there were
thirteen diversification properties (or ratios of properties) available in VE-SAMPLER:

flips, age/flips, relFiltCount, goodFlips/flips,
age, age′/age, relFiltCount/flips, goodFlips/goodFlips′,
age′, filtCount, relFiltCount/relFiltCount′, goodFlips/badFlips

and rand, which draws a number uniformly at random from the interval [0, 1]. While
some of these properties are based on prior evidence and intuition, others are simply
interesting ideas that we thought might be effective.
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Fig. 4. VE-SAMPLER vs VW2 on CBMC. The s.f. is 16.2 (left) and 9.0 (right). (The data is
presented analogously to that in Figure 1).

Algorithm
CBMC SWV (partial) SWV (full)

Steps Time Steps Time %
PAR

%
×103 sec. s.f. ×103 sec. s.f. Compl. Compl.

VW2-SAT05 3 577 6.22 0.11 10 089 19.20 0.16 100 3 008 50.1
VW2 467 0.66 ref. 1 555 3.10 ref. 100 3 042 49.3
SATENSTEIN-LS 228 0.80 0.82 1 465 12.50 0.25 100 3 040 49.5
VE-SAMPLER 29 0.07 9.00 245 0.90 3.61 100 2 664 50.7

Fig. 5. Experimental Results for VE-SAMPLER . Values shown are the means of the median
run-length and run-time from (left) 25 runs on instances from the CBMC test set and (right) 10
runs on instances from SWV. The s.f. is the ratio of the time w.r.t. VW2. All algorithms completed
100% of the CBMC instances. The PAR (Penalized Average Run-time) is the average from all
runs on all instances, where incomplete runs after 600 seconds are penalized by a factor of 10
(6 000 seconds) (see [12] for details). All algorithms (except the parameterless VW2-SAT05)
were optimized by PARAMILS.

Our goal with VE-SAMPLER was to make very few decisions at design time and
to configure the resulting, highly paramaterized algorithm automatically for optimized
performance [8]. In total, VE-SAMPLER has over 1050 possible configurations, which,
to the best of our knowledge, is the largest design space searched using PARAMILS [11]
so far. We present the results of our PARAMILS-configured VE-SAMPLER in Fig-
ures 4–5. We compared VE-SAMPLER against the SLS-based solvers VW2 [15] and
SATENSTEIN-LS (see Section 6), both also configured with PARAMILS (see [19] for
details). The results we present were obtained using a compiled version of
VE-SAMPLER, where the original version, implemented in DAVE, was approximately
1.5 times slower.

VE-SAMPLER performs substantially better than VW2 and SATENSTEIN-LS on
our CBMC test set, especially in terms of search steps. On the much more challenging
real-world software verification instances from the SVW set, VE-SAMPLER also per-
forms significantly better than VW2 and SATENSTEIN-LS. We note that none of the
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Fig. 6. VE-SAMPLER vs VW2 on SWV (partial). Each point corresponds to the median run-
length (left) and run-time (right) from 10 runs on an instance in the SWV (partial) test set. The
s.f. is 6.36 (left) and 3.61 (right).

SLS algorithms we are aware of can solve more than about half of the complete set of
SWV instances within our 600 second cutoff, but VE-SAMPLER does solve the other
half of the instances more efficiently than any other SLS algorithm. While the results
in Figure 5 are impressive and represent the current state-of-the-art in SLS-based SAT
solvers on these types of instances, the complete solver PICOSAT [3] is twice as fast
as VE-SAMPLER on CBMC, seven times as fast on SWV (partial) and can solve any
instance from the full SWV set in just a few CPU seconds. Thus, while we have consid-
erably reduced the performance gap between SLS-based and DPLL-based SAT solvers
on these software verification instances, there is still much room for improvement.

When studying the VE-SAMPLER configurations found by PARAMILS, we observed
that configurations with similarly good performance often had substantially different
configurations. This might suggest that VE-SAMPLER is somewhat robust w.r.t. its
configuration, and that PARAMILS was far from finding the true optimal configura-
tion of VE-SAMPLER (with over 1050 possible configurations, this is not surprising).
We also observed configurations where two sub-controllers would be configured to use
the same variable properties, but to be quite different otherwise. This was the case in
the configurations featured in the results above, where the final CBMC configuration
heavily weighted two sub-controllers with the properties relMake and age′, and the fi-
nal SWV configuration heavily weighted two sub-controllers with the properties break
and flips (see [19] for details). We believe this suggests that a hybrid algorithm includ-
ing multiple configurations of the same underlying mechanism can achieve very robust
performance.

6 Related Work

The manner in which SLS algorithm hybrids can be implemented in DAVE can be seen
as a generalization of the HYBRID algorithm by Wei et al. [20]. HYBRID implements
a clever heuristic to select between the algorithms VW2-SAT05 and ADAPTG2WSAT
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at each search step. Their heuristic corresponds to a specific algorithm controller in our
model, and once implemented in DAVE, it becomes a universal controller that can be
used to select between any two algorithms. Furthermore, the selection of the algorithms
to be hybridized can be achieved by using an automated configurator.

DAVE is conceptually related to the SATENSTEIN-LS solver by KhudaBukhsh et
al. [12], which also extends UBCSAT, albeit in a different direction. SATENSTEIN-
LS incorporates proven components from over two dozen existing SLS algorithms,
including GNOVELTY+, ADAPTG2WSAT+, SAPS and PAWS (see [12] for details)
and can be configured to instantiate any of those algorithms, as well as many complex
hybrids. SATENSTEIN-LS is very efficient when properly configured and is the best
known SLS algorithm on several benchmark sets [12]. Whereas the SATENSTEIN-LS
authors liken their generated algorithms to Frankenstein’s monster, stitched together
from existing algorithm parts, we believe that our model is more akin to a mad scientist
experimenting with algorithmic DNA. The significant difference is that SATENSTEIN-
LS has a bounded configuration space, whereas DAVE is a design environment that
supports arbitrarily complex algorithms in a potentially unbounded space.

In that latter respect, DAVE is similar in nature to the Composite heuristic Learning
Algorithm for SAT Search (CLASS) by Fukunaga [6]. CLASS is a genetic program-
ming system that constructs new variable selection heuristics. Our work with VEs is
somewhat orthogonal to the research direction underlying CLASS; our goal has been
to decouple the scoring functions (VEs) from the VSMs and focus on the VEs, whereas
in CLASS they are tightly coupled. There is potential for combining the strategies of
DAVE and CLASS, and we are considering incorporating a CLASS-like syntax for
VSMs into a future version of DAVE. Conversely, CLASS could be extended by in-
corporating our concept of VEs.

7 Conclusions and Future Work

In this work, we have proposed a new conceptual model for SLS algorithms based on
variable expressions (VEs), and we demonstrated that algorithms with complex VEs
can be very effective in practice. We created a new software framework for designing
new SLS algorithms and algorithm hybrids in our model, and we demonstrated that
by combining our software with an automated algorithm configuration tool, it was quite
easy to construct a new algorithms that is nine times faster than the existing state-of-the-
art SLS-based SAT solvers on a set of software verifications known from the literature.

Apart from the previously mentioned work on CLASS-based VSMs (Section 6) and
the automated generation of source code from DAVE configurations (Section 4), we
see several other promising directions for future work. We expect that there are more
variable properties that can be effectively incorporated into VEs, as well as more sophis-
ticated ways of combining variable properties beyond the simple normalization, scaling
and non-linear transformations we presented in this work; we especially believe that
there are more effective ways to handle clause normalization. Now that we have con-
ceptually separated the components of algorithm controllers, filters, VEs and VSMs, we
believe that algorithm designers will be able to focus on those individual components;
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with the ability to quickly and automatically test their ideas in DAVE, we anticipate
rapid development in each of these areas. Overall, we believe that the utilization of rich
and flexible design environments such as DAVE in combination with powerful auto-
mated configuration tools will make it possible to achieve further, substantial progress
in the state of the art in SLS-based SAT solving.
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1. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent,
I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg (2009)
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Abstract. In this paper we describe a significant improvement to the justification-
based local search algorithm for circuit satisfiability proposed by Järvisalo et al
[7]. By carefully combining local search with Boolean Constraint Propagation
we achieve multiple orders of magnitude reduction in run-time on industrial and
structured benchmark circuits, and, in some cases, performance comparable with
complete SAT solvers.

1 Introduction

It is known that Boolean Constraint Propagation (BCP) can enhance the performance
of non-clausal SLS SAT solvers significantly, particularly on industrial and structured
SAT instances (cf. [1]). In this paper we report the results of the study on augment-
ing stochastic local search algorithm BC SLS for circuit satisfiability, proposed by
Järvisalo, Junttila and Niemelä in [7], with a range of strategies for employing BCP.
Informally speaking, these strategies take into consideration some BCP features such
as the direction of propagation, the way conflicts are handled during the propagation, or
how far and how often the changes of truth-values determined by BCP are to be prop-
agated through the circuit. We show that by carefully combining BC SLS with BCP
we can achieve considerable improvements in performance of local search on industrial
and structured circuits, and even outperform a modern complete CNF SAT solver on
some industrial instances.

2 Preliminaries

In this paper we use a slightly modified terminology of [7], which we briefly describe
below. The reader is referred to [7] for further details and examples.

A Boolean circuit C is a directed acyclic graph in which each vertex with in-degree
k > 0 is associated with a Boolean function {0, 1}k �→ {0, 1}. Vertices of C are called
gates. The fanin of a gate g ∈ C, in symbols FI(g), is the set of its direct predecessors
in C. Similarly, the fanout of g, in symbols FO(g), is the set of its direct successors.
A gate with the empty fanin is an input gate, a gate with an empty fanout is an output
gate. By g = f(g1, . . . , gk) we denote the fact that FI(g) = {g1, . . . , gk}, and g is
associated with the Boolean function f . Note that we do not restrict our attention to any
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particular family of circuits, though in our experimental study we focused on circuits
composed only of inverters and 2-input AND gates (AIGs).

A (partial) truth-value assignment for a circuit C is a (partial) function τ from the
set of gates in C to {0, 1}. By dom(τ) we denote the set of gates assigned by τ (the
domain of τ ). An assignment is consistent with C if for each gate g = f(g1, . . . , gk) we
have τ(g) = f(τ(g1), . . . , τ(gk)). A constrained Boolean circuit is a circuit C together
with a partial assignment α for C, in symbols Cα. Then, a satisfying assignment for
Cα is an assignment τ consistent with C that extends α. The constrained circuit Cα is
satisfiable if it has a satisfying assignment.

Given a gate g = f(g1, . . . , gk) and a truth-value v ∈ {0, 1}, a justification for the
pair 〈g, v〉 is a (possibly partial) assignment σ to FI(g), such that for every assignment
σ′ that extends σ to FI(g), we have f(σ′(g1), . . . , σ′(gk)) = v. In other words, a
justification is a partial assignment to FI(g) which guarantees that g evaluates to v. A
justification σ for 〈g, v〉 is minimal if no proper subset of σ is a justification for 〈g, v〉.

Let Cα be a constrained Boolean circuit, and τ be an assignment for C that extends
α. A gate g ∈ C is justified under τ if either (i) g is an input gate, or (ii) τ(g) =
f(τ(g1), . . . , τ(gk)). By unjust(Cα, τ) we will denote the set of all gates in C not
justified under τ . Thus, τ satisfies Cα if and only if unjust(Cα, τ) = ∅.

A justification cone of Cα under τ , in symbols jcone(Cα, τ), is a transitive fanin of
the constrained gates up to and including either an input or an unjustified gate. Formally,
jcone(Cα, τ) is the smallest set S of gates in C such that (i) dom(α) ⊆ S, and (ii) if
g ∈ S and g is justified under τ , then for all minimal justifications σ ⊆ τ for 〈g, τ(g)〉,
dom(σ) ⊆ S. The justification frontier of Cα under τ , in symbols jfront(Cα, τ), is
the set of all unjustified gates in jcone(Cα, τ). A gate g ∈ C is said to be interesting
if its either in jfront(Cα, τ) or in the transitive fanin of some gate in jfront(Cα, τ).
A gate g is said to be an (observability) don’t care if g is neither in justification cone,
nor interesting. When jfront(Cα, τ) is empty all gates that are not observability don’t
care are justified, and so τ can be easily modified to satisfy Cα by assigning the don’t
care gates the truth-values implied by the inputs in their transitive fanin.

3 Justification-Based Local Search

In [7] Järvisalo, Junttila and Niemelä proposed a stochastic local search algorithm BC
SLS for circuit satisfiability. The algorithm starts with a random assignment τ to Cα

that extends α, and proceeds in the following manner: as long as jfront(Cα, τ) is not
empty, a random gate g is selected from jfront(Cα, τ), and one of the minimal justi-
fications for g is either chosen randomly, or greedily in order to minimize an objective
function (the number of interesting gates). Occasionally, an “upward” move is taken,
that is the truth-value of the gate g itself is flipped (thereby g becomes justified, but
some gates in its fanout become unjustified). The algorithm’s termination condition is
jfront(Cα, τ) = ∅, as it is sufficient to establish the satisfiability of Cα.

4 Incomplete Circuit BCP

In the complete, backtracking-based, circuit-SAT solvers (such as [9]), Boolean Con-
straint Propagation (BCP) is initiated when a truth-value is assigned to an unassigned
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Fig. 1. Examples of different types of propagation in the incomplete BCP. The short horizontal
arrows represent flips, the dashed arrows represent the direction of propagation.

gate g. As a result, some of the unassigned gates in g’s neighbourhood (i.e. fanin and
fanout) may acquire truth-values implied by g’s new truth-value and the truth-values of
the assigned gates in g’s neighbourhood. The process continues recursively until either
no new assignments can be made, or some previously assigned gate gets a conflicting
truth-value.

SLS-based incomplete SAT solvers always maintain a complete assignment to the
variables or, in the case of circuits, to gates. In this setting, the BCP is initiated by
a change of the truth-value currently assigned to some gate (a flip). Furthermore, in
such SLS solvers, the BCP algorithm does not need to be complete, i.e., not all the
consequences of a flip must be propagated throughout the circuit. For example, we may
decide not to propagate the effect of a flip to fanins of a gate. We will refer to this limited
form of propagation as incomplete BCP. In the rest of this section, we will discuss some
of the possible “degrees of freedom” available with incomplete circuit BCP such as the
direction of propagation, the way the conflicts are handled during the propagation, and
how far and how often the changes are propagated.

Directing BCP. In the context of incomplete BCP we may distinguish between the
following types of propagation based on its direction: in forward propagation the flip of
one or more gates in fanin of a gate is propagated to the gate itself; in back propagation
the flip of a gate is propagated to one or more gates in its fanin; in side propagation the
flip of one or more gates in fanin of a gate is propagated to other gates in its fanin and
the truth-value of the gate itself doesn’t change. An example of the different types of
propagation applied to a 2-input AND gate is shown in Fig. 1.

Treatment of conflicts. In the complete setting the BCP is aborted when a gate gets as-
signed a conflicting truth-value. In the incomplete BCP, unless the gate is constrained,
we have a choice of either keeping the truth-value assigned to the gate initially and
stopping the propagation through this gate (“stop at conflict”), or overwriting the old
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truth-value with the new one and continuing the propagation (“propagate through
conflict”).

Extent and frequency of BCP. The power of incomplete BCP can be further controlled
by allowing the changes to propagate only to the gates that are close (in some sense,
for example number of logic levels) to the gate whose truth-value is flipped. Another
possibility is to limit the frequency of BCP.

5 CRSat: Justification-Based Local Search with Incomplete BCP

The empirical studies reported in [1] provide some evidence that BCP can significantly
enhance the performance of SLS SAT solvers, particularly on industrial SAT instances.
In this section we propose a justification-based local search algorithm CRSat in an
attempt to demonstrate possible benefits of employing incomplete BCP in SLS proce-
dures for circuit satisfiability. The resulting algorithm is presented in Alg. 1.

Alg. 1. CRSAT([in] Cα, [out] τ )
1: τ ← random truth-value assignment to inputs of Cα

2: τ ← FORWARD-BCP(Cα, τ, dom(τ ))
3: steps← 0
4: while steps++ < MAX STEPS do
5: if unjust(Cα, τ ) == ∅ then
6: return SAT
7: end if
8: g ← SELECT-UNJUST-GATE(Cα, τ ) � pick unjustified gate
9: Justs← all minimal justifications for 〈g, τ (g)〉

10: with-probability wp do
11: σ ← random justification from Justs � random walk
12: otherwise
13: σ ← SELECT-BEST-JUSTIFICATION(Cα, τ, g, Justs) � greedy move
14: end with-probability
15: τ ← σ ∪ (τ \ τ |dom(σ)) � (multi)flip
16: τ ← INCOMPLETE-BCP(Cα, τ, dom(σ)) � propagate
17: end while
18: return UNDECIDED

The algorithm starts with a random partial assignment τ to the inputs of Cα, which
is immediately extended to all gates using forward propagation (line 2). This step is not
strictly necessary, however in our preliminary experiments we noticed a slight perfor-
mance improvement when it is performed. To narrow down the effects of incomplete
BCP, we keep the local search component of our algorithm extremely simple: we do
not maintain the justification frontier and the set of interesting gates, and do not make
upward moves. CRSat selects an unjustified gate g from unjust(Cα, τ) (line 8) uni-
formly at random, and attempts to justify g by choosing a justification σ from the set of
all minimal justifications Justs (lines 9–14). The objective function used to evaluate
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justifications during the greedy moves is the number of unjustified gates. The search
step of CRSat consists of modifying the current truth-value assignment τ so that it
agrees with σ on gates in dom(σ) (line 15), and propagating the consequences of this
modification using some form of the incomplete BCP (line 16) – in our initial imple-
mentation, we use forward propagation with propagation through conflicts. We also
experimented with back and side propagations.

6 Experimental Evaluation and Final Remarks

To evaluate the effectiveness of CRSat, we have implemented the algorithm in a pro-
totype circuit-SAT solver crsat. The base solver uses forward propagation only. The
two extended versions, crsat+back and crsat+side, add the back propagation
and the side propagation, respectively. The side propagation is performed with the prob-
ability 0.01, and the solvers do not back- and side- propagate through conflicts. crsat
maintains the circuits as and-inverter graphs (AIGs) – this allows to implement efficient
table-driven circuit BCP, as in [9].

The evaluation of the solvers is based on the analysis of run-length and run-time
distributions (cf. [6]) on variety of circuits from different benchmark sets. The distribu-
tions were obtained over 100 tries with near optimal noise and the infinite cutoff. The
first set of benchmarks are the circuits that encode various bounded model checking
problems – these benchmarks were used in [7] to evaluate BC SLS. The second set of
benchmarks are the circuits that encode the MDP problem [3]. The third and the fourth
sets are M.Velev’s microprocessor verification suites SSS-SAT-1.0 and VLIW-SAT-1.1
[11]. All benchmark circuits were translated to n-ary AND/OR basis using a modified
Boolean circuit simplifier bc2cnf [8], converted to AIG by representing n-ary gates
as balanced binary trees, and simplified using 2-input subformula hashing. All experi-
ments were performed on Intel Core 2 Duo, 3.00 GHz.

During the preliminary evaluation, we noticed that while crsat solves the prob-
lems used in [7] with ease, it times out on all but the simplest of these problems when
the BCP is disabled. This result indicates that BCP plays a key role in our algorithm,
and, also, emphasizes the importance of using the circuit structure in local search: as
opposed to BC SLS, CRSat does not maintain justification frontier and so it can not take
advantage of the observability don’t care and interesting gates to speed-up the search.
To compare the performance of CRSat with that of BC SLS we implemented BC SLS
on AIGs, as the original implementation in [7] uses a different datastructure – the re-
sulting solver is called bcsls-aig. The results of our comparative study, presented in
Table 1, show that incomplete BCP can significantly improve the performance of circuit
SLS. Interestingly, the application of back propagation consistently reduces the number
of search steps, while the effect of side propagation in the current form is not yet clear.

Motivated by the performance CRSat on the VLIW-SAT-1.1 suite, we obtained the
run-times of the complete SAT solver minisat [4] (version 2.0) on CNF instances
obtained from the AIG versions of the benchmarks (produced from ISCAS, as described
above), as well as the original CNF versions of the benchmarks. As minisat uses
randomness, we have obtained the run-time distributions for the solver over 100 runs
with different random seeds. The results are presented in Table 2. While keeping in
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Table 1. Median number of steps and median run-time in seconds for the SLS algorithms.
“–” indicates no solutions were found in 20 tries with 300 seconds timeout each try.

Instance bcsls-aig crsat crsat+back crsat+side
steps time flips time steps time steps time

dp 12.fsa-b9-s 136166 2.40 1103 0.01 755 0.01 1316 0.01
elevator 2-b8-s 53566 2.24 5281 0.11 1192 0.07 5017 0.10
mmgt 3.fsa-b9-p 132047 1.77 11762 0.15 3748 0.12 9063 0.14

speed 1.fsa-b15-s 1199186 19.42 1907 0.02 792 0.01 2393 0.02
parity8-27 17661 0.35 2780 0.01 858 0.02 1657 0.01
parity12-35 1188736 28.27 98285 0.62 87700 1.77 167683 1.35
parity12-47 456861 8.74 35285 0.28 13478 0.27 34716 0.25
parity12-98 1417260 26.68 124936 1.03 87283 1.61 114981 0.97
2dlx * 005 – 7517 1.06 5388 2.57 26981 2.58
2dlx * 017 – 245 0.04 198 0.04 1309 0.14
2dlx * 025 – 1198 0.16 327 0.18 1882 0.18
2dlx * 049 – 8415 0.49 4911 1.17 6427 0.42
9vliw * 009 – 1410 0.34 1328 0.39 2575 1.08
9vliw * 090 – 2956 1.67 2038 2.96 6280 3.27
9vliw * 092 – 10808 7.07 2484 7.62 26429 12.96
9vliw * 097 – 1211 0.26 1196 0.27 2637 1.28

Table 2. Median run-time for crsat and minisat in seconds on VLIW-SAT-1.1 benchmarks,
100 tries

Solver / original format 9vliw * 007 9vliw * 009 9vliw * 017 9vliw * 090 9vliw * 092 9vliw * 097

crsat / AIG 0.57 0.34 11.79 1.67 7.07 0.26
minisat / AIG 0.78 0.85 8.56 5.94 0.99 0.58
minisat / CNF 0.27 1.75 0.47 1.77 0.60 10.54

mind that the instances were “cherry-picked” for the evaluation of crsat, some of the
results seem to be quite encouraging.

The experimental results reported in this paper indicate that the use of the incom-
plete BCP provides a general direction for enhancing the performance of SLS solvers
for circuit-SAT. Further investigation is required to understand and take full advan-
tage of the influence of the different variants of the incomplete BCP on the dynamic
behaviour of circuit SLS. The techniques proposed in this paper are related to the pre-
vious research on SAT procedures that combine SLS with BCP (e.g. [5]) and on SLS
procedures for circuit-SAT (e.g. [10]). This relationship is explored in full in [2].

Acknowledgments. We thank the anonymous referees for very helpful comments.

References

1. Belov, A., Stachniak, Z.: Improving Variable Selection Process in Stochastic Local Search
for Propositional Satisfiability. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 258–
264. Springer, Heidelberg (2009)

2. Belov, A.: Stochastic Local Search for Non-Clausal and Circuit Satisfiability. In: preparation
PhD Thesis, York University, Toronto, Canada (2010)

3. Crawford, J.M., Kearns, M.J., Shapire, R.E.: The Minimal Disagreement Parity Problem as
Hard Satisfiability Problem. Tech. report CIRL and ATT Bell Labs (1994)



Improved Local Search for Circuit Satisfiability 299
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Universitat de Girona
E-17003 Girona, Spain

{mbofill,suy,villaret}@ima.udg.edu

Abstract. SAT Modulo Theories (SMT) consists of deciding the sat-
isfiability of a formula with respect to a decidable background theory,
such as linear integer arithmetic, bit-vectors, etc, in first-order logic with
equality. SMT has its roots in the field of verification. It is known that
the SAT technology offers an interesting, efficient and scalable method
for constraint solving, as many experimentations have shown. Although
there already exist some results pointing out the adequacy of SMT tech-
niques for constraint solving, there are no available tools to extensively
explore such adequacy. In this paper we introduce a tool for translating
FlatZinc (MiniZinc intermediate code) instances of constraint satisfac-
tion problems to the standard SMT-LIB language. It can be used for
deciding satisfiability as well as for optimization. The tool determines
the required logic for solving each instance. The obtained results suggest
that SMT can be effectively used to solve CSPs.

1 Introduction

Over the last decade there have been important advances in the Boolean satisfia-
bility (SAT) solving techniques, to the point that nowadays modern SAT solvers
can tackle real-world problem instances with millions of variables. Hence, SAT
solvers have become a viable engine for solving combinatorial discrete prob-
lems. For instance, in [2], an application that compiles specifications written in
a declarative modeling language into SAT is shown to give promising results. In-
teresting comparisons between SAT and Constraint Satisfaction Problems (CSP)
encodings and techniques can be found in [13].

SAT techniques have been adapted for more expressive logics. For instance,
in the case of Satisfiability Modulo Theories (SMT), the problem is to decide
the satisfiability of a formula with respect to a decidable background theory
(or combinations of them) in first order logic with equality [9,11]. Some of
these theories are (quantifier free) Linear Integer Arithmetic (QF LIA), Inte-
ger Difference Logic (QF IDL), Linear Real Arithmetic (QF LRA), Uninter-
preted Functions (QF UF), Non-linear Integer Arithmetic (QF NIA), etc [10].
� All authors partially supported by the Spanish Ministry of Science and Innovation
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Usually, SMT solvers deal with problems with thousands of clauses like, e.g.,
x+3 < y∨y = f(f(x+2))∨g(y) ≤ 1, containing atoms over combined theories,
and involving functions with no predefined interpretation, i.e., uninterpreted
functions. Adaptations of SAT techniques to the SMT framework have been de-
scribed in [12]. Although most SMT solvers are restricted to decidable quantifier
free fragments of their logics, this suffices for many applications. The main appli-
cation area of SMT is hardware and software verification. Nevertheless, there are
already promising results in the direction of adapting SMT techniques for solving
CSPs (see e.g. [1]) even in the case of combinatorial optimization (see e.g. [7]).
Fundamental challenges on SMT for constraint programming and optimization
are detailed in [8].

Since the beginning of Constraint Programming (CP), its holy grail has been
to obtain a declarative language allowing users to easily specify their problem
and forget about the techniques required to solve it. Among many others [2,4,6],
MiniZinc [6] is proposed to be a standard CP modeling language. CSP models
and data are written in the MiniZinc language which, after compilation, result
into CSP instances codified in a sort of intermediate code called FlatZinc. Several
solvers, such as Gecode, ECLiPSe and SICStus Prolog, provide specialized back-
ends for this intermediate language.

In this paper we introduce a tool called fzn2smt1 for solving FlatZinc CSP
instances through SMT. Our work is similar to that of [1], where a compiler from
a declarative language to the standard SMT-LIB language [10] was developed,
and to that of FZNTini [5], that solves FlatZinc CSP instances through SAT.
As FZNTini, our system fzn2smt does not only solve decision problems but also
optimization problems, and uses FlatZinc as input language, supporting all its
standard data types and constraints. The logic required for solving each instance
is determined automatically by fzn2smt during the translation.

2 Architecture of the Tool

The architecture of fzn2smt is depicted in Fig. 1 throughout the process of
compiling and solving. The input of the compiler is a FlatZinc instance, which
is translated into an SMT instance (in the standard SMT-LIB format) and fed
into an SMT solver. Due to the large number of existing SMT solvers, each one
supporting different combinations of theories, the user can choose which solver
to use (default being Yices [3]).

FlatZinc has three solving options: solve satisfy, solve minimize x and
solve maximize x, where x is an integer variable. Since currently optimization
is not supported in the SMT-LIB language, we have naively implemented it by
means of iterative calls performing a binary search on the domain of the variable
to optimize. Moreover, since there is no standard output model in the SMT-LIB
language2, we need a specialized recover module for each solver in order to obtain
the answers in the standard FlatZinc output format. In this work we have only
1 fzn2smt can be downloaded from http://ima.udg.edu/Recerca/GrupESLIP.html
2 There are even solvers that only return sat, unsat or unknown.
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Fig. 1. The compiling and solving process of fzn2smt

built the one for Yices. As a byproduct, fzn2smt also generates the corresponding
SMT instance and model.

3 Some Hints on the Translation

FlatZinc has two categories of data: constants and variables. It provides three
scalar types (booleans, integers and floats) and two compound types (sets of
integers and one-dimensional integer-indexed arrays). Scalar type domains can
be bounded by an interval or a list. Our translation goes as follows:

– Scalar types are translated into their equivalent in SMT (boolean to Bool,
integer to Int and float to Real). Constraining a variable to its domain
results in a disjunction of equalities when the domain is an explicit enumer-
ation of values, or into a conjunction of two inequalities when the domain
is described as a range. Instantiated data (i.e., constants and instantiated
variables) is always replaced by its value.

– Arrays have two parametric possible translations:
• Using QF UF. Each array is translated into an uninterpreted function

with the same name. E.g., array[1..8] of var int:p is translated into
the uninterpreted function p( ) of type Int → Int. Accesses to the
array p such as p[i], where i is a constant, are translated into p(i).
For undetermined references to arrays, FlatZinc provides the constraint
array int element(i,t,p), that we transform into p(i) = t ∧ 1 ≤
i ≤ 8. Constraints referring to all positions of an array are expanded:
e.g., array bool and(p,res) becomes res = and(p(1)...p(8)).

• Decomposing the vector into as many base type variables as elements
are in the vector. E.g., array[1..8] of var int:p is translated into
p 1,...,p 8 integer variables.

We want to remark that the SMT theory of arrays involves read and write
operations and, hence, is intended to be used for modelling state change
of programs with arrays. However, since there are only read operations in
CP models (i.e., there is no notion of state) it suffices to use an uninter-
preted function for every array, translating every read operation of the form
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read(a,i) into a(i). This is enough since the theory of equality and un-
interpreted functions guarantees that a(i)=a(j) whenever i=j. Moreover,
deciding satisfiability of sets of equalities involving uninterpreted functions is
far more cheaper than using the arrays theory. Nevertheless, preliminary ex-
perimentation on FlatZinc instances has shown us that decomposing arrays
into their elements provides a better performance than the UF approach.

– Sets can only be defined on a range or a list of integers. For this reason, we
simply use a Boolean variable for every possible element, indicating whether
it belongs to the set or not. In order to make it easier for some set restrictions,
each Boolean variable has a partner 0-1 integer variable. Arrays of sets are
always expanded.

We have implemented the translation into SMT of all FlatZinc constraints. Dur-
ing the compilation process it is crucial to detect the logic needed. For example,
the int times(a,b,c) constraint states a*b=c. This falls into linear arithmetic
if a or b are constants or instantiated variables. Otherwise, non-linear arithmetic
is necessary. Since few SMT solvers support non-linear arithmetic, when a and b
are variables, but bounded by an interval or a list, we linearize this constraint by
enumerating the possible values of the variable with smaller domain as follows:
a=1→1*b=c, a=2→2*b=c, ...

4 Benchmarking and Conclusions

We have run the most of the FlatZinc instances of the problems provided with
the MiniZinc 1.0.3 distribution3. In Table 1 we report the number of solved
instances (within parenthesis) and the total time spent in them for each solver.
The times are the sum of the translation, when needed (e.g., fzn2smt translates
from FlatZinc to the SMT-LIB format), plus the solving time. We indicate in
boldface the cases with more solved instances, breaking ties by total time. The
experiments have been performed on an Intel Core i5 CPU at 2.66 GHz, with
4GB of RAM, running openSUSE 11.2 (kernel 2.6.31).

From these experiments we can observe that fzn2smt is the system that solves
more instances. Although SMT solvers are black-box and our experimentation
is not exhaustive, looking at the results more carefully we observe that fzn2smt
outperforms other systems in problems with many constraints and non-trivial
arithmetic (cars, carseq, cutstock, jobshop, nsp, rcpsp). In [5] it was already
shown that FZNTini, based on (plain) SAT encoding, was competitive with spe-
cialized systems. By adding theories we go one step further. It is worthy to
notice that Gecode, G12 and ECLiPSe, since are search based systems, can take
profit of annotations in order to use particular strategies orienting the search,
whilst SAT and SMT do not. Surprisingly, our naive binary search approach to
optimization is also giving good performance.
3 We have omitted the 2DBinPacking and QCP benchmarks due to errors in the trans-

lation from MiniZinc to FlatZinc, some instances of nsp due to domain errors in
specification, and the instances of debruijn which required more than 5 minutes for
translation from MiniZinc to FlatZinc.
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Table 1. Performance of different tools on FlatZinc instances. ’s’ stands for satisfaction
and ’o’ for optimization. # stands for the number of instances run of each benchmark.
Time in seconds(solved). Timeout is 300 seconds for each instance.

Problem # G12 ECLiPSe Gecode FZNTini fzn2smt

alpha s 1 0.01(1) 0.47(1) 0.07(1) 0.60(1) 0.66(1)
areas s 4 0.13(4) 2.04(4) 0.05(4) 0.38(4) 4.75(4)
bibd s 14 118.16(12) 4.18(7) 35.58(7) 353.78(13) 79.48(12)
cars s 79 0.02(1) 0.81(1) 295.64(3) 1.21(1) 2271.17(21)
carseq s 81 0.47(2) 3.47(2) 0.12(2) 0.06(2) 2502.95(45)
curriculum s 3 0.27(2) 95.09(2) 261.82(1) 8.70(3) 9.97(3)
cutstock o 121 0.01(1) 0.49(1) 0.01(1) 1.53(1) 1066.29(20)
debruijn binary s 7 37.93(7) 12.40(6) 10.33(7) 0.09(1) 0.65(1)
eq s 1 0.01(1) 0.49(1) 0.01(1) 20.14(1) 0.47(1)
golfers s 9 113.7(5) 0.59(1) 22.64(5) 9.51(2) 26.30(2)
golomb o 10 251.18(9) 85.84(8) 23.83(8) 23.87(6) 41.88(6)
jobshop o 74 0.11(1) 1.92(2) 22.14(2) 514.70(4) 1113.04(22)
kakuro s 6 0.06(6) 2.97(6) 0.06(6) -(0) 4.67(6)
knights s 4 0.05(4) 1.99(4) 0.27(4) 0.32(4) 3.08(4)
langford s 25 52.19(20) 121.85(20) 34.54(20) 310.24(18) 50.52(20)
latin-squares s 7 5.98(6) 12.54(6) 15.35(6) 129.40(3) 7.54(4)
magicseq s 9 25.17(7) 21.56(7) 7.39(7) 0.30(3) 11.01(4)
nmseq s 10 281.73(6) -(0) 171.03(7) -(0) 1.42(1)
nsp s 20 -(0) -(0) 0.09(1) 402.22(14) 70.28(15)
pentominoes s 7 113.68(4) 27.88(2) 208.52(5) 12.81(1) 4.85(1)
photo o 2 0.10(2) 1.07(2) 0.04(2) 0.08(2) 0.78(2)
quasigroup7 s 10 1.37(5) 293.67(3) 3.65(5) 380.28(3) 31.51(5)
queens s 7 88.88(7) 36.24(7) 0.52(3) 94.76(4) 54.61(5)
radiation o 9 207.90(7) 54(6) 231.41(7) -(0) 584.25(7)
rcpsp o 10 11.96(2) 49.85(4) 22.54(5) -(0) 581.13(8)
schur numbers s 3 1.30(3) 1.03(2) 0.30(3) 0.02(2) 1.45(3)
search stress s 1 0.01(1) 0.54(1) 0.01(1) 0.16(1) 0.44(1)
shortest path o 10 4.36(4) 292.15(6) 141.34(7) -(0) 45.79(6)
slow convergence s 10 68.74(10) 12.84(7) 11.03(10) 36.98(4) 222.37(10)
steiner-triples s 6 0.13(2) 0.50(1) 0.01(1) 65.71(2) 96.33(5)
still life o 10 17.35(8) 80.03(8) 134.12(9) 60.29(8) 25.20(9)
talent scheduling o 11 10.43(3) -(0) 4.03(3) 128.10(2) 45.71(3)
template design o 7 126.20(2) 1.40(1) 56.99(2) 14.91(1) 37.37(2)
tents s 3 0.10(3) 1.52(3) 0.04(3) 0.30(3) 2.50(3)
trucking hl o 5 3.82(5) -(0) 41.56(5) -(0) 3.90(5)

Total 596 1543(163) 1221(132) 1757(164) 2571(114) 9004(267)

The obtained results suggest that SMT can be effectively used for CSP solving
in a broad sense, i.e., not just for specialized problems. Hence the tool could
serve for getting a big enough picture of the suitability of SMT solvers w.r.t.
CSP solving in general, and to compare the performance of state-of-the-art SMT
solvers outside the SMT competition.
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We have not used any MiniZinc global constraint (such as, e.g., cumulative,
alldifferent, . . . ) since they are not supported by current SMT solvers. We
think that developing specialized solvers for such theories in SMT is a promising
research line. Finally, we think that better results could be obtained if trans-
lating directly from the MiniZinc language to SMT. In doing so, most clever
translations could be possible and probably less variables could be generated.
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Two Techniques for

Minimizing Resolution Proofs
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Abstract. Some SAT-solvers are equipped with the ability to produce
resolution proofs for problems which are unsatisfiable. Such proofs are
used in a variety of contexts, including finding minimal unsatisfiable sets
of clauses, interpolant generation, configuration management, and proof
replay in interactive theorem provers. In all of these settings, the size of
the proof may be prohibitively large for subsequent processing. We sug-
gest some new methods for resolution proof minimization. First, we iden-
tify a simple and effective method of extracting shared structure from a
proof using structural hashing. Second, we suggest a heuristically-guided
proof rewriting technique based on variable valuations. Our findings indi-
cate structural sharing reduces proof length significantly and efficiently,
and that our valuation-based rewriting method can give substantial fur-
ther reductions but is currently limited to smaller proofs.

1 Introduction

Applications ranging from proof replay in automatic theorem provers [2] to au-
tomotive configuration management [21] make use of resolution proofs generated
by SAT solvers [16,17,18]. At the same time, such generated proofs can be quite
large and their size can become problematic for the application at hand. As a
result, there has been some interest in the problem of minimizing or compressing
a given resolution proof, especially those generated by SAT solvers [23,1,20,3,2].
It is also interesting to ask whether, or in what circumstances, effective proof
minimization may lead to faster SAT solving processes. However, such potential
applications will require more effective proof minimization methods and tools.
Aside from computing unsat cores, the best existing methods can either effi-
ciently trim proofs by a handful of percentage points [3], or they are complex
[2], or they do not scale to larger problems [20,1]. The techniques introduced in
this paper bring us a small step closer to effective proof minimization by pro-
viding one simple, fairly scalable method, and one method which often reduces
proofs substantially and sometimes can find proofs several times smaller than
the original, but is limited to smaller proofs.

1.1 Background

The problem of instrumenting a conflict driven SAT solver to generate resolu-
tion proofs is well studied [24,14,12,7,13]. In [12], a solution was given to an
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exponential blow-up in the size of proofs generated by zchaff [19]. Later, [22]
demonstrated that conflict clause minimization in the style of [10] reduces so-
lution time, and hence likely also reduces proof size. Additionally, [13] gave an
algorithm for conflict clause minimization and showed that it reduces solution
time on unsatisfiable problems slightly and can also be used to generate proof
traces which are easier to check. The algorithm of [13] was also discovered by
the author and reported in [9]. The computation of an unsatisfiable core from a
generated proof, originally presented in [23], constitutes a simple and effective
kind of minimal proof extraction.

Subsequently, several proof post-processors [20,1,2,3] were developed, and this
paper presents another. The work in [20] focuses on finding common proof struc-
ture across derivations of learned clauses while that of [1] is based on subsump-
tion. Reported experiments for both methods were limited to very small proofs.
The work in [2] improves on [20] in part by memoizing shared proof sequences,
and scales to proofs with millions of inferences. One of our minimization tech-
niques also memoizes shared proof sequences; it uses a simpler method and ap-
pears to scale similarly. The post-processor in [3] presents a reduction technique
based on double resolutions (where one resolution step dominates another and
both pivot on the same variable) and another based on identifying how derived
unit clauses can be applied to derivations occurring earlier in the SAT solving
time line. These techniques reduced proofs generated by zchaff [19] on a set of
bounded model checking problems by 13%.

Resolution Proofs. In the following, a literal is a propositional variable or its
negation. A clause is a finite disjunction (l1 ∨ l2 ∨ . . . ∨ lk) of literals. Since dis-
junction is commutative and associative, we do not distinguish between clauses
which contain the same literals but in different orders. For convenience, we also
do not distinguish between clauses which contain some literals more than once
and their reduced counterparts which contain exactly one representative of each
literal. The empty clause is false, here denoted ⊥.

Propositional resolution [8] is a proof rule which allows the derivation of a
clause from a pair of clauses. In particular, suppose that x is a variable and C, D
are clauses. Then the resolution rule is

(x ∨ C), (¬x ∨ D)
(C ∨ D)

We refer to x as the pivot variable, to the clause (C ∨ D) as the resolvent and
to the clauses (x ∨ C) and (¬x ∨ D) as antecedents.

Given a conjunction of clauses φ � C1 ∧ C2 ∧ . . . ∧ Cm, A resolution proof of
unsatisfiability for φ is a sequence of clauses (D1, D2, . . . , Dn) such that

1. Each Di with 1 ≤ i ≤ n is either a conjunct of φ (an input) or is the result
applying the resolution rule to two antecedents Dj, Dk with 1 ≤ j, k < i (a
derived clause).

2. There is some i ∈ [1..n] such that Di = ⊥.
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A proof may be viewed as an acyclic graph in which nodes are clauses and edges
connect a derived clause to its antecedents. Thus clauses which are derived have
in-degree 2 while inputs have in-degree 0. We refer to such a graph as a resolution
graph.

In the rest of this paper, we only consider proofs in which every clause is
non-tautological, meaning that no clause contains both the disjunct x and the
disjunct ¬x for any variable x.

2 Two Minimization Techniques

2.1 Structural Minimization

Because clauses are non-tautological, all derived clauses in a resolution proof
are determined by their antecedents. Hence, we can unambiguously consider
proofs in terms of the input clauses together with the structure of the reso-
lution graph, i.e. by identifying a derived clause not by its literals but rather
by its antecedents. A simple way of minimizing a proof based on the structure
of the resolution graph is to identify distinct nodes in the resolution sequence
which are derived from the same antecedents and then merge them together.
However, proofs generated by conflict-driven SAT solvers such as [24,14,7] offer
more opportunities for identifying shared structure. In particular, such proofs
come in the form of a sequence of (derivations of) learned clauses; but there are
many possible derivations of each learned clause. As a result, we are free to find
derivations of learned clauses which are small and which share structure.

To illustrate our method we assume that with each learned clause w in a proof,
we can associate a graph Gw � (Aw,→w). The graph Gw mirrors the implication
graph used by the solver to derive w as follows. Aw consists of all the antecedent
clauses of w and there is an edge c →w d when, in the corresponding implication
graph, c is a unit clause with unit literal l and the complement of l appears in the
clause d. As illustrated in [4], such a graph defines a set of regular input resolution
derivations 1 of w. We are interested in identifying sub-derivations which can be
re-used in the derivation of many learned clauses without increasing the number
of resolution steps required to derive any learned clause. Such a sub-derivation
is characterized in [20] as an isolateable subgraph of Gw.

The method we propose maintains a resolution proof as structural hash in
a manner similar to that used for circuits [11]. Each derived clause is given a
hash value based on the identifiers of its antecedents, so it takes constant time
to check whether a given resolution step is present in the proof, and constant
time to add a resolution step to the proof.

To generate a binary resolution proof from a sequence of learned clause deriva-
tions, we read the learned clauses in topological order, and generate Gw for each

1 Regular resolution denotes a resolution graph in which the sequence of pivot vari-
ables associated with every path does not allow repeating variables. Input resolution
is resolution in which each derived clause has at most one derived clause as an
antecedent.
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learned clause w. Then for each graph Gw, we identify a sequence of resolution
steps which will derive w. Each resolution step is added to the proof only if
necessary, i.e if there is not already a node in the resolution graph with the
same antecedents. To maximize the potential for sharing without increasing the
number of resolutions steps required to derive w, we make use of the following
observations.

1. Gw is guaranteed to have a clause c with out-degree 1.
2. For any c →w d in Gw, if c has degree 1, then we may replace c and d in

Gw with their resolvent r. Upon replacement, all edges coming into c or d
are redirected to r, with duplicates removed, and all edges emanating from
d are replaced with a corresponding edge from r.

3. Replacing c, d with r as above results in a new graph which either preserves
property 1 or which has one node and that node is w. Moreover, the new
graph again defines a set of regular input resolution sequences deriving w in
the same manner as Gw, but each such derivation contains one less resolution
step.

To generate a derivation of w, our method maintains a queue of nodes in Gw

which have degree 1, initially sorted topologically in →w. Resolution steps are
performed for each member of the queue in FIFO order and Gw is updated
accordingly after each step until w is derived.

2.2 Proof Rewriting with Variable Valuations

The second minimization technique presented here is based on using variable
valuations to rewrite proofs. Given a proof of unsatisfiability π and a variable x,
it is easy to re-arrange the proof in such a way as to produce a proof of x and a
proof of ¬x. Taken together with one additional resolution step, we arrive at a
new proof of unsatisfiability, which might be smaller than the original. We call
this operation splitting.

The method we apply generates a sequence of proofs π1π2 . . ., where each
proof πi+1 is rewritten by splitting πi. If a proof πj is too large, we set πj+1 to
the smallest proof in π1 . . . πj−1. The process continues for as long as desired,
and outputs a smallest proof from the sequence upon termination.

We propose a heuristic for variable selection based on the number of times a
variable appears as a pivot in a resolution step together with the additivity of
the corresponding resolution steps. Given a resolvent r with antecedents p, n the
expression

add(r) � max(|r| − max{|p|, |n|}, 0)

describes, in the worst case, how many literals are added to the proof as a result
of the resolution step. Variables are scored by summing the additivity of all the
resolution steps in a proof π which pivot along v together with the number of
resolutions steps pivoting on v. We denote this value add(v, π). Given such an
estimation, we select variable v at step i with probability
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add(v, πi)
Σxadd(x, πi)

We define splitting in a manner similar to the restriction operator of [5]. Let
π be a resolution proof of unsatisfiability and l a literal. Let p ⊕x n denote the
resolvent of clauses p and n where x occurs in p and ¬x occurs in n. Then define
the map πl map on nodes in the resolution graph of π:

πl(c) �

⎧⎪⎪⎨⎪⎪⎩
c if c is an input
πl(p) if c = p ⊕x n and (l = x or x 
∈ πl(p))
πl(n) if c = p ⊕x n and (l = ¬x or ¬x 
∈ πl(n))
πl(p) ⊕x πl(n) if x ∈ πl(p) and ¬x ∈ πl(n)

Let o be the empty clause in π. To split on x from proof π, we compute πx(o)
then π¬x(o) and resolve the resulting two clauses.

3 Experimental Summary

We evaluated the two techniques on proofs generated by PicoSAT [7] version 913.
Since both techniques require an in-memory representation of the entire proof,
we selected unsatisfiable problems which picosat could solve within 10 seconds
from a variety of well known benchmarks, as well as some small benchmarks
from [15]. The proof checker tracecheck [6] verified all but one of the outputs of
the resulting proofs, crashing on one large problem.

Structural minimization was applied to the unsat cores of 141 problems with
a total of 469, 778 core original clauses and 697, 286 core learned clauses for a
total of 77, 907, 715 resolution steps. The resulting structurally reduced binary
resolution graphs contained 30, 199, 342 resolution steps, giving proofs 39% the
size of the core proofs in a total of 357 seconds.

Variable splitting was applied to the structurally minimized binary resolution
graphs of the 49 largest problems which contained less than 300, 000 resolution
steps, for a total of 1, 875, 020 resolution steps. We used a timeout of 300 seconds
per problem. The reduced proofs contained 1, 743, 311 resolution steps or 93% of
the structurally minimized size. With each problem weighted equally, the reduced
proofs were on average 68% the size of the structurally reduced proofs. Smaller
problems gave proofs as small as as 15% the size of the structurally minimized
proof. The method compared favorably to selecting variables at random.

All results were run on a Sun JVM version 1.6.0 17 on a dual-core 3GHz
Debian Linux machine with 4G RAM. The source code, proofs, and detailed
results are available from the author’s web page.

4 Conclusion and Future Work

We have presented and evaluated two minimization techniques for resolution
proofs generated by conflict driven SAT solvers. In the future, we plan to in-
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vestigate the use of extended resolution and the possibility of applying variable
splitting to sub-proofs of larger proofs.

Acknowledgements. The author would like to thank the anonymous reviewers
for many helpful comments.
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Abstract. Can sat be solved in “moderately exponential” time, i.e., in
time p(|F |) 2cn for some polynomial p and some constant c < 1, where
F is a CNF formula of size |F | over n variables? This challenging ques-
tion is far from being resolved. In this paper, we relate the question of
moderately exponential complexity of sat to the question of moderately
exponential complexity of problems defined by existential second-order
sentences. Namely, we extend the class SNP (Strict NP) that consists
of Boolean queries defined by existential second-order sentences where
the first-order part has a universal prefix. The extension is obtained by
allowing a ∀ . . .∀ ∃ . . .∃ prefix in the first-order part. We prove that if
sat can be solved in moderately exponential time then all problems in
the extended class can also be solved in moderately exponential time.

1 Introduction

All known algorithms for sat take exponential time in the worst case. However,
there may be a significant difference in the efficiency between exponential-time
algorithms, compare an algorithm running in time O(2n) with algorithms run-
ning in time O(2n/100) or in time O(2

√
n). How large is the exponent for sat?

1.1 Moderately Exponential Complexity

Can sat be solved in moderately exponential time? To state this question for-
mally, we need to specify a parameter with respect to which we measure the
complexity of sat. It is standard in complexity theory to use the instance size
as a complexity parameter. However, for problems in NP, there is another ap-
proach that suggests the choice of a certificate-size parameter, i.e., a parameter
that characterizes the size of a certificate rather than the instance size, see for
example [PP09] for the motivation and see Section 3 for precise definitions.

When considering sat, a certificate for a formula with n variables is a satisfy-
ing assignment, and it is straightforward to describe it using n bits. Therefore,
a natural certificate-size parameter for sat is the number of variables in the in-
put formula. Throughout the paper we regard sat as a parameterized problem
(sat, n) where n is the number of variables in the input CNF formula.

Let (A, p) be a parameterized problem, where p is a specified certificate-size
parameter. Since a certificate can be found by enumerating 2p bit strings, a
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trivial upper bound for A is 2p up to a factor polynomial in the instance size.
We say that (A, p) can be solved in moderately exponential time if there is a
polynomial q and a constant c < 1 such that

A ∈ RTIME(q(|x|) 2cp)

where |x| is the instance size. We define ME to be the class of all parameterized
problems that can be solved in moderately exponential time.

Why is ME defined in terms of RTIME rather than DTIME? All results on ME
proved and mentioned in this paper hold for both possible definitions, i.e., for
probabilistic time as well as for deterministic time, so we could choose any of
them. We have chosen probabilistic time just to conform with the definitions in
[CIP06], where moderately exponential complexity bounds are defined in terms
of RTIME.

1.2 Relevant Results

A challenging open question is whether there exists a constant c > 0 such that
no algorithm solves 3-sat in time O(2cn) where n is the number of variables
in the input formula. Impagliazzo, Paturi, and Zane in their seminal papers
[IP01, IPZ01] obtained deep results that shed more light on this and similar
questions.

The question whether (sat, n) ∈ ME is also open, and the state of the art
of research in this field is far from answering this question even under plausible
complexity assumptions. However, we know that some restrictions of (sat, n)
are in ME. In particular,

– (k-sat, n) ∈ ME for any constant k [PPSZ98, Sch99, DGH+02];
– (satΔ, n) ∈ ME for any constant Δ [AS03, DH09], where satΔ is the re-

striction of sat to formulas of clause density at most Δ (the clause density
is the ratio of the number of clauses to the number of variables).

Impagliazzo, Paturi, and Zane [IP01, IPZ01] showed the relationship between ME
and SNP (Strict NP), the class defined in [KV87] and used in [PY91] for proving
inapproximability of certain optimization problems. The class SNP consists of
Boolean queries defined by existential second-order sentences of the form

∃T1 . . .∃Tr∀x1 . . .∀xs φ (1)

where T1, . . . , Tr are relation symbols, x1, . . . , xs are first-order variables, and φ
is a quantifier-free formula. For any problem in SNP, there is a natural certificate-
size parameter expressed through the cardinality of the universe and arities of
second-order variables, see Section 3 for details. Thus, SNP can be regarded as
the class of parameterized problems.

It is shown in [IPZ01] that, loosely speaking, (k-sat, n) is complete for SNP
via reductions that allow a linear increase of the parameter (the polynomial-time
many-one strong reducibility). However, as it is seen from the proof, the reduc-
tion does not change the parameter at all. Thus, it follows from the existence
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of moderately exponential time algorithms for k-sat that any parameterized
problem in SNP can be solved in moderately exponential time, i.e., SNP ⊆ ME.

A number of results relevant to the (sat, n) ∈ ME question were obtained
assuming the Exponential Time Hypothesis (ETH) defined in [IP01]. Informally,
ETH says that k-sat cannot be solved in subexponential time. Formally, the
hypothesis is stated in terms of the following sequence {sk}: for any integer
k ≥ 3, let sk be the infimum of all c > 0 such that

k-sat ∈ RTIME(2cn).

ETH says that sk > 0 for all k ≥ 3. Using sparsification, it was proved in [IPZ01]
that ETH is equivalent to s3 > 0. Also, ETH can be re-stated in terms of SNP:
the class SNP contains a problem that cannot be solved in subexponential time.

Assuming ETH, it was proved in [IP01] that the sequence {sk} increases
infinitely often when k grows. Let s∞ = limk→∞ sk. The value of s∞ is still
unknown even under plausible complexity assumptions. The Strong Exponential
Time Hypothesis (SETH) states that s∞ = 1 [IP01, CIP09]. Note that SETH
implies (sat, n) 
∈ ME.

It was shown in [CIP06] that {sk} is interwoven with a similar sequence defined
for satΔ. Let tΔ be the infimum of all c > 0 such that satΔ ∈ RTIME(2cn).
Then

– for any Δ > 0, there is k ≥ 3 such that tΔ ≤ sk;
– for any k ≥ 3 there is Δ > 0 such that sk ≤ tΔ.

Therefore, s∞ = t∞ where t∞ denotes the limit of {tΔ}Δ∈N as Δ → ∞.
For a number of important computational problems, new insights into their

complexity were obtained using ETH as a complexity assumption. In particu-
lar, Calabro, Impagliazzo, and Paturi [CIP09] compared the complexity of k-
sat and the complexity of the Decision-Unique-k-sat problem in which we are
asked whether a given k-CNF formula has exactly one satisfying assignment.
It turned out that, assuming ETH, these problems have the same complex-
ity. Marx [Mar07] analyzed the complexity of binary CSP with respect to the
number-of-variables parameter. He proved that if the complexity of this problem
is f(G) no(k/ lg k) then ETH fails, where G is the underlying primal graph, f is
an arbitrary function, and k is the treewidth of G. Another result connecting
CSP and ETH was proved by Traxler [Tra08] who showed that, assuming ETH,
(k, 2)-CSP has complexity kcn, where c is a constant not depending on k.

The currently best upper bound for sat is

|F |O(1)2n(1−1/O(lg m
n ))

where m is the number of clauses [CIP06, DH09]. This result neither supports nor
opposes the (sat, n) ∈ ME conjecture. Williams [Wil07] notes that while many
researchers are skeptical that (sat, n) ∈ ME, he has not found much evidence for
this skepticism. He argues that (sat, n) ∈ ME is consistent with ETH. He also
presents three hypotheses (about the complexities of three other computational
problems) and proves that if any of them are true then (sat, n) ∈ ME.
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1.3 Our Results

Implication of (sat, n) ∈ ME. When trying to prove or disprove (sat, n) ∈ ME,
it can be helpful to find implications of both alternatives. In this paper, we
describe a class of parameterized problems such that if (sat, n) ∈ ME then all
problems in the class are also in ME. This class is obtained from SNP in two
steps. First, we extend SNP by allowing existential first-order quantifiers after
universal ones. The extension is denoted by SNP1. The second step is to close
SNP1 under polynomial-time reductions that do not increase the parameter. The
closure is denoted by R(SNP1). Thus, we prove

(sat, n) ∈ ME ⇒ R(SNP1) ⊆ ME. (2)

More exactly, the underlying reducibility is a special case of strong many-one
reducibility in [IPZ01]. While a strong reduction ρ from (A, p) to (B, q) al-
lows a linear increase of the parameter, i.e., q(ρ(x)) = O(p(x)), our reductions
(called admissible reductions) allow only an additive increase by a constant, i.e.,
q(ρ(x)) = p(x) + O(1). Thus, if there is a polynomial-time admissible reduction
from (A, p) to (B, q) and (B, q) is in ME then (A, p) is also in ME.

To prove implication (2), we restrict sat to formulas of polynomial size.
Namely, for any d > 0, we restrict sat to formulas that have at most nd clauses
where n is the number of variables. This restriction is denoted by sat(d). It is
natural to think of sat(d) as a generalization of satΔ.

Obviously, if (sat, n) ∈ ME then (sat(d), n) ∈ ME for all d. In Section 4, we
prove that for every problem in R(SNP1), there exists a constant d such that
(A, p) is reducible to (sat(d), n) via a polynomial-time admissible reduction.
Thus, if (sat, n) ∈ ME then (sat(d), n) ∈ ME for all d and, hence, every problem
in R(SNP1) is also in ME.

In addition to this “hardness” result, we prove “inclusion”: (sat(d), n) in
R(SNP1) for all d. Thus, we do not give a single complete problem for R(SNP1),
but all sat(d) collectively play the role of a complete problem.

Restrictions of sat to formulas of polynomial size. A natural question about
sat(d) is whether (sat(d), n) ∈ ME. We do not answer this question but we relate
the complexity of (sat(d), n) to the complexities of (k-sat, n) and (satΔ, n) in
Section 2. Similar to bounds sk and tΔ, we define bounds σd that characterize
the complexity of sat(d). Namely, σd is the infimum of all c > 0 such that
sat(d) ∈ RTIME(2cn). If d > 1, we have

sk ≤ σd and tΔ ≤ σd

for all k and Δ. Moreover, if ETH is true, these inequalities are strict: k-sat and
satΔ can be solved strictly faster than sat(d) for any d > 1. Assuming SETH,
we have

s∞ = t∞ = σ∞ = 1

where σ∞ is the limit of {σd}d∈N as d → ∞. If SETH fails, it is still unknown
which of the following options hold:
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– σ∞ < 1, which means (sat(d), n) ∈ ME;
– σ∞ = 1, which means (sat, n) 
∈ ME.

Expressibility of (sat, n) as an existential second-order sentence. While impli-
cation (2) can be useful for proving (sat, n) /∈ ME, Theorem 2 in Section 3
may give guidance if we try to prove the opposite, (sat, n) ∈ ME. For instance,
suppose we have a Boolean query defined by an existential second-order sen-
tence and proved to be in ME. Then we could prove (sat, n) ∈ ME by reducing
(sat, n) to this query via a polynomial-time admissible reduction. What type
of such a reduction we can hope for? Theorem 2 shows that the reduction can-
not be one-one. Moreover, not only must it be many-one, but “many” must be
“exponentially many”. This is because instances of sat can be CNF formulas
whose size is super-polynomial in n.

2 Restrictions of SAT to Formulas of Polynomial Size

In this section, we consider three restrictions of sat to formulas whose size is
polynomial in the number of variables. Two of them are well known:

– k-sat is the restriction to formulas where every clause has at most k literals;
– satΔ is the restriction to formulas of clause density at most Δ (the clause

density is the ratio of the number of clauses to the number of variables).

The third restriction is defined below.

Definition 1. For any d > 0, we define sat(d) to be the restriction of sat to
CNF formulas with at most nd clauses, where n is the number of variables.

To compare the complexities of these restrictions, we use families {sk}, {tΔ},
{σd} of constants where

– sk is the infimum of all c > 0 such that k-sat ∈ RTIME(2cn);
– tΔ is the infimum of all c > 0 such that satΔ ∈ RTIME(2cn);
– σd is the infimum of all c > 0 such that sat(d) ∈ RTIME(2cn);

The sequences {sk}k∈N, {tΔ}Δ∈N, {σd}d∈N are nondecreasing and upper bounded
by 1; their limits are denoted by s∞, t∞, σ∞ respectively. It was shown in [CIP06]
that s∞ = t∞. The following observation shows that t∞ ≤ σd for any d > 1 (and
therefore s∞ ≤ σd for any d > 1).

Theorem 1. For all Δ > 0 and for all d > 1, we have tΔ ≤ σd.

Proof. Informally, the class of formulas of constant clause density is contained
in some class of formulas with polynomially many clauses (for sufficiently large
n). Namely, let Δ > 0 and d > 1 be fixed. Then there exists n0 such that for
any formula with m clauses over n ≥ n0 variables, if m ≤ Δn then m ≤ nd.
Therefore, any algorithm that solves sat(d) can be used to solve satΔ with
(asymptotically) the same complexity. Hence, tΔ ≤ σd. ��
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Corollary 1. For all k and for all d > 1, we have sk ≤ σd.

Proof. It is shown in [CIP06] that the sequences {sk}k∈N and {tΔ}Δ∈N are in-
terwoven: for any k there exists Δ such that sk ≤ tΔ and vice versa. ��

The Exponential Time Hypothesis (ETH) states that s3 > 0. It turns out that,
assuming ETH, k-sat and satΔ can be solved faster than sat(d) for all k, Δ
and for all d > 1:

Corollary 2. If ETH is true then sk < σd and tΔ < σd for all k, Δ and for all
d > 1.

Proof. If ETH is true then both sequences {sk}k∈N and {tΔ}Δ∈N increase in-
finitely often [IP01]. Combining this with Theorem 1 and Corollary 1, we obtain
the claim. ��

The Strong Exponential Time Hypothesis (SETH) states that the sequence
{sk}k∈N converges to 1 [IP01, CIP09]. Hence, assuming SETH, sat cannot be
solved in moderately exponential time. It follows from Theorem 1 that this is
true even if we restrict sat to formulas with at most nd clauses where d > 1:

Corollary 3. If SETH is true then sat(d) cannot be solved in moderately expo-
nential time for any d > 1.

Proof. By Theorem 1, s∞ ≤ σd for any d > 1. Hence, if σd < 1 for some d > 1
then s∞ < 1, i.e., SETH fails. ��

3 Parameterized Problems Defined by Existential
Second-Order Sentences

3.1 Parameterized Problems and Admissible Reductions

Let A be a decision problem in the class NP (we identify decision problems with
languages over {0, 1}). Since A ∈ NP, there exists a polynomial-time verifier V
for A. An instance x is a “yes” instance of A if and only if V accepts 〈x, y〉 where
y is a certificate for x. Let p be a polynomial-time computable function that
bounds shortest certificates, i.e., for any “yes” instance x, there is a certificate
y with |y| ≤ p(x). Any such function p is called a certificate-size parameter of
A (we say simply parameter since we consider only certificate-size parameters
in this paper). By a parameterized problem we mean a pair (A, p) where A is a
problem with a specified parameter p.

Obvious examples of problems parameterized by certificate-size parameters
are (sat, n) where n is the number of variables in the instance, the set cover
problem (in its decision version) with parameter m where m is the number
of sets, the graph isomorphism problem with parameter n lg n where n is the
number of vertices, etc.
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Definition 2. Let (A, p) and (B, q) be parameterized problems. Let ρ be a many-
one reduction from A to B. The reduction ρ is called an admissible reduction
from (A, p) to (B, q) if there is a constant c such that for any instance x of A,
we have q(ρ(x)) ≤ p(x) + c. If there is an admissible reduction from (A, p) to
(B, q), we write (A, p) ≤a (B, q). If, in addition, this reduction is computable in
polynomial time (in the size of instances of A), we write (A, p) ≤pa (B, q)

Thus, admissible reducibility is a special case of strong many-one reducibility
[IPZ01] where q(ρ(x)) is allowed to be O(p(x)). Also, if an admissible reduction
ρ is computable in polynomial time then ρ is a special case of efficient reducibil-
ity [CP09], i.e. Turing reducibility that allows oracle calls with parameters not
exceeding p(x) + O(1).

Clearly, if (A, p) ≤pa (B, q) and (B, q) is in ME then (A, p) is also in ME.

3.2 Parameterized Boolean Queries

Loosely speaking, a Boolean query is a decision problem whose instances are
structures with a given vocabulary [Imm99]. We consider relational vocabularies,
i.e., tuples of the form τ = 〈R1, . . . , Rk, c1, . . . , cl〉 where R1, . . . , Rk are relation
symbols and c1, . . . , cl are constant symbols. A structure with vocabulary τ is a
tuple 〈U, RU

1 , . . . , RU
k , cU

1 , . . . , cU
l 〉 where U is a nonempty set called the universe

of this structure, each RU
i is a relation (of the arity assigned to Ri) over U , and

each cU
i is a specified element in U . Given a vocabulary τ , a Boolean query is a

mapping from the set of all structures with τ to {“yes”, “no”}. When an encoding
of structures is fixed (relations are usually represented by tables), any Boolean
query can be viewed as a decision problem, see [Imm99] on binary encodings of
structures.

We consider Boolean queries defined by existential second-order sentences. Let
τ be a vocabulary and φ be a quantifier-free first-order formula over τ . Consider
an existential second-order sentence Φ of the form

∃T1 . . . ∃TrQ1x1 . . . Qsxs φ (3)

where T1, . . . , Tr are relation symbols from τ , Q1, . . . , Qs are quantifiers, and
x1, . . . , xs are first-order variables. The formula Φ defines the following Boolean
query: for any structure S with the vocabulary τ , the query maps S to “yes” if
and only if S |= Φ. We denote this query by Φ∗.

Since any Boolean query defined by an existential second-order sentence is in
NP [Fag74], it is natural to think of the class of such queries as a class of parame-
terized problems with certificate-size parameters. What could be a certificate-size
parameter for Φ∗? For any structure S such that S |= Φ, the tables correspond-
ing to values of T1, . . . , Tr can be viewed as a certificate for this “yes” instance.
How many bits are needed to describe such a certificate? It is easy to see that
the tables can be described using

∑r
i=1 |U |ai bits, where U is the universe of S

and each ai is the arity of the relation symbol Ti. The function that maps every
structure for Φ to the sum

∑r
i=1 |U |ai is called the standard parameter of Φ. We
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denote this function by pΦ. Note that if Φ has a single second-order quantifier
∃T where T is a monadic relation symbol then pΦ is just the cardinality of the
universe U . We write (Φ∗, pΦ) to denote the parameterized problem where Φ∗ is
the Boolean query and pΦ is the specified parameter.

3.3 SAT and the Definability by Existential Second-Order
Sentences

It is well known how to reduce sat to a Boolean query defined by an existential
second-order sentence. For example, consider a mapping ρ that maps every CNF
formula F with clauses C1, . . . , Cm over variables v1, . . . , vn to the following
structure S. The universe of S consists of max{m, n} elements numbered by
1, . . . , max{m, n}. The clauses are represented by two binary relations P and
N such that P (i, j) means that Ci contains a positive occurrence of vj and,
similarly, N(i, j) means that Ci contains a negative occurrence of vj . Let Φ be
the following sentence:

∃T∀x∃y [(P (x, y) ∧ T (y)) ∨ (N(x, y) ∧ ¬T (y))].

where T is a monadic relation symbol with the meaning: “T (j) means that vj

is set to true”. Since F is satisfiable if and only if S |= Φ, the mapping ρ is a
reduction from sat to Φ∗. Moreover, according to Definition 2, this reduction is
also an admissible reduction from (sat, max{m, n}) to (Φ, pΦ).

An admissible reduction ρ is called one-one if ρ is a one-to-one mapping.
Notice that the above reduction ρ from (sat, max{m, n}) to (Φ, pΦ) is one-one.
What other parameterized version of sat can be reduced via one-one admissible
reductions to Boolean queries defined by existential second-order sentences? In
particular, can we represent (sat, n) in a similar way? The following observation
shows that it is not possible.

Theorem 2. There is no existential second-order sentence Φ such that (sat, n)
can be reduced to (Φ∗, pΦ) via a one-one admissible reduction.

Proof. Suppose indirectly that there exists an existential second-order sentence
Φ such that (sat, n) is reducible to (Φ∗, pΦ) via a one-one admissible reduction ρ.
Let Fn be the set of all CNF formulas over n variables. We show that the cardi-
nality of Fn is larger than the cardinality of the image ρ(Fn), which contradicts
the assumption that ρ is one-to-one.

The number of all possible clauses over n variables is 3n (for each variable v
and for each clause C, there are three options: either C contains v, or C contains
¬v, or C contains neither v nor ¬v). Therefore, the set Fn consists of 23n

CNF
formulas.

To count the cardinality of ρ(Fn), recall that ρ is admissible, which implies
pΦ ≤ n + c for some constant c. This inequality upper-bounds the cardinality
of a universe. Indeed, if Φ has r second-order variables for relations of arities
a1, . . . , ar, then we have

n + c ≥ pΦ(S) =
r∑

i=1

|U |ai ≥ |U |
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for any structure S with universe U . Therefore, any structure for Φ such that
pΦ ≤ n+c has a universe of cardinality at most n+c. How many such structures
are there? Any table in such a structure contains at most |U |a rows where a is
the maximum arity of relation symbols appearing in Φ. Therefore, there can be
at most 2(n+c)a

possible tables for each relation. If Φ has k relation symbols, the
number of possible structures is at most 2k(n+c)a

.
Hence, ρ maps a set of cardinality 23n

to a set of cardinality 2k(n+c)a

and it
cannot be one-to-one. ��

Let R be a restriction of sat and let Φ be an existential second-order sentence.
The above proof shows that (R, n) is reducible to (Φ, pΦ) via a one-one admissible
reduction only if for any fixed n, the restriction R has at most 2nO(1)

instances.
Notice that the restrictions k-sat, satΔ, sat(d) have this property.

4 Moderately Exponential Complexity and Strict NP

The class SNP (Strict NP) consists of Boolean queries defined by existential
second-order sentences where the first-order part has a universal prefix [Pap94].
This class was defined in [KV87] and used in [PY91] for proving inapproxima-
bility of certain optimization problems. We “parameterize” this class and close
it under the ≤pa reducibility. This closure is denoted by R(SNP).

Definition 3. The class SNP is the set of Boolean queries defined by sentences
of the form

∃T1 . . .∃Tr∀x1 . . .∀xs φ (4)

where T1, . . . , Tr are relation symbols, x1, . . . , xs are first-order variables, and
φ is a quantifier-free formula. The class R(SNP) is defined to be the set of
parameterized problems (A, p) such that (A, p) ≤pa (Φ∗, pΦ) for some sentence
Φ is of the form (4).

The relationship between SNP and parameterized versions of k-sat is described
in [IPZ01]. In our terms, this relationship can be re-stated as follows.

Theorem 3 ([IPZ01]). For any k ≥ 3, the parameterized problem (k-sat, n) is
complete for R(SNP) via admissible reductions computable in polynomial time.

Proof. It is shown in [IPZ01] that (k-sat, n) is complete for the parameterized
version of SNP via strong many-one reductions. However, it is clear from the
proof that this reducibility is in fact the admissible reducibility computable in
polynomial time. ��

Corollary 4. R(SNP) ⊆ ME.

Proof. This follows from the fact that (k-sat, n) ∈ ME [PPSZ98, Sch99] and the
definition of the ≤pa reducibility.
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In this section, we extend SNP by allowing existential first-order quantifiers after
universal ones. The extended class is denoted by SNP1. Similar to R(SNP), we
define R(SNP1) and we prove that (sat(d), n) is complete for R(SNP1) via the
≤ps reducibility. Therefore, if (sat(d), n) ∈ ME then the entire class R(SNP1) is
also in ME.

Definition 4. The class SNP1 is the set of Boolean queries defined by sentences
of the form

∃T1 . . . ∃Tr∀x1 . . . ∀xs∃y1 . . . ∃yt φ (5)

where y1, . . . , yt are first-order variables and the other is the same as in (4). The
class R(SNP1) is defined to be the set of parameterized problems (A, p) such that
(A, p) ≤pa (Φ∗, pΦ) for some sentence Φ is of the form (5).

The following two theorems prove the “inclusion” and “hardness” respectively.

Theorem 4. For all d > 0, we have (sat(d), n) ∈ R(SNP1).

Proof. We describe a reduction ρ from (sat(d), n) to (Φ∗, pΦ), where

Φ = ∃T∀x1 . . . ∀xd∃y φ

with T being a monadic relation symbol, x1, . . . , xd, y being first-order variables,
and φ being a quantifier-free formula. Let F be a CNF formula with clauses
C1, . . . , Cm over variables v1, . . . , vn, where m ≤ nd. The reduction ρ maps F
to the following structure S. The universe of S consists of elements {1, . . . , n}
used to encode variables: variable vi is encoded by element i. Since there are at
most nd clauses, they can be encoded by d-tuples 〈k1, . . . , kd〉 where each kj is
an element from the universe. The vocabulary has two relation symbols P and
N of arity d + 1 each and one monadic relation symbol T with the following
interpretation:

– P (x1, . . . , xd, y) means that the clause encoded by 〈x1, . . . , xd〉 contains a
positive occurrence of the variable encoded by y;

– N is a similar relation symbol for negative occurrences;
– T (y) means that the variable encoded by y is set to true.

It is easy to see that F is satisfiable if and only if S |= Φ where Φ is

∃T∀x1 . . .∀xd∃y [(P (x1, . . . , xd, y) ∧ T (y)) ∨ (N(x1, . . . , xd, y) ∧ ¬T (y))].

Since the cardinality of the universe is n, we have n = pΦ(S) and therefore ρ is
admissible. Obviously, ρ is polynomial-time computable. ��
Theorem 5. For any parameterized problem (A, p) in R(SNP1), there exists a
constant d such that (A, p) ≤pa (sat(d), n).

Proof. Since (A, p) ∈ R(SNP1), there exists a sentence Φ of the form (5) such
that (A, p) ≤pa (Φ∗, pΦ). We describe a reduction ρ from (Φ∗, pΦ) to (sat(d), n)
for some d.

Let a1, . . . , ar be the arities of the second-order variables in Φ. Let S be a
structure for Φ with a universe U . The reduction ρ constructs a CNF formula F
that has the following properties:
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1. F is satisfiable if and only if S |= Φ;
2. F is a CNF formula with nd clauses over n variables, where

n = pΦ(S) =
r∑

i=1

|U |ai .

The construction proceeds in four steps. The first step is to get rid of first-order
quantifiers in Φ. Each subformula ∀xψ(x) is replaced by

ψ(c1) ∧ . . . ∧ ψ(c|U|)

where ci’s are constants for all elements of the universe. Similarly, each subfor-
mula ∃xψ(x) is replaced by

ψ(c1) ∨ . . . ∨ ψ(c|U|).

The resulting formula (denoted by F1) has the form

∃T1 . . .∃Tr

[∧
i

(∨
j φij

)]
where each φij has no first-order variables.

The second step is to convert F1 into an equivalent Boolean formula F2 (not
in CNF). All second-order quantifiers are eliminated. Each atom in F1 with a
relation symbol different from T1, . . . , Tr is replaced by true or false depending on
its value in S. Each atom Ti(d1, . . . , dai), where dj ’s are constants, is replaced
by a Boolean variable v indexed by the tuple 〈i, d1, . . . , dai〉. Notice that the
number of all such tuples is exactly

r∑
i=1

|U |ai = n.

We write v1, . . . , vn to denote these Boolean variables. The resulting formula
(denoted by F2) has the form

∧
i(
∨

j ψij), where each ψij is a Boolean formula
over variables v1, . . . , vn. Observe that the size of each ψij is a constant not
exceeding the size of φ in (5).

The third step is to convert F2 into a CNF formula F3. To do this, we replace
each ψij by an equivalent DNF formula of constant size. Then the resulting
formula F3 has the form ∧nO(1)

i=1

∨O(n)
j=1

∧O(1)
k=1 uijk

where each uijk is one of the Boolean variables v1, . . . , vn.
The last step is to obtain a required CNF formula F in which the number of

clauses is O(ns) where s is the number of universal quantifiers in Φ. This can be
done using distributivity.

To complete the proof, it remains to note that the reduction ρ takes polyno-
mial time. ��



324 E. Dantsin and A. Wolpert

Corollary 5. If (sat(d), n) is in ME for all d, then all problems of the class
R(SNP1) are also in ME.

Proof. Immediately follows from Theorem 5 and the definition of admissible
reducibility. ��
Note that the statement “(sat(d), n) is in ME for all d” does not imply automat-
ically the statement “(sat, n) ∈ ME”, but the converse implication is obviously
true. Therefore, for those who are interested in sat (rather than sat(d)), the
following weaker result could look more natural:

Corollary 6. If (sat, n) is in ME then all problems of the class R(SNP1) are
also in ME.
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[Sch99] Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfac-
tion problems. In: Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 1999, pp. 410–414 (1999)

[Tra08] Traxler, P.: The time complexity of constraint satisfaction. In: Grohe,
M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201.
Springer, Heidelberg (2008)

[Wil07] Williams, R.: Algorithms and resource requirements for fundamental prob-
lems. PhD thesis, Carnegie-Melon University (2007)

http://www.math.cas.cz/~pudlak/csat.pdf


Minimising Deterministic Büchi Automata
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Abstract. We show how deterministic Büchi automata can be fully
minimised by reduction to the satisfiability (SAT) problem, yielding the
first automated method for this task. Size reduction of such ω-automata
is an important step in probabilistic model checking as well as synthesis
of finite-state systems. Our experiments demonstrate that state-of-the-
art SAT solvers are capable of solving the resulting satisfiability problem
instances quickly, making the approach presented valuable in practice.

1 Introduction

The success of techniques for formal verification is closely connected to advances
in the efficient solution of the satisfiability (SAT ) problem. In the area of bounded
model checking [4], it has been shown that checking whether a given system has a
bounded-length witness for erroneous behaviour can efficiently and effectively be
performed by reduction to the SAT problem. Likewise, in software verification,
approaches involving satisfiability modulo theory solvers [2] have emerged, which
rely on the underlying SAT techniques.

However, there are many areas in formal verification that do not benefit from
advances in SAT solving yet. Taking for example probabilistic model check-
ing, where many of its variants are PSPACE-hard or require computing some
quantitative result [1], it is by no means obvious how the success of modern
SAT techniques can be transferred to this area. In this paper, we present some
progress towards closing this gap by reporting how SAT solving can be used for
the full minimisation of deterministic automata over infinite words, which arise
in intermediate steps of many formal methods.

One particular application of this automaton type is the verification of Markov
decision processes against properties stated in linear-time temporal logic (LTL)
[1]. Here, the classical model checking procedure requires converting the LTL
formula to a deterministic automaton. A similar situation arises in common
approaches to synthesis of finite state systems from LTL specifications [15].
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Minimising Deterministic Büchi Automata Precisely Using SAT Solving 327

In both application areas, the minimisation of the number of states of the de-
terministic automata involved results in significant speed-ups of the actual model
checking and synthesis tasks. Current tools for computing automata equivalent
to LTL formulas use state space reduction techniques such as bisimulation quo-
tienting [8] that have been developed for the minimisation of non-deterministic
Büchi automata which are suitable for model checking non-deterministic sys-
tems. As the universality problem, and thus, the minimisation problem, of this
class of automata is PSPACE-hard, the techniques used are typically incomplete
and thus do not guarantee to find a minimal automaton. To the best of our
knowledge, special techniques for the minimisation of deterministic automata
have only been considered for weak deterministic automata [13], which however
cannot even represent basic liveness properties.

In this paper, we lift the applicability of (complete) automaton minimisation
to a more expressive class of deterministic automata. For conciseness, we re-
strict ourselves to deterministic Büchi automata (DBA) here. While DBA are
not expressive enough to represent all LTL specifications (and are strictly less
expressive than for example deterministic parity automata), they can represent
most properties that appear in hardware specifications [6] and it is assured that
in these cases, the smallest DBA is not larger than the smallest deterministic
parity, Rabin or Streett automaton for the given property [12].

In both application areas mentioned above, the specification is usually a
Boolean combination of a set of individual properties, which allows the precise
minimisation of the specification parts representable as DBA with our technique
before the automaton for the overall specification is composed. Additionally,
some modern approaches for fast synthesis from LTL properties achieve a re-
markable speedup by even requiring the specification parts to be representable
and given as DBAs (in a certain encoding) [14].

In the following, we show that the problem of deciding whether there exists
a smaller deterministic Büchi automaton for some given such automaton is con-
tained in NP and can efficiently be reduced to the SAT problem. We evaluate
whether currently available SAT solvers are capable of dealing with such problem
instances. By succesively building and solving the resulting SAT instances, the
minimal automaton is found. Our experiments suggest that for practical appli-
cations, the current state of the art in SAT solving is sufficient for the successful
usage of the this minimisation technique.

2 Preliminaries

A deterministic Büchi automaton (DBA) is a 5-tuple A = (Q, Σ, δ, q0, F ) with a
finite set of states Q, a finite alphabet Σ, a transition function δ : Q × Σ → Q,
an initial state q0 ∈ Q and a set of accepting states F ⊆ Q. For the scope of this
paper, we assume that δ is a total function.

We say that some infinite word w = w0w1 . . . ∈ Σω is accepted by A if the
run π induced by w on A is accepting. We define π = π0π1 . . . such that π0 = q0

and for all i ∈ IN0, δ(πi, wi) = πi+1. We say that π is accepting if and only if
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{q ∈ Q | ∃∞j ∈ IN : πj = q} ∩ F 
= ∅, i.e., some accepting state occurs infinitely
often on π. We define the language L(A) of A to consist of all words in Σω that
induce accepting runs. We denote the size of an automaton by |Q|. A DBA is
minimal if there exists no other DBA with the same alphabet that has less states
and accepts the same language. We define the language of a state q ∈ Q to be
L(q) = L(Aq) for Aq = (Q, Σ, δ, q, F ).

For space reasons, we do not describe the logic LTL here, but rather refer to
[4,1]. A word can either satisfy an LTL formula or not. We define the language
of an LTL formula to be the set of infinite words over Σ = 2AP satisfying the
formula over some set of atomic propositions AP. We call a DBA equivalent to
an LTL formula if their languages are the same.

3 Minimising Deterministic Büchi Automata

Minimising deterministic Büchi automata is different from minimising deter-
ministic automata over finite words: while for the latter, there exists a suitable
polynomial algorithm, which is based on merging states with the same language,
the same idea cannot be exploited for Büchi automata. The left part of Figure
1 shows a Büchi automaton over the alphabet Σ = 2{a,b} equivalent to the LTL
formula (GFa) ∧ (GFb). This DBA has four states, whereas the smallest Büchi
automata equivalent to this formula have only three states. One such DBA is de-
picted in the right part of Figure 1. It is by no means obvious how to restructure
the left automaton in order to obtain such a smaller one.

This example shows that we cannot only rely on language equivalence for
minimising deterministic Büchi automata. We thus propose a different approach
here. Assume that some n-state reference automaton A′ = (Q′, Σ, δ′, q′0, F

′) is
given. We use a SAT solver to consider all possible n−1-state candidate automata
A = (Q, Σ, δ, q0, F ) and encode the equivalence check of the languages of A and
A′ in clausal form. While such a check is PSPACE-complete for non-deterministic
Büchi automata, it can be performed in polynomial time for deterministic Büchi

q0 q1

q2q3

ab

ab ab
ab

ab

b

ab

a

b

ab
a

ab
q0 q1

q2

b a

a, a

a

b

Fig. 1. A non-minimal DBA (left) and a minimal DBA (right) equivalent to the LTL
formula (GFa) ∧ (GFb) over the atomic proposition set AP = {a, b}. Both DBA have a
total transition relation. Accepting states are doubly-circled.
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automata and can also be efficiently encoded into a SAT instance. By repea-
tedly applying this reduction technique until the resulting SAT instance becomes
unsatisfiable, we obtain an automaton of minimal size.

For encoding the equivalence check, we use the observation that we can deduce
from the product of A and A′ if the two deterministic Büchi automata have the
same language. More precisely, we build the graph G = 〈V, E〉 with the set of
vertices V = Q × Q′ and edges E = {((q1, q

′
1), (q2, q

′
2)) | ∃s ∈ Σ : δ(q1, s) =

q2∧ δ′(q′1, s) = q′2}. If there is some loop (v0, v
′
0)(v1, v

′
1) . . . (vk, v′k) in 〈V, E〉 with

(v0, v
′
0) being reachable from (q0, q

′
0) such that on it, accepting states are only

visited for A, but not for A′, i.e., {v0, . . . , vk} ∩ F 
= ∅ and {v′0, . . . , v′k} ∩ F ′ =
∅, then there exists some w ∈ L(A) such that w /∈ L(A′), so A and A′ are
inequivalent. Dually, if {v0, . . . , vk} ∩ F = ∅ and {v′0, . . . , v′k} ∩ F ′ 
= ∅, then
there exists a word w /∈ L(A) such that w ∈ L(A′). If no such loops can be
found, A and A′ are equivalent.

3.1 Encoding as a SAT Problem

Using the observation stated above, we can build a SAT problem instance for
solving the DBA state reduction problem. For notational convenience, in the fol-
lowing, primed state variables always refer to states in the reference automaton,
whereas unprimed state variables refer to the candidate automaton. We use the
following set of variables:

{〈q〉F | q ∈ Q} ∪ {〈q1, s, q2〉δ | q1, q2 ∈ Q, s ∈ Σ} ∪ {〈q, q′〉G | q ∈ Q, q′ ∈ Q′}
∪ {〈q1, q

′
1, q2, q

′
2〉X | q1, q2 ∈ Q, q′1, q

′
2 ∈ Q′, X ∈ {N, A}}

The SAT clauses are defined as follows:∧
q1∈Q,s∈Σ

∨
q2∈Q

〈q1, s, q2〉δ (1)

∧
∧

q1,q2∈Q,q′∈Q′,s∈Σ

〈q1, q
′〉G ∧ 〈q1, s, q2〉δ ⇒ 〈q2, δ

′(q′, s)〉G (2)

∧
∧

q1,q2,q3∈Q,q′
1,q′

2∈Q′,s∈Σ,

δ′(q′
2,s)/∈F ′,(q′

1 �=δ(q′
2,s))∨(q1 �=q3)

〈q1, q
′
1, q2, q

′
2〉N ∧ 〈q2, s, q3〉δ

⇒ 〈q1, q
′
1, q3, δ

′(q′2, s)〉N (3)

∧
∧

q1,q2∈Q,q′
1,q′

2∈Q′,s∈Σ,

q′
1 /∈F ′,q′

1=δ(q′
2,s))

〈q1, q
′
1, q2, q

′
2〉N ∧ 〈q2, s, q1〉δ ⇒ ¬〈q1〉F (4)

∧
∧

q1,q2,q3∈Q,q′
1,q′

2∈Q′,s∈Σ,

q′
1∈F ′,q′

1 �=δ(q′
2,s))∨q1 �=q3

〈q1, q
′
1, q2, q

′
2〉A ∧ 〈q2, s, q3〉δ ∧

¬〈q3〉F ⇒ 〈q1, q
′
1, q3, δ

′(q′2, s)〉A (5)

∧
∧

q1,q2∈Q,q′
1,q′

2∈Q′,s∈Σ,

q′
1∈F ′,q′

1=δ(q′
2,s))

〈q1, q
′
1, q2, q

′
2〉A ∧ 〈q2, s, q1〉δ ⇒ 〈q1〉F (6)
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∧〈q0, q
′
0〉G ∧

∧
q∈Q,q′∈Q

(〈q, q′〉G ⇒ 〈q, q′, q, q′〉N ) ∧ (〈q, q′〉G ⇒ 〈q, q′, q, q′〉A) (7)

The variables 〈·〉F represent whether a state is accepting. The transition function
of the candidate automaton is defined in the variables 〈·〉δ. The clauses (1) make
sure that the transition function is total. For the vertices in G that are reachable
from (q0, q

′
0), the first part of (7) and (2) enforce that the respective variables in

〈·〉G are set to true. In particular, the first conjunct of (7) makes sure that (q0, q
′
0)

is defined as being reachable and (2) forces successors of reachable vertices in G
to be marked as being reachable as well.

If there is path from some reachable vertex (q1, q
′
1) ∈ V to some vertex

(q2, q
′
2) ∈ V in G such that no accepting state of A′ is visited along the path,

then 〈q1, q
′
1, q2, q

′
2〉N indicates this fact. This is made sure by (3) in conjunction

with (7). We use these path witness variables for detecting the loops in G that
are non-accepting for A′. The clauses (4) state that the states of A along such
loops then also have to be non-accepting.

Dually, 〈q1, q
′
1, q2, q

′
2〉A is set to true if there exists a path from some reachable

vertex (q1, q
′
1) ∈ V to some vertex (q2, q

′
2) ∈ V in G such that no accepting state

of A is visited in between. This is assured by the clauses (5) and (7). We add
the clauses (6) to make sure that such a path may not form a loop if one of its
A′-states is accepting.

Note that there are no clauses enforcing that not too many variables in 〈·〉G,
〈·〉δ, 〈·〉N or 〈·〉A are set to true. This is not necessary, as this only makes finding
a satisfying assignment harder, but never results in false-positives. If a variable
valuation satisfying all constraints has some state for which there is more than
one transition possible for some input symbol, then the encoding makes sure that
picking any of the possible successors always results in a correct DBA. Apart
from the clauses (1), all conjuncts are Horn clauses (if we negate all values of
〈·〉F ). While the generated instance is relatively large (of size O(|Q′|4)), the fact
that most clauses are of Horn type simplifies solving such SAT instances.

For speeding up the SAT solving process, symmetry breaking clauses [16] can
also be added. For simplicity, we only break symmetry partially in our experi-
mental evaluation. In particular, for Q = {q1, . . . , q|Q|} and Σ = {s1, . . . , s|Σ|},
we add the following conjuncts that encode some relaxed form of lexicographi-
cal minimality of the candidate automaton over the automata whose graphs are
isomorphic to the candidate solution:∧

1≤i<|Q|, i+1<j≤|Q|, (i−1)·|Q|+j+2≤k≤|Σ|
¬〈qi, sk, qj〉δ

4 Experimental Evaluation1

We ran a prototype implementation of our technique on a couple of LTL formu-
las that are typical for model checking and synthesis. The upper part of Table 1
1 Details and a downloadable implementation of the approach can be found at
http://react.cs.uni-saarland.de/tools/dbaminimizer
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Table 1. Experimental results of our DBA minimisation technique

LTL specification
# States First instance Total
From To # Vars # Clauses time

F(q ∧ X(pUr)) 3 3 94 697 0.01 s

pUqUr ∨ qUrUp ∨ rUpUq 3 3 112 699 0.01 s

F(p ∧ X(q ∧ XFr)) 4 4 279 3785 0.01 s

G(p → qUr) 5 3 852 13508 0.03 s

pU(q ∧ X(rUs)) 5 5 780 26972 0.04 s

F(p ∧ XF(q ∧ XF(r ∧ XFs))) 5 5 780 26972 0.01 s

pU(q ∧ X(r ∧ F(s ∧ XF(u 9 9 14752 5383278 30.36 s
∧XF(v ∧ XFw)))))

GFp ∧ GFq ∧ GFr ∧ GFs ∧ GFu 14 6 51467 13856026 63.03 s

GFa ∨ GFb ∨ GFc 2 2 19 60 0.01 s

G(a → Fb) 4 2 339 1907 0.03 s

G(aUbU¬aU¬b) 4 2 339 1907 0.03 s

(Ga → Fb) ∧ (G¬a → F¬b) 4 4 291 1904 0.01 s

G¬c ∧ G(a → Fb) ∧ G(b → Fc) 5 2 852 13508 0.04 s

G(a → Fb) ∧ Gc 5 3 852 13508 0.03 s

GF(a → XXXb) 7 2 3720 43457 0.08 s

G(a → Fb) ∧ G(¬a → F¬b) 8 4 5635 89511 0.14 s

GF(a ↔ XXb) 9 6 8760 168358 1.57 s

G(a → Fb) ∧ G(b → Fc) 10 5 14247 589925 0.98 s

G(a → XXXb) 10 9 16623 295076 3.71 s

G(a → Fb) ∧ G(c → Fd) 15 6 72660 9926065 23.96 s

GF(a ↔ XXXb) 17 15 116912 4752970 3617.3 s∗

contains results for the 8 out of 12 LTL formulas stated in [7] that are repre-
sentable as DBAs. In the lower half of the table, we give results for some typical
synthesis specification parts and added some more complex formulas to allow
for a more meaningful evaluation of our approach. Note that in both cases, the
formulas occurring are mostly rather small, as in practice larger specifications
are usually split up such that their conjuncts can be translated separately and
composed to an overall automaton afterwards.

We used the tool ltl2dstar v.0.5.1 [10] in conjunction with ltl2ba v.1.1
[9] to obtain initial non-optimised deterministic Rabin automata equivalent to
the input formulas given in the first column of the table. By applying the al-
gorithm described in [11], we converted the deterministic Rabin automaton to
a deterministic Büchi automaton whenever this is possible (and aborted other-
wise). The ltl2dstar tool applies bisimulation quotienting, so the automata
obtained are already heuristically optimised.

The number of states of these automata is given in the second column of Table
1. Columns four and five state the sizes of the reduction problems of these initial
DBAs. The reduction process is repeated until no further improvements are pos-
sible. The resulting number of states in the minimised DBAs is shown in the third
column. Finally, the total computation time of the SAT solver picosat v.913
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[3] observed on a computer with an Intel Core 2 Duo 1.86GHz processor for all
reduction steps is given in the last column. We restricted the SAT solving time
to one hour. Exceeding of this time bound is denoted by a star. Consequently, in
such cases, the resulting DBA is not guaranteed to be minimal. The computation
times for obtaining the initial DBA are negligible (< 0.05 seconds in all cases)
and thus not added to the total time value. Furthermore, the computation of
the SAT instances from the automata has also not been taken into account as
most time was spent on writing the SAT instance to disk here, which can be
circumvented by a future tighter integration with the SAT solver.

The table shows that except for one instance, the minimisation problem was
always solved quickly. Thus, our technique is well-suited for being used as an
optimisation step for the applications discussed in this paper. As the problem
definition inherently induces a lot of symmetries in the SAT instance, we con-
jecture that future advancements in dynamic symmetry breaking [16] will allow
tackling even bigger problem instances.
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Abstract. Previous work has shown that circuit representations can be exploited
in QBF solvers to obtain useful performance improvements. In this paper we
examine some additional techniques for exploiting a circuit representations. We
discuss the techniques of propagating a dual set of values through the circuit,
conversion from simple negation normal form to a more optimized circuit repre-
sentation, and adding phase memorization during search. We have implemented
these techniques in a new QBF solver called CirQit2 and evaluated their impact
experimentally. The solver has also displayed superior performance in the non-
prenex non-CNF track of the QBFEval’10 competition.

1 Introduction

Quantified Boolean Formulas (QBF) are a PSPACE-complete extension of satisfiability
(SAT) in which the propositional variables can be either universally or existentially
quantified. The addition of quantifiers, and the arbitrary nesting of quantifiers, provides
considerable additional representational power: QBFs can compactly represent a much
wider range of problems than SAT. This can make QBF more effective than SAT for
representing and solving some problems [1].

While traditionally QBF solvers have represented their input in prenex conjunctive
normal form (CNF), some recent work has explored non-CNF solvers. For example,
in [2] a QBF solver utilizing a circuit representation was presented and shown to have
some advantages over CNF based solvers.

In this paper we present some additional ways of exploiting a circuit representation
to obtain better performance. We present an overview of dual propagation (explored
more fully in [3]) which provides superior detection and learning of solutions; some
techniques for converting negation normal form to a more optimized circuit representa-
tion; and extend the phase memorization technique utilized in SAT solvers [4] to QBF.
We have implemented all of these techniques as an extension of the CirQit solver [2],
and we present empirical evidence supporting their usefulness.

2 Background

A QBF has the form Q.φ, where φ is an arbitrary propositional formula and Q is a
sequence of quantified variables (∀x or ∃x) one for each variable in φ (i.e., the formula

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 333–339, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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has no free variables).1 The truth value of a QBF is defined recursively: ∃xQ.φ is true
iff there is at least one value v of x for which Q.φ|x=v is true, and ∀xQ.φ is true iff
Q.φ|x=v is true for both values v of x.

Typically QBF solvers represent the body of the QBF, φ, in CNF. However, φ can
be represented in other ways. In circuit-based solvers, e.g., the CirQit solver of [2], φ
is represented as a logical circuit consisting of AND, OR and NOT gates along with
lines running from gate outputs to the inputs of other gates. The quantified variables
of Q are the inputs to the circuit and the output line of each gate is labeled with a
new variable. Formally, these variables can be treated as new existentially quantified
auxiliary variables scoped by all of the input variables with a path to them in the circuit.

The CirQit solver explores different settings of the input variables during a back-
tracking search and propagates primal values through the circuit to determine logical
consequences of these settings. During search the aim is to determine when the QBF
body φ is satisfied. This occurs when the circuit inputs force the circuit output to be true.
Hence, CirQit initially sets the circuit output to 1 and propagates this primal value back
through the circuit. Whenever a circuit line is forced to be both 0 (false) and 1 (true)
(by propagation from the inputs and from the output’s primal value) a contradiction
is detected: the circuit cannot be satisfied under the current input settings. Similarly, a
contradiction is detected whenever the value of a universally quantified input is forced.

As shown in [2] clausal reasons for each forced line can be extracted from the cir-
cuit, and clause learning can be performed when conflicts are detected. Further, when
φ is satisfied cubes can be extracted by finding a subset of the input lines sufficient
to propagate 1 to the circuit output. Finally, the circuit representation naturally sup-
ports don’t care reasoning. In particular, certain lines of the circuit, can be marked
as don’t care during a don’t care propagation process. Input lines that become don’t
care do not need to be branched on during search, and do not need to appear in the ex-
tracted cubes. This can yield better (smaller) cubes than the technique employed in CNF
solvers.2

3 New Techniques for Exploiting the Circuit Representation

3.1 Dual Propagation

While clauses are used in QBF solvers to learn settings that falsify the QBF formula,
cubes are used to learn settings that satisfy the formula. However, cubes are usually
not as effective as clauses in improving the efficiency of QBF solvers. In particular, the
solver starts off with no cubes, and the cubes it learns initally are usually quite large
and thus only useful quite deep in the search tree. On the other hand, the solver starts
off with many short clauses in its input (in the circuit representation these clauses are
implicit in the logical relationships between the gate inputs and its output), and even
initially learnt clauses can be quite short.

1 This is the prenex form where the quantifiers precede the formula body. Non-prenex represen-
tations allow quantifiers to appear in front of any sub-formula of the body. We do not address
the possible advantages of non-prenex representations in this paper.

2 In CNF a cube is extracted by finding a set of true literals sufficient to satisfy every clause.
Even clauses from the don’t care part of the circuit must be satisfied.
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In [3] a new technique is presented that allows the identical technique of clauses and
clause learning to be used to detect both satisfying and falsifying input settings. This
new technique is called dual propagation, and we present a brief overview of its main
ideas here, leaving the details and comparison with prior methods to [3].

Consider the negation of the QBF being solved ¬Q.φ. This formula is false iff the
original QBF Q.φ is true. Taking the negation in we obtain (¬Q).(¬φ), where ¬Q is
the same as Q except that its quantifiers are flipped. For ¬φ we can exploit the circuit
representation. This formula can be represented by the same circuit used to represent φ,
Cφ, by simply passing the output of Cφ through a NOT gate.

If we want to solve ¬Q.φ with a circuit based solver we would take the circuit
NOT(Cφ) and set its output to 1/true. The 1 would propagate back through the final
NOT gate, and set the output of Cφ to 0. So we see that the final NOT gate can be
discarded; it suffices to set the output of Cφ to 0. Now the solver would search various
settings of the circuit input lines. These are identical to the input lines of Cφ but have
reversed quantifiers. Propagation and clause learning operate just as before.

Conflicts discovered while solving ¬Q.φ are actually solutions for Q.φ; if ¬Q.φ
cannot be made true under the current input settings, Q.φ cannot be made false. Propa-
gation on ¬Q.φ can force variables that in Q.φ are universal. This indicates that in Q.φ
the other value is guaranteed to lead to a solution and need not be explored. Similarly,
clause learning on ¬Q.φ yields clauses that if falsified indicate that Q.φ is satisfied.
Thus, propagation and clause learning on ¬Q.φ detects settings that satisfy Q.φ using
the same techniques used on Q.φ to detect settings that falsify Q.φ.

The circuit representation can be exploited to implement this idea by simply prop-
agating two sets of values through the circuit: the original primal values generated by
setting the circuit output to 1, and a new set of dual values generated by setting the
circuit output to 0. Since both ¬Q.φ and Q.φ have the same input lines (with flipped
quantifiers) the input lines always have identical primal and dual values. Thus values
can be transferred between the primal and dual channels via the input lines.

As before, backtracking search sets input lines, and both primal and dual values are
propagated through the circuit. Thus propagation might set either or both values of the
auxiliary variables. Contradictions are detected from both the primal and dual values,
and in either case a clause is learnt and the solver backtracks. Primal and dual clauses
are put in separate databases: unit propagating primal clauses forces primal values while
unit propagating dual clauses forces dual values.

It can be seen that a primal conflict causes backtrack and an existential of Q.φ to be
forced (the opposite value must falsify Q.φ), while a dual conflict causes backtrack and
a universal of Q.φ to be forced (the opposite value must truthify Q.φ). Furthermore,
the solver always encounters either a primal conflict or a dual conflict along each path
it explores—once a sufficient number of input lines have been set either a 0 or a 1
must be propagated to the circuit output causing a conflict with the other value. The
solver terminates on learning either an empty primal or an empty dual clause indicating
that the input QBF is false or true respectively. Finally, don’t care propagation can be
extended to work with dual propagation.
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3.2 Better Circuits from NNF

Negation normal form (NNF) has recently been adopted as the standard non-clausal in-
put format for the QBF evaluation. However, because NNF involves pushing all nega-
tions down to the level of the propositional variables, it can obscure structure in the input
formula. For example, consider the propositional formula (c ∨ F (x)) ∧ (d ∨ ¬F (x)),
where F (x) is some sub-formula over the variables x. In a circuit representation a sin-
gle sub-circuit, CF (x), could be used to represent F (x), its output feed into the gate
OR(c, F (x)), and the negation of its output feed into the gate OR(d, NOT(F (x)). Ini-
tially, if the formula must be true, the output of both OR gates is forced to 1. Then,
e.g., if during search c was set to 0, propagation would set the output line of CF (x) to
1, the output line of NOT(F (x)) to 0, and thus force d to 1. If this formula was first
converted to NNF, then a separate sub-circuit, C¬F (x), would have to be constructed
for ¬F (x) which would share only inputs (and negated inputs) with CF (x). Depending
on the complexity of CF (x), it is likely that forcing the output of CF (x) would have no
effect on the output of C¬F (x)—e.g., if the output of CF (x) failed to propagate down
to any of its inputs.

Here we suggest a technique for recovering structure that might be lost in an NNF
representation. We define an inductive relation of structural equivalence

i≡ and struc-
tural negated equivalence

ni≡ between two propositional formulas represented in NNF:

– For every literal l, l
i≡ l and l

ni≡ ¬l
– G1 ◦ · · ·◦Gn

i≡ F1 ◦ · · ·◦Fn for ◦ ∈ {∧,∨} if Gi
i≡ Ff(i) for every i ∈ {1, . . . , n}

under some bijection f : {1, . . . , n} → {1, . . . , n}.
– G1 ◦ · · · ◦Gn

ni≡ F1 • · · · •Fn for {◦ = ∧, • = ∨} or {◦ = ∨, • = ∧} if Gi
ni≡ Ff(i)

for every i ∈ {1, . . . , n}, under some bijection f : {1, . . . , n} → {1, . . . , n}.

It can proved by a simple induction that if G
i≡ F then G and F represent the same

boolean function, and that if G
ni≡ F then G and ¬F represent the same boolean func-

tion. A simple example of this definition is that (a ∧ (b ∨ c))
ni≡ (¬a ∨ (¬b ∧ ¬c)).

To simplify an NNF we first generate for every subformula F a function identifier
(id) fid (F ) and a negated function id nfid (F ) so that for any two subformulas G and F ,
G

i≡ F iff fid (G) = fid (F ), and G
ni≡ F iff fid (G) = nfid (F ).

This accomplished by using hashing techniques to identify structurally equivalent
sub-formulas (similar to how BDDs are constructed). Ids for the subformulas are as-
signed bottom up so that a subformula obtains an id only after its children subformulas
have obtained theirs. For each variable v unique ids are created for v and for ¬v. In
addition we set nfid (v) = fid (¬v) and nfid (¬v) = fid (v). Each function id assigned is
kept in a hash table. The subformula F1 ◦ · · · ◦ Fk is assigned an id by first sorting its
children Fi by their ids. Then an id is computed that is a function of the operator ◦ (∨
or ∧) and the ids of the sorted children. Similarly a negated id is computed by repeating
the computation using the dual operator of ◦ and the (already computed) negated ids
of the children (resorted by their negated ids). Both ids are stored in the hash table. It
is not hard to show that this procedure generates ids that satisfy the conditions stated
above, i.e., G

i≡ F iff fid (G) = fid (F ), and G
ni≡ F iff fid (G) = nfid (F ).

Using the subformula ids an optimized circuit can now be constructed to represent the
NNF. Again we build up the circuit bottom up, first creating input lines corresponding
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to fid (v) and nfid (¬v) for each variable. To construct the circuit for the subformula
F = F1 ◦ · · ·◦Fk we first check to see if subcircuits for fid (F ) or nfid (F ) have already
been constructed. If so we simply reuse the output line (or output line run through a
NOT gate) as the line representing F . Otherwise we create a new gate representing ◦
whose inputs are the outputs of the subcircuits corresponding to the Fi, and mark this
as the circuit that has already been constructed for fid (F ). This allows the subcircuit
constructed for F to be reused to represent future subformulas.

This process creates a more compact circuit. In particular, the circuit needs only
one sub-circuit (and perhaps an additional NOT gate) to represent an entire set of sub-
formulas {F1, . . . , Fk} of the NNF with either Fi

i≡ Fj or Fi
ni≡ Fj (1 ≤ i, j ≤ k).

3.3 Simplifying the NNF

Using the ids constructed as described above we can perform some further simplifica-
tions of the NNF. This utilizes two easy to verify logical rules: φ∧F (φ) ≡ φ∧F (TRUE)
and φ ∨ F (φ) ≡ φ ∨ F (FALSE), where φ is any propositional formula.

The algorithm is simple and is applied before the circuit representation is generated:
using the fid and nfid identifiers, any repeated occurrences of a subformula in its sibling
subformula can be replaced with a constant according to the above logical rules. The
NNF is then simplified, function ids regenerated, and the rules are applied again. This
process is repeated until no further simplifications are possible, after which the circuit
representation can be generated.

3.4 Phase Memorization

Phase memorization in SAT involves setting variables to their previously set values
on the new descent after backtrack [4]. The main idea rests on the intuition that often
a problem decomposes into different subproblems. Reusing the previous values after
backtrack allows the solver to retain some of the work done on other subproblems.

In QBF, we have two types of backtrack—success and failure. Also, universal and
existential variables play very different roles in QBF. We consider this interplay in light
of the above idea and in light of the now completely symmetric processes of failure and
success backtracking under dual propagation.

In a conjunction of different subproblems, the universal variables in one subproblem
cannot affect the solution of another one—all possible settings need to be checked any-
way. This leads to the idea that remembering existential variables might be beneficial
after a conflict is generated on one of the subproblems, but that the universal settings
are irrelevant. Symmetrically, if a solution is found, only the settings of the universal
variables are important.

Based on this intuition, we implemented the following phase memorization schema:
we restore phase values only for those variables that are existential with respect to the
primal or dual conflict that occurs. This means that phases are restored for the exis-
tential variables when backtracking from a conflict, and for universal variables when
backtracking from a solution.
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4 Experimental Results

We have modified the solver CirQit2 [3], which includes dual propagation. The new
solver, CirQit2.1, is slightly more optimized, reads NNF input and includes all tech-
niques discussed here. The experiments were run on all the non-Prenex, non-CNF
benchmarks currently available from QBFLIB [5]. All tests were run on a 2.8GHz ma-
chine with 12GB of RAM under a time limit of 1200 CPU seconds per instance.

Table 1 shows the comparison between CirQit2.1, CirQit2 [3], CirQit [2] and some
state-of-the-art CNF-based QBF solvers: quantor (version 3.0, with the recommended
picosat back end) [6], Qube (version 6.5) [7], nenofex [8] and depqbf [9]—the latter two
are the versions submitted to the main track of QBFEVAL’10. The non-prenex non-
CNF instances are converted to prenex CNF using a conversion tool available on the
QBFEval site. Internally, CirQit converts input instances to prenex form using a naive
algorithm that places the variables in the same order in which they are encountered.

On the domains from the set BMC QBF 1.0 (“assertion”, “consistency” and “pos-
sibility”), the bottom-up solver quantor outperforms CirQit2.1, as well as any other
search-based solver. With this exception, CirQit2.1 proves to be superior. The drastic
difference between CirQit and CirQit2 shows the effectiveness of dual propagation,
while the improvement of CitQit2.1 shows the effectiveness of the other techniques.
Each technique contributes to the improvement. Turning off any one of them reduces
the performance of CitQit2.1. Without generating better circuits, it can solve only 344
problems (out of 492); without simplification, 340; without phase memorization, 344.
Overall the preprocessing techniques reduced the number of variables by 0.99%, but
only because they were less useful on the more numerous benchmark families.

Table 1. Comparison between CirQit2.1 and other state-of-the-art CNF-based solvers. The largest
number of instances solved is shown in bold, with ties broken by the time taken to solve those
instances. Percent decrease in the number of variables (from CirQit2.1 to CirQit2) is also shown.

CirQit2.1 CirQit2 CirQit quantor Qube6.5 nenofex depqbf

Solved Time % Dec Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time Sol. Time

Seidl (150) 150 43 12.63 150 318 147 2,281 42 3,272 149 2,485 82 1,160 150 557

assertion (120) 48 16,166 0.67 40 14,503 3 1 119 8,736 6 1,180 12 4,170 24 145

consistency (10) 7 2,562 0.51 4 1,283 0 0 10 720 0 0 1 306 0 0

counter (45) 43 1,368 7.77 40 492 39 1,315 28 414 31 540 29 1,727 31 70

dme (11) 11 11 27.59 10 5 10 15 0 0 7 88 8 94 11 901

possibility (120) 57 17,535 0.50 45 16,121 10 1,707 111 7,976 14 4,713 12 4,037 10 143

ring (20) 20 40 24.31 20 53 15 60 11 479 16 189 11 4 13 243

semaphore (16) 16 2 39.99 16 3 16 7 16 12 16 361 16 1,193 16 39

Total (492) 352 37,728 0.99 325 32,779 240 5,389 337 21,613 239 9,557 171 12,692 255 2,098
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Abstract. Preprocessing has proven important in enabling efficient Boolean
satisfiability (SAT) solving. For many real application scenarios of SAT it is im-
portant to be able to extract a full satisfying assignment for original SAT in-
stances from a satisfying assignment for the instances after preprocessing. We
show how such full solutions can be efficiently reconstructed from solutions to
the conjunctive normal form (CNF) formulas resulting from applying a combi-
nation of various CNF preprocessing techniques implemented in the PrecoSAT
solver—especially, blocked clause elimination combined with SatElite-style vari-
able elimination and equivalence reasoning.

1 Introduction

CNF-level preprocessing has proven important in enabling efficient SAT solving. This
is highlighted for instance by PrecoSAT1—one of the most successful SAT solvers in
the 2009 SAT Competition—that applies a combination of different preprocessing tech-
niques both before and during search. On the other hand, for many real applications sce-
narios it is important to be able to extract a full satisfying assignment for the original
instances from satisfying assignments for preprocessed instances. However, CNF-level
preprocessing/simplification techniques, such as SatElite-style variable elimination [1]
and blocked clause elimination [2], often preserve only satisfiability, not the set of sat-
isfying assignments. Especially, reconstruction of an original solution becomes non-
straightforward when applying combinations of preprocessing techniques.

In this paper we show how such full satisfying assignments can be efficiently recon-
structed from solutions to the CNFs resulting from applying combinations of various
preprocessing techniques. Especially, we concentrate on the non-trivial case of com-
bining blocked clause elimination [2] (BCE)—which has proven surprisingly power-
ful, being able to achieve the same level of simplification as the Plaisted-Greenbaum
polarity-based CNF encoding and a combination of specific circuit-level simplification
techniques— with SatElite-style variable elimination and equivalence reasoning [3,4,5].
We explain how solution reconstruction is done in practice in PrecoSAT, and formally
justify the correctness of this process. The presented reconstruction techniques are both
time and space wise linear, and hence have no real overhead w.r.t. solving.
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2 Preliminaries

CNF. For a Boolean variable x, there are two literals, the positive literal, denoted by
x, and the negative literal, denoted by x̄, the negation of x. A clause is a disjunction
of distinct literals and a CNF formula is a conjunction of clauses. When convenient, a
clause is seen as a finite set of literals and a CNF formula as a finite set of clauses. A
clause is a tautology if it contains both x and x̄ for some variable x. A truth assignment
for a CNF formula F is a function τ that maps variables in F to {t, f}. If τ(x) = v, then
τ(x̄) = ¬v, where ¬t = f and ¬f = t. A clause is satisfied by τ if it contains at least
one literal l such that τ(l) = t. An assignment τ satisfies F if it satisfies every clause
in F . Finally, given an assignment τ , let τx (resp., τx̄) denote the assignment for which
τx(x) = t (resp., τx̄(x) = f) and which otherwise is identical to τ .

Resolution. The resolution rule states that, given two clauses C1 = {x, a1, . . . , an}
and C2 = {x̄, b2, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called
the resolvent of C1 and C2, can be inferred by resolving on the variable x. We write
C = C1 ⊗x C2. A sequence of clauses (C0, C1, . . . , Cn) is a resolution derivation
of the clause C from a CNF formula F if (i) Cn = C, and (ii) each Ci, where 0 ≤
i < n, is either a clause in F (in this case Ci is called an input clause), or Ci is the
resolvent of two clauses Cj and Ck, where j, k < i. We denote by F " C the fact
that there is a resolution derivation of the clause C from the CNF formula F . A well-
known refinement of resolution is tree-like resolution, where derivations have to be
representable as trees.

Variable Elimination as SatElite-style Preprocessing. Following the Davis-Putnam
procedure [6] (DP), a preprocessing technique VE, referred to as variable elimination
by clause distribution in [1], can be defined. For a CNF formula F , let Sx ⊆ F and
Sx̄ ⊆ F consist of all the clauses in F that contain the literal x and x̄, respectively. The
elimination of a variable x in the whole CNF can be computed by pair-wise resolving
each clause in Sx with every clause in Sx̄. Formally, the resolution operator ⊗ can be
lifted to sets of clauses:

Sx ⊗x Sx̄ = {C1 ⊗x C2 | C1 ∈ Sx, C2 ∈ Sx̄, and C1 ⊗x C2 is not a tautology}.
Now, replacing the original clauses in Sx ∪ Sx̄ with the set S = Sx ⊗x Sx̄ of non-
tautological resolvents gives the CNF (F \ (Sx ∪ Sx̄)) ∪ S which is satisfiability-
equivalent to F . Since DP is a complete proof procedure for CNFs, with exponential
worst-case space complexity, for practical applications as a preprocessing technique,
variable elimination needs to be bounded; e.g., SatElite eliminates a considered vari-
able only when the resulting CNF formula (F \ (Sx ∪ Sx̄)) ∪ S will not contain more
clauses as the original formula F . For the following, let VE(F, x) denote the result of
applying variable elimination to F w.r.t x.

Blocked Clause Elimination (BCE) is a satisfiability-preserving CNF preprocessing
techniques which removes so called blocked clauses [7] from CNF formulas.

Definition 1. A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause
C′ ∈ F with l̄ ∈ C′, the resolvent (C \ {l})∪ (C′ \ {l̄}) obtained from resolving C and
C′ on l is a tautology.
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With respect to a fixed CNF and its clauses we have:

Definition 2. A clause is blocked if it has a literal that blocks it.

Example 1. Consider the formula Fblocked = (a∨b)∧(a∨ b̄∨ c̄)∧(ā∨c). Only the first
clause of Fblocked is not blocked. The second clause contains two blocked literals: a and
c̄. Also literal c in the last clause is blocked. Notice that after removing either (a∨ b̄∨ c̄)
or (ā∨c), the clause (a∨b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a trivially satisfiable formula. �

In the example, notice that although BCE alone can show that the original formula is
satisfiable, a solution to the original CNF is not directly available.

Recent work [2] shows that, although a simple technique, BCE is surprisingly pow-
erful. For example, without any circuit-level information, on the standard Tseitin CNF
encoding BCE can achieve at least the same level of simplification as the Plaisted-
Greenbaum polarity-based CNF encoding and a combination of specific circuit-level
simplification techniques. Moreover, as shown in [2], BCE and SatElite-style variable
elimination are to some extend orthogonal preprocessing techniques, which justifies
combining these techniques for even more effective preprocessing. Notice also that, in
contrast to variable elimination, BCE has a unique fixpoint for any CNF formula, i.e.,
BCE is confluent. This is due to the following.

Proposition 1 ([7]). Given a CNF formula F , let clause C ∈ F be blocked with respect
to F . Any clause C′ ∈ F , where C′ 
= C, that is blocked with respect to F is also
blocked with respect to F \ {C}.

Exploiting Equivalent Literals. For two literals l1 and l2, let l1 ≡ l2 denote the
CNF formula {{l1, l̄2}, {l̄1, l2}}. For a given CNF formula F , if F " l1 ≡ l2, the
equivalent literals l1 and l2 can be exploited by the equivalence reduction in which all
occurrences of l2 are substituted by l1 (or vice versa), eliminating the variable of l2 (or
l1). For example, hyper binary resolution, in which the clause {l, l′} can be derived in
one step from the clauses {l, l1, . . . , ln} and {l̄i, l′} where 1 ≤ i ≤ n, can be used to
derive new binary clauses [3,4,5].

For detecting and exploiting equivalent literals in preprocessing/simplification, Pre-
coSAT implements a lazy version of hyper binary resolution. It also finds equivalent
literals during failed literal probing. Equivalences are represented with a union find
data structure. During garbage collection, not only top-level satisfied clauses are re-
moved but all their literals are mapped to their representatives of the union find data
structure. This essentially removes equivalent literals from the CNF; afterwards, only
the representatives remain.

3 Solution Reconstruction for Individual Techniques

In this section we describe how to reconstruct solutions for each of the considered
preprocessing techniques separately. We start with variable elimination for which re-
construction can be seen as part of the completeness proof of DP.
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Proposition 2. Let τ be a satisfying assignment for VE(F, x). Either τx or τx̄ satisfies
Sx ∪ Sx̄, and, the one that does, also satisfies F = VE(F, x) ∪ (Sx ∪ Sx̄).

To reconstruct a solution after VE has been applied repeatedly for the variables x1, . . . ,
xm, it is enough to save (remember) the clauses (Sx1∪Sx̄1), . . . , (Sxm ∪Sx̄m). Assume
that τ satisfies VE(· · ·VE(VE(F, x1), x2) · · · , xm). Let τm+1 = τ , and, iteratively
from i = m to 1, define τ i as the one of τ i+1

xi
and τ i+1

x̄i
which satisfies (Sxm ∪ Sx̄m).

Proposition 2 guarantees that τ1 is a satisfying assignment for the original formula F .
If the application only requires to reconstruct one solution, then in practice2 it is

enough to only save either Sxi or Sx̄i . W.l.o.g. assume Sxi is saved. Then, if τ i+1
x̄i

sat-
isfies the saved Sxi , we pick τ i = τ i+1

x̄i
, since this truth assignment obviously satisfies

Sx̄i as well. Otherwise xi is forced to be t and we must set τ i = τ i+1
xi

. This case occurs
if and only if there is a clause in Sxi for which τ i+1 assigns all literals except xi to f.

In an actual implementation only the smaller of the two sets is saved. Thus this
technique is also efficient in the case where VE is used for pure literal elimination as
discussed in [2]. In addition to plain VE, it also works for functional substitution [1] as
in the SatElite preprocessor. The only difference between VE and functional substitu-
tion is that the latter removes some redundant clauses from Sx⊗x Sx̄ while maintaining
the set of satisfying assignments.

Equivalent literals are substituted by their representatives during preprocessing.
Clauses used to derive equivalent literals become trivial and are removed during garbage
collection. However, the relation between original literals and their representatives is
maintained. If a satisfying assignment for the remaining clauses is found, the truth
value of a substituted literal is defined to be the value of its representative. This ex-
tends the satisfying assignment for the remaining clauses to a satisfying assignment for
the original formula.

Finally, consider BCE. In analogy to the case of VE, the proof [7] which shows that
removal of a blocked clause does not turn an unsatisfiable formula into a satisfiable
formula, gives us grounds to reconstruct solutions for BCE.

Proposition 3. Assume that literal l blocks C w.r.t. F . Let τ be a satisfying assignment
for F \ {C}. If τ does not satisfy C, then τl satisfies both F \ {C} and C and thus F .

In practice it is enough to save all removed blocked clauses C1, . . . , Cm together with
their blocking literals l1, . . . , lm.3 Let τm be a satisfying assignment for Fm, where
Fi = F \ ∪i

j=1{Cj} for i = 1 . . .m and F0 = F . If τ i satisfies Ci, we pick τ i−1 = τ i,
and otherwise τ i−1 = τ i

li
. Using Proposition 3, one can show by induction that τ i

satisfies Fi, and thus τ0 is a satisfying assignment for F .

4 Combined Solution Reconstruction

First, BCE and VE can be combined by saving clauses for reconstructing solutions after
BCE resp. VE on the same reconstruction stack. Reconstruction works in reverse order

2 By private communication with Niklas Sörensson.
3 A space efficient way to save this information is to maintain li as the first literal in the saved

clause Ci. This also allows to keep track of eliminated variables in VE.
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in which these clauses have been saved. This also works nicely if BCE is applied on-
the-fly during VE: while counting the non-trivial resolvents of Sx ⊗x Sx̄ to determine
whether VE is applied to x, it may occur that a clause C ∈ (Sx ∪ Sx̄) has only trivial
resolvents w.r.t. x, even though the overall number of non-trivial resolvents exceeds
|Sx ∪Sx̄|, which prevents x from being eliminated. Yet C can be removed as a blocked
clause and is saved on the reconstruction stack.

In order to combine VE and equivalent reasoning it is enough to make sure that VE
is only attempted after all equivalent literals have been first substituted. Enforcing this
order of using equivalent literal reasoning and VE makes sure that variables eliminated
with VE are always representatives and the only remaining variables of their equiv-
alence class. Eliminating a representative through VE will eliminate its whole equiva-
lence class, and after this it is not possible that further equivalent literals could be added
to the equivalence class of an eliminated variable.

When combining BCE with equivalent literal reasoning, however, the situation is
different: at some point after removing a blocked clause C, a literal l which blocked C
may become equivalent to another literal and may even become a representative of its
equivalence class. On the other hand, one may be forced to flip the value of l during
solution reconstruction since BCE removed C (recall Sect. 3). Hence the values of all
the literals in the equivalence class should be flipped, which appears not to be sound
since this could make some other clause unsatisfied. However, as we show in the next
section, the value of l will never have to be flipped in such a situation.

5 Equivalent Literals and Blocked Clause Satisfiability

Equivalent literals detected and applied in simplifying a CNF after removing blocked
clauses cannot make the removed blocked clauses to not to be satisfied under a satisfy-
ing assignment for the rest of the formula.

Theorem 1. Assume a CNF formula F , a clause C ∈ F which is blocked for l ∈ C
w.r.t. F , and a literal l′. If F \ {C} " l ≡ l′ , then (F \ {C}) ∪ (l ≡ l′) |= C.

In other words, any satisfying assignment for (F \ {C}) ∪ (l ≡ l′) also satisfies the
blocked clause C. This means that binary equivalences detected during preprocessing
can be exploited when applying BCE, at the same time guaranteeing all the blocked
clauses removed by BCE will be satisfied by any satisfying assignment for the resulting
preprocessed CNF formula. Notice that this lemma is independent of the techniques
used for deriving the clauses in l ≡ l′.

Proof (of Theorem 1). Assume a CNF formula F , a clause C = {l, l1, . . . , lk} ∈ F
which is blocked for l ∈ C w.r.t. F . Denote by B ⊂ F the set of clauses which contain
the literal l̄. Hence each clause in B contains at least one of the literals l̄1, . . . , l̄k.
Assume that F \ {C} " l ≡ l′ for some literal l′, and hence there is a resolution
derivation of {l, l̄′} and {l̄, l′} from F \ {C}.

If F is unsatisfiable, F \ {C} is also unsatisfiable since C is blocked, and hence
trivially (F \{C})∪(l ≡ l′) |= C. Now consider the case that F and (thus) also F \{C}
and (F \ {C}) ∪ (l ≡ l′) are satisfiable. Take an arbitrary satisfying assignment τ for
(F \ {C}) ∪ (l ≡ l′). We will show that any such τ also satisfies C.



Reconstructing Solutions after Blocked Clause Elimination 345

The case in which τ(l) = t (that is, τ satisfies l) is trivial. Now assume τ(l) = f.
Then τ(l′) = f since τ satisfies l ≡ l′. Consider an arbitrary resolution derivation
π = (C1, . . . , Cm) of Cm = {l̄, l′} from F \ {C}. Assume w.l.o.g. that π is tree-like.
We claim that there is an input clause C′ = {l̄, l′1, . . . , l′k} ∈ B in π such that τ(l′i) = f
for all i. Since C′ ∈ B, it then follows that one of the l′is is one of the literals l̄1, . . . , l̄k,
and hence τ satisfies C (recall that C = {l, l1, . . . , lk}).

To prove the claim, we show that there is a path P1, . . . , Pn of clauses in π (seen as
a tree) from the root of the tree (P1 = Cm) to a leaf (Pn is an input clause of π), such
that each clause Pi on the path contains l̄ and τ assigns all literals in Pi except l̄ to f.

First notice that for P1 = Cm we know that τ(l̄) = t and τ(l′) = f. Now assume
that Pi = {l̄} ∪ D, where D is a set of literals such that τ assigns every literal in D to
f, was directly derived from clauses Ca and Cb in π resolving on the variable x. Notice
that at least one of Ca and Cb must contain l̄. First consider the case that Ca contains l̄
and Cb does not. Since τ assigns all literals in D to f, τ must satisfy the literal for x in
Cb. (Otherwise τ does not satisfy Cb which would imply that τ does not satisfy an input
clause in π and hence τ cannot be a satisfying truth assignment for (F \{C})∪(l ≡ l′),
in contradiction to our assumption.) Hence τ assigns all literals in Ca apart from l̄ to f.
In this case let Pi+1 = Ca. The case that Cb contains l̄ and Ca does not is identical.

Now consider the case that both Ca and Cb contain l̄. Since τ assigns a unique truth
value to x, τ assigns all literals in either Ca or Cb apart from l̄ to f. In this case let Pi+1

be this particular clause. �

6 Conclusions

We showed how and why—in theory and in practice—full solutions to CNF formulas
can be reconstructed from solutions to the CNF after applying both individual and com-
binations of preprocessing techniques, including blocked clause elimination, SatElite-
style variable elimination and equivalence reasoning.
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Abstract. This paper presents a detailed empirical study of local search
for Boolean satisfiability (SAT), highlighting several interesting proper-
ties, some of which were previously unknown or had only anecdotal evi-
dence. Specifically, we study hard random 3-CNF formulas and provide
surprisingly simple analytical fits for the optimal (static) noise level and
the runtime at optimal noise, as a function of the clause-to-variable ratio.
We also demonstrate, for the first time for local search, a power-law de-
cay in the tail of the runtime distribution in the low noise regime. Finally,
we discuss a Markov Chain model capturing this intriguing feature.

Designing, understanding, and improving, local search methods for constraint
reasoning, and in particular for Boolean satisfiability (SAT), has been the focus
of hundreds of research papers since the 1990’s and even earlier. For SAT, tech-
niques such as greedy local search, tabu search, solution guided search, focused
random walk, and reactive or adaptive search have led to much success. Specif-
ically, Walksat [7] stands out as one of the initial solvers that introduced many
of the key ideas in use today and, is still competitive with the state of the art.

While many attempts have been made to understand the behavior of local
search methods in terms of local minima, exploring “plateaus”, the exploration
vs. exploitation tradeoff, etc., our formal understanding is limited mostly to
relatively simple variants of local search, such as a pure greedy search, a pure
random walk, or a combination of the two. This is not surprising as the tech-
niques employed by Walksat and other state-of-the-art local search solvers are
too complex to allow a formal analysis in terms of, for example, a traditional
Markov Chain. At the same time, there is a wealth of information available from
observations of the behavior of local search methods on a variety of domains,
most notably for random 3-SAT. There is either formal or anecdotal evidence
of various features, such as Walksat scaling linearly at optimal noise but expo-
nentially at sub-optimal noise, and suggestions that the runtime distribution of
local search on a single random instance has an exponentially decaying tail. This
work provides convincing empirical evidence in favor of, or even against, such
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anecdotal insights and observations. We study the behavior of Walksat on hard,
large, random 3-CNF formulas and investigate its time complexity in relation to
the clause-to-variable ratio α and the (static) noise level—both of which Walksat

is highly sensitive to. Unlike previous studies, our conclusions are based on very
large formulas and are thus free of “small N effects”. This might explain the
difference between our conclusions and those of, e.g., Hoos and Stützle [4].

While many new local search SAT solvers are based on “adaptive” or “dy-
namic” noise, these solvers are apparently unable to settle on the optimal noise
setting for hard random 3-CNF formulas, doing much worse than optimal static
noise. E.g., we found that the SAT Competition 2009 winners in the satisfiable
Random category, TNM and gnovelty+2, were slower than Walksat at optimal noise
by a factor of roughly 4x for N=10,000 variable formulas with α = 4.2, 13x for
N=20,000, 31x for N=30,000, 54x for N=40,000, and 785x for N=50,000. This
also shows that, unlike Walksat, these adaptive noise solvers scale super-linearly
in this domain, justifying the interest in our study of static noise.

Our first result is a surprisingly simple step-linear analytical fit for the value
of the optimal noise as a function of α, and an equally simple analytical expres-
sion for the mean running time of Walksat (measured as the number of flips)
at this optimal noise. This fit as well as our data exhibit linear scaling with
N for α close to the phase transition region for 3-SAT. Second, we study the
runtime distribution of Walksat on single instances and find first clear evidence
of power-law decay in the probability of failure in T flips in the tail of the distri-
bution. Power-law decays and heavy-tailed runtime distributions [3] have been
one of the key observations for DPLL-style systematic search solvers and have
led to methodologies such as rapid restarts and algorithm portfolios. This phe-
nomenon, however, is usually not associated with local search. We show that
after a (relatively long) “flat” region, the probability of failure decays exponen-
tially in the high noise regime but as a power-law in the low noise regime. Third,
we show that as Walksat proceeds, the number of unsatisfied clauses exhibits an
interesting gradual decay that happens only at near-optimal noise.

A model that captures such features and is yet simple to describe and simulate
can be a very useful tool for understanding and exploiting the tradeoffs inher-
ent in local search. We therefore propose a preliminary Markov Chain model
capturing, e.g., exponential scaling with N and power-law decay at low noise.

The kind of empirical study pursued here requires a significant computational
power (e.g., 100,000 runs for some low noise levels to observe a clear trend). We
used Yahoo!’s Apache Hadoop based M45 cloud computing platform with the
net computational effort being equivalent to around 14 years of single CPU time.

We assume basic familiarity with SAT, CNF formulas, and local search solvers
such as Walksat. N and M will denote the number of variables and clauses, resp.,
of a CNF formula F , with α = M/N . A random 3-CNF formula is created by
choosing, with repetition, M clauses of size 3 each uniformly at random. Ignoring
the details of the “freebie move”, the noise parameter n ∈ [0, 1] (or in [0%, 100%])
of Walksat is essentially the probability with which it makes a (possibly uphill)
random walk move, instead of a greedily chosen downhill or plateau move.
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1 Local Search in SAT: Empirical Findings

1.1 Analytical Expressions for Optimal Noise and Mean Runtime

It has been observed that Walksat behaves quite predictably on large random
formulas, in terms of the average (or median) running time or the noise levels that
perform the best. For example, Seitz et al. [6] have given evidence that Walksat

scales linearly when a noise value of 0.57 is used for formulas with α ≈ 4.2.
The left pane of Fig. 1 shows how the optimal noise n∗ (y-axis) changes as α

(x-axis) increases. For this experiment, we considered values of α in the range
[1.5, 4.2] and random 3-CNF formulas with N ranging from 100,000 to 400,000.
For each (α, N) pair, we considered 10 formulas (the variation amongst formulas
is not much at such large values of N) and did a binary search to estimate n∗
for each formula up to a granularity of 0.1%. n∗ values for these formulas, as one
might expect, do not depend on N . The resulting average n∗ and its standard
deviation are plotted in the left pane of Fig. 1. We see three clear linear regimes,
which can be fitted well with the following step-linear model, shown as the solid
black line in the figure:

OptNoise (%) ≈

⎧⎪⎨⎪⎩
−7.617 + 14.588α for α ∈ [1.5, 3.0]

−2.558 + 12.347α for α ∈ (3.0, 3.85)

−77.53 + 31.970α for α ∈ [3.85, 4.2]

(1)

Interestingly, the transition points between the three regimes correspond to val-
ues of α that have been studied before. The first transition point corresponds to
the threshold of c3 ≈ 3.003 which was proven by Frieze and Suen [2] to be the
precise point up till which a simple “generalized unit clause” rule, GUC, almost
surely solves random 3-SAT instances. The second transition point corresponds
to the threshold of ≈ 3.9 up till which the purely greedy version of Walksat,
namely GSAT, has been empirically seen to be successful (also the point at which
the solution space structure is believed to change drastically [5]).

1.5 2.0 2.5 3.0 3.5 4.0

20
30

40
50

Clause−to−variable ratio

O
pt

im
al

 N
oi

se
 S

et
tin

g

Average data (with std. dev.)

Fitted linear models

1.5 2.0 2.5 3.0 3.5 4.0

5e
−

01
5e

+
00

5e
+

01
5e

+
02

5e
+

03

Clause−to−variable ratio

#F
lip

s/
#V

ar
ia

bl
es

 (
lo

g−
sc

al
e) Runtime data (with average)

Fitted model

Fig. 1. Left: Linear model fitted to the optimal noise data (y-axis). Right: Model fitted
to the mean runtime of Walksat (y-axis) at optimal noise. Both plotted as functions
of clause-to-variable ratios (x-axis).
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The right pane of Fig. 1 shows similar data for the average running time of
Walksat at the optimal noise predicted by Eq. (1), for α ∈ [1.5, 4.2]. In order to
account for different formula sizes, we scaled the runtimes by dividing by N and
found that this normalized runtime at optimal noise is indeed independent of N ,
implying linear scaling with N (as generally believed). We fit this curve with a
model, depicted as a solid black line. For α < 4.2355, our fitted model captures
the linear scaling of the mean runtime with N at optimal noise. Specifically:

numflips at OptNoise
N

≈ 1.4358
(4.2355 − α)2.1894

(2)

1.2 Runtime Distribution: Exponential or Power-Law Decay

Fix α to 4.2 and consider the following question: if we take a single formula F and
perform several runs of Walksat, what is the distribution of the runtime needed
to find a solution? We measure this as the probability of failure as a function
of the number of flips, i.e., what fraction of the runs fail to find a solution in
T flips. The result for various noise levels for a 100,000 variable formula with
α = 4.2 is shown in Fig. 2, in both log-linear and log-log scales. For each low and
high noise level, we performed 110,000 and 10,000 runs, resp., of Walksat with a
cutoff of 100B (100× 109) and 4B flips, resp. The median runtime to solve these
formulas ranges between 140M to 700M flips at different noise levels.
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Fig. 2. Runtime distribution of Walksat on a large 3-CNF formula (100k variables,
420k clauses), with probability of failure on y-axis. Top: high noise regime with ex-
ponential decay (straight line in log-linear plot at top-left). Bottom: low noise regime
with power-law decay (straight line in log-log plot at bottom-right).
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Fig. 3. Evolution of number of un-
sat. clauses at 3 noise levels
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Fig. 4. A Markov Chain model for lo-
cal search in SAT

The figure shows a clear qualitative distinction between the runtime distribu-
tions at high noise levels (n > 0.567, top row) and at low noise levels (bottom
row). In particular, the log-linear plot in the top-left shows that the probabil-
ity of failure for high noise decays exponentially with the number of flips: for
large enough T , Pr[failure after T flips] ≈ exp(−cT ) for some constant c. On the
other hand, the bottom-left plot, also in log-linear scale, shows that the decay is
clearly slower than exponential for noise levels below the optimal. The bottom-
right plot, showing relatively straight lines in the log-log scale, demonstrates
that for low noise levels, the decay rate is very close to being a power-law (at
the tail): for large enough T , Pr[failure after T flips] ≈ T−c′ for some c′ > 0.

1.3 Evolution of the Number of Violated Clauses

Fig. 3 shows how the number of violated clauses, denoted M̂ , progresses when
Walksat is run in a formula with 100,000 variables with α = 4.2 at noise levels 0.50
(too low), 0.57 (optimal), and 0.58 (too high). For all noise levels considered,
there is a very steep initial descent until M̂ is under 2,500, or 2.5% of the
original clauses. After this, the behavior changes drastically depending on the
noise level. For optimal noise n∗, M̂ shows a gradually decreasing, almost linear,
trend (with small random variations, as one would expect) until a solution is
found, depicted by the middle curve in red. For high noise, M̂ decreases rather
fast in the beginning but then settles at a non-zero value that is higher the higher
the noise is (the highest curve, in green). For low noise, M̂ decreases very rapidly
and settles at a relatively low but non-zero value (the lowest curve, in blue).

2 Markov Chain Model Capturing Power-Law Decay

We briefly sketch a Markov Chain (MC) model that may shed light, at least
qualitatively, on exponential scaling and power-law decay. The model has two
parts (see Fig. 4). The first (top, horizontal) part is a linear MC with states
corresponding to truth assignments that satisfy the same fraction of clauses of
F , with the leftmost state encapsulating all solutions. Second, hanging from each
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state in the top chain is a “trap gadget”, which captures the behavior of Walksat
when it “gets lost” exploring parts of the search space without any solutions.

The probability of moving left or right in the top chain is determined by
combining two effects. First, we assume that in the very high noise setting, the
search will prefer to choose a neighboring state s with probability proportional
to the number of truth assignments in s. Assuming a roughly binomial distribu-
tion of the number of assignments satisfying k clauses, the chain will then have a
tendency to drift towards the middle, away from the solutions. Second, for rela-
tively low noise settings, the search will be more focused and will choose among
immediately better neighbors, i.e., either left or down into one of the trap gad-
gets. These two forces will balance in different ways for different noise settings.
The trap gadget can itself be represented as an MC: two vertical linear chains,
connected horizontally at each level (a “ladder”, see Fig. 4). Entering this chain
would first allow the search to either go down along the right side of the ladder
(with probability p at each step), or across to the left side (probability 1 − p).
This part models Walksat’s decision to either keep searching deeper in the trap
(downward), or to try to escape (across). The left side of the ladder models the
effort to escape a local minimum. If the search descends to level k of the trap
before making the move across, it may become exponentially difficult for it (in
k, say bk steps) to escape, again depending on the noise; this bk behavior is itself
easily modeled by an MC biased downward while the search tries to go upward.
Thus, once in a trap, the search will, with probability pk, descend to depth k
before initiating an escape move, and then spend ≈ bk steps to get back to the
top, yielding

∑
k pk · bk steps in expectation—and resulting in a power-law dis-

tribution, similar to previous analysis [1]. Thus, the cumulative runtime of the
MC will be a sum of power-law distributions, in agreement with our data. On
the other hand, for very high noise settings, the search will be successfully able
to avoid traps, but will also be attracted towards the middle of the top chain,
thus taking, in expectation, exponentially long to reach the left end (a solution).
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Abstract. We aim at using the problems from exact Ramsey theory,
concerned with computing Ramsey-type numbers, as a rich source of test
problems for SAT solving, targeting especially hard problems. Particu-
larly we consider the links between Ramsey theory in the integers, based
on van der Waerden’s theorem, and (boolean, CNF) SAT solving. Based
on Green-Tao’s theorem (“the primes contain arbitrarily long arithmetic
progressions”) we introduce the Green-Tao numbers grtm(k1, . . . , km),
which in a sense combine the strict structure of van der Waerden prob-
lems with the quasi-randomness of the distribution of prime numbers. In
general the problem sizes become quickly infeasible here, but we show
that for transversal extensions these numbers only grow linearly, thus
having a method at hand to produce more problem instances of feasi-
ble sizes. Using standard SAT solvers (look-ahead, conflict-driven, and
local search) we determine the basic Green-Tao numbers. It turns out
that already for this single case of a Ramsey-type problem, when con-
sidering the best-performing solvers a wide variety of solver types is cov-
ered. This is different to van der Waerden problems, where apparently
only simple look-ahead solvers succeed (regarding complete methods).
For m > 2 the problems are non-boolean, and we introduce the generic
translation scheme for translating non-boolean clause-sets to boolean
clause-set. This general method offers an infinite variety of translations
(“encodings”) and covers the known methods. In most cases the spe-
cial instance called nested translation proved to be far superior over its
competitors (including the direct translation).

1 Introduction

The applicability of SAT solvers has made tremendous progress over the last 15
years; see the recent handbook [3]. We are concerned here with solving (concrete)
combinatorial problems (see [24] for an overview). Especially we are concerned
with the computation of van-der-Waerden-like numbers, which is about colouring
hypergraphs of arithmetic progressions; see [18] for the underlying report.

An arithmetic progression of size k ∈ N0 in N is a set P ⊂ N of size k such
that after ordering (in the natural order), two neighbours always have the same
distance. So the arithmetic progressions of size k > 1 are the sets of the form
P = {a+i ·d : i ∈ {0, . . . , k−1}} for a, d ∈ N. Van der Waerden’s Theorem ([23])

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 352–362, 2010.
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shows that for every progression size k ∈ N and every number m ∈ N of parts
there exists some n0 ∈ N such that for n ≥ n0, every partitioning of {1, . . . , n}
into m parts has some part which contains an arithmetic progression of size k.
The smallest such n0 is denoted by vdwm(k), and is called a vdW-number.
The subfield of Ramsey theory concerned with van der Waerden’s theorem is
for over 70 years now an active field of mathematics and combinatorics; for an
elementary introduction see [19].

We are concerned here with exact Ramsey theory, that is, computing vdW-
like numbers if possible, or otherwise producing (concrete) lower bounds. [5]
introduced the application of SAT for computing vdW-numbers, showing that
all known vdW-numbers (at that time) were rather easily computable with SAT
solvers. With [11] yet SAT had its biggest success, computing the new (major)
vdW-number vdw2(6) = 1132 (mentioned in [19] as a difficult research problem).
See [1,2,8] for the current state-of-the-art. And in the underlying report [18] we
made an effort at a systematic representation.

We introduce Green-Tao numbers grtm(k) (“GT-numbers”; see Definition 3),
which are defined as the vdW-numbers but using the first n prime numbers
instead of the first n natural numbers. The existence of these numbers is given
by the celebrated Green-Tao Theorem ([7]). We are concerned here also with
the “mixed” GT-numbers grtm(k1, . . . , km) (with grtm(k) = grtm(k, . . . , k)).
In Theorem 4 we show that transversal extension GT-numbers, which are of the
form grtm+p(2, . . . , 2, k1, . . . , kp), grow only linearly in m. In the remainder of the
article we are concerned with computing “all feasible” GT-numbers (computable
within up to, say, a week by a single processor with the best SAT method).

For binary parameter tuples (m = 2 above) the problem of computing vdW- or
GT-numbers has a canonical translation to (boolean) SAT problems. For m > 2
we still have a canonical translation into non-boolean SAT problems, as is the case
in general for hypergraph colouring problems (see [16]), but for using standard
(boolean) SAT solvers the problem of a boolean translation arises. In Section 3 we
introduce the (general) generic translation scheme, with seven natural instances,
amongst them the well-known direct and logarithmic translations. As it turns
out, in nearly all cases for all solver types the weak nested translation (introduced
in [14]) performed far best, with the only exception that for relatively large
numbers of colours the logarithmic translation was better.

For this (initial) phase of investigations into GT-numbers we only used “off-
the-shelves” SAT solvers, establishing the “ground level” by providing the best
solvers for the various parameter ranges. For over one year on average 10 proces-
sors were running, with a lot of manual interaction and adjustment to find the
right solvers and translations, and to set the parameters (most basic the number
of vertices), establishing the basic Green-Tao numbers. All generators and the
details of the computations are available in the open-source research platform
OKlibrary (see [13]).1 See Section 4 for the results of these computations. We
conclude this article by a discussion of research directions in Section 5.

1 http://www.ok-sat-library.org

http://www.ok-sat-library.org
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2 The Theorem of Green-Tao, and Green-Tao Numbers

We use N0 = Z≥0 and N = N0 \ {0}. A finite hypergraph G is a pair G = (V, E)
where V is a finite set and E ⊆ P(V ) (that is, E is set of subsets of V ); we use
V (G) := V and E(G) := E. An m-colouring of a hypergraph G is a map f :
V (G) → {1, . . . , m} such that no hyperedge is monochromatic, that is, for every
H ∈ E(G) there are v, w ∈ H with f(v) 
= f(w). Regarding (boolean) clause-
sets, complementation of boolean variables v is denoted by v, (boolean) clauses
are finite and clash-free sets of (boolean) literals, and (boolean) clause-sets are
finite sets of (boolean) clauses. The numbers vdwm(k) introduced in Section
1 are “diagonal vdW-numbers”, while we consider also the “non-diagonal” or
mixed vdW-numbers, which are defined as follows.

Definition 1. A parameter tuple is an element of N
m
≥2 for some m ∈ N which

is monotonically non-decreasing (that is, sorted in non-decreasing order). For
a parameter tuple (k1, . . . , km) the vdW-number vdwm(k1, . . . , km) is the
smallest n0 ∈ N such that for every n ≥ n0 and every f : {1, . . . , n} → {1, . . . , m}
there exists some “colour” (or “part”) i ∈ {1, . . . , m} such that f−1(i) contains
an arithmetic progression of size ki.

Note that vdwm(k) := vdwm(k, . . . , k) is the smallest n such that the hypergraph
ap(k, n) is not m-colourable, where V (ap(k, n)) = {1, . . . , n}, while E(ap(k, n))
is the set of arithmetic progressions of size k contained in {1, . . . , n}. In [18]
we have compiled an up-to-date collection of all van-der-Waerden numbers, plus
various new numbers, observations and conjectures, using the following organi-
sation of the parameter space.

Definition 2. A parameter tuple is trivial if all entries are equal to 2, other-
wise it is non-trivial. A simple parameter tuple has length 1, otherwise it is
non-simple. A parameter tuple is a core tuple if it is non-simple and if all
entries are greater than or equal to 3. A parameter tuple t is a (transversal)
extension of a parameter tuple t′ if t can be obtained from t′ by adding entries
equal to 2 to the front of t′. A transversal extension of a simple parameter tuple is
called an extended simple tuple or a transversal tuple, while an transversal
extension of a core tuple is called an extended core tuple. Finally a param-
eter tuple is diagonal, if it is constant (all entries are equal), while otherwise
it is non-diagonal or mixed. Accordingly we speak of trivial vdW-numbers,
simple vdW-numbers, core vdW-numbers, transversal vdW-numbers,
extended core vdW-numbers, and diagonal vdW-numbers.

The trivial vdW-numbers are vdwm(2) = m+ 1, while the simple vdW-numbers
are given by vdw1(k) = k. We turn to a major strengthening of van der Waer-
den’s theorem. Now the hypergraphs are given as appr(k, n) for fixed k ∈ N,
where the vertex set of appr(k, n) is the set of the first n prime numbers, while
the hyperedges are the arithmetic progressions of size k (within the first n prime
numbers). As before, every set of prime numbers having at most two elements
is an arithmetic progression, but now the first arithmetic progression of size 3
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is {3, 5, 7}, and the first arithmetic progression of size 4 is {5, 11, 17, 23}. Until
2004 it was even unknown whether the primes contain arbitrarily long arithmetic
progressions, and only with [7] the much stronger property, that the relative size
of independent sets in appr(k, n) (that is, sets of prime numbers not contain-
ing arithmetic progressions of length k) tend to 0 (for fixed k). In analogy to
Definition 1 we define Green-Tao numbers (“GT-numbers”).

Definition 3. For a parameter tuple (k1, . . . , km) let the Green-Tao number
grtm(k1, . . . , km) be defined as the smallest n0 ∈ N such that for every n ≥
n0 and every f : {p1, . . . , pn} → {1, . . . , m}, where p1, . . . , pn are the first n
prime numbers, there exists some i ∈ {1, . . . , m} such that f−1(i) contains an
arithmetic progression of size ki. According to Definition 2 we speak of trivial
GT-numbers, simple GT-numbers, core GT-numbers, transversal GT-
numbers, extended core GT-numbers, and diagonal GT-numbers.

Theorem 10 in [18] and Green-Tao’s theorem ([7]) yields that extended GT-
numbers grow linearly. Let crpr

ap(t, q) for parameter tuples t and q ∈ R>0 be the
smallest n ∈ N such that for every set P of primes in {1, . . . , n} not containing
an arithmetic progression of length k holds |P |

n < q.

Theorem 4. For a parameter tuple t of length l ∈ N, for m ∈ N0 and for
s ∈ R>1 we have grtm+l((2, . . . , 2); t) ≤ max(s · m + 1, crpr

ap(t, 1 − 1
s )).

3 The Generic Translation Scheme from Non-boolean
Clause-Sets to Boolean Clause-Sets

GT-problems of the form “grt2(k1, k2) > n ?” have a natural formulation as
(boolean) SAT problems by just excluding the arithmetic progressions of sizes
k1 and k2, e.g. the problem “grt2(2, 3) > 4 ?” yields the (satisfiable) clause-
set
{ {2, 3}, {2, 5}, {2, 7}, {3, 5}, {3, 7}, {5, 7}, {−3,−5,−7}} over the variable-

set {2, 3, 5, 7} (thus the answer is “yes”). A natural translation for arbitrary m
is given when using generalised clause-sets as systematically studied in [14,16,17],
which allow variables v with finite domains Dv and literals of the form “v 
= ε”
for values ε ∈ Dv. The problem of colouring a hypergraph G with m colours is
naturally translated into a SAT problem for generalised clause-sets via using m
clauses for every hyperedge H ∈ E(G), namely for every value ε ∈ {1, . . . , m} the
clause {v 
= ε : v ∈ H}, stating that not all vertices in H can have value ε (note
that the vertices of G are used as variables with (uniform) domain {1, . . . , m}).
Accordingly we arrive at the natural generalisation FGT

k1,...,km
(n) of the boolean

formulation, using as variables the first n prime numbers, each with domain
{1, . . . , m}, where the clauses are obtained from the hyperedges of appr(ki, n)
for i ∈ {1, . . . , m} by using literals “v 
= i”.

As a running example consider m = 3, k1 = k2 = k3 = 3 and n = 5. We
remark that we have grt3(3) = 137, as can be seen in Section 4. Only one
hypergraph needs to be considered here (since all ki-values coincide), namely
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appr(3, 5) = ({2, 3, 5, 7, 11}, {{3, 5, 7}, {3, 7, 11}}). Now the (non-boolean) clause-
set FGT

3,3,3(5) uses the five (formal2) variables 2, 3, 5, 7, 11, each with domain
{1, 2, 3}, while we have 3 · 2 = 6 clauses (each of length 3), namely the clauses
{(3, i), (5, i), (7, i)}, {(3, i), (7, i), (11, i)} for i ∈ {1, 2, 3}.

In [14] the nested translation from generalised clause-sets to boolean clause-
sets was introduced, while the generalisation to the generic translation scheme is
outlined in [17]. Given a generalised clause-set F , for every variable an (arbitrary)
unsatisfiable boolean clause-set T (v) is chosen, such that for different variables
these clause-sets are variable-disjoint. Furthermore for every value ε ∈ Dv a
necessary clause γv(ε) ∈ T (v) is chosen (that is, T (v) \ {γv(ε)} is satisfiable),
such that to different values different clauses are assigned. Now the translation
Tγ(F ) of F under T and γ replaces for every clause C ∈ F the (non-boolean)
literals v 
= ε by the (boolean) literals in clause γv(ε), and adds for every variable
v ∈ var(F ) the clauses of the (boolean) clause-set T (v) \ {γv(ε) : ε ∈ Dv}. The
clauses γv(ε) are called the main clauses of T (v), while the other clauses of T (v)
constitute the remainder.

Lemma 5. Tγ(F ) is satisfiability-equivalent to F .

Proof. If ϕ is a satisfying assignment for F , then for every variable v ∈ var(ϕ)
choose a satisfying assignment ψv of T (v) \ {γv(ϕ(v))}, and the union of these
(compatible) assignments ψv yields a satisfying assignment for Tγ(F ) (here it is
used that for ε ∈ Dv \ {ϕ(v)} we have γv(ε) 
= γv(ϕ(v))). If on the other hand
ψ is a satisfying (total) assignment for Tγ(F ), then for every clause-set T (v)
there exists some εv ∈ Dv such that the clause γv(ε) is falsified by ψ; now the
assignment v �→ εv satisfies F . ��

The seven instances of the generic scheme used in this paper, where the domain
of variable v is {1, . . . , m}, and where the boolean variables are vi for appropriate
indices i, are as follows:

T (v) = Dm :=
{ {v1}, . . . , {vm}, {v1, . . . , vm}} with m variables is used for

the weak direct translation, where γv(i) := {vi}. Dm is a marginal minimally
unsatisfiable clause-set3 with deficiency 1 (that is, with m + 1 clauses). The
strong direct translation uses T (v) = D′

m := Dm ∪ {{vi, vj} : 1 ≤ i < j ≤ m}
and the same γv.4

2 Note that variable 2 does not occur here; it occurs only for ki = 2, and one could
ignore it in general, however then we always had to use the offset 1 when comparing
with prime number tables.

3 See [10] for an overview on minimally unsatisfiable clause-sets.
4 In [21] the “strong direct translation” is called “direct encoding”, starting from

arbitrary CSP-problems (while we start from generalised clause-sets). We prefer to
distinguish between “encodings”, which are about variables and the mapping of
assignments, and “translations”, which concern the whole process, and which can
use quite different but semantically equivalent clause-sets for example. For the direct
translation it seems that always the strong form is better, but this is not the case for
other translations, and so we explicitely distinguish between “weak” and “strong”.
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The weak reduced translation uses m − 1 variables with T (v) = Dm−1 and
an arbitrary bijection γv (note that Dm−1 has m clauses), while the strong
reduced translation uses the same γv and T (v) = D′

m−1. Different from the direct
translations, here γv plays a role now, namely the question is to which value one
associates the long clause {v1, . . . , vm−1}, and so we have m (essentially) different
choices. Note that clause-set Dm−1 can be obtained from Dm by DP-reduction
for variable vm (replacing all clauses containing variable vm by their resolvents on
vm), and accordingly from a clause-set translated by the (weak/strong) direct
translation we obtain the clause-set translated by the (weak/strong) reduced
translation by performing DP-reduction on all such variables vm (using that the
remainder-clauses are just used as they are, without additional literals in them).

The weak nested translation uses m − 1 variables and T (v) = Hm−1, where

Hm :=
{ {v1}, {v1, v2}, . . . , {v1, . . . , vm−1, vm}, {v1, . . . , vm}},

using some arbitrary bijection γv (note that Hm has deficiency 1, and thus
Hm−1 has m clauses). Hm is up to isomorphism the unique saturated minimally
unsatisfiable Horn clause-set with m variables, and in fact is a saturation of the
minimally unsatisfiable clause-set Dm (see [10]). The strong nested translation
uses the same γv, and, similar to the strong direct translation, T (v) = H ′

m−1 :=
Hm−1 ∪ {{vi, vj} : 1 ≤ i < j ≤ m − 1}. For both forms now we have m!/2
(essentially) different choices for γv (note that only the two clauses of length m
in Hm can be mapped to each other by an isomorphism of Hm). The motivation
for the introduction of the weak nested translation in [14,17] was that first the
number of clauses is not changed by the translation, that is, T (v) is minimally
unsatisfiable (also Dm−1 fulfils this), and second that T (v) is a hitting clause-
set, that is, every pair of different clauses clashes in at least one variable. These
two requirements ensure that the conflict structure of the original (non-boolean)
clause-set is preserved by the (boolean) translation. Instead of using Hm−1 one
could actually use any unsatisfiable hitting clause-set with m clauses here.

The simple logarithmic translation5 considers the smallest natural number p
with 2p ≥ m, and sets T (v) = Ap, where Ap consists of all 2p full clauses over
variables v1, . . . , vp, while γv is an arbitrary injection.6

With the exception of the direct translation, which is fully symmetric in the
clauses γv(ε), one has to decide about the choice γv of necessary clauses. With
the exception of the simple logarithmic translation this is the choice of a suit-
able bijection, i.e., a question of ordering the values of the variables. In this
initial study we have chosen a “standard ordering”, with the aim of minimising

5 Called the “log encoding” (for CSP-problems) in [21].
6 If 2p = m, then there is (essentially) only one choice for γv, however otherwise

the situation is more complicated, and also resolutions are possible between the
remaining clauses, shortening these clauses, and these shortened clauses can be used
to shorten the main clauses. Therefore we speak of the “simple” translation, and
further investigations are needed to find stronger schemes when m < 2p.
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the size of the clause-set, by simply assigning the larger clauses to the larger k-
values (since the larger the size of arithmetic progressions the fewer there are).
Considering our running example FGT

3,3,3(5) we obtain the following 7 translations:
For the direct encoding we get 5 ·3 = 15 boolean variables vp,i, p ∈ {2, 3, 5, 7}

and i ∈ {1, 2, 3}. The clause {(3, i), (5, i), (7, i)} is replaced by {v3,i, v5,i, v7,i}
for i ∈ {1, 2, 3}, while clause {(3, i), (7, i), (11, i)} is replaced by {v3,i, v7,i, v11,i}.
For the weak translation we have the 5 additional clauses {vp,1, vp,2, vp,3} for
p ∈ {2, 3, 5, 7, 11}, while for the strong translation additionally we have the
5 · (32) = 15 clauses {vp,i, vp,j}, p ∈ {2, 3, 5, 7, 11} and i, j ∈ {1, 2, 3}, i < j.

The reduced encoding has 5 · 2 = 10 boolean variables vp,i, p ∈ {2, 3, 5, 7, 11},
i ∈ {1, 2}. The clause {(3, i), (5, i), (7, i)} is replaced by {v3,i, v5,i, v7,i} for i ∈
{1, 2} resp. by {v3,1, v3,2, v5,1, v5,2, v7,1, v7,2} for i = 3, while {(3, i), (7, i), (11, i)} is
replaced by {v3,i, v7,i, v11,i} for i ∈ {1, 2} resp. by {v3,1, v3,2, v7,1, v7,2, v11,1, v11,2}
for i = 3. For the weak translation there are no additional clauses, while for the
strong translation we have 5 · (22) = 5 additional binary clauses {vp,1, vp,2} for p ∈
{2, 3, 5, 7, 11}. Note that due to our standardisation scheme the long replacement-
clause is uniformly used for i = 3, while actually for each of the five (non-boolean)
variables 2, 3, 5, 7, 11 one could use a different i ∈ {1, 2, 3}.

The nested encoding has the same variables.{(3, i), (5, i), (7, i)} is resp. replaced
by {v3,1, v5,1, v7,1}, {v3,1, v3,2, v5,1, v5,2, v7,1, v7,2}, {v3,1, v3,2, v5,1, v5,2, v7,1, v7,2},
while {(3, i), (7, i), (11, i)} for i = 1, 2, 3 is replaced by resp. {v3,1, v7,1, v11,1},
{v3,1, v3,2, v7,1, v7,2, v11,1, v11,2}, {v3,1, v3,2, v7,1, v7,2, v11,1, v11,2}. The weak trans-
lation has no additional clauses, while for the strong translation we have 5 ·(22) = 5
additional binary clauses {vp,1, vp,2} for p ∈ {2, 3, 5, 7, 11}. Note (again) that due
to our standardisation scheme the order of the three replacement-clauses is fixed
for each variable, while for each variable one could use one of the 3! = 6 possible
orders.

Finally, for the logarithmic encoding we get (again, but here this is just an ex-
ception) 5·2 = 10 boolean variables vp,i, p ∈ {2, 3, 5, 7, 11}, i ∈ {1, 2}. We use the
order A2 =

{ {v1, v2}, {v1, v2}, {v1, v2}, {v1, v2}
}

, where the first three clauses
are used for the values i = 1, 2, 3. Then the clause {(3, i), (5, i), (7, i)} is replaced
for i = 1, 2, 3 by {v3,1, v3,2, v5,1, v5,2, v7,1, v7,2}, {v3,1, v3,2, v5,1, v5,2, v7,1, v7,2},
{v3,1, v3,2, v5,1, v5,2, v7,1, v7,2} respectively, and {(3, i), (7, i), (11, i)} is replaced
respectively by {v3,1, v3,2, v7,1, v7,2, v11,1, v11,2}, {v3,1, v3,2, v7,1, v7,2, v11,1, v11,2},
{v3,1, v3,2, v7,1, v7,2, v11,1, v11,2}. Additionally we have the 5 clauses {vp,1, vp,2}.

Somewhat surprisingly, in many cases considered in this paper the weak nested
translation turned out to be best (from the above 7 translations considered), for
all three types of solvers, look-ahead, conflict-driven and local-search solvers
(where for the latter an appropriate algorithm has to be chosen). Only for larger
number of colours is the logarithmic translation superior (for local search, with
various best algorithms; complete solvers were not successful on any of these in-
stances (with larger number of colours)). In all cases the weak nested translation
was superior over the direct translation (weak or strong, for all solver types).
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4 Computing Green-Tao Numbers

For trivial GT-numbers as with vdW-numbers we have grtm(2) = m+1. However
the simple GT-numbers are non-trivial: grt1(k) is the smallest n such that the
first n prime numbers contain an arithmetic progression of size k. Only the values
for 2 ≤ k ≤ 21 are known, given by the sequence 2, 4, 9, 10, 37, 155, 263, 289, 316,
21′966, 23′060, 58′464, 2′253′121, 9′686′320, 11′015′837, 227′225′515, 755′752′809,
3′466′256′932, 22′009′064′470, 220′525′414′079. It seems likely that consideration
of GT-numbers for core tuples involving k ≥ 11 is infeasible (since the first 21966
prime numbers need to be considered just to see the first progression of size 11).

Solvers used are the algorithms from the Ubcsat local-search suite ([22]),
minisat2 ([6]) for conflict-driven solvers (on our instances either minisat2
was superior or not much worse than all other publicly available conflict-driven
solvers, and thus it seems that the optimisations applied to minisat2 in other
solvers don’t improve performance on our instances), and OKsolver-2002 ([12]),
march pl ([9]) and satz ([20]) for look-ahead solvers. In one (largest) case
survey propagation ([4]) was successful (with 708206 clauses of length 5).
If not stated otherwise, for all non-boolean cases the weak (standard) nested
translation is best (considering complete and incomplete solvers), and if not
otherwise stated, for lower bounds rnovelty+ is best. A lower bound stated as
“≥ n” means that we conjecture that actually equality holds.

We were able to compute five core GT-numbers, for 3 core numbers we have
reasonable conjectures, and for 9 core numbers we have hopefully not unrea-
sonable lower bounds. Furthermore we were able to compute 12 extended core
GT-numbers, while for 16 cases we have conjectures. Transversal GT-numbers
are presented in [18]. 4 binary core GT-numbers grt2(a, b) have been computed:

ba 3 4 5 6 7

3 23 79 528 ≥ 2072 > 13800
4 - 512 > 4231
5 - - ≥ 34309

For (5, 5) we experienced the only case where survey propagation was suc-
cessful (converging for n < 34309, diverging for n ≥ 34309). For the other
lower bounds adaptnovelty+ is best. OKsolver-2002 is best for (4, 4), while
for (3, 5) minisat2 is best, followed by march pl. One ternary core GT-number
grt3(a, b, c) has been computed:

ca, b 3 4 5

3, 3 137 ≥ 434 > 1989
3, 4 - > 1662 > 8300
4, 4 - > 5044

For (3, 3, 3) the logarithmic translation performed best, with minisat2 fastest,
followed by OKsolver-2002. For (3, 4, 5) rnovelty performed best. No core GT-
number grt4(a, b, c, d) could be computed:



360 O. Kullmann

da, b, c 3 4

3, 3, 3 > 384 > 1052
3, 3, 4 - > 2750

Extending (3, 3) by m 2’s, i.e., the numbers grtm+2(2, . . . , 2, 3, 3):

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
23 31 39 41 47 53 55 ≥ 60 ≥ 62 ≥ 67 ≥ 71 ≥ 73 ≥ 82 ≥ 83 ≥ 86

minisat2 is the best complete solver here (also for the other (complete) cases
below). For the lower bounds the logarithmic translation is best, with rsaps
except for m = 13 where walksat-tabu without null-flips is best. Extending
(3, k) for k ≥ 4 by m 2’s, i.e., the numbers grtm+2(2, . . . , 2, 3, k):

mk 0 1 2 3 4 5 6

4 79 117 120 128 136 ≥ 142 ≥ 151
5 528 581 ≥ 582 ≥ 610

For k = 5, m = 2 saps is best, and for m = 3 walksat. For k = 4, m = 6
walksat-tabu with the logarithmic translation is best. Extending (4, k) by m
2’s, i.e., the numbers grtm+2(2, . . . , 2, 4, k):

mk 0 1 2

4 512 ≥ 553 > 588

sapsnr is best (for the lower bounds). Extending (3, 3, k) by m 2’s, i.e., the
numbers grtm+3(2, . . . , 2, 3, 3, k):

mk 0 1 2

3 137 151 ≥ 154
4 ≥ 434 ≥ 453 > 471

5 Open Problems and Outlook

Regarding the generic translation scheme, further extensive experimentation
is needed w.r.t. the problem of ordering the values and of mixing translation
schemes (recall that every variable can be treated on its own). Also further in-
stances of the generic scheme need to considered, starting with refining the log-
arithmic translation when the number of values is not a power of 2. Of course,
finally some form of understanding needs to be established, and we hope that
the generic scheme offers a suitable environment for such considerations.

The translation of transversal extension problems into boolean SAT problems
can use cardinality constraints, and this needs to be explored systematically.
This includes the special case of transversal extensions of simple tuples, which
is basically the hypergraph transversal problem (for these special hypergraphs).
See [18] for more information.

A fundamental problem is to improve performance on unsatisfiable instances
(of complete solvers). The most promising general approach seems to us to sys-
tematically study the optimisation of heuristics as outlined in [15]. Investigating
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the tree-resolution and full-resolution complexity of these instances should be
of great interest; we noticed that especially with the OKsolver-2002 the search
trees show remarkable regularities (of a number-theoretical touch, in a kind of
“fractal” way). Exploiting the monotone nature of the hypergraph sequences of
vdW- or GT-hypergraphs seems also necessary to reach the next level of vdW-
or GT-numbers (regarding core parameter tuples), where some first (sporadic)
methods one finds in [11].

In general, it seems to us that instances from Ramsey theory, like vdW-
instances or GT-instances as considered in this paper, or like the Ramsey-
instances (and there are many other families), provide very good benchmarks for
SAT solvers, combining the power of systematic creation as for random instances
with various types of “structures”, where the interplay between these structures
and SAT solving should be of great interest and potential.
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Abstract. We present an original approach to exact MinSAT solving based on
solving MinSAT using MaxSAT encodings and MaxSAT solvers, and provide
empirical evidence that our generic approach is competitive.

1 Introduction

MinSAT is the problem of finding a truth assignment that minimizes the number of
satisfied clauses in a CNF formula. Despite that MaxSAT has focused the interest of the
SAT community in recent years [LM09], we believe that it is worth studying MinSAT
and, in particular, to devise fast exact MinSAT solving techniques. It has both theoretical
and practical interest: From the theoretical point of view, we highlight the existing work
on approximation algorithms for MinSAT (see [MR96] and the references therein);
and from the practical point of view, we emphasize its applicability in areas such as
Bioinformatics [GKZ05].

Since there exists no exact MinSAT solver similar to the modern branch-and-bound
solvers developed for MaxSAT, we believe that it is worth exploring solving MinSAT
using a generic problem solving approach. Our proposal relies on defining efficient and
original encodings from MinSAT into MaxSAT, solving the resulting MaxSAT encod-
ings with a modern MaxSAT solver, and then derive a MinSAT optimal solution from a
MaxSAT optimal solution. To be more precise, we define three encodings. The first one
is a straightforward reduction of MinSAT into Partial MaxSAT. The other two encod-
ings are more involved because they first reduce MinSAT to find an optimal MaxClique
solution in a graph that represents the interactions among the clauses of the MinSAT
instance, and then reduce MaxClique to Partial MaxSAT. The difference between both
encodings is that one uses the usual encoding from MaxClique into Partial MaxSAT,
while the other uses a novel encoding which is based on identifying a minimum clique
partition. Moreover, we performed an empirical investigation that shows that our ap-
proach is competitive.

The paper is structured as follows. In Section 2 we define three encoding from Min-
SAT into Partial MaxSAT. In Section 3 we report on the empirical evaluation we have
conducted in order to evaluate our approach to MinSAT solving. We refer to [LM09]
for the basic definitions of MaxSAT, and to [MR96] for the used definitions of graphs.

� Research supported by Generalitat de Catalunya (2009-SGR-1434), and Ministerio de Cien-
cia e Innovación (CONSOLIDER CSD2007-0022, INGENIO 2010,TIN2007-68005-C04-04,
Acción Integrada HA2008-0017). Acknowledgements: The MinSAT problem was originally
asked by Laurent Simon to the first author.
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2 Encodings

Definition 1. Given a MinSAT instance I consisting of the clause set CI = {C1, . . . ,
Cm} and variable set XI , the direct MaxSAT encoding of I is defined as follows: (i) The
set of propositional variables is XI ∪ {c1, . . . , cm}, where {c1, . . . , cm} is a set of
auxiliary variables; (ii) for every clause Ci ∈ CI , the hard clause ci ↔ Ci is added;
and (iii) for every auxiliary variable ci, the unit soft clause ¬ci is added.

The hard part establishes that ci is true iff Ci is satisfied. In the soft part, the number of
unsatisfied clauses in CI is maximized. Therefore, if the auxiliary variables set to true
in an optimal solution of the MaxSAT encoding are {ci1 , . . . , cik

}, then {Ci1 , . . . , Cik
}

is a minimum set of satisfied clauses in the MinSAT instance I .
Once we have defined the encoding based on reducing MinSAT to Partial MaxSAT,

we define two encodings based on reducing MinSAT to MaxClique, and then Max-
Clique to Partial MaxSAT. First, we introduce the concept of auxiliary graph:

Let I be a MinSAT instance consisting of the clause set CI and variable set XI . The
auxiliary graph GI(VI , EI) corresponding to I is constructed as follows: the vertex
set VI is in one-to-one correspondence with the clause set CI ; in the sequel, vertex ci

corresponds to clause Ci. For any two vertices ci and cj in VI , the edge {ci, cj} is in EI

iff the corresponding clauses Ci and Cj are such that there is a variable x ∈ XI that
appears in uncomplemented form in Ci and in complemented form in Cj , or vice versa.
The complement of an auxiliary graph GI is a graph GI on the same vertices such that
two vertices of GI are adjacent iff they are not adjacent in GI .

It was proved in [MR96] that the number of clauses of a MinSAT instance I satisfied
by an optimal assignment is equal to the cardinality of a minimum vertex cover for the
auxiliary graph GI . On the other hand, the set of vertices not belonging to a maximum
clique in the complement graph GI are a minimum vertex cover of GI . This follows
from the fact that, for any graph G(V, E), V ′ ⊆ V is a vertex cover iff V − V ′ in a
clique in the complement graph of G. Therefore, the number of clauses of a MinSAT
instance I satisfied by an optimal assignment is equal to the total number of vertices
minus the cardinality of a maximum clique in GI .

Moreover, an optimal assignment for the MinSAT instance I can be derived from a
minimum vertex cover for GI as follows [MR96]: The variables occurring in clauses
corresponding to vertices not belonging to the minimum vertex cover must be assigned
in such a way that these clauses are set to false, which is possible because, by con-
struction of GI , these clauses do not contain both x and x̄ for any x ∈ XI ; the rest
of variables are assigned to an arbitrary value. Therefore, we can derive an optimal
assignment for the MinSAT instance I from a maximum clique of GI : The variables
occurring in clauses corresponding to vertices belonging to the maximum clique must
be assigned in such a way that these clauses are set to false; the rest of variables are
assigned to an arbitrary value. Therefore, in order to find an optimal assignment for
the MinSAT instance I , we can search for a maximum clique in GI . The MaxClique
problem for GI can be naturally encoded into a Partial MaxSAT problem as follows.

Definition 2. Given a MinSAT instance I consisting of the clause set CI = {C1, . . . ,
Cm}, the MaxClique-based MaxSAT encoding of I is defined as follows: (i) The set of
propositional variables is {c1, . . . , cm}; (ii) for every two clauses Ci, Cj in CI such
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that Ci contains an occurrence of a literal l and Cj contains an occurrence of ¬l, the
hard clause ¬ci ∨ ¬cj is added; and (iii) for every propositional variable ci, the unit
soft clause ci is added.

Observe that there is a hard clause for every two non-adjacent vertices in GI encoding
that the two vertices cannot be in the same clique, and a soft unit clause for every vertex
in GI . The set of propositional variables evaluated to true in an optimal assignment of
the resulting Partial MaxSAT problem forms a maximum clique in GI .

The MaxClique-based MaxSAT encoding can be improved by reducing the number
of soft clauses by taking into account the following fact: If the auxiliary graph of a
MinSAT instance contains a clique C = {ci1 , . . . , cik

}, then the hard part contains the
clauses ¬cij ∨ ¬cik

for all i, j such that 1 ≤ i < j ≤ k. Observe that these clauses en-
code the following at-most-one condition: There is at most one literal in {ci1 , . . . , cik

}
that evaluates to true. In other words, they encode that any feasible solution assigns to
true at most one variable of the subset of variables {ci1 , . . . , cik

}. Therefore, we can re-
place the k unit soft clauses ci1 , . . . , cik

with the soft clause ci1 ∨ · · · ∨ cik
because the

number of satisfied clauses is the same in both encodings for any feasible assignment.

Definition 3. Let I be a MinSAT instance, let GI(VI , EI) be the auxiliary graph of I ,
and let V1, . . . , Vk be a clique partition of GI . The improved MaxClique-based MaxSAT
encoding of I is obtained from the MaxClique-based MaxSAT encoding of Definition 2
by replacing, for every clique Vi = {ci1 , . . . , cik

} in the partition, the soft unit clauses
ci1 , . . . , cik

with the soft unit clause ci1 ∨ · · · ∨ cik
.

Example 1. Let I be the MinSAT instance {C1, C2, C3, C4, C5}, where C1 = a ∨ b,
C2 = a∨¬b, C3 = ¬a∨b, C4 = ¬a∨¬b, and C5 = a∨c. The direct MaxSAT encoding
of I is formed by the hard clauses c1 ↔ a ∨ b, c2 ↔ a ∨ ¬b, c3 ↔ ¬a ∨ b, c4 ↔
¬a ∨ ¬b, c5 ↔ a ∨ c, and the soft clauses ¬c1,¬c2,¬c3,¬c4,¬c5. The MaxClique-
based MaxSAT encoding of I is formed by the hard clauses ¬c1∨¬c2,¬c1∨¬c3,¬c1∨
¬c4,¬c2 ∨ ¬c3,¬c2 ∨ ¬c4,¬c3 ∨ ¬c4,¬c3 ∨ ¬c5,¬c4 ∨ ¬c5, and the soft unit clauses
c1, c2, c3, c4, c5. Since {{c1, c2, c3, c4}, {c5}} is a clique partition of the auxiliary graph
of I , an improved MaxClique-based MaxSAT encoding of I is obtained by replacing the
soft clauses of the previous encoding with the following soft clauses: c1∨c2∨c3∨c4, c5.

Since finding a minimum clique partition is NP-hard, we propose to apply a heuristic
clique partition method for deriving the improved encoding. The heuristic used in our
empirical investigation is Algorithm 1. Given a graph G and a list P of disjoint cliques
in G, where P is initially empty, let #c(v) denote the number of cliques in P in which
vertex v can be inserted to enlarge them. Algorithm 1 selects the vertex v with the
minimum #c(v), breaking ties in favor of the vertex with the smallest degree (i.e., with
the minimum number of adjacent vertices). Let C be a clique in P , and let vi and vj be
two non-adjacent vertices that can be respectively inserted into C to get a larger clique,
observe that the insertion of vi into C prevents vj from being inserted into C, and vice
versa. The intuition behind the selection of v in Algorithm 1 is that the most constrained
vertex (i.e., with the fewest possibilities in P ) is inserted first, avoiding to create a new
clique for this vertex after inserting other vertices. The selected v is then inserted into a
clique in P to enlarge this clique. If this clique does not exist, a new clique is created
and v is inserted there.
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Algorithm 1. cliquePartition(G)
Input: A graph G=(V , E)
Output: A clique partition of G
begin1

P ← ∅;2

while G is not empty do3

For each vertex v in G, compute the number #c of cliques in P in which v is4

adjacent to all vertices;
v← the vertex of G with the minimum #c, breaking ties in favor of the vertex5

with the smallest degree;
remove v from G;6

if there is a clique C in P in which v is adjacent to all vertices then7

insert v into C;8

else9

create a new clique C;10

insert v into C;11

P ← P ∪ {C};12

return P ;13

end14

3 Experimental Results

We conducted an empirical comparison of the three proposed encodings on several
MaxSAT solvers, and also compared our results with the results obtained by solving
MinSAT with two of the best performing state-of-the-art exact MaxClique solvers.

The MaxSAT solvers used in our empirical investigation are the versions that that
participated in the 2009 MaxSAT Evaluation of the following solvers: WBO [MSP09],
MaxSatz [LMP07]1, PM2 [ABL09], and SAT4J-Maxsat2. The MaxClique solvers used
in our empirical investigation are: MaxCliqueDyn [KJ07]3, and Cliquer [Ost02]4.

The MaxClique solvers MaxCliqueDyn and Cliquer solve a MinSAT instance I by
computing a maximum clique in the complement auxiliary graph GI . The MaxSAT
solvers MaxSatz, WBO, PM2, and SAT4J-Maxsat solve I using the three encodings of
MinSAT into Partial MaxSAT defined in the previous sections.

As benchmarks, we used randomly generated Min-2-SAT and Min-3-SAT instances.
The number of variables in the instances ranged from 40 to 100, and the clause-to-
variable ratios solved for Min-2-SAT were 1 and 3, and the clause-to-variable (C/V )

1 We introduced a small modification in the heuristic used to select the variables to which failed
literal detection is applied in the lower bound computation: instead of applying it to all the
variables having both at least two negative and two positive occurrences in binary clauses,
it is now applied to all the variables having at least one positive occurrence and at least two
negative occurrences in binary clauses, and to all the variables having at least one negative
occurrence and at least two positive occurrences in binary clauses.

2 http://www.sat4j.org/
3 We got the source code of this solver from D. Janezic in January 2010.
4 We used the last publicly available version of this solver: http://users.tkk.fi/pat/cliquer.html
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Table 1. Number of solved instances and mean time (seconds) of MaxSatz, MaxCliqueDyn
(Dyn), Cliquer (Clq), PM2, WBO and SAT4J-Maxsat on random Min-2-SAT

instance MaxSatz Dyn Clq PM2 WBO sat4j-maxsat

#var C/V E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3

90 1.0 0.58 9.38 0.00 0.02 0.00 0.01 0.00 0.00 0.02 0.01 0.00 2710 1995 0.08
(50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (24) (45) (50)

100 1.0 0.26 27.34 0.00 0.02 0.00 0.01 0.01 0.00 0.02 0.01 0.00 2596 6358 0.11
(50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (14) (12) (50)

40 3.0 0.12 52.95 0.01 0.03 0.01 0.19 0.51 0.00 0.07 0.52 0.00 9904 - 0.20
(50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (4) (0) (50)

50 3.0 0.89 2053 0.01 0.04 1.23 5.25 7.89 0.00 42.35 51.12 0.01 - - 0.43
(50) (48) (50) (50) (50) (50) (50) (50) (50) (50) (50) (0) (0) (50)

60 3.0 7.42 - 0.02 0.07 15.88 49.35 79.77 0.01 207.6 93.17 0.20 - - 2.41
(50) (0) (50) (50) (50) (50) (50) (50) (50) (50) (50) (0) (0) (50)

70 3.0 43.25 - 0.03 0.13 68.01 144.3 135.8 0.01 225.1 143.9 0.08 - - 2.42
(50) (0) (50) (50) (50) (50) (50) (50) (50) (50) (50) (0) (0) (50)

80 3.0 201.2 - 0.05 0.25 302.4 199.9 231.8 0.02 416.8 432.9 0.70 - - 3.35
(50) (0) (50) (50) (50) (50) (50) (50) (50) (50) (50) (0) (0) (50)

90 3.0 1355 - 0.08 0.91 895.5 353.1 330.3 0.05 558.8 295.1 1.37 - - 5.38
(49) (0) (50) (50) (42) (50) (50) (50) (50) (50) (50) (0) (0) (50)

100 3.0 3258 - 0.11 1.51 1185 256.7 455.3 0.09 548.5 665.9 29.27 - - 96.91
(46) (0) (50) (50) (44) (10) (50) (50) (50) (50) (50) (0) (0) (50)

ratios solved for Min-3-SAT were 4.25 and 5. Experiments were performed on a Macpro
with a 2.8Ghz intel Xeon processor and 4 Gb memory with MAC OS X 10.5. The cut-
off time was set to 3 hours.

Table 1 and Table 2 contain the experimental results obtained when solving the Min-
2-SAT and Min-3-SAT instances with the MaxSAT and MaxClique solvers. The tables
show, for each solver, the number of instances solved within 3 hours (between brack-
ets) in a set of 50 instances at each point, and the mean time needed to solve these
solved instances. Table 1 shows results just for 90-variable and 100-variable instances
when C/V = 1 because they can be easily solved and we have no space. The MaxSAT
solvers not included in Table 2 were far from being competitive on Min-3-SAT in-
stances. The three encodings are denoted by E1 (Encoding 1), E2 (Encoding 2), and E3
(Encoding 3).

The experimental results show that the direct encoding of MinSAT into Partial
MaxSAT (Encoding 1) is better than the MaxClique based encoding (Encoding 2) for
all the MaxSAT solvers. However, when the MaxClique-based encoding is improved
using a good clique partition of GI , then the improved MaxClique-based encoding (En-
coding 3) is by far the best performing encoding for all the MaxSAT solvers. More
importantly, Encoding 3 even makes MaxSatz significantly better for computing a max-
imum clique in GI than the state-of-the-art specific MaxClique solvers MaxCliqueDyn
and Cliquer.
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Table 2. Number of solved instances and mean time (seconds) of MaxSatz, MaxCliqueDyn (Dyn
in the table) and Cliquer on random Min-3-SAT

instance MaxSatz Dyn Cliquer

#var C/V E1 E2 E3

40 4.25 4.67(50) 992.5(50) 0.28(50) 0.12(50) 15.94(50)
50 4.25 75.6(50) - (0) 1.57(50) 0.98(50) 945.0(49)
60 4.25 1153(50) - (0) 8.31(50) 9.94(50) 5385(10)
70 4.25 5989(5) - (0) 42.77(50) 106.4(50) - (0)
80 4.25 - (0) - (0) 186.3(50) 917.4(50) - (0)
90 4.25 - (0) - (0) 760.4(50) 4453(41) - (0)
100 4.25 - (0) - (0) 2819(26) - (0) - (0)

40 5.00 10.87(50) 5693(48) 0.80(50) 0.30(50) 63.98(50)
50 5.00 226.8(50) - (0) 5.24(50) 3.97(50) 3035(35)
60 5.00 3803(48) - (0) 39.3(50) 60.14(50) - (0)
70 5.00 - (0) - (0) 243.4(50) 735.2(50) - (0)
80 5.00 - (0) - (0) 1512(50) 6355(41) - (0)
90 5.00 - (0) - (0) 5167(39) - (0) - (0)
100 5.00 - (0) - (0) - (0) - (0) - (0)
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Uniquely Satisfiable k-SAT Instances with

Almost Minimal Occurrences of Each Variable
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Abstract. Let (k, s)-SAT refer the family of satisfiability problems re-
stricted to CNF formulas with exactly k distinct literals per clause and
at most s occurrences of each variable. Kratochv́ıl, Savický and Tuza [6]
show that there exists a function f(k) such that for all s ≤ f(k), all
(k, s)-SAT instances are satisfiable whereas for k ≥ 3 and s > f(k),
(k, s)-SAT is NP-complete. We define a new function u(k) as the mini-
mum s such that uniquely satisfiable (k, s)-SAT formulas exist. We show
that for k ≥ 3, unique solutions and NP-hardness occur at almost the
same value of s: f(k) ≤ u(k) ≤ f(k) + 2.

We also give a parsimonious reduction from SAT to (k, s)-SAT for
any k ≥ 3 and s ≥ f(k) + 2. When combined with the Valiant–Vazirani
Theorem [8], this gives a randomized polynomial time reduction from
SAT to UNIQUE-(k, s)-SAT.

1 Introduction

Let (k, s)-SAT refer to the family of satisfiability problems restricted to CNF
formulas with exactly k distinct literals per clause and at most s occurrences of
each variable. Since (2, s)-SAT is in P for all s, we restrict our attention to k ≥ 3.

Tovey [7] first observed that (3, 3)-SAT was trivial since every instance is
satisfiable, and showed that (3, 4)-SAT was NP-hard. This was generalized to
larger k by Kratochv́ıl, Savický and Tuza [6] who showed that for each k ≥ 4
there exists a threshold f(k) such that for all s ≤ f(k), (k, s)-SAT is trivial
whereas for all s > f(k), (k, s)-SAT is NP-hard.

Using Hall’s Theorem, Tovey [7] showed that every (k, k)-SAT instance is
satisfiable, giving the first lower bound f(k) ≥ k. This was improved by Kra-
tochv́ıl, Savický and Tuza [6] who used the Lovász local lemma to show that
all (k, �2k/ek�)-SAT instances are satisfied by random assignments with positive
probability, implying f(k) ≥ �2k/ek�.

Trivially, f(k) < 2k since enumerating all 2k possible clauses for k variables
gives an unsatisfiable formula. Kratochv́ıl, Savický and Tuza [6] proved that
f(k + 1) ≤ 2f(k) + 1. Combined with the fact that f(3) = 3, we get f(k)

� This research is supported by NSF grant CCF-0947262 from the Division of Com-
puting and Communication Foundations. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
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≤ 2k−1−1 (this may be improved slightly by using a base case of f(k) for larger
k). Subsequently, this has been improved to f(k) = Θ

(
2k/k

)
[4]. However the

exact value of f(k), or even whether f(k) is computable, remains unknown.
Valiant and Vazirani [8] showed that deciding whether a SAT formula has zero

or one solution is essentially as hard as SAT in general. In particular, they prove
the following theorem:

Theorem 1 (Valiant–Vazirani Theorem [8]). There exists a randomized
polynomial time reduction from SAT to UNIQUE-SAT.

By the standard parsimonious reduction from SAT to k-SAT, the Valiant–Vazirani
Theorem implies the same hardness for UNIQUE-k-SAT. However, what happens
when the number of occurrences of each variable is also limited? Specifically, what
can be said about UNIQUE-(k, s)-SAT for various values of s?

We give a parsimonious reduction from 3-SAT to (k, s)-SAT, for any k ≥ 3
and s ≥ f(k) + 2. Thus, UNIQUE-(k, f(k) + 2)-SAT is as hard as UNIQUE-SAT.
In contrast, UNIQUE-(k, f(k))-SAT is trivial since every formula is satisfiable.

Calabro et al. [3] give additional evidence that UNIQUE-k-SAT is no eas-
ier than k-SAT, not just for polynomial time algorithms (as shown by Valiant
and Vazirani), but for super-polynomial time algorithms. They show that if
UNIQUE-3-SAT is in randomized subexponential time (∩ε>0RTIME(2εn)), then
so is k-SAT for all k ≥ 3. Our parsimonious reduction from 3-SAT to (k, s)-SAT
combined with their result implies that if UNIQUE-(k, s)-SAT is in randomized
subexponential time for some k ≥ 3 and s ≥ f(k) + 2, then so is k′-SAT for all
k′ ≥ 3. We omit the details which follow fairly straightforwardly from [3,5].

A key component in our reduction is a construction of uniquely satisfiable
(k, s + 1)-SAT formulas from unsatisfiable (k, s)-SAT formulas. Starting with
unsatisfiable (k, f(k) + 1)-SAT formulas allows us work with uniquely satisfiable
formulas with almost the minimum number of occurrences of each variable, and
also argue about the transition where uniquely satisfiable formulas first occur.
Since the smallest s we argue about for each k is f(k) + 2, the questions of
whether there exists a uniquely satisfiable (k, f(k) + 1)-SAT formula and the
complexity of UNIQUE-(k, f(k) + 1)-SAT remain open.

Since our reduction requires the existence of an unsatisfiable (k, s)-SAT for-
mula, we require that k and s > f(k) be constants. In this case we know there
exists an unsatisfiable formula of constant size. If we could give an upper bound
on the size of this formula in terms of k and s it would imply that f(k) was
computable, which would be an independently interesting result.

Let Fk(n, m) refer to a random k-SAT formula with n variables and m clauses.
Just as there is a transition in (k, s)-SAT as s increases from trivial to NP-hard,
there is a similar transition in Fk(n, rn) as r increases from satisfiable with high
probability to unsatisfiable w.h.p. (See [1] and its references). It is conjectured
that for each k the transition occurs at a sharp threshold rk. Achiloptas and
Ricci-Tersenghi [2] show that for sufficiently large k and r < rk, w.h.p., Fk(n, rn)
has exponentially many, widely separated, small clusters of solutions. In some
ways, small, widely separated clusters of solutions are similar to unique solutions.
In both cases, they seem to be some of the hardest instances for algorithms. While
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we don’t consider random SAT formulas in this paper, we view the similarities
as additional motivation.

2 Definitions and Results

Definition 1. We let SAT refer to the satisfiability problem restricted to formu-
las in conjunctive normal form; k-SAT to SAT restricted to formulas with exactly
k literals per clause; and (k, s)-SAT to k-SAT restricted to formulas where each
variable occurs in at most s clauses.

Definition 2. We let UNIQUE-SAT refer to the promise problem of deciding
whether a SAT formula is unsatisfiable or has a unique satisfying assignment.
UNIQUE-k-SAT and UNIQUE-(k, s)-SAT are defined similarly.

Definition 3 (Valiant and Vazirani [8]). A randomized polynomial time
reduction M from a problem A to a problem B is a randomized polynomial time
Turing machine such that for all x 
∈ A we are guaranteed that M(x) 
∈ B, and
for all x ∈ A we get M(x) ∈ B with probability at least 1/poly(|x|).
Definition 4. In the context of SAT, a reduction M is said to be parsimonious
if the formulas x and M(x) have the same number of satisfying assignments.

In particular, parsimonious reductions preserve the existence of unique satisfying
assignments.

Definition 5 (Kratochv́ıl, Savický and Tuza [6]). For each k ≥ 3, f(k) is
defined as the largest value of s such that all (k, s)-SAT instances are satisfiable.

Equivalently, we may think of f(k) + 1 as the smallest value of s such that there
exist unsatisfiable (k, s)-SAT instances.

Definition 6. For each k ≥ 3, we define u(k) as the smallest value of s such
that there exist (k, s)-SAT instances with exactly one satisfying assignment.

Theorem 2. For all k ≥ 3, f(k) ≤ u(k) ≤ f(k) + 2.

This theorem follows directly from the following two lemmas:

Lemma 1. For all k ≥ 3 and s ≥ u(k), there exist unsatisfiable (k, s + 1)-SAT
instances.

Lemma 2. For all k ≥ 3 and s ≥ f(k) + 1, there exist uniquely satisfiable
(k, s + 1)-SAT instances.

To prove that (k, f(k) + 1)-SAT is NP-hard, Kratochv́ıl, Savický and Tuza [6]
give a reduction from k-SAT to (k, s)-SAT for any s > f(k). Combining their
proof with Lemma 2 we get the following lemma:

Lemma 3. For any constants k ≥ 3 and s ≥ f(k) + 2, there is a parsimonious
polynomial time reduction from 3-SAT to (k, s)-SAT.
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Composing the Valiant–Vazirani Theorem (Theorem 1), the standard parsimo-
nious reduction from SAT to 3-SAT, and Lemma 3, we get the following:

Corollary 1. For any constants k ≥ 3 and s ≥ f(k) + 2, there is a randomized
polynomial time reduction from SAT to UNIQUE-(k, s)-SAT.

3 Proofs

Proof (Lemma 1). Since s ≥ u(k), there exists a uniquely satisfiable (k, s)-SAT
formula F . Add a single clause to F which is violated by the unique satisfying
assignment. We add at most 1 occurrence of each variable, so this gives an
unsatisfiable (k, s + 1)-SAT formula. ��
To prove Lemma 2, we will construct a uniquely satisfiable (k, s + 1)-SAT for-
mula in a sequence of steps from an unsatisfiable (k, s)-SAT formula. We classify
variables in each of these formulas as either forced or unforced. If every satis-
fying assignment for a formula sets a variable to the same value, we say that
the variable is forced. Otherwise, we say that the variable is unforced. We will
be particularly interested in forced variables that occur exactly once in the for-
mula. Without loss of generality, we will always assume that forced variable must
be set to false in all satisfying assignments (otherwise replace every occurrence
of the variable with its negation). Note that uniquely satisfiable formulas are
equivalent to formulas where every variable is forced.

Our construction can be broken down into 3 steps formalized by the following
lemmas: Lemma 4 constructs a formula with a few forced variables. Lemma
5 increases the number of forced variables without increasing the number of
unforced variables. Lemma 6 uses the newly created forced variables to force all
of the unforced variables.

Lemma 4. We can transform an unsatisfiable (k, s)-SAT formula into a satis-
fiable (k, s)-SAT formula with k forced variables that only occur once.

Lemma 5. We can transform a (k, s)-SAT formula with n unforced variables
and t ≥ k − 1 forced variables that only occur once (and possibly other vari-
ables that are forced but occur more than once) into a (k, s)-SAT formula with n
unforced variables and t + (s − k) > t forced variables that only occur once.

Lemma 6. We can transform a (k, s)-SAT formula with n unforced variables
and at least n + k forced variables that only occur once into a (k, s + 1)-SAT
formula where every variable is forced.

Proof (Lemma 4). Let F be a minimal unsatisfiable (k, s)-SAT formula. (A for-
mula is minimally unsatisfiable if removing any clause would make it satisfiable.)
Transform F by renaming variables and replacing variables with their negations
so that F can be written as (x1 ∨ x2 ∨ · · · ∨ xk) ∧ G, where G is satisfied by the
all-false assignment. Within G, the variables x1, . . . , xk each occur at most s− 1
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times and are forced to false (any satisfying assignment that didn’t set them to
false would also satisfy F ).

Let G(1), . . . , G(k−1) be k−1 disjoint copies of G. Let x
(i)
1 , . . . , x

(i)
k denote the

copy of x1, . . . , xk occurring in G(i). Return the formula G(1) ∧ · · · ∧G(k−1) ∧H ,
where H =

∧k
i=1(x(1)

i ∨ · · · ∨x
(k−1)
i ∨ yi) and y1, . . . , yk are fresh variables. Each

variable yi occurs in exactly 1 clause and must be set to false to satisfy that
clause since all of the other variables in the clause are already forced. ��
Proof (Lemma 5). Let G be a (k, s)-SAT formula with n unforced variables and
t ≥ k − 1 forced variables that only occur once. Let y1, . . . , yk−1 denote k − 1
of these forced variables. Let H =

∧s−1
i=1 (y1 ∨ · · · ∨ yk−1 ∨ zi), where z1, . . . zs−1

are fresh variables. Return the formula G∧H . Each of the variables y1, . . . , yk−1

is still forced, but now each occurs s times. In their place, we have s − 1 new
forced variables z1, . . . , zs−1 which each only occur once, for a total of t+(s−k)
such variables. Whether other variables are forced remains unchanged. Note that
s > f(k) ≥ k since unsatisfiable (k, s)-SAT instances exist. ��
Proof (Lemma 6). Let F be a (k, s)-SAT formula with n unforced variables and
n + k forced variables that only occur once. Let x1, . . . , xn denote the unforced
variables. Let y1, . . . , yn+k denote the forced variables that only occur once. Let
m = & n

k−1'. Arbitrarily partition the variables x1, . . . , xn into m sets X1, . . . , Xm

of size k − 1. Add new variables as needed so that every set contains exactly
k − 1 variables. Arbitrarily partition the variables y1, . . . , y(k−1)m into m sets
Y1, . . . , Ym of size k − 1.

For each 1 ≤ i ≤ m, we will construct a formula Hi using the variables in sets
Xi and Yi. For simplicity, let Xi = {x1, . . . , xk−1} and Yi = {y1, . . . , yk−1}. For
each i, let Hi =

∧k−1
j=1 (y1 ∨ · · · ∨ yk−1 ∨ xj).

Return the formula F ∧ H1 ∧ · · · ∧ Hm. Each Hi uses the variables in Yi to
force the variables in Xi. Since each variable in Yi is forced, the variables in Xi

must be false to satisfy the clauses in Hi. This adds k − 1 occurrences for each
variable in Yi and one occurrence for each variable in Xi. Each variable in Yi now
occurs k < s times and each variable in Xi now occurs at most s + 1 times. ��
Proof (Lemma 2). Since s ≥ f(k) + 1, there exists an unsatisfiable (k, s)-SAT
formula F . Use Lemma 4 to construct a (k, s)-SAT formula G with k forced
variables that only occur once. Let n denote the number of unforced variables in
G. Use Lemma 5 sufficiently many times starting with G to get a formula H with
at least n + k forced variables that only occur once. Note that H still contains
only n unforced variables. Using Lemma 6 on H gives a uniquely satisfiable
(k, s + 1)-SAT formula. ��
By repeating Lemma 5 sufficiently many additional time before using Lemma 6,
we get the following corollary:

Corollary 2. For any constants k ≥ 3 and s ≥ f(k) + 2, and any m ≥ 0,
we can construct a uniquely satisfiable (k, s)-SAT formula with at least m forced
variables that only occur once in time polynomial in m.
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The following proof of Lemma 3 is the same as the reduction given by Kra-
tochv́ıl, Savický and Tuza [6] to prove that (k, f(k) + 1)-SAT is NP-hard with
one exception. We use Corollary 2 to supply forced variables whereas they used
a (k, f(k) + 1)-SAT formula with potentially many satisfying assignments.

Proof (Lemma 3). For any k ≥ 3 and s ≥ f(k)+2, we transform a 3-SAT formula
F parsimoniously into a (k, s)-SAT formula in 2 steps:

First, we reduce the number of occurrences of each variable to at most s,
which introduces additional 2-variable clauses. For each variable x occurring
t > s times, replace each occurrence of x with a new variable xi, 1 ≤ i ≤ t. Add
clauses (xi ∨ xi+1) for 1 ≤ i ≤ t− 1, and (xt ∨ x1). These clauses ensure that in
any satisfying assignment all the variables xi are assigned the same value. Thus,
we maintain exactly the same number of satisfying assignments. Each of these
new variables occurs exactly 3 < s times. Let G denote the resulting formula,
and m the number of clauses in G.

Second, we pad each clause with forced variables so that all clauses contain
exactly k variables. Using Corollary 2, there exists a (k, s)-SAT formula H with
at least mk forced variables that only occur once. For each clause c of length
� < k in G, replace c with (c ∨ y1 ∨ · · · ∨ yk−�), where y1, . . . , yk−� are arbitrary
forced variables from H occurring fewer than s times. Let G′ denote the result
of these replacements. Return the formula G′ ∧ H . Since the only satisfying
assignment to H sets all variables to false, the padded clauses in G′ are satisfied
by exactly the same assignments that satisfy G. Thus, G′ ∧ H has exactly the
same number of satisfying assignments as G. ��
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Abstract. Assignment stack shrinking is a technique that is intended
to speed up the performance of modern complete SAT solvers. Shrinking
was shown to be efficient in SAT’04 competition winners Jerusat and
Chaff. However, existing studies lack the details of the shrinking algo-
rithm. In addition, shrinking’s performance was not tested in conjunction
with the most modern techniques. This paper provides a detailed descrip-
tion of the shrinking algorithm and proposes two new heursitics for it.
We show that using shrinking is critical for solving well-known industrial
benchmark families with the latest versions of Minisat and Eureka.

1 Introduction

Modern SAT solvers are known to be extremely efficient on many industrial prob-
lems which may comprise up to millions of variables and clauses. Among the key
features that enable the solvers to be so efficient, despite the apparent difficulty
of solving huge instances of NP-complete problems, are dynamic behavior and
search locality, that is, the ability to maintain the set of assigned variables and
recorded clauses relevant to the currently explored space. This effect is achieved
by applying various techniques, such as the VSIDS decision heuristic [1] (which
gives preference to variables that participated in recent conflict clause deriva-
tions) and local restarts (such as [2]). Another important feature of modern
SAT solvers is that they tend to pick interrelated variables, that is, variables
whose joint assignment increases the chances of quickly reaching conflicts in un-
satisfiable branches and satisfying clauses in satisfiable branches. Clause-based
heuristics (such as CBH [3]), which prefer to pick variables from the same clause,
increase the interrelation of the assigned variables.

Assignment stack shrinking (or, simply, shrinking) is a technique that seeks to
boost the performance of modern SAT solvers by making their behavior more local
and dynamic, as well as by improving the interrelation of the assigned variables.

Shrinking was introduced in [4] and implemented in the Jerusat SAT solver.
After a conflict, Jerusat applies shrinking if its shrinking condition is satisfied.
The shrinking condition of Jerusat is satisfied if the conflict clause contains no
more than one variable from each decision level. The solver then sorts the conflict
clause literals according to its sorting scheme. The sorting scheme of Jerusat
sorts the clause by decision level from lowest to highest. Afterwards Jerusat
backtracks to the shrinking backtrack level. The shrinking backtrack level for
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Jerusat is the highest possible decision level where all the literals of the conflict
clause become unassigned. Jerusat then guides the decision heuristic to select
the literals of the conflict clause according to the sorted order and assign them
the value false, whenever possible. As usual, Boolean Constraint Propagation
(BCP) follows each assignment.

One can pick out three important components of the shrinking algorithm that
can be tuned heuristically: the shrinking condition, the sorting scheme, and the
determination of the shrinking backtrack level. Shrinking was implemented in
the 2004 version of the Chaff SAT solver [5] with important modifications in
each one of these components, as described below.

2 Algorithmic Details and New Heuristics

Chaff had two versions: zchaff.2004.5.13 and zchaff rand . We concentrate on
zchaff rand ’s version of shrinking, since it was shown to be more useful in [5], and
also performed better in the SAT’04 competition [6]. Suppose Chaff encounters
a conflict. Chaff considers applying shrinking if the length of the conflict clause
exceeds a certain threshold x . The clause is sorted according to decision levels.
The algorithm finds the lowest decision level that is less than the next higher
decision level by at least 2. (If no such decision level is found, shrinking is not
performed.) The algorithm backtracks to this decision level, and the decision
strategy starts reassigning the value false to the unassigned literals of the conflict
clause, whenever possible. Chaff reassigns the variables in the reverse order,
that is, in descending order of decision levels, since this sorting scheme was
found to perform slightly better than Jerusat’s in [5]. The threshold value x
for applying shrinking is set dynamically using some measured statistics. More
specifically, Algorithm 1 is used in Chaff for adjusting x after every y conflicts.
Chaff measures the mean and standard deviation of the lengths of the recently
learned conflict clauses and tries to adjust x to keep it at a value greater than
the mean. The threshold on the number of conflicts y is 600 for Chaff.

Chaff’s shrinking algorithm was implemented in Intel’s SAT solver Eureka
with two minor differences: (1) The threshold on the number of conflicts y is
2000; (2) Eureka forbids performing shrinking for two conflicts in a row.

An important detail for understanding the reasons for the efficiency of shrink-
ing is that a conflict clause is recorded even when shrinking is applied. Hence the
solver always explores a different subspace after performing shrinking. Previous
works [4, 5, 7] claimed that a “similar” conflict must follow an application of
shrinking, on the assumption that a conflict clause is not recorded when shrink-
ing is applied, but this claim does not fit the actual way shrinking is implemented
in Jerusat, Chaff, and Eureka.

Applying shrinking contributes to search locality and makes the solver more
dynamic, since the set of assigned variables becomes more relevant to the recently
explored search space as irrelevant variables become unassigned. Also, since the
variables on the assignment stack are precisely those that appeared in recent
conflict clauses, conflict clauses are more likely to share common interrelated
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Algorithm 1. Adjust Threshold for Shrinking (Threshold for shrinking x , Threshold
for number of learned clauses y)

Require: x is initialized with the value 95 at the beginning of SAT solving.
(mean, stdev ) := mean and standard deviation of last y learned clause lengths
center := mean + 0.5 ∗ stdev ; ulimit := mean + stdev
if x ≥ center then

x := x− 5
end if
if x < center then

x := x + 5
end if
if x > ulimit then

x := ulimit
end if
if x < 5 then

x := 5
end if
return x

variables. Shrinking often reduced the average length of learned conflict clauses
and led to faster solving times, especially for the microprocessor verification
benchmarks in Chaff [5].

We propose two new heuristics for shrinking. First, we propose generalizing
the shrinking condition of Jerusat. We count the number of decision levels as-
sociated with a conflict clause’s variables and perform shrinking if this number
is greater than a threshold x . The threshold is calculated exactly like the con-
flict clause size threshold in Chaff in Algorithm 1, using the number of decision
levels in the clauses instead of their lengths. We dub our proposal the decision-
level-based shrinking condition. Interestingly, Jerusat’s shrinking condition and
its proposed generalization correspond to the recent observation that a “good”
clause should contain as few decision levels as possible [8]. The clause deletion
scheme of SAT’09 competition winner Glucose is based on this observation. Sec-
ond, we propose using a new sorting scheme, called activity ordering. Our scheme
sorts the variables of the conflict clause according to VSIDS’s scores, from high-
est to lowest. Our proposal is intended to make the solver even more dynamic,
since it reorders the relevant variables according to their contribution to the
derivation of recent conflict clauses.

3 Experimental Results and Discussion

We used Eureka and Minisat for our experiments. Minisat was enhanced by
a restart strategy that was found to be optimal for this solver in [2]. We used
eight publicly available benchmark families: sat04-ind-goldberg03-hard eq check [6]
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(henceforth, abbreviated to ug), sat04-ind-maris03-gripper [6] (mm), sat04-ind-velev-

vliw unsat 2.0 [9] (uv2), SAT-Race TS 1 [10] (ms1), SAT-Race TS 2 [10] (ms2),

velev fvp-sat.3.0 [11] (sv3), velev fvp-unsat.3.0 [11] (uv3), velev vliw unsat 4.0 [9]

(uv4).

For each solver, we compared the following four versions, applying: (1) no
shrinking; (2) the base version of shrinking, corresponding to Eureka’s version
of shrinking (recall from Section 2 that Eureka’s shrinking algorithm is largely
similar to Chaff’s: its shrinking condition is based on clause length and the
sorting scheme picks variables in descending order of decision levels); (3) the base
version, modified by applying activity ordering; (4) the base version, modified
by using the decision-level-based shrinking condition.

Table 1 provides some statistics regarding the benchmark families as well as
Eureka’s results. The first column of the table contains the family name, the
second column specifies whether the instances are satisfiable, unsatisfiable, or
mixed, and the third column contains the number of instances in the family.
Each subsequent pair of columns shows the number of instances solved by Eu-
reka within a three hour timeout and the overall run-time for the particular
version in seconds (10800 seconds, that is, three hours, is added for an unre-
solved benchmark). Table 2 provides Minisat’s results in the same format. (A
table with all the details of the experimental results appears in [12].)

Compare the empirically best shrinking algorithm versus the version without
shrinking for each solver. For Eureka, shrinking (the base version) is helpful for
solving seven out of eight families, and critical for solving ug, uv2, uv3 and uv4.

Table 1. Shrinking within Eureka

No Shr. Base Shr. Act. Order Dec. Cond.
Family SAT? Inst. Solved Time Solved Time Solved Time Solved Time
ug UNS 13 10 67005 13 12041 13 14389 12 28457
mm MIX 10 5 66602 7 39870 7 39426 8 44404
uv2 UNS 8 1 78870 8 12129 8 10283 8 10914
ms1 MIX 50 47 51117 49 27352 48 38208 50 16279
ms2 MIX 50 42 109899 44 92813 43 96564 42 99882
sv3 SAT 20 20 767 20 1119 20 788 20 1375
uv3 UNS 6 1 62038 6 10863 6 11761 6 11251
uv4 UNS 4 0 43200 4 10874 4 9018 4 10677
Sum 161 126 479498 151 207061 149 220437 150 223239

Table 2. Shrinking within Minisat

No Shr. Base Shr. Act. Order Dec. Cond.
Family SAT? Inst. Solved Time Solved Time Solved Time Solved Time
ug UNS 13 7 82310 10 43007 10 43686 11 44140
mm MIX 10 0 108000 4 71234 0 108000 4 76680
uv2 UNS 8 1 85508 8 12235 8 10817 8 11743
ms1 MIX 50 48 36771 47 37771 49 26894 49 20557
ms2 MIX 50 44 82982 41 122233 42 107147 41 107780
sv3 SAT 20 16 53968 20 9330 20 10084 20 6954
uv3 UNS 6 0 64800 3 38056 0 64800 3 39652
uv4 UNS 4 1 33370 4 15230 4 9912 4 14798
Sum 161 117 547709 137 349096 133 381340 140 322304
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For Minisat, shrinking (with the decision-level-based shrinking condition) is criti-
cal for solving seven out of eight families (ms2 is an exception). Overall, shrinking
enables Eureka and Minisat to solve, respectively, 25 and 23 more benchmarks
within the timeout. Hence employing shrinking is highly advantageous.

Compare now our two variations of shrinking versus the base version. The ef-
fect of applying the decision-level-based shrinking condition in Minisat is clearly
positive as it leads to better overall performance in terms of both the number of
solved instances and the run-time. Although applying the decision-level-based
ordering condition within Eureka does not lead to better results overall, the
solver does perform better for four families (the gap is especially significant
for ms1) than with the base version. While the impact of activity ordering is
negative for Minisat overall, it performs better than best version (the version
with the decision-level-based shrinking condition) for three families. Activity
ordering is not helpful overall for Eureka, but is does help solve four families
more quickly than the best version (the version with base shrinking). Hence it
is recommended that shrinking be tuned for each specific solver and benchmark
family.

An important question is whether the effect of shrinking can be achieved
by applying other algorithms, proposed after shrinking. Consider the following
three techniques: (1) Frequent restarts [13,2]; (2) A clause-based heuristic, such
as CBH [3]; and (3) RSAT’s polarity selection heuristic [14], which assigns every
decision variable the last value it was assigned. Observe that the combined effect
of these three techniques seems to be similar to that of shrinking. First, restarting
the search when a certain condition holds corresponds to backtracking when
the shrinking condition is met. Second, applying a clause-based heuristic and
RSAT’s polarity selection heuristic results in selecting the last conflict clause
and assigning its literals the value false, similar to what happens in shrinking. It
was claimed in [13] that the impact of conflict clause minimization [15,16] could
be considered somewhat similar to the impact of shrinking, since minimization
reduces the size of conflict clauses, as does shrinking, according to [5].

However, we have seen that shrinking is extremely useful within Eureka, which
employs all the above-mentioned techniques, and Minisat with local restarts,
which uses some of them. Thus empirically the effect of shrinking is not achieved
by combining other techniques. Let us take a closer look at the differences be-
tween our basic version of shrinking and the combination of frequent restarts,
CBH, and RSAT’s polarity selection heuristic. First, the shrinking condition dif-
fers from the restart condition of any known restart strategy. Second, shrinking
restarts the search only partially, in contrast to most modern restart strate-
gies. Third, unlike clause-based heuristics, shrinking continues selecting variables
from the last conflict clause, even if it is satisfied. Fourth, shrinking re-orders
the variables in the last conflict clause. It is, therefore, the simultaneous effect
of these features, achieved by carefully choosing the shrinking condition, the
sorting scheme, and the shrinking backtrack level, that makes shrinking highly
efficient.



380 A. Nadel and V. Ryvchin

4 Conclusion

Assignment stack shrinking is a technique that boosts the performance of mod-
ern complete SAT solvers by making them more dynamic and local, and by en-
hancing the interrelation of the assigned variables. We have described in detail
different variations of the shrinking algorithm, including two new heuristics, one
of which improves Minisat’s overall performance. We have shown that shrinking
is extremely efficient within Minisat and Eureka, and that its effects cannot be
achieved by other modern algorithms. Shrinking is proving to be a useful con-
cept (that is, a collective name for a family of algorithms) that can be enhanced
independently of the other components of SAT solvers, such as restart strategies
or decision heuristics.
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Abstract. We study simple classes of mixed Horn formulas, in which the struc-
ture of the Horn part is drastically constrained. We show that the SAT problem for
formulas in these classes remains NP-complete, and demonstrate experimentally
that formulas randomly generated from these classes are hard for the present SAT
solvers, both complete and local-search ones.

1 Introduction

We study some simple classes of mixed Horn formulas and show that randomly gen-
erated formulas from these classes are hard for the present SAT solvers. A conjunctive
normal form (CNF) formula F is a mixed Horn formula (an MHF, for short) if each
clause in F is either a positive 2-clause (a clause of the form a ∨ b, where a and b
are propositional variables), or is a Horn clause. MHFs have received much attention
recently [1,2]. Researchers proved that many NP-complete problems have simple en-
codings as MHFs [2], showed that the satisfiability of MHFs remains NP-compete even
under additional restrictions of the structure of input MHFs [2], and developed satisfia-
bility algorithms for MHFs with good worst-case behavior lower bounds [1,3].

Due to their simplicity on the one hand, and the expressive power on the other, MHFs
are attractive as possible benchmarks for SAT solvers. Our goal in this paper is to pro-
pose some models of simple random MHFs of particularly constrained structure, and
to show that these models yield instances that are hard for SAT solvers. In the process,
we find interesting connections to a class of random logic programs that we recently
identified as consisting of instances that are hard for answer-set solvers [4].

2 Preliminaries

Let V = {v1, v2, . . .} be a fixed set of propositional variables. We define the class
MH n(k, m), where k ≥ 1 and m ≥ 0, to consist of MHFs F such that

1. the set of atoms occurring in F is {v1, . . . , vn}
2. F contains m positive 2-clauses
3. for every v ∈ V , F contains a negative clause Cv = ¬v ∨ ¬w1 ∨ . . .∨ ¬wk, where

w1, . . . wk ∈ V (note: clauses Cv and Cw, v 
= w, need not be distinct)
4. there are no other clauses in F .

We also define MH n(k) =
⋃

m MH n(k, m) (here m ranges from 0 to
(
n
2

)
), and

MH (k) =
⋃∞

n=0 MH n(k).
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Thus, formulas in MH (k) contain only positive 2-clauses and negative (k + 1)-
clauses. The key aspect of the model is, though, that there is an additional constraint
imposed on the set of negative (k + 1)-clauses of a formula F ∈ MH (k): the set of
variables of F must be a system of distinct representatives for the family (with possibly
repeated occurrences) of the sets of variables of (k + 1)-clauses of F .

Other classes of MHFs we consider in the paper impose additional connections be-
tween the negative and positive parts. Namely, we consider the class MH 1

n(k), which
we define as follows: an MHFs F ∈ MH n(k) belongs to MH 1

n(k) if and only if its
set of positive 2-clauses is given by {v ∨ w | w ∈ V ar(Cv), where Cv ∈ F}. In the
case of MHFs in MH 1

n(k), there is a strong connection between the sets of positive
and negative clauses: if F ∈ MH 1

n(k), then F is entirely determined by its negative
part. We note that the number of 2-clauses in formulas in MH 1

n(k) is not fixed and
ranges between kn/2 and kn. We write MH 1(k) for

⋃∞
n=0 MH 1

n(k), and MH 1
n for⋃

k=1 MH 1
n(k).

Despite constraints on MHFs that form the classes MH (k) and MH 1(k), for each of
them deciding satisfiability remains NP-complete.

Proposition 1. For each of the classes MH (k) and MH 1(k), with k ≥ 2, the satisfia-
bility problem restricted to that class of formulas is NP-complete.

Proof. (Sketch) The class MH (k) represents a more general class of formulas than
MH 1(k). Hence, it is sufficient to show the NP-completeness for the problem restricted
to the class MH 1(k). We do it by constructing a polynomial-time reduction from the
problem to decide whether a logic program built of clauses of the form a ← not b has
a stable model — the problem which is known to be NP-complete [5].

Thus, the classes of formulas discussed above are on the one hand extremely simple, and
on the other hand, as expressive as the class of (unrestricted) CNF formulas. Moreover,
it is clear that in the case of each class C of formulas we introduced above, there are
straightforward algorithms to generate formulas from C uniformly at random. These
properties suggest that these classes be considered as possible models of random CNF
formulas for use as benchmarks for SAT solvers.

3 Phase Transition for MH n(k, m)

For every fixed k and sufficiently large n, the class MH n(k) shows the classical phase-
transition behavior. That is, when m (we recall that m stands for the number of 2-clauses
in a formula) is small, formulas in MH n(k) are almost certainly satisfiable, when m
is large, they are almost certainly unsatisfiable, and the transition from satisfiability to
unsatisfiability occurs rapidly (the rate of change increases with n). Figures 1(a) and
(b) show the phase transition for k = 5 and k = 10, respectively, as the ratio m/n
grows (n = 225; 200 instances). As in the case of random 3-CNF formulas, we also
observe that with increase in n the phase transition gets sharper while the cross-over
point remains approximately the same (we do not provide graphs due to space limits).

The approximate location of the phase-transition region expressed in terms of the
ratio m/n, for which the phase transition occurs, grows with k. Our experimental results
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Fig. 1. The phase transition k = 5 and k = 10, n = 225, 200 instances
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Fig. 2. The location of the phase transition in the model MH n(k) as a function of k

for n = 200 and k = 3, . . . 25 (200 instances), show that the location of the phase
transition grows slightly slower than k (Figure 2).

For each fixed k, we also observe that as the density m/n of 2-clauses grows, in-
stances generated demonstrate the “easy-hard-easy” pattern, and those generated from
the phase transition region are especially hard. The graphs given in Figure 3 for k = 5
are representative. They give the probability of having a model and the average run-
ning time in seconds for the SAT solver clasp for instances from MH n(k), for k = 5,
n = 200, as the density m/n grows (for each density, 100 instances were generated).

4 Easy-Hard-Easy Behavior

We pointed out above that for a fixed k, as the number m of 2-clauses grows, instances
from MH n(k) are initially getting harder and then, after passing the area of the phase
transition, start getting easier again. However, the framework of the classes MH n(k)
we consider reveals yet another interesting phenomenon. Being parameterized with k,
it allows us to compare hardness of instances generated from the phase transition re-
gion for different values of k. Somewhat surprisingly, it turns out that as we increase
k, the easy-hard-easy pattern emerges again. We observed an easy-hard-easy pattern
using several SAT solvers that performed well in the SAT 2009 competition [6], includ-
ing precosat, glucose, clasp and march hi (each was the winner in at least one of the
categories of that competition). Initially, as k grows, the phase-transition instances are
getting harder at an increasing rate. The hardness peaks when k ≈ 15, 16, and from that
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Fig. 3. The correlation of the instance hardness and the phase transition regions for the model
MH n(k); k = 5, n = 200
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Fig. 4. The easy-hard-easy pattern of instances generated from the phase transition region of
classes MH n(k) as a function of k

point on the instances are becoming increasingly easier. Figure 4 illustrates that pattern
observed for clasp for n = 200, and k ranging from 3 to 34.

While it is rather natural that the hardness of instances from the phase transition in
the model MH n(k) initially grows with k, it may seem surprising that at some point it
peaks and then starts to decrease. Providing a formal explanation to this phenomenon
is an open problem.

5 Hard Benchmarks for SAT Solvers

Our results suggest that MHFs randomly generated from the phase transition region for
the class MH n(k) for k = 15 or 16 (located when m ≈ (k−0.5)n, where m stands for
the number of 2-clauses) can provide challenging instances for SAT solvers. It is indeed
so. We randomly generated 50 instances from MH n(k, m), with n = 350, k = 15 and
m = 14.5n. Given the timeout limit of 1800 seconds, clasp and march hi solved fewer
than 20% of the instances all of which were satisfiable and did not solve any of the
unsatisfiable ones.

We stress that the instances in the set MH n(15, 14.5n) are small (350 atoms and
5425 clauses), and more importantly, that most of their clauses (5025) are 2-clauses.
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Fig. 5. The easy-hard-easy pattern for the model MH 1
n(k), and the probability of satisfiability

(n = 100)

Since they pose a challenge for the state-of-the-art complete solvers, we believe that the
class MH n(15, 14.5n) is important for the design and testing solvers performance.

The classes MH 1
n(k) offer even harder instances. While they can also serve as bench-

marks for complete solvers, even for relatively small values of n, satisfiable instances
from MH 1

n(15) become very hard also for local-search solvers! The selection of k = 15
is not accidental. Our experiments showed that when we vary k, we observe the easy-
hard-easy pattern, with the peak for k ≈ 15. We also found (a property important be-
low) that in the maximum hardness area, the percentage of instances that are satisfiable
exceeds 90% for different N values. Figure 5 illustrates these claims.

We generated 100 random CNF formulas from each of the sets MH 1
n(15), where

n = 450 and 550. Given our experiments, the expected number of satisfiable instances
in these two sets of formulas is at least 90. We ran TNM [6] on these formulas. TNM is
currently one of the best local-search solvers. It won in the random category (satisfiable
instances only) at the SAT 2009 competition. The solver does not require any param-
eters, as it adaptively selects them. We observed that for n = 450, TNM could still
solve 86% of the instances in less than 1800 seconds (yet, already likely missing some
satisfiable instances). The larger value of n, n = 550, resulted in many hard instances.
Indeed, for n = 550, TNM solved only 53 of the 100 instances within 1800 seconds
while we expect about 90 instances to be satisfiable in this sample.

6 Conclusions

We studied classes of simple MHF’s: MH n(k) and MH 1
n. The key finding is that

despite their simple form, randomly generated formulas from these classes (for the
appropriate selections of parameters) are challenging benchmarks for the current gen-
eration of the state-of-the-art SAT solvers. Thus, formulas in these classes are relevant
for the design of fast SAT solvers and deserve attention. We studied these classes ex-
perimentally, focusing on identifying phase transitions and hardness patterns, in order
to facilitate generation of hard formulas. Interestingly, we found that the hardness of
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the instances from the phase transition region in the classes MH n(k) shows the easy-
hard-easy pattern as a function of k, with the peak hardness for k = 15. We showed
that instances generated from the phase transition region of MH n(15) (which occurs
when the number of 2-clauses is about 14.5n) pose a challenge instances for the current
generation of SAT solvers. Similarly, the instances from MH 1

n show the easy-hard-easy
behavior (as the length k of purely negative clauses, grows), with the peak hardness
when k = 15. The instances generated from MH 1

n(15) are predominantly satisfiable
(probability of a random formula generated from that class being satisfiable is at least
0.9). Those instances that are satisfiable pose a challenge for local-search solvers.

We note that the class MH 1
n is closely related to a class R− of logic programs studied

in [4] and identified as containing programs that are especially hard for the current gen-
eration of the answer-set solvers. The class R− consists of programs whose every clause
is of the form a ← not b. The completions [7] of such programs (certain CNF theories
whose models capture, in this particular case, the semantics of logic programs given by
answer sets [8]) consist of positive 2-clauses and purely negative clauses (possibly of
varying lengths). Completions of programs from R−, in which every atom appears in
the head of exactly k rules form precisely the class MH 1

n(k).
This paper contains mostly experimental results. Yet it opens several interesting the-

oretical questions concerning tight bounds on the location of the phase transition in
the model MH n(k), the properties of formulas in sets MH n(k) and MH 1

n(k), when k
grows with n (for instance, when k = cn, for some positive c), and possible reasons for
the easy-hard-easy pattern demonstrated by formulas from the phase transition region
of MH n(k) as k grows (or by formulas in MH 1

n(k), as k grows).
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Abstract. Some basics of combinatorial block design are combined with certain
constraint satisfaction problems of interest to the satisfiability community. The
paper shows how such combinations lead to satisfiability problems, and shows
empirically that these are some of the smallest very hard satisfiability problems
ever constructed. Partially balanced (0, 1) designs (PB01Ds) are introduced as
an extension of balanced incomplete block designs (BIBDs) and (0, 1) designs.
Also, (0, 1) difference sets are introduced as an extension of certain cyclical
difference sets. Constructions based on (0, 1) difference sets enable generation
of PB01Ds over a much wider range of parameters than is possible for BIBDs.
Building upon previous work of Spence, it is shown how PB01Ds lead to small,
very hard, unsatisfiable formulas. A new three-dimensional form of combinato-
rial block design is introduced, and leads to small, very hard, satisfiable formulas.
The methods are validated on solvers that performed well in the SAT 2009 and
earlier competitions.

1 Introduction

Combinatorial block design addresses constraint satisfaction problems that are fre-
quently of interest to the satisfiability community, yet many of its results are not well
known in this community. This short paper shows how they combine with certain con-
straint satisfaction problems to create very hard satisfiability problems. The page limit
forces proofs and many other details to be omitted. The Conclusion gives a URL for
more information.

Our goal is to construct benchmarks with approximately 100 variables, with overall
size varying linearly with the number of variables, that are very hard for all known
solvers.

The main ideas are based on (0, 1) designs and the newly introduced partially bal-
anced (0, 1) designs (PB01Ds), which generalize the very stringent class of balanced
incomplete block designs (BIBDs). Whereas BIBDs exist for very limited sets of pa-
rameters, (0, 1) designs exist and can be constructed over wider ranges of parameters,
and PB01Ds extend the range even further. Techniques for constructing (0, 1) designs
and PB01Ds are presented, based on the newly introduced idea of (0, 1) difference sets.

Building upon previous work of Spence [Spe10], Section 3 describes how to gen-
erate families of small unsatisfiable formulas with regularly varying properties. The
relationship to certain restricted forms of SAT is briefly discussed.

O. Strichman and S. Szeider (Eds.): SAT 2010, LNCS 6175, pp. 388–397, 2010.
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A new three-dimensional form of combinatorial block design is introduced in Sec-
tion 4, which leads to a generator for families of small satisfiable formulas with regu-
larly varying properties, again following and extending earlier work of Spence.

The generators are validated on solvers that performed well in the SAT 2009 and
earlier competitions. Experiments are presented that demonstrate that these generators
produce some of the smallest very hard satisfiability problems ever constructed. They
are orders of magnitude smaller than random 3-CNF formulas of comparable difficulty.
Whereas random formulas are often criticized for having no structure, and therefore
not representative of “real world” problems, our formulas are highly structured and
represent certain resource allocation problems. Therefore, we hope that they might be
useful in the study of how to further improve solvers aimed at practical application
problems.

2 Combinatorial Block Designs

The study of combinatorial block designs dates back to the 1840s, and has a rich liter-
ature. A book by Ian Anderson [And90] provides an accessible treatment of the field,
from introductory through advanced topics, with emphasis on construction methods.
Various unattributed facts about combinatorial designs in this paper may be found, to-
gether with citations, in this book. In general, we follow this book’s terminology, and
we thank the author for providing clarifications and further insights by email. However,
we present concepts in a different order, reflecting our application of them in this paper.

Definition 1. A balanced (0, 1)design ((0, 1)design for short) is an undirected bipartite
graph on two collections of vertices, called objects and blocks, such that any pair of
objects has edges to at most one block in common, and any pair of blocks has edges
to at most one object in common. Each object is incident upon the same number of
blocks, and each block is incident upon the same number of objects; however these two
numbers may be different.

Blocks are often viewed as sets of the objects to which they are adjacent. (This is
why we used the phrase “collection of vertices” for blocks and objects.) We shall also
sometimes view an object as the set of blocks that contain it. Thus we say a pair of
blocks intersects in certain objects, and a pair of objects intersects in certain blocks.

A bipartite graph is conveniently represented by its incidence matrix M , in which
each row corresponds to an object and each column corresponds to a block. In fact, we
often think of the incidence matrix as being the design. Entries in M are either null or a
flag. When doing arithmetic on M , nulls are treated as 0 and flags as 1, but flags might
contain other information in some cases. In diagrams, nulls are blank and flags are “X.”

The constraint on intersections can be described using the idea of a quadrangle
in a matrix M . A quadrangle is a set of four flags (or 1’s) at locations M(r1, c1),
M(r1, c2), M(r2, c1), M(r2, c2), forming a rectangle. The quadrangle is a forbidden
pattern in M .

Following the conventions in the field, v denotes the number of objects, b denotes
the number of blocks, k denotes the degree of each block (i.e., the number of objects
incident upon it), and r denotes the degree of each object. Clearly, the number of non-
null flags (edges) is vr = bk.
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The design is called symmetric if v = b. Note that a symmetric design does not,
in general, have a symmetric incidence matrix. In fact, the order among the rows or
columns of an incidence matrix is usually immaterial, because they correspond to dis-
joint collections.

Note that MT represents a (0, 1) design whenever M does. Thus objects and blocks
have dual roles. This duality does not extend to many other designs. This paper is pri-
marily concerned with symmetric (0, 1) designs, and their relation to constraint sat-
isfaction problems. When every pair of objects is incident upon exactly one block, the
structure is called a (v, k, 1) design, short for (v, k, 1) balanced incomplete block design
(BIBD). In general, a BIBD may be a (v, k, λ) design, in which every pair of objects is
incident upon exactly λ blocks.

The duality enjoyed by (0, 1) designs is lost for BIBDs because it is not required in
a BIBD that every pair of blocks is incident upon exactly the same number of objects.
Duality is restored for symmetric (v, k, 1) designs, which are also called finite projective
planes. These designs exist for very limited combinations of v and k. However, they
serve as starting points for constructing (0, 1) designs of many sizes. A finite projective
plane of order q is a (v, k, 1) BIBD, where v = q2 + q + 1 and k = q + 1.

Definition 2. A partially balanced (0, 1) design (PB01D for short) is like a balanced
(0, 1) design except that all block sizes are in a finite set K and all object sizes are
in a finite set R. The size of a block or object is its degree in the bipartite graph for
the design. In this paper, the cardinalities of K and R do not exceed two, although the
definition does not require this.

The term “partially balanced (0, 1) design” is apparently new in this paper. Closely
related partially balanced designs are very important in combinatorial-design construc-
tion. However, the constraints for PB01Ds, defined here, are apparently too loose to say
anything that is mathematically interesting about them.

Definition 3. A (0, 1) difference set D for Zv (the set of integers modulo v) is a set of
integers in Zv such that each element of Zv occurs at most once as a difference (modulo
v) between an ordered pair of distinct integers in D. (Note that, for distinct a, b ∈ D,
b − a and a − b are distinct differences.) In this context, let k = |D|, the cardinality of
D. Since there are k (k − 1) ordered pairs, we have k (k − 1) ≤ v − 1.

The term “(0, 1) difference set” is apparently new in this paper. As with balanced (0, 1)
designs, the limiting case of a (0, 1) difference set is a more familiar concept in combi-
natorial design.

Definition 4. The limiting case of a (0, 1) difference set in which each positive integer
in Zv occurs in exactly one difference is called a cyclic (v, k, 1) difference set. In gen-
eral, a cyclic (v, k, λ) difference set requires that each positive integer in Zv occurs as
exactly λ differences.

For cyclic (v, k, 1) difference sets, we have k (k − 1) = v − 1, not just “≤”. Letting
k = q + 1, we see that v = q2 + q + 1, which is the relationship present for finite
projective planes. In fact, difference sets with k = q +1 are very useful for constructing
finite projective planes of order q.
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Fig. 1. (Left) Using a cyclic difference set to generate a finite projective plane. (Right) Generating
a 3D (v, 5, (0, 1)) design, for v = 21 or v ≥ 23, as described in Section 4.

Example 1. It will be shown later, in Lemma 1, that {0, 2, 7, 8, 11} is a cyclic (21, 5, 1)
difference set. In a 21 × 21 matrix (with rows and columns indexed beginning at 0)
an incidence matrix for a finite projective plane of order 4 can be generated by placing
X’s (for flags) in row 0, columns {0, 2, 7, 8, 11}, then continuing in a circulant fashion
through succeeding rows by shifting the pattern 45◦ down and to the right, as suggested
in Figure 1. The pattern wraps around just like integers modulo 21.

It is straightforward to verify that every row has five X’s and every column has five
X’s also. A moment’s reflection shows that, if a quadrangle occurs in this generation
scheme, then the zero-th row must not be a cyclic (21, 5, 1) difference set, or even a
(0, 1) difference set for Z21.

The next question of interest is how to find (0, 1) difference sets for various combi-
nations of (v, k, 1), for if we find such a (0, 1) difference set, then generation of a
symmetric (0, 1) design for v objects and block size k becomes routine. Anderson de-
scribes an involved and expensive general procedure, but fortunately gives answers for
3 ≤ k ≤ 6, attributed to Rev. T. Kirkman, 1857 [And90, Example 2.1.3, p. 50]. Values
for larger k are tabulated, as well [CD96]. In each case, k = q + 1, v = q2 + q + 1,
and the difference set supports the generation of a projective plane of order q. We have
found that these cyclic difference sets serve as (0, 1) difference sets for many v′ > v.
The following lemma explains how.

Lemma 1. The sets D3 through D6 have properties as follows:

1. D3 = {0, 1, 3} is a (0, 1) difference set for (v, 3, 1), for all v ≥ 8, and is a cyclic
difference set for (7, 3, 1).

2. D4 = {0, 4, 5, 7} is a (0, 1) difference set for (v, 4, 1), for all v ≥ 15, and is a
cyclic difference set for (13, 4, 1).

3. D5 = {0, 2, 7, 8, 11} is a (0, 1) difference set for (v, 5, 1), for all v ≥ 23, and is a
cyclic difference set for (21, 5, 1).

4. D6 = {0, 4, 11, 13, 14, 19} is a (0, 1) difference set for (v, 6, 1), for 35 ≤ v ≤ 37,
and for all v ≥ 39, and is a cyclic difference set for (31, 6, 1).
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If D is a cyclic (v, k, 1) difference set, any translation, or shift, of the elements of D,
modulo v, continues to be a cyclic difference set. For example, (0, 1, 4, 14, 16) is a
translate of (0, 2, 7, 8, 11) in Z21, and it is also a cyclic difference set for (21, 5, 1).
Although (0, 2, 7, 8, 11) is a (0, 1) difference set for (23, 5, 1), the same is not true for
(0, 1, 4, 14, 16) (differences of 10 occur multiply).

3 Generating Unsatisfiable Formulas

The primary goal of this research is to generate small, very hard, propositional satisfia-
bility benchmarks. In several previous SAT competitions benchmarks have been divided
into three categories, Industrial, Crafted, and Random. The benchmarks described in
this paper fall into the crafted category.

Although crafted benchmark generators often employ some degree of randomness,
their distinguishing feature is some underlying common structure, and the randomness
produces variations of that structure. To have benchmarks that are solvable within our
computational resources, we generated starting at 85 variables, with 40 samples at each
size, and gathered statistics on several solvers. The experiments are described in a later
section. Here we explain the methods of generation.

First, we need to describe how a (0, 1) design or a PB01D is mapped to a constraint-
satisfaction problem. Our mapping is quite different from those found in studies of lin-
ear CNF [Kul07, PS09]. In [PS09] a linear formula is derived from a PB01D as defined
in Definition 2 by mapping objects to clauses and blocks to propositional variables.
Thus there are v clauses on b variables. Our mappings all have one propositional vari-
able per flag, giving v r = b k variables for (0, 1) designs. Our mappings are inspired
by, and generalize, previous work of Spence [Spe10].

Recall that each (0, 1) design is represented by an incidence matrix M . Let xr,c be
a set of propositional variables corresponding to the flags of M . A resource allocation
problem can be associated with an incidence matrix in a natural way. Let each row r
require needr resources, and let each column c be able to supply availc resources, both
in integer units. The flag xr,c means that column c can supply a resource that row r can
use. With slight abuse of notation, we encode clauses that are equivalent to∑

c∈r

xr,c ≥ needr, (1)∑
r∈c

xr,c ≤ availc. (2)

This is the arithmetic sum, with xr,c interpreted as 0 or 1. Constraints of this type are in
the language of integer linear programming.

For example, a company needs to manage numerous ongoing small projects with a
pool of workers, and xr,c is defined when worker c is qualified for project r. Workers
can time-share on a limited number of projects according to availc, whereas projects
need staffing at levels given by needr. Can all projects be staffed adequately?

For CNF, we encode the statement “each subset (r, c) of cardinality |r| − needr + 1
contains a true xr,c.” Here, |r| denotes the cardinality of the set of variables xr,c defined
in row r. Such a set of clauses is generated for each r, 1 ≤ r ≤ v. Analogously, for
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Eq. 2 for each c, 1 ≤ c ≤ b, we generate negative clauses to encode “each subset (r, c)
of cardinality |c| − availc + 1 contains a false xr,c.”

It is evident to a human that, if
∑

r needr >
∑

c availc, then the system is unsat-
isfiable. For a (21, 5, 1) design it is easy to choose 2 or 3 as values for need, and the
same for avail, so that

∑
r needr = 53 and

∑
c availc = 52. The formula generated for

the resulting constraint-satisfaction problem has 105 variables, 320 clauses, and 1060
literals. We issue a challenge for any solver to solve it in less than one day.

Although the formula just described appears to be very challenging for its size, it is
one of a kind, except for permuting variable numbers and flipping some polarities. We
need methods to generate formulas of varying sizes to get useful benchmarks.

The first method of generation consists of deleting flags from the 21 × 21 incidence
matrix for the (21, 5, 1) BIBD just mentioned, then encoding similar constraints that
ensure that

∑
r needr > n/2 and

∑
c availc ≤ n/2, where n is the number of flags.

Flags are deleted in a manner such that every object has 4 or 5 flags in its row, and every
block has 4 or 5 flags in its column. Then need and avail values are assigned so that the
sums come out to &(n+1)/2' and �n/2�, respectively, ensuring unsatisfiability. Labels
“sgen2del” in the experiments refer to this method.

The second method of generation is considerably simpler, but less flexible. Spence
reported a procedure that uses simulated annealing to reduce a penalty function, called
the score, computed on permutations [Spe10]. As it happens, a permutation has score 0
if and only if it corresponds to a PB01D. (If the last variable is ignored, it would be a
(v, 4, (0, 1)) design.) For g groups it is a PB01D with v = g and R = K = {4, 5}. All
objects but one, and all blocks but one, have size 4. The remaining object and remaining
block have size 5.

As it happens the original study began in a range where achieving score 0 would be a
rare event. Also, for simplicity and speed, the program only computed changes in score,
not actual score. Labels “orig” in the experiments refer to this method.

Using “back of the envelope” methods we calculated that in the range v = 21
(v, 4, (0, 1)) designs should be plentiful enough that random searching should have a
good chance to succeed. Therefore, we modified the program to compute and check the
actual score, and stop if the score reached 0. This method has so far always succeeded
within about 100,000 tries, for n ≥ 85, and group size 4 (except 5 for the last group).

Once the permutation with score 0 is found, the need is set to 2 for all objects of size
4 and is set to 3 for the object of size 5. The avail is set to 2 for all blocks of size 4
and is set to 2 for the block of size 5, as in the original study. Labels “score” in the
experiments refer to this method.

4 Generating Satisfiable Formulas

Since there is no such thing as an objectively hard satisfiable formula, generating satisfi-
able benchmarks that are predictably difficult for a wide range of solvers is challenging,
if not impossible. We investigated a 3D analogy of (0, 1) designs, as well as modifying
the generator reported by Spence to compute scores and stop at 0. The extension to
3D appears to be new and quite different from other combinatorial designs that involve
three dimensions, such as Room squares, used to schedule leagues and tournaments.
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Definition 5. We define a 3D (0, 1) design directly in terms of the 3D incidence matrix,
M3, of size v × v × v. Besides objects and blocks a third collection, called layers, is
introduced. Although there are many more matrix cells, the number of flags remains at
v r = b k. Let � denote layer, from 1 to v, so M3 is indexed by (r, c, �).

The first constraint on flags is that for any two fixed indices, at most one third index
contains a flag. That is, for a fixed pair (r, c), at most one cell of the form M3(r, c, �)
has a flag, and so forth for other index combinations. Note that a 3D (0, 1) design can
be represented in a 2D matrix, say M , indexed on (r, c) by letting each flag contain the
value of the layer that it is in.

The size of an object is now found by counting the flags in that row for all columns
and layers; for the size of a block, count flags in that column for all rows and layers;
and for the size of a layer, count the flags in that layer, for all rows and columns. All
objects, blocks, and layers are required to have size k = r.

The intersection constraint is most easily stated by requiring that, if any one dimen-
sion is projected out, the 2D matrix represents a (0, 1) design.

A 3D (v, 5, (0, 1)) design can be generated, in some cases, by a variant of the method
shown in Figure 1 (left), by having each flag contain its layer number, as shown on the
right side of that figure. This method works in practice for odd v ≥ 21.

5 Experimental Results

Benchmarks generated by the methods described were put through a computationally
expensive evaluation on several multi-core 2.5 GHz Linux machines. With the goal of
getting statistically meaningful results, each generation method at each size was tested
on a sample of 40 benchmarks. See Figure 2 for an overview of the unsatisfiable results.

Some of the better-performing solvers in the SAT 2009 were used; we used the static
binaries from the computation web page. The clause-learning solvers selected were
clasp [GKNS07] and minisat2 [ES05]. We chose march hi because it is based on
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Fig. 2. Growth rates of solving times for unsat benchmarks produced by three generators
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look-ahead and is not in the clause-learning family. Local search was represented by
adaptg2wsat2009++ (adapt for short).

Some well-performing solvers were not used, due to limited resources. For example,
precosat tested considerably slower than minisat2 on our smallest benchmarks and
is also in the clause-learning family, while satzilla is a portfolio solver from which
it would be difficult to draw any conclusions.

All benchmarks were run to completion with no time-outs. Statistics computed on
each sample of 40 included mean, standard error (seen as barely visible error bars in
Figure 2), minimum, and maximum. The standard error estimates how different the
calculated mean is likely to be for an independently drawn sample of the same size n.

Growth rates are estimated using two size measures: variables and literals. While
variables might not be an appropriate size measure on some classes of benchmark, for
ours it is reasonable because the number of literals was linear in the number of variables.
Noting that a straight line on a semi-log plot represents an exponential function, we
observed exponential growth rates in all solvers, for all generation methods, on the
unsatisfiable benchmarks.

The original generation method of Spence [Spe10] can be seen as an approximation
of our methods based on (0, 1) designs. Did using (0, 1) designs create harder bench-
marks? The evidence is that they did, for the unsatisfiable cases. The plot on the left
of Figure 3 shows that “scores” (short for “zero scores”) were definitely harder than
“orig” for clasp, with a separation of about two standard errors. Other solvers were
similar.

The other type, “sgen2del,” used a more general encoding scheme that allowed
it to grow in difficulty the most rapidly, based on the numbers of variables, as seen
in Figure 3 (left), for clasp. Other solvers were similar. However, Figure 3 shows
that this relationship changes when growth rate is based on the number of literals. The
“sgen2del” family is believed by us to contain the hardest known benchmarks with
under 100 variables and under 1000 literals.
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Fig. 4. Time growth for satisfiable formulas produced by three generators; (left) clasp, a com-
plete solver; (right) adaptg2wsat2009++, an incomplete solver

A natural question, since we have a random element in our generation methods, is
whether some formulas are intrinsically harder than others, across a variety of solvers.
Such a correlation is difficult to see in scatter plots, but was found to be statistically
significant in some cases, by analysis of variance. The greater correlation appeared be-
tween minisat2 and clasp (both clause-learning solvers), while correlation between
march hi (a look-ahead solver) and either clause-learning solver was much lower. Ap-
parently, our generated unsatisfiable formulas differ randomly in difficulty across solver
styles; no “killers” stand out.

Turning to satisfiable benchmarks, results are more random, as shown by the wider
error bars in Figure 4, compared to Figure 2. The incomplete adapt plowed through
them, without much difference between generation methods, and with somewhat irreg-
ular growth in time vs. size. It was two orders of magnitude faster than the best complete
solver we tested. Nevertheless the plot strongly suggests exponential growth, although
at a lower rate than clasp. It is worth noting that in the SAT 2009 Competition [lB09],
adapt typically solved random 3-CNF with 4000 variables and 50,000 literals in about
the same same it required on our benchmarks with 225 variables and 1350 literals.

Constrained by preserving the underlying 3D (0, 1) design, the sgen2del family has
less randomness than the other families. Our tentative conclusion is that a high degree of
randomness is more important than perfection of the structure (represented by score 0),
for satisfiable formulas. This contrasts with our observation that generating unsatisfiable
formulas with score 0 increases the difficulty by a statistically significant amount.

A specialized solver called tts was also tested briefly. This solver is designed for
small hard formulas [Spe08]. The results appear in Figure 3. Notice that, measured by
number of variables, clasp time is growing faster for “sgen2del,” but measured by
number of literals, it is growing faster for “scores.” Interestingly, tts time growth is
about the same for both generators when measured by number of literals. This shows
that several measures of formula size are useful.
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6 Conclusion

We introduced a less stringent class of combinatorial block designs, called PB01Ds, and
a new combinatorial structure, called 3D (0, 1) designs, which serve as the bases for for
constraint satisfaction problems. Additional information and related files are available
at http://www.cse.ucsc.edu/∼avg/Sgen2/.

We showed that the CNF encodings of these unsatisfiable problems are quite small,
yet extremely difficult for their sizes. The challenge formula mentioned in Section 3,
and available at the above URL, has 105 variables and 1060 literals, but no solver has
solved it in less than one day, so far. Smaller formulas in the same family have under
100 variables and under 1000 literals, but their difficulty (about one hour, for complete
solvers) is comparable to random 3-CNF formulas with 500 variables and 6375 literals,
or larger. The crafted benchmarks in the SAT 2009 competition that caused any diffi-
culty were larger still (other than the orig family included in this paper for comparison).

Future work includes better understanding the structure of 3D (0, 1) designs and
investigation of whether the families presented in this paper have a provable exponential
lower bound for resolution. However, it can be shown that generated instances based on
the fixed-bandwidth incidence matrices of Figure 1 have polynomial-length refutations.
Therefore, the random swapping used in the actual generation of instances, or a similar
expansion idea, would be integral to establishment of an exponential lower bound.

Acknowledgment. We thank Ian Anderson for helpful email discussions about con-
structing combinatorial designs.
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