


Lecture Notes in Artificial Intelligence 6167
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Serge Autexier Jacques Calmet
David Delahaye Patrick D.F. Ion
Laurence Rideau Renaud Rioboo
Alan P. Sexton (Eds.)

Intelligent Computer
Mathematics

10th International Conference, AISC 2010
17th Symposium, Calculemus 2010
and 9th International Conference, MKM 2010
Paris, France, July 5-10, 2010
Proceedings

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Serge Autexier, DFKI Bremen, Germany
E-mail: serge.autexier@dfki.de

Jacques Calmet, Karlsruhe Institute of Technology, Germany
E-mail: calmet@ira.uka.de

David Delahaye, Conservatoire National des Arts et Métiers, Paris, France
E-mail: David.Delahaye@cnam.fr

Patrick D.F. Ion, AMS, Ann Arbor, USA
E-mail: ion@ams.org

Laurence Rideau, INRIA Sophia-Antipolis, France
E-mail: Laurence.Rideau@inria.fr

Renaud Rioboo, ENSIIE, Evry, France
E-mail: Renaud.Rioboo@ensiie.fr

Alan P. Sexton, University of Birmingham, UK
E-mail: a.p.sexton@cs.bham.ac.uk

Library of Congress Control Number: 2010929251

CR Subject Classification (1998): I.2, H.3, H.4, F.4.1, H.2.8, F.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-14127-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14127-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

This volume contains the collected contributions of three conferences, AISC 2010,
Calculemus 2010 and MKM 2010. AISC 2010 was the 10th International Con-
ference on Artificial Intelligence and symbolic computation. Its area of concern
is the use of AI techniques within symbolic computation as well as the applica-
tion of symbolic computation to AI problem solving. Calculemus 2010 was the
17th Symposium on the Integration of Symbolic Computation and Mechanised
Reasoning, dedicated to the combination of computer algebra systems and au-
tomated deduction systems. MKM 2010 was the 9th International Conference
on Mathematical Knowledge Management, an emerging interdisciplinary field of
research in the intersection of mathematics, computer science, library science,
and scientific publishing. All three conferences are thus concerned with providing
intelligent computer mathematics. Although the conferences have separate com-
munities and separate foci, there is a significant overlap of interest in building
systems for intelligent computer mathematics.

As in 2008 and 2009, the three events were colocated. In 2010 this was at the
Conservatoire National des Arts et Métiers (CNAM), Paris, France, under the
umbrella of the Conferences on Intelligent Computer Mathematics (CICM 2010),
organized by Renaud Rioboo and Laurence Rideau. This collocation is intended
to counteract the tendency towards fragmentation of communities working on
different aspects of various independent branches of our general field; traditional
branches (e.g., computer algebra, theorem proving and artificial intelligence in
general), as well as newly emerging ones (on user interfaces, knowledge manage-
ment, theory exploration, etc.). This also facilitates the development of systems
for intelligent computer mathematics that will be routinely used by mathemati-
cians, computer scientists and engineers in their every-day work.

While the proceedings are shared, the submission process was separate. The
responsibility for acceptance/rejection rests completely with the three separate
Program Committees. In total, 25 papers were submitted to AISC. For each
paper there were at least four reviews, and on average 5.3 reviews by Program
Committee members, out of which 9 papers were accepted for publication in
these proceedings. Calculemus received 14 submissions. For each paper, there
were at least 3 reviews, and 3.2 reviews on average. After discussion, 7 papers
were accepted for publication in these proceedings and 3 papers were selected
to appear in the track of emerging trends (not published in this volume). MKM
received 27 submissions. For each paper there were at least 3 reviews, and 3.2
reviews on average. After discussion, 16 papers were accepted for publication.

We were very pleased that the keynote talks of AISC, Calculemus, MKM and
associated workshops were presented by an array of such highly distinguished
speakers. We have included abstracts or full papers for most of these talks in the
proceedings. The keynote speakers were:
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Andrea Asperti University of Bologna, Italy

Jacques Calmet Karlsruhe Institute of Technology, Germany

John Campbell University College London, UK

Jacques Carette McMaster University, Canada

Pierre Cartier Institut des Hautes Études Scientifiques,
France

James H. Davenport University of Bath, UK

Bruno Salvy INRIA Rocquencourt, France

Masakazu Suzuki Kyushu University, Japan

Doron Zeilberger Rutgers University, USA

In the preparation of these proceedings and in managing the whole discussion
process, Andrei Voronkov’s EasyChair conference management system proved
itself an excellent tool.

May 2010 Serge Autexier
Jacques Calmet
David Delahaye

Patrick Ion
Renaud Rioboo

Alan Sexton



AISC, Calculemus and MKM Organization

Conference Chairs Laurence Rideau, Renaud Rioboo
Local Organization David Delahaye, Catherine Dubois, Véronique
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Pierre Weis

Makarius Wenzel
Russell O’Connor



X Organization

MKM 2010 Organization

Program Chairs

Patrick Ion University of Michigan, USA
Alan P. Sexton University of Birmingham, UK

MKM Trustees

Serge Autexier DFKI Bremen, Germany
James Davenport University of Bath, UK
Michael Kohlhase Jacobs University Bremen, Germany
Claudio Sacerdoti Coen University of Bologna, Italy
Alan Sexton University of Birmingham, UK
Petr Sojka Masaryk University, Brno, Czech Republic
Bill Farmer (Treasurer) McMaster University, Hamilton, Canada

Program Committee

Serge Autexier DFKI Bremen, Germany
Laurent Bernardin Maplesoft, Canada
Thierry Bouche Université de Grenoble I, France
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A Mathematical Model of the Competition between Acquired Immunity
and Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Mikhail K. Kolev

Some Notes upon “When Does < T > Equal Sat(T)?” . . . . . . . . . . . . . . . . 89
Yongbin Li

How to Correctly Prune Tropical Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Jean-Vincent Loddo and Luca Saiu

From Matrix Interpretations over the Rationals to Matrix
Interpretations over the Naturals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Salvador Lucas

Automated Reasoning and Presentation Support for Formalizing
Mathematics in Mizar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Josef Urban and Geoff Sutcliffe



XIV Table of Contents

Contributions to Calculemus 2010

Some Considerations on the Usability of Interactive Provers
(Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Andrea Asperti and Claudio Sacerdoti Coen

Mechanized Mathematics (Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Jacques Carette

Formal Proof of SCHUR Conjugate Function . . . . . . . . . . . . . . . . . . . . . . . . 158
Franck Butelle, Florent Hivert, Micaela Mayero, and
Frédéric Toumazet

Symbolic Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Jacques Carette, Alan P. Sexton, Volker Sorge, and Stephen M. Watt

A Formal Quantifier Elimination for Algebraically Closed Fields . . . . . . . 189
Cyril Cohen and Assia Mahboubi

Computing in Coq with Infinite Algebraic Data Structures . . . . . . . . . . . . 204
César Domı́nguez and Julio Rubio

Formally Verified Conditions for Regularity of Interval Matrices . . . . . . . . 219
Ioana Paşca

Reducing Expression Size Using Rule-Based Integration . . . . . . . . . . . . . . . 234
David J. Jeffrey and Albert D. Rich

A Unified Formal Description of Arithmetic and Set Theoretical Data
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Paul Tarau

Contributions to MKM 2010

Against Rigor (Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Doron Zeilberger

Smart Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Andrea Asperti and Enrico Tassi

Electronic Geometry Textbook: A Geometric Textbook Knowledge
Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Xiaoyu Chen

An OpenMath Content Dictionary for Tensor Concepts . . . . . . . . . . . . . . . 293
Joseph B. Collins

On Duplication in Mathematical Repositories . . . . . . . . . . . . . . . . . . . . . . . . 300
Adam Grabowski and Christoph Schwarzweller



Table of Contents XV

Adapting Mathematical Domain Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Bastiaan Heeren and Johan Jeuring

Integrating Multiple Sources to Answer Questions in Algebraic
Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Jónathan Heras, Vico Pascual, Ana Romero, and Julio Rubio

STEXIDE: An Integrated Development Environment for STEX
Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Constantin Jucovschi and Michael Kohlhase

Proofs, Proofs, Proofs, and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Manfred Kerber

Dimensions of Formality: A Case Study for MKM in Software
Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Andrea Kohlhase, Michael Kohlhase, and Christoph Lange

Towards MKM in the Large: Modular Representation and Scalable
Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Michael Kohlhase, Florian Rabe, and Vyacheslav Zholudev

The Formulator MathML Editor Project: User-Friendly Authoring of
Content Markup Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Andriy Kovalchuk, Vyacheslav Levitsky, Igor Samolyuk, and
Valentyn Yanchuk

Notations Around the World: Census and Exploitation . . . . . . . . . . . . . . . 398
Paul Libbrecht

Evidence Algorithm and System for Automated Deduction:
A Retrospective View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Alexander Lyaletski and Konstantin Verchinine

On Building a Knowledge Base for Stability Theory . . . . . . . . . . . . . . . . . . 427
Agnieszka Rowinska-Schwarzweller and Christoph Schwarzweller

Proviola: A Tool for Proof Re-animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Carst Tankink, Herman Geuvers, James McKinna, and
Freek Wiedijk

A Wiki for Mizar: Motivation, Considerations, and Initial Prototype . . . . 455
Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471



The Challenges of Multivalued “Functions”

James H. Davenport

Department of Computer Science
University of Bath, Bath BA2 7AY

United Kingdom
J.H.Davenport@bath.ac.uk

Abstract. Although, formally, mathematics is clear that a function is
a single-valued object, mathematical practice is looser, particularly with
n-th roots and various inverse functions. In this paper, we point out some
of the looseness, and ask what the implications are, both for Artificial
Intelligence and Symbolic Computation, of these practices. In doing so,
we look at the steps necessary to convert existing texts into

(a) rigorous statements
(b) rigorously proved statements.

In particular we ask whether there might be a constant “de Bruijn factor”
[18] as we make these texts more formal, and conclude that the answer
depends greatly on the interpretation being placed on the symbols.

1 Introduction

The interpretation of “functions” crosses several areas of mathematics, from
almost foundational issues to computer science. We endeavour to clarify some of
the different uses, starting with the set-theoretic definitions.

Notation 1. P(A) denotes the power set of the set A. For a function f , we
write graph(f) for {(x, f(x)) : x ∈ dom(f)} and graph(f)T for {(f(x), x) : x ∈
dom(f)}.
There is an implicit convention in practically all texts which mention these un-
derspecified objects, which we will not raise further, though there is an exception
which is mentioned in section 4.

Convention 1. Where an underspecified object, such as
√

x, occurs more than
once in a formula, the same value, or interpretation, is meant at each occurrence.

For example,
√

x · 1√
x

= 1 for non-zero x, even though one might think that one
root might be positive and the other negative. More seriously, in the standard
formula for the roots of a cubic x3 + bx + c,

1
6

3
√
−108 c + 12

√
12 b3 + 81 c2 − 2b

3
√
−108 c + 12

√
12 b3 + 81 c2

, (1)

the two occurrences of
√

12 b3 + 81 c2 are meant to have the same value. One
could question what is meant by “same formula”, and indeed the scope seems
in practice to be the entire proof/example/discussion.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 J.H. Davenport

Notation 2. We use the notation A
?=B to denote what is normally given in the

literature as an equality with an = sign, but where one of the purposes of this
paper is to question the meaning of that, very overloaded [10], symbol.

We will often need to refer to polar coordinates for the complex plane.

Notation 3. We write C ≡ X
×

polarY for such a representation z = reiθ : r ∈
X ∧ θ ∈ Y .

As statements about functions, we consider the following exemplars.
√

z − 1
√

z + 1 ?=
√

z2 − 1. (2)
√

1− z
√

1 + z
?=
√

1− z2. (3)

log z1 + log z2
?= log z1z2. (4)

arctanx + arctan y
?= arctan

(
x + y

1− xy

)
. (5)

For the reader unfamiliar with this topic, we should point out that, with the
conventional single-valued interpretations [1], the validity of the formulae is as
follows.

(2) is valid for �(z) > 0, also for �(z) = 0, �(z) > 0. It is nevertheless stated
as an equation in [11, p. 297] — see section 4.

(3) is valid everywhere, despite the apparent resemblance to (2). One proof is
in [6, Lemma 2].

(4) is valid with −π < arg(z1) + arg(z2) ≤ π — this is [1, 4.1.7].
(5) is valid1, even for real x, y, only when xy < 1. This may seem odd, since

arctan has no branch cuts over the reals, but in fact there is a “branch cut
at infinity”, since limx→+∞ arctanx = π

2 , whereas limx→−∞ arctanx = −π
2

and xy = 1 therefore falls on this cut of the right-hand side of (5).

2 The Literature

There is a curious paradox, or at least “abuse of notation” (and terminology) in
mathematics to do with the word ‘function’.

2.1 The (Bourbakist) Theory

In principle, (pure) mathematics is clear.

On dit qu’un graphe F est un graphe fonctionnel si, pour tout x, il ex-
iste au plus un objet correspondant à x par F (I, p. 40). On dit qu’une
correspondance f = (F, A, B) est une fonction si son graphe F est un
graphe fonctionnel, et si son ensemble de départ A est égal à son en-
semble de définition pr1 F [pr1 is “projection on the first component”].

[5, p. E.II.13]
1 Only the multivalued form is given in [1], as 4.4.34.
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So for Bourbaki a function includes the definition of the domain and codomain,
and is total and single-valued. We will write (F, A, B)B for such a function defi-
nition. We permit ourselves one abuse of notation, though. The natural domains
of definition of analytic functions are simply connected open sets (section 2.3),
generally referred to as “Cn with branch cuts”. The table maker, or program-
mer (section 2.5), abhors “undefined”, and extends definitions to the whole of
Cn by making the values on the branch cut ‘adhere’ [3] to one side or the other,
expending a definition from D, a slit version of Cn, to the whole of Cn. Rather
than just writing Cn for the domain, we will explicitly write D to indicate that
it is an extension of the definition with domain D.

2.2 The Multivalued View

Analysts sometimes take a completely multivalued view, as here, discussing our
exemplar (4).

The equation merely states that the sum of one of the (infinitely many)
logarithms of z1 and one of the (infinitely many) logarithms of z2 can
be found among the (infinitely many) logarithms of z1z2, and conversely
every logarithm of z1z2 can be represented as a sum of this kind (with a
suitable choice of log z1 and log z2).

[7, pp. 259–260] (our notation)

Here we essentially have
(
graph(exp)T ,C,P(C)

)
B.

Related to this view is the “Riemann surface” view, which can be seen as(
graph(exp)T ,C,Rlog z

)
B, whereRlog z signifies the Riemann surface correspond-

ing to the function log z. The Riemann surface view is discussed in [6, Section
2.4], which concludes

Riemann surfaces are a beautiful conceptual scheme, but at the moment
they are not computational schemes.

The additional structure imparted by Rlog z (over that of P(C)) is undoubtedly
very useful from the theoretical point of view, and provides a global setting for
the next, essentially local, view.

2.3 The Branch View

Other views may also be found in the analysis literature, for example [8], where
one finds the following series of statements.

p. 32. “The mapping y 	→ eiy induces an isomorphism φ of the quotient group
R/2πZ on the group U. The inverse isomorphism φ−1 of U on R/πZ asso-
ciates with any complex number u such that |u| = 1 , a real number which is
defined up to the addition of an integral multiple of 2π; this class of numbers
is called the argument of u and is denoted by argu.” In our notation this is(
graph(φ)T , U,R/2πZ

)
B.



4 J.H. Davenport

p. 33. “We define
log t = log |t|+ i arg t, (6)

which is a complex number defined only up to addition of an integral multiple
of 2πi.” In our notation this is ((6),C,C/2πiZ)B.

p. 33. “For any complex numbers t and t′ both �= 0 and for any values of log t,
log t′ and log tt′, we have

log tt′ = log t + log t′ (mod 2πi).” (7)

p. 33. “So far, we have not defined log t as a function in the proper sense of the
word”.

p. 61. “log z has a branch2 in any simply connected open set which does not
contain 0.”

So any given branch would be (G, D, I)B, where D is a simply connected open
set which does not contain 0, G is a graph obtained from one element of the
graph (i.e. a pair (z, log(z)) for some z ∈ D) by analytic continuation, and I is
the relevant image set.

2.4 An ‘Applied’ View

Applied mathematics is sometimes less unambiguous.

. . . when we say that f(x) is a function of x in some range of values of
x we mean that for every value of x in the range one or more values of
f(x) exist. . . . It will usually also be required that the function shall be
single-valued, but not necessarily.

[12, p. 17]

So for these authors, a function might or might not be multivalued.

2.5 The Table-Maker’s Point of View

This is essentially also the computer designer’s point of view, be it hardware or
software. From this point of view, it is necessary to specify how to compute f(x)
for any given x, irrespective of any “context”, and return a single value, even
though, in the text accompanying the tables, we may read “only defined up to
multiples of 2πi” or some such.

For the purposes of this discussion, we will use the definitions from [1] (aug-
mented by [9]), but the points apply equally to any other definition of these
functions that satisfies the table-maker’s criterion of unambiguity.

(2) If we substitute z = −2, we obtain
√
−3
√
−1 ?=

√
3, which is false, so the

statement is not universally true.
(3) It is impossible to refute this statement.
(4) If we take z1 = z2 = −1, we obtain log(−1)+ log(−1) ?= log 1, i.e. iπ + iπ

?=0,
so the statement is not universally true.

(5) If we take x = y =
√

3, we get π
3 + π

3
?=−π

3 , so the statement is not universally
true.

2 [8] only defines the concept “branch of log”, not a more general definition.



The Challenges of Multivalued “Functions” 5

2.6 Differential Algebra

A completely different point of view of view is the differential-algebraic one
[17]. Here

√
1− z is an object whose square is 1 − z, formally definable as w in

C(z)[w]/(w2− (1−z)). Similarly log z is a new symbol θ such that θ′ = 1/z, and
so on for other elementary expressions (we do not say ‘functions’ here, since they
are not functions in the Bourbaki sense). From this point of view, our exemplar
equations take on a very different allure.

(2) The left-hand side is vw ∈ K = C(z)[v, w]/(v2 − (z − 1), w2 − (z + 1)),
and the right-hand side is u ∈ C(z)[v, w]/(u2 − (z2 − 1)). But to write the
equation we have to express u2−(z2−1) in K, and it is no longer irreducible,
being (u− vw)(u + vw). Depending on which factor we take as the defining
polynomial, the equation

vw = u (2′)

is either true or false (if one were trying to view these as functions, one
would say “identically true/false”, but that statement has no meaning), and
we have to decide which. Once we have decided which, the equation becomes
trivially true (or false). The problem is that, with the standard interpreta-
tions (which of course takes us outside differential algebra), the answer is “it
depends on which value of z you have”.

(3) The analysis is identical up to the standard interpretations, at which point
it transpires that, for the standard interpretations, vw = u is true for all
values of z. But, of course, this is what we were trying to prove in the first
place.

(4) Here we define θ1 such that ∂θ1
∂z1

= 1
z1

(and ∂θ1
∂z2

= 0), θ2 such that ∂θ2
∂z2

= 1
z2

(and ∂θ2
∂z1

= 0) and θ3 such that ∂θ3
∂z1

= z2
z1

and ∂θ3
∂z2

= z1
z2

. If we then consider
η = θ1 + θ2 − θ3, we see that

∂η

∂z1
=

∂η

∂z2
= 0 (4′),

which implies that η “is a constant”.
(5) Again, the difference between the two sides “is a constant”.

We have said “is a constant”, since the standard definition in differential algebra
is that a constant is an object all of whose derivatives are 0. Of course, this is
related to the usual definition by the following.

Proposition 1. A differentiable function f : Cn → C, all of whose first deriva-
tives are 0 in a connected open set D, takes a single value throughout D, i.e. is
a constant in the usual sense over D.

The difference between the two can be seen in these “corrected” versions of (4)
and (5), where the choice expressions are the “constants”.

log z1 + log z2 = log z1z2 +

{ 2πi arg z1 + arg z2 > π
0 −π < arg z1 + arg z2 < π
−2πi arg z1 + arg z2 < −π

4′′
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arctanx + arctany = arctan
(

x + y

1− xy

)
+

{π xy > 1, x > 0
0 xy < 1
−π xy > 1, x < 0

5′′

Equation (5′′) appears as such, with the correction term, as [2, p. 205, ex. 13].

2.7 The Pragmatic View

So, which view actually prevails? The answer depends on the context, but it
seems to the current author that the view of most mathematicians, most of the
time, is a blend of 2.3 and 2.6. This works because the definitions of differential
algebra give rise to power series, and therefore, given “suitable” initial conditions,
the expressions of differential algebra can be translated into functions expressed
by power series, which “normally” correspond to functions in some open set
around those initial conditions.

Whether this is an ‘adequate’ open set is a more difficult matter — see point
2 in section 5.6.

3 A Textbook Example

What is one to make of statements such as the following3?∫
2
√

x

√
x

dx =
21+

√
x

log 2
+ C (8)

We ignore any problems posed by “log 2”. The proof given is purely in the
setting of section 2.6, despite the fact that the source text is entitled Calculus.
Translated into that language, we are working in C(x, u, θ) where u2 = x and

θ′ = (θ log 2)/2u. (9)

(We note that equation (9) implicitly gives effect to Convention 1, in that θ′

represents
(
2
√

x log 2
)

/2
√

x where the two occurrences of
√

x represent the same

object.) Similarly the right-hand side is 2θ
log 2 + C. Note that, having introduced

2
√

x, 21+
√

x is not legitimate in the language of section 2.6, since the Risch
Structure Theorem [16] will tell us that there is a relationship between θ and an
η standing for 21+

√
x, viz. that η/θ is constant.

4 A Different Point of View

It is possible to take a different approach to these functions, and say, effec-
tively, that “each use of each function symbol means what I mean it to mean
at that point”. This is completely incompatible with the table-maker’s, or the
computer’s, point of view (section 2.5), but has its adherents, and indeed uses.

3 (8) is from [2, p. 189, Example 2].
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A classic example of this is given in [11, pp. 294–8], and analysed in [13].
The author considers the Joukowski map f : z 	→ 1

2

(
z + 1

z

)
and its inverse

f−1 : w 	→ w +
√

w2 − 1, in two different cases. If we regard these functions as
(f, D, D′)B and

(
f−1, D′, D

)
B, the cases are as follows.

(i) D = {z : |z| > 1}. Here D′ = C\ [−1, 1]. The problem with f−1 is interpret-
ing

√
w2 − 1 so that |w +

√
w2 − 1| > 1.

(ii) D = {z : �(Z) > 0}. Here D′ = C \ ((−∞,−1] ∪ [1,∞)), and the problem
with f−1 is interpreting

√
w2 − 1 so that �(w +

√
w2 − 1) > 0.

We require f−1 to be injective, which is a problem, since in both cases w 	→ w2 is
not. Hence the author applies (2) formally (though he does not say so explicitly),
and writes

f−1(w) = w +
√

w + 1
√

w − 1. (10)

(i) Here he takes both
√

w + 1 and
√

w − 1 to be uses of the square-root func-

tion from [1], viz.
(√

,C,C ≡ R+ ×
polar(−π

2 , π
2 ] ∪ {0}

)
B
. We should note

that this means that
√

w + 1
√

w − 1 has, at least potentially4, an argument
range of (−π, π], which is impossible for any single-valued (as in section 2.5)
interpretation of

√
w2 − 1.

(ii) Here he takes
√

w + 1 as before, but
√

w − 1 to be an alternative interpre-

tation:
(√

,C,C ≡ R+ ×
polar [0, π) ∪ {0}

)
B
.

In terms of section 2.1, of course, (f, D, D′)B is a bijection (in either case), so(
f−1, D′, D

)
B exists, and the question of whether there is a “formula” for it is

not in the language.

5 Formalisations of These Statements?

Of course, the first question is “which kind of statement are we trying to for-
malise”. This matters in two sense — which of the views in section 2 are we
trying to formalise, and are we trying to formalise just the statement, or the
statement and its proof. The question “which view” seems to be a hard one —
when reading a text one often has few clues as to the author’s intentions in this
area. Nevertheless, let us suppose that the view is given.

5.1 The (Bourbakist) Theory

In this view a function is defined by its graph, there is no language of formulae,
and the graph of the inverse of a bijective function is the transpose of the graph
of the original. Therefore the task of formalising any such statements is the
general one of formalising (set-theoretic) mathematical texts.
4 This is attained: w = −2 gives −

√
3, with argument π, whereas w = −2− εi gives a

result with argument −π + ε′.
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5.2 The Multivalued View

Convention 2. We use5 capital initial letters to denote the multivalued equiv-
alents of the usual functions, so Log(z) = {w : exp(w) = z}. By analogy, we
write Sqrt(z) = {w : w2 = z}.

Here, an expression from the usual mathematical notation, such as (4), becomes,
as stated in section 2.2,

∀w3 ∈ Log(z1z2)∃w1 ∈ Log(z1), w2 ∈ Log(z2) : w3 = w1w2∧
∀w1 ∈ Log(z1), w2 ∈ Log(z2)∃w3 ∈ Log(z1z2) : w3 = w1w2, (11)

There is significant expansion here, and one might be tempted to write

Log(z1z2) = Log(z1) + Log(z2) (12)

using set-theoretic addition and equality of sets, which looks reassuringly like a
multivalued version of (4).

However, there are several caveats. One is that, as explained in [6, section
2.3], the correct generalisation of log(z2) = 2 log(z) is

Log(z2) = Log(z) + Log(z) (13)

(note that Convention 1 does not apply here, since we are considering sets of
values, rather than merely underspecified values) and not Log(z2) = 2 Log(z)
(which, effectively, would apply the convention). The second is that not all such
equations translate as easily: the multi-valued equivalent of

arcsin(z) ?= arctan
(

z√
1− z2

)
(14)

is in fact

Arcsin(z) ∪Arcsin(−z) = Arctan
(

z

Sqrt(1− z2)

)
. (15)

Conclusion 1. Translating statements about these functions to the multivalued
view is not as simple as it seems, and producing correct translations can be
difficult.

It might be possible to define a rewrite with constant expansion (a “de Bruijn
factor” in the sense of [18]), e.g. by defining new functions such as AS(z) =
Arcsin(z) ∪ Arcsin(−z), but to the author’s knowledge this has not been done,
and would probably be a substantial research project.

It would be tempting to wonder about the difficulties of translating proofs,
but, other than his and his colleagues’, the author has only seen proofs which
work by reduction modulo 2πi, and therefore do not generalise to equations like
(15), for which the author only knows his own (unpublished) proof.

As has been said, we see little hope for formalising the more general ‘Riemann
surfaces’ version of this view.
5 Note that this convention is often reversed in Francophone countries.
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5.3 The Branch View

In this view, a function is defined locally, in a simply-connected open set, and the
statements made informally in mathematics are true in this interpretation if they
are true in the informal sense. The first real problem comes in determining the
side conditions, such as “not containing 0”. For a fixed vocabulary of functions,
such as the elementary functions (which can all be derived from exp and log)
this can probably be achieved, but when new functions can be introduced, it
becomes much harder.

The second problem is to determine what such a suitable open set is, and
whether one can be found which is large enough for the mathematical setting
envisaged. This is often equivalent to the problem of finding a suitable path, and
the challenges are really those of formalising traditional analysis.

5.4 An ‘Applied’ View

This can hardly be said to be formal, and could therefore be ignored. However,
in practice a lot of texts are written this way, and it would seem an interesting
challenge to see which statements can be formalised. But this is clearly harder
than formalising a statement once one knows what the context is.

5.5 The Table-Maker’s Point of View

For the elementary functions, the table-maker now has an effective methodology,
implicit in [1] and made explicit in [9].

1. Choose a branch cut X for log, and this defines the value of log(z) for
z ∈ C \ X by integration from log 1 = 0.

2. Choose an adherence rule to define the value of log on X .
3. For each other function f , choose an expression for f(x) in terms of log.

There may be several such choices, and none are perfect.
4. As a consequence of step 3, write down the various simplification rules that

f (and other functions) must satisfy.
5. If one is unhappy with these results, return to step 3. Do not attempt to

rewrite the rules — this leads to inconsistencies, with which tables have been
(and alas continue to be) bothered over the years.

Conclusion 2. In the table-maker’s view, statements about multi-valued func-
tions, if correct, are the same as usually stated. However, they may require am-
plification, as in (5”) versus (5). At least näıvely, such expansion may be un-
bounded.

Proofs are a trickier matter. As far as the author knows, such proofs were gener-
ally not published before the days of computer algebra, though the table-makers
certainly had intuitive understandings of them, at least as regards real variables.
Many such proofs are ad hoc, but the dangers in an intuitive approach can be
seen in (2) versus (3), where apparently similar equations have very different
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regions of validity. [4] presents a methodology which, for most6 such equations
is guaranteed to either prove or refute them. However, these methods are expen-
sive, and, as they depend on cylindrical algebraic decomposition, the complexity
grows doubly-exponentially with the number of variables. Fortunately, there are
very few such identities in practice which require more that two complex vari-
ables, but even then the methodology has to treat then as four real variables.

Conclusion 3. Producing (formal) proofs of such statements is a developing
subject, even in the context of a computer algebra system. Converting them into
an actual theorem prover is a major challenge. Unfortunately, cylindrical alge-
braic decomposition, as used here, does not seem to lend itself to being used as
an ‘oracle’ by theorem provers.

5.6 Differential Algebra

The translation from well-posed statements of analysis into this viewpoint is
comparatively easy, as seen in section 2.6. There are, however, two significant
problems.

1. “Well-posed”, in the context of differential algebra, means that every extension
that purports to be transcendental really is, and introduces no new constants.
Hence every simplification rule essentially reduces to“correctuptoaconstant”,
and beyond here differential algebra does not help us, as seen with (5′′).

2. There is no guarantee that the expressions produced by differential algebra,
when interpreted as functions, will be well-behaved. This point has been well-
explored elsewhere [14,15] so we will do no more than draw attention to it here.

5.7 The Pragmatic View

The fundamental problem with the pragmatic view is that it is a hybrid, and
the formalisms in sections 5.3 and 5.6 are different. Indeed, it is precisely this
difference that causes most of the problems in practice. The pragmatist takes
formulae produced in the differential-algebraic viewpoint, and interprets them in
the branch viewpoint. In the branch viewpoint, every integral is continuous, but,
as in point 2 above, there is no guarantee of this remaining true in the hybrid
view unless special care is taken.

Conclusion 4. The pragmatist’s view, while useful, is indeed a hybrid, and great
care must be taken when translated from one viewpoint to the other.

6 Conclusion

The handling of (potentially) multi-valued functions in mathematics is bedevilled
by the variety of viewpoints that can be adopted. Texts are not good at stating
6 There are some technical limitations on the nesting allowed, but these seem not to

occur in practice.
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which viewpoint is being adopted, and trying to deduce which (if any) is being
adopted is an untackled AI problem.

The most useful viewpoint, it seems, is based on a dual view (section 2.7)
of power-series analysis (section 2.3) and differential algebra (section 2.6): the
second being quintessentially symbolic computation. These are ultimately based
on different formalisms, and there is no guarantee of a smooth translation of
the statements, and there may be a requirement for additional proofs that the
translations are indeed valid.
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Mathematical Functions

Bruno Salvy

Mathematical tables have long been used by developers of computer algebra sys-
tems. Special functions are implemented in a system using formulas obtained in
these tables for the computation of their derivatives, series or asymptotic expan-
sions, numerical evaluation, simplification, integral transforms,... Recently, more
and more powerful algorithms have been developed by the computer algebra
community, so that nowadays, the flow can be reversed and mathematical ta-
bles can be generated automatically for large classes of functions. The gains are
obvious: a full automation of the process that reduces the risk for typographical
or other errors; more flexibility and extra interactivity for the readers, not only
in the navigation, but also in the choice of the actual functions or formulas they
need.

Our team has started the development of a Dynamic Dictionary of Mathe-
matical Functions focusing on solutions of linear differential equations (available
at http://ddmf.msr-inria.inria.fr/). This development raises several inter-
esting issues. Algorithmic ones obviously, but also more fundamental ones (what
exactly is needed to define a function?), or practical ones (how should the inter-
action between computer algebra systems and dynamic mathematical content
on the web be organized?). The talk will discuss these issues and present some
of the choices that were made in our design.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, p. 13, 2010.
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http://ddmf.msr-inria.inria.fr/


S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 14–18, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Revisited Perspective on Symbolic Mathematical 
Computing and Artificial Intelligence 

Jacques Calmet1 and John A. Campbell2 

1 Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 
Karlsruhe, Germany 

calmet@ira.uka.de 
2 Department of Computer Science, University College London, Malet Place, 

London WC1E 6BT, England 
jac@cs.ucl.ac.uk 

Abstract. We provide a perspective on the current state and possible future of 
links between symbolic mathematical computing and artificial intelligence, on 
the occasion of the 10th biennial conference (AISMC, later AISC) devoted to 
those connections. It follows a similar perspective expressed for the first such 
conference in 1992 and then revised and expanded 5 years later. Issues related 
to the computational management of mathematical knowledge are highlighted. 

Keywords: Symbolic Computation, Artificial Intelligence. 

1   Introduction 

On the occasion of the first conference on symbolic mathematical computing (SMC) 
and artificial intelligence we wrote [1] a short survey paper on the state of the territory 
common to the two domains. Because of the background to the inception of the con-
ference, this was aimed mainly at suggesting the potential impact of AI on SMC. 
Following the evolution of the territory and the experience of the first three confer-
ences, we wrote a larger paper [2] in 1997 on the perspective and likely prospects for 
research. For the 10th conference in the series, it is timely to take another look at its 
subject, to see how well the past has agreed (or not agreed) with the suggestions and 
predictions we made when it was still the future, and to draw lessons as far as possible 
from both the hits and the misses. 

2   The Picture in 1997 

The emphasis in our 1997 remarks was somewhat more towards the usefulness of AI 
approaches for the enhancement of SMC than the converse. Broadly speaking, this 
followed from our view that knowledge representation, a perennial topic in AI, was 
likely to be a central feature of the common research ground between AI and SMC. 
(From the hindsight of 2010, it amounted to a reasonable prediction, though its reali-
zation has turned out to be rather different from what we would have expected.) 
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Certainly until 1965, and to a decreasing extent until the early 1970s, most of SMC 
could have been regarded as a branch of AI. This came about because finding heuris-
tics for solving various kinds of mathematical problems (notably in indefinite integra-
tion), and then putting them to work through SMC, was generally agreed to be a good 
way of demonstrating progress in AI. But the further research that led to more effi-
cient programs and packages gained this efficiency by finding algorithms for proc-
esses that were previously heuristic. To the extent that algorithms replaced heuristics, 
SMC ceased to be regarded as AI: a good example (but by no means the only one: 
most of what is now called computer vision, and most parts of natural-language proc-
essing, are the largest of the others) of the saying "AI exports its successes". 

In the 1990s the situation was that SMC was mainly algorithmic, on an algo-
rithmic-heuristic scale, while AI was towards the other end of the scale. (We except 
from this contrast the most formal and theoretical areas of both subjects. Those areas 
have rather different primary concerns.) Again broadly speaking, we saw a situation 
where AI had many techniques for handling heuristics - which in principle included 
the considerable amount of heuristic mathematical knowledge held by specialists in 
SMC but not expressible in their algorithmic systems - while the algorithmically-
flavored SMC of that time had much less to offer AI specialists looking for new tools 
to help them solve their own problems. 

We suggested the following lines of development for the future. 
 

• Exploration of the variety of knowledge representations found in AI, to ex-
press and manage mathematical knowledge, leading to .... 

• Construction of knowledge-based computing environments that combine 
ideas from AI and SMC; 

• Finding suitable annotations of algorithmic knowledge to make it available 
for use, within heuristic frameworks, in knowledge-based computation; 

• Concentration on formal reasoning about mathematical knowledge; 
• Use of planning (in the AI sense) in mathematical problem-solving; 
• Use of case-based reasoning for mathematical problem-solving; 
• Combining formal and informal reasoning within such frameworks; 
• A focus on mathematical modeling (as an application area) and its associated 

mathematical knowledge (e.g. graphs, methods for network modeling, etc.); 
• Application of any or all of the above to autonomous agents and multiagent 

systems; 
• Use of any or all of the above in knowledge-based computing environments 

for the teaching of mathematics. 
 

We also discussed at some length the achievements and prospects of qualitative rea-
soning, constraint-based reasoning, and machine learning. 

3   Hits 

We made no distinction in 1997 between likely early developments and those that could 
be expected to take longer to mature. However, some of the targets we mentioned, e.g. 
construction of knowledge-based teaching environments, evidently required earlier 
progress towards others in the list, e.g. at least the first five highlighted items. 
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As reference to the contents of the AISC conference volumes shows [3], each of 
those "earlier progress" predictions achieved a hit – though partly because of a more 
general development of the subject which we did not predict explicitly. (We admit 
that in 1997 we should have been able to see it coming.) This was the trend towards 
mathematical knowledge management (MKM) as a topic in its own right. The trend is 
responsible, among other things, for the "MKM" series of conferences, which exist 
now in a federation with the AISC and Calculemus conferences. Most of the list in 
section 2 expresses parts of the current research agenda of mathematical knowledge 
management. 

4   Misses 

As we go further down the list, we find fewer post-1997 papers on the relevant devel-
opments when we look in the AISC proceedings and elsewhere. For some items, such 
as teaching, the "miss" is likely to be only a temporary miss, which should be reme-
died over the next decade. For others, particularly those in the final paragraph of sec-
tion 2, we did not at all succeed in predicting the future - partly because those topics 
have become more specialized and self-contained over the last decade, which was not 
an historically necessary evolution. From the perspective of 2010 the suggestions 
remain as interesting as they were in 1997, but it appears from the contents of the last 
seven AISC conferences that the authors of papers found other directions to be more 
rewarding. 

In section 3 we have claimed MKM as an implicit hit of our 1997 suggestions. A 
critic of [2] might say at the same time, with some justification, that the fact that we 
did not refer there to MKM as such was an explicit miss. Probably this happened 
because we took it for granted, given our AI cultural background, that the automated 
management of mathematical knowledge was 'obviously' part of the goal of our busi-
ness. We ought to have been aware that consequences of such implicit reasoning can 
be unexpected. 

Our section 2 recommendation of "Combining formal and informal reasoning" was 
in effect a recommendation for the combination of heuristic and algorithmic computa-
tion - scientifically and practically desirable in itself, but also a means of bringing AI 
and SMC more closely together than they have been since the mid-1960s. It amounts 
to bypassing a purely 'mathematical' concept of symbolic computation. It means also 
the introduction of heuristics for specific application problems when purely algo-
rithmic constructive procedures will be difficult or impossible to achieve in the fore-
seeable future. 

A straightforward example is to provide symbolic solutions for linear homogene-
ous ordinary differential equations. The optimal relevant algorithm has been known 
for almost 20 years, but its implementation requires solving representational problems 
for Galois groups that are very challenging. Methods of AI, also even reference to 
numerical methods, could be of great help. A related example, more open-ended, 
deals with systems of partial differential equations for which even the most optimistic 
computer algebraist cannot expect a significant breakthrough within the next 20 years. 
Here is where heuristics for specific problems, and general computational experi-
ments with heuristics, could definitely be helpful. A practical instance lies within 
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biology and associated health sciences, where basic models consist of systems of 
partial differential equations. Constraint-based programming with a strong flavor of 
AI could have an impact. Even qualitative reasoning could be worth investigating 
here. We have in mind a rather different scenario from the recent past picture of ap-
plications of computer algebra or constraint-based programming in biological areas, 
which appears to consist of mainly isolated uses of methods or programs that were no 
longer providing new results in the field(s) where they were first developed. 

Our 1997 'miss' with respect to use of AI plus SMC for teaching, e.g. smart tutor-
ing systems for the use of AI tools without requiring users to have any detailed 
knowledge of information technology, is still an open recommendation for the future, 
and can rely on results achieved already through progress in the 'hit' areas. Another 
example relevant to this part of our perspective is cultural reasoning based on con-
cepts originating in the integration of computer algebra and theorem proving [4]. 

5   Suggestions for the Future 

First, we have no reason to back down from any of our 1997 suggestions that have  
not been taken up in or around SMC since 1997. They are still useful stimuli for re-
searchers in AI and SMC. In effect, they are restated in section 2. We intend to con-
sider how they can be promoted through identification of suitable test applications; 
while they would not be 'grand challenges' (a phrase popular in some physical and 
mathematical sciences), we might be justified in calling any such test a minigrand 
challenge. 

In order to succeed in MKM from a user's point of view, we need to clarify what 
knowledge should be managed. Typical MKM research has no difficulty in identify-
ing the most formal and textbook-oriented kinds of knowledge, but users (e.g, stu-
dents) tend to have trouble and require help with epiphenomena around the edges of 
the 'real' knowledge too. Even something as deceptively simple as notation can be a 
source of trouble, partly because it conceals (and is the product of) implicit or semi-
implicit expert mathematical knowledge. Making this 'epi' knowledge explicit, and 
representing it for MKM, is a development on which any future widespread take-up 
of MKM systems will depend. 

The biggest general change in the textbook picture of AI between the late 20th cen-
tury and 2010, as shown by the textbooks from the two periods, is the arrival of the 
Bayesian outlook. There was no trace of it in our 1997 paper. In effect, Bayesian 
methodologies are now being seen as some kind of generic methodology for knowl-
edge representation. Here, especially if more attention is paid to our 1997 suggestion 
about graphs as a medium for mathematical modeling, SMC is in an excellent strate-
gic position to establish links with applied probability theory and general AI at the 
same time. 

In a neighboring domain, it is worth considering whether attempts to describe on-
tologies in the language of category theory could provide a link between a formal 
description of SMC and AI. 

Finally, we use our freedom as invited contributors to AISC 2010 to say something 
more speculative. Starting from a mathematical culture, it could be at least a good 
intellectual exercise to think about a question that has been raised by physicists and 
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(some) AI experts: Is there (an) AI for everything? One might answer "yes" if one 
believes, as some physicists do, that everything can be computed. But in a physicist's 
terms the problem is so difficult that only incremental progress can be hoped for. It is 
surely (also) a philosophical question: we should not forget that John McCarthy was 
pointing out the link between philosophy and AI from the very beginning of the latter. 
From the side of SMC, constructive procedures can be seen as the scaffolding 
on/from which to design algorithms. This is a very challenging job. Usually one tries 
a simpler approach instead - starting the job from heuristics. ("Starting the job from 
heuristics" accounts for the history of the divergence between SMC and AI that was 
easiest to observe while it was happening from 1965 to 1975.) Perhaps we can tackle 
both approaches at the same time. For systems of partial differential equations that 
state physicists' models of some parts of the physical world, for example, we could 
look at the integrability of their solutions [5], e.g. starting from Galois cohomology or 
involutive bases. And to add a speculation to a speculation for the future, perhaps a 
Bayesian approach to assigning probabilities to the pieces of knowledge available in 
that domain can have a part to play. 
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Abstract. Ordered resolution and superposition are the state-of-the-art
proof procedures used in saturation-based theorem proving, for non equa-
tional and equational clause sets respectively. In this paper, we present
extensions of these calculi that permit one to reason about formulae
built from terms with integer exponents (or I-terms), a schematisation
language allowing one to denote infinite sequences of iterated terms [8].
We prove that the ordered resolution calculus is still refutationally com-
plete when applied on (non equational) clauses containing I-terms. In
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plete in the presence of I-terms and we devise a new inference rule, called
H-superposition, that restores completeness.
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The range of application of a proof procedure obviously depends on the language
that is used to represent and manipulate information. Richer languages guide the
design of provers offering new possibilities to the users. In the last years [4,5] the
authors have used term schematisations with the aim of improving the generality
and expressive power of automated reasoning systems. Term schematisations
can be seen as formalisms allowing one to structurally describe (infinite) sets of
standard terms, obtained by applying repeatedly a given inductive pattern on
some base term. For instance the sequence of terms a, f(a), f(f(a)), . . . may be
represented by the term schema f(�)N .a where N is an arithmetic variable, to
be instantiated by a natural number (formal definitions will be given in Section
1.1). f(�) denotes the repeated pattern (� is a special symbol denoting a hole)
and a is the base term. Several formalisms have been proposed to grasp such
sequences of iterated terms. They differ mainly by the class of inductive patterns
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(see also [9]) and then extensions of the original formalism have been proposed,
which gave rise to a hierarchy of term schematisation languages, with various
expressiveness and complexity: the terms with integer exponents [8], the R-terms
[20] and the primal grammars [10].

These formalisms have been introduced in order to avoid divergence of
symbolic computation procedures (particularly in rewriting). In our approach,
schematisations are intended to be applied to terms appearing as arguments
of predicate symbols in the inference process. The usefulness of such forma-
lisms in automated deduction is almost obvious. They allow more compact
and more natural formalisations and may improve the termination behaviour
of the calculus. For instance the set of formulae S = {even(0), ∀x even(x) ⇒
even(s(s(x)))} that could in principle generate an infinite number of conse-
quences even(s(s(0))), even(s(s(s(s(0))))), . . . can be replaced by a single axiom
{∀N even(s(�)2N .0)}1. Proof length and readability may also be improved, for
instance in the above specification even(s2k(0)) can be proven in only one step,
instead of k without using term schemata.

Inference rules have been proposed to generate automatically such schemati-
sations from standard specifications (e.g. to infer the formula ∀N even(s(�)2N .0)
from S), see e.g. [20,15,16]. This is done by (a particular) detection of cycles in
proof search. Inductive approaches can also be used to generate such formulae,
by analysing the search space in order to detect regularities [4]. This is useful for
partially describing provers search spaces, for avoiding divergence in the inference
process or for discovering lemmata (particularly in inductive theorem proving).
Incorporating such capabilities to (automated or assisted) theorem provers is a
way of improving them qualitatively.

Obviously, in order to apply term schematisations in automated theorem pro-
ving, a basic requirement is to integrate these languages into the most successful
existing proof procedures, especially in ordered resolution and superposition cal-
culi (see e.g. [2,14]). In [5] we described dei, the first theorem prover able to handle
a particular class of term schematisations: the terms with integer exponents (or
I-terms) of [8]. dei2 is an extension of the E-prover [21] and it uses ordered re-
solution and superposition as base calculi. The purpose of the present work is to
establish the theoretical properties of these calculi in presence of I-terms.

As can be expected, more expressive power entails in general losing “nice” pro-
perties of the calculus and in our case the addition of I-terms actually destroys
refutational completeness of the superposition calculus (this is not the case of
ordering resolution, for which completeness is preserved, as shown in Section 2).
In order to recover completeness, we propose to add a new inference rule, called
H-superposition, especially devoted to handle I-terms and encoding in a single
step an unbounded number of applications of the superposition rule.

1 Of course in this trivial case the resolution calculus obviously terminates if ordering
restrictions are considered. Notice actually that this is not the case if positive refi-
nements of the calculus are used such as hyper-resolution [17] or hyper-tableaux [3]
(positive calculi are extensively used in model building, see e.g. [6]).

2 The system is available at http://membres-lig.imag.fr/peltier/dei.html
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The language of I-terms has been chosen because it is used in our current
implementation and because it presents a good tradeoff between expressiveness
and simplicity, but actually the same ideas can be applied to other schematisation
languages.

The paper is structured as follows. Section 1 introduces the main definitions,
in particular the syntax and semantics of I-terms and recalls some basic notions
and definitions in saturation based theorem proving. Section 2 describes the
extended calculus in the non equational case and proves its completeness. Section
3 deals with the equational case, using an extension of the superposition calculus.
Section 4 briefly concludes the paper.

1 Definitions and Notations

1.1 Terms with Integer Exponents

We consider three disjoint (nonempty) sets of symbols: a set of ordinary variables
VX , a set of function symbols F and a set of arithmetic variables VN . Let � be a
special symbol not occurring in VX ∪ VN ∪F . � is called the hole and is used to
define inductive contexts (see Definition 1). Arithmetic variables will be denoted
by capital letters N, M, . . . and ordinary variables by x, y, . . ..

We first define the set of terms with integer exponents (or I-terms) and the set
of terms with one hole (originally introduced in [8]). For the sake of readability,
examples are given before formal definitions.

Example 1. (I-terms) f(a, �, b)N .g(c) is an I-term denoting the infinite set of
(standard) terms {g(c), f(a, g(c), b), f(a, f(a, g(c), b), b), ...}.
EN denotes the set of arithmetic expressions built as usual on the signature 0,
s, + and VN (in particular N ⊆ EN ).

Definition 1. The set of terms with integer exponents TI (or I-terms) and the
set of terms with one hole T� are the smallest sets verifying:

– � ∈ T� and VX ⊂ TI.
– If t1, . . . , tk ∈ TI , f ∈ F and arity(f) = k then f(t1, . . . , tk) ∈ TI.
– If arity(f) = k > 0, tj ∈ TI for j ∈ [1..k], j �= i and ti ∈ T� then

f(t1, . . . , tn) ∈ T�.
– If t ∈ T�, t �= � , s ∈ TI and N ∈ EN then tN .s ∈ TI . An I-term of this

form is called an N -term. t is the inductive context, N is the exponent and
s is the base term.

1.2 Positions and Subterms

A position is a finite sequence of natural numbers. Λ denotes the empty position
and . denotes the position concatenation (it is sometimes omitted, e.g. we write
pk for p. . . . .p). We define a function Pos giving the set of positions in an I-term
(slightly different from that of [8], but using the same notations). Pos(t) contains
all the positions of the I-terms occurring in t (even the terms occurring in an
inductive context or in a base term of an N -term).
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Example 2. Let t = f(a, g(�))N .g(b). Pos(t) = {Λ, 1.1, 2, 2.1}. The position Λ
corresponds to the term t itself (root position). 1.1 corresponds to the subterm
a, 2 to the subterm g(b) and 2.1 to the subterm b. Notice that 1, 1.2 and 1.2.1 do
not occur in Pos(t) because they correspond to the terms f(a, g(�)), g(�) and �
respectively which are not I-terms.

Definition 2 (I-term positions). The function Pos giving the set of I-term
positions of a term in TI ∪ T� is defined as:

– Pos(t) = {Λ} if t ∈ VX .
– Pos(�) = ∅.
– Pos(f(t1, . . . , tn)) = E ∪ {i.q | ti ∈ TI ∪ T�, q ∈ Pos(ti)}, where E = {Λ} if

t1, . . . , tn ∈ TI and E = ∅ otherwise.
– Pos(tn.s) = {Λ} ∪ {1.q | q ∈ Pos(t)} ∪ {2.q | q ∈ Pos(s)}.

The notation t|p (where t ∈ TI ∪ T� and p ∈ Pos(t)) denotes (as usual) the
subterm of t occurring in the position p.

– t|p = t if p = Λ.
– f(t1, . . . , tn)|i.q = ti|q if i ∈ [1..n], q ∈ Pos(ti).
– (tN .v)|1.q = t|q if q ∈ Pos(t).
– (tN .v)|2.q = v|q.

Proposition 1. For every term t ∈ TI ∪ T� and for every p ∈ Pos(t), t|p is an
I-term.

t[s]p denotes as usual the term obtained from t by replacing the I-term at position
p ∈ Pos(t) by s, formally defined as follows:

– t[s]p = s if p = Λ.
– f(t1, . . . , tn)[s]i.q = f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tn) if i ∈ [1..n], q ∈

Pos(ti).
– (tN .v)[s]1.q = (t[s]q)N .v if q ∈ Pos(t).
– (tN .v)[s]2.q = tN .(v[s]q) if q ∈ Pos(v).

Proposition 2. For every term t ∈ TI (resp. t ∈ T�) we have t[s]p ∈ TI (resp.
t[s]p ∈ T�).

When no confusion is possible, the notation t[s]p can be used also to ensure that
t|p is syntactically equal to s, i.e. t|p = s. Notice that if t is a standard term
then the previous notions coincide with the usual ones.

If t is a term with a hole, we denote by t[s]� the term obtained from
t by replacing the (unique) occurrence of the hole (not in an N -term) by
s. Formally, t[s]� is defined inductively: �[s]� = s and f(t1, . . . , tn)[s]� =
f(t1, . . . , ti−1, ti[s]�, ti+1, . . . , tn) where ti ∈ T�.

Given an I-term t, var(t) denotes the set of variables of t (from both VX and
VN ). t is ground if var(t) = ∅.
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1.3 Semantics of I-Terms

The semantics of I-terms are defined by the following rewrite rules:

t0.s →I s tn+1.s →I t[tn.s]�

This rewrite system is convergent and together with the rules of Presburger arith-
metic, it reduces any I-term not containing arithmetic variables to a standard
term. We denote by t ↓ the normal form of t w.r.t. →I .

In the following, we use =I to denote equality modulo unfolding, i.e. t =I s
iff t ↓= s ↓. To simplify technicalities and w.l.o.g. we assume that the conside-
red terms are normalised w.r.t. the previous rules and that every (non ground)
exponent occurring in an N -term is a variable (by unfolding, e.g. f(�)2N+1.a is
equivalent to f(f(f(�))N .a)). Notice that every ground I-term is =I-equivalent
to a ground (standard) term.

A substitution is a function mapping every standard variable to an I-term and
every arithmetic variable to an arithmetic expression. For any expression (term,
clause, . . . ) E , we denote by Eσ the expression obtained from E by replacing every
variable x ∈ VX ∪ VN by its image by σ. Eσ is called an instance of E . dom(σ)
denotes the set of variables x s.t. xσ �= x. A substitution σ is N-grounding if
dom(σ) = VN and ∀N ∈ VN , Nσ ∈ N (in practice, of course, the domain of σ
does not need to be infinite: it may be restricted to the variables really occurring
in the considered terms).

An N-instance of an I-term t is obtained by instantiating all the integer va-
riables in t by natural numbers (the other variables are not instantiated):

Definition 3 (N-instance). A term s is said to be an N-instance of an I-term
t if and only if there exists an N-grounding substitution σ s.t. s = tσ ↓.

For example, x, f(x) and f(f(x)) are N-instances of f(�)N .x, f(a) or f(�)N+1(b)
are not (although these last two terms are instances of f(�)N .x).

1.4 I-Term Ordering

We assume given an ordering� on I-terms, that satisfies the following properties:

1. � is total on ground I-terms.
2. � is well founded, i.e. there is no infinite sequence of terms t1, . . . , tn, . . . such

that ∀i, ti � ti+1.
3. � is closed by substitution, i.e. for any substitution σ and terms t, s: t � s ⇒

tσ � sσ.
4. � is compatible with unfolding, i.e. for all I-terms t, s: (t =I s) ⇒ (∀u, t 	


u ⇒ s 	
 u) where 	
∈ {�,≺}.

Properties 1, 2, 3 are standard, Property 4 ensures that � is compatible with the
semantics of I-terms.

Given any ordering � on terms satisfying the properties 1-3 above, we can
extend � to an ordering �I on I-terms satisfying properties 1-4 as follows: t �I s
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if one of the following conditions holds (we assume that t, s are normalised w.r.t.
the rules →I above and x denotes a variable not occurring in t, s):

– t, s are standard terms and t � s.
– t = f(t1, . . . , tn), s = f(s1, . . . , sn) and ∀i ∈ [1..n], ti � si and ∃i ∈

[1..n], ti � si.
– t = uN .v and v �I s.
– t = uN .v, u[x]� �I s and v � s{N → 0}.
– t = uN .v, s = wN .r, u[x]� � w[x]� and v �I w.

For instance, we have f(f(�))N .g(g(a)) �I f(�)N .g(a) �I a and
g(f(�)N .a, �)N .a �I f(�)N .a, but g(f(�)N .x, �)N .a ��I f(�)N .x (take N = 0 and
x � a). Of course more refined definitions are possible, yielding more restrictive
orderings. Defining refined versions of the usual reduction orderings and efficient
algorithms for computing these relations is out of the scope of the present paper
and is part of future work.

For any two unifiable (standard) terms t, s, mgu(t, s) denotes the (unique up
to variable renaming) most general unifier of t and s. If t, s are I-terms, they
can have several (but finitely many) most general unifiers [8]. Thus we denote
by mgu(t, s) the (finite) set of most general unifiers. Unification algorithms for
I-terms can be found in [8,20].

1.5 Clauses, Redundancy Criteria and Selection Functions

We consider a set of predicate symbols containing in particular the equality
predicate ≈ (in infixed notation). An I-atom is of the form p(t1, . . . , tn) where
t1, . . . , tn are I-terms and p is a predicate symbol. An I-literal is either an I-
atom or the negation of an I-atom. An I-clause is a disjunction of I-literals.
The empty (I-)clause is denoted by �. It is clear that an I-clause containing no
N -term is a clause (in the usual sense).

The notions of instance and N-instance can obviously be extended to I-clauses.
Clearly, all N-instances of an I-clause are (standard) clauses. Interpretations are
defined as usual. An interpretation I validates a set of I-clauses S (written
I |= S) if I validates all N-instances of the I-clauses in S (in the usual sense).

The ordering � is extended as usual to I-atoms (in case of equational atoms
we use a multiset extension of the ordering on terms), I-literals (by ignoring the
negation symbol) and to I-clauses (by multiset extension).

Proofs are constructed by using the ordered resolution calculus [18,13,2] for the
non equational case and the superposition calculus in the equational case [1,14].
In addition to the inference rules these calculi use redundancy elimination rules
to prune the search space. The following definition [1] formalises the notions of
redundancy and saturation:

Definition 4 (Redundancy and saturation). An I-clause C is said to be
redundant w.r.t. a set of I-clauses S if for every ground instance Cσ of C,
there exist n clauses D1, . . . , Dn ∈ S and n ground substitutions θ1, . . . , θn such
that Dθi ≺ Cσ and {Diθi | i ∈ [1..n]} |= Cσ. A set S is saturated (w.r.t. a
given set of inference rules) iff every I-clause that is deducible from S (using the
considered rules) is redundant w.r.t. S.
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As well known, this definition covers the subsumption and elimination of tauto-
logy rules.

The calculi are parameterised as usual by a selection function sel mapping
every I-clause C to a set of selected literals in C, such that either sel(C) contains
a negative literal or sel(C) contains all maximal (w.r.t. �) positive literals in
sel(C). We also assume that sel(C) is compatible with =I i.e. if C =I D then
sel(C) =I sel(D) and that Lσ ∈ sel(Cσ)⇒ L ∈ sel(C), for every substitution σ.

2 Non Equational Case

In this section, we consider only clauses and I-clauses not containing the equality
predicate≈. The following definition extends the ordered resolution calculus used
in the context of non equational clauses to I-clauses. If A, B are two atoms,
mgu(A, B) denotes the set of most general unifiers of A and B.

Definition 5 (Ordered resolution calculus). The ordered resolution calcu-
lus (OR) is defined by the two following inference rules:

Ordered resolution
C ∨A D ∨ ¬B

(C ∨D)σ

where σ ∈ mgu(A, B), Aσ and ¬Bσ are selected in (C ∨ A)σ and (D ∨ ¬B)σ
respectively.

Ordered factorisation
C ∨A ∨B

(C ∨B)σ

where σ ∈ mgu(A, B) and Bσ is selected in (C ∨A ∨B)σ.

The definition almost coincides with the usual one (see for example [13]) except
that the condition σ = mgu(A, B) is replaced by σ ∈ mgu(A, B) (since unifica-
tion of I-terms is not unitary, mgu(A, B) is no longer unique). It is well-known
that OR is refutationally complete when applied on standard clauses.

The following lemma relates the saturatedness of a set of I-clauses SI to that
of the underlying set of N-instances.

Lemma 1. Let SI be a set of I-clauses and let S be the set of all N-instances
of SI . If SI is saturated under OR then so is S.

Proof. Suppose that SI is saturated under OR. Let C be a clause derived from
S. We show that C is redundant w.r.t. S. We distinguish two cases:

– If C is derived from some clauses D = D′ ∨ A and E = E′ ∨ ¬B by ordered
resolutionwhereD′σ andE′σ are selected inDσ andEσ respectively, thenC =
(D′∨E′)σ with σ = mgu(A, B). By definition, there exist I-clauses DI and EI

in SI such that D and E are respectively instances of DI and EI . DI and EI are
of the form D′

I∨AI and E′
I∨¬BI , where there exist N-grounding substitutions

θD, θE s.t. D′
IθD =I D′, E′

IθE =I E′, AIθD =I A and BIθE =I B.
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Let θ = θDθE . By definition, since DI and EI are variable-disjoint,
we have AIθ =I A and BIθ =I B, hence AI and BI are unifiable:
AIθσ =I BIθσ. Since θσ is a unifier of AI and BI , there exist an m.g.u.
σI ∈ mgu(AI , BI) and a substitution τ s.t. θσ = σIτ . Since Aσ ∈ sel(Dσ)
and ¬Bσ ∈ sel(Eσ) we have AIσI ∈ sel(DIσI) and ¬BIσI ∈ sel(EIσI) (sel
is closed by substitution and compatible with =I).

Therefore, the ordered resolution rule can be applied between DI and EI

on the literals AI and ¬BI yielding an I-clause of the form CI = (D′
I∨E′

I)σI .
We have C = CIτ . Since SI is saturated, CI is redundant w.r.t. SI .

Consequently, C is also redundant (since any ground instance of C is also
a ground instance of CI). But then, since by definition, S and SI have the
same ground instances, C is also redundant w.r.t. S.

– The proof is similar if C is derived by factorisation.

Theorem 1 states the refutational completeness of OR.

Theorem 1 (OR refutation completeness). Every unsatisfiable set of I-
clauses that is saturated w.r.t. OR contains the empty clause.

Proof. Let SI be a saturated (w.r.t. OR) unsatisfiable set. Then S the set of all
SI N-instances is unsatisfiable. By Lemma 1, S is saturated. Since OR is (re-
futationally) complete when applied on standard clauses, S contains the empty
clause �. Thus by definition SI contains � (no other I-clause has as instance �).

3 Equational Case

Equality can of course be handled by adding the equality axioms, but this tech-
nique is not efficient. In practice, it is preferable to consider the equality predi-
cate as a part of the language syntax and to use dedicated calculi handling for
instance the substitution of equals by equals at deep positions in the clauses.
The most restrictive and successful version of these calculi is superposition [1].
We now extend this calculus to I-clauses. As usual, we assume in this section
that equality is the only predicate symbol (atoms of the form p(t1, . . . , tn) are
replaced by p(t1, . . . , tn) ≈ true).

Definition 6 (Superposition calculus). The superposition calculus (SC) is
defined by the following inference rules:

Superposition (S)

Q ∨ (l ≈ r) D ∨ (w[t]p 	
 u)
(Q ∨D ∨ (w[r]p 	
 u))σ

where 	
∈ {≈, �≈}, σ ∈ mgu(l, t), lσ � rσ, wσ � uσ, (l ≈ r)σ, (w 	
 u)σ are
selected in (Q ∨ l ≈ r)σ and (D ∨ w 	
 u)σ respectively, and t is not a variable.

Equality resolution (ER)
Q ∨ (l �≈ r)

Qσ

where σ ∈ mgu(l, r) and (l �≈ r)σ is selected in (Q ∨ l �≈ r)σ.
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Equality factoring (EF )

Q ∨ (t ≈ s) ∨ (l ≈ r)
(Q ∨ (s �≈ r) ∨ (l ≈ r))σ

where σ ∈ mgu(l, t), lσ � rσ, tσ � sσ and (t ≈ s)σ is selected in (Q∨ l ≈ r∨t ≈
s)σ.

Again, the only difference with the usual case is the non unicity of the m.g.u.
SC coincides with the usual superposition calculus when the considered clauses
contain no N -terms.

Uncompleteness of SC
The superposition calculus is not refutationally complete when applied on I-
clauses. The following example (already given in [5]) illustrates this assertion:

Example 3 ⎧⎪⎪⎨
⎪⎪⎩

(1) p(f(a, �)N .b)
(2) ¬p(c)
(3) f(a, b) ≈ d
(4) f(a, d) ≈ c

This set of I-clauses is clearly unsatisfiable since instantiating N by 2 gives
f(a, f(a, b)) and then replacing successively f(a, b) by d and f(a, d) by c leads
to the contradiction p(c) and ¬p(c). However, we cannot derive the empty clause
with the previous rules. We only have one possible unification: f(a, �)N .b and
f(a, b) with the substitution σ = {N → 1}. The superposition rule generates the
clause p(d) from (1) and (3). d is unifiable neither with f(a, b) nor with f(a, d).
No superposition is then possible and proof search ends without deriving the
empty clause (a saturated set is obtained).

Restoring Completeness

The problem in Example 3, where superposition involves a subterm in the hole
path (the base term), is that when we unify f(a, �)M .b with its instance f(a, b),
the N -term structure is “lost”. The idea then is to change the superposition rule
to preserve this structure. A closer investigation reveals that incompleteness
occurs only when superposition is applied on a subterm in the path leading to
the hole of an N -term (including the base term). Thus in the new calculus that
we propose, resolution and factorisation rules are kept without changes, as well
as superposition involving subterms not occurring in the hole path.

Defining a complete superposition calculus for clauses containing I-terms is
not a straightforward task. The reason is that an I-clause denotes an infinite
sequence of standard clauses, with an unbounded number of distinct (non va-
riable) positions. For instance, the N-instances of p(f(�)N .a) contain the po-
sitions Λ, 1, 1.1, 1.1.1, . . . , 1. 1. . . . .1︸ ︷︷ ︸

N times

. . . , although Pos(p(f(�)N .a)) contains only
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{Λ, 1, 1.2}. In principle, the superposition rule has to be applied at each of these
positions, which would make the calculus infinitary (i.e. one could deduce in-
finitely many I-clauses by one step of application of the inference rules, which
makes the calculus very difficult to handle in practice). This makes an important
difference with the usual case: although a first-order clause also represents an
infinite number of ground clauses (with an unbounded number of positions), it is
well-known that applying the superposition rule inside variables is useless, thus
actually the rule can be restricted to the positions occurring in the first-order
term. This is not the case here and Example 3 shows that restricting to the
positions occurring in the I-terms is not sufficient.

We now show how to overcome this problem. The idea is that, thanks to the
expressive power of the I-terms, all these consequences may actually be encoded
into a single I-clause.

We define H-superposition3 rule as follows.
H-superposition (HS)

Q ∨ (l ≈ r) D ∨ (w[t[�]Mp .s]o 	
 u)
(Q ∨D ∨ (w[tN .t[r]q ]o 	
 u))σMσ

where 	
∈ {≈, �≈}, q is a non empty prefix of p (with possibly p = q), o ∈ Pos(w)
and:

– N, N ′ are two distinct arithmetic variables not occurring in the premises.
– σM = {M → N + N ′ + 1}.
– σ ∈ mgu(t[tN

′
.s]�|qσM , l).

IS denotes the calculus defined by the above rules: H-superposition, superposi-
tion, equality resolution, equality factoring. Before proving the completeness of
the calculus, we give some examples. For the sake of clarity, we distinguish two
cases.

– Assume first that q = p. In this case the N -term tM .s is unified with an
I-term l and the solution substitution will instantiate M to some natural
number m ∈ N. tm.s unifies with l, thus can be replaced by the term r in
the right-hand side of the equation. But actually, if we consider the set of
N-instances of tM .s, the replacement of tm.s does not need to be performed
only at the root level in the term tM .s. For the sake of completeness, it
must occur also in t[tm[s]p]p and in t[t[tm[s]p]p]p and so on for all possible
instantiations of M (greater or equal than m). Using standard superposition
will discard all the other possible unifications except for the case where M
is instantiated to m (unifying tm.s and l). With H-superposition however,
we will consider all these possibilities: tm.s is unified with l and the N -term
structure is preserved by introducing a new (fresh) variable N (encoding the
number of unfoldings of the term tM .s before we reach the position on which
the replacement is performed). Roughly speaking, M is decomposed into two
integer variables: M = N +1+N ′. The term t[�]Mp .s can then be represented

3 H stands for “Hole”.
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as t[�]Np .t1.t[�]N ′
p .s. The new base term t[�]N ′

p .s is unified with l and the new
iterated part (with exponent N) allows us to keep the N -term structure.
Applying these considerations to the previous (unsatisfiable) example we
can derive the empty clause:

(1) p(f(a, �)M .b) ≈ true
(2) p(c) �≈ true
(3) f(a, b) ≈ d
(4) f(a, d) ≈ c
(5) p(f(a, �)N .f(a, d)) ≈ true HS (3),(1) σ={M→N+N ′+1}{N ′→0}
(6) p(c) ≈ true S (4),(5) σ={N→0}
(7) true �≈ true S (6),(2)

(8) � EIR (7)

– If p �= q then l is unified with a subterm of t[�]Mp .s occurring along the induc-
tive path. In this case no unification is possible without unfolding. Again,
after unfolding, considering unification directly without decomposing the va-
riable M leads as in the previous case to “loose” the N -term structure. There
is however a difference, namely the subterm concerned with the unification
can occur in any (non empty) position along the hole path. This is why we
consider in our rule all (not empty) prefixes of the hole position. For instance
consider the following example:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) p(f(a, g(�))M .b) ≈ true
(2) p(c) �≈ true
(3) f(a, e) ≈ d
(4) f(a, g(d)) ≈ c
(5) g(b) = e

Again this is an unsatisfiable set but no (standard) superposition rule can be
found to be applied: No unification is possible among left hand side terms.
Using our rules however allows us to overcome this problem:

(6) p(f(a, g(�))N .f(a, e)) = true HS (5),(1) σ={M→N+N ′+1}{N ′→0}
(7) p(f(a, g(�))N .d) = true S (3),(6)

(8) p(c) = true S (4),(7) σ={N→1}
(9) true �≈ true S (8),(2)

(10) � ER (9)

We now show the refutational completeness of IS. It deserves to be noted that
without using the redundancy criterion in Definition 4, it can be very hard to
establish completeness. For instance, consider the set SI = {p(f(a, �)n.c), a ≈ b}.
Using SC on S, the set of all SI ground instances, we can derive the clause
p(f(b, f(a, c))) for example. With IS however, we can derive only p(f(b, �)n.c).
Thus, arguments used in proof of Lemma 1 cannot be used directly. The clause
p(f(b, f(a, c))) however is redundant w.r.t the set {p(f(b, �)n.c), a ≈ b}. Hence,
using redundancy elimination, allows one to discard this kind of clauses and to
establish completeness.
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We start by proving an essential lemma which relates the subterms occurring
in an I-term t to the ones occurring in an N-instance of t.

Lemma 2. Let tI be an I-term. Let t = tIσ ↓ be an N-instance of tI . If s is a
subterm of t then one of the following conditions holds:

1. tI contains a term sI s.t. sIσ ↓= s.
2. tI contains an N -term uN .v and there exists m < Nσ s.t. s occurs in

u[um.v]�σ ↓, at a position that is a non empty prefix of the hole position
in u.

Proof. The proof is by induction on the term tI . By definition, if s = t then
Condition 1 holds. Otherwise, since t cannot be a variable, tI is not a variable.
If tI is of the form f(t1I , . . . , t

n
I ), then s must occur in a term tiIσ ↓ for i ∈ [1..n].

By the induction hypothesis, one of the conditions 1 or 2 must hold for tiI , thus
also for tI since tI contains tiI . The proof is similar if tI is of the form uN .v and
s occur in vσ ↓ or in uσ ↓. If tI = uN .v and s occurs neither in uσ ↓ nor in
vσ ↓, then s must occur in tIσ ↓ along the position pNσ, where p denotes the
position of the hole � in u. If the position of s in tIσ ↓ is empty, then Condition
1 holds, by definition (since s = tIσ ↓). Otherwise, s occurs at a position of the
form pk.q where q is a non empty prefix of p and k < Nσ. In this case, s occurs
in u[uNσ−1−k.v]�σ ↓ hence Condition 2 is satisfied.

The second lemma states that replacing a subterm occurring in an I-term can
be simulated by several replacements in the underlying N-instances.

Lemma 3. Let tI , sI be two I-terms and let p ∈ Pos(tI). Let σ be an N-
grounding substitution. Let t′I = tI [sI ]p, t = tIσ ↓, s = sIσ ↓ and t′ = t′Iσ ↓.
Let uI be the subterm occurring at position p in tI and let u = uIσ ↓. t can be
obtained from t′ by replacing some occurrences of s by u.

Proof. The proof is by induction on tI . We distinguish several cases according
to the position p and to the form of tI . If p = Λ, we have by definition tI = uI ,
t = u and t′ = s. Thus the proof is immediate. If p = i.q and tI is of the form
f(t1I , . . . , t

n
I ), then t′I = f(t1I , . . . , t

i
I [sI ]q, . . . , tnI ). By the induction hypothesis,

tiIσ ↓ is obtained from tiI [sI ]qσ ↓ by replacing some occurrences of s by u, thus
the same holds for t = f(t1Iσ ↓, . . . , tnI σ ↓) and t′ = t′I = f(t1Iσ ↓, . . . , tiI [sI ]qσ ↓
, . . . , tnI σ ↓).

Now assume that tI is of the form vN .w. If p = 2.q where q is a position
in w then the proof is similar to the previous one. Otherwise, p = 1.q where
q is a position in v (notice that by definition of Pos(tI), v|q cannot contain
the hole). Let r = v[sI ]q. We have t′I = rN .w, tIσ ↓= v[. . . [v[wσ ↓]�] . . .]� and
t′Iσ ↓= r[. . . [r[wσ ↓]�] . . .]�. By the induction hypothesis (applied on a subterm
of v containing the term at position q but not containing the hole), r is obtained
from v by replacing some occurrences of s by u, thus the same holds for t and t′

(by repeating these replacements for each occurrence of v and r).

Lemma 4. Let SI be a set of I-clauses and S the set of all N-instances of SI .
If SI is saturated under IS then S is saturated under SC.
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Proof. Suppose that SI is saturated under IS. Let C be a clause derived from
S (with SC). We show that C is redundant w.r.t. S. We distinguish all possible
cases:

– C is derived by superposition. There exist two clauses Q = Q′ ∨ (l ≈ r),
D = D′ ∨ (w[t]q 	
 u) s.t. C = (Q′ ∨D′ ∨ (w[r]q 	
 u))σ where σ = mgu(l, t).
By definition, there exist I-clauses QI and DI in SI such that Q and D
are N-instances of QI and DI respectively. Thus there exist four I-terms
lI , rI , wI , uI , two I-clauses Q′

I and D′
I and two substitutions θQ, θD s.t.

lIθQ =I l, rIθQ =I r, Q′
IθQ = Q′, wIθD =I w[t]q , uIθD =I u.

We denote by θ the substitution θDθQ (we assume that D and Q share no
variables). We distinguish two cases:
1. wI contains a subterm tI , at a position p ∈ Pos(wI), s.t. tIθ =I t. By

definition of the superposition rule, t cannot be a variable (superposition
is not allowed on variables). Since t is an N-instance of tI , tI cannot
be a variable. Moreover, p ∈ Pos(wI) and tI is unifiable with lI , with
unifier θσ. By definition, there exists an m.g.u. σI ∈ mgu(tI , lI) and a
substitution τ s.t. θσ = σIτ . Furthermore, since lθσ �� rθσ and since �
is closed under substitution, we must have lIσI �� rIσI (and similarly for
the other ordering and selection restrictions in the application conditions
of the superposition rule). Hence, the superposition rule is applicable
between QI and DI yielding an I-clause CI = (Q′

I∨D′
I∨wI [rI ]p 	
 uI)σI .

Consider the clause CIτ . Since σIτ = θσ, we have CIτ = (Q′
I ∨ D′

I ∨
wI [rI ]p 	
 uI)θσ =I (Q′σ∨D′σ∨wI [rI ]pθσ 	
 uσ). Notice that this clause
is not =I -equivalent to C in general. Indeed, the replacement of tI by rI

in wI may create several copies of this term, after unfolding the different
contexts in which it occurs, whereas in w, only one instance of this term
is replaced. By Lemma 3, wIσIτ ↓ can be obtained from wI [rI ]pσIτ ↓
by replacing some occurrences of lσ by rσ. Thus the same holds for
w[r]qσ = wIσIτ and C can be obtained from CIτ ↓ by replacing some
occurrences of rσ by lσ. This immediately implies that C is redundant
w.r.t. {CIτ, Q}. Since SI is saturated, CI must be redundant w.r.t. SI ,
hence C is redundant w.r.t. SI . But since SI and S have the same ground
instances, C is also redundant w.r.t. S.

2. Otherwise, by Lemma 2, wI contains (at some position o) an N -term
sM

I .v such that t =I sI [sm
I .v]�|pθ, where p is a (non empty) prefix of

the position of the hole in sI and m < Mσ. Let N, N ′ be two fresh
integer variables and let σM = {M → N + N ′ + 1} (following the no-
tations of HS rule). θ is extended to N, N ′ as follows: N ′θ = m and
Nθ = Mθ − 1 −N ′θ (thus Mθ = Nθ + N ′θ + 1). By the previous rela-
tions we have t =I sI [sN ′

I .v]�|pθ. Thus sI [sN ′
I .v]�|p and lI have an m.g.u.

σI that is more general than θσ, i.e. there exists τ such that θσ = σIτ . By
the same reasoning than for the previous case, we show that the ordering
restrictions in the application conditions of the superposition rule hold.
Thus the H-superposition rule can be applied between QI and DI yiel-
ding an I-clause CI = (Q′

I ∨D′
I ∨ (wI [sN

I .sI [rI ]p]o 	
 uI))σMσI . Since
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lIσI = sI [sN ′
I .v]�|pσI , we have (sN+N ′+1

I .v)σI =I (sN
I .s1

I .s
N ′
I .v)σI =I

(sN
I .sI)σI [lIσI ]p. By Lemma 3, wI [sN

I .sI [rI ]p]oσIτ ↓ can be obtai-
ned from wIσIτ ↓ by several replacements of (sN+N ′+1

I .v)σIτ ↓ by
(sN

I .sI [rI ]p)σIτ ↓. Thus C is redundant w.r.t. CIτ ∪ SI . Since SI is sa-
turated, CI is actually redundant w.r.t. SI hence C is redundant w.r.t.
SI (hence to S).

– C is derived by equality resolution. The proof is similar to the one for the
resolution rule (see Lemma 1).

– C is derived by equality factoring. The proof is similar to that of the previous
case.

Theorem 2 (IS refutation completeness). Every saturated (w.r.t. IS) un-
satisfiable set of I-clauses contains the empty clause.

Proof. The proof is similar to that of Theorem 1.

4 Conclusion

The present work is a natural continuation of [5], in which we described the
theorem prover dei, an extension of the well-known E-prover [21] devoted to
handle I-terms. The present paper focuses on completeness issues. It shows that
the resolution calculus (with ordering restrictions and selection functions) is
refutationally complete when applied on clauses containing I-terms (in the non
equational case). However, this property is not fulfilled by the superposition
calculus (in the equational case). We show that this problem can be fixed by
adding a new inference rule into the calculus. Detailed completeness proofs are
provided (soundness is of course straightforward). Our work is, to the best of
our knowledge, the first attempt to propose refutationally complete calculus for
such languages.

Future work includes the implementation of this calculus and the evaluation of
its practical performances. The extension of the usual reduction orderings to I-
terms also deserves to be investigated. Comparision with the works on metaterms
[12] and on deduction modulo [11] will also be considered.
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Abstract. General purpose theorem provers provide sophisticated proof
methods, but lack some of the advanced structuring mechanisms found
in specification languages. This paper builds on previous work extending
the theorem prover Isabelle with such mechanisms. A way to build the
quotient type over a given base type and an equivalence relation on it,
and a generalised notion of folding over quotiented types is given as a
formalised high-level step called a design tactic. The core of this paper
are four axiomatic theories capturing the design tactic. The applicability
is demonstrated by derivations of implementations for finite multisets
and finite sets from lists in Isabelle.

1 Introduction

Formal development of correct systems requires considerable design and proof
effort in order to establish that an implementation meets the required specifi-
cation. General purpose theorem provers provide powerful proof methods, but
often lack the advanced structuring and design concepts found in specification
languages, such as design tactics [20]. A design tactic represents formalised de-
velopment knowledge. It is an abstract development pattern proven correct once
and for all, saving proof effort when applying it and guiding the development
process. If theorem provers can be extended with similar concepts without loss of
consistency, the development process can be structured within the prover. This
paper is a step in this direction. Building on previous work [2] where an approach
to the extension of the theorem prover Isabelle [15] with theory morphisms has
been described, the contributions of this paper are the representation of the
well-known type quotienting construction and its extension with a generalised
notion of folding over the quotiented type as a design tactic. Two applications
of the tactic are presented, demonstrating the viability of our approach.

The paper is structured as follows: we first give a brief overview of Isabelle
and theory morphisms to keep the paper self-contained. Sect. 3 describes the
four theories which form the design tactic, giving more motivation for it and
sketching the theoretical background. Further, Sect. 4 shows how the design
tactic can be applied in order to derive implementations of finite multisets and
finite sets. Finally, Sect. 5 contains conclusions and sketches future work.
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2 Isabelle and Theory Morphisms

Isabelle is a logical framework and LCF-style theorem prover, where the meta-
level inference system implements an intuitionistic fragment of the higher order
logic extended with Hindley-Milner polymorphism and type classes.

Isabelle, and other LCF provers, structure developments in hierarchical theo-
ries. This goes well with the predominant development paradigm of conservative
extension, which assures consistency when developing large theories from a small
set of axioms (such as HOL or ZF). A different approach, going back to Burstall
and Goguen [3], is to use theory morphisms as a structuring device. Instead of
one large theory we have lots of little theories [8], related by theory morphisms.
Structuring operations are given by colimits of diagrams of morphisms [9], of
which (disjoint and non-disjoint) unions and parametrisation are special cases.
Early systems in this spirit include IMPS [8] and Clear [4], later systems the OBJ
family with its most recent offspring CafeOBJ [6], and the SpecWare system [21].
An extension of the early Edinburgh LCF with theory morphisms was described
in [18], but never integrated into later LCF systems. A recent development in
this vein is a calculus for reasoning in such structured developments [13], as used
in the CASL specification languages [14].

The morphism extension package for Isabelle [2] provides implementations of
key concepts such as signature and theory morphisms, and seamlessly extends
Isabelle’s top-level language Isar with the commands necessary to express these
notions; we will use these commands in the following. A crucial property is that
any theory morphism τ : T −→ T ′ from a theory T to a theory T ′ firstly
induces the homomorphic extension στ of the underlying signature morphism
στ to propositions, and secondly the extension τ of τ to proof terms. This allows
the translation of any theorem φ in T to a theorem στ (φ) in T ′, translating the
proof π of φ to τ (π) and replaying it in T ′. It is syntactically represented in Isar
by the command translate-thm φ along τ .1

Furthermore, the approach gives a simple notion of a parameterised theory,
extending the theory hierarchy: a theory B is parameterised by P (denoted
〈P ,B〉) if an inclusion morphism ι : P ↪→ B exists or, in other words, B imports
P ; an instantiation of 〈P ,B〉 is given by a theory morphism τ : P −→ I as shown
by the following diagram

P ⊂ � B

I

τ

�
⊂ � I�

τ �

�
(1)

1 The current release 0.9.1 for Isabelle2009-1 can be downloaded at http://www.
informatik.uni-bremen.de/~cxl/awe and all theories presented here can be found
in the directory Examples/Quotients.

http://www.informatik.uni-bremen.de/~cxl/awe
http://www.informatik.uni-bremen.de/~cxl/awe
Examples/Quotients
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where the extended theory I� and the dashed morphisms are automatically de-
rived. In other words, the resulting theory I� is the pushout of the diagram, and
is computed via the Isar command instantiate-theory B by-thymorph τ .

3 Folding Quotient Types Using Hylomorphisms

A design tactic can be encoded as a parametrisation 〈P ,B〉, where P contains
formal parameters and their axiomatic specifications, and B contains deductions
in form of definitions and theorems using the formal parameters and axioms
imported from P . In this section, we introduce a design tactic which performs
two constructions: firstly, it constructs the quotient of a type with respect to
an equivalence relation, and secondly, it gives a generic mechanism to define
‘folding’ functions on the quotient type. The tactic has two parameters: the type
with the equivalence relation, and the parameters of the fold. Thus, the design
tactic comprises two parametrisations in the sense of (1) above:

QuotientType-Param ⊂� QuotientType ⊂� Fold-Param ⊂ � Fold (2)

The first parametrisation 〈QuotientType-Param, QuotientType〉 comprises the ba-
sic machinery regarding equivalence classes, class operations, quotient types
and congruences. The core of the design tactic is the second parametrisation
〈Fold-Param, Fold〉, describing how to construct hylomorphisms on quotient types,
and will be explicitly described in Sect. 3.5 and Sect. 3.6.

3.1 Quotient Types

Roughly, any equivalence relation � on a type τ induces a partition on Univ(τ),
i.e. on the set containing all elements of this type. Elements of this partition
are predicates and correspond to the �-equivalence classes. This is a well-known
technique. Indeed, the quotient type is a powerful construction, and implemented
in many theorem provers, either axiomatically [16] (for NuPRL) or as a derived
construction. The former always bears the danger of inconsistencies (see [10] for
a model construction; [5] presents an implementation for Coq); the latter is made
easier by the presence of a choice operator and extensionality, allowing quotient
types in HOL [12] or Isabelle [19,17]. However, the main novelty here is the way
in which a fold operator is defined on the quotient types as a hylomorphism in
the abstract setting of parameterised theories, combining the advantages of the
little-theories approach with a construction motivated from type theory.

3.2 The Theory QuotientType-Param

This theory declares an unary type constructor T and a relation � as a poly-
morphic constant, together with axioms specifying � as an equivalence relation:
typedecl α T
const _ � _ :: (α T× α T) set
axioms (E1) : s � s

(E2) : s � t =⇒ t � s
(E3) : s � t =⇒ t � u =⇒ s � u
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3.3 The Theory QuotientType

We are interested in the partition of Univ(αT): Q� ≡ {{v|u � v}|u ∈ Univ(αT)},
and introduce the new unary quotient type constructor T/�
typedef α T/� = Q�
Further, we define the class operations class-of� :: α T ⇒ α T/� (as usually
denoted by [_]�) and repr� :: α T/� ⇒ α T, such that the following familiar
properties, essential for equivalence relations and quotients, can be proven:

([s]� = [t]�) = (s � t) (3)
[repr� (q)]� = q (4)
repr� ([s]�) � s (5)

The crucial observation is that the entire development from now on relies only
on these three basic properties of the class operations, i.e. we essentially abstract
over the particular representation of quotients.

A function f :: α T ⇒ β is called a �-congruence if it respects � [17]; this is
expressed by the predicate congruence� :: (α T ⇒ β) set defined as

congruence� ≡ {f | ∀ s t. ¬ s � t ∨ f s = f t}

Moreover, the higher order function _ T/� :: (α T ⇒ β) ⇒ (α T/� ⇒ β), which
factors any �-congruence f :: α T ⇒ β through the projection class-of� , i.e.
such that

f ∈ congruence� =⇒ f T/� [s]� = f s (6)

holds, is defined as f T/� ≡ f ◦repr� . The direction⇐= in (6) can be then shown
as well, emphasising that the congruence condition is also necessary. Further, let
g :: α T ⇒ α T be a function. The instantiation of f by class-of� ◦ g in (6) gives

(class-of� ◦ g) ∈ congruence� =⇒ (class-of� ◦ g) T/� [s]� = [g s]� (7)

All these derived properties are well-known, but note that the complete devel-
opment here is parameterised over the type constructor T and the relation �,
and thus can be re-used in a variety of situations.

3.4 Defining Functions over Quotient Types

In order to define a function f on the quotient type α T/�, we have to show
that f agrees with the equivalence relation �. Equation (6) gives us sufficient
conditions for this. The following theory development makes use of this for a
design tactic which axiomatises sufficient conditions to conveniently define linear
recursive functions, or hylomorphisms [7], on the quotient type. We first motivate
the development by sketching the special case of lists, and then generalise to
arbitrary data types.



38 M. Bortin and C. Lüth

In Isabelle, the parameterised type α list of lists of elements of type α is freely
generated by the constructors Nil :: α list and the infix operator # :: α⇒ α list ⇒
α list. Suppose we would like to prove

(∀ys) xs ∼ ys (f, e) ∈ C

foldr f e xs = foldr f e ys

by structural induction on the list xs, where ∼ is an equivalence relation on
lists, and f and e are additionally restricted by some (usually non-trivial) side
condition C. The crucial point would be the induction step, where based on the
assumption x#xs ∼ ys we need to find some list zs satisfying xs ∼ zs and,
moreover allowing us to conclude f x (foldr f e zs) = foldr f e ys . In many cases
such zs can be computed by a function Transform x xs ys constructing a list
which satisfies the desired properties under the premises x#xs ∼ ys and (f, e) ∈
C; thus, we can say the proof is parameterised over the function Transform.

Hylomorphisms are particular kinds of recursive functions which can be ex-
pressed in terms of (co-)algebras for the same type. Consider a parameterised
type α Σ, together with an action Σ on functions (normally called map; the
map on types and functions together form a functor). Then an algebra for Σ is
a type γ and a function A :: γ Σ ⇒ γ, a coalgebra is a type β and a function
B :: β ⇒ β Σ, and the solution of the hylo-equation [7]

φ = A ◦Σφ ◦B (8)

is a function φ :: β ⇒ γ, called the hylomorphism from B to A. Hylomorphisms
correspond to linear recursive functions and can be compiled efficiently; hence,
deriving them via a general design tactic is relevant.

In the case of lists, the list signature is represented by the type (α, β) Σ list
def=

1+α×β (as usual, × denotes the product and + the disjoint sum of two types),
together with the map function Σ list :: (β ⇒ γ) ⇒ (α, β) Σ list ⇒ (α, γ) Σ list
defined by the equations

Σ list f (ιL ∗) = ιL ∗
Σ list f (ιR (u, x)) = ιR (u, f x)

The type α list from above, together with the function in list :: (α, α list) Σ list ⇒
α list, defined in the obvious way sending ιL ∗ to Nil and ιR (u, x) to u#x, forms
the initial Σ list-algebra. Its inverse is the function out list, which forms a Σ list-
coalgebra, i.e. we have the right-inverse property: in list ◦ out list = id list. The
initiality of in list means that any Σ list-algebra A :: (α, β) Σ list ⇒ β determines
the unique algebra homomorphism φA : α list ⇒ β, i.e.

φA ◦ in list = A ◦Σ listφA (9)

holds. If we compose both sides of (9) with out list on the right and use the right-
inverse property of out list, we obtain the fact that φA satisfies the hylo-equation
(8), i.e. is the hylomorphism from out list to A.
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The unique function φA can be defined using foldr. That foldr determines
hylomorphisms from out list to any Σ list-algebra is an important observation,
because in the following we want to explore the congruence properties of hylo-
morphisms. Taking also into account that many structures can be implemented
via quotients over lists, we obtain the possibility to extend foldr to foldr list/∼

and to calculate with foldr list/∼ based on the numerous properties of foldr.

3.5 The Theory Fold-Param

We will now generalise the previous development to an arbitrary type constructor
Σ, and formalise it as a parameterised theory. The parameter theory Fold-Param
is constructed in four steps; the body theory Fold follows in Sect. 3.6.

(1) Representing signatures. First of all, a signature is represented by a declara-
tion of a binary type constructorΣ, together with the two polymorphic constants
representing the action of Σ on relations and mappings, respectively.
typedecl (α, β) Σ
consts ΣRel :: (β × γ) set ⇒ ((α, β) Σ× (α, γ) Σ) set

ΣMap :: (β ⇒ γ)⇒ (α, β) Σ ⇒ (α, γ) Σ

Using this, the action ΣPred :: β set ⇒ ((α, β) Σ) set of Σ on predicates over β
can be defined by ΣPred ≡ monoP ◦ ΣRel ◦ monoE , where monoE :: α set ⇒
(α × α) set is the embedding of predicates into relations in form of mono-
types, and monoP :: (α × α) set ⇒ α set the corresponding projection. Fur-
thermore, using ΣRel we define the extension �Σ of our formal parameter �
from QuotientType-Param simply by �Σ ≡ ΣRel �.

Finally, the rule connecting the actions of Σ is given by axiom (F1), where
R\.S is defined to be {x |∀a. (x, a) �∈ R ∨ (x, a) ∈ S}, i.e. it is a sort of factoring
of the relation R through the relation S:

axiom (F1) : ΣPred(� \. ker f) ⊆ �Σ \. ker (ΣMap f)

(2) The parameter coalgebra. Next, we specify the constant cT representing a
Σ-coalgebra with the domain αT satisfying property (F2), where P :: (αT) set is
an arbitrary predicate and f−1〈S〉 denotes the preimage of a function f under
a predicate S, i.e. {x | f x ∈ S}:
const cT :: α T ⇒ (α, α T) Σ
axiom (F2) : c−1

T 〈ΣPred P 〉 ⊆ P =⇒ Univ(α T) ⊆ P

The axiom (F2) is a slightly adapted characterisation of so-called Σ-reductive
coalgebras, which can be found in [7]. It essentially ensures that the sequence
s0, s1 ◦ s0, s2 ◦ s1 ◦ s0, . . . with s0 = cT and sn+1 = ΣMap sn, is not infinite
and reaches some fixed point sk ◦ . . . ◦ s0 with k ∈ N. Thus, it also captures an
induction principle.

(3) The hylomorphism parameter. The higher-order constant Fold is required to
return a hylomorphism Fold A from cT to A for any A ∈ FoldCond:
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const Fold :: ((α, β) Σ ⇒ β) ⇒ α T ⇒ β
axiom (F3) : A ∈ FoldCond =⇒ Fold A = A ◦ ΣMap(Fold A) ◦ cT
The predicate FoldCond on Σ-algebras is completely unspecified at this point,
and therefore can be arbitrarily instantiated whenever the tactic is applied.

(4) Transformation function. Finally, we require a transformation function sat-
isfying the properties (F4) and (F5), where TransformCond is another Σ-algebra
predicate for which merely (F6) is required:

const Transform :: (α, α T) Σ ⇒ (α, α T) Σ ⇒ (α, α T) Σ
axioms (F4) : s � t =⇒ cT s �Σ Transform (cT s) (cT t)

(F5) : A ∈ TransformCond =⇒ s � t =⇒
A (ΣMap (Fold A) (Transform (cT s) (cT t))) = Fold A t

(F6) : TransformCond ⊆ FoldCond
Transform can be considered as a function transforming its second argument
w.r.t. its first argument. The axiom (F5) essentially requires that if both ar-
guments comprise images of two elements, which are in the � relation, then
Transform respects the kernel of A ◦ΣMap (Fold A).

3.6 The Theory Fold

The operations and conditions, specified in Fold-Param are sufficient in order to
derive the congruence property for Fold A for any Σ-algebra A, satisfying the
transformation condition TransformCond. To this end, the theory Fold proves
the following central property:

Theorem 1. A ∈ TransformCond =⇒ Fold A ∈ congruence�

Proof. The condition Fold A ∈ congruence� can be equivalently restated using
the factoring operator by Univ(αT) ⊆ � \.ker(Fold A), such that we can proceed
by induction using the reductivity axiom (F2). Further, by monotonicity of the
preimage operator and the axiom (F1) we have then to show

c−1
T 〈�Σ \. ker (ΣMap (Fold A))〉 ⊆ � \. ker (Fold A)

Unfolding the definitions of the factoring and preimage operators, this yields the
ultimate goal: Fold A s = Fold A t for any s, t of type α T, such that s � t and

(∀ u)
cT s �Σ u

ΣMap (Fold A) (cT s) = ΣMap (Fold A) u
(10)

hold. This can be shown as follows

Fold A s = A (ΣMap(Fold A) (cT s))
= A (ΣMap (Fold A) (Transform (cT s) (cT t)))
= Fold A t

where the first step follows by axiom (F3), the second by instantiating u in (10)
with Transform (cT s) (cT t) provided by axiom (F4), and the third by axioms
(F5), (F6) and the premise s � t. "#
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QuotientType-Param ⊂ � QuotientType ⊂� Fold-Param ⊂ � Fold

T1

τ1

�
⊂ � T �

1

τ �
1

�
⊂ � T2

τ2

�
⊂ � T �

2

τ �
2

�
� τ

TSpec

Fig. 1. Applying the fold quotient design tactic

As the immediate consequence for the function Fold T/� :: ((α, β) Σ ⇒ β) ⇒
α T/� ⇒ β, we can finally derive from (6) via Theorem 1:

A ∈ TransformCond

Fold T/� A [s]� = Fold A s
(11)

Taking for instance foldr for Fold and a list algebra A, interpreting # by a
function f satisfying TransformCond, this means that foldr list/� A [x#xs ]�
can always be replaced by foldr A (x#xs) = f x (foldr A xs), and thus by
f x (foldr list/� A [xs]�).

4 Applying the Design Tactic

In this section, the presented design tactic for quotients and hylomorphism ex-
tension will be applied in order to derive implementations of bags and finite sets
from lists. Recall the structure of the design tactic from (2); to apply it to a
given type, we proceed in the following steps (see Fig. 1):

(i) we first provide a theory T1 and a morphism τ1 : QuotientType-Param −→
T1 which instantiates the type constructor and equivalence relation;

(ii) by instantiating QuotientType, we obtain T �
1 with the quotient type;

(iii) we now extend T �
1 into a theory T2, such that we can provide a theory

morphism τ2 : Fold-Param −→ T2 instantiating the parameters for Fold;
(iv) by instantiating Fold, we obtain the theory T �

2 with the desired function
over the quotient type and the instantiated of the fold equation (11);

(v) finally, the correctness w.r.t. some axiomatic specification TSpec is estab-
lished by constructing a theory morphism τ : TSpec −→ T �

2 .

Note that in Isabelle the theories T1, T �
1 , T2, T �

2 are constructed as intermediate
development steps of a single theory extending some base theory (in the following
examples this will be the theory List).

4.1 Specifying Finite Sets and Bags

The rôle of theory TSpec from step (v) above will be played by the axiomatic
theories FiniteSet-Spec and Bag-Spec.
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The Theory FiniteSet-Spec. It specifies finite sets parameterised over the type of
its elements as follows. The unary type constructor finite-set is declared, together
with the following polymorphic operations on it satisfying axioms (S1)– (S6):

typedecl α finite-set
consts {#} :: α finite-set - empty set

_ � _ :: α ⇒ α finite-set ⇒ bool - membership test
_⊕_ :: α ⇒ α finite-set ⇒ α finite-set - insertion
_%_ :: α finite-set ⇒ α ⇒ α finite-set - deletion
foldSet :: (α ⇒ β ⇒ β)⇒ β ⇒ α finite-set ⇒ β - fold

axioms (S1) : ¬ a � {#}
(S2) : (a � b ⊕ S) = (a = b ∨ a � S)
(S3) : (a � S % b) = (a �= b ∧ a � S)
(S4) : (∀a. (a � S) = (a � T )) =⇒ S = T
(S5) : foldSet f e {#} = e
(S6) : f ∈ LeftCommuting =⇒ ¬ x � S =⇒

foldSet f e (x ⊕ S) = f x (foldSet f e S)
where LeftCommuting ≡ {f | ∀ a b c. f a (f b c) = f b (f a c)}. In this
specification only the last axiom ultimately eliminates arbitrary sets from the
class of possible implementations of FiniteSet-Spec. In other words, without the
last axiom the theory morphism, sending α finite-set to α set as well as {#} to ∅,
� to ∈ and so on, is constructible.

On the other hand, foldSet allows us to define all the basic operations on finite
sets, e.g. the cardinality of any finite set S is given by foldSet (λxN.N +1) 0 S,
and the union S # T by foldSet (λ x Y. x⊕ Y ) S T . Moreover, we can define the
translation function toPred :: α finite-set ⇒ α set by foldSet (λ x P. {x} ∪ P ) ∅,
such that for any S :: α finite-set and x :: α, x � S holds iff x ∈ toPred S does.
Further, we can prove that the translation is also injective, and so the range of
toPred, which is of type (α set)set, defines exactly the subset of finite predicates,
isomorphic to α finite-set.

The Theory Bag-Spec. It specifies finite multisets in the similar manner. Here,
we introduce an unary type constructor α bag together with basically the same
operations on it, except that the membership function has the type α ⇒ αbag ⇒
nat and thus counts the occurrences of an element in a bag. For the insertion
operation this means that we have the rules a � a ⊕ M = (a � M) + 1 and
a �= b =⇒ a � b ⊕ M = a � M . The folding function is now consequently called
foldBag, and has to satisfy the rule

f ∈ LeftCommuting =⇒ foldBag f e (x⊕M) = f x (foldBag f e M)

Similarly to finite sets, cardinality, union, intersection etc. are definable via
foldBag in Bag-Spec.

4.2 Implementing Bags

The implementation of bags is on the type of α list from the Isabelle/HOL li-
braries. The central rôle will be played by the function count :: α ⇒ α list ⇒ nat,
defined recursively as
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count a Nil = 0

count a (b#xs) =
{

1 + count xs if a = b
count xs otherwise

Now, let xs ∼ ys ≡ (∀a. count a xs = count a ys), be the equivalence rela-
tion on α list comprising the intersection of kernels of the family of functions
〈count a〉a∈Univ(α). We can then define the following theory morphism (step (i)
above)

thymorph bag1 : QuotientType-Param −→ Bag
type-map : [α T 	→ α list]
op-map : [� 	→ ∼]

and instantiate the parameterised theory 〈QuotientType-Param, QuotientType〉
instantiate-theory QuotientType by-thymorph bag1
renames : [ T/� 	→ bag]

This extends the theory Bag (step (ii) above), introducing the new quotient
type constructor list/∼ as bag, together with the corresponding congruence
predicate congruence∼ :: (α list ⇒ β) set and extension function _ bag, cor-
responding to step (ii) above. This step also gives us the theory morphism
bag1� : QuotientType −→ Bag, i.e. τ �

1 in Fig. 1. Using this morphism, the cor-
responding instances of the properties (3) – (7) can now be translated to Bag
along bag1� via the translate-thm command. It is then routine to prove

1. count x ∈ congruence∼ for any x (this is in fact trivial);
2. (class-of∼ ◦ (x # _)) ∈ congruence∼ for any x;
3. (class-of∼ ◦ (remove1 x)) ∈ congruence∼ for any x, where remove1 x xs

removes the first occurrence of x from the list xs, if any;

such that the extensions of these functions from α list to α bag give us the imple-
mentations for the operations _�_, _⊕_, and _%_ from Bag-Spec, respectively;
for example the insertion x⊕M is implemented by (class-of∼ ◦ (x # _)) bag

M .
It remains to give an implementation for foldBag.

Deriving foldBag. In order to proceed with step (iii), i.e. to instantiate the
parameterised theory 〈Fold-Param, Fold〉, we need to supply actual parameters for
the formal parameters in Fold-Param. This corresponds to construction of τ2 in
Fig. 1. First of all, the formal type parameter (α, β) Σ, representing a signature,
is mapped to 1 + α × β (the list signature). Then the parameter constants are
mapped as follows:

1. the action of 1 + α× β on relations is defined in the standard way by

ΣRel R ≡ {ιL ∗, ιL ∗} ∪ {(ιR(u, x), ιR(u, y)) | (x, y) ∈ R, u ∈ Univ(α)}

where ΣMap is exactly the same as Σ list, defined in Sect. 3.5;
2. the coalgebra parameter cT is instantiated by the coalgebra out list;
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3. the hylomorphism is essentially the foldr-function:

Fold A ≡ foldr (λv x. A(ιR(v, x))) A(ιL∗)
FoldCond ≡ Univ(1 + α× β ⇒ β) i.e. the same as True

4. Finally, the transformation and the transformation condition are defined by

Transform u v ≡

⎧⎨
⎩

ιR(x, remove1 x (y#ys)) if u = ιR(x, xs)
and v = ιR(y, ys)

v otherwise

TransformCond ≡ {A | ∀ x y z. Â(x, Â(y, z)) = Â(y, Â(x, z))}

where Â
def= A ◦ ιR. That is, TransformCond specifies the subset of algebras

having the left-commutative property, i.e. LeftCommuting specified above.

We now need to show the proof obligations arising as instances of axioms (F1) –
(F6). For instance, the reductivity property (F2) is proven by structural induc-
tion on lists, and the proof of (F5) (which is the most complicated) is based on
an auxiliary lemma showing

A ∈ TransformCond x mem xs

Fold A (x#(remove1 x xs)) = Fold A xs

where mem denotes the membership test on lists and which can be shown by in-
duction as well. All other proofs mainly comprise unfolding of definitions and case
distinctions. Ultimately, we obtain the theory morphism bag2 : Fold-Param −→
Bag and the instantiation

instantiate-theory Fold by-thymorph bag2

which gives us the theory morphism bag2� : Fold −→ Bag. Then, the central
congruence property (11) for Fold bag can be translated from Fold along bag2�.
Based on this, we define the function foldBag:

foldBag f e ≡ Fold bag A where A x
def=
{

f u v if x = ιR(u, v)
e otherwise

Altogether, we complete the development with a step constructing a theory
morphism from Bag-Spec to the current development, corresponding to step (v)
above. The emerging proof obligations, i.e. instances of bag axioms, can be now
simply shown by unfolding the definitions (e.g. foldBag), and applying the con-
gruence properties (e.g. (11)).

4.3 Implementing Finite Sets

Although the implementation of finite sets is considerably more complicated, it
follows the same principle. The following development makes an intermediate
step deriving the type of distinct lists, where any element occurs at most once.
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Distinct lists. The theory DList of distinct lists starts with the definition of the
function Norm :: α list ⇒ α list by
Norm Nil = Nil
Norm (x#xs) = x#(removeAll x (Norm xs))

where removeAll x xs removes all occurrences of x from the list xs. Let ∼Norm

abbreviate ker Norm, i.e. the kernel relation of Norm. Then, the instantiation
of QuotientType by the theory morphism, sending α T to α list and � to ∼Norm,
introduces the quotient type constructor dlist (using renaming T/� 	→ dlist), the
corresponding extension function _ dlist :: (α list ⇒ β) ⇒ α dlist ⇒ β and the
congruence predicate congruence∼Norm

:: (α list ⇒ β) set. It is now not difficult
to show that for any x :: α the functions

1. x mem _,
2. class-of∼Norm

◦ (x # _), and
3. class-of∼Norm

◦ (removeAll x)

are in congruence∼Norm
. Let memD, putD and getD denote their respective ex-

tensions to α dlist. Moreover, let emptyD ≡ [Nil]∼Norm
. The definition of Norm

provides also another useful property:

xs �= Nil =⇒ xs ∼Norm ys =⇒ head xs = head ys

where head is a function satisfying the equation head (x#xs) = x. So, we can
extend head to headD :: α dlist ⇒ α such that the proposition

xs �= Nil =⇒ headD [xs]∼Norm
= head xs

is derivable. Based on this, we further have the following central decompositional
property of distinct lists:

ds �= emptyD =⇒ ds = putD h (getD h ds) where h
def= headD ds

To derive a fold-hylomorphism for distinct lists from foldr, an application of the
〈Fold-Param, Fold〉 parametrisation is unnecessary. Instead, we can directly define

foldD f e ≡ (foldr f e ◦ Norm) list/∼Norm

and subsequently show

foldD f e emptyD = e (12)

¬ x memD ds
foldD f e (putD x ds) = f x (foldD f e ds)

(13)

f ∈ LeftCommuting x memD ds
foldD f e (putD x (getD x ds)) = foldD f e ds

(14)

These are the essential properties for the implementation of finite sets below.
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The theory FiniteSet. The theory FiniteSet imports DList and defines the equiv-
alence relation ∼ on distinct lists by ds ∼ ds ′ ≡ (∀x.xmemD ds = xmemD ds ′).
Thus, the theory morphism fset1 : QuotientType-Param −→ FiniteSet, sending α T
to α dlist and � to ∼, provides the instantiation:
instantiate-theory QuotientType by-thymorph fset1
renames : [ T/� 	→ finite-set]

which gives us the new quotient type constructor dlist/∼ as finite-set together
with the extension function _ finite-set :: (α dlist ⇒ β)⇒ α finite-set ⇒ β and the
congruence predicate congruence∼ :: (αdlist ⇒ β)set. Regarding the specification
of finite sets, we can then prove the ∼-congruence properties of memD, putD,
and getD:

1. x memD _ ∈ congruence∼ for any x;
2. (class-of∼ ◦ (putD x)) ∈ congruence∼ for any x;
3. (class-of∼ ◦ (getD x)) ∈ congruence∼ for any x;

such that (memD) finite-set, (putD) finite-set, and (getD) finite-set give us the im-
plementations for the operations _ � _, _⊕_, and _ %_ from FiniteSet-Spec,
respectively.

We now turn to a derivation of foldSet from foldD using the parametrisation
〈Fold-Param, Fold〉. The formal type parameter (α, β) Σ is mapped to 1 + α × β.
The parameter constants are mapped as follows:

1. Since the signature instantiation is the same as in Bag, the corresponding
actions on relations and mappings do not change;

2. The coalgebra parameter cT is instantiated by the function cdlist, defined by

cdlist ds ≡
{

ιL ∗ if ds = emptyD

ιR(headD ds , getD (headD ds) ds) otherwise

3. The hylomorphism Fold is given by the foldD-function:

Fold A ≡ foldD (λx v. A(ιR(x, v))) A(ιL ∗)

4. The transformation is defined by

Transform u v ≡
{

ιR(x, getD x (putD y ds ′)) if u = ιR(x, ds), v = ιR(y, ds ′)
v otherwise

5. Both conditions FoldCond and TransformCond are defined as in Bag.

The proofs of the emerging proof obligations are also similar to those for bags in
Sect. 4.2. The proof of (F5) is again the most complicated and uses the properties
(12), (13), and (14). Finally, the subsequent instantiation of the theory Fold gives
the corresponding ∼-instance of the congruence property (11) for the extended
function Fold finite-set: for any A ∈ TransformCond, i.e. for any algebra having
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the left commutative property, the identity Fold finite-set A [s]∼ = Fold A s
holds. Thus, we define the function foldSet:

foldSet f e ≡ Fold finite-set A where A x
def=
{

f u v if x = ιR(u, v)
e otherwise

As the final step, the development is completed by constructing a theory mor-
phism from the specification FiniteSet-Spec to the current development. The re-
sulting proof obligations are now straightforward.

5 Conclusions

This paper has presented the formalisation of an abstract design tactic in Is-
abelle, which provides a way to define hylomorphisms on a quotient type. The
design tactic has two parameter theories: first, the type and equivalence relation
for the quotient, and second a functor representing a signature, a coalgebra and
a transformation function, which providing the setting for a class of ‘extensible’
hylomorphisms, justified by Theorem 1. To apply the design tactic, concrete
instantiations of the parameter theories have to be provided by giving instan-
tiating theories and a morphism mapping the parameter theories. In our case,
we have shown how to apply the design tactic for a systematical derivation of
correct implementations of finite multisets and finite sets.

The formalisation presented here has used Isabelle; however, the development
knowledge represented in the design tactic could be formalised in other theorem
provers too, since it formalises conditions for folding over a quotiented type on
an abstract level, and the constructions used in the formalisation can be found
in most other theorem provers as well.

For future work, the tactic might be also further generalised: for example, we
can capitalise on the fact that the type constructorΣ and two actions ΣRel , ΣMap

on relations and mappings form a relator [1], pointing to a possible formalisation
already at the level of allegories, increasing the application area.

Further, [11] considers behavioural equivalence on algebras over the same sig-
nature w.r.t. a set OBS of observable types. From this point of view, the theories
Bag-Spec and FiniteSet-Spec are data abstractions, since both specify classes of al-
gebras, each closed under the behavioural equivalence where OBSbags

def= {nat}
and OBSsets

def= {bool}. Then the quotient tactic allows us to construct from
algebras with lists as carrier, Bag-Spec and FiniteSet-Spec instances where the ex-
tensionality principle (axiom (S4)) additionally holds, introducing new quotient
type. Future work includes examining further connections to the constructions
in [11], like abstract and behaviour.

Acknowledgements. This research was supported by the German Research Foun-
dation (DFG) under grants LU-707/2-1 and 2-2, and by the German Federal
Ministry of Education and Research (BMBF) under grant 01 IM F02 A.



48 M. Bortin and C. Lüth

References

1. Bird, R., de Moor, O.: Algebra of Programing. Prentice Hall, Englewood Cliffs
(1997)

2. Bortin, M., Johnsen, E.B., Lüth, C.: Structured formal development in Isabelle.
Nordic Journal of Computing 13, 2–21 (2006)

3. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In:
Proc. Fifth International Joint Conference on Artificial Intelligence IJCAI 1977,
pp. 1045–1058 (1977)

4. Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification language.
In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980)

5. Chicli, L., Pottier, L., Simpson, C.: Mathematical quotients and quotient types
in Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp.
95–107. Springer, Heidelberg (2003)

6. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific, Singapore (1998)
7. Doornbos, H., Backhouse, R.C.: Induction and recursion on datatypes. In: Möller,

B. (ed.) MPC 1995. LNCS, vol. 947, pp. 242–256. Springer, Heidelberg (1995)
8. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: Kapur, D. (ed.)

CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)
9. Goguen, J.A.: A categorical manifesto. Tech. Rep. PRG-72, Oxford University

Computing Laboratory, Programming Research Group, Oxford, England (1989)
10. Hofmann, M.: A simple model for quotient types. In: Dezani-Ciancaglini, M.,

Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 216–234. Springer, Heidelberg
(1995)

11. Hofmann, M., Sannella, D.: On behavioural abstraction and behavioural satisfac-
tion in higher-order logic. Theoretical Computer Science 167, 3–45 (1996)

12. Homeier, P.V.: A design structure for higher order quotients. In: Hurd, J., Melham,
T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005)

13. Mossakowski, T., Autexier, S., Hutter, D.: Development graphs — proof man-
agement for structured specifications. Journal of Logic and Algebraic Program-
ming 67(1-2), 114–145 (2006)

14. Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg
(2004)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

16. Nogin, A.: Quotient types: A modular approach. In: Carreño, V.A., Muñoz, C.A.,
Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 263–280. Springer, Heidelberg
(2002)

17. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput.
Log. 7(4), 658–675 (2006)

18. Sannella, D., Burstall, R.: Structured theories in LCF. In: Protasi, M., Ausiello,
G. (eds.) CAAP 1983. LNCS, vol. 159, pp. 377–391. Springer, Heidelberg (1983)

19. Slotosch, O.: Higher order quotients and their implementation in Isabelle/HOL.
In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 291–306.
Springer, Heidelberg (1997)

20. Smith, D.R., Lowry, M.R.: Algorithm theories and design tactics. Science of Com-
puter Programming 14, 305–321 (1990)

21. Srinivas, Y.V., Jullig, R.: Specware: Formal support for composing software. In:
Möller, B. (ed.) MPC 1995. LNCS, vol. 947, Springer, Heidelberg (1995)



Instantiation of SMT Problems Modulo
Integers�

Mnacho Echenim and Nicolas Peltier

University of Grenoble (LIG, Grenoble INP/CNRS)
Mnacho.Echenim@imag.fr, Nicolas.Peltier@imag.fr

Abstract. Many decision procedures for SMT problems rely more or
less implicitly on an instantiation of the axioms defining the theories
under consideration, and differ by making use of the additional properties
of each theory, in order to increase efficiency. We present a new technique
for devising complete instantiation schemes on SMT problems over a
combination of linear arithmetic with another theory T . The method
consists in first instantiating the arithmetic part of the formula, and
then getting rid of the remaining variables in the problem by using an
instantiation strategy which is complete for T . We provide examples
evidencing that not only is this technique generic (in the sense that it
applies to a wide range of theories) but it is also efficient, even compared
to state-of-the-art instantiation schemes for specific theories.

1 Introduction

Research in the domain of Satisfiability Modulo Theories focuses on the design
of decision procedures capable of testing the satisfiability of ground formulas
modulo a given background theory. Such satisfiability checks may arise as a sub-
problem during the task of proving a more general formula in, e.g., software
verification or interactive theorem proving. The background theories under con-
sideration may define usual mathematical objects such as linear arithmetic, or
data structures such as arrays or lists. The tools that implement these decision
procedures are named SMT solvers, and they are designed to be as efficient
as possible. This efficiency is obtained thanks to a sophisticated combination
of state-of-the-art techniques derived from SAT solving, and ad-hoc procedures
designed to handle each specific theory (see, e.g., [7] for a survey).

The lack of genericity of these theory solvers may become an issue, as addi-
tional theories, either new ones or extensions of former ones, are defined. For
instance, a programmer may wish to add new axioms to the usual theory of
arrays to specify, e.g., dimensions, sortedness, or definition domains. A solution
to this lack of genericity was investigated in [4,3], where a first-order theorem
prover is used to solve SMT problems. Once it is showed that the theorem prover
terminates on SMT problems for a given theory, it can be used as an SMT solver

� This work has been partly funded by the project ASAP of the French Agence Na-
tionale de la Recherche (ANR-09-BLAN-0407-01).
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for that theory, and no additional implementation is required. Also, under cer-
tain conditions such as variable-inactivity (see, e.g., [3,8]), the theorem prover
can also be used as an SMT solver for a combination of theories at no further
expense. However, first-order theorem provers are not capable of efficiently han-
dling the potentially large boolean structures of SMT problems. A solution to
this problem was proposed in [9], with an approach consisting of decomposing
an SMT problem in such a way that the theorem prover does not need to handle
its boolean part. But even with this technique, theorem provers do not seem
capable to compete with state-of-the-art SMT solvers.

A new approach to handling the genericity issue consists in devising a general
instantiation scheme for SMT problems. The principle of this approach is to in-
stantiate the axioms of the theories so that it is only necessary to feed a ground
formula to the SMT solver. The problem is then to find a way to instantiate
the axioms as little as possible so that the size of the resulting formula does not
blow up, and still retain completeness: the instantiated set of clauses must be
satisfiable if and only if the original set is. Such an approach was investigated
in [11], and an instantiation scheme was devised along with a syntactic char-
acterization of theories for which it is refutationally complete. One theory that
cannot be handled by this approach is the theory of linear arithmetic, which
is infinitely axiomatized. Yet, this theory frequently appears in SMT problems,
such as the problems on arrays with integer indices. Handling linear arithmetic
is also a challenge in first-order theorem proving, and several systems have been
designed to handle the arithmetic parts of the formulas in an efficient way (see,
e.g., [15] or the calculus of [2], which derives from [6]).

In this paper, we devise an instantiation scheme for theories containing par-
ticular integer constraints. This scheme, together with that of [11], permits to
test the satisfiability of an SMT problem over a combination of linear arithmetic
with another theory, by feeding a ground formula to an SMT solver. We show
the potential efficiency of this scheme by applying it to problems in the theory
of arrays with integer indices, and we show that it can generate sets of ground
formulas that are much smaller than the ones generated by the instantiation rule
of [10]. To emphasize the genericity of our approach, we also use it to integrate
arithmetic constraints into a decidable subclass of many-sorted logic.

The paper is organized as follows. After recalling basic definitions from au-
tomated theorem proving, we introduce the notion of Z-clauses, which are a
restriction of the abstracted clauses of [6,2], along with the inference system in-
troduced in [2]. We define a way of instantiating integer variables in particular
formulas, and show how to determine a set of terms large enough to ensure com-
pleteness of the instantiation technique on an SMT problem. We then prove that
under some conditions which are fulfilled by the scheme of [11], completeness is
retained after using the scheme to instantiate the remaining variables in the SMT
problems. We conclude by showing how this combined scheme can be applied
on concrete problems. Due to a lack of space, we did not include the proofs in
this paper; the detailed proofs can all be found in a technical report available
at http://membres-lig.imag.fr/peltier/inst_la.pdf. The information on
the instantiation method for non integer variables is available in [11].

http://membres-lig.imag.fr/peltier/inst_la.pdf
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2 Preliminaries

We employ a many-sorted framework. Let S denote a set of sorts, containing in
particular a symbol Z denoting integers. Every variable is mapped to a unique
sort in S and every function symbol f is mapped to a unique profile of the
form s1 × . . . × sn → s, where s1, . . . , sn, s ∈ S (possibly with n = 0); the
sort s is the range of the function f . Terms are built with the usual conditions
of well-sortedness. The signature contains in particular the symbols 0,−, + of
respective profiles→ Z, Z → Z, Z×Z → Z. The terms si(0), t+s(0), t+(−s(0))
and t + (−s) are abbreviated by i, s(t), p(t) and t− s respectively. Terms (resp.
variables) of sort Z are called integer terms (resp. integer variables). A term is
ground if it contains no variable. We assume that there exists at least one ground
term of each sort and that for every function symbol of profile s1× . . .×sn → Z,
we have si = Z for all i ∈ [1..n]: integer terms may only have integer subterms.

An atom is either of the form t & s where t, s are two terms of sort Z, or of the
form t � s where t, s are terms of the same sort. An atom1 t 	
 s is arithmetic
if t, s are of sort Z. A clause is an expression of the form Γ → Δ, where Γ, Δ
are sequences of non-arithmetic atoms. A substitution σ is a function mapping
every variable x to a term xσ of the same sort. Substitution σ is ground if for
every variable x in the domain of σ, xσ is ground. For any expression E (term,
atom, sequence of atoms or clause), V(E) is the set of variables occurring in
E and Eσ denotes the expression obtained by replacing in E every variable x
in the domain of σ by the term xσ. Interpretations are defined as usual. A Z-
interpretation I is an interpretation such that the domain of sort Z is the set of
integers, and that the interpretation of the symbols 0,−, + is defined as follows:
I(0) = 0, I(t + s) = I(t) + I(s) and I(−t) = −I(t). A ground atom A is satisfied
by an interpretation I if either A is of the form t & s and I(t) ≤ I(s) or A is of
the form t � s and I(t) = I(s). A clause Γ → Δ is satisfied by an interpretation
I if for every ground substitution σ, either there exists an atom A ∈ Γσ that
is not satisfied by I, or there exists an atom A ∈ Δσ that is satisfied by I.
A set of clauses S is satisfied by I if I satisfies every clause in S. As usual,
we write I |= S if S is satisfied by I and S1 |= S2 if every interpretation that
satisfies S1 also satisfies S2. S1 and S2 are equivalent if S1 |= S2 and S2 |= S1.
We note I |=Z S if I is a Z-interpretation that satisfies S; S1 |=Z S2 if every
Z-interpretation satisfying S1 also satisfies S2, and S1, S2 are Z-equivalent if
S1 |=Z S2 and S2 |=Z S1.

We assume the standard notions of positions in terms, atoms and clauses. As
usual, given two terms t and s, t|p is the subterm occurring at position p in t
and t[s]p denotes the term obtained from t by replacing the subterm at position
p by s. Given an expression E (term, atom, clause...), a position p is a variable
position in E if E|p is a variable.

The flattening operation on a set of clauses S consists in replacing non con-
stant ground terms t occurring in S by fresh constants c, and adding to S the
unit clause t � c. We refer the reader to, e.g., [4] for more details.

1 The symbol �� represents either � or �.
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3 Z-Clauses

We introduce the class of Z-clauses. These are restricted versions of the
abstracted clauses of [6,2], as we impose that the arithmetic constraints be rep-
resented by atoms, and not literals. We add this restriction for the sake of read-
ability; in fact it incurs no loss of generality: for example, a literal ¬(a & b)
can be replaced by the Z-equivalent arithmetic atom b & p(a). We present some
terminology from [2], adapted to our setting.

Definition 1. A Z-clause is an expression of the form Λ ‖Γ → Δ, where:

– Λ is a sequence of arithmetic atoms (the arithmetic part of Λ ‖Γ → Δ);
– Γ → Δ is a clause such that every integer term occurring in Γ or in Δ is a

variable2.

The property that in a Z-clause Λ ‖Γ → Δ, every integer term occurring in
Γ or in Δ is a variable is simple to ensure. If this is not the case, i.e., if Γ, Δ
contain an integer term t that is not a variable, then it suffices to replace every
occurrence of t with a fresh integer variable u, and add the equation u � t to
Λ. This way every set of clauses can be transformed into an equivalent set of
Z-clauses.

The notions of position, replacement, etc. extend straightforwardly to se-
quences of atoms and Z-clauses, taking them as terms with 3 arguments. The
notion of satisfiability is extended to Z-clauses as follows:

Definition 2. A substitution σ is a solution of a sequence of arithmetic atoms
Λ in an interpretation I if σ maps the variables occurring in Λ to integers such
that I |= Λσ. A Z-clause Λ ‖Γ → Δ is satisfied by an interpretation I if for
every solution σ of Λ, the clause (Γ → Δ)σ is satisfied by I.

Note that, although the signature may contain uninterpreted symbols of sort Z
(e.g. constant symbols that must be interpreted as integers), it is sufficient to
instantiate the integer variables by integers only.

Definition 3. Given a Z-clause C = Λ ‖Γ → Δ, an abstraction atom in C is
an atom of the form x � t which occurs in Λ. x � t is grounding if t is ground.
C is Z-closed if all its integer variables occur in grounding abstraction atoms
and closed if it is Z-closed and every variable occurring in C is of sort Z.

Intuitively, if C is Z-closed, this means that C would not contain any integer
variable, had integer terms not been abstracted out. We define an operation
permitting to add arithmetic atoms to a Z-clause:

Definition 4. Consider a Z-clause C = Λ ‖Γ → Δ and a set of arithmetic
atoms Λ′. We denote by [Λ′, C] the Z-clause Λ′, Λ ‖Γ → Δ.

An Inference System for Z-Clauses. We denote by H the inference system
of [2] on abstracted clauses, depicted in Figure 1. Reduction rules are also defined
in [2]; the only one that is useful in our context is the tautology deletion rule also
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Superposition left :
Λ1 ‖Γ1 → Δ1, l � r Λ2 ‖ s[l′] � t, Γ2 → Δ2

(Λ1, Λ2 ‖ s[r] � t, Γ1, Γ2 → Δ1, Δ2)σ
where σ is an mgu of l and l′, lσ �≺ rσ, sσ �≺ tσ, l′ is not a variable,
(l � r)σ is strictly maximal in (Γ1 → Δ1, l � r)σ and (s[l′] � t)σ is
strictly maximal in (s[l′] � t, Γ2 → Δ2)σ.

Superposition right :
Λ1 ‖Γ1 → Δ1, l � r Λ2 ‖Γ2 → Δ2, s[l′] � t

(Λ1, Λ2 ‖Γ1, Γ2 → Δ1, Δ2, s[r] � t)σ
where σ is an mgu of l and l′, lσ �≺ rσ, sσ �≺ tσ, l′ is not a variable,
(l � r)σ is strictly maximal in (Γ1 → Δ1, l � r)σ and (s[l′] � t)σ is
strictly maximal in Γ2 → Δ2, (s[l′] � t)σ.

Equality factoring :
Λ ‖Γ → Δ, l � r, l′ � r′

(Λ ‖Γ, r � r′ → Δ, l′ � r′)σ
where σ is an mgu of l and l′, lσ �≺ rσ, l′σ �≺ r′σ and (l � r)σ is maximal
in (Γ1 → Δ1, l � r, l′ � r′)σ.

Ordered factoring :
Λ ‖Γ → Δ, E1, E2

(Λ ‖Γ → Δ, E1)σ
where σ is an mgu of E1 and E2, and E1σ is maximal in (Γ → Δ, E1, E2)σ.

Equality resolution :
Λ ‖Γ, s � t → Δ

(Λ ‖Γ → Δ)σ
where σ is an mgu of s and t, and (s � t)σ is maximal in (Γ, s � t → Δ)σ.

Constraint refutation :
Λ1 ‖ → · · · Λn ‖ →

�
where Λ1 ‖ → ∧ · · · ∧ Λn ‖ → is inconsistent in Z.

As usual the system is parameterized by an ordering among terms, extended
into an ordering on atoms and clauses (see [5] for details). The rules are applied
modulo the AC properties of the sequences and the commutativity of �.

Tautology deletion :
Λ ‖Γ → Δ

,

if Γ → Δ is a tautology, or the existential closure of Λ is Z-unsatisfiable.

Fig. 1. The inference system H

depicted in Figure 1. We make the additional (and natural) assumption that the
ordering is such that all constants are smaller than all non-flat terms. In order
to obtain a refutational completeness result on this calculus, the authors of [6,2]
impose the condition of sufficient completeness on sets of clauses. Without this
condition, we have the following result, stating a weaker version of refutational
completeness for the calculus.

Theorem 1. Let S denote a Z-unsatisfiable set of Z-clauses. Then there exists
a Z-unsatisfiable set of clauses {Λi ‖ → | i ∈ N} such that for every i ∈ N,
Λi ‖ → can be deduced from S by applying the rules in H.

Note that this does not imply refutational completeness, since the set {Λi ‖ →|
i ∈ N} may be infinite (if this set is finite then the Constraint refutation rule
2 Recall that by definition a clause cannot contain arithmetic atoms.
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applies and generates �). For instance, the set of Z-clauses S = {x � a ‖ p(x)→
, x � s(y) ‖ p(x) → p(y), p(0), a < 0 ‖ →} is clearly unsatisfiable, and the
calculus generates an infinite number of clauses of the form sk(0) � a ‖ →, for
k ∈ N. It is actually simple to see that there is no refutationally complete calculus
for sets of Z-clauses, since we explicitly assume that Z is interpreted as the set of
integers. In our case however there are additional conditions on the arithmetic
constraints that ensure that only a finite set of Z-clauses of the form Λ ‖ → will
be generated. Thus, for the Z-clauses we consider, refutational completeness of
the calculus will hold, and it will always generate the empty clause starting from
an unsatisfiable set of Z-clauses. However, we do not intend to use this result to
test the satisfiability of the formulas. The reason is that – as explained in the
introduction – the superposition calculus is not well adapted to handle efficiently
very large propositional formulas. In this paper, we use the inference system H
only as a theoretical tool to show the existence of an instantiation scheme.

4 Instantiation of Inequality Formulas

Given an SMT problem over a combination of a given theory with the theory of
linear arithmetic, the inference system of [2] permits to separate the reasoning
on the theory itself from the reasoning on the arithmetic part of the formula. If
the input set of clauses is unsatisfiable, then the inference system will generate
a set of clauses of the form {Λ1 ‖ →, . . . , Λn ‖ →, . . .}, which is inconsistent in
Z. In this section, we investigate how to safely instantiate the Λi’s, under some
condition on the atoms they contain. We shall impose that each Λi be equivalent
to a formula of the following form:

Definition 5. An inequality formula is of the form φ :
∧m

i=1 si & ti, where for
all i = 1, . . . , m, si and ti are ground terms or variables.

If A is a set of terms, we use the notation A & x (resp. x & A) as a shorthand
for
∧

s∈A s & x (resp.
∧

s∈A x & s). We denote by Uφ
x the set of variables

Uφ
x = {y ∈ V(φ) | x & y occurs in φ}. We may thus rewrite the formula φ

as
∧

x∈V(φ)(A
φ
x & x ∧ x & Bφ

x ∧
∧

y∈Uφ
x

x & y) ∧ ψ, where the sets Aφ
x and Bφ

x

are ground for all x, and ψ only contains inequalities between ground terms.

Definition 6. For all x ∈ V(φ), we consider the sets B̄φ
x , defined as the smallest

sets satisfying B̄φ
x ⊇ Bφ

x ∪
⋃

y∈Uφ
x

B̄φ
y ∪{χ}, where χ is a special constant that

does not occur in φ.

Theorem 2. Given an inequality formula φ such that V(φ) = {x1, . . . , xn} con-
sider the two following formulas:

[∃x1 · · · ∃xn.φ] (α)(∨
s1∈B̄φ

x1
· · ·
∨

sn∈B̄φ
xn

φ{xi ← si | i = 1, . . . , n}
)

(β)

Let I denote a Z-interpretation of (α) and G denote a ground set containing all
ground terms occurring in φ. Then I |=Z (α) if and only if, for any extension J
of I to the constant χ, J |=Z

(∧
t∈G ¬(χ & t)

)
⇒ (β).
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In our case, the sets Bφ
xi

will not be known, since the clauses in which φ occurs
will not be generated explicitly (see Section 5 for details). Thus we need to use
an over-approximation of these sets:

Definition 7. A set of ground terms B is an upper bound of an inequality
formula φ if for all atoms x & t occurring in φ, t is an element of B. The set
B is an upper bound of a set of inequality formulas if it is an upper bound of
each formula.

It is clear that if B is an upper bound of an inequality formula, then Theorem
2 still holds when the variables in φ are instantiated by all the elements in
B*{χ} instead of just those in the B̄φ

x ’s. We define B-definitions which represent
grounding instantiations using abstraction atoms:

Definition 8. Given an inequality formula φ such that V(φ) = {x1, . . . , xm}
and a set of ground terms B, a B-definition of φ is a set (i.e. a conjunction) of
grounding abstraction atoms {xi � si | i = 1, . . . , m}, such that every si is in B.
We denote by ΘB [φ] the set of all B-definitions of φ.

We rephrase a direct consequence of Theorem 2 using B-definitions:

Corollary 1. Let {φ1, . . . , φn} denote a set of inequality formulas over the dis-
joint sets of variables {xi,1, . . . , xi,mi | i = 1 . . . , n}, let B denote an upper bound
of this set, and assume that

∨n
i=1 ∃xi,1 · · · ∃xi,mi . φi is valid in Z. If Gcontains

all ground terms occurring in the inequality formulas and B′ = B * {χ}, then

∧
t∈G

¬(χ & t) ⇒
n∨

i=1

⎛
⎝ ∨

Λ′
i∈ΘB′ [φi]

∃xi,1 · · · ∃xi,mi . φi ∧ Λ′
i

⎞
⎠ (γ),

is also valid in Z.

It is important to note that results similar to those of this section could have
been proved by considering the terms occurring in atoms of the form t & x,
instead of those of the form x & t, and considering lower bounds instead of
upper bounds. This should allow to choose, depending on the problem and which
sets are smaller, whether to instantiate variables using lower bounds or upper
bounds.

5 Properties of Inferences on Z-Clauses

Corollary 1 shows how to safely get rid of integer variables in a set of inequality
formulas, provided an upper bound of this set is known. The goal of this section
is first to show that given an initial set of Z-clauses S, such an upper bound
can be determined, regardless of the inequality formulas that can be generated
from S. Then we show that by instantiating the integer variables in S, it is still
possible to generate all necessary instances of the inequality formulas. Thus, S
and the corresponding instantiated set will be equisatisfiable.

We first define a generalization of the notion of an upper bound of an inequal-
ity formula (see Definition 7), to the case of Z-clauses.
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Definition 9. Given a Z-clause C = Λ ‖Γ → Δ and a set of ground terms B,
we write C � B if for all atoms x & t ∈ Λ,

– Λ contains (not necessarily distinct) grounding abstraction atoms of the form
xi � si, i = 1, . . . , n;

– there exist variable positions {p1, . . . , pn} such that variable xi occurs at
position pi, and t[s1]p1 . . . [sn]pn ∈ B.

Example 1. Let C = x � a, y � b, y � c, z & f(g(x, y), y) ‖ → h(x, y, z) � d and
B = {f(g(a, c), b)}. Then C � B.

Intuitively, for a Z-clause C = Λ ‖Γ → Δ, the set B is an upper bound of the
inequality atoms in Λ provided for all atoms x & t, the variables in t are replaced
by the correct terms. In order not to unnecessarily instantiate some of the
integer variables in a Z-clause, we distinguish those that appear in abstraction
atoms from those that appear in inequality atoms. It will only be necessary to
instantiate the latter variables.

Definition 10. Let C = Λ ‖Γ → Δ; the set of abstraction variables in C
Vabs(C) and the set of inequality variables in C Vineq(C) are defined as follows:
Vabs(C) = {x ∈ V(C) |Λ contains an abstraction atom x � t} and Vineq(C) =
{x ∈ V(C) | Λ contains an atom of the form x & t or t & x}

We may assume without loss of generality that all integer variables in a Z-clause
C are in Vabs(C) ∪ Vineq(C). If this is not the case, it suffices to add to the
arithmetic part of C the atom x & x.

We define the notion of a preconstrained Z-clause. If a preconstrained Z-clause
is of the form Λ ‖ →, then Λ will be equivalent to an inequality formula, and
this property is preserved by inferences.

Definition 11. A Z-clause C = Λ ‖Γ → Δ is preconstrained if every atom in
Λ that is not a grounding abstraction atom either has all its variables in Vabs(C),
or is of the form x & t or t & x, where t is either a variable itself, or has all its
variables in Vabs(C).

Example 2. x � a, y � b, f(x, y) � g(y), z & g(x) ‖ → h(x, y, z) � e is precon-
strained but x � a, y & g(y) ‖ → h(x, y, z) � e is not because y does not occur
in a grounding abstraction atom.

There remains to extend the notion of a B-definition to Z-clauses. Intuitively, a
B-definition of such a Z-clause represents a ground instantiation of the inequality
variables it contains.

Definition 12. Given a Z-clause C such that Vineq(C) = {x1, . . . , xm} and a
set of ground terms B, a B-definition of C is a set of grounding abstraction
atoms {xi � si | i = 1, . . . , m}, such that every si is in B. We denote by ΘB[C]
the set of all B-definitions of C. Given a set of Z-clauses S, we denote by SB

the set SB = {[Λ′, C] | C ∈ S ∧ Λ′ ∈ ΘB[C]}.
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We obtain the main result of this section:

Theorem 3. Suppose S is a set of Z-clauses and B is a set of ground terms
such that for every Z-clause of the form C = Λ ‖ → generated from S, C is
preconstrained and C �B. Let B′ = B∪{χ}, where χ does not occur in S. Then
there exists a set of ground terms G containing B and all ground terms of sort
Z in S such that S is Z-satisfiable if and only if SB′ ∪

⋃
t∈G{χ & t ‖ →} is

Z-satisfiable.

In particular, since we may assume all the integer variables occurring in S are
in a Vabs(C) ∪ Vineq(C) for some C ∈ S, every Z-clause occurring in SB′ can
be reduced to a Z-clause that is Z-closed, and SB′ ∪

⋃
t∈G{χ & t ‖ →} can be

reduced to a set of clauses containing no integer variable. Hence, Theorem 3
provides a way of getting rid of all integer variables in a formula.

The instantiated set SB′∪
⋃

t∈G{χ & t ‖ →} can further be reduced: since χ is
strictly greater than any ground term t occurring in S or in B, every atom of the
form χ & t or t & χ can be replaced by false and true respectively. Furthermore,
by construction χ only appears at the root level in the arithmetic terms. Thus
we can safely assume that χ does not occur in the arithmetic part of the Z-clause
in SB′ . This implies that the inequations χ & t ‖ → for t ∈ G are useless and
can be removed; thus, the resulting set does not depend on G.

6 Completeness of the Combined Instantiation Schemes

The aim of this section is to determine sufficient conditions guaranteeing that
once the integer variables have been instantiated, another instantiation scheme
can be applied to get rid of the remaining variables in the set of clauses under
consideration.

Let C denote a class of clause sets admitting an instantiation scheme, i.e., a
function γ that maps every clause set S ∈ C to a finite set of ground instances
of clauses in S, such that S is satisfiable if and only if γ(S) is satisfiable. If γ(S)
is finite, this implies that the satisfiability problem is decidable for C. Since γ
is generic, we cannot assume that it preserves Z-satisfiability. In order to apply
it in our setting, we need to make additional assumptions on the instantiation
scheme under consideration.

Definition 13. A term t is independent from a set of clauses S if for every
non-variable term s occurring in S, if t and s are unifiable, then t = s. An
instantiation scheme γ is admissible if:

1. It is is monotonic, i.e. S ⊆ S′ ⇒ γ(S) ⊆ γ(S′).
2. If S is a set of clauses and t, s are two terms independent from S then

γ(S ∪ {t � s}) = γ(S) ∪ {t � s}.

The first requirement is fairly intuitive, and is fulfilled by every instantiation pro-
cedure of our knowledge. The second one states that adding equalities between
particular terms should not influence the instantiation scheme. Generic instan-
tiation schemes such as those in [16,17,12] do not satisfy the second requirement;
however, it is fulfilled by the one of [11].
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From now on, we assume that γ denotes an admissible instantiation scheme.
We show how to extend γ to Z-closed sets of Z-clauses. Such Z-clauses are
obtained as the output of the scheme devised in the previous section.

Definition 14. A set of clauses S = {Λi ‖Ci | i ∈ [1..n]} where Λi is a
sequence of ground arithmetic atoms and Ci is a clause is γ-compatible if
S′ = {C1, . . . , Cn} ∈ C.

Theorem 4. Let S = {Λi ‖Ci | i ∈ [1..n]} denote a γ-compatible set of Z-
clauses. Let χ denote a constant not occurring in the arithmetic part of the
clauses in S or in the scope of a function of range Z in S, and consider a set G
of ground integer terms such that χ occurs in no term in G.

Then S∪
⋃

t∈G{χ & t ‖ →} is Z-satisfiable if and only if γ(S) is Z-satisfiable.

Summary. To summarize, starting from a set of Z-clauses S:

1. The scheme devised in Section 5 is applied to instantiate all integer variables
occurring in S. We obtain a Z-closed set of Z-clauses S′.

2. S′ is processed to get rid of all clauses containing arithmetic atoms of the
form χ & t, and to get rid of all atoms of the form t & χ in the remaining
clauses. We obtain a set of Z-clauses S′′.

3. Then we apply an admissible instantiation scheme (e.g., [11]) γ on the clausal
part of the Z-clauses in S′′ to instantiate all remaining variables. We obtain
a set of closed Z-clauses Sg.

4. Finally we feed an SMT-solver (that handles linear arithmetic) with Sg.

The previous results ensure that S and Sg are equisatisfiable, provided S′′ is
compatible with γ. This means that the procedure can be applied to test the
satisfiability of an SMT problem on the combination of linear arithmetic with,
e.g., any of the theories that the scheme of [11] is capable of handling, which
include the theories of arrays, records, or lists. Note that an efficient implemen-
tation of this scheme would not instantiate variables by χ in clauses or literals
that are afterwards deleted, but would directly apply the simplification.

Note also that simple optimizations can further be applied to reduce the size
of the instantiation set. For example, given a set of clauses S, there is no need to
keep in the instantiation set BS two distinct terms t and s such that S |=Z t � s.
Thus, it is useless to store in BS a constant a and a term p(s(a)); if S contains
a unit clause t � a, there is no need for BS to contain both t and a. Another
rather obvious improvement is to use several distinct sorts interpreted as integers.
Then the arithmetic variables need only to be instantiated by terms of the same
sort. Our results extend straightforwardly to such settings, but we chose not to
directly include these optimizations in our proofs for the sake of readability.

7 Applications

We now show two applications of our technique to solve satisfiability problems
involving integers.
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Arrays with Integer Indices. The theory of arrays with integer indices is
axiomatized by the following set of clauses, denoted by AZ:

‖ → select(store(x, z, v), z) � v (a1)
w & p(z) ‖ → select(store(x, z, v), w) � select(x, w) (a2)
s(z) & w ‖ → select(store(x, z, v), w) � select(x, w) (a3)

Instead of clauses (a2) and (a3), the standard axiomatization of the theory of
arrays contains w �� z ‖ → select(store(x, z, v), w) � select(x, w). In order
to be able to apply our scheme, we replaced atom w �� z by the disjunction
w & p(z) ∨ s(z) & w, which is equivalent in Z.

We consider SMT problems on integer-indexed arrays of a particular kind,
encoded by sets of clauses in which the only non-ground arithmetic atoms are
of the form x & t or t & x, and in which every term occurring in S with store
as a head symbol is ground. This leads to the following definition on Z-clauses:

Definition 15. An AZ-inequality problem is a set of Z-clauses AZ ∪S0 where:

– the only variables occurring in S0 are integer variables,
– all non-ground arithmetic atoms occurring in S0 that are not abstraction

literals are of the form x & t or t & x, where t is either a variable or a
ground term,

– every variable occurring in a term in C ∈ S0 whose head symbol is store

must occur in a grounding abstraction literal in C.

For every AZ-inequality problem S, we define the following set of ground terms,
which will be used throughout this section:

BS = {t ground | x & t or select(a, t) occurs in S}
∪ {t′ ground | store(a, u, e) � b and u � t′ occur in a same clause in S}
∪ {p(t′) ground | store(a, u, e) � b, u � t′ occur in a same clause in S}

The following lemma is a consequence of Theorem 3.

Lemma 1. Let B′
S = BS ∪ {χ}, let V denote the set of inequality variables

occurring in clauses in S, and let Ω denote the set of all substitutions of domain
V and codomain B′

S. Then AZ ∪ S0 and (AZ ∪ S0)Ω are equisatisfiable.

Since we assumed all integer variables in S are either abstraction variables or
inequality variables (by otherwise adding x & x to the necessary clauses), we
conclude that the clauses in S0Ω are all ground, and the clauses in AZΩ are of
the form:

‖ select(store(x, z, v), z) � v
s & p(z) ‖ select(store(x, z, v), s) � select(x, s)
s(z) & s ‖ select(store(x, z, v), s) � select(x, s),

where s is a ground term. This set of terms can be instantiated using the scheme
of [11]. Thus, if Ω′ denotes the set of substitutions constructed by the instanti-
ation scheme, then by Theorem 4, the sets S and SΩΩ′ are equisatisfiable. The
latter is ground, and its satisfiability can be tested by any SMT solver capable
of handling linear arithmetic and congruence closure.
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An Example. Consider the following sets:

E = {li & xi & ui ‖ → select(a, xi) � ei | i = 1, . . . , n},
F = {ui & p(li) ‖ → | i = 1, . . . , n},
G = {ui & p(li+1) ‖ → | i = 1, . . . , n− 1},

where the ui’s and lj ’s are constants. The Z-clauses in E state that array a is
constant between bounds li and ui, for i = 1, . . . , n; the Z-clauses in F state that
each interval has at least 1 element, and the Z-clauses in G state that all the
intervals have a nonempty intersection. Thus, the union of these sets entails that
a is constant between bounds l1 and un. Let b denote the array obtained from
a by writing element e1 at position un+1. If un+1 = s(un), then b is constant
between bounds l1 and s(un). Let

H = {x � un+1‖ → b � store(a, x, e1), ‖ → u′ � s(un)}
∪ {k & p(l1) ‖ → , un & p(k) ‖ → }
∪ {‖ select(b, k) � e1 →}, and

S0 = E ∪ F ∪G ∪H,

then AZ ∪ S0 is unsatisfiable. By applying the definition of BS from the previ-
ous section, we obtain BS = {u1, . . . , un, un+1, p(un+1), k}. In the first step, all
variables in E are instantiated with the elements of B′

S = BS ∪ {χ}, yielding3 a
ground set E′. The inequality variables in the axioms of AZ are also instantiated
with the elements of B′

S , yielding a set of clauses A. Then, in the second step, the
clauses in A are instantiated using the term store(a, un+1, e1), and we obtain a
set A′ containing clauses of the form

x � un+1 ‖ select(store(a, x, e1), x) � e1,
x � un+1, s & p(x) ‖ select(store(a, x, e1), s) � select(a, s),
x � un+1, s(x) & s ‖ select(store(a, x, e1), s) � select(a, s),

where s ∈ B′
S . Then an SMT solver is invoked on the ground set of clauses

A′ ∪ E′ ∪ F ∪ G ∪ H . The size of this set is to be compared with the one
obtained by the procedure of [10], clauses are instantiated using an index set
I = {li, ui | i = 1, . . . , n} ∪ {un+1, p(un+1), s(un+1), s(un), k}. There are twice
as many terms in this instantiation set. It is simple to check that our procedure
always generates less instances than the one of [10]. In fact, there are cases in
which our method is exponentially better. For example, for i = 1, . . . , n, let
Ai denote the atom select(a, xi) � ci, and let S = AZ ∪ S0, where S0 =
{i & x1, . . . , i & xn, j & y ‖A1, . . . , An → select(a, y) � e}. With this set,
our instantiation scheme generates only a unique clause, whereas the one in [10]
instantiates every xi with i and j, yielding 2n clauses.

Stratified Classes. To show the wide range of applicability of our results, we
provide another example of a domain where they can be applied. The results
in this section concern decidable subclasses of first-order logic with sorts, which
are investigated in [1]. We briefly review some definitions.
3 In an actual implementation, the variables in E would not be instantiated with χ.
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Definition 16. A set of function symbols Σ is stratified if there exists a func-
tion level mapping every sort s to a natural number such that for every func-
tion symbol f ∈ Σ of profile s1 × . . . sn → s and for every i ∈ [1..n],
level(s) > level(si). We denote by TΣ (resp. T s

Σ) the set of ground terms built
on the set of function symbols Σ (resp. the set of terms of sort s built on Σ).

Proposition 1. Let Σ be a finite stratified set of function symbols. Then the
set TΣ is finite.

A set of clauses is in St0 if its signature is stratified. In particular, any formula
in the Bernays-Schönfinkel class is in St0. By Proposition 1, St0 admits a trivial
instantiation scheme: it suffices to replace each variable by every ground term
of the same sort, defined on the set of function symbols occurring in St04. This
instantiation scheme is obviously admissible (see Definition 13).

This instantiation scheme can be applied also to the class St2 defined in [1]
as an extension of the class St0 with atoms of the form t ∈ Im[f ], where f is a
function symbol of profile s1× . . .×sn → s, meaning that t is in the image of the
function f . From a semantic point of view, the atom t ∈ Im[f ] is a shorthand for
∃x1, . . . , xn.t � f(x1, . . . , xn). To ensure decidability, for every atom of the form
t ∈ Im[f ] and for every function symbol g of the same range as f , the following
properties have to be satisfied: (i) g must have the same profile as f ; (ii) the
formula f(x1, . . . , xn) � g(y1, . . . , yn) ⇒

∧n
i=1 xi � yi, where n denotes the arity

of f and g, must hold in every model of the considered formula. In [1] it is shown
that every satisfiable set in St2 admits a finite model, hence, St2 is decidable.
It turns out that any formula in St2 can be reduced to a clause set in St0, thus
reducing satisfiability problems in St2 to satisfiability problems in St0. This is
done by getting rid of all occurrences of atoms of the form t ∈ Im[f ]. One such
transformation is obvious: by definition, every occurrence of the form t �∈ Im[f ]
can be replaced by t �� f(x1, . . . , xn), where the xi are fresh variables. We now
focus on the other occurrences of the atoms.

Definition 17. Let S denote a set of clauses. We denote by S′ the set of clauses
obtained from S by applying the following transformation rule (using a nonde-
terministic strategy):

Γ→Δ, x ∈ Im[f ] � {x � g(x1, . . . , xn), Γ → Δ, g(x1, . . . , xn) ∈ Im[f ] | g ∈ Σf}

where x is a variable, f is of arity n, Σf denotes the set of function symbols with
the same profile as f and x1, . . . , xn are fresh variables that are pairwise distinct.
We denote by S↓0 the set of clauses obtained from S′ by applying the following
transformation rule: g(x1, . . . , xn) ∈ Im[f ] � g(x1, . . . , xn) � f(x1, . . . , xn).

The first rule gets rids of atoms of the form x ∈ Im[f ] by replacing them with
atoms of the form t ∈ Im[f ] where t is a complex term, and the second rule
gets rid of these atoms. The rules terminate and preserve satisfiability (see the
technical report at http://membres-lig.imag.fr/peltier/inst_la.pdf for
details). We therefore have the following result:
4 Possibly enriched with some constant symbols in order to ensure that each sort is

nonempty.

http://membres-lig.imag.fr/peltier/inst_la.pdf
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Theorem 5. Consider a set of Z-clauses S = {Λi ‖Ci | i ∈ [1..n]} in St2
such that every Λi ‖Ci is preconstrained, and for every occurrence of an atom
t ∈ Im[f ], the range of f is not of sort Z. The set S is Z-satisfiable if and only
if γ(S↓0 Ω) is Z-satisfiable, where:

– Ω is the set of substitutions of domain V(S) whose codomain is a set B such
that Λi ‖Ci � B for all i = 1, . . . , n;

– γ denotes an instantiation scheme for St0 satisfying the conditions of page
57 (e.g. γ(S) = SΩ′ where Ω′ is the set of substitutions of domain V(S) and
of codomain TΣ).

Examples of specifications in the classes St0 and St2 are presented in [1]. Our
results allow the integration of integer constraints into these specifications.

8 Discussion

In this paper we presented a way of defining an instantiation scheme for SMT
problems based on a combination of linear arithmetic with another theory. The
scheme consists in getting rid of the integer variables in the problem, and ap-
plying another instantiation procedure to the resulting problem. Provided the
integer variables essentially occur in inequality constraints, this scheme is com-
plete for the combination of linear arithmetic with several theories of interest
to the SMT community, but also for the combination of linear arithmetic with
other decidable theories such as the class St2 from [1]. The application of this
scheme to the theory of arrays with integer indices shows that it can produce
considerably fewer ground instances than other state-of-the-art procedures, such
as that of [10]. The instantiation scheme of [11] is currently being implemented,
and will be followed by a comparison with other tools on concrete examples from
SMT-LIB5.

As far as further research is concerned, we intend to investigate how to gen-
eralize this procedure, in which it is imposed that functions of range Z can only
have integer arguments. We intend to determine how to allow other functions
of range Z while preserving completeness. It is shown in [10] that considering
arrays with integer elements, for which nested reads can be allowed, gives rise
to undecidable problems, but we expect to define decidable subclasses, that may
generalize those in [13]. Dealing with more general functions of range Z should
also allow us to devise a new decision procedure for the class of arrays with
dimension that is considered in [14]. We also intend to generalize our approach
to other combinations of theories that do not necessarily involve linear arith-
metic, by determining conditions that guarantee combinations of instantiation
schemes can safely be employed to eliminate all variables from a formula. An-
other interesting line of research would be to avoid a systematic grounding of
integer variables and to use decision procedures for non-ground systems of arith-
metic formulae. The main difficulty is of course that with our current approach,
instantiating integer variables is required to determine how to instantiate the
remaining variables.
5 http://www.smt-lib.org/

http://www.smt-lib.org/
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54506 Vandoeuvre-lès-Nancy, France

schott@loria.fr

Abstract. Krawtchouk polynomials appear in a variety of contexts,
most notably as orthogonal polynomials and in coding theory via the
Krawtchouk transform. We present an operator calculus formulation of
the Krawtchouk transform that is suitable for computer implementa-
tion. A positivity result for the Krawtchouk transform is shown. Then
our approach is compared with the use of the Krawtchouk transform in
coding theory where it appears in MacWilliams’ and Delsarte’s theorems
on weight enumerators. We conclude with a construction of Krawtchouk
polynomials in an arbitrary finite number of variables, orthogonal with
respect to the multinomial distribution.

1 Introduction

Krawtchouk polynomials appear originally as orthogonal polynomials for the
binomial distribution [4,10], and in coding theory via the Krawtchouk trans-
form in the context of MacWilliams’ theorem on weight enumerators as well in
Delsarte’s extension to association schemes [5,8]. They play a role in discrete
formulations of quantum mechanics [2,6,7,9], transforms in optics [1], as well as
in recent developments in image analysis [11].

We present an operator calculus formulation of the Krawtchouk transform
that not only is theoretically elucidating, it is highly suitable for computer im-
plementation. A consequence of our formulation is a positivity theorem for the
Krawtchouk transform of polynomials. We indicate connections with the trans-
form appearing in coding theory.

2 Krawtchouk Polynomials as a Canonical Appell System

2.1 Generating Function

Consider a Bernoulli random walk starting at the origin, jumping to the left with
probability q, to the right with probability p, p + q = 1, pq �= 0. After N steps,
the position is x, with j = (N − x)/2 denoting the number of jumps to the left.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 64–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Start with the generating function

G(v) = (1 + 2qv)(N+x)/2(1− 2pv)(N−x)/2

= (1 + 2qv)N−j(1 − 2pv)j =
N∑

n=0

vn

n!
Kn

where we consider Kn as a function of x or of j according to context.

2.2 Orthogonality

We check orthogonality with respect to the binomial distribution, j running from

0 to N , with corresponding probabilities
(

N

j

)
qjpN−j. Using angle brackets to

denote expected value, we wish to show that 〈G(v)G(w)〉 is a function of the
product vw.

〈G(v)G(w)〉=
∑(N

j

)
qjpN−j(1+2qv)N−j(1− 2pv)j(1 + 2qw)N−j(1−2pw)j

=
∑(N

j

)
qjpN−j(1+2q(v+w)+4q2vw)N−j(1−2p(v+w)+4p2vw)j

=(p + 2pq(v + w) + 4pq2vw + q − 2pq(v + w) + 4p2qvw)N

= (1 + 4pqvw)N

which immediately gives the squared norms ‖Kn‖2 = (n!)2
(
N
n

)
(4pq)n.

2.3 Canonical Appell System

For an Appell system with generating function exp[zx− tH(z)], a corresponding
canonical Appell system has a generating function of the form

exp[xU(v) − tH(U(v))]

where U(v) is analytic about the origin in C, with analytic inverse V (z), and
H(z) is the logarithm of the Fourier-Laplace transform of the distribution of x
at time 1. Here we have N replacing t, and write

G(v) = (1 + 2(q − p)v − 4pqv2)N/2
(

1 + 2qv

1− 2pv

)x/2

identifying

U(v) =
1
2

log
1 + 2qv

1− 2pv
, and H(z) = log(pez + qe−z)

One checks that

log(peU(v) + qe−U(v)) = p

√
1 + 2qv

1− 2pv
+ q

√
1− 2pv

1 + 2qv
= (1 + 2(q− p)v− 4pqv2)−1/2

which verifies the form exp[xU(v)−NH(U(v))].
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Solving z = U(v) = U(V (z)), we find

V (z) =
(e2 − e−z)/2)
pez + qe−z

=
sinh z

pez + qe−z

3 Krawtchouk Expansions

The generating function, with z = U(v), is

G(v) = ezx−NH(z) =
∑
n≥0

V (z)n

n!
Kn(x, N)

Rearrange to get,

ezx = (pez + qe−z)N
∑
n≥0

(
sinh z

pez + qe−z

)n
Kn(x, N)

n!

We want to write the coefficients of the expansion in terms of D = d/dx acting
on a function of x. We cannot substitute z ↔ D directly, since the D and x do
not commute. Introduce another variable s. Replacing z by Ds = d/ds, apply
both sides to a function f(s):

exDsf(s) = f(s + x) = (peDs + qe−Ds)N
∑
n≥0

(
sinh Ds

peDs + qe−Ds

)n
Kn(x, N)

n!
f(s)

Now we move the operators involving Ds past Kn(x, N). Letting s = 0, thinking
of f as a function of x instead of s, we can replace Ds by our usual D = d/dx,
to get

f(x) =
∑

0≤n≤N

Kn(x, N)
n!

(peD + qe−D)N

(
sinh D

peD + qe−D

)n

f(0)

In other words, the coefficients of the Krawtchouk expansion of f(x) are given
by

f̃(n) =
1
n!

(peD + qe−D)N−n(sinh D)nf(0) (1)

Theorem 1. For p > q, if a polynomial has positive coefficients, then the co-
efficients of its Krawtchouk expansion are positive. For p = q = 1/2, we have
nonnegativity of the Krawtchouk coefficients.

Proof. Note that if ψ(D) is any formal power series
∑

cnDn in D, then

ψ(D)xm
∣∣
0= m! cm

is positive if cm is. Now, write pez + qe−z = cosh z +(p− q) sinh z. If p > q, then
the power series expansion has positive coefficients so that the coefficients in the
Krawtchouk expansion are positive as well. For p = q, we have nonnegativity.
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3.1 Matrix Formulation

As shown in [3], for Krawtchouk polynomials of degree at most N , one can use
the matrix of D, denoted D̂, acting on the standard basis {1, x, x2, . . . , xN} re-
placing the operator D in eq. (1).

For example, take N = 4. We have

D̂ =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

The basic matrices needed are computed directly from the power series for the
exponential function. Thus,

peD̂ + qe−D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 p− 1 1 2 p− 1 1

0 1 4 p− 2 3 8 p− 4

0 0 1 6 p− 3 6

0 0 0 1 8 p− 4

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the relation p + q = 1 has been used and

sinh D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0

0 0 2 0 4

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The nilpotence of D̂ reduces the exponentials to polynomials in D̂, making com-
putations with these matrices convenient and fast.

4 Krawtchouk Polynomials in Coding Theory

The Krawtchouk transform appears in coding theory in a different variant as an
essential component of MacWilliams’ theorem on weight enumerators [5,8]. It
appears in Delsarte’s formulation in terms of association schemes as well.

Fix N > 0. For Krawtchouk transforms on functions defined on {−N, 2 −
N, . . . , N − 2, N} we use the Fourier-Krawtchouk matrices, Φ, which we call
“Kravchuk matrices”. The entries are the values of the Krawtchouk polynomials
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as functions on {−N, . . . , N}. Thus, via the mapping x = N − 2j, 0 ≤ j ≤ N ,
the columns correspond to values of x and we write

G(v) = (1 + 2qv)N−j(1− 2pv)j =
∑

i

viΦij

In [5], the Krawtchouk polynomials are defined via a slightly different generating
function, changing the notation to fit our context,

Gs(v) = (1 + (s− 1)v)N−j(1− v)j =
∑

i

viKi(j; N, s)

The difference is primarily one of scaling. Comparing G with Gs, replacing v by
v/(2p), we find

Ki(j; N, s) = (2p)−iΦij

with s− 1 = q
p = 1−p

p = 1
p − 1, or

s =
1
p

The condition s ≥ 2 thus corresponds to p ≤ q, complementary to the condition
required for positivity in the previous section.

Following [5, p. 132], we have:

– MacWilliams’ Theorem: If A is a linear code over Fs and B = A⊥, its
dual, then the weight distribution of B is, up to a factor, the Krawtchouk
transform of the weight distribution of A.

– Delsarte’s Theorem: If A is a code over an alphabet of size s, then the values
of the Krawtchouk transform of the coefficients of the distance enumerator
are nonnegative.

In this context, the components of the Krawtchouk transform of a vector v are
defined by

v̂i =
∑

j

Ki(j; N, s)vj

We show how to invert the transform.

4.1 Inverse Transform

The calculation of §2.2 can be recast in matrix form. Set B equal to the diagonal
matrix

B = diag (pN , NpN−1q, . . . ,

(
N

i

)
pN−iqi, . . . , qN )

Let Γ denote the diagonal matrix of squared norms, here without the factors of
n!,

Γ = diag (1, N(4pq), . . . ,
(

N

i

)
(4pq)i, . . . , (4pq)N )
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With G(v) =
∑

viΦij , we have, following the calculation of §2.2,∑
i,j

viwj(ΦBΦT )ij =
∑
i,j,k

viwjΦikBkkΦjk

= 〈G(v)G(w)〉 =
∑

i

(vw)iΓii

In other words, the orthogonality relation takes the form

ΦBΦT = Γ

from which the inverse is immediate

Φ−1 = BΦT Γ−1

A consequence of this formula is that detΦ is independent of p and q:

(det Φ)2 =
det Γ

detB
= 2N(N+1)

The sign can be checked for the symmetric case p = q = 1/2 with the result

detΦ = ± 2N(N+1)/2

with the + sign for N ≡ 0, 3 (mod 4).
We illustrate with an example.
Example. For N = 4,

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1

8 q 6 q − 2 p 4 q − 4 p 2 q − 6 p −8 p

24 q2 12 q2 − 12 pq 4 q2 − 16 pq + 4 p2 −12 pq + 12 p2 24 p2

32 q3 8 q3 − 24 pq2 −16 pq2 + 16 p2q 24 p2q − 8 p3 −32 p3

16 q4 −16 pq3 16 p2q2 −16 p3q 16 p4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where we keep p and q to show the symmetry.

Q = 24 BΦT Γ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 p4 8 p3 4 p2 2 p 1

64 p3q 8 p2 (3 q − p) 8 p (q − p) 2 q − 6 p −4

96 p2q2 24 qp (q − p) 4 q2 − 16 pq + 4 p2 −6 q + 6 p 6

64 pq3 8 q2 (q − 3 p) −8 q (q − p) 6 q − 2 p −4

16 q4 −8 q3 4 q2 −2 q 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

satisfies QΦ = ΦQ = 24 I.
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4.2 Modified Involution Property

For p = 1/2, there is a simpler approach to inversion. Namely the identity

Φ2 = 2N I

We will see how this is modified for p �= 1/2, which will result in a very simple
form for Φ−1.

Proposition 1. Let P be the diagonal matrix

P = diag ((2p)N , . . . , (2p)N−j, . . . , 1)

Let P ′ be the diagonal matrix

P ′ = diag (1, . . . , (2p)j , . . . , (2p)N)

Then
ΦPΦ = 2NP ′

We just sketch the proof as it is similar to that for orthogonality.

Proof. The matrix equation is the same as the corresponding identity via gen-
erating functions. Namely,

∑
i,j,k

viΦik(2p)N−kΦkjw
j

(
N

j

)
= 2N(1 + 2pvw)N

First, sum over i, using the generating function G(v), with j replaced by k. Then
sum over k, again using the generating function. Finally, summing over j using
the binomial theorem yields the desired result, via p + q = 1.

Thus,

Corollary 1
Φ−1 = 2−N PΦP ′−1

5 Krawtchouk Polynomials in 2 or More Variables

Now we will show a general construction of Krawtchouk polynomials in variables
(j1, j2, . . . , jd), running from 0 to N according to the level N . These systems are
analogous to wavelets in that they have a dimension, d, and a resolution N .

5.1 Symmetric Representation of a Matrix

Given a d × d matrix A, we will find the “symmetric representation” of A, the
action on the symmetric tensor algebra of the underlying vector space. This is
effectively the action of the matrix A on vectors extended to polynomials in d
variables.
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Introduce commuting variables x1, . . . , xd. Map

yi =
∑

j

Aijxj

We use multi-indices, m = m1, . . . , md, mi ≥ 0, similarly for n. Then a monomial

xm = xm1
1 xm2

2 · · ·xmd

d

and similarly for yn. The induced map at level N has matrix elements Ānm

determined by the expansion

yn =
∑
m

Ānmxm

One can order the matrix entries lexicographically corresponding to the mono-
mials xm. We call this the induced matrix at level N . Often the level is called
the degree since the induced matrix maps monomials of homogeneous degree N
to polynomials of homogeneous degree N .

We introduce the special matrix B which is a diagonal matrix with multino-
mial coefficients as entries.

Bnm = δnm

(
N

n

)
=

N !
n1! n2! · · ·nd!

For simplicity, for B we will not explicitly denote the level or dimension, as it
must be consistent with the context.

The main feature of the map A→ Ā is that at each level it is a multiplicative
homomorphism, that is,

AB = Ā B̄

as follows by applying the definition to yi =
∑

(AB)ijxj first to A, then to
B. Observe, then, that the identity map is preserved and that inverses map to
inverses. However, transposes require a separate treatment.

Transposed Matrix. The basic lemma is the relation between the induced
matrix of A with that of its transpose. We denote the transpose of A, e. g. ,
by AT .

Lemma 1. The induced matrices at each level satisfy

AT = B−1ĀT B

Proof. Start with the bilinear form F =
∑
i,j

xiAijyj. Then, from the definition

of Ā,

FN =
∑
n,m

xnĀnmym

(
N

n

)



72 P. Feinsilver and R. Schott

Now write F =
∑
i,j

xi(AT )ji yj with

FN =
∑
n,m

(
N

m

)
ymAT

mn xn

Matching the above expressions, we have, switching indices appropriately,

(ĀT B)mn = Ānm

(
N

n

)
=
(

N

m

)
AT

mn = (B AT )mn

which is the required relation.

5.2 General Construction of Orthogonal Polynomials with Respect
to a Multinomial Distribution

For the remainder of the article, we work in d + 1 dimensions, with the first
coordinate subscripted with 0.

The multinomial distribution extends the binomial distribution to a sequence
of independent random variables where one of d choices occurs at each step,
choice i occurring with probability pi. The probability of none of the d choices
is p0 = 1 − p1 − p2 − · · · − pd. The probabilities for a multinomial distribution
at step Nare given by

p(j1, j2, . . . , jd) =
(

N

j0, j1, j2, . . . , jd

)
pj0
0 pj1

1 · · · p
jd

d

this being the joint probability distribution that after N trials, choice i has
occurred ji times, with none of them occurring j0 = N − j1− · · ·− jd times. Let
P denote the diagonal matrix with diagonal (p0, p1, . . . , pd). Then with

yi =
∑

j

Pijxj = pixi

we see that yn = pnxn which implies that, at each level N , P̄ is diagonal with
entries

P̄nm = δnmpn = pN−n1−···−nd
0 pn1

1 · · · pnd

d

In other words, the multinomial distribution comprises the entries of the diagonal
matrix BP̄ .

Now for the construction. Start with an orthogonal matrix W , a diagonal
matrix of probabilities P , and a diagonal matrix D with positive entries on the
diagonal. Let

A = P−1/2 W D1/2 (2)

where the power on a diagonal matrix is applied entrywise. Then it is readily
checked that

AT PA = D

which will generate the squared norms of the polynomials, to be seen shortly.
Using the homomorphism property, we have, via the Lemma,

AT P̄ Ā = B−1ĀT BP̄ Ā = D̄
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Or, setting Φ = ĀT ,
ΦBP̄ ΦT = BD̄ (3)

with both BP̄ and BD̄ diagonal.
Taking as variables the column indices, writing j for m, we have the nth

Krawtchouk polynomial
Kn(j; N, p) = Φnj

at level N . The relation given by equation (3) is the statement that
the Krawtchouk polynomials are orthogonal with respect to the multinomial

distribution, BP̄ , with squared norms given by the entries of the induced matrix
BD̄.

To summarize, starting with the matrix A as in equation (2), form the in-
duced matrix at level N . Then the corresponding Krawtchouk polynomials are
functions of the column labels of the transpose of the induced matrix. Apart
from the labelling conventions, then, in fact they are polynomials in the row
labels of the original induced matrix.

Finally, note that the basic case arises from the choice

A =
(

1 1
1 −1

)
for d = 1 with p = 1− p = 1/2, D = I.

Remark 1. A useful way to get a symmetric orthogonal matrix W is to start
with any vector, v, form the rank-one projection, V = vvT /vT v and take for W
the corresponding reflection 2V − I.

5.3 Examples

Two Variables. For two variables, start with the 3× 3 matrices

A =

⎛
⎜⎜⎝

1 1 1

1 −1 0

1 1 −2

⎞
⎟⎟⎠ , P =

⎛
⎜⎜⎝

1/3 0 0

0 1/2 0

0 0 1/6

⎞
⎟⎟⎠

and D the identity. We find for the level two induced matrix

Φ(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1

2 0 2 −2 0 2

2 1 −1 0 −2 −4

1 −1 1 1 −1 1

2 −1 −1 0 2 −4

1 0 −2 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

indicating the level explicitly. These are the values of the polynomials evaluated
at integer values of the variables (j1, j2, . . .). So multiplying a data vector on
either side will give the corresponding Krawtchouk transform of that vector.
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Three variables. This example is very close to the basic case for d = 1.
Start with the vector vT = (1,−1,−1,−1). Form the corresponding rank-one
projection and the associated reflection, as indicated in the remark above. We
find

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎠

and take the uniform distribution pi = 1/4, and D = I. We find

Φ(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1

2 2 0 0 2 0 0 −2 −2 −2

2 0 2 0 −2 0 −2 2 0 −2

2 0 0 2 −2 −2 0 −2 0 2

1 1 −1 −1 1 −1 −1 1 1 1

2 0 0 −2 −2 2 0 −2 0 2

2 0 −2 0 −2 0 2 2 0 −2

1 −1 1 −1 1 −1 1 1 −1 1

2 −2 0 0 2 0 0 −2 2 −2

1 −1 −1 1 1 1 −1 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

With A2 = 4I, we have, in addition to the orthogonality relation, as in equation
(3), that (Φ(2))2 = 16I.

6 Conclusion

Using matrix methods allows for a clear formulation of the properties of
Krawtchouk polynomials and Krawtchouk transforms. Working with polyno-
mials or with vectors, computations can be done very efficiently. We have shown
how to construct Krawtchouk polynomials in an arbitrary (finite) number of
variables, with enough flexibility in the parameters to allow for a wide range of
potential applications.
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Appendix

Here is maple code for producing the symmetric powers of a matrix. The argu-
ments are the matrix X and the level N , denoted dg in the code, for “degree”.

SYMPOWER := proc(X, dg)
local nd, ND, XX, x, y, strt, i, vv, yy, j, ww,kx,kk;
nd := (linalg:-rowdim)(X);
ND := (combinat:-binomial)(nd + dg - 1, dg);
XX := matrix(ND, ND, 0);
x := vector(nd);
y := (linalg:-multiply)(X, x);
strt := (combinat:-binomial)(nd + dg - 1, dg - 1) - 1;
for i to ND do vv := (combinat:-inttovec)(strt + i, nd);
yy := product(y[kk]^vv[kk], kk = 1 .. nd);
for j to ND do ww := (combinat:-inttovec)(strt + j, nd);

XX[i, j] := coeftayl(yy,
[seq(x[kx], kx = 1 .. nd)] = [seq(0, kx = 1 .. nd)], ww);

end do;
end do;
evalm(XX);

end:"outputs the symmetric power of X";

http://www.mth.msu.edu/~jhall/classes/codenotes/coding-notes.html
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1 Introduction

Various foreign substances and microorganisms are able to invade plant’s, ani-
mal’s and human’s bodies. Examples of such invaders are viruses, bacteria, mi-
crobes, eukaryotes like malaria and larger parasites such as worms. Sometimes
they are called foreign antigens. The term antigen may be used in two differ-
ent senses. The first meaning is a substance able to induce immune response.
Secondly, the term antigen may be used to denote a substance that can be specif-
ically recognized by the immune system. Some of the invading organisms can be
useful for their hosts, some of them can be harmless while other species can
be very dangerous. For example, helpful microorganisms are gut flora in human
digestive tract as well as Escherichia coli in the intestines. On the contrary, one
of the most pathogenic invaders is the human immunodeficiency virus (HIV)
causing AIDS [1]. Other sources of danger are internal invaders such as cancers.

In order to protect the organisms against foreign antigens and altered self-
substances, various mechanisms have evolved. They form the immune system,
which can be observed in some forms even in very simple species (like the enzyme
system of bacteria protecting them against viruses). The literature devoted to
the description of the main functions and properties of the immune system is
enormous. We refer the readers to the books [1,21,23,28] for general immunolog-
ical knowledge used in this paper as well as to [8,20,24,25,27] for reference on
mathematical models of immunological processes.

The immune system is one of the most complicated systems of higher organ-
isms. It involves various populations of molecules, cells, organs and tissues [1].

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 76–88, 2010.
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The reaction of the immune system (called the immune response) may or may
not be protective [28]. Sometimes disorders of the organism lead to very weak
function of the immune system when it is not able to clean the host of pathogens.
Such insufficient behaviours of immune system are called immunodeficiencies. In
some instances, in its attempt to combat the infection the immune response can
injure the body of the host and undermine its own survival. Such situation may
arise for example when the immune system ”over-reacts” against pathogens and
causes tissue damage. In addition, the immune response is a significant barrier
to successful transplantation of organs [28].

The immune system may be classified into two main components: (i) innate
immune system and (ii) acquired immune system [1,21,23,27,28]. Innate immu-
nity refers to the basic resistance of the host to foreign agents, that the host
possesses since birth. Innate defense mechanisms provide the initial protection
against infections. The acquired immune system is a remarkably adaptive de-
fense system that has evolved in vertebrates. It needs more time to develop than
the innate immunity and mediates the later defenses against pathogens. Often
acquired immunity is more effective than the protection performed by innate
immunity [1,28].

Innate immunity, also called natural or native immunity, is the basic defense
system of almost all multicellular organisms [1,21,23,28]. The natural immunity
is always present in healthy individuals and changes little throughout their life.
The innate defense mechanisms exist before the invasion of foreign substances to
take place. These mechanisms are not intrinsically affected by prior contact with
the infectious agents. Innate immunity blocks the invasion of foreign antigens and
responds rapidly to pathogens that do succeed in entering host organism. In gen-
eral, most of the microorganisms encountered by a healthy individual are readily
cleared within a few days by innate defense mechanisms. The natural immunity
is capable of sparing tissues of the host body. Usually, the host cells are not
recognized by the components of innate immunity or the host cells express reg-
ulatory molecules that prevent innate response against own cells. This property
of the immune system is called immune (immunological) tolerance with respect
to self, or self-tolerance. If the controlling mechanisms preventing the immune
system to combat self-tissues are impaired it can lead to autoimmune disease.

The mechanisms of native immunity have low level of specificity [1,21,23,28].
They are not able to very well discriminate between different kinds of foreign
pathogens and thus respond to them in a generic way. Many types of cells of
natural immunity can recognize and respond to the same pathogen. That is why
the innate immunity is also called nonspecific immunity. Nevertheless, in many
cases the nonspecific immune response is strong enough to clean the infection.

Innate immunity possesses no immunological memory: it reacts in the same,
unimproved way to foreign pathogens when the host encounters them repeatedly
[1,28]. Therefore, the innate immunity is non-adaptive.

Many organisms possess only innate immunity. These natural immune mech-
anisms have been developed and refined during very long periods of time in the
process of evolution of living species. In this way organisms ensure their defense
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against many traumata, infections and diseases. Innate defense mechanisms are
the most universal and rapidly acting immune responses. They are quite effi-
cient insofar as severe or prolonged infections are very rare. However, various
microbes, viruses and tumors which are very dangerous for humans and other
vertebrates have tremendous opportunities through mutation to evolve strategies
which evade the innate immune defenses. Therefore, higher organisms needed to
”devise” immune mechanisms which could be dovetailed individually to such
pathogens. Thus, vertebrates have evolved additional system for antigen recog-
nition and destruction, called acquired (and also adaptive or specific) immune
system. For example, its specific components called lymphocytes and antigen
receptors can be observed in jawed fishes. They are better developed and more
efficient in reptiles, birds, and mammals. The acquired immunity is the second
line of defense in higher organisms that acts after the initial response performed
by the innate immunity when invading pathogens or cancer cells resist the innate
host defense mechanisms.

The reaction of acquired immunity is highly adaptive [1,28]. It is induced
by certain antigens and changes the nature or quality of the response after
repeated encounters with the same antigens. This capability of the acquired
immune system to ”remember” previous interactions with particular antigens
and to enhance the response during subsequent encounters with them is called
immunological memory. This property of acquired immunity is of chief impor-
tance. Cells that are able to develop faster, stronger and qualitatively better
response to pathogens when they are encountered again are named memory
cells. Such improved reactions to subsequent interactions with already known
antigens are called secondary or recall immune responses. The nature of adap-
tive immunity is not constant as generally the nature of the native immunity is.
Acquired immunity develops during the life course of individuals. Its response
to pathogens is not as rapid as the response of the innate immunity but often is
much more effective. The acquired immunity is highly specific because it is able
to distinguish different antigens and reacts in a specific way to every particular
pathogen. Lymphocytes of the acquired immunity use molecules expressed on
their surface (the so-called antigen receptors) or secreted (the so-called antibod-
ies or immunoglobulins) for recognition of pathogens. The specific receptors of
every particular lymphocyte are able to recognize only one particular antigen
through physical contact with a part of complex antigenic molecules. Such part
of an antigen is called antigenic determinant or epitope [27,28]. In this way, the
ability of an antigen receptor of a particular lymphocyte to uniquely recognize
an epitope of a given antigen determines the specificity of this lymphocyte.

The natural immunity and the acquired immunity of higher organisms func-
tion in close cooperation. For example, some cytokines such as interleukins and
IFN-γ, that are soluble proteins participating in natural immunity, stimulate
the development and activity of specific T and B lymphocytes and therefore are
involved in acquired immunity as well. Some nonspecific complement compo-
nents participate in the development of humoral immune response, one of the
major mechanisms of the specific immunity. Specific antibodies are able to coat
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pathogens and to bind to nonspecific phagocytes, which engulf and destroy the
coated microorganisms. In such a way, antibodies play the role of opsonins in
the process of phagocytosis [1,28].

The acquired immunity may be subdivided into two main types, called cell-
mediated (or cellular) immunity and humoral immunity [1,21,23,28]. The main
immune cells involved in the cell-mediated immunity are cells called T lympho-
cytes. They include cytotoxic T lymphocytes (CTLs) and T helper (Th) cells.
The cytotoxic T lymphocytes can destroy infected cells. T helper cells produce
cytokines and signals inducing the proliferation and activation of immune cells.
The humoral responses are performed by proteins called antibodies, which are
produced by cells called B lymphocytes. As it is mentioned before, innate immu-
nity also uses cellular and humoral components for defense. The term humoral
refers to soluble substances found in body fluids (or humors), for example cy-
tokines, antibodies etc. [1,21,23,28].

The need of development of cell-mediated and humoral parts of acquired im-
munity in higher organisms is a consequence of the existence of two different
types of pathogen which are able to infect the host. These two types of invaders
are the intracellular and the extracellular pathogens [1]. The intracellular in-
vaders are able to enter the cells of the host and use them, for example in order
to reproduce. Such pathogens are viruses and intracellular bacteria. Other in-
vaders such as extracellular microorganisms, toxins, extraneous chemicals etc.
are located in the extracellular space, i.e. outside the cells of the host. The cell-
mediated acquired immunity is responsible primarily to fight off intracellular
pathogens. The main function of the humoral adaptive immunity is to combat
extracellular antigens [1,21,23,28].

Various viruses cause diseases, some of which like AIDS, hepatitis etc. are very
dangerous. Over the past several decades various methods have been used in the
field of virology for studying the nature and features of viruses. Serious advance
in understanding the mechanisms of the interactions between the viruses and
the immunological system has been achieved by the use of in vitro and in vivo
experiments. The clinical and experimental investigations have been successfully
complemented by mathematical models. The numerical and mathematical mod-
elling of immunological phenomena provide an essential tool for description and
prediction of the complex and highly nonlinear dynamics of the competition
between the viruses and the immune system [4,22,26,27].

Viruses are intracellular pathogens. In order to reproduce, they must enter
susceptible cells and use the metabolic machinery of the host cells. The viruses
can replicate inside the infected cells, thus producing new virus particles that
may leave the infected cells. The virus can destroy some of the host cells [31].

The immune system can apply innate and adaptive responses against the
viruses. The specific acquired humoral response performed mainly by antibod-
ies helps in the eradication of the free virus particles. On the other hand, the
cellular defense mechanisms lead to the destruction of infected host cells by T
lymphocytes.
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A mathematical model of the interactions between the virus and the humoral
immunity has been recently proposed and analysed in [17,18]. Furthermore, a
model describing the cellular immune response to viruses has been proposed in
[19]. The goal of the present paper is to extend these two models in order to
describe and study the acquired immune response to viral infection.

The organization of the paper is as follows. In Section 2 we present the in-
teracting populations and the mathematical model. Numerical approximations
to the solutions of the model are constructed in Section 3. Results of our nu-
merical experiments are presented in Section 4. Finally, Section 5 includes our
concluding remarks and future directions.

2 Mathematical Model

Following the idea of Wodarz et al. [32,33] and generalizing the models proposed
in [17,18] and [19] we consider the following five interacting populations, each
denoted by the corresponding subscript i (see Table 1).

Table 1. Virus-acquired immune system dynamics variables

Variable i Abbreviation Population Activation state u ∈ [0, 1]
1 Uninfected Th Uninfected helper T cells not relevant
2 Infected Th Infected helper T cells virus replication, Th destruction
3 Virus Free virus particles rate of infection of Th

4 AB Antibodies destruction, deactivation of virus
5 CTLs Cytotoxic T lymphocytes destruction of infected Th

The interacting individuals (cells or particles) are characterized by a micro-
scopic state variable u ∈ [0, 1], which describes the specific biological function
(activity) of each individual. For convenience, the values of variable u are chosen
to belong to the interval [0, 1], describing in this way all possible values between
the lowest and the highest activity of corresponding individuals. In some papers
the variable u is chosen to belong to different intervals, e.g. [−1, 1] or [0,∞]
without significant difference.

In our model, the state of activity of the infected helper T cells denotes the
virus mediated killing rate of the infected cells as well as the rate of viral re-
production inside the host cell. We assume that the T helper cells infected by
cytopathic viruses (i.e. viruses able to shorten the life-span of the host cells at
a higher rate) possess higher activation states. Moreover, the infected cells with
higher states of activity are assumed to produce larger amount of virus particles.

Here, the state of activity of free viruses denotes their ability to infect the
susceptible Th cells. The higher the ability of a virus to enter a cell, the higher
the activation state of the virus.

The activation state of the population of antibodies is supposed to denote
their ability to destroy viral particles and to lower their states of activity.
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Further, we assume that the state of activity of the CTLs denotes their ability
to destroy the infected Th cells.

Here, the presence of internal degrees of freedom of the population of the
uninfected helper T cells is neglected. For the sake of simplicity, we assume that
the population denoted by i = 1 is independent of their activation states.

The meaning of the states of activity of the interacting populations is pre-
sented in Table 1.

We denote by

fi(t, u), fi : [0,∞)× [0, 1]→ R+, i = 1, . . . , 5,

the distribution density of the i-th population with activation state u ∈ [0, 1] at
time t ≥ 0. Moreover, let

ni(t) =
∫ 1

0
fi(t, u)du, ni : [0,∞)→ R+, i = 1, . . . , 5, (1)

be the concentration of the i-th individuals at time t ≥ 0.
Due to the assumed independency of the distribution function f1(t, u) of the

activation state u

f1(t, u) = n1(t), ∀u ∈ [0, 1], t ≥ 0.

Further, we present a mathematical model describing the dynamics of the dis-
tribution densities of the interacting populations. Respective gain, loss and con-
servative terms corresponding to the most important processes of production,
destruction and change of activity of the individuals are included in the system
(2)-(6) of partial integro-differential equations. The modelling approach utilizes
the variable u that describes the biological activity of the interacting popula-
tions. This is the reason to use the term ”kinetic theory for active particles” for
this approach. Its application to immunology has been introduced by Bellomo
and Forni for modelling the growth of cancer [7] and has been later developed
in a series of papers, cf. [11,12], as well as the special issues [9,10]. We refer the
readers also to the recent review papers [5,6] as well as to the book [3] devoted
to description and critical analysis of the mathematical kinetic theory of active
particles applied to the modelling of large living systems made up of interacting
entities. The mathematical properties of the corresponding models have been
extensively investigated, see [2] for complete bibliography.

Our model of the interactions between the virus and the acquired immune
system is a generalization of the models of humoral response [17,18] and of the
model of cellular immune response to virus [19]. It is given by the following
system of partial integro-differential equations.

d
dtn1(t) = S1(t)− d11n1(t)− d13n1(t)

∫ 1
0 vf3(t, v)dv, (2)

∂f2
∂t (t, u)=p

(2)
13 (1− u)n1(t)

∫ 1
0 vf3(t, v)dv − d25f2(t, u)

∫ 1
0 vf5(t, v)dv

−d22uf2(t, u) + c22

(
2
∫ u

0 (u− v)f2(t, v)dv − (1 − u)2f2(t, u)

)
,

(3)
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∂f3
∂t (t, u)=p

(3)
22

∫ 1
0 vf2(t, v)dv − d33f3(t, u)− d34f3(t, u)

∫ 1
0 vf4(t, v)dv, (4)

∂f4
∂t (t, u)=p

(4)
34 (1− u)

∫ 1
0 f3(t, v)dv

∫ 1
0 f4(t, v)dv − d44f4(t, u), (5)

∂f5
∂t (t, u)=p

(5)
13 (1− u)n1(t)

∫ 1
0 f3(t, v)dv − d55f5(t, u), (6)

with nonnegative initial conditions

n1(0) = n
(0)
1 , fi(0, u) = f

(0)
i (u), i = 2, 3, 4, 5.

All parameters denoted by p
(k)
ij , dij and cij are assumed to be nonnegative and

p
(2)
13 = 2d13.
The function S1(t) denotes the rate of production of uninfected T helper cells.

The parameter d11 characterizes the natural death of the uninfected cells, which
become infected by the virus with a rate proportional to their concentration as
well as to the activation state of the virus (see equation (2)).

The factor (1− u) in the gain term of equation (3) describes our assumption
that the activity of the newly infected T helper cells is low. This is connected
with the experimental observations showing that the virus needs some time after
entering the host cell in order to replicate. During this period the virus particle
uncoats and the viral genome is exposed. Subsequently, the viral genome is
replicated and viral proteins are made. New virus particles are produced after
the association of the newly generated viral proteins with the viral genomes [31].
The rate of destruction of the infected cells by the virus is assumed to be higher
for cells with higher states of activity. It is described by the loss term

d22uf2(t, u).

The parameter d25 characterizes the rate of destruction of infected cells by CTLs
which is assumed to be proportional to the activation state of CTLs. The repli-
cation of the virus particles inside the infected cells leads to increase in the
probability of the destruction of the infected cells by the virus. We describe this
by the conservative term

c22

(
2
∫ u

0
(u− v)f2(t, v)dv − (1− u)2f2(t, u)

)

corresponding to raising the activation states of the infected cells (see equation
(3)).

The parameter p
(3)
22 characterizes the rate of reproduction of the virus inside

the host cells, which is assumed to be proportional to the activation state of the
infected cells (see equation (4)). The parameter d33 characterizes the natural
death of viruses. The parameter d34 characterizes the rate of destruction of free
viruses by antibodies.

The parameter p
(4)
34 characterizes the rate of production of AB, while the

parameter d44 describes the natural death of AB.
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There is experimental evidence that the newly produced CTLs and AB need
time for their development and activation [21]. The factor (1 − u) in the gain
terms of equation (5) and equation (6) describes our assumption that the activity
of the newly generated CTLs and AB is low. The rate of generation of the CTLs
is assumed to be proportional to the concentrations of the uninfected helper T
cells and of the virus, both of which stimulate the proliferation of cytotoxic T
lymphocytes [23]. The parameter d55 characterizes the natural death of CTLs.

3 Approximate Solution of the Model

Here, we construct a numerical solution to the concentrations of individuals
ni(t), i = 1, . . . , 5, at any time variable t > 0. The concentrations n2(t), n3(t),
n4(t) and n5(t) can be computed from (1) by the use of the functions f2(t, u),
f3(t, u), f4(t, u) and f5(t, u). To compute numerical approximations to the func-
tions n1(t), f2(t, u), f3(t, u), f4(t, u) and f5(t, u), we perform a discretization of
the system (2)-(6) with respect to the state of activity u ∈ [0, 1] by applying the
uniform grid-points

ui = iΔu, i = 0, . . . , N,

where N is a positive integer and Δu = 1/N . Then the values f2(t, u), f3(t, u),
f4(t, u) and f5(t, u) in (2)-(6) can be replaced by their approximations

fj(t, ui) ≈ fj,i(t), j = 2, 3, 4, 5 (7)

at the state grid-points ui ∈ [0, 1].
For every t > 0 and every ui ∈ [0, 1] with i = 0, . . . , N , we apply the approxi-

mations (7) for quadrature formulae to approximate the integrals:

∫ 1
0 fj(t, v)dv ≈ QN

0

[
fj(t, v)

]
, j = 3,∫ 1

0 vfj(t, v)dv ≈ QN
0

[
vfj(t, v)

]
, j = 2, 3, 4, 5∫ ui

0 (ui − v)fj(t, v)dv ≈ Qi
0

[
(ui − v)fj(t, v)

]
, j = 2.

(8)

The approximations in (8) represent arbitrary quadratures. For example, in Sec-
tion 4, the values QN

0

[
fj(t, v)

]
, QN

0

[
vfj(t, v)

]
and Qi

0

[
(ui− v)fj(t, v)

]
are com-

puted by the use of the composite Simpson’s rule [14,30].
The approximations (7) and (8) applied to the partial integro-differential sys-

tem (2)-(6) yield a system of ordinary differential equations.
This system is solved in Section 4. Its numerical solutions fj,i(t), with j =

2, 3, 4, 5 and i = 0, . . . , N , are then used to compute the approximations to the
functions n2(t), n3(t), n4(t) and n5(t). The approximations are computed from

nj(t) ≈ QN
0

[
fj(t, v)

]
, j = 2, 3, 4, 5. (9)
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4 Numerical Experiments and Discussion

The system of ordinary differential equations corresponding to the discretized
model (2)-(6) is solved by using the code ode15s from the Matlab ODE suite
[29] with RelTol = 10−3 and AbsTol = 10−4.

The obtained approximate solutions for the functions f2,i(t), f3,i(t), f4,i(t)
and f5,i(t), with i = 0, . . . , N , are applied to (9) to compute the concentrations
n2(t), n3(t), n4(t) and n5(t).

As initial conditions we assume the presence of uninfected T helper cells,
antibodies, free virus particles, and the absence of infected T helper cells and
CTLs, setting for every i = 0, . . . , N :

n1(0) = 1, f2,i(0) = 0, f3,i(0) = 0.1, f4,i(0) = 0.1, f5,i(0) = 0.

In the first part of our simulation we study the interactions between viral par-
ticles and acquired immunity when only the humoral response is activated. We
model this case by setting

d25 = d55 = p
(5)
13 = 0.

The remaining values of the parameters of the model are set as follows:

S1(t) = 100, t ≥ 0, c22 = 15,

d11 = d13 = d33 = d34 = d44 = p
(3)
22 = p

(4)
34 = p

(5)
13 = 100.

In this case the humoral response is unable to control alone the infection when
the values of the parameter d22 are low (e.g. for d22 = 49) but clean the virus
for higher values of d22 (for example, for d22 = 55), see Fig. 1. This param-
eter characterizes the rate of destruction of the infected T helper cells by the
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Fig. 1. Dynamics of the infected cells for d22 = 49 and d22 = 55 in the case of “humoral-
only-response”



A Mathematical Model of the Competition 85

viral particles. The lower values of d22 correspond to non-cytopathic viruses; the
higher - to cytopathic viruses.

The results of our numerical simulations confirm some experimental obser-
vations that in cases of cytopathic viral infections the humoral immunity can
be sufficient to fight the infection while in cases of non-cytopathic virus the
humoral immune response alone is insufficient to control the infection and addi-
tional cellular immune response performed by CTL is necessary for the successful
clearance of the virus [31,34]. An example of non-cytopathic virus is lymphocytic
choriomeningitis (LCMV) [15,34].

A possible explanation of these observations is the following. The cytopathic
viruses are destructive enough to eradicate the majority of the infected cells. Due
to the low amount of the remaining infected cells, the development of the virus
is limited. This affords better opportunities to the ABs to clean the infection.
On the contrary, when the organism is infected by a non-cytopathic virus, large
amount of infected cells remains alive and the virus is able to replicate inside
them. The newly generated viral particles can be released and then are able to
infect new susceptible cells. Thus, the virus can grow and the humoral response
fails.

In such cases of non-cytopathic viruses additional cellular immune response
is necessary for the successful clearance of the virus. The second part of our nu-
merical analysis is devoted to the cooperative use of humoral and cell-mediated
acquired response by the immune system. As initial conditions we assume addi-
tionally the presence of CTLs:

f5,i(0) = 0.1, i = 0, . . . , N

and change the values of the following parameters:

d25 = 500, d55 = 100, p
(5)
13 = 200.
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Fig. 2. Dynamics of the infected cells in cases of humoral-only vs humoral-and-cellular
response for d22 = 49
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The illustration of the successful cooperation of humoral and cell-mediated is
presented on Fig. 2 where it is compared with the unsuccessful humoral-only
response to non-cytopathic virus (in both cases d22 = 49).

The results show that while the humoral-only response is unable to fight off
the infection, the cell-mediated defense leads to an additional destruction of
infected cells and therefore decreases the ability of the virus to replicate. This
results in a successful eradication of the infection.

5 Concluding Remarks and Future Directions

We proposed a new mathematical model of the interactions between the acquired
immune system and the viruses. It describes both the humoral and the cell-
mediated immune mechanisms. The results of the numerical simulations are
related to cytopathic and non-cytopathic viruses and are compared with known
experimental observations.

Numerical simulations utilizing mathematical models may lead to a reduction
in the quantity of experimental studies performed in virology. Our future work
will address the influence of other parameters of the model (2)-(6) on the com-
petition between the viral infections and the adaptive immunity. It may lead to
better understanding of these complex and highly nonlinear interactions.

The model (2)-(6) can be seen as an expert system for the problem of compe-
tition between a viral infection and an immune system. The generalized model
proposed and studied numerically in this paper describes the knowledge that has
been gathered in virology in specific cases described above.

We plan to further extend the model taking into account other cells and
molecules participating in the interactions between the immune system and for-
eign pathogens. A corresponding general modelling system based on qualitative
process theory [13] will be developed. Model heuristics will be mapped to a sim-
ulation system based on the computational framework of cellular automata [16].
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4. Bellomo, N., Bellouquid, A.: On the onset of nonlinearity for diffusion models of bi-

nary mixtures of biological materials by asymptotic analysis. Internat. J. Nonlinear
Mech. 41(2), 281–293 (2006)



A Mathematical Model of the Competition 87

5. Bellomo, N., Bianca, C., Delitala, M.: Complexity analysis and mathematical tools
towards the modelling of living systems. Physics of Life Reviews 6, 144–175 (2009)

6. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game the-
ory to modelling mutations, onset, progression and immune competition of cancer
cells. Physics of Life Reviews 5, 183–206 (2008)

7. Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune sys-
tem. Math. Comput. Modelling 20(1), 107–122 (1994)

8. Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: Se-
lected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18,
593–646 (2008)

9. Bellomo, N., Maini, P.: Preface in: Cancer Modelling (II). In: Math. Models Meth-
ods Appl. Sci. 16(7b) (special issue), iii–vii (2006)

10. Bellomo, N., Sleeman, B.: Preface in: Multiscale Cancer Modelling. Comput. Math.
Meth. Med. 20(2-3) (special issue), 67–70 (2006)

11. De Angelis, E., Lodz, B.: On the kinetic theory for active particles: A model for
tumor-immune system competition. Math. Comput. Modelling 47(1-2), 196–209
(2008)

12. De Lillo, S., Salvatori, M.C., Bellomo, N.: Mathematical tools of the kinetic theory
of active particles with some reasoning on the modelling progression and hetero-
geneity. Math. Comput. Modelling 45(5-6), 564–578 (2007)

13. Forbus, K.D.: Qualitative Modeling. In: van Harmelen, F., Lifschitz, V., Porter,
B. (eds.) Handbook of Knowledge Represantation, Foundations of Artificial Intel-
ligence, vol. 3, pp. 361–393. Elsevier, Amsterdam (2008)

14. Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston (1997)
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Abstract. Given a regular set T in K[x], Lemaire et al. in ISSAC’08 give
a nice algebraic property: the regular set T generates its saturated ideal
if and only if it is primitive. We firstly aim at giving a more direct proof
of the above result, generalizing the concept of primitivity of polynomials
and regular sets and presenting a new result which is equivalent to the
above property. On the other hand, based upon correcting an error of
the definition of U-set in AISC’06, we further develop some geometric
properties of triangular sets. To a certain extent, the relation between
the primitivity of T and its U-set is also revealed in this paper.
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1 Introduction

The development and computer implementation of classical and modern elim-
ination methods in solving polynomial systems in Symbolic Computation have
provoked their wide applications in many areas including Artificial Intelligence.
Triangular sets of polynomials have a fine structure suitable for representing field
extensions and zeros of polynomial systems of any dimension. Methods based
on triangular sets are particularly efficient for geometric problems, where the
geometric properties may be inherited in the algebraic relations and some de-
generate cases may be automatically ruled out in Automated Theorem Provers.
Triangular decompositions are one of the studied techniques for solving poly-
nomial systems symbolically. Invented by J.F. Ritt for systems of differential
polynomials, their stride started with the method of Wu in [17,18]. The notion
of a regular set (or regular chain) introduced independently by Kalkbrener in
[10] and by Yang and Zhang in [19], led to important discoveries in algebraic
and geometric meanings.

The theories and methods of computing regular sets of polynomial systems
have significantly contributed to the theoretical and practical development of tri-
angular decompositions such as the MMP(http://www.mmrc.iss.ac.cn/mmp/),
the package Epsilon (http://www-calfor.lip6.fr/ wang/epsilon ) in Maple, the

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 89–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



90 Y. Li

RegularChains library shipped with Maple, and others. However, there exist a
common difficulty of removing redundant components.

Lemaire et al. in ISSAC’08, through generalizing the notion of primitivity from
univariate polynomials to regular sets, establish a nice necessary and sufficient
condition for a regular set to generate its saturated ideal, which reveals some
algebraic meanings of regular sets. A generalization of Gauss lemma over an
arbitrary commutative ring with unity is the foundation of the proof in [6].
Applying some well-known facts without generalizing Gauss lemma, we present
a rather direct and alternative proof of the necessary of the above result. The
new approach of proof is beneficial to understand the primitivity of regular
sets. On the other hands, we also give a new equivalent condition for a regular
set to generate its saturated ideal. The new condition is helpful for practical
development of checking if a regular set is not primitive, such as the algorithm
IsPrimitive in the RegularChains library.

Based upon the theory of the weakly nondegenerate condition of regular sets
established by Zhang et al. in [21], we develop the related theory and generalize
it to triangular sets, referring to [12,13,14]. These results have been applied to
improve some algorithms of triangular decompositions. Specially the author de-
fines the notion of U-set of triangular sets which has some interesting properties.
The practical applications in [9,14] show that one can remove most redundant
components of the algorithm CharSer by virtue of the method of Wu. But there
exists an error (or flaw) in the notion of U-set in theoretical sense which affects
the correctness of some results in some cases. Based upon correcting the error,
we give some further properties of triangular sets considered in the complex
number field. To be different from the primitivity of regular sets, these proper-
ties reveal some geometric meanings of triangular sets. The relationship of the
two aspects of regular sets also is presented in this paper. These new results
might contribute to develop better algorithms, and solve partly the problem of
removing redundant components in most of practical developments of triangular
decompositions in Computer Algebra Systems.

Let K be a field and K[x1, . . . , xn] (or K[x] for short) be the ring of polynomi-
als in the variables x1, . . . , xn with coefficients in K. The extension field K̃ of K
is algebraically closed in this paper. For any polynomial p �∈ K, the biggest index
k such that deg(p, xk) > 0 is called the class, xk the leading variable, deg(p, xk)
the leading degree of p, and lcoeff(p, xk) the leading coefficient of p, denoted by
cls(p), lv(p), ldeg(p) and lc(p), respectively. In addition, we denote red(p) by the
polynomial p− lc(p)lv(p)ldeg(p).

A polynomial set is a finite set P of nonzero polynomials in K[x]. The ideal
of K[x] generated by all elements of P is denoted by < P >. The zero set of P in
K̃n, denoted by Zero(P), is called the affine variety defined by P. It is obvious
that Zero(P) = Zero(< P >).

Referring to [16], a polynomial set T ⊂ K[x] \ K, called triangular set, is
written as the following form

T = [f1(u, y1), . . . , fs(u, y1, . . . , ys)], (1)
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where u = u1, . . . , ur and (u1, . . . , ur, y1, . . . , ys) is a permutation of (x1, . . . , xn),
and we always assume n− 1 ≥ r ≥ 1 throughout this paper. We denote T{k−1}

by the triangular set [f1, . . . , fk−1] for s > k ≥ 2. In particular, T{0} stands
for {0}.

The saturation of T is the ideal

< T >: J∞ = {g ∈ K[x] | Jqg ∈< T > for some integer q ≥ 0},

where J =
∏

c∈ini(T) c with ini(T) = {lc(f1), . . . , lc(fs)}.
For any polynomial p, prem(p, T) stands for the pseudo-remainder of p with

respect to T which is defined by

prem(p, T) � prem(. . . prem(p, fs, ys), . . . , f1, y1).

Similarly res(p, T) stands for the resultant of p with respect to T. It is easy to
deduce the following pseudo-remainder formula

(
s∏

i=1

lc(fi)di)p =
s∑

i=1

qifi + prem(p, T),

where each di is a nonnegative integer and qi ∈ K[x] for 1 ≤ i ≤ s.
While speaking about a polynomial system, we refer to a pair [P, Q] of poly-

nomial sets. The zero set of [P, Q] defined as

Zero(P/Q) � {z ∈ K̃n : p(z) = 0, q(z) �= 0, ∀p ∈ P, q ∈ Q}

is called the quasi-affine variety defined by [P, Q].
Let R be a commutative ring with unity. We say that a non-constant polyno-

mial p = aex
e + . . . + a0 ∈ R[x] is weakly primitive if for any β ∈ R such that ae

divides βae−1, . . . , βa0 then ae divides β as well. We say the regular set T as (1)
is primitive if for all 1 ≤ k ≤ s, the polynomial fk is weakly primitive in R[yk]
where R = K[u, y1, . . . , yk−1]/ < T{k−1} > . In ISSAC’08, Lemaire et al. give a
very beautiful result: the regular set T generates its saturated ideal if and only
if it is primitive. In Section 2, based upon a direct approach, we give a simpler
proof of the above result. On the other hand, we try to generalize the concept
of primitivity of polynomials and regular sets and present a new result which is
equivalent to the above one.

In geometric aspect,applying the analytic method, Zhang et al. in [21] first
establish the theory of the weakly nondegenerate condition of regular sets in
K[x]. Referring to [12], we have Zero(T) = Zero(sat(T)) if T is a strong regular
set. In AISC’06 in [14], the above theory is extended to triangular sets in general
but there is an error about the definition of UT. In this paper, we correct the
error and present some further properties of triangular sets. On the other hand,
we also present a similar result: the regular set T generates its saturated ideal
if and only if UT = ∅ when K̃ is the complex number field. Throughout the
presentation, one fail to discuss algorithmic applications. We hope that these
results are helpful to develop better algorithms in triangular decompositions for
solving polynomial systems in Symbolic Computation.
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2 Some Algebraic Properties of Triangular Sets

2.1 Preliminaries

The remarkable item (1) in the following theorem presented by Aubry et al. in
[1], and two different proofs of it are also given by Wang in [15,16] and by Yang
et al. in [20].

Theorem 2.1. For a regular set T and a polynomial p we have:
(1) p ∈ sat(T) if and only if prem(p, T) = 0,
(2) p is regular modulo sat(T) if and only if res(p, T) �= 0,
(3) p is a zerodivisor modulo sat(T) if and only if res(p, T) = 0 and prem(p, T)

�= 0.
Refer to [3,6] for the proof of items (2) and (3). An ideal in K[x] is unmixed

if all its associated primes have the same dimension. In particular, an unmixed
ideal has no embedded associated primes.

Theorem 2.2. Let T = [f1, . . . , fs] with s > 1 be a regular set in K[x]. The
following properties hold:

(1) sat(T) is an unmixed ideal with dimension n− s,
(2) sat(T ∩K[x1, . . . , xi]) = sat(T) ∩K[x1, . . . , xi],
(3) sat(T) =< sat(T{s−1}) ∪ {fs} >: lc(fs)∞.
For the proofs, one can refer to Boulier et al. in [2] and Gao and Chou in [7,8]

for item (1), to Aubry et al. in [1] for item (2), and to Kalkbrener in [10] for
item (3).

Let R be a commutative Noetherian ring with unity. One can easily give the
proofs of the following Lemmas 2.1, 2.2. and 2.3 which can be found in [6].

Lemma 2.1. Let I be a proper ideal of R and let h be an element of R. Then
h is regular modulo I if and only if I = I : h∞ holds.

Lemma 2.2. Let I be a proper ideal of R and G={h∈R| h is regular modulo I}.
Then G endowed with the multiplication operation in R is a semi-group.

Lemma 2.3 (Mc Coy Lemma). A non-zero polynomial f ∈ R[x] is a zero-
divisor if and only if there exists a non-zero element a ∈ R such that af = 0
holds.

For p ∈ R[x]\{0}, Cp stands for the set of all the nonzero coefficients of p in
x. The next notions of weak primitivity of polynomials and regular sets are
presented in [6].

Definition 2.1. Let p = a0 + . . . + aex
e ∈ R[x] with e ≥ 1. The polynomial p is

weakly primitive if either condition holds:
(i) ae is invertible in R if |Cp| = 1;
(ii) for any β ∈ R such that ae|βb for all b ∈ Cred(p), we have ae|β as well.

Remark: The above description, which is somewhat different from the one in [6],
is helpful for illustrating the weak primitivity when p = aex

e and ae is invertible
without citing the strong primitivity in [6].
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Definition 2.2. Let T = [f1, . . . , fs] ⊂ K[x1, . . . , xn] be a regular set. We say T
is primitive if for all 1 ≤ k ≤ s, fk is weakly primitive in R[yk] where yk = lv(fk)
and

R = K[u, y1, . . . , yk−1]/ < T{k−1} > .

The next nice result is presented by Lemaire et al. in [6].

Theorem 2.3. Let T be a regular set. Then T is primitive if and only if < T >=
sat(T).

Lemma 2.4. Let R be a Noetherian commutative ring with unity. Consider
g ∈ R[x] with deg(g, x) > 0 and b ∈ R. If g is a zerodivisor modulo < b >, then
there exists an element a /∈< b > such that ac ∈< b > for any c ∈ Cg.

Proof: Consider the ring R/ < b >, it is easy to check that R/ < b > is also a
Noetherian commutative ring with unity. And g is also a zerodivisor in R/ <
b > [x]. According to Lemma 2.3, there exists a non-zero element ā ∈ R/ < b >
such that āg = 0 holds in R/ < b > [x]. Now set a ∈ R such that a− ā ∈< b >.
It implies ag ∈< b >. Thus ac ∈< b > for any c ∈ Cg. This completes the
proof. "#

The next lemma is Proposition 6.5 in [6].

Lemma 2.5. Let R be a Noetherian commutative ring with unity. Consider a
polynomial f =

∑n
i=0 aix

i ∈ R[x]. Assume that n is at least 1 and an is regular
in R. Then < f >=< f >: a∞

n holds if and only if an is invertible in R, or red(f)
is regular modulo < an > .

2.2 Main Results

The following results are helpful to understand any primitive regular set T with
|T| = 1.

Proposition 2.1. Let R be a Noetherian commutative ring with unity and
p = a0 + . . . + aex

e ∈ R[x] with e ≥ 1. If ae is regular in R and p is weakly
primitive, then < p >=< p >: a∞

e .

Proof: When ae is invertible in R, it is easy to see that < p >=< p >: a∞
e . Now

we only consider the case that regular element ae is not invertible in R. We claim
that red(p) is regular modulo < ae >.

In order to prove our claim, we suppose red(p) is not regular modulo < ae >,
it means that red(p) is a zerodivisor modulo < ae >. We proceed to show p is
not weakly primitive. Applying Lemma 2.4, there exists ǎ ∈ R with ǎ /∈< ae >
such that aǎ ∈< ae > for each a ∈ Cred(p).

Since p is weakly primitive, for any β ∈ R, if ae|βa for all a ∈ Cred(p), then
we have ae|β. We let β = ǎ, it is obvious that ae|βa since aǎ ∈< ae > for any
a ∈ Cred(p).

Thus we have ae|β = ǎ. This contradicts the fact ǎ /∈< ae >. Therefore, our
assumption that red(p) is not regular modulo < ae > is impossible. So red(p)
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is regular modulo < ae >. By virtue of Lemma 2.5, we get < p >=< p >: a∞
e .

This completes the proof. "#

Corollary 2.1. Let T be a regular set with |T| = 1 in K[x]. If T is primitive,
then < T >= sat(T).

We proceed to present a direct and simpler proof of the half of Theorem 2.3,
which is described by the following theorem.

Theorem 2.4. Let a regular set T = [f1, . . . , fs] in K[x] be primitive. Then
< T >= sat(T).

Proof: When s = 1, our result holds true by virtue of Corollary 2.1. Now assume
s ≥ 2. By induction,

sat(T{k−1}) =< T{k−1} >

holds, we proceed to show sat(T{k}) =< T{k} > holds too. To do so, we consider
p ∈ sat(T{k}) and prove p ∈< T{k} >. If lv(p) = yi with i > k, then p ∈ sat(T{k})
if and only if all coefficients of p w.r.t yi are in sat(T{k}). So we can concentrate
on the case p ∈ K[u, y1, . . . , yk].

Consider in K[u, y1, . . . , yk], by virtue of Theorem 2.2 we have

sat(T{k}) =< sat(T{k−1}), fk >: I∞k =< T{k−1}, fk >: I∞k =< T{k} >: I∞k

where Ik = lc(fk).
We claim that Ik is regular modulo < T{k} > in K[u, y1, . . . , yk]. In order

to show our claim, we consider fk ∈ R[yk] where R = K[u, y1, . . . , yk−1]/ <
T{k−1} >.

One can easily check that R is a Noetherian commutative ring with unity.
Since T is primitive, we know that fk is weakly primitive in R[yk]. Then we have
< fk >=< fk >: I∞k in R[yk] according to Proposition 2.1. By virtue of Lemma
2.1, Ik is regular modulo < fk > in R[yk].

In order to prove that Ik is regular modulo < T{k} >=< T{k−1} > + <
fk > in K[u, y1, . . . , yk], we first claim that Ik �= 0 modulo < T{k} >. Indeed,if
Ik ∈< T{k} >, then prem(Ik, T{k}) = prem(Ik, T{k−1}) = 0 by Theorem 2.1 and
the pseudo-division formula. Consequently, Ik ∈< T{k−1} > in K[u, y1, . . . , yk]
by virtue of sat(T{k−1}) =< T{k−1} > and the fact that T{k−1} is a regular
set. Thus Ik = 0 in R[yk]. Note that Ik is also regular modulo < T{k−1} > in
K[u, y1, . . . , yk−1] since T{k} is a regular set. This is impossible.

Secondly we are ready to show Ik is not a zerodivisor modulo < T{k} > in
R[yk]. Indeed, we suppose there exists some g ∈ K[u, y1, . . . , yk] which is not zero
modulo < T{k} >, so g �= 0 modulo < fk > in R[yk],such that Ikg ∈< T{k} >
in K[u, y1, . . . , yk]. We proceed to show that it is impossible.

Consider Ikg ∈< T{k} >⊆ sat(T{k}), we have prem(Ikg, T{k}) = 0 by Theo-
rem 2.1. By the pseudo-division formula, there exit a non-negative integer t ≥ 1
and q ∈ K[u, y1, . . . , yk] such that

It
kg = qfk + prem(Ikg, fk); prem(prem(Ikg, fk), T{k−1}) = 0.
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It follows from sat(T{k−1}) =< T{k−1} > that prem(Ikg, fk) = 0 in R[yk]. Thus,
we have It

kg = qfk in R[yk]. Hence It
kg is zero modulo < fk > in R[yk]. Note

that Ik is regular modulo < fk > in R[yk]. By virtue of Lemma 2.2, It
s is also

regular modulo < fk >. This contradicts the fact g �= 0 modulo < fk > in R[yk].
Thus Ik is regular modulo < T{k} >. It implies sat(T{k}) =< T{k} > in

K[u, y1, . . . , yk] by lemma 2.1. Consequently, sat(T{k}) =< T{k} >. This com-
pletes the proof. "#

In the following definitions, we try to give a stronger notion of primitivity of
polynomials and triangular sets. By the similar argument in other part proof of
Theorem 4.4 in [6], we will prove a generalizing result.

Definition 2.3. Let p ∈ R[x] with deg(p, x) ≥ 1. The polynomial p is C- weakly
primitive if either condition holds:

(i) ae is invertible in R if |Cp| = 1;
(ii) for any regular element a ∈ Cp and any β ∈ R, if a|βb for all b ∈ Cp \ {a},

we have a|β as well.

Definition 2.4. Let T = [f1, . . . , fs] ⊂ K[x1, . . . , xn] be a regular set. We say
T is C-primitive if for all 1 ≤ k ≤ s, fk is C-weakly primitive in R[yk] where
yk = lv(fk) and

R = K[u, y1, . . . , yk−1]/ < T{k−1} > .

Remark: It is obvious that T is primitive if it is C-primitive. But the inverse
does not hold true.

Proposition 2.2. Let R be a Noetherian commutative ring with unity and
p = a0+. . .+aex

e ∈ R[x] with e ≥ 1. If ae is regular in R and < p >=< p >: a∞
e ,

then p is C-weakly primitive.

Proof: We suppose that p is not C-weakly primitive. Then there exist some
regular element ai ∈ Cp and β ∈ R such that

∀b ∈ Cp\{ai}, ai|βb and ai � β.

Consequently, there exist dk ∈ R such that βak = aidk for any k �= i. Let

q = dex
e + . . . + di+1x

i+1 + βxi + di−1x
i−1 + . . . + d0,

it is obvious that βp = aiq. We claim aedk = akde for any k �= i. In fact, one can
see that aiaedk = aidkae = βakae and aiakde = aideak = βaeak. This implies
ai(aedk−akde) = 0 in R. Since ai is a regular element in R, we have aedk = akde

for any k �= i.
We proceed to show that q ∈< p >: a∞

e in R[x]. Indeed, it follows from

aeq = aedex
e + . . . + aedi+1x

i+1 + aeβxi + aedi−1x
i−1 + . . . + aed0

= aedex
e + . . . + ai+1dex

i+1 + deaix
i + deai−1x

i−1 + . . . + dea0 = dep

that q ∈< p >: a∞
e . Thus, q ∈< p >.
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It means there exists α ∈ R[x] such that q = αp in R[x]. By the construction
of q, deg(q, x) = deg(p, x). Hence α ∈ R and β = αai. This contradicts ai � β.
Thus p is C-weakly primitive. This completes the proof. "#

Theorem 2.5. Let a regular set T ⊂ K[x1, . . . , xn] such that < T >= sat(T).
Then T is C-primitive.

Proof: The theorem holds true when |T| = s = 1 by virtue of Proposition 2.2. We
only need to show that < T > is C-primitive when |T| = s > 1. By induction,
T{k−1} is C-primitive, we proceed to prove that T{k} is also C-primitive.

Let fk = aey
e
k + . . . + a0. We know sat(T{k−1}) =< T{k−1} >. Consider

fk ∈ R[yk] with R = K[u, y1, . . . , yk−1]/ < T{k−1} >. Note that ae is regular in
R. Furthermore, we have

< T{k} >= sat(T{k}) =< sat(T{k−1}), fk >: a∞
e =< T{k−1}, fk >: a∞

e .

So < fk >=< fk >: a∞
e in R[yk]. Thus fk is C-weakly primitive by virtue

of Proposition 2.2. Consequently, T{k} is also C-primitive. This completes the
proof. "#

The following assertion which is helpful for checking if < T > is not primitive,
is obvious by virtue of Theorem 2.3.

Corollary 2.2. Let a regular set T ⊂K[x1, . . . , xn]. Then < T > is primitive if
and only if it is C-primitive.

3 Geometric Properties

In this section, we consider K̃ as the complex number field, K̃n is also considered
as the topological space K̃n induced by the following metric, |z−z∗| = max{|x1−
x∗

1|, |x2 − x∗
2|, . . . , |xn − x∗

n|} for any z, z∗ ∈ K̃n. Let S be a nonempty subset
in K̃n, we write S

E
as the topological closure of S. The Zariski closure of S is

denoted by S. Given a triangular set T as (1) in K[x], for any z̄ = (ū, ȳ1, . . . , ȳs) ∈
Zero(T), we write z̄{j} for ū, ȳ1, . . . , ȳj or (ū, ȳ1, . . . , ȳj) with ū = z̄{0} and
z̄ = z̄{s}.

3.1 Preliminaries

Applying the analytic method, Zhang et al. in [21] establish the theory of the
weakly nondegenerate condition of regular sets in K[x]. Let T be a regular set,
a zero z0 ∈ Zero(T) is called a quasi-normal zero if z{i−1}

0 /∈ Zero(Cfi) for
any 1 ≤ i ≤ s, also said to be satisfying the nondegenerate condition (see [21]
for details). T is called a strong regular set if every zero of T is also a quasi-
normal zero. Referring to [12,13], we have Zero(T) = Zero(sat(T)) if T is a
strong regular set.

In AISC’06, the above theory is extended to triangular sets in general. The
next definition in [14] is an extension of the concept of quasi-normal zero of
regular sets.
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Definition 3.1. Let T = [f1, . . . , fs] be a triangular set in K[x]. A zero z0 ∈
Zero(T) is called a quasi-normal zero of T if for any 1 ≤ k ≤ s, either condition
holds:

a. lc(fk)(z{k−1}
0 ) �= 0;

b. z{k−1}
0 /∈ Zero(Cfk

) if res(lc(fk), T) �= 0.

Definition 3.2. Let T = [f1, . . . , fs] be a triangular set in K[x]. We call the
following set U-set of T, denoted by UT,

UT � {c| res(c, T) = 0, for c ∈ ini(T)}
∪{one c ∈ Cfk

| res(lc(fk), T{k−1}) �=0, Zero(T{k−1} ∪Cfk
) �=∅, for fk∈T}.

Remark: The definition is different from the one in [14] which has a theoretic
error which will lead to a mistaken result in some cases. In our improved defi-
nition of UT, the algorithms and results except Proposition 13 presented in [14]
hold true.

Example 3.1. Let a triangular set T = [f1, f2, f3 ] in K[x1, x2, x3, x4] under
x1 ≺ x2 ≺ x3 ≺ x4, where

f1 = −x2
2 + x1,

f2 = −x2x
3
3 + (2x1 − 1)x2

3 − x2(x1 − 2)x3 − x1,

f3 = (x2x3 + 1)x4 + x1x3 + x2.

By the above notations, we know

Cf1={−1, x1}, Cf2={−x2, 2x1−1,−x2(x1−2),−x1}, Cf3={x2x3+1, x1x3+x2}.

Since res(lc(f3), T) = 0, we have

UT = {lc(f3)} = {x2x3 + 1}.

For any triangular set T ⊂ K[x], we denote QnZero(T) by the set of all quasi-
normal zeros of T. The following results are presented in [14].

Theorem 3.1. For any triangular set T in K[x], we have

Zero(T/UT) ⊆ QnZero(T)
E ⊆ Zero(sat(T)).

3.2 Main Results

Lemma 3.1. Let a nonempty subset S ⊆ K̃n. Then, S = S
E

.

Proof: We denote the ideal Ideal(S) by the following set

{f ∈ K̃[x] : f(z) = 0 for all z ∈ S}.

We claim that Ideal(S) = Ideal(S
E

). It is obvious that Ideal(S) ⊇ Ideal(S
E

).



98 Y. Li

To get the reverse containment relation, suppose f ∈ Ideal(S). By the continu-
ity of the function determined by f , we know that f(z) = 0 for any z ∈ S

E
. Thus,

f ∈ Ideal(S
E

). Since f ∈ Ideal(S) is arbitrary, we have Ideal(S) ⊆ Ideal(S
E

).
This completes the proof of the assertion. "#

By the similar argument in the proof of Theorem 3.1 in [14], we can prove easily
the following result.

Lemma 3.2. For any triangular set T, we have

Zero(T/ini(T)) ⊆ Zero(T/UT)
E

.

Lemma 3.3. Let T be a triangular set and g a polynomial in K[x], we have

Zero(< T >: g∞) = Zero(T/{g}).

Proof: By the Ascending Chain Condition, one can easily see that there is an
integers m > 0 such that

< T >: g∞ =< T >: gm =< T >: gm+l,

for any integer l.
Applying Theorem 7 in [4], we have

Zero(< T >: gm) ⊃ Zero(< T >) \ Zero({gm}).

Note that Zero(T) = Zero(< T >). It implies that

Zero(< T >: gm) ⊃ Zero(T/{g}).

To get the reverse containment relation, suppose z ∈ Zero(< T >: gm). Equiva-
lently, if Hgt ∈< T > for some integer t ≥ m, then H(z) = 0.

Now let H ∈ Ideal(Zero(T/{g})). It is easy to see that Hgm vanishes on
Zero(T) or Zero(< T >). Thus, by Hilbert’s Nullstellensatz, Hgm ∈

√
< T >.

That is to say that there is some integer k0 > 0 such that

Hk0gmk0 ∈< T > .

Thus Hk0(z) = 0, so z ∈ Zero(T/{g}). This means that

Zero(< T >: gm) ⊂ Zero(T/{g}).

This completes the proof of the lemma. "#

We state the main result in this paper as the follows. From Lemmas 3.1 and 3.2
and Theorem 3.1 follow easily that the next result.

Theorem 3.2. For any triangular set T, we have

Zero(sat(T)) = Zero(< T >: U∞)

where U =
∏

u∈UT
u.
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Proof: From Lemmas 3.1 and 3.2 and Theorem 3.1 imply that

Zero(T/ini(T)) ⊆ Zero(T/UT)
E

= Zero(T/UT) ⊆ Zero(sat(T))=Zero(T/ini(T)).

Thus,
Zero(T/UT) = Zero(sat(T)).

Consequently, by virtue of Lemma 3.3, we complete the proof. "#

Corollary 3.1. For any triangular set T as the above,

Zero(sat(T)) = Zero(T/UT) = QnZero(T).

We are ready to show, to a certain extent, some relation between the primitivity
of T and UT. In order to prove the relation, the following lemma which is easy
to prove is useful.

Lemma 3.4. Let P be any polynomial set in K[x]. If < P >=< 1 > in K̃[x],
then < P >=< 1 > in K[x].

Theorem 3.5. Let T = [f1, . . . , fs] be a regular set in K[x]. If UT = ∅, then T
is primitive.

Proof: Let T = [f1, . . . , fs]. Since T is a regular set in K[x], by the definition of
UT, we have Zero(Cf1) = ∅ and Zero(Cfk

∪ T{k−1}) = ∅ for any k = 2, . . . , s if
s > 1. By virtue of Hilbert’s Nullstellensatz and lemma 3.4, we have < Cf1 >=
< 1 > and < T{k−1} ∪ Cfk

>=< 1 > in K[x] for any k = 2, . . . , s if s > 1.
When s = 1, let T = [f1(u, y1)] with f1 = a0 + . . . + aey

e
1 ∈ R[y1] with

R = K[u], we know ae is a regular element in K[u] since T is a regular set. It
follows from < Cf1 >=< 1 > that there exist bi ∈ R[y1] for i = 0, . . . , e.

a0b0 + a1b1 + . . . + ae−1be−1 + aebe = 1.

For any β ∈ R such that ae|βaj for j = 0, 1, . . . , e − 1, it follows from a0b0β +
a1b1β + . . . + ae−1be−1β + aebeβ = β that ae|β. So T is primitive.

Now assume s ≥ 2, we prove the theorem by induction. Suppose T{k−1} is
primitive. Similarly suppose fk = c0+ . . .+cey

e
k ∈ R[yk] with R = K[u, y1, . . . ,

yk−1]. We know ce is regular element in R since T{k} is a regular set. It follows
from < T{k−1} ∪ Cfk

>=< 1 > that there exist di ∈ R[yk] for i = 0, . . . , e.

c0d0 + c1d1 + . . . + ce−1de−1 + cede − 1 ∈< T{k−1} > .

Now consider in R[yk] with R = R/ < T{k−1}, so c0d0 + c1d1 + . . .+ ce−1de−1 +
cede = 1. For any β ∈ R such that we have ce|βcj for j = 0, 1, . . . , e−1, it follows
from c0d0β + c1d1β + . . . + ce−1de−1β + cedeβ = β that ce|β. So fk is primitive
in R[yk]. Hence T is primitive. This completes the proof of the theorem. "#
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Abstract. We present tropical games, a generalization of combinatorial
min-max games based on tropical algebras. Our model breaks the tradi-
tional symmetry of rational zero-sum games where players have exactly
opposed goals (min vs. max), is more widely applicable than min-max
and also supports a form of pruning, despite it being less effective than
α-β. Actually, min-max games may be seen as particular cases where
both the game and its dual are tropical: when the dual of a tropical
game is also tropical, the power of α-β is completely recovered. We for-
mally develop the model and prove that the tropical pruning strategy
is correct, then conclude by showing how the problem of approximated
parsing can be modeled as a tropical game, profiting from pruning.

Keywords: combinatorial game, search, alpha-beta pruning, rational
game, tropical algebra, tropical game, term, rewriting, logic, parsing.

1 Introduction

We are all familiar with games such as Chess or Checkers. Such games are
purely rational as they do not involve any element of chance; they are also
zero-sum, as the players’ interests are dual: what one “wins”, the other “loses” —
which is the origin of the min-max evaluation mechanism. The two fundamental
questions to be asked in a rational game are “Who will win?” and “How much
will she win?”. Answering such questions involves searching for a strategy trough
a (typically large) game tree. Some optimized search techniques were developed,
which in the case of combinatorial two-player games include the α-β pruning
technique [1,2]. α-β is not an approximated algorithm: its correctness relies on
the mutual distributive properties of min and max. In this work we explore the
implications of assuming only one player to be rational, breaking the symmetry
of the traditional “double-sided” rationality. Quite unsurprisingly our tropical
α-pruning depends on just one distributive property, a requirement satisfied by
tropical algebras (Section 3).

Following the style introduced by [3] and [4], we will distinguish two aspects
of two-player combinatorial games: a first one that we call syntactic, consisting
� This work is partially financed by Marie Curie action n. 29849 Websicola and

ANR-06-JCJC-0122.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 101–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



102 J.-V. Loddo and L. Saiu

in a description of the possible game positions and the valid moves leading from
a position to another; the game syntax is the formal equivalent of the intuitive
notion of the “game rules”. By contrast the semantic aspect is concerned about
the interpretation of the game according to the interests of the players, and ulti-
mately about the answer to the two fundamental questions above. Our semantics
will be based on tropical algebras, and as a consequence our technique is widely
applicable, relying as it does only on their comparatively weak hypotheses.

We formally define tropical α-pruning and prove its soundness, as our main
contribution (Section 4). A further contribution consists in our formalization of
game evaluation and tropical (and α-β) cuts as a small-step semantics, so that
proofs can reuse the results of term-rewriting theory.

Actually, our soundness result subsumes other works proving α-β’s soundness
over distributive lattices such as [4] and (later) [5], since distributive lattices are
bi-tropical structures (Definition 8).

We conclude by proposing the algorithm design style Choose-How-To-Divide
and Conquer meant for attacking even apparently unrelated search problems
as tropical games; we develop approximated parsing as one such problem by
showing how it profits from α-pruning (Section 5).

2 Combinatorial Game Syntax and Semantics

2.1 Syntax

We speak about “syntax”, hinting at formal grammars, in that some initial game
positions are given, together with some “rule” allowing to derive successive posi-
tions from those: in this way a game can be seen as the tree of all the possibilities
of playing it — the tree of all the possible matches.
Definition 1 (Syntax). A game syntax or arena is a triple S = (P, λ, succ),
where:
– P is the set of all game positions.
– the turn function λ : P → {P ,O}, says whose turn it is: P for “player” or
O for “opponent”.

– the successor function succ, taking a game position and returning all the
positions reachable with valid moves from there; succ : P → P∗.

Given S = (P, λ, succ), we define:
– the set of terminal positions PT = {π ∈ P | succ(π) = 〈〉}.
– the dual arena S⊥ = (P, λ⊥, succ), of course with λ⊥ : P → {P ,O}, where

for any π ∈ P we have λ⊥(π) �= λ(π).
– the move relation is the binary version of the succ relation: for all π, π′ ∈ P,

move(π, π′) iff π′ = πi for some i, where succ(π) = 〈π1...πn〉.
The arena is called alternate-turn iff move(π, π′) implies λ(π) �= λ(π′).

If move is Nötherian we speak about Nötherian or finite arena.
Remark 1 (Alternate-turn arenas). It is possible to systematically make a game
alternate-turn by “collapsing” all the sequences of consecutive moves of the same
player into single moves.
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One of the most important ideas in Game Theory is the strategy, containing a
plan to win the game — a player saying to herself “if this happens I should do
that, but if this other thing happens I should do that, and so on”. It should be
noticed that a strategy is only related to the syntactic part of a game, being
independent, per se, from the game evaluation. In particular, a strategy may
very well not be winning.

Definition 2 (Strategy). Let S = (P, λ, succ) be an arena, and π ∈ P be a
position. We define:

– the reachable positions from π as the right elements of the reflexive-transitive
closure of the relation succ: π↓ = succ∗(π);

– a global strategy σ, as a subset of the relation succ which is:
• deterministic in P positions:

for all π ∈ P where λ(π) = P, if succ(π) = 〈π1...πn〉 then σ(π) = 〈πi〉,
for some i such that 1 ≤ i ≤ n.

• complete in O positions:
for all π ∈ P where λ(π) = O, σ(π) = succ(π).

– a strategy for the initial position π is a global strategy for the restricted
arena Sπ = (π↓, λ|π↓, succ|π↓), where we indicate with f |D the restriction of
a function f to the set D.

2.2 Semantics

Let us assume a finite game with syntax S = (P, λ, succ). Traditionally the two
players have exactly opposed interests and we assume, by convention, that the
player P will try to minimize the payoff of the final position while the opponent
O will try to maximize it.

The ordinary way of evaluating such a finite game consists in labeling non-
terminal nodes with the functions min and max (according to the turn), and
terminal nodes with the payoff of the terminal position p(π). Such values are
then “propagated” back, applying the function at each node to its children’s
values. The final value at the root is called the game value: it says who wins and
how much, supposing both players to be rational.

Hence, assuming p : PT → Z in accord to the tradition, the game value
vp : P→ Z could be simply defined as a function of the initial position:

vp(π) =

⎧⎪⎨
⎪⎩

p(π), π ∈ PT

minn
i=1 vp(πi), succ(π) = 〈π1...πn〉, λ(π) = P

maxn
i=1 vp(πi), succ(π) = 〈π1...πn〉, λ(π) = O

This classical definition has the obvious defect of only supporting the function
min and max; often for resolving actual games the preferred structure is Z, Q
(possibly extended with −∞ and +∞), floating point numbers, or some sort
of tuples containing such structures on which a topological order is defined.
Hence, in order to be more general, let us define U to be any set closed over
two associative binary operations ⊕ and /, where ⊕ will be associated to the
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player and / to the opponent. Assuming p : P → U, the definition above would
become:

vp(π) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(π), π ∈ PT
n⊕

i=1

vp(πi), succ(π) = 〈π1...πn〉, λ(π) = P
n⊙

i=1

vp(πi), succ(π) = 〈π1...πn〉, λ(π) = O

The extended vp above is a step forward, but it still has the problem of only
being well-defined on finite games. We solve this problem by abandoning the
functional definition of vp altogether, and giving a small-step semantics instead.
Actually, this style will also be useful in Section 4.1 to prove the soundness of
our pruning technique.

Remark 2 (Invariance under alternate-turn transformation). It is easy to see
that the transformation hinted at in Remark 1 does not alter semantics, because
of the two associative properties.

Definition 3 (Game). A game is the triple G=(S,A, p), where S =(P, λ, succ)
is the syntax, A = (U,⊕,/) is an algebra with associative operations ⊕ and /,
and where p : PT → U is the payoff function.

Sometimes we informally refer to syntactic or semantic properties as if they
belonged to a game, for example by speaking about “Nötherian game” instead
of “Game with Nötherian syntax”.

Small-step Operational Semantics. In the following, we assume a game
G = (S,A, p), where S = (P, λ, succ) and A = (U,⊕,/).
The configurations of our system consist of (ground) terms of G, recursively
defined as: Ter(G) = P * U * ({

∑
,
∏
} × Ter(G)+):

– positions in P indicate game positions still to be expanded (if not terminal)
and evaluated (otherwise).

– values in U denote the value, already fully computed, of some sub-terms.
– a complex term such as

∑
〈t1...tn〉 or

∏
〈t1...tn〉 indicates a position at some

state of its evaluation;
∑

or
∏

holding the turn information, and t1...tn
representing the game subterms from that state on.

It is crucial not to mistake terms of G, which represent partially expanded game
trees, for game positions, which in practice will also tend to be structured sym-
bolic terms, but can be considered atomic at a high level: the rewrite rules shown
in the following work on Ter(G), not on P.

Syntactic conventions. We use (possibly with subscripts or primes) π to indicate
positions in P, s and t for generic terms, v for values in U, t and z for of terms in
Ter(G). Sequences are allowed to be empty, if not specified otherwise in a side
condition. Just to make the notation more compact we will write

∑
t instead of
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(
∑

, t) and
∏

t for (
∏

, t). We write Λ instead of either
∑

or
∏

, just to avoid
duplicating otherwise identical rules. Sequences are written with no commas,
and parentheses or brackets are used to group when needed.

π ∈ PT p(π) = v
[Payoff] π → v

succ(π) = t λ(π) = P
[P-expand] #t ≥ 1

π →
∑

t

succ(π) = t λ(π) = O
[O-expand] #t ≥ 1

π →
∏

t

hack[P-reduce] v1 ⊕ v2 = v∑
t〈v1 v2〉z →

∑
t〈v〉z

hack[O-reduce] v1 / v2 = v∏
t〈v1 v2〉z →

∏
t〈v〉z

hack[Return]
Λ〈v〉 → v

t→ t′[Context] for all contexts C
C[t]→c C[t′]

[Payoff] simply replaces a terminal position with its value in U, by means of
the payoff function. [P-expand] and [O-expand] expand a position, generating
its successors and keeping track of the turn, which will be important at reduc-
tion time. [P-reduce] and [O-reduce] combine two values into one, using ⊕ for
the player and / for the opponent. Notice that these two rules are sources of
non-determinism. [Return] unwraps a completely evaluated term containing a
single value. [Context] allows to use the other rules within nested terms (also
introducing non-determinism).

Notice that keeping the relation →c distinct from → allows us, when needed,
to see our semantics as a term rewriting system (TRS) [6].

Proposition 1. →c is strongly confluent.

Proof. For the purposes of this proof, we consider the small-step semantics as a
pure term-rewriting system, expressed in a slightly sugared notation. The system
does not need to be conditional (CTRS), since all the rule premises can in fact
be seen as structural constraints on syntactic constructors. ⊕ and / should also
be read as syntactic constructors, with their associative properties written as
rewrite rules. What is a variable in the rules becomes a (syntactic) variable
in the TRS; however, we will not exploit the full power of the formal system:
reductions will only be applied to ground terms1.
1 We do not need the full power of unification: from a programming point of view,

pattern matching as used in ML or Haskell is enough for our purposes.
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Our TRS is trivially left- and right-linear, as no variable occurs more than once
in each side of a rule. By showing that our system is also strongly closed, strong
confluence follows by Huet’s Lemma 3.2 in [7]: “If R is a left- and right-linear
strongly closed term rewriting system, →R is strongly confluent”.

In order to show that the system is strongly-closed, we have to show that for
every critical pair s, t there exist s′, t′ such that s →∗ t′ ←≡ t and t→∗ s′ ←≡ s
(as in [7] and [6]), where ←≡ is the reflexive closure of ←.

The left-hand side of [P-reduce] is
∑

t〈v1 v2〉z. When this rule is used to
generate a critical pair with any other rule, only a variable in t or in z can match,
with the whole left-hand side of the other rule. The resulting critical pair s, t
reaches confluence (to s′ = t′) in one step because redexes are non-overlapping.
The same holds for [O-reduce].

The only rule pairs candidate for overlapping are [P-reduce] with itself, and
[O-reduce] with itself; we only show the first one. The only interesting case of
overlapping is the term family

∑
t〈v1 v2 v3〉z, generating the critical pair s, t.

Notice that s′ → t′ and vice-versa because of the associativity of ⊕:∑
t〈v1 v2 v3〉z
↙ ↘

s =
∑

t〈(v1 ⊕ v2)v3〉z
∑

t〈v1(v2 ⊕ v3)〉z = t
↓ ↓

s′ =
∑

t〈(v1 ⊕ v2)⊕ v3〉z �
∑

t〈v1 ⊕ (v2 ⊕ v3)〉z = t′ "#

Definition 4 (Game tree). Let � be the sub-rewrite system of →c, made
only by the rules [P-expand], [O-expand] and [Context]: given an initial position
π0 ∈ P, the set of game tree prefixes from π0 is the set Tπ0 = {t | π0 �

∗ t}. The
game tree, if it exists, is the tree tπ0 ∈ Tπ0 whose positions are all terminal.

The game tree tπ0 is well-defined: when it exists it is unique. Actually, the TRS
defining �

∗ is non-ambiguous (there is no overlap among any reduction rules) and
left-linear: such aTRS is called orthogonal, and any orthogonalTRS is confluent [8].

Proposition 2. →c is normalizing for any Nötherian game.

Proof. Let a game G = (S,A, p) where S = (P, λ, succ) and A = (U,⊕,/) be
given. We prove normalization by exhibiting a reduction order < compatible
with our rules [6].

Let us define a weight function w : P → N to be a particular instance of
the higher-order function vp̄ : P → U, where p̄(π) = 2 for any π ∈ PT and⊕n

i=1 xi =
⊙n

i=1 xi = 2 +
∑n

i=1 xi for any x ∈ N∗. Intuitively, w returns 2 times
the number of nodes in the game tree for Nötherian games.

Let f : Ter(G)→ N be:

f(π) = w(π), π ∈ P
f(v) = 1, v ∈ U
f(Λ〈t1...tn〉) = 1 +

∑n
i=1 f(ti)

In the formula above and in the rest of this proof
∑

represents the sum operation
over N. We define our order on terms by using the interpretation f on >N: by
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definition, let t0 > t1 iff f(t0) >N f(t1). The order > is trivially stable, as our
terms do not contain variables. > is also monotonic (f is increasing because
+ : N × N → N is increasing), strict (>N is strict) and well-founded (>N is
well-founded). Hence, > is a reduction order.

In order to prove compatibility we show that for every rule l → r we have
l > r, which by definition is equivalent to f(l) >N f(r). All equalities follow from
definitions or trivial algebraic manipulations:

– [Payoff]: f(π) = w(π) = p̄(π) = 2 >N 1 = f(v).
– [P-expand], [O-expand]: f(π) = w(π) = 2+

∑n
i=1 w(πi) >N 1+

∑n
i=1 w(πi) =

1 +
∑n

i=1 f(ti) = f(Λ t).

– [P-reduce], [O-reduce]: f(Λ t〈v1v2〉z)=
∑#t

i=1 f(ti)+f(v1)+f(v2)+
∑#z

i=1 f(zi)
=
∑#t

i=1 f(ti) + 1 + 1 +
∑#z

i=1 f(zi) >N

∑#t
i=1 f(ti) + 1 +

∑#z
i=1 f(zi) =

f(Λ t〈v〉z).
– [Return]: f(Λ〈v〉) = 1 + 1 >N 1 = f(v). "#

Intuitively, if a term converges then its sub-terms also converge; said otherwise if
a term converges in a context, then it must also converge in the trivial (empty)
context. This is true because of the non-erasing nature of our system, differ-
ent from, for example, the λ-calculus having actual reduction steps [8]. More
formally:

Lemma 1 (Sub-term normalization). Given a game G = (S,A, p) where
A = (U,⊕,/), for any term t ∈ Ter(G) and any context C, if there exists v ∈ U
such that C[t] →∗

c v then there exists v′ ∈ U such that t→∗
c v′.

Proof. By induction over the derivation length n of C[t] →∗
c v. We look at the

possible shape of the premise of the [Context] rule, s → s′.

– Base case, n = 1: C[t] →c v. The only applicable rules are [Payoff] and
[Return]: in the case of [Payoff], C[t] = t; in the case of [Return], t = v. In
either case, t→∗

c v = v′.
– Recursive case n ⇒ n + 1: t0 = C[t] →c t1 →∗

c v. The inductive hypothesis
is that for any term t′ and context C′ if C′[t′]→∗

c v in n or fewer steps, then
t′ →∗

c v′. Three cases:
• s and t are disjoint sub-terms within C. Since the system is non-erasing

t has not been erased, i.e. t1 = C′[t]; for inductive hypothesis t →∗
c v′.

• s contains t. s → s′ may have as its premise [Return], in which case
s = Λ〈v〉 and t = v. Otherwise the premise may be [P-Reduce] or [O-
Reduce]: either t is one of the values, or it matches one of the variables,
in which case there exists a context C′ such that t1 = C′[t]; then the
inductive hypothesis applies.

• t contains s. t = C′[s], hence by definition of →c we have that t can
turn into C′[s′] = t′. There exists a context C′′ where C[s] = C′′[C′[s]],
hence t1 = C′′[C′[s′]]. By induction hypothesis t′ = C′[s′]→∗

c v′. "#

Normalization and confluence justify our re-definition of the game value vp as
the transitive closure of the transition relation →c:
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Definition 5 (Game Value). Let a game, an initial position π and a value v
be given; we say that the game value from π is v (and we write vp(π) = v) if and
only if π →∗

c v.

3 α-β Pruning

The α-β algorithm [1,2] is a method for computing the exact value of a min-max
combinatorial game without exhaustively visiting all game positions.

The α-β algorithm is traditionally presented as a recursive function written
in imperative style (see Figure 1): the function alpha_beta analyzes a game
position π ∈ P with two additional parameters, α and β, each one denoting a
sort of threshold not to be overstepped during the incremental computation of
the value of P. Whenever the threshold is past the evaluation of an entire subtree
is aborted, as it can be proven that it will not contribute to the result.

The correctness of α-β relies on the algebraic properties of the min and max
functions, notably their mutual distributive laws — something we can not count
on under our weaker hypotheses on ⊕ and / [4,5,3].

1 function alpha_beta(π : P; α, β : Z ) : Z
2 i f π ∈ PT then
3 return p(π)
4 π1...πn := succ(π) # n ≥ 1
5 i f λ(π) = P then
6 v := α
7 for i from 1 to n
8 and while β <Z v do
9 v := min{v, alpha_beta(πi, v, β)}

10 else # λ(π) = O
11 v := β
12 for i from 1 to n
13 and while v <Z α do
14 v := max{v, alpha_beta(πi, α, v)}
15 return v

function tropical(π : P; α : U ) : U
i f π ∈ PT then

return p(π)
π1...πn := succ(π) # n ≥ 1
i f λ(π) = P then

v := α
for i from 1 to n do

# do not prune at P’s level
v := v ⊕ tropical(πi, v)

else # λ(π) = O
v := tropical(π1, α) # No 1U

for i from 2 to n
and while α ⊕ v �= α do

v := v � tropical(πi, α)
return v

Fig. 1. Pruning algorithms: traditional α-β pruning vs. tropical α-pruning. Notice that
the tropical version has the first iteration of the second loop unrolled, in order not to
depend on the existence of a neutral element for �.

Going back to our game semantics presentation we can model the α-β’s be-
havior by adding four more rules — two per player:

hack[P-will] ∑
〈α [
∏
〈β (
∑

t1)〉 t2]〉 t3 →
∑
〈α [
∏
〈β (
∑
〈α〉t1)〉 t2]〉 t3

hack[O-will] ∏〈β [
∑
〈α (
∏

t1)〉 t2]〉 t3 →
∏
〈β [
∑
〈α (
∏
〈β〉t1)〉 t2]〉 t3

α⊕ β = α
[P-cut] ∑

〈α (
∏
〈β〉t1)〉 t2 →

∑
〈α〉t2

β / α = β
[O-cut] ∏

〈β (
∑
〈α〉t1)〉 t2 →

∏
〈β〉t2
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The initialization of v at line 6 should be read as a first “virtual” move of the
player, whose evaluation is the value α inherited from an ancestor (the grandpar-
ent in an alternate-turn game). This explains the rationale of [P-will]2: whenever
subtrees are nested with turns P-O-P , a grandparent may cross two levels and
“give” its grandchild its current accumulator as an initialization value. Of course
line 10 is the dual version for the opponent and [O-will].

[P-cut] and [O-cut] are a simple reformulation of the cut conditions at lines
7 and 11, where the explicit order <Z disappears3 from the condition, now ex-
pressed as an equality constraint in the rule premise: α ⊕ β = α represents the
fact that the player would prefer α over β. Dually, β / α = β means that the
opponent would prefer β over α.

Remark 3 (Non-alternate turn games). Notice that the cut rules can just fire in
alternate-turn contexts: this choice simplifies our exposition, but does not limit
generality: see Remarks 1 and 2.

The presence of two exactly symmetrical behaviors is quite evident in either
presentation; yet what we are interested in showing now is the fact that such
duality is quite incidental: it occurs in a natural way in actual two-player games,
yet many more search problems lend themselves to be modeled as games despite
lacking an intrinsic symmetry.

We can see α-β as the union of two separate techniques applied at the same
time, breaking the algebraic symmetry of the player/opponent operations: in
the following we are going to eliminate the rules [O-will] and [O-cut], or equiv-
alently to turn alpha_beta into tropical (see Figure 1), exploiting the weaker
properties of tropical algebras which only allow one threshold α.

4 Tropical Games

As we are dealing with a relatively young research topic, it is not surprising that
the formalization of tropical algebras has not yet crystallized into a standard
form. And since several details differ among the various presentations, we have
to provide our own definition:

Definition 6 (Tropical Algebra). An algebra (U,⊕,/) is called a tropical
algebra if it satisfies the following properties for any a, b and c in U:

(i) Associativity of ⊕: a⊕ (b⊕ c) = (a⊕ b)⊕ c

(ii) Associativity of /: a/ (b/ c) = (a/ b)/ c

(iii) Left-distributivity of / with respect to ⊕: a/ (b⊕ c) = (a/ b)⊕ (a/ c)
(iv) Right-distributivity of / with respect to ⊕: (a⊕ b)/ c = (a/ c)⊕ (b/ c)

2 “Will” should be interpreted as “bequeath”, in the sense of leaving something as
inheritance to a descendent.

3 This is customary with lattices, when an order is derived from a least-upper-bound
or greatest-lower-bound operation.
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Some particular choices of U, ⊕ and / are widely used: the min-plus algebra is
obtained by defining U � R ∪ {+∞}, a ⊕ b � min{a, b} and, a little counter-
intuitively4, a/ b � a + b.

Since U and / can also be usefully instantiated in other ways, we will not
simply adopt a min-plus algebra; anyway in practice we will also choose ⊕ to
be a minimum on U, which in practice will have a total order. This seems to
be the only reasonable choice for the applications5 and helps to understand the
idea, yet nothing in the theory depends on the existence of the order. Again, in
practice, ⊕ will return one of its parameters, so if needed we will always be able
to trivially define a total order as x ≤ y iff x ⊕ y = x, for any x and y in U.
⊕ and / will also tend to be commutative in practice, making one of the two
distributive properties trivial.

We will not make any of the supplementary hypotheses above; on the other
hand, we will require the following rationality hypothesis6:

Definition 7 (Rationality). Let (U,⊕,/) be a tropical algebra such that 0 ∈ U
is a neutral element for ⊕ and 1 ∈ U is a neutral element for /7. We call the
algebra rational if, for any x, y, z ∈ U we have x⊕ (y / x/ z) = x.

Intuitively, the opponent accumulates costs with /, “worsening” the game value
for the player: the player will always choose just x over x “worsened” by some-
thing else. Notice that the notion of rationality for two-player games in Game
Theory also includes the dual condition x/ (y⊕x⊕ z) = x; such condition does
not hold in general for tropical games.

Definition 8 (Tropical Game, Tropical Trees). A tropical game G = (S,A,
p) is simply a game based on a rational tropical algebra A. We call tropical trees
all the game trees of a tropical game, and tropical pruning the α-pruning of a
tropical tree. A bi-tropical game is a tropical game whose dual G⊥ = (S⊥,A⊥, p)
is also tropical, where A⊥ = (U,/,⊕) if A = (U,⊕,/).

4.1 Soundness of Tropical Pruning

Proposition 3 (Insertion property). Let (U,⊕,/) be a rational tropical al-
gebra. Then for any x, y, α, β ∈ U we have α⊕(β/x/y) = α⊕(β/(α⊕x)/y).

Proof (Using associativity implicitly). α⊕(β/(α⊕x)/y) = {right-distributivity}
α⊕(β/((α/y)⊕(x/y))) = {left-distributivity} (α⊕(β/α/y)⊕(β/x/y) =
{rationality} α⊕ (β / x/ y) "#
4 The particular symbols used for indicating ⊕ and � are justified by the analogy with

+ and · in how the distributive law works.
5 Logic programming is an example of an interesting problem lending itself to be

interpreted as a combinatorial game on a universe with no total order [3,4]. Anyway
the underlying game is a symmetrical inf-sup rather than simply tropical.

6 In lattice theory, the rationality hypothesis is one of the absorption identities.
7 The existence of neutral elements is not strictly necessary, but it simplifies many

statements and proofs; without them several results should be given in both “left”
and “right” forms.
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The insertion property is the semantic counterpart of the rule [P-will]: it explains
why we can “transfer” α down in the tree (or more operationally, why we can
“start” from the same α when choosing with ⊕ two plies below), without affecting
the game value.

Definition 9 (P-irrelevance). Let (U,⊕,/) be a rational tropical algebra, and
let α, β ∈ U. Then we call x ∈ U P-irrelevant with respect to α and β if α ⊕
(β / x) = α.

Intuitively, as the value of an opponent-level tree, x can’t affect the value of the
game because the player will not give the opponent the opportunity to be in
that situation: in other word, the current optimal move for the player doesn’t
change because of x.
Lemma 2 (P-irrelevance). Let (U,⊕,/) be a rational tropical algebra, and
α, β ∈ U. If α⊕ β = α then any x ∈ U is P-irrelevant with respect to α and β.

Proof. α⊕ (β / x) = {hypothesis} (α⊕ β)⊕ (β / x) = {associativity} α⊕ (β ⊕
(β / x)) = {rationality} α⊕ β = {hypothesis} α "#
Definition 10 (Simulation). Given a tropical game, we say that a term t′

simulates a term t, and we write t ≤ t′, if t→∗
c v ⇒ t′ →∗

c v.

Lemma 3 (Tropical P-will simulation). Given a tropical game G = (S,A, p)
where A = (U,⊕,/), for any term sequence α, β ∈ U, t0, t1, t2 ∈ Ter(G)∗∑

〈α [
∏
〈β (
∑

t0)〉 t1]〉 t2 ≤
∑
〈α [
∏
〈β (
∑
〈α〉 t0)〉 t1]〉 t2

Proof. By the Sub-term normalization Lemma, if t converges there will exist
some value sequences v0, v1, v2 ∈ U such that t0 →∗ v0, t1 →∗ v1, t2 →∗ v2; let
us call v0 the result of

⊕
v0, v1 the result of

⊙
v1 and v2 the result of

⊕
v2.

Then,∑
〈α [
∏
〈β (
∑

t0)〉 t1]〉 t2
∑
〈α [
∏
〈β (
∑
〈α〉 t0)〉 t1]〉 t2

↓∗ ↓∗∑
〈α [
∏
〈β v0 v1〉] v2〉

∑
〈α [
∏
〈β (α ⊕ v0) v1〉] v2〉

↓∗ {Insertion} ↓∗
α⊕ [β / v0 / v1]⊕ v2 = α⊕ [β / (α ⊕ v0)/ v1]⊕ v2

In the reductions above we implicitly assume that some sequences are non-
empty; the proof trivially generalizes to empty t1 and t2 by using neutral
elements. "#
Lemma 4 (Tropical cut simulation). Given a tropical game G = (S,A, p)
where A = (U,⊕,/), for any term sequence α, β ∈ U, t0, t1 ∈ Ter(G)∗ we have
that if α⊕ β = α, then

∑
〈α (
∏
〈β〉 t0)〉 t1 ≤

∑
〈α〉 t1.

Proof. Just like Lemma 3, with P-irrelevance at the end. "#
Theorem 1 (Tropical rule soundness). Adding the rules [P-will] and [P-
cut] “does not alter semantics”, i.e. if a term t converges to a value v in a
system without the two new rules, it is guaranteed to have a reduction sequence
converging to v also in the extended system. "#
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5 Choose-How-To-Divide and Conquer

According to the classical Divide and Conquer technique a problem can be di-
vided into subproblems, each of which will be solved recursively until a minimal-
size instance is found; sub-solutions will then be recomposed.

In the traditional Divide and Conquer style, each division choice is final: it is
considered taken once and for all, and cannot be undone. By contrast we present
an alternative model based on tropical games. In the Choose-How-To-Divide and
Conquer style we work with non-deterministic choices in a solution space, using
a quality criterion to be optimized and some way of “combining” sub-solutions.

Of course many nondeterministic algorithms can be expressed this way: the
challenge is finding a suitable mapping to the tropical game concepts, in term
of both syntax and semantics (with the required properties). The problem must
have both a suitable syntactic structure, and a semantic structure with the
required properties.

The action of choosing a division corresponds to a player node where the ⊕
function (typically a minimization) returns the “best” option; the points where
sub-solutions have their cost accumulated (often something similar to a sum,
intuitively “opposed” to ⊕) become opponent nodes where / combines the values
of a subtree sequence into a single result.

Tropical trees have the desirable property of supporting α-pruning, with the
potential of significantly cutting down the search space. The more [P-will] and
[P-cut] can fire, the more pruning is profitable: hence the problem should be rep-
resented as a tropical game having alternate turns and branching factor greater
than 2 for O at least “often enough”.

Search problems abound in Artificial Intelligence, and in particular we sus-
pect that more symbolic computation problems than one might expect can be
modeled this way. We now proceed to show an unusual application of Choose-
How-To-Divide and Conquer.

5.1 Parsing as a Tropical Game

Let G be a given context-free grammar, defined over an alphabet of terminals
A 2 a and nonterminals N 2 X . For simplicity8 let it have no ε-production,
nor any productions with two consecutive nonterminals or a single nontermi-
nal alone in the right-hand side. Right-hand sides will hence be of the form
[a1]X1a2X2...anXn[an+1], with n ≥ 0 and at least one ai. Given a string of
terminals s ∈ A+ our problem is finding the “best” parse tree of s in G ; when
s contains some errors our “best” solution just ends up being the least wrong,
according to some metric; just to keep things simple in this example out metric
to minimize will be the total size of the substrings which cannot be matched, in
terminals. Sometimes we may wish to have the set of all best parses, instead of
being content with just one optimal solution.
8 Such restrictions can be lifted at the cost of some complexity, but supporting a larger

class of grammars would be quite inessential for our demonstrative purposes.
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Syntax. The set of game positions is defined as P = (A∗×N)* (A∗×N)∗, and
the turn function is λ(s, X) = P , λ((s1, X1)...(sk, Xk)) = O. These definitions
become easy to understand once the successor function succ is examined.

A player position has the form πP = (s, X), since the player has to parse a
string s with a nonterminal X . It has to choose a production X ::= [a1]X1a2X2...
anXn[an+1], and match the terminals ai with the terminals in s, in the right or-
der. Each possible match of all terminals, for each production of X , is a valid
player move generating strictly smaller subproblems for the opponent: the non-
terminals Xi “in between” the matched terminals will have to be matched to
substrings of s in the opponent position πO = (s1, X1)...(s1, Xn), for some n ≥ 0.
If no match exists with any production then πP is terminal.

In an opponent position πO = (s1, X1)...(s1, Xn) the opponent has always
exactly n moves: the opponent will give the player each pair (si, Xi) to solve
“one at the time”. For this reason the successor of an opponent position is equal
to the position itself: it is the sequence of the elements of πO, itself a sequence.
An opponent position πO is terminal when it is empty.

Figure 2 contains a practical example.

E ::= n
E ::= v
E ::= ( E )
E ::= let v = E in E
E ::= if E then E else E
E ::= E = E
E ::= E + E
E ::= E ∗ E

(”1 + 2 + 3”, E)

(”1”, E) (”2 + 3”, E) (”1 + 2”, E) (”3”, E)

Fig. 2. We use the simple grammar G above, with an intentionally high level of am-
biguity, to parse the string "1 + 2 + 3" with E as the start symbol. Circles represent∑

nodes, squares are for
∏

.

Semantics. We use a min-plus algebra for A = (U,⊕,/): we simply define
U � N; we take ⊕ � min, since we want as few errors as possible; and finally
/ � +: the number of total errors in the parse tree is equal to the sum of the
number of errors in all subtrees.

The payoff p(π) is defined as the length in characters of the input string for
player positions (notice that the payoff is only defined on terminal positions,
so such a length is actually the number of unmatched characters), and zero for
opponent positions (if πO = 〈〉 then there are no errors to accumulate: at the
level above, the player matched the whole string): p(s, X) � #s, p(〈〉) � 0.

Experiments. We implemented a prototype system9 in ML supporting the
grammar of Figure 2, which can be configured to do a simple exhaustive search
9 The prototype is freely available under the GNU GPL license at the address
http://www-lipn.univ-paris13.fr/~loddo/aisc-2010

http://www-lipn.univ-paris13.fr/~loddo/aisc-2010


114 J.-V. Loddo and L. Saiu

or perform tropical α-pruning. The prototype supports two policies: first-minimal
(henceforth FM) searches for only one optimal strategy at P ’s levels, and all-
minimals (henceforth AM) generates a sequence of strategies with non-increasing
cost.

Just as illustrative examples, we proceed to show our system behavior on some
input strings belonging to different categories.

Non-ambiguous input: the input string "let x = 42 in x + if 84=42 then
55 else 77" is parsable in a unique way, so the FM policy is clearly the right
choice. Compared to an exhaustive search the α-pruning FM version avoids 98%
of the recursive calls (460 vs 28473) and its completion time is 4%. By setting
the policy to AM the number of recursive call grows a little, from 460 to 671
(still avoiding 97% of the calls).

Ambiguous input: with the input string "let x = 84 = 42 = 21 in 1 + 2 *
3", which is parsable in several ways, the the α-pruning FM version avoids 99%
of the recursive calls (260 vs 61980), and the run time is 1% of the exhaustive-
search version time. The α-pruning AM version still avoids 96% of the recursive
calls (2148 vs 61980), and its run time is 3%.

“Wrong” input: with the input string "if if if true then true else false
then 10 else (1+(2+)+3)", containing errors, the α-pruning FM version avoids
98% of the recursive calls (9640 vs 494344) and its run time is 3%, while the AM
version avoids 97% of the recursive calls (13820 vs 494344); the AM version’s run
time is reduced to 3%. The best strategy has value 6, corresponding to the size
of the substring "if true" (blanks are not counted) added to the size (0) of the
empty substring delimited by the tokens "+" and ")". The α-pruning algorithm
has localized errors, guessing that the user should fix her string by replacing "if
true" with something correct and writing something correct between "+" and
")" — having the size of the unmatched substrings as the payoff function yields
this “smallest-incorrect-string” heuristic. Of course other more elaborate criteria
are also possible, such as “minimum number of errors”.

Memoization: on a completely orthogonal axis, the implementation may be con-
figured to perform memoization: when memoization is turned on all the already
solved positions are cached, so that they are not computed more than once.
We have compared a memoizing version of our tropical-α-pruning parser with
a memoizing version performing exhaustive search. In the first case above, the
string "let x = 42 in x + if 84=42 then 55 else 77" is now parsed with
131 calls instead of 460, again saving 98% of the calls (131 vs 7295) and cutting
the run time to 1%. "let x = 84 = 42 = 21 in 1 + 2 * 3" is now parsed
with 72 calls instead of 260, avoiding 99% of the calls (72 vs 14443) and reduc-
ing the run time to 7%. The string "if if if true then true else false
then 10 else (1+(2+)+3)" is parsed with 1206 calls instead of 9640, avoiding
96% of calls (1206 vs 36575) and cutting the completion time to 10%.

At least in our small test cases, tropical α-pruning and memoization work
well together: enabling either one does not significantly lessen the efficacy of the
other.
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6 Conclusions and Future Work

We have introduced and formally proved correct tropical α-pruning, a variant of
α-β-pruning applicable to the tropical games underlying Choose-How-To-Divide
and Conquer problems. As a practical example of the technique we have shown
how the problem of approximated parsing and error localization can be mod-
eled as a game, and how our pruning technique can dramatically improve its
efficiency; yet an asymptotic measure of the visited node reduction would be a
worthy development.

We suspect that many more problems can be formalized as tropical games,
and the problem of parsing itself can also definitely be attacked in a more gen-
eral way, lifting our restrictions on the grammar; tropical parsing might prove
to be particularly suitable for natural language problems, with their inherent
ambiguity.

The correctness and efficiency of parallel tropical α-pruning implementations
would be particularly interesting to study.

Acknowledgments. Christophe Fouqueré first recognized tropical algebras in
the properties required by our formalization.
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From Matrix Interpretations over the Rationals
to Matrix Interpretations over the Naturals

Salvador Lucas
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Abstract. Matrix interpretations generalize linear polynomial interpre-
tations and have been proved useful in the implementation of tools for
automatically proving termination of Term Rewriting Systems. In view of
the successful use of rational coefficients in polynomial interpretations,
we have recently generalized traditional matrix interpretations (using
natural numbers in the matrix entries) to incorporate real numbers. How-
ever, existing results which formally prove that polynomials over the reals
are more powerful than polynomials over the naturals for proving termi-
nation of rewrite systems failed to be extended to matrix interpretations.
In this paper we get deeper into this problem. We show that, under some
conditions, it is possible to transform a matrix interpretation over the
rationals satisfying a set of symbolic constraints into a matrix interpre-
tation over the naturals (using bigger matrices) which still satisfies the
constraints.

Keywords: Matrix and Polynomial Interpretations, Program Analysis,
Termination.

1 Introduction

Constraint solving is an essential technique for the implementation of automatic
verification systems. Many verification problems can be expressed as sets of
symbolic constraints which have to be tested for satisfaction or even solved to
give some explicit solution certifying their satisfaction. For instance, termina-
tion problems are often expressed as conjunctions of weak or strict symbolic
constraints like e � e′ or e � e′ between expressions e and e′ coming from (parts
of) the programs [6]. Automatic termination tools have to check these constraints
and eventually provide an appropriate certificate. A standard approach is using
algebraic interpretations which translate the symbolic constraints into some kind
of arithmetic constraints.

Example 1. Consider the following Term Rewriting System (TRS) R [1,2]:

f(f(X)) → f(g(f(X))) (1)

f(g(f(X))) → X (2)

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 116–131, 2010.
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A proof of termination with dependency pairs can be easily obtained as follows
[3]: Consider the following rules (called dependency pairs) associated to R:

F (f(X)) → F (g(f(X))) (3)

F (f(X)) → F (X) (4)

The following polynomial intepretation with rational coefficients

[f ](x) = 2x + 2 [g](x) = 1
2
x + 1

2
[F ](x) = x

can be used to prove termination of R by showing that [l] ≥ [r] for the rules
(1), (2) (where [l] and [r] are the interpretations of terms l and r which is obtained
by structural induction), and [u] > [v] for the dependency pairs (3), (4).

A recent and fruitful approach is using matrix interpretations [10], where the
k-ary symbols f are given parametric matrix functions [f ], e.g., F1x1 + · · · +
Fkxk + F0, where the Fi’s are (square) matrices of some fixed dimension n and
F0 is an n-tuple. The variables x1, . . . , xk are intended to range on n-tuples as
well. In [10], only natural numbers are used both in matrices and n-tuples.

Example 2. The following matrix interpretation over the naturals

[f ](x) =
(

1 1
1 1

)
x +
(

1
1

)
[g](x) =

(
0 1
0 0

)
x [F ](x) =

(
1 1
0 1

)
x

can also be used for proving termination ofR in Example 1. Both interpretations
have been automatically obtained by using mu-term [13].

In [1,2], Endrullis et al.’s framework was extended to matrices containing real
numbers in the entries. The adaptation was motivated by a number of recent
theoretical works and experimental evaluations showing that polynomial inter-
pretations over the rationals can be advantageously used instead of polynomial
interpretations over the naturals [5,11,14]. In [11], syntactic conditions ensuring
that, when dealing with linear polynomial interpretations, real coefficients must
be used for addressing the corresponding termination problem, were given for
the first time. The extension of these results to matrix interpretations over the
reals failed [1,2].

Thus, the following question arises: Are rational numbers somehow unnec-
essary when dealing with matrix interpretations? By examining the proofs of
termination contributed to the International Competition on Termination1 by
tools like Jambox [9], which makes extensive use of matrix interpretations over
the naturals, and comparing them to the corresponding ones generated by tools
like mu-term, which emphasizes the use of polynomials over the rationals [15],
one may notice that, in many cases, proofs of termination with polynomials over
the rationals somehow correspond to proofs using matrix intepretations whose
matrices have specific shapes. Examples 1 and 2 illustrate this connection, which
we substantiate in this paper: the bigger are the values of the (possibly rational)
coefficients in the polynomial interpretation the more non-null entries are in the
1 See http://termcomp.uibk.ac.at/termcomp/

http://termcomp.uibk.ac.at/termcomp/
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corresponding matrix coefficients. In this paper we investigate this phenomenon.
In Section 2 we develop a notion of numeric matrix representation which permits
a representation of a natural number as a matrix of (smaller) natural numbers.
This representation preserves the usual arithmetics of natural numbers (addi-
tion and product). Therefore, we can think of such matrices as having a value;
the value of the number from which they were obtained. Then, in Section 3 we
show how to extend this process to transform a matrix of natural numbers into
a (bigger) matrix of (smaller) natural numbers. As a consequence, we prove that
every matrix of natural numbers can be represented as a bit matrix with entries
in {0, 1} which still preserves its ‘value’ and arithmetic behavior. In Section 4,
we address the problem of representing arbitrary rational numbers as matrices
of integer numbers. We argue that this is possible only for finite subsets of ratio-
nal numbers. We investigate the use of nilpotent matrices (i.e., square matrices
which become null after a finite number of selfproducts) as suitable devices for
achieving this. In Section 5, we introduce a new generalization of matrix inter-
pretations, which we call block-based matrix interpretations. Essentially, we view
a matrix as structured into blocks of (sums of) constant or scalar matrices. In
Section 6, we investigate how the satisfaction of different kind of constraints
is preserved under the matrix transformations investigated in the previous sec-
tions. As a consequence of our results, we prove that TRSs which can be proved
terminating by using matrix interpretations over the naturals can also be proved
terminating by using a matrix interpretation based on bit matrices. Furthermore,
we show that, under some conditions, proofs of termination which are carried out
by polynomial or matrix intepretations over the rationals can also be obtained
by using matrix interpretations over the naturals (like in Example 2). Section 7
summarizes our contribution and concludes.

2 Numbers as Matrices

In the following, we use the standard notations and terminology for matrices
[12,17,18]. Given p, q ∈ N>0 and a set of numbers N (usually R, Q, or N), we
write A ∈ Np×q to say that A is a matrix of p rows and q columns with entries
Aij ∈ N (a p× q-matrix for short). If p = q, then A is a square matrix.

We investigate the representation of (rational) numbers as matrices of integer
numbers satisfying some structural properties. Of course, we want to ensure that
the representation preserves (part of) the algebraic structure of the considered
numeric domain, in such a way that, for instance, the arithmetic operations and
orderings among numbers (of the considered kind) can be implemented by using
matrix operations and orderings.

We view a rational number as a product p 1
q for an integer number p ∈ Z

and a positive natural number q ∈ N>0. First, we formalize a generic frame-
work for representing real numbers as matrices: mappings μ : R → Rm×n and
ρ : Rm×n → R provide a representation of real numbers as matrices and vice
versa.
Definition 1 (Numeric matrix representation). Let N ⊆ R be a subset of
real numbers, p, q ∈ N>0, and M ⊆ Rp×q be a subset of matrices. A numeric
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matrix representation is a pair (μ, ρ) of mappings μ : N →M (called a numeric
representation) and ρ : M → N (called a matrix valuation) such that ρ◦μ = id.

Let 1p×q be the p × q-matrix all whose entries contain 1. A matrix C = c1p×q

for some c ∈ R (i.e., whose entries are settled to c) is called a constant matrix.
The identity (square) matrix of size n is denoted In. A matrix S = cIn for
some c ∈ R is called a scalar matrix. We consider the following numeric matrix
representation.

Definition 2. Let m, p, q ∈ N>0 and A ∈ Rp×q. We let

1. μp×q
m (x) = mx

pq 1p×q, i.e., each real number x is mapped to a constant p× q-
matrix with entries mx

pq .

2. ρm(A) =
∑p

i=1
∑ q

j=1 Aij

m , i.e., each matrix A is mapped to the number which
is obtained by adding all entries in A and then dividing this number by m.

In the following, we prove some properties of ρm which are used below.

Proposition 1. Let m, p, q ∈ N>0 and A, B ∈ Rp×q. Then, ρm(A + B) =
ρm(A) + ρm(B) and ρm(αA) = αρm(A) for all α ∈ R.

Proposition 2. Let p, q, r ∈ N>0, A ∈ Rp×q and B ∈ Rq×r. If B (resp. A)
is scalar and q ≤ r (resp. q ≤ p), or B (resp. A) is a constant matrix, then
ρp(AB) = ρp(A)ρq(B).

Propositions 1 and 2 entail the following.

Corollary 1. Let p, q, r ∈ N>0, A ∈ Rp×q and B ∈ Rq×r. If B (resp. A)
is an additive combination of scalar and constant matrices, then ρp(AB) =
ρp(A)ρq(B).

Corollary 2. Let n ∈ N>0 and A, B be n-square matrices. If B is an addi-
tive combination of scalar or constant matrices, then ρn(AB) = ρn(A)ρn(B) =
ρn(BA).

If we consider only n-square matrices for representations, then μ′
n(x) = xIn

could also be used with ρn as a numeric matrix representation.

Remark 1 (Use of vectors). Since vectors v can be seen as special matrices
v ∈ Rn×1 of n rows and a single column, the numeric matrix representation
in Definition 2 can also be used to represent real numbers as vectors. In partic-
ular, we get μn×1

n (x) = x1n and ρn(v) =
∑n

i=1 vi

n .

3 Transforming Matrices of Numbers

We can extend any numeric representation μ : R → Rp×q to a mapping μ :
Rm×n → Rmp×nq from m × n-matrices A into mp × nq-matrices μ(A) by just
replacing the numeric entries Aij in A by the corresponding matrices μ(Aij),
i.e., μ(A) = (μ(Aij))

i=m,j=n
i=1,j=1 . The new matrix can be viewed as a block matrix

whose blocks are μ(Aij) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.



120 S. Lucas

Example 3. We can transform the matrix
(

3 0
0 3

)
by using μp×q

m in Definition 2;

with m = p = q = 3, we obtain:

μ3×3
3 (
(

3 0
0 3

)
) =
(

μ3×3
3 (3) μ3×3

3 (0)
μ3×3

3 (0) μ3×3
3 (3)

)
=
(

13×3 03×3

03×3 13×3

)
The interesting feature of the matrix obtained in Example 3 is that it is a bit
matrix whose entries are either2 0 or 1. Note that this is due to the use of μ3×3

3
which permits a representation of ‘3’ as a constant matrix 13×3 with 1’s only.
For the numeric matrix representation in Definition 2, we have the following.

Proposition 3. Let m, n, p, q, r, s ∈ N>0 and A ∈ Rr×s. Then, ρmn(μp×q
m (A)) =

ρn(A).

Theorem 1. Let m, n, p, q, r, s, t, u ∈ N>0. If A, B ∈ Rr×s, then, ρm(A) +
ρm(B) = ρmn(μp×q

n (A)+μp×q
n (B)) and ρm(αA) = αρmn(μp×q

n (A)) for all α ∈ R.
If A ∈ Rs×t and B ∈ Rt×u, then ρm(AB) = ρmn(μp×q

n (A)μq×r
n (B)).

Propositions 1 and 2 entail the following.

Corollary 3. Let m, n, p, q, r, s ∈ N>0, A ∈ Rm×m and B ∈ Rm×s. If A
is an additive combination of scalar and constant matrices, then ρm(AB) =
ρmn(μp×q

n (A)μq×r
n (B)) = ρmn(μp×q

n (A))ρmn(μq×r
n (B)).

3.1 Representing Integer Numbers as Matrices

In the following, we use μp×q
n in Definition 2 as a basis for the following repre-

sentation mapping for integer numbers.

Definition 3 (Representing integer numbers as matrices). Let n ∈ N be
such that n > 1 and μn be given as follows: for all x ∈ Z,

μn(x) =
{

x
n1n×n if n divides x

xIn otherwise

We also define νn(x) = x1n to represent a number x as a n-dimensional vector.

Example 4. The matrix μ2(4) =
(

2 2
2 2

)
represents 4 according to Definition 3.

Note that, for all n ∈ N, (μn, ρn) (with ρn as in Definition 2) is a numeric matrix
representation for integer numbers. We obtain the following:

Proposition 4 (Decrease of natural entries in matrices). Every matrix
A ∈ Np×q such that n = max(A) > 1 can be represented as a matrix A′ ∈ Nnp×nq

such that, for all m ∈ N>0, ρm(A) = ρmn(A′) and max(A) > max(A′).

Obviously, Proposition 4 entails the following.

Corollary 4 (Natural matrices as bit matrices). Every matrix A ∈ Np×q

can be represented as a bit matrix A′ ∈ {0, 1}np×nq for some n ∈ N>0 and for
all m ∈ N>0, ρm(A) = ρmn(A′).
2 Matrices with entries in {0, 1} are called (0, 1)-matrices in [18, Section 8.2].
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4 Representation of Rational Numbers Below 1

In this section, we investigate matrix representations (over the naturals) which
can be used to deal with rational numbers 1

q for some q ∈ N>0. A q-square
matrix A 1

q
which is almost null except for a single entry of value 1 can be

used to represent 1
q because ρq(A 1

q
) = 1

q . By Corollary 2, for Ap = pIq we get
ρq(ApA 1

q
) = ρq(A 1

q
Ap) = ρq(Ap)ρq(A 1

q
) = p

q . Therefore, we can represent a
rational number p

q as a q-square matrix with a single entry of value p. However,

we have to change the size of the matrix if a different number p′

q′ with q �= q′ is
considered.

Remark 2. Note that there is no generic representation of all rational numbers by
using matrices over the naturals of a given dimension which is able to represent
their values and appropriate comparisons among them. Such a representation
should be able to represent a decreasing sequence 1 > 1

2 > 1
3 > · · · > 1

n > · · · by
means of matrices A 1

n
∈ Np×q for all n ∈ N>0 satisfying ρm(A 1

n
) > ρm(A 1

n+1
)

for all n ∈ N>0. Equivalently, we should have mρm(A 1
n
) > mρm(A 1

n+1
) for all

n ∈ N>0. Since mρm(A 1
n
), mρm(A 1

n+1
) ∈ N, this would imply the existence of

an infinite decreasing sequence of natural numbers, which is not possible.

Furthermore, the product of rational numbers p
q and p′

q represented as the q-
square matrices indicated above is not preserved by the matrix product. Thus,
in the following, we look for better representations.

4.1 Use of Nilpotent Matrices

Nilpotent matrices are n-square matrices B satisfying Bk = 0n×n for some
positive integer k ∈ N>0 [18, Section 4.1] (which is called the degree of nilpotency
[12, page 12] or the index of nilpotency of B [17, page 396]). The degree of
nilpotency k of a n-square matrix A is bounded by n: k ≤ n [17, Exercise 7.7.1].
Given n, the following n-square matrix (called a Jordan block [17, Page 579]):

Jn =

⎛
⎜⎜⎜⎜⎝

0 1
. . .

. . .

. . . 1
0

⎞
⎟⎟⎟⎟⎠

(i.e., there are n− 1 ones in the superdiagonal of Jn and all other entries in Jn

are zeroes) is nilpotent of degree n, i.e., Jn
n = 0n×n.

Write Jn = [0, Z1, . . . , Zn−1], where Zi is an almost null vector containing
a single 1 in the i-th entry. For instance, Z1 = (1, 0, . . . , 0)T . Then, it is not
difficult to see that Jp

n is obtained by introducing p − 1 columns of zeros from
the left side of the matrix and shifting columns Zi to the right just throwing
those which exceed the n-th position, i.e, Jp

n = [0, . . . , 0, Z1, . . . , Zn−p].

Remark 3. Jn Is also known as a shift matrix because, for an arbitrary matrix
A, JnA is obtained by shifting the rows of A upwards by one position and
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introducing a new bottom row of zeroes. Similarly AJn shifts the columns of A
to the right and introduces a new leftmost column of zeroes.

Note that, for all p ∈ N,

ρm(Jp
n) =

{
n−p
m if p < n

0 if p ≥ n

The following result is obvious.

Proposition 5. Let m, n ∈ N>0 and 0 ≤ p < q ≤ n. Then, ρm(Jp
n) = ρm((JT

n )p)
> ρm((JT

n )q) = ρm(Jq
n). For all A ∈ Rn×r, ρm(Jp

nA) ≥ ρm(Jq
nA). For all

A ∈ Rr×n, ρm(AJp
n) ≥ ρm(AJq

n).

In general it is not true that ρm(JpA) = ρm(AJp) for square matrices A. Due
to Proposition 5 and Corollary 1, for additive combinations A of constant and
scalar matrices we have the following:

Corollary 5. Let m, n ∈ N>0 and 0 ≤ p < q ≤ n. If A ∈ Rn×r (resp. A ∈ Rr×n)
is an additive combination of constant and scalar matrices, then ρm(Jp

nA) =
ρm(Jp

n)ρm(A) > ρm(Jq
n)ρm(A) = ρm(Jq

nA) (resp. ρm(AJp
n) = ρm(A)ρm(Jp

n) >
ρm(A)ρm(Jq

n) = ρm(AJq
n)).

Thus, the following property of rational numbers r = 1
n for some n ∈ N>0 is

simulated by the representation of integer numbers as (additive combinations
of) constant or scalar matrices, and rational numbers 1

n as powers of Jordan
blocks: for all n ∈ N and positive rational number r, 0 < r < 1, we have
n > nr > nr2 > · · · .
Example 5. We can use J2 to represent 1

2 : ρ2(J2) = 1
2 . However, J2

2 , which is
expected to correspond to 1

4 does not fit this expectation: ρ2(J2
2 ) = ρ2(02) = 0.

Theorem 2. If A1, · · · , AN are n-square matrices such that, for all i, 1 ≤ i ≤
N , either

1. Ai is scalar or constant, or
2. Ai = Jpi

n for some pi ∈ N and then both Ai−1 (if i > 1) and Ai+1 (if i < N)
are constant matrices,

then ρn(
∏N

i=1 Ai) =
∏N

i=1 ρn(Ai).

As remarked above, it is not possible to use matrices of natural numbers of a
fixed size n to represent all fractions 1

q for q ∈ N>0. Instead, we will consider
the problem of representing finite subsets Q ⊆ { 1

q | q ∈ N>0} by using n-square
(nilpotent) matrices in such a way that the following property is fulfilled by the
representation (μ, ρ): for all x, y ∈ Q such that xy ∈ Q, ρ(μ(x)μ(y)) = xy =
ρ(μ(x))ρ(μ(y)), i.e., the number ρ(μ(x)μ(y)) which corresponds to the matrix
product μ(x)μ(y) of matrices μ(x) and μ(y) representing x ∈ Q and y ∈ Q is
exactly xy ∈ Q. In Section 6 we discuss how to take benefit from this.

The dimension n of the matrices involved in the representation of Q is de-
termined by the least element in Q. For instance, we can fix n such that 1

n is
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the least number in Q. Then, an obvious representative for 1
n is Jn−1

n because
ρn(Jn−1

n ) = 1
n (see Example 5). However, the feasibility of this simple approach

depends on the other values in Q.

Example 6. Let Q = { 1
2 , 1

4}. If we fix J3
4 to be the representation of 1

4 , then the
representation of 1

2 should be J2
4 (because ρ4(J2

4 ) = 1
2 ). However, ρ4((J2

4 )2) is
not 1

4 as one could expect; instead, ρ4((J2
4 )2) = 0. The following block matrices

of size 4 whose blocks are combinations of (transposed) Jordan blocks can be
used to represent Q as required:

Q 1
2

=
(

J2 JT
2

02×2 02×2

)
Q 1

4
=
(

02×2 J2J
T
2

02×2 02×2

)

Note that ρ4(Q 1
2
) = 1+1

4 = 1
2 , ρ4(Q 1

4
) = 0+1

4 = 1
4 , and Q 1

2
Q 1

2
= Q 1

4
.

Example 7. Let Q = { 1
2 , 1

4 , 1
8}. The following matrices of size 8:

Q 1
2

=
(

J4 J3
4

04×4 04×4

)
Q 1

4
=
(

J2
4 04×4

04×4 04×4

)
Q 1

8
=
(

J3
4 04×4

04×4 04×4

)

can be used to represent Q. Note that ρ8(Q 1
2
) = 3+1

8 = 1
2 , ρ8(Q 1

4
) = 2+0

8 = 1
4 ,

ρ8(Q 1
8
) = 1+0

8 = 1
8 , Q 1

2
Q 1

2
= Q 1

4
and Q 1

2
Q 1

4
= Q 1

4
Q 1

2
= Q 1

8
, as required.

Example 8. Let Q = { 1
2 , 1

3 , 1
6}. The following (block) matrices of size 6 can be

used to represent Q:

Q 1
2

=
(

J3 (J2
3 )T

03×3 03×3

)
Q 1

3
=
(

J2
3 J3(J2

3 )T

03×3 03×3

)
Q 1

6
=
(

03×3 J2
3 (J2

3 )T

03×3 03×3

)

Note that ρ6(Q 1
2
) = 2+1

6 = 1
2 , ρ6(Q 1

3
) = 1+1

6 = 1
3 , and ρ6(Q 1

6
) = 0+1

6 = 1
6 .

Again, it is not difficult to see that Q 1
2
Q 1

3
= Q 1

3
Q 1

2
= Q 1

6
. Note, however, that

if we add 1
4 to Q, then we could not use these matrices for representing 1

4 . In
particular, Q2

1
2

= Q 1
3
, i.e., ρ6(Q2

1
2
) �= 1

4 as should be the case.

5 Matrix Interpretations Revisited

As remarked above, termination problems in term rewriting are usually trans-
lated into conjunctions of weak or strict symbolic constraints like s � t or s � t
between terms s and t coming from (parts of) the TRS. In order to check the
satisfaction of these constraints, we need to use term (quasi-)orderings. Such
term orderings can be obtained by giving appropriate interpretations to the
function symbols of a signature. Given a signature F , an F -algebra is a pair
A = (A,FA), where A is a set and FA is a set of mappings fA : Ak → A for
each f ∈ F where k = ar(f). For a given valuation mapping α : X → A, the
evaluation mapping [α] : T (F ,X ) → A is inductively defined by [α](x) = α(x)
if x ∈ X and [α](f(t1, . . . , tk)) = fA([α](t1), . . . , [α](tk)) for x ∈ X , f ∈ F ,
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t1, . . . , tk ∈ T (F ,X ). Given a term t with Var(t) = {x1, . . . , xn}, we write [t]
to denote the function Ft : An → A given by Ft(a1, . . . , an) = [α(a1,...,an)](t)
for each tuple (a1, . . . , an) ∈ An, where α(a1,...,an)(xi) = ai for 1 ≤ i ≤ n. We
can define a stable quasi-ordering � on terms given by t � s if and only if
[α](t) �A [α](s), for all α : X → A, where �A is a quasi-ordering on A. We can
define a stable strict ordering � on terms by t � s if [α](t) �A [α](s), for all
α : X → A, where �A is a strict ordering on A.

A matrix interpretation for a k-ary symbol f is a linear expression F1x1 +
· · · + Fkxk + F0 where the F1, . . . , Fk are (square) matrices of n × n natural
numbers and the variables x1, . . . , xk (and also the constant term F0) are n-
tuples of natural numbers [10]. An expression like Fx, where F is an n-square
matrix and x is an n-tuple of numbers, is interpreted as the usual matrix-vector
product, i.e., the i-th component yi of y = Fx is yi =

∑n
j=1 Fijxj . Matrices

and vectors are compared by using an entrywise ordering: for A, B ∈ Rp×q, we
write A ≥ B if Aij ≥ Bij for all 1 ≤ i ≤ p, 1 ≤ j ≤ q [12, Chapter 15]. We also
write A > B if A ≥ B and A11 > B11 [10]. Note that this also describes how to
compare tuples of numbers. In [1,2], Endrullis et al.’s approach was extended to
matrix interpretations with real numbers in matrix entries.

Here, we generalize the notion of matrix interpretation in the following
ways:

1. We consider a domain Tn,b(N) of block-based tuples over N , i.e., n-tuples
consisting of β = n

b tuples of size b ∈ N>0 which are constant tuples c1b for
some number c ∈ N . If we take b = 1 and N = N or N = R0, then we are
in the original approaches [10] and [1,2], respectively. Note, however, that
given n ∈ N>0, only divisors b of n can be used to establish blocks within
n-tuples of numbers.

2. Matrices F in matrix expressions interpreting symbols f ∈ F will be block

matrices

⎛
⎜⎝

F11 · · · F1β

...
. . .

...
Fβ1 · · · Fββ

⎞
⎟⎠such that Fij = Cij + Sij is a sum of a b-square

constant matrix Cij = cij1b×b, where cij ∈ N , and a b-square scalar matrix
Sij = sijIb, where sij ∈ N , for all 1 ≤ i, j ≤ β. This is necessary for
soundness of the obtained algebraic interpretation: the product of one of
such matrices by a block-based tuple as above produces a block-based tuple
as above, i.e., Fv ∈ Tn,b(N) for all v ∈ Tn,b(N). Furthermore, such matrices
are closed under addition and matrix product. This is essential to obtain
matrices of this kind during the interpretation of the terms, where nested
symbols yield products and sums of matrices after interpreting them. Again,
if b = 1, we are in the usual case for matrix interpretations.

3. Given a matrix valuation ρ, and matrices A, B, we let A ≥ρ B if ρ(A) ≥N

ρ(B), where ≥N is an ordering over N . Given δ > 0, the following ordering
over (real) numbers is used [15]: x >δ y if x − y ≥ δ. If δ = 1 and x, y are
natural numbers, we obtain the usual well-founded ordering among natural
numbers >N. Now, the following (strict and well-founded) ordering >ρ,δ (or
just >ρ or even > if it is clear from the context) on n-tuples of nonnegative
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numbers is considered: x >ρ,δ y if ρ(x) >δ ρ(y). Clearly, (Tn,b(N), >ρ,1) and
(Tn,b(R0), >ρ,δ) are well-founded orderings.

The previous orderings do not take into account the block structure of
matrices or tuples. The following one does: for matrices A, B with blocks Aij

and Bij for 1 ≤ i, j ≤ β, we write A ≥b
ρ B if Aij ≥ρ Bij for all 1 ≤ i, j ≤ β.

Similarly, A >b
ρ,δ B if A11 >ρ,δ B11 and Aij ≥ρ Bij for all 1 ≤ i, j ≤ β.

These definitions are adapted to tuples in the obvious way.

Definition 4 (Block-based matrix interpretation). Let F be a signature,
n, b ∈ N>0 be such that b divides n, and β = n

b . An (n,b)-block-based matrix
interpretation is an F-algebra A = (A,FA) such that

1. A = Tn,b(N) for N = N or N = R0, and
2. FA consists of matrix functions [f ](x1, . . . , xk) = F1x1 + · · · + Fkxk + F0

which are closed in A and where, for all f ∈ F , 1 ≤ i ≤ k,
(a) Fi is an n-square matrix of β × β blocks of b-square matrices Cj� + Sj�

such that Cj� is a constant matrix, and Sj� is a scalar matrix for all
1 ≤ j ≤ β and 1 ≤ � ≤ β.

(b) F0 = (cT
1 · · · cT

β )T consists of β b-tuples cj = cj1b for some cj ∈ N .

We make the orderings which are going to be used explicit by adding them to the
pair (A,FA), thus specifying an ordered algebra: (A,FA,≥ρn), (A,FA,≥b

ρb
), etc.

6 Solving and Transforming Matrix Constraints

In the following, we consider two kinds of constraint solving problems which are
relevant in proofs of termination.

6.1 Testing Universally Quantified Symbolic Constraints

Proofs of termination in term rewriting involve solving weak or strict symbolic
constraints s � t or s � t between terms s and t coming from (parts of) the
rules of the TRS where the variables in s and t are universally quantified in
the corresponding constraint. Here, � and � are (quasi-)orderings on terms
satisfying appropriate conditions [3,6,8].

Example 9. The following symbolic constraints must be checked in order to guar-
antee termination of the TRS R in Example 1:

∀X(f(f(X)) � f(g(f(X)))) (5)
∀X(f(g(f(X))) � X) (6)
∀X(F (f(X)) � F (g(f(X)))) (7)
∀X(F (f(X)) � F (X)) (8)

Here, variables X range on terms in T (F ,X ), � and � are intended to be
interpreted as a monotonic and stable quasiordering on terms, and a well-founded
and stable ordering on terms, respectively.
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In the so-called interpretation method for checking symbolic constraints as the
ones in Example 9, we use appropriate ordered F-algebras to generate the nec-
essary orderings (see Section 5). In our setting, we are interested in investigating
the use of matrix algebras. The following result shows how to decrease the value
of some of the entries in a block-based matrix algebra over the naturals to obtain
an equivalent block-based matrix algebra which uses bigger matrices.

Theorem 3. Let F be a signature and c be a symbolic constraint ∀x(s �	 t)
for terms s, t ∈ T (F ,X ). Let A = (Tn,b(N),FA,≥b

ρb
) be an (n, b)-block-based

matrix interpretation over the naturals and N be the maximum of all entries
occurring in any matrix or vector in A. Let B = (B,FB,≥bN

ρbN
) be an (Nn, Nb)-

block-based matrix interpretation where B = TNn,Nb(N) and for all f ∈ F ,
[f ]B(x1, . . . , xk) = μN (F1)x1 + · · · + μN (Fk)xk + νN (F0) iff [f ]A(x1, . . . , xk) =
F1x1 + · · ·+ Fkxk + F0. Then, A satisfies c if and only if B satisfies c.

Example 10. Consider the following TRSs [10, Example 3]:

R : f(a, g(y), z)→ f(a, y, g(y)) (9)
f(b, g(y), z)→ f(a, y, z) (10)

a → b (11)
S : f(x, y, z)→ f(x, y, g(z)) (12)

In order to prove termination of R relative to S (written SN(R/S)), we have to
check that ∀x(l � r) holds for all rules l → r ∈ R ∪ S. Endrullis et al. use the
following matrix interpretation for that:

[a] =
(

1
0

)
[f ](x, y, z) =

(
1 0
0 0

)
x +
(

1 2
0 0

)
y +
(

1 0
0 0

)
z +
(

0
0

)
[b] =

(
0
0

)
[g](x) =

(
1 0
1 1

)
x +
(

0
1

)

By using Theorem 3, we conclude that the following block-based matrix inter-
pretation with bit matrices of dimension 4 can also do the work.

[a] =
(

12
02

)
[f ](x, y, z) =

(
I2 02×2

02×2 02×2

)
x +
(

I2 12×2
02×2 02×2

)
y +
(

I2 02×2
02×2 02×2

)
z +
(

02
02

)
[b] =

(
02
02

)
[g](x) =

(
I2 02×2
I2 I2

)
x +
(

02
12

)

6.2 Solving Existentially Quantified Arithmetic Constraints

In many applications, when algebraic interpretations have to be generated rather
than given by the user, it is usual to work with parametric interpretations.

Example 11. For the symbols occurring in R in Example 1, we can consider the
following linear parametric interpretation:

[f ](x) = f1x + f0 [g](x) = g1x + g0 [F ](x) = F1x + F0
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where f1, g1, and F1 are expected to be n-square matrices for some n ∈ N>0 (the
case n = 1 corresponds to a linear polynomial intepretation) and f0, g0, F0 are
n-tuples. The satisfaction of the following arithmetic constraints3

f1f1 ≥ f1g1f1 (13)
f1f0 + f0 ≥ f1g1f0 + f1g0 + f0 (14)

f1g1f1 ≥ 1 (15)
f1g1f0 + f1g0 + f0 ≥ 0 (16)

F1f1 ≥ F1g1f1 (17)
F1f0 + F0 > F1g1f0 + F1g0 + F0 (18)

F1f1 ≥ F1 (19)
F1f0 + F0 > 0 (20)

is necessary to ensure that R is terminating.

By a parametric matrix interpretation we mean a matrix intepretation where
the entries in matrices are not numbers but rather parametric coefficients, i.e.,
variables for which we have to provide a numeric value, depending on some
(existential) constraints.

In general, given a set of variables X , we consider here symbolic arithmetic
constraints of the form s �	 t for �	 ∈ {≥, >}, where s is of the form

∑ms

i=1 si

for ms > 0 and si = si1 · · · sims,i with ms,i > 0 for all 1 ≤ i ≤ σs and sij ∈
X (t would have an analogous structure). Furthermore, we assume existential
quantification over all variables occurring in s and t. Note in Example 11 that
we use constants like 0 and 1. They are handled as ‘special’ variables which will
receive the intended interpretation.

Consider a valuation η : X → N for the variables in X as numbers in N . Here,
we consider N = N ∪ Q for some finite subset of rational numbers Q ⊆ Q − N
satisfying some conditions. We are interested in representing numbers η(x) as
matrices μ(η(x)) as discussed above. Note that we cannot represent arbitrary
rational numbers by using matrices over the naturals (Remark 2). Still, when
dealing with finite sets C of arithmetic restrictions, we can restrict the attention
to those rational numbers which are required to check its satisfaction for a given
valuation η. This includes not only rational numbers η(x) which are assigned to
x ∈ X , but also those which could occur during the evaluation of an arithmetic
expression due to products η(x)η(y) of rational numbers η(x) and η(y) which
have been associated to variables x and y. The idea is that Q should contain
such rational numbers.

Definition 5 (Compatible domain of rational numbers). Let η : X →
N∪Q be a valuation for some Q ⊆ Q−N and C be a set of arithmetic constraints.
Given a multiplicative component s = s1 · · · sm of an arithmetic expression in a
constraint in C, let Is = {i1, . . . , ik} be the set of indices of variables in s whose
3 By lack of space, we cannot explain how these constraints are obtained. Full details

about this standard procedures can be found elsewhere, see, e.g., [7,10,15,16].
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valuation is a rational (and noninteger) number, i.e., for all i ∈ Is, η(si) ∈ Q−N.
We say that Q is compatible with C and η if

∏
j∈J η(si) ∈ Q for all multiplicative

components s in C and J ⊆ Is such that J �= ∅.

Example 12. The numeric valuation which corresponds to the poynomial inter-
pretation in Example 1 is:

η(1) = 1 η(0) = 0 η(f1) = 2 η(f0) = 2
η(g1) = 1

2 η(g0) = 1
2 η(F1) = 1 η(F0) = 0

The set Q = { 1
2} is compatible with this valuation and with the constraints C in

Example 11. Consider C′ = C ∪ {f1g1f1 ≥ f1g1f1g1}. Now, Q is not compatible
with C′ and η because we have that η(g1)η(g1) = 1

4 �∈ Q. If we add 1
4 to Q, then

we get compatibility with C′.
A valuation η is extended to terms and constraints by η(s �	 t) = η(s) �	Q η(s),
η(s1 + · · ·+ sm) = η(s1) + · · ·+ η(sm), and η(x1 · · ·xm) = η(x1) · · · η(xm).

Remark 4. In general, we assume that + is commutative, but (as happens with
the matrix product) we do not assume commutativity of the product in arith-
metic expressions or their valuations.

Now we have to extend μn in Definition 3 to deal with rational numbers in Q.

Remark 5. In contrast to natural numbers, we have no systematic way to asso-
ciate matrices to rational numbers yet. In Section 4 we have investigated some
partial solutions to this problem. In particular, Examples 5, 6, 7, and 8, show
that the dimension n of the considered matrices and tuples heavily depend on
the numbers in Q. On the other hand, these examples also provide useful en-
codings for rational numbers which are frequently used in automatic proofs of
termination with polynomial or matrix interpretations [5,11,16].

Assume that μn has been extended to each x ∈ Q in such a way that: for all
x, y ∈ Q such that xy ∈ Q, ρn(μn(x)μn(y)) = xy = ρn(μn(x))ρn(μn(y)).

In our setting, variables in X are interpreted not only as matrices but some of
them as vectors. Assume that X0 ⊆ X must be interpreted in this way and that
the constraints in C are consistent with this, i.e., whenever a variable x0 ∈ X0
occurs in a constraint c ∈ C of the form s �	 t, each multiplicative term in s and
t must contain a single variable y0 ∈ X0 which must be at the end of the term.

Example 13. For the constraints in Example 11, we have X0 = {f0, F0, g0, 0}.
The vectorial (or n-tuple) representation of x ∈ N ∪ Q by μn is μn(x)1n.

Example 14. The matrices over the naturals which correspond to η and Q in
Example 12 is (with the encoding of 1

2 in Example 5) are:

μ(η(f1)) = 12×2 =
(

1 1
1 1

)
μ(η(f0)) = 2 12 =

(
2
2

)
μ(η(g1)) = J2 =

(
0 1
0 0

)
μ(η(g0)) = J212 =

(
1
0

)
μ(η(F1)) = I2 =

(
1 0
0 1

)
μ(η(F0)) = 0 12 =

(
0
0

)
μ(η(1)) = I2 =

(
1 0
0 1

)
μ(η(0)) = 0 12 =

(
0
0

)
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Accordingly, the matrix interpretation over the naturals which corresponds to
the polynomial interpretation over the rationals in Example 1 is:

[f ](x) =
(

1 1
1 1

)
x +
(

2
2

)
[g](x) =

(
0 1
0 0

)
x +
(

1
0

)
[F ](x) =

(
1 0
0 1

)
x

This matrix interpretation induced from the polynomial interpretation over
the rationals in Example 1 can also be used to solve the constraints in the
example.

Our technique could be used to translate matrix interpretations over the ratio-
nals into matrix interpretations over the naturals by just applying the previous
translation to the entries of the matrix interpretation over the rationals instead
to the coefficients of the polynomial interpretation.

7 Conclusions

We have investigated matrix representations of natural and rational numbers
which can be used to simulate the arithmetics of natural and rational numbers,
respectively. We have introduced the notion of numeric matrix representation
(Definition 1) which associates a number to a matrix and viceversa and proved
that, by using some specific representations (Definitions 2 and 3), the arith-
metic of natural numbers is preserved. Furthermore, we have proved that every
matrix interpretation over the naturals has an associated bit matrix interpre-
tation of (usually) bigger size of the same associated value (Corollary 4). We
have investigated the representation of rational numbers by using matrices of
natural numbers. We have proved that this problem has no general solution but
we have found some suitable trade-offs for finite subsets of rational numbers by
using nilpotent matrices consisting of Jordan blocks. Then we have introduced
the notion of block-based matrix interpretation (Definition 4) which generalizes
existing approaches to matrix interpretations. We use it to transform matrix in-
terpretations over the naturals into matrix interpretations over {0, 1}, and also
to transform matrix interpretations over the rationals into matrix interpretations
over the naturals.

The question posed in the introduction: are rational numbers somehow un-
necessary when dealing with matrix interpretations? could not be answered in
full generality due to the lack of a general procedure for building matrix rep-
resentations for arbitrary finite sets of rational numbers. Of course, this is a
main topic of further research and we think that we have settled a good starting
point in considering the use of combinations of Jordan blocks as in Examples
5, 6, 7, and 8. Nevertheless, our results suggest that the use of matrices over
the naturals of big size can somehow play the role of rational numbers in inter-
pretations of smaller size, and in particular in linear polynomial intepretations
over the rationals. This does not mean that implementing polynomial or matrix
intepretations over the rationals is not useful anymore and that natural numbers
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should be used everywhere. In fact, working with matrix interpretations of big
size is computationally expensive. Another interesting consequence of our anal-
ysis is the connection between dimension of matrices over the naturals and value
of their entries via Proposition 4 and Corollary 4. Roughly speaking, these re-
sults can be interpreted by saying that bigger dimensions of matrices permit the
use of smaller entries. In practice, most tools put strong numeric bounds to the
coefficients or entries of the interpretations. Our results suggest that increasing
such bounds could have a similar effect to increasing the size of the matrices. A
more precise analysis about the trade-offs in design and efficiency which these
considerations could lead to is also subject for future work.
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Abstract. This paper presents a combination of several automated rea-
soning and proof presentation tools with the Mizar system for formal-
ization of mathematics. The combination forms an online service called
MizAR, similar to the SystemOnTPTP service for first-order automated
reasoning. The main differences to SystemOnTPTP are the use of the
Mizar language that is oriented towards human mathematicians (rather
than the pure first-order logic used in SystemOnTPTP), and setting the
service in the context of the large Mizar Mathematical Library of pre-
vious theorems, definitions, and proofs (rather than the isolated prob-
lems that are solved in SystemOnTPTP). These differences poses new
challenges and new opportunities for automated reasoning and for proof
presentation tools. This paper describes the overall structure of MizAR,
and presents the automated reasoning systems and proof presentation
tools that are combined to make MizAR a useful mathematical service.

1 Introduction and Motivation

Formal mathematics, in its interactive and verification aspects, and in the
automated reasoning aspect, is becoming increasingly well-known, used, and
experimented with [10]. Projects like FlySpeck [9], formal proof of the Four
Color Theorem [8], verification of tiny (but real) operating systems [12], and
the increased use of verification for software and hardware [7], are stimulating
the development of interactive verification tools and interactive theorem provers
(ITPs). Linked to this is the development of strong automated theorem proving
(ATP) systems, used either independently to solve hard problems in suitable do-
mains [14,17,3], or integrated with interactive tools [15,11,4]. ATP development
has also stimulated interesting research in the context of automated reasoning
in large theories [16,34,21].

The goal of the work presented here is to make formal mathematics and auto-
mated reasoning easily accessible to practitioners in these areas, by putting most
of the work into their browsers, and providing a very fast (real-time) server-based
experience with a number of ATP, ITP, presentation, and AI tools that work
well together. This is important for supporting existing users and attracting new

� Supported by the NWO project “MathWiki a Web-based Collaborative Authoring
Environment for Formal Proofs”.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 132–146, 2010.
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users of Mizar, by providing them with an attractive environment for exploring
the world of formal reasoning in mathematics. Fast server-based solutions make
systems easy to use, to the extent of just “pushing a button” (clicking on a
HTML link), rather than having to go through the pains of building an ade-
quate local hardware and software installation, for benefits that might initially
not be clear. Server-based solutions are becoming an important part of general
computer use, and formal mathematics is no exception. It is not possible to name
all the server-based services that already exist for informal mathematics, starting
e.g., from the arXiv, Wikipedia, MathOverflow, PolyMath, Wolfram MathWorld,
PlanetMath, ProofWiki, the SAGE system for working with CASes, etc.

This paper describes the Automated Reasoning for Mizar (MizAR) web service,
which combines several automated reasoning and proof presentation tools with
the Mizar system for formalization of mathematics, to form a useful mathemati-
cal service. MizAR runs in the context of the Mizar Mathematical Library (MML),
and uses the Mizar language that is oriented towards human mathematicians.
The main inspiration for MizAR is the SystemOnTPTP ATP service [22]. Syste-
mOnTPTP allows users to easily experiment with many first-order ATP systems
in a common framework, and provides additional services such as proof presenta-
tion with the IDV system [28], discovery of interesting lemmas with the AGInT
system [18], and independent proof verification with the GDV verifier [23]. Pieces
of the SystemOnTPTP infrastructure also served in the initial implementation of
the MizAR web service. SystemOnTPTP’s infrastructure is briefly described in Sec-
tion 2. Section 3 describes the implemented MizAR service, and demonstrates its
use. Section 4 considers a number of possible future extensions, and concludes.

2 SystemOnTPTP

The core of SystemOnTPTP is a utility that allows an ATP problem or solution
to be easily and quickly submitted in various ways to a range of ATP systems and
tools. SystemOnTPTP uses a suite of currently available systems and tools, whose
properties (input format, reporting of result status, etc) are stored in a simple
text database. The input can be selected from the TPTP (Thousands of Prob-
lems for Theorem Provers) problem library or the TSTP (Thousands of Solutions
from Theorem Provers) solution library [24], or provided in TPTP format [25] by
the user. The implementation relies on several subsidiary tools to preprocess the
input, control the execution of the chosen ATP system(s), and postprocess the
output. On the input side TPTP2X or TPTP4X is used to prepare the input for
processing. A strict resource limiting program called TreeLimitedRun is used to
limit the CPU time and memory used by an ATP system or tool. TreeLimitedRun
monitors processes’ resource usage more tightly than is possible with standard op-
erating system calls. Finally a program called X2tptp converts an ATP system’s
output to TPTP format, if requested by the user.

The web interfaces SystemB4TPTP, SystemOnTPTP, and SystemOnTSTP pro-
vide interactive online access to the SystemOnTPTP utility.1 The online service
1 Available starting at http://www.tptp.org/cgi-bin/SystemOnTPTP

http://www.tptp.org/cgi-bin/SystemOnTPTP
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can also be accessed directly with http POST requests. The SystemB4TPTP in-
terface provides access to tools for preparing problems for submission to an ATP
system, including conversion from other (non-TPTP) formats to TPTP format,
parsing and syntax checking, type checking, and pretty printing. In addition
to providing access to ATP systems, the SystemOnTPTP interface additionally
provides system reports, recommendations for systems to use on a given prob-
lem, and direct access to the SSCPA system [26] that runs multiple systems in
competition parallel. The SystemOnTSTP interface provides access to solution
processing tools, including parsing and syntax checking, pretty printing, deriva-
tion verification using GDV [23], interactive graphical proof presentation using
IDV [28], answer extraction [27], and proof conversion and summarization tools.
The three interfaces have options to pass the output from a system/tool on to
the next interface – from problem preparation, to problem solving, to solution
processing. The output is returned to browsers in appropriate HTML wrapping,
and can also be obtained in its raw form for processing on the client side (typi-
cally when the interfaces are called programmatically using http POST requests).
The online service is hosted at the University of Miami on a server with four
2.33GHz CPUs, 4GB RAM, and running the Linux 2.6 operating system.

3 MizAR

MizAR is running experimentally on our server2, where it can be best learned
by exploration. A good way to explore is to start with an existing simple Mizar
article, e.g., the card 1 article3 about cardinal numbers [1]4, from the MML.5

Within MizAR, select the “URL to fetch article from” field, insert the article’s
URL into the text box, and press the “Send” button. For experienced Mizar
users, there is also a simple way to send the current Mizar buffer to the remote
service, by running the mizar-post-to-ar4mizar interactive function in the
Mizar mode for Emacs [30]. Both actions call the main MizAR cgi-bin script
with appropriate arguments, which launches the functions described below.

MizAR links together a number of Mizar and ATP-related components, which
are useful for general work with formal mathematics in Mizar. The main com-
ponents are as follows (details are provided in the rest of Section 3):

– Web access to the whole cross-linked HTMLized MML.
– Fast server-based verification of a Mizar article.
– Disambiguation of the article by HTMLization, producing an HTML pre-

sentation of the verified article with links to an HTMLized version of the
MML. Additional useful information is also extracted during HTMLization,
and included in the HTML presentation of the article.

– Fast translation of the article to MPTP (MizarProblems forTheorem Provers)
format.

2 http://mws.cs.ru.nl/~mptp/MizAR.html
3 http://mws.cs.ru.nl/~mptp/mml/mml/card_1.miz
4 Available at http://mizar.uwb.edu.pl/JFM/Vol1/ordinal1.html
5 All articles are available from http://mws.cs.ru.nl/~mptp/mml/mml

http://mws.cs.ru.nl/~mptp/MizAR.html
http://mws.cs.ru.nl/~mptp/mml/mml/card_1.miz
http://mizar.uwb.edu.pl/JFM/Vol1/ordinal1.html
http://mws.cs.ru.nl/~mptp/mml/mml


Automated Reasoning and Presentation Support 135

– Fast generation of ATP problems in TPTP format, for all the theorems in
the article, and for all the atomic inferences done by Mizar.

– Easy access to default ATP systems for solving the ATP problems, and access
to SystemOnTPTP for solving more difficult problems.

– Easy access to IDV for visualization and postprocessing of proofs found by
the ATP systems.

– Suggesting useful hints for proving (either by ATP or interactively in Mizar)
particular Mizar lemmas and theorems.

Figure 1 shows the overall structure of the MizAR system. The leftmost column
shows the various forms of the article that are produced, and the two bold boxes
in the next column are the HTML presentations for user interaction. The third
column shows the software tools that generate the various dataforms, using the
article and the background information shown in the rightmost column. A Mizar
article is submitted through the web interface or from Emacs. The article is then
verified and converted to XML format, which is subsequently rendered in HTML
format with links to the MML. The HTML presentation includes links that allow
the user to proceed with further processing, and is the main interface for user
interaction with MizAR. While the HTML is presented to the user, the article
is asynchronously converted to the MPTP format, which is used for generating
TPTP format ATP problems. The ATP problems can then be submitted to
ATP systems, either locally via SystemOnTPTP. The ATP systems’ solutions are
used to enrich the HTML presentation, and can be passed on to various post-
processing tools. The subcomponents that perform these tasks are described in
more detail below.

3.1 Server-Based Verification of a Mizar Article

Unlike many other (especially LCF-inspired) proof assistants, Mizar is a compiler-
like batch processor, verifying a whole article in one pass. While a lot of work on
Mizar goes into balancing the strength, speed, and obviousness of the proof check-
ing, the process of checking a whole article can get quite time-consuming for longer
and more complex articles, especially on older hardware.

There are several advantages to remote server-based verification of Mizar ar-
ticles. The first obvious advantage is that having everything web-based removes
the need for a local installation of Mizar. The second advantage is that even if
Mizar is installed locally, it is often more convenient to quickly (try to) verify an
article in a browser, instead of launching the verification environment on one’s
local computer. In cases when the article is available online, it is possible to pro-
vide that URL as an argument to the MizAR URL, to directly launch MizAR on
the article.6 This makes such verification snippets available in all kinds of online
fora (e-mail discussions, blog and twitter posts, wikis, etc.) with direct render-
ing of the results. In short, the third advantage is that a web service provides
mechanism for online communication of verification results.
6 For example,
http://mws.cs.ru.nl/ mptp/cgi-bin/MizAR.cgi?ProblemSource=URL&

FormulaURL=http://mws.cs.ru.nl/ mptp/mml/mml/card 1.miz&Name=Test1

http://mws.cs.ru.nl/~mptp/cgi-bin/MizAR.cgi?ProblemSource=URL&FormulaURL=http://mws.cs.ru.nl/~mptp/mml/mml/card_1.miz&Name=Test1
http://mws.cs.ru.nl/~mptp/cgi-bin/MizAR.cgi?ProblemSource=URL&FormulaURL=http://mws.cs.ru.nl/~mptp/mml/mml/card_1.miz&Name=Test1
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Fig. 1. Structure of the MizAR system

The fourth (and probably greatest) advantage of server-based verification is
the raw verification speed. A dedicated server usually runs on reasonably new
hardware with enough memory, etc. For example, even for the relatively short
card 1 Mizar article mentioned above, full verification on a recent notebook
(1.66GHz Intel Atom) takes 2s, while on a recent lower-range server (2 quad-
core hyperthreading 2.27GHz Intel Xeons) the same task takes 0.5s. For a more
involved article this difference becomes more visible, and can be the deciding
factor for the usability and real-time experience with the system. For example,
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for the more involved Mizar article fdiff 17 about real function differentiability
[19], the difference is 23s vs. 6s.

The latest advances in CPU power have been achieved mainly by packing
multiple CPUs together, instead of raising the speed of individual CPUs. To
take advantage of this, Mizar processing has recently been parallelized8, and the
parallel version of the Mizar verifier is running on our server. This (depending on
the success of the parallelization) can further significantly improve the real-time
verification experience. For example, on the even longer Mizar article fdiff 29

about real function differentiability [13], the difference between running the par-
allel version (using eight cores) and the non-parallel version is a factor of four
(31s vs. 7.8s). Verification of this article using the above mentioned notebook
takes 125s, resulting in a speed-up factor of sixteen (and substantially improving
the real-time interaction with the system).

The last important advantage is that a server-based installation supports use
of modified, enhanced, and experimental versions of the verifier. This can provide
useful additional functionalities. For instance, the Mizar parallelizer requires
additional software to run, and a recently modified version of the Mizar verifier
that has not yet been distributed to Mizar users. Translation of Mizar articles
to ATP formats also requires a version of the verifier that has been compiled
with a special flag, again not included in the standard Mizar distribution. An
online service can also easily include multiple versions of the Mizar library and
binaries, as is done for the MML Query service [2].

3.2 HTMLization of Mizar Articles

There has been quite a lot of recent work on XMLization and HTMLization
of Mizar articles [29,35], including the addition of useful additional information
into the XML form of the Mizar article and its HTML presentation. There are
two major reasons for having a static HTMLized MML available:10 (i) to provide
fast browsing of the theorems and definitions used in a particular formalization,
with a number of user-friendly features (like (sub)proof hiding/showing, etc.),
and (ii) providing explanations for a number of phenomena in the formalization
that are made explicit and clear only during verification, and are hard to decipher
from the formalization text alone. The latter includes, for example:

– Explicit HTML presentation of the current goal (thesis), computed by the
verifier at each point of the formalization.

– Proper disambiguation of overloaded mathematical symbols. Overloading is
necessary in a large body of mathematics including all kinds of subfields, but
at the same time makes it difficult for readers of the textual versions of the
articles to understand the precise meaning of the overloaded symbols.

7 http://mws.cs.ru.nl/~mptp/mml/mml/fdiff_1.miz
8 The description of the Mizar parallelization and related experiments is unpublished

as of January 2010. The parallelizer is available at
http://github.com/JUrban/MPTP2/raw/master/MizAR/cgi-bin/bin/mizp.pl

9 http://mws.cs.ru.nl/~mptp/mml/mml/fdiff_2.miz
10 It is available at http://mws.cs.ru.nl/~mptp/mml/html/

http://mws.cs.ru.nl/~mptp/mml/mml/fdiff_1.miz
http://github.com/JUrban/MPTP2/raw/master/MizAR/cgi-bin/bin/mizp.pl
http://mws.cs.ru.nl/~mptp/mml/mml/fdiff_2.miz
http://mws.cs.ru.nl/~mptp/mml/html/
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– Explicit access to formulae for definition correctness, and formulae express-
ing properties (projectivity, antisymmetry, etc.) that are computed by the
verifier. Making these explicit in the HTML presentation can help users.

– Explicit representation of other features that are implicit in Mizar verifica-
tion, e.g., definitional expansions, original versions of constructors that have
been redefined, etc. Making these explicit in the HTML presentation can
also help users.

The static HTMLized MML is an important resource used by MizAR. The arti-
cles submitted to MizAR are dynamically linked to the static HTMLized MML.
This is a notable difference to SystemOnTPTP, which treats each problem as
an independent entity. The first implementation of MizAR has focused on de-
veloping the services for a fixed version of the MML. However, management of
library versions is a nontrivial and interesting problem. Allowing users to verify
new articles and also refactor existing ones will ultimately lead into the area of
formal mathematical wikis [6,5].

The main functions of the HTMLization service are to (i) provide quick linking
to the static HTMLized MML (thus providing the disambiguation and explana-
tion functions described above), and (ii) allow a number of additional (mainly
automated reasoning and AI) services to be launched by suitable CGI and AJAX
calls from links in the HTML. These additional services are described in the fol-
lowing subsections. The main features of server-side HTMLization are increased
speed, and the availability of additional programs and features. While the Mizar
HTML processing was designed to be locally available, using just a browser-
based XSL processor (i.e., loading the XML produced by Mizar directly into a
browser, which applies the appropriate style sheet), even the basic XSL process-
ing in the browser can take a long time (minutes). Again, having a specialized
fast XSL processor installed on the server helps quite a lot, and the HTML-
ization can be parallelized using techniques similar to the parallelization of the
basic verification process. This provides a much better HTMLization response,
and also makes additional XSL-based preprocessing possible. This is needed for
better HTML quality, and for the translation to ATP formats.

3.3 Generation of ATP Problems in TPTP Format

One of the main objectives of MizAR (as suggested by its name) is to allow easy
experimentation with ATP systems over the large body of formal mathemat-
ics available in the MML, and to apply ATP functionalities on Mizar articles.
The MPTP system [32,31] for translating Mizar articles to the TPTP format
has been modified to work in a fast real-time mode, generating ATP problems
corresponding to Mizar proof obligations. The MPTP system translates Mizar
articles to the MPTP format, which is an extension of the TPTP format with
information needed for further processing into ATP problems. Like the static
HTMLized MML, a static copy of the MML in MPTP format is available to
MizAR. It is used for building translated MML items (theorems, definitions, for-
mulae encoding Mizar type automations, etc.) that are necessary for creating
complete ATP problems.
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Using MPTP and generating ATP problems requires a quite complex instal-
lation and setup (SWI Prolog, Unix, special XSL style sheets, the translated
MML in the MPTP format, etc.), so this is a good example of an additional
functionality that would be quite hard to provide locally. The MPTP was ini-
tially designed for offline production of interesting ATP problems and data, and
was not optimized for speed. Several techniques have been used to provide a
reasonable real-time experience:

– More advanced (graph-like) data structures have been used to speed up the
selection of parts of the MML necessary for generating the ATP problems.

– Larger use has been made of Prolog indexing and the asserted database, for
various critical parts of the code.

– The MPTP version of the MML has been factored so that it is possible to
work with only the parts of the MML needed for a given article.

These techniques have led to reasonable real-time performance of the MPTP
problem generation, comparable to the performance of Mizar verification and
HTMLization. For example, the MPTP processing followed by the generation of
all 586 ATP problems for the card 1 article takes 7s on the server.

After the conversion to MPTP format, the ATP problems for an article are
generated asynchronously while the user is presented with the HTMLized article.
There is a small danger of the user wanting to solve an ATP problem that has
not yet been generated. However, it is easy to check if the translation process
is finished, and which ATP problems are already available, by examining the
system log.

The MPTP processing has not been parallelized (like the Mizar verification
and HTMLization). However, there are no serious obstacles to that. Another
speed-up option would be to ask MPTP to generate only a subset of the ATP
problems (this is actually how the parallelization is going to work), selected in
some reasonable way by the formalizer in the user interface. It is also possible
to keep the MPTP system loaded and listening once it has generated a subset
of problems, and to have it generate new ATP problems from the current article
on demand.

The HTMLization of an article and the generation of ATP problems are in-
dependent processes that could be separated into two separate services. Users
might, for instance, be interested only in HTML-like disambiguation of their
articles, or only in getting explanations and advice from ATP systems, without
looking at the HTML form of the article. With sufficient CPU-cores in the server,
none of these two possible use-cases suffers in terms of the response time.

3.4 Calling ATP Systems

The calling of ATP systems to solve the ATP problems is built into the HTML
presentation of the user’s article, by linking the available ATP services to key-
words in the HTML presentation. This follows the general idea that the HTML
serves as the main interface for calling other services. The links to the ATP ser-
vices in the HTML are the Mizar keywords by and from, indicating semantic
justification in Mizar. For example, the Mizar justification
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thus ( f is one-to-one & dom f = X & rng f = A )
by A1, A4, WELLORD2:25, WELLORD2:def 1;

in the last line of the proof of theorem Th4 in the card 1 article says that the
Mizar checker should be able to verify that the formula on the left hand side of
the by keyword follows from the previously stated local propositions, theorems
and definitions A1, A4, WELLORD2:25, WELLORD2:def 1, and some knowledge
that the Mizar verifier uses implicitly. There are now the following use-cases
calling ATP systems:

1. Mizar has verified the inference, possibly using some implicit information.
The user is interested in knowing exactly what implicit information was used
by Mizar, and exactly how the proof was conducted.

2. Mizar has not verified the inference. The user is interested in knowing if the
inference is logically valid, if it can be proved by a (stronger) ATP system,
and what such an ATP proof looks like.

The first use-case typically happens for one of two reasons. The first reason is
that the theory in which the author is working has become very rich, and in-
volves many implicit (typically typing) Mizar mechanisms that make the formal
text hard to understand. The TPTP translation has to make all this implicit in-
formation explicit in the TPTP problems, and the resulting corresponding ATP
proofs show explicitly how this information is used. For the Mizar justification
above, clicking on the by keyword calls the EP system [20] on the ATP problem,
with a several second time limit. If a proof is found, the interface is refreshed
with an explanation box that includes (among other things described below) a
list of the references used in the proof, as shown in Figure 2. In this case the
exact references shown to the user are following:

e8_9__mtest1, dt_k1_wellord2, dt_c2_9__mtest1, e2_9__mtest1,
e7_9__mtest1, t25_wellord2, d1_wellord2

These references use the MPTP syntax, but are linked (dynamically using AJAX
calls) to the corresponding places in the theorem’s HTML or the static HTM-
Lized MML), and are given appropriate explanation titles. Note that the EP
proof uses seven more references than the four that are in the original Mizar by
inference. One reference is added because it explicitly denotes the formula being
proved (the left-hand side of by), and the two remaining references encode im-
plicit type declarations that are used by Mizar (the type of the local constant R,
and the type of the functor RelIncl that is used in proposition A4 (renamed to
e7 9 mtest1 by MPTP)). The ATP proof can be visualized in the IDV system
by clicking on the palm tree icon in the explanation box.

The second reason for the first use-case is cross-verification. In cases when
a bug in the Mizar implementation is suspected, or incompleteness in the ATP
translation is suspected, the user may be interested in knowing if the Mizar proof
can be done by another system (and how). In this sense the environment is used
for gathering additional information and debugging. The cross-verification rates
for Mizar justifications are reasonably high [33], which makes this usage realistic.
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Fig. 2. ATP explanation box

The second use-case (finding proofs that are too hard for Mizar) is the real
“ATP proof assistance” dream, i.e., using ATP systems to automatically find
proofs for ITPs. Users can do this within MizAR by providing a large set of “po-
tentially relevant” Mizar propositions on the right-hand side of the by keyword,
and letting the EP system try to find a proof. Note that if EP does not find the
problem to be countersatisfiable, the user also has the option to try the SPASS
ATP system [36] directly from the interface, as shown in Figure 3. This is justi-
fied by the general experience that SPASS is reasonably complementary to EP
when solving MPTP problems. If SPASS is not successful the user can use the
links and icons in the explanation box to inspect the ATP problem, and launch
the SystemOnTPTP interface to try the ATP systems available there. The proofs
found by the ATP systems can be processed in the SystemOnTSTP interface, in-
cluding visualization using the IDV system, analysis using the AGInT system for
finding the interesting steps in proofs, and ATP-based cross-verification using
the GDV verifier.
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Fig. 3. ATP explanation box for “Proof not found”

Fig. 4. ATP explanation box offering hints

3.5 Getting Hints for Necessary Mizar References

If none of the ATP systems can find a proof for an ATP problem (corresponding
to a Mizar inference), either because the ATP system timed out or found that
the ATP problem is countersatisfiable (as in Figure 3, then typically some more
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assumptions (Mizar references) have to be added to the TPTP problem. The
explanation box can provide hints for proving the Mizar proposition. This is
done using the “Suggest hints” link that is put into the box when EP fails to
find a proof (see Figure 3). The “Suggest hints” button is linked to a Bayesian
advisor that has been trained on the whole MML (i.e., on all of the proofs in it).
(See [34] for the details of how the machine learning is organized in the context
of a large deductive repository like MML. Other axiom selection systems could
be used in a similar way.) The trained advisor runs as a daemon on the web
server, and receives queries initiated by clicking on the “Suggest hints” button.
This service is very fast, and the hints are usually provided in milliseconds. They
are HTMLized and inserted (by AJAX calls) into the explanation box, as shown
in Figure 4.

4 Future Work and Conclusions

This paper has introduced the MizAR web service that allows Mizar users to
use automated reasoning tools on their Mizar articles. MizAR is to some degree
based on and similar to the SystemOnTPTP service for solving first-order ATP
problems. The main differences to SystemOnTPTP are the use of the Mizar
language that is oriented towards human mathematicians (rather than the pure
first-order logic used in SystemOnTPTP), and setting the service in the context
of the large Mizar Mathematical Library of previous theorems, definitions, and
proofs.

There are obvious differences to those systems, given by the large-theory set-
ting in which Mizar formalization is typically done. There are several use-cases
described above, ranging from using HTMLization to disambiguate complicated
Mizar syntax, usage of ATP systems to explain Mizar inferences, provide new
proofs, and find counterexamples, to using additional AI-based services for proof
advice, like the proof advisor trained on the whole MML.

There are many directions for future work in this setting, some of them men-
tioned above. The service already is available by an interactive call from the
Emacs interface. However, Emacs simply generates the request from the current
Mizar buffer, and lets the user see the response (and all the associated function-
alities) in a browser. Obviously, the ATP and proof advising functionalities could
be made completely separate from the HTML presentation, and sent directly to
the Emacs session.

As mentioned above, the static MML is now present on the server in both
HTML and MPTP format (and obviously in raw text and in the Mizar internal
format), but not directly editable by the users. Giving the user the ability to edit
the supporting MML forms leads in the direction of formal mathematical wikis,
with all the interesting persistence, versioning, linking, user-authentication, and
dependency problems to solve. There is an experimental ikiwiki-based prototype
available for Mizar and the MML, which solves some of the persistence and
user-authentication problems, and that is likely to be merged with the services
presented here. Hopefully this will form a rich wiki for formal mathematics,
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with a large number of services providing interesting additional functionalities
to people interested in formal mathematics.

There is also a large amount of work that can be done on making the system
nicer and more responsive, e.g., the parallelization of the MPTP processing is
yet to be done, better machine learning and hint suggestion methods can be
used and linked to the ATP services, and presentations in formats other than
HTML (e.g., TeX and PDF are also used for Mizar) would be nice to include.
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Abstract. In spite of the remarkable achievements recently obtained
in the field of mechanization of formal reasoning, the overall usability
of interactive provers does not seem to be sensibly improved since the
advent of the “second generation” of systems, in the mid of the eighties.
We try to analyze the reasons of such a slow progress, pointing out the
main problems and suggesting some possible research directions.

1 Introduction

In [23], Wiedijk presented a modern re-implementation of DeBruijn’s Automath
checker from the seventies (see [16]). The program was written to restore a
damaged version of Jutting’s translation of Landau’s Grundlagen [20], and the
interest of this development is that it is one of the first examples of a large
piece of mathematics ever formalized and checked by a machine. In particular,
it looks like a good touchstone to reason about the progress made in the field of
computer assisted reasoning during the last 30/40 years.

From this respect, the only concrete measure offered by Wiedijk is the com-
pilation time, that passed from 35 minutes of the seventies to the 0.6 seconds of
his new system. Of course, this is largely justified by the better performances of
microprocessors, and such a small compilation time does only testify, at present,
of a substantial underuse of the machine potentialities. As observed by Wiedijk
himself, “the user’s time is much more valuable than the computer’s time”, and
the interesting question would be to know what a modern system could do for
us supposing to grant him 35 minutes, as in the seventies.

A different measure that is sometimes used to compare formalizations is the
so called de Bruijn factor [21]. This is defined as the quotient between the di-
mension of the formalization and the dimension of the source mathematical text
(sometimes computed on compressed files), and it is supposed to give evidence
of the verbosity, and hence of the additional complexity of the formal encoding.
In the case of van Benthem Jutting’s work, Wiedijk computed a de Bruijn factor
of 3.9 (resp. 3.7 on compressed files). For other formalizations that are inves-
tigated in [21], sensibly more recent than the Automath effort, the de Bruijn
factor lies around 4. On even more recent works, some authors point out even
higher factors (8 and more) [4,2,15].
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A more explicit indicator for measuring the progress of the field is the average
amount of time required to formalize a given quantity of text (a page, say). The
table in Figure 1 reports some of these figures, computed by different people on
different mathematical sources and using different systems.

source formalization cost
(weeks per page)

Van Benthem [20] 1
Wiedijk [22] 1.5
Hales [12] 1
Asperti [2] 1.5

Fig. 1. Formalization cost

In the case of Van Benthem Jutting’s work, the cost factor is easily estimated:
the Grundlagen are 161 pages long, and he worked at their formalization for -
say - three years during his PhD studies (the PhD program takes four years
in Netherlands). Wiedijk [22] computes a formalization cost of 2.5 man-years
per megabyte of target (formalized) information. Since, according to his own
figures, a page in a typical mathematical textbook is about 3 kilobytes of text,
and considering a de Bruijn factor of 4, we easily get the value in Figure 1:
3 · 4 · 2.5 · 10−3 · 52 ≈ 1.5. In [2], very detailed timesheets were taken during the
development, precisely in order to compute the cost factor with some accuracy.
Hales [12] just says that his figure is a standard benchmark, without offering any
source or reference (but it presumably fits with his own personal experience).

Neither the de Bruijn nor the cost factor seem to have progressed over the
years; on the contrary, they show a slight worsening. Of course, as it is always
the case, we can give opposite interpretations of this fact. The optimistic inter-
pretation is that it is true that the factors are constant, but the mathematics
we are currently able to deal with has become much more complex: so, keeping
low cost and de Bruijn factors is already a clear sign of progress. It is a mat-
ter of fact that the mathematics of the Grundlagen is not very complex, and
that remarkable achievements have been recently obtained in the field of inter-
active theorem proving, permitting the formalization and automatic verification
of complex mathematical results such as the asymptotic distribution of prime
numbers (both in its elementary [4] and analytic [15] versions), the four color
theorem [8,9] or the Jordan curve theorem [13]; similar achievements have been
also obtained in the field of automatic verification of software (see e.g. [1] for a
discussion). However, it is also true that these accomplishments can be justified
in many other different ways, quite independent from the improvements of sys-
tems: a) the already mentioned progress of hardware, both in time and memory
space; b) the enlarged communities of users; c) the development of good and
sufficiently stable libraries of formal mathematics; d) the investigation and un-
derstanding of formalization problems and the development of techniques and
methodologies for addressing them e) the growing confidence in the potentialities
of interactive provers; f) the possibility to get suitable resources and funding.
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The general impression is that, in spite of many small undeniable technical
improvements, the overall usability of interactive provers has not sensibly im-
proved over the last 25 years, since the advent of the current “second generation”
of systems1: Coq, Hol, Isabelle, PVS (see [10,14,11,7] for some interesting histori-
cal surveys). This is certainly also due, in part, to backward compatibility issues:

Matita
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HOL90 HOL light
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CambridgeStanford

Edinburgh

LCF

Agda
Cayenne

AgdaAlfa

Nuprl

Automath

8070 90 00 10
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Mizar
library development

Isar

Fig. 2. Rise and fall of Interactive Provers

the existence of a large library of available results and a wide community of users
obviously tends to discourage wide modifications. Worse than that, it is usually
difficult to get a sensible feedback from users: most of them passively accept the
system as they could accept a programming language, simply inventing tricks
to overcome its idiosyncrasies and malfunctionings; the few propositive people,
often lack a sufficient knowledge of the tool’s internals, preventing them from
being constructive: either they are not ambitious enough, or altogether suggest
completely unrealistic functionalities.

2 The Structure of (Procedural) Formal Developments

In all ITP systems based on a procedural proofstyle, proofs are conducted via a
progressive refinement of the goal into simpler subgoals (backward reasoning),
by means of a fixed set of commands, called tactics. The sequence of tactics (a

1 The first generation comprised systems like Automath, LCF and Mizar. Only Mizar
still survives, to testify some interesting design choices, such as the adoption of a
declarative proof style.



150 A. Asperti and C. Sacerdoti Coen

tree, actually) is usually called a script. In order to gain a deeper understanding
about the structure of formal proofs it is instructive to look at the structure of
these scripts.

In Figure 3 we summarize the structure of some typical Matita scripts, count-
ing the number of invocations for the different tactics.

Contrib Arithmetics Chebyshev Lebesgue POPLmark All

lines 2624 19674 2037 2984 27319
theorems 204 757 102 119 1182
definitions 11 73 63 16 163
inductive types 3 4 1 12 20
records 0 0 7 3 10
tactic no. % no. % no. % no. % no. %
apply 629 30.2 6031 34.5 424 28.2 1529 32.7 8613 33.4
rewrite 316 15.2 3231 18.5 73 4.9 505 10.8 4125 16.0
assumption 274 13.2 2536 14.5 117 7.8 493 10.5 3420 13.3
intros 359 17.2 1827 10.4 277 18.4 478 10.2 2941 11.4
cases 105 5.0 1054 6.0 266 17.7 477 10.2 1902 7.4
simplify 135 6.5 761 4.4 78 5.2 335 7.2 1309 5.1
reflexivity 71 3.4 671 3.8 12 0.8 214 4.6 968 3.8
elim 69 3.3 351 2.0 14 0.9 164 3.5 598 2.3
cut 30 1.4 262 1.5 15 1.0 59 1.3 366 1.4
split 6 0.3 249 1.4 50 3.3 53 1.1 358 1.4
change 15 0.7 224 1.3 32 2.1 30 0.6 301 1.2
left/right 18 0.8 72 0.4 76 5.0 72 1.6 238 1.0
destruct 2 0.1 16 0.1 3 0.2 141 3.0 162 0.6
generalize 5 0.2 66 0.4 21 1.4 32 0.7 124 0.5
other 49 2.4 139 0.8 45 3.0 91 1.9 324 1.3
total 2083 100.0 17490 100.0 1503 100.0 4673 100.0 25749 100.0
tac/theo 10.2 23.1 14.7 39.2 21.8

Fig. 3. Tactics invocations

We compare four developments, of a different nature and written by differ-
ent people: the first development (Arithmetics) is the basic arithmetical library
of Matita up to the operations of quotient and modulo; (Chebyshev) contains
relatively advanced results in number theory up to Chebyshev result about the
asymptotic distribution of prime numbers (subsuming, as a corollary, Bertrand’s
postulate) [2]; the third development (Lebesgue) is a formalisation of a construc-
tive proof of Lebesgue’s Dominated Convergence Theorem [19]; finally, the last
development is a solution to part-1 of the POPLmark challenge in different styles
(with names, locally nameless and with de Bruijn indexes).

The interest of these developments is that they have been written at a time
when Matita contained almost no support for automation, hence they strictly
reflect the structure of the underlying logical proofs.
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In spite of a few differences2, the three developments show a substantial sim-
ilarity in the employment of tactics.

The first natural observation is the substantial simplicity of the procedural
proof style, often blurred by the annoying enumeration of special purpose tactics
in many system tutorials. In fact, a dozen tactics are enough to cover 98% of
the common situations. Most of this tactics have self-explicatory (and relatively
standard) names, so we do not discuss them in detail. Among the useful (but, as
we see, relatively rare) tactics missing from our list - and apart, of course, the
automation tactics - the most interesting one is probably inversion, allowing to
derive, for a given instance of an inductive property, all the necessary conditions
that should hold assuming it as provable.

Figure 3 gives a clear picture of the typical procedural script: it is a long
sequence of applications, rewriting and simplifications (that, comprising
assumption and reflexivity, already count for about 75% of all tactics) some-
times intermixed by case analysis or induction. Considering that almost any
proof start with an invocation of intros (that counts by itself for another 5% of
tactics), the inner applications of this tactic are usually related to the applica-
tion of higher order elimination principles (also comprising many non recursive
cases). This provides evidence that most first order results have a flat, clausal
form, that seem to justify the choice of a prolog like automatic proof engine
adopted by some interactive prover (like, e.g. Coq).

2.1 Small and Large Scale Automation

In Figure 4 we attempt a repartition of tactics in 5 main categories: equa-
tional reasoning, basic logical management (invertible logical rules and as-
sumptions), exploitation of background knowledge (essentially, apply), cases
analysis (covering propositional logic and quantifiers), and finally creative
guessing, comprising induction and cuts. We agree that not any application
of induction or cut really requires a particularly ingenious effort, while some
instances of case analysis (or application) may comport intelligent choices, but
our main point, here, is to stress two facts: (1) very few steps of the proof are
really interesting; (2) these are not the steps where we would expect to have an
automatic support from the machine.

Equational reasoning and basic management of (invertible) logical connectives
are a kind of underlying “logical glue”: a part of the mathematical reasoning that
underlies the true argumentation, and is usually left implicit in the typical math-
ematical discourse. We refer to techniques addressing these kind of operations
as small scale automation. The purpose of small scale automation is to reduce
the verbosity of the proof script (resolution of trivial steps, verification of side

2 For instance, rewriting is much less used in (Lebesgue) than in the other devel-
opments, since the intuitionistic framework requires to work with setoids (and, at
that time, Matita provided no support for setoid-rewriting). Similarly, elimination is
more used in (POPLmark) since most properties (type judgements, well formedness
conditions and so on) are naturally defined as inductive predicates, and you often
reason by induction on such predicates.
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functionalities %
rewriting 16
simplification, convertibility, destructuration 11
equational reasoning 27

assumption 13
(invertible) connectives 14
basic logical management 27

background knowledge(apply) 33

case analysis 7

induction 4
logical cuts 2
creative guessing 6

Fig. 4. Main functionalities

conditions, smart matching of variants of a same notion, automatic inference of
missing information, etc.). It must be fast, and leave no additional trace in the
proof. From the technical point of view, the most challenging aspect of small
scale automation is by far the management of equational reasoning, and many
interesting techniques addressing this issue (comprising e.g. congruence [17], nar-
rowing [6] or superposition [18]) have been developed over the years. Although
the problem of e-unification is, in general, undecidable, in practice we have at
present sufficient knowhow to deal with it reasonably well (but apart from a few
experimental exceptions like Matita [3], no major interactive prover provides, at
present, a strong native support for narrowing or superposition).

In principle, case analysis and the management of background knowledge is
another part of the script where automation should behave reasonably well, es-
sentially requiring that kind of exhaustive exploration that fits so well with the
computer capabilities. In fact, the search space grows so rapidly, due to the di-
mension of the library and the explosion of cases that, even without considering
the additional complexity due to dependent types (like, e.g. the existential quan-
tifier) and the integration with equational reasoning, we can effectively explore
only a relatively small number of possibilities. We refer to techniques address-
ing these issues as large scale automation. Since the user is surely interested to
inspect the solution found by the system, large scale automation must return a
proof trace that is both human readable and system executable. To be human
readable it should not be too verbose, hence its execution will eventually require
small scale automation capabilities (independently of the choice of implementing
or not large scale automation on top of small scale automation).

2.2 Local and Global Knowledge

An orthogonal way to categorize tactics is according to the amount of knowledge
they ask over the content of the library (see Fig. 5).
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functionalities %
rewriting 16
apply 33
library exploitation 49

simplification, convertibility, destructuration 11
assumption 13
(invertible) connectives 14
case analysis 7
induction 4
logicat cuts 2
local reasoning 51

Fig. 5. Operations requiring global or local knowledge

Tactics like apply and rewrite require the user to explicitly name the library
result to be employed by the system to perform the requested operation. This
obviously presupposes a deep knowledge of the background material, and it
is one of the main obstacles to the development of a large, reusable library
of formalized mathematics. Most of the other tactics, on the contrary, have a
quite local nature, just requiring a confrontation with the current goal and its
context. The user is usually intrigued by the latter aspects of the proof, but
almost invariably suffer the need to interact with a pre-existent library - written
by alien people according to alien principles - and especially the lack of support
of most systems in assisting the user in its quest for a useful lemma to exploit.
It is a matter of fact that the main branches of the formal repositories of most
available interactive provers have been developed by a single user or a by a small
team of coordinated people and, especially, that their development stopped when
their original contributors, for some reason or another, quitted the job. Reusing a
repository of formal knowledge has essentially the same problems and complexity
of reusing a piece of software developed by different people. As remarked in the
mathematical components manifesto3

The situation has a parallel in software engineering, where development
based on procedure libraries hit a complexity barrier that was only over-
come by switching to a more flexible linkage model, combining dynamic
dispatch and reflection, to produce software components that are much
easier to combine.

One of the main reasons for the slow progress in the usability of interactive
provers is that almost all research on automatic theorem proving has been tra-
ditionally focused on local aspects of formal reasoning, altogether neglecting the
problems arising by the need to exploit a large knowledge base of available
results.

3 http://www.msr-inria.inria.fr/Projects/math-components/manifesto
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3 Exploiting the Library

One could wonder how far are we from the goal to provide full automatic support
for all operations like rewriting and application requiring a stronger interaction
with the library.

The chart in Figure 6 compares the structure of the old arithmetical develop-
ment of Matita with the new version comprising automation.

cut induction case analysis apply assumption intros & co. sim
30 75 110 640 274 396
25 64 104 148 0 198

1 2

0

500

1000
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2500
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induction
cut

Fig. 6. Arithmetics with (2) and without automation (1)

Applications have been reduced from 629 to 148 and rewriting passed from 316
to 76; they (together with a consistent number of introduction rules) have been
replaced by 333 call to automation. It is worth to mention that, in porting the
old library to the new system, automation has not been pushed to its very limits,
but we constrained it within a temporal bound of five seconds per invocation,
that looks as a fair bound for an interactive usage of the system. Of course, this is
just an upper bound, and automation is usually much faster: the full arithmetical
development is compiled in about 3 minutes, that makes an average of less than
one second per theorem. Moreover, the automation tactic is able to produce a
compact, human readable and executable trace for each proof it finds, permitting
to recompile the script with the same performance of the original version without
automation.

It is not our point to discuss or promote here our particular approach to au-
tomation: the above figures must be understood as a purely indicative description
of the current state of the art. The interesting point is that the objective to au-
tomatize most part of the operations requiring an interaction with the library
looks feasible, and would give a definitive spin to the usability of interactive
provers.

The final point we would like to discuss here is about the possibility of improv-
ing automation not acting on the automation algorithm, its architecture or data
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structures, but merely on our knowledge about the content of library, its inter-
nal structure and dependencies. All typical automation algorithms selects new
theorems to process according to local information: their size, their “similarity”
with the current goal, and so on. Since the library is large and sufficiently stable,
it looks worth to investigate different aspects, aimed to estimate the likelihood
that applying a given results in a given situation will lead us to the expected
result. Background knowledge, for humans, is not just a large amount of known
results, but also the ability, derived by training and experience, of recognizing
specific patterns and to follow different lines of reasoning in different contexts.

This line of research was already traced by Constable et. al [5] more than 20
years ago, but went almost neglected

The natural growth path for a system like Nuprl tends toward increased
“intelligence”. [...] For example, it is helpful if the system is aware of
what is in the library and what users are doing with it. It is good if the
user knows when to involve certain tactics, but once we see a pattern to
this activity, it is easy and natural to inform the system about it. Hence
there is an impetus to give the system more knowledge about itself.

It looks time to invest new energy in this program, paving the way to the third
generation of Interactive Provers.
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Abstract. If one were designing an entirely new mathematical assis-
tant, what might it look like? Problems and some favoured solutions are
presented.

In the 50 years since McCarthy’s “ Recursive Functions of Symbolic Expressions
and Their Computation by Machine”, what have we learned about the realization
of Leibniz’s dream of just being able to utter “Calculemus!”1 when faced with a
mathematical dilemma?

In this talk, I will first present what I see as the most important lessons from
the past which need to be heeded by modern designers. From the present, I will
look at the context in which computers are used, and derive further require-
ments. In particular, now that computers are no longer the exclusive playground
for highly educated scientists, usability is now more important than ever, and
justifiably so.

I will also examine what I see as some principal failings of current systems,
primarily to understand some major mistakes to avoid. These failings will be
analyzed to extract what seems to be the root mistake, and I will present my
favourite solutions.

Furthermore, various technologies have matured since the creation of many
of our systems, and whenever appropriate, these should be used. For example,
our understanding of the structure of mathematics has significantly increased,
yet this is barely reflected in our libraries. The extreme focus on efficiency by
the computer algebra community, and correctness by the (interactive) theorem
proving community should no longer be considered viable long term strategies.
But how does one effectively bridge that gap?

I personally find that a number of (programming) language-based solutions
are particularly effective, and I will emphasize these. Solutions to some of these
problems will be illustrated with code from a prototype of MathScheme 2.0, the
system I am developing with Bill Farmer and our research group.

1 Let us calculate!
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Abstract. The main goal of our work is to formally prove the cor-
rectness of the key commands of the SCHUR software, an interactive
program for calculating with characters of Lie groups and symmetric
functions. The core of the computations relies on enumeration and ma-
nipulation of combinatorial structures. As a first ”proof of concept”, we
present a formal proof of the conjugate function, written in C. This
function computes the conjugate of an integer partition. To formally
prove this program, we use the Frama-C software. It allows us to an-
notate C functions and to generate proof obligations, which are proved
using several automated theorem provers. In this paper, we also draw on
methodology, discussing on how to formally prove this kind of program.

1 Introduction

SCHUR [1] is an interactive software for calculating properties of Lie groups
and symmetric functions [2]. It is used in research by combinatorists, physicists,
theoretical chemists [3] as well as for educational purpose as a learning tool for
students in algebraic combinatorics. One of its main uses is to state conjectures
on combinatorial objects. For such use, it is important to have some confidence
in the results produced by SCHUR.

Until now, the method used to get some confidence in the results has mostly
been based on just one example for each command.

The computation of other examples is complex due to the well known combi-
natorial explosion, especially when using algorithms associated to the symmetric
group, see Sect. 2.1. Unfortunately, the combinatorial explosion as well as com-
puting time forbid test generation or verification techniques (model checking).
Therefore, in this paper, we focus on formal proof of the existing program.

With the aim of verifying the whole software, we start with proving the
correctness of its fundamentals bricks. The main combinatorial object used in
SCHUR is integer partition. The first non-trivial operation on integer partitions
is the conjugate. Moreover, conjugate function is necessary for more than half of
the 240 interactive commands of SCHUR. From this point of view, we can say
that conjugate is a critical function of SCHUR.

� This research is supported by the PEPS-CNRS project CerBISS.
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The very first work consists in isolating (see Sect. 4.3) the code of this function
from the program. Next, we chose to use the most popular tool of program proof
community’s Frama-C [4] successor of Caduceus. Frama-C is a plug-in system.
In order to prove programs, we used Jessie [5], the deductive verification plug-in
of C programs annotated with ACSL [6]. The generated verification conditions
can be submitted to external automatic provers, and for more complex situations,
to interactive theorem provers as well (see Sect. 2.2).

After a short presentation of software tools and theoretical concepts, we will
present the formal proof of a program. Finally, after discussing difficulties and
mistakes encountered along the way, we will propose a methodology to prove
such a software, and finally discuss future work.

2 Presentation of the Software Used

2.1 The SCHUR Software

SCHUR is an interactive software for calculating properties of Lie groups and
symmetric functions. A Symmetric Function is a function which is symmetric,
or invariant, under any permutation of its variables. For example f(x1, x2, x3) =
x1 + x2 + x3 is a symmetric function.

SCHUR has originally written by Prof. Brian G. Wybourne in Pascal lan-
guage. Then it was translated into C by an automatic program making it quite
difficult to read. There are almost no comments in the code, the code is more
than 50,000 lines long with many global variables. Local variables have names
such as W52 and so on.

After the death of Prof. Wybourne in November 2003, some people felt that
his program should be maintained, and if possible enhanced, with a view to
making it freely available to the mathematics and physics research community.

Nowadays, it is open source under the GPL license and includes more than
240 commands. The code still includes very few comments. Some mistakes have
been corrected but some interactive commands are so intricate that it is difficult
to have more than a few examples to check them against and most people do
not even know if the result is correct or not.

This is why we started to work on this code. Firstly some of the commands in
SCHUR are very well implemented (for example, plethysm is computed faster by
SCHUR than by many other combinatorial toolboxes). Formally proving some
key functions inside would also be a major advance for its research community.

2.2 The Frama-C Software

Frama-C [4] is an open source extensible platform dedicated to source code analy-
sis of C software. It is co-developed by two French public institutions: CEA–LIST
(Software Reliability Laboratory) and INRIA-Saclay (ProVal project).

Frama-C is a plug-in system. In order to prove programs, we use Jessie [5], the
deductive verification plug-in of C programs annotated with ACSL [6]. It uses
internally the languages and tools of the Why platform [7]. The Jessie plug-in
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uses Hoare-style [8] weakest precondition computations to formally prove ACSL
properties. The generated verification conditions (VC) can be submitted to ex-
ternal automatic provers such as Simplify [9], Alt-Ergo [10], Z3 [11], CVC3 [12].

These automatic provers belong to SMT (Satisfiability Modulo Theories)
solvers. The SMT problem is a decision problem for logical formulas with re-
spect to combinations of background theories expressed in classical first-order
logic with equality. First-order logic is undecidable. Due to this high computa-
tional difficulty, it is not possible to build a procedure that can solve arbitrary
SMT problems. Therefore, most procedures focus on the more realistic goal of
efficiently solving problems that occur in practice.

For more complex situations, interactive theorem provers can be used to es-
tablish the validity of VCs, like Coq [13], PVS [14], Isabelle/HOL [15], etc. For
our purpose, we used Coq (see Sect. 4.2) since it is the one best known to the
authors.

3 The Conjugate Function

In this section, the basics of algebraic combinatorics are given so that the reader
can understand what is actually proved. Interestingly in this field, though the
interpretation of what is actually computed can be of a very abstract algebraic
level, the computation itself boils down most of the time to possibly intricate
but rather elementary manipulations.

3.1 Combinatorial and Algebraic Background: Integer Partitions

A partition of a positive integer n is a way of writing n as a sum of a non-
increasing sequence of integers. For example λ = (4, 2, 2, 1) and μ = (2, 1) are
partitions of n = 9 and n′ = 3 respectively. We write |λ| = n and |μ| = n′ [16].

The Ferrers diagram Fλ associated to a partition λ = (λ1, λ2, ...,
λp) consists of |λ| = n boxes, arranged in l(λ) = p left-justified rows of lengths
λ1, λ2, ..., λp. Rows in Fλ are oriented downwards (or upwards for some au-
thors). Fλ is called the shape of λ.

Definition 1. The conjugate of an integer partition is the partition associated
to the diagonal symmetric of its shape.

For example, for λ = (3, 2, 1, 1, 1), here is the Ferrers diagram Fλ and the Ferrers
diagram of the conjugate partition:

So the conjugate partition of (3, 2, 1, 1, 1) is (5, 2, 1).
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A semi-standard Young tableau of shape λ is a numbering of the boxes
of Fλ with entries from {1, 2, ..., n}, weakly increasing across rows and strictly
increasing down columns. A tableau is standard if and only if each entry appears
only once. Here is an example of shape (4, 2, 2, 1) tableau:

1 2 2 5
2 4
3 6
5

A symmetric function of a set of variables {x1, x2, . . .} is a function
f(x1, x2, . . .) of those variables which is invariant under any permutation of those
variables (that is for example f(x1, x2, . . .) = f(x2, x1, . . .)). This definition is
usually restricted to polynomial functions. The most important linear basis of
symmetric function’s algebra is called the Schur functions and they are com-
binatorially defined as follows: for a given semi-standard Young tableau T of
shape λ, write xT the product of the xi for all i appearing in the tableau. Then

sλ(x) =
∑

T∈Tab(λ)

xT . (1)

where Tab(λ) is the set of all tableaux of shape λ. We will note sλ(x), sλ. For
example, consider the tableaux of shape (2, 1) using just three variables x1, x2, x3:

1 1
2

1 1
3

2 2
3

1 2
3

1 3
2

1 2
2

1 3
3

2 3
3

The associated Schur function is therefore:

s(21)(x1, x2, x3) = x2
1x2 + x2

1x3 + x2
2x3 + 2x1x2x3 + x1x

2
2 + x1x

2
3 + x2x

2
3 (2)

thus:
s(21) = s(21)(x1, x2, x3) + s(21)(x1, x2, x3, x4) + . . .

Note that, with this combinatorial definition, the symmetry of s(21)(x1, x2, x3)
is not exactly obvious.

We need to recall some well-known results in symmetric function theory:
though Schur functions have historically been defined by Jacobi [17], they were
named in the honor of Schur who discovered their crucial role in the representa-
tion theory of the symmetric group and the general linear group. Namely, after
the discovery by Frobenius that the irreducible representation of the symmetric
groups are indexed by integer partitions, Schur showed that those functions can
be interpreted as characters of those irreducible representation, and by Schur-
Weyl duality characters of Lie groups and Lie algebras. Notably we obtain the
representation of the general linear groups (GLn) and unitary groups (Un) [18]
from the symmetric group representations. In this setting, the conjugate of the
partition essentially encodes the tensor product of a representation by the sign
representation.
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Further work by Schur-Littlewood involve infinite sum of Schur functions as-
sociated to partitions [19], whose conjugates have a particular form. In particu-
lar, these series are used to obtain symplectic (Sp2n) and orthogonal character
groups (On) (symmetric and orthogonal Schur functions) from standard Schur
functions [20].

One particularly important and difficult computational problem here is
plethysm (see SCHUR reference manual [1] and [2]). It is the analogue in sym-
metric functions of the substitution of polynomial inside another polynomial
f(x) 	→ f(g(x)). It is called plethysm because by some combinatorial explosion,
it involves very quickly a lot (a plethora) of terms, making it something very
difficult to compute efficiently. For example, s(21)(s(21)), the first example with
non trivial partitions in the input is already very hard to compute by hand. First
we can regard s(21) as a function in as many monomial as in (2):

s(21)(s(21))(x1, x2, x3) = s(21)(x2
1x2, x

2
1x3, x

2
2x3, x1x2x3, x1x2x3, x1x

2
2, x1x

2
3, x2x

2
3)

it can be shown that the following holds:

s(21)(s(21)) = s(22221) + s(321111) + 2s(32211) + s(3222) + s(33111) +
3s(3321) + 2s(42111) + 3s(4221) + 3s(4311) + 3s(432) +
s(441) + s(51111) + 2s(5211) + s(522) + 2s(531) + s(54) + s(621)

3.2 Computation in Algebraic Combinatorics

Basically, the architecture of a software for computing in algebraic combinatorics
is composed of two parts:

– a computer algebra kernel dealing with the bookkeeping of expressions and
linear combinations (parsing, printing, collecting, Gaussian and Groebner
elimination algorithm. . . );

– a very large bunch of small combinatorial functions which enumerate and
manipulate the combinatorial data structures.

In algebraic combinatorics software, for each basic combinatorial structure such
as permutations or partitions, there are typically 50-200 different functions. Con-
jugating a partition is a very good example of what those many functions do,
that is surgery on lists of integers or lists of lists of integers or more advanced
recursive structures like trees. . . In a basic computation, most of the time is
spent mapping or iterating those functions on some sets of objects. But due to
combinatorial explosion those sets can be very large so these functions must be
very well optimized.

3.3 Properties

The definition of conjugate (diagonal symmetric of its partition shape) is
easy to understand but may conduct to naive implementations that may be
inefficient.
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Let us suppose that we represent an integer partition by an integer array
starting from 1. For example λ = (3, 2, 1, 1, 1) gives t[1] = 3, t[2] = 2,... t[l(λ)] =
1. Recall that t[i] is non-increasing, that is t[i + 1] ≤ t[i].

One way to compute the conjugate is to count boxes: in our previous example
the first column of λ had 4 boxes, the second had 3 etc. Therefore, to compute the
number of boxes in a column j we need to know how many lines are longer than
j. As a consequence, if tc is the array representing the conjugate, the following
formula gives the value of the entries of the conjugate:

tc[j] = |{i | 1 ≤ i ≤ l(λ) ∧ t[i] ≥ j}| .

Note that tc[j] = 0 if j > t[1], so the previous expression must be computed only
from j = 1 to j = t[1]. This last property will be one of our predicates used to
check the correctness of loop invariants.

3.4 SCHUR Implementation

Here follows the code of the conjugate function extracted from the SCHUR
software. We expanded type definitions (C “structs” and “typedefs”) from the
original code just to simplify the work of Frama-C and to make this part of code
independent from the rest of the SCHUR software (getting rid of global variables
and so on).

#define MAX 100

void conjgte (int A[MAX], int B[MAX]) {
int i, partc = 1, edge = 0;

while (A[partc] != 0) {
edge = A[partc];
do

partc = partc + 1;
while (A[partc] == edge);
for (i = A[partc] + 1; i <= edge; i++)

B[i] = partc - 1;
}

}

Note that this implementation is not naive (and not so easy to understand)
but its time complexity is optimal (linear in the length of the partition).

The algorithm is based on looking for the set of descents of the partition1.
The do–while loop follows a “flat” portion of the partition (t[i] = t[i−1]) until a
descent is found. Next the for–loop assigns the values of the B array according to
the flat portion. The following figure clarifies this: we have denoted partc1 the
value of partc at the entrance of while loop. partc2 is the value of partc after

1 A descent is such that t[i] < t[i − 1].
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the do–while loop. For clarity’s sake we supposed A[partc2]+1 to be different
from A[partc1]. If we count boxes column by column to construct array B, it is
clear that B[i]=partc2-1 for all A[partc2]+1 ≤ i ≤ A[partc1]=edge.

1 ... A
[p
a
r
t
c
2]

A
[p
a
r
t
c
2]

+
1

... A
[p
a
r
t
c
1]

... A
[1

]

↓ ↓ ↓ ↓ ↓
1→ ... ... ...
...

...
...

...
...

partc1 → ... ...
...

...
...

...
...

partc1+n→ ... ...
partc2 → ...

...
...

...

4 The Formal Proof of the Conjugate Function

4.1 Annotations

In the following paragraphs we present the annotations added to the code. Note
that this is the only additions made to it. First we have to specify the model of
integers we want to deal with:

#pragma JessieIntegerModel(strict)

This means that int types are modeled by integers with appropriate bounds, and
for each arithmetic operation, it is mandatory to show that no overflow occurs.

Next, we have to express in first-order logic what an integer partition (stored
in an array) is:

#define MAX 100
/*@ predicate is_partition{L}(int t[]) =

(\forall integer i; 1 <= i < MAX ==> 0 <= t[i] < (MAX-1)) &&
(\forall integer i,j; 1 <= i <=j < MAX ==> t[j] <= t[i]) &&
t[MAX-1]==0;

*/

Note that annotations are coded in the C comments, starting with a @. The {L}
term is the context (pre, post, etc.), we won’t detail it here, see [5,6] for details.

The data structure (array of integers) comes from the way the SCHUR soft-
ware represents integer partitions. 0 is used as a mark of end of array, just like
character strings in C. The MAX value comes from the original source code as
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well. The first line of the predicate is_partition expresses that we are able to
compute the conjugate (if at least one element is greater than or equal to MAX-
1, the conjugate will no be able to be stored in an array of size MAX-1 with
the last element fixed to 0). From the source code it is expressed by an external
simple test on t[1], but expressing it like that simplifies automatic provers job.
The second line of the predicate defines the non-increasing order.

The following predicate is needed to express how we count blocs to compute
the conjugate. It may be read as z equals the number of elements of partition
t, whose indexes are included in {1, .., j − 1} and whose values are greater than
or equal to k. It is theoretically possible to express it as an axiomatic theory, a
kind of function, but automatic provers we use make a better use of predicates.
Note that we need to explicit the z = 0 case, in order to be able to prove the
global post-condition is_conjugate(A,B).

/*@predicate countIfSup{L}(int t[],integer j,integer k,integer z)=
is_partition{L}(t) &&
1<= j <= MAX &&
1<= k < MAX &&
((1<=z<j && \forall integer i ; 1<=i<=z ==> t[i]>= k)
|| (z==0 && \forall integer i ; 1<=i<j ==> t[i]<k)) ;

*/

Here is what we want to obtain at the end of the computation, t2 is a conjugate
of t1 if the following holds:

/*@ predicate is_conjugate{L}(int t1[], int t2[]) =
\forall integer k ; 1<=k<MAX ==> countIfSup(t1,MAX,k,t2[k]);

*/

Finally, here is the function. First we have to give precise requirements on the
inputs. For example, (\valid(A+ (1..(MAX-1))) means that memory has been
allocated so array indexes from 1 to MAX-1 are allowed). From the original code,
the B array is supposed to be initialized with zeros before calling the function.
This is translated into a requires directive. Next, we specify which memory
elements are modified by the function (assigns). This is used for safety proofs.
In the end, the output is correct if the post-condition (ensures) is met.

/*@ requires \valid(A+ (1..(MAX-1)));
requires \valid(B+ (1..(MAX-1)));
requires is_partition(A);
requires \forall integer k; 1<=k<MAX ==> B[k]== 0;
assigns B[1..A[1]];
ensures is_conjugate(A,B);
*/

void conjgte (int A[MAX], int B[MAX])
{
int i, partc=1, edge = 0 ;
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Now we have to define the loop variant and invariant for each loop (to prove
properties). The “loop variant” must decrease, while remaining non negative, to
be able to prove termination. We also use a “ghost variable” to store the state
of a variable before any modification.

/*@ loop variant MAX-partc;
loop invariant 1<=partc<MAX;
loop assigns B[1..A[1]];
loop invariant \forall integer k;

A[partc]+1 <=k <= A[1] ==> countIfSup(A,MAX,k,B[k]);
*/

while (A[partc] != 0) {
edge = A[partc];

/*@ ghost int old_partc = partc; */

/*@ loop variant MAX-partc;
loop invariant old_partc<=partc ;
loop invariant \forall integer k;

old_partc<= k <= partc ==> A[k]==edge;
loop invariant partc<MAX-1;

*/
do

partc = partc + 1;
while (A[partc] == edge);

We also use the assert directive to have a verification point of a property that
may help automatic provers for the next properties or global ones.

/*@ assert countIfSup(A,partc,edge,partc-1);*/

/*@ loop variant edge-i;
loop invariant i >= A[partc]+1 && edge+1>=i ;
loop invariant \forall integer k;

A[partc]+1 <=k <i ==> countIfSup(A,MAX,k,B[k]);
loop assigns B[ (A[partc]+1)..edge];

*/
for (i = A[partc] + 1; i <= edge; i++)

B[i] = partc - 1;
}

}

4.2 Proofs

Fig. 1 to Fig. 3 are snapshots of gWhy (Frama-c graphical interface when using
plugin Jessie). We applied this tool on the previous annotated code.



Formal Proof of SCHUR Conjugate Function 167

Fig. 1. Graphical Interface: default behavior

The Verification Conditions (VC, also called proof obligations) that have to
be proved one by one (line by line) appear to the left of each of the following
snapshots. In the upper right part of the window, we can check at a glance what
hypotheses are known and what is to be proved at the bottom of it (under the
line). No circularity paradox is possible here, since the proof of a VC can only
rely on other VC higher in the control-flow graph of the function.

In the lower right part of the window, the corresponding part of the annotation
is highlighted in the source code with some lines before and after it.

We will now focus on the VC part, to the left. We can see (green) dots meaning
that this property has been proved by this prover. There is also (blue) rhombus

Fig. 2. Graphical Interface continued
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Fig. 3. Graphical Interface: Safety

with a question mark inside (see assertion 13), indicating that this prover will
not be able to to prove this property. Actually, this does not mean that this VC
is wrong, remember that these provers use heuristics. Sometimes, you may see
scissors meaning that the maximum execution time has been reached without
proving the VC. Again, this does not mean that the corresponding VC is wrong.
Finally, at the top of a column a (green) check or (red, with a white cross inside)
point is shown. The first one means that all properties have been proved by that
prover. In fig.1, The (blue) arrow at the top of the CVC3 column means that it
is still computing some unshown VC (greater than number 16).

The last figure is the final part. The provers have worked on the safety of the
code, that is to say, integer bounds (overflow problems), pointer referencing and
termination.

As seen in Sect. 4.1, the B array has to be initialized with zeros be-
fore calling the function. This requirement has been enlightened thanks
to the annotations and tools, in particular because without the line
requires \forall integer k;1<=k<MAX ==> B[k]==0, the postcondition
which states that B is a conjugate of A cannot be proved.

We have also used Coq proof assistant. However, it not being essential to our
present point, we chose to live aside the detail of this procedure (see Sect. 4.3).

4.3 Problems, Mistakes

As usual when using formal proof tools, there are several ways to formalize or
to annotate programs. Choices made during at this stage are very important for
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future proofs. For example, declaring a function as an axiomatic theory or as
a predicate will suppose corresponding proofs to be different. We can make a
similar remark with data-types used in programs.

For these reasons, using “good” annotations which allows automatic provers
to prove verification conditions (VC) successfully is a clever way to go about it.

When we deal with 40,000 lines of undocumented code, another critical part
of the work consists in “correctly” isolating the piece of code that we want to
prove. The code can use global variables, initializations made by other functions,
or use intricate data-types and so on.

In the following paragraphs, these problems and associated mistakes are
discussed.

Isolating a Part of Program. Generally speaking, the analyzed function must
be free of external calls. More precisely if a function is called from it, it has to
be incorporated in the code (like macro expansion) or, at least, independently
proved.

Next, data types must be simplified. Even if Frama-C can cope with simple
structures, it is better to have a first pass on them (unions suppression, typedef
expansion and so on).

How to Make Good Annotations? As previously explained, ACLS is a
language which is used to annotate C programs. Annotating an existing program
consists in choosing properties (comportment, results,...) that the user wants to
be “confirmed”, such as preconditions, loop invariants, post conditions. In our
case, for example, one of the most relevant properties we proved is that the result
B is the conjugate of the partition A. This property is stated as a postcondition.

As usual, there are several ways to formalize annotations. Particularly when
using external provers, a good method is to know how provers work. Here, we
have to remember that the automatic provers are SMT solvers (see Sect. 2.2).

As an example, we can give the definition of countIfSup. In a first formaliza-
tion we wrote it as an “axiomatization”. But due to another problem that we will
describe in the next paragraph, we needed to make some proofs in Coq which
used countIfSup. Then, to make it easier for Coq, we decided to try to define
it inductively. Thanks to this other definition, some conditions were automati-
cally proved by SMT solvers. This example shows how important formalization
choices can be.

In the next paragraph, we will explain and illustrate how Coq allowed us to
correct some errors in our annotations.

Why Coq? Once annotations are completed, the method consists in using
automatic provers (using gWhy for example). As previously explained, if all
proof obligations are proved by at least one prover, the work can be considered
as finished. But, if one or more proof obligations is/are still unproved, several
approaches are possible: the first one consists in verifying that annotations are
“sufficient”, that is to say a precondition or a loop invariant is not missing.
Another approach, when the user suppose that his annotations are correct, is to
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use an external non automatic prover to try to prove proof obligations that have
not been verified previously.

In our case, we used the interactive theorem prover Coq twice. The first time
was because a postcondition had not been proved by SMT provers. When we be-
gan Coq proof, we discovered that the definition of countIfSup was incomplete:
the second part of the “||” (logical or) was missing.

The second time we used Coq was to prove a loop invariant. Similarly, we
detected another incompleteness in countIfSup definition (j < MAX instead
of j ≤MAX). Proof assistants are well adapted to detect this kind of problems.
Indeed, building formal proofs manually, a user can easily see which hypotheses
are necessary.

After having corrected and replaced the “axiomatization” of countIfSup by
a predicate, all proof obligations have been proved by at least one automatic
prover.

Note that the new definition allowed us to remove from the annotations one
additional lemma which, at first, appeared necessary.

Other Vicissitudes. Among the main encountered difficulties, we can mention
the confidence in the provers we used. In our case, one of the versions of CVC3
was faulty and proved all VC correct, even when they were false. For this reason
we decided to consider that a proof obligation was proved when at least two
automatic provers succeed on proving it. It is the case for all our obligations
except one (VC # 23 is only proved by Simplify). The proof of VC # 23 is in
progress using Coq.

5 Conclusion and Future Work

We have isolated and formally proved one of the key commands of the SCHUR
software. This work reinforced us in the idea of formally proving chosen parts of
software of the same kind, composed of 40,000 lines of undocumented code.

Thanks to this approach, we have focused on critical points (such as particular
initializations of arrays and appropriate bounds) from the original code and
by extension, we have understood the progression axis of the methodology. In
particular, it is better to know how SMT automatic provers work to try to make a
“good” annotation so that obligation proofs will be more easily proved by them.
In the methodology, non automatic external provers like Coq may be used to
refine annotations, and to prove obligations when no automatic provers succeed.

The conjugate function is a basic brick of combinatorics. This give us perspec-
tive to prove other functions. Therefore, as a future work, the second step is to
prove algorithms relying on exhaustive enumeration algorithm, such as compu-
tation of Littlewood-Richardson coefficients, Koskas numbers, Koskas matrices,
representation multiplicity in tensor product decompositions, etc.

The final objective will be to build proved libraries usable for scientific
community.
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Abstract. Decomposing the domain of a function into parts has many
uses in mathematics. A domain may naturally be a union of pieces, a
function may be defined by cases, or different boundary conditions may
hold on different regions. For any particular problem the domain can
be given explicitly, but when dealing with a family of problems given in
terms of symbolic parameters, matters become more difficult. This article
shows how hybrid sets, that is multisets allowing negative multiplicity,
may be used to express symbolic domain decompositions in an efficient,
elegant and uniform way, simplifying both computation and reasoning.
We apply this theory to the arithmetic of piecewise functions and sym-
bolic matrices and show how certain operations may be reduced from
exponential to linear complexity.

1 Introduction

The goal of this paper is to develop general methods to work with domains
having symbolically defined parts. The raison d’être of symbolic mathematical
computation is to compute and reason about general expressions, rather than
working with particular values valid only at specific points. Matters are simplest
when variables range over a domain of interest and all expressions are valid over
the entire domain. Sometimes it is useful to perform simplifications or other
operations that are valid over part, but not all, of the domain. In this situation,
software systems may or may not record the excluded region. But we are not
always so fortunate to have this one-region situation. More generally, the domain
of interest may be made up of several pieces with expressions taking different
forms on different parts. Moreover, the demarcation of the parts may be defined
symbolically. This paper explores how to represent such expressions concisely in
a uniform way that simplifies computation and reasoning.

When we do arithmetic with piecewise functions defined on explicit parti-
tions, we can do a mutual refinement of domain partitions to obtain regions that
may each be handled uniformly. When the partitions are defined symbolically,
however, we obtain a massive explosion of cases — for N binary operations on
functions of k pieces there are kN potential regions. We say “potential” regions
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because, of this large number, not all of the regions are in fact feasible. Fur-
thermore, it is usually not possible to determine which regions are feasible and
which are not. For example, the sum

∑N
i=1 fi(x) of the functions

fi(x) =

{
0 for x < ki,

Ai for x � ki.

has
∑N

i=0 N !/i! possible orderings of the ki, with each ordering having between
2 and N + 1 regions. There is no ordering in which all 2N regions are realized.

We take the view that it is generally preferable to have a single compact closed-
form expression rather than a collection of cases, even if it means introducing
some new operations. For example, we are perfectly satisfied using the Heaviside
step function and giving the sum of the fi as

∑N
i=1 AiH(x− ki).

In this paper we show how hybrid sets, a variation on multisets allowing
negative multiplicities, enable us to write elegant closed form expressions of the
form we desire. This use of hybrid sets also allows us to define a generalised notion
of partition, where symbolically defined parts are combined in more useful ways
than the usual set operations. Our approach unifies and generalises a number of
other techniques, such as the use of oriented regions for domains of integration.

Introducing new operators or generalising existing ones to write single closed
form expressions is more than just a cosmetic re-arrangement. It allows one
to perform arithmetic and simplifications on whole expressions, and to reason
about the expression and about the regions themselves. It is already customary
to do this for certain operators. For example, by defining

∫ b

a
fdx = −

∫ a

b
fdx,

it becomes possible to write identities that hold universally. Then we have that,
independent of the relative order of a, b and c, and subject to f being defined
on the requisite domains,∫ b

a

fdx =
∫ c

a

fdx +
∫ b

c

fdx. (1)

With a little work, we can also generalise the integral formula to integrating
over oriented subsets of Rn. Some authors similarly adjust the definitions of
other operators to obtain universally true statements. Similarly, Karr [8] defines
the summation operator

∑
m�i<n so that

∑
m�i<n = −

∑
n�i<m when n < m.

This allows equations such as the following to hold for any ordering of �, m, n:∑
m�i<n

(
g(i + 1)− g(i)

)
= g(n)− g(m),

∑
��i<n

f(i) =
∑

��i<m

f(i) +
∑

m�i<n

f(i).

This paper formalises and extends these ideas in several ways, giving a gen-
eralised framework for domain partitions and piecewise defined functions. We
first introduce some preliminaries and hybrid sets (§2) and then their general-
isations to our notions of generalised partitions and hybrid functions (§3). We
then present how we can decompose domains of hybrid functions to allow for
the combination of their symbolically defined pieces (§4), before presenting some
applications (§5) and discussing some concrete examples (§6).
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2 Preliminaries

2.1 Partitions and Piecewise Functions

The domain of definition of various mathematical objects (functions, vectors,
matrices, sequences, etc) may naturally be decomposed into a (disjoint) union of
pieces where our object is then defined uniformly. When the pieces are given as
an explicit union of provably disjoint sets which form a partition of the domain,
the interpretation of a given expression is reasonably straightforward. More
formally,

Notation 1. We use the notation Ci∈IXi, or, more briefly, CIXi to describe a
collection of elements X1, X2, . . . , indexed by a set I. For n ∈ N, we denote by
[n] the set {1, . . . , n}.

Definition 1. A partition of a set U is a collection CIPi of pairwise disjoint
sets such that

⋃
I Pi = U .

A partition, CIPi, induces a total function X : U → I which gives the index of
P∗ where each u ∈ U sits. Piecewise expressions are then defined on top of a
partition.

Definition 2. A piecewise expression over a set U is a collection CI(Pi, ei)
where CIPi is a partition of U and each ei is an expression.

Typically, each ei contains a distinguished variable y which is interpreted to
range over U .

Definition 3. We say that f : U → S is a piecewise-defined function if we have
a collection CI(Pi, fi) where CIPi is a partition of U , ∀i ∈ I. fi : Pi → S, and

∀x : U. f(x) = fX (x)(x).

We call CI(Pi, fi) the definition of f , and each fi a piece of f .

It is important to note that piecewise-defined functions use their argument in
two different ways: once geometrically by choosing a set Pi “over” which to
work, and once analytically to evaluate a function fi. The definitions above are
straightforward generalisations of those found in [5].

Lastly, we have that arithmetic operations on piecewise-defined functions op-
erate component-wise. Note that we will silently use the convention that oper-
ations defined on the codomain of a function are lifted pointwise to apply to
functions, in other words (f + g)(x) = f(x) + g(x).

Proposition 1. Let f, g : U → S be two piecewise-defined functions on the
same partition CIPi of U , with CIfi (respectively CIgi) the collections of pieces
of f (resp. g). Further, let  : S × S → S. Then CI (fi  gi) is the collection of
pieces of f  g over the partition CIPi.
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Note how the partition is entirely untouched. This “separation of concerns” is
what enables us to separate the issues of domain decompositions from arithmetic
issues of piecewise-defined functions (and expressions).

To simplify our presentation, we introduce a domain restriction operation and
a join combinator on (partial) functions, to allow us a more syntactic method
of “building up” piecewise functions. These are quite similar to Kahl’s table
composition combinators [7].

Definition 4. The restriction fA of a function f to a domain specified by a set
A is

fA(x) ::=

{
f(x) if x ∈ A

⊥ otherwise

Definition 5. The join, f � g, of two (partial) functions f and g, is defined as

(f � g)(x) ::=

⎧⎪⎨
⎪⎩

f(x) if f(x) is defined and g(x) is undefined
g(x) if g(x) is defined and f(x) is undefined
⊥ otherwise

This allows us to rewrite a piecewise-defined function f defined by CI(Pi, fi), in
terms of its pieces as

f = fP1
1 � fP2

2 � . . . � fPn
n .

But our goal is to work with piecewise-defined functions where we have a symbolic
partition. We need some new tools for this, which we will develop in the next
two sections.

2.2 Hybrid Sets

We consider an extension of multisets, in which elements can occur multiple
times, to hybrid sets, where the multiplicity of an element in a hybrid set can
range over all of Z, instead of just N0. Thus a hybrid set, over an underlying
set U , is a mapping U → Z, i.e., it is an element of ZU . We use the following
definition, adapted from [9]:

Definition 6. Given a universe U, any function H : U → Z is called a hybrid set.

We can immediately define some useful vocabulary for working with hybrid sets.

Definition 7. The value of H(x) is said to be the multiplicity of the element
x. If H(x) �= 0, we say that x is a member of H and write x ∈ H; otherwise,
we write x �∈ H. The support of a hybrid set is the (non-hybrid) subset S of
U where s ∈ S ⇐⇒ s ∈ H; we will denote the support of H by supp H. We
(re)use ∅ to (also) denote the empty hybrid set, i.e. the hybrid set for whom all
elements have multiplicity 0.

Notation 2. We use the notation {|xm1
1 , xm2

2 , . . .|} to describe the hybrid set
containing elements x1 with multiplicity m1, x2 with multiplicity m2, etc. While
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our notation allows writing hybrid sets with multiple copies of the same element
with different multiplicities, these denote the same hybrid set as that denoted by
the normalised form with one copy of each element with a multiplicity which is
the sum of the multiplicities of the copies of that element in the non-normalised
form. Thus

{∣∣a2, b1, a−3, b4
∣∣} =
{∣∣a−1, b5

∣∣}.
Set unions are usually defined by the boolean algebra structure (and more specif-
ically, via ∨) of the membership relation. For hybrid set, this is replaced by
arithmetic over Z.

Definition 8. We define the sum, A ⊕ B of two hybrid sets A and B over a
universe U , to be their pointwise sum. That is (A⊕B)(x) = A(x)+B(x) for all
x ∈ U . We similarly define their difference, A%B to be their pointwise difference,
and their product, A⊗B to be their pointwise product. Let %B denote ∅ %B.

In other words, we do not use operations A∪B, A∩B and A\B for hybrid sets,
but just⊕,% and⊗. We can easily establish some identities such as (A⊕B)%A =
B, A%A = ∅ and A⊕ (%B) = A% B as these follow directly from Z.

Putting all of this together, we get:

Proposition 2. ZU is a Z-module.

Proof. The abelian group structure is given by (ZU ,⊕,%, ∅), and Z acts on
hybrid sets by nH = u 	→ n ·H(u).

We need two more technical definitions, which will be useful later.

Definition 9. We say that two hybrid sets A and B are disjoint if A⊗B = ∅.

Definition 10. We call a hybrid set reducible if all its members have multiplic-
ity 1. We define a reduction function, R(·), on reducible hybrid sets that returns
the (normal) set of members of the hybrid set.

We should note that these hybrid sets (sometimes also called generalised sets)
have been studied before. Hailperin [6] makes the case that Boole [3] actually
started from hybrid sets for his algebraization of logic, but restricted himself to
nilpotent solutions of the resulting equations, which then correspond closely to
our modern notion of Boolean algebra. Whitney wrote two nice papers [13,14]
taking up the theme of algebraising logic via characteristic functions. He does
allow arbitrary multiplicities, and derives some nice normal forms for certain
kinds of partitions, in a way foreshadowing some of our own results (see §3.2
and §4). Blizard [1] focuses on multisets (disallowing negative multiplicities) but
has an extensive bibliography of related works, several of which being on (mecha-
nised) theorem proving; he then formalised sets with negative membership in [2].
Blizard concentrates on concepts of union and intersection which closely resemble
those of normal set theory, although he does also define the sum union (but not
other related concepts). Burgin [4] lists several more works on hybrid sets, some
reaching back to the early middle ages. Syropoulos [12] gives a very readable
introduction to both multisets and hybrid sets.
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3 Generalisations

We now revisit a few basic mathematical constructs and show how they may
be modified to work with hybrid sets. This will provide the machinery that we
need for symbolic domain decomposition. First, we will examine the notion of a
hybrid function on a domain. We then show how sets and hybrid sets may be
decomposed using a notion of generalised partitions — an extension of parti-
tions to the hybrid set case. We then address the practical issue of how to make
two hybrid partitions compatible by constructing a common refinement. Finally,
when working with functions defined over hybrid partitions, we need some way
to compute values. Over any given point in the domain, we need to know which
functions must be evaluated in computing the final value, which is rather com-
plex for hybrid functions over generalised partitions. For this task, we introduce
the notion of pseudo-functions. When expressions on generalised partitions are
evaluated, these pseudo-functions avoid evaluating at places where the functions
are undefined or where the values are not needed. This allows us to deal with the
cases, as in equation (1), where component functions are not defined on some
parts of the domain decomposition but any application of the function in those
places would anyway have multiplicity zero (i.e. not be used).

3.1 Functions of Hybrid Domain

It turns out that a useful definition of a “function” involving hybrid sets is not
entirely straightforward. Defining its graph is easiest. The underlying intuition
is that we capture the restriction of a function to a domain through the mul-
tiplicities of the elements of the function graph in a hybrid set. The hybrid set
of a single element of the function graph for element x in U is of the form{∣∣(x, f(x))1

∣∣}. Therefore the scalar multiplication of that set by the multiplicity
of x in A will impose the appropriate restriction. We use our function restriction
notation of Def. (4) only for this hybrid version of function restriction henceforth.

Definition 11. Let A be a hybrid set over U , B ⊆ U , S a set and f : B → S a
(total-on-B) function. A hybrid function fA : U × S → Z is defined by

fA =
⊕
x∈B

A(x)
{∣∣(x, f(x))1

∣∣}
Note how the hybrid set Z-module structure automatically takes care of re-
stricting the sum over the support of A. Caution: some hybrid sets do not form
a hybrid function (for example

{∣∣(1, 1)1, (1, 2)1
∣∣} is not a hybrid function).

Our definitions work just as well with partial functions as with total functions.
But if for a hybrid function fF , f is undefined at some point in the support of
F , fF will not be defined at that point either. So, without loss of generality, we
can always restrict F to where f is defined. For the remainder of this paper, we
shall assume this, i.e. whenever we write a hybrid function fF , f is total over
supp F .
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Definition 12. We call a hybrid function fH reducible if the hybrid set H is
reducible. We extend R(·) in this case by

R(fH)(x) =

{
f(x) if H(x) = 1
⊥ if H(x) = 0

We can generalise the join combinator to hybrid sets. This definition is quite
central to “making things work”.

Definition 13. The join, fF
� gG, of two hybrid functions fF and gG (with

codomain B), gives a hybrid relation, a subset of U ×B × Z given by

fF
� gG ::= fF ⊕ gG

This is a rather “dangerous” definition, as it moves us from the land of functions
to that of relations. In other words, it is quite possible that fF

�gG restricted to
U ×B is no longer the graph of a function, but the graph of a relation. But this
extra generality will be quite useful for us, although we will have to prove that in
the cases which interest us, the resulting hybrid relations are in fact (reducible)
hybrid functions.

Theorem 1. Let A, B be hybrid sets over U , S an arbitrary set, and f : U → S
a total function. Then

1. R(f∅) is the empty function,
2. fA

� fA = f2A

3. fA
� fB = fA⊕B, and thus a hybrid function,

4. For g : U → S another total function, then fA
� gB = (f � g)A⊕B if and

only if A⊕B = ∅ (where f � g is the join of regular functions).
5. Let H1, H2 be hybrid sets, with supp H1 and suppH2 disjoint, f1 : supp H1 →

S and f2 : supp H2 → S, then fH1
1 � fH2

2 = (f1 � f2)H1⊕H2

The proofs are omitted, and follow straightforwardly from the definitions. Note
the strong dichotomy between (3) and (4), which comes from the fact that the
non-hybrid � is designed to work with functions defined over separate regions.

3.2 Generalised Partitions

Theorem 1 tells us that some collections of hybrid sets are better than others.
Being disjoint is much too strong a property. Nicely, for hybrid sets, partitions
easily generalise in useful ways.

Definition 14. We define a generalised partition of a (hybrid) set, P , to be a
finite collection of hybrid sets, C[n]Pi, such that P1 ⊕ P2 ⊕ . . .⊕ Pn = P

All set partitions of a set are also generalised partitions. Conversely, a generalised
partition of a reducible set is a set partition if and only if each generalised
partition element is reducible.
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Remark 1. We have lifted the disjointness condition on partitions. For some-
thing to be called a partition of P , it is necessary that the result be equal to P .
Still, P belongs to a larger universe U , and a generalised partition’s pieces range
over U . As long as, in the end, all elements of U \ P have multiplicity 0, we get
a generalised partition. In this way, we have also lifted the coverage condition.

Proposition 3. For any generalised partition C[n]Pi of a hybrid set P over U ,
arbitrary set S, and any function f : supp P → S,

fP = fP1 � fP2 � . . . � fPn = fP1⊕P2⊕...⊕Pn

is a hybrid function.

For brevity, we sometimes write fP for either of the right-hand side expressions
above. When we want to join different functions over a partition and still get a
function, we have to be careful and ensure we are joining “compatible” functions.

Definition 15. Let P1, P2 be a generalised partition of a hybrid set P over U ,
S an arbitrary set and fP1 : P1 → S, gP2 : P2 → S hybrid functions. We
say that P1, P2 is a compatible partition for f, g if f(x) = g(x) for all x ∈
supp P1 ∩ supp P2.

Theorem 2. Using the same notation as above, fP1 � gP2 is a hybrid function
if and only if P1, P2 is a compatible partition for f, g.

It is important to note that although � is an associative, commutative opera-
tion, the notion of compatibility, while commutative, does not lift to a simple
associative condition.

Remark 2. Some of our computations will purposefully use incompatible parti-
tions. Note that

(fU
� gU ) � g�U = fU

� (gU
� g�U ) = fU

� g∅ = fU

but that fU
� gU is in general a hybrid relation, yet the final result is a hybrid

function whenever fU is. We will “design” our hybrid partitions with this feature
in mind.

3.3 Refinement

To do arithmetic with hybrid functions, we first need the notion of a refinement
and a common refinement. This is similar to the treatment of [5] for piecewise
functions.

Definition 16. A refinement of a generalised partition CIPi of P is another
generalised partition CJQj (of another hybrid set Q not necessarily equal to P )
such that for every i ∈ I there exists a sub-collection Qjk

of Qj such that Pi =
Qj1 ⊕Qj2 ⊕ . . .⊕Qjm . A common refinement of a set of generalised partitions
is a generalised partition that is simultaneously a refinement to every partition
in the set.
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A refinement in this sense may well seem “larger” than the original partition, as
in the next example.

Example 1. Let the interval P = [0, 1], seen as
{∣∣P 1
∣∣}, and I1 = [−1, 0), I2 =

(1, 2], I3 = [−1, 2], then Q =
{∣∣I−1

1 , I−1
2 , I1

3

∣∣} is a refinement of P .

Definition 17. A refinement is called strict if, for each generalised partition
being refined, the support of the associated sub-collection is equal to the support
of the generalised partition it refines.

Example 2.
{∣∣[0, 1]1

∣∣},{∣∣(1, 2]1
∣∣},{∣∣(2, 3]1

∣∣} is a common strict refinement of the
two (trivial) hybrid partitions

{∣∣[0, 2]1
∣∣} and

{∣∣(1, 3]1
∣∣}.

3.4 Pseudo-functions and Pseudo-relations

As seen in the example above, a refinement may “spill over” the original domain,
so that if we look at a hybrid function fP where the underlying f is defined
exactly on (the support of) P , fQ evaluated “pointwise” will not make sense.
Nevertheless, we want fP = fQ. To achieve this, we apply the lambda-lifting
trick already used in [5].

Definition 18. Using the same notation as in Def. 11, we define a pseudo-
function f̃A as

f̃A =
⊕
x∈B

A(x)
{∣∣(x, f)1

∣∣}
i.e. as a member of U × (U → S) → Z. A pseudo-relation is defined similarly.
The evaluation of a pseudo-function (resp. relation) is defined by mapping each
point (x, f)k to (x, f(x))k.

The usefulness of pseudo-functions comes from the following property.

Proposition 4. For all refinements Q of the generalised partition P , f̃P = f̃Q.

In other words, even though the pieces of Q might “spill over”, if we first “sim-
plify” f̃Q by performing

⊕
i Qi to get P , we get a result f̃P which can then be

safely evaluated. We will elide the ˜ to lighten the notation whenever this would
not lead to confusion.

Another useful property of pseudo-functions is that in some cases we can
simplify them, regardless of what the underlying function does.

Proposition 5. f̃P
� g̃Q

� g̃�Q = f̃P

One of the chief advantages of pseudo-functions is that we can do some symbolic
manipulations of expressions in terms of these functions as if they were defined
on a much larger domain, as long as the eventual term we evaluate does not
involve any of these “virtual” terms.

To aid in such computations, when we have pseudo-functions f̃P and g̃P ,
with f, g : supp P → S, and some binary operation  : S × S → S, we will allow
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ourselves to write expressions such as f̃P  g̃P in the induced term algebra over
pseudo-functions. As usual, we lift evaluation pointwise, (f̃  g̃)(x) = f(x)g(x).
Furthermore we say that f̃ = g̃ over a set supp P whenever ∀x ∈ supp P.f(x) =
g(x). In other words, we use extensional equality for the intensional terms f̃
and g̃. This means that properties like commutativity, associativity and having
inverses lift to the term algebra. As an example, we have that

Proposition 6. If  : S × S → S is associative and commutative then

g̃Q  f̃P  g̃�Q = f̃P

4 Hybrid Domain Decomposition

We now have all the ideas necessary to decompose hybrid domains. An elegant
consequence of the formalism is that it allows us to use linear algebra to construct
the partitions that we require.

Let C[n]Ai and C[m]Bj , be generalised partitions of U . We want to find a gen-
eralised partition of U that is a common strict refinement of Ai and Bj and
has minimal cardinality. The cardinality restriction is to minimise the number
of terms required for a symbolic representation of the resulting domain decom-
position. Thus we want to choose a minimal generalised partition, CIPi of U
such that, in the Z-module of hybrid sets and for some integers ai,j , bi,j we have⊕

i Pi = U and ∀i : 1..n.
⊕

j ai,jPj = Ai and ∀j : 1..m.
⊕

i bi,jPi = Bj .
Since this forms a system of n + m + 1 simultaneous equations, of which only

n + m − 1 can be independent, because A and B are, separately, partitions of
U , we need that number of independent variables to solve the system. Thus the
cardinality of the minimal partition is n + m − 1 in the general case, and can
only be smaller in specific cases if there are some extra dependencies among
U, A1, . . . , An−1, B1, . . . , Bm−1.

This result generalises to a decomposition of U into a minimal generalised
partition that is a common strict refinement of r generalised partitions of car-
dinality n1, . . . nr respectively: The minimal partition required, assuming full
independence of the individual domain partitions, has cardinality(

r∑
i=1

ni

)
+ 1− r

If all the individual partitions have the same cardinality, n, this reduces to
r(n− 1) + 1.

We can automatically compute suitable minimal strict refinement partitions
U as follows. If we remove the equations for An and Bm from the system of
equations in order to get an independent set of simultaneous equations, we get
n + m− 1 equations that can be written as a linear system in the Z-module:



182 J. Carette et al.

C ·

⎛
⎜⎝ P1

...
Pn+m−1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
A1
...

An−1
B1
...

Bm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
a1,1 a1,2 . . . a1,n+m−1
...

...
an−1,1 an−1,2 . . . an−1,n+m−1
b1,1 b1,2 . . . b1,n+m−1
...

...
bm−1,1 bm−1,2 . . . bm−1,n+m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that C is an integer matrix. Further, the partition choice matrix, C, must
be invertible and C−1 must be an integer matrix so that we obtain integral
partitions of each domain piece with respect to our partition P of U . An integer
matrix is invertible and has an integer matrix inverse if and only if it has a
determinant of +1 or −1. Hence our problem of constructing an appropriate
partition reduces to choosing an integer matrix of the form of C such that its
determinant is ±1. Finally, note that this directly generalises to an arbitrary
number of piecewise functions, each of an arbitrary number of pieces.

If we restrict ourselves to triangular matrices, we can choose C to be any
integer triangular matrix (upper because the first row of C is all 1s) for which
the product of the diagonal elements is 1. Again, a simple way to do this is to
choose C to be all 1s along the top row, 1s along the diagonal and 0 everywhere
else. Another possibility is all 1s in the whole upper triangle.

For example, two suitable choice matrices with their inverses are⎛
⎜⎜⎜⎜⎜⎜⎝

1 . . . . . . . . . 1
0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 . . . . . . −1
0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 . . . . . . 1

0
. . .

...
...

. . . . . .
...

0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . −1
0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

5 Applications

5.1 Arithmetic on Piecewise Functions

We are now ready to generalise the arithmetic properties (see prop. 1) of hybrid
functions and pseudo-functions.

Proposition 7. Let C[n]Pi be a partition of P , fP = fP1
1 � . . . � fPn

n and gP =
gP1
1 � . . .� gPn

n be two hybrid functions on P → S. Let  : (S×S)→ S, then for
all x ∈ supp P ,

fP (x)  gP (x) = (f1(x)  g1(x))P1 � . . . � (fn(x)  gn(x))Pn .

Note how we can apply the above proposition to fF  gG, by first restricting F
and G to be over a common support (as x  ⊥ = ⊥  y = ⊥), then taking a
common strict refinement of (the restricted) F and G.
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We would like to lift this strictness condition. We can almost do this with
pseudo-functions – and with the help of a marked �, we can.

Definition 19. We can mark a � with a binary operation  : S × S → S,
denoted �

. We define evaluation of �
 by

(f̃F
�

 g̃G)(x) = (F (x) + G(x))
{∣∣∣(x, (f̃  g̃)(x))1

∣∣∣}
This operation clearly inherits properties of  like commutativity, associativity
and invertibility. Unlike �, �

 will always result in a (pseudo) function.

Proposition 8. Let P∗ = C[n]Pi be a partition of P , Q∗ = C[m]Qj another
partition of P , and R∗ = CKRk a common refinement of P∗ and Q∗. Let f̃P =
fP1
1 � . . .�fPn

n and g̃P = gQ1
1 � . . .�gQm

m be two pseudo functions with codomain
S. Let  : (S × S)→ S, be associative and commutative, then  distributes over
the partition R∗ in terms of �

. By the results of section 4, we can always choose
R∗ to be

P1⊕ . . .⊕Pn−1⊕Q1⊕ . . .⊕Qm−1⊕ (U % (P1⊕ . . .⊕Pn−1⊕Q1⊕ . . .⊕Qm−1))

Example 3. Let A1 = [0, a), A2 = [0, 1] \A1, B1 = [0, b), B2 = [0, 1] \B1, all seen
as hybrid sets. Let

f(x) =

{
2 0 ≤ x < a

0 a ≤ x < 1
and g(x) =

{
5 0 ≤ x < b

7 b ≤ x < 1

We choose the hybrid (symbolic!) partition A1, B1%A1, B2, which simultaneously
refines both. Then after a few computations we get

f ∗ g = {|2 ∗ 5|}A1
�

∗ {|2 ∗ 5|}B1�A1
�

∗ {|0 ∗ 7|}B2 (2)

regardless of whether a < b or a ≥ b; in fact either (or both) could be outside of
[0, 1) and the result, interpreted as a hybrid function, are still correct. Moving
from one choice of partition to another is done by undoing the distribution,
performing the change of partition, and using commutativity and associativity
to regroup like terms. Note that we should have written 2∗5 as (x 	→ 2)∗̃(x 	→ 5),
but we chose the above for greater clarity.

It should be very clear that expressions such as equation 2 are a formal repre-
sentation of a piecewise function, and need to be interpreted properly in each
context.

5.2 Identities for Invertible Operators

When the binary operation we use is invertible, we can perform the operations
at any time, as operands may later be removed from a cumulative result by
applying their inverses. This may lead to considerable efficiency improvements;
even though values and their inverses are cancelled in the calculation (leading
to no net effect) this may be more efficient than retaining an “un-evaluable”
expression as a pseudo-function.
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Proposition 9. Let fP be a hybrid function over S where (S, ) has the struc-
ture of an Abelian group (where we will use e for the unit and − for the inverse),
then for all x ∈ supp P ,

(fP  f−P )(x) = (fP  (−f)P )(x) = P (x)
{∣∣(x, e)1

∣∣}
where −f denotes x 	→ −f(x).

Both equalities follow readily from the definitions.

5.3 Identities for Linear Operators

Definition 20. For a linear operator L, and fP a hybrid function,

L(fP ) ::= L(x 	→ P (x) · f(x))

Note L(fP ) may not be defined even when L(f) is. If the multiplicity function
P (x) is uniformly bounded, then it will exist.

Proposition 10. Let fP be a hybrid function, C[n]Pi a partition of P such that
each Pi(x) is uniformly bounded, then

L(fP ) =
n∑

i=1

L(fPi)

The above is the fundamental reason why, under Karr’s definition, the summa-
tion identities of the introduction hold.

Corollary 1. For all total functions f : Z → G with G an Abelian group, and
all �, m, n ∈ Z, ∑

��i<n

f(i) =
∑

��i<m

f(i) +
∑

m�i<n

f(i).

6 Examples

We present two examples of the application of hybrid functions to symbolic com-
putation problems. The first example is concerned with the arithmetic of symbolic
matrices, the second presents the idea of merging symbolic spline functions.

6.1 Matrix Addition

Earlier work [10,11] introduced The idea of support functions has been intro-
duced previously to represent symbolic matrices — matrices given in terms of
symbolic regions with underspecified elements and symbolic dimensions — and
defined arithmetic operations between them. The paper [10] presented a sup-
port function based on half-plane constraints that enables full arithmetic, but
that suffered from a combinatorial explosion in the number of terms needed to
express sum or product matrices. The paper [11] moved to a support function
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based on interval addition that automatically dealt with cancellation for neg-
ative intervals. While this avoided the combinatorial explosion, the approach
was restricted to certain types of regions and could not be easily generalised to
matrix multiplication. Hybrid functions and generalised partitions solve both of
these problems simultaneously. We demonstrate this with the example of matrix
addition of two 2× 2 symbolic block matrices. Let

M1 =
(

A1 B1
C1 D1

)
, M2 =

(
A2 B2
C2 D2

)

where M1 and M2 are n×m matrices, A1 and A2 are of dimensions h1× k1 and
h2 × k2 respectively, n, m, h1, h2, k1, k2 ∈ N0.

Let U = {(i, j) | 1 � i � n ∧ 1 � j � m} be the set of all cell points in the
matrices. We define the region occupied by a matrix block similarly, and refer
both to a matrix block and to the region it occupies by the same name, relying
on context to distinguish them. We can thus write

M1 = AA1
1 � BB1

1 � CC1
1 � DD1

1 , M2 = AA2
2 � BB2

2 � CC2
2 � DD2

2 (3)

To calculate M1 + M2 we: (1) Choose a suitable generalised partition P∗ of
U . (2) Rewrite each block of each matrix into terms restricted to the chosen
partition. (3) Substitute into the expressions for the matrices. (4) Add the two
matrices region-wise. As established in the section 4, the maximal number of
partitions required in our case is 4+4−1 = 7. We therefore choose 6 independent
regions to be A1, B1, C1, A2, B2, C2 and obtain the seventh, P1, by subtracting
all other regions from the universe U ,

P1 = U % (A1 ⊕B1 ⊕ C1 ⊕A2 ⊕B2 ⊕ C2). (4)

We can then express regions D1 and D2 in terms of P1: D1 = U%(A1⊕B1⊕C1) =
P1 ⊕A2 ⊕B2 ⊕ C2, and D2 = P1 ⊕A1 ⊕B1 ⊕ C1.

Rewriting M1, M2 from Eq. (3), we get:

M1 = AA1
1 � BB1

1 � CC1
1 � DP1⊕A2⊕B2⊕C2

1

= DP1
1 � AA1

1 � BB1
1 � CC1

1 � DA2
1 � DB2

1 � DC2
1

M2 = DP1
2 � DA1

2 � DB1
2 � DC1

2 � AA2
2 � BB2

2 � CC2
2

This lets us express the sum of the two matrices as the following pseudo-function:

M1 + M2=(D1 + D2)
P1

�
+ (A1 + D2)

A1
�

+ (B1 + D2)
B1

�
+ (C1 + D2)

C1

�
+ (D1 + A2)

A2
�

+ (D1 + B2)
B2

�
+ (D1 + C2)

C2 (5)

Observe that the seven terms of the hybrid function fully capture the result of the
matrix addition independent of the order of the symbolic dimensions h1, h2, k1, k2
of the original blocks. We demonstrate this by evaluating the function for a
couple of concrete points in the sum matrix.
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First let h1 < h2 and choose a concrete value of a cell (i, j) where h1 < i ≤ h2
and 1 ≤ j < k1, k2. The point should therefore be in a region composed of
elements from B1 and A2. Instantiating the multiplicities in equation (5) ver-
ifies this. Observe that indeed the only regions with multiplicity 1 are B1 =
{(i, j) | h1 � i � n ∧ 1 � j � k1 } and A2 = {(i, j) | 1 � i � h2 ∧ 1 � j � k2 }
whereas the multiplicities for A1, B2, C1, C2 are all 0. Furthermore, we can
compute the multiplicity for P1 using equation (4). Since the multiplicity of
the universe U is always 1 — every element is in this partition — we get
1 − (0 + 1 + 0 + 1 + 0 + 0) = −1. This then yields the computation below,
which confirms that our element is indeed in the anticipated region (where we
write region-wise sets

{∣∣(D1 + D2)−1
∣∣} as (D1 + D2)−1 to alleviate notation)

(D1 + D2)
−1

�
+ (B1 + D2)

1
�

+ (D1 + A2)
1 = B1

1 �
+ A1

2 = B1 + A2

Now assume that the order of the symbolic dimensions for blocks A1, A2 is
reversed and we have h2 < h1. If we now compute the value of a cell with (i, j)
with h2 < i ≤ h1 and 1 ≤ j < k1, k2, we get 0 multiplicity for regions B1, A2,
but instead multiplicity 1 for A1, B2. Again the multiplicity for P1 is −1 and
equation (5) will yield that our cell is in the A1 + B2 region.

As a final example we compute cell (i, j) with h1, h2 < i ≤ n and k1, k2 <
j ≤ m, which is a point from D1 and D2. This time equation (5) simplifies even
more quickly, as the multiplicities for A1, A2, B1, B2, C1, C2 are all 0 and we only
have to consider the multiplicity for P1 which is 1 with the same considerations
as above, yielding D1 + D2 as the only term that does not vanish.

6.2 Symbolic Spline Interpolation

Numerical computation and manipulation of splines is well understood. Here we
show how hybrid domain decomposition can be used to support the previously
unexplored symbolic manipulation of splines.

Let a = x0 < x1 < · · · < xn−1 < xn = b be a partition of the interval [a, b] ⊂
R. We call the xi knots and assume that for each knot we have a corresponding
value yi. Then we can define a spline function S over [a, b] piecewise as

S(x) =

⎧⎪⎨
⎪⎩

S0(x) x ∈ [x0, x1]
...

...
Sn−1(x) x ∈ [xn−1, xn]

(6)

While spline interpolation is traditionally defined for numerical values of the
xi, yi pairs, we will now define a symbolic spline function. Let a = c0 < c1 < · · · <
cn−1 < cn = b be symbolic or “abstract” knots with associated symbolic values
d0, d1, . . . , dn, where a di is generally given as a function in ci. We define spline
segments Sci,ci+1(x) for i = 0, . . . , n−1. That is, the segments are parameterised
with respect to two knots and their values. Let P = P1 ⊕ . . . ⊕ Pn with Pi =
[ci−1, ci] be a generalised partition. We then define a symbolic spline function
S(x) = SP1

c0,c1
(x) � · · ·� Scn−1,cn(x)Pn . For clarity we often omit the (x) part of

the term.
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Define the merge of two spline segments SP
a,b �� SQ

a′,b′ to be SP⊗Q
max(a,a′),min(b,b′).

Clearly this merge will be empty if the two segments do not overlap, otherwise it
will be the smallest possible spline for the overlapping interval of the segments.

Now let P1 ⊕ · · · ⊕Pn and Q1⊕ · · · ⊕Qm be two generalised partitions of the
interval [a, b] and let S = SP1

c0,c1
�· · ·�SPn

cn−1,cn
and T = T Q1

d0,d1
�· · ·�T Qm

dm−1,dm
be

two symbolic splines. Observe that the di here are knots and not knot values. We
can then define the merge S �� T as a binary operation on two hybrid functions
as given above in proposition 8.

We observe the merge operation using a simple example. Let P = P1⊕P2 and
Q = Q1⊕Q2 be the generalised partitions a < c < b and a < d < b of our universe
[a, b], respectively. Let S = SP1

a,c�SP2
c,b and T = T Q1

a,d�T Q2
d,b be two symbolic splines.

We choose a common refinement as P1, Q1, R = U % (P1 ⊕ Q1). We can then
write S = SP1

a,c �SR⊕Q1
c,b = SP1

a,c �SR
c,b �SQ1

c,b and similarly T = T Q1
a,d �T P1

d,b �T R
d,b.

When we merge both symbolic splines we get

S �� T = (Sa,c �� Td,b)P1 �
�� (Sc,b �� Ta,d)Q1 �

�� (Sc,b �� Td,b)R (7)

If we now fix the order of our symbolic knots to be a < c < d < b we can
evaluate the three components of our spline. First let a ≤ x ≤ c, which means
P1 = Q1 = 1 and R = −1 and (7) evaluates to Sa,c �� Ta,d which yields a spline
between knots a, c. Similarly the other two segments evaluate Sc,b �� Ta,d and
Sc,b �� Td,b, which yields splines for the intervals [c, d] and [d, b], respectively.

7 Conclusion

We have presented a framework of generalised partitions and domain decompo-
sition based on hybrid sets. This framework has a number of pleasing properties
and unifies a number of ad hoc notions in common use. More importantly for our
purposes, this representation allows easy manipulation of and reasoning about
partitions whose pieces are defined symbolically. These specialise correctly for
all choices of parameters by negative and positive multiplicities cancelling as
needed. The representation (see for example equation (2)) needs to be carefully
interpreted, as out of context simplification can result in meaningless results.
But if the rules we lay out are followed, our compact representation effectively
allows one to compute with very general piecewise-defined functions.

Although a number of previous authors have studied hybrid sets, our study
of functions over hybrid sets, generalised partitions, the superposition � and
marked superposition �

 operators appear to all be new. Our applications to
computation and reasoning are certainly new.

There remain several intriguing directions for future work. These include nor-
mal forms for piecewise functions defined on hybrid partitions, simplification of
intermediate expressions involving linear operators or inverse elements and creat-
ing partition schemes from algebraic specialisation properties, e.g. in Cylindrical
Algebraic Decomposition. We have implemented a prototype Maple package for
hybrid sets and hybrid functions, but a more general implementation would be
of interest.
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LIX École Polytechnique

INRIA Microsoft Research Joint Centre
{Cyril.Cohen,Assia.Mahboubi}@inria.fr

Abstract. We prove formally that the first order theory of algebraically
closed fields enjoys quantifier elimination, and hence is decidable. This
proof is organized in two modular parts. We first reify the first order the-
ory of rings and prove that quantifier elimination leads to decidability.
Then we implement an algorithm which constructs a quantifier free for-
mula from any first order formula in the theory of ring. If the underlying
ring is in fact an algebraically closed field, we prove that the two for-
mulas have the same semantic. The algorithm producing the quantifier
free formula is programmed in continuation passing style, which leads to
both a concise program and an elegant proof of semantic correctness.

1 Introduction

Quantifier elimination is a standard way of proving the decidability of first order
theories. In this paper, we investigate the formalization of quantifier elimination,
and decidability for the first order theory of algebraically closed fields, inside the
Coq proof assistant [4]. The work does not address the problem of implementing
a fast proof producing a decision procedure. Our motivation is to enrich an
existing hierarchy of algebraic structures [8] with a decidability result. Beside
automation, decidability validates case analysis on first-order statements, even
in the context of a constructive development. In this work, we follow the proof
given in standard references [2]. Yet we diverge from the usual expositions of
the algorithm using continuation passing style to rephrase and prove quantifier
elimination in a more elegant way.

The Coq files for this formalization are available on line at the following URL :
http://perso.crans.org/cohen/closedfields1. Since there are no axioms in
the developpment, the fact that this code compiles ensures that the constructive
quantifier elimination proof is correct.

The article is composed of three parts. First, we reduce quantifier elimination
in discrete structures to the elimination of a single existential quantifier. We also
build the boolean decision procedure resulting from quantifier elimination. Then,
we establish an algebraic characterization of any existential formula with a single
1 It can be run using Coq v8.2 and SSReflect v1.2.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 189–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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quantifier. Finally, we show how to compute a quantifier free formula from this
characterization, using a continuation passing style formula transformation.

2 Quantifier Elimination and Decidability

2.1 Preliminaries

In this section we recall some standard material, essentially following [11], and
introduce some notations needed in the sequel.

Syntax: Signature, Terms, Formulas. In all what follows, we consider sig-
natures of the form: Σ = C∪F∪R, formed of a finite set C of constant symbols, a
finite set F of function symbols with arity, and a finite set R of relation symbols
with arity. Given such a signature Σ and a countable set of variables V , terms
are inductively defined as: variables in V and constants in C are terms, other
terms being of the form f(t1, . . . , tn) where f ∈ F is a function with arity n
and t1 . . . tn are terms. A term is closed if no free variable occur in it. We write
T (Σ,V) for terms, and T (Σ) for closed terms.

The atomic formulas of a signature Σ are of the form t1 = t2 where t1, t2 are
any terms, and R(t1, . . . , tn) where R ∈ R is a relation with arity n. The first
order language of Σ is the set of all first order formulas with these atoms. First
order formulas of Σ are recursively defined by: atomic formulas are first order
formulas, other formulas being of the form ¬f , f1 ∧ f2, f1 ∨ f2, (∃x, f), (∀x, f),
f1 ⇒ f2, where f, f1, f2 ∈ F A formula is closed if no variable occurs in it. We
write F(Σ,V) for formulas, and F(Σ) for closed formulas. Any subset of F(Σ)
is called a theory over Σ. We use the 5 predicate to denote provability: T 5 ψ
means that ψ is a first order consequence from formulas in T . The notation x
will denote a finite list of variables x1, . . . , xk for some k ∈ N.

A theory T admits quantifier elimination if, for every φ(x) ∈ F(Σ,V), there
exists ψ(x) ∈ F(Σ,V) such that ψ is quantifier free and

T 5 ∀x, ((φ(x)⇒ ψ(x)) ∧ (ψ(x)⇒ φ(x)))

Semantics: Σ-Structures, Models. For any signature Σ = C ∪ F ∪R, a Σ-
structure is the pair of a set E called the domain, and an interpretation function
I assigning an element of E to each constant symbol in C, a function En → E
to each function symbol in F with arity n, and an n-ary relation on E (i.e. a
subset of En) to each relation symbol in R with arity n.

For any Σ-structure A, any term t(x), and any list e of values in the domain
of A at least as long as the list of variables x, we define inductively [t(x)]A,e as

– if t(x) is xi, then [t(x)]A,e = ei

– if t(x) is c for some c ∈ C, then [t(x)]A,e = I(c)
– if t(x) is f(s(x)) where f ∈ R, and where s are terms with variables x, then

[t(x)]A,e = I(f)([s(x)]A,e)
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For any Σ-structure A, any atomic formula φ(x) = R(t(x)) where R ∈ R, and
where t are terms with variables x, and any a list e of values in the domain of
A at least as long as x, if [t(x)](A,e) is in I(R), we say that A is a model of φ,
denoted by A, e |= φ. This definition is extended to any first order formula φ by
induction on the structure of φ. We say that a Σ-structure A is a model of a
theory T , denoted A |= T , if and only if ∀φ ∈ T, A |= φ.

We say that two formulas φ, ψ ∈ F(Σ,V) are T -equisatisfiable if in any model
M of T , and for any context e, (M, e |= φ if and only if M, e |= ψ).

We say that a theory T admits semantic quantifier elimination, if for every
φ ∈ F(Σ), there exists ψ ∈ F(Σ) such that ψ is quantifier free and for any
model M of T , and for any list e of values, M, e |= φ iff M, e |= ψ. In this work,
we formalize the property of semantic quantifier elimination for the theory of
algebraically closed fields.

The Theory of Algebraically Closed Fields. The signature we use in this
paper to define the theory of fields (and algebraically closed fields) is ΣFields =
{0, 1} ∪ {−, .−1, +, ∗} ∪ ∅ (so the only atoms are equalities). We will also use
ΣRings = {0, 1}∪{−, +, ∗}∪∅. The Coq formalization features an extra unary
relation symbol for units, because the field theory is built by extending the one of
rings with units. We have omitted here this extra predicate for sake of readability.
We call first order theory of algebraically closed field, the set TClosedFields of
axioms of fields plus an axiom scheme (An)n∈N where An states the existence of
a root for any monic polynomial of degree n:

An := ∀a0, . . . an−1, ∃x, xn + an−1x
n−1 · · ·+ a1x + a0 = 0

Theorem 1. TClosedFields admits quantifier elimination.

This result is attributed to Tarski [19]. The corresponding geometrical formula-
tion of this result, stating that projections of constructible sets are constructible
sets is known as Chevalley’s Constructibility theorem [7].

2.2 Formalization Issues

In a type theoretic proof assistant like the Coq system, it is a common practice
to define the interface of an algebraic structure using record types. Here is an
example of a possible definition for commutative groups:

Record zmodule := Zmodule{
M : Type;
zero : M;
opp : M -> M;
add : M -> M -> M;
_ : associative add;
_ : commutative add;
_ : left_id zero add;
_ : left_inverse zero opp add}.
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The definition of an algebraic structure interface type like
zmodule can be seen as the definition of a signature ΣZmodules, together with

some axioms TZmodules, shallow embedded in Coq logic. In the case of zmodule,
the signature is {0} ∪ {−, +} ∪ ∅, and the axioms are the expected ones. Popu-
lating such a type, i.e. building an element (Z : zmodule) is providing a carrier
and an interpretation function, hence a structure Z, together with a proof that
it satisfies the set of axioms TZmodules, i.e. that Z |= TZmodules. So the inhabi-
tants of the type zmodule are a shallow embedding of the models of Tzmodules.
One can define similar specifications for more complex algebraic structures like
ring, unitRing, integralDomain and field. Packaging such structures can be
delicate, and record nesting should be used to achieve sharing and inheritance
between structures [9,8]. In our setting [8], the structure closedField of alge-
braically closed field is formally defined by packing a structure of field with the
following extra axiom schema:

Definition ClosedField.axiom (R : ring) := forall n P,
n > 0 -> exists x : R, x ^+ n = \sum_(i < n)(P i) * (x ^+ i).

where the notation (x ^+ n) stands for xn, and the right hand side of the equa-
tion is an iterated sum [5] forming the polynomial expression whose coefficients
are given by the (P : nat -> R) function.

The syntactic equality predicate on such algebraic structures need not to
be defined, as Coq provides such a default equality on any type. In Coq this
equality is not effective in general, and one cannot base a case analysis on two
terms being equal or not. However in all what follows, we restrict our study to
the case of discrete structures, in particular discrete fields. This means that we
assume that there is a boolean equality test exactly reflecting Coq equality on
the terms. For instance a classical formalization of real numbers could fit this
framework through the assumption of a boolean equality test, and so could a
constructive formalization of algebraic numbers.

To state a quantifier elimination result, we also need to provide an abstract
representation of first order formulas. Terms in T (ΣFields, N) are formally de-
scribed as the inhabitants of the following inductive type:
Variable T : Type.
Inductive term : Type :=
| Var of nat (* variables *)
| Const of R (* constants *)
| Add of term & term (* addition *)
| Opp of term (* opposite *)
| Mul of term & term (* product *)
| Inv of term (* inverse *)

where we reflect division by the product by an inverse. Similarly, first order
formulas in F(ΣFields, N) are defined by:
Inductive formula : Type :=
| Bool of bool
| Equal of term & term
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| And of formula & formula
| Or of formula & formula
| Implies of formula & formula
| Not of formula
| Exists of nat & formula
| Forall of nat & formula.

where quantifiers explicitly take as argument the natural number representing
the name of the variable they bind. We now define a Coq predicate holds:
forall F : field, seq F -> formula F -> Prop, such that (holds F e f)
is F, e |= f (see section 2.1). This requires the definition of the eval: forall
F : field, seq F -> term F -> F function interpreting terms as elements in
the model with respect to a context, such that (eval F e t) formalizes [t]F,e.
For instance, the interpretation of the abstract formula:

’forall ’X_0, ’forall ’X_1, ’forall ’X_2, ’exists ’X_3,
’X_0 * ’X_3 * ’X_3 + ’X_1 * ’X_3 + ’X_2 == 0 : formula F

where some notations pretty-print the constructors of the formula inductive
type, is the Coq proposition:

forall a b c, exists x, a * x * x + b * x + c = 0 : Prop

For any T : Type, it is straightforward to test if a formula (t : formula T)
is quantifier free: we just recursively test that t does not feature any Exists or
Forall constructor. This results in a boolean test:

Definition qf_form : forall T :Type, formula T -> bool.

Now the Coq theorem we prove is that there exists a transformation:

Definition q_elim : forall F : closedField, formula F -> formula F

such that:

Lemma q_elim_wf : forall (F : closedField) (f : formula F),
qf_form (q_elim f).

Lemma q_elimP : forall (F : closedField) (f : formula F),
forall e : seq F, holds e f <-> holds e (q_elim f)

This latter theorem is a formalization of the semantic quantifier elimination,
assuming that the shallow formalization of models encompasses all models of a
given structure.

2.3 Quantifier Elimination by Projection

For the discrete structures we are interested in, and more generally for first order
theories with decidable atoms, the elimination of a single existential quantifier
entails full quantifier elimination. We give here a formal account of this reduction,
for the special case of the theory of discrete rings.

We first show that this problem is general enough by describing a trans-
formation to_rformula of any formula f ∈ F(ΣFields, N) into a formula f ′ ∈
F(ΣRings, N) such that f and f ′ are TFields-equisatisfiable.
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For an atom of F(ΣFields, N):

– right-hand sides are set at 0 by transforming (t1 = t2) into (t1 − t2 = 0);
– divisions in the left-hand sides are recursively removed by introducing extra

quantifications over fresh variables: C[t−1] = 0 is transformed into:
∀x, (x ∗ t− 1=0 ∧ t ∗ x− 1 = 0)∨(x= t ∧ ¬ (∃x, (x ∗ t− 1=0∧t ∗ x− 1=0))
=⇒ (C[x] = 0).

This transformation is trivially recursively lifted to any non atomic formula.
For sake of convenience, we introduce a special data-structure for normalized

quantifier-free formulas. They can be represented in disjunctive normal form as:

∨
l∈L

⎛
⎝∧

i∈I

ti = 0 ∧
∧
j∈J

¬(tj = 0)

⎞
⎠

and hence encoded by a list (of sub-formulas in the disjunction), of pairs (one
for positive and one for negated atoms) of lists of terms (the left hand sides) :
(seq ((seq term R)*(seq (term R))). We consider a field F, equipped with
an operator:

Variable proj : nat -> seq (term F) * seq (term F) -> formula F.

whose first integer argument represents the name of a variable, second argument
is a quantifier free conjunctive formula, and which computes a new abstract
formula. This operator is meant to eliminate a quantifier from any formula of
the form:

∃xn,
∧
i∈I

ti = 0 ∧
∧
j∈J

¬(tj = 0)

We hence require that on a formula on the ring signature, this operator always
computes a quantifier free formula on the ring signature:

Definition wf_proj_axiom := forall i bc
dnf_rterm bc -> qf_form (proj i bc) && rformula (proj i bc).

and that it computes a formula equivalent to its input:

Definition holds_proj_axiom :=
forall n bc e,
let (ex_n_bc := (’exists ’X_n, dnf_to_form [:: bc])%T in
(holds e ex_n_bc) <-> (holds e (proj n bc)).

where dnf_to_form converts back the convenient representation we introduced
for disjunctive normal form (DNF) quantifier free formulas to an inhabitant of
the type formula F.

Under the assumptions that the proj operator satisfies the properties
wf_proj_axiom and holds_proj_axiom, we can now prove that the field F enjoys
full quantifier elimination, meaning that we can implement the q_elim function
of section 2.3. This quantifier elimination procedure proceeds by recursion on
the structure of the formula, eliminating the inner-most quantifier:
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– if the formula has the form ∃xnF , where F is quantifier-free, it converts F
into DNF. Then since ∃x,

∨
(
∧

pi ∧
∧
¬qj) is equivalent to∨

(∃x, (
∧

pi ∧
∧
¬qj)), it returns

∨
(proj n (pi) (qj)).

– if the formula has the form ∀xnF , where F is quantifier-free, it is equivalent
to ¬∃¬F since the decidability of atoms implies that the full theory is clas-
sical. The formula ¬F being quantifier free, the first case method applies to
eliminate the quantifier from ∃¬F , and hence from ¬∃¬F .

The sequential representation of quantifier free formulas eases the DNF conver-
sions, and their combination with negations in the case of universal quantifiers.

Finally, we obtain a full formal proof that if a field is equipped with a proj
operator, with a proof of the two wf_proj_axiom and holds_proj_axiom prop-
erties, then we can derive a correct quantifier elimination procedure q_elim
: formula F -> formula F, which transforms any first order formula into a
quantifier-free one, and such that the input and the output of the quantifier
elimination are equisatisfiable in any model of a ring with units.

2.4 Decidability

The first order theory of a field is decidable if one can construct a boolean oper-
ator: s : seq R -> formula R -> bool, which reflects the satisfiability of any
formula, i.e. satisfies the following property:

Variable F : field.
Definition DecidableField.axiom (s : seq F -> formula F -> bool):=
forall e f, (holds e f) <-> (s e f = true).

This provides a computational characterization of decidability since s can be
seen as a decision procedure for the first order theory of F .

Of course not all fields have a decidable first order theory: for instance the
field theory of rational numbers is undecidable [17]. However quantifier elimi-
nation entails decidability for any first order theory with decidable atoms. It
is hence straightforward to construct by structural recursion a boolean test
qf_eval which correctly reflects the validity of such a quantifier free abstract
formula (and remains unspecified on quantified formulas). The correctness of
this boolean test is expressed by the lemma:

Lemma qf_evalP : forall (e : seq R)(f : formula R),
qf_form f -> (holds e f) <-> (qf_eval e f = true).

where qf_form tests that an abstract formula does not contain any quantifier.
The function

Definition proj_sat e f := qf_eval e (q_elim f).

takes a formula, eliminates its quantifiers, and applies the boolean satisfiability
test qf_eval on the result. It is a correct decision procedure as shown by the
formal proof that it satisfies the DecidableField.axiom specification.
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3 Polynomial Arithmetic

In section 2.3, we have shown that quantifier elimination on the first order lan-
guage of fields boils down to the one over the signature of rings. This way, we
only handle polynomials in the atoms, instead of arbitrarily nested fractions,
which significantly simplifies the proofs. This reduction is often left implicit in
standard presentations [2]. The price to pay for this reduction is that we no more
have access to the field theory of the algebraically closed fields, but only to the
theory which can be stated and proved without using divisions. And this is the
theory of the underlying integral domain to the algebraically closed field.

3.1 Representation

We represent univariate polynomials as lists of coefficients with lowest degree
coefficients in head position. We require polynomials to be in normal form, in
the sense that the last element of the list is never zero. Hence the type {poly T}
of polynomials with coefficients in the type T is a so-called sigma type, which
packages a list, and a proof that it last element is non zero. The zero polynomial
is therefore represented by the empty list, with a default zero value for the head
constant function.

It is convenient and standard to define the degree of a univariate monomial as
its exponent, except for the zero constant, whose degree is set at −∞. Then the
degree of a polynomial is the maximum of the degree of its monomial. To avoid
introducing option types, we simply work here with the size of a polynomial,
which is the size of its list. This lifts the usual codomain of degree from {−∞}∪N
to N since in our case:

size(p) =

{
0 , if and only if p = 0
deg(p) + 1 , otherwise

3.2 Pseudo-divisions, Pseudo-gcd

When R is an integral domain, it is no more possible in general to program
the Euclidean division algorithm on R[X ] as it would be if R was a field. The
usual polynomial Euclidean division actually involves exact divisions between
coefficients of the arguments, which might not be tractable inside R. However
it might still remain doable if the dividend is multiplied by a sufficient power of
the leading coefficient of the divisor. For instance one cannot perform Euclidean
division of 2X2 + 3 by 2X + 1 in Z[X ], but one can divide 4X2 + 6 by 2X + 1
inside Z[X ]. In the context of integral domains, Euclidean division should be
replaced by pseudo-division.

Definition 1 (Pseudo-division). Let R be an integral domain. Let p and q be
elements of R[X ]. A pseudo-division of p by q is Euclidean division of αp by q,
where α is an element of R which allows the Euclidean division to be performed
inside R[X ].
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Note that α always exists and can be chosen to be a sufficient power of the lead-
ing coefficient of q. We implement a pseudo-division algorithm, which computes
on two given polynomials p and q, respectively (scalp p q) a sufficient α,
(p %/ q), the corresponding pseudo-quotient, and (p %% q) and the corre-
sponding pseudo-remainder. They satisfy the following specification:

Lemma divp_spec: forall p q, (scalp p q) * p = p %/ q * q + p %% q

Each possible value of α leads to different values for the pseudo-quotient (resp.
pseudo-remainder) of two polynomials, but they are always associated. We say
that p pseudo-divides q, denoted (p %| q) if pseudo-remainders of p by q are
zero. We recover some standard lemmas about divisibility like:

Lemma dvdp_mul : forall d1 d2 m1 m2 : {poly R},
d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.

The pseudo greatest common divisor gcdp is obtained by replacing division by
pseudo-division in the Euclidean algorithm. This is not the optimal algorithm
to compute such a greatest common divisor, which is a non trivial problem. We
choose here a naive implementation, since at this point, we are not concerned
with efficiency. However we recover standard properties of the greatest common
divisor, like:

Lemma root_gcd : forall p q x,
root (gcdp p q) x = root p x && root q x.

where root p x means that p evaluates to 0 at the value x. We denote by
gcdpn

i=1Pi the iteration of the gcdp function on the list (Pi)i=1...n (with at least
two elements). The polynomial gcdpn

i=1Pi has a root at x is and only if x is a
common root of the (Pi)i=1...n.

3.3 Common Roots, Exclusive Roots

Recall from section 2.3 that we aim at eliminating the existential quantifier from
a formula of the form:

(1) ∃x ∈ R,

n∧
i=1

Pi(x) = 0 ∧
m∧

j=1

Qj(x) �= 0

Indeed, after the reduction from the first order theory of fields to the first order
theory of rings, and the normalization of atoms, atoms are zero conditions on
polynomial expressions. In other words, given two finite families of polynomials
(Pi) and (Qj), we need to decide if there exists a point in the underlying field
which is a common root of the (Pi)s but root of no Qj:

(1) ⇔ ∃x ∈ R, (gcdpn
i=1Pi)(x) = 0 ∧ (

m∏
i=1

Qi)(x) �= 0
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Given two polynomials P and Q with coefficients in an integral domain R, we
introduce the greatest divisor of P coprime to Q, denoted gdcoQ(P ) and recur-
sively defined as:

gdcoQ(P ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 , if P = 0 ∧Q = 0
0 , if P = 0 ∧Q �= 0
P , if gcdp P Q = 1
gdcoQ(P / gcdp P Q) , otherwise

where the quotient in the last case is in fact a pseudo-quotient. In particular,
gdcoQ(P ) satisfies the following property:

∃x ∈ R, P (x) = 0 ∧Q(x) �= 0 ⇔ ∃x ∈ R, gdcoQ(P )(x) = 0

Introducing this gdcoQ(P ) operator provides a new equivalent to (1):

(1)⇔ ∃x ∈ R, gdco(∏m
i=1 Qi) (gcdpn

i=1Pi) (x) = 0

which in particular simplifies the one used in [2]. If the underlying field is alge-
braically closed, then any non zero polynomial has a root as soon as it is non
constant, hence:

(1)⇔ size
(
gdco(∏m

i=1 Qi) (gcdpn
i=1Pi)

)
�= 1 (2)

This is however not a first order formula as such: size, gcdp and gdco are not
directly expressible as functions from T (ΣRing, N) to T (ΣRing, N). For example,
consider the formula φ(y) := ∃x, x = 0 ∧ xy �= 0. We know from above that:

φ(y) ⇔ size
(
gdcoxy(x)

)
�= 1 (E)

and gcdoxy(x) =

{
0 if y = 0
1 if y �= 0

is not expressible in T (ΣRing, N).

Nevertheless, (E) can be decomposed like this :

{
if y = 0 φ(y) ⇔ size(0) �= 1
if y �= 0 φ(y) ⇔ size(1) �= 1

and hence φ(y) be described as formula of F(ΣRing, N):

φ(y)⇔ ((size(0) �= 1) ∧ (y = 0)) ∨ ((size(1) �= 1) ∧ (y �= 0))

The same kind of transformations applies to size so that in the end:

φ(y) ⇔ (0 �= 1) ∧ (y = 0)) ∨ ((1 �= 1) ∧ (y �= 0))

In the general case, the translation of (2) into a first order formula uses case
analysis, in fact zero tests, on the coefficients of the polynomials (Pi) and (Qj).
The final first order formula is a disjunction compounding the first order char-
acterizations obtained for each case. In the next part we present the algorithm
that systematizes this case analysis and the reconstruction of formulas.
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4 Quantifier Elimination for Algebraically Closed Fields

Let P ,Q ⊂ T (ΣRings, {x1, . . . xn}) two finite sets of terms. In this section, we
describe how to effectively transform a formula :

φ := ∃xk,
∧
p∈P

p = 0 ∧
∧
q∈Q

¬(q = 0)

over ΣRings into a quantifier free formula ψ in F(ΣRings, {x1, . . . xn}) such that:

∀M |= TClosedField, ∀e ∈ Mn, (M, e) |= φ ⇔ (M, e) |= ψ

The example given in section 3.3 describes how different values for the context
lead to different candidates for the quantifier free formula ψ. It is still possible
to construct such a ψ because we can construct an algebraic, quantifier free,
model-independent description of a finite partition of the space of parameters
into cells. Each cell corresponds to a uniform characterization ψ in the language
of rings. The description of this partition is obtained by analyzing the tree of
successive zero tests performed when computing the degrees and the pseudo
divisions involved in the expression (2) of section 3.3.

A term t ∈ P ∪ Q can be seen as polynomials in R[x1, . . . , xn]. Up to ring
theory, we can even reorder the sub-terms of t, to factorize the powers of the
quantified variable xk. At this syntactic level, we introduce the type of a formal
polynomial, defined as a list of ring terms. The elements of this list represent the
successive coefficients of the powers of xk:

Definition polyF (T : Type) := seq (term T).

We also define the function:

Definition abstrX (R : Ring) (i : nat) (t : term R) : (polyF R)

by induction on (t : term F), which computes the formal polynomial in the
variable xi associated to t. A formal polynomial t can be interpreted as a uni-
variate polynomial [pt]e given a large enough context:

Fixpoint eval_poly (R : Ring)(e : seq R) (pf : polyF R) :=
if pf is c :: qf then (eval_poly e qf)*’X + (eval e c) else 0.

We need to define again all the operations we have used in the informal pre-
sentation of section 3 like the size and greatest common division, to make them
operate on formal polynomials. We moreover expect this transformation to be
semantically sound. For instance, for a function (f: poly R -> A), with an ar-
bitrary return type A, we could ask its formal counterpart (Ff: term F -> A)
to satisfy:

∀t ∈ T (Σ, {x1, . . . xn}), ∀M |= TClosedFields, ∀e ∈ Mn, f([pt]e) = [Ff (t)]e

This is unfortunately not possible: consider the size function on polynomials,
applied to the polynomial x. According to the value assigned by a given context
to x, the size of x will be either 0 or 1. But there is no way to encode a case
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analysis at the syntactic level of terms handled by a formal counterpart Fsize.
In fact, these formal functions on terms should return lists of values, reflecting
all the possible values for all the tests performed by the body of the polynomial
function. Going back to section 3.3, the output quantifier free formula is a dis-
junction over all the different values of the degree, specified by the conditions
leading to these respective values. This construction requires inspecting the in-
variants of the code of the functions, to prove the correctness and soundness
of the generated conditions. This approach is the one usually described in the
literature (see e.g. [2]). To avoid this painful formula reconstruction, we diverge
from this standard presentation. First, we transform the polynomial operations
described in section 3.3 to return quantifier free formulas instead of terms. This
allows to encode case analysis, using the simple construction:

Definition ifF (then else cond: formula F) : formula F :=
((cond /\ then) \/ ((~ cond) /\ else)).

Simultaneously, we concisely internalize the administration of conditions in the
body of the formal counterpart by programming them in continuation passing
style (CPS). The CPS version of a function f : A1->. . .-> An-> B has the form
f_cps (k : B -> T) (a1: A1). . .(an: An) : T, where k is called the contin-
uation. For example, the rewritten size function is

Fixpoint sizeT (k : nat -> formula F) (p : polyF) :=
if p is c::q then
sizeT (fun n => if n is m.+1 then (k m.+2)

else ifF (k 0) (k 1) (c == 0)) q
else k O.

which is a translation of a CPS version of the size function over the polynomials
of section 3.1. Note that working with continuations means that the code handles
the formulas to be output, instead of the arguments, and can hence feature
the ifF construction to directly build the case disjunction in the language of
formulas. The zero test on formal polynomial is then:

Definition isnull (k : bool -> formula F) (p: polyF) :=
sizeT (fun n => k (n == 0)) p.

The semantic specification that a CPS function
fT : (B -> formula F)-> (A1->. . .-> An-> formula F) which builds the for-
mal counterpart of a function f : A1->. . .-> An-> B is formally expressed by a
lemma of the form:

Lemma fTP : forall (k : B -> formula F) (a1 : A1) . . . (an : An),
forall (e : seq (term F)),
qf_eval e (fT k a1 . . . an) = qf_eval e (k (f a1 . . . an)).

We use here the qf_eval function since the output formulas should always be
quantifier free. For example, sizeT is correct w.r.t. size since we prove that:

Lemma sizeTP : forall k p e,
qf_eval e (sizeT k p) = qf_eval e (k (size (eval_poly e p))).
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We transform and specify the gdcp operation of 3.3 in the same CPS way to
obtain a gcdpT function, naturally extended to lists of formal polynomials by
gdcpTs. And we can express a first quantifier elimination lemma, that takes a
list of formal polynomials ps and a formal polynomial q:

Definition ex_elim_seq (ps : seq polyF) (q : polyF) : formula F :=
gcdpTs (gdcopT q (sizeT (fun n => Bool (n != 1)))) ps.

where Bool is a constructor of formula F, see section 2.2.
The projection function required at section 2.3 is finally implemented as:

Definition proj (x : nat) (pqs : seq (term F) * seq (term F)) :=
ex_elim_seq (map (abstrX x) (fst pqs))
(abstrX x (\big[Mul/1%T]_(q <- snd pqs) q)).

where \big is a notation for iterated operators [5], which constructs the formal
term representing the product of the polynomials coming from the list (snd pqs).
Proving that the proj operator outputs quantifier free formulas is straightforward:
we have to check that each continuation can only output quantifier free formula.
This is done by a trivial case analysis on each of the continuations. Proving its
semantic correctness, i.e. the holds_proj_axiom axiom of section 2.3, is a combi-
nation of the semantic correctness of the CPS functions with the results formally
proved in section 3.3.

5 Conclusion

This paper describes the implementation in Coq of a quantifier elimination
algorithm for algebraically closed fields, together with a complete proof of cor-
rectness. To the best of our knowledge, the present work is the first to address
formally quantifier elimination for a generic structure of algebraically closed
fields. The algorithm operates on an abstract representation of first order formu-
las, equipped with an evaluation operator interpreting them as Coq statements.
It transforms a formula in the language of fields into a new formula in the lan-
guage of rings, and finally obtains a quantifier free formula in the language of
fields. Each step is semantically correct: it preserves the provability of the Coq
interpretations in any algebraically closed field structure. This semantic approach
hence results in a Coq reflexive decision procedure for algebraically closed fields,
except that we do not provide the reification mechanism.

The present procedure is not optimized. Yet this should come as a natural
follow-up to this work. Efficient decision procedures for the theory of real closed
fields for instance often deal with the universal fragment of the theory using
Gröbner bases computations. Harrison [10] has formalized both quantifier elim-
ination for the theory of complex numbers, and a proof producing a version of
Buchberger algorithm [6]. An efficient Gröbner based tactic is also available in
Coq [15] for complex numbers. It would be interesting to investigate how to
merge these Coq developments.
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The reduction of quantifier elimination to the elimination of a single existential
is a standard result. Nipkow proposes in [13] a modular framework to build
decision procedures along this motive. However, the continuation passing style
we use to feed the prerequisite existential elimination seems an original idea.
This approach makes the programing and the specification elegant and concise.
Moreover, the produced formulas are in general more compact than the one
produced by an invariant-based approach. We plan to investigate how the method
we have presented scales to the theory of real closed fields [2].

From a model-theoretic point of view, our approach deserves further discus-
sion in two ways. First, we weaken the characterization of quantifier elimination
given in section 2.1. Indeed, we use Coq native records to shallow embed models,
which may not be equivalent to a deep formalization of the |= relation. How-
ever, this is enough to establish decidability results. A generalization would be
to consider all the models definable in set theory, deeply embedding the formal-
ization of structure, satisfiability and models. Such a work could rely on previous
works about the formalization of set theory in Coq [1,18]. A second axis would
be to investigate a constructive link between provability and satisfiability, i.e.
proving Gödel’s completeness theorem in Coq [12]. This theorem has already
been formalized within the Isabelle system [16], and proving it in Coq could
for instance rely on the structures already introduced for a Coq formal proof
of Gödel’s incompleteness theorem [14], and the constructive approaches to the
Gödel’s completeness result [3]. Proving this theorem would result in the equiv-
alence between syntactic quantifier elimination and semantic (deep version of)
quantifier elimination.

Acknowledgments. The authors wish to thank Georges Gonthier for numer-
ous comments and improvements. The proofs relating quantifier elimination and
decidability were done in close collaboration with him, and he suggested the
successful idea of using CPS-style to transform algorithms on polynomials into
formula producing ones. The authors are also grateful to Thierry Coquand for
his comments and suggestions on preliminary versions of this work.
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Abstract. Computational content encoded into constructive type the-
ory proofs can be used to make computing experiments over concrete
data structures. In this paper, we explore this possibility when working
in Coq with chain complexes of infinite type (that is to say, generated by
infinite sets) as a part of the formalization of a hierarchy of homological
algebra structures.

Keywords: Theorem proving, formal methods, computer algebra, pro-
gram verification.

1 Introduction

One main feature of constructive type theory, through the well-known Curry-
Howard isomorphism, is the equivalence between proving and programming. This
is clearly one of the advantages of Coq [5] with respect to other proof assistants,
like Isabelle/HOL [22]. This characteristic is the base of reflective tactics, pio-
neered by S. Boutin [6], and successfully used, for instance, in [14,20].

Computing can play another role when formalizing a proof. It can be useful,
for example, to check some conjecture over concrete cases. When dealing with
standard data structures (as lists, trees, and the like), these experiments can
be done in a parallel line by programming the tests in Java, C, or any other
programming language. If infinite data structures occur, programming them is
a more delicate task, and it can be rewarding to keep a tighter link among
programs and specifications.

Infinite data structures, presented as coinductive objets as streams, have been
dealt with in the theorem proving literature (see [5] for instance). In this work, we
undertake another via to manage the infinity, working with algebraic structures
of infinite type (that is to say, generated by infinite sets) [24]. We report in
this paper on an experiment of this nature, in the area of homological algebra.
It is well-known that homological information is not computable over general
(infinite type) chain complexes (see [23]). For instance, if (C, d) is an acyclic
chain complex, and x ∈ Cn is a cycle (this means dn(x) = 0), then there exists
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z ∈ Cn+1 such that dn+1(z) = x (that is, x is a boundary). But if Cn+1 is a free
module of infinite type, and no other information is available, there is no general
algorithm computing a pre-image z of x.

Sergeraert’s effective homology [25] is a theory allowing solving large classes of
problems of this sort, even in the infinite dimensional case. This paper continues
our previous work in translating Sergeraert’s ideas to theorem provers [2,3,4,1],
with the aim of formalizing this part of algorithmic mathematics and, more
importantly, of applying formal methods to the study of the Kenzo system [12] (a
Common Lisp program developed by Sergeraert to implement effective homology
algorithms). The first important milestone in this area was the mechanized proof
in the Isabelle/HOL proof assistant of the Basic Perturbation Lemma (BPL),
published in [2]. This formal proof was carried out in the Higher Order Logic
(HOL) built on top of Isabelle, and therefore extracting programs from it was
not a simple task. The findings on this topic were reported in [3]. A different
approach is being carried out by T. Coquand and A. Spiwack [9] who are using
Coq to model a part of Category Theory, and then trying to obtain a BPL proof
in this larger context.

The data structures of effective homology are organized in two layers (as
algebraically modeled in [17,10]): the first layer is composed of algebraic data
structures (chain complexes, simplicial sets, . . . ) and the second one of standard
data structures (lists, trees, . . . ) which are representing elements of data from the
first layer. Infinite type data structures appear only in the first layer. Computing
in this first layer can be done in an abstract way, and it is equivalent in Coq
to proving theorems. For example, a theorem stating “the direct sum of two
chain complexes is a chain complex” contains an algorithm constructing the
mentioned direct sum. Coq can deal with this structure, no matter whether it
is of finite or infinite type. But actual computations really take place within
algebraic structures of the first layer. To compute with Coq in this sense has no
advantage of being any more direct. It is needed to construct concrete instances
of chain complexes and other possibly infinite algebraic data structures. Then
we must build concrete elements (second layer) of these particular structures,
and finally put to work the algorithms abstractly described in the first layer.

In this paper we discuss this procedure in a case related to the effective ho-
mology of the cone of a chain complex morphism. This formalization was part of
the implementation in Coq of the algorithm computing the effective homology of
a bicomplex (see [11]). Now, we use the computing capabilities of Coq to explore
whether some concrete cones are acyclic or not, as a previous step to proving a
general property.

The paper is organized as follows. Section 2 contains some preliminaries on
algebraic structures, both in Mathematics and in Coq. Section 3 describes the
formalization in Coq of the algorithm computing the effective homology of a
cone, in a way that slightly generalizes our previous work in [11]. Concrete Coq
instances of chain complexes of infinite type are introduced in Section 4. Then
explicit calculations with elements are presented in Section 5, using Coq as a
computing tool to check some conjectures. The paper ends with conclusions,
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future work, and the bibliography. The Coq source files are available at
https://esus.unirioja.es/psycotrip/archivos documentos/CCIADS.zip

2 Algebraic Data Structures in Coq

In this section we introduce the algebraic structures which support our construc-
tions. They include chain complexes, chain complex morphisms, and reductions
and effective homologies of chain complexes. The formalization in Coq of these
structures are also described.

We assume as known the notions of ring, module over a ring and module
morphism (see [16] for instance). A ring R commutative and with unity is fixed
all through the paper, and modules are supposed to be left R-modules.

We have built these basic structures in Coq using records called Ring, Module
and ModHom, respectively. They are based on the ones included in CoRN [13] (but
simplifying them: basically eliminating the apartness relation included in setoids
which is not used by us, since we are working in a discrete mathematics setting).
Besides, further constructions as for instance the addition or the composition
of module morphisms are defined, and are represented using the infix notation
[+h] or [oh], respectively.

A free R-module generated over a set B is the module R[B] whose elements
are linear combinations with elements of B as generators. The addition and the
external product by elements of R are defined in the natural way. Since we are
planning to work in a constructive logic setting, it is convenient to define a free
module as one module M where an explicit isomorphism is known between M
and R[B] (the set of generators B must also be explicitly given). If B is finite,
the free module is said of finite type.

The formalization of free modules in Coq follows the ideas given by L. Pottier in
the Coq contributions web page [19]. There, a definition can be found of a module
built by freely generation from a basis, which is given by a setoid (i.e. a set with an
equality, usually denoted by [=]), using the module operations. If we call B the ba-
sis setoid, this is representing the mathematical structure R[B] introduced above.
Then, our formalization of free modules consists of a record with a module and
an explicit isomorphism to such a freely generated module. In order to deal with
finite sets in a constructive type theory, more care is needed. For instance, several
alternatives for defining finite sets in a constructive logic are included in [8]. Finite
algebraic structures have also been implemented in Coq in [15] as a first milestone
of a long-term effort to formalize the Feit-Thompson theorem. Our formalization
is the following. Given a natural number k ∈ �, let us denote FS(k) the (finite)
setoid {0, 1, . . . , k − 1} (with the Leibniz equality). We consider a setoid B as fi-
nite if it is endowed with a natural number k ∈ � and an explicit bijection to
FS(k). Then, a free module of finite type is a free module, but we impose that the
generator set is equal (in the Coq internal sense) to FS(k).

We concentrate ourselves in the sequel on free modules, since it is the unique
kind of modules dealt with in the Kenzo system [12].

We are ready to introduce the first graded concept, needed in Homological
Algebra and Algebraic Topology.
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Definition 1. A graded module M is a family of R-modules indexed by the
integer numbers (Mi)i∈�. A graded module is free (or free of finite type) if Mi

is free (free of finite type, respectively) for all i ∈ �. If x ∈ Mi, the index i is
called degree of the element x.

Definition 2. Given a graded module M a differential operator d on M is a
family of module morphisms (di : Mi+1 →Mi)i∈� such that di ◦ di+1 = 0 for all
i ∈ �.

Definition 3. A chain complex is a pair CC = (M, d) where M is a graded
module and d a differential operator on M . A chain complex is called free (or
free of finite type) when its underlying graded module is free (free of finite type,
respectively).

Chain complexes have a corresponding notion of morphism.

Definition 4. A chain complex morphism (or, simply, a chain morphism)
f : CC → CC′ between two chain complexes CC = (M, d) and CC′ = (M ′, d′)
is a family of module morphisms (fi : Mi →M ′

i)i∈� such that fi ◦ di = d′i ◦ fi+1
for all i ∈ �.

Given a ring R: Ring, a graded module can be formalized in Coq with the
following dependent type: Z -> Module R, which accurately represents a family
of modules indexed by the integer numbers. Then, a (free) chain complex can
be formalized in Coq using the following record structure:

Record ChainComplex: Type:=

{GrdMod:> Z -> FreeModule R;

Diff: forall i:Z, ModHom (R:=R) (GrdMod (i + 1)) (GrdMod i);

NilpotencyDiff: forall i:Z, (Nilpotency (Diff i)(Diff (i + 1))}.

where the nilpotency property is defined by Nilpotency(g:ModHom B C)
(f:ModHom A B):= forall a: A, ((g[oh]f)a)[=]Zero.

In a similar way, given two chain complexes CC1 CC2: ChainComplex R, a
chain complex morphism ChainComplexHom is represented as a record with a
family of module morphisms GrdModHom:>forall i:Z,ModHom(CC1 i)(CC2 i)
which commutes with the chain complex differentials.

Now, the central definition in effective homology theory: reduction. A reduc-
tion establishes a link between a “big” chain complex, called top complex, and
a smaller one, called bottom complex, in such a way that if all the homological
problems are solved in the bottom complex, then it is the same in the top one.

Definition 5. A reduction is a 5-tuple (TCC, BCC, f, g, h)

TCC

f
��

h �� BCC
g

��

where TCC = (M, d) and BCC = (M ′, d′) are chain complexes (named top
and bottom chain complex), f : TCC → BCC and g : BCC → TCC are chain
morphisms, h = (hi : Mi → Mi+1)i∈� is a family of module morphisms (called
homotopy operator), which satisfy the following properties for all i ∈ �:
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1. fi ◦ gi = idM ′
i

2. di+1 ◦ hi+1 + hi ◦ di + gi+1 ◦ fi+1 = idMi+1

3. fi+1 ◦ hi = 0
4. hi ◦ gi = 0
5. hi+1 ◦ hi = 0

And now, the relevant case. In a free chain complex of finite type the homological
problems can be solved algorithmically in a simple way (at least in cases where
the ring R allows one to diagonalize matrices over R; this includes the case
R = �, the most important one in Algebraic Topology; see [24]). Thus, if from
a chain complex (possibly of infinite type) we can get a reduction to a chain
complex of finite type, the homological problem is solved for the initial complex.
This is the strategy followed in the Kenzo system. And it is the very notion of
chain complex with effective homology.

Definition 6. A chain complex CC is with effective homology if it is free and
it is endowed with a reduction where CC itself is the top chain complex and the
bottom chain complex is free of finite type.

Given a chain complex CC1: ChainComplex R, a homotopy operator is rep-
resented in Coq as a family of module morphisms HomotopyOperator:=
forall i: Z, ModHom(C1 i)(C1(i + 1)). The reduction notion is
then formalized as a record Reduction with two chain complexes
topCC:ChainComplex R, bottomCC:ChainComplex R and three morphisms
f t b:ChainComplexHom topCC bottomCC, g b t:ChainComplexHom bottomCC
topCC, h t t:HomotopyOperator topCC. Besides, five fields representing the
five reduction properties are included. For instance, the field which corresponds
to the second property is: rp2: homotopy operator property f t b g b t
h t t with:

Definition homotopy_operator_property:= forall(i: Z)(a: C1(i+1)),

(((Diff C1(i+1))[oh]h(i+1))[+h](h i[oh](Diff C1 i))[+h]

(g(i+1)[oh]f(i+1))) a [=] a.

Some comments on these Coq definitions are needed. Why are the elements in
this definition considered to be on the i+1-th degree and not on the i-th degree,
as it is the usual definition of reduction? The same decision was previously
taken when the definition of differential was introduced. It is clear that as we
are considering the definition for all the integers, both definitions are equivalent.
But, a Coq technical problem is easily avoided thanks to our definition. We are
going to focus our attention on the (h i[oh](Diff C1 i)) component of the
definition. The differential takes an element in degree i+1 and obtains an element
in degree i which is translated to a component in degree i+1 by the homotopy
operator. If we consider the mathematically equivalent definition, considering
the differential defined from degree i to i-1, then the corresponding component
would be (h(i-1)[oh](Diff C1 i)). In this composition, the differential takes
an element in degree i and returns an element in degree i-1, which is now
translated to a component in degree i-1+1. In Coq this element is equal but is not
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convertible to i. So, we will obtain a Coq type error from this sum of morphisms.
A transition function between equal but not directly convertible types (which
it is essentially an identity between types) can be introduced allowing us to
overcome this drawback1.

The concept of free of finite type chain complex is then obtained in Coq as
a specialization of the chain complex structure: simply adding that the family
of modules are free modules of finite type. In a similar way it is formalized the
concept of effective homology as a specialization of the reduction structure by
declaring the bottomCC is of finite type.

3 Effective Homology of the Cone in Coq

In this section we first define the notion of the cone of a chain complex morphism.
Then, the main result that we are going to deal with is stated: the effective
homology of a cone. We also show how this theorem can be proved in Coq.

Definition 7. Given a pair of chain complexes CC = ((Mi)i∈�, (di)i∈�) and
CC′ = ((M ′

i)i∈�, (d′i)i∈�) and a chain complex morphism α : CC → CC′, the
cone of α, denoted by Cone(α), is a chain complex ((M ′′

i )i∈�, (d′′i )i∈�) such that,
for each i ∈ �, M ′′

i = Mi ⊕M ′
i+1 and d′′i (x, x′) = (−di(x), d′i+1(x

′) + αi+1(x))
for any x ∈ Mi+1 and x′ ∈M ′

i+2.

Now, the theorem which determines the effective homology of a cone can be
stated.

Theorem 1. Given two reductions r = (TCC, BCC, f, g, h) and r′ =
(TCC′, BCC′, f ′, g′, h′) and a chain morphism α : TCC → TCC′ be-
tween their top chain complexes, it is possible to define a reduction r′′ =
(Cone(α), BCC′′, f ′′, g′′, h′′) with Cone(α) as top chain complex and:

– BCC′′ = Cone(α′) with α′ : BCC → BCC′ defined by α′ = f ′ ◦ α ◦ g
– f ′′ = (f, f ′ ◦ α ◦ h + f ′), g′′ = (g,−h′ ◦ α ◦ g + g′), h′′ = (−h, h′ ◦ α ◦ h + h′)

TCC

f
��

h

��

α

��

BCC
g

��

α′

���
�
�

TCC′
f ′

��

h′

		 BCC′
g′

��

Besides, if TCC and TCC′ are objects with effective homology through the re-
ductions r and r′, then Cone(α) is an object with effective homology through r′′.

In [11] we formalized in Coq the effective homology of a bicomplex. That result
can be considered as a generalization of the previous theorem to an infinite

1 We acknowledge T. Coquand for the suggestion of this idea.



210 C. Domı́nguez and J. Rubio

(indexed by the natural numbers) family of reductions. Nevertheless, in order to
obtain it, the chain complexes must be positive, i.e., with null components in
the negative indexes (or, in other equivalent presentation, indexed by the natural
numbers). In this paper, we have not this constraint since we work with a general
definition of chain complex, with modules indexed by integer numbers.

The formalization of Theorem 1 in Coq is obtained as follows. Given two
chain complexes CC0 CC1: ChainComplex R and a chain complex morphism
f: ChainComplexHom CC1 CC0, the cone of this morphism is a chain complex
with family of modules ConeGrdMod:= fun i: Z => Sum FreeModule (CC1 i)
(CC0(i+1)) (with the direct sum of free modules Sum FreeModule defined in a
natural way) and with differential operator defined as follows:

Definition ConeDiffGround:= fun (i: Z)(ab:(ConeGround (i+1))) =>

([--](Diff CC1 i(fst ab)), ((Diff CC0(i+1))(snd ab)[+]f(i+1)(fst ab))).

It is not difficult to prove that these functions define a module morphism which
satisfies the differential condition. This last property allows one to build the cone
chain complex associated to a chain complex morphism: Cone(f).

Given now two reductions r1 r2: Reduction R and a chain complex mor-
phism between their top chain complexes alpha: ChainComplexHom(topCC r1)
(topCC r2), it is possible to define a chain complex morphism alpha’ be-
tween the bottom chain complexes through the function alpha’’:= fun n: Z
=> (f t b r2 i)[oh](alpha i)[oh](g b t r1 i).

The first part of Theorem 1 is proved if we build a reduction between
Cone(alpha) and Cone(alpha’). The first chain complex morphism of the re-
duction is defined in the following way:

Definition f_cone_reductionGround:

forall i: Z, (Cone alpha) i -> (Cone alpha’) i:=

fun (i: Z)(ab: (Cone alpha) i) => ((f_t_b r1 i) (fst ab),

(((f_t_b r2 (i+1)) [oh] (alpha (i+1)) [oh] (h_t_t r1 i)) (fst ab)) [+]

(f_t_b r2 (i+1)) (snd ab)).

Analogous definitions are provided for the two other morphisms of the reduction.
Then we state Coq lemmas for the reduction properties on these morphisms. The
proof of these lemmas consists in applying mainly equational reasoning over
setoid equalities, following closely the paper and pencil proof. It allows building
the reduction of a cone: ConeReduction(alpha).

Finally, given two effective homologies r1 r2: EffectiveHomology R and
a chain complex morphism alpha between their top chain complexes,
ConeReduction(alpha) is directly a reduction of the cone. Then, in order to
define an effective homology for the cone it remains to prove that the bottom
free chain complex of this reduction is free of finite type. It is easily obtained
in Coq since the direct sum of free chain complex of finite type is free of finite
type.
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4 Instances of Chain Complexes of Infinite Type

A working representation in a proof assistant of the concepts included in previ-
ous sections has to be sound, but also needs to be useful. The second feature can
be shown by formally proving some results. This was the purpose of the previous
section. The first feature can be illustrated by providing instances of the repre-
sentations, that accurately reflect usual mathematical entities. This is the aim
of this section which includes different instances of all the previous structures.

First, we define some elementary instances which will act as building blocks
for more elaborated constructions. The first example is the null free module
M (0) (i.e., a module with the unit as unique element). This is indeed a free
module of finite type, generated by the setoid with zero elements. Then, a null
free chain complex can be defined CC(0) = ((M (0))i∈�, (d(0))i∈�) (i.e., with the
previous module in each degree and the null differential). This chain complex
can be also built as a free chain complex of finite type FCC(0), defined from the
corresponding free module of finite type. Obviously, a trivial effective homology
for this chain complex can be defined.

Another basic example is the free module of the integers � (over the ring
of integers) which we denote in Coq by ZFreeModule. This module can be
also implemented as a module of finite type, ZFinFreeModule, generated by
the setoid with only one element. Then, an example of free chain complex is
CC(1) = ((M (1))i∈�, (d(1))i∈�) with (M (1))i = �, ∀i ∈ �, and (d(1))i : � → �

such as (d(1))i(x) = 2 ∗ x if i is even and (d(1))i(x) = 0 otherwise:

. . . �
0



�
×2



�
0



�
×2



�
0

 . . .×2



degree -2 -1 0 1 2

The Coq formalization of the required differential is obtained through
the functional type fun i: Z => if (Zeven bool i) then x2 ModHom else
(ModHom zero ZFreeModule ZFreeModule). It is easy to prove that this mor-
phism satisfies the nilpotency condition. A similar free chain complex of finite
type FCC(1) can be defined using the corresponding family of free modules of
finite type. Besides, we can define a trivial effective homology between both
complexes that we name Id Z 2x 0 EffectiveHomology:

CC(1)
id

��
0

��
FCC(1)

id

��

The previous examples are chain complexes of finite type, since the modules
are free of finite type (in that case with zero or one generator). An example
of a free module of infinite type is �[�], the free module generated by the
natural numbers (over the ring of integer numbers) which we denote in Coq
by Z nat FreeModule. It is defined by taking as free module the one freely
generated from the setoid denoted in Coq by nat as Setoid (that is to say,
the setoid of natural numbers with the Leibniz equality). The definition is then
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completed with the same module as module representation and the identity as
isomorphism between them. To keep notations clear, the generator i of �[�] will
be denoted by xi, ∀i ∈ �.

Now, a chain complex of infinite type CC(2) = ((M (2))i∈�, (d(2))i∈�) is built
where (M (2))i = �[�], ∀i ∈ �, and (d(2))i : �[�] → �[�] defined on generators
(and then extended to all elements by freely generation) in the following way: if
i is even, (d(2))i(xj) = xj if j is even and (d(2))i(xj) = 0 otherwise; and if i is
odd, (d(2))i(xj) = 0 if j is even and (d(2))i(xj) = xj otherwise. This differential
on generators can be illustrated with the following diagram:

�[�] �[�]
(d(2))i

i even

 �[�] �[�]
(d(2))i

i odd



x0 x0
�

 0 x0

�



0 x1
�

 x1 x1

�



x2 x2
�

 0 x2

�



0 x3
�

 x3 x3

�



. . . . . . . . . . . .

This chain complex is named in our representation Z nat ChainComplex.
Its differential can be easily defined using auxiliary functions as fun n:
nat as Setoid => if even bool n then Var n else Unit . Here, we
are using the Unit notation for the null element as in L. Pottier’ s develop-
ment. It is not difficult to prove that this morphism satisfies the nilpotency
condition (in other words, it is really a differential).

Now, it is possible to define a homotopy operator h(2) on CC(2) built on
generators in the same way as the previous differential (but, defined from an
element in the module at degree i to an element in the module at degree i + 1).
Obvious morphisms allow us to complete an effective homology from this last
free chain complex to the null free chain complex of finite type FCC(0). This
last effective homology proves that CC(2) is acyclic.

In order to define a more interesting effective homology we define the
free chain complex CC(1) ⊕ CC(2) obtained from the direct sum of the two
previous chain complexes. Then, it is easy to define an effective homology
Z x Z nat EffectiveHomology:

CC(1) ⊕ CC(2)
π1

��

(0,h(2))
��

FCC(1)

(id,0)
��

where π1 is the canonical projection in the first component.
Finally, we consider a free chain morphism between the top chain com-

plexes of Z x Z nat EffectiveHomology and Id Z 2x 0 EffectiveHomology
again through the canonical projection in the first component:
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CC(1) ⊕ CC(2)
π1

��

(0,h(2))
��

π1

��

FCC(1)

(id,0)
��

α′

��
CC(1)

id
��

0

		 FCC(1)

id

��

Then, we can obtain in Coq the cone of this morphism and the effective homol-
ogy associated to it, named Example Cone EffectiveHomology, as a particular
instance of our general result developed in the previous section:

Cone(π1)
fEx

��
hEx

��
Cone(α′)

gEx

��

We will use this effective homology instance to make concrete computations in
Coq in the following section.

5 Computing with Infinite Data Structures in Coq

Working in the Coq constructive type theoretic setting allows us to obtain from
proofs directly computable terms. In the previous section we obtained instances
of meaningful examples of all our data structures, so we can now make calcu-
lations with them through the associated algorithms (which have been proved
correct in Coq). In particular we can make computations within instances of
chain complexes of infinite type.

We will use the vm compute Coq tactic for evaluating terms. It computes the
goal using the optimized call-by-value evaluation bytecode-based virtual ma-
chine [19]. Another option consists in using the Coq extracting code mecha-
nism. Nowadays, the functional languages available as output in Coq are OCaml,
Haskell and Scheme [18]. This extracted code should be, in principle, efficient
but the presence of dependent types makes it complicated, at least in the Haskell
case. Being Scheme a kind of Lisp, its dynamical typing style should be more
convenient from this point of view in order to be our target language in which
extracts our code. Nevertheless it seems to be the least developed frame (see [19]
again). Since Kenzo is implemented in Common Lisp it is clear that the prob-
lems encountered with Scheme are important for us if we want to extract code
which was directly comparable with the Kenzo code. We do not follow this line
in this paper. We explore rather the possibilities of the internal execution of
Coq terms.

We are going to choose as an example the top chain complex of
Example Cone EffectiveHomology, i.e. Cone(π1). This is an example of chain
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complex of infinite type. For instance, we want to compute its differential applied
to the element (5, 7∗x4+8∗x0, 3) at degree 2. Since the module at degree 2 of the
cone (and, in fact, at any degree) is �⊕�[�]⊕�, the element (5, 7∗x4+8∗x0, 3)
has a component in each module. The first and third components appear sim-
ply as integers, because � is considered a free module over a singleton which is
skipped. On the contrary, elements in the second component are true combina-
tions in �[�] with generator xi (recall our convention of naming xi the element i
of �). Thus the modules of the cone are not presented as free modules, but they
are isomorphic to modules freely generated, as it is inferred from the results of
Section 3.

The second element of the tuple (5, 7 ∗ x4 + 8 ∗ x0, 3) is represented in Coq
by e:= Law (Op (R:= Z as Ring) 7 (Var (4%nat: nat as Setoid))) (Op
(R:= Z as Ring) 8 (Var (0%nat: nat as Setoid))).

The required Coq code is then the following:

Eval vm_compute in

((Diff(topCC Example_Cone_EffectiveHomology) 2) (5, e, 3)).

and the result returned by Coq is:

= (-10, Inv e, 5): topCC Example_Cone_EffectiveHomology 2

i.e., (−10,−(7 ∗ x4 + 8 ∗ x0), 5). If we apply now the (degree 1) differential to
this element we obtain:

= (0, Inv (Inv (Law (Op 7 (Unit Z_as_Ring nat_as_Setoid))

(Op 8 (Unit Z_as_Ring nat_as_Setoid)))), 0)

: topCC Example_Cone_EffectiveHomology 1

or, in plain notation, (0,−(−(7∗ ()+8∗ ()), 0) which it is equal (in the setoid) to
the null element. It should be recalled that our formalization of the free module
generated by the natural numbers directly use the L. Pottier definition for free
modules, and, as a consequence, we are not working with canonical elements on
the free modules or with structures which allow a reduction to them.

Now, we focus our attention on homotopy operators, that is to say on mor-
phisms which increase in one unity the degree into the graded module. We use
as ambient structures the chain complexes Cone(π1) and Cone(α′) introduced
in the previous section.

Some examples of homotopy operators for Cone(α′), h = (hi : Cone(α′)i →
Cone(α′)i+1)i∈�, are the following:

– h1 = (h1i)i∈�, such that h1i(a, b) := (0, a), (a, b) ∈ Cone(α′)i for all i ∈ �
– h2 = (h2i)i∈�, such that h2i(a, b) := (b, 0), (a, b) ∈ Cone(α′)i for all i ∈ �

Both can be easily implemented in Coq. For example, the first one is represented
through:

Definition h1’: forall i:Z, bottomCC Example_Cone_EffectiveHomology i ->

bottomCC Example_Cone_EffectiveHomology(i + 1):=

fun (i:Z)(c: bottomCC Example_Cone_EffectiveHomology i) => (0, fst c).
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There exist special homotopy operators called contracting homotopies which
express algorithmically that the chain complex is acyclic [24].

Definition 8. A chain complex is acyclic if it is possible to define an effective
homology from it to the null chain complex.

Corollary 1. Let CC = (M, d) be a chain complex, CC is acyclic if and only
if there exists a homotopy operator h defined on CC such that d ◦h + h ◦ d = id.
Such an operator is called contracting homotopy.

We can test if the previous homotopy operators define a contracting homo-
topy. For instance, the corresponding tactic at degree i=1 choosing as element
(5, 7): bottomCone 2 for the first candidate is:

Eval vm_compute in

(((Diff (bottomCC Example_Cone_EffectiveHomology) 2)[oh](h1 2))[+h]

((h1 1)[oh](Diff(bottomCC Example_Cone_EffectiveHomology) 1)))(5, 7).

resulting in: = (0, 0): bottomCC Example Cone EffectiveHomology 2.
For the second homotopy operator over the same element we obtain:

Eval vm_compute in

(((Diff (bottomCC Example_Cone_EffectiveHomology) 2)[oh](h2 2))[+h]

((h2 1)[oh](Diff(bottomCC Example_Cone_EffectiveHomology) 1)))(5, 7).

resulting in: = (5, 7): bottomCC Example Cone EffectiveHomology 2.
This means that h1 is not a contracting homotopy for Cone(α′). It could be,

anyway, acyclic. The homotopy operator h2 could be a candidate for contracting
homotopy and, in fact, if we test other elements in other dimensions we always
obtain the identity.

Moreover, using the homotopy operator h2 and the one hEx in the effective
homology at the end of the previous section, we can define a new homotopy
operator over Cone(π1) with the formula h = hEx + gEx ◦h2 ◦ fEx. Graphically:

Cone(π1)
fEx

��
hEx

��

h=hEx+ gEx◦ h2 ◦fEx


Cone(α′)

gEx

��

h2
��

This homotopy operator can be easily defined in Coq in the following way:

Definition h_topCone:

(HomotopyOperator(topCC Example_Cone_EffectiveHomology)):=

fun n: Z => (h_t_t Example_Cone_EffectiveHomology) n [+h]

(((g_b_t Example_Cone_EffectiveHomology) n) [oh] (h2 n) [oh]

((f_t_b Example_Cone_EffectiveHomology) n)).
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We can test if it is a candidate to be a contracting homotopy:

Eval vm_compute in

(((Diff(topCC Example_Cone_EffectiveHomology) 2)[oh](h_topCone 2))

[+h]((h_topCone 1)[oh]

((Diff(topCC Example_Cone_EffectiveHomology) 1))))(5, e, 3).

whose result is an element equal (in the setoid) to (5, e, 3).
The testing with other elements and at other degrees is always successful and

this allows us to conjecture that it is really a contracting homotopy.
If that is the case, it could be used to solve a problem that, in general, is

undecidable when working with chain complexes of infinite type. If an element x
is a cycle (that is to say, dn(x) = 0) and the chain complex is acyclic, then there
exists an element z such that dn+1(z) = x. Or, in other words, z is a pre-image
of x for the differential. Let us compute such a pre-image in our example. To this
aim, we choose again x = (−10,−(7 ∗ x4 + 8 ∗ x0), 5) as an element at degree 2.
We know already it is a cycle, because it has been previously computed. Then,
if our homotopy operator h is actually a contracting homotopy, the image h(x)
must be a pre-image of x for d (since dh(x) + hd(x) = x, but hd(x) = 0). We
can test in Coq this fact as follows. First we apply the homotopy operator on
the element:

Eval vm_compute in (h_topCone 2)(-10, Inv e, 5).

obtaining an element equal to (5, e, 0). And due to our previous computations
we know that this element is indeed in the right pre-image because

Eval vm_compute in

((Diff(topCC Example_Cone_EffectiveHomology) 2))(5, e, 0).

gives the required element (-10, Inv e, 5).
This behaviour is not accidental. The testing is reflecting a general result

relating cones and reductions. Namely:

Proposition 1. Let (M, N, f, g, h) be a reduction. Then Cone(f) is an acyclic
chain complex.

The constructive proof of this proposition gives exactly the formula we were test-
ing before. Finally, we could proof in Coq that h2 and h are indeed contracting
homotopies which is now an easy exercise. Also Corollary 1 and Proposition 1
could be formalized in Coq, although more effort is required. Both tasks are
proposed as future work.

6 Conclusions and Further Work

In this paper we have presented some examples relating deduction and computing
in the Coq proof assistant. Even if constructive type theory always allows, in
principle, the modeler to execute terms (by reducing them) this is rarely used in
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development (or, at least, it is rarely documented). In our case, testing has been
worked out in an infinite dimensional setting. Concretely, we have constructed
concrete instances of chain complexes of infinite type, we have computed in Coq
with their elements, and we have checked some formula producing a contracting
homotopy on one of the chain complexes. This testing corresponds to a general
theorem that could be, later on, proved in Coq, too.

The chain complexes of infinite type used as examples in this paper are, in
some sense, artificial. It can be considered as a demonstration of feasibility. In
a future step, we will undertake the implementation in Coq of more meaningful
infinite dimensional spaces. Our first candidates will be loop spaces. The chain
complex associated to a combinatorial loop space (see Kan’s G construction in
[21]) is of infinite type. Under good conditions, its homology groups are, however,
of finite type. Computing these homology groups was one of the first challenges
solved by Kenzo (see [24]), and working with them in Coq would be an interesting
issue.

One unpleasant aspect of our work is that we are working in a context where
combinations are not in normal form. This implies that, once a function has
been applied, some work is needed to prove the result is equal to some assumed
test value. Several approaches are known to tackle this reduction to canonical
form, and we should systematically explore some of them to propose a more
comfortable way of doing testing in Coq. Another via to avoid this difficulty
could be to give setoids up and work inside the ssreflect framework [14].

Another related line is that of code extraction. We should retake the works
on going from Coq to Scheme [18], and adapt them to Common Lisp. Since that
we have a model (Kenzo [12]) of the programs we would like to extract, the
challenge would be to devise Coq statements and proofs in such a way that the
extracted programs would be as close as possible to the selected Kenzo fragment.

Finally we could study the possibilities of tools like QuickCheck [7] in our
setting. This system allows to test properties of programs automatically by gen-
erating a large number of cases (although, up to our knowledge, there is no direct
application to Coq code).

Acknowledgement. The authors wish to thank the anonymous reviewers for
their useful comments.
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Abstract. We propose a formal study of interval analysis that con-
centrates on theoretical aspects rather than on computational ones. In
particular we are interested in conditions for regularity of interval ma-
trices. An interval matrix is called regular if all scalar matrices included
in the interval matrix have non-null determinant and it is called singu-
lar otherwise. Regularity plays a central role in solving systems of linear
interval equations. Several tests for regularity are available and widely
used, but sometimes rely on rather involved results, hence the interest in
formally verifying such conditions of regularity. In this paper we set the
basis for this work: we define intervals, interval matrices and operations
on them in the proof assistant Coq, and verify criteria for regularity and
singularity of interval matrices.

Keywords: interval analysis, regularity of interval matrices, formal
verification, Coq, SSReflect.

1 Interval Analysis and Validation

Interval analysis is a branch of mathematics motivated by its practical applica-
tions. It is of use when dealing with inequalities, approximate numbers or error
bounds in computations. We use an interval x as the formalization of the intu-
itive notion of an unknown number x̃ known to lie in x. In interval analysis we
do not say that the value of a variable is a certain number, but we say that a
value of a variable is in an interval of possible values. This way we cannot be
wrong because of rounding errors or method errors, we can only be imprecise by
giving an interval for the value that is very big. Thus, when using interval anal-
ysis one often says that thanks to the techniques used the result is guaranteed
to be within the obtained bounds. This guarantee is given by the nature of the
algorithms.

We argue that it is precisely this nature of the algorithms of interval analysis
that justifies their formal study in a proof assistant: since we want results that
are guaranteed to be correct, we want to make sure the algorithms that produce
them act as they are supposed to. There are not a lot of proofs to be done
for basic interval arithmetic: correction of addition, multiplication or standard
functions have already been studied in formal systems (see for example [15]).

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 219–233, 2010.
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However, there are other types of algorithms that are of interest for the interval
analysis community, in particular algorithms for solving linear systems of interval
equations. An important issue in this case is establishing that the interval matrix
associated to the system is regular. An interval matrix is said to be regular if
all scalar matrices included in the interval matrix have non-null determinant.
There are a bunch of criteria for testing regularity of interval matrices. Forty of
them are listed in a recent paper of Rohn [21]. Among them there are criteria
of theoretical interest only (which we shall alternatively call basic criteria) and
efficient criteria used in practice. The basic criteria are usually (but not always)
easier to understand and to prove correct. They are often not of practical interest
but they are used as a basis to obtain more efficient criteria. It is the case of the
sufficient conditions for regularity and singularity of interval matrices discussed
by Rex and Rohn in [20].

The above reference has been pointed out to us by researchers interested in
robotics [16]. They use the results in [20] to establish that a certain interval
matrix is regular and then solve the associated system to get the set of valid
coordinates for the next position of the robot. This particular robot is designed
for providing help in crises situation by lifting a stretcher with an injured person
from an accident scene. This is one example of many an such safety critical
applications motivate our formal study of interval analysis.

We implement real intervals and a basic interval arithmetic. We use the proof
assistant Coq [1,5] and its standard library as well as the SSReflect exten-
sion [9] and the libraries it provides. We discuss the choice of implementation
and the interesting issues that occurred in section 2. We then generalize concepts
and operations to interval matrices in section 3 and we start talking about sys-
tems of linear interval equations in section 4, where we mainly show the criteria
we proved for checking regularity of interval matrices. The last section mentions
formalizations related to our own on matrices and interval arithmetic. It also
presents the possible future directions for this work.

Our formalization concerns intervals with real bounds. In practice we use
intervals with bounds in some machine representable subset of real numbers,
like floating point numbers. In this case operations on intervals also include a
rounding step. Even though we are not dealing with such intervals directly, we
will often comment in the paper on how our formalization can be used as a model
for floating point intervals.

2 Intervals

In this section we define real intervals and operations on intervals as presented
in [17] and we describe the Coq formalization for them.

2.1 Definitions

R denotes the set of real numbers. A real interval is a set of the form

x = [x, x] := {x̃ ∈ R | x ≤ x̃ ≤ x}



Formally Verified Conditions for Regularity of Interval Matrices 221

where x, x are elements of R with x ≤ x. In particular intervals are closed and
bounded subsets of R and we can use the standard set theoretic notation. The set
of all real intervals is denoted by IR. We use x as notation for a generic interval,
x or inf(x) for the lower bound of x and x or sup(x) as the upper bound of x.

An interval is called thin if x = x and thick if x < x. Thin intervals contain
only one real number and we can identify a thin interval with the unique number
contained in it. In particular, real numbers need not be distinguished notationally
from intervals.

Now we need to find a good way to formalize real intervals in Coq. We want
to capture two aspects:

– we have a dual view of intervals: on one hand an interval can be seen as a pair of
real numbers representing its lower and upper bounds and on the other hand
an interval is the set of real numbers comprised between the two bounds;

– a real number can be seen as an interval.

To achieve this we define an interval as a structure that contains two real numbers
inf and sup representing the lower and upper bounds and a proof that the lower
bound is smaller than the upper bound.

Structure IR : Type := ClosedInt { inf : R ; sup : R ; leq_proof : inf ≤b sup }.

The type of the field leq_proof is inf ≤b sup which is a proposition obtained by
coercing the boolean inf ≤b sup to the proposition (inf ≤b sup) = true which is
proof irrelevant [11]. To better understand the information this last sentence
hides we created a special section for the interested reader. This next section
details Coq’ s internal mechanisms that played a role in our formalization. We
note that this section is not needed for understanding the rest of the paper so
the reader may completely skip it and go directly to the section entitled “Getting
the expected behavior“.

Technical details
Using the proof assistant Coq means we benefit from some of its features.

The type Prop is the type of logical propositions in Coq. We present its features
that influenced our choice of implementation in what follows:

– The type Prop does not benefit of strong elimination.
To make it more clear, in Coq we have data which are in type Type and
logical propositions on these data which are in type Prop. Data and proposi-
tions do not live at the same level, more precisely we can use data to build
another data or a proposition but we cannot build a piece of data from a
proposition, we can only build other propositions. In particular, if we have a
disjunction P ∨Q in Prop we cannot build a function that returns a certain
piece of data based on whether P or Q is satisfied. This corresponds to a
disjunction that is not necessarily decidable.

This is why whenever we want to be able to distinguish two cases we
use a similar construction under Type: {P}+ {Q} is a set with one element
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such that we can determine if this element is P or Q. This corresponds to a
disjunction that is effectively decidable. In particular we can build functions
that return a certain data based on whether P or Q is true.

– Proof irrelevance is not automatic for the type Prop.
This means that two proofs of the same statement may not be equal. This
can produce undesired effects when we have terms that depend on proofs.
It is the case of our intervals, as an interval is a triplet (inf, sup, leq_proof),
where leq_proof is a proof and thus belongs to type Prop. Now, take the inter-
vals x = (1, 2, leqx) and z = (1, 2, leqz). To show that x = z we not only have
to show that 1 = 1 and 2 = 2 but also that leqx = leqz. The latter is generally
not provable unless we have at least a weak version of proof irrelevance.

However, there are propositions for which we can show they have a unique
proof. It is the case of a proposition expressing equality of two booleans (or,
more generally, of two terms of a type equipped with a decidable equal-
ity) [11].

The standard library Reals
Coq provides an axiomatic definition of the real numbers. The formalization
is based on 17 axioms which introduce the reals as a complete, archimedean,
ordered field that satisfies the least upper bound principle. This choice of im-
plementation has as positive effect the fact that we can handle real numbers in
a manner similar to that of math books on classical real analysis. In particular,
we can reason on cases thanks to the trichotomy axiom: for two real numbers
x, y exactly one of the following relations holds: x < y or x = y or x > y. These
relations have all type Prop but the disjunction is put in Type (we have a term
of type {x < y} + {x = y} + {x > y}) which means we can define data by
distinguishing cases in this disjunction. In particular it means we can define a
boolean function (x, y) 	→ x ≤b y that is true when x ≤ y and false otherwise.

As we saw in the previous paragraph, the proposition x ≤b y = true has only
one proof.

The coercion mechanism implemented in Coq allows us to say a certain type
is a subtype of another type. A coercion is a function from the subtype to the
type that is automatically inserted by the system. For example, we can use
a natural injection from natural numbers to the real numbers as a coercion.
Then, everytime the system expects a real but gets a natural instead, it will
automatically insert this coercion to get a real. A coercion is not displayed by
the pretty-printer, so its use is mostly transparent to the user.

An example that is of interest to us is the coercion from booleans to propo-
sitions. We coerce a boolean b to the proposition b = true (this is the approach
taken in the SSReflect extension of Coq ).

To summarize everything, inf ≤b sup (the type of the field leq_proof in our def-
inition of intervals) is a proposition obtained by coercing the boolean inf ≤b sup
to the proposition (inf ≤b sup) = true which is proof irrelevant, therefore any two
proofs of this proposition will be equal.
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Getting the expected behavior
Thanks to our choice of implementation we can prove that equality of two inter-
vals is equivalent to the equality of the respective bounds. It is independent of
the proof that inf ≤b sup.

Lemma eq_intervalP : forall x z : IR, x = z ↔ inf x = inf z ∧ sup x = sup z.

So our intervals can be viewed as pairs of real numbers. We can also view them
as sets of real numbers by using Coq’s coercion mechanism. Sets are defined by
predicates and belonging to a set means satisfying the predicate. We coerce an
interval to the predicate on real numbers that asserts that a real is between the
lower and the upper bounds of the interval. This coercion allows us to transpar-
ently use our intervals as sets of real numbers. We also define a coercion from
a real number to the corresponding thin interval, so we can directly use real
numbers as intervals.

We define the midpoint and the radius of an interval:

xc = mid(x) :=
x + x

2
; Δx = rad(x) :=

x− x

2

An interval x is equal to the interval [xc−Δx, xc−Δx]. The membership relation
can also be expressed as

x̃ ∈ x⇔ |x̃− xc| ≤ Δx

The corresponding Coq lemma is

Lemma in_mid_rad: forall (x: IR) (tx: R), tx \in x ↔ Rabs (tx − mid x) ≤ rad x.

In the above statement, \in is an infix notation for satisfying a predicate, or, equiv-
alently, belonging to the set described by that predicate. This lemma illustrates
how the coercion mechanism lets us transparently use an interval as a set.

2.2 Operations on Intervals

We define the elementary operations on intervals (addition, opposite, multipli-
cation) by giving the explicit formulas to compute their bounds. To avoid heavy
notations we use the same symbols for operations on numbers and on intervals.

x + z := [x + z, x + z]

−x := [−x,−x]

xz := [min(xz, xz, xz, xz), max(xz, xz, xz, xz)]

We define separately the multiplication of an interval by a scalar, even though
this is equivalent to the multiplication by a thin interval :

ax := [min(ax, ax), max(ax, ax)]

The reason for this choice is that multiplication of an interval by a scalar enjoys
more algebraic properties than interval multiplication in general. When using
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these properties it is more convenient if they are attached to a specific operation
than if we have to provide a proof that the interval is thin each time we use
them.

In implementing our operations we take into account that our definition of
intervals contains a proof that the lower bound is smaller than the upper bound.
We need to provide these proofs before actually defining the operations. For the
operations we are considering this is not a big effort as they are straightforward.
To illustrate our treatment of elementary operations we take the example of
addition. We give the proof and define addition according to the formula above:

Lemma add_i_wd : forall x z, inf x + inf z ≤b sup x + sup z.
Definition add_i x z :=

@ClosedInt (inf x + inf z) (sup x + sup z) (add_i_wd x z).

The sum of two intervals can also be characterized by:

x + z = {x̃ + z̃ | x̃ ∈ x, z̃ ∈ z} (1)

We want to show the equivalence of the two characterizations. We proceed by
proving double inclusion of the corresponding sets. We have one inclusion that
is straightforward:

{x̃ + z̃ | x̃ ∈ x, z̃ ∈ z} ⊆ [x + z, x + z] (2)

as everytime we have two real numbers x̃, z̃ with x̃ ∈ x (which means x ≤ x̃ ≤ x)
and z̃ ∈ z (which means z ≤ z̃ ≤ z) then their sum x̃ + z̃ ∈ [x + z, x + z] which
is by definition x + z.

The other inclusion is less straightforward:

[x + z, x + z] ⊆ {x̃ + z̃ | x̃ ∈ x, z̃ ∈ z}

We need to show that each time a number belongs to the sum of two intervals
x and z, than there exists x̃ ∈ x and z̃ ∈ z such that our number is written as
x̃+ z̃. The difficulty comes form the fact that the decomposition of a number in a
sum is not unique. To give a decomposition of a real s ∈ x+ z in an appropriate
sum we consider the following cases:

s =

{
x + (s− x) , if s ∈ [x + z, x + z] with x ∈ x, (s− x) ∈ z

(s− z) + z , if s ∈ [x + z, x + z] with (s− z) ∈ x, z ∈ z

The proof of equality (1) does not appear in standard books of interval analysis,
as it is clear for the trained mathematician that the equality is trivially true.
However, in a formal system we needed to go into some detail to show this
equality. We remark also that equality (1) does not hold for an interval arithmetic
that uses outward rounding of the interval bounds, like, for example, floating
point interval arithmetic. In this case only the first inclusion holds (relation
(2)).

Addition on intervals enjoys nice properties: it is associative, commutative,
accepts the thin interval 0 as a neutral element. This means that the set of real
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intervals with addition has a commutative monoid structure. This will ease our
work, as general theorems concerning the commutative monoid structure are
directly available from the SSReflect libraries, in particular we will be able to
use lemmas concerning indexed operations when defining operations on interval
matrices as we shall see in section 3. We remark that other properties are not
satisfied. For example, an interval that is not thin does not have an opposite with
respect to the neutral element, which means addition on intervals is not a group
operation. This also means that intervals with addition and multiplication do
not form a ring. This fact will play a role in our manipulation of interval matrices
(see section 3).

Properties relating the bounds of an interval, the center, the radius and opera-
tions on intervals usually simplify to straightforward properties of real numbers.
Such proofs can often be discarded by automatic procedures, like ring or field
for dealing with equalities and fourier for dealing with inequalities over the real
numbers in Coq.

3 Matrices

To describe interval matrices we use the SSReflect library which contains a
formalization of matrices with elements of an arbitrary type T. For operations
on rows and columns (e.g deleting a row, swapping two rows etc) no additional
properties are required for T. Once one starts talking about operations on ma-
trices like addition or multiplication, the type of elements T has to be a ring.
The library provides all the basic operations and their properties, the notions of
determinant and inverse. Details on the matrix library can be found in [8,3]. As
we saw in the previous section, intervals do not have a ring structure, so we will
need to redefine operations for interval matrices (section 3.2). Nevertheless, all
results in the generic SSReflect matrix library can directly be used for real
matrices, as real numbers have a ring structure. There are still other notions,
specific to real matrices that are not part of the library. We detail them in the
following section.

3.1 More Results on Real Matrices

We generalize some basic real number concepts to matrices in a componentwise
manner. If A = [Aij ]m×n is a real matrix, the absolute value function |A| =
[|Aij |]. Similarly, a comparison relation ω ∈ {≤, <,≥, >} for two matrices A and
B is given by A ω B ⇔ ∀ij, Aij ω Bij .

We need norms for matrices and we reuse the author’s previous developments
described in [19], where a generic matrix norm is defined. This paper proves
general properties on this norm and gives an instantiation to the maximum row
sum norm: ‖A‖ = max

i

∑
j

|Aij |.

We define what it means for a matrix to be:
– symmetric : ∀ij, Aij = Aji

– positive definite (for square matrices) : ∀x ∈ Rn, x �= 0⇒ xT Ax > 0
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We define the eigenvalues of a square matrix as the roots of its characteristic
polynomial. The definition of the latter is available in the SSReflect libraries
and described in [3].

Definition eigenv (A: ’M[R]_n) := root (char_poly A).

Then the spectral radius is defined as the maximum of the absolute values of
the eigenvalues. We use standard notations: λ usually denotes an eigenvalue and
ρ(A) denotes the spectral radius of A. A collection of basic results are established
for eigenvalues:

– for each eigenvalue λ there is an associated eigenvector (a vector x �= 0 such
that Ax = λx),

– the absolute value of an eigenvalue is smaller than the norm of the matrix,
– the spectral radius is smaller than the norm of the matrix,
– all eigenvalues of a positive definite matrix are positive.

Some other results on eigenvalues that we need but that we have not formalized
yet are the Perron-Frobenius theorem and properties of Rayleigh’s quotient. The
formalization of the Perron-Frobenius theorem is more involved and it is the topic
of an independent study. Rayleigh’s quotient is the quantity xT Ax/xT x for a non-
null vector x and the result we need is ∀x, x �= 0, λmin ≤ xT Ax/xT x ≤ λmax.
This proof is not complicated. It requires some concepts of multivariate analysis
which the author has studied in previous work [19].

3.2 Interval Matrices

An interval m× n matrix is a m× n matrix with interval elements

A = [Aij ]m×n, Aij ∈ IR.

Interval vectors are not treated separately: a vector is a special kind of matrix.
We have column vectors, they are therefore n× 1 matrices.

An interval matrix is interpreted as a set of real matrices by the convention

A = {Ã ∈M(R)m×n | Ãij ∈ Aij , i = 1, . . . , m, j = 1, . . . , n}.

Definition inSetm (A : ’M[IR]_(m, n)) (tA : ’M[R]_(m, n) :=
forall i j, tA i j \in A i j.

The concepts we described for intervals generalize to interval matrices, usually
componentwise. This allows us to relate certain real matrices to each interval
matrix.

A = inf(A) := [Aij ] A = sup(A) := [Aij ]

Ac = mid(A) := [mid(Aij)] ΔA = rad(A) := [rad(Aij)]

An example of Coq definition:

Definition minf (A : ’M[R]_(m, n)) := \matrix_(i, j) inf (A i j).



Formally Verified Conditions for Regularity of Interval Matrices 227

To talk about operations with interval matrices we recall that in order to use the
generic operations from the SSReflect library we need to have a ring structure
on the underlying type. But we saw in the previous section that real intervals
with addition and multiplication do not form a ring. So we need to define specific
operations for interval matrices. To illustrate how this is done in Coq we give
the example of multiplication of a matrix by a vector:

Definition mmul_i (A : ’M[IR]_(m, n)) (x : ’M[IR]_(n, 1)) :=
\col_i \big[add_i / 0 ]_j mul_i (A i j) (x j).

In the above definition \col_ is the column vector, \big[add_i / 0 ]_ is an indexed
sum of intervals:

∑
j

Aijxj . Properties are established by work with indexed op-

erations using the dedicated SSReflect library [2]. Here the fact that interval
addition has a commutative monoid structure comes in handy, as many theorems
on indexed operations apply straightforwardly. Similar to the characterization
for addition of two intervals, we show the characterization for the multiplication
of an interval matrix by a real vector.

Ax̃ = {Ãx̃ | Ã ∈ A} (3)

Here the same issues arise as for the proof of relation (1). We note that this
result is not true in general, for the multiplication of an interval matrix by an
interval vector. Take for example:

A =
(

1 1
0 1

)
and x =

(
[−1, 0]
[1, 2]

)
then we have

(
0
2

)
∈ Ax =

(
[0, 2]
[1, 2]

)
but
(

0
2

)
not of the form Ãx̃ with Ã ∈ A, x̃ ∈ x because A is a thin matrix,

therefore ∀Ã ∈ A, Ã = A and solving Ax̃ =
(

0
2

)
gives x̃ =

(
2
−2

)
/∈ x.

4 Regularity of Interval Matrices

In this section we introduce systems of linear interval equations and consider
some of their basic aspects, in particular conditions for regularity of the interval
matrices associated to these systems. The proofs are taken from [17,20].

4.1 The Solution Set of a System of Linear Interval Equations

A system of linear interval equations with coefficient matrix A ∈M(IR)m×n and
right-hand side b ∈ IRm is defined as the family of linear systems of equations

Ãx̃ = b̃ with Ã ∈ A, b̃ ∈ b

The solutions set of such a system is given by:

Σ(A, b) := {x̃ ∈ Rn | ∃Ã ∈ A, ∃b̃ ∈ b such that Ãx̃ = b̃}
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Definition sigma_sol A b := fun x ⇒
exists tA, inSetm A tA ∧ exists tb, inSetm b tb ∧ tA ∗m x = tb.

We begin by giving some alternative characterizations of the solution set:

Σ(A, b) = {x̃ ∈ Rn | Ax̃ ∩ b �= ∅} = {x̃ ∈ Rn | 0 ∈ Ax̃− b}

We do not detail the entire proof, but we give an example of a proof step where
equalities like relation (1) or (3) intervene:
“ if Ax̃ ∩ b �= ∅ then Ax̃ ∩ b contains some b̃ ∈ Rm; clearly b̃ ∈ b and by relation
(3), b̃ = Ãx̃ for some Ã ∈ A ”.

As a corollary we have a result by Oettli and Prager for the characterization
of the solution set:

x̃ ∈ Σ(A, b)⇔ |Acx̃− bc| ≤ ΔA|x̃|+ Δb.

In what follows we will only be interested in square matrices A ∈M(IR)n×n. In
the study of Σ(A, b) the regularity of the interval matrix A plays an important
role, for example in establishing that Σ(A, b) is non-empty and bounded.

4.2 Basic Regularity Criteria

The interval matrix A is called regular if each scalar matrix Ã ∈ A is nonsingular
(which means det Ã �= 0), and it is said to be singular otherwise.

Definition regular (A : ’M[IR]_n) := forall tA, inSetm A tA → \det tA <> 0.
Definition singular (A : ’M[IR]_n) := exists tA, inSetm A tA ∧ \det tA = 0.

We first recall a characterization of regularity for real matrices that is available
in the SSReflect matrix library:

∀Ã ∈M(R)m×n, det Ã �= 0⇔ ∀x̃ ∈ Rn, Ãx̃ = 0⇒ x̃ = 0. (4)

Based on the previous proofs we can give criteria for checking regularity of
interval matrices.

Criterion 1. A is regular if and only if ∀x̃ ∈ Rn, 0 ∈ Ax̃ ⇒ x̃ = 0.

Criterion 2. A is regular if and only if ∀x̃ ∈ Rn, |Acx̃| ≤ ΔA|x̃| ⇒ x̃ = 0.

In the same terms we can express singularity:

Criterion 3. A is singular if and only if ∃x̃ ∈ Rn, x �= 0 such that

|Acx̃| ≤ ΔA|x̃|. (5)

Moreover, we can build a singular matrix from a solution of the inequation 5.
Let x̃ �= 0 be such a solution.

We can consider the vectors y, z ∈ Rn defined by

yi =

{
(Acx̃)i/(ΔA|x̃|)i , if (ΔA|x̃|)i �= 0,

1 , if (ΔA|x̃|)i = 0
zj =

{
1 , if x̃j ≥ 0,

−1 , if x̃j < 0
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Then for the matrix Ã given by

Ãij = (Ac)ij − yizj(ΔA)ij

we have Ã ∈ A and Ãx̃ = 0 for x̃ �= 0, then from 4 we get det Ã = 0.
The criteria described above are not convenient in practice. They are impor-

tant from a theoretical point of view as they can serve as basis for deriving
verifiable regularity criteria, where by verifiable we mean that there are known
algorithms that can perform the verification of our criterion.

4.3 Verifiable Regularity Criteria

We present verifiable criteria that are based on checking positive definiteness of
a matrix, computing the midpoint inverse and computing eigenvalues.

Generally the proofs for these criteria follow rather naturally from the proofs
presented in the previous sections on real matrices and on basic regularity crite-
ria. To illustrate this we give a criterion that establishes regularity by a positive
definiteness check and we detail its proof.

Criterion 4. If the matrix

AT
c Ac − ‖ΔT

AΔA‖I

is positive definite for some consistent matrix norm ‖ · ‖, then A is regular.

Proof. We do a proof by contradiction. We suppose that A is singular, so by
Criterion 3 we get that there exists an x �= 0 such that |Acx| ≤ ΔA|x|. We may
normalize x to achieve ‖x‖2 = 1.

Then we have

xT AT
c Acx ≤ |Acx|T |Acx| - by properties of transpose and absolute value

|Acx|T |Acx| ≤ (ΔA|x|)T ΔA|x| - by hypothesis

(ΔA|x|)T ΔA|x| = |x|T ΔT
AΔAx - by properties of the transpose

|x|T ΔT
AΔAx ≤ λmax(ΔT

AΔA) - by properties of Rayleigh’s quotient

λmax(ΔT
AΔA) ≤ ρ(ΔT

AΔA) - by definition of the spectral radius

ρ(ΔT
AΔA) ≤ ‖ΔT

AΔA)‖ - by properties relating spectral radius to norm

‖ΔT
AΔA)‖ = ‖ΔT

AΔA)‖(xT x) - by hypothesis that 1 = (‖x‖2)2 = xT x.

Reading the beginning and the end we get

xT AT
c Acx ≤ ‖ΔT

AΔA)‖(xT x)
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This is equivalent to

xT (AT
c Ac − ‖ΔT

AΔA)‖I)x ≤ 0

which means that the matrix (AT
c Ac − ‖ΔT

AΔA)‖I) is not positive definite, a
contradiction to the hypothesis. Qed.

The above proof gives an idea of how we prove such criteria based on concepts
we previously described. We will not detail the rest of the proofs.

We formulate another criterion in terms of the approximate midpoint inverse
R. This is very convenient as in practice we generally have the inverse computed
in finite precision arithmetic which may affect validity of criteria given in terms
of the exact midpoint inverse A−1

c . However, we present such criteria also, as
Corollary 1 and Corollary 2.

Criterion 5. If the following inequality holds

ρ(|I −RAc|+ |R|ΔA) < 1

for an arbitrary matrix R, then A is regular.

In particular, if R is the midpoint inverse A−1
c then we get:

Corollary 1. If Ac is regular and ρ(|A−1
c |ΔA) < 1 then A is regular.

Similarly we can give a criterion for checking singularity based on the approxi-
mate midpoint inverse.

Criterion 6. If there exist a matrix R such that

(I + |I −AcR|)j ≤ (ΔA|R|)j

for some j ∈ {1, . . . , n}, then A is singular.

Corollary 2. If Ac is regular and max
j

(ΔA|A−1
c |)jj ≥ 1, then A is singular.

We give a criterion that ensures regularity at the cost of evaluating eigenvalues
for symmetric matrices:

Criterion 7. If the following inequality holds

λmax(ΔT
AΔA) < λmin(AT

c Ac)

then A is regular.

We formalized all regularity criteria described by [20] and one singularity cri-
terion. We did not concentrate on more singularity proofs as it is not of much
practical interest.



Formally Verified Conditions for Regularity of Interval Matrices 231

5 Conclusion

We presented a formal development in interval analysis: we defined intervals and
interval matrices, we formalized their properties and properties of real matrices,
we proved correct regularity criteria for interval matrices: some basic regularity
criteria as well as three criteria verifiable in practice. Our intention was to show
on one hand how we implemented the basic concepts that we work with and
on the other hand how far we got in the formalization, what sort of criteria we
managed to verify. The source files corresponding to these proofs are available on-
line : http://www-sop.inria.fr/marelle/Ioana.Pasca/interval

A big part of our effort was spent on : providing a formalization of real intervals
and providing properties of real matrices. This is not very surprising as most
criteria actually concern some real matrices associated to the interval matrix and
their properties. In other proof assistants there are developments concerning both
properties of matrices and of interval arithmetic. For example, work on matrices
in Isabelle is described in [18] and in HOL Light in [10]. A development in Coq
other than the one we used is presented in [14]. Interval arithmetic in Coq has
been approached in [7,15], while in PVS we have [6] and in Isabelle [12].

All these developments on interval arithmetic have as primary concern do-
ing correct computation. Our work is different in that its main purpose is to
establish more involved theoretical properties. For now we are not considering
the computational aspect. In the long run, however, this work should serve as
a theoretical basis to verify properties of actual computation. We note that it
is a commonly used approach to have properties verified on a abstract model of
real numbers or intervals and use them to validate a concrete implementation
of real or interval arithmetic. For example the interval arithmetic tool Gappa
does computations on machine floating point numbers and uses a Coq library
on abstract reals to validate these computations [4]. In [13] a description on
abstract reals of properties for Newton’s method is used to verify computations
with Newton’s method on computable reals.

The study of regularity of interval matrices was motivated by needs of re-
searchers interested in robotics who use such criteria in their daily work. We
managed to formally verify criteria like 5, 7, 4 which correspond to conditions
used in practice. However, to get fully verified conditions, the algorithms per-
forming the verification of these conditions should also be verified. Work in this
direction is already being done, for example [8] describes the verification of the
LUP decomposition algorithm.

We wish to continue this work in two directions. The first one is to provide
the necessary tools to continue with formalizations on interval matrices. In par-
ticular, computing the inverse of an interval matrix is closely related to issues on
regularity. This work will in turn open the road to verify algorithms for solving
linear systems of interval equations. The other possible direction of this work
is to abstract on the type of intervals. For now all proofs are done for intervals
with real bounds. The interesting work will be to have intervals with rational
bounds or even better, with floating point bounds. Since floats and rationals are
themselves real numbers and intervals are computed by outward rounding, the

http://www-sop.inria.fr/marelle/Ioana.Pasca/interval
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results presented here should apply. For example, let us suppose we have F an
interval matrix where the ends of the intervals are floating point numbers and we
managed to verify a certain regularity criterion for F . This criterion says that all
real matrices included in F are regular. In particular all floating point matrices
included in F are regular. However, this is still an issue to investigate: to which
degree criteria proved for ideal arithmetic are still suitable in the floating point
world.
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Abstract. This paper describes continuing progress on the development
of a repository of transformation rules relevant to indefinite integration.
The methodology, however, is not restricted to integration. Several opti-
mization goals are being pursued, including achieving the best form for
the output, reducing the size of the repository while retaining its scope,
and minimizing the number of steps required for the evaluation process.
New optimizations for expression size are presented.

1 Introduction

The methods of integration can be conveniently divided into several categories.

– Look-up tables. These are collections or databases, such as [4], which try to
list all possible integrals, each in a general form. Many special cases are also
listed separately.

– Rule-based rewriting. The databases used are smaller than those for the
look-up tables. They contain rules for transforming a given integral into one
or more simpler integrals, together with rules for completing the evaluation
in terms of known functions.

– Algorithmic methods. Under this heading, we include Risch integration,
Rothstein-Trager-Rioboo integration, and others, which require extended
computations.

A table of reduction rules can serve more roles than merely the database for an
evaluation system; it can also serve as a repository for mathematical knowledge.
Each rule can be annotated with information on its derivation, with references
to the literature, and so on. An evaluation system can display transformations
as they are used, for the information of users.

Here, we consider the repository of transformation rules for indefinite inte-
grals that is described in [5,6]. We shall refer to it by the acronym Rubi: RUle-
Based Integrator. We review the general state of the repository and then focus
on particular aspects, namely, its efficiency, and the selection of output forms.
Procedures have been written in Mathematica to implement the evaluation
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of integrals using the repository, and these procedures have been the basis of
testing and comparisons.

The role of rule-based approaches, and how they should complement algorith-
mic methods, can be a subject of debate. For example, Fateman wrote, as part
of a review of the system Mathematica [2]

“Yet the evidence of the past several decades casts strong doubt on the
idea that an efficient version of mathematical knowledge can be imparted
to a symbolic system primarily by rule-transformations on trees.”
Richard Fateman (1992)

Owing to poor implementations, rule-based systems have a reputation for be-
ing inefficient and plagued by endless loops. This paper, however, describes the
crafting of a rule-based repository (Rubi) that is compact, efficient, transpar-
ent and modular. We shall not address the combining of Rubi with algorithmic
approaches, as would be required to arrive at a full integration system, but con-
centrate on the constructing of a database of knowledge, with examples of how
it performs in practice.

It must be emphasized again that what is not being described is a scheme for
table look-up. Such schemes were described, for example, in [3]. The approach
there was to consider data structures and search techniques which would allow
them to encode all the entries in reference books such as [1]. Adopting this
approach for integration — or a fortiori for all simplification — would result in
huge databases which would be unwieldy to maintain, debug and utilize. The
set of rules described here is relatively compact, verifiable and efficient.

2 Basic Details of System

Here, we give a brief account of the Rubi system. At the time of testing, it
consisted of 1377 reduction rules. Each rule is an entry in the database and
consists of the following fields.

– Conditions under which the reduction rule is applied. These conditions result
either from requirements for the validity of the transformation, or from re-
quirements that the transformation be a reduction, meaning a step towards
evaluation of the integral.

– The transformation from one expression to another.
– Comments recording the source of the rule (usually a reference to one or

more standard reference books) or other useful information.

It should be noted that programming constructs, such as loops or branching
statements are never used. Examples of these rules are given below in section 4
(without the comments).

The total size of the database (including comments) was 554 Kb. This is
an uncompressed text file. About one third of the file consists of comment text.
Procedures using the pattern-matching functions of Mathematica were written
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to apply the database to the test problems, and no attempt is made to measure
the sizes of subsystems of Mathematica used.

The construction and selection of the rules is based on the principle of mutual
exclusivity. For a database of reduction rules to be properly defined, at most one of
the rules can be applicable to any given expression. Mutual exclusivity is critical
to ensuring that rules can be added, removed or modified without affecting the
other rules. Such stand-alone, order-independent rules make it possible to build a
rule-based repository of knowledge incrementally and as a collaborative effort.

3 Performance Comparison with Other Systems

In order to provide quantitative evidence of the benefits of rule-based integra-
tion, we present a comparison of the performance of various computer algebra
systems on a test suite containing 7927 problems. The performance measure is
based on the validity and simplicity of the expressions returned. Other perfor-
mance measures, such as speed, have been measured, but direct comparisons can
at present be made only with Mathematica, and so here the emphasis is on
expression size, until a variety of platforms can be compared for speed1. We note
in passing, however, that smaller expression sizes will also contribute to speed
advantages.

The expression given for each integral was checked against the simplest form,
obtained from published integral tables, or from integration by hand. For each
problem, the integration result was differentiated by the system being tested, the
derivative subtracted from the integrand, and the system asked to test whether
the result was zero. Each test yielded one of the following 4 judgements:

– Optimal: Correct and close to the best form.

Example:
∫

5x4 dx

(1 + x)6
=

x5

(1 + x)5
.

– Messy: Correct, but the expression is overly large. E.g.∫
5x4 dx

(1 + x)6
= − 1

(1 + x)5
− 5

(1 + x)
− 10

(1 + x)3
+

5
(1 + x)4

+
10

(1 + x)2
.

Note that the optimal and messy results differ by a constant, and the optimal
form cannot be obtained by simplification of the messy.

– Inconclusive: No result was obtained in 60 seconds, or the result could not
be verified, usually because the output was so large that the simplifier failed
while attempting to differentiate and reduce to zero.

– Invalid: The difference between the derivative and integrand was not zero.

The performances on the test suite of Maple, Mathematica and the present
rule-based system Rubi are presented in the tables below. Since Rubi

1 Mathematica has been used to implement Rubi and a comparison with its built-in
Integrate command shows Rubi to be faster on the test suite by a factor of 10. The
test suite has been ported to Maple, but the different syntax for pattern matching
has so far prevented Rubi from being ported. Therefore only the output forms can
be compared.
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was developed using the test suite, its good performance is to be expected,
but even so, the favourable comparison with the other systems remains valid.

Although the test suite of 7927 problems is large, the problems themselves
are all part of mainstream calculus, and therefore even the small rate of 3%
invalid results for the large commercial systems is disappointing, to say the
least. However, for the purposes of this paper, the emphasis of the main benefit
of Rubi in this comparison lies in the simpler form of the results. Since the main
advantage lies in the simplicity of the results, we concentrate here on how Rubi
achieves its results, by presenting two case studies.

4 First Case Study: Alternative Strategies

The first study concerns an optimization to reduce output size. In order to obtain
quantitative measures for expression size, utility functions have been written in
Mathematica and Maple that count the number of nodes in the internal
tree representation of a particular expression. Although there are variations in
the internal representations of expressions, the functions provide comparable
measures in the two systems.

We consider the problem of evaluating the integral∫
xm dx

(a + bx)12
, (1)

for different values of m ∈ Z. This is a special case of the more general problem

I(a, b, c, d, m, n) =
∫

(a + bx)m(c + dx)n dx , (2)

where m, n ∈ Z, and a, b, c, d ∈ C.
Our aim is to minimize the number of terms in the expression for the integral.

As a starting point, we can use the standard integrators in Mathematica and
Maple to evaluate the integral, and plot the expression sizes of the results as
functions of m. Figures 1 and 2 show the expression counts for the two systems.

We have extracted below from Rubi the 9 transformation rules applying to
the integral class (2). Each rule is presented in the following form:

N: Necessary conditions for mathematical validity.
T: The transformation rule A→ B.
S: Simplification conditions to ensure the transformation yields a simplification.

All rules require that a, b, c, d, m, n do not contain x, and that b �= 0. The
rules are:

1. T:
∫

dx

a + bx
→ ln(a + bx)

b
.

2. N: m + 1 �= 0

T:
∫

(a + bx)mdx → (a + bx)m+1

(m + 1)b
.
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Fig. 1. The node count for expressions returned by Mathematica 7 for the integral in
(1). The horizontal axis shows values of the exponent m, while the vertical axis shows
the node count for the corresponding expression for the integral.

Fig. 2. The node count for expressions returned by Maple 13 for the integral in (1).
The horizontal axis shows values of the exponent m, while the vertical axis shows the
node count for the corresponding expression for the integral.

3. N: bc− ad = 0, m + n + 1 = 0

T:
∫

(a + bx)m(c + dx)n dx → (a + bx)m+1(c + dx)n ln(a + bx)/b .

4. N: bc− ad = 0, m + n + 1 �= 0

T:
∫

(a + bx)m(c + dx)n dx → (a + bx)m+1(c + dx)n

b(m + n + 1)
.

5. N: bc− ad �= 0

T:
∫

(a + bx)−1(c + dx)−1 dx → ln(a + bx)− ln(c + dx)
bc− ad

.
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6. N: bc− ad �= 0, m + n + 2 = 0, n �= −1

T:
∫

(a + bx)m(c + dx)n dx → − (a + bx)m+1(c + dx)n+1

(n + 1)(bc− ad)
.

7. N: m + n + 1 = 0, m > 0, bc− ad �= 0

T:
∫

(a + bx)m(c + dx)n dx → − (a + bx)m

dm(c + dx)m

+
b

d

∫
(a + bx)m−1(c + dx)−m dx .

8. N: bc− ad �= 0, m + n + 1 �= 0, n > 0

T:
∫

(a + bx)m(c + dx)n dx → (a + bx)m+1(c + dx)n

b(m + n + 1)

+
n(bc− ad)

b(m + n + 1)

∫
(a+ bx)m(c+ dx)n−1 dx .

S: (2n + m + 1 < 0 ∨m + n + 1 > 0) ∧ (m < 0 ∨ n ≤ m)
9. N: bc− ad �= 0, n + 1 �= 0

T:
∫

(a + bx)m(c + dx)n dx → − (a + bx)m+1(c + dx)n+1

(n + 1)(bc− ad)

+
(m + n + 2)b

(bc− ad)(n + 1)

∫
(a + bx)m(c + dx)n+1 dx .

S: n < −1, m < 0 ∨ 2m + n + 1 ≥ 0.

We wish to show how these rules are optimized relative to other possible sets of
rules. Specifically, we shall compare these rules with a set in which the simplifi-
cation conditions in rules 8 and 9 are modified. We start, however, with remarks
on the rules as presented.

4.1 Remarks

1. An alternative strategy to the set of transformations shown here would be
to define rules for the simpler integrand xm(a+bx)n, and then use the linear
substitution u = c+dx to transform expressions of the form (a+bx)m(c+dx)n

into the simpler form. This strategy was explored, but we discovered that
several more rules are required when starting from the non-symmetrical form
xm(a+bx)n than when starting with the symmetrical (a+bx)m(c+dx)n. This
is because two versions each of rules 7, 8 and 9 had to be given depending
upon whether the exponent of the monomial or the linear factor had to be
incremented or decremented. This subtle, but important, point shows that
sometimes defining more general rules leads to a simpler repository.

2. It should be noted that rule 6 is in fact a special case of rule 9. It is included
because it is convenient to have an explicitly non-recursive entry.

3. Rules 8 and 9 respectively increment and decrement one of the exponents of
the integrand. Unlike the other rules, it is not always obvious which of these
two rules should be applied to a given integrand in order to minimize the
number of steps required to integrate it. This choice is the subject of our
optimization.
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5 Integration Strategies

The rules stated above describe a complete strategy for integration of the given
class of integrals. The strategy is not unique, however, and other strategies might
be more efficient. We therefore describe two other strategies and compare them
with the preferred strategy.

5.1 Preliminary Strategy 1

We replace rule 8 with a rule 8a, in which the simplification conditions are
removed. Thus we have

8a. N: bc− ad �= 0, m + n + 1 �= 0, n > 0

T:
∫

(a + bx)m(c + dx)n dx → (a + bx)m+1(c + dx)n

b(m + n + 1)

+
n(bc− ad)

b(m + n + 1)

∫
(a + bx)m(c + dx)n−1 dx .

The effect of removing the restrictions is that all integrals will be reduced until
one of the exponents becomes zero, at which point rules 1 to 6 will terminate
the reduction. When this strategy is applied to the test case (1), the sizes of the
results are as shown in figure 3.

Fig. 3. The node count for expressions returned by the first alternative integration
strategy for the integral in (1). The horizontal axis shows values of the exponent m,
while the vertical axis shows the node count for the corresponding expression for the
integral.

The dip for the case m = 10 is important. For this case, rule 6 provides a
direct one-step integration to a very compact form:∫

x10 dx

(1 + x)12
=

x11

11(1 + x)11
.
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This possibility is not noticed by the standard integrators of Mathematica
and Maple, as can be seen in figures 1 and 2.

5.2 Preliminary Strategy 2

We now remove the restrictions from rule 9, and place it above rule 8. Thus the
rule becomes

9a N: bc− ad �= 0, n + 1 �= 0

T:
∫

(a + bx)m(c + dx)n dx → − (a + bx)m+1(c + dx)n+1

(n + 1)(bc− ad)

+
(m + n + 2)b

(bc− ad)(n + 1)

∫
(a + bx)m(c + dx)n+1 dx

The effect of this is to increase one negative exponent until rule 6 can be ap-
plied. The resulting statistics on the size of integral expressions is shown in
figure 4.

Fig. 4. The node count for expressions returned by the second alternative integration
strategy for the integral in (1). The horizontal axis shows values of the exponent m,
while the vertical axis shows the node count for the corresponding expression for the
integral.

The dip at m = 0 is a result of rule 2 being applied before the general rules.

5.3 An Optimal Strategy

Clearly, one can obtain smaller expression sizes if one can switch between the
two strategies just tested. This is what is done in rules 8 and 9 as presented. For
the test case, the two points m = 10 and m = 0 are targets and for m ≤ 5 the
integrands are moved towards m = 0, while for m > 5 they are moved towards
m = 10. The generalization to other powers is shown in rules 8 and 9. The
resulting expression sizes are shown in figure 5.
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Fig. 5. The node count for expressions returned by the optimal integration strategy
for the integral in (1). The horizontal axis shows values of the exponent m, while the
vertical axis shows the node count for the corresponding expression for the integral.

5.4 Comparison with Other Methods

An obvious algorithmic approach to integral (1) is to expand the fraction using
partial fractions, and then integrate each term. This gives results similar to
those found using Maple and Mathematica. One of the advantages of Rubi
is that such special cases can be identified and taken advantage of. One of the
useful services that computer-algebra systems can offer mathematicians is the
identification of special cases. The general algorithms preferred by Maple and
Mathematica can succeed on large problems which Rubi is not yet capable of
tackling. However, for smaller problems, where special cases might exist, Rubi
is to be preferred.

6 Second Case Study: Two-Part Reduction

The second case study involves the class of integrals

J(m, n, p) =
∫

xm(a + bx)n(c + dx)p dx , (3)

where the dependence of J on a, b, c, d has been suppressed, since we shall focus
on the powers. We require m ∈ Z, and n, p ∈ Q. The aim is to reduce the
integral in (3) to integrals with known solutions. In this case, the problems with
known solutions are J(0, N, P ) and J(M, N, N). It is straightforward to derive
the equality

J(m, n, p) = (1/b)J(m− 1, n + 1, p)− (a/b)J(m− 1, n, p) (4)

An obvious strategy for m > 0 is to use this relation to reduce all integrals to
the form J(0, N, p). Thus, using the above conventions for describing a reduction
rule, the rule reads

11. T: J(m, n, p)→ 1
b J(m− 1, n + 1, p)− (a/b)J(m− 1, n, p)

S: m ∈ Z, m > 0, n, p ∈ Q, n− p < 0
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At this point the algorithmically oriented person jumps to a composite rule by
applying (4) m times to obtain

J(m, n, p) =
1

bm

m∑
k=0

(
m

k

)
(−a)kJ(0, n + k, p) . (5)

This, however, falls again into the trap that awaits grand algorithmic, or general-
formula based, approaches. There are many special-case simplifications that will
be skipped over by (5). Because the formula is derived for generic n, p, it can
have no special behaviour for special cases. For example, if there exists k such
that n + k = p and k < m, then some terms can be removed from the sum
and simplified separately, using the special case J(m− k, n + k, p) = J(M, p, p).
One of the differences between different computer systems is the extent to which
they attempt intermediate simplifications. Using a step-based series of transfor-
mations (as Rubi does) each intermediate result can be tested for simplification
before continuing.

For the case m < 0, we rewrite (4) as

J(m, n, p) = (1/a)J(m, n + 1, p)− (b/a)J(m + 1, n, p) (6)

Applying this reduction k times, we would obtain

J(m, n, p) =
1
ak

k∑
i=0

(
k

i

)
(−b)iJ(m + i, n + k − i, p) (7)

The terms in the sum can be evaluated whenever m + i = 0 or n + k − i = p.
Clearly, the latter condition requires that initially n − p ∈ N. Therefore, the
integral J(m, n, p) will be evaluated after at most max(n − p, m) steps. As in
the m > 0 case, however, it is better to apply the reduction stepwise in order to
obtain the maximum benefit from intermediate, special case, simplifications.

As an example of the above rules, we present the same integral calculated by
Rubi, by Mathematica and by Maple. First, Rubi:

∫ √
2 + 3x dx

x2(5− x)3/2 =
2
√

2 + 3x

25
√

5− x
−
√

5− x
√

2 + 3x

25x
− 21

25
√

10
arctanh

√
10− 2x√
10 + 15x

Next, Mathematica:

=
1

500

(
20(−5 + 3x)

√
2 + 3x

x
√

5− x
+ 21

√
10 ln

(
21
√

10x
)

−21
√

10 ln
(
50
(
20 + 13x + 2

√
10
√

5− x
√

2 + 3x
)))
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Table 1. The integration test suite, with the numbers of problems broken down
in categories. The performance of the Rule-based Integrator (Rubi) is given using
measures described in the text.

Test Items Rubi: Rule-based Integrator
Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1424 1 1 0
Algebraic 1494 1483 8 3 0

Exponential 456 452 0 4 0
Logarithmic 669 667 0 2 0

Trigonometric 1805 1794 8 3 0
Hyperbolic 1386 1379 6 1 0
Inverse trig 283 281 0 2 0

Inverse hyperbolic 342 335 2 5 0
Special functions 66 66 0 0 0

Percentages 99.4% 0.3% 0.3% 0%

Table 2. The performance of Maple on the test suite, using measures described in the
text

Test Items Maple

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1176 249 0 1
Algebraic 1494 1126 277 45 46

Exponential 456 351 63 37 5
Logarithmic 669 284 161 194 30

Trigonometric 1805 1054 619 83 49
Hyperbolic 1386 521 641 181 43
Inverse trig 283 206 64 5 8

Inverse hyperbolic 342 159 96 55 32
Special functions 66 38 1 25 2

Percentages 62.0% 27.4% 7.9% 2.7%

Finally, Maple:

= − 1
500

(
21
√

10 arctanh

(
1/20

(20 + 13x)
√

10√
10 + 13x− 3x2

)
x2

−105
√

10arctanh

(
1/20

(20 + 13x)
√

10√
10 + 13x− 3 x2

)
x + 60x

√
10 + 13 x− 3x2

−100
√

10 + 13x− 3x2
)√

5− x
√

2 + 3x (−5 + x)−1 1√
10 + 13x− 3x2

x−1

There is a disadvantage, however, to stepwise application of the above reduction,
a disadvantage well known in other contexts. This is the repeated evaluation of
the same integral during recursive calls. The standard example of this effect is
the recursive evaluation of Fibonacci numbers. This is paralleled in applications
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Table 3. The performance of Mathematica on the test suite, using measures described
in the text

Test Items Mathematica

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1239 187 0 0
Algebraic 1494 1228 246 18 2

Exponential 456 406 32 12 6
Logarithmic 669 581 84 4 0

Trigonometric 1805 1212 573 3 17
Hyperbolic 1386 911 464 6 5
Inverse trig 283 211 62 10 0

Inverse hyperbolic 342 198 140 3 1
Special functions 66 53 9 4 0

Percentages 76.2% 22.7% 0.8% 0.4%

of (4) and (6). This effect was one reason that Maple introduced its option
remember early in its development. The important additional feature present
here, that is not present in the Fibonacci example, is the possibility of different
simplification options directing the computation to simpler results.

7 Concluding Remarks

In [5], a number of advantages of rule-based simplification were listed. These
included (see reference for details).

– Human and machine readable.
– Able to show simplification steps.
– Facilitates program development.
– Platform independent.
– White box transparency.
– Fosters community development.
– An active repository.

In this paper we have shown that an additional advantage of rule-based eval-
uation, illustrated in the integration context, is greater simplicity of results.
Finally, we wish to point out that the integration repository described here has
been published on the web [6], and is available for viewing and testing by all
interested people.
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1 Introduction

Natural numbers and finite sets have been used as sometimes competing foun-
dations for mathematics, logic and consequently computer science. The de facto
standard axiomatization for natural numbers is provided Peano arithmetic. Fi-
nite set theory is axiomatized with the usual Zermelo-Fraenkel system (abbrevi-
ated ZF ) in which the Axiom of Infinity is replaced by its negation. When the
axiom of ε-induction, (saying that if properties proven on elements also hold on
sets containing them, then they hold for all finite sets) is added, the resulting
finite set theory (abbreviated ZF ∗) is bi-interpretable with Peano arithmetic i.e.
they emulate each other accurately through a bijective mapping that commutes
with standard operations on the two sides ([1]).

This foundational convergence suggests a “shared axiomatization” of Peano
arithmetic, hereditarily finite sets and more conventional natural number rep-
resentations to be used as a unified framework for formally deriving various
computational entities.

While axiomatizations of various formal systems are traditionally expressed in
classic or intuitionistic predicate logic, equivalent formalisms, in particular the
λ-calculus and the type theory used in modern functional languages like Haskell,
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can provide specifications in a sometime more readable, more concise, and more
importantly, in a genuinely executable form.

Our incremental specification loop consists of successive refinements through
a chain of Haskell type classes (seen as axiom systems) connected by inheritance.

Instances of the type classes (seen as interpretations of axiom systems) provide
examples that implement various data types in this framework.

The resulting hierarchy of type classes describes incrementally common compu-
tational capabilities shared by bit-stacks, Peano natural numbers and hereditarily
finite sets (sections 3-5).

2 Computing in Bijective Base-2

Bitstrings provide a common and efficient computational representation for both
sets and natural numbers. This recommends their operations as the right abstrac-
tion for deriving, in the form of a Haskell type class, a “shared axiomatization”
for Peano arithmetic and Finite Set Theory.

While the existence of such a common axiomatization can be seen as a con-
sequence of the bi-interpretability results proven in [1], our distinct executable
specification as a Haskell type class provides unique insights into the shared in-
ductive constructions and ensures that computational complexity of operations
is kept under control for a variety of instances.

We start by expressing bitstring operations as a Haskell data type:

data BitStack = Empty |Bit0 BitStack |Bit1 BitStack

deriving (Eq, Show, Read)

We define the following operations on BitStacks

empty = Empty

pushBit0 xs = Bit0 xs

pushBit1 xs = Bit1 xs

popBit (Bit0 xs)=xs
popBit (Bit1 xs)=xs

and the predicates

empty_ x=Empty==x
bit0_ (Bit0 _)=True
bit0_ _ =False

bit1_ (Bit1 _)=True
bit1_ _=False

We remind a few basic (but possibly not widely known) concepts related to the
computation mechanism we will use on bitstrings1.
1 We assume that bitstrings are mapped to numbers starting with the lowest exponent

of 2 and ending with the highest.
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Definition 1. Bijective base-2 representation associates to n ∈ N a unique
string in the regular language {0, 1}∗ by removing the 1 indicating the highest
exponent of 2 from the standard (complement of 2) bitstring representation of
n + 1.

Using a list notation for bitstrings this gives: 0 = [], 1 = [0], 2 = [1], 3 = [0, 0], 4 =
[1, 0], 5 = [0, 1], 6 = [1, 1] etc2.

As a simple exercise in bijective base-2, arithmetic one can now implement
the successor function - and therefore provide a model of Peano’s axioms, as
follows:

zero = empty

one = Bit0 empty

peanoSucc xs | empty_ xs = one

peanoSucc xs | bit0_ xs = pushBit1 (popBit xs)

peanoSucc xs | bit1_ xs = pushBit0 (peanoSucc (popBit xs))

For instance, 3 applications of peanoSucc generate 3 = [0, 0] as follows:

∗Unified> (peanoSucc . peanoSucc . peanoSucc) zero

Bit0 (Bit0 Empty)

One can verify by structural induction that:

Proposition 1. Peano’s axioms hold with the definition of the successor func-
tion provided by peanoSucc.

Using the BitStack representation (by contrast with naive “base-1” successor
based definitions), one can implement arithmetic operations like sum and prod-
uct with low polynomial complexity in terms of the bitsize of their operands. We
will defer defining these operations until the next sections, where we will provide
such implementations in a more general setting.

Note that as a mild lookahead step towards abstracting away operations on our
bitstacks, we have replaced reference to data constructors by the corresponding
predicates and functions i.e. bit0 bit1 etc.

3 Sharing Axiomatizations with Type Classes

Haskell’s type classes [2] are a good approximation of axiom systems as they allow
one to describe properties and operations generically i.e. in terms of their action
on objects of a parametric type. Haskell’s instances approximate interpretations
[1] of such axiomatizations by providing implementations of primitive operations
and by refining and possibly overriding derived operations with more efficient
equivalents.

We will start by defining a type class that abstracts away the operations on
the BitStack datatype and provides an axiomatization of natural numbers first,
and hereditarily finite sets later.
2 See http://en.wikipedia.org/wiki/Bijective_numeration for the historical ori-

gins of the concept and the more general bijective base-k case.

http://en.wikipedia.org/wiki/Bijective_numeration
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3.1 The 5 Primitive Operations

The class Polymath assumes only a theory of structural equality (as imple-
mented by the class Eq in Haskell) and the Read/Show superclasses needed for
input/output.

An instance of this class is required to implement the following 5 primitive
operations:

class (Eq n,Read n,Show n)⇒Polymath n where

e :: n

o_ :: n→Bool

o :: n→n

i :: n→n

r :: n→n

We have chosen single letter names e,o ,o,i,r for the abstract operations corre-
sponding respectively to empty, bit0 , pushBit0, pushBit1, popBit to fa-
cilitate a concise “algebraic” view needed to grasp some complex definitions that
use compositions of these operations3.

The Polymath type class also provides to its instances generic implementations
of the following derived operations:

e_ :: n→Bool

e_ x = x==e

i_ :: n→Bool

i_ x = not (o_ x | | e_ x)

Note that we use the convention that for each constructor the recognizer’s name
is obtained by appending “ ”4.

While not strictly needed at this point, it is convenient also to include in the
Polymath type class some additional derived operations. As we will see later,
some instances will chose to override them. We first define an object and a
recognizer for 1, the constant function u and the predicate u .

u :: n

u = o e

u_ :: n→Bool

u_ x = o_ x && e_ (r x)

Next we implement the successor s and predecessor p functions:

s :: n→n

s x | e_ x = u

s x | o_ x = i (r x)

s x | i_ x = o (s (r x))

3 As an ongoing analogy, the reader can interpret o as pushing a 0 to a bitstack, i as
pushing a 1 and r as a pop operation, with e representing an empty bitstack.

4 As part of the bitstack analogy, the predicates o and i can be seen as recognizing
respectively a 0 and a 1 (in bijective base-2) at the top of the bitstack.
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p :: n→n

p x | u_ x = e

p x | o_ x = i (p (r x))

p x | i_ x = o (r x)

It is convenient at this point, as we target a diversity of interpretations mate-
rialized as Haskell instances, to provide a polymorphic converter between two
different instances of the type class Polymath. The function view allows con-
verting between two different Polymath instances, generically.

view :: (Polymath a,Polymath b)⇒a→b

view x | e_ x = e

view x | o_ x = o (view (r x))

view x | i_ x = i (view (r x))

3.2 Peano Arithmetic

It is important to observe at this point that Peano arithmetic is an instance of
the class Polymath i.e. that the class can be used to derive an “axiomatization”
for Peano arithmetic through a straightforward mapping of Haskell’s function
definitions to Peano’s axioms.

data Peano = Zero |Succ Peano deriving (Eq,Show,Read)

instance Polymath Peano where

e = Zero

o_ Zero = False

o_ (Succ x) = not (o_ x)

o x = Succ (o’ x) where

o’ Zero = Zero

o’ (Succ x) = Succ (Succ (o’ x))

i x = Succ (o x)

r (Succ Zero) = Zero

r (Succ (Succ Zero)) = Zero

r (Succ (Succ x)) = Succ (r x)

Finally, we can add BitStack - which, after all, has inspired the operations of
our type class, as an instance of Polymath

instance Polymath BitStack where

e=empty
o=pushBit0
o_=bit0_
i=pushBit1
r=popBit
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and observe that the Peano and Bitstack interpretations behave consistently:

∗Unified> i (o (o Empty))

Bit1 (Bit0 (Bit0 Empty))

∗Unified> i (o (o Zero))

Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))

∗Unified> i (o (o Empty))

Bit1 (Bit0 (Bit0 Empty))

∗Unified> s it

Bit0 (Bit1 (Bit0 Empty))

∗Unified> view it :: Peano

Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))

∗Unified> p it

Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))

Bit1 (Bit0 (Bit0 Empty))

Note also the convenience of using :: view to instantly morph between instances
and the use of Haskell’s it standing for the previously returned result. So far we
have seen that our instances implement syntactic variations of natural numbers
equivalent to Peano’s axioms. We will now provide an instance showing that
our “axiomatization” covers the theory of hereditarily finite sets (assuming, of
course, that extensionality, comprehension, regularity, ε-induction etc. are im-
plicitly provided by type classes like Eq and implementation of recursion in the
underlying programming language).

4 Computing with Hereditarily Finite Sets

Hereditarily finite sets are built inductively from the empty set (denoted S [])
by adding finite unions of existing sets at each stage. We first define a rooted
tree datatype S:

data S=S [S] deriving (Eq,Read,Show)

To accurately represent sets, the type S would require a type system enforcing
constraints on type parameters, saying that all elements covered by the definition
are distinct and no repetitions occur in any list of type [S]. We will assume this
and similar properties of our datatypes, when needed, from now on, and consider
trees built with the constructor S as representing hereditarily finite sets.

We will now show that hereditarily finite sets can do arithmetic as instances
of the class Polymath by implementing a successor (and predecessor) function.
We start with the easier operations:

instance Polymath S where

e = S []

o_ (S (S []:_)) = True

o_ _ = False

o (S xs) = s (S (map s xs))

i = s . o
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Note that the o operation, that can be seen as pushing a 0 bit to a bitstack is
implemented by applying s to each branch of the tree. We will now implement
r, s and p.

r (S xs) = S (map p (f ys)) where

S ys = p (S xs)

f (x:xs) | e_ x = xs

f xs = xs

s (S xs) = S (hLift (S []) xs) where

hLift k [] = [k]

hLift k (x:xs) | k==x = hLift (s x) xs

hLift k xs = k:xs

p (S xs) = S (hUnLift xs) where

hUnLift ((S []):xs) = xs

hUnLift (k:xs) = hUnLift (k’:k’:xs) where k’= p k

First note that successor and predecessor operations s,p are overridden and that
the r operation is expressed in terms of p, as o and i were expressed in terms of
s. Next, note that the map combinators and the auxiliary functions hLift and
hUnlift are used to delegate work between successive levels of the tree defining
a hereditarily finite set.

To summarize, let us observe that the successor and predecessor operations
s,p at a given level are implemented through iteration of the same at a lower
level and that the “left shift” operation implemented by o,i results in initiating
s operations at a lower level. Thus the total number of operations is within a
constant factor of the size of the trees.

Let us verify that these operations mimic indeed their more common coun-
terparts on type Peano.

∗Unified> o (i (S []))

S [S [],S [S [S []]]]

∗Unified> s it

S [S [S []],S [S [S []]]]

∗Unified> view it :: Peano

Succ (Succ (Succ (Succ (Succ (Succ Zero)))))

∗Unified> p it

Succ (Succ (Succ (Succ (Succ Zero))))

∗Unified> view it :: S

S [S [],S [S [S []]]]

It can be proven by structural induction that:

Proposition 2. Hereditarily finite sets as represented by the data type S imple-
ment the same successor and predecessor operation as the instance Peano.

Note that this implementation of the class Polymath implicitly uses the Acker-
mann interpretation of Peano arithmetic in terms of the theory of hereditarily
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finite sets, i.e. the natural number associated to a hereditarily finite set is given
by the function

f(x) = if x = ∅ then 0 else
∑

a∈x 2f(a)

Let us summarize what’s unusual with instance S of the class Polymath: it shows
that successor and predecessor operations can be performed with hereditarily fi-
nite sets playing the role of natural numbers. As natural numbers and finite
ordinals are in a one-to-one mapping, this instance shows that hereditarily finite
sets can be seen as finite ordinals directly, without using the simple but compu-
tationally explosive von Neumann construction (which defines ordinal n as the
set {0, 1, . . . , n− 1}). We will elaborate more on this after defining a total order
on our Polymath type.

5 Arithmetic Operations

Our next refinement adds key arithmetic operations in the form of a type
class extending Polymath. We start with addition (polyAdd) and subtraction
(polySubtract):

class (Polymath n) ⇒ PolyOrd n where

polyAdd :: n→n→n

polyAdd x y | e_ x = y

polyAdd x y | e_ y = x

polyAdd x y | o_ x && o_ y = i (polyAdd (r x) (r y))

polyAdd x y | o_ x && i_ y = o (s (polyAdd (r x) (r y)))

polyAdd x y | i_ x && o_ y = o (s (polyAdd (r x) (r y)))

polyAdd x y | i_ x && i_ y = i (s (polyAdd (r x) (r y)))

polySubtract :: n→n→n

polySubtract x y | e_ x && e_ y = e

polySubtract x y | not(e_ x) && e_ y = x

polySubtract x y | not (e_ x) && x==y = e

polySubtract z x | i_ z && o_ x = o (polySubtract (r z) (r x))

polySubtract z x | o_ z && o_ x = i (polySubtract (r z) (s (r x)))

polySubtract z x | o_ z && i_ x = o (polySubtract (r z) (s (r x)))

polySubtract z x | i_ z && i_ x = i (polySubtract (r z) (s (r x)))

Efficient comparison uses the fact that with our representation only sequences
of distinct lengths can be different. We start by comparing lengths:

lcmp :: n→n→Ordering

lcmp x y | e_ x && e_ y = EQ

lcmp x y | e_ x && not(e_ y) = LT

lcmp x y | not(e_ x) && e_ y = GT

lcmp x y = lcmp (r x) (r y)

Comparison can now proceed by case analysis, the interesting case being when
lengths are equal (function samelen cmp):
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cmp :: n→n→Ordering

cmp x y = ecmp (lcmp x y) x y where

ecmp EQ x y = samelen_cmp x y

ecmp b _ _ = b

samelen_cmp :: n→n→Ordering

samelen_cmp x y | e_ x && e_ y = EQ

samelen_cmp x y | e_ x && not(e_ y) = LT

samelen_cmp x y | not(e_ x) && e_ y = GT

samelen_cmp x y | o_ x && o_ y = samelen_cmp (r x) (r y)

samelen_cmp x y | i_ x && i_ y = samelen_cmp (r x) (r y)

samelen_cmp x y | o_ x && i_ y =
downeq (samelen_cmp (r x) (r y)) where

downeq EQ = LT

downeq b = b

samelen_cmp x y | i_ x && o_ y =
upeq (samelen_cmp (r x) (r y)) where

upeq EQ = GT

upeq b = b

Finally, boolean comparison operators are defined as follows:

lt,gt,eq :: n→n→Bool

lt x y = LT==cmp x y

gt x y = GT==cmp x y

eq x y = EQ==cmp x y

After adding the instances

instance PolyOrd Peano

instance PolyOrd BitStack

instance PolyOrd S

one can see that all operations extend naturally:

∗Unified> polyAdd (Succ Zero) (Succ Zero)

Succ (Succ Zero)

∗Unified> (s.s.s.s) Empty

Bit1 (Bit0 Empty)

∗Unified> take 1000 (iterate s (S []))

[S [],S [S []],....,S [S [],S [S [],S [S []]]]]]

∗Unified> and (zipWith lt it (map s it))

True

The last example confirms, for 1000 instances, that we have a well-ordering of
hereditarily finite sets without recurse to the von Neumann ordinal construc-
tion (used in [1] to complete the bi-interpretation from hereditarily finite sets
to natural numbers). This replicates a recent result described in [3] where a
lexicographic ordering is used to simplify the proof of bi-interpretability of [1].
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We will proceed now with introducing more powerful operations. Needless to
say, they will apply automatically to all instances of the type class Polymath.

6 Adding Other Arithmetic Operations

We first define multiplication.

class (PolyOrd n) ⇒ PolyCalc n where

polyMultiply :: n→n→n

polyMultiply x _ | e_ x = e

polyMultiply _ y | e_ y = e

polyMultiply x y = s (multiplyHelper (p x) (p y)) where

multiplyHelper x y | e_ x = y

multiplyHelper x y | o_ x = o (multiplyHelper (r x) y)

multiplyHelper x y | i_ x = s (polyAdd y (o (multiplyHelper (r x) y)))

double :: n→n

double = p . o

half :: n→n

half = r . s

Exponentiation by squaring follows - easier for powers of two (exp2), then the
general case (pow):

exp2 :: n→n -- power of 2

exp2 x | e_ x = u

exp2 x = double (exp2 (p x))

pow :: n→n→n -- power y of x

pow _ y | e_ y = u

pow x y | o_ y = polyMultiply x (pow (polyMultiply x x) (r y))

pow x y | i_ y = polyMultiply

(polyMultiply x x)

(pow (polyMultiply x x) (r y))

After defining instances

instance PolyCalc Peano

instance PolyCalc BitStack

instance PolyCalc S

operations can be tested under various representations

∗Unified> polyMultiply (s (s (S []))) (s (s (s (S []))))

S [S [S []],S [S [S []]]]

∗Unified> view it :: Peano

Succ (Succ (Succ (Succ (Succ (Succ Zero)))))

∗Unified> pow (s (s (S []))) (s (s (s (S []))))

S [S [S [],S [S []]]]

∗Unified> view it :: Peano

Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))
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7 Deriving Set Operations

We will now provide a set view of our polymorphic data type. Following [4], where
Ackermann’s mapping between hereditarily finite sets and natural numbers has
been derived as a fold/unfold operation using a bijection between natural num-
bers and finite sets of natural numbers, we can write:

class (PolyCalc n) ⇒ PolySet n where

as_set_nat :: n→[n]

as_set_nat n = nat2exps n e where

nat2exps n _ | e_ n = []

nat2exps n x = if (i_ n) then xs else (x:xs) where

xs=nat2exps (half n) (s x)

as_nat_set :: [n]→n

as_nat_set ns = foldr polyAdd e (map exp2 ns)

Given that natural numbers and hereditarily finite sets, when seen as instances
of our generic axiomatization, are connected through Ackermann’s bijections,
one can shift from one side to the other at will:

∗Unified> as_set_nat (s (s (s Zero)))

[Zero,Succ Zero]

∗Unified> as_nat_set it

Succ (Succ (Succ Zero))

∗Unified> as_set_nat (s (s (s (S []))))

[S [],S [S []]]

∗Unified> as_nat_set it

S [S [],S [S []]]

Note also that, as the operations on type S show, the set associated to the
number 3 is exactly the same as the first level of its expansion as a hereditarily
finite set.

After defining combinators for operations of arity 1 and 2:

setOp1 :: ([n]→[n])→(n→n)

setOp1 f = as_nat_set . f . as_set_nat

setOp2 :: ([n]→[n]→[n])→(n→n→n)

setOp2 op x y = as_nat_set (op (as_set_nat x) (as_set_nat y))

we can “borrow” (with confidence!) the usual set operations (provided in the
Haskell package Data.List):

setIntersection :: n→n→n

setIntersection = setOp2 intersect

setUnion :: n→n→n

setUnion = setOp2 union

setDifference :: n→n→n

setDifference = setOp2 (\\)
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setIncl :: n→n→Bool

setIncl x y = x==setIntersection x y

In a similar way, we define a powerset operation conveniently using actual lists,
before reflecting it into an operation on natural numbers.

powset :: n→n

powset x = as_nat_set

(map as_nat_set (subsets (as_set_nat x))) where

subsets [] = [[]]

subsets (x:xs) = [zs |ys←subsets xs,zs←[ys,(x:ys)]]

Next, the ε-relation defining set membership is given as the function inSet,
together with the augmentSet function used in various set theoretic constructs
as a new set generator.

inSet :: n→n→Bool

inSet x y = setIncl (as_nat_set [x]) y

augmentSet :: n→n

augmentSet x = setUnion x (as_nat_set [x])

The n-th von Neumann ordinal is the set {0, 1, . . . , n − 1} and it is used to
emulate natural numbers in finite set theory. It is implemented by the function
nthOrdinal:

nthOrdinal :: n→n

nthOrdinal x | e_ x = e

nthOrdinal n = augmentSet (nthOrdinal (p n))

Note that as hereditarily finite sets and natural numbers are instances of the
class PolyOrd, an order preserving bijection can be defined between the two,
which makes it unnecessary to resort to von Neumann ordinals to show bi-
interpretability [1,3].

After defining the appropriate instances

instance PolySet Peano

instance PolySet BitStack

instance PolySet S

we observe that set operations act naturally under the hereditarily finite set
interpretation:

∗Unified> (s.s.s.s.s.s) (S [])

S [S [S []],S [S [S []]]]

∗Unified> inSet (S [S []]) it

True

∗Unified> powset (S [])

S [S []]

∗Unified> powset it

S [S [],S [S []]]
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∗Unified> augmentSet (S [])

S [S []]

∗Unified> augmentSet it

S [S [],S [S []]]

8 Deriving an Instance with Fast Bitstring Operations

We will now benefit from our shared axiomatization by designing an instance
that takes advantage of bit operations, to implement, through a few overrides,
fast versions of our arithmetic and set functions. For syntactic convenience, we
will map this instance directly to Haskell’s arbitrary length Integer type, to
benefit in GHC from the performance of the underlying C-based GMP package.
First some arithmetic operations (making use of Haskell’s Data.Bits library):

instance Polymath Integer where

e = 0

o_ x = testBit x 0

o x = succ (shiftL x 1)

i = succ . o

r x | x>0 = shiftR (pred x) 1

s = succ

p n | n>0 = pred n

u = 1

u_ = (== 1)

instance PolyOrd Integer where

polySubtract x y = abs (x-y)

lt = (<)
polyCompare=compare

instance PolyCalc Integer where

polyMultiply = (∗)
half x = shiftR x 1

double x = shiftL x 1

Next, some set operations:

instance PolySet Integer where

setUnion = (. |.)
setIntersection = (.&.)

setDifference x y = x .&. (complement y)

inSet x xs = testBit xs (fromIntegral x)

powset 0 = 1

powset x = xorL (powset (pred x)) where

xorL n = n ‘xor‘ (shiftL n 1)
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It is tempting to test for correctness, by computing with the “implementation”
provided by the type Integer and then reverting to the set view:

∗Unified> as_nat_set [1,3,4]

26

∗Unified> powset it

84215045

∗Unified> map as_set_nat (as_set_nat it)

[[],[1],[3],[1,3],[4],[1,4],[3,4],[1,3,4]]

It all adds up, but as we do not have a proof yet, we leave it as an open problem
to show that the xor based instance of powset in Integer does indeed implement
the powerset operation as specified in section 7.

Finally, we can observe that the von Neumann ordinal construction (used to
introduce natural numbers in set theory) defines a fast growing injective function
from N → N :

∗Unified> map nthOrdinal [0..4]

[0,1,3,11,2059]

∗Unified> as_set_nat 2059

[0,1,3,11]

In contrast, our “shared axiomatization” defines ordinals through a trivial bijec-
tion: the identity function.

Note, as a more practical outcome, that one can now use arbitrary length
integers as an efficient representation of hereditarily finite sets. Conversely, a
computation like

∗Unified> s (S [S [S [S [S [S [S [S [S [S []]]]]]]]]])

S [S [],S [S [S [S [S [S [S [S [S []]]]]]]]]]

computing easily the successor of a tower of exponents of 2, in terms of hereditar-
ily finite sets, would overflow any computer’s memory when using a conventional
integer representation.

9 Related Work

The techniques described in this paper originate in the data transformation
framework described in [5,4,6]. The main new contribution is that while our
previous work can be seen as “an existence proof” that, for instance, arithmetic
computations can be performed with symbolic objects like hereditarily finite sets,
here we show it constructively. Moreover, we lift our conceptual framework to a
polymorphic axiomatization which turns out to have as interpretations (instances
in Haskell parlance) natural numbers, bitstacks and hereditarily finite sets.

Natural number encodings of hereditarily finite sets have triggered the interest
of researchers in fields like Axiomatic Set Theory and Foundations of Logic [1,7].
A number of papers of J. Vuillemin develop similar techniques aiming to unify
various data types, with focus on theories of boolean functions and arithmetic [8].
Binary number-based axiomatizations of natural number arithmetic are likely
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to be folklore, but having access to the the underlying theory of the calculus
of constructions [9] and the inductive proofs of their equivalence with Peano
arithmetic in the libraries of the Coq [10] proof assistant has been particularly
enlightening to the author. On the other hand we have not found in the literature
any axiomatizations in terms of hereditarily finite sets, as derived in this paper.
Future work is planned in proving with Coq the equivalence of operations in
Peano arithmetic with their counterparts in the set theoretic interpretation of
our type classes.

10 Conclusion

In the form of a literate Haskell program, we have built “shared axiomatizations”
of finite arithmetic and hereditarily finite sets using successive refinements of
type classes.

We have derived some unusual algorithms, for instance, by expressing arith-
metic computations symbolically, in terms of hereditarily finite sets. We have also
provided a well-ordering for hereditarily finite sets that maps them to ordinals
directly, without using the von Neumann construction.

This has been made possible by extending the techniques introduced in [5,4,6]
that allow observing the internal working of intricate mathematical concepts
through isomorphisms transporting operations between fundamental data types.
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Abstract. The ancient Greeks gave (western) civilization quite a few
gifts, but we should beware of Greeks bearing gifts. The gifts of theatre
and democracy were definitely good ones, and perhaps even the gift of
philosophy, but the “gift” of the so-called “axiomatic method” and the
notion of “rigorous” proof did much more harm than good. If we want
to maximize Mathematical Knowledge, and its Management, we have to
return to Euclid this dubious gift, and give-up our fanatical insistence
on perfect rigor. Of course, we should not go to the other extreme, of
demanding that everything should be non-rigorous. We should encourage
diversity of proof-styles and rigor levels, and remember that nothing is
absolutely sure in this world, and there does not exist an absolutely
rigorous proof, nor absolute certainty, and “truth” has many shades and
levels.
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Abstract. One of the most annoying aspects in the formalization of
mathematics is the need of transforming notions to match a given, ex-
isting result. This kind of transformations, often based on a conspicuous
background knowledge in the given scientific domain (mostly expressed in
the form of equalities or isomorphisms), are usually implicit in the math-
ematical discourse, and it would be highly desirable to obtain a similar
behaviour in interactive provers. The paper describes the superposition-
based implementation of this feature inside the Matita interactive the-
orem prover, focusing in particular on the so called smart application
tactic, supporting smart matching between a goal and a given result.

1 Introduction

The mathematical language has a deep contextual nature, whose interpretation
often presupposes not trivial skills in the given mathematical discipline. The
most common and typical example of these “logical abuses” is the implicit use
of equalities and isomorphisms, allowing a mathematician to freely move between
different incarnations of a same entity in a completely implicit way. Equipping
ITP systems with the capability of reasoning up to equality yields an essential
improvement of their intelligence, making the communication between the user
and the machine sensibly easier.

Techniques for equational reasoning have been broadly investigated in the
realm of automated theorem proving (see eg [7,22,10]). The main deductive
mechanism is a completion technique [17] attempting to transform a given set of
equations into a confluent rewriting system so that two terms are equal if and
only if they have identical normal forms. Not every equational theory can be
presented as a confluent rewriting system, but one can progressively approximate
it by means of a refutationally complete method called ordered completion. The
deductive inference rule used in completion procedures is called superposition:
it consists of first unifying one side of one equation with a subterm of another,
and hence rewriting it with the other side. The selection of the two terms to
be unified is guided by a suitable term ordering, constraining inferences and
sensibly pruning the search space.

Although we are not aware of any work explicitly focused on superposi-
tion techniques for interactive provers, the integration between fully automatic

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 263–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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provers (usually covering paramodulation) and interactive ones is a major re-
search challenge and many efforts have been already done in this direction: for
instance, KIV has been integrated with the tableau prover 3T AP [1]; HOL has
been integrated with various first order provers, such as Gandalf [15] and Metis;
Coq has been integrated with Bliksem [8]; Isabelle was first integrated with a
purpose-built prover [23] and more recently with Vampire [20]. The problems of
these integrations are usually of two kinds: (a) there is a technical difficulty in the
forward and backward translation of the information between systems, due to
the different underlying logics (ITP systems are usually higher-order, and some
of them intuitionistic); (b) there is a pragmatical problem in the management
of the knowledge base to be used by the automatic solver, since it can be huge
(so we cannot pass it at every invocation), and it grows dynamically (hence, it
cannot be exported in advance).

A good point of the superposition calculus (and not the last reason for re-
stricting the attention to this important fragment) is that point (a), in this
context, becomes relatively trivial (and the translation particularly effective).
As for point (b), its main consequence is that the communication between the
Interactive Prover and the Problem Solver, in order to be efficient, cannot be
stateless: the two systems must share a common knowledge base. This fact,
joined with the freedom to adapt the superposition tool to any possible specific
requirement of the Matita system convinced us to rewrite our own solver, instead
of trying to interface Matita with some available tool. This paper discusses our
experience of implementation of a (first order) superposition calculus (Section
2), its integration within the (higher-order) Matita interactive prover [5] (Sec-
tion 3), and in particular its use for the implementation of a smart application
tactic, supporting smart matching between a goal and a given results (Section
4). We shall conclude with a large number of examples of concrete use of this
tactic.

2 The Matita Superposition Tool

One of the components of the automation support provided by the Matita inter-
active theorem prover is a first order, untyped superposition tool. This is a quite
small and compact application (little more than 3000 lines of OCaml code), well
separated by the rest of the system. It was entirely rewritten during the sum-
mer 2009 starting from a previous prototype (some of whose functionalities had
been outlined in [6]), with the aim to improve both its abstraction and perfor-
mance. The tool took part to the 22nd CADE ATP System Competition, in the
unit equality division, scoring in fourth position, beating glorious systems such
as Otter or Metis [16], and being awarded as the best new entrant tool of the
competion [28].

In the rest of this section we shall give an outline, as concise as possible, of the
theory and the architecture of the tool. This is important in order to understand
its integration with the interactive prover.
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2.1 The Superposition Calculus in a Nutshell

Let F bet a countable alphabet of functional symbols, and V a countable alpha-
bet of variables. We denote with T (F ,V) the set of terms over F with variables
in V . A term t ∈ T (F ,V) is either a 0-arity element of F (constant), an element
of V (variable), or an expression of the form f(t1, . . . , tn) where f is a element
of F of arity n and t1, . . . , tn are terms.

Let s and r be two terms. s|p denotes the subterm of s at position p and s[r]p
denotes the term s where the subterm at position p has been replaced by r.

A substitution is a mapping from variables to terms. Two terms s and t are
unifiable if there exists a substitution σ such that sσ = tσ. In the previous case,
σ is called a most general unifier (mgu) of s and t if for all substitution θ such
that sθ = tθ, there exists a substitution τ which satisfies θ = τ ◦ σ.

A literal is either an abstract predicate (represented by a term), or an equality
between two terms. A clause Γ 5 Δ is a pair of multisets of literals: the negative
literals Γ , and the positive ones Δ. If Γ = ∅ (resp. Δ = ∅), the clause is said to
be positive (resp. negative).

A Horn clause is a clause with at most one positive literal. A unit clause is
a clause composed of a single literal. A unit equality is a unit clause where the
literal is an equality.

A strict ordering ≺ over T (F ,V) is a transitive and irreflexive (possibly par-
tial) binary relation. An ordering is stable under substitution if s ≺ t implies
sσ ≺ tσ for all terms t, s and substitutions σ. A well founded monotonic or-
dering stable under substitution is called reduction ordering (see [11]). The
intuition behind the use of reduction orderings for limiting the combinatorial
explosion of new equations during inference, is to only rewrite big terms to
smaller ones.

superposition left superposition right equality resolution

� l = r t1 = t2 �
(t1[r]p = t2 �)σ

� l = r � t1 = t2
(t1[r]p = t2 �)σ

t1 = t2 �
�

if σ = mgu(l, t1|p), t1|p �= x, lσ � rσ and t1σ � t2σ if ∃σ = mgu(t1, t2).

Fig. 1. Inference rules

For efficiency reasons, the calculus must be integrated with a few additional
optimization rules, the most important one being demodulation ([29]).

2.2 The Main Algorithm

A naive implementation of the superposition calculus could just combine (su-
perpose) all known clauses in all (admitted) ways, and repeat that process un-
til the desired clause (called goal) is resolved. To avoid useless duplication of
work, it is convenient to keep clauses in two distinct sets, traditionally called
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subsumption tautology elimination demodulation

S ∪ {C, D}
S ∪ {C}

S ∪ {� t = t}
S

S ∪ {� l = r, C}
S ∪ {� l = r, C[rσ]p}

if ∃σ, Dσ ≡ C if lσ ≡ C|p and lσ � rσ

Fig. 2. Simplification rules

active and passive, with the general invariant that clauses in the active set
have been already composed together in all possible ways. At every step, some
clauses are selected from the passive set and added to the active set, then su-
perposed with the active set, and consequently with themselves (inference). Fi-
nally, the newly generated clauses are added to the passive set (possibly after a
simplification).

A natural selection strategy, resulting in a very predictable behaviour, would
consist in selecting the whole passive set at each iteration, in the spirit of a
breadth first search. Unfortunately the number of new equations generated at
each step grows extremely fast, in practice preventing the iteratation of the main
loop more than a few times.

To avoid this problem, all modern theorem provers (see e.g. [24]) adopt the
opposite solution. According to some heuristics, like size and goal similarity for
example, they select only one passive clause at each step. Not to loose complete-
ness, some fairness conditions are taken into account (i.e. every passive clause
will be eventually selected). This approach falls under the name given-clause
(Figure 3), and its main advantage is that the passive set grows much slower,
allowing a more focused and deeper inspection of the search space that conse-
quently allows to find proofs that require a much higher number of main loop
iterations.

The main drawback of this approach is that it makes the procedure way
more sensible to the selection heuristics, leading to an essentially unpredictable
behaviour.

Fig. 3. Given-clause loop Numbers in parentheses reflect the steps order
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2.3 Performance Issues

In order to obtain a state-of-the-art tool able to compete with the best avail-
able systems one has eventually to take into account a lot of optimizations and
techniques developed for this purpose during the last thirty years.

In the following we shall shortly describe the most critical areas, and, for each
of them, the approach adopted in Matita.

Orderings used to orientate rewriting rules. On complex problems
(e.g. problems in the TPTP library with rating greater then 0.30) the choice
of a good ordering for inference rules is of critical importance. We have im-
plemented several orderings, comprising standard Knuth-Bendix (KBO), non
recursive Knuth-Bendix (NRKBO), lexicographic path ordering (LPO) and re-
cursive path ordering (RPO). The best suited ordering heavily depends on the
kind of problem, and is hard to predict: our approach for the CADE ATP
System Competition was to run in parallel different processes with different
orderings.

On simpler problems (of the kind required for the smart application tactic
of section 5), the given-clause algorithm is less sensitive to the term-ordering,
and we may indifferently choose our preferred strategy, opportunely tuning the
library (we are currently relying on LPO).

Selection strategy. The selection strategy currently implemented by Matita is
a based on combination of age and weight. The weight is a positive integer that
provides an estimation of the “complexity” of the clause, and is tightly related
to the number of occurrences of symbols in it.

Since we are not interested in generating (counter) models of false statements,
we renounced to be complete, and we silently drop inferred clauses that would
slow down the main loop too much due to their excessive size.

Another similar optimization we did not implement but we could consider as
a future development is Limited Resource Strategy [25], which basically allows
the procedure to skip some inference steps if the resulting clauses are unlikely
to be processed, mainly because of a lack of time.

Data structures and code optimization. We adopted relatively simple data
structures (like discrimination [18] trees for term indexing), and a purely func-
tional (in the sense of functional programming) implementation of them. Af-
ter some code optimisation, we reached a point where very fast functions are
the most expensive, because of the number of calls (implied by the number of
clauses), even if they operate on simple data structures.

Since we are quite satisfied with the actual performance, we did not invest
resources in adopting better data structures, but we believe that further opti-
mizations will probably require implementing more elaborate data structures,
such as substitution [14] or context trees [13], or even adopt an indexing tech-
nique that works modulo associativity and commutativity [12], that looks very
promising when working on algebraic structures.



268 A. Asperti and E. Tassi

Demodulation. Another important issue for performance is demodulation: the
given clause algorithm spends most of its time (up to 80%) in simplification,
hence any improvement in this part of the code has a deep impact on perfor-
mance. However, while reduction strategies, sharing issues and abstract machines
have been extensively investigated for lambda calculus (and in general for left
linear systems) less is known for general first order rewriting systems. In particu-
lar, while an innermost (eager) reduction strategy seem to work generally better
than an outermost one (especially when combined with lexicographic path or-
dering), one could easily create examples showing an opposite behaviour (even
supposing to always reduce needed redexes).

3 Integrating Superposition with Matita

3.1 Library Management

A possible approach to the integration of superposition with Matita is to solve
all goals assuming that all equations part of the library lie in the passive set,
augmented on the fly with the equations in the local context of the ongoing
proof.

The big drawback of this approach is that, starting essentially from the same
set of passive equations at each invocation on a different goal (differing only
for the local context), the given clause algorithm would mostly repeat the same
selection and composition operations over and over again. It is clear that, if we
wish to superpose library equations, this operation should not be done at run
time but in background, once and for all. Then we have to face a dual problem,
namely to understand when stopping the saturation of the library with new
equations, preventing an annoying pollution with trivial results that could have
very nasty effects for selection and memory occupation. We would eventually
like to have mechanisms to drive the saturation process.

A natural compromise is to look at library equations not as a passive set, but
as the active one. This means that every time a new (unit) equation is added
to the library it also goes through one main given-clause loop, as if it was the
newly selected passive equation: it is simplified, composed with all existing active
equations (i.e. all other equations in the library, up to simplification), and the
newly created equations are added to the passive list. At run time, we shall then
strongly privilege selection of local equations or goals.

This way, we have a natural, simple but traceable syntax to drive the satura-
tion process, by just listing in library the selected equations. As a side effect, this
approach reduces the verbosity of the library by making it unnecessary to declare
(and name explicitly) trivial variants of available results that are automatically
generated by superposition.

3.2 Interfacing CIC and the Superposition Engine

Our superposition tool is first order and untyped, while the Matita interactive
prover is based on a variant of the Calculus of Inductive Construction (CIC),
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a complex higher-order intuitionistic logical systems with dependent types. The
communication between the two components is hence far from trivial.

Instead of attempting a complex, faithful encoding of CIC in first order logic
(that is essentially the approach adopted for HOL in [19]) we choose to follow a
more naif approach, based on a forgetful translation that remove types and just
keeps the first order applicative skeleton of CIC-terms.

In the opposite direction, we try to reconstruct the missing information by just
exploiting the sophisticated inference capability of the Matita refiner [3], that is
the tool in charge of transforming the user input into a machine understandable
low-level CIC term.

Automation is thus a best effort service, in the sense that not only it may
obviously fail to produce a proof, but sometimes it could produce an argument
that Matita will fail to understand, independently from the fact if the delivered
proof was “correct” or less.

The choice to deal with untyped first order equations in the superposition tool
was mostly done for simplicity and modularity reasons. Moving towards a typed
setting would require a much tighter integration between the superposition tool
and the whole system, due to the complexity of typing and unification, but does
not seem to pose any major theoretical problem.

The forgetful encoding. Equations r =T s of the calculus of constructions are
translated to first order equations by merely following the applicative structure
of r and s, and translating any other subterm into an opaque constant. The type
T of the equation is recorded, but we are not supposed to be able to compute
types for subterms.

In spite of the fact of neglecting types, the risk of producing “ill-typed” terms
via superposition rules is moderate. Consider for instance the superposition left
rule (the reasoning is similar for the other rules)

5 l = r t1 = t2 5
(t1[r]p = t2 5)σ

where σ = mgu(l, t1|p) and lσ �& rσ. The risk is that t1|p has a different type
from l, resulting into an illegal rewriting step. Note however that l and r are
usually rigid terms, whose type is uniquely determined by the outermost symbol.
Moreover, t1|p cannot be a variable, hence they must share this outermost sym-
bol. If l is not rigid, it is usually a variable x and if x ∈ r (like e.g. in x = x + 0)
we have (in most orderings) l & r that again rules out rewriting in the wrong
direction.

This leads us to the following notion of admissibility. We say that an applica-
tive term f(x1, . . . , xn) is implicitly typed if its type is uniquely determined by
the type of f . We say that an equation l = r is admissible if both l and r are
implicitly typed, or l & r and r is implicitly typed. Non admissible equations
are not taken into account by the superposition tool1.
1 A more liberal, but also slightly more expensive solution consists in indexing any

equation and systematically try to read back each result of a superposition step in
CIC, dropping it if it is not understood by the refiner.
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In practice, most unit equalities are admissible. A typical counter example is
an equation of the kind ∀x, y : unit.x = y, where unit is a singleton type.

On the other side, non-unit equalities are often not admissible. For instance,
a clause of the kind x∧y = true 5 x = true could be used to rewrite any term to
true, generating meaningless, ill typed clauses. Extending superposition beyond
the unit equality case does eventually require to take types into consideration.

3.3 (Re)construction of the Proof Term

Translating a first-order resolution proof into a higher-order logic natural deduc-
tion proof is a notoriously difficult issue, even more delicate in case of intuitionis-
tic systems, as the one supported by Matita. While resolution per se is a perfectly
constructive process, skolemization and transformation into conjunctive normal
forms are based on classical principles.

Our choice of focusing on the superposition calculus was also motivated by the
fact it poses less difficulties, since skolemization is not needed and thus proofs
have a rather simple intuitionistic interpretation.

Our technique for reconstructing a proof term relies as much as possible on
the refinement capabilities of Matita, in particular for inferring implicit types.
In the superposition module, each proof step is encoded as a tuple

Step of rule * int * int * direction * position * substitution

where rule is the kind of rule which has been applied, the two integers are the two
id′s of the composing equations (referring to a “bag” of unit clauses), direction
is the direction the second equation is applied to the first one, position is a path
inside the rewritten term and finally substitution is the mgu required for the
rewriting step.

Every superposition step is encoded by one of the following terms:

eq ind l : ∀A : Type.∀x : A.∀P : A → Prop.P x → ∀y : A.x = y → P y
eq ind r : ∀A : Type.∀x : A.∀P : A → Prop.P x → ∀y : A.y = x → P y

where left ( l ) and right ( r) must be understood w.r.t. backward application,
and where P is the one hole context that represents the position in which the
superposition occurred.

At the end of the superposition procedure, if a proof is found, either a trivial
goal has been generated, or a fact subsumes one of the active goals. In that
latter case, we perform a rewriting step on the subsumed goal, so that we fall
back into the previous case. Thus, when the procedure successfully stops, the
selected clause is of the form s = t where s and t are unifiable. We call it
the meeting point, because forward steps (superposition right) and backward
steps (superposition left) meet together when this trivial clause is generated,
to compose the resulting proof. To generate a CIC proof term, the clauses are
topologically sorted, their free variables are explicitly quantified, and nested let-
in patterns are used to build the proof.

The most delicate point of the translation is closing each clause w.r.t. its free
variables, since we should infer a type for them, and since CIC is an explicitly
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polymorphic language it is often the case that the order of abstractions does
matter (e.g. variables standing for types must in general be abstracted before
polymorphic variables).

The simplest solution is to generate so called “implicit” arguments leaving to
the Matita refiner the burden of guessing them.

For instance, superposing lencat : len A x + len A y = len A (x@y) with
catA : x@(y@z) ←= (x@y)@z at the underlined position and in the given direction
gives rise to the following piece of code, where question marks stand for implicit
arguments:
� �

let clause 59 :
∀w :?.∀x :?.∀y :?.∀z :?.

len w (x@y) + len w z = len w (x@(y@z))
:=

λw :?.λz :?.λx :?.λy :?.
eq ind r (List w) ((x@y)@z))

(λhole : List w.len w (x@y) + len w z = len w hole)
(lencat w (x@y) z) (x@(y@z)) (catA w x y z) in

� �

Note that w must be abstracted first, since it occurs in the (to be inferred)
types for x, y and z. Also note the one hole context expressed as an anonymous
function whose abstracted variable is named hole, corresponding to the position
of x@y in the statement of lencat.

The interesting point is that refining is a complex operation, using e.g. hints,
and possibly calling back the automation itself: the interpretation of the proof
becomes hence a dialog between the system and its automation components,
aimed to figure out a correct interpretation out of a rough initial trace.

A more sophisticated translation, aimed to produce a really nice, human-
readable output in the form of a chain of equations, is described in [6].

4 Smart Application

The most interesting application of superposition (apart from its use for solving
equational goals) is the implementation of a more flexible application tactic. As
a matter of fact, one of the most annoying aspects of formal development is
the need of transforming notions to match a given, existing result. As explained
in the introduction, most of these transformations are completely transparent
to the typical mathematical discourse, and we would like to obtain a similar
behaviour in interactive provers.

Given a goal B and a theorem t: A → B, the goal is to try to match B
with B up to the available equational knowledge base, in order to apply t. We
call it, the smart application of t to G. We use superposition in the most direct
way, exploiting on one side the higher-order features of CIC, and on the other
the fact that the translation to first order terms does not make any difference
between predicates and functions: we simply generate a goal B = B and pass
it to the superposition tool (actually, it was precisely this kind of operation
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A    B
≅B

Fig. 4. Smart application

that motivated our original interest in superposition). If a proof is found, B is
transformed into B by rewriting and t is then normally applied.

Superposition, addressing a typically undecidable problem, can easily diverge,
while we would like to have a reasonably fast answer to the smart application
invocation, as for any other tactic of the system. We could simply add a timeout,
but we prefer to take a different, more predictable approach. As we already said,
the overall idea is that superposition right steps - realising the saturation of the
equational theory - should be thought of as background operations. Hence, at run
time, we should conceptually work as if we had a confluent rewriting system, and
the only operation worth to do is narrowing (that is, left superposition steps).
Narrowing too can be undecidable, hence we fix a given number of narrowing
operations to apply to each goal (where the new goal instances generated at
each step are treated in parallel). The number of narrowing steps can be fixed
by the user, but a really small number is usually enough to solve the problem if
a solution exists.

5 Examples

Example 1. Suppose we wish to prove that the successor function is le-reflecting,
namely

(∗) ∀n, m.Sn ≤ Sm→ n ≤ m

Suppose we already proved that the predecessor function is monotonic:

monotonic pred : ∀n, m.n ≤ m → pred n ≤ pred m

We would like to merely “apply” the latter to prove the former. Just relying on
unification, this would not be possible, since there is no way to match pred X ≤
pred Y versus n ≤ m unless narrowing the former. By superposing twice with
the equation ∀n.pred(Sn) = n we immediately solve our matching problem
via the substitution {X := Sn, Y := Sm}. Hence, the smart application of
monotonic pred to the goal n ≤ m succeeds, opening the new goal Sn ≤ Sm
that is the assumption in (∗).

Example 2. Suppose we wish to prove n ≤ m ∗ n for all natural numbers n, m.
Suppose we already proved that multiplication is left-monotonic, namely

monotonic le times l : ∀n, a, b.a ≤ b → a ∗ n ≤ b ∗ n

In order to apply this result, the system has to find a suitable ?a such that
?a ∗ n = n, that is easily provided by the identity law for times.



Smart Matching 273

Example 3. In many cases, we just have local equational variants of the needed
results. Suppose for instance we proved that multiplication in le-reflecting in its
right parameter:

le times to le times r : ∀a, n, m.a ∗ n ≤ a ∗m → n ≤ m

Since times is commutative, this also trivially implies the left version:

monotonic le times l : ∀a, n, m.n ∗ a ≤ m ∗ a → n ≤ m

Formally, suppose to have the goal n ≤ m under the assumption (H) n∗a ≤ m∗a.
By applying le times to le times r we obtain a new goal ?a ∗ n ≤?a ∗m that is
a smart variant of H .

Example 4. Suppose we wish to prove that (H) a ∗ (Sn) ≤ a ∗ (Sm) implies
a∗n ≤ a∗m, where S is the successor function (this is a subcase in the inductive
proof that the product by a positive constant a is le-reflecting). Suppose we
already proved that the sum is le-reflecting in its second argument:

le plus to le plus r : ∀a, n, m.a + n ≤ a + m → n ≤ m

By applying this result we obtain the new goal ?a + a ∗ n ≤?a + a ∗m, and if
we have the expected equations for times, we can close the proof by a smart
application of H .

Example 5. Consider the goal n < 2 ∗m under the assumptions (H) 0 < m and
(H1) n ≤ m. Suppose that we defined x < y as x + 1 ≤ y. Morevoer, by the
defining equation of times we should know something like 2 ∗m = m+(m+0).2

Hence the goal is equal to n + 1 ≤ m + (m + 0), and the idea is to use again the
monotonicity of plus (in both arguments):

le plus n m : ∀a, b.n ≤ m → a ≤ b→ n + a ≤ m + b

The smart application of this term to the goal n < 2 ∗m succeeds, generating
the two subgoals n ≤ m and 1 ≤ m + 0. The former one is the assumption H1,
while the latter is a smart variant of H .

Example 6. Let us make an example inspired by the theory of programming
languages. Suppose to have a typing relation Γ 5 M : N stating that in the
environment Γ the term M has type N . If we work in De Bruijn notation, the
weakening rule requires lifting3

weak : Γ 5 M : N → Γ, A 5↑1(M) : ↑1(N)

Suppose now we have an axiom stating that 5 ∗ : � where ∗ and � are two given
sorts. We would like to generalize the previous result to an arbitrary (legal) con-
text Γ . To prove this, we have just to apply weakenings (reasoning by induction
2 The precise shape depends by the specific equations available on times.
3 The lifting operation ↑n (M) is meant to relocate the term M under n additional

levels of bindings: in other words, it increases by n all free variables in M .
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on Γ ). However, the normal application of weak would fail, since the system
should be able to guess two terms M and N such ↑1(M) = ∗ and ↑1(N) = �.
If we know that for any constant c, ↑1 (c) = c (that comes from the defini-
tion of lifting) we may use such an equation to enable the smart application of
weak.

Performance. In Figure 5 we give the execution times for the examples of smart
applications discussed in the previous section (in bytecode). Considering these
times, it is important to stress again that the smart application tactics does not
take any hint about the equations it is supposed to use to solve the matching
problem, but exploits all the equations available in the (imported sections of
the) library.

The important point is that smart application is fast enough to not disturb
the interactive dialog with the proof assistant, while providing a much higher
degree of flexibility than the traditional application.

example applied term execution time
1 momonotonic pred 0.16s.

2 momonotonic le times l 0.23s.

3 H : a ∗ n ≤ a ∗ m 0.22s.

4 H : a ∗ (Sn) ≤ a ∗ (Sm) 0.15s.

5 le plus n m 0.57s.

6 weak 0.15s.

Fig. 5. Smart application execution times

6 Related Works and Systems

Matita was essentially conceived as a light version of Coq [9], sharing the same
foundational logic (the Calculus of Inductive Constructions) and being partially
compatible with it (see [4] for a discussion of the main differences between the
two systems at kernel level). Hence, Coq is also the most natural touchstone
for our work. The auto tactic of Coq does not perform rewriting; this is only
done by a couple of specialized tactics, called auto rewrite and congruence.
The first tactic carries out rewritings according to sets of oriented equational
rules explicitly passed as arguments to the tactic (and previously build by the
user with suitable vernacular commands). Each rewriting rule in some base is
applied to the goal until no further reduction is possible. The tactic does not
perform narrowing, nor any form of completion. The congruence tactic imple-
ments the standard Nelson and Oppen congruence closure algorithm [21], which
is a decision procedure for ground equalities with uninterpreted symbols; the
Coq tactic only deals with equalities in the local context. Both Coq tactics are
sensibly weaker than superposition that seems to provide a good surrogate for
several decision procedures for various theories, as well as a simple framework
for composing them (see e.g [2]).
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Comparing the integration of superposition in Matita with similar function-
alities provided by Isabelle is twofold complex, due not only to the different
approaches, but also to the different underlying logics.

In Isabelle, equational reasoning can be both delegated to external tools or
dealt with internally by the so called simplifier. Some of the the external tools
Isabelle is interfaced with provide full support to paramodulation (and hence
superposition), but the integration with them is stateless, possibly requiring
to pass hundreads of theorems (all the current visible environment) at each
invocation. In Matita, the active set is persistent, and grows as the user proves
new equations.

Of more interest is the comparison with Isabelle’s internal simplifier. The
integration of this tool with the library is manual: only lemmas explicitly labelled
and oriented by the user are taken into account by the simplifier. Moreover,
these lemmas are only used to demodulate and are not combined together to
infer new rewriting rules. Nevertheless, a pre-processing phase allows the user
to label theorems whose shape is not an equation. For example a conjunction
of two equations is interpreted as two distinct rewriting rules, or a negative
statement ¬A is understood as A = False. The simplifier is also able to take
into account guarded equations as long as their premises can be solved by the
simplifier itself. Finally it detects equations that cannot be oriented by the user,
like commutativity, and restricts their application according to the demodulation
rule using a predefined lexicographic order.

Anyway, the main difference from the user’s perspective comes from a deep
reason that has little to do with the simplifier or any other implemented machin-
ery. Since Isabelle is based on classical logic, co-implication can be expressed as
an equality. Hence, in Isabelle we can prove much more equations at the prosi-
tional level and use them for rewriting. Any concrete comparison between the
two provers with respect to equational reasoning is thus inherently biased, since
many problems encountered in one system would look meaningless, artificial or
trivial when transposed into the other one.

7 Conclusions

We described in this paper the “smart” application tactic of the Matita interac-
tive theorem prover. The tactics allow the backward application of a theorem to
a goal, where matching is done up to the data base of all equations available in
the library. The implementation of the tactics relies on a compact superposition
tool, whose architecture and integration within Matita have been described in the
first sections. The tool is already performant (it was awarded best new entrant
tool at the 22nd CADE ATP System Competition) but many improvements can
still be done for efficiency, such as the implementation of more sophisticated data
structures for indexes (we currently use discrimination trees).

Another interesting research direction is to extend the management of equality
to setoid rewriting [27]. Indeed, the current version of the superposition tool
just works with an intensional equality, and it would be interesting to try to
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figure out how to handle more general binary relations. The hard problem is
proof reconstruction, but again it seems possible to exploit the sophisticated
capabilities of the Matita refiner [3] to automatically check the legality of the
rewriting operation (i.e. the monotonicity of the context inside which rewriting
has to be performed), exploiting some of the ideas outlined in [26].

One of the most promising uses of smart application is inside the backward-
based automation tactic of Matita. In fact, smart application allows a smooth
integration of equational reasoning with the prolog-like backward applicative
mechanisms that, according to our first experimentations looks extremely promis-
ing. As a matter of fact, the weakest point of smart application is that it does not
relieve the user form the effort of finding the “right” theorems in the library or
of guessing/remembering their names (although it allows to sensibly reduce the
need of variants of a given statement in the repository). A suitably constrained
automation tactic could entirely replace the user in the quest of candidates for
the smart application tactic. Since searching is a relatively expensive operation,
the idea is to ask the automation tactic to return an explicit trace of the resulting
proof (essentially, a sequence of smart applications) to speed-up its re-execution
during script development.

Acknowledgements. We would like to thank Alberto Griggio and Maxime
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Abstract. Electronic Geometry Textbook is a knowledge management
system that manages geometric textbook knowledge to enable users to
construct and share dynamic geometry textbooks interactively and ef-
ficiently. Based on a knowledge base organizing and storing the knowl-
edge represented in specific languages, the system implements interfaces
for maintaining the data representing that knowledge as well as rela-
tions among those data, for automatically generating readable documents
for viewing or printing, and for automatically discovering the relations
among knowledge data. An interface has been developed for users to
create geometry textbooks with automatic checking, in real time, of the
consistency of the structure of each resulting textbook. By integrating
an external geometric theorem prover and an external dynamic geometry
software package, the system offers the facilities for automatically prov-
ing theorems and generating dynamic figures in the created textbooks.
This paper provides a comprehensive account of the current version of
Electronic Geometry Textbook.

1 Introduction

1.1 Motivation

When we speak about managing knowledge, we may start by thinking about
textbooks, where knowledge is organized systematically and presented hierar-
chically according to its internal logical relations. Since textbooks provide a
well-arranged structure of domain knowledge, they play an important role in
education and research; they record knowledge and impart it to new learners.
The Electronic Geometry Textbook (EGT) is a knowledge management system
for geometric knowledge, built so that users may construct and publish dynamic
geometry textbooks interactively and efficiently. The objective of our textbook
project is to explore the approaches to managing knowledge by integrating avail-
able software tools and providing a system that assists human authors to create
dynamic, interactive, and machine-processable textbooks (instead of the tradi-
tional static textbooks). EGT is motivated by the following three considerations:

(1) Textbooks are a standard form for the storage, organization, and presen-
tation of systematic domain knowledge. For different pedagogical purposes, the
same knowledge may be adopted by different textbooks as a part of the theo-
ries involved. In order to share and reuse sophisticated knowledge, we need to

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 278–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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build up a standard knowledge base that stores and organizes data describing
the textbook knowledge. Authors can contribute knowledge (as data encoded in
some knowledge representation format) to the knowledge base and construct
textbooks by reusing pieces of knowledge already in the knowledge base as
constituents in a new textbook.

EGT offers such an environment that maintains (i.e., creates, removes, modi-
fies, and queries, etc.) and shares knowledge data with an appropriate granular-
ity, constructs textbooks by interactively arranging the knowledge data
selected and retrieved from the knowledge base, and automatically generates
styled documents for browsing and printing the textbooks produced.

(2) When creating a textbook for learners, one needs to determine an appro-
priate narrative structure so as to arrange the contents involved in the textbook.
Although one can make one’s own decision as to what knowledge is to be chosen,
there are common practices and implicit conventions in a scientific community as
to how knowledge should be organized, formulated, and presented. For example,
it is commonly accepted that a proved proposition is a lemma only if it is used
in the proof of a theorem and a corollary is a true proposition that follows from
a theorem. The domain knowledge presented in a textbook should be structured
systematically, hierarchically, and logically, i.e., from the simplest to the most
complicated and from the basic to the advanced. For example, the definition for
each concept in a statement (such as a theorem, exercise, or example statement)
should have been given before the statement. In order to produce such a sound
and usable textbook, we need to be given feedback if the narrative structure
disobeys the conventional rules during the process of construction.

EGT offers such a facility that assists a user to automatically check, in real
time, whether the constructed textbook has a satisfiable and reasonable narrative
structure.

(3) In recent years, many creative methods have been proposed for automated
geometry theorem proving, such as algebraic approaches (the most powerful,
although just decision methods) which convert the problem of geometrical rea-
soning to that of solving algebraic systems, coordinate-free approaches which
convert the problem to the counterpart of algebraic calculation with respect to
some geometric quantities, and traditional AI approaches. [6] Many geometry
software tools have implemented these approaches and provided the functional-
ity of automated reasoning, such as GEOTHER [12], Geometry Expert [10], and
GCLC [8], and of interactive proving, such as GeoProof [11]. These tools not
only help geometry researchers to discover new and more valuable and complex
theorems, but also support geometry education. Geometry textbooks include
many interesting and complicated theorems whose proofs are given and checked
by the authors. As the traditional formal logical methods do not work very
efficiently in automated geometry deduction, the techniques for automated geo-
metric proof checking have not been well developed. However, it is still helpful
to make use of the automated theorem provers to assist an author to determine
whether a proposition written in a textbook is logically true in order to ensure
the correctness of the textbook.
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In addition, geometry deals with graphical objects abstracted from the real
visual world. Intuitive figures are indispensable constituents of textbooks. With
the help of a computer, one can draw high-resolution and accurate figures in-
teractively by using a mouse and following the instructions provided during the
construction. For instance, after selecting two points and an instruction “make
the mid-point of two points” by using a mouse, the mid-point will be constructed
and displayed in the figure. An even more important enhancement resulting from
this interactive facility is that the steps of constructing a figure can be recorded
and redone quickly. For example, as a result one drags a free point from one
place to another and the figure will be updated immediately. One can explore a
figure and experience what happens when components are moved. This dynamic
feature makes geometry more vivid. Dynamic geometry software has been de-
veloped to implement these features and applied in geometry education and
research, such as Cabri [2], SketchPad [19], Cinderella [7], and GeoGebra [9]. It
is useful to apply dynamic geometry software to make the figures in textbooks
more intuitive and explorable than the traditional static ones.

EGT offers interfaces to knowledge data and to selected external geome-
try software packages for proving theorems and generating dynamic figures
automatically.

1.2 Originality

The idea of designing and developing such an integrated software system in
the form of a textbook for systematic and interactive management of geomet-
ric knowledge originates from Dongming Wang [4] who has been working on
automated geometric reasoning for the last two decades. The author has been
stimulated to elaborate the idea and to undertake the implementation of a sys-
tem himself. We consider geometry a unique and rich subject of mathematics
that should be chosen for study in the context of knowledge management. In
such a study, the full power of computers for symbolic, numeric, and graphical
computing and data processing may be used and our ideas may be effectively
tested.

Several e-learning and intelligent tutoring systems for mathematics have been
proposed and developed, such as LeActiveMath [16], ActiveMath [1], and Math-
Dox [17]. They offer facilities for generating courseware which adapts to stu-
dents, tutoring students interactively with diagnoses of mistakes and adaptive
feedback, analyzing and evaluating students’ abilities, etc. These systems are
learner-centred and support the learner’s initiative. However, EGT is designed
mainly to assist human authors in constructing dynamic textbooks. The process
is mostly author-driven and manipulations of the textbook are allowed and may
lead to new, modified, or improved versions of a textbook. EGT’s innovations
may be seen in the following three aspects:

1. EGT products can be viewed or printed as traditional textbooks (static docu-
ments) and also run as dynamic software on a computer. Textbook knowledge
is shared at an appropriate granularity and textbooks can be constructed and
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maintained interactively. For example, a textbook can be seen as an arrange-
ment of nodes that refer to the corresponding textbook contents. One can
perform a series of manipulations adding, inserting, removing, modifying, and
restructuring the nodes involved, and meanwhile the generated documents for
browsing and printing can be updated automatically;

2. EGT can assist users to analyze the narrative structure of the textbooks con-
structed and automatically find the parts inconsistent with the conventional
rules for writing textbooks, in real time. We call this process consistency-
checking of the structure of the textbook. For example, the definition of a
median of a triangle can be created only if the definition of midpoint of a
segment has already been introduced in the textbook;

3. EGT integrates stand-alone geometry software packages for automated the-
orem proving and dynamic figure generation. This provides the constructed
textbooks with dynamic features. For example, the theorems in the text-
books can be automatically proved by invoking geometric theorem provers,
and the figures are automatically constructed by applying dynamic geometry
software.

This paper describes the relevant design principles of EGT including architec-
tural issues, the structure of the geometric knowledge base, knowledge represen-
tation, and the communication with available geometry software packages. We
present the main features of the current version of EGT including maintaining
geometric knowledge data for constructing textbooks interactively, rendering the
textbooks in readable documents both in English and Chinese, proving the the-
orems and drawing the dynamic figures automatically by interfacing with the
selected geometry software packages. While plane Euclidean geometry is the tar-
get of our current investigation, the ideas also apply to, or invite the attempt to
apply them to, other geometries.

2 Design Principles of Electronic Geometry Textbook

We describe the architecture of the system and present the main design principles
for a geometric textbook knowledge base and the representation of knowledge.
More details about the design methodology have been discussed in [5].

2.1 Architecture and Communication

Now we give a bird’s eye view of how the system works and which compo-
nents carry out which tasks. In what follows, we refer to Fig. 1 which gives
an overview over the EGT components and their communications. The textbook
knowledge base is the kernel component of the system, storing and organizing
the shared knowledge data. Via the user interface, users can construct text-
books by invoking the manipulation module to perform the manipulations of
creating new knowledge data, retrieving needed knowledge data, and modifying
knowledge data on the textbook knowledge base. Meanwhile, the consistency-
checking module will check the consistency of the constructed textbooks in real
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Fig. 1. Architecture of the Electronic Geometry Textbook system

time and provide feedback to the user interface. The textbooks constructed can
be presented in readable documents for rendering in a browser or printing on
paper. The theorems in the constructed textbooks can be proved and dynamic
figures can be drawn automatically by interfacing with external geometry soft-
ware packages.

From the description of the system, we can conclude that the system has as
its foundation a textbook knowledge base. To manipulate knowledge efficiently
and appropriately, one main task is creating a well-structured, manageable, and
suitable knowledge base. On the other hand, to communicate knowledge, for-
malizing and representing knowledge as data in a processable way is the other
main task.

2.2 Design of Geometric Textbook Knowledge Base

Generally speaking, the design of a knowledge base involves the following two
aspects.

Knowledge Data Granularity. While creating a textbook, the author should
identify the objects of domain knowledge, categorize them, and rank them ac-
cording to their relationships. In order to support the manipulations of con-
structing dynamic textbooks interactively, we need to encapsulate knowledge
data at an appropriate granularity. If the granularity is too fine, the process of
constructing textbooks may be too complicated to manage. If the granularity is
not fine enough, the process may be trivial and not subject to manipulation.



EGT: A Geometric Textbook Knowledge Management System 283

We use the notion of a knowledge object to represent the unit of textbook
knowledge which can be recognized, differentiated, understood, and manipu-
lated while constructing textbooks. For example, the definition of a concept is a
knowledge object which gives meaning to the concept; a theorem is a knowledge
object which is a true proposition in the domain; a proof demonstrates that a
proposition is true; an exercise or example needs to be solved by applying some
knowledge. Working from the common or implicit conventions in traditional
textbooks, we classify the knowledge objects into the following types: Concept
(Definition), Axiom, Lemma, Theorem, Corollary, Conjecture, Proof, Problem,
Example, Exercise, Solution, Algorithm, Introduction, and Remark. Although
this classification may be argued over and needs to be justified, what is essential
in our approach is to encapsulate knowledge data into certain knowledge objects
with the same structure. Within different types of knowledge objects, certain
data items are created to store knowledge data for different applications on the
objects. For example, the data stored in a data item naturalRepresentation is
used for presentation, the data stored in algebraicRepresentation is used for au-
tomatic proving by algebraic methods, the data stored in diagramInstruction is
used for automatic dynamic figure drawing, etc. One may refer to [3] for the
details of the design of the structure within each type of knowledge object.

For a textbook, the index is an important component; it allows a reader to
see what is included and to navigate within the textbook. We use category to
represent such a hierarchical structure so that a category object has a group of
subcategories or knowledge objects as its members. For example, each chapter
in the textbook is a category which usually has subcategories of sections, and
each section may include a group of knowledge objects. The categories should
usually be contributed by the authors using their comprehensive understanding
of the domain knowledge.

The textbook can be viewed as a linear arrangement of knowledge objects
and categories. The process of constructing textbooks can be viewed as a series
of manipulations (adding, inserting, removing, modifying, and restructuring) of
these knowledge objects and categories.

Relations. Geometric knowledge is accumulated step by step, e.g., by intro-
ducing new concepts using already defined concepts, deriving useful properties
about new concepts, and proving or discovering theorems relating old and new
concepts. It does not lie flat but is piled up with a certain intrinsic structure of
hierarchy. Some knowledge pieces serve as preliminaries for higher-level knowl-
edge. The conventional rules for writing textbooks depend on the relationships
of the knowledge involved. Therefore, the relations among category objects and
knowledge objects must be captured to define the structure of the geometric text-
book knowledge base, and then to assist users to perform consistency-checking
of the structure of textbooks.

The relations we are interested in may involve the consideration of, and ab-
stractions from, pedagogical rules and textbook writing conventions. We have
identified 17 types of relations among knowledge objects and category objects:
Inclusion (→include), Context (→contextOf), Inheritance (→inherit), Derivation
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(→deriveFrom), Implication (→imply), Property (→hasProperty), Decision (→decide),
Justification (→justify), Introduction (→introduce), Remark (→remarkOn),
Complication (→complicate), Solution (→solve), Application (→applyOn),
Equality (↔equal), Exercise (→exerciseOf), Example (→exampleOf), Association
(↔associate).

The conventional rules for writing textbooks can be written with these re-
lations. For example, a relation D →contextOf T (where D is a definition and
T is a theorem) means D provides the context for T . The rule that D should
be presented before T in the textbook can be derived from the meaning of the
Context relation. Therefore, if D is arranged after T when a user constructs a
textbook, then the structure of the textbook is inconsistent and needs to be re-
structured. In [15], F. Kamareddine et al. present an ontology and an associated
markup system for annotating mathematical documents so that the graph of log-
ical precedences (the conventional rules in our context) of the annotated parts
of text can be acquired and analyzed automatically. However, we are concerned
with not only how to acquire these rules but also how to make use of them to
decide whether a textbook is constructed in an appropriate and soundly pre-
sented structure, i.e., whether the structure of the textbook is consistent. The
inconsistencies found by the current system are limited to those disobeying the
rules derived from the existing relations.

The geometric textbook knowledge base is then created to store textbook
knowledge data, with well-defined structures for the types of, and relations
between, the knowledge data stored.

2.3 Knowledge Representation

The knowledge data stored in the data items of knowledge objects will be ap-
plied in different situations. One important application is to communicate with
external geometry software packages. It is necessary to represent the geometric
statements of the involved knowledge objects in a formal language and to trans-
form them automatically into equivalent ones that the target geometry software
packages can identify and manipulate via specific interfaces. The Intergeo project
[13] is an ongoing European project, one of whose objectives is to attack the bar-
rier of lack of interoperability by offering a common file format for specifying
dynamic figures. However, we have designed a geometry programming language
in which one can easily specify geometric statements of definitions, theorems,
axioms, and problems, etc. by using customized concepts. We have also imple-
mented automatic translation of this language into the native languages of the
geometry software packages targeted for communication. We present some ex-
amples using this language here and describe how to process this language in
Section 3.4.

Simson’s theorem in English is “The feet of the perpendiculars from a point
to the three sides of a triangle are collinear if and only if the point lies on the
circumcircle.”
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The formal representation of Simson’s theorem is “A :=point(); B :=point();
C :=point(); D :=point(); incident(D, circumcircle(triangle(A,B,C))) ⇔
collinear(foot(D, line(A, B)), foot(D, line(B, C)), foot(D, line(A, C))).”

The intersection point of two lines l and m is defined as “intersection
(l, m)� [A::Point where incident(A, l)∧ incident(A, m)].”

3 Technical Realization of Electronic Geometry Textbook

In this section, we present the technical details of implementing the components
of the Electronic Geometry Textbook system.

3.1 Creation of the Geometric Textbook Knowledge Base

The textbook knowledge base stores the knowledge data of knowledge objects and
category objects, as well as their relations. These objects are the units that may
be managed, retrieved, and processed by the other modules. In order to identify
and distinguish them, the system automatically assigns each object a unique ob-
jectID. Then relational tables are defined that specify how data items are related
with the objects and what the relations among these objects are. [3] We have cre-
ated a database containing these tables in MS SQL Server and chosen Java as the
programming language to develop the interfaces for users to maintain the knowl-
edge data of the Concept (Definition), Axiom, Lemma, Theorem, Corollary, Con-
jecture, Problem, Example, Exercise, Proof, Solution, Introduction, Remark, and

Fig. 2. Constructing Simson’s theorem object
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Category objects as well as their relations. Our system employs several external
packages for editing specific data. The dynamic mathematics software GeoGebra
is used for producing dynamic figures. The MathDox formula editor [18] is used
to create expressions encoded in OpenMath for the algebraic representations. One
can construct, for example, Simson’s theorem as in Fig. 2.

Currently, the system provides simple query services for users who may input
search commands and view the results using keywords and relations. The queries
through relations work at the level of knowledge objects and category objects.
This means that the queries need to be described by using the objectIDs of the
objects but not simple natural texts. We explain the commands for queries below.

– keyWords[word1, . . . , wordn] returns the set of knowledge objects and cat-
egory objects with keywords word1 and . . . and wordn.

– relation[*,objectID, relationType] returns the set of knowledge objects
that are each in the relation of relationType to the knowledge object identi-
fied by objectID ;

– relation[objectID,*, relationType] returns the set of knowledge objects
such that the knowledge object identified by objectID is in the relation of
relationType with each of them.

The relations among knowledge objects and category objects are very important
for structuring the knowledge base. One way to acquire the relations is manual
annotation through reference to the objectIDs of the corresponding objects. We

Fig. 3. Discovering the Context relations automatically



EGT: A Geometric Textbook Knowledge Management System 287

have implemented another way that the system can automatically discover the
Context and Inheritance relations by matching the concept declarations with the
instances used in the formal representations of knowledge objects. For example,
in the process of constructing Simson’s theorem, the definitions of point, line,
foot, triangle, circumcircle are automatically found that provide the context
for Simson’s theorem. The system will list the relations discovered for the user
to select. (see Fig. 3)

3.2 User Interface of Electronic Geometry Textbook

With the textbook knowledge base created, a user interface is implemented for
users to construct dynamic textbooks, which are rendered as trees. The cate-
gory objects are rendered as branch nodes and knowledge objects are rendered
as tree leaves. Via dialogs, one can construct textbooks interactively by adding,
inserting, removing, modifying, and rearranging the category objects and knowl-
edge objects, and annotating their relations one by one. These objects may be
newly created in, or fetched from, the knowledge base. While performing these
manipulations, the system can check automatically whether the structure of the
current textbook is consistent. The user may be given tips if it is inconsistent and
the textbook should be restructured until it becomes consistent. For example,
if one places Simson’s theorem before the definition of foot (which provides
the context for Simson’s theorem), then the system will highlight the node of
foot. (see Fig. 4)

Fig. 4. The definition of foot is highlighted when Simson’s theorem is placed before it
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Fig. 5. Rendering the Section “Simson lines” in English

Fig. 6. Rendering the Section “Simson lines” in Chinese
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3.3 Presentation of Geometric Textbook Knowledge

For a textbook once constructed, it is necessary to provide a view that presents
the knowledge objects and category objects in readable styles. From the textbook
(or part of one), the system automatically generates corresponding XML docu-
ments by assembling the data of the selected objects and renders them (both in
English and Chinese) via JDesktop Integration Components (JDIC [14]), which
provide Java applications with access to functionalities and facilities furnished
by the native desktop (see Figs. 5, 6). The generated XML documents can easily
be styled and transformed into other document formats (MathDox [17], or PDF,
etc.) by using XSLT.

Fig. 7. The workflow of communication with geometry software packages

Fig. 8. Simson’s theorem in the textbook is automatically proved by using
GEOTHER
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3.4 Automatic Problem Solving

As presented in Section 2.3, geometric statements of knowledge objects are for-
malized and represented by using customized geometric concepts. However, most
geometry software tools only implement some of them. For communicating with
the available stand-alone packages, it is indispensable to transform these state-
ments into semantically equivalent ones employing the concepts that the target
geometry software packages are able to identify and manipulate. Inspired by
the idea of expression simplification in functional programming, we have imple-
mented this transformation automatically by applying definitions of customized
geometric concepts stored in the knowledge base. The process of communication
with geometry software packages is diagrammed in Fig. 7.

We have implemented communication with GEOTHER for automated theo-
rem proving (see Fig. 8) and with GeoGebra for drawing dynamic figures auto-
matically (see Fig. 9).

Fig. 9. The dynamic figure of Simson’s theorem is automatically drawn by using
GeoGebra

4 Conclusion and Future Work

This paper describes the design principles and, briefly, the technical realization
of the first version of Electronic Geometry Textbook. The system provides an
integrated environment for users to manage and share textbook knowledge ob-
jects, construct dynamic geometry textbooks interactively and efficiently, and
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publish styled geometric documents easily. The knowledge objects encapsulate
multiple forms of knowledge data for different applications, such as presentation
in natural languages, processing by selected external geometry software packages
for automated theorem proving and dynamic figure drawing, etc. The textbooks
constructed can be manipulated easily with automatic consistency-checking in
real time. The system can be viewed as a geometry-textbook-authoring assistant.

Currently, the development of Electronic Geometry Textbook is still at an
early stage. It is far from its ultimate goal of seeing that the dynamic geometry
textbooks constructed can be used in practice with students. For instance, com-
munications with geometry software packages lack interactions with users. Aside
from a series of experiments on the system in the near future, we are preparing
to explore approaches to the design and development of interactive exercises in
geometry and to enhance the usability of the textbooks.
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An OpenMath Content Dictionary for
Tensor Concepts
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Abstract. We introduce a new OpenMath content dictionary named
“tensor1” containing symbols for the expression of tensor formulas. These
symbols support the expression of non-Cartesian coordinates and invari-
ant, multilinear expressions in the context of coordinate transformations.
While current OpenMath symbols support the expression of linear alge-
bra formulas using matrices and vectors, we find that there is an un-
derlying assumption of Cartesian, or standard, coordinates that makes
the expression of general tensor formulas difficult, if not impossible. In
introducing these new OpenMath symbols for the expression of tensor
formulas, we attempt to maintain, as much as possible, consistency with
prior OpenMath symbol definitions for linear algebra.

1 Introduction

In scientific and engineering disciplines there are many uses of tensor notation.
A principal reason for the need for tensors is that the laws of physics are best
formulated as tensor equations. Tensor equations are used for two reasons: first,
the physical laws of greatest interest are those that may be stated in a form
that is independent of the choice of coordinates, and secondly; expressing the
laws of physics differently for each choice of coordinates becomes cumbersome
to maintain. While from a theoretical perspective it is desirable to be able to
express the laws of physics in a form that is independent of coordinate frame, the
application of those laws to the prediction of the dynamics of physical objects
requires that we do ultimately specify the values in some coordinate frame.
Much of this discussion might be moot were scientists and engineers to confine
themselves to one frame, e.g., Cartesian coordinates, but such is not the case.
Non-Cartesian coordinates are useful for curved geometries and because closed
form solutions to applied models in classical physics, which rely on the separation
of variables method of solving partial differential equations, often exist in them.
For example, the Laplace equation is separable in thirteen coordinate systems [1].
One may also take as a definition of need that these concepts are included in the
ISO standards defining the necessary mathematical symbols in the International
System (SI) of Quantities and Units [2].

While we specify the new OpenMath symbols for tensor concepts, we attempt
to maintain consistency with pre-existing OpenMath symbols [3]. The sym-
bols within OpenMath content dictionaries support the expression of a wealth
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of mathematical concepts. Determining whether or not additional symbols are
needed requires consideration based upon both necessity and convenience. Ad-
vancing new symbols using arguments based upon mathematical necessity only
implies that a proof is at hand showing that a particular concept cannot be
expressed using existing OpenMath symbols. Since such proofs would be diffi-
cult, if not impossible, in practice, convincing arguments for new symbols are
more likely to be made based on a combination of practical economy, practical
necessity, and convenience: this is certainly the case here. The symbols we in-
troduce are motivated by the need for easily and directly capturing the relevant
semantics in the expression of tensor formulas.

OpenMath symbols exist for the specification of matrices and vectors. These are
documented in the content dictionaries linalg1, linalg2, linalg3, linalg4, linalg5,
and two dictionaries named linalg6. Within these dictionaries there are two rep-
resentations: one for row vectors and one for column vectors, with the row rep-
resentation being labeled “official” in preference to the column representation. In
the row vector representation a matrix is a column of rows, and in the column vec-
tor representation it is a row of columns. We find that the two representations,
i.e., the row representation of vectors and the column representation of vectors,
appear to be alternative, equivalent representations, related by a transpose oper-
ation, rather than dual representations, such as vectors and covectors where row
and column representations of a vector are related via a general metric tensor.
We also find, from the few examples given and from the general lack of reference
to bases, that the row and column vector semantics appear to assume use of the
standard, or Cartesian, basis only, and, in particular, with a simple Euclidean
metric. For example, the scalar product is given as u·v =

∑
i uivi . In the row rep-

resentation, the vector components resulting from a matrix-vector multiplication
appear as the results of scalar products between matrix rows and a row vector,
i.e., a scalar product takes as its arguments two vectors from the same vector
space. Given these observations, it is not clear that in using these existing repre-
sentations it is easy, or even possible, to express the semantics of tensors as they
are typically used by engineers and scientists. For these reasons we introduce
symbols that are expressly to be used for specifying tensor formulas.

2 Tensor Review

To motivate our choice of OpenMath symbols for specifying tensors, we briefly
review some tensor basics. By definition, a tensor is a multilinear mapping that
maps vectors and covectors to a scalar field. A tensor is itself an element of the
space defined by a tensor product of covector and vector spaces. Among scien-
tists and engineers, tensor formulas are commonly written using their indexed
components.

2.1 Coordinate Frames

To begin the discussion, we note that an arbitrary point in n-dimensional space,
Rn, is typically specified by its n Cartesian, or standard, coordinates, x i . The
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point’s position vector, is then written as r =
∑

i x
iei , where the ei are or-

thonormal Cartesian basis vectors and are constant, i.e., not a function of the
coordinates, for a given Cartesian frame. Using the original Cartesian frame,
alternative coordinates may be defined as functions of the Cartesian coordinates
in the original frame, e.g., x ′i = x ′i (x1, ..., xn), which may be nonlinear in the x i .

Spatial coordinates are sometimes expressed as indexed quantities, such as
(x1, x2, x3), or having individual names, such as (x , y , z). In presentation, dif-
ferent kinds of indexes may appear much the same, but in content markup we
must be more discriminating. For example, vector components are one kind of
indexed quantity. It would be a mistake, however, to consider the tuple of spa-
tial coordinates to be a vector in the general case. While it may seem to be a
vector in Cartesian coordinates, i.e., a position vector, this is not the case in,
for example, polar coordinates. For general coordinates the vector addition of
coordinate position tuples does not appear to have a defined meaning, i.e., the
meaning of

coordinates(Point1) + coordinates(Point2) = coordinates(Point3)

is not preserved under general cordinate transformation.
Considering this, the most we should say is that the variables describing the

coordinates of an arbitrary point in a space comprise an n-tuple. This appears
to be similar to the notion of an OpenMath context [4], i.e., an n-tuple of vari-
ables. Consequently, while we need to represent x i , it is inappropriate to do this
using the vector selector symbol, the vector component accessor defined in the
OpenMath linalg1 content dictionary. For this reason we introduce the tuple and
tuple selector symbols. The symbol, tuple, is an n-ary function that returns an
n-tuple of its arguments in the order that they are presented. The symbol, tu-
ple selector, takes two arguments, an n-tuple, and an index, a natural number
less than or equal to n, and returns the indexed element.

Since the Cartesian frame is most often used, including in the definition of
coordinate transformations and the definition of non-Cartesian frames, we find it
useful to have symbols to express the base concepts of Cartesian coordinates. We
propose the symbol Cartesian which takes a single argument, a natural number,
and returns the Cartesian coordinate, of a right-handed Cartesian frame, corre-
sponding to the value of the argument. The standard representation of Cartesian
3-space may then be represented by either

tuple(x, y, z) = tuple(Cartesian(1), Cartesian(2), Cartesian(3))

or as

tuple selector(i, x) = Cartesian(i).

Coordinate transformations may then be defined as functions on the Cartesian
coordinates.

The full meaning of the Cartesian coordinate variables comes from their com-
bination with the basis vectors for the Cartesian frame. The commonly used
orthonormal basis vectors for the Cartesian frame are given by the symbol
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unit Cartesian, i.e., unit Cartesian takes a single natural number as its argu-
ment and returns the corresponding unit vector, say, ei . Other representations
are easily assigned, such as

tuple(̂i , ĵ , k̂) = tuple(unit Cartesian(1), unit Cartesian(2), unit Cartesian(3)).

Basis vectors, gi , for transformed coordinates, x ′i , are given by

gi =
∑

j

∂x j

∂x ′i ej .

2.2 Vectors and Covectors

To describe tensors we must also give prior description to vectors and covectors.
A vector, v, may be specified by components v i with respect to an arbitrary,
ordered, vector space basis, (g1, ..., gn), as v =

∑
i v

igi . These basis vectors, gi ,
are generally the tangent vectors with respect to the spatial coordinates, e.g.,
x i . In curvilinear coordinates these general basis vectors are clearly functions of
the coordinates. A dual, covector space may be defined relative to a given vector
space. A dual space is defined as a set of linear functionals on the vector space and
is spanned by a set of basis elements,

(
g1, ..., gn

)
, such that gi (gj) = δi

j , where
δi

j is the Kronecker tensor. The symbol, Kronecker tensor, has components, δi
j ,

equal to one when i = j and zero otherwise.
The presentation of the indexes, either raised or lowered, on basis vectors, ba-

sis covectors, vector components, or covector components, generally indicates how
the components transform. With a transformation of coordinates, indexed tensor
quantities transform either covariantly, as do the basis vectors, gi , or they trans-
form contravariantly, as do vector components, v i , or, for example, coordinate dif-
ferentials, dx i . Transforming from coordinates x i to coordinates x ′i , the covariant
transformation is defined by the transformation of the basis vectors:

g′
i =
∑

k

∂xk

∂x ′i gk .

The contravariant transformation of a vector’s components is given by:

v ′ l =
∑

k

∂x ′l

∂xk
vk .

The covariant transformation of the components of a covector, u, is given by

u′
j =
∑

k

∂xk

∂x ′j uk .

Vectors whose components transform contravariantly, and their covectors, whose
components transform covariantly, are tensors. Many, but not all, vector quan-
tities are tensors. For example, the coordinates themselves, x i , are referred to as
the components of a position vector (in Cartesian coordinates), x or r, which is
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not a tensor. (We have already noted that the position vector in Cartesian co-
ordinates, defined as a tuple of position coordinates, does not generally preserve
its meaning after coordinate transformation).

In general, tensors may be created by tensor (outer) products of vectors and
covectors, contracted products of tensors, and sums of tensors of the same order.
Order one tensors are contravariant or covariant vectors, while order zero tensors
are scalars. The order of a higher order tensor is just the necessary number of
vectors and covectors multiplied together, using the tensor product, to create it.

For the purpose of describing tensor formulas in content markup, we introduce
the OpenMath symbols tensor selector, contra index, and covar index, which are
applied to a natural number, returning the appropriate index. In standard tensor
notation, a contravariant index is represented as a superscripted index and a
covariant index is represented as a subscripted index. The contra index and
covar index symbols are so named because characterizing the indexes of tensor
quantities as being contravariant or covariant captures the semantics.

In engineering and scientific applications standard matrix-vector multiplica-
tion is consistent with tensor notation when interpreted as a matrix multiplying
a column vector from the left, resulting in a column vector. Each of the com-
ponents of the result are arrived at by applying the rows of the matrix to the
column vector being multiplied. It is consistent with this common usage to iden-
tify the components of a column vector using the contravariant, superscripted
index as a row index, and to identify the components of a row vector using the
covariant, subscripted index as a column index. The matrix-vector multiplica-
tion is then represented as ui =

∑
j M i

jv
j . It is common in tensor notation to

suppress the explicit summation in such an expression using the Einstein Sum-
mation Convention.

While it is common to implicitly assume the use of standard, or Cartesian
coordinates, in which case the distinction between superscripts and subscripts
appears superfluous, this is not so with tensor notation: a vector may be specified
by its components relative to some general, non-Cartesian basis. As pointed
out above, the basis vectors of an arbitrary, ordered basis of a vector space
transform covariantly, hence they are indexed using the symbol, covar index.
Similarly, the basis covectors, derived from the same arbitrary, ordered basis of
the vector space, transform contravariantly, hence they are indexed using the
symbol, contra index.

We introduce, then, the basis selector symbol as a binary operator, taking as
its arguments:

1) an ordered basis, a tuple of linearly independent vectors that spans some
vector space;

2) either a covar index or contra index symbol applied to a natural number.
The basis selector operator returns a basis vector of the vector space when a
covar index symbol is passed and returns a basis covector of the dual vector
space when a contra index is passed.
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2.3 Higher Order Tensors

To write expressions using tensor components, we use the symbol, tensor selector.
The tensor selector symbol returns a scalar and takes three arguments:

1) a tensor;
2) a tuple of contra index and covar index symbols, and, finally;
3) a frame, an ordered set of basis vectors.
The sum total of indexes used, both contra index’s and covar index’s, must

be the same as the order of the tensor. The contravariant and covariant indexes,
taken together, are totally ordered, and refer to a matrix of tensor components,
which are assumed to be in ’row-major’ order, regardless of whether the indexes
are contra index’s or covar index’s. By use of the term row-major order, we do
not attribute any special meaning to whether an index is considered a row index
or a column index, rather we merely mean that for the serial traversal of an
arbitrarily dimensioned array used to store an indexed quantity, the rightmost
index varies fastest. The assumption of this convention allows the unambiguous
assignment of indexed matrix component values to indexed tensor components.

The scalar returned by tensor selector is the tensor component. For exam-
ple, the contravariant components of a vector are identified by applying ten-
sor selector to the vector and a contra index. Components of higher order tensors
are identified by use of multiple contra index and covar index symbols. The final
argument, the frame, is necessary when one needs to specify a tensor expression
that is dependent on the basis or on multiple bases, as in a transformation ex-
pression. As tensor formulas are commonly made without regard to basis, often
no basis is required, and so any single, consistent basis is sufficient in this case,
such as Cartesian. It is also suggested that a special value, called “unspecified”,
might be used.

A general tensor is usually indicated with a capital letter. Its coordinates may
be represented using a sequence of contra index and / or covar index symbols.
The tensor itself may be represented by taking the product

T =
∑

ij

T ijgigj .

The Einstein summation convention is normally implicitly applied to the product
of two tensors whose components are represented with matching contravariant
and covariant indexes. In content markup this summation should be explicit since
there is otherwise no content markup to indicate the fact that these indexes are
bound variables.

Finally, we define a couple more symbols for specific tensor and vector quanti-
ties. First, there is the metric tensor which defines the geometric features of the
vector space, such as length. Its components are represented as gij , a symmetric,
non-degenerate, covariant, bilinear form defined by (ds)2 = gijdx ′idx ′j , where ds

is the differential length element and dx ′i are the differential changes in spatial
coordinates. This is a generalization of the simple Euclidean metric given by the
scalar product. Covariant components and contravariant components of a vector,
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or row and column representations of a vector, are related by vi =
∑

j gijv
j and

squared length, or squared norm, of a vector is |v|2 =
∑

ij gijv
iv j =

∑
j vjv

j .
Lastly, we define the Levi-Civita symbol, the so-called permutation tensor. It

takes one argument, the dimension of the space. Its components may be indexed
with the contra index and / or covar index symbols.

2.4 Conclusion

We have introduced a number of OpenMath symbols for the expression of
tensor formulas. They are tuple, tuple selector, Cartesian, unit Cartesian,
Kronecker tensor, basis selector, tensor selector, contra index, covar index,
metric tensor, and Levi-Civita. Using the tuple, tuple selector, Cartesian, and
unit Cartesian symbols we can build finite dimensioned Cartesian frames and
define differentiable coordinate transformations to define other frames. Using
Kronecker tensor, basis selector, tensor selector, contra index, and covar index,
we can define tensor spaces on those frames, assign values to tensor components,
and write tensor formulas. The formulas may be within a single frame or between
frames. Finally, with the metric tensor we can specify non-Euclidean metrics and
using the Levi-Civita symbol we can express vector cross products and the curl
operation in vector component form. These symbols are being submitted as a
content dictionary named tensor1 to the online OpenMath repository.

Many thanks to Weiqing Gu at Naval Research Lab for several conversations
regarding tensors.
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Abstract. Building a repository of proof-checked mathematical knowl-
edge is without any doubt a lot of work, and besides the actual formal-
ization process there is also the task of maintaining the repository. Thus
it seems obvious to keep a repository as small as possible, in particular
each piece of mathematical knowledge should be formalized only once.

In this paper, however, we claim that it might be reasonable or even
necessary to duplicate knowledge in a mathematical repository. We an-
alyze different situations and reasons for doing so, provide a number
of examples supporting our thesis and discuss some implications for
building mathematical repositories.

1 Introduction

Mathematical knowledge management aims at providing tools and infrastructure
supporting the organization, development, and teaching of mathematics using
modern techniques provided by computers. Consequently, large repositories of
mathematical knowledge are of major interest because they provide users with a
data base of — verified — mathematical knowledge. We emphasize the fact that a
repository should contain verified knowledge only together with the correspond-
ing proofs. We believe that (machine-checked or -checkable) proofs necessarily
belong to each theorem and therefore are an essential part of a repository.

However, mathematical repositories should be more than collections of theo-
rems and corresponding proofs accomplished by a prover or proof checker. The
overall goal here is not only stating and proving a theorem — though this re-
mains an important and challenging part — but also presenting definitions and
theorems so that the “natural” mathematical build-up remains visible. Theories
and their interconnections should be available, so that further development of
the repository can rely on existing formalizations. Being not trivial as such, this
becomes even harder to assure for an open repository with a large number of
authors.

In this paper we deal with yet another organizational aspect of building math-
ematical repositories: the duplication of knowledge, by which we mean that a
repository includes redundant knowledge. At first glance this may look unac-
ceptable or at least unnecessary. Why should one include — and hence formalize
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— the same thing more than once? A closer inspection, however, shows that
mathematical redundancy may occur in different non-trivial facets: Different
proofs of a theorem may exist or different versions of a theorem formulated in a
different context. Sometimes we even have different representations of the same
mathematical object serving for different purposes.

From the mathematical point of view this is not only harmless but also de-
sirable; it is part of the mathematical progress that theorems and definitions
change and evolve. In mathematical repositories, however, each duplication of
knowledge causes an additional amount of work. In this paper we analyze mis-
cellaneous situations and reasons why there could — and should — be at least
some redundancy in mathematical repositories. These situations range from the
above mentioned duplication of proofs, theorems and representations to the prob-
lem of generalizing knowledge. Even technical reasons due to the progress of a
repository may lead to duplication of knowledge.

2 Different Proofs of a Theorem

In the following we present different proofs of the Chinese Remainder Theorem
(CRT) and briefly sum up the discussion from [Sch09]. The “standard” version
of the CRT reads as follows.

Theorem 1. Let m1, m2, . . . , mr be positive integers such that mi and mj

are relatively prime for i �= j. Let m = m1m2 · · ·mr and let u1, u2, . . . , ur be
integers. Then there exists exactly one integer u with

0 ≤ u < m and u ≡ ui mod mi for all 1 ≤ i ≤ r. �

We consider three different proofs of the theorem and discuss their relevance
to be included in mathematical repositories. It is very easy to show, that there
exists at most one such integer u; in the following proofs we therefore focus on
the existence of u. The proofs are taken from [Knu97].

First proof: Suppose integer u runs through the m values 0 ≤ u < m. Then
(u mod m1, . . . , u mod mr) also runs through m different values, because the
system of congruences has at most one solution. Because there are exactly
m1m2 · · ·mr = m different tuples (v1, . . . , vr) with 0 ≤ vi < mi, every tuple oc-
curs exactly once, and hence for one of those we have (u mod m1, . . . , u mod mr)
= (u1, . . . , ur). �

This proof is pretty elegant and uses a variant of the pigeon hole principle: If we
pack m items without repetition to m buckets, then we must have exactly one
item in each bucket. It is therefore valuable to include this proof in a repository
for didactic or aesthetic reasons. On the other hand the proof is non-constructive,
so that it gives no hints to find the value of u — besides the rather valueless
“Try and check all possibilities, one will fit”. A constructive proof, however, can
easily be given:
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Second proof: We can find integers Mi for 1 ≤ i ≤ r with

Mi ≡ 1 mod mi and Mj ≡ 0 mod mi for j �= i.

Because mi and m/mi are relatively prime, we can take for example

Mi = (m/mi)ϕ(mi),

where ϕ denotes the Euler function. Now,

u = (u1M1 + u2M2 + · · ·+ urMr) mod m

has the desired properties. �

This proof uses far more evolved mathematical notations — namely Euler’s func-
tion — and for that reason may also be considered more interesting than the first
one. Formalization requires the use of Euler’s function1 which may cause some
preliminary work. From a computer science point of view, however, the proof has
two disadvantages. First, it is not easy to compute Euler’s function; in general
one has to decompose the moduli mi into their prime factors. Second, the Mi

being multiples of m/mi are large numbers, so that a better method for com-
puting u is highly desirable. Such a method has indeed been found by H. Garner.

Third proof: Because we have gcd(mi, mj) = 1 for i �= j we can find integers
cij for 1 ≤ i < j ≤ r with

cijmi ≡ 1 mod mj

by applying the extended Euclidean algorithm to mi and mj. Now taking

v1 := u1 mod m1
v2 := (u2 − v1)c12 mod m2
v3 := ((u3 − v1)c13 − v2)c23 mod m3

...
vr := (. . . ((ur − v1)c1r − v2)c2r − · · · − vr−1)c(r−1)r mod mr

and then setting

u := vrmr−1 · · ·m2m1 + · · ·+ v3m2m1 + v2m1 + v1

we get the desired integer u. �

When constructing the vi the application of the modulo operation in each step
ensures that the occurring values remain small. The proof is far more technical
than the others in constructing

(
r
2

)
+ r additional constants, the vi in addition

being recursively defined. On the other hand, however, this proof includes an
efficient method to compute the integer u from Theorem 1.
1 Actually a mild modification of the proof works without Euler’s function.
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3 Different Versions of Theorems

There are quite a number of reasons why different versions of the same theorem
exist and may be included in mathematical repositories. Besides mathematical
issues we also identified reasons justified by formalization issues or the develop-
ment of repositories itself. For illustration we again use the CRT as an example.

3.1 Restricted Versions

Theorems are not always shown with a proof assistant to be included in a repos-
itory in the first place: Maybe the main goal is to illustrate or test a new im-
plemented proof technique or just to show that this special kind of mathematics
can be handled within a particular system. In this case it is often sufficient — or
simply easier — to prove a weaker or restricted version of the original theorem
from the literature.

In HOL Light [Har10], for example, we find the following theorem.

# INTEGER_RULE

’!a b u v:int. coprime(a,b) ==>

?x. (x == u) (mod a) /\ (x == v) (mod b)’;

This is a version of the CRT stating that in case of two moduli a and b only
there exists a simultaneous solution x of the congruences. Similar versions have
been shown with hol98 ([Hur03]), the Coq proof assistant ([Mén10]) or Rewrite
Rule Laboratory ([ZH92]).

From the viewpoint of mathematical repositories it is of course desirable to
have included the full version of the theorem also. Can we, however, in this case
easily set the restricted version aside? Note that the above theorem in HOL
Light also serves as a rule for proving divisibility properties of the integers.
Erasing the restricted version then means that the full version has to be used
instead. It is hardly foreseeable whether this will work for all proofs relying
on the restricted version. So, probably both the restricted and the full version
belong to the repository.

3.2 Different Mathematical Versions

The most natural reason for different versions of theorems is that mathematicians
often look at the same issue from different perspectives. The CRT presented in
Section 2 deals with congruences over the integers: it states the existence of an
integer solving a given system of congruences. Looking from a more algebraic
point of view we see that the moduli mi can be interpreted as describing the
residue class rings Zmi . The existence and uniqueness of the integer u from the
CRT then gives rise to an isomorphism between rings [GG99]:

Theorem 2. Let m1, m2, . . . , mr be positive integers such that mi and mj are
relatively prime for i �= j and let m = m1 m2 · · ·mr. Then we have the ring
isomorphism

Zm
∼= Zm0 × · · · × Zmr . �



304 A. Grabowski and C. Schwarzweller

This version of the CRT has been formalized in hol98 [Hur03]. Here we find a
two-moduli version that in addition is restricted to multiplicative groups. Tech-
nically, the theorem states that for relatively prime moduli p and q the function
λx.(x mod p, x mod q) is a group isomorphism between Zpq and Zp ×Zq.

5 ∀p, q.
1 < p ∧ 1 < q ∧ gcd p q = 1⇒
(λx.(x mod p, x mod q)) ∈

group iso (mult group pq)
(prod group (mult group p) (mult group q))

Note that, in contrast to Theorem 2, the isomorphism is part of the theorem
itself and not hidden in the proof.

It is not easy to decide which version of the CRT may be better suited for
inclusion in a mathematical repository. Theorem 2 looks more elegant and in
some sense contains more information than Theorem 1: It does not state the ex-
istence of a special integer, but the equality of two mathematical structures. The
proof of Theorem 2 uses the homomorphism theorem for rings and is therefore
interesting for didactic reasons, too. On the other hand, Theorem 1 uses inte-
gers and congruences only, so that one needs less preliminaries to understand it.
Theorem 1 and its proof also give more information than theorem 2 concerning
computational issues2 — at least if not the first proof only has been formalized.

3.3 Different Technical Versions

Another reason for different versions of a theorem may be originated in the
mathematical repository itself. Here again open repositories play an important
role: Different authors, hence different styles of formalizing and different kinds
of mathematical understanding and preferences meet in one repository. So, it
may happen that two authors formalize the same (mathematical) theorem, but
choose a different formulation and/or a different proof. We call this technical
versions.

Especially in evolving systems such versions may radically differ just because
the system’s language improved over the years. In the Mizar Mathematical Li-
brary, for example, we find the following CRT [Sch08]

theorem

for u being integer-yielding FinSequence,

m being CR_Sequence st len u = len m

ex z being Integer

st 0 <= z & z < Product(m) & for i being natural number

st i in dom u holds z,u.i are_congruent_mod m.i;

2 To apply the homomorphism theorem in the proof of Theorem 2 one needs to show
that the canonical homomorphism is a surjection with kernel (m). This sometimes
is done by employing the extended Euclidean algorithm, so that this proof gives an
algorithm, too.



On Duplication in Mathematical Repositories 305

Here, a CR_Sequence is a sequence of natural numbers, which are pair wise
relatively prime. Note that this formulation of the theorem is very close to the
textbook version of theorem 1.

In another Mizar article [Kon97], however, we find a different formulation of
the CRT:

theorem :: WSIERP_1:44

len fp>=2 &

(for b,c st b in dom fp & c in dom fp & b<>c holds (fp.b gcd fp.c)=1)

implies for fr st len fr=len fp holds ex fr1 st (len fr1=len fp &

for b st b in dom fp holds (fp.b)*(fr1.b)+(fr.b)=(fp.1)*(fr1.1)+(fr.1));

In this version no attributes are used. The condition that the mi are pair wise
relatively prime is here stated explicitly using the gcd functor for natural num-
bers. Also the congruences are described arithmetically: u ≡ ui mod mi means
that there exists a xi such that u = ui + xi ∗mi, so the theorem basically states
the existence of x1, . . . , xr instead of u.

Since the article has been written more than 10 years ago, a reason is hard to
estimate. It may be that at the time of writing Mizar’s attribute mechanism was
not so far developed as today, i.e. the author reformulated the theorem in order
to get it formalized at all. Another explanation for this version might be that the
author when formalizing the CRT already had in mind a particular application
and therefore chose a formulation better suited to prove the application.

In the Coq Proof Assistant [Coq10] the CRT has been proved for a bit vector
representation of the integers [Mén10], though as a restricted version of Theorem
1 with two moduli a and b.

Theorem chinese_remaindering_theorem :

forall a b x y : Z,

gcdZ a b = 1%Z -> {z : Z | congruentZ z x a /\ congruentZ z y b}.

In fact this theorem and its proof are the result of rewriting a former proof of
the CRT in Coq. So in Coq there exist two versions of the CRT — though the
former one has been declared obsolete.

We see that in general the way authors use open systems to formalize theorems
has a crucial impact on the formulation of a theorem, and may lead to different
versions of the same theorem. Removing one — usually the older one — version
is a dangerous task: In large repositories it is not clear whether all proofs relying
on the deleted version can be easily changed to work with the other one. So often
both versions remain in the repository.

4 Abstract and Concrete Mathematics

Practically every mathematical repository has a notion of groups, rings, fields
and many more abstract structures. The advantage is obvious: A theorem shown
in an abstract structure holds in every concretion of the structure also. This helps
to keep a repository small: Even if concrete structures are defined there is no
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need to repeat theorems following from the abstract structure. If necessary in a
proof one can just apply the theorem proved for the abstract structure.

Nevertheless authors tend to prove theorems again for the concrete case. We
can observe this phenomenon in the Mizar Mathematical Library (MML). There
we find, for example, the following theorem about groups.

theorem

for V being Group

for v being Element of V holds v - v = 0.V;

For a number of concrete groups (rings or fields) this theorem, however, has
been proved and stored in MML again, among them complex numbers and
polynomials.

theorem

for a being complex number holds a - a = 0;

theorem

for L be add-associative right_zeroed right_complementable

(non empty addLoopStr)

for p be Polynomial of L holds p - p = 0_.(L);

One reason might be that authors are not aware of the abstract theorems they
can use and therefore believe that it is necessary to include these theorems in
the concrete case. This might be especially true, if authors work on applications
rather than on “core” mathematics. On the other hand it might just be more
comfortable for authors to work solely in the concrete structure rather than to
switch between concrete and abstract structures while proving theorems in a
concrete structure.

Constructing new structures from already existent ones sometimes causes a
similar problem: Shall we formalize a more concrete or a more abstract construc-
tion? Multivariate polynomials, for example, can be recursively constructed from
univariate polynomials using R[X, Y ] ∼= (R[X ])[Y ]; or more concrete as func-
tions from Terms in X and Y into the ring R. Which version is better suited
for mathematical repositories? Hard to say, from a mathematical point of view
the first version is the more interesting construction. The second one, however,
seems more intuitive and may be more convenient to apply in other areas where
polynomials are used. So, it might be reasonable to include both constructions
in a repository. In this case, however, theorems about polynomials will duplicate
also.

We close this section with another example: rational functions. Rational func-
tions can be constructed as pairs of polynomials or as the completion K(X)
of the polynomial ring K[X ]. As in the case of multivariate polynomials both
constructions have its right in its own, so again both may be included in a repos-
itory. Note that this eventually might result in another (two) concrete version(s)
of the theorem about groups from above, e.g.
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theorem

for L being Field

for z being Rational_Function of L holds z - [0_.(L),1_.(L)] = z;

5 Representational Issues

In the majority of cases it does not play a major role how mathematical ob-
jects are represented in repositories. Whether the real numbers, for example, are
introduced axiomatically or are constructed as the Dedekind-completion of the
rational numbers, has actually no influence on later formalizations using real
numbers. Another example are ordered pairs: Here we can apply Kuratowski’s
or Wiener’s definition that is

(a, b) = {{a}, {a, b}}

or
(a, b) = {{{a}, ∅}, {{b}}}

or even again the axiomatic approach

(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

Once there is one of the notions included in a repository formalizations relying
on this notion can be carried out more or less the same.

There are, however, mathematical objects having more than one relevant rep-
resentation. The most prominent example are polynomials. Polynomials can be
straightforwardly constructed as sequences (of coefficients) over a ring

p = (an, an−1, . . . a0)

or as functions from the natural numbers into a ring

p = f : IN −→ R where |{x|f(x) �= 0}| < ∞.

Note that both representations explicitly mention all zero coefficients of a poly-
nomial, that is provide a dense representation.

There is an alternative seldom used in mathematical repositories: sparse poly-
nomials. In this representation only coefficients not equal to 0 are taken into
account — at the cost that exponents ei have to be attached. We thus get a list
of pairs:

p = ((e1, a1), (e2, a2), . . . (em, am)).

Though more technical to deal with — that probably being the reason for usually
choosing a dense representation for formalization — there exist a number of
efficient algorithms based on a sparse representation, for example interpolation
and computation of integer roots. Therefore it seems reasonable to formalize
both representations in a repository, thus reflecting the mathematical treatment
of polynomials.
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Another example is the representation of matrices, also a rather basic mathe-
matical structure. The point here is that there exist many interesting subclasses
of matrices, for example block matrices for which a particular multiplication al-
gorithm can be given or triangular matrices for which equations are much easier
to solve. Hence it might be reasonable to include different representations of
matrices, that is different (re-) definitions, in a repository to provide support for
particular applications of matrices.

6 Generalization of Theorems

Generalization of theorems is everyday occurrence in mathematics. In the case
of mathematical repositories generalization is a rather involved topic: It is not
obvious whether the less general theorem can be eliminated. Proofs of other
theorems using the original version might not work automatically with the more
general theorem instead. The reason may be that a slightly different formulation
or even a different version of the original theorem has been formalized. Then the
question is: Should one rework all these proofs or keep both the original and the
more general theorem in the repository? To illustrate that this decision is both
not trivial and important for the organization of mathematical repositories we
present in this section some generalizations of the CRT taken from [Sch09].

A rather uncomplicated generalization of Theorem 1 is based on the observa-
tion that the range in which the integer u lies, does not need to be fixed. It is
sufficient that it has the width m = m1m2 · · ·mr. This easily follows from the
properties of the congruence ≡.

Theorem 3. Let m1, m2, . . . , mr be positive integers such that mi and mj are
relatively prime for i �= j. Let m = m1 m2 · · ·mr and let a, u1, u2, . . . , ur be
integers. Then there exists exactly one integer u with

a ≤ u < a + m and u ≡ ui mod mi

for all 1 ≤ i ≤ r. �

It is trivial that for a = 0 we get the original Theorem 1. Old proofs can very
easily be adapted to work with this generalization of the theorem. Maybe the
system checking the repository even automatically infers that Theorem 3 with
a = 0 substitutes the original theorem. If not, however, even the easy changing
all the proofs to work with the generalization can be an extensive, unpleasant,
and time-consuming task.

A second generalization of the CRT is concerned with the underlying algebraic
structure. The integers are the prototype example for Euclidean domains. Taking
into account that the residue class ring Zn in fact is the factor ring of Z by the
ideal nZ, we get the following generalization.3

3 Literally this is a generalization of Theorem 2, but of course Theorem 1 can be
generalized analogously.
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Theorem 4. Let R be a Euclidean domain. Let m1, m2, . . . , mr be positive
integers such that mi and mj are relatively prime for i �= j and let m =
m1 m2 · · ·mr. Then we have the ring isomorphism

R/(m) ∼= R/(m0)× · · · ×R/(mr). �

This generalization may cause problems: In mathematical repositories it is an
important difference whether one argues about the set of integers (with the usual
operations) or the ring of integers: They have just different types. Technically,
this means that in mathematical repositories we often have two different repre-
sentations of the integers. In the mathematical setting theorems of course hold
for both of them. However, proofs using one representation will probably not
automatically work for the other one. Consequently, though Theorem 4 is more
general, it might not work for proofs using integers instead of the ring of inte-
gers; for that a similar generalization of Theorem 1 could be necessary. So in this
case in order to make all proofs work with a generalization, we need to provide
generalizations of different versions of the original theorem — or just change the
proofs with the “right” representation leading to an unbalanced organization of
the repository.

We close this section with a generalization of the CRT that abstracts away
even from algebraic structures. The following theorem [Lün93] deals with sets
and equivalence relations only and presents a condition whether the “canonical”
function σ is onto.

Theorem 5. Let α and β be equivalence relations on a given set M . Let σ :
M −→M/α×M/β be defined by σ(x) := (α(x), β(x)). Then we have ker(σ) =
α ∩ β and σ is onto if and only if α ◦ β = M ×M . �

Here almost all of the familiar CRT gets lost. There are no congruences, no
algebraic operations, only the factoring (of sets) remains. Therefore, it seems
hardly possible to adapt proofs using any of the preceding CRTs to work with
this generalization. Any application will rely on much more concrete structures,
so that too much effort has to be spent to adapt a proof. Theorem 5 in some sense
is too general to reasonably work with. However, even though hardly applicable,
the theorem stays interesting from a didactic point of view.4 It illustrates how
far — or even too far — we can generalize and may provide the starting point of
a discussion whether this is — aside from mathematical aesthetics — expedient.

7 Which Way To Go?

Having seen that it’s more or less unavoidable to duplicate knowledge in mathe-
matical repositories, the question is how to deal with such situations. In the
following we will mention some issues hoping to start a discussion towards
guidelines for building mathematical repositories.

4 In fact the proof of Theorem 5 has been an exercise in lectures on linear algebra.
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Different mathematical versions of theorems (as discussed in section 3.2) de-
scribe the same mathematical issue from different points of view. So it would be
a natural approach to actually prove that such theorems are equivalent. Though
troublesome to accomplish, this also would make explicit that more than one
version is present in a repository. The mathematical context in which a partic-
ular version is formulated and proven then would be clear from the proof, thus
would be visible to users for further applications. Much harder to deal with is the
question of which version of a theorem to use. Here, not only deep mathemati-
cal understanding and knowledge, but also fondness of particular mathematical
views and techniques may play important roles.

In the case of different representations (see section 5) one idea is to provide
theorems describing the connection between these. For example, we can prove
that sparse and dense polynomials are isomorphic (as rings). This does not only
provide information between these representation, but also gives the possibility
to translate from one representation into another. Consequently, though a bit
tedious, theorems for one representation can be used in the other one. One future
goal could be to automate such translations.

Focusing on individual operations and not on structures as a whole, the pro-
cess of translation between representations has been (partially) automated in
Mizar. In the Mizar Mathematical Library we find definitions of both the inte-
gers as (just) numbers and the ring of integers. So, integers and elements of the
ring of integers are different objects with different operations realizing addition,
multiplication, and so on. Using a special registration identify the user, how-
ever, can identify terms and operations from different definitions ([Kor09]), in
our example integers with elements of the ring of integers:

registration

let a,b be integer number;

let x,y be Element of INT.Ring;

identify x+y with a+b when x=a, y=b;

identify x*y with a*b when x=a, y=b;

end;

After this registration, theorems proved for integers can be applied to elements
of the ring of integers without any translation issues.

We believe that the duplication of theorems in more special cases (compare
section 4) can be avoided by providing more support for searching in math-
ematical repositories. Here, of course, we do not speak of ordinary searching:
having a general theorem for an algebraic structure such as group or ring, we
have to “search” for concrete structures in which this theorem holds. Or, putting
it the other way round, when working in a concrete structure we’d like to find
theorems true for this structure, though proved in a more general case. One pos-
sibility here, is to provide software that computes the theory of a given structure
taking into account that part of this theory have to be generated from more gen-
eral theories. Such a theory generator, in some sense, would transfer knowledge
from a mathematical repository itself into the supporting software.
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When it comes to generalizations of theorems, we have seen in section 6 that
from a technical point of view they are hard to deal with: Deleting a theorem
for which a more general version exists, can imply major changes of the reposi-
tory. One can, however, think of a software detecting more general versions of a
theorem. This would at least give the possibility to automatically identify gen-
eralizations. If more than one version is present in a repository such a software
in addition can support users in their decision which version of a theorem to use
best to construct their proofs.

7.1 MML — The State of the Art

In this subsection we collect some solutions of the considered issues based on the
policy of the Library Committee of the Association of Mizar Users.

Ordinary repetitions. Although direct explicit repetitions of definitions or
simple theorems with standard proofs are not desirable in large repositories
of mathematical knowledge — they make more noise to search within — one
can potentially find the pros of such approach; even if the fact is available
from some other articles, we obtain complete source of all properties in a
single file. In MML such freedom is not allowed and usually leads to the
rejection of the submitted article (or, at least to the removal of such straight
duplications).

Proof variants. In the above case the author usually lacks knowledge about
formalized facts, or is unable to formulate a proper query (e.g. when using
MML Query searching tool). Sometimes the situation is much more com-
plex — submitted proofs can be better, shorter or just the original ones.
As of now, the author is supposed either to delete such fact from his/her
current submission or to revise the one already available in the repository.
This policy met with the general criticism; potentially MML lost some valu-
able submissions; but the origins of such policy stemed when the software
automatically removing identical theorems was quite frequently used.

Simple consequences. By a simple consequence we understand the theorem
which is justified only by single theorem already present in the MML. Such
consequences were automatically removed but as of now it is postponed.

Generalizations. Such activity is twofold: On the one hand after more com-
plex revisions of the library, unused assumptions are automatically removed;
hence facts are generalized by the software. On the other hand, MML is grad-
ually divided into concrete and abstract parts (those articles which don’t use
the notion of the structure and the rest). The articles belonging to the con-
crete part are put earlier on the list of processing of the MML and are usually
more general than those remaining. As an example, we can consider func-
tions with values in the ring of complex, real or integer numbers. Here the
generalization which comes to mind quite naturally is just considering com-
plex functions with associated operations — and hence all these are special
cases. The danger is here that if we go too far, all the usefulness can get lost
(e.g. quaternions or two possible extensions of real numbers available in the
same time: complex and extended real numbers).
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Important facts. “Important” theorems are usually exception of the above
rule — they remain in their original place. Although it is generally hard to
measure such importance, one of the criteria is, e.g. the presence of the fact
in Freek Wiedijk’s Top 100 mathematical theorems list [Wie06]. Sometimes
well-known concrete instantiations are proven earlier as simpler ones — as
many of the lemmas proven for the Jordan Curve Theorem. To keep the
library as compact as possible we should at least to hide these items (not to
delete them completely as they might still be used by the main theorem),
i.e. not to export them into the Mizar database; final decision was not to do
this (however “obsolete” pragma could be useful). However, the proof of the
irrationality of the square root of 2 is not present in the MML — but the
irrationality of any prime number obviously is.

Automatic discovery. Detecting and removing identical theorems was always
important problem for the MML, but when checker was strengthened, es-
pecially via attributes mechanism, such activity was less intensive. Here the
work of Josef Urban (MoMM) [Urb06] are worth noticing; many connec-
tions between proven facts are “up-to-environment description” — obvious
for software, but not for a human (to give a trivial but explaining example
— it is automatically derived via the cluster registration mechanism that
any singleton is non-empty, so all theorems true for non-empty sets can be
applied to singletons; if someone does not include proper identifiers into his
environment declaration, it will not be the case).

Tighter net of notions. Many of the notions within the Mizar Mathematical
Library are stated in terms of adjectives, plaing a role of axioms for theories.
If this structure will be more precise, the possibility of the automatic detec-
tion of the interconnections between various notions will be higher. That’s
what the MML referees have especially in mind.

Parallel developments. There are some exceptions of the above rules which
can be easily justified. E.g., we have two approaches to lattices (based on
the ordering relation and equationally defined), two alternative views for the
category theory, and even four distinct approaches to Petri nets (although
one of them is currently being eliminated). There is however no clear view
of how to merge them, or, as in the case of lattices, the expressive power of
the Mizar language does not allow for such elimination.

8 Conclusions

When building a mathematical repository it seems plausible to not duplicate
knowledge in order to avoid an unnecessary blow-up of the repository. This is
similar to — and may be inspired by — mathematical definitions, in which the
number of axioms is kept as small as possible.

In this paper we have argued that this, however, is not true in general. We have
analyzed miscellaneous situations in which it might be reasonable or even neces-
sary to duplicate knowledge in a repository. The reasons for that are manifold:
Different proofs may be interesting for didactic reasons or different representa-
tions of the same knowledge may better support different groups of users. Even
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improvements of a repository may lead to duplication of knowledge because e.g.
a theorem, that has been generalized, cannot always be trivially erased without
reworking lots of proofs.

Based on our analysis we have also outlined some ideas how to cope with or
maybe avoid duplication of knowledge giving rise to further research. In general,
it is hardly foreseeable in which cases which kind of knowledge should be du-
plicated. This strongly depends on different kind of users the repository should
attract.
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Abstract. Mathematical learning environments help students in mas-
tering mathematical knowledge. Mature environments typically offer
thousands of interactive exercises. Providing feedback to students solv-
ing interactive exercises requires domain reasoners for doing the exercise-
specific calculations. Since a domain reasoner has to solve an exercise in
the same way a student should solve it, the structure of domain rea-
soners should follow the layered structure of the mathematical domains.
Furthermore, learners, teachers, and environment builders have different
requirements for adapting domain reasoners, such as providing more de-
tails, disallowing or enforcing certain solutions, and combining multiple
mathematical domains in a new domain. In previous work we have shown
how domain reasoners for solving interactive exercises can be expressed
in terms of rewrite strategies, rewrite rules, and views. This paper shows
how users can adapt and configure such domain reasoners to their own
needs. This is achieved by enabling users to explicitly communicate the
components that are used for solving an exercise.

1 Introduction

Mathematical learning environments and intelligent tutoring systems such as
MathDox [8], the Digital Mathematics Environment (DWO) of the Freuden-
thal Institute [9], and the ActiveMath system [14], help students in mastering
mathematical knowledge. All these systems manage a collection of learning ob-
jects, and offer a wide variety of interactive exercises, together with a graphical
user interface to enter and display mathematical formulas. Sophisticated systems
also have components for exercise generation, for maintaining a student model,
for varying the tutorial strategy, and so on. Mathematical learning environ-
ments often delegate dealing with exercise-specific problems, such as diagnosing
intermediate answers entered by a student and providing feedback, to exter-
nal components. These components can be computer algebra systems (CAS) or
specialized domain reasoners.

The wide range of exercise types in a mathematical learning environment
is challenging for systems that have to construct a diagnosis from an inter-
mediate student answer to an exercise. In general, CAS will have no problem
calculating an answer to a mathematics question posed at primary school, high
school, or undergraduate university level. However, CAS are not designed to give
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detailed diagnoses or suggestions to intermediate answers. As a result, giving
feedback using CAS is difficult. Domain reasoners, on the other hand, are de-
signed specifically to give good feedback.

Developing, offering, and maintaining a collection of domain reasoners for
a mathematical learning environment is more than just a software engineer-
ing problem applied to domain reasoners. Mathematical learning environments
usually offer topics incrementally, building upon prior knowledge. For example,
solving linear equations is treated before and used in solving quadratic equa-
tions. Following Beeson’s principles [4] of cognitive fidelity (the software solves
the problem as a student does) and glassbox computation (you can see how
the software solves the problem), domain reasoners should be organized with
the same incremental and layered organization. Structuring domain reasoners
should therefore follow the organization of mathematical knowledge.

Domain reasoners are used by learners, teachers, and developers of mathemat-
ical environments. Users should be able to customize a domain reasoner [16]. The
different groups of users have various requirements with respect to customiza-
tion. For example, a learner might want to see more detail at a particular point
in an exercise, a teacher might want to enforce that an exercise is solved using a
specific approach, and a developer of a mathematical environment might want to
compose a new kind of exercise from existing parts. Meeting these requirements
is challenging in the development of domain reasoners. It is our experience that
users request many customizations, and it is highly unlikely that a static collec-
tion of domain reasoners offering exercises at a particular level will be sufficient
to satisfy everyone. Instead, we propose a dynamic approach that enables the
groups of users to customize the domain reasoners to their needs.

In this paper we investigate how we can offer users the possibility to adapt and
configure domain reasoners. In the first part of the paper we identify the problems
associated with managing a wide range of domain reasoners for mathematics, and
we argue why allowing configuration and adaptation of the concepts describing
domain reasoners is desirable. This is the paper’s first contribution. Section 2
further motivates our research question. We then give a number of case studies
in Section 3 that illustrate the need for adaptation and configuration. Most of
these case studies are taken from our work on developing domain reasoners for
about 150 applets from the DWO of the Freudenthal Institute.

The second part starts with an overview of the fundamental concepts by
means of which we describe mathematical knowledge for solving exercises in
domain reasoners. We show how these concepts interoperate, and how they are
combined (Section 4). Next, we present a solution for adapting and configuring
domain reasoners in Section 5, which is our second contribution. In particular, we
show how our solution helps in solving the case studies. The techniques that are
proposed in this paper have been implemented in our framework for developing
domain reasoners1, and we are currently changing the existing domain reasoners
accordingly. We evaluate the advantages and disadvantages of our approach, and
draw conclusions in the final section.

1 For more information, visit our project webpage at http://ideas.cs.uu.nl/

http://ideas.cs.uu.nl/
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2 Motivation

Computer algebra systems (CAS) are designed specifically for solving complex
mathematical tasks, and performing symbolic computations. CAS are often used
in intelligent tutoring systems as a back-end for assessing the correctness of an
answer. In general, they are suitable for such a task, although different normal
forms can have subtle effects on an assessment [5]. CAS are less suitable for sup-
porting more advanced tutoring functionality, such as suggesting a meaningful
next step, showing a worked-out example, or discovering a common misconcep-
tion: they have not been designed to do so, and generally violate the principles
of cognitive fidelity and glassbox computation.

Specialized domain reasoners are designed with excellent facilities for feedback
and diagnosis in mind. Because they are specialized they often operate on a
narrow class of exercises (e.g., only linear equations). Supporting more, related
classes (e.g., all mathematics topics covered in high school) raises the question
how the knowledge should be organized and managed. Mathematical knowledge
is typically hierarchical, and according to the principle of cognitive fidelity, such
hierarchies should also be present in a domain reasoner for mathematics.

2.1 Feedback Services

When a mathematical learning environment uses domain reasoners for several
classes of exercises, it is important that the reasoners share a set of feedback
services, and that these services are exercise independent. We have defined such
a set of services around rewrite strategies [13,10], which produce step-wise so-
lutions for exercises. With a strategy we can produce worked-out examples (the
derivation service), suggest a next step (the allfirsts service), and diagnose a
term submitted by a learner (the diagnose service). By collecting the rewrite
rules of a strategy, we can report which rules can be applied (the applicable ser-
vice), or recognize common misconceptions (the findbuggyrules service). Other
services we offer are variations of the ones listed above. All services calculate
feedback automatically from a strategy specification and rewrite rules.

Goguadze [11] describes a set of feedback services used by the ActiveMath
learning environment to serve as an interface for calling external domain reason-
ers. His services are similar to ours, and also assume the presence of rewrite rules.
However, they do not depend on rewrite strategies. Neither his nor our current
services [10] accommodate for customizing and adapting domain reasoners.

2.2 Customization from Four Perspectives

Using a predefined collection of domain reasoners that cannot be customized
limits the level of adaptivity of a learning environment. Users of an environment
have many wishes about customizing a domain reasoner, and satisfying these
would lead to many variants. We propose a solution in which users can adapt
a domain reasoner without changing the domain reasoner’s implementation. We
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identify four perspectives for which we consider customizability and adaptability.
These perspectives correspond to the different groups of users.

– Learners. Learners want to customize an exercise to their own level of
expertise. They expect guidance at points where they experience difficulties.
Learners do not interact with a domain reasoner directly, but they send their
requests by way of a learning environment.

– Teachers. Teachers have specific requests about how an exercise should
be solved, and using which steps. They have a good understanding of the
capabilities of a particular homogeneous group of learners. Teachers want to
tailor exercises at a high level.

– Mathematical learning environments. A learning environment is the
front-end for practicing mathematical problem solving, and usually offers
many different classes of exercises. Advanced environments include tools for
authoring exercises (for teachers), they maintain a model of a learner, and
can have a component for adaptive course generation [19]. All these aspects
are related to domain reasoners, and the facilities they offer for customiza-
tion. Environments are the primary clients of a domain reasoner.

– Domain reasoners. From within a domain reasoner, the main concerns are
reusability and maintainability of code and components. The major issue is
how mathematical knowledge should be represented and organized, reflecting
the layered structure of that knowledge.

Each of the case studies that is presented in the next section belongs to one of
the perspectives.

3 Case Studies

This section presents five case studies illustrating the need for dynamic domain
reasoners that are easily adaptable. Afterwards, we propose a solution, and re-
visit the cases in Section 5.6.

3.1 Case Study: Controlling the Solutions for an Exercise

A quadratic equation can be solved in many ways. For example, the Dutch
mathematics textbook Getal & Ruimte [1], used in more than half of the high
schools in the Netherlands, gives many techniques to solve an equation of the
form ax2 + bx + c = 0. It considers the case of a binomial (b = 0 or c = 0) and
the case where its factors can be found easily. Furthermore, the book shows how
(x + 3)2 = 16 can be solved without reworking the term on the left-hand side.
Of course, the quadratic formula is given as a general approach, although using
it is discouraged because it is more involved. Figure 1 shows alternative deriva-
tions for a quadratic equation, including a derivation in which the technique of
“completing the square” is used. Selecting the appropriate technique for a given
equation is one of the skills that needs training.

Depending on the context, a teacher may want to control the way in which a
particular (set of) exercise(s) is solved. For example, a certain exercise should be



Adapting Mathematical Domain Reasoners 319

x2 − 4x = 12
x2 − 4x − 12 = 0
(x − 6)(x + 2) = 0
x = 6 ∨ x = −2

x2 − 4x = 12
x2 − 4x + 4 = 16
(x − 2)2 = 42

x − 2 = 4 ∨ x − 2 = −4
x = 6 ∨ x = −2

x2 − 4x = 12
x2 − 4x − 12 = 0

D = (−4)2 − 4 · 1 · −12
= 64√

D =
√

64 = 8
x = 4+8

2
∨ x = 4−8

2

x = 6 ∨ x = −2

Fig. 1. Three possible derivations for a quadratic equation

solved without using the quadratic formula, or without the technique of complet-
ing the square (because it may not be part of the course material). Controlling
the solution space not only has an effect on the diagnosis of an intermediate
term entered by a learner, it also influences the generation of hints and worked-
out solutions. A strategy that combines multiple solution techniques will often
not be of help, since hints and worked-out solutions might refer to techniques
unknown to the learner, or techniques that should not be used.

3.2 Case Study: Changing the Level of Detail

While doing an exercise, a learner wants to increase the level of detail that is
presented by the learning environment, i.e., the granularity of the steps. For
example, the learner might find the step in which x = 1

2

√
32 is simplified to

x = 2
√

2 hard to understand, even though familiarity with simplifying roots is
assumed. According to the principle of glass-box computation the learner should
be able to inspect the calculations within this step. An extreme scenario in the
other direction is a learner who is only interested in the final answer, not in the
intermediate answers.

3.3 Case Study: Changing the Number System

A teacher wants to allow complex numbers in solutions for polynomial equations,
instead of real numbers. In the setting with real numbers, a negative discriminant
(or a squared term that has to be negative) leads to no solutions. According to
the principle of cognitive fidelity, the software should solve the problem with
complex numbers or with real numbers, depending on the teacher’s preference.
However, the approach to solve an equation, that is, the rewrite strategy, is not
changed significantly. Therefore, reuse of the existing strategy is desirable. A
similar scenario would be to restrict the numbers in an equation to rationals
only, without introducing square roots.

3.4 Case Study: Creating New Exercises from Existing Parts

Rewrite strategies can often be extended to deal with a new class of exercises
by performing some steps beforehand or afterwards. In the case of solving an
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equation with a polynomial of degree 3 or higher, one could try to reduce the
problem to a quadratic equation. This equation can then be handled by an exist-
ing strategy for solving quadratic equations. Ideally, such a composite strategy
is already defined and available. If not, a mathematical learning environment (or
a teacher using it) should be able to assemble the strategy from existing parts,
and use it in the same way as a predefined strategy.

Another scenario is a collection of rules that has to be applied exhaustively
to solve an exercise. Although exhaustive application of rules results in a very
simple rewrite strategy, many interesting problems can be solved in this way. It
should therefore be possible for a teacher using the learning environment to take
or specify such a collection, and to construct a strategy out of it.

3.5 Case Study: Customizing an Exercise with a Student Model

Advanced learning environments, such as ActiveMath, maintain a student
model containing information about the skills and capabilities of the learner.
Such a student model can be used for different purposes, including task selection
and reporting the progress of a learner. Because the model contains detailed
knowledge about the level of the learner, it is desirable to use this knowledge
and to customize the domain reasoner accordingly. For example, a learner that
understands Gaussian elimination can perform this method as a single step when
determining the inverse of a matrix. On the contrary, beginners in linear algebra
should see the intermediate steps.

Obviously, diagnoses from the domain reasoners should also be used to up-
date the student model. In both cases, the domain reasoner and the learning
environment need a shared understanding of the knowledge items, such as the
rewrite rules and the rewrite strategies. The exchange of information in both
directions suggests that the two parts should be tightly integrated.

4 Concepts and Representation of Knowledge

This section discusses the three concepts that are the foundation of our approach:
rewrite rules, rewrite strategies, and views for defining canonical forms. These
concepts not only assist in reasoning about exercises at a conceptual level, they
are also the core abstractions in the implementation of the domain reasoners. We
give a brief introduction to each of the concepts, and point out how they represent
knowledge appearing in mathematical textbooks. Furthermore, we highlight the
properties of the concepts. In the last part of this section we discuss how the
concepts come together in defining an exercise.

4.1 Rewrite Rules

Rewrite rules specify how terms can be manipulated in a sound way, and are
often given explicitly in textbooks. Well-known examples are rewriting AB = 0
into A = 0 ∨ B = 0, the quadratic formula, and associativity of addition.
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These rules constitute the steps in worked-out solutions. Soundness of rules can
be checked with respect to some semantic interpretation of a formula. Such an
interpretation can be context-specific (e.g., x2 =−3 gives no solutions for x in R).

Rewrite rules are atomic actions that can be implemented in code. Clearly,
this gives the implementer of the rule the full power of the underlying program-
ming language. An alternative is to specify rules with a left-hand side and a
right-hand side, and to rely on unification and substitution of terms to do the
transformation [15]. This is common practice in term rewrite systems (TRS) [3].
We allow rewrite rules to yield multiple results.

4.2 Rewrite Strategies

Simple problems can be solved by applying a set of rules exhaustively (for in-
stance, when the set of rules is confluent), but this is generally not the case.
A rewrite strategy [13] guides the process of applying rewrite rules to solve a
particular class of problems. Recipes for solving a certain type of problem can
be found in textbooks, but they are often not precise enough for the purpose
of building a domain reasoner. Given a collection of worked-out solutions by an
expert, one can try to infer the strategy that was used (although typically only
one possible derivation is covered).

Rewrite strategies are built from rewrite rules, with combinators for sequences
and choices (<∗> and <|>, respectively). The fixed point combinator fix allows
for repeating parts. Labels can be placed at arbitrary places in the strategy,
marking substrategies of interest. From a strategy description, multiple deriva-
tions may be generated or recognized.

Since strategies only structure the order in which rewrite rules are applied,
soundness of a derivation follows directly from the soundness of the rules in-
volved. Note that a strategy not only prescribes which rule to apply, but also
where (that is, to which subterm). Also, strategies are designed with a specific
goal in mind. A strategy for quadratic equations, for instance, is expected to
rewrite an equation until the variable is isolated. The solved form that a strat-
egy is supposed to reach is the strategy’s post-condition. Likewise, a strategy
may have certain assumptions about the starting term (e.g., the equation must
be quadratic, or only a single variable is involved), which is its pre-condition.

4.3 Views and Canonical Forms

Canonical forms and notational conventions are an integral part of courses on
mathematics. Examples of conventions in writing down a polynomial are the
order of its terms (sorted by the degree of the term), and writing the coefficient in
front of the variable. Such conventions also play a role when discussing equations
of the form ax2+bx = 0: it is likely that −3x+x2 = 0 is considered an instance of
the form, although the expression 1x2 + (−3)x is rather atypical. These implicit
assumptions make that standard rewriting techniques do not apply directly.

Canonical forms and notational conventions can be captured in a view [12],
which consists of a partial function for matching, and a (complete) function
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for building. Matching may result in a value of a different type, such as the
pair (−3, 5) for the expression −(3 − 5). In this example, the interpretation of
the pair would be addition of both parts. Having a value of a different type
after matching can be useful when specifying a rewrite rule: the pair (−3, 5), for
instance, witnesses that an addition was recognized at top-level. Building after
matching gives the canonical form, and this composed operation must therefore
be idempotent. A view is assumed to preserve a term’s semantics.

Primitive views can be composed into compound views, in two different ways.
Firstly, views are closely related to the arrow interface [17], and its bidirectional
variant. The combinators of this interface can be used for combining views, such
as using views in succession. Secondly, views can be parameterized with another
view. Consider a view for expressions of the form ax + b, returning a pair of
expressions for a and b. Another view can then be used for these two parts (e.g.,
a view for rational numbers). Essentially, this pattern of usage corresponds to
having higher-order views. Views can be used in different ways:

– as a rewrite rule, reducing a term to its canonical form (if possible);
– as a predicate, checking whether a term has a canonical form;
– as an equivalence relation, comparing the canonical forms of two terms.

4.4 Exercises

The three fundamental concepts for constructing domain reasoners discussed
in this section are all we need to support a general set of feedback services
(Section 2.1). Instances of the concepts are grouped together in an exercise
containing all the domain-specific (and exercise-specific) functionality.

The most prominent component of an exercise is its rewrite strategy. In ad-
dition to the rewrite rules that are present in the strategy, more rules can be
added to the exercise for the purpose of being recognized, including buggy rules
for anticipating common mistakes. Predicates are needed for checking whether a
term is a suitable starting term that can be solved by the strategy, and whether
a term is in solved form. These two predicates can be defined as views. For
diagnosing intermediate answers, we need an equivalence relation to compare
a submission with a preceding term. This relation can be specified as a view.
Besides checking student submissions, this view can be used as an internal con-
sistency check, validating the soundness of the rewrite rules. One more view is
needed that checks whether two terms are similar enough to be considered the
same. This view is used to bring intermediate terms produced by a strategy to
their canonical forms.

What remains to be supplied for an exercise is its metadata, such as an iden-
tifier that can serve as a reference, and a short description. For certain domains
it is convenient to have a dedicated parser and pretty-printer for the terms
involved. For external tools, however, interchanging abstract syntax (as opposed
to concrete syntax), such as OpenMath objects [18] for mathematical domains, is
the preferred way of communication, avoiding the need for a parser and pretty-
printer. Although not of primary importance, it can be convenient to have a
randomized term generator for the exercise.
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5 Adaptation and Configuration

This section discusses how users can adapt and customize the exercises that are
offered by a domain reasoner. A user has to be able to inspect the internals of
the components of an exercise, to adapt and replace these components, and to
create new exercises. We briefly discuss the consequences of applying the glassbox
principle to our components. We then propose representations for rewrite rules,
rewrite strategies, and views. These representations are an essential part of the
communication with a domain reasoner. Strategy configurations are introduced
for conveniently adapting existing strategies. We conclude by returning to our
case studies, and show how they can be addressed.

5.1 The Glassbox Principle

The glassbox principle expresses that you should be able to see all steps leading
to a final answer. This is possible with our current services, but you cannot query
the specifics of a rule that was applied, or examine the structure of the rewrite
strategy. From the perspective of a learning environment, rewrite strategies and
rules are still black boxes delivering some result. Ideally, the components involved
are transparent as well, and adhere to the glassbox principle.

Exposing the internals of a component has the advantage that more details
become available for the learning environment, and for other external tools.
These details can be communicated to learners, or to teachers writing feedback
messages. The information can also be used for documentation, visualization of
rewrite strategies, analyses, and much more. Once a domain reasoner supports
a representation, it can be extended to interpret descriptions that are passed to
it. As a result, exercises can be adapted in new, unforeseen ways.

However, there is a trade-off in making components fully transparent. The
need for a representation that can be communicated restricts the way compo-
nents can be specified. The developer of a domain reasoner can no longer take ad-
vantage of the facilities offered by the underlying programming language, which
may negatively affect performance, for example. For our own domain reasoners,
we are gradually working towards transparency.

5.2 Representing Rewrite Rules

Consider the rewrite rule AB = AC → A = 0 ∨B = C. In this rule, A, B , and
C are meta-variables representing arbitrary expressions. A rule that is written
in this way can be seen as a Formal Mathematical Property (FMP), a concept
introduced by the OpenMath standard [18] to specify properties of symbols
that are defined in content dictionaries. The OpenMath standard also supports
explicit quantification of meta-variables by means of the forall binder in the
quant1 dictionary. We can thus use FMPs to represent the rewrite rules of our
domain reasoners2. Likewise, buggy rules can be communicated as FMPs, except
2 Instead of using FMPs, we could have introduced our own representation, in which

case we would still need quantification, meta-variables, and a pair of terms.



324 B. Heeren and J. Jeuring

that the meta-variables are existentially quantified. Indeed, many of our rewrite
rules can also be found in a content dictionary as an FMP.

Unfortunately, not all rules can be represented with a left and right-hand side
straightforwardly. Keep in mind that the representation of a rule should closely
correspond to how it is perceived by a learner. We give some examples that
challenge this approach.

– Some steps correspond to primitive operations, such as replacing 3+ 5 by 8,
or reducing 10

15 to 2
3 . Special support is needed for these operations.

– Rewrite rules should not have meta-variables on the right-hand side that do
not appear on the left [3]. Conceptually, however, such rules do exist as an
intermediate step, such as the rule for scaling a fraction (A

B → AC
BC ), as a

preparatory step for adding it to another fraction. This rule also shows that
rules can have side conditions (C �= 0), which can be expressed in an FMP.

– Generalizations of rules involving a variable number of terms require special
support. An example of such a rule is A(B1 + . . .+Bn) → AB1 + . . .+ABn.

– In an earlier paper [12] we have argued that rules are specified in the context
of a view, yet there is no support for views in the rewrite rules.

These cases can only be circumvented partially by having explicit support for
views in rewrite rules (i.e., associate a new symbol with a view, and specialize the
unification procedure for that symbol), or by using strategies as a representation
for rules (recall that rules can return multiple results).

With this representation for rewrite rules, learning environments can com-
municate new rules to the domain reasoner, thereby extending it. Essentially,
this turns the domain reasoner into a rewrite rule interpreter. When allowing
dynamic extension of a domain, it may no longer be possible to guarantee (or
check) the soundness of rules. Also, care should be taken that the new rules do
not result in excessive computations.

5.3 Representing Rewrite Strategies

Rewrite strategies are specified using a small set of combinators, such as <∗>
for sequence, and <|> for choice. Additional combinators are defined in terms
of this small set (e.g., repeat), resulting in a combinator library with common
patterns. For example, consider the strategy specification for solving a linear
equation, in which both sides of the equation are first rewritten into their basic
form ax + b (the preparation step).

lineq = label "linear equation" (prepare <∗> basic)
prepare = label "prepare equation"

(repeat (merge <|> distribute <|> removeDivision))
basic = label "basic equation"

(try varToLeft <∗> try conToRight <∗> try scaleToOne)

This strategy specification is declarative and compositional, which allows for an
almost literal translation into an XML equivalent. The XML fragment for the
lineq strategy is given below:
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<label name="linear equation">

<sequence>

<label name="prepare equation">

<repeat><choice>

<rule name="merge"/>

<rule name="distribute"/>

<rule name="remove division"/>

</choice></repeat>

</label>

<label name="basic equation"> ... </label>

</sequence>

</label>

An XML tag is introduced for each combinator, and labels and rules have at-
tributes for storing additional information. The strategy combinators for se-
quence and choice are associative, and therefore we let their corresponding tags
have arbitrary many children, instead of imposing a nested structure. The declar-
ative nature of rewrite strategies makes that such a convention does not interfere
with the meaning of the strategy, i.e., it is easy to reason about strategies.

An important design decision in the representation of rewrite strategies is
which of the derived combinators to support in XML, and which not. For in-
stance, repeat s is defined as many s <∗> not s , where many and not are also
derived combinators. Instead of introducing the tag <repeat>, we could use
repeat ’s definition, giving a <sequence> tag at top-level. Fewer tags make it eas-
ier for other tools to process a strategy description. On the other hand, tools can
take advantage of the extra tags (e.g., a tool for visualizing strategies). Hence,
we decide to support most of the combinators in our library.

Rules are referenced by name in a strategy. Similarly, known (sub)strategies
can be included as well. This is particularly helpful for assembling new strategies
from existing parts (both rules and strategies). Under the assumption that the
parts have already been defined, we can give a concise strategy description for
the running example:

<label name="linear equation">

<sequence>

<strategy name="prepare equation"/>

<strategy name="basic equation"/>

</sequence>

</label>

The XML representation paves the way for learning environments to offer their
own rewrite strategies, turning the domain reasoner into an interpreter for strat-
egy descriptions. Interpreting strategies raises issues concerning the correctness
of the strategy (the post-condition it should establish), and in particular termi-
nation when rewriting with the strategy. Experience has shown that specifying
rich strategies is a difficult and error-prone activity, for which offline analysis
and testing capabilities are very helpful.
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5.4 Configuring Rewrite Strategies

New rewrite strategies can be defined from scratch, but often a small change
to an existing strategy suffices. Strategy configurations offer an alternative (and
simpler) way to adapt strategies. With such a configuration, a sequence of trans-
formations can be applied to a strategy.

A useful transformation is to remove a specific part of a strategy, such that
it is not used in a derivation. This can be carried out by replacing the part
(substrategy or rule) by fail , which is the unit element of the choice combinator.
When you remove a rule, you risk that an exercise can no longer be solved. The
inverse transformation is to reinsert a part that was marked as removed.

Another transformation is based on the fact that strategies are special in-
stances of rewrite rules, since they can be performed in a single step. Thus,
strategies can be collapsed into a rule, contributing to just one step in a deriva-
tion. The inverse operation is to expand a rewrite rule and turn it into a strategy.

The hide transformation makes a rule implicit, or the rules in a rewrite strat-
egy. An implicit rule behaves normally, except that it does not show up as a
step in a derivation. Implicit rules can be used to perform certain simplification
steps automatically, and are comparable to so-called administrative rules [13].
The inverse of hide is the reveal transformation.

The properties removed , collapsed , and hidden correspond to the transforma-
tions described above, and they can be assigned to subexpressions in a strategy
description. The properties are translated to attributes in an XML representa-
tion. The three inverse transformations appear as attributes set to false, which
is their default value. The following XML snippet illustrates this approach:

<label name="basic equation" collapsed="true"> ... </label>

Note that this still requires the whole strategy to be communicated, including
the part that is collapsed. To circumvent this, we introduce an XML tag for
each transformation with a target specifying where the transformation should
be applied. The following XML fragment takes the original strategy for solving
a linear equation, and applies the collapse transformation to the substrategy
labeled "basic equation":

<collapse target="basic equation">

<strategy name="linear equation"/>

</collapse>

Transformations can be combined, and if nested, the innermost is applied first.
Because strategy transformations are pure functions, they can be freely mixed
with the “regular” strategy combinators.

Instead of removing a part, we have seen cases where the opposite was re-
quested by a teacher: a certain rule (or substrategy) must be used. This can be
done by selectively removing parts, and making sure that the mandatory part
is used in all cases. For convenience, we offer a mustuse transformation doing
exactly that, which can be used as the other transformations. A weaker variant is
to express a preference for using a rule: this boils down to replacing some choice
strategy combinators by the left-biased choice combinator (written �, see [13]).
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The prefer transformation guarantees that the same set of exercises can be solved
by the strategy, which is not the case for mustuse. The final transformation we
discuss is to replace a part of the strategy by something else. This transforma-
tion takes a target to be replaced, the replacement (first child), and the strategy
in which the replacement has to take place (second child).

5.5 Representing Views

Finding a representation for a view is arguably more difficult than finding one
for a rewrite rule or strategy. Since a view is just a pair of functions, it is
unclear how its internal structure could be represented in general, other than
its implementation in the underlying programming language. We discuss two
special cases: a view defined as a confluent set of rewrite rules, and a view
specified as a rewrite strategy. Compound views are represented by introducing
an explicit representation for the arrow combinators (as was done for the strategy
combinators), and a representation for the application of higher-order views.

Some views can be defined as a confluent set of rewrite rules, in particular
views for simplifying the complete term, and not just the top-level nodes of the
term. The view’s function for matching applies the set of rules: its function for
building is simply the identity function. Such a view can be represented by listing
the rules. Note that confluence ensures that the view returns a canonical form.

Views can also be specified by a rewrite strategy for the view’s match function
and its build function. This is more sophisticated than providing a confluent
set of rewrite rules, because the strategy can control in a precise way how the
rules should be applied. The strategy language has a fixed point combinator for
expressing general recursion. This makes it plausible that many views can be
written as a strategy. The operations of a view must be idempotent, and this
property must be checked for views that are represented by a rewrite strategy.

5.6 Case Studies Revisited

We briefly revisit the five case studies. The teacher in case study 3.1 wants
to control how an exercise is solved, for example by disallowing certain rules
or techniques. A strategy configuration provides this functionality by means of
the remove, mustuse, and prefer transformations. The second case (a learner
customizing the level of details) is handled likewise: parts in the strategy that
have been collapsed can be expanded, or the other way around. To see yet more
detail, implicit rules can be made explicit, or rules can be replaced by a rewrite
strategy that is doing the same. For example, the quadratic formula introduces
a square root, which is simplified immediately because it is not the focus of the
exercise. Normalizing expressions involving roots is, however, a topic on its own,
for which a rewrite strategy is available. We can plug-in this strategy to increase
the level of detail in solving an equation with the quadratic formula.

Changing the underlying number system in an exercise (case study 3.3) is not
trivial. Consider using complex numbers for solving a quadratic equation. To
start with, some support for the basic operations on complex numbers is needed
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(e.g., addition and multiplication). This can best be captured in a view. Ideally,
a view for complex numbers is already present in the domain reasoner. If not, the
view can be specified as a rewrite strategy. This view can be used for bringing an
expression with complex numbers to its canonical form. Furthermore, additional
rewrite rules are added to the exercise, such as i2 → −1. These new rules can be
inserted in the strategy for quadratic equations, whereas other rules are excluded
(e.g., the rule that a square root of a negative number leads to no solution). The
subtle part of this case study is that the views used in the strategy’s rewrite rules
may also have to change, in particular if they involve calculations with numbers.
Composing higher-order views (e.g., a view for polynomials parameterized over
the type of its coefficients) alleviates this issue.

Case study 3.4 is solved by interpreting rewrite strategies that are assembled
by the learning environment. Not all rewrite rules are representable, which cur-
rently limits what can be done without changing the domain reasoner. The last
case study involves customizing the level of detail in an exercise, which is highly
desirable for adaptive learning systems. Based on the student model, a strategy
configuration must be generated by the learning environment.

6 Conclusions, Related and Future Work

We have shown why adapting domain reasoners is very desirable in the context of
mathematical learning environments. By explicitly representing the fundamental
concepts used in domain reasoners, we can let users adapt and configure a class
of exercises in a domain reasoner. We use OpenMath to represent mathematical
expressions and rewrite rules, but we have designed our own XML language for
specifying rewrite strategies, and transformations on these strategies. Our strat-
egy language is very similar to the tactic languages used in theorem proving [6,2],
and has the same expressive power.

Several authors discuss adaptation of various aspects in learning environ-
ments [16,19], but we are not aware of previous work on configuring and adapting
domain reasoners. Hierarchical proofs [7,2], which represent proofs at different
levels of abstraction, are related to turning a strategy into a rule and vice versa.
As far as we found, hierarchical proofs are not used to recognize proving steps
made by a student.

We have indicated some challenges in representing rewrite rules and views
(sections 5.2 and 5.5), and these cases require further investigation. Even though
we are striving for domain reasoners that are fully transparent (i.e., that have
an explicit representation), we think that hybrid solutions, in which only certain
parts can be adapted, are a conceivable compromise. We plan to investigate how
the facilities for adapting domain reasoners can best be offered to a teacher or a
domain expert, and what skills are reasonable to expect from such a user.
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Abstract. We present in this paper an evolution of a tool from a user
interface for a concrete Computer Algebra system for Algebraic Topology
(the Kenzo system), to a front-end allowing the interoperability among
different sources for computation and deduction. The architecture allows
the system not only to interface several systems, but also to make them
cooperate in shared calculations.

1 Different Questions, Different Sources

When working in Mathematics, usually the researcher uses different sources of
information. Typically, he can consult some papers or textbooks, make some
computations with a Computer Algebra system, check the results against some
known tables or, more rarely, verify some conjectures with a proof assistant tool.
That is to say, Mathematical Knowledge is dispersed among several sources.

Our aim in this work is to mechanize, in some particular cases, the man-
agement of these multiple-source information systems. Since it would be too
pretentious to try to solve fully this problem, we work in a very specific context.
Thematically, we restrict ourselves to (a subset of) Algebraic Topology. With
respect to the sources, in order to have a representation wide enough, we have
chosen two Computer Algebra systems (Kenzo and GAP), a theorem prover
(ACL2) and a small expert system developed by us. The objective of the expert
system is computing homotopy groups. Kenzo and GAP can compute homology
groups of different spaces, but the calculation of homotopy is in general much
harder. Our homotopy expert system tries to take profit of theoretical knowl-
edge contained in theorems (tables have been excluded up to now, since they
are considered less difficult to integrate, from a technological point of view), and
can ask computational results to Kenzo, if needed.

This paper is a natural continuation of [17] and [18]. There are three main con-
tributions in the paper: an architecture based on the Broker pattern [8] (proven
as an open, flexible and adaptable tool); an Homotopy Expert System (HES)
that allows non-trivial computations (and explanations) interacting with Kenzo;
and the automation of the interoperability between Kenzo and GAP.
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From the symbolic computation literature, we looked for inspiration in differ-
ent projects and frameworks such as the MathWeb software bus [5], its successor
the MathServe Framework [4], the MoNET project [9,6] or the MathBroker [2]
and MathBroker II [3] projects, as well as in other works as [13] or [22].

2 General View of the System

The Broker architectural pattern [8] can be used to structure software systems
with decoupled components that interact through service invocations. The Bro-
ker pattern defines three kinds of participants: clients, components, and the bro-
ker itself. A scheme of our architecture based on this pattern is depicted in
Figure 1. The mediator (broker) component embeds an Internal Memory where
a strategy of memoization has been systematically implemented (based on the
same idea used in GAP for attributes, see [16]). The system stores the results
in the internal memory when a computation is executed for the first time, and
if the same computation is asked again later, the result is simply looked up and
returned, without further computation.

Mediator Internal Memory

front-end

HES Kenzo GAP ACL2

Fig. 1. Broker architectural pattern

The decorator pattern [8] is used to wrap objects of our system with informa-
tion, like the type of the object (simplicial set, group,. . . ) or the reduction de-
gree [17] if the object is a topological space. This information guides the mediator
to decide which component to use. Namely, Kenzo [11] (a Symbolic Computation
system devoted to Algebraic Topology) is the core for computations related to
homology groups of spaces, GAP [1] (a Computer Algebra system in the area
of Computational Group Theory) and HAP [12] (a GAP homological algebra
library) are the core for computations related to group homology, ACL2 [19]
(a first order logic theorem prover) is the kernel for verifying the correctness of
statements and, finally, the Homotopy Expert System (a small module devel-
oped by us described in the next paragraph and from now on called HES) is in
charge of computing homotopy groups.

HES is a rule-based expert system. The structure of a rule-based expert sys-
tem, see [15], consists of, and the HES is no exception, the following components:
the Working memory (the facts), the Knowledge base (the rules), the Inference
engine, a Knowledge acquisition module and an Explanation facility module. In
the scope of the HES, the facts are properties associated with the objects (for



Integrating Multiple Sources to Answer Questions in Algebraic Topology 333

instance, “∀n ∈ N : Δn is a contractible space”). The current knowledge base is
made up of 23 rules (such as, “if X is contractible and n ≥ 1 then πn(X) = 0”).
The inference engine uses the forward chaining method for reasoning, see [15].
To grapple with the knowledge acquisition aspects, the HES takes profit from
both the RuleML markup language [7] and the OMDoc format [20], the former
one is used to specify rules in a declarative way and the second one to store
concrete functionalities. Last but not least, gathering the applied rules and the
facts that decorate each object, our HES is able to provide a trace containing
the reasoning followed by it in order to reach a conclusion.

However, the power of our system does not lie in gathering several computer
algebra systems and theorem provers and use them separately with the same
front end, but interconnecting them to reach new results. The communication
among modules is performed by means of the OpenMath language [10], used to
represent the objects in a common language for all the systems.

In [21] an approach to coordinate GAP and Kenzo was presented. In that
work GAP and Kenzo cooperate in order to compute homology groups of some
spaces. These spaces with their homology can then be used in other construc-
tions and applications. Some enhancements of that tool provided by our system
are: avoidance of the installation of several programs and packages, automation
of communication steps (here the SCSCP protocol [14] plays a key role) and
concealment of the details to mix the systems.

The general procedure and technology to connect with the ACL2 system ex-
plained in [18] is now applied to the context of group homology. The Common
Lisp code used in Kenzo to represent a group is sent to ACL2 as an instance
of an ACL2 encapsulate (a mechanism to introduce new functions symbols by
axioms constraining them to have certain properties) by means of our broker,
which is also in charge of invoking ACL2 in a way transparent for the user.

In another line, Kenzo and the HES cooperate to compute homotopy groups of
spaces. In this case, the HES requests Kenzo to compute homology groups which
can be used to obtain homotopy groups. Whereas Kenzo communicates with the
HES in order to send it results. The idea consists of gathering the knowledge stored
in the HES and chaining several tools available in Kenzo to get results which are
not reachable by anyone of them working in an independent way.

3 Putting All Together

Our current front-end has evolved from the user interface for Kenzo presented
in [17]. Its presentation layer is kept, but its internal mediator has been enriched
to support different sources of information. Figure 2 displays some computations
which took profit of the following interactions: H4(Ω2(S4)) = Z (computed with
Kenzo), H5(C5) = Z/5Z (computed with GAP), π4(Δ4×Δ5) = 0 (obtained with
the Homotopy Expert System), H5(K(C5, 1)) = Z/5Z (computed with Kenzo +
GAP), π4(S4) = Z (obtained with the Homotopy Expert System + Kenzo).

It is worth noting that all results are shown to the user in a unique screen and
that the computations are asked from a sole menu, then the user does not know
the system in charge of computing neither the collaboration among computer
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Fig. 2. The front end for computations

algebra systems, he only receives the desired result. The technical details are
hidden to the user. The results related to ACL2 are shown in a different tab to
split the computations from the deductions.

4 Conclusions and Further Work

In this paper an architecture to integrate different tools for computing and logical
reasoning in Algebraic Topology is presented. Even if our proposal has a limited
extend, both thematically and from the point of view of the core systems, we think
it shows a solid line of research that could be exported to other areas of mathemati-
calknowledgemanagement.OpenMath technologies are the essential tool ensuring
the interoperability among systems (even integration in some cases). This interop-
erability has a vertical dimension (from the mediator to the kernel systems) as well
as a horizontal axis (allowing direct interconnection of kernel systems). The mod-
ules can be taken from their sources (as in the cases of Kenzo and ACL2), invoked
in a remote manner (like the GAP server, connected via the SCSCP protocol) or
even developed in an ad-hoc way (as our Homotopy Expert System).

Several research lines are still open. The most important ones are related to
giving more resources to the user to manage the interaction. Moreover, it would
be also necessary to improve the interaction with the ACL2 system. At this
moment the queries must be pre-processed; a comfortable way of introducing
questions about the truth of properties of intermediary objects, dynamically
generated during a computing session, should be provided. Last, and the most
difficult one, a meta-language should be designed to specify how and when a
new kernel system can be plugged in the framework. This capability and the
necessity of orchestrating the different services suppose a real challenge, which
will be explored by means of OpenMath technologies.
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Abstract. Authoring documents in MKM formats like OMDoc is a very
tedious task. After years of working on a semantically annotated cor-
pus of STEX documents (GenCS), we identified a set of common, time-
consuming subtasks, which can be supported in an integrated authoring
environment.

We have adapted the modular Eclipse IDE into STEXIDE, an author-
ing solution for enhancing productivity in contributing to STEX based
corpora. STEXIDE supports context-aware command completion, module
management, semantic macro retrieval, and theory graph navigation.

1 Introduction

Before we can manage mathematical ‘knowledge’ — i.e. reuse and restructure it,
adapt its presentation to new situations, semi-automatically prove conjectures,
search it for theorems applicable to a given problem, or conjecture representation
theorems, we have to convert informal knowledge into machine-oriented repre-
sentations. How exactly to support this formalization process so that it becomes
as effortless as possible is one of the main unsolved problems of MKM. Currently
most mathematical knowledge is available in the form of LATEX-encoded docu-
ments. To tap this reservoir we have developed the STEX [Koh08, sTe09] format,
a variant of LATEX that is geared towards marking up the semantic structure
underlying a mathematical document.

In the last years, we have used STEX in two larger case studies. In the first
one, the second author has accumulated a large corpus of teaching materials,
comprising more than 2,000 slides, about 800 homework problems, and hun-
dreds of pages of course notes, all written in STEX. The material covers a general
first-year introduction to computer science, graduate lectures on logics, and re-
search talks on mathematical knowledge management. The second case study
consists of a corpus of semi-formal documents developed in the course of a ver-
ification and SIL3-certification of a software module for safety zone computa-
tions [KKL10a, KKL10b]. In both cases we took advantage of the fact that
STEX documents can be transformed into the XML-based OMDoc [Koh06] by
the LATEXML system [Mil10], see [KKL10a] and [DKL+10] for a discussion on
the MKM services afforded by this.

These case studies have confirmed that writing STEX is much less tedious
than writing OMDoc directly. Particularly useful was the possibility of using the
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STEX-generated PDF for proofreading the text part of documents. Nevertheless
serious usability problems remain. They come from three sources:

P1 installation of the (relatively heavyweight) transformation system (with de-
pendencies on perl, libXML2, LATEX, the STEX packages),

P2 the fact that STEX supports an object-oriented style of writing mathematics,
and

P3 the size of the collections which make it difficult to find reusable components.

The documents in the first (educational) corpus were mainly authored directly
in STEX via a text editor (emacs with a simple STEX mode [Pes07]). This was
serviceable for the author, who had a good recollection for names of semantic
macros he had declared, but presented a very steep learning curve for other
authors (e.g. teaching assistants) to join. The software engineering case study
was a post-mortem formalization of existing (informal) LATEX documents. Here,
installation problems and refactoring existing LATEX markup into more semantic
STEX markup presented the main problems.

Similar authoring and source management problems are tackled by Integrated
Development Environments (IDEs) like Eclipse [Ecl08], which integrate support
for finding reusable functions, refactoring, documentation, build management,
and version control into a convenient editing environment. In many ways, STEX
shares more properties with programming languages like Java than with con-
ventional document formats, in particular, with respect to the three problem
sources mentioned above

S1 both require a build step (compiling Java and formatting/transforming STEX
into PDF/OMDoc),

S2 both favor an object-oriented organization of materials, which allows to
S3 build up large collections of re-usable components

To take advantage of the solutions found for these problems by software engi-
neering, we have developed the STEXIDE integrated authoring environment for
STEX-based representations of mathematical knowledge. In the next section we
recap the parts of STEX needed to understand the system. In Section 3 we present
the user interface of the STEXIDE system, and in Section 4 we discuss implemen-
tation issues. Section 5 concludes the paper and discusses future work.

2 STEX: Object-Oriented LATEX Markup

The main concept in STEX is that of a “semantic macro”, i.e. a TEX command
sequence S that represents a meaningful (mathematical) concept or object O:
the TEX formatter will expand S to the presentation of O. For instance, the com-
mand sequence \positiveReals is a semantic macro that represents a mathe-
matical symbol — the set R+ of positive real numbers. While the use of semantic
macros is generally considered a good markup practice for scientific documents1,
1 For example, because they allow adapting notation by macro redefinition and thus

increase reusability.
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regular TEX/LATEX does not offer any infrastructural support for this. STEX does
just this by adopting a semantic, “object-oriented” approach to semantic macros
by grouping them into “modules”, which are linked by an “imports” relation.
To get a better intuition, consider the example in listing 1.

Listing 1. An STEX module for Real Numbers

\begin{module}[id=reals]
\importmodule[../background/sets]{sets}
\symdef{Reals}{\mathcal{R}}
\symdef{greater}[2]{#1>#2}

5 \symdef{positiveReals}{\Realsˆ+}
\begin{definition}[id=posreals.def,title=Positive Real Numbers]

The set $\positiveReals$ is the set of $\inset{x}\Reals$ such that $\greater{x}0$
\end{definition}
. . .

10\end{module}

which would be formatted to

Definition 2.1 (Positive Real Numbers):
The set R+ is the set of x ∈ R such that x > 0

Note that the markup in the module reals has access to semantic macro \inset
(membership) from the module sets that was imported by the document by
\importmodule directive from the ../background/sets.tex. Furthermore, it
has access to the \defeq (definitional equality) that was in turn imported by
the module sets.

From this example we can already see an organizational advantage of STEX
over LATEX: we can define the (semantic) macros close to where the corresponding
concepts are defined, and we can (recursively) import mathematical modules.
But the main advantage of markup in STEX is that it can be transformed to
XML via the LATEXML system [Mil10]: Listing 2 shows the OMDoc [Koh06]
representation generated from the STEX sources in listing 1.

Listing 2. An XML Version of Listing 1

<theory xml:id=”reals”>
<imports from=”../background/sets.omdoc#sets”/>
<symbol xml:id=”Reals”/>
<notation>

5 <prototype><OMS cd=”reals” name=”Reals”/></prototype>
<rendering><m:mo>R</m:mo></rendering>

</notation>
<symbol xml:id=”greater”/><notation>. . .</notation>
<symbol xml:id=”positiveReals”/><notation>. . .</notation>

10 <definition xml:id=”posreals.def” for=”positiveReals”>
<meta property=”dc:title”>Positive Real Numbers</meta>
The set <OMOBJ><OMS cd=”reals” name=”postiveReals”/></OMOBJ> is the set . . .

</definition>
. . .

15</theory>

One thing that stands out from the XML in this listing is that it incorporates all
the information from the STEX markup that was invisible in the PDF produced
by formatting it with TEX.

../background/sets.tex
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3 User Interface Features of STEXIDE

One of the main priorities we set for STEXIDE is to have a relatively gentle learning
curve. As the first experience of using a program is running the installation pro-
cess, we worked hard to make this step as automated and platform independent
as possible. We aim at supporting popular operating systems such as Windows
and Unix based platforms (Ubuntu, SuSE). Creating an OS independent distri-
bution of Eclipse with our plugin preinstalled was a relatively straightforward
task; so was distributing the plugin through an update site. What was chal-
lenging was getting the 3rd party software (pdflatex, svn, latexml, perl) and
hence OS specific ports installed correctly.

After installation we provide a new project wizard for STEX projects which
lets the user choose the output format (.dvi, .pdf, .ps, .omdoc, .xhtml) as
well as one of the predefined sequences of programs to be executed for the build
process. This will control the Eclipse-like workflow, where the chosen ‘outputs’
are rebuilt after every save, and syntactic (as well as semantic) error messages are
parsed, cross-referenced, and displayed to the user in a collapsible window. The
wizard then creates a stub project, i.e. a file main.tex which has the structure of
a typical STEX file but also includes stex package and imports a sample module
defined in sample_mod.tex.

STEXIDE supports the user in creating, editing and maintaining STEX docu-
ments or corpora. For novice users we provide templates for creating modules,
imports and definitions. Later on, the user benefits from context-aware autocom-
pletion, which assists the user in using valid LATEX and STEX macros. Here, by
valid macros, we mean macros which were previously defined or imported (both
directly or indirectly) from other modules. Consider the sample STEX source in
listing 1. At the end of the first line, one would only be able to autocomplete
LATEX macros, whereas at the end of the second line, one would already have
macros like \inset from the imported sets module (see Fig. 1). Note that we
also make use of the semantic structure of the STEX document in listing 1 for

Fig. 1. Context aware autocompletion feature for semantic macros
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explanations. Namely, the macro \positiveReals is linked to its definition via
the key for=positiveReals, this makes it possible to display the text of the
definition as part of macro autocompletion explanation (the yellow box).

Similarly, semantic macro retrieval (triggered by typing ’\*’) will suggest all
available macros from all modules of the current project. In case that the auto-
completed macro is not valid for the current context, STEXIDE will insert the
required import statement so that the macro becomes valid.

Moreover, STEXIDE supports several typical document/collection maintenance
tasks: Supporting symbol and module name refactoring is very important as
doing it manually is both extremely error-prone and time consuming, especially
if two different modules define a symbol with the same name and only one of
them is to be renamed. The module splitting feature makes it easier for users
to split a larger module intro several semantically self contained modules which
are easier to be reused. This feature ensures that imports required to make the
newly created module valid are automatically inserted.

C B

A

At last, import minimization creates warnings for unused or re-
dundant \importmodule declarations and suggests removing them.
Consider for instance the situation on the right, where modules C
and B import module A. Now, if we add a semantic macro in C that
needs an import from B, then we should replace the import of A in C with one
of B instead of just adding the latter (i.e. we would replace the dashed by the
dotted import).

Three additional features make navigation and information retrieval in big
corpora easier. Outline view of the document (right side of figure 1) displays
main semantic structures inside the current document. One can use outline
tree layout to copy, cut and navigate to areas represented by the respective

Fig. 2. Macro Retrieval via Mathematical Concepts
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structures. In case of imports one can navigate to imported modules. Theory
graph navigation is another feature of STEXIDE. It creates a graphical represen-
tation of how modules are related through imports. This gives the author a
chance to get a better intuition for how concepts and modules are related. The
last feature is the semantic macro search feature. The aim of this feature is to
search for semantic macros by their mathematical descriptions, which can be
entered into the search box in figure 2. The feature then searches definitions,
assumptions and theorems for the query terms and reports any \symdef-defined
semantic macros ‘near’ the hits. This has proved very convenient in situations
where the macro names are abbreviated (e.g. \sconcjuxt for “string concatena-
tion by juxtaposition”) or if there are more than one name for a mathematical
context (e.g. “concatenation” for \sconcjuxt) and the author wants to re-use
semantic macros defined by someone else.

4 Implementation

The implementation of STEXIDE is based on the TeXlipse [TeX08] plugin for
Eclipse. This plugin makes use of Eclipse’s modular framework (see Fig. 3 3)
and provides features like syntax highlighting, code folding, outline generation,
autocompletion and templating mechanisms. Unfortunately, TeXlipse uses a
parser which is hardwired for a fixed set of LATEX macros like \section, \input,
etc. which made it quite challenging to generalize it to STEX specific macros.
Therefore we had to reimplement parts of TeXlipse so that STEX macros like
\symdef and \importmodule that extend the set of available macros can be
treated specially. We have underlined all the parts of TeXlipse we had to
extend or replace in Figure 3.

To support context sensitive autocompletion and refactoring we need to know
the exact position in the source code where modules and symbols are defined.

Fig. 3. Component architecture of TeXlipse (adapted from [TeX10])
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Running a fully featured LATEX parser like LATEXML proved to be too slow
(sometimes taking 5-10 sec to compile a document of 15 pages) and sensitive
to errors. For these reasons, we implemented a very fast but näıve LATEX parser
which analyses the source code and identifies commands, their arguments and
options. We call this parser näıve because it parses only one file a time (i.e.
inclusions, and styles are not processed) and macros are not expanded. We realize
the parse tree as an in-memory XML DOM to achieve format independence (see
below). Then we run a set of semantic spotters which identify constructs like
module and import declarations, inclusions as well as sections/subsections etc,
resulting in an index of relevant structural parts of the STEX source identified
by unique URIs and line/column number ranges in the source. For example,
a module definition in STEX begins with \begin{module}[id=module_id] and
ends in a \end{module}, so the structure identifying a module will contain these
two ranges.

Note that the LATEX document model (and thus that of STEX) is a tree, so
two spotted structure domains are either disjoint or one contains the other,
so we implement a range tree we use for efficient change management: STEX
IDE implements a class which listens to changes made in documents, checks if
they intersect with the important ranges of the spotted structures or if they
introduce new commands (i.e. start with ’\’). If this does not hold, the range
tree is merely updated by calculating new line and column numbers. Otherwise
we run the näıve LATEX parser and the spotters again.

Our parser is entirely generated by a JavaCC grammar. It supports error
recovery (essential for autocompletion) and does not need to be changed if a new
macro needs to be handled: Semantic Spotters can be implemented as XQueries,
and our parser architecture provides an API for adding custom made semantic
spotters. This makes the parser extensible to new STEX features and allows
working around the limitation of the näıve LATEX parser of not expanding macros.

We implemented several indexes to support features mentioned in section 3.
For theory navigation we have an index called TheoryIndex which manages a
directed graph of modules and import relationships among them. It allows a) re-
trieving a list of modules which import/are imported by module X b) checking
if module X is directly/indirectly imported by module Y . SymdefIndex is an-
other index which stores pairs of module URIs and symbols defined in those
modules. It supports fast retrieving of (symbol, module) pairs where a symbol
name starts with a certain prefix by using a trie data structure. As expected,
this index is used for both context aware autocompletion as well as semantic
macro retrieval features. The difference is that context aware autocompletion
feature also filters the modules not accessible from current module by using the
TheoryIndex. Refactoring makes use of an index called RefIndex. This index
stores (module URI, definition module URI, symbol name) triples for all symbol
occurrences (not just definitions as in SymdefIndex). Hence when the author
wants to rename a certain symbol, we first identify where that symbol is defined
(i.e. its definition module URI) and then query for all other symbols with same
name and definition module URI.
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5 Conclusion and Future Work

We have presented the STEXIDE system, an integrated authoring environment
for STEX collections realized as a plugin to the Eclipse IDE. Even though the
implementation is still in a relatively early state, this experiment confirmed the
initial expectation that the installation, navigation, and build support features
contributed by Eclipse can be adapted to a useful authoring environment for
STEX with relatively little effort. The modularity framework of Eclipse and the
TeXlipse plugin for LATEX editing have been beneficial for our development.
However, we were rather surprised to see that a large part of the support infra-
structure we would have expected to be realized in the framework were indeed
hard-coded into the plugins. This has resulted in un-necessary re-implementation
work.

In particular, system- and collection-level features of STEXIDE like automated
installation, PDF/XML build support, and context-sensitive completion of com-
mand sequences, import minimziation, navigation, and concept-based search
have proven useful, and are not offered by document-oriented editing solutions.
Indeed such features are very important for editing and maintaining any MKM
representations. Therefore we plan to extend STEXIDE to a general “MKM IDE”,
which supports more MKM formats and their human-oriented front-end syntaxes
(just like STEX serves a front-end to OMDoc in STEXIDE).

The modular structure of Eclipse also allows us to integrate MKM services
(e.g. information retrieval from the background collection or integration of ex-
ternal proof engines for formal parts [ALWF06]; see [KRZ10] for others) into
this envisioned “MKM IDE”, so that it becomes a “rich collection client” to a
universal digital mathematics library (UDML), which would continuously grow
and in time would contain essentially all mathematical knowledge envisioned as
the Grand Challenge for MKM in [Far05].

In the implementation effort we tried to abstract from the STEX surface syntax,
so that we anticipate that we will be able to directly re-use our spotters or adapt
them for other surface formats that share the OMDoc data model. The next
target in this direction is the modular LF format introduced in [RS09]. This
can be converted to OMDoc by the TWELF system, which makes its treatment
directly analogous to STEX, this would provide a way of information sharing
among different authoring systems and workflows.
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Abstract. In logic there is a clear concept of what constitutes a proof
and what not. A proof is essentially defined as a finite sequence of for-
mulae which are either axioms or derived by proof rules from formulae
earlier in the sequence. Sociologically, however, it is more difficult to say
what should constitute a proof and what not. In this paper we will look
at different forms of proofs and try to clarify the concept of proof in the
wider meaning of the term. This has implications on how proofs should
be represented formally.

1 Introduction

There is a relatively clear definition of what a proof is. The concept has been
clarified in the last 150 years with the development of logic and in the last 50
to 60 years with the development of systems which formalize the results of these
investigations in formal computer systems. Mathematicians, however, seem not
to have much changed their view of proofs.1 Sure, they have some knowledge
of the results in foundations but if they work in fields such as statistics, group
theory, or geometry then the formalization of proof is only of marginal interest,
although the concept of proof itself is at the core of the whole of mathematics.

Is this just a matter of ignorance? Or rather of professionalism? And what are
the consequences for our field which tries to offer support for mathematicians?

In order to approach these questions an account of the development of the
concept of proof in different fields is given. We first take a look at the develop-
ment in logic (section 2)2. Next we see the consequences this had on working
mathematicians and their attitude towards formal proofs (section 3). The devel-
opment in logic has strongly influenced the development of deduction systems.
In section 4 we take a brief look at deduction systems. Then some consequences
for the field of mathematical knowledge management are discussed. Essentially
we argue that the representation of proofs should be flexible enough to serve
different purposes in order to be able to communicate proofs at different levels:
checkable proofs, abstract high-level proofs, proof ideas/plans, and false proofs.
1 Obviously for those working on the foundations of mathematics this is different. The

generalization ‘mathematicians’ does not mean all mathematicians, but most typical
mathematicians.

2 The claim is not that there is a single view in the different fields. Even a single
person may have different views at different times or in different contexts.
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2 The Logician’s View

In the second half of the 19th century and in the early 20th century, a rigorous
definition of the concept of proof was given. Inspired by the rigorous work of
Euclid, Hilbert axiomatized geometry and developed a programme to be car-
ried through for all of mathematics. Whitehead and Russell wrote the Principia
Mathematica [23] which started to implement the grand vision to reduce all of
mathematics to logic. Logicians like Boole and Frege developed propositional
and predicate logic, and Gentzen the calculus of Natural Deduction.

As Frege put it, the vision was ([7] quoted from [10, p.6f]):

In apprehending a scientific truth we pass, as a rule, through various de-
grees of certitude. Perhaps first conjectured on the basis of an insufficient
number of particular cases, a general proposition comes to be more and
more securely established by being connected with other truths through
chains of inferences, whether consequences are derived from it that are
confirmed in some other way or whether, conversely, it is seen to be a
consequence of propositions already established. Hence we can inquire,
on the one hand, how we have gradually arrived at a given proposition
and, on the other, how we can finally provide it with the most secure
foundation. The first question may have to be answered differently for
different persons; the second is more definite, and the answer to it is con-
nected with the inner nature of the propositions considered. The most
reliable way of carrying out a proof, obviously, is to follow pure logic . . .
Everything necessary for a correct inference is expressed in full . . . noth-
ing is left to guesswork.

Hilbert’s definition of proof as a sequence of formulae which are either axioms
or generated by rules from elements coming earlier in the sequence is now quite
standard in logic books. Natural Deduction calculi as introduced by Gentzen
(see, e.g., [19]) are an extension of this definition. For instance, Andrews [2,
p.11] defines strictly formally the notions of a proof (from hypotheses and then
a proof of a well-formed formula (wff)). Then he defines “A theorem is a wff
which has a proof.”

On a more philosophical level there has been a dispute what should constitute
a rigorous proof, since even with this clarification the question was not fully set-
tled. Most notably there was a dispute between Hilbert and Brouwer on the right
approach to mathematics, in which the question of constructive proofs versus
‘classical’ proofs played a major role. Hilbert wanted, in particular, defend the
‘paradise’ of (infinite) sets provided by Cantor, whereas Brouwer was wary about
the concept of infinity and insisted on constructiveness. At the time, Brouwer’s
view was considered by many mathematicians as too restrictive (and probably
is still by many today). With the advent of computers the idea of constructive
proofs, however, gained great attraction since proving and programming became
the same activity. For details of the dispute see [10]. There are other disputes,
e.g., about the axiom of choice and about the rigour of diagrams in reasoning.
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For the argument here, it suffices to state that even in the rigorous area of logical
foundations there can be dispute about what should constitute a proof and what
not.3

3 The Mathematician’s View

Mathematicians seem to have ignored the development in formal logic to a large
degree. The start of the rapid development of modern logic can be put roughly
to the mid 19th century. However, the start of the rapid development of modern
mathematics is about 200 years older.4

As Kline [12, p.256] notes, the “Bourbakists expressed their position on logic
in an article in the Journal of Symbolic Logic (1949): ‘In other words, logic,
so far as we mathematicians are concerned, is no more and no less than the
grammar of the language which we use, a language which had to exist before
the grammar could be constructed.’ Future developments in mathematics may
call for modifications of the logic. This had happened with the introduction of
infinite sets and, . . . it would happen again.”

In a similar line, Bourbaki ([4] quoted from [12, p.320]) doubts that one of
the goals of logicians, to make mathematics free from contradictions, is feasible:

Historically speaking, it is of course quite untrue that mathematics is free
from contradictions; non-contradiction appears as a goal to be achieved,
not as a God-given quality that has been granted to us once for all. Since
the earliest times, all critical revisions of the principles of mathematics as
a whole, or of any branch in it, have almost invariably followed periods of
uncertainty, where contradictions did appear and had to be resolved. . . .
There are now twenty-five centuries during which the mathematicians
have had the practice of correcting their errors and thereby seeing their
science enriched, not impoverished; this gives them the right to view the
future with serenity.

Theorems with their proofs are at the core of mathematics and play a significant
role in the working of mathematicians. Hardy describes in § 12 of [9] two examples
of theorems (with proofs) which he calls ‘first-rate’: First the theorem that there
are infinitely many prime numbers (the proof is indirect, assume that you have
finitely many, multiply them all and add 1. The new number is not divisible
by any prime number, which gives a contradiction.) and second the theorem
that

√
2 is irrational (again an indirect proof: assume

√
2 = a/b with a and b

two integers which have no common divisor. Then 2 · b2 = a2. It follows that
a2 and hence a must be even, but then b must be even as well, which gives a
contradiction).

3 It should be noted, however, that there is a clear language and it is very clear to the
participants of a dispute what they are talking about.

4 And of course there are always precursors, Aristotle as the father of logic, Archimedes
who was close to inventing calculus almost 2000 years before Newton and Leibniz.
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In § 18 Hardy states then:

In both theorems (and in the theorems, of course, I include the proofs)
there is a very high degree of unexpectedness, combined with inevitabil-
ity and economy. The arguments take so odd and surprising a form; the
weapons used seem so childishly simple when compared with the far-
reaching results; but there is no escape from the conclusions. There are
no complications of detail – one line of attack is enough in each case;
and this is true too of the proofs of many much more difficult theorems,
the full appreciation of which demands quite a high degree of technical
proficiency. We do not want many “variations” in the proof of a math-
ematical theorem: “enumeration of cases,” indeed is one of the duller
forms of mathematical argument. A mathematical proof should resem-
ble a simple and clear-cut constellation, not a scattered cluster in the
Milky Way.

Proofs often follow established patterns. Often they are invented, doubted by
other, later generally accepted, and finally re-used, taught, and generally recog-
nized. Examples are the ε-δ criterion (to establish continuity), diagonalization
(to establish the impossibility of certain properties, e.g. halting problem, in-
completeness, uncountability), mathematical induction (to reason about infinite
structures), infinitesimals (to reason about differentiation).

From a logicians point of view mathematical proofs are more like proof plans.
This is reflected in the education of mathematics. Proof principles such as the
ε-δ criterion are taught in lectures, without a strictly formal treatment. Many of
these principles are even taught in concrete proofs which have exemplary charac-
ter and can be generalized later on to many other cases. Formal logic, however,
is not necessarily part of the education of a mathematician. In consequence,
the concept of a proof is much less strict, and ‘mathematics is a motley of
techniques of proof’ as Wittgenstein put it [24, p. 176f].5

This means that the concept of proof is not fixed once and for all but requires
the possibility for extension. Practically, mathematicians treat proofs and proof
methods as first class objects, that is, just as they introduce new concepts they
may introduce new proof principles, describe them and then use them. For this
reason mathematicians focus on their special fields of expertise and consider the
study of logic as one field among others. And if this field is not their specialty
and particular area of expertise then they do what professionals do with fields
they consider only as marginally relevant: they give it only marginal attention.

4 The Deductionist’s View

In formal communities such as the theorem proving community, the logicians’
view of the concept of proof has (for good reasons) been predominant, but not
been the only view. Davis distinguishes two communities, the logic oriented and
the cognitive oriented communities.
5 Still there is a general assumption in mathematics that in principle it is possible to

extend these mathematical proofs (proof plans) to full logic level proofs if necessary.
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Automated Theorem Proving

As Davis [6, p.5] states:

With the ready availability of serious computer power, deductive reason-
ing, especially as embodied in mathematics, presented an ideal target for
those interested in experiments with computer programs that purported
to implement the “higher” human faculties. This was because mathe-
matical reasoning combines objectivity with creativity in a way difficult
to find in other domains. For this endeavor, two paths presented them-
selves. One was to understand what people do when they create proofs
and write programs emulating that process. The other was to make use
of the systematic work of the logicians reducing logical reasoning to stan-
dard canonical forms on which algorithms could be based.

Since the groundbreaking work in logic in the early 20th century was very close
to implementation it led to the dream to build machines that can solve hard
problems fully automatically. The invention of the resolution principle by Robin-
son [21] which made search spaces finitely branching was a great breakthrough
and led to the possibility to prove many theorems fully automatically. In paral-
lel there was a smaller community which was interested in the cognitive aspects
of theorem proving (by Newell and others, followed up in the proof planning
work by Bundy and others). At least motivationally the work is linked to psy-
chological evidence [20] that deductive reasoning plays a very important role in
human intelligence and that some proof rules like Modus ponens are universally
accepted while others are accepted only by a minority. Related in this context
is also the work on diagrammatic reasoning (see, e.g. [11]) which shows that
reasoning falsely considered for some time as inferior, can be made very precise.

In general, however, the dream of full automation has not come true at large.
There are fascinating exceptions such as the proof of the Robbins problem ([15]),
but still mathematicians do not have theorem proving machines on their desks
which they use to a similar degree as they use typesetting programs or computer
algebra systems. And possibly not everybody would want such a machine, since
as Hardy put it in [9, § 10] “there is nothing in the world which pleases even
famous men . . . quite so much as to discover, or rediscover, a genuine mathemat-
ical theorem.” and we can add “and a genuine mathematical proof.” (but proofs
are parts of the theorem for Hardy anyway.) Why leaving the fun to a machine?

There has been a different community at least since the 1960s, namely the
community interested in being able to check proofs by a machine. On first sight
this looks like a much less ambitious goal, but it turned out to be actually much
more difficult than anticipated. We will look at this next.

Proof Checking

The perhaps two most prominent approaches to proof checking – from which
other systems have been derived – are Automath [5] and Mizar [22]. The goal is
not to find proofs automatically but to check proofs. De Bruijn summarizes his
dream in 1994 [16, p.210] as follows:
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As a kind of dream I played (in 1968) with the idea of a future where
every mathematician would have a machine on his desk, all for himself,
on which he would write mathematics and which would verify his work.
But, by lack of experience in such matters, I expected that such machines
would be available in 5 years from then. But now, 23 years later, we are
not that far yet.

In many ways this dream is more exciting, since firstly it looks more feasible and
secondly it is something mathematicians and professionals working in related
fields can appreciate more. Although proof checkers have been extended by useful
extensions which allow for higher-level proofs, most notably by tactics which
allow to reduce many steps in a proof to a single user interaction, even 16 years
after de Bruijn’s retrospective we are still not there and mathematicians do not
widely use the corresponding systems. However, they can be used and some do
use them, most notably there is the Flyspeck Project [8] in which Hales (and
others) are formalizing his proof of the Kepler conjecture.

5 How to Make Systems More Accepted?

Systems which deal with proofs can be built for different purposes and differ-
ent purposes result in different requirements. Only some of them are currently
adequately supported by mathematical knowledge management systems. Let us
look at the most common purposes/contexts in which proofs are communicated:

Education: In an educational context proofs will be presented and/or jointly
developed in order to teach the concept. A teacher may want to teach how
to find a proof but more typically will teach how to write up a proof so that
it is of an acceptable standard. These are two different modes as Pólya [18,
p. vi], pointed out:

We secure our mathematical knowledge by demonstrative reasoning,
but we support our conjectures by plausible reasoning . . . Demon-
strative reasoning is safe, beyond controversy, and final. Plausible
reasoning is hazardous, controversial, and provisional. . . . In strict
reasoning the principal thing is to distinguish a proof from a guess,
a valid demonstration from an invalid attempt. In plausible reason-
ing the principal thing is to distinguish a guess from a guess, a more
reasonable guess from a less reasonable guess. . . . [plausible reason-
ing] is the kind of reasoning on which his [a mathematician’s] creative
work will depend.

Proof development: Here the scenario is that of a mathematician or a group
of mathematicians developing a proof. They do not know yet the details of
the proof (or even whether there is a proof), they may have some ideas which
may be vague and informal. A blackboard and a piece of chalk seem to be
the tools of choice and systems at best offer the functionality of a blackboard
and chalk. In Pólya’s words, the game is mainly about plausible reasoning
at this stage. The task of providing support is particularly challenging since
proof attempts, ideas, partial proof plans may have to be communicated.
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Automation: If automation is the objective and proofs are found, automated
theorem provers typically can document a formal proof object which can be
independently checked. This object can be communicated.

Correctness: If correctness of arguments is sought then proofs must be check-
able. At a calculus level the different formal systems implemented allow this.
Human mathematicians, however, can check proofs at a less formal level.
Support at this level is still patchy, although important steps have been
made in an area which is labelled as the development of a mathematical ver-
nacular (going back to de Bruijn and the Automath project, and continued
by Nederpelt and Kamareddine [17]).

For any of the different activities there is the question: What kind of information
is necessary and how should it be represented?

A proof is an argument that should convince the reader (interpreter) of the
truth of a statement (certain axioms and assumptions given). That is, a proof is
a relationship between the argument and the reader, and the reader has to come
with some level of knowledge.

If we know a lot, then a proof can be more concise. If we know the theorem
already then we do not need to be convinced. If we know little, then we need a
detailed argument which convinces us beyond reasonable doubt (some may say
beyond any doubt) of the correctness of the theorem. In this respect a proof
is a proof only with respect to a receiver/reader. “Nothing can be explained
to a stone, the reader must understand something beforehand.” as McCarthy
formulated it (1964, p.7), quoted from [1, p.8] and analogously we can state that
“Nothing can be explained to God, since he understands everything beforehand.”
or as Ayer [3, p.85f] put it:

The power of logic and mathematics to surprise us depends, like their
usefulness, on the limitations of our reason. A being whose intellect was
infinitely powerful would take no interest in logic and mathematics. For
he would be able to see at a glance everything that his definitions im-
plied, and, accordingly could never learn anything from logical inference
which he was not fully conscious of already. But our intellects are not of
this order. It is only a minute proportion of the consequences of our defi-
nitions that we are able to detect at a glance. Even so simple a tautology
as “ 91×79 = 7189” is beyond the scope of our immediate apprehension.
To assure ourselves that “7189” is synonymous with “ 91× 79” we have
to resort to calculation, which is simply a process of tautological trans-
formation – that is, a process by which we change the form of expression
without altering their significance. The multiplication tables are rules
for carrying out this process in arithmetic, just as the laws of logic are
rules for the tautological transformation of sentences expressed in logical
symbolism or in ordinary language.

Typically, we are in between the stone and God: We know certain theorems and
proofs and are happy to accept certain arguments when they are mentioned in
a new proof and others not. We can fill in certain gaps, but not others. We have
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intelligence which goes beyond checking substitutions and matching, which can
convince us that a theorem is really a theorem. A proof should give us a good
reason why we should not doubt the correctness of the theorem at an appropriate
level. Going back to a logic level proof is typically like being dragged on a level
on which we do not see the wood for the trees.

Indeed proofs come in various formats, they can be presented at different
levels of abstraction and can be quite different in style and details. In order to
represent and support them appropriately we need to know what they are needed
for and have to reflect the purpose and the level of understanding and knowledge
of the reader. The reader may know the proof already or know a similar proof
(and would be quite quick at understanding the new one). The reader may have
no intuition – possibly the statement is even counter intuitive – and would have
to check steps slowly and carefully. Or the reader may not be able to understand
the proof in a reasonable amount of time at all since they lack the corresponding
knowledge and would require a significant course in a whole field of mathematics
before they can appreciate the arguments.6

In a familiar area, mathematicians know which arguments to accept and where
to be careful. They are well aware of fallacies to avoid, that is, we have positive
and negative information at our disposal and avoid the fallacies as they are
described by Maxwell in [14]. Maxwell’s examples deal, for instance, with non-
apparent divisions by zero, with problems with integration by parts, and with
incorrectly drawn auxiliary diagrams in geometric proofs. Maxwell distinguishes
between fallacies, where things go wrong on a deeper level (and proof checking
on a high-level may wrongly succeed) and howlers, where the incorrectness of the
argument is apparent (and a wrong argument may still give the correct result).

That the mathematical notion of a proof is subject to change, not strictly for-
mal, and not beyond doubt has most convincingly been described by Lakatos [13]
in an analysis of the history of the Euler polyhedron theorem, which had an ex-
citing history of proofs and subsequent counterexamples, which led to improved
proofs and more sophisticated counterexamples. This has not led to a general
distrust in proofs. Although the theorem is not central to mathematics, still –
as Hardy put it [9, § 12] – a mathematician offers the game, and a contradic-
tion may cast doubt on the correctness of mathematics as a whole. However,
the sequence of proof, counterexample, proof can be seen very much in the
spirit of the quote in section 3 of Bourbaki that “mathematicians have had the
practice of correcting their errors and thereby seeing their science enriched, not
impoverished.”

Theorem proving and checking proofs is a social activity and in a highly
specialized society there are different reasons why we believe a theorem and its
proof. Only few will actually have the knowledge, the capacity, and the time

6 Obviously the borders are not sharp. We may know a similar proof, and actually
we would not remember every single step. Having a good intuition, having some
intuition, and having no intuition, or a counter intuition is again fluid. The proof of
the Robbins problem was so hard for humans since they did not have an intuition
of the Robbins algebras.
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to understand complicated proofs like that of the Fermat-Wiles theorem or the
Kepler conjecture. Still most of us will accept that there are proofs and that
the theorems hold. The two theorems mentioned by Hardy, however, have much
simpler proofs and it belongs to the folklore to know their proofs.

We see that there is a broad spectrum of proofs. Typically natural language in
combination with diagrams is used to store and communicate proofs. Some types
of proof (formal logical proofs, some types of proof plans) can be represented in
a format which is better suited to mechanical manipulation (e.g. to proof check-
ing) than natural language. Other types are still difficult to formalize. Work on
the mathematical vernacular is certainly useful in order to formalize the variety
of proofs. An advanced approach to understand informal proofs at a linguistic
level has been carried through by Zinn [25]. He analyzes the linguistic struc-
ture of proofs and builds internal structures, which reflect the inner logic of the
proofs. This opens a way to understanding and checking informal mathematical
discourse.

6 Summary

Proofs come at different levels and with different intentions. They are written for
readers/checkers who/which must have certain competences. A human mathe-
matician who knows a theorem very well knows and can communicate proofs of
it at different levels: the gist of it, which allows other experts to reconstruct a full
proof, a proof plan for a less proficient reader/checker, and a low level proof for
a checker with little information in the field. Likewise an expert can understand
proofs on different levels.

A system that has deep knowledge about proofs would be able to link the
different levels. Achieving such a human level of expertise looks AI-hard un-
fortunately. On the other hand this has its attraction as Davis states, since
it “combines objectivity with creativity.” (Generalized) proof plans can offer a
framework which is general enough to capture the different levels. Linking differ-
ent levels and understanding different levels simultaneously will remain a hard
problem for some time, and proof will remain a colourful concept.
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Abstract. We study the formalization of a collection of documents cre-
ated for a Software Engineering project from an MKM perspective. We
analyze how document and collection markup formats can cope with an
open-ended, multi-dimensional space of primary and secondary classifi-
cations and relationships. We show that RDFa-based extensions of MKM
formats, employing flexible “metadata” relationships referencing specific
vocabularies for distinct dimensions, are well-suited to encode this and to
put it into service. This formalized knowledge can be used for enriching
interactive document browsing, for enabling multi-dimensional metadata
queries over documents and collections, and for exporting Linked Data
to the Semantic Web and thus enabling further reuse.

1 Introduction

The field of Mathematical Knowledge Management (MKM) tries to model math-
ematical objects and their relationships, their creation and publication processes,
and their management requirements. In [CF09, 237 ff.] Carette and Farmer
analyzed “six major lenses through which researchers view MKM ”: the document,
library, formal, digital, interactive, and the process lens. Quite obviously, there
is a gap between the formal aspects {“library”, “formal”, “digital”} – related to
machine use of mathematical knowledge – and the informal ones {“document”,
“interactive”, “process”} – related to human use.

In the FormalSafe project [For08] at the German Research Center for Artificial
Intelligence (DFKI) Bremen a main goal is the integration of project documents
into a computer-supported software development process. MKM techniques are
used to bridge the gap between informally stated user requirements and formal
verification. One of the FormalSafe case studies is based on the documents of the
SAMS project (“Sicherungskomponente für Autonome Mobile Systeme [Safety
Component for Autonomous Mobile Systems]”, see [FHL+08]) at DFKI. The
SAMS objective was to develop a safety component for autonomous mobile ser-
vice robots and to get it certified as SIL-3 standard compliant in the course of
three years. On the one hand, certification required the verification of certain
safety properties in the code documents with the proof checker Isabelle [NPW02].
On the other hand, it necessitated the software development process to follow

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 355–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



356 A. Kohlhase, M. Kohlhase, and C. Lange

the V-Model (fig. 1). This mandates e. g. that relevant document fragments get
justified and linked to corresponding fragments in a successive document refine-
ment process (the arms of the ‘V’ from the upper left over the bottom to the
upper right and between arms in fig. 1).

Fig. 1. Documents in the V-Model

The collection of SAMS documents (we
call it “SAMSDocs” [SAM09]) promised
an interesting case study for FormalSafe
as system development with respect to
the V-Model regime resulted in a highly
interconnected collection of design doc-
uments, certification documents, code,
formal specifications, and formal proofs.
Furthermore, it was supposed that adding
semantics to SAMSDocs would be compar-
atively easy as it was developed under a
strong formalization pressure.

In this paper we report on — and draw conclusions from — the SAMSDocs
formalization, particularly the formalization of its LATEX documents. In section 2,
we document the process and detect inherent, distinct formality levels and the
multi-dimensionality of the formalized structures. Real information needs (drawn
from three use cases in the SAMS context) turn out in section 3 to be multi-
dimensional. This motivates our exploration of multi-dimensional markup in
section 4. Section 5 showcases the feasibility of multi-dimensional services with
MKM technology enabled by multi-dimensional structured representations and
section 6 concludes the paper.

2 Dimensions of Formality in SAMSDocs

In this paper, we are especially interested in the question “What should we
sensibly formalize in a document collection and can MKM methods
cope?” . Note that we understand “to formalize” as “making implicit knowledge
explicit” and not as “to make s.th. fully formal”.

Format Files #
LATEX *.tex 251
MS Word *.doc 61
Isabelle *.thy 33
Misra-C Code *.c 40

Fig. 2. SAMSDocs

The SAMS project was organized as a typical Soft-
ware Engineering project, its collection of documents
SAMSDocs therefore has a prototypical composition
of distinct document types like contract, code, or
manual. Thus, SAMSDocs presents a good base for
a case study with respect to our question. In fig. 2
we can see the concrete distribution over used doc-
ument formats in SAMSDocs. Requirements analy-
sis, system and module specifications, reviews, and
the final manual were mainly written in LATEX, only

roughly a sixth in MS Word. The implementation in Misra-C contains Isabelle
theorem prover calls.

The first stinging, but unsurprising observation was that the level of for-
mality of the documents in SAMSDocs varies considerably — because distinct
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purposes create distinct formality requirements. For instance, the contract docu-
ment serves as communication medium between the customer and the contractor.
Here, underspecification is an important tool, whereas it is regarded harmful in
the fine-granular module specifications and a fatal flaw in input logic for a theo-
rem prover. Since this issue was already present in the set of LATEX documents,
we focused on just these.

For the formalization of this subset in SAMSDocs we used the STEX sys-
tem [Koh08], a semantic extension of LATEX. It offers to both publish documents
as high-quality human-readable PDF and as formal machine-processable OM-
Doc [Koh06] via LATEXML [SKG+10]. Our formalization process revealed early
on that previous STEX applications (based on OMDoc 1.2) were too rigid for a
stepwise semantic markup. But fortunately, STEX also allows for the OMDoc 1.3
scheme of metadata via RDFa [ABMP08] annotations (see [Koh10]). In par-
ticular, we could ‘invent’ our own vocabulary for markup on demand without
extending OMDoc. This new vocabulary consists of SAMSDocs-specific metadata
properties and relationship types. We call the process of adding this pre-formal
markup to SAMSDocs (semantic) preloading. Concretely, we extended STEX
to STEX-SD (STEX for SAMSDocs) by adding LATEXML bindings for all SAMS
specific TEX macros and environments used in SAMSDocs, thus enabling the
conservation of the original PDF document layouts at the same time as the
generation of meaningful OMDoc.

Let us look at an example for such an STEX extension within our formaliza-
tion workflow (see fig. 3). We started out with a TEX document (upper left),

Fig. 3. The Formalization Workflow with STEX-SD [ translated by the authors ]
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which compiled to the PDF seen on the upper right. Here, we have a simple,
two-dimensional table, which is realized with a LATEX environment tabular.
Semantically, this table contains a list of symbols for document states with their
definitions, e. g. “i. B.” for “in Bearbeitung [in progress]”. As such definition tables
were used throughout the project, we developed the environment SDTab-def
and the macro SDdef as STEX extensions. We determined the OMDoc output for
these to be a symbol together with its definition element (for each use of SDdef
in place of the resp. table row) and moreover, to group all of them into a theory
(via using SDTab-def). Preloading the TEX table by employing SDTab-def
and SDdef turned it into an STEX document (middle of fig. 3) while keeping the
original PDF table structure. Using LATEXML on this STEX document produces
the OMDoc output shown in the lower area of fig. 3.

Mathematical, structural relationships have a privileged state in STEX: their
command sequence/environment syntax is analogous to the native XML element
and attribute names in OMDoc. Since many objects and relationships induce for-
mal representations for Isabelle, it seemed possible to semantically mark them
up with a logic-inspired structure. But in the formalization process it soon be-
came apparent that (important) knowledge implicit in SAMSDocs did not refer
to the ‘primary’ structure aimed at with the use of STEX. Instead, this knowl-
edge was concerned with a space of less formal, ‘secondary’ classifications and
relationships. Thus, our second observation pertains to the substance of formal-
izations. Even though we wanted to find out what we can sensibly formalize,
we had assumed this to mean how much we can sensibly formalize. Therefore,
we were rather surprised to find distinct formality structures realized in our
STEX extension. In the following we want to report on these structures.

We grouped the macros and environments of STEX-SD in fig. 5 according to
what induced them. Particularly, we distinguished the following triggers:

– “objects” — document fragments viewed as autonomous elements — and
– their net of relationships via the collection,
– documents and
– their organizational handling, and
– the project itself and thus, its own scheme of meaningful relationships.

For instance, in the system specification we marked a recap of a definition of
the braking distance function for straight-ahead driving sG as an object and
referenced it from within the assertion seen in fig. 4. In the module specification

Fig. 4. s is Bra-
king Distance?

sG was then meticulously specified. This document fragment
is connected to the original one via a refinement-relationship
from the V-Model, which determined the creation process of
the collection. Documents induce layout structures like sec-
tions or subsections and they are themselves organized for
example under a version management scheme. In the work-
flow in fig. 3 we already showcased a project-specific element,
the definition table, with its meaning. Interestingly, we can-

not compare formality in one group with the formality in another. For exam-
ple, we cannot decide whether a document completely marked up with the
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object-induced structures is more formal than one fully semantically enhanced by
the version management markup. As these grouped structures only interact rela-
tively lightly, we can consider them as independent dimensions of a formality
space that is reified in the formalization process of a document collection.

Concretely, STEX-SD covers the following dimensions and consists of the listed
extension macros/environments (with attributes in [·] where sensible):

Fig. 5. Formality Dimensions in STEX-SD

Formalizing object structures is not always obvious, since many of the doc-
uments contain recaps or previews of material that is introduced in other doc-
uments/parts (e. g. to make them self-contained). Compare for example fig. 4

Fig. 6. Yet another
Braking Distance s?

and fig. 6, which are actually clippings from the system
specification “KonzeptBremsmodell.pdf”. Note the
use of s resp. sG, both pointing in fig. 4 to the braking
distance function for straight-ahead driving (which is
obvious from the local context), whereas in fig. 6 s rep-
resents the general arc length function of a circle, which
is different in principle from the braking distance, but
coincides here.

We also realized that STEX itself had already integrated another formality
dimension besides the logic-inspired one, the one concerned with document lay-
out: A typical document layout is structured into established parts like sections
or modules. If we want to keep this grouping information in the formal XML
document, we might use STEX’s DCM package for annotating general document
structures with Dublin Core (cf. [Dub08]) and similar general-purpose metadata.
In the STEX box in fig. 3 we find for example the command DCMsubsection
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Fig. 7. The Document Formality Dimension in STEX

with attributes containing the title of the subsection and an identifier that can
be used in the usual LATEX referencing scheme.

Finally, we would like to remark that the STEX-SD preloading process was
executed as “in-place formalization” [SIM99]. It frequently considered several of
the above dimensions for the object at hand at the same time. Therefore, the of-
ten applied metaphor of “formalization steps” does not mirror the formalization
process in our case study. We found that the important aspect of the formaliza-
tion was not its sequence per se, which we consider particular to the SAMSDocs
collection, but the fact that the metaphor of ‘steps’ only worked within each
single dimension of formality. In particular, there is no scale for formalization
progress as distinct formality levels in distinct formality dimensions existed in a
document at one point in time.

3 Multi-dimensional Information Needs

We have shown that the formalization of knowledge results in an open-ended,
multi-dimensional space of primary and secondary classifications and relation-
ships. But are multi-dimensional document formalizations beneficial for services
supporting real users? Concretely, we envision potential questions in the SAMS
context and services that retrieve and display answers based on the multi-
dimensional markup of SAMSDocs.

Let us first take a programmer’s perspective. Her main information source
for the programming task will stem from the module specification. But while
studying it the following questions might arise:

(i) What is the definition for a certain (mathematical) symbol?1

(ii) How much of this specification has already been implemented?
(iii) In what state is the proof of a specific equation, has it already been formally

verified so that it is safe to ground my implementation on it?
(iv) Whom can I ask for further details?

Assuming multi-dimensional markup an information retrieval system can sup-
ply useful responses. For example, it can answer (i) if technical terms in natural
language are linked to the respective formal mathematical symbols they repre-
sent. For replies to (ii) and (iii) we note that, if all collection links are merged
into a graph, their original placement and direction no longer makes a difference.
So if we have links from the Isabelle formalization to the respective C code and
links from this C code to a specification fragment, as realized in the V-Model
structure of SAMSDocs, we can follow the graph from the specification through
1 See fig. 4 and 6 for two symbols having the same appearance but different meanings.
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to the state of the according proof. Drawing on the V-Model links combined with
the semantic version management or the review logs, the system can deduce the
answer for (iv): The code in question connects to a specification document that
has authors and reviewers. This service can be as fine-grained as one is willing
to formalize the granularity of the version and review management. If we admit
further dimensions of markup into the picture, then the system might even find
persons with similar interests (e. g. expressed in terms of the FOAF vocabulary),
as has been investigated in detail for expert finder systems [SWJL10].

Now, we take a more global perspective, the one of a project manager. She
might be concerned with the following issues:

(v) Software Engineering Process: How much code has been implemented to
satisfy a particular requirement from the contract? Has the formal code
structure passed a certain static analysis and verification? She does not
want to inspect that manually by running Isabelle, thus, she needs high-
level figures of, e. g., the number of mathematical statements without a
formally verified proof.

(vi) Certification: What parts of the specification, e. g. requirements, have
changed since the last certification? What other parts does that affect,
and thus, what subset of the whole specification has to be re-certified?

(vii) Human Capital : Who is in charge of a document? How could an author be
replaced if necessary, taking into account colleagues working on the same
or on related documents – such as previous revisions of the same document,
or its predecessor in terms of the V-Model, i. e. the document that is refined
by the current one?

Exploiting the multi-dimensionality of formalized knowledge, it becomes obvious
how the issues can be tackled.

Finally, we envision a certifier’s information needs. For inspection, she might
first be interested in getting an overview, such as a list of all relevant concepts
in the contract document. Then, she likes to follow the links to the detailed
specification and further on to the actual implementation. For more information,
she likes to contact the project investigator instead of the particular author of
a code snippet. The certifier also needs to understand what parts of the whole
specification are subject to a requested re-certification. Her rejection of a certain
part of a document also affects all elements in the collection that depend on
it. Again, a system can easily support a certifier’s efficiency by combining the
formalized information of distinct formality dimensions.

These use scenarios in a Software Engineering project clearly show that multi-
dimensional markup is useful, since multi-dimensional queries serve natural in-
formation needs. To answer such queries, we need to represent multi-dimensional
information in MKM formats.

4 Multi-dimensional Markup

Structured representations are usually realized as files marked up in formats that
reflect the primary formalization intent and markup preferences of the formalizer.
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In the evaluation of document formats it is thus important to realize that every
representation language concentrates on only a subset of possible relationships,
which it treats with specific language constructs. Note that therefore the for-
mality space of a semantically enhanced document is very often reduced to this
primary dimension. On the formal side, for example, a plethora of system-specific
logics exist. Furthermore, formal systems increasingly contain custom modular-
ization infrastructures, ranging from simple facilities for inputting external files
to elaborate multi-logic theory graphs [MML07]. Collections of informal docu-
ments, on the other side, are often structured by application-specific metadata
like the Math Subject Classification [Soc09] or the V-Model relations as in our
case study.

No given format can natively capture all aspects of the domain via special-
purpose markup primitives. It has to relegate some of them to other mechanisms
like the STEX-SD extension for the formalization of SAMSDocs, if more dimen-
sions of the formality space than the primary one are to be covered. In represen-
tation formats that support fragment identifiers — e. g. XML-based ones — these
relationships can be expressed as stand-off markup in RDF (Resource Descrip-
tion Framework [RDF04]), i. e., as subject-predicate-object triples, where subject
and object are URI references to a fragment and the predicate is a reference to a
relationship specified in an external vocabulary or ontology2. As we have XML-
based formats for informal documents (e. g. XHTML+MathML+SVG) and for-
mal specifications (OpenMath or Content MathML), we can in principle already
encode multi-dimensional structured representations, if we only supply according
metadata vocabularies for their structural relationships. Indeed this is the basic
architecture of the “Semantic Web approach” to eScience, and much of the work
of MKM can be seen as attempts to come up with good metadata vocabularies
for the mathematical/scientific domain.

Since RDF stand-off markup is notoriously difficult to keep up to date, RDFa
[ABMP08] has been developed: A set of attributes for embedding RDF annota-
tions into XML-based languages, originally XHTML. On the one hand, RDFa
serves as an enabling technology for making XML-based languages extensible by
inter- and intra-document relationships. On the other hand, RDFa serves as a ve-
hicle for document format interoperability. All relationships from a format F that
cannot be natively represented in a format F ′ can be represented as RDFa triples,
where the predicate is from an appropriately designed metadata vocabulary that
describes the format F . For instance, an OMDoc <theory> element can be rep-
resented as <div typeof="http://omdoc.org/ontology#Theory"> in
XHTML, using the OMDoc ontology [Lan10]. Support of RDFa relationships
make all XML-based formats theoretically equivalent, if they allow fine-grained

2 The difference between “vocabulary” and “ontology” is not sharply defined. Vocabu-
laries are often developed in a bottom-up community effort and tend to have a low
degree of formality, whereas ontologies are often designed by a central group of ex-
perts and have a higher degree of formality. Here, we use “vocabulary” in its general
sense of a set of terms from a particular domain of interest. This subsumes the term
“ontology”, which we will reserve for cases that require a more formal domain model.
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text structuring with elements like XHTML’s div or span everywhere (so that
arbitrary text fragments can be turned into objects). In particular, they become
formats for multi-dimensional markup as respective other dimensions can
always be added via RDFa. We have detailed the necessary extensions for the
OMDoc format in [Koh10], so that analogous extensions for any of the XML-
based formats used in the MKM community should be rather simple to create.

Note that the pragmatic restriction to XML-based representation formats is
not a loss of generality. In the MKM sphere the three classes of non-XML lan-
guages used are computational logics, TEX/LATEX, and PostScript/PDF. We see
computational logics as compact front-end formats that are optimized for manual
input of formal structured representations; it is our experience that these can be
transformed into the XML-based OpenMath, MathML, or OMDoc without loss
of information (but with a severe loss of notational conciseness). We consider
TEX/LATEX as analogous for informal structured representations; they can be
transformed to XHTML+MathML by the LATEXML system. The last category
of formats are presentation/print-oriented output and archival formats where
the situation is more problematic: PostScript (PS) is largely superseded by PDF
which allows standard document-level RDF annotations via XMP and the finer-
granular annotations we need for structured representations via extensions as
in [GMH+07] or [Eri07]. But PS/PDF are usually generated from other formats
(mostly office formats or LATEX), so that alternative generation into XML-based
formats like XHTML or OMDoc can be used.

Note as well that a dimension typically corresponds to a vocabulary. In the
course of the SAMSDocs case study, most vocabularies have initially been imple-
mented from scratch in a project-specific ad hoc way. But they can be elaborated
towards ontologies via STEX and these can be translated to RDF-based formats
that automated reasoners understand [KKL10]. An alternative is reusing exist-
ing ontologies. This has the advantage that they are more widely used and thus,
reusable services may already have been implemented for them. For instance,
there already exists a vocabulary that defines basic properties of persons and or-
ganizations: FOAF (Friend of a Friend [BM07]). The widely known Dublin Core
element set is also available as an ontology [Dub08]. DCMI Terms [DCM08], a
modernized and extended version of the Dublin Core element set, offers a ba-
sic vocabulary for revision histories – but not for reviewing and certification.
DOAP (Description of a Project [Dub10]) describes software projects, albeit fo-
cusing on the top-level structure of public open source projects. Lin et al. have
developed an ontology for the requirements-related parts of the V-Model (cf.
[LFB96]). Happel and Seedorf briefly review further ontologies about Soft-
ware Engineering [HS06]. As, e. g. the SAMSDocs vocabularies can be integrated
with existing ontologies by declaring appropriate subclass or equivalence rela-
tionships, services can make use of the best of both worlds.

5 Multi-dimensional Services with MKM Technology

We will now study an avenue towards a concrete implementation of services
based on the use cases described in sect. 3 to show how MKM technologies can
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cope with multi-dimensional information needs demonstrating their feasibility.
Concretely, we will study the task of project manager Nora to find a substitute
for employee Alice. All required information is contained in the STEX-SD doc-
uments. To abstract from the particulars of STEX/OMDoc RDFa encoding —
e. g. the somewhat arbitrarily chosen direction of the relations or the interaction
of metadata relations with the document and the special markup for the mathe-
matical dimension — we extract a uniform RDF representation of the embedded
structures, which can then be queried in the SPARQL language [PS08]. Listing 1
shows the necessary query in all detail.

Listing 1. Finding a Substitute for an Employee via the V-Model

# declaration of vocabulary (= dimension) namespace URIs
PREFIX vm: <http://www.sams-projekt.de/ontologies/VersionManagement#>
PREFIX omdoc: <http://omdoc.org/ontology#> # OMDoc
PREFIX semVM: <http://www.sams-projekt.de/ontologies/V-model#>

5PREFIX dc: <http://purl.org/dc/elements/1.1/> # Dublin Core
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> # XML Schema datatypes

SELECT ?potentialSubstituteName WHERE {
# for each document Alice is responsible for, get all of its parts

10 # i.e. any kind of semantic (sub)object in the document
?document vm:responsible <.../employees#Alice> ;

omdoc:hasPart ?object .

# find other objects that are related to each ?object
15 # 1. in that ?object refines them via the V-model

{ ?object semVM:refines ?relatedObject }
UNION
# 2. or in that they are other mathematical symbols defined in terms
# of ?object (only applies if ?object itself is a symbol)

20 { ?object omdoc:occursInDefinitionOf ?relatedObject }

# find the document that contains the related object and the person
# responsible for that document ...
?otherDocument omdoc:hasPart ?relatedObject ;

25 dc:date ?date ;
vm:responsible ?potentialSubstitute .

# (only considering documents that are sufficiently up to date)
FILTER (?otherDocument > "2009-01-01"^^xsd:date)

30 # ... and the real name of that person
?potentialSubstitute foaf:name ?potentialSubstituteName .

}

In this query we assume that Alice’s FOAF profile is a part of our collection,
having the URI .../employees#Alice. Nora retrieves all documents in the
collection for which Alice is known to be the responsible person. For any object O
in each of these documents (e. g. the detailed specification of the braking distance
function for straight-ahead driving sG from fig. 4), she selects those objects that
are refined by O in terms of the V-Model (e. g. the general braking distance s).
Additionally, she considers the mathematical dimension and selects all objects
that are related to O by mathematical definition, e. g. the braking function that
uses sG. Of any such related object, Nora finds out to what document it belongs.
She is only interested in recent documents and therefore filters them by date.
Finally, she determines the responsible persons via the version management links,
and gets their names from their FOAF descriptions. The assumption behind

.../employees#Alice
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this query is that, if, for example, Pierre is responsible for the specification that
introduces the general braking distance s, which Alice has refined, Pierre can be
considered as a substitute for Alice. Note that getting the answer draws on the
collection structures of SAMSDocs (V-Model), on the mathematical structures,
as well as on the organizational structures (version management). It is easy to
imagine how additional formality dimensions can be employed for increasing
precision or recall of the query, or for ranking results. Consider, for example,
another filter that only accepts as substitutes employees who have never got a
document rejected in any previous certification.

The complexity of the query in listing 1 is directly caused by the complex-
ity of the underlying multi-dimensional structures and the non-triviality of an-
swering high-level project management queries from the detailed information in
SAMSDocs. As users like Nora would not want to deal with a machine-oriented
query language, we have developed a system that integrates versioned storage
of semantic document collections with human-oriented presentation with em-
bedded interactive services [DKL+10]. Thus, the rendered documents serve as
command centers for executing queries and displaying results3. They provide
access to queries in two ways: Queries with a fixed structure that have to be an-
swered recurringly will be made available right in the (rendered) documents in
appropriate places. This is the case with our employeee substitution query: This
month, Alice may be ill, whereas next month, Bob may be on holiday. Access
to this query can be given wherever an employee or a reference to an employee
occurs in a document. Alternatively, non-prefabricated queries can be composed
more intuitively on demand using a visual input form.

These examples show that multi-dimensional queries like the ones naturally
coming up in Software Engineering scenarios (sect. 3) can be answered with ex-
isting MKM technology. Moreover, it illustrates that multi-dimensional markup
affords multi-dimensional services. If we interpret our dimensions as distinct con-
texts, our services become context-sensitive, as dimensions can be filtered in and
out. For instance, the context menu of certification documents could be equipped
with menu entries for committing an approval or rejection to the server, which
would only be displayed to the certifier. The server could then trigger further
actions, such as marking the document that contains a rejected object and all
dependencies of that object as rejected, too. In general, the more dimensions are
formalized in a document, the more context-sensitive services become available.

6 Conclusion and Further Work

In this paper we have studied the applicability of MKM technologies in Soft-
ware Engineering beyond “Formal Methods” (based on the concrete SAMSDocs
document collection and its formalization). The initial hypothesis here is that
3 In particular, the rendered XHTML+MathML also preserves the original semantic

structure as parallel MathML markup and RDFa annotations, so that a suitable
browser plugin can dynamically generate interaction points for semantic services;
see [KKL10] for details.
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contract documents, design specifications, user manuals, and integration reports
can be partially formalized and integrated into a computer-supported software
development process. To test this hypothesis we have studied a collection of
documents created for the development of a safety zone computation, the formal
verification that the braking trajectory always lies in the safety zone, and the
SIL3 certification of this fact by a public certification agency. As the project
documents contain a wealth of (informal) mathematical content, MKM formats
(in this case our OMDoc format) are well-suited for this task. During the for-
malization of the LATEX part of the collection, we realized that the documents
contain an open-ended, multi-dimensional space of formality that can be used
for supporting projects — if made explicit.

We have shown that RDFa-based extensions of MKM formats, employing
flexible “metadata” relationships referencing specific vocabularies, can be used
to encode this formality space and put it into service. We have pointed out
that the “dimensions” of this space can be seen to correspond to different meta-
data vocabularies. Note that the distinction between data and metadata blurs
here as, for example, the OMDoc data model realized by native markup in the
OMDoc format can also be seen as OMDoc metadata and could equally be re-
alized by RDFa annotations to some text markup format, where the meaning
of the annotations is given by the OMDoc ontology. This “metadata view” is
applicable to all MKM formats that mark up informal mathematical texts (e. g.
MathDox [CCB06] and MathLang [KWZ08]) as long as they formalize their
data model in an ontology. This observation makes decisions about which parts
of the formality space to support with native markup a purely pragmatic choice
and opens up new possibilities in the design of representation formats. It seems
plausible that all MKM formats use native markup for mathematical knowledge
structures (we think of them as primary formality structures for MKM) and
differ mostly in the secondary ones they internalize. XHTML+MathML+RDFa
might even serve as a baseline interchange format for MKM applications4, since
it is minimally committed. Note that if the metadata ontologies are represented
in modular formats that admit theory morphisms, then these can be used as
crosswalks between secondary metadata for higher levels of interoperability. We
leave its development to future work.

The formalized secondary formality structures can be used for enriching
interactive document browsing and for enabling multi-dimensional metadata
queries over documents and collections. We have shown a set of exemplary multi-
dimensional services based on the RDFa-encoded metadata, mostly centered
around Linked Data approaches based on RDF-based queries. More services can
be obtained by exporting Linked Data to the Semantic Web or a company in-
tranet and thus enabling further reuse. In particular, the multi-dimensionality
observed in this paper and its realization via flexible metadata regimes in repre-
sentation formats allows the knowledge engineers to tailor the level of formality
to the intended applications.

4 Indeed, a similar proposal has been made for Semantic Wikis [VO06], which have
related concerns but do not primarily involve mathematics.



Dimensions of Formality: A Case Study for MKM in Software Engineering 367

In our case study, the metadata vocabularies ranged from project-specific
ones that had to be developed (e. g. definition tables) to general ones like the
V-Model vocabulary, for which external ontologies could be reused later on. We
expect that such a range is generally the case for Software Engineering projects,
and that the project-specific vocabularies may stabilize and be standardized
in communities and companies, lowering the formalization effort entailed by
each individual project. In fact we anticipate that such metadata vocabularies
and the software development support services will become part of the strategic
knowledge of technical organizations.

In [CF09, 241] Carette and Farmer challenge MKM researchers by assess-
ing some of their technologies: “A lack of requirements analysis very often leads to
interesting solutions to problems which did not need solving”. With this paper we
hope to have shown that MKM technologies can be extended to cope with “real
world concerns” (in Software Engineering). Indeed, industry is becoming more
and more aware of and interested in Linked Data (see e. g. [Ser08] and [LDF,
Question 14]), which boosts relevance to the multi-dimensional knowledge man-
agement methods presented in this paper.
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Abstract. MKM has been defined as the quest for technologies to manage math-
ematical knowledge. MKM “in the small” is well-studied, so the real problem
is to scale up to large, highly interconnected corpora: “MKM in the large”. We
contend that advances in two areas are needed to reach this goal. We need rep-
resentation languages that support incremental processing of all primitive MKM
operations, and we need software architectures and implementations that imple-
ment these operations scalably on large knowledge bases.

We present instances of both in this paper: the MMT framework for modular
theory-graphs that integrates meta-logical foundations, which forms the base of
the next OMDOC version; and TNTBase, a versioned storage system for XML-
based document formats. TNTBase becomes an MMT database by instantiating
it with special MKM operations for MMT.

1 Introduction

[12] defines the objective of MKM to be to develop new and better ways of managing
mathematical knowledge using sophisticated software tools and later states the “Grand
Challenge of MKM” as a universal digital mathematics library (UDML), which is in-
deed a grand challenge, as it envisions that the UDML would continuously grow and
in time would contain essentially all mathematical knowledge, which is estimated to
be well in excess of 107 published pages.1 All current efforts towards comprehensive
machine-organizable libraries of mathematics are at least three orders of magnitude
smaller than the UDML envisioned by Farmer in 2004: Formal libraries like those of
Mizar ([33], Isabelle ([26]) or PVS ([25]) have ca. 104.x statements (definitions and the-
orems). Even the semi-formal, commercial Wolfram MathWorld which hails itself the
world’s most extensive mathematics resource only has 104.1 entries. There is anecdotal
evidence that already at this size, management procedures are struggling.

To meet the MKM Grand Challenge will have to develop fundamentally more scal-
able ways of dealing with mathematical knowledge, especially since [12] goes on to
postulate that the UDML would also be continuously reorganized and consolidated as
new connections and discoveries were made. Clearly this can only be achieved algo-
rithmically; experience with the libraries cited above already show that manual MKM
does not scale sufficiently. Most of the work in the MKM community has concentrated

1 For instance, Zentralblatt Math contains 2.4 million abstracts of articles form mathematical
journals in the last 100 years.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 370–384, 2010.
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on what we could call “MKM in the small”, i.e. dealing with aspects of MKM that do
not explicitly address issues of very large knowledge collections; these we call “MKM
in the large”.

In this paper we contribute to the MKM Grand Challenge of doing formal “MKM
in the large” by analyzing scalability challenges inherent in MKM and propose steps
towards solutions based on our MMT format, which is the basis for the next version of
OMDOC. We justify our conclusions and recommendations for scalability techniques
with concrete case studies we have undertaken in the last years. Section 2 tackles scal-
ability issues pertaining to the representation languages used in the formalization of
mathematical knowledge. Section 3 discusses how the modularity features of MMT can
be realized scalably by realizing basic MKM functionality like validation, querying,
and presentation incrementally and carefully evaluating the on-the-fly computation (and
caching) of induced representations. These considerations, which are mainly concerned
with efficient computation “in memory” are complemented with a discussion of mass
storage, caching, and indexing in Section 4, which addresses scalability issues in large
collections of mathematical knowledge. Section 5 concludes the paper and addresses
avenues of further research.

2 A Scalable Representation Language

Our representation language MMT was introduced in [29]. It arises from three cen-
tral design goals. Firstly, it should provide an expressive but simple module system as
modularity is a necessary requirement for scalability. As usual in language design, the
goals of simplicity and expressivity form a difficult trade-off that must be solved by
identifying the right primitive module constructs. Secondly, scalability across semantic
domains requires foundation-independence in the sense that MMT does not commit
to any particular foundation (such as Zermelo-Fraenkel set theory or Church’s higher-
order logic). Providing a good trade-off between this level of generality and the ability
to give a rigorous semantics is a unique feature of MMT. Finally, scalability across
implementation domains requires standards-compliance, and while using XML and
OPENMATH is essentially orthogonal to the language design, the use of URIs as iden-
tifiers is not as it imposes subtle constraints that can be very hard to meet a posteriori.

MMT represents logical knowledge on three levels: On the module level, MMT

builds on modular algebraic specification languages for logical knowledge such as OBJ
[14], ASL [32], development graphs [1], and CASL [7]. In particular, MMT uses theo-
ries and theory morphism as the primitive modular concepts. Contrary to them, MMT

only imposes very lightweight assumptions on the underlying language. This leads to a
very simple generic module system that subsumes almost all aspects of the syntax and
semantics of specific module systems such as PVS [25], Isabelle [26], or Coq [3].

On the symbol level, MMT is a simple declarative language that uses named symbol
declarations where symbols may or may not have a type or a definiens. By experi-
mental evidence, this subsumes virtually all declarative languages. In particular, MMT

uses the Curry-Howard correspondence [8,17] to represent axioms and theorem as con-
stants, and proofs as terms. Sets of symbol declarations yield theories and correspond
to OPENMATH content dictionaries.
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On the object level, MMT uses the formal grammar of OPENMATH [6] to repre-
sent mathematical objects without committing to a specific formal foundation. The se-
mantics of objects is given proof theoretically using judgments for typing and equality
between objects. MMT is parametric in these judgments, and the precise choice is rele-
gated to a foundation.

2.1 Module System

Sophisticated mathematical reasoning usually involves several related but different
mathematical contexts, and it is desirable to exploit these relationships by moving the-
orems between contexts. It is well-known that modular design can reduce space to an
extent that is exponential in the depth of the reuse relation between the modules, and
this applies in particular to the large theory hierarchies employed in mathematics and
computer science.

The first applications of this technique in mathematics are found in the works by
Bourbaki ([4,5]), which tried to prove every theorem in the context with the smallest
possible set of axioms. MMT follows the “little theories approach” proposed in [11], in
which separate contexts are represented by separate theories, and structural relation-
ships between contexts are represented as theory morphisms, which serve as conduits
for passing information (e.g., definitions and theorems) between theories (see [10]).
This yields theory graphs where the nodes are theories and the paths are theory
morphisms.

Example 1 (Algebra). For example, consider the theory graph in Fig. 1 for a portion
of algebra, which was formalized in MMT in [9]. It defines the theory of magmas (A
magma has a binary operation without axioms.) and extends it successively to monoids,
groups, and commutative groups. Then the theory of rings is formed by importing from
both CGroup (for the additive operation) and Monoid (for the multiplicative operation).

A crucial property here is that the imports are named, e.g., Monoid imports from
Magma via an import named mag. While redundant in some cases, it is essential in Ring
where we have to distinguish two theory morphisms from Monoid to Ring: The com-
position add/grp/mon for the additive monoid and mult for the multiplicative monoid.

The import names are used to form qualified names for the imported symbols. For
example, if ∗ is the name of the binary operation in Magma, then add/grp/mon/mag/∗
denotes addition and mult/mag/∗ multiplication in Ring. Of course, MMT supports
the use of abbreviations instead of qualified names, but it is a crucial prerequisite for
scalability to make qualified names the default: Without named imports, every time we
add a new name in Magma (e.g, for an abbreviation or a theorem), we would have to add
corresponding renamings in Ring to avoid name clashes.

Another reason to use named imports is that we can use them to instantiate imports
with theory morphisms. In our example, distributivity is stated separately as a theory
that imports two magmas. Let us assume, the left distributivity axiom is stated as

∀x, y, z.x mag1/∗ (y mag2/∗ z) = (x mag1/∗ y) mag2/∗ (x mag1/∗ z)

Then the import dist from Distrib to Ring will carry the instantiations mag1 	→
mult/mag and mag2 	→ add/grp/mon/mag.
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In other module systems such as SML, such instantiations are called (asymmetric)
sharing declarations. In terms of theory morphism, their semantics is a commutative
diagram, i.e., an equality between two morphisms such as dist/mag1 = mult/mag :
Magma → Ring. This provides MMT users and systems with a module level invariant
for the efficient structuring of large theory graphs.

Besides imports, which induce theory morphisms into the containing theory, there
is a second kind of edge in the theory graph: Views are explicit theory morphisms that
represent translations between two theories. For example, the node on the right side of
the graph represents a theory for the integers, say declaring the constants 0, +,−, 1, and
·. The fact that the integers are a commutative group is represented by the view v1: If
we assume that Monoid declares a constant e for the unit element and Group a constant
inv for the inverse element, then v1 carries the instantiations grp/mon/mag/∗ 	→ +,
grp/mon/e 	→ 1, and grp/inv 	→ −. Furthermore, every axiom declared or imported
in CGroup is mapped to a proof of the corresponding property of the integers.

The view v2 extends v1 with corresponding instantiations for multiplication. MMT

permits modular views as well: When defining v2, we can import all instantiations of
v1 using add 	→ v1. As above, the semantics of such an instantiation is a commutative
diagram, namely v2 ◦ add = v1 as intended.

The major advantage of modular design is that every declaration — abbreviations, the-
orems, notations etc. — effects induced declarations in the importing theories. A dis-
advantage is that declarations may not always be located easily, e.g., the addition in a
ring is declared in a theory that is four imports away. MMT finds a compromise here:
Through qualified names, all induced declarations are addressable and locatable. The
process of removing the modularity by adding all these induced declarations to all the-
ories is called flattening.

Magma Monoid Group CGroup

RingDistrib Integers

mag mon grp

addmultmag1 mag2

dist

v1

v2

Fig. 1. Algebraic Hierarchy

Case Study 1: The formalization in
[9] uses the Twelf module system
([31]), which is a special case of
MMT. Twelf automatically com-
putes the flattened theory graph.
The modular theory graph includ-
ing all axioms and proofs can be
written in 180 lines of Twelf code.
The flattened graph is computed in less than half a second and requires more than 1800
lines.

The same case study defines two theories for lattices, one based on orderings and
one based on algebra, and gives mutually inverse views to prove the equivalence of the
two theories. Both definitions are modular: Algebraic lattices arise by importing twice
from the theory of semi-lattices; order-based lattices arise by importing the infimum
operation twice, once for the ordering and once for its dual. Consequently, the views
can be given modularly as well, which is particularly important because views must
map axioms to expensive-to-find proofs. These additional declarations take 310 lines of
Twelf in modular and 3500 lines in flattened form.

These numbers already show the value of modularity in representation already in
very small formalizations. If this is lacking, later steps will face severe scalability
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problems from blow-up in representation. Here, the named imports of MMT were the
crucial innovation to strengthen modularity.

2.2 Foundation-Independence

Mathematical knowledge is described using very different foundations, and the most
common foundations can be grouped into set theory and type theory. Within each group
there are numerous variants, e.g., Zermelo-Fraenkel or Gödel-Bernays set theory, or
set theories with or without the axiom of choice. Therefore, a single representation
language can only be adequate if it is foundation-independent.

OPENMATH and OMDOC achieve this by concentrating on structural issues and
leaving lexical ones to an external definition mechanism like content dictionaries or
theories. In particular, this allows us to operate without choosing a particular founda-
tional logical system, as we can just supply content dictionaries for the symbols in the
particular logic. Thus, logics and in the same way foundations become theories, and we
speak of the logics-as-theories approach.

But conceptually, it is helpful to distinguish levels here. To state a property in the
theory CGroup like commutativity of the operation ◦ := grp/mon/mag/∗ as ∀a, b.a ◦
b = b ◦ a, we use symbols ∀ and = from first-order logic together with ◦ from CGroup.
Even though it is structurally possible to build algebraic theories by simply importing
first-order logic, this would fail to describe the meta-relationship between the theories.
But this relation is crucial, e.g., when interpreting CGroup in the integers, the symbols
of the meta-language are not interpreted because a fixed interpretation is given in the
context.

To understand this example better, we use the M/T notation for meta-languages.
M/T refers to working in the object language T , which is defined within the meta-
language M . For example, most of mathematics is carried out in FOL/ZF , i.e., first-
order logic is the meta-language, in which set theory is defined. FOL itself might be
defined in a logical framework such as LF , and within ZF , we can define the language
of natural numbers, which yields LF/FOL/ZF/Nat. For algebra, we obtain, e.g.,
FOL/Magma. MMT makes this meta-relation explicit: Every theory T may point to
another theory M as its meta-theory. We can write this as MMT/(M/T ).

In Fig. 2, the algebra example is extended by adding meta-theories. The theory FOL
for first-order logic is the meta-theory for all algebraic theories, and the theory LF for the

LF Isabelle

FOL HOL

Monoid Ring

meta meta

meta meta

m

m′

mult

Fig. 2. Meta-Theories

logical framework LF is the meta-theory
of FOL and of the theory HOL for higher-
order logic.

Now the crucial advantage of the
logics-as-theories approach is that on all
three levels the same module system can
be used: For example, the views m and
m′ indicate possible translations on the
levels of logical frameworks and logics,
respectively. Similarly, logics and founda-
tions can be built modularly. Thus, we can
use imports to represent inheritance at the
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level of logical foundations and views to represent formal translations between them.
Just like in the little theories approach, we can prove meta-logical results in the sim-
plest foundation that is expressive enough and then use views to move results between
foundations.

Example 2 (Little Logics and Little Foundations). In [15], we formalize the syntax,
proof theory, and model theory and prove the soundness of first-order logic in MMT.
Using the module system, we can treat all connectives and quantifiers separately. Thus,
we can reuse these fragments to define other logics, and in [18] we do that, e.g., for
sorted first-order logic and modal logic.

For the definition of the model theory, we need to formalize set theory in MMT,
which is a significant investment, and even then doing proofs in set theory — as needed
for the soundness proof — is tedious. Therefore, in [16], we develop the set theoretical
foundation itself modularly. We define a typed higher-order logic HOL first, which is
expressive enough for many applications such as the above soundness proof. Then a
view from HOL to ZF proves that ZF is a refinement of HOL and completes the proof of
the soundness of FOL relative to models defined in ZF.

Case Study 2: Ex. 2 already showed that it is feasible to represent foundations and
relations between foundations in MMT. Being able to this is a qualitative aspect of
cross-domain scalability. In another case study, we represented LF/Isabelle and LF/
Isabelle/HOL ([26,23]) as well as a translation from them into LF/FOL/ZFC (see
[18]). To our knowledge, MMT is the only declarative formalism in which comparable
foundation or logic translations have been conducted. In Hets ([21]) a number of logic
translations are implemented in Haskell. Twelf and Delphin provide logic and func-
tional programming languages, respectively, on top of LF ([27,28]), which have been
used to formalize the HOL-Nuprl translation ([22]).

2.3 Symbol Identifiers “in the Large”

In mathematical languages, we need to be able to refer to (i.e., identify) content objects
in order to state the semantic relations. It was a somewhat surprising realization in the
design of MMT that to understand the symbol identifiers is almost as difficult as to
understand the whole module system. Theories are containers for symbol declarations,
and relations between theories define the available symbols in any given theory. Since
every available symbol should have a canonical identifier, the syntax of identifiers is
inherently connected to the possible relations between theories.

In principle, there are two ways to identify content object: by location (relative to
a particular document or file) and by context (relative to a mathematical theory). The
first one essentially makes use of the organizational structure of files and file systems,
and the second makes use of mathematical structuring principles supplied by the repre-
sentation format.

As a general rule, it is preferable to use identification by context as the distribution
of knowledge over file systems is usually a secondary consideration. Then the mapping
between theory identifiers and physical theory locations can be deferred to an extralin-
guistic catalog. Resource identification by context should still be compatible with the
URI-based approach that mediates most resource transport over the internet. This is
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common practice in scalable programming languages such as Java where package iden-
tifiers are URIs and classes are located using the classpath.

For logical and mathematical knowledge, the OPENMATH 2 standard ([6]) and the
current OMDOC version 1.2 define URIs for symbols. A symbol is identified by the
symbol name and content dictionary, which in turn is identified by the CD name and
the CD base, i.e., the URI where the CD is located. From these constituents, symbol
URIs are formed using URI fragments (the part after the # delimiter). However, OPEN-
MATH imposes a one-CD-one-file restriction, which is too restrictive in general. While
OMDOC1.2 permits multiple theories per file, it requires file-unique identifiers for all
symbols. In both cases, the use of URI fragments, which are resolved only on the client,
forces clients to retrieve the complete file even if only a single symbol is needed.

Furthermore, many module systems have features that impede or complicate the for-
mation of canonical symbol URIs. Such features include unnamed imports, unnamed
axioms, overloading, opening of modules, or shadowing of symbol names. Typically,
this leads to a non-trivial correspondence between user-visible and application-internal
identifiers. But this impedes or complicates cross-application scalability where all ap-
plications (ranging from, e.g., a Javascript GUI to a database backend) must understand
the same identifiers.

MMT avoids the above pitfalls and introduces a simple yet expressive web-scalable
syntax for symbol identifiers. An MMT-URI is of the form doc?mod?sym where

– doc is a URI without query or fragment, e.g., http://cds.omdoc.org/math/
algebra/algegra1.omdoc which identifies (but not necessarily locates) an
MMT document,

– mod is a /-separated sequence of local names that gives the path to a nested theory
in the above document, e.g., Ring,

– sym is a /-separated sequence imp1/ . . . /impn/con of local names such that
impi is an import and con a symbol name, e.g., mult/mon/∗,

– a local name is of the form pchar+ where pchar is defined as in RFC 3986 [2],
which — possibly via %-encoding — permits almost all Unicode characters.

In our running example, the canonical URI of multiplication in a ring is http://
cds.omdoc.org/math/algebra/algegra1.omdoc?Ring?mult/mon/*.
Note that the use of two ? characters in a URI is unusual outside of MMT, but le-
gal w.r.t. RFC 3986. Of course, MMT also defines relative URIs that are resolved
against the URI of the containing declaration. The most important case is when doc
is empty. Then the resolution proceeds as in RFC 3986, e.g., ?mod′?sym′ resolves to
doc?mod′?sym′ relative to doc?mod?sym (Note that this differs from RFC 2396.).
MMT defines some additional cases that are needed in mathematical practice and go
beyond the expressivity of relative URIs: Relative to doc?mod?sym, the resolution of
??sym′ and ?/mod′?sym′ yields doc?mod?sym′ and doc?mod/mod′?sym′,
respectively.

Case Study 3: URIs are the main data structure needed for cross-application scalability,
and our experience shows that they must be implemented by almost every peripheral
system, even those that do not implement MMT itself. Already at this point, we had
to implement them in SML ([31]), Javascript ([13]), XQuery ([35]), Haskell (for Hets,

http://cds.omdoc.org/math/algebra/algegra1.omdoc
http://cds.omdoc.org/math/algebra/algegra1.omdoc
http://cds.omdoc.org/math/algebra/algegra1.omdoc?Ring?mult/mon/*
http://cds.omdoc.org/math/algebra/algegra1.omdoc?Ring?mult/mon/*
?
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[21]), and Bean Shell (for a jEdit plugin) — in addition to the Scala-based reference
API (Sect. 3).

This was only possible because MMT-URIs constitute a well-balanced trade-off be-
tween mathematical rigor, feasibility, and URI-compatibility: In particular, due to the
use of the two separators / and ? (rather than only one), they can be parsed locally, i.e.,
without access to or understanding of the surrounding MMT document. And they can
be dereferenced using standard URI libraries and URI-URL translations. At the same
time, they provide canonical names for all symbols that are in scope, including those
that are only available through imports.

3 A Scalable Implementation

As the implementation language for the MMT reference API, we pick Scala, a program-
ming language designed to be scalable ([24]). Being functional, Scala permits elegant
code, and based on and fully compatible with Java, it offers cross-application and web-
level scalability.

The MMT API implements the syntax and semantics of MMT. It compiles to a 1 MB
Java archive file that can be readily integrated into applications. Library and documen-
tation can be obtained from [30]. Two technical aspects are especially notable from the
point of view of scalability. Firstly, all MMT functionality is exposed to non-Java ap-
plications via a scriptable shell and via an HTTP servlet. Secondly, the API maintains
an abstraction layer that separates the backends that physically store MMT documents
(URLs) from the document identifiers (URIs). Thus, it is configurable which MMT doc-
uments are located, e.g., in a remote database or on the local file system. In the following
section we describe some of the advanced features.

3.1 Validation

Validation describes the process of checking MMT theory graphs against the MMT

grammar and type system. MMT validation is done in three increasingly strict stages.
The first stage is XML validation against a context-free RelaxNG grammar. As this

only catches errors in the surface syntax, MMT documents are validated structurally
in a second stage. Structural validity guarantees that all declarations have unique URIs
and that all references to symbols, theories, etc. can be resolved. This is still too lax
for mathematics as it lacks type-checking. But it is exactly the right middle ground
between the weak validation against a context-free grammar and the expensive and
complex validation against a specific type system: On the one hand, it is efficient and
foundation-independent, and on the other hand, it provides an invariant that is sufficient
for many MKM services such as storage, navigation, or search.

Type-checking is foundation-specific, therefore each foundation must provide an
MMT plugin that implements the typing and equality judgments. More precisely, the
plugin must provide function that (semi-)decide for two given terms A and B over a
theory T , the judgments 5T A = B and 5T A : B. Given such a plugin, a third valida-
tion stage can refine structural validity by additionally validating well-typedness of all
declarations. For scalability, it is important that (i) these plugins are stateless as the the-
ory graph is maintained by MMT, and that the (ii) modular structure is transparent to the
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plugin. Thus plugin developers only need to provide the core algorithms for the specific
type system, and all MKM issues can be relegated to dedicated implementations.

Context-free validation is well-understood. Moreover, MMT is designed such that
foundation-specific validation is obtained from structural validation by using the same
inference system with some typing and equality constraints added. This leaves structural
validation as the central issue for scalability.

Case Study 4: We have implemented structural validation by decomposing an MMT

theory graph into a list of atomic declarations. For example, the declaration T = {s1 :
τ1, s2 : τ2} of a theory T with two typed symbols yields the atomic declarations
T = {}, T ?s1 : τ , and T ?s2 : τ2. This “unnesting” of declarations is a special property
of the MMT type system that is not usually found in other systems. It is possible because
every declaration has a canonical URI and can therefore be taken out of its context.

This is important for scalability as it permits incremental processing. In particular,
large MMT documents can be processed as streams of atomic declarations. Further-
more, the semantics of MMT guarantees that the processing order of these streams never
matters if the (easily-inferrable) dependencies between declarations are respected. This
would even permit parallel processing, another prerequisite for scalability.

3.2 Querying

Once a theory graph has been read, MMT provides two ways how to access it: MMT-
URI dereferencing and querying with respect to a simple ontology.

Firstly, a theory graph always has two forms: the modular form where all nodes are
partial theories whose declarations are computed using imports, and the flattened form
where all imports are replaced with translated copies of the imported declarations. Many
implementations of module systems, e.g., Isabelle’s locales, automatically compute the
flat form and do not maintain the modular form. This can be a threat to scalability as it
can induce combinatorial explosion.

MMT maintains only the modular form. However, as every declaration present in
the flat form has a canonical URI, the access to the flat form is possible via MMT-URI
dereferencing: Dereferencing computes (and caches) the induced declarations present
in the flat form. Thus, applications can ignore the modular structure and interact with a
modular theory graph as if it were flattened, but the exponentially expensive flattening
is performed transparently and incrementally.

Secondly, the API computes the ABox of a theory graph with respect to the MMT

ontology. It has MMT-URIs as individuals and 10 types like theory or symbol as
unary predicates. 11 binary predicates represent relations between individuals such as
HasDomain relating an import to a theory or HasOccurrenceOfInType relating
two symbols. These relations are structurally complete: The structure of a theory graph
can be recovered from the ABox. The computation time is negligible as it is a byproduct
of validation anyway.

The API includes a simple query language for this ontology. It can compute all in-
dividuals in the theory graph that are in a certain relation to a given individual. The
possible queries include composition, union, transitive closure, and inverse of relations.
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The ABox can also be regarded as the result of compiling an MMT theory
graph. Many operations on theory graphs only require the ABox: for example the
computation of the forward or backward dependency cone of a declaration which are
needed to generate self-contained documents and in change management, respectively.
This is important for cross-application scalability because applications can parse the
ABox very easily. Moreover, we obtain a notion of separate compilation: ABox-
generation only requires structural validity, and the latter can be implemented if only
the ABoxes of the referenced files are known.

Case Study 5: Since all MMT knowledge items have a globally unique MMT-URI, being
able to dereference them is sufficient to obtain complete information about a theory
graph. We have implemented a web servlet for MMT that can act as a local proxy for
MMT-URIs and as a URI catalog that maps MMT-URIs into (local or remote) URLs.
The former means that all MMT-URIs are resolved locally if possible. The latter means
that the MMT-URI of a module can be independent from its physical location. The same
servlet can be run remotely, e.g., on the same machine as a mathematical database and
configured to retrieve files directly from there or from other servers.

Thus systems can access all their input documents by URI via a local service, which
makes all storage issues transparent. (Using presentation, see below, these can even
be presented in the system’s native syntax.) This solves a central problem in current
implementations of formal systems: the restriction to in-memory knowledge. Besides
the advantages of distributed storage and caching, a simple example application is that
imported theories are automatically included when remote documents are retrieved in
order to avoid successive lookups.

3.3 Presentation

MMT comes with a declarative language for notations similar to [19] that can be used
to transform MMT theory graphs into arbitrary output formats. Notations are declared
by giving parameters such as fixity and input/output precedence, and snippets for sep-
arators and brackets. Notations are not only used for mathematical objects but also for
all MMT expressions, e.g. theory declarations and theory graphs.

Two aspects are particularly important for scalability. Firstly, sets of notations (called
styles) behave like theories, which are sets of symbols. In particular, styles and notations
have MMT-URIs (and are part of the MMT ontology), and the MMT module system can
be used for inheritance between styles.

Secondly, every MMT expression has a URI E, for declarations this is trivial, for
most mathematical objects it is the URI of the head symbol. Correspondingly, every
notation must give an MMT-URI N , and the notation is applicable to an expression if
N is a prefix of E. More specific notations can inherit from more general ones, e.g.,
the brackets and separators are usually given only once in the most general notation.
This simplifies the authoring and maintenance of styles for large theory graphs signifi-
cantly.

Case Study 6: In order to present MMT content as, e.g., HTML with embedded presen-
tation MATHML, we need a style with only the 20 generic notations given in http://
alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc.

http://alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc
http://alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc
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<notation for="http://cds.omdoc.org/"
role="constant">

<element name="mo">
<attribute name="xref">
<text value="#"/><id/>

</attribute>
<hole><component index="2"/></hole>

</element>
</notation>

For example, the notation declaration
on the right applies to all constants
whose cdbase starts with http://cds.
omdoc.org/ and renders OMS elements
as mo elements. The latter has an xref
attribute that links to the parallel markup
(which is included by notations at higher lev-
els). The content of the mo elements is a “hole” that is by default filled with the second
component, for constants that is the name (0 and 1 are cdbase and cd.).

This scales well because we can give notations for specific theories, e.g., by saying
that ?Magma?∗ is associative infix and optionally giving a different operator symbol
than ∗. We can also add other output formats easily: Our implementation (see [18])
extends the above notation with a jobad:href attribute containing the MMT-URI —
this URI is picked up by our JOBAD Javascript ([13]) for hyperlinking.

4 A Scalable Database

The TNTBase system [34] is a versioned XML-database with a client-server architec-
ture. It integrates Berkeley DB XML into a Subversion server. DB XML stores HEAD
revisions of XML files; non-XML content like PDF, images or LATEX source files, dif-
ferences between revisions, directory entry lists and other repository information are
retained in a usual SVN back-end storage (Berkeley DB in our case). Keeping XML
documents in DB XML allows accessing files not only via any SVN client but also
through the DB XML API that supports efficient querying of XML content via XQuery
and (versioned) modification of that content via XQuery Update.

In addition, TNTBase provides a plugin architecture for document format-specific
customizations [35]. Using OMDOC as concrete syntax for MMT and the MMT API as
a TNTBase plugin, we have made TNTBase MMT-aware so that data-intensive MMT

algorithms can be executed within the database.
The TNTBase system and its documentation are available at http://tntbase.

org. Below we describe some of the features particularly relevant for scalability.

4.1 Generating Content

Large scale collaborative authoring of mathematical documents requires distributed
and versioned storage. On the language end, MMT supports this by making all iden-
tifiers URIs so that MMT documents can be distributed among authors and networks
and reference each other. On the database end, TNTBase supports this by acting as a
versioned MMT database.

In principle, versioning and distribution could also be realized with a plain SVN
server. But for mathematics, it is important that the storage backend is aware of at
least some aspects of the mathematical semantics. In large scale authoring processes,
an important requirement is to guarantee consistency, i.e., it should be possible to reject
commits of invalid documents. Therefore, TNTBase supports document format-specific
validation.

http://cds.omdoc.org/
http://cds.omdoc.org/
http://tntbase.org
http://tntbase.org
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For scalability, it is crucial that validation of interlinked collections of MMT docu-
ments is incremental, i.e., only those documents added or changed during a commit are
validated. This is a significant effect because the committed documents almost always
import modules from other documents that are already in the database, and these should
not be revalidated — especially not if they contain unnecessary modules that introduce
further dependencies.

Therefore, we integrate MMT separate compilation into TNTBase. During a com-
mit TNTBase validates all committed files structurally by calling the MMT API. After
successful validation, the ABox is generated and immediately stored in TNTBase. Ref-
erences to previously committed files are not resolved; instead their generated ABox is
used for validation. Thus, validation is limited to the committed documents.

Case Study 7: In the LATIN project [18], we create an atlas of logics and logic transla-
tions formalized in MMT. At the current early stage of the project 5 people are actively
editing so far about 100 files. These contain about 200 theories and 50 views, which
form a single highly inter-linked MMT theory graph. We use TNTBase as the validity-
guaranteeing backend storage.

The LATIN theory graph is highly modular. For example, the document giving the
set-theoretical model theory of first-order logic from [16] depends on about 100 other
theories. (We counted them conveniently using an XQuery, see below.) Standalone vali-
dation of this document takes about 15 seconds if needed files are retrieved from a local
file system. Using separate compilation in TNTBase, it is almost instantaneous. In fact,
we can configure TNTBase so that structural validation is preceded by RelaxNG vali-
dation. This permits the MMT application to drop inefficient checks for syntax errors.
Similarly, structural validation could be preceded by foundation-specific validation, but
often we do not have a well-understood notion of separate compilation for specific
foundations. But even in that case, we can do better than naive revalidation. MMT is de-
signed so that it is foundation-independent which modules a given document depends
on. Thus, we can collect these modules in one document using an efficient XQuery (see
below) and then revalidate only this document. Moreover, we can use the presentation
algorithm from Sect. 3.3 to transform the generated document into the input syntax of
a dedicated implementation.

4.2 Retrieving Content

While the previous section already showed some of the strength of an MMT-aware
TNTBase, its true strength lies in retrieving content. As every XML-native database,
TNTBase supports XQuery but extends the DB XML syntax by a notion of file system
path to address path-based collections of documents. Furthermore, it supports index-
ing to improve performance of queries and the querying of previous revisions. Finally,
custom XQuery modules can be integrated into TNTBase.

MMT-aware retrieval is achieved through two measures. Firstly, ABox caching
means that for every committed file, the MMT ABox is generated and stored in TNT-
Base. The ABox contains only two kinds of declarations — instances of unary and
binary predicates — and is stored as a simple XML document. The element types in
these documents are indexed, which yields efficient global queries.
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Example 3. An MMT document for the algebra example from Sect. 2.1 is served at
http://alpha.tntbase.mathweb.org/repos/cds/math/algebra/algebra1.omdoc. Its ABox is cached
at http://alpha.tntbase.mathweb.org:8080/tntbase/cds/restful/integration/validation/mmt/content/
math/algebra/algebra1.omdoc.

Secondly, custom XQuery functions utilize the cached and indexed ABoxes to provide
efficient access to frequently needed aggregated documents. These include in particular
the forward and backward dependency cones of a module. The backward dependency
cone of a module M is the minimal set of modules needed to make M well-formed.
Dually, the forward cone contains all modules that need M . If it were not for the indexed
ABoxes, the latter would be highly expensive to compute: linear in the size of the database.

Case Study 8: The MMT presentation algorithm described in Sect. 3.3 takes a set of
notations as input. However, additional notations may be given in imported theories,
typically format-independent notations such as the one making ?Magma?∗ infix. There-
fore, when an MMT expression is rendered, all imported theories must be traversed for
the sole reason of obtaining all notations.

Without MMT awareness in TNTBase, this would require multiple successive queries
which is particularly harmful when presentation is executed locally while the imported
theories are stored remotely. But even when all theories are available on a local disk,
these successive calls already take 1.5 seconds for the above algebra document. (Once
the notations are retrieved, the presentation itself is instantaneous.)

In MMT-aware TNTBase, we can retrieve all notations in the backward dependency
closure of the presented expression with a single XQuery. ABox-indexing made this
instantaneous up to network lag.

TNTBase does not only permit the efficient retrieval of such generated documents,
but it also permits to commit edited versions of them. We call these virtual documents
in [35]. These are essentially “XML database views” analogous to views in relational
databases. They are editable, and TNTBase transparently patches the differences into
the original files in the underlying versioning system.

Case Study 9: While manual refactoring of large theory graphs is as difficult as refactor-
ing large software, there is virtually no tool support for it. For MMT, we obtain a simple
renaming tool using a virtual document for the one-step (i.e., non-transitive) forward
dependency cone of a theory T (see [35] for an example). That contains all references
to T so that T can be renamed and all references modified in one go.

5 Conclusion and Future Work

This paper aims to pave the way for MKM “in the large” by proposing a theoretical and
technological basis for a “Universal Digital Mathematics Library” (UDML) which has
been touted as the grand challenge for MKM. In a nutshell, we conclude that the prob-
lem of scalability has be to addressed on all levels: we need modularity and accessibility
of induced declarations in the representation format, incrementality and memoization
in the implementation of the fundamental algorithms, and a mass storage solution that
supports fragment access and indexing. We have developed prototypical implementa-
tions and tested them on a variety of case studies.
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The next step will be to integrate the parts and assemble a UDML installation with
these. We plan to use the next generation of the OMDOC format, which will integrate
the MMT infrastructure described in this paper as an interoperability layer; see [20] for
a discussion of the issues involved. In the last years, we have developed OMDOC trans-
lation facilities for various fully formal theorem proving systems and their libraries.
In the LATIN project [18], we are already developing a graph of concrete “logics-as-
theories” to make the underlying logics interoperable.
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31. Rabe, F., Schürmann, C.: A Practical Module System for LF. In: Cheney, J., Felty, A. (eds.)

Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP),
pp. 40–48. ACM Press, New York (2009)

32. Sannella, D., Wirsing, M.: A Kernel Language for Algebraic Specification and Implementa-
tion. In: Karpinski, M. (ed.) Fundamentals of Computation Theory, pp. 413–427. Springer,
Heidelberg (1983)

33. Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Pro-
ceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28 (1985)

34. Zholudev, V., Kohlhase, M.: TNTBase: a Versioned Storage for XML. In: Proceedings of
Balisage: The Markup Conference 2009, vol. 3, Mulberry Technologies, Inc. (2009)

35. Zholudev, V., Kohlhase, M., Rabe, F.: A (insert XML Format) Database for (insert cool ap-
plication). In: Proceedings of XMLPrague, XMPPrague.cz (2010)

https://trac.omdoc.org/LATIN/
https://trac.omdoc.org/LATIN/
http://kwarc.info/frabe/Research/phdthesis.pdf
https://trac.kwarc.info/MMT/


The Formulator MathML Editor Project:
User-Friendly Authoring of Content Markup

Documents

Andriy Kovalchuk, Vyacheslav Levitsky, Igor Samolyuk, and Valentyn Yanchuk

Zhytomyr State Technological University,
Chernyakhivskogo 103, 10005 Zhytomyr, Ukraine

info@mmlsoft.com

http://www.mmlsoft.com

Abstract. Implementation of an editing process for Content MathML
formulas in common visual style is a real challenge for a software de-
veloper who does not really want the user to have to understand the
structure of Content MathML in order to edit an expression, since it is
expected that users are often not that technically minded. In this paper,
we demonstrate how this aim is achieved in the context of the Formula-
tor project and discuss features of this MathML editor, which provides
a user with a WYSIWYG editing style while authoring MathML doc-
uments with Content or mixed markup. We also present the approach
taken to enhance availability of the MathML editor to end-users, demon-
strating an online version of the editor that runs inside a Web browser.

Keywords: Content MathML, mathematical formula, natural editing
of algebraic expressions, model-based editor, online MathML equation
editor.

1 Introduction

Modern standards for representations of mathematical knowledge and easily ac-
cessible software tools greatly benefit education, and scientific and technical
publishing. For instance, a good number of software systems supporting the
MathML standard have been helping to develop valuable distance learning mod-
els, web-based education, and electronic textbooks, which would not be available
if one could only use static images, prepared in advance, instead of more natural
ways for students and teachers to present and exchange formulas and diagrams.
Such communication including mathematical data fosters an understanding be-
tween teachers and students when studying disciplines with strong mathematical
backgrounds, since it is necessary not only to illustrate ideas, but also to have
confirmation that the student has gained insight into the material.

A rendering of mathematical notation is not the only thing needed in such
scenarios, because it is the underlying mathematical structure of an expression
that must be considered (and maybe examined using additional software), and
not any particular rendering of an expression. This means that, in the face of
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poor software support for mathematical content standards, this communication
process takes a turn for the worse. There are good ways to represent and reuse
mathematical content data with existing standards (the content markup part of
MathML [1], OpenMath [2]), and so it is becoming increasingly important to
find ways of expanding our ability to support these standards in software.

This paper presents a short description of one such software system, namely
the Formulator MathML Editor Project [3] (http://www.mmlsoft.com). We
demonstrate how support for a mathematical content standard is achieved in
the context of Formulator project and discuss features of this MathML editor
that provides a user with a WYSIWYG editing style while authoring MathML
documents with content or mixed markup.

2 Formulator MathML Editor

2.1 Challenges of Content MathML Support

A lot of software systems for authoring mathematical documents are available,
and many of them have support for MathML, either directly or through some
conversion. Many references to well-known software tools and research or pro-
totype projects can be found on the MathML Software list maintained by W3C
[4]. However, if we have in mind support of mathematical content standards, it
does not matter how many good products help one to type in a mathematical
expression if they cannot help produce some mathematical content output.

Filtered by requiring support for Content MathML, the list still includes many
interesting projects, e.g., the semantically oriented formula editor WIRIS OM
Tools [5], Integre MathML Equation Editor [6], MathDox [10], and new attempts
to bring an interactive editing process to the web, like the Connexions MathML
Editor [7].

However, an exacting user, seeking to meet the requirements of a better and
quicker interaction in the field of expressing mathematical ideas, would even now
not be completely satisfied for different reasons in each case [8][16], and this is
natural in view of intricacy of the task. One of the important causes of failure to
satisfy a user’s wishes is that there is more to making mathematical information
a useful resource in interactive applications than merely bringing together a
common set of components and attributes adopted from the standard. Visual
representation and user friendliness of an interface are ultimately also expected
by users. The main usability issue of existing software systems is that a user has
to understand the structure of Content MathML in order to edit an expression,
and this is a considerable disadvantage, since users are often not that technically
minded.

An extensive review of common pitfalls and a comparison of behaviors for
several editors for mathematical content is given in [8]. Among the issues men-
tioned there, an important place is occupied by the problem of exposing the
internal document model to a user. Presentation-oriented editors can solve the
problems of edit point support and understandable navigation rules easily, but
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such issues can be a serious obstacle for content editors trying to be user-friendly
if they consider the underlying standard of mathematical content encoding to
be a central source of the editing procedure.

True user friendliness cannot be achieved using the mechanical approach of
just wrapping Content MathML constructs in buttons and menu items. In such
systems, a developer allows a user to forget Content MathML entity names, but
still forces the user to bear in mind the tree-like structures of a text while creating
a mathematical expression, not to mention a need for post-editing. Obviously
there is a big distance between a usual mathematical editing concentrated on
the visual representation of an expression, and the confusing effort to mentally
synchronize rendering and semantic aspects of an expression. The last differs
quite dramatically both from our experience of using legacy systems with linear
mathematical input, and from the exploitation of two-dimensional input forms
usual for mathematical equation editors.

These obstacles are natural consequences of attempts to represent the seman-
tics in a different way from purely mental exercises. Any kind of user friendliness
in such matters entails compromises between a shape and contents. So, in ad-
dition to general problems of human-computer interaction, concerned software
developers must address a number of supplementary issues. Demanding a well-
formed and finished Content MathML document is not a great help to a devel-
oper who needs to build an interactive system. During the editing process, there
are ambiguities which either can only be solved at the cost of a deeper analysis
of the context, or are doomed to be left unresolved pending user hints. The first
approach of context analysis leads to performance problems, the second is not
user friendly. But to neglect resolving ambiguities is also not a good way if one
is trying to provide lasting correctness of the mathematical content output.

Thus we have a classical triangle of alternatives, where software performance,
permanent output correctness, and user friendliness occupy three corners, and
existing systems far too often implement only a single edge in this triangle. While
having every respect for the efforts and achievements of our colleagues in the
field and by no means pretending to cover in full the triangle of alternatives for
Content MathML editing, we hopefully have some advances in the Formulator
MathML Editor Project which helps to bring a process of authoring MathML
documents with content or mixed markup nearer to a user’s needs.

2.2 Overview of the Formulator MathML Editor

The Formulator MathML Editor Project was started in 2003 as part of an on-site
computer algebra system [11]. Since than the project has grown from a product-
oriented mathematical expression editor to a set of desktop and online software
tools for editing and rendering MathML documents. Over the years, a number
of successful use cases have shown the suitability of the Formulator software
for a wide audience of software developers, educators, authors, and students.
Featured projects include, for instance, the Standards Unit Mathematics Project
at the UK Department for Education and Skills [13], some regional education
service centers and educational institutions in the USA and EU, and several
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commercial applications—National Instruments, Fast Track Systems, Neoptec,
Ambow Education, etc.

The main components of the Formulator software are:

– Formulator MathML Weaver: a desktop application for WYSIWYG edit-
ing of Presentation and Content MathML documents. There is a propri-
etary version for MS Windows and an open source cross-platform version,
available from SourceForge and Google Code sites.

– Mathematical Templates Builder: an utility for customizing and amending a
dictionary of mathematical symbols and templates. This tool ensures For-
mulator openness in the sense that a user can change the look and style
of a set of existing mathematical constructs without accessing the software
source code. This is possible because templates are explicitly defined and can
be edited in text form, and a simple built-in language is available to specify
the dynamic behavior of graphics and to edit input slots in some compli-
cated situations. During a run-time the built-in language provides a way to
calculate coordinates and sizes of graphics objects and edit boxes, margins
of a template and its child objects. The simple structure of the language
guarantees its fast run-time interpretation and leads to effective rendering
of equations.

– Formulator ActiveX Control and API: component editions of the desktop
editor which are intended for a software developer who needs to build an
application aware of the mathematical typesetting and semantic rules.

– Formulator IE Performer: a plug-in for Internet Explorer to render MathML
fragments inside web pages (similar to MathPlayer [12]).

– Online MathML Editor: a MathML editor in the form of a distributed web
application that should be run inside an Internet browser.

Considered in the role of a presentation formula editor Formulator is similar
to a majority of mathematical expression editors embedded in office products
such as OpenOffice.org and MS Office, and to well-known WYSIWYG formula
editors, for example, MathType [12]. Among its notable supplements are several
dedicated model views for clearer understanding and fine tuning of the MathML
document structure, and additional tools for developers and advanced users to
enable enhancing the editor’s functionality and to build new software applica-
tions which use the formula editor.

As a content editing system the Formulator software is far from being com-
pletely satisfactory yet, and we definitely lack feedback from existing users world-
wide and large-scale user studies. On the other hand, a frame of reference can
be achieved using comparison with content editors mentioned earlier, from the
methodological and survey papers such as [8][9], from feedback about Formula-
tor’s suitability for learners (the Autograph Maths software [15]) and instructors
(the Connexions project [14]).
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As a mathematical content editor the Formulator project is designed from
the start as an intuitive and visually oriented tool. It offers what the paper [9]
calls “natural editing of algebraic expressions” with the operations, natural for
a presentation formula editor, of insertion, deletion, selection, cut, copy, paste,
drag and drop.

The modes of editing and navigation are consistent with the “what-you-
see-is-what-you-get” principle, supporting edit-point feedback and accessibility,
geometric moves, reversing of moves, deterministic moves, slot navigation and
selection flexibility [8]. In addition to simple “natural editing” procedures, the
Formulator editor has support for advanced modes, which are described in [9] for
the Aplusix software and WIRIS OM Tools: syntactically basic enhancements
(recognition of mathematical operators and parentheses, arity representation),
enhanced backspace and delete operations, algebraic selections, and automatic
bracketing in accordance with changing operator precedence.

The model chosen for the Formulator editor to enhance backspace, delete and
insert operations differs from that proposed in [9]. The latter approach has an
advantage in the case of unary operators and derives a deeper benefit from in-
sights into user intentions, for instance, in manipulations with selections and
operand movements. The Formulator MathML editor employs semantic infor-
mation about a document in a different way, for example, by evaluating simple
Content MathML formulas and formula chains with user variables. We expect
to enhance the editing process in the Formulator editor further by additional
utilization of semantic information.

2.3 General Approach to the Document Structure

The nature of Content MathML differs radically from Presentation MathML, as
they are used to define different aspects of mathematics. Presentation elements
describe the visually important two-dimensional hierarchical forms and thus give
more or less precise instructions on how to render and how to edit mathematical
constructs. Content markup follows closely the semantic structure of mathemat-
ical objects. Consolidation of these two quite different formats into one docu-
ment structure seems overly complicated from a software implementation point
of view, and it appears a good idea to have one dominant format.

Since initially the Formulator MathML editor was as a tool for Presentation
MathML authoring, our aim was to bring semantics into existing visual editing
and to retain user friendliness. In this way, the document structure in Formula-
tor has support for Presentation MathML, both encouraging development of the
editing process of Content MathML formulas in a common visual style without
exposing implementation details of the Content MathML format, and keeping
good software performance while rendering and editing the document. The in-
ternal document model is a tree of four basic node types, holding additional
attributes as reference information: (1) an input slot, (2) a line of horizontally
neighboring text and formula nodes, (3) a formula, composed of input slots and
graphics, and (4) plain text.
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This document structure allows carrying out the initial task of creating Con-
tent MathML expressions by relating each semantic construct with correspond-
ing visual elements and by adding supplementary nodes, which are invisible
either from rendering or from the semantic point of view. Further free-style
operations also require more labeling throughout a document to account for in-
termediate editing states, which inevitably break the proper Content MathML
format. Thus a compromise must be found between maintaining semantic cor-
rectness of the document model and user operations which are incompatible with
expression semantics (e.g., brackets which are not balanced).

For instance, in the context of Presentation MathML the formula “2× 3 + 4”
is presented by the trivial hierarchy of fig. 1a, but an essentially more verbose
document structure is needed to implement the free style of editing in the context
of Content MathML, fig. 1b.

In addition to more complicated document structure, there are attributes
and hidden reference nodes, which guarantee correctness of the formula during

(a) (b)

Fig. 1. Document structure for a formula “2 × 3 + 4” in the context of Presentation
MathML (a) and Content MathML (b). After each formula node, there is an indication
of a Presentation MathML tag that is used by a rendering procedure and either a type
of the node in the Content MathML context, or an “auto-detect” node attribute. Read-
only nodes cannot be either deleted or moved by a user.
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editing actions and are used to produce proper Content MathML output from
this structure. E.g., “do not edit” and “do not move” attributes are used to
preserve the mathematical template and to provide a user with comfortable
navigation through nodes (no “fake moves” [8], each user action corresponds to
an understandable movement of the caret marking the insertion point). Some
formula nodes are marked with “auto-detect self entity by contents” attributes
and do not recognize their type until a user finishes editing and wants to save
or to export a formula to MathML. The combination of these attributes allows
one to remove parts of a formula and to insert quite different kinds of elements,
for instance, a division operator instead of a token element, and still to have a
proper output. The “auto-detect” attribute is one of the reasons for the verbosity
in a document structure, but at the same time it is a way to avoid the rigidity
of a template-based editing procedure.

2.4 Improving Usability for a Template-Based Approach

Earlier versions of the Formulator MathML editor implemented a template-based
approach to Content MathML creation, where each new construct was chosen
from a palette of atomic formulas and had to be placed into some input slot of
previously used constructs.

Users in experiments we conducted with creating and post-editing of content
formulas gave us feedback on usability issues, concentrating on the uncomfortable
rigidity of templates with a read-only structure and several edit spots, and on
the confusing view of the editing process as building a tree. On the other hand,
just considering this approach to be faulty seems to be going too far. Amongst
the good ideas of a template-based approach are supporting a user with run-
time information about proper formula structures, quick construction of new
formulas from basic building blocks, and an editing style that facilitates general
correctness of a document from a semantic point of view.

In moving towards improved usability of Content MathML support, we prefer
evolutionary changes rather than revolutionary ones, and so combine the existing
positive features of the template-based approach with a newly implemented free
style of editing. The change is to replace rigid templates with a more fluid struc-
ture that can be changed by a user, instead of the former frustrating experience
of having to delete a template as a whole.

An important aspect of this proposed free-style editing is that changing the
structure of a Content MathML formula is closer to the behavior of a state
machine than, for instance, to plain text editing. This means that we preserve
run-time hints and explicit correctness of the template-based approach by trans-
forming one proper structure of an expression to another one as a response to
user insertions and deletions.

Such a process seems more reliable and predictable in comparison with en-
couraging a user to go ahead and to break down an expression, with the hope
that later the user will manage to reassemble the expression in a semantically
proper way. The latter would be more like a computer programming, and maybe
that is too much to expect from not so technically minded users.
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2.5 Examples of Free-Style Editing

In order to realize our conception of free-style editing, we paid attention to such
important aspects of the input system as random post-editing, insertion, deletion
of mathematical operators and whole expressions, automatic completion of an
expression, and a model for bracket editing.

For instance, once an operator has been entered it was impossible in the earlier
versions to change or delete it without deleting the entire sub-tree containing it.
If a user entered “3+2” and then wanted to change it to “3−2”, it was impossible
to position the cursor at the ‘+’ operator to change it to a ‘−’. Instead the whole
template of “3+2” had to be deleted and re-entered. Now a user can edit initially
read-only mathematical operators by deleting them (a black box appears instead,
standing for “no operation”, see fig. 2b), and later typing in a new mathematical
operator. This black box preserves the correct expression structure, hints that
the editing process should be continued to recover expression correctness, and
allows a user to change it into a needed mathematical operator from a palette,
while still being protected from unconditional deletion from the expression.

(a) (b) (c)

Fig. 2. These snapshots demonstrate how a formula can be edited without breaking
the underlying template. Transition from case (a) to case (b) occurs after Backspace
is pressed, and after typing ‘+’ and ‘−’ in sequence the case (c) appears. The latter
transformation also demonstrates a feature of automatic replacement.

This example shows also that a sequence of characters can be converted (where
it is possible) to a mathematical operator that has no direct equivalent on a
keyboard. For instance, by typing the ‘<’ operator and then immediately typing
the ‘=’ operator, we will get a new ‘≤’ operator. The feature of automatic
replacement does not exclude any subset of proper expressions, since it can be
undone if not wanted, thus leading to more complicated structures with nested
mathematical operations.

Another example of free-style editing is changing the structure of a formula by
explicit insertion or deletion of brackets (in contrast to the implicit brackets used
where required by a combination of the existing structure of an expression and
mathematical precedence information). What we are looking for is an editing
procedure that is as similar to linear text entry as possible, both for the initial
input of an expression and the subsequent editing of it. Again, since we do not
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want the user to have to understand the structure of Content MathML, the main
challenges are:

– to save valid MathML even when a user opens brackets and does not close
them, and

– to find a proper transition from an old formula structure to a new one after
a selection is made that should be inserted into brackets.

The second problem (i.e., genuine changing of a formula structure) seems to have
no universal solution because of possible ambiguities. Thus, a user can break an

(a) (b)

Fig. 3. These snapshots demonstrate semi-transparent Content MathML rendering of
brackets and highlights some possible ambiguities in arbitrary bracketing. Case (a) has
an unbalanced bracket to the left of number 3, and by identifying the left edge of a
newly created bracketed expression to be inside existing brackets and the right edge
to be on the rightmost end of the whole expression, a user splits the former expression
with a result, case (b), that at first is not evident, but in a sense is logical.

(a) (b) (c)

Fig. 4. These snapshots demonstrate how structural changes in bracketed formula
can be reverted using deletion. Transition from the case (a) to (b) occurs after ‘)’ is
pressed at the right of the formula, and if a user presses Backspace when a caret is in
this position, the case (c) appears. The latter snapshot corresponds to the structure of
case (a) as we can see from plain text of Content MathML output.
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existing bracketed expression by enclosing only a part of this expression in a new
pair of brackets along with the rest of the formula that initially lies outside the
previously existing brackets (fig. 3b). Nevertheless, Formulator MathML editor
implements a smart method for solving such ambiguities and where it is possible
(in most cases, as our practice shows) a formula structure is changed predictably
and clearly for a user.

The transitions of a formula’s structure discussed above can be reverted by
using further editing operations. Although a bracketed expression is treated in
accordance with the underlying template as having read-only brackets and sev-
eral input slots inside them, this structure is not rigid and can be altered if a
user presses the Delete button and a caret is standing before the left bracket,
or if a user presses the Backspace button and a caret is standing after the right
bracket (fig. 4).

2.6 Supporting Users Accustomed to Legacy Input

There is one more enhancement of the Content MathML editing process in the
Formulator MathML Editor project that can be valuable for users accustomed
to legacy systems with a plain text mathematical input. This means a procedure
similar to linear input that tries to express mathematical equations using just
keyboard characters, for instance, the circumflex ‘ˆ’ sign for an exponentiation
and the ‘/’ sign for a fraction or division, as in “y = 1/xˆ2”. Support for this
input mode allows an easy transition to the Formulator entry system for users
who are used to the legacy style, and also allows faster and easier input in some
special cases using only a keyboard without a mouse.

Improved usability of this sort means that users are able to enter expressions
intuitively with a sequence of key presses. For instance, the equation y = sinx
should be entered by pressing ‘y’, ‘=’, ‘s’, ‘i’, ‘n’, ‘x’, and an equation y = 2a2b
should be entered by pressing: ‘y’, ‘=’, ‘2’, ‘a’, ‘a’, ‘b’. No mathematical operator
buttons or screen forms are used in either example, but as a trade-off for using
such shortcuts we assume that a user has only variables of one-letter length. In
addition to the legacy input style, there are also a few special cases, where a
certain sequence of key presses can generate slightly different but more intuitive
input strings (for instance, several sequential presses of the letter ‘a’ generate
exponentiation instead of multiplication).

More is expected, and thus user friendly behavior is also provided by using
information about operator precedence to automatically help a user to navi-
gate through the text; namely, the editor automatically shifts a caret forward
in situations where a user of a legacy software would expect this. For instance,
when a user types ‘y’, ‘=’, ‘1’, ‘/’, ‘x’, ‘+, ‘1’, in basic editing mode the formula
would be considered as “y = 1/(x + 1)”, since a caret is near the ‘x’ position
and the ‘+’ operator is normally associated with a caret focus. In order to meet
user expectations this rule is adjusted during legacy style input (by considering
precedences of division and addition operators), so that we get exactly the for-
mula “y = 1/x+1”, as a user would expect who is used to textual mathematical
input.
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3 Availability and Future Work

Guided by a vision of public accessibility of technologies for learning activities
creating and authoring documents containing mathematical data, the Formula-
tor MathML Editor project is evolving to enhance its availability to different
kinds of end-users, from students to software developers.

The main steps toward this goal have been:

1. Porting the Formulator MathML Editor project to Mac OS X and Linux
operating systems (in addition to MS Windows that was supported initially)
and issuing this new version of the Formulator MathML Editor project with
an open source license.

2. Developing an online version of the editor that runs inside a Web browser
in a form of Rich Internet Application (fig. 5).

Fig. 5. The test page of the online version of the Formulator MathML Editor. A link
to the page is available from http://www.mmlsoft.com

The second step is the more challenging, because basically the editor uses
native code to get more performance and a better appearance. It turns out that
a good way to solve the problem lies in using a browser plug-in (in contrast
to a scripting language approach) as a client of the editor’s algorithmic core
that runs remotely as a native application. The general picture of this solution
includes a server part and a thin Silverlight client working inside a browser; in an
ideal case this should not depend on the operating system at all. Actually, this
scheme is too good to be true, and in a real world scenario the user is limited to a
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combination of Internet browser and operating system that already has support
for the Silverlight plug-in. Furthermore, there are some delicate issues where the
choice of a browser does matter (for example, when working with the Clipboard
of an operating system).

It is important that generally the online Formulator editor not be restricted to
the Silverlight plug-in. It should work with any other similar technology as well.
The choice of the browser plug-in approach (in contrast to a scripting language
method) is a more fundamental point than the choice of a Silverlight, Flash or
some other plug-in.

Further improvements in the efficiency and functionality of this online version
of the Formulator MathML Editor are matters for future work, although tests
which have been conducted show acceptable performance for the core editing
functions already implemented. Moreover, it seems that by installing a server
part within a Local Area Network of an organization where Formulator is used
even more efficient behavior can be achieved. Currently, the online version of the
Formulator MathML editor is available on our test server, and the set of fea-
tures implemented is already sufficient to perform most popular operations, such
as: to create/open/save formulas in Presentation, Content and mixed MathML
markup; to export formulas to MathML text or to an image; to cut/copy/paste
formulas.

Future plans include making a thicker client, and evolving the server part to
a more usable environment, for instance, closer to online word processor func-
tionality. One more interesting opportunity that is opened after creating the
Silverlight version of the Formulator MathML software is to build more compli-
cated scenarios for education above a layer of online mathematical editing, for
instance, to support interactive online learning activity.
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Abstract. Mathematical notations around the world are diverse. Not as
much as requiring computing machines’ makers to adapt to each culture,
but as much as to disorient a person landing on a web-page with a text
in mathematics.

In order to understand better this diversity, we are building a census of
notations: it should allow any content creator or mathematician to grasp
which mathematical notation is used in which language and culture. The
census is built collaboratively, collected in pages with a given semantic
and presenting observations of the widespread notations being used in
existing materials by a graphical extract. We contend that our approach
should dissipate the fallacies found here and there about the notations
in “other cultures” so that a better understanding of the cultures can be
realized.

The exploitation of the census in the math-bridge project is also pre-
sented: this project aims at taking learners “where they are in their
math-knowledge” and bring them to a level ready to start engineering
studies. The census serves as definitive reference for the transformation
elements that generate the rendering of formulæ in web-browsers.

1 Introduction

This paper reminds the great variation in the notations used in mathematical
texts in many cultures: in order to obtain knowledge of this diversity, we propose
to realize a census of the mathematical notations made of concrete observations
from multiple texts. This census allows us to reach verifiable statements about
the notations in wide use.

Misconceptions about widely-used notations are quite easy to reach: indeed, it
is almost impossible to obtain persons that master the mathematical notations
of several languages. Thus, one can find in several texts about mathematical no-
tations the fact that the binomial coefficient in Russian is written as Cn

k whereas
the binomial coefficient in French is written as Ck

n, i.e. they are opposite of each
other. This is the case of [CIMP01], [Koh06], and [LAG09]. As the authors could
observe and proof in many russian sources, this turned out to be false: the bino-
mial coefficient in Russian is written the same as in French. Tracking down the
source of this confusion turned out to be impossible with the inability to verify
the origin of such a claim and with, even, easy assertions about the pre-industrial
era where such a notation was carried between France and Russia.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 398–410, 2010.
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The census we propose should avoid such misconceptions by the maintenance
of web-pages that link to textbooks that are commonly used hence should allow
to dissipate any doubt about notations in wide usage in different cultures even
if it is not well known.

We also aim at exploiting the census for the presentation system of ActiveMath,
a web-based environment that renders mathematical formulæ from a semantic
source into a presentation suitable for the learner. The Math-Bridge project’s ob-
jective is to start where the learners start: in their own mathematical culture (the
background can be quite different as described in [MGLU09] and [LCME+08], and
bridge the gap to reach university-entry-level mathematics. Therefore, a census
of college-level text-books’ notations for the languages of Math-Bridge is useful:
English, German, French, Spanish, Finnish and Hungarian.

In this paper we explain how notations are exploited to create the necessary
information that instructs the ways of rendering of the presentation system of
ActiveMath: it attaches an OpenMath prototype, within a given user-context,
to a MathML-presentation expression. One of the conclusions appearing here
is that the user-contexts can be quite multiple. We explain the architectural
choices that allow these user-contexts to be fine-grained but still perform high-
speed rendering of the pages.

1.1 Outline

The paper first introduces related works, then proposes a broad classification of
the notational diversity found around the world. The research litterature that
speaks about the notational diversity is covered. The paper then presents the
ingredients and principles of the notation census and indicates some typical
examples. The exploitation within the ActiveMath environment is described.
An outlook concludes the paper.

2 Related Works

One of the most notable and comprehensive census of mathematical notations
was done by Florian Cajori in [Caj28] in 1928 who concentrated on the En-
glish language. Encyclopediae of mathematics could also claim to a very broad
coverage but all of them are monolingual with the exception of the WikiPedia
initiative, created by a great amount of contributors; not surprisingly, even the
notations of the English WikiPedia is not fully consistant: one finds for example
the binomial coefficient written one way or another depending on the page.

The adaptation needed so that a software can interact with its users de-
pendending on the cultures of the world have been investigated by such works
as [Mar09] often based on the influential work of Hofstede [Hof01]. However,
such studies rarely went as detailed as to indicate the variability of mathemati-
cal formulæ.

Within the mathematical knowledge communities several papers quote the
need to respect mathematical diversity, e.g. [MLUM06, KMM07, SW06, DL08]
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but the examples used there are too restricted to be representative. The con-
fusion indicated above about the notation for binomial coefficient has crept
into [CIMP01] and been cited by several such papers as example.

We have, in [MGLU09] presented some of the diversity we have met and some
approaches to a solution. However this paper aimed at presenting the issues rather
than aim at comprehensiveness. Therefore, we describe here the approach towards
reaching the coverage needed for an informed usage of mathematical notations.

3 Notational Diversity Accross Cultures

Mathematics is widely viewed as a universal “methodology of reasoning” and a
“language” common to all humans, truly “objective”, and thus independent of
subjective beliefs and cultural preformation. In particular, statements written
in the mathematical symbol language, i.e. in terms of “formulæ”, should thus
be understandable in principle by everyone. In a general sense this is indeed
true, and it is exactly this fact that makes mathematics a widely applicable
tool for (almost) all sorts of problems: The mathematical language provides the
possibility to express abstract concepts and logic reasoning in an unambigous
way that can be understood independent of the reader’s language and culture.
If we say that a mathematical theorem (for example Fermat’s last theorem) has
been proven, we mean that a certain mathematical truth has been acertained
at an objective level: It has been shown to hold as such, without reference to a
particular language or culture.

However, when practicing mathematics (no matter whether the application
of pre-established methods or genuine mathematical creativity are concerned,
whether easy or difficult), language and culture dependent issues do play a role
at several levels. Mathematical thought has evolved in history in different cul-
tural contexts (beginning with several hundred years B.C.), each developing
its own methods by which mathematical ideas can be expressed and operated
with. Although the development of modern science and a world-wide scientific
communication within the last few centuries lead to an extensive unification and
“internationalization” of mathematical conventions, a lot of variations remained,
so that we may talk about “mathematical cultures”, which sometimes (but not
always) are associated with “cultures” in the sense of countries or languages. In
particular, differences exist even between regions as close to each other as the
European countries.

To begin with, mathematical statements are usually embedded in phrases of
“ordinary language”, which may be viewed as “everyday language” used in a
more or less rigorous way. For example, the statement

there exists a natural number n such that n2 = 4
contains the verbal elements “there exists”, “natural number” and “such that”.
It is in principle possible to completely omit verbal elements of this type. For
example, statement above could be re-expressed as ∃n ∈ N : n2 = 4 .

However, in most cases a rigorous elimination of all “words between the
symbols” would be tremendously impractical, in particular in texts addressing
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mathematics students (who are just about to learn mathematics) and non-
specialists (interested to apply mathematical techniques for various purposes).
As a consequence, mathematical texts in practice rely on written words at least
as much as on written mathematical symbols, thus suffering from all sorts of
variations in meaning and difficulties of translation.

One might expect now that at least the mathematical symbols provide some-
thing like a well-defined and culturally independent language (or at least vocab-
ulary). However, mathematical concepts are not only used in the contemporary
international mathematical research communication – which indeed uses a largely
standardized symbolic language and may thus be considered as a ”mathematical
culture” in its own – but also in local contexts (e.g. technical or economic) or just
in every-day life. All these fields of usage of mathematical concepts constitute
“cultures” whose customs differ in many respects.

3.1 Differences in Decimal Numbers

The most basic example is how numbers are written. Whereas in many countries
(as well as in the international communication) the number “twelve and a half” is
written in decimal representation as 12.5 some mathematical cultures would use
12, 5 instead. In the first form decimal separator is indicated by a period or point
(we thus say in English language “twelve point five”), whereas in the second a
comma is used instead (consequently, in German language one calls this number
“zwölf Komma fünf” and in the French language, one calls this number “douze
virgule cinq”). Having evolved historically, notational differences of this type
have even been standardized in local contexts. For example, the DIN (Deutsch
Industrie-Norm – German industrial norm) specifies the comma as used in the
second form as the “official” decimal separator. Students in German schools are
thus acquainted with the notation 12, 5 rather than 12.5. Note however that the
meaning of the period in the first and the comma in the second are precisely the
same in both cases! In technical terms, these two differing notations constitute
semantically equivalent concepts.

Consequently, a general rule such as the period means the same as the comma
spelled out once and for all, could be admissible in a mathematical text that
uses the period notation but is otherwise written in German. However, such
rules are most often simplistic and fail because the other character (the comma
or period) is commonly used as thousands separator. Thus, on the web, a ger-
man user may well encounter and be confused by 1.001 which could mean
1 + 1

1000 or 103 + 1. So as to attempt clarification, the notation census thus con-
tains a page about decimal numbers: http://wiki.math-bridge.org/display/
ntns/Decimal+Numbers. A comprehensive set of number patterns is assem-
bled at http://unicode.org/repos/cldr-tmp/trunk/diff/by type/number.
pattern.html albeit quite technical.

3.2 Difference Because of Names Differences

Mathematical concepts and operations are often named by words or phrases and
these words are sometimes seen in the notations. For example the “sine” function

http://wiki.math-bridge.org/display/ntns/Decimal+Numbers
http://wiki.math-bridge.org/display/ntns/Decimal+Numbers
http://unicode.org/repos/cldr-tmp/trunk/diff/by_type/number.pattern.html
http://unicode.org/repos/cldr-tmp/trunk/diff/by_type/number.pattern.html
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(German: “Sinus”, Spanish: “seno”). Just by their use, verbal expressions of this
type have become part of the (scientific) language of the speaker or reader.
Which word or phrase is used to denote a concept or an operation is to some
extent a matter of (official or informal) standardization, but it might as well
be a matter of cultural tradition. As the above examples show, the particular
word or phrase used to denote one concept will be different when expressed in
different languages. Most mathematicians in the world would use the symbol
“sin” as an abbreviation of “sine” (“Sinus”), so that we may find a formula such
as sin(π) = 0 in a mathematical textbook. However, in Spanish language (or
“culture”) of mathematics the abbreviation for this concept is “sen”. A textbook
written in Spanish language will thus rather contain the formula sen(π) = 0. Of
course Spanish mathematicians are aware of this difference, and when addressing
an international audience, they would use “sin” instead of “sen”, but it is a fact
that Spanish pupils and students are familiar with “sen” rather than “sin”.

Similarly, in Arithmetics, even at an elementary level such as in secondary
school, one knows the concept of the “greatest common divisor” of two inte-
ger numbers. In many languages the symbol used to denote this concept just
consist of the initial letters of the corresponding verbal phrase. In English it
is thus written as “gcd”. In the German tradition the same concept is called
“größter gemeinsamer Teiler” and abbreviated as “ggT”. In Dutch, the cor-
responding phase “grootste gemene deler” is abbreviated as “ggd”. In French
the corresponding phrase is generally called plus grand commun diviseur and
is written“pgcd” though modernists tend to change it to pgdc because the for-
mulation commun diviseur is archaic. See the notation census page about it:
http://wiki.math-bridge.org/display/ntns/gcd

3.3 Differences to Avoid Confusion

Sometimes variations in the mathematical notation are dictated by the wish
of clarity in the given written work: for example authors prefer to write the
“binomial coefficients” in the French way in order to avoid possible confusion
with the 2D-vectors: what is denoted by

(
5
3
)

in most mathematical cultures tends
to appear in French and Russian textbooks in the form C3

5 instead (see the census
page about the binomial coefficient: http://wiki.math-bridge.org/display/
ntns/binomial-coefficient).

3.4 Same Notations, Different Concepts

We have stated before that in general one mathematical concept may be
represented by different cultures in different ways. However, in some cases, a
particular name or phrase – that may easily be translated between the lan-
guages – denotes different concepts. The most prominent example is the notion
of “natural numbers”. Originally, it meant set of integer numbers greater or
equal to 1, i.e. 1, 2, 3, 4, 5 . . . and was denoted by the symbol N. However, for

http://wiki.math-bridge.org/display/ntns/gcd
http://wiki.math-bridge.org/display/ntns/binomial-coefficient
http://wiki.math-bridge.org/display/ntns/binomial-coefficient
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practical reasons, it would be better to include the zero, hence to define the set
of natural numbers by 0, 1, 2, 3, 4, 5 . . ..

Meanwhile, several mathematical cultures have followed this idea, while stick-
ing to the original symbol N. In order to denote the set of numbers without zero,
one then usually writes something like N+ or N∗. In the tradition in which the
zero is not included, one may write N0 or N0 in order to denote the set with
zero. As a consequence, when the symbol N (or the name “natural numbers”)
appears in a mathematical text, it could mean the integers with or without zero,
depending on the mathematical culture it originates from.1

The problem is also pointed out in Eric Weissteins MathWorld pages: “Re-
grettably, there seems to be no general agreement about whether to include 0
in the set of natural numbers” [Weib]. Wikipedia also reflects this ambiguity in
most pages on the subject of natural numbers.

It should be added that the web in general pulls the user out of a single
textbook into easy jumps between many content sources, with varying degree of
reliability. When automated formula rendering is concerned, ambiguities of this
type must be taken into account in order to avoid confusion and let the user
recognize easily which variant it is.

4 The Notation Census

Because mathematical notations are very diverse and their context of occur-
rence is just as diverse, we propose to establish a census of mathematical
notations. That census should list all available mathematical notations that
are widely spread around the world in a way that enables mathematics readers
to see the mathematical notations used in the multiple cultural contexts even
though they do not understand the language of the documents.

The census should be visual because mathematical notations are a graphical
artifact and their rendering in web-browsers should succeed in all situations: this
requirement prevents the usage of elaborate display technologies of mathematical
formulæ so as to ensure the certainty of rendering the notation of that cultural
context.

The census should be traceable so that one can recognize who has writ-
ten each part and commentable so that its quality can be steadily improved;
normal web-authoring practices similarly to those of Wikipedia or others apply
here, together with the public visibility of any editing action.

The census should be displaying widely used notations by relying on ex-
tracts of mathematical texts that are widely used themselves; this is fundamental
so as to achieve usefulness of the census.

Finally, the census should be verifiable because the misunderstanding among
the cultures can be critically high: any interested reader should be able to find
in just a few clicks who are the authors making a claim that a notation is widely
used and in which cultural context it is used with the trustability of the source
of notation serving as discussable reference point.

1 In a good textbook this point is of course explicitly clarified.
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Bibliography

Notation Census Bibliography

Dutch

1. Book Title: Basisboek wiskunde, Tweede editie/2nd edition.

Author: Jan van de Craats
Language: Dutch
Published by Pearson Education Benelux bv
Printed and published in Netherlands
Year: 2009
ISBN: 978-90-430-1673-5
See also
Download and Preview the book
Preview the book website
Recommended by Josje Lodder

2. Share your own image Book Title: Relaties en Structuren (Textbook for the eponymous class at the Sciences faculty of University of Ghent).

By Prof. Dr. Frank De Clerck
Language: Dutch
Publisher: University of Ghent
Year: 2009

3. Book Title: Inzien en bewijzen.

By J. van Eijck and A. Visser
Language: Dutch
Publisher: Amsterdam university press
Year: 2005
Printed and published in Netherlands
ISBN: 978 90 5356 749 4
See also
Preview the book website.
Preview the book in google books link.

4. Book Title: In de ban van wiskunde: het cultuurverschijnsel mathematica in beschaving, kunst, natuur en leven.

By Rik Verhulst
Language: Dutch
Publisher: Garant
Year: 2006
ISBN: 9044119893, 9789044119893
See also
Preview the book in google books link.

Spanish

1. Book Title: Matemática discreta.

Authors: Francesc Comellas Padró, Josep Fabregas Canudas and Ana Sànchez Lladó
Language: Spanish
Publisher: Edicions UPC SL
Year: September 18, 2009
ISBN-10: 8483014564
ISBN-13: 978-8483014561
See also
Preview this book.
Amazon link.
Recommended by Angel Garcia Olaya

2. Book Title: Matematicas para las ciencias aplicadas/ Mathematics for Applied Science.

By Erich Steiner
Language: Spanish
ISBN-10: 8429151591
ISBN-13: 978-8429151596

Fig. 1. An extract of the bibliography

4.1 Ingredients

We realize the notation census in a public wiki which is made of the following
core ingredients:

– sources are listed in a bibliography-like approach: on a single page contain-
ing all sources and a name of the cultural context they are used in; a link to
a publisher page and link to possible web-download of the (partial) content.
A source reference would be the entry point to judge the relevance of the
notations with any given cultural context, something a person living in that
context can do.
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– notations are grouped per page, one page per semantic, each grouped
in content-dictionaries following the semantic classification of, at least, the
official OpenMath content dictionaries. Each semantic is linked to the Open-
Math dictionary, the Wikipedia entry, and the entry in the Wolfram Ency-
clopedia [Weia] if possible.

– notations are listed there with a small informal description, links to the
content-dictionary entries, and a series of observations made of a text
containing the observed notation, the name of the symbol in that context,
a pointer to the element of the bibliography containing it, and a graph-
ics copy of the relevant bit indicated with a page number or other inter-
nalreference allowing a reader to find the used notation fast. This allows
a predictable display, relying on graphical copies (scans or extracts of elec-
tronic versions of the book rendered in the browser as PNG or JPEG im-
ages). The name of the symbol in this culture is requested and, if possible, a
character-based reproduction of the symbols’ elements based on the Unicode
character set.

The observations and sources both are given for a cultural context whose def-
inition is unprecise. It is generally accepted to be at least made of a human lan-
guage but it often goes beyond it including traditions, domain of study, and the
mere practical conventions in communities of practice. For example the French
notation for binomial coefficient, with the big C, is recognized to be widespread at
school levels, as can be seen in http://wiki.math-bridge.org/display/ntns/
binomial-coefficient but several combinatorics researchers agree that the
vector notation is preferable even in French [Fra09]. A more widespread exam-
ple is that of the square root of−1 which is written mostly with the letter i except
in electrical engineering where the letter i is too close to that of electrical current
hence the square root of unity is written j; the list of different observed nota-
tions is presented on http://wiki.math-bridge.org/display/ntns/nums1_i.
For this reason, the census speaks about the cultural context which can, typically,
be also defined by major texts.

Conformance is not, yet, strictly enforced for each contribution to the notation
census: a check-list of ingredients before contributing an observation is provided
in the manifest. We believe the requirements above, except maybe for a web-
access to the text’s content which is mentioned optional, are minimal.

4.2 Evolution

The notation census can be reached at:

http://wiki.math-bridge.org/display/ntns

It has started in October 2009.
The explanations are currently provided in the notation census manifest at

http://wiki.math-bridge.org/display/ntns/Notation-Census-Manifest.
This text intends to be the one stop information source about the census guiding
ideas and principles.

http://wiki.math-bridge.org/display/ntns/binomial-coefficient
http://wiki.math-bridge.org/display/ntns/binomial-coefficient
http://wiki.math-bridge.org/display/ntns/nums1_i
http://wiki.math-bridge.org/display/ntns
http://wiki.math-bridge.org/display/ntns/Notation-Census-Manifest
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8 Added by Paul Libbrecht, last edited by Angel García Olaya on 12 Jan 2010

nums1_i

Notations of the root of -1
This page collects the notations of the symbol "i" which represents the square root of -1 with
positive imaginary part in the complex plane.

Descriptions of this Symbol

the OpenMath symbol nums1#i
imaginaryi in MathML3
Imaginary Unit in MathWorld
imaginary unit in WikiPedia

Observation: English USA

As found in algebra for high-schools and colleges
book, the square root of 1 represented in page
number 132 as shown in the image on the right.

But the engineering mathematics book shows the
imaginary unit example in page number 9, where
uses j instead of i.

And also in the other English electrical
engineering book, we find in page number 101 the
example represents j instead of i.

When we see MATLAB 6 for engineers book, we find in page 26 that the imaginary unit
stored in MATLAB in the constants j and i.

Observation: Spanish

The Spanish book -
'Análisis matemático' -
shows the imaginary unit
example in page 22.

But the example in the electrical engineering book
which called 'Problemas de teoría de circuitos'

Fig. 2. A page of observation: about the complex i

We expect to populate the notation census gradually with the following con-
tributions: first the MathML CD-group, then all ActiveMath available content,
then the full Math-Bridge content.

The first objective of the notation census is to serve the math-bridge project
which we describe below: the wiki is a good communication means between
practicing mathematics educators and the technical team encoding the notations.

Beyond this project, it should support the ActiveMath project’s development
which is ongoing since more than 10 years. It should also support other initiatives
of collecting notations for the rendering of semantic-mathematical-terms such
as [KMM07].
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Finally, thanks to the connections to the sources, this census should also be
one of the reliable places of information for a curious user wishing to be informed
of the various ways to note mathematical terms in different cultures.

For each of these usages completeness is desirable but is not a requirement:
the more coverage the better, but even a partial coverage can find its usages.

5 Notations for ActiveMath

In this section, we turn to one of the exploitations: how the notation census will
be exploited for the purposes of the Math-Bridge project and how the Active-
Math platform can be endowed to honour the cultural contexts by presenting
mathematical formulæ in a customizable way.

Math-Bridge intends to offer bridging-courses allowing learners to bridge
mathematics knowledge gaps, taking them with their pre-existing knowledge,
hence by the notations they already know, to a level ready to start Univer-
sity. Hence it aims to use the right notations in the cultural contexts the learner
probably has learned in, that is late-school-level mathematics for Dutch, English,
French, Finnish, German, Hungarian, and Spanish classes.

Math-Bridge intends to use the rich formulæ rendering of the ActiveMath
platform, coupled with other personalization features of this web-platform. This
platform renders mathematical formuæ from their OpenMath semantic source
enabling a rich set of services attached to the rendering. These include the trans-
fer to computer algebra systems, exercise inputs, plotter or the searchability...

ActiveMath presents mathematical formulæ using a few widely supported
display technologies on the web: HTML completed with CSS, XHTML with
formulæ in MathML, or PDF created by pdflatex. The transformation from
the OpenMath encoding to the rendering formats is done through several stages
that are explained in [ULWM04]. Two aspects are worth mentioning here:

Authorable Notations. ActiveMath rendering to HTML, XHTML, or TeX is
done through XSLT and Velocity; most of the mathematical formulæ conversion
is done through symbolpresentation elements which collect notation elements
each of which is a pair of an OpenMath expression and its associated rendering
in MathML, see [MLUM06]. Each notation element is annotated with a context
of use: a notation is used when the prototype matches as well as the context.

Wealth of Configurable Contexts. As we have described above, the cultures in
which mathematical notations are defined, are somewhat fuzzily defined. There-
fore ActiveMath allows the notations’ cultures to be written in the following
contexts:

– most importantly, a notation can be associated to a language. At XSLT
time, the notation of the right language is chosen.

– a notation can be associated to an output format (this is most important
to care for imperfections of individual formats. At XSLT time, the notation
for the right format is chosen.
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– a notation can be associated to an educational level, indeed, we have often
been requested that students at University see some operators one way while
others in another way. This is realized by the notation generating the velocity
code which is evaluated when this user-information is ready, at each delivery.

– finally, a notation can be associated to a collection, that is, to the collection of
the book the item is in. This allows an author re-using a collection of someone
else within his book, to ensure that formulæ in this book are used consistently,
for his items or the one of others. This also evaluated at each delivery.

Within the Math-Bridge project, where a broad sharing of learning items is ex-
pected, these contexts are of fundamental importance to allow consistent math-
ematical notations within the context of each learning experience. Indeed, the
most common review note we have received is about the notations whereas these
notations were fully checked for the LeActiveMath project by math educators
that use it in their learning in German, Spanish, and English.

Based on the notation census, the content enrichment and translation pro-
cesses will encode the necessary symbolpresentation and notation elements.
This will be done as part of the encoding process and will be integrated in the
quality proofing process.

6 Conclusion

This paper has sketched the issues encountered to meet proper knowledge about
mathematical notations in the multiple cultures and the great diversity of no-
tations that are widely used in, at least, the secondary education mathematics
texts. To address this lack of knowledge, we have proposed a notation census,
in the form of a collaborative wiki-based effort collecting referenced and hyper-
linked observations of the usage of widely used notations.

The census population has started in October 2009 and now contains about
130 observations. The duration to write a page collecting observations in the
available sources is about 30 minutes with variations we have observed due to:
the digital availability of the observations, the understanding by the encoder of
the mathematical concept behind it, the searchability of the sources (a quality
often missing in PDF books in Arabic we have been handling), the availability
of glyphs to search for (e.g. search for gcd is a lot easier than search for a matrix-
transpose).

The wiki technology used here is quite basic and generic. Together with the
limited requirement for structure, the potential for public contributions, without
large technical competencies, is large. This lack, however, means a limited set of
services: for example, it is not possible, yet, to list all the observations coming
from one source or in a given language. Some of these can be recovered by
an enriched tool set we intend to work on (sections in a wiki page are quite
commonly automatically detected). Similarly the searchability is quite limited:
the name of the symbol is the best key, provided it is known, but no graphical
search can be done (except browsing through all); we believe the latter is a
research challenge.
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We intend to build on the census to help into creating links to web pages
that speak about the mathematical symbols around the OpenMath content-
dictionaries’ web-pages in http://www.openmath.org/. The visual nature of the
census is probably one of the efficient hooks for a mathematician’s eyes which
can enable him to identify that a given semantic is matching what he expects.

Finally, the collaborative nature of the census web system opens the long-
term possibility of contributions of a broad body of contributors, similarly to
that obtained by the Unicode consortium’s Common Locale Data Repository
as can be seen at http://cldr.unicode.org/index/charts. Indeed, shortly
following the public announce of this repository, in December 2009, spontaneous
contributors appeared.
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Abstract. A research project aimed at the development of an automated theorem
proving system was started in Kiev (Ukraine) in early 1960s. The mastermind of
the project, Academician V.Glushkov, baptized it “Evidence Algorithm”, EA1.
The work on the project lasted, off and on, more than 40 years. In the framework
of the project, the Russian and English versions of the System for Automated De-
duction, SAD, were constructed. They may be already seen as powerful theorem-
proving assistants. The paper gives a retrospective view to the whole history of
the development of the EA and SAD. Theoretical and practical results obtained
on the long way are systematized. No comparison with similar projects is made.

1 Introduction

The research project entitled “Evidence Algorithm” was initiated by V.Glushkov in
the early 60-s in Kiev. At that time, some fundamental facts concerning formal proof
search and opportunities (potential in most cases) to use computers to find a proof,
were already known. The domain that was called “automated theorem proving” (ATP
or “machine reasoning” in the AI community) became a challenging one for logicians as
well as for computer scientists (see e.g. [92] for short history). There were hopes! Recall
the title of an early Hao Wang’s paper: “Towards mechanical mathematics” [104]!

V.Glushkov, as he personally told us, was motivated by two main reasons:

(1) To get an aid while verifying long and routine algebraic transformation (as a
working mathematician he obtained valuable results concerning Hilbert’s 5th problem).

(2) To try the strength of the existent computers pushing them to run on the limits of
their abilities.

V.Glushkov formulated the main question in a slightly unusual way.
Let us consider some relatively well formalized mathematical theory, e.g. Lie al-

gebras. There are a small number of basic facts (axioms) which are considered to be

1 Below, we explain why this title was chosen; it was used first in [9].

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 411–426, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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evident even for beginners. Let’s apply simple purely logical tools to obtain several
consequences. They are also evident. Then one can apply the same logical tools to the
conclusions and so on. Are the results still evident? If the conclusions were obtained by
a programmed inference engine, the answer is “yes, they are”. From the viewpoint of
this engine. But probably not from the human point of view. Thus, provided the above
mentioned engine, we would be able to prove/verify something that is not evident for
humans. Further to that, this “evidence maintaining engine” may be reinforced with
heuristics, proof methods, lemma application, definition expansion, and so on. In this
way, we could enlarge the notion of “being evident” to the extent that might include
nontrivial facts/theorems. Well, “now do it, guys!”

That is why the algorithmic part of the project (and afterwards the project as the
whole) has got the name “Evidence Algorithm”, EA, or ∃∀ for fun.

It was also already clear at that time that nobody would like to formalize the math-
ematical knowledge/reasoning in the usual first order language. Hence a formal but
human-friendly language had to be developed to provide a possibility for the construc-
tion of a mathematical assistant system convenient for wide range of scientists.

So, three major components of such a system should be:

(1) a powerful input language that must be close to the natural mathematical language
and easy to use;

(2) an inference engine that implements the basic level of evidence (sometimes, we
call it a “prover” below);

(3) an extensible collection of tools that reinforce the basic engine (sometimes, we
call it a “reasoner” below).

In what follows, we give a short description in chronological order of what has been
done in each of the above-mentioned directions.

Please note that our main goal is to trace the long path of the project development
and to recall the results obtained. That is why the reference list is so long. For the
same reason, we could neither make any comparison with similar existing systems, nor
give an illustrative set of examples. Sorry for that. We frequently got an impression
that the automated reasoning community is not sufficiently acquainted with EA project
(for instance, SAD was not mentioned in F.Wiedijk’s book [106]) though we think that
some ideas and results might be useful to know. We hope that the text given below will
partially meet the lack of such information.

Note on the bibliography. Almost all papers published before 1992 were written in
Russian and therefore are hardly available now. We translated the titles and put them
onto the list just to indicate what was done in the old time. All the papers are listed in
chronological order.

The rest of the paper contains three parts according to the three periods in the history
of the EA project. They are as follows.

The first one: 1962 - 1970. We call it “Pre-EA Stage” below.
The second one: 1970 - 1992. It is called “EA and Russian SAD” below.
The third one: 1998 - nowadays. Below it is called “Post-EA Stage and English

SAD”.
Several final remarks conclude the paper.
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2 Pre-EA Stage (1962–1970)

Few people remember now that the Soviet computer history began in Kiev. The first von
Neuman computer was assembled and tested at the turn of 1950 in a small laboratory
headed by the academician S.Lebedev. In 1955 S.Lebedev left for Moscow and the di-
rector of Kiev Institute for Mathematics, prominent mathematician B.Gnedenko invited
V.Glushkov to take the supervision of the laboratory (which was transformed into the
Institute of Cybernetics 5 years later).

On the other hand, at that time there was a powerful logic, linguistic and algebraic
team at the mathematical department of the Kiev University. Professor L.Kaluzhnin
who was the head and the heart of the team, invited V.Glushkov to join their efforts.

So the Kiev school in the ATP domain appeared really at the borderline of computer
science and mathematical logic.

In 1962, V.Glushkov published a paper [1] where he analyzed several rather sim-
ple proofs in Group Theory and suggested that the proofs might be built automatically
with the help of a not too complex procedure. The idea attracted three people who be-
gan their research on the subject: A.Letichevsky, one of the first Glushkov’s disciples,
(in 1962), F.Anufriev (in 1962) and V.Fedyurko (in 1963). A bit later, V.Kostyrko and
Z.Aselderov had joined the team. The first-time approach to the problem was purely
empirical – they analyzed a lot of proofs taken from textbooks, monographs and arti-
cles for trying to formalize all them and to find (almost by feeling) methods, heuristics
and representation details that might help to construct a proof of a theorem under con-
sideration automatically. As a result an algorithm of proof search in Group Theory was
constructed and even implemented (the corresponding program run on the monstrous
Ural-1 computer). The first communication about it was done at the First All-Union
Symposium on the Machine Methods of Logical Inference Search, that took place in
Lithuania in 1964 [97] (see also [93]). Later a paper on the subject was published [4]
(and translated afterwards into English).

The algorithm, though being comparatively simple, contained nevertheless:

- a method of inference search for some class of first-order formulae;
- a reduction technique for simplifying search space;
- a collection of heuristics (e.g. the inclusion relation was exploited);
- special methods of equation solving.

So we can say that it was the first problem-oriented prover for Group Theory. Here is an
example of proved theorem: “The centralizer Z of any subgroup P is a normal subgroup
of the normalizer N of P”.

The above-mentioned proof-search method resembled, in some sense, well known
backward chaining, but some features were added to make it applicable to non-Horn
formulae. Later on, the method was generalized by F.Anufriev and extended to the
whole first-order classical logic without equality [5,8]. It can be interpreted as a goal-
oriented sequent calculus not requiring skolemization and using an analog of Kanger’s
notion of substitution admissibility. Later, the method was transformed into a correct
and complete sequent calculus [22] with skolemization. It had got the name “Auxiliary-
Goals Search calculus” (“AGS calculus” below) and served as a prototype for various
sequent-type inference engines of the EA project.
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Equation solving became the subject of Z.Aselderov PhD thesis [7], which was suc-
cessfully defended in 1968.

Now let’s cast a glance at the list of required components of the conceived EA sys-
tem. No convenient input language was yet proposed at the time being. On the other
hand, it was difficult to continue the project without it. To see why, try to convert the
theorem above to the first-order language. On this subject, there were only two Kaluzh-
nin’s papers: [2] and [3]. Some time later, V.Kostyrko made an attempt to solve the
problem and after some period, a paper was published [10] where a contour of such a
language was outlined. The main idea was as follows.

Let’s consider an atomic first-order formula. It is always of the form R(t1,t2, . . . ,tn)
where R is an n-ary relation symbol, whereas a “natural” atomic statement is of the
form < sub ject group > < predicate group >. Well, one can:

- select an argument among t1,t2, . . . ,tn , say t1,
- consider it as the subject,
- “reduce” R to something (n−1)-ary N(t2, . . . ,tn),
- add a new connector to “attach” t1 to N(t2, . . . ,tn) (ε was chosen in the original

version).

Now R(t1,t2, . . . ,tn) can be written as t1ε N(t2, . . . ,tn) and read as t1 is a N(t2, . . . ,tn). For
example, Subgroup(H,G) gives H ε Subgroup o f G and so on. Was it not more than
syntactic “sugar” or one could gain something interesting with it? Below we demon-
strate what was made in this direction later.

For the completeness of the description of that time, it may be needed to remind the
last implementation of the propositional part of Anufriev’s procedure, which was made
by A. Malashonok on the BESM-2 computer at the beginning of 1970 [13].

3 EA and Russian SAD (1971 - 1992)

In 1970, V.Glushkov published one more paper on the subject [9]. At that time, he asso-
ciated the progress in the domain of ATP with the general tendency to make computers
more intellectual (see also [14]). As to the project in question (except for the fact that
it has got its final name “Evidence Algorithm”), V.Glushkov emphasized in the paper
the importance of a convenient but formal language for mathematical texts. We also
have to note that for the first time the term “automated theorem proving” was used in-
stead of “automatic theorem proving” and the problem of how to build something like
an “interactive environment” was explicitly formulated. In fact, a proof assistant was
conceived.

It seems that somewhen in the middle of 1970 V.Glushkov decided to add “young
forces” to the existing EA team, and he charged one of his former pupil, V.Bodnarchuk
to gather them. At that time, V.Bodnarchuk was the head of a computer department; its
members had just finished their work on a specialized mini-computer for engineering
computation with the language “Analitik” [11].

The input language “Analitik”, being convenient for engineers and having its hard-
ware implementation, was one of the distinguishing features of the computer, and
V.Bodnarchuk was its main creator. Besides, V.Bodnarchuk was congenial soul for
L.Kaluzhnin. All these exerted great influence on the development of the EA.
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At the same time, four young people became the postgraduate students at the Institute
of Cybernetics, both authors were among them.

Two of them, A.Degtyarev and K.Verchinin, were graduated from the Mechanical
and Mathematical Faculty of the Moscow State University. Other two, A.Lyaletski and
N.Malevanyi – from the Cybernetics Faculty of the Kiev State University. So, we had
joined the EA team and V.Bodnarchuk became our “local supervisor” (the global one
was V.Glushkov). We were young, full of energy and illusions...

At the very beginning, V.Bodnarchuk has formulated the following tasks:

- careful revision of everything that was done previously by the “old team”;
- detailed analysis of mathematical texts in various domains;
- preparation of two surveys: (1) of combinatorial proof-search methods (published,

see [16]) and (2) of using heuristics in proof search (published, see [18])

The revision of the existing version of the AGS method demonstrated that, first,
the use of the Kanger’s notion of substitution admissibility instead of skolemization
complicates drastically an eventual implementation and, second, the method requires a
special technique for equality handling. So, to advance the whole project, one needed:

- either to improve the AGS method paying special attention to redundancy avoid-
ance and equality handling, or to adapt one of existing combinatorial methods of proof
search for the role of inference engine in the EA project;

- to develop a practically usable version of the “mathematical language” along with
the whole syntactical service around it;

- to find a convenient formalization of what is frequently used in mathematical texts
to make them available for human reader – “proof method”, “proof scheme”, “lemma
application”, “definition dependency”, etc.

- to find methods of what is called “knowledge management” now, e.g. to try to
understand what the “relevancy relation” on mathematical facts might be;

- to develop an implementation base (it became clear at the very beginning that exper-
imental work was strongly needed and it could not be done in paper-and-pencil mode).

We began in quite favorable setting. Two circumstances should be especially noted.
At that time, it was easy to establish scientific contacts in the ex-USSR and we have
done that: with famous Leningrad logic school, with excellent Novosibirsk logic school
(founded by A.Maltsev), with strong Moscow logic school, with linguists, psycholo-
gists, etc. The second point is that last-year students of the new Cybernetics department
of the Kiev University used to pass their six month professional training at the Insti-
tute of Cybernetics. In this way the second EA team had got two very capable young
researchers: A.Zhezherun (in 1973) and M.Morokhovets (in 1978).

3.1 Theoretical Work

Here is a brief description of research interests and results obtained by members of the
second EA team.

At the beginning, A.Degtyarev studied the role of heuristics in formal proofs. He
restricted himself with linear algebra and showed that for large class of theorems, the
proof search (by resolution with paramodulation) may be controlled in a way and re-
duced to the problem of finding solution to a set of linear equations [17,21]. It was quite
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interesting result but A.Degtyarev did not continue that direction and devoted himself
to the problem of equality handling in resolution-like methods. As a “side effect” he
obtained an efficient unification algorithm (published later in [23,42]) that was based
on the same principles that the well-known Martelli and Montanary algorithm [95] for-
mulated later.

His main results concern various paramodulation strategies and the problem of com-
patibility the paramodulation rule with term orderings. The most known is so called
monotonic paramodulation [30,31,50] subsequently used in many other researchs on
the subject.

A.Lyaletski occupied himself with the careful analysis of combinatorial proof search
methods trying to put them in a common setting and find (or build) the best candidate
for a resolution-type inference engine. He suggested a modification of the resolution
rule which operated with more general objects than clauses – conjunctive clauses or c-
clauses. (Later, V.Lifschitz [94] independently proposed something similar and called
them “super-clauses”). Two different c-clause calculi were build [24,25] which per-
mitted to reformulate well-known Maslov’s Inverse Method [96] in a resolution-like
manner.

Another problem was the skolemization. Is it bad or not? Anufriev’s method did
not use skolemization, but it adds new entities as in the case of Kanger’s method. On
the other hand, skolemization simplifies the algorithmic part of proof search methods.
A.Lyaletski found an original notion of admissible substitution that allowed him to get
in some sense a compromise. He built a series of sequent calculi with resolution style
inference rules, that, on one hand, don’t require skolemization and, on the other hand,
are not less efficient than the usual resolution calculus ([34,35,53]).

K.Verchinine was strongly involved in the language problem. We had to formalize
mathematical texts, not only isolated statements. A text may be considered as a struc-
tured collection of sections: chapters, paragraphs, definitions, theorems, proofs, etc. So
a part of the language was designed to represent this structure, its “semantics” was
given by the “trip rules”. Another part served to formalize a statement. New units were
added to the standard first-order syntax which permitted to use nouns, adjectives, spe-
cial quantifiers, etc. The language was developed and has got the name TL – Theory
Language [15,20]. Here is a formal TL phrase: “there is no remedy against all deseases
but there is a desease against all remedies”. (That time the vocabulary as well as the
syntax was certainly Russian.)

Two kind of semantics were defined for that part: a transformational one (an al-
gorithm to convert a TL statement into its first-order image) and another one – in the
traditional set-theoretical style where ε was interpreted as the membership relation [19].
The last semantics permitted to define the “extension” of every notion (e.g. the exten-
sion of “subgroup of G” is the class of all subgroups of G) and to introduce a structure
on the set of notions which restrict quantifiers in the given sentence. That structure was
called “situation” and was used in attempts to formalize a relevancy relation.

At the beginning, A.Zhezherun took active part in the TL language development. He
designed and implemented the whole syntactic service for the linguistic part of the fu-
ture system. As usual, there were funny side effects of the work. For instance, computer
linguists have always searched for some invariant (called profound semantic structure)
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that could be used in machine translation algorithms. A.Zhezherun and K.Verchinine
showed that the first-order image of a TL statement can play the role of such invari-
ant. So just changing the superficial decorations in some regular way, one can translate
mathematical statements from Russian into English and vice versa (provided the dictio-
nary). A.Zhezherun wrote a program to play with, and it worked surprisingly well! Be-
sides, he studied the opportunity to formalize mathematical reasoning in a higher-order
logic and proved in particular the decidability of the second-order monadic unification
[39].

M.Morokhovets occupied herself with the problem of “reasoner” (see above). As
the reasoner must have a prover to cooperate with, the last was badly needed. The
AGS based prover didn’t fit well to that purpose, so we decided to develop and im-
plement a resolution-and-paramodulation based prover with a flexible architecture that
could be adapted to various strategies and auxiliary inference rules. M.Morokhovets
has done it. The first observation showed that some particular premises are strongly re-
sponsible for the search space explosion. The transitivity axiom clearly is among them.
M.Morokhovets proved that for some large class of transitive relations, this axiom may
be eliminated and replaced by a special inference rule which can be controlled to shorten
the search space [57].

Another idea was to use the fact that all quantifiers in the TL statement are restricted
(bounded). Is it possible to “forget” the restrictions, find an inference and then just ver-
ify that all substitutions are correct w.r.t. these restrictions (bounds). M.Morokhovets
has found several classes of statements for which the answer is “yes”, and has im-
plemented corresponding procedure [56]. One more question was as follows. Let’s
suppose that a conjecture is proved and the resolution-style inference is constructed.
How to present it in a human readable form? The set of conversion rules that permit
to do it (based on an early result of K.Verchinine), was designed and implemented by
M.Morokhovets, too.

3.2 Experimental Work

Certainly, some computer experiments have been done from the very beginning of EA
project development (it was one of Glushkov’s ideas – to be permanently accompanied
with computers while doing theoretical research). Still in 1971 K.Verchinine used the
syntactic tools taken from another system (developed in the same department) to im-
plement a part of TL grammar. A.Malashonok have programmed AGS prover to make
local experiments with. Also local experiments with paramodulation strategies were
maid by A.Degtyarev. N.Malevanyi began to prepare something like a specialized li-
brary for future experiments on the BESM-6 machine – another Lebedev’s creation –
one of the most powerful computer in the ex-USSR.

Systematic programming was initiated after A.Zhezherun appeared. He became the
main designer and programmer of the system for mathematical text processing. But no
doubt, we all were involved in programming. At that time, the IBM System 360/370
(cached under the name “ES Line Computer”) was admitted in the ex-USSR as the
main platform. With the native operating system and the PL/1 as the main programming
language – what a hell!!!
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Nevertheless the work advanced and the first experiments with the whole system
were done in 1976/1977. The main task was formulated as mathematical text verifica-
tion and may be presented as follows.

Let a TL text be given. The system can:

- parse the text informing the user about syntactic errors (if any);
- convert the text to some tree-like internal form;
- run the main loop: choose a goal sentence to verify and find its logical predecessors;
- construct an initial proof environment for one of available provers2;
- start the prover and wait;
- if the prover fails then ask to help;
- if the prover succeeds then output the proof, choose the next goal and repeat the

main loop until the end of the text be reached.

The first public presentation of the system in question was made at the All-Union
symposium “Artificial intelligence and automated research in Mathematics” (Kiev,
Ukraine, 28-30 November 1978). It worked!

In 1980, V.M. Glushkov gave the name “System for Automated Deduction” (SAD)
to the implemented system and it has this name now.

The further work consisted in improving the system and adding new features to it.
We extended the mathematical texts library and developed a conception of further ex-
tension of TL language with “imperative” (algorithmic) constructions. A method of
using auxiliary statements in proof search (based on the notion of situation) was imple-
mented by V.Atayan [47]. Efficient paramodulation strategies were added and tested by
A.Degtyarev. A resolution-based prover was implemented by M.Morokhovets.

In the meantime four PhD thesis were defended at the Institut for Cybernetics:
A.Zhezherun has got his PhD in 1980 [46], A.Lyaletski [53], A.Degtyarev [51] and
K.Verchinine [54] – in 1982. M.Morokhovets’ thesis was in preparation.

We understood that to advance the project we need to try the SAD system in some
more or less practical applications. One possible application was the automated program
synthesis and we established a contact with professor Enn Tyugu (Tallinn, Estonia) and
his team. Another interesting application was the deduction tool for expert systems. The
problem is that classical logic is rarely used in this domain. So, the question appeared:
is it possible to adapt SAD for the inference search problem in non-classical logics?3.

But everithing comes to its end. Sooner or later.

3.3 Team Evolution (or the Sad Part of the SAD History)

Already in the end of 1972, V.Bodnarchuk falled seriously ill and, actually, he
abandoned the research activity for a long time. From 1973 to 1975 F. Anufriev,

2 At that time, the SAD system prover was constructed and implemented on the base of an orig-
inal sequent-type calculus [48]. It had the following features: it was goal-oriented, skolemiza-
tion was not obligatory, and equality handling was separated from deduction. Now, the native
prover of the current (English) SAD possesses the same features.

3 Later, a theoretical answer on this question was obtained in a number of papers of A.Lyaletski
(see, for example, [77,86]); from this point of view, some researches on Herbrand theorems
([78,79,82,90]) also may seem to be interesting.
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Z. Aselderov, V. Kostyrko, and A. Malashonok left the team because of various reasons,
they never came back to the subject area afterwards. In 1982, V.Glushkov was dead.
The administration style in the Institut for Cybernetics changed and we were not the
favorit director’s team any more. In the middle of 1983, A. Lyaletski and A. Zhezherun
left for the Kiev University. In 1984, K. Verchinine moved to another department and
changed his research area. Finally, in 1987, A. Degtyarev left for the Kiev University,
too. M.Morochovets stayed at our former department of the Institute of Cybernetics.
The EA team did no more exist...

4 Post-EA Stage and English SAD (1998-Nowadays)

In 1998, the Evidence Algorithm project moved into a new stage. That year the IN-
TAS project 96-0760 “Rewriting techniques and efficient theorem proving” started and
brought financial support for resumption of work on SAD. The new working group in-
cluded Alexander Lyaletski at Kiev National University (KNU), Marina Morokhovets
at the Institute of Cybernetics in Kiev, Konstantin Verchinine at Paris 12 University in
France, and Andrei Paskevich, fourth-year undergraduate student of KNU.

The work started in 1999, with re-implementation of the TL language on IBM PC.
The programs were written in C on the Linux platform. In a year, towards March 2000,
parsing and translation of TL sentences into a first-order language was implemented.
The English-based version of TL had been given the name ForTheL, an acronym for
“FORmal THEory Language” (also a Russian word meaning “trick” or “stunt”). The
language was presented firstly at the Fifth International Conference “Information The-
ories and Applications” in September 2000 in Varna, Bulgaria [67].

The same summer the work started on re-implementation of the deductive tools of
SAD. By January 2001, A.Paskevich created the first prototype of the prover (the prover
had gotten the name “Moses”). A bit later the technique of admissible substitutions by
A. Lyaletski which permitted to dispense with skolemization and preserve the initial
signature of a proof task, was also implemented. Later, the equality elimination proce-
dure by Brand [91] was added to handle the problems with equality. By June 2001, the
complete “workflow” of the initial SAD: from ForTheL text to first-order representa-
tion to proof task to proof tree, was reestablished. Of course, a lot of functionality of
the previous implementation has not been transferred into the new system.

In September 2001, A. Paskevich started his doctoral study under the joint supervi-
sion of Konstantin Verchinine and Alexander Lyaletski. His work aimed at the develop-
ment of a new, two-level architecture of a mathematical assistant.

In the first prototype of the English SAD system, the reasoner was virtually non-
existent. The theoretical development of the reasoner started with the work on “local
validity”, which allowed to perform sound logical inferences inside a formula, possi-
bly under quantifiers. This technique could provide a basis for in-place transformations
(such as definition expansions) as well as for handling of partial functions and predi-
cates [71].

By the end of 2003, tools for supporting proofs by case analysis and by general
induction (with respect to some well-found ordering) were implemented in the SAD. In
2004, an experimental support for binding constructions, such as summation and limit,
was also added [81].
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An algorithm for generation of atomic local lemmas was constructed and imple-
mented: these lemmas help to prove a lot of simple statements without using a prover
at all.

An interesting feature of the SAD is that the prover does not depend on the rest of
the system. It means that various provers can be used as the system inference engine
(provided the interface be written). The following ones were used in our experiments:
SPASS [105], Otter [98], E Prover [103], Vampire [100] and Prover9 [99].

In July, 2007, the “enriched” SAD system was presented at the 21st Conference
on Automated Deduction in Bremen, Germany [85]. A. Paskevich has made several
improvements since then. The current version of the system is freely available at
http://www.nevidal.org . Here is a short list of texts (proofs) that were successfully ver-
ified by the SAD: Tarski’s Fixed Point theorem, Newman’s lemma, Chinese Remainder
theorem, Infinite Ramsey theorem, “The square root of a prime number is not ratio-
nal”, Cauchy-Bouniakowsky-Schwartz inequality for real vectors, Fuerstenberg’s proof
of the infinitude of primes.

Finally note that the EA project leaded to the carrying out of new investigations in
automated reasoning (see the last publications in the reference list).

5 Conclusion

Let’s imagine an ideal Mathematical Assistant. What its architecture might be from the
EA position?

A user communicates with the system with the help of texts written in a high-level
formal input language close to the natural one. She or he submits a problem like “verify
whether the given text is correct” or “how to prove the following statement”, or “what is
the given text about” and so on. The text, provided being syntactically correct, is treated
by the part of the system that we call “reasoner”. The reasoner analyzes the problem and
formulates a series of tasks that it submits to the inference engine, a prover. If the prover
succeeds, the resulting conclusion (e.g. human-readable proof) is given to the user and
the game is over. If it fails then a kind of “morbid anatomist” makes a diagnosis and
supplies it to the reasoner who tries to repair the situation. In particular, the reasoner
can decide that an auxiliary statement (lemma) might be useful and start the search for
those in the mathematical archives. To do that it submits a request to the archive service,
we call it “librarian”. After getting an answer, the reasoner begins a new proof search
cycle with the modified problem and the process goes on.

The user can interact with the system by playing for the reasoner, librarian, for the
morbid anatomist (provided that she or he understands the internal prover’s life) or for
the prover itself, deciding whether a given conjecture should be considered as valid.

Where we are with respect to the ideal? Optimistic answers are welcome.
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Abstract. A lot of mathematical knowledge has been formalized and
stored in repositories by now: Different mathematical theorems and the-
ories have been taken into consideration and included in mathematical
repositories. Applications more distant from pure mathematics, however
— though based on these theories — often need more detailed knowledge
about the underlying theories. In this paper we present an example Mizar
formalization from the area of electrical engineering focusing on stabil-
ity theory which is based on complex analysis. We discuss what kind of
special knowledge is necessary and which amount of this knowledge is
included in existing repositories.

1 Introduction

The aim of mathematical knowledge management is to provide both tools and
infrastructure supporting the organization, development, and teaching of math-
ematics with the help of effective up-to-date computer technologies. To achieve
this ambitious goal it should be taken into account that the predominant part of
potential users will not be professional mathematicians themselves, but rather
scientists or teachers that apply mathematics in their special domain. To attract
these people it is essential that our repositories provide a sufficient knowledge
base for those domains. We are interested in how far existing mathematical repos-
itories are from meeting this precondition, or in other words: How large is the
gap between the knowledge already included in repositories and the knowledge
necessary for particular applications?

This problem, however, concerns not only the simple question how much
knowledge of a domain is available in a repository. We believe, that in order
to measure this gap, it is equally important to consider the basic conditions for
a successful formalization of applications on top of existing knowledge, that is
on top of a mathematical repository: The more easy such a formalization is,
the more attractive is a mathematical repository. To describe attractiveness of
a repository for an application one can identify three major points:
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1. Amount of knowledge
This is the obvious question of how much knowledge of a particular

domain already has been formalized and included in the repository. Basically,
the more knowledge of a domain is included the more attractive a repository
is for applications.

2. Representation of knowledge
This concerns the question of how the knowledge has been defined and

formalized: Often mathematicians use more abstract constructions than nec-
essary — and attractive — for applications. An example is the construction
of rational functions from polynomials.

3. Applicability of knowledge
This point deals with both how the knowledge of a domain is organized in

a repository and the question of how easy it is to adapt available knowledge
to one’s own purposes.

In this paper we focus on electrical engineering, in particular on network stability
[Unb93]. Network theory deals with the mathematical description, analysis and
synthesis of electrical (e.g. continuous, time-discrete or digital) networks. For a
reliable application such systems have to be (input/output-) stable, that is for
an arbitrary bounded input the output have to be bounded again. In practice
it is impossible to verify responses for all input signals. In this situation there
is, however, a number of theorems permitting easier methods to decide whether
a network is stable [Unb93]. We shall introduce the mathematical fundamentals
and prequisites of one example theorem and present a Mizar formalization of this
theorem. After that we discus our formalization in the spirit of the three points
from above: How far are we from providing a suitable mathematical repository
for applications in stability theory?

2 Stability of Networks

As mentioned in the introduction the (input/output-) stability of networks is
one of the main issues when dealing with the analysis and design of electrical
circuits and systems. In the following we briefly review definitions and properties
of electrical systems necessary to understand the rest of the paper. In electrical
engineering stability applies to the input/output behaviour of networks (see
figure 1). For (time-) continuous systems one finds the following definition. For
discrete systems an analogous definition is used.

Definition 1. ([Unb93])
A continuous system is (BIBO-)1 stable, if and only if each bounded input signal
x(t) results in a bounded output signal y(t).

Physically realizable, linear time-invariant systems (LTI systems) can be de-
scribed by a set of differential equations [Unb93]. The behaviour of a LTI system

1 BIBO stands for Bounded Input Bounded Output.
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then is completely characterized by its impulse response h(t).2 If the impulse re-
sponse of such a system is known, the relation between the input x(t) and the
output y(t) is given by the convolution integral

y(t) =

∞∫
−∞

x(τ)h(t − τ)dτ. (1)

Furthermore, a LTI system is stable, if and only if its impulse response h(t) is
absolute integrable, that is there exists a constant K such that

∞∫
−∞

|h(τ)| dτ ≤ K < ∞. (2)

In network and filter analysis and design, however, one commonly employs the
frequency domain rather than the time domain. To this end the system is de-
scribed based on its transfer function H(s). In case the Laplace transformation
is used we have3

H(s) =

∞∫
−∞

h(t)e−stdt.

where s = σ + jω is a complex variable with �{s} = σ and �{s} = ω.

��� �x(t) y(t)

H(s)

h(t)

System

Fig. 1. LTI system with one input x(t) and one output y(t)

The evaluation of H(s) for s = jω — in case of convergence4 — enables
the qualitative understanding of how the system handles and selects various
frequencies ω, so for example whether the system describes a high-pass filter,
low-pass filter, etc. Now the necessary condition to demonstrate the stability of
LTI systems in the frequency domain reduces to show, that the jω-axis lies in
the Laplace transformation’s region of convergence (ROC).

For physically realizable LTI systems, such as the class of networks with con-
stant and concentrated parameters (so-called lumped parameters circuits), H(s)
is given in form of a rational function with real coefficients, that is

H(s) =
ansn + . . . + a0

bmsm + . . . + b0
, ai, bi ∈ R. (3)

2 h(t) is the output of the system, when the input is the Dirac delta function δ(t).
3 Note that this is a generalization of the continuous-time Fourier transformation.
4 In this case H(jω) equals the Fourier transform.
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In this case the region of convergence can be described by the roots of the
denominator polynomial: If si = σi + jωi for i = 1, . . .m are the roots of bmsm +
. . . + b0, the region of convergence is given by

�{s} > max{σi, i = 1, . . .m}.

To check stability it is therefore sufficient, to show that the real part �{s} of
all poles of H(s) is smaller then 0. The denominator of H(s) is thus a so-called
Hurwitz polynomial.

Note that the stability problem for discrete-time signals and systems can be
analized with the same approach. For a given discrete-time transfer function
H(z) in the Z- domain, it has to be checked whether the unit circle is contained
in the region of convergence. Hence for all poles zi of H(z) we must have |zi| < 1.
Using bilinear transformations [OS98]

z :=
1 + s

1− s
. (4)

it is thus sufficient to check whether the denominator of

H(z)|z:= 1+s
1−s

(5)

is a Hurwitz polynomial.
The practical proof of stability of high-precision filters, however, turns out

to be very hard. In practical applications the poles of concern are usually close
to the axis s = jω or the unit circle |z| = ejω respectively. Thus numerical
determination of the poles is highly error-prone due to its rounding effects. In
digital signal processing in addition degrees of transfer functions tend to be very
high, for example 128 and higher in communication networks.

An interesting and in practice often used method to check the stability of a
given network is based on the following theorem.

Theorem 1. ([Unb93])

Let f(x) be a real polynomial with degree n ≥ 1. Furthermore let all coefficients
of f(x) be greater than 0. Let fe(x) and fo(x) denote the even part resp. the
odd part of f(x). Assume further that

Z(x) =
fe(x)
fo(x)

or the reciprocal of Z(x) is a reactance one-port function of degree n. Then f(x)
is a Hurwitz polynomial.

The concept of reactance one-port function stems from electrical network theory:
In arbitrary passive (that is RLC-) networks we find the following relations
between the complex voltage Uν(s) and the complex current Iν(s):
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�Iν(s)
� �

�

Uν(s)

network element

Ur(s) = Rr · Ir(s) for a resistor Rr

Ul(s) = s · Ll · Il(s) for an inductance Ll

Uk(s) = 1
s·Ck

· Ik(s) for a capacity Ck

An impedance (complex resistor) or admittance (complex conductance) composed
of network elements R, L and C only is called a (RLC-) one-port function, an
impedance or admittance composed of network elements L and C only is called
a reactance one-port function. Conversely, for every one-port function Z(s) there
exists at least one one-port, whose impedance or admittance is equal to Z(s):

Hence, theorem 1 reduces stability checking to the considerable easier task to
synthesize a one-port solely using inductors (L) and capacitors (C), that is to
synthesize a reactance one-port. To this end there exist easy procedures like for
example Routh’s method to construct a chain one-port [Unb93].

It turns out that one-port functions Z(s) are exactly the real positive rational
functions. For a real function we have that for real s also Z(s) is real5, and a
positive function means that �{s} > 0 implies �{Z(s)} > 0. A reactance one-
port function is a one-port function, that is in addition odd. The property of
being positive is closely connected to Hurwitz polynomials:

Theorem 2. ([Unb93])
Let f(x) be a real polynomial with degree n ≥ 1. Furthermore let all coefficients
of f(x) be greater than 0. Let fe(x) and fo(x) denote the even part resp. the
odd part of f(x). Assume thatfe(x) and fo(x) have no common roots and that
Z(x) = fe(x)/fo(x) is positive. Then

(i) �{Z(x)} ≥ 0 for all x with �{x} = 0
(ii) fe(x) + fo(x) is a Hurwitz polynomial.

In section 4.2 we will see that this theorem is also the key to prove that stability
checking can be reduced to synthesizing LC-one-ports, in other words to prove
theorem 1 from above.

3 The Mizar System

The logical basis of Mizar [RT01, Miz10] is classical first order logic extended,
however, with so-called schemes. Schemes introduce free second order variables,
5 This condition implies that the coefficients of Z(s) are real. In network theory, how-

ever, this definition is used.
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in this way enabling among others the definition of induction schemes. In addi-
tion Mizar objects are typed, the types forming a hierarchy with the fundamental
type set. The user can introduce new (sub)types describing mathematical ob-
jects such as groups, fields, vector spaces or polynomials over rings or fields. To
this end the Mizar language provides a powerful typing mechanism based on
adjective subtypes [Ban03].

The current development of Mizar relies on Tarski-Grothendieck set the-
ory — a variant of Zermelo Fraenkel set theory using Tarski’s axiom on ar-
bitrarily large, strongly inaccessible cardinals [Tar39] which can be used to
prove the axiom of choice —, though in principle the Mizar language can be
used with other axiom systems also. Mizar proofs are written in natural de-
duction style as presented in the calculus of [Jaś34]. The rules of the calcu-
lus are connected with corresponding (English) natural language phrases so
that the Mizar language is close to the one used in mathematical textbooks.
The Mizar proof checker verifies the individual proof steps using the notion of
obvious inferences [Dav81] to shorten the rather long proofs of pure natural
deduction.

4 Mizar Formalization of the Theorem

4.1 Preliminaries about Rational Functions

Although the theory of polynomials in Mizar is rather well developed, rational
functions have not been defined yet. In the following we briefly review how we
have introduced rational functions in Mizar. Rational functions can — analo-
gously to polynomials — be defined over arbitrary fields: Rational functions are
simply pairs of polynomials whose second component is not the zero polynomial.6

These can be easily introduced as a Mizar type Rational_function of L, where
L is the underlying coefficient domain.

definition

let L be non trivial multLoopStr_0;

mode rational_function of L means

ex p1 being Polynomial of L st

ex p2 being non zero Polynomial of L st it = [p1,p2];

end;

Note that in Mizar the result type of the pair constructor [ , ] and the pro-
jections ‘1 and ‘2, in the original definition is simply set. These, however, can
be modified into Rational_function and (non zero) Polynomial respectively
by employing redefinitions. In addition one can introduce the usual functions
num and denom as synonyms for the corresponding projections.

6 Of course rational functions can be introduced ”more algebraically” as the quotient
field of a polynomial ring. Here we decided to use pairs to concentrate on application
issues; see the discussion in section 5.
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definition

let L be non trivial multLoopStr_0;

let p1 be Polynomial of L;

let p2 be non zero Polynomial of L;

redefine func [p1,p2] -> rational_function of L;

end;

definition

let L be non trivial multLoopStr_0;

let z be rational_function of L;

redefine func z‘1 -> Polynomial of L;

redefine func z‘2 -> non zero Polynomial of L;

end;

notation

let L be non trivial multLoopStr_0;

let z be rational_function of L;

synonym num(z) for z‘1;

synonym denom(z) for z‘2;

end;

Now that num and denom — applied to rational functions — have result type
Polynomial, operations for rational functions can straightforwardly be defined
by employing the corresponding functions for polynomials. So, for example, the
evaluation of rational functions can be defined using evaluation of polynomials
and the division operator / defined for arbitrary fields L.

definition

let L be Field;

let z be rational_function of L;

let x be Element of L;

func eval(z,x) -> Element of L equals

eval(num(z),x) / eval(denom(z),x);

end;

Note that according to the definition of eval for polynomials the type of the
first argument — that is of num(z) and denom(z) — has to be Polynomial.
This is ensured by the redefinitions from above, which in this sense allow for
reusing the operations defined for polynomials in the case of rational functions.
Other necessary operations for rational functions such as the degree or arithmetic
operations can be defined the same way.

4.2 The Theorem

To apply the general Mizar theory of polynomials and rational functions with com-
plex numbers we just instantiate the parameter L describing the coefficient domain
with the field of complex numbers F_Complex from [Mil01a]. So an object of type

rational_function of F_Complex

combines the theory of rational functions with the one of complex numbers.
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Further properties necessary to state the main theorem are introduced by
defining appropriate attributes for polynomials and rational functions resp. Note
that these definitions apply to polynomials and rational functions over the com-
plex numbers only.

definition

let p be Polynomial of F_Complex;

attr p is real means

for i being Element of NAT holds p.i is real number;

end;

definition

let p be rational_function of F_Complex;

attr Z is positive means

for x being Element of F_Complex

holds Re(x) > 0 implies Re(eval(Z,x)) > 0;

end;

Using these attributes — and the attribute odd describing odd functions — we
can then introduce one-ports and reactance one-ports in Mizar by the following
mode definitions.

definition

mode one_port_function is real positive rational_function of F_Complex;

mode reactance_one_port_function is

odd real positive rational_function of F_Complex;

end;

We also needed to define the odd and the even part of a polynomial f. This
is accomplished by two Mizar functors even_part(f) and odd_part(f), which
however can be defined straightforwardly. Finally we formalize the condition
from the theorem, that all the coefficients of the given polynomial f should be
greater than 0 as usual as a Mizar attribute:

definition

let f be real Polynomial of F_Complex;

attr f is with_all_coefficients_positive means

for i being Element of NAT st i <= deg p holds p.i > 0;

end;

Note that for a real polynomial f where all coeffiecients of f are greater than 0
and deg(f) ≥ 1 both the even and the odd part of f are not 0, hence both can
appear as the denominator of a rational function. Thus prepared we can state
theorem 1 from section 2 in Mizar. Note again that due to the redefinitions of
section 4.1 the functor [ , ] returns a rational function.
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theorem

for p be non constant with_positive_coefficients

(real Polynomial of F_Complex)

st [even_part(p),odd_part(p)] is reactance_one_port_function &

degree([even_part(p),odd_part(p)]) = degree p

holds p is Hurwitz;

The proof of the theorem, as already indicated, basically relies on theorem 2
from section 2, which connects rational functions with the property of being a
Hurwitz polynomial. Based on our development from above one can formulate
this theorem as follows.

theorem

for p be non constant with_positive_coefficients

(real Polynomial of F_Complex)

st [even_part(p),odd_part(p)] is positive &

even_part(p),odd_part(p) have_no_common_roots

holds (for x being Element of F_Complex

st Re(x) = 0 & eval(odd_part(p),x) <> 0

holds Re(eval([even_part(p),odd_part(p)],x)) >= 0) &

even_part(p) + odd_part(p) is Hurwitz;

The corresponding Mizar proof is rather technical. The basic idea consists of
considering in addition to

Z(x) =
pe(x)
po(x)

(6)

the rational function

W (x) =
Z(x)− 1
Z(x) + 1

=
pe(x) − po(x)
pe(x) + po(x)

. (7)

and to analyze the absolute values |W (x)|. If Z(x) is positive, then |W (x)| ≤ 1
for all x with �{x} ≥ 0, which implies that W (x) has no poles for �{x} ≥ 0.
Thus the denominator polynomial of W (x) can have roots only for �(x) < 0, so
pe(x) + po(x) = p(x) is a Hurwitz polynomial.

The main theorem now easily follows from theorem 2, because the degree
condition implies that pe(x) and po(x) have no common roots.

5 Discussion — Lessons Learned

In the followingwediscussour formalization fromthe last sectionwith respect to the
three criteria presented in the introduction. Though carried out for Mizar and the
Mizar Mathematical Libray (MML) we believe that the situation in other reposito-
ries is similar, so that most of our results should hold in a more general context also.

In [RS07] we already presented a Mizar formalization of Schur’s theorem,
another helpful criterion for stability checking. Based on polynomials only its
formalization was rather harmless. The only missing point that caused some
work was division of polynomials. However, as we will see, stability checking in
general needs definitely more extension than in this case.
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5.1 Amount of Knowledge

Complex numbers and polynomials (over arbitrary rings) are included in MML.
A lot of theorems have been proved here, so that almost all we needed could be
found in the repository. Interestingly rational functions — a rather basic struc-
ture — had not been defined, yet. The reason might be that rational functions
are mathematically rather simple and this is the first time that a theorem relying
on rational functions has been formalized.

Though even and odd functions were already included in MML, the even
and odd part of a polynomial was not. This, however, comes with no surprise,
just because these polynomial operations are rather seldom used. We hence had
to prove a number of theorems dealing with these polynomials, most of them
however being elementary like for example

theorem

for p being real Polynomial of F_Complex

for x being Element of F_Complex st Re(x) = 0

holds Re(eval(odd_part(p),x)) = 0;

Summarizing, except for the lack of rational functions, MML provides the
amount of knowledge for stability checking one could expected.

5.2 Representation of Knowledge

The construction of rational functions can be performed in different ways. Of
course, one can define rational functions as pairs of polynomials. On the other
hand there is the possibility to construct (the field of) rational functions as the
completion of polynomial rings. Though the second version is mathematically
more challenging we decided to use pairs. We wanted to emphasize the contri-
bution to applications by concentrating on prior knowledge of potential users:
Electrical engineers are probably not interested in (working with!) abstract al-
gebra, their interests and needs are different.

In the same context there is another representational problem: In MML we
find both the complex numbers and the field of complex numbers. Not a problem
in itself, this may cause some confusion when searching for notions and theorems:
The functors Re and Im giving the real and imaginary part, for exmaple, are
defined for complex numbers only, thus — theoretically — not applicable to
elements of a field. In Mizar, however, this is not necessarily the case: Using
a special registration — identify [Kor09] — the user can identify terms and
operations from different structures, here complex numbers with elements of the
field of complex numbers:

registration

let a,b be complex number;

let x,y be Element of F_Complex;

identify x+y with a+b when x=a, y=b;

identify x*y with a*b when x=a, y=b;

end;
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In effect, after this registration functors Re and Im are applicable to elements of
the field of complex numbers.

In general, different views on mathematical objects — here, complex numbers
as numbers or elements of a field — have to be handled carefully in mathema-
tical repositories in order to not confuse possible users. Even the rudimentary
difference between a polnomial and its polynomial function can lead to surprises
and incomprehension for people not familiar with the formal treatment of math-
ematics in repositories.

5.3 Applicability of Knowledge

As we have already seen, the adaption of general knowledge in MML to special
cases is straightforward: One just instantiates parameters describing the gen-
eral domain with the special one, so for example Polynomial of F_Complex for
polynomials over the (field of) complex numbers.

This, on the other hands, means that to work with such instantiations the user
has to apply theorems about the general structure. Though highly desirable from
the mathematical point of view, it is not clear whether this is really convenient for
application users: To work in the special field of complex numbers, for example,
then means to search for helpful theorems in the theory of fields, rings or even
groups and semigroups. Maybe here a search tool that generates and collects
theorems for special instances of theories would be a reasonable help.

The organization of MML is mainly by articles in which authors prove not only
their main theorems, but also whatever is necessary and not found in MML. As
a consequence theorems of the same topic, e.g. polynomials, can be spread over
the repository. A step to overcome this shortcoming is an ongoing project called
Mizar encyclopedia building articles with monographic character whose contents
is semi-automatically extracted from contributed Mizar articles. Unfortunately
polynomials have not been considered in this project, yet.

Summarizing the Mizar system though flexible in order to support special
applications lacks an organization of its corresponding repository to support
application users in their efforts.

6 Conclusions

We have presented a Mizar formalization of a theorem for stability checking
and have discussed how the knowledge contained in MML supported the pro-
cess from an application user’s point of view. Here we want to emphasize two
points.

First, when building a knowledge base for an application area, it is difficult
to foresee what knowledge is necessary. We have seen that the formalization
of Schur’s theorem went through without major problems, while the present
theorem caused definitely more work and preparation. Furthermore, there are
theorems on stability checking using even involved mathematical techniques such
as e.g. analytic functions and the maximum principle.



438 A. Rowinska-Schwarzweller and C. Schwarzweller

Second, attractiveness of mathematical repositories does not only depend on
the amount of knowledge included. Equally important are a clear representation
and organization of knowledge so that it in particular stays familiar for users
outside the mathematical community.

Consequently is it essential to communicate with experts from the application
area. If we want our repositories to be widely used, we have both to provide a
reasonable knowledge base and to take care of the fact that application users
might represent mathematical knowledge in a different way we are used to. To
this end, we need much more formalizations in application domains. Analysis of
such formalizations may then lead to methodologies for building applications on
top of mathematical repositories and hence may close the gap between knowl-
edge already included in repositories and knowledge necessary for particular
applications.
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Abstract. To improve on existing models of interaction with a proof as-
sistant (PA), in particular for storage and replay of proofs, we introduce
three related concepts, those of: a proof movie, consisting of frames
which record both user input and the corresponding PA response; a ca-
mera, which films a user’s interactive session with a PA as a movie; and
a proviola, which replays a movie frame-by-frame to a third party.

In this paper we describe the movie data structure and we discuss
a prototype implementation of the camera and proviola based on the
ProofWeb system [7]. ProofWeb uncouples the interaction with a PA via
a web-interface (the client) from the actual PA that resides on the server.
Our camera films a movie by “listening” to the ProofWeb communication.

The first reason for developing movies is to uncouple the reviewing of
a formal proof from the PA used to develop it: the movie concept enables
users to discuss small code fragments without the need to install the PA
or to load a whole library into it.

Other advantages include the possibility to develop a separate com-
mentary track to discuss or explain the PA interaction. We assert that
a combined camera+proviola provides a generic layer between a client
(user) and a server (PA). Finally we claim that movies are the right
type of data to be stored in an encyclopedia of formalized mathematics,
based on our experience in filming the Coq standard library.

1 Introduction

Interaction with modern theorem-proving tools, Proof Assistants (PAs), still im-
poses heavy (temporal, spatial, computational, cognitive) resource demands on
users. It is hard to write a proof, but typically even harder to write a formalized
version with a PA. This additional overhead arises from at least the following:

– It is necessary to become (at least somewhat) familiar with the technical
details of the PA, since the user needs to install and configure it before use;

– The user needs to understand the tools the PA gives her, in terms of libraries
and commands, and how to use them to achieve a formalization of the proof;

– The user needs to know the proof and its implicit assumptions in far greater
detail than required to communicate the main ideas to another person.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2010, LNAI 6167, pp. 440–454, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Much of the effort in interaction design for PAs has focused on the second and
third of these issues from the point of view of defining a language of suitable
basic proof steps, augmented with automation layers which are either fully pro-
grammable, or else encapsulate well-defined larger-scale proof steps, together
with an editing model of how to soundly maintain a partially completed proof.

That is to say, the basic PA use case of “writing a proof” has received most
attention, while those of “reading a proof” (written by someone else) or “browsing
a library” rather less so: the narrative or explanatory possibilities afforded by a
formal proof text have been largely overlooked in favour of (variously prettily
rendered) static digests of named definitions and theorem statements. These
are necessary prerequisites for these use cases, but hardly sufficient for gaining
insight into how such proofs “work” (or even: how partial proof attempts may
fail, as when trying to discuss such examples on a mailing list).

In each use case, however, there still remain the computational and cognitive
bottlenecks arising from the first and second problems. For example, as illus-
trated by Kaliszyk [8], before being able to formalize a theorem in Isabelle, a
user needs to install the system, comprising the program itself, an HOL heap
and a version of PolyML. This does not include a user interface, provided by the
Emacs-based ProofGeneral. Having installed the PA, the user is then left with
understanding it: digging through a tutorial or manual, and finding out what
contributions and libraries are necessary for the formalization of the proof.

Our work contributes to addressing the first and second issues, reducing the
overheads of installing and configuring a PA and simplifying access to, and com-
munication about, existing proofs. The third issue we do not address here.

Previous work at Nijmegen has partially addressed the first issue. By pro-
viding a generic web-interface for PAs, the ProofWeb system [8] removes the
computational load on users by uncoupling interaction with a PA via a dedi-
cated webserver. This relieves the user from the installation problem: she can
just visit a website and use a web-interface to access the PA. However, when
trying to understand a (part of a) formal proof script, it is often necessary to see
how the proof state changes through execution of a specific tactic. This requires
first to bring the PA into that specific state — finding and loading the required
libraries and files — a significant overhead, not addressed by ProofWeb.

Similarly, when explaining a tactic or a part of a proof script, with the current
technology, a proof author has to publish the proof script, sometimes with an
explanation of the output the PA returns to her. This is not very satisfactory
and often not informative enough, especially when the publication of the script
is intended to show the intricacies of the proof: if the reviewer is uninitiated in
the specifics of the PA, she might not understand the proof script.

This paper discusses the design of a further uncoupling layer, providing a
client-side Proxy to the server-side PA output. What we do is send a script
piecewise to the PA and record the response: that is, we “film” the interaction
with the PA. So by analogy with film-editing, we have dubbed our system a
“proviola”: a playback and editing suite for “proof movies” created by submitting
formal proof texts, “scripts”, to the PA.



442 C. Tankink et al.

In the present paper we describe the basic ideas behind the movie-camera-
proviola concept by discussing two use cases and a prototype implementation ba-
sed on ProofWeb, which can be inspected at http://mws.cs.ru.nl/proviola.

Then we further examine the versatility of the concept and observe that we
can further use our movies as a drop-in replacement for the existing ProofWeb
interaction model for editing proofs: the proof movie then becomes the “file in
the middle” that receives interactive updates from the user and the PA.

1.1 Contributions

In this paper, we describe the design of an architecture for capturing the inter-
action between a PA and its users. Specifically, we:

– articulate two roles and associated use cases: creating and reading a proof;
– define a proof movie datastructure that encapsulates interaction between

a proof author and a PA; such wrapping affords a reviewer fast access to
details of this interaction;

– have built tools for creating and viewing movies: camera and proviola;
– identify the set of actions an author needs to create and modify a movie

on-the-fly, and the gestures that give access to these actions;
– extend the model to allow arbitrary tools to operate on movie content; and
– design a concrete architecture for implementing such a system.

2 Background and Use Cases

We identify two roles involved in communicating a proof script: the proof au-
thor and a proof reviewer (the reader). The proof author is a user of a PA
that creates a (formal) proof. The interaction with the PA is encoded in a proof
script, which contains the commands used to build the proof. The author can
communicate the proof to any reviewer by publishing this script, and the revie-
wer can look at the script by loading it in his local version of the PA.

These two roles both have their own well-defined activities, but an actor (an
actual user of a system, instead of just an abstract role) can play both the
author-role and the reviewer-role: when writing a proof, an author might want
to review what he has done before. To make the activities of both roles explicit,
we identify a single use case for each of them. These use cases are creating a
proof for the author (Figure 1), and reading a proof for the reviewer (Figure 2).

A third use case is browsing a library, in which a user takes on a role similar to
that of the reviewer, but also searches for useful lemmas in the library, and tries
to understand how they are used. While we do not treat this use case here (we
are grateful to one of our referees for drawing attention to it), we nevertheless
claim that such “advanced” elaborations of the reviewer’s use case would benefit
from the proviola technology presented here. Current technology does not give
users fast access to other developments, which is a prerequisite for this use case.

http://mws.cs.ru.nl/proviola
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Legend The diagrams below are almost, but not quite, standard UML:

– A stick figure represent a user role (proof author and proof reviewer).
– A “package” represents a tool/program instance (here: the PAs).
– The cloud represents the Internet.
– A folded page is a file (here: the proof script).
– Arrows represent data flow; a double arrow, interaction between two parts.

First Use Case: Creating a proof To create a proof, an author writes commands
to be interpreted by the PA. In response, the state of a proof changes by decom-
posing the theorem to be proved, generating new proof obligations or discharging
goals as proven. A proof script stores a a transcript of the commands issued.

In Figure 1, we display the traditional implementation of this use case, in
which the PA is locally installed, and creates a local copy of the proof script.

Fig. 1. Creating a proof script

Second Use Case: Reading a proof To read a proof, the reviewer obtains a (copy
of a) proof script, possibly via the Internet. Subsequently, he can load it in
his copy of the PA, and “replay” the proof: many PA interfaces have a notion
of stepping through a script, by sending commands one-by-one to the PA or
by undoing the last command sent. Because the PA does not know that the
commands it receives are extracted from a script, it responds to commands in
the same way as in the creation use case: by sending the new proof state.

Fig. 2. Reading a proof script

Discussion. This form of communication has a number of problems:

1. If only a small part of the script is relevant, it might still be necessary to send
the entire script to the reviewer: the parts of interest might require definitions
defined previously in a script, or might use lemmas proved earlier.

2. Before a proof can be reviewed, the reviewer needs to install (ideally the
same version of) the PA the author used, or be so familiar with its techno-
logy to interpret the script mentally1. Especially when the script is used to

1 For a PA that uses a procedural proof style (tactics), it is hopeless to try to interpret
a proof script purely mentally, without seeing it executed.
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communicate a proof to a reviewer who is not part of the PA community,
this can be a large handicap.

A possible solution to the first problem, frequently exercised on the Coq-club
mailing list [2], is to simplify a proof script to a minimal example, which focuses
on the problem in the script, and the definitions directly necessary to obtain this
problem. But such simplification might be too drastic, abstracting away crucial
details. Furthermore, abstraction is not an option when the main purpose of
the communication is not to point out a problem, but to display a (partial)
formalization of a proof to an outsider, because it is necessary to stay close to
the vocabulary and methods of the target audience.

The ProofWeb system developed by Kaliszyk [7] places the PA on a central
server that is accessible through an AJAX-based web application. This means
that to review a proof, a reviewer needs only a web browser and the proof script,
which could be hosted on the same server as the PA.

ProofWeb is an Internet-mediated realisation of the “creation” use case, which
mitigates the second problem of having to install and configure a PA, but does
not yet allow partial communication of the proof to a reviewer. It does not
provide fast access to an arbitrary proof state: to obtain the state after a given
command, all preceding ones need to be resent to the PA for reprocessing.

3 The Proof Movie

In the previous section, we identified two problems with the current method of
distributing a proof script from a proof author to a proof reviewer. In summary,
these problems are that reviewing requires the proof reviewer to resubmit the
proof script to the PA, and that the proof script cannot be reviewed in fragments.

To solve these problems, we propose to enrich the proof script data struc-
ture. In the new data structure, which we call the proof movie, we record the
commands sent to the PA coupled together with the response of the PA to each
command. Such a pair of a command and a response is a frame. The exact Do-
cument Type Definition for the movie data structure can be found at http://
mws.cs.ru.nl/proviola/movies/film.dtd.

The proof movie is designed to be self-contained and generic:

Self-contained. Making the movie self-contained means that a proof reviewer
only needs a movie and a tool capable of displaying it to replay the proof:
no other tools are necessary for this. Aside from this, the frames themselves
contain the exact state of the proof at the point represented, meaning that it
is possible for an author to publish a proof partially, omitting or reordering
frames before publication.

Generic. By making the movie generic, creation and display do not depend
on a specific PA or PA version: this does require that one can specify a
transformation from the PA’s interaction model generating discrete frames.

To implement the movie data structure, we used the eXtensible Markup Lan-
guage (XML). An example frame in this implementation can be found in

http://mws.cs.ru.nl/proviola/movies/film.dtd
http://mws.cs.ru.nl/proviola/movies/film.dtd
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<frame frameNumber="2">
<command>

intros A x.
</command>
<response>

1 subgoal

A : Type
x : A
============================
A

</response>
</frame>

Fig. 3. An example frame of a Coq movie

Figure 3. This example contains the notion of a “frame number”: a sequence
number identifying the order in which the commands were submitted to the PA.

We do not consider the movie to be a complete replacement for a script.
Instead, it is a container of a part of the script, together with the output of the
PA. This output does not need to be correct, but this does not interfere with our
intention of the movie: we see a movie as an explanation of a proof, not as checked
proof script per se. If a movie contains a complete script, the concatenation of all
the command segments of all frames in the movie reproduces the script, which
can then be (re-)checked by a PA.

The movie introduces a new use case, creating a movie, which we describe
in Section 5. Having the movie also changes the use case of reviewing a proof
script, and we describe this modified use case first, in Section 4.

4 The Proviola: Watching a Proof Movie

When the reviewer has obtained a proof movie, he wants to access the data
within it to review the proof, much like when he obtained a proof script. In
effect, the “reading a script” use case described in Section 2 and illustrated in
Figure 2 has not changed, only the data structure supporting it has changed.

We call the system used for displaying a movie a proviola. Just as in film-
making, where an editor might wish to review a film while editing, and moreover
quickly fast-forward and rewind the movie to see individual shots, we wish to
achieve similar access speed and portability. Indeed, our proviola is not a separate
tool: rather, we realize it through the use of HTML and very simple JavaScript.

Reading a proof script, revisited: watching the movie. The movie is self-
contained, and can be distributed like a script. Unlike a script, the contents
of a movie can be inspected without any external tools except a web browser:
the movie can be located anywhere, and inspected from this location. In parti-
cular, a PA is not required to compute the proof’s state and the movie can be
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Fig. 4. Watching a movie: proviola and movie proxy PA behaviour

watched offline, at any time. After the reviewer loads a movie in the proviola, he
wants to step through the proof much like when a PA was loaded with a script:
by indicating for which command he wants to see the response.

As illustrated in Figure 4, the proviola and the movie together proxy [5,
Chapter 5] the behaviour of a PA: the responses shown to the proof reviewer are
stored (or cached) in the movie, after having been computed by the PA.

A prototype implementation of the proviola. We implemented a prototype of the
proviola as an XSLT transformation from the movie into an HTML file containing
embedded JavaScript. This page initially shows the commands within the movie,
much like a proof script. Figure 5 illustrates this: when the reviewer places his
cursor over a command, the corresponding response is revealed dynamically. The
command pointed to is highlighted as a visual reminder. The prototype proviola
can be inspected at http://mws.cs.ru.nl/proviola/movies/movies.html

Fig. 5. Screenshot of a proviola

http://mws.cs.ru.nl/proviola/movies/movies.html
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5 The Camera: Creating a Proof Movie

Before a movie can be replayed, it must be created from a proof script by a tool
we call a camera. Such creation of a movie is a new use case, shown in Figure 6.

Fig. 6. Creating a movie: camera and script proxy user behaviour

Third Use Case: Creating a movie. This is non-interactive: the user of the ca-
mera invokes it on a script, after which the tool does all the work, yielding a
movie.

After it has been invoked, the camera parses the proof script given to it into
separate commands. These commands are stored in a frame and sent to the PA.
When the PA responds to a command, the response is recorded alongside the
command. The frame is subsequently appended to the movie.

From the perspective of the PA, the camera and the script behave like an
actual proof author. In other words: in creating the movie, the camera and
script together proxy the behaviour of a proof author.

Because the author holds the original script, it seems natural that she invokes
the camera on it to obtain a movie, for distribution to reviewers. However, a
reviewer might also play the role of cameraman, given access to the script.

Prototype implementation. We implemented the camera as a client to the Proof-
Web system, available at http://mws.cs.ru.nl/proviola/camera/camera.
html. Although it is possible for the camera to communicate directly with each
PA, we believe that using a generic wrapper like ProofWeb has the following
advantage: ProofWeb provides a generic interface to different PAs: the commu-
nication protocol is the same for each PA, and the only PA-specific knowledge
the camera needs to have is how to split a proof script into separate commands.

The main disadvantage to this approach is that to support new PAs with
the camera, these need to be made compatible with ProofWeb, which imposes
stricter requirements on the interaction model than the movie design needs.
In our design, the camera behaves as a straightforward client to a ProofWeb
server, wrapping the commands in the annotation expected by that server and
unwrapping the responses. A step beyond this, which we investigate in Section 6,
is creating a movie automatically and on-demand.

http://mws.cs.ru.nl/proviola/camera/camera.html
http://mws.cs.ru.nl/proviola/camera/camera.html
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6 Proxying Movie-Making

Until now, we have created proof movies by submitting a complete script to a
PA. In particular, we have filmed the Coq standard library [3]. We now wish to
go beyond this simple case of filming completed scripts, and investigate how to
create a movie dynamically, by observing the interaction between proof author
and the PA. Based on these observations, we redesign this architecture to support
the desired behaviour. This architecture will be implemented in future work.

As we have mentioned in Section 2, a user taking the role of a proof author can
also take on that of proof reviewer. If she takes on these two roles simultaneously,
we get the situation depicted in Figure 7. This figure is constructed by composing
Figures 4 and 6, replacing the proxied components from each figure with their
implemented counterpart in the other figure.

Fig. 7. Interactively creating a movie: instantiating the proxies

In this figure, the proof author writes commands into a script, which is sub-
mitted to the camera command-by-command. The command is then handled by
the camera as described in Section 5. Because the proof author has the movie
corresponding to the script loaded in the proviola, it updates whenever the script
updates or when the PA responds to a command.

The camera as designed in the previous section requires an explicit action by
the creator of the movie: the camera is a tool that needs to be invoked on a
proof script to create a movie from it. Such a design requires the proof author
to constantly update the movie when updating the script, to keep them in sync.
In fact, if we follow the information flow in Figure 7, the author cannot even see
the result of her own changes to the script if she does not use the camera first.

As a solution for this disadvantage we merge the script and movie into a
single data structure, that is manipulated by both the proof author (through
the proviola) and the PA. To obtain this, we will need to modify the movie, the
camera and the proviola in the following ways:

Movie. The movie does not need to change in any radical way. The only change
necessary is that a movie be editable after it has been created. This way, the
proof author can write commands into the movie as she would do into the
script.
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Proviola. The proviola already provides a display of the movie, giving the proof
reviewer access to the script and the proof state at that point. To allow an
author to update the movie, the proviola needs to be extended with an interface
to update the commands in the frames in the movie. This extension is done
by adding the notion of a focused frame, which can currently be edited. To
manipulate this frame, we add gestures for the following actions to the proviola:

Create a movie. This action creates a new, empty movie.
Focus frame. The proof author can use this action to change the focused frame

to be the frame she is interested in editing.
Edit frame. The only frame that can be edited is the focused frame.
Add frame to a movie. When the author finishes a command in the focu-

sed frame, a new frame is tacitly added to the movie and given focus. The
previously focused frame is submitted to the camera for further processing.

Remove frame from a movie. This is an inverse action to adding a frame.

We consider submitting a frame for further processing an implicit action: the
proof author does not indicate in any way that she is finished with a frame, but
the system recognizes a frame to be complete and processes it further, including
rechecking commands later in the movie, if these depend on the frame that was
changed. What “depends on” actually means depends on the script-management
model (and more generally: the interaction model) of the PA used.

Camera. To keep the proviola as lightweight as possible, the PA’s manipulation
of the movie is brokered through the camera. This includes periodically checking
whether the author completed a command in the focused frame. Frames contai-
ning completed commands are then split off the focused frame and submitted
to the PA. This means the camera evolves from batch-processing a script (as in
Section 5) to continuously reading the movie, updating its contents as needed.

By merging script and movie, implementing the changes above, we obtain the
architecture shown in Figure 8.

Fig. 8. Interactively creating a movie: cutting out the script

Design and implementation of the system. We have embarked upon a prototype
implementation of the architecture described above. We decided to base it on
ProofWeb’s architecture, placing the camera on a server, with the proviola as a
client to the camera, as an interface to the services offered at the server.

The movie is kept both as a local copy by the proviola and as a remote copy
by the camera, and the protocol between camera and proviola is meant to keep
these copies synchronized: each action of the author is executed on the local copy
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and then communicated to the camera, which communicates the change to the
PA. As such, the movie becomes a proxy for the PA’s state, and the interaction
of proof author with PA is proxied by editing the movie.

By being placed between client and PA, the camera plays a similar role as the
Broker in the PG Kit framework [1]. The main differences between that system
and our proviola-based system, are based on the design decision to make the
movie the main entity of the architecture. This has the following implications:

Cached history. The history of the interaction with the PA is stored as a
movie. Because the client has a local copy of the movie, it provides instant
access to the history of the proof development.

Implicit proof navigation. The author can freely choose the frames of the
movie to edit instead of having to request the PA to unlock or process a line.

To synchronise the movie between camera and proviola, we follow a version of
the publisher/subscriber [5, Chapter 4] design pattern:

– The proviola holds the local copy of the movie, and records when a user
focuses on a specific frame.

– When a frame’s content changes, for example, when a PA responds to a
command, the camera notifies the proviola of this.

– If this frame has not been loaded before, or has been updated, it is requested
from the camera, and cached locally.

– If the frame has been requested before, and has not been updated, it is loaded
from cache.

– When the user updates the focused frame, it is sent to the camera.

7 Applications

7.1 The Camera as a Service Broker

In our design of interactive movie-making, the camera takes a centralized place
at the server, containing the “master copy” of the movie and providing write
access to it. This access is not only usable by the proviola or the PA, but could
also be used by other tools that work with a formal proof.

To provide access to the movie, the camera needs to allow arbitrary tools to
register as either a subscriber or as a publisher for a movie.

Subscribers. A subscriber to a movie can obtain the frames of the movie in
which they are interested. When a frame is changed in the camera-side movie, it
notifies each subscriber of the changed frame. Subscribers can then update the
frame. Our intention is that subscriber access be read-only.

Publishers. By contrast, when registered as a publisher, a tool can write in the
movie. We do not believe there should be any restriction to the types of content
that publishers can write, but do require that the movie should be extended : if
the tool produces information of a different type than already exists in the movie,
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it should be added alongside the existing data, not replace it. So, although it
is possible for multiple tools to write into the command section of a frame, for
example a tool processing a script and the proviola+editor of Section 6, a tool
that does not produce commands should not write in the command section.

The idea of tools listening for changes in proof state is not new: it was pre-
viously mentioned by Aspinall, Lüth and Winterstein [1] as future work for their
broker architecture. Using the camera as a broker is similar, with the advantage
that history does not need to be kept by the individual tools but can be reques-
ted from the camera: an additional benefit is that subscribers coming late to the
party still have access to the full history of a proof, which we consider especially
interesting for our ongoing work towards a repository of formal proofs.

7.2 Towards an Encyclopedia of Formal Proof

With some modifications, the proof movie can be used as the data structure
underlying an encyclopedia that we envisage containing formal proofs together
with an informal narrative explanation, and provide a toolbox for using and
manipulating such composite “articles”, as originally sketched in [4].

The movie provides a generic structural view of different kinds of script, so
that for a tool wanting to manipulate a proof on a structural level, it is not ne-
cessary to know the exact details of the PA concerned, and the history contained
in the movie implies that tools developed later are not required to replay the
entire script through a PA. Furthermore, because the camera provides a central
interface for accessing the movie, tools do not have to be on the server hosting
the encyclopedia, allowing others to use the proofs without undue restrictions.

To implement the encyclopedia, we do need to create several tools ourselves,
that together form the backbone of the encyclopedia.

First, we need to store and retrieve the movie. Possible candidates for storage
are the file system, a database or a version control system which keeps track of
the history of a proof. Retrieval cannot easily be expressed by communicating
with the camera, and will most likely warrant an extension to that concept.

The second addition is aimed at adding informal explanation to a proof: a
“commentary track”, where an author can comment on the proof script and the
output that the PA produces. This requires a revision of the movie-concept.
Because several frames in a movie might be explained in a single, continuous
narrative and commands might be repeated several times in the narrative, we
will add scenes to the movie. A scene contains a single, informal description of
a group of frames, and a reference to these frames. A scene can refer to zero or
more frames, and a frame may belong to zero or more scenes.

As well as linear narrative, scenes could be used to store alternative problem-
solving approaches, such as using different lemmas or automated proof search.

As previously mentioned, we have investigated the movie’s ability to capture a
large body of proofs by filming the Coq standard library [3]. The filming took less
than one hour, including a two-second sleep between processing each file, which
was inserted to prevent overloading the server running ProofWeb. The resulting
films can be inspected at http://mws.cs.ru.nl/proviola, which serves the

http://mws.cs.ru.nl/proviola


452 C. Tankink et al.

films quickly, even for large developments such as that of the Riemann integral,
at around two MB in size. Movies typically are much smaller, however, up to
five hundred kB. The movie size scales in the size of the original script: a long
script that uses tactics producing many subgoals also creates a large movie.

In further work [12], we elaborate the concepts of scenes and commentary, and
describe tooling for creation and display of a commented movie, by investigating
movies of course notes on Software Foundations by Pierce et al.[11], available at
http://mws.cs.ru.nl/proviola/movies/sf

8 Related Work

We have already mentioned the PG kit system and its protocol, PGIP [1]. Inter-
active movie-making is similar to its broker architecture. While PGIP focuses on
the message structure for the dynamics of communication between author and
PA, a movie freezes a sequence of such messages into a static data structure. In
that respect, our approach is orthogonal to that of PGIP: the movie stores the
result of an interactive session while PGIP deals with the messages and protocol
needed to generate it. Instead of a prototype based on the camera and ProofWeb,
we could just as well have filmed an interaction with the PG kit broker.

Wenzel’s Jedit editor [13] also considers a finer grained analysis between editor
and Isabelle. But this is more oriented towards parallelisation of proof steps
than the human-orientated details of interaction and representation of proofs
considered here.

The movie file format is an XML-based representation of formal mathematical
documents. The best-known and most versatile XML-based format for mathe-
matical documents is OMDoc [9]. We decided not to use this format internally
in our system. OMDoc is about document structure, while the content of a mo-
vie is unstructured system input/output. Still, if needed, movies could be easily
converted to OMDoc, so our choice of a simpler format is not a limitation.

The history stored in a movie is not the same as history in, say, a web browser:
the movie stores both the messages sent and the responses received, while a
browser only stores a reference to pages visited, and needs to obtain the page
again when the user requests it. This approach of “recalculating” a result is
similar to what happens when a user sends undo commands, both when using
a normal program (such as a text editor) and when using a PA. In our proviola
there is no recalculation, because all the “history” is stored in the movie.

A command in a PA can consist of a combination of more primitive tactics,
for example two tactics sequentially composed with the “;” tactical in Coq. One
might wish to see the intermediate state after the first tactic in such a sequence.
Coq does not support this small step execution model, so in our implementation,
the movie cannot provide this information. A system like Matita [10] does, so a
proviola based on Matita could potentially expose this refined execution.

Integrating a “commentary track” into the movie, by collecting frames into
“scenes” and adding a narrative text to it, goes in the direction of earlier work on
tmEgg [6]. There we started with a mathematical document, written in the editor

http://mws.cs.ru.nl/proviola/movies/sf
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TEXmacs, as the backbone with a Coq proof script (a .v file) underneath it. At
any point one could consult the formal proof by opening a Coq session within
the document and executing Coq commands. This means Coq is started up and
brought into the required state, and then the selected commands are executed.
This works quite well for small scripts, but can take a lot of time for larger
proofs. Also, it requires the PA to be available, with the right libraries, which
makes the mathematical document less “self-contained”. Another hindrance is
that tmEgg relies heavily on TEXmacs, which means that one is dependent on
yet another application to run smoothly. The present work allows movies to play
the role of the Coq interaction (as a proxy) within an interactive mathematical
document. This can basically be done within any editor and thus relieves the
interactive mathematical document from being tied to either TEXmacs or Coq.

9 Conclusion

In conclusion, we claim that our refactored interaction model and its associa-
ted data structure are an important contribution in their own right. But our
interest is in how this data structure may be further extended to support richer
interaction and display as part of a MathWiki.
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Abstract. Formal mathematics has so far not taken full advantage of
ideas from collaborative tools such as wikis and distributed version con-
trol systems (DVCS). We argue that the field could profit from such
tools, serving both newcomers and experts alike. We describe a prelimi-
nary system for such collaborative development based on the Git DVCS.
We focus, initially, on the Mizar system and its library of formalized
mathematics.

1 Introduction and Motivation

Formal mathematics is becoming increasingly well-known, used, and experi-
mented with [9,10]. Verification of major mathematical theorems such as the
Kepler Conjecture [8], the Four Color Theorem [7], and the increasing use of
verification for critical software and hardware [11,5] are pushing the develop-
ment of interactive verification tools. Indeed, there are already various online
repositories of formal proofs [1,15,4] and catalogs of deductive tools [21].

The goal of the work presented here is to make formal mathematics accessible
online to interested parties by making the subject widely available through online
tools and interfaces. We are particularly interested in providing fast server-based
tools for verification, web presentation, and collaborative development of formal
mathematics.

We believe that such tools are important for our field to attract newcomers:
they provide an attractive environment for exploring the world of formal reason-
ing and the tools of the trade. The technology we have in mind is vital also for
existing members of the formal mathematics community simply by making sys-
tems for formal mathematics easier to access and use. Ideally, the system should
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be so straightforward that, to satisfy some momentary curiosity about a formal-
ism or a proof or a theorem, one could just visit a web page instead of suffering
through the installation of a new system. In the long run, we foresee a web-based
repository of mathematics realizing the vision of the QED Manifesto [20].

Our effort has three principal features: it

– is based on the notion of a wiki (understood here as a support for distributed,
web-based collaborative project)

– uses distributed version control system(s), and
– uses server-based software to do the “heavy lifting” of verification and proof

checking.

Let us briefly characterize these features of our approach.
The first main feature of our approach is the use of wikis. Wikis are well

known; they offer collaborative web-based information resources. The original
wiki [2] is nearly 15 years old. This new genre of web site has grown enormously.
Wikipedia is, evidently, the most prominent example of a wiki: even casual In-
ternet users are not only aware of Wikipedia but use it often: links to Wikipedia
pages are often among the top results of web searches.

Mathematics is, thankfully, no exception to this trend. Wikis and other on-
line repositories and communities for mathematics abound: arXiv, MathOver-
flow [12], T. Gowers’ PolyMath [18], Wolfram MathWorld [13], PlanetMath [17],
ProofWiki [19], etc.1 These constitute just a sample of mathematics’ web pres-
ence; it does not seem feasible to give a complete survey of the subject. Yet, at
present there are no mathematical web sites for formal mathematics that permit
collaborative editing and other online tools (though we know of one prototypical
effort [3]). We aim to fill this gap.

The second main feature of our approach is the use of distributed version con-
trol systems (DVCS). Such systems are eminently suitable for large collaborative
efforts: they allow one to maintain repositories of texts or code in the presence
of multiple people working independently or cooperatively. DVCSs are becoming
more widely used, both in the commercial sector, in academia, and in the free
software community. Our approach is novel because the application of DVCSs to
maintaining large bodies of formal mathematical proofs—objects that are both
computer code and human-readable text—is largely underdeveloped.

The third and final main feature of our approach is the use of server-based
tools. Like DVCSs and wikis, such systems are becoming widely used. The gen-
eral reason for this is that the Internet is becoming ubiquitous, faster, and more
reliable. Server-based approaches can arguably help to attract newcomers to the
subject because it spares them the burden of locally installing formal mathemat-
ics software and its associated libraries. Moreover, computations that one might
want to carry out are sometimes large and should (or must) be carried out on
servers rather than less powerful client hardware. In our case, proof checking and
the generation of rich semantic HTML presentations of formal proofs is, often,
quite expensive.
1 Note that majority of these on-line services are non-profit efforts.
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The rest of the paper is organized as follows:

– Section 2 briefly describes the primary applications of a wiki for formal
mathematics.

– Section 3 lists the essential features of DVCSs, and how we use them to
provide robust and flexible back-end for our formal mathematical wiki.

– Section 4 briefly discusses the current methods for developing the Mizar
Mathematical Library (mml) and identifies the main bottlenecks of the
current model for massive distributed formalization efforts.

– In Section 5 we discuss the features that a formal mathematical wiki should
have and the requirements it should satisfy; we focus on the problem of
maintaining the correctness of a formal library.

– The initial implementation of the wiki for Mizar, based on the Git DVCS, is
given in Section 6. We explain the Git repository structure, the communi-
cation and division of work between the different repositories and branches,
how we use Git hooks for guarding and updating the repositories, how we
extract and recompute dependencies from the changed library and its re-
verification and regeneration of its HTML presentation.

– Possible future extensions are discussed in Section 7.

2 Use Cases

We intend to provide tools for various collaborative tasks in the formal math-
ematics communities. Our efforts should also aim to include the whole math-
ematical community and be beneficial to it: formal mathematics is a natural
extension of traditional mathematics in which the gaps, metaphors, and inaccu-
racies are made “computer-understandable” and thus, in principle, mechanically
verifiable. The major use cases that we have in mind are

– public browsing of a human-readable web presentation of computer-verified
mathematics;

– facilitating the entrance to the formal mathematics community;
– library refactoring (from small rearrangements of individual items and minor

changes, to major overhauls);
– authoring contributions, both large and small;
– supporting the design of a formalization structure (concept formation, flesh-

ing out definitions, bookkeeping postulates and conjectures);
– offering tools to get help with simple proof steps;
– gradually formalizing informal texts;
– translating contributions between/among proof assistants, archives, and nat-

ural languages;
– merging independently developed libraries.

In this paper, we narrow our focus to examine how some of the above tasks apply
to the Mizar system. Thus, we are interested in the aspects of the above problem
that arise when working within a single, fixed formal framework. However, we
keep in mind the rather grand scale of the issues at hand.
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3 Towards Distributed Collaboration

One of the most exciting but apparently unexplored topics in formal mathematics
is the use of distributed version control systems (DVCSs). Such systems support
tracking the development of work among authors whose paths can be non-linear,
proceeding down a variety of routes/ideas that may or may not converge upon
a final, conventionally agreed-upon goal.

When thinking about DVCSs, a potential misunderstanding can arise that
we should correct. One might get the impression that DVCSs simply encourage
chaos: without a central repository, who is to say what is correct and what is
not? And would not DVCSs lead to a fragmented community and wasted labor?

Although we can conceive such dystopian possibilities, we prefer another point
of view. We want to emphasize the organized in organized chaos, rather than the
troubling noun. It is helpful to think of DVCSs not as a source of chaos, but
rather as a tool for putting some structure on the distributed efforts of a group
of people sharing a common interest. In practice, DVCSs are used to organize
the efforts of many people working on crucial projects, such as the Linux kernel2.
Although the DVCS model does not require a central, standard repository to
which everyone refers, there often are strong conventions that prevent the dis-
array and confusion that can come to mind when one first hears about DVCSs.
In the case of the Linux kernel, for example, the entire community practically
revolves around the efforts of a single person—Linus Torvalds—and a rather
small group of highly trusted programmers. A fairly wide number of people still
contribute to the Linux kernel, but in the end, essentially all proposed contri-
butions, if they are accepted at all, pass through the core developers. At least
for the foreseeable future we propose to follow the same approach: a handful of
experienced Mizarians3 will decide what constitutes the current official release
of the distributively developed system.

Foremost, we need to ensure that the current practices of developing the Mizar
Mathematical Library (mml), which evolved over a number of years, can still be
supported. Indeed, the core Mizar developers can easily continue their current
practices using DVCSs. We would like to switch to distributed development in
an incremental fashion and we foresee deep involvement of the current Mizar
developers while switching to the new technology.

For our first pass at a formal mathematics collaborative tool, we have chosen
the Git system [6]. Git is originally developed by Linus Torvalds, the original
author and primary maintainer of the Linux kernel, for working with the large
number of contributions made to the Linux kernel. Git enjoys widespread use in
various software communities (commercial, academic, and open-source).

Our choice of Git is, to some extent, arbitrary. A number of widely used DVCSs
are available (monotone, bzr, arch, mercurial) that could support the collaborative
tasks we envision for a formal mathematics wiki. (Indeed, one project with aims

2 Just to give some feeling for the size, the compressed sources of the Linux kernel
are roughly 53 MB; the compressed sources of the proofs in the Mizar Mathematical
Library are 14 MB.

3 We thank Yuji Sakai for stressing the charm of this name.
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similar to ours–vdash [25]—has proposed to use monotone.) We cannot, therefore,
robustly defend our choice of Git except to say that some choice of DVCS must
be made, and any other choice of DVCS would likely be just as arbitrary. We
choose Git because of our familiarity with it, and its wide usage in many projects
that we know of.

A full description of Git can be found on its homepage [6] and the system
can be learned through a number of tutorials prepared by the Git community.
We believe that Git’s concepts and operations are a good match for the kinds
of collaborative tasks that a formal mathematics wiki should support. Here we
limit ourselves to a skeletal presentation of Git’s main features.

Like other version control systems, the Git system is based on the notion
of a repository, a structured collection of objects (texts, computer code, docu-
mentation, etc.) being worked on by members of a team. As a developer makes
changes to the repository, a sequence of commits are made. The sequence can
split at various stages, as when the developer or the community wish to take on
a subproject or otherwise pursue some line of investigation. The full history of
a repository can thus be more aptly understood as a tree rather than a simple
sequence of changes.

A single developer can either start a new project afresh, or can clone the
repository of some other developer working on the project of interest. Unlike
traditional non-distributed version control systems such as rcs, cvs and subver-
sion, Git repositories (and those of some other DVCSs, too) are “complete” in the
sense that the developer has essentially unlimited access, even when offline, to the
entire history of a repository. When online, the developer can share his changes
with others by pushing up his changes to another repository (or repositories),
and he can stay connected to his colleagues by pulling down their changes.

The Git system also provides hooks that can be used to implement various
guards and notifications during the various repository actions (commit, push,
etc.). This can be used to allow only certain kind of changes in the repository.
For example, our initial wiki prototype for Mizar (See Section 6) makes use of
suitable hooks to ensure that the updated articles and the whole updated library
repository are always in a correct state.

In our initial prototype, we introduce a publicly accessible, central
repository—in the spirit of Wikipedia or the main Linux kernel branch—that
serves as a correct and verified snapshot of the current mml. Our tools are tar-
geted at public editing of the repository, while ensuring the library’s coherence4

and correctness as the changes are made.

4 A Special Case: The Mizar Developers

Among the first targets for our implementation are the core Mizar developers. It
will be worthwhile, then, to explain how Mizar is currently developed.

4 Coherence of mml is closely related to formal correctness and is a narrower notion
than integrity of mml, cf. [22].
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The history of the Mizar project is briefly presented in [14] and a brief overview
of the current state of the project can be found in [16].

The development of the Mizar Mathematical Library (mml), the principal,
authoritative collection of Mizar contributions (called “articles”), has been the
main activity of the Mizar project5 since the late 1980s, as it has been believed
within the project team that only substantial experience may help in improving
(actually building) the system. An article is presented as a text-file and contains
theorems and definitions. (At the time of writing, there are 1073 articles in mml,
containing 49548 facts/theorems and 9487 definitions.) The articles of mml—in
source form—are approximately 81MB of data.

The current development of mml is steered by the Association of Mizar Users
(in Polish: Stowarzyszenie Użytkowników Mizara, abbreviated sum), which owns
the copyright to the library. sum appoints the mml Library Committee—the
body responsible for accepting articles, arranging reviews, and maintaining offi-
cial releases of the library. mml is organized in an old-fashioned way, resembling
printed repositories of mathematical papers. Since mml articles exist electroni-
cally, it is relatively easy to re-factor the mml contents by, say, changing items
such as definitions and theorems, or by deleting, or by moving them. After such
modifications, the Mizar processor is run on the entire mml to verify its coher-
ence. Currently, the Library Committee does the greatest amount of refactoring
of mml, which includes the following activities:

– updating existing articles to take advantage of changes in the Mizar language,
the Mizar processor, and changes in mml;

– moving library items where they more appropriate locations;
– building an encyclopedia of mathematics in Mizar which consists of creating

new articles by moving topically related items from all over the mml into
one place;

– generalizing definitions and theorems;
– removing redundant items; and
– merging different formalizations of the same material.

This process is under control of the Head of the Library Committee; about three
people do most of the revisions. It can also happen that the original Mizar authors
re-factor their own past contributions after they notice a better way to formalize
the material. The remaining mml revisions are usually suggested by posting to the
Mizar mailing lists, or mailing directly to someone on the Library Committee.

Information about what each of the mml refactorers is doing is not broad-
cast in any widely accessible way. The typical method is through an email an-
nouncement: “I am now formalizing XYZ, so please wait for my changes”. Such
announcements are frequently accompanied by a solicitation for remarks and
discussion.

Such a process for collaboratively editing mml can be problematic and is far
from ideal. The main problem with the present method is that it does not scale
up: although it can be used with some success among few people, we imagine a
5 http://mizar.org

http://mizar.org
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much larger community where the collaboration problem surely cannot be effec-
tively solved by the present approach. Moreover, new users face an unpleasant
experience of developing a new article (or a group of interrelated articles) and,
before finishing their work, they learn of a newer, substantially different official
mml version that is (partly) incompatible with their working articles. Updating
such an unfinished development can be quite time-consuming (but the Library
Committee offers help in such cases).

5 Formal Wiki Features and Issues

The experience of Mizar authors is that while developing some new formalizations
they notice that many mml items can be improved by, say, weakening the premise
of an existing theorem or widening the type of a parameter in a definition. Ideally,
an author should be able to introduce such small changes to the repository
instead of asking the Library Committee and waiting for a new version of mmlto
be released. With a DVCS such small changes can be incorporated into a daily
build as there are mechanical means for verifying the correctness of such edits.

For the benefit of users, there must be something like an official mml ver-
sion. We believe that with the DVCS development model, such official versions
can be produced less frequently, subsequent official versions could differ more
substantially, and all differences could be documented.

We foresee the following goals when treating mml as a wiki:

– content correctness ;
– incremental editing; and
– unified presentation of the library for browsing.

Finding the right trade-off among these goals is not trivial. Allowing incremen-
tal editing of a formal text can lead to its incorrectness. On the other hand
incrementality is an important feature of wikis. Thus the formal wiki should
be able to save one’s work even if it is a major rewrite of the existing code,
and not completely correct. But the library is also a source of information for
other users/readers and its current stable/correct version should be well pre-
sented. This means, however, that all kinds of unfinished work (active works-
in-progress, abandoned attempts) should be reasonably hidden from the readers
who just came looking for information.

Thus it seems that we have to combine the methods used for distributed
software development—allowing many people to work on different parts, possibly
breaking things, and easily accessing and merging each other’s work–with the
methods and mechanisms used for development of informal wikis like Wikipedia,
where the content is primarily intended for human reading, and things cannot
be “formally broken” too much (obviously, large projects like Wikipedia do have
some automated structural checks, but evidently most of the review is done
by humans). As of now we are only collecting experience on how to build and
maintain a wiki of contents with formally defined semantics and correctness. It
is not clear to what degree issues raised in designs of less formal repositories are
relevant to our task.
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5.1 Degrees of Formal Correctness and Coherence

The important difference between text-based wikis like Wikipedia and formal
libraries like mml is the strong, well-defined notion of formal correctness. As
regards mml, one can consider several aspects/scopes of formal correctness that
are not available (not even in principle) for traditional wikis such as Wikipedia.

To begin, consider the notion of link coherence on, say, Wikipedia. Suppose
someone edits only the body text of the Wikipedia entry for the Eiffel Tower. The
article’s internal coherence is unchanged, and the link coherence of Wikipedia as
a whole is unaffected by the edit. However, other kinds of edits are permitted:

– if one deletes the Eiffel Tower article or renames it, then (part of) Wikipedia
becomes link incoherent because some internal links become broken.

– if one deletes or renames a section of the Eiffel Tower article, then, as in the
first case, it is quite possible that other Wikipedia articles become “tainted”
by this edit by containing links to a subsection that no longer exists.

Internal link coherence can be enforced in various ways. Some methods are en-
tirely computational (that is, can be carried out autonomously by a machine and
require no human intervention); others depend in part on the (human) Wikipedia
community. Further, this notion of coherence can be enforced by responding to
potentially problematic edits, or by simply not giving users the means to make
them. For example, the problem of deleting pages can be addressed by simply
disallowing deletions. If such edits are allowed (perhaps only by certain users),
an autonomous wikibot, constantly patrolling Wikipedia, can enforce internal
link consistency by updating every Wikipedia article that refers to the Eiffel
Tower article. This kind of bot-based approach could also respond to internal
section renaming or deletion. Finally, internal link coherence can be enforced by
Wikipedia’s editor’s tools, which give humans an environment for editing that
does not straightforwardly permit such section renaming in the first place.

A wiki based on formal texts like Mizar articles permits one to define the notion
of change propagation. When a user changes a piece of the Mizar library, we must
take into account how this change affects other parts of mml. For example, if out
of curiosity one changes the definition of the constant τ = (1 +

√
5)/2 to, say,

1/2, then, obviously, this edit will have some effect on the library (some theorems
about Fibonacci numbers that involve this classical ratio will be invalidated).
Likewise, if one rearranges the theorems or definitions in an article, this too
can affect parts of the library. On the other hand, some edits are safe: one can
append new content to the end of existing articles without affecting the library’s
coherence.

The problem is that some modifications preserve the coherence of the wiki,
but some do not. The typical task we face in maintaining the coherence of mml,
considered as a wiki, is that a user has changed or added some articles to the
library, and we want to verify that these changes are admissible, that is, that they
maintain the coherence of mml. In extreme cases, checking the admissibility of a
user’s edit can, conceivably, require re-verifying of the entire library (for example,
imagine changing the the fundamental set-theoretical axioms on which mml
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rests). The cost of such admissibility checks is correspondingly large. However,
there are a number of more or less typical cases that can be dealt with less
expensively. In the next section we explain how we have implemented these
checks.

6 Prototype

Suitability of DVCSs and wikis
A natural object of interest when thinking about wikis and DVCSs together are
wikis based on DVCS. According to a recent listing,6 there are today more than
a dozen wikis based on the Git DVCS or using Git as a back-end. Our design
decision about wiki for Mizar is: the data (articles) in the Git repository should
always be self-sufficient (independent of the wiki functionalities), and easily ex-
changable between various installations (that can be used just for local develop-
ment, as a back-end for another wiki-like system, etc.). Wikis form a dynamic
field of interest, so tight coupling the Mizar data to a specialized and possibly
not widely adopted wiki storage implementation could cause difficulties for de-
veloping alternatives and for integrating formal mathematics into other, larger
frameworks. All such alternatives should provide convenient communication at
the DVCS (data) level with others. This seems to be a reasonable invariant for
building all kinds of web sites and tools for creation of formal mathematics (and
probably for collaborative creation of code in general).

ikiwiki is one of the most developed an probably best-known wiki compilers.
Wiki compilers process a file or set of files written in a special (usually simplified)
syntax and turn them into static HTML pages. It is possible to build an initial
prototype of a wiki for Mizar by customizing ikiwiki. We have explored this path
and are aware of many functionalities of ikiwiki useful for our task. We have
also considered the peculiarities that make our domain different from the typical
(one-page-at-a-time) paradigm of such wiki compilers, and decided to gradually
re-use and plug-in the interesting ikiwiki functionalities, rather than trying to
directly customize the large ikiwiki codebase to our nonstandard task.

Prototype Overview: As we discussed earlier, our prototype (see Figure 1) is
initially focused on the Mizar developers who edit their work mainly offline and
submit their changes to be viewed online7 by other developers. The repository
structure (and suggested future features) of our prototype is as follows:8

– There is a central repository on our server with the stable branch, and the
master branch. This repository can be (using post-commit hook) kept in sync
with a version published at, say, GitHub (http://github.com, a high-profile
web site for collaborative Git-based development) or other easily accessible
public Git repository web sites. Anybody can clone the published copy from

6 http://git.wiki.kernel.org/index.php/InterfacesFrontendsAndTools
7 http://mws.cs.ru.nl/mwiki
8 The code is available from http://github.com/JUrban/mwiki

http://github.com
http://git.wiki.kernel.org/index.php/InterfacesFrontendsAndTools
http://mws.cs.ru.nl/mwiki
http://github.com/JUrban/mwiki
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Fig. 1. Mizar wiki structure



A Wiki for Mizar: Motivation, Considerations, and Initial Prototype 465

such public locations, saving us some of the responsibility for maintaining
access and sufficient bandwidth to our repositories.

– The repository contains basically only the source .miz files (Mizar formal-
izations), just as the Linux repositories only contain the source .c/.h files.
All files that depend on the sources, and possibly intermediate meta-data
constructible from them, are not part of the repository, and are excluded
from the repository. We achieve this using Git’s .gitignore feature.

– The stable branch of the repository is only available to administrators. New
official versions of mml are pushed there.

– The master branch is the default one and it can be updated by any formally
correct change (guarded by a suitable Git pre-commit hook). Essentially
anybody can make changes (this is the wiki feature) using the mechanisms
and checks described later. The stable branch and the Git history should
serve as tools for easily reverting bad changes.

– The central repository is not directly updatable by users. Instead, it is cloned
to another (frontend) repository on the server to which Git remote pushes
can be made without any correctness checking. Limited control should be
exercised to prevent malicious use9. Upon a successful remote push to the
frontend, the Git post-receive hook is triggered. This hook attempts a commit
to the master branch of the central repository, triggering in turn its pre-
commit hook, and the formal verification of the updated library.

– Upon successful commit into the central repository, a post-commit hook is
triggered. This hook generates HTML for the updated library, publishes it
on the web, and does possible further related updates (updates of related
clones on GitHub, notifications, etc.)

– The gitweb graphical web interface can be used for browsing the reposi-
tory (comparing different changes and versions, and watching its history,
etc.). Alternatives to gitweb abound: one is to use all the Git-related tools
maintained and developed for GitHub.

– Editing is, initially, done locally, using a local customized editor like Emacs
(used by most current Mizar users today); later, the articles are submitted
using Git mechanisms. Similar “offline editing” is not uncommon in the wiki
world: in the Emacs environment, for example, there are tools for similar
offline interaction with Wikipedia. There are a number of options for pro-
viding additional direct in-browser editing (useful for smaller edits), ranging
from the basic text-box and submit button to more advanced general web-
based editors like in Wikipedia, to specialized online mathematical editors
like ProofWeb.

6.1 Prototype Implementation

The implementation of the pre-commit checks, the post-commit cleanup, and re-
lated infrastructure is based on the following. We make essential use of makefiles
9 It is possible to have a number of such frontends, and with sufficient infrastructure

in place to actually move the main non-verifying frontends again to public hubs like
GitHub.
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to specify which files need to be rebuilt, how to build them, and how they depend
on other files. In the central repository we have one central makefile M and, for
each article a, a makefile Ma that specifies on which other articles a depends (e.g.,
what notations, definitions, theorems a uses). The master makefile M has targets
that ensure that the whole of the (about-to-be-submitted) mml is coherent and
without errors. Naturally, when one submits a small change, it is generally not nec-
essary to re-verify the entire mml, and the makefiles are designed to re-verify the
minimal necessary set of dependencies. The verification is carried out in a “fully
compiled” mml, so all the auxiliary results of previous verifications (analogous to
.o files for GCC) are available, from which the make program can infer whether
they need to be re-computed.

As the library changes, the dependencies among the articles can change, and
re-writing the makefiles by hand each time a dependency changes would be te-
dious. Following tools like makedepend for C and other languages (and probably
some similar tools for other proof assistants), we have created the envget tool
based on the Mizar codebase for quickly gathering the dependencies that are
explicitly declared by an article10. Thus the makefiles Ma for each article a are
themselves generated automatically using makefile targets defined in the mas-
ter makefile M . The XML output of envget is combined with a suitable XSL
stylesheet, producing Ma for an article a, containing only one target, and speci-
fying the articles on which a depends. These dependency makefiles are refreshed
only when the corresponding article is changed. This leads to a reasonably effi-
cient Makefile-based setup: only the dependencies of changed files get possibly
changed, and if that happens, only the (dynamically changed) dependency sub-
graph of mml influenced by the committed changes gets re-verified.

Where is the make program (governing verification of changes) invoked? How
do we ensure that the central repository, assumed to be a coherent copy of
the Mizar distribution, does not get “tainted” by incoherent user updates? In
addition to a fully-compiled, coherent clean Mizar “sandbox” directory Sc, we
maintain a (possibly) dirty sandbox directory Sd that may or may not be aligned
with Sc. The two directories vary in the following manner. When a new user
commit is proposed, we use rsync tool [23] to efficiently synchronize Sc and
Sd, thereby ensuring that it is clean; we then copy all new Mizar source files to
the dirty sandbox (that was just cleaned). Note that using rsync for this task
provides a reasonable trade-off for solving several different concerns:

– to check the newly arrived changes without possibly destroying the previous
correct version, we need to have a fresh directory with the most recent correct
version;

10 We are making use of the fact that in each verifiable Mizar article, one must declare
what kinds of notations, definitions, proofs, etc., one depends on. If Mizar did not have
this feature, then calculating dependencies would, presumably, be more difficult. Also
note that these are just dependencies between articles, while it is certainly interesting
future work to also calculate the precise dependencies between smaller-scale article
items and use this information for smarter and leaner re-verification. The MPTP
system [24] can be used for extracting information of this kind.
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– the directory should contain as much pre-computed information as possible,
because re-verifying and HTML-izing the whole library (more than 1000
articles) from scratch is an expensive operation (taking hours, even with
high-end equipment), while we want to be as real-time as possible and re-
use all available precomputed information;

– while the directory containing just the Mizar articles is reasonably small
(81MB at the moment), the directory with the complete pre-computed in-
formation is prohibitively big: the internal library created from the Mizar
articles, the environment for each article, and the HTML files are together
more than 10GB.11 Simply copying all this pre-compiled information would
rule out a real-time experience, especially in cases when the user wants to
change an article on which not many other articles depend.

Using rsync into a fresh directory addresses the first two issues (keeping the clean
install intact and not re-verifying all from scratch). Using rsync, on average,
reasonably ensures (by relying on smart rsync mechanisms) that of the clean
sandbox over the dirty one does not take too long.

Since the clean sandbox Sc contained everything—Mizar source files and all
generated auxiliary files—the dirty sandbox Sd now contains (after adding the
newly modified Mizar files) nearly everything, too. All that is missing are up-
to-date auxiliary files12 to be generated from the modified Mizar source files.
For that we invoke the master makefile M to generate possibly new dependency
makefiles Ma, and then we invoke the master makefile to request a re-build/re-
verification of the entire mml. Since we are working in a sandbox Sd that contains
the all results of previous builds of the entire mml, “most” of the Mizar source
files will not need to be looked at. (We put “most” in quotes because if one
proposes to commit an update to a sufficiently basic Mizar article, then a good
deal of computation is required to verify and propagate the change over the
whole library, even though it could actually be a rather small edit. But such
“foundational” edits are, apparently, uncommon.)

By using makefiles this way we are also able to exploit their ability to run
multiple jobs in parallel. The dependency graph of the full mml is wide and
rich enough that, when making “normal” edits, we can indeed benefit from
this feature of make when running on multi-core machines or when employing
grid/cloud-computing. Indeed, this is crucial for us to provide a sufficiently quick
response to users who submit “normal” changes to mml.

Further opportunities for parallelization, based on a finer-grained analysis of
Mizar articles than the one discussed here (where the dependency relation is
between an entire Mizar article on other articles), are being investigated.

11 This blow-up is caused by creating a local (XML) environment files for every article,
and by having detailed XML and HTML representations of the article. A lot of
information is kept in such files in a verbose form.

12 That is, files witnessing the correctness of the verification, updated library files, re-
generated HTML files, etc.
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7 Future Work and Summary

A number of features can be added to our prototype. As already discussed,
the world of wikis is dynamic and it is likely that all kinds of web frameworks
and technologies will be used in the future for presenting the Mizar library,
and collaboratively growing it. This is also why we stress a good basic model for
dealing with the main data (articles) and processes (collaboration), i.e., using Git
as a good mainstream DVCS, with a rapidly growing number of tools, frontends,
and public collaborative platforms based on it.

The features that are being implemented at the time of writing this paper in-
clude: basic web-based editing; finer itemization, dependencies, parallelization and
thus verification and HTML-ization speed for both simple (one-article) commits
and multi-article commits; plugging in all kinds of powerful proof advice tools
(automated theorem provers, library search engines, AI systems, etc.). Obviously
these require nontrivial effort on all these tools and interfaces to them. Nontriv-
ial and continuing work is actually already providing good HTML presentation of
the formal articles, with all kinds of additional useful information and functions
(following the symbols to their definitions being the most obvious one).

We have already mentioned the variety of tools available for Git and how
public collaborative sites like GitHub rapidly develop all kinds of collaborative
functions on top of Git. A similar remark is also true about, e.g., ikiwiki, and pos-
sibly about other wikis based on DVCSs. Thus, it seems to us that the mission
of formal mathematical wiki builders should be to watch these rapidly develop-
ing collaborative technologies, customizing them (by providing suitable commit
hooks, HTML-izers, dependency utilities, change propagation models, etc.) and
complementing them (by providing all kinds of support tools developed for for-
mal mathematics) rather than competing with them by starting from scratch.

While this paper is mainly about the Mizar proof assistant and its library, it
should be clear that the functionalities we discussed (tools for good dependency
extraction and focused re-verification and HTML-ization, possibly itemization
and parallelization, all kinds of useful proof advice tools, etc.), the ideas and
work presented here could be instantiated also to other proof assistants (Coq,
Isabelle, HOL, etc.). When this is done, formal wikis could become the place
where various formalisms and alternative formalizations meet, allowing collab-
oration on large formal projects, possibly having mechanisms also for gradual
formalization of informal mathematical texts, and also allowing formal texts
that are not completely correct. Our hope is that this infrastructure will attract
more “normal/traditional” mathematicians to the advantages of formal mathe-
matics, gradually making it more digestible, and possibly thus allowing further
important steps in the inevitable computerization of human mathematics.
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