
Preference Learning: An Introduction

Johannes Fürnkranz and Eyke Hüllermeier

Abstract This introduction gives a brief overview of the field of preference learn-
ing and, along the way, tries to establish a unified terminology. Special emphasis will
be put on learning to rank, which is by now one of the most extensively studied prob-
lem tasks in preference learning and also prominently represented in this book. We
propose a categorization of ranking problems into object ranking, instance ranking,
and label ranking. Moreover, we introduce these scenarios in a formal way, dis-
cuss different ways in which the learning of ranking functions can be approached,
and explain how the contributions collected in this book relate to this categoriza-
tion. Finally, we also highlight some important applications of preference learning
methods.

1 Introduction

Reasoning with preferences has been recognized as a particularly promising research
direction for artificial intelligence (AI) [15]. A preference can be considered as
a relaxed constraint which, if necessary, can be violated to some degree. In fact,
an important advantage of a preference-based problem solving paradigm is an
increased flexibility, as nicely explained in [6]:

“Early work in AI focused on the notion of a goal – an explicit target that must be achieved –
and this paradigm is still dominant in AI problem solving. But as application domains
become more complex and realistic, it is apparent that the dichotomic notion of a goal,
while adequate for certain puzzles, is too crude in general. The problem is that in many
contemporary application domains : : : the user has little knowledge about the set of possi-
ble solutions or feasible items, and what she typically seeks is the best that’s out there. But

J. Fürnkranz (B)
Technical University Darmstadt, Germany
e-mail: juffi@ke.tu-darmstadt.de

E. Hüllermeier
Philipps-Universität Marburg, Germany
e-mail: eyke@mathematik.uni-marburg.de

J. Fürnkranz and E. Hüllermeier (eds.), Preference Learning,
c

1
DOI 10.1007/978-3-642-14125-6_1, � Springer-Verlag Berlin Heidelberg 2010

juffi@ke.tu-darmstadt.de
eyke@mathematik.uni-marburg.de

2 J. Fürnkranz and E. Hüllermeier

since the user does not know what is the best achievable plan or the best available document
or product, she typically cannot characterize it or its properties specifically. As a result, she
will end up either asking for an unachievable goal, getting no solution in response, or asking
for too little, obtaining a solution that can be substantially improved.”

Drawing on past research on knowledge representation and reasoning, AI offers
qualitative and symbolic methods for treating preferences that can reasonably com-
plement traditional approaches that have been developed for quite a while in fields
such as economic decision theory [37]. Needless to say, however, the acquisition
of preferences is not always an easy task. Therefore, not only modeling languages
and representation formalisms, but also methods for the automatic learning, discov-
ery, and adaptation of preferences are needed. For example, computerized methods
for discovering the preferences of individuals are useful in e-commerce and vari-
ous other fields, where an increasing trend toward personalization of products and
services can be recognized.

It is hence hardly surprising that methods for learning and predicting preferences
in an automatic way are among the very recent research topics in disciplines, such
as machine learning, knowledge discovery, and recommender systems. Approaches
relevant to this area range from approximating the utility function of a single agent
on the basis of an as effective as possible question-answer process (often referred to
as preference elicitation) to collaborative filtering where a customer’s preferences
are estimated from the preferences of other customers. In fact, problems of pref-
erence learning can be formalized within various settings, depending, e.g., on the
underlying type of preference model or the type of information provided as an input
to the learning system.

Roughly speaking, preference learning is about inducing predictive preference
models from empirical data. In the literature on choice and decision theory, two
main approaches to modeling preferences can be found, namely in terms of utility
functions and in terms of preference relations. From a machine learning point of
view, these two approaches give rise to two kinds of learning problems: learning
utility functions and learning preference relations. The latter deviates more strongly
than the former from conventional problems such as classification and regression,
as it involves the prediction of complex structures, such as rankings or partial order
relations, rather than single values. Moreover, training input in preference learning
will not, as it is usually the case in supervised learning, be offered in the form of
complete examples but may comprise more general types of information, such as
relative preferences or different kinds of indirect feedback and implicit preference
information.

This book tries to give a comprehensive overview of the state-of-the-art in the
field of preference learning. Some of its chapters are based on selected contributions
to two successful workshops on this topic [29,30], but the material is complemented
with chapters that have been solicited explicitly for this book. Most notably, several
survey chapters give a detailed account on ongoing research in various subfields
of preference learning. Thus, we are confident that the book succeeds in giving a
comprehensive survey of work on all aspects of this emerging research area.

Preference Learning: An Introduction 3

In the remainder of this chapter, we shall briefly sketch some important branches
of preference learning and, along the way, give pointers to the contributions in this
volume. References to these contributions are indicated by capitalized author names,
for example FÜRNKRANZ & HÜLLERMEIER.

2 Preference Learning Tasks

Among the problems in the realm of preference learning, the task of “learning to
rank” has probably received the most attention in the machine learning literature in
recent years. In fact, a number of different ranking problems have been introduced
so far, though a commonly accepted terminology has not yet been established. In
the following, we propose a unifying and hopefully clarifying terminology for the
most important types of ranking problems, which will also serve as a guideline
for organizing the chapters of the book. AIOLLI & SPERDUTI give an alternative
unifying framework for learning to rank from preferences.

In general, a preference learning task consists of some set of items for which
preferences are known, and the task is to learn a function that predicts preferences
for a new set of items, or for the same set of items in a different context. Frequently,
the predicted preference relation is required to form a total order, in which case
we also speak of a ranking problem. In this book, we will frequently use the term
“ranking” for categorizing different types of preference learning problems, but we
note that the characterization mainly depends on the form of the training data and
the required predictions, and not on the fact that a total order is predicted.1

In the notation used in the remainder of this chapter (and throughout most of
the book), our goal is to stick as much as possible to the terminology commonly
used in supervised learning (classification), where a data object typically consists
of an instance (the input, also called predictive or independent variable in statistics)
and an associated class label (the output, also called target or dependent variable
in statistics). The former is normally denoted by x, and the corresponding instance
space by X , while the output space is denoted by Y . Instances are often represented
in the form of feature vectors, which means that x is a vector

x D .x1; x2; : : : ; xm/ 2 X D X1 � X2 � : : : � Xm:

We distinguish three types of ranking problems, namely label ranking, instance
ranking, and object ranking, which are described in more detail in the following.

1 Besides, one should be aware of conflicts between terminology in different fields. In the field of
operations research, for example, the term “ranking” is used for arranging a set of objects in a total
order, while “sorting” refers to the assignment of objects to an ordered set of categories, a problem
closely related to what is called “ordered classification” in machine learning.

4 J. Fürnkranz and E. Hüllermeier

2.1 Label Ranking

In label ranking, we assume to be given an instance space X and a finite set of
labels Y D fy1; y2; : : : ; ykg. The goal is to learn a “label ranker” in the form of
an X ! SY mapping, where the output space SY is given by the set of all total
orders (permutations) of the set of labels Y (the notation is leaned on the common
notation Sk for the symmetric group of order k). Thus, label ranking can be seen as
a generalization of conventional classification, where a complete ranking

y��1
x .1/ �x y��1

x .2/ �x : : : �x y��1
x .k/

is associated with an instance x instead of only a single class label. Here, �x is a
permutation of f1; 2; : : : ; kg such that �x.i/ is the position of label yi in the ranking
associated with x.

The training data T of a label ranker typically consist of a set of pairwise prefer-
ences of the form yi �x yj , suggesting that, for instance x, yi is preferred to yj . In
other words, an “observation” consists of an instance x and an ordered pair of labels
.yi ; yj /. The label ranking problem is summarized in Fig. 1.

This learning scenario has a large number of practical applications. For example,
it is relevant for the prediction of every sort of ordering of a fixed set of elements,
such as the preferential order of a fixed set of products (e.g., different types of hol-
iday apartments) based on demographic properties of a person, or the ordering of a
set of genes according to their expression level (as measured by microarray analy-
sis) based on features of their phylogenetic profile [1]. Another application scenario
is meta-learning, where the task is to rank learning algorithms according to their
suitability for a new dataset, based on the characteristics of this dataset [7]. Finally,
every preference statement in the well-known CP-nets approach [3], a qualitative
graphical representation that reflects conditional dependence and independence of

Given:

– a set of training instances fx` j ` D 1; 2; : : : ; ng � X (each instance typically though not
necessarily represented by a feature vector)

– a set of labels Y D fyi j i D 1; 2; : : : ; kg
– for each training instance x`: a set of pairwise preferences of the form

yi �x` yj

Find:

– a ranking function that maps any x 2 X to a ranking �x of Y (permutation �x 2 Sk/

Performance measures:

– ranking error (e.g., based on rank correlation measures) comparing predicted ranking with
target ranking

– position error comparing predicted ranking with a target label

Fig. 1 Label ranking

Preference Learning: An Introduction 5

preferences under a ceteris paribus interpretation, formally corresponds to a label
ranking.

In addition, it has been observed by several authors [14, 18, 25] that many con-
ventional learning problems, such as classification and multilabel classification, may
be formulated in terms of label preferences:

� Classification: A single class label yi is assigned to each example x`. This
implicitly defines the set of preferences fyi �x`

yj j 1 � j ¤ i � kg.
� Multilabel classification: Each training example x` is associated with a sub-

set P` � Y of possible labels. This implicitly defines the set of preferences
fyi �x`

yj j yi 2 L`; yj 2 Y n P`g.

A general framework encompassing these and other learning problems can be found
in the chapter by AIOLLI & SPERDUTI.

In each of the former scenarios, a ranking model f W X ! Sk is learned from
a subset of all possible pairwise preferences. A suitable projection may be applied
to the ranking model (which outputs permutations) as a post-processing step, for
example, a projection to the top-rank in classification learning where only this label
is relevant.

To measure the predictive performance of a label ranker, a loss function on
rankings is needed. In principle, any distance or correlation measure on rankings
(permutations) can be used for that purpose, for example, the number of pairs of
labels that are incorrectly ordered (i.e., the number of label pairs yi and yj such
that yi precedes yj in the predicted ranking although yj is actually preferred to yi).
Apart from this type of ranking loss, which compares a predicted ranking with a
given target ranking, it is also possible to compare a predicted ranking with a single
class label. For example, if this class label is the target one is looking for, then it
makes sense to evaluate a predicted ranking by the position it assigns to the label;
in [28], this type of error (measuring the distance of the assigned position from the
top-rank) is called the position error.

A general survey of label ranking is given by VEMBU & GÄRNTNER. Another
discussion of label ranking and related problems is given by FÜRNKRANZ &
HÜLLERMEIER. This chapter is specifically focused on approaches that are based
on the idea of learning by pairwise comparison, i.e., of decomposing the original
problem into a set of smaller binary classification problems. YU, WAN & LEE show
how decision-tree learning algorithms such as CART can be adapted to tackle label
ranking learning problems by extending the concept of purity to label ranking data.
TSIVTSIVADZE et al. show how an approach for minimizing an approximation of
a ranking loss function can be extended with a semi-supervised learning technique
that tries to improve predictions by minimizing the disagreement of several ranking
functions, which have been learned from different views of the training data.

2.2 Instance Ranking

This setting proceeds from the setting of ordinal classification, where an instance
x 2 X belongs to one among a finite set of classes Y D fy1; y2; : : : ; ykg and,

6 J. Fürnkranz and E. Hüllermeier

moreover, the classes have a natural order: y1 < y2 < : : : < yk . Training data
consists of a set T of labeled instances. As an example, consider the assignment of
submitted papers to categories reject, weak reject, weak accept, and accept.

In contrast to the classification setting, the goal is not to learn a classifier but a
ranking function f .�/. Given a subset X � X of instances as an input, the function
produces a ranking of these instances as an output (typically by assigning a score to
each instance and then sorting by scores).

For the case k D 2, this problem is well-known as the bipartite ranking problem.
The case k > 2 has recently been termed k-partite [42] or multipartite ranking [19].
As an example, consider the task of a reviewer who has to rank the papers according
to their quality, possibly though not necessarily with the goal of partitioning this
ranking into the above four categories.

Thus, the goal of instance ranking – our proposal for a generic term of bipartite
and multipartite ranking – is to produce a ranking in which instances from higher
classes precede those from lower classes; see Fig. 2 for a formalization of this task.
Different types of accuracy measures have been proposed for predictions of this
kind. Typically, they count the number of ranking errors, that is, the number of
pairs .x; x0/ 2 X � X such that x is ranked higher than x0 even though the former
belongs to a lower class than the latter. In the two-class case, this amounts to the
well-known AUC, the area under the ROC-curve [5], which is equivalent to the
Wilcoxon–Mann–Whitney statistic [38, 47]. Its generalization to multiple (ordered)
classes is known as the concordance index or C-index in statistics [22].

These measures and the multipartite ranking scenario are discussed in more detail
by WAEGEMAN & DE BAETS. ZHANG et al. discuss different methods for employ-
ing rule learning algorithms for learning bipartite rankings. This scenario has been
studied for decision-tree learning, but not yet for rule learning, where several addi-
tional problems have to be considered, such as how to combine estimates from
overlapping rules into a single probability estimate.

Given:

– a set of training instances fx` j ` D 1; 2; : : : ; ng � X (each instance typically though not
necessarily represented by a feature vector)

– a set of labels Y D fy1; y2; : : : ; ykg endowed with an order y1 < y2 < � � � < yk

– for each training instance x` an associated label y`

Find:

– a ranking function that allows one to order a new set of instances fxj gt
jD1 according to their

(unknown) preference degrees

Performance measures:

– the area under the ROC-curve (AUC) in the dichotomous case .k D 2/

– generalizations such as the C-index in the polychotomous case .k > 2/

Fig. 2 Instance ranking

Preference Learning: An Introduction 7

2.3 Object Ranking

In the setting of object ranking, there is no supervision in the sense that no output
or class label is associated with an object. The goal in object ranking is to learn a
ranking function f .�/ which, given a subset Z of an underlying referential set Z of
objects as an input, produces a ranking of these objects as an output. Again, this is
typically done by assigning a score to each instance and then sorting by scores.

Objects z 2 Z are commonly though not necessarily described in terms of an
attribute-value representation. As training information, an object ranker has access
to exemplary rankings or pairwise preferences of the form z � z0 suggesting that z
should be ranked higher than z0. This scenario, summarized in Fig. 3, is also known
as “learning to order things” [12].

As an example consider the problem of learning to rank query results of a search
engine [33, 41]. The training information is provided implicitly by the user who
clicks on some of the links in the query result and not on others. This information can
be turned into binary preferences by assuming that the selected pages are preferred
over nearby pages that are not clicked on [34].

The performance of an object ranker can again be measured in terms of a distance
function or correlation measure on rankings. In contrast to the setting of label rank-
ing, however, the number of items to be ordered in the context of object ranking is
typically much larger. Therefore, one often prefers measures that put more empha-
sis on the top of a ranking while paying less attention to the bottom [17]. In Web
search, for example, people normally look at the top-10 results while ignoring the
rest. Besides, the target is often not a “true” ranking but instead a single object or a
subset of relevant objects, for example a set of documents relevant to a query. Eval-
uation measures especially tailored toward these types of requirements have been
proposed in information retrieval. Typical examples include precision and recall as
well as normalized discounted cumulative gain (NDCG) [32, 39].

Given:

– a (potentially infinite) reference set of objects Z (each object typically though not necessarily
represented by a feature vector)

– a finite set of pairwise preferences xi � xj , .xi ; xj / 2 Z � Z

Find:

– a ranking function f .�/ that assumes as input a set of objects and returns a permutation
(ranking) of this set

Performance measures:

– ranking error (e.g., based on rank correlation measures) comparing the predicted ranking with
the target ranking

– top-K measures comparing the top-positions of the rankings
– retrieval measures such as precision, recall, NDCG

Fig. 3 Object ranking

8 J. Fürnkranz and E. Hüllermeier

An extensive survey of object ranking approaches is given by KAMISHIMA,
KAZAWA & AKAHO. Subsequently, KAMISHIMA & AKAHO discuss dimension-
ality reduction methods for object ranking tasks, which retain the preference infor-
mation as much as possible. They assume a scenario (which they call supervised
ordering) in which total orders for multiple subsets of objects are given, and the goal
is to predict an ordering of the full set of objects. DEMBCZYŃSKI et al. compare
different approaches for rule-based learning of object ranking functions, namely
one utility-based approach and one approach that directly learns the binary prefer-
ence predicate (cf. also Sect. 3.3). An application to learning to rank documents in
biomedical information retrieval is described by ARENS.

3 Preference Learning Techniques

All three of the basic learning tasks discussed in the previous section can be tack-
led by very similar basic techniques. In agreement with the distinction between
using utility functions and binary relations for modeling preferences, two general
approaches to preference learning have been proposed in the literature, the first of
which is based on the idea of learning to evaluate individual alternatives by means
of a utility function (Sect. 3.1), while the second one seeks to compare (pairs of)
competing alternatives, that is, to learn one or more binary preference predicate
(Sect. 3.2). Making sufficiently restrictive model assumptions about the structure of
a preference relation, one can also try to use the data for identifying this structure
(Sect. 3.3). Finally, local estimation techniques à la nearest neighbor can be used,
which mostly leads to aggregating preferences in one way or the other (Sect. 3.4).

3.1 Learning Utility Functions

As mentioned previously, an established approach to modeling preferences resorts to
the concept of a utility function. Such a function assigns an abstract degree of utility
to each alternative under consideration. From a machine learning point of view, an
obvious problem is to learn utility functions from given training data. Depending on
the underlying utility scale, which is typically either numerical or ordinal, the prob-
lem becomes one of regression learning or ordered classification. Both problems are
well-known in machine learning. However, utility functions often implicate special
requirements and constraints that have to be taken into consideration such as, for
example, monotonicity in certain attributes (DEMBCZYŃSKI et al.).

Besides, as mentioned earlier, training data are not necessarily given in the
form of input/output pairs, i.e., alternatives (instances) together with their utility
degrees, but may also consist of qualitative feedback in the form of pairwise com-
parisons, stating that one alternative is preferred to another one and therefore has a
higher utility degree. More generally, certain types of preference information can be

Preference Learning: An Introduction 9

formalized in terms of constraints on one or more underlying utility functions. This
idea forms the basis of the general framework presented by AIOLLI & SPERDUTI.
Sometimes, of course, training data are less generic and more application-specific.
In collaborative filtering, for example, it simply consists of an incomplete set of
product ratings given by a set of users (see DE GEMMIS et al. in this volume).

In the instance and object preferences scenario, a utility function is a mapping
f W X ! R that assigns a utility degree f .x/ to each instance (object) x and, hence,
induces a complete order on X . In the label preferences scenario, a utility function
fi W X ! R is needed for each of the labels yi (i D 1; : : : ; k); alternatively, the
functions can be summarized into a single function f W X � Y ! R that maps
instance/label tuples .x; y/ to real-valued scores (see AIOLLI & SPERDUTI).2 Here,
fi .x/ is the utility assigned to alternative yi by instance x. To obtain a ranking
for x, the alternatives are sorted according to these utility scores, i.e., �x is such that
yi �x yj) fi .x/ � fj .x/.

In the setting of instance ranking , the training data consist of instances for which
the sought utility scores are given. Thus, the learning problem can, in principle,
be approached by means of classification or (ordinal) regression methods. As an
important difference, however, note that the goal is not to maximize classification
accuracy but ranking performance. Thus, conventional learning algorithms have to
be adapted correspondingly. Approaches of this kind have, e.g., been proposed in
[27,33]. In this book, WAEGEMAN & DE BAETS discuss approaches that are based
on the optimization of an extension of the binary AUC to a loss function for ordinal
data.

In object and label ranking, training data typically originate from a kind of indi-
rect supervision. Instead of the target scores of the utility function, the learner is
given the constraints on the function, which are derived from comparative prefer-
ence information of the form “This object (or label) should have a higher utility
score than that object (or label)”. Thus, the challenge for the learner is to find a
function which is as much as possible in agreement with these constraints.

For object ranking approaches, this idea has first been formalized by Tesauro
under the name comparison training [44]. He proposed a symmetric neural network
architecture that can be trained with representations of two states and a training sig-
nal that indicates which of the two states is preferable. The elegance of this approach
comes from the property that one can replace the two symmetric components of the
network with a single network, which can subsequently provide a real-valued evalu-
ation of single states. Later works on learning utility function from object preference
data include [24, 33, 46].

For the case of label ranking, a method for learning the functions fi .�/
(i D 1; : : : ; k/ has been proposed in the framework of constraint classification
[25, 26]. Here, the authors proceed from linear utility functions and find a way to
express a constraint of the form fi .x/ 	 fj .x/ > 0 (suggesting that yi �x yj) in the

2 In a sense, this alternative is not just a formally equivalent rewriting. Instead, by considering an
instance/label pair as an object, it suggests a natural way to unify the problems of object and label
ranking.

10 J. Fürnkranz and E. Hüllermeier

form of a binary classification example in a newly constructed, higher-dimensional
space. In other words, the original label ranking problem is transformed into a
single binary classification problem. This problem is solved by fitting a separat-
ing hyperplane, and from this hyperplane, the linear utility functions (identified
by corresponding weight vectors) can be reconstructed. An alternative approach,
so-called log-linear models for label ranking, has been proposed in [14]. This
approach is essentially equivalent to constraint classification, as it also amounts to
learning linear utility functions for all labels. Algorithmically, however, the under-
lying optimization problem is approached in a different way, namely by means of a
boosting-based algorithm that seeks to minimize a (generalized) ranking error in an
iterative way. In this book, TSIVTSIVADZE et al. present an approach for learning a
utility function for label ranking via minimization of a loss function that is based on
a least-squares approximation of the ranking error.

3.2 Learning Preference Relations

The key idea of this approach is to learn a binary preference relation that compares
pairs of alternatives (e.g., objects or labels). The training of a model thus becomes
simpler, mainly because comparative training information (suggesting that one alter-
native is better than another one) can be used directly instead of translating it into
constraints on a (latent) utility function. On the other hand, the prediction step may
become more difficult, since a binary preference relation learned from data is not
necessarily consistent in the sense of being transitive and, therefore, does normally
not define a ranking in a unique way.

Binary preference relations can be turned into a ranking by finding a ranking
that is maximally consistent with the corresponding pairwise preferences. The diffi-
culty of this optimization problem depends on the concrete criterion, though many
natural objectives (e.g., minimizing the number of object pairs whose ranks are in
conflict with their pairwise preference) lead to NP-hard problems [12]. Fortunately,
efficient techniques such as simple voting (known as the Borda count procedure in
social choice theory) often deliver good approximations, sometimes even with prov-
able guarantees [13]. Of course, one can also derive other, possibly more complex
preference structures from a preference relation, for example weak instead of strict
linear orders. In [45], a linear order with ties (indifference between two alternatives)
is called a bucket order (a total order of “buckets”, where each bucket corresponds
to an equivalence class), and a method is proposed to find an order of this type,
which is maximally consistent with the data.

For object ranking problems, the relational approach has been pursued in [12].
The authors propose to solve object ranking problems by learning a binary prefer-
ence predicate Q.x; x0/, which predicts whether x is preferred to x0 or vice versa.
This predicate is trained on the basis of exemplary preferences of the form x � x0.
A final ordering is found in a second phase by deriving (an approximation of) a
ranking that is maximally consistent with these predictions. DEMBCZYŃSKI et al.

Preference Learning: An Introduction 11

discuss this setting for rule learning and propose to combine the predictions using
the Net Flow score proposed in [4]. They also compare this setting with an alter-
native approach that directly learns a utility function based on the preferences and
monotonicity constraints.

For label ranking problems, the pairwise approach has been introduced by [18,
31], where it is referred to as ranking by pairwise comparison. The key idea is
to learn, for each pair of labels .yi ; yj /, a binary predicate Mi;j .x/ that predicts
whether yi �x yj or yj �x yi for an input x. A label ranking is then derived from
these pairwise preferences via weighted voting (generalized Borda counting).

Pairwise learning techniques for instance ranking have been proposed in [19].
More specifically, two approaches were developed and compared in that paper, one
which trains binary models Mi;j , one for each pair of labels yi and yj , and another
one that trains models Mi (i D 1; : : : ; k 	 1) to separate classes y1; : : : ; yi from
classes yiC1; : : : ; yk . Given a new query instance x, both approaches submit this
instance to all models that have been learned and aggregate the corresponding pre-
dictions into an overall score. A set of instances is then ranked according to these
scores.

An overview of work on learning binary preference relations for label and
instance ranking is given by FÜRNKRANZ & HÜLLERMEIER.

3.3 Model-Based Preference Learning

Another approach to learning ranking functions is to proceed from specific model
assumptions, that is, assumptions about the structure of the preference relations.
This approach is less generic than the previous ones, as it strongly depends on the
concrete assumptions made.

An example is the assumption that the target ranking of a set of objects described
in terms of multiple attributes can be represented as a lexicographic order. YAMAN

et al. address the learning of lexicographic orders in the context of object ranking.
From a machine learning point of view, assumptions of the above type can be seen
as an inductive bias restricting the hypothesis space. Provided the bias is correct,
this is clearly an advantage, as it may simplify the learning problem. In the case
of lexicographic orders, for example, a complete ranking of all objects is uniquely
identified by a total order of the attributes plus a total order of each of the attribute
domains. For example, suppose objects to be described in terms of (only) four binary
attributes. Thus, there are 24 D 16 objects and hence 16Š
 2 � 1013 rankings in
total. However, only .24/ � 4Š D 384 of these rankings can be expressed in terms of
a lexicographic order.

Needless to say, the bias induced by the assumption of a lexicographic order
is very strong and will be rarely justified in practical applications. In particular,
preferences on individual attribute values will normally not be independent of each
other. For example, red wine might be preferred as a beverage if the main dish is
meat, while white wine might be preferred in the case of fish. As mentioned earlier,

12 J. Fürnkranz and E. Hüllermeier

CP-nets [3] offer a language for expressing preferences on the values of sin-
gle attributes and provide a suitable formalism for modeling dependencies of this
type. A compact representation of a complex preference (partial order) relation is
achieved by making use of conditional independence relations between such pref-
erences (which are interpreted in terms of a ceteris paribus semantics), in much
the same way as Bayesian networks reduce complexity of probability models by
exploiting conditional independence between random variables. The CP-net itself is
a graphical representation of these (in)dependencies, and each node (belonging to
a single variable) is associated with a function that assigns a preference relation on
the values of that attribute to each combination of values of the parent attributes. In
this volume, CHEVALEYRE et al. discuss the learnability of CP-networks, both in a
passive and an active learning scenario.

If a ranking function is defined implicitly via an underlying utility (scoring)
function, the latter is normally also restricted by certain model assumptions. For
example, the approaches outlined in Sect. 3.1 make use of linear functions to rep-
resent scores, although mostly for algorithmic reasons. There are other approaches
in which the choice of the underlying utility function is more intrinsically moti-
vated and addressed in a more explicit way. For example, GIESEN et al. describe
an approach for conjoint analysis, also called multiattribute compositional models,
which originated in mathematical psychology and is nowadays widely used in the
social sciences and operations research. Proceeding from the description of objects
in terms of a set of attributes, they assume that an underlying utility function can be
decomposed into a linear sum of individual utility functions, one for each attribute.
These utility functions can then be learned efficiently from the data.

Like in the case of lexicographic orders, this model assumption is obviously quite
restrictive. TORRA presents a complementary and more general approach. Starting
with a discussion of general properties that aggregation operators for attribute-
based utility functions should fulfill, he surveys different approaches for learning
a complex aggregation operator in the form of a nonadditive integral.

3.4 Local Aggregation of Preferences

Yet another alternative is to resort to the idea of local estimation techniques as
prominently represented, for example, by the nearest neighbor estimation princi-
ple: Considering the rankings observed in similar situations as representative, a
ranking for the current situation is estimated on the basis of these “neighbored”
rankings, typically using an averaging-like aggregation operator. This approach is
in a sense orthogonal to the previous model-based one, as it is very flexible and typ-
ically comes with no specific model assumption (except the regularity assumption
underlying the nearest neighbor inference principle).

For label ranking, the nearest neighbor (instance-based learning) approach was
first used in [9, 10]. Roughly speaking, the idea is to identify the query’s k nearest
neighbors in the instance space X , and then to combine the corresponding rankings

Preference Learning: An Introduction 13

into a prediction using suitable aggregation techniques. In [11], this approach was
developed in a theoretically more sophisticated way, realizing the aggregation step
in the form of maximum likelihood estimation based on a statistical model for rank
data. Besides, this approach is also able to handle the more general case in which
the rankings of the neighbored instances are only partially known.

In the same paper, the authors propose to use this estimation principle for deci-
sion tree learning, too, namely for aggregating the label rankings associated with the
instances grouped in a leaf node of the tree. Indeed, decision tree learning can also
be seen as a kind of local learning method, namely as a piecewise constant approx-
imation of the target function.3 In this book, YU, WAN & LEE propose a similar
method. They grow a decision tree and propose two splitting measures for label
ranking data. The rankings that are predicted at the leaves of the trees are derived
by aggregating the rankings of all training examples arriving at this leaf.

Aggregation techniques are also used for other types of preference learning prob-
lems, including object ranking. For example, assume the rankings of several subsets
Xi of a reference set X to be given. The learning task is to combine these rankings
into a complete ranking of all objects in X . A practical application of this setting
occurs, e.g., in information retrieval, when different rankings of search results orig-
inating from different search engines should be combined into an overall ranking
of all retrieved pages [16]. Among other things, the learning problem may involve
the determination of suitable weights for the information sources (search engines),
reflecting their performance or agreement with the preferences of the user [35].
Another example is the ranking of sports teams or players, where individual tour-
nament results with varying numbers of participants have to be combined into an
overall ranking [2], or where different rankings by different judges have to be
aggregated into an overall ranking of the participants of a competition [23].

4 Applications of Preference Learning

Preference learning problems in general, and ranking problems in particular, arise
quite naturally in many application areas. For example, a search engine should rank
Web pages according to a user’s preferences. Likewise, cars can be ranked according
to a customer’s preferences on characteristics that discriminate different models.
Another example is the ranking of possible keywords according to their relevance
for an article. A few more examples have already been given in this article, and
many more could be found.

In particular in the field of information retrieval, ranking applications occur quite
naturally. Two particularly interesting problems are learning to rank the results of a
query to a search engine, and learning to rank possible recommendations for new
products. We will briefly discuss research in these areas below.

3 More general approximations can be realized by labeling a leaf node with a nonconstant function,
for example a linear function in regression learning.

14 J. Fürnkranz and E. Hüllermeier

4.1 Learning to Rank Search Results

A widely studied preference learning problem is the ranking of retrieval results of
a search engine. Roughly, the problem is the following: given a query q and a set
of documents D, find a ranking of the documents in D that corresponds to their
relevance with respect to q. This ranking is based on an unknown preference relation
�q, which ought to be learned from user feedback on past rankings of retrieval
results for different queries. An elaborate survey of current research in this area can
be found in [36].

Current research focuses particularly on suitable ways of characterizing the
queries that allow one to transfer the ranking from one query to another [20, 40].
In some sense, a query may be considered as a context for a ranking, and the task
is to learn a function that allows one to transfer the ranking from one context to the
other. Much of the research is conducted on the LETOR (LEarning TO Rank for
information retrieval) collection, a package of datasets containing a wide variety of
queries with user feedback in several domains.4

Users can provide explicit feedback by labeling the retrieved pages with their
degree of relevance. However, users are only willing to do this for a limited number
of pages. It would be better if feedback could be collected in a way that is transparent
to the user. RADLINSKI & JOACHIMS discuss a variety of techniques that allow
one to collect the user feedback implicitly via their clicking behavior. Alternatively,
ARENS proposes the use of active learning techniques which help minimizing the
burden on the user by a careful automatic selection of suitable training examples for
the ranking algorithm. He illustrates his technique in an application which learns
a ranking function for the PubMed search engine for the MEDLINE database of
biomedical literature.

4.2 Recommender Systems

Nowadays, recommender systems [43] are frequently used by online stores to rec-
ommend products to their customers. Such systems typically store a data table with
products over users, which records the degree of preference of a user for this prod-
uct. A customer can provide this preference degree explicitly by giving some sort
of feedback (e.g., by assigning a rating to a movie) or implicitly (e.g., by buying
the DVD of the movie). The elegant idea of collaborative filtering systems [21] is
that recommendations can be based on user similarity, and that user similarity can
in turn be defined by the similarity of their recommendations. Alternatively, recom-
mender systems can also be based on item similarities, which are defined via the
recommendations of the users that recommended the items in question. Yet other
approaches try to learn models that capture the preference information contained in
the matrix. A very good comparison of these approaches can be found in [8].

4 http://research.microsoft.com/en-us/um/beijing/projects/letor/

http://research.microsoft.com/en-us/um/beijing/projects/letor/

Preference Learning: An Introduction 15

In this book, DE GEMMIS et al. given an extensive survey of recommender
systems. Subsequently, KARATZOGLOU & WEIMER describe the use of matrix fac-
torization methods for compressing the information contained in the user/product
matrix into a product of two lower-dimensional matrices. The dimensions over
which the product is computed may be viewed as hidden concepts, which can be
used to categorize the interests of a user. Interestingly, only very few (in the order
of 10) such concepts are enough for a sufficiently accurate representation of large
numbers of users and products. Finally, BELLOGIN et al. describe an approach that
uses decision tree learning for identifying features of recommendation models that
influence the quality of the predicted preference ranking.

5 Conclusions

In this introductory chapter, we have tried to give an overview of different appr-
oaches to preference learning, categorized by the learning task (label, instance,
or object ranking) and the learning technique (learning utility functions, learning
binary preference relations, learning preference models having a specific structure,
or using local estimation and preference aggregating methods). In principle, all
task/technique combinations are conceivable and can be found in the literature. We
also highlighted important application areas, in particular in ranking search results
and product recommendations.

Throughout the chapter, pointers to the remaining articles in this book were
given. They could be characterized along a variety of dimensions, including all
of those mentioned above. We have adopted a grouping that more or less corre-
sponds to the sections in this survey. As the categorization is multi-dimensional,
most articles fit into several of these categories, and, in some cases, the choice was
not entirely clear. This is why we do not have separate parts on learning of a utility
function or a binary preference relation, for example. In fact, almost all approaches
presented in this book follow either of the two approaches.

Acknowledgements This research has been supported by the German Science Foundation (DFG).

References

1. R. Balasubramaniyan, E. Hüllermeier, N. Weskamp, J. Kämper, Clustering of gene expression
data using a local shape-based similarity measure. Bioinformatics 21(7), 1069–1077 (2005)

2. A. Birlutiu, T. Heskes, Expectation propagation for rating players in sports competitions,
in Proceedings of the 11th European Symposium on Principles of Knowledge Discovery in
Databases (PKDD-07), ed. by J.N. Kok, J. Koronacki, R. López de Mántaras, S. Matwin,
D. Mladenić, A. Skowron (Springer, Warsaw, Poland, 2007), pp. 374–381

3. C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, D. Poole, CP-nets: A tool for representing
and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21,
135–191 (2004)

4. D. Bouyssou, Ranking methods based on valued preference relations: A characterization of the
net flow method. Eur. J. Oper. Res. 60(1), 61–67 (1992)

16 J. Fürnkranz and E. Hüllermeier

5. A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

6. R.I. Brafman, Preferences, planning and control, in Proceedings of the 11th Conference on
Principles of Knowledge Representation and Reasoning (KR-08), ed. by G. Brewka, J. Lang
(AAAI, Sydney, Australia, 2008), pp. 2–5

7. P.B. Brazdil, C. Soares, J.P. da Costa, Ranking learning algorithms: Using IBL and meta-
learning on accuracy and time results. Mach. Learn. 50(3), 251–277 (2003)

8. J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collabo-
rative filtering, in Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence
(UAI-98), ed. by G.F. Cooper, S. Moral (Morgan Kaufmann, Madison, WI, 1998), pp. 43–52

9. K. Brinker, E. Hüllermeier, Case-based label ranking, in Proceedings of the 17th
European Conference on Machine Learning (ECML-06), ed. by J. Fürnkranz, T. Scheffer,
M. Spiliopoulou (Springer, Berlin, Germany, 2006), pp. 566–573

10. K. Brinker, E. Hüllermeier, Case-based multilabel ranking, in Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07), ed. by M.M. Veloso (Hyderabad,
India, 2007), pp. 702–707

11. W. Cheng, J. Hühn, E. Hüllermeier, Decision tree and instance-based learning for label ranking,
in Proceedings of the 26th International Conference on Machine Learning (ICML-09), ed. by
A. Danyluk, L. Bottou, M.L. Littman (Montreal, Canada, 2009)

12. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10, 243–
270 (1999)

13. D. Coppersmith, L. Fleischer, A. Rudra, Ordering by weighted number of wins gives a good
ranking for weighted tournaments, in Proceedings of the 17th ACM-SIAM Symposium on
Discrete Algorithms (SODA-06) (2006), pp. 776–782

14. O. Dekel, C.D. Manning, Y. Singer, Log-linear models for label ranking, in Advances in Neural
Information Processing Systems (NIPS-03), ed. by S. Thrun, L.K. Saul, B. Schölkopf (MIT,
Cambridge, MA, 2004), pp. 497–504

15. J. Doyle, Prospects for preferences. Comput. Intell. 20(2), 111–136 (2004)
16. C. Dwork, R. Kumara, M. Naor, D. Sivakumar, Rank aggregation methods for the Web, in

Proceedings of the 10th International World Wide Web Conference (WWW-01) (ACM, Hong
Kong, China, 2001), pp. 613–622

17. R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists. SIAM J. Discrete Math. 17(1),
134–160 (2003)

18. J. Fürnkranz, E. Hüllermeier, Pairwise preference learning and ranking, in Proceedings of the
14th European Conference on Machine Learning (ECML-03), vol. 2837, Lecture Notes in Arti-
ficial Intelligence, ed. by N. Lavrač, D. Gamberger, H. Blockeel, L. Todorovski (Springer,
Cavtat, Croatia, 2003), pp. 145–156

19. J. Fürnkranz, E. Hüllermeier, S. Vanderlooy, Binary decomposition methods for multipartite
ranking, in Proceedings of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD-09), vol. Part I, ed. by Wray
L. Buntine, M. Grobelnik, D. Mladenic, J. Shawe-Taylor (Springer, Bled, Slovenia, 2009), pp.
359–374

20. X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, H.-Y. Shum, Query dependent ranking using
k-nearest neighbor, In Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR-08), ed. by S.-H. Myaeng,
D.W. Oard, F. Sebastiani, T.-S. Chua, M.-K. Leong (ACM, Singapore, 2008), pp. 115–122

21. D. Goldberg, D. Nichols, B.M. Oki, D. Terry, Using collaborative filtering to weave and
information tapestry. Commun. ACM 35(12), 61–70 (1992)

22. M. Gönen, G. Heller, Concordance probability and discriminatory power in proportional
hazards regression. Biometrika 92(4), 965–970 (2005)

23. S. Gordon, M. Truchon, Social choice, optimal inference and figure skating. Soc. Choice
Welfare 30(2), 265–284 (2008)

24. P. Haddawy, V. Ha, A. Restificar, B. Geisler, J. Miyamoto, Preference elicitation via theory
refinement. J. Mach. Learn. Res. 4, 317–337 (2003)

Preference Learning: An Introduction 17

25. S. Har-Peled, D. Roth, D. Zimak, Constraint classification: A new approach to multiclass
classification, in Proceedings of the 13th International Conference on Algorithmic Learn-
ing Theory (ALT-02), ed. by N. Cesa-Bianchi, M. Numao, R. Reischuk (Springer, Lübeck,
Germany, 2002), pp. 365–379

26. S. Har-Peled, D. Roth, D. Zimak, Constraint classification for multiclass classification and
ranking, in Advances in Neural Information Processing Systems 15 (NIPS-02), ed. by
S. Becker, S. Thrun, K. Obermayer (2003), pp. 785–792

27. R. Herbrich, T. Graepel, K. Obermayer, Large margin rank boundaries for ordinal regression,
in Advances in Large Margin Classifiers, ed. by P.J. Bartlett, B. Schölkopf, D. Schuurmans,
A.J. Smola (MIT, 2000), pp. 115–132

28. E. Hüllermeier, J. Fürnkranz, Learning label preferences: Ranking error versus position error,
in Advances in Intelligent Data Analysis: Proceedings of the 6th International Symposium
(IDA-05) (Springer, Madrid, Spain, 2005), pp. 180–191

29. E. Hüllermeier, J. Fürnkranz (eds.), Proceedings of the ECML/PKDD-08 Workshop on
Preference Learning (Antwerp, Belgium, 2008)

30. E. Hüllermeier, J. Fürnkranz (eds.), Proceedings of the ECML/PKDD-09 Workshop on
Preference Learning (Bled, Slovenia, 2009)

31. E. Hüllermeier, J. Fürnkranz, W. Cheng, K. Brinker, Label ranking by learning pairwise
preferences. Artif. Intell. 172, 1897–1916 (2008)

32. K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of IR techniques. ACM Trans.
Inf. Syst. 20(4), 422–446 (2002)

33. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-02)
(ACM, 2002), pp. 133–142

34. T. Joachims, L. Granka, B. Pan, H. Hembrooke, G. Gay, Accurately interpreting clickthrough
data as implicit feedback, in Proceedings of the 28th Annual International ACM Conference
on Research and Development in Information Retrieval (SIGIR-05) (2005), pp. 154–161

35. G. Lebanon, J. Lafferty, Cranking: Combining rankings using conditional probability models
on permutations, in Proceedings of the 19th International Conference on Machine Learning
(ICML-02), ed. by C. Sammut, A. Hoffmann (Sydney, Australia, 2002), pp. 363–370

36. T.-Y. Lu, Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331
(2009)

37. R. Duncan Luce, H. Raiffa, Games and Decisions: Introduction and Critical Survey (Wiley,
New York, NY, 1957)

38. H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is stochastically
larger than the other. Ann. Math. Stat. 18(50), 50–60 (1947)

39. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval (Cambridge
University Press, 2008)

40. W. Ni, Y. Huang, M. Xie, A query dependent approach to learning to rank for informa-
tion retrieval, in Proceedings of the 9thh International Conference on Web-Age Information
Management (WAIM-08) (IEEE, Zhangjiajie, China, 2008), pp. 262–269

41. F. Radlinski, T. Joachims, Learning to rank from implicit feedback, in Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining (KDD-05) (2005), pp. 239–248

42. S. Rajaram, S. Agarwal, Generalization bounds for k-partite ranking, in Proceedings of the
NIPS 2005 Workshop on Learning to Rank, ed. by S. Agarwal, C. Cortes, R. Herbrich,
(Whistler, BC, Canada, 2005), pp. 28–23

43. P. Resnick, H.R. Varian, Special issue on recommender systems. Commun. ACM 40(3), (1997)
44. G. Tesauro, Connectionist learning of expert preferences by comparison training. in Advances

in Neural Information Processing Systems 1 (NIPS-88), ed. by D. Touretzky (Morgan
Kaufmann, 1989), pp. 99–106

45. A. Ukkonen, K. Puolamäki, A. Gionis, H. Mannila, A randomized approximation algorithm
for computing bucket orders. Inf. Process. Lett. 109, 356–359 (2009)

46. J. Wang, Artificial neural networks versus natural neural networks: A connectionist paradigm
for preference assessment. Decision Support Syst. 11, 415–429 (1994)

47. F. Wilcoxon, Individual comparisons by ranking methods. Biometrics Bull. 1, 80–83 (1945)

	Preference Learning: An Introduction
	1 Introduction
	2 Preference Learning Tasks
	2.1 Label Ranking
	2.2 Instance Ranking
	2.3 Object Ranking

	3 Preference Learning Techniques
	3.1 Learning Utility Functions
	3.2 Learning Preference Relations
	3.3 Model-Based Preference Learning
	3.4 Local Aggregation of Preferences

	4 Applications of Preference Learning
	4.1 Learning to Rank Search Results
	4.2 Recommender Systems

	5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

