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Preface

The topic of preferences has attracted considerable attention in Artificial Intelli-
gence (AI) research in previous years. Recent special issues of the AI Magazine
(December 2008) and the Artificial Intelligence Journal (announced for 2010), both
devoted to preferences, highlight the increasing importance of this area for AI. Rep-
resenting and processing knowledge in terms of preferences is appealing as it allows
one to specify desires in a declarative way, to combine qualitative and quantita-
tive modes of reasoning, and to deal with inconsistencies and exceptions in a quite
flexible manner.

Like in other subfields of AI, including autonomous agents, nonmonotonic rea-
soning, constraint satisfaction, planning and qualitative decision theory, researchers
in machine learning have started to pay increasing attention to the topic of pref-
erences. In fact, as witnessed by a number of dedicated events, notably several
workshops on preferences, ranking, and related topics (held, e.g., at NIPS 2004 and
2005, ECML/PKDD 2008 and 2009, SIGIR 2008 and 2009), we currently observe
the formation of “preference learning” as a new branch of machine learning and data
mining. For the time being, there is still no stipulated demarcation of this emerging
subfield, neither in terms of a list of relevant topics nor in terms of an intentional
“definition”. Roughly, preference learning refers to the problem of learning from
observations which reveal, either explicitly or implicitly, information about the pref-
erences of an individual (e.g., a user of a computer system) or a class of individuals;
the acquisition of this kind of information can be supported by methods for pref-
erence mining. Generalizing beyond the training data given, the models learnt are
typically used for preference prediction, i.e., to predict the preferences of a new
individual or the same individual in a new situation. The problem of “learning to
rank” is a good example and an important special case; here, the goal is to predict
preferences in the form of total orders of a set of alternatives (e.g., a personalized
ranking of documents retrieved by a search engine).

This book, which is the first volume specifically dedicated to the topic of
preference learning, distinguishes itself through the following features:

– It gives a comprehensive overview of the state-of-the-art in the field of preference
learning.

v
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– By including a number of survey chapters, it offers an introduction to the most
important subfields of preference learning.

– By proposing a systematic categorization according to learning task and learning
technique, along with a unified notation, it helps structuring the field; thereby, it
is supposed to have a positive impact on future research.

– Through the selection of contributions, it emphasizes the interdisciplinary char-
acter of preference learning and establishes connections to related research fields,
such as multicriteria decision-making and operations research.

– Last but not least, it highlights important applications of preference learning in
different areas, such as information retrieval and recommender systems, thereby
demonstrating its practical relevance.

Some chapters of the book are based on contributions selected from two success-
ful workshops on preference learning that we organized as part of the ECML/PKDD
conferences in 2008 and 2009. Besides, however, the material is complemented by
a number of chapters that have been solicited explicitly for this book. Overall, we
are quite confident that the book provides both a broad coverage and comprehensive
survey of the field of preference learning as well as a useful guideline and good
introduction to the most important directions in current research.

The origination of this book is largely due to our close collaboration in recent
years, which in turn has greatly benefited from a joint research project funded by
the German Science Foundation (DFG). This support is gratefully acknowledged.
Moreover, we would like to thank Ronan Nugent and the Springer for providing
excellent assistance and ready advice during the final stages of preparation.

Darmstadt Marburg Johannes Fürnkranz
December 2009 Eyke Hüllermeier
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Preference Learning: An Introduction

Johannes Fürnkranz and Eyke Hüllermeier

Abstract This introduction gives a brief overview of the field of preference learn-
ing and, along the way, tries to establish a unified terminology. Special emphasis will
be put on learning to rank, which is by now one of the most extensively studied prob-
lem tasks in preference learning and also prominently represented in this book. We
propose a categorization of ranking problems into object ranking, instance ranking,
and label ranking. Moreover, we introduce these scenarios in a formal way, dis-
cuss different ways in which the learning of ranking functions can be approached,
and explain how the contributions collected in this book relate to this categoriza-
tion. Finally, we also highlight some important applications of preference learning
methods.

1 Introduction

Reasoning with preferences has been recognized as a particularly promising research
direction for artificial intelligence (AI) [15]. A preference can be considered as
a relaxed constraint which, if necessary, can be violated to some degree. In fact,
an important advantage of a preference-based problem solving paradigm is an
increased flexibility, as nicely explained in [6]:

“Early work in AI focused on the notion of a goal – an explicit target that must be achieved –
and this paradigm is still dominant in AI problem solving. But as application domains
become more complex and realistic, it is apparent that the dichotomic notion of a goal,
while adequate for certain puzzles, is too crude in general. The problem is that in many
contemporary application domains : : : the user has little knowledge about the set of possi-
ble solutions or feasible items, and what she typically seeks is the best that’s out there. But
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2 J. Fürnkranz and E. Hüllermeier

since the user does not know what is the best achievable plan or the best available document
or product, she typically cannot characterize it or its properties specifically. As a result, she
will end up either asking for an unachievable goal, getting no solution in response, or asking
for too little, obtaining a solution that can be substantially improved.”

Drawing on past research on knowledge representation and reasoning, AI offers
qualitative and symbolic methods for treating preferences that can reasonably com-
plement traditional approaches that have been developed for quite a while in fields
such as economic decision theory [37]. Needless to say, however, the acquisition
of preferences is not always an easy task. Therefore, not only modeling languages
and representation formalisms, but also methods for the automatic learning, discov-
ery, and adaptation of preferences are needed. For example, computerized methods
for discovering the preferences of individuals are useful in e-commerce and vari-
ous other fields, where an increasing trend toward personalization of products and
services can be recognized.

It is hence hardly surprising that methods for learning and predicting preferences
in an automatic way are among the very recent research topics in disciplines, such
as machine learning, knowledge discovery, and recommender systems. Approaches
relevant to this area range from approximating the utility function of a single agent
on the basis of an as effective as possible question-answer process (often referred to
as preference elicitation) to collaborative filtering where a customer’s preferences
are estimated from the preferences of other customers. In fact, problems of pref-
erence learning can be formalized within various settings, depending, e.g., on the
underlying type of preference model or the type of information provided as an input
to the learning system.

Roughly speaking, preference learning is about inducing predictive preference
models from empirical data. In the literature on choice and decision theory, two
main approaches to modeling preferences can be found, namely in terms of utility
functions and in terms of preference relations. From a machine learning point of
view, these two approaches give rise to two kinds of learning problems: learning
utility functions and learning preference relations. The latter deviates more strongly
than the former from conventional problems such as classification and regression,
as it involves the prediction of complex structures, such as rankings or partial order
relations, rather than single values. Moreover, training input in preference learning
will not, as it is usually the case in supervised learning, be offered in the form of
complete examples but may comprise more general types of information, such as
relative preferences or different kinds of indirect feedback and implicit preference
information.

This book tries to give a comprehensive overview of the state-of-the-art in the
field of preference learning. Some of its chapters are based on selected contributions
to two successful workshops on this topic [29,30], but the material is complemented
with chapters that have been solicited explicitly for this book. Most notably, several
survey chapters give a detailed account on ongoing research in various subfields
of preference learning. Thus, we are confident that the book succeeds in giving a
comprehensive survey of work on all aspects of this emerging research area.
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In the remainder of this chapter, we shall briefly sketch some important branches
of preference learning and, along the way, give pointers to the contributions in this
volume. References to these contributions are indicated by capitalized author names,
for example FÜRNKRANZ & HÜLLERMEIER.

2 Preference Learning Tasks

Among the problems in the realm of preference learning, the task of “learning to
rank” has probably received the most attention in the machine learning literature in
recent years. In fact, a number of different ranking problems have been introduced
so far, though a commonly accepted terminology has not yet been established. In
the following, we propose a unifying and hopefully clarifying terminology for the
most important types of ranking problems, which will also serve as a guideline
for organizing the chapters of the book. AIOLLI & SPERDUTI give an alternative
unifying framework for learning to rank from preferences.

In general, a preference learning task consists of some set of items for which
preferences are known, and the task is to learn a function that predicts preferences
for a new set of items, or for the same set of items in a different context. Frequently,
the predicted preference relation is required to form a total order, in which case
we also speak of a ranking problem. In this book, we will frequently use the term
“ranking” for categorizing different types of preference learning problems, but we
note that the characterization mainly depends on the form of the training data and
the required predictions, and not on the fact that a total order is predicted.1

In the notation used in the remainder of this chapter (and throughout most of
the book), our goal is to stick as much as possible to the terminology commonly
used in supervised learning (classification), where a data object typically consists
of an instance (the input, also called predictive or independent variable in statistics)
and an associated class label (the output, also called target or dependent variable
in statistics). The former is normally denoted by x, and the corresponding instance
space by X , while the output space is denoted by Y . Instances are often represented
in the form of feature vectors, which means that x is a vector

x D .x1; x2; : : : ; xm/ 2 X D X1 � X2 � : : : � Xm:

We distinguish three types of ranking problems, namely label ranking, instance
ranking, and object ranking, which are described in more detail in the following.

1 Besides, one should be aware of conflicts between terminology in different fields. In the field of
operations research, for example, the term “ranking” is used for arranging a set of objects in a total
order, while “sorting” refers to the assignment of objects to an ordered set of categories, a problem
closely related to what is called “ordered classification” in machine learning.



4 J. Fürnkranz and E. Hüllermeier

2.1 Label Ranking

In label ranking, we assume to be given an instance space X and a finite set of
labels Y D fy1; y2; : : : ; ykg. The goal is to learn a “label ranker” in the form of
an X ! SY mapping, where the output space SY is given by the set of all total
orders (permutations) of the set of labels Y (the notation is leaned on the common
notation Sk for the symmetric group of order k). Thus, label ranking can be seen as
a generalization of conventional classification, where a complete ranking

y��1
x .1/ �x y��1

x .2/ �x : : : �x y��1
x .k/

is associated with an instance x instead of only a single class label. Here, �x is a
permutation of f1; 2; : : : ; kg such that �x.i/ is the position of label yi in the ranking
associated with x.

The training data T of a label ranker typically consist of a set of pairwise prefer-
ences of the form yi �x yj , suggesting that, for instance x, yi is preferred to yj . In
other words, an “observation” consists of an instance x and an ordered pair of labels
.yi ; yj /. The label ranking problem is summarized in Fig. 1.

This learning scenario has a large number of practical applications. For example,
it is relevant for the prediction of every sort of ordering of a fixed set of elements,
such as the preferential order of a fixed set of products (e.g., different types of hol-
iday apartments) based on demographic properties of a person, or the ordering of a
set of genes according to their expression level (as measured by microarray analy-
sis) based on features of their phylogenetic profile [1]. Another application scenario
is meta-learning, where the task is to rank learning algorithms according to their
suitability for a new dataset, based on the characteristics of this dataset [7]. Finally,
every preference statement in the well-known CP-nets approach [3], a qualitative
graphical representation that reflects conditional dependence and independence of

Given:

– a set of training instances fx` j ` D 1; 2; : : : ; ng � X (each instance typically though not
necessarily represented by a feature vector)

– a set of labels Y D fyi j i D 1; 2; : : : ; kg
– for each training instance x`: a set of pairwise preferences of the form

yi �x` yj

Find:

– a ranking function that maps any x 2 X to a ranking �x of Y (permutation �x 2 Sk/

Performance measures:

– ranking error (e.g., based on rank correlation measures) comparing predicted ranking with
target ranking

– position error comparing predicted ranking with a target label

Fig. 1 Label ranking
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preferences under a ceteris paribus interpretation, formally corresponds to a label
ranking.

In addition, it has been observed by several authors [14, 18, 25] that many con-
ventional learning problems, such as classification and multilabel classification, may
be formulated in terms of label preferences:

� Classification: A single class label yi is assigned to each example x`. This
implicitly defines the set of preferences fyi �x`

yj j 1 � j ¤ i � kg.
� Multilabel classification: Each training example x` is associated with a sub-

set P` � Y of possible labels. This implicitly defines the set of preferences
fyi �x`

yj j yi 2 L`; yj 2 Y n P`g.

A general framework encompassing these and other learning problems can be found
in the chapter by AIOLLI & SPERDUTI.

In each of the former scenarios, a ranking model f W X ! Sk is learned from
a subset of all possible pairwise preferences. A suitable projection may be applied
to the ranking model (which outputs permutations) as a post-processing step, for
example, a projection to the top-rank in classification learning where only this label
is relevant.

To measure the predictive performance of a label ranker, a loss function on
rankings is needed. In principle, any distance or correlation measure on rankings
(permutations) can be used for that purpose, for example, the number of pairs of
labels that are incorrectly ordered (i.e., the number of label pairs yi and yj such
that yi precedes yj in the predicted ranking although yj is actually preferred to yi ).
Apart from this type of ranking loss, which compares a predicted ranking with a
given target ranking, it is also possible to compare a predicted ranking with a single
class label. For example, if this class label is the target one is looking for, then it
makes sense to evaluate a predicted ranking by the position it assigns to the label;
in [28], this type of error (measuring the distance of the assigned position from the
top-rank) is called the position error.

A general survey of label ranking is given by VEMBU & GÄRNTNER. Another
discussion of label ranking and related problems is given by FÜRNKRANZ &
HÜLLERMEIER. This chapter is specifically focused on approaches that are based
on the idea of learning by pairwise comparison, i.e., of decomposing the original
problem into a set of smaller binary classification problems. YU, WAN & LEE show
how decision-tree learning algorithms such as CART can be adapted to tackle label
ranking learning problems by extending the concept of purity to label ranking data.
TSIVTSIVADZE et al. show how an approach for minimizing an approximation of
a ranking loss function can be extended with a semi-supervised learning technique
that tries to improve predictions by minimizing the disagreement of several ranking
functions, which have been learned from different views of the training data.

2.2 Instance Ranking

This setting proceeds from the setting of ordinal classification, where an instance
x 2 X belongs to one among a finite set of classes Y D fy1; y2; : : : ; ykg and,
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moreover, the classes have a natural order: y1 < y2 < : : : < yk . Training data
consists of a set T of labeled instances. As an example, consider the assignment of
submitted papers to categories reject, weak reject, weak accept, and accept.

In contrast to the classification setting, the goal is not to learn a classifier but a
ranking function f .�/. Given a subset X � X of instances as an input, the function
produces a ranking of these instances as an output (typically by assigning a score to
each instance and then sorting by scores).

For the case k D 2, this problem is well-known as the bipartite ranking problem.
The case k > 2 has recently been termed k-partite [42] or multipartite ranking [19].
As an example, consider the task of a reviewer who has to rank the papers according
to their quality, possibly though not necessarily with the goal of partitioning this
ranking into the above four categories.

Thus, the goal of instance ranking – our proposal for a generic term of bipartite
and multipartite ranking – is to produce a ranking in which instances from higher
classes precede those from lower classes; see Fig. 2 for a formalization of this task.
Different types of accuracy measures have been proposed for predictions of this
kind. Typically, they count the number of ranking errors, that is, the number of
pairs .x; x0/ 2 X � X such that x is ranked higher than x0 even though the former
belongs to a lower class than the latter. In the two-class case, this amounts to the
well-known AUC, the area under the ROC-curve [5], which is equivalent to the
Wilcoxon–Mann–Whitney statistic [38, 47]. Its generalization to multiple (ordered)
classes is known as the concordance index or C-index in statistics [22].

These measures and the multipartite ranking scenario are discussed in more detail
by WAEGEMAN & DE BAETS. ZHANG et al. discuss different methods for employ-
ing rule learning algorithms for learning bipartite rankings. This scenario has been
studied for decision-tree learning, but not yet for rule learning, where several addi-
tional problems have to be considered, such as how to combine estimates from
overlapping rules into a single probability estimate.

Given:

– a set of training instances fx` j ` D 1; 2; : : : ; ng � X (each instance typically though not
necessarily represented by a feature vector)

– a set of labels Y D fy1; y2; : : : ; ykg endowed with an order y1 < y2 < � � � < yk
– for each training instance x` an associated label y`

Find:

– a ranking function that allows one to order a new set of instances fxj gtjD1 according to their
(unknown) preference degrees

Performance measures:

– the area under the ROC-curve (AUC) in the dichotomous case .k D 2/

– generalizations such as the C-index in the polychotomous case .k > 2/

Fig. 2 Instance ranking
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2.3 Object Ranking

In the setting of object ranking, there is no supervision in the sense that no output
or class label is associated with an object. The goal in object ranking is to learn a
ranking function f .�/ which, given a subset Z of an underlying referential set Z of
objects as an input, produces a ranking of these objects as an output. Again, this is
typically done by assigning a score to each instance and then sorting by scores.

Objects z 2 Z are commonly though not necessarily described in terms of an
attribute-value representation. As training information, an object ranker has access
to exemplary rankings or pairwise preferences of the form z � z0 suggesting that z
should be ranked higher than z0. This scenario, summarized in Fig. 3, is also known
as “learning to order things” [12].

As an example consider the problem of learning to rank query results of a search
engine [33, 41]. The training information is provided implicitly by the user who
clicks on some of the links in the query result and not on others. This information can
be turned into binary preferences by assuming that the selected pages are preferred
over nearby pages that are not clicked on [34].

The performance of an object ranker can again be measured in terms of a distance
function or correlation measure on rankings. In contrast to the setting of label rank-
ing, however, the number of items to be ordered in the context of object ranking is
typically much larger. Therefore, one often prefers measures that put more empha-
sis on the top of a ranking while paying less attention to the bottom [17]. In Web
search, for example, people normally look at the top-10 results while ignoring the
rest. Besides, the target is often not a “true” ranking but instead a single object or a
subset of relevant objects, for example a set of documents relevant to a query. Eval-
uation measures especially tailored toward these types of requirements have been
proposed in information retrieval. Typical examples include precision and recall as
well as normalized discounted cumulative gain (NDCG) [32, 39].

Given:

– a (potentially infinite) reference set of objects Z (each object typically though not necessarily
represented by a feature vector)

– a finite set of pairwise preferences xi � xj , .xi ; xj / 2 Z � Z

Find:

– a ranking function f .�/ that assumes as input a set of objects and returns a permutation
(ranking) of this set

Performance measures:

– ranking error (e.g., based on rank correlation measures) comparing the predicted ranking with
the target ranking

– top-K measures comparing the top-positions of the rankings
– retrieval measures such as precision, recall, NDCG

Fig. 3 Object ranking
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An extensive survey of object ranking approaches is given by KAMISHIMA,
KAZAWA & AKAHO. Subsequently, KAMISHIMA & AKAHO discuss dimension-
ality reduction methods for object ranking tasks, which retain the preference infor-
mation as much as possible. They assume a scenario (which they call supervised
ordering) in which total orders for multiple subsets of objects are given, and the goal
is to predict an ordering of the full set of objects. DEMBCZYŃSKI et al. compare
different approaches for rule-based learning of object ranking functions, namely
one utility-based approach and one approach that directly learns the binary prefer-
ence predicate (cf. also Sect. 3.3). An application to learning to rank documents in
biomedical information retrieval is described by ARENS.

3 Preference Learning Techniques

All three of the basic learning tasks discussed in the previous section can be tack-
led by very similar basic techniques. In agreement with the distinction between
using utility functions and binary relations for modeling preferences, two general
approaches to preference learning have been proposed in the literature, the first of
which is based on the idea of learning to evaluate individual alternatives by means
of a utility function (Sect. 3.1), while the second one seeks to compare (pairs of)
competing alternatives, that is, to learn one or more binary preference predicate
(Sect. 3.2). Making sufficiently restrictive model assumptions about the structure of
a preference relation, one can also try to use the data for identifying this structure
(Sect. 3.3). Finally, local estimation techniques à la nearest neighbor can be used,
which mostly leads to aggregating preferences in one way or the other (Sect. 3.4).

3.1 Learning Utility Functions

As mentioned previously, an established approach to modeling preferences resorts to
the concept of a utility function. Such a function assigns an abstract degree of utility
to each alternative under consideration. From a machine learning point of view, an
obvious problem is to learn utility functions from given training data. Depending on
the underlying utility scale, which is typically either numerical or ordinal, the prob-
lem becomes one of regression learning or ordered classification. Both problems are
well-known in machine learning. However, utility functions often implicate special
requirements and constraints that have to be taken into consideration such as, for
example, monotonicity in certain attributes (DEMBCZYŃSKI et al.).

Besides, as mentioned earlier, training data are not necessarily given in the
form of input/output pairs, i.e., alternatives (instances) together with their utility
degrees, but may also consist of qualitative feedback in the form of pairwise com-
parisons, stating that one alternative is preferred to another one and therefore has a
higher utility degree. More generally, certain types of preference information can be
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formalized in terms of constraints on one or more underlying utility functions. This
idea forms the basis of the general framework presented by AIOLLI & SPERDUTI.
Sometimes, of course, training data are less generic and more application-specific.
In collaborative filtering, for example, it simply consists of an incomplete set of
product ratings given by a set of users (see DE GEMMIS et al. in this volume).

In the instance and object preferences scenario, a utility function is a mapping
f W X ! R that assigns a utility degree f .x/ to each instance (object) x and, hence,
induces a complete order on X . In the label preferences scenario, a utility function
fi W X ! R is needed for each of the labels yi (i D 1; : : : ; k); alternatively, the
functions can be summarized into a single function f W X � Y ! R that maps
instance/label tuples .x; y/ to real-valued scores (see AIOLLI & SPERDUTI).2 Here,
fi .x/ is the utility assigned to alternative yi by instance x. To obtain a ranking
for x, the alternatives are sorted according to these utility scores, i.e., �x is such that
yi �x yj ) fi .x/ � fj .x/.

In the setting of instance ranking , the training data consist of instances for which
the sought utility scores are given. Thus, the learning problem can, in principle,
be approached by means of classification or (ordinal) regression methods. As an
important difference, however, note that the goal is not to maximize classification
accuracy but ranking performance. Thus, conventional learning algorithms have to
be adapted correspondingly. Approaches of this kind have, e.g., been proposed in
[27,33]. In this book, WAEGEMAN & DE BAETS discuss approaches that are based
on the optimization of an extension of the binary AUC to a loss function for ordinal
data.

In object and label ranking, training data typically originate from a kind of indi-
rect supervision. Instead of the target scores of the utility function, the learner is
given the constraints on the function, which are derived from comparative prefer-
ence information of the form “This object (or label) should have a higher utility
score than that object (or label)”. Thus, the challenge for the learner is to find a
function which is as much as possible in agreement with these constraints.

For object ranking approaches, this idea has first been formalized by Tesauro
under the name comparison training [44]. He proposed a symmetric neural network
architecture that can be trained with representations of two states and a training sig-
nal that indicates which of the two states is preferable. The elegance of this approach
comes from the property that one can replace the two symmetric components of the
network with a single network, which can subsequently provide a real-valued evalu-
ation of single states. Later works on learning utility function from object preference
data include [24, 33, 46].

For the case of label ranking, a method for learning the functions fi .�/
(i D 1; : : : ; k/ has been proposed in the framework of constraint classification
[25, 26]. Here, the authors proceed from linear utility functions and find a way to
express a constraint of the form fi .x/	 fj .x/ > 0 (suggesting that yi �x yj ) in the

2 In a sense, this alternative is not just a formally equivalent rewriting. Instead, by considering an
instance/label pair as an object, it suggests a natural way to unify the problems of object and label
ranking.
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form of a binary classification example in a newly constructed, higher-dimensional
space. In other words, the original label ranking problem is transformed into a
single binary classification problem. This problem is solved by fitting a separat-
ing hyperplane, and from this hyperplane, the linear utility functions (identified
by corresponding weight vectors) can be reconstructed. An alternative approach,
so-called log-linear models for label ranking, has been proposed in [14]. This
approach is essentially equivalent to constraint classification, as it also amounts to
learning linear utility functions for all labels. Algorithmically, however, the under-
lying optimization problem is approached in a different way, namely by means of a
boosting-based algorithm that seeks to minimize a (generalized) ranking error in an
iterative way. In this book, TSIVTSIVADZE et al. present an approach for learning a
utility function for label ranking via minimization of a loss function that is based on
a least-squares approximation of the ranking error.

3.2 Learning Preference Relations

The key idea of this approach is to learn a binary preference relation that compares
pairs of alternatives (e.g., objects or labels). The training of a model thus becomes
simpler, mainly because comparative training information (suggesting that one alter-
native is better than another one) can be used directly instead of translating it into
constraints on a (latent) utility function. On the other hand, the prediction step may
become more difficult, since a binary preference relation learned from data is not
necessarily consistent in the sense of being transitive and, therefore, does normally
not define a ranking in a unique way.

Binary preference relations can be turned into a ranking by finding a ranking
that is maximally consistent with the corresponding pairwise preferences. The diffi-
culty of this optimization problem depends on the concrete criterion, though many
natural objectives (e.g., minimizing the number of object pairs whose ranks are in
conflict with their pairwise preference) lead to NP-hard problems [12]. Fortunately,
efficient techniques such as simple voting (known as the Borda count procedure in
social choice theory) often deliver good approximations, sometimes even with prov-
able guarantees [13]. Of course, one can also derive other, possibly more complex
preference structures from a preference relation, for example weak instead of strict
linear orders. In [45], a linear order with ties (indifference between two alternatives)
is called a bucket order (a total order of “buckets”, where each bucket corresponds
to an equivalence class), and a method is proposed to find an order of this type,
which is maximally consistent with the data.

For object ranking problems, the relational approach has been pursued in [12].
The authors propose to solve object ranking problems by learning a binary prefer-
ence predicate Q.x; x0/, which predicts whether x is preferred to x0 or vice versa.
This predicate is trained on the basis of exemplary preferences of the form x � x0.
A final ordering is found in a second phase by deriving (an approximation of) a
ranking that is maximally consistent with these predictions. DEMBCZYŃSKI et al.
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discuss this setting for rule learning and propose to combine the predictions using
the Net Flow score proposed in [4]. They also compare this setting with an alter-
native approach that directly learns a utility function based on the preferences and
monotonicity constraints.

For label ranking problems, the pairwise approach has been introduced by [18,
31], where it is referred to as ranking by pairwise comparison. The key idea is
to learn, for each pair of labels .yi ; yj /, a binary predicate Mi;j .x/ that predicts
whether yi �x yj or yj �x yi for an input x. A label ranking is then derived from
these pairwise preferences via weighted voting (generalized Borda counting).

Pairwise learning techniques for instance ranking have been proposed in [19].
More specifically, two approaches were developed and compared in that paper, one
which trains binary models Mi;j , one for each pair of labels yi and yj , and another
one that trains models Mi (i D 1; : : : ; k 	 1) to separate classes y1; : : : ; yi from
classes yiC1; : : : ; yk . Given a new query instance x, both approaches submit this
instance to all models that have been learned and aggregate the corresponding pre-
dictions into an overall score. A set of instances is then ranked according to these
scores.

An overview of work on learning binary preference relations for label and
instance ranking is given by FÜRNKRANZ & HÜLLERMEIER.

3.3 Model-Based Preference Learning

Another approach to learning ranking functions is to proceed from specific model
assumptions, that is, assumptions about the structure of the preference relations.
This approach is less generic than the previous ones, as it strongly depends on the
concrete assumptions made.

An example is the assumption that the target ranking of a set of objects described
in terms of multiple attributes can be represented as a lexicographic order. YAMAN

et al. address the learning of lexicographic orders in the context of object ranking.
From a machine learning point of view, assumptions of the above type can be seen
as an inductive bias restricting the hypothesis space. Provided the bias is correct,
this is clearly an advantage, as it may simplify the learning problem. In the case
of lexicographic orders, for example, a complete ranking of all objects is uniquely
identified by a total order of the attributes plus a total order of each of the attribute
domains. For example, suppose objects to be described in terms of (only) four binary
attributes. Thus, there are 24 D 16 objects and hence 16Š 
 2 � 1013 rankings in
total. However, only .24/ � 4Š D 384 of these rankings can be expressed in terms of
a lexicographic order.

Needless to say, the bias induced by the assumption of a lexicographic order
is very strong and will be rarely justified in practical applications. In particular,
preferences on individual attribute values will normally not be independent of each
other. For example, red wine might be preferred as a beverage if the main dish is
meat, while white wine might be preferred in the case of fish. As mentioned earlier,
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CP-nets [3] offer a language for expressing preferences on the values of sin-
gle attributes and provide a suitable formalism for modeling dependencies of this
type. A compact representation of a complex preference (partial order) relation is
achieved by making use of conditional independence relations between such pref-
erences (which are interpreted in terms of a ceteris paribus semantics), in much
the same way as Bayesian networks reduce complexity of probability models by
exploiting conditional independence between random variables. The CP-net itself is
a graphical representation of these (in)dependencies, and each node (belonging to
a single variable) is associated with a function that assigns a preference relation on
the values of that attribute to each combination of values of the parent attributes. In
this volume, CHEVALEYRE et al. discuss the learnability of CP-networks, both in a
passive and an active learning scenario.

If a ranking function is defined implicitly via an underlying utility (scoring)
function, the latter is normally also restricted by certain model assumptions. For
example, the approaches outlined in Sect. 3.1 make use of linear functions to rep-
resent scores, although mostly for algorithmic reasons. There are other approaches
in which the choice of the underlying utility function is more intrinsically moti-
vated and addressed in a more explicit way. For example, GIESEN et al. describe
an approach for conjoint analysis, also called multiattribute compositional models,
which originated in mathematical psychology and is nowadays widely used in the
social sciences and operations research. Proceeding from the description of objects
in terms of a set of attributes, they assume that an underlying utility function can be
decomposed into a linear sum of individual utility functions, one for each attribute.
These utility functions can then be learned efficiently from the data.

Like in the case of lexicographic orders, this model assumption is obviously quite
restrictive. TORRA presents a complementary and more general approach. Starting
with a discussion of general properties that aggregation operators for attribute-
based utility functions should fulfill, he surveys different approaches for learning
a complex aggregation operator in the form of a nonadditive integral.

3.4 Local Aggregation of Preferences

Yet another alternative is to resort to the idea of local estimation techniques as
prominently represented, for example, by the nearest neighbor estimation princi-
ple: Considering the rankings observed in similar situations as representative, a
ranking for the current situation is estimated on the basis of these “neighbored”
rankings, typically using an averaging-like aggregation operator. This approach is
in a sense orthogonal to the previous model-based one, as it is very flexible and typ-
ically comes with no specific model assumption (except the regularity assumption
underlying the nearest neighbor inference principle).

For label ranking, the nearest neighbor (instance-based learning) approach was
first used in [9, 10]. Roughly speaking, the idea is to identify the query’s k nearest
neighbors in the instance space X , and then to combine the corresponding rankings
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into a prediction using suitable aggregation techniques. In [11], this approach was
developed in a theoretically more sophisticated way, realizing the aggregation step
in the form of maximum likelihood estimation based on a statistical model for rank
data. Besides, this approach is also able to handle the more general case in which
the rankings of the neighbored instances are only partially known.

In the same paper, the authors propose to use this estimation principle for deci-
sion tree learning, too, namely for aggregating the label rankings associated with the
instances grouped in a leaf node of the tree. Indeed, decision tree learning can also
be seen as a kind of local learning method, namely as a piecewise constant approx-
imation of the target function.3 In this book, YU, WAN & LEE propose a similar
method. They grow a decision tree and propose two splitting measures for label
ranking data. The rankings that are predicted at the leaves of the trees are derived
by aggregating the rankings of all training examples arriving at this leaf.

Aggregation techniques are also used for other types of preference learning prob-
lems, including object ranking. For example, assume the rankings of several subsets
Xi of a reference set X to be given. The learning task is to combine these rankings
into a complete ranking of all objects in X . A practical application of this setting
occurs, e.g., in information retrieval, when different rankings of search results orig-
inating from different search engines should be combined into an overall ranking
of all retrieved pages [16]. Among other things, the learning problem may involve
the determination of suitable weights for the information sources (search engines),
reflecting their performance or agreement with the preferences of the user [35].
Another example is the ranking of sports teams or players, where individual tour-
nament results with varying numbers of participants have to be combined into an
overall ranking [2], or where different rankings by different judges have to be
aggregated into an overall ranking of the participants of a competition [23].

4 Applications of Preference Learning

Preference learning problems in general, and ranking problems in particular, arise
quite naturally in many application areas. For example, a search engine should rank
Web pages according to a user’s preferences. Likewise, cars can be ranked according
to a customer’s preferences on characteristics that discriminate different models.
Another example is the ranking of possible keywords according to their relevance
for an article. A few more examples have already been given in this article, and
many more could be found.

In particular in the field of information retrieval, ranking applications occur quite
naturally. Two particularly interesting problems are learning to rank the results of a
query to a search engine, and learning to rank possible recommendations for new
products. We will briefly discuss research in these areas below.

3 More general approximations can be realized by labeling a leaf node with a nonconstant function,
for example a linear function in regression learning.
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4.1 Learning to Rank Search Results

A widely studied preference learning problem is the ranking of retrieval results of
a search engine. Roughly, the problem is the following: given a query q and a set
of documents D, find a ranking of the documents in D that corresponds to their
relevance with respect to q. This ranking is based on an unknown preference relation
�q, which ought to be learned from user feedback on past rankings of retrieval
results for different queries. An elaborate survey of current research in this area can
be found in [36].

Current research focuses particularly on suitable ways of characterizing the
queries that allow one to transfer the ranking from one query to another [20, 40].
In some sense, a query may be considered as a context for a ranking, and the task
is to learn a function that allows one to transfer the ranking from one context to the
other. Much of the research is conducted on the LETOR (LEarning TO Rank for
information retrieval) collection, a package of datasets containing a wide variety of
queries with user feedback in several domains.4

Users can provide explicit feedback by labeling the retrieved pages with their
degree of relevance. However, users are only willing to do this for a limited number
of pages. It would be better if feedback could be collected in a way that is transparent
to the user. RADLINSKI & JOACHIMS discuss a variety of techniques that allow
one to collect the user feedback implicitly via their clicking behavior. Alternatively,
ARENS proposes the use of active learning techniques which help minimizing the
burden on the user by a careful automatic selection of suitable training examples for
the ranking algorithm. He illustrates his technique in an application which learns
a ranking function for the PubMed search engine for the MEDLINE database of
biomedical literature.

4.2 Recommender Systems

Nowadays, recommender systems [43] are frequently used by online stores to rec-
ommend products to their customers. Such systems typically store a data table with
products over users, which records the degree of preference of a user for this prod-
uct. A customer can provide this preference degree explicitly by giving some sort
of feedback (e.g., by assigning a rating to a movie) or implicitly (e.g., by buying
the DVD of the movie). The elegant idea of collaborative filtering systems [21] is
that recommendations can be based on user similarity, and that user similarity can
in turn be defined by the similarity of their recommendations. Alternatively, recom-
mender systems can also be based on item similarities, which are defined via the
recommendations of the users that recommended the items in question. Yet other
approaches try to learn models that capture the preference information contained in
the matrix. A very good comparison of these approaches can be found in [8].

4 http://research.microsoft.com/en-us/um/beijing/projects/letor/

http://research.microsoft.com/en-us/um/beijing/projects/letor/
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In this book, DE GEMMIS et al. given an extensive survey of recommender
systems. Subsequently, KARATZOGLOU & WEIMER describe the use of matrix fac-
torization methods for compressing the information contained in the user/product
matrix into a product of two lower-dimensional matrices. The dimensions over
which the product is computed may be viewed as hidden concepts, which can be
used to categorize the interests of a user. Interestingly, only very few (in the order
of 10) such concepts are enough for a sufficiently accurate representation of large
numbers of users and products. Finally, BELLOGIN et al. describe an approach that
uses decision tree learning for identifying features of recommendation models that
influence the quality of the predicted preference ranking.

5 Conclusions

In this introductory chapter, we have tried to give an overview of different appr-
oaches to preference learning, categorized by the learning task (label, instance,
or object ranking) and the learning technique (learning utility functions, learning
binary preference relations, learning preference models having a specific structure,
or using local estimation and preference aggregating methods). In principle, all
task/technique combinations are conceivable and can be found in the literature. We
also highlighted important application areas, in particular in ranking search results
and product recommendations.

Throughout the chapter, pointers to the remaining articles in this book were
given. They could be characterized along a variety of dimensions, including all
of those mentioned above. We have adopted a grouping that more or less corre-
sponds to the sections in this survey. As the categorization is multi-dimensional,
most articles fit into several of these categories, and, in some cases, the choice was
not entirely clear. This is why we do not have separate parts on learning of a utility
function or a binary preference relation, for example. In fact, almost all approaches
presented in this book follow either of the two approaches.
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A Preference Optimization Based Unifying
Framework for Supervised Learning Problems

Fabio Aiolli and Alessandro Sperduti

Abstract Supervised learning is characterized by a broad spectrum of learning
problems, often involving structured types of prediction, including classification,
ranking-based predictions (label and instance ranking), and (ordinal) regression in
its various forms. All these different learning problems are typically addressed by
specific algorithmic solutions.

In this chapter, we propose a general preference learning model (GPLM), which
gives an easy way to translate any supervised learning problem and the associated
cost functions into sets of preferences to learn from. A large margin principled
approach to solve this problem is also proposed.

Examples of how the proposed framework has been effectively used by us to
address non-standard real-world applications are reported showing the flexibility
and effectiveness of the approach.

1 Introduction

Supervised learning is probably the most commonly used learning paradigm and a
large spectrum of learning algorithms have been devised for different learning tasks
in the last decades. The need for such a large spectrum of learning algorithms is, in
part, due to the many real-world learning problems, that are characterized by het-
erogeneous tasks and problem-specific learning algorithms for their solution. These
include classification and regression problems (including multilabel and multiclass
classification, and multivariate regression), as well as ranking-based (either label or
instance ranking) and ordinal regression problems. Typically, the approach followed
to deal with a nonstandard problem is to map it into a series of simpler, well-known
problems and then to combine the resulting predictions. Often, however, this type
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of methodology lacks a principled theory supporting it and/or requires too much
computational resources to be practical for real-world applications.

In this chapter, we give a survey of a quite general framework, which is able
to generalize different types of supervised learning settings into a common pref-
erence optimization task. In particular, this is done by considering supervision as
a set of order preferences over the predictions of the learner. More generally, we
show that supervised learning problems can be characterized by considering two
main dimensions, the type of prediction and the type of supervision involved in the
problem to be solved. Then, based on this characterization, we are able to map any
of these learning problems into a simple preference learning task. From a practi-
cal point of view, we show how all these supervised tasks can also be addressed
in a simple linear setting, where any problem formulation can be transformed into
a binary problem defined on an augmented space, thus allowing the exploitation of
very simple optimization procedures available for the binary case. We also stress the
flexibility of the preference model, which allows a user to optimize the parameters
on the basis of a proper evaluation function. In fact, while in general the goal of a
problem in terms of its evaluation function is clear, a crucial issue in the design of
a learning algorithm is how to get a theoretical guarantee that the defined learning
procedure actually minimizes the target cost function. One advantage of the frame-
work reviewed in this chapter is that it defines a very natural and uniform way to
devise and code a cost function into a learning algorithm.

Examples of real-world applications are then discussed. In particular, two recent
applications are discussed in more detail. The first application concerns the problem
to select the best candidate for a job role. This is an instance ranking problem, where,
however, only binary supervision from the past history is available. The second
application concerns a patent classification task, where patent applications have to
be associated with primary categories as well as secondary categories. This is an
example of a label ranking task, which cannot be properly addressed by an ordinal
regression approach.

In Sect. 2, we review the general preference learning model (GPLM). Specifi-
cally, we show how the preference model generalizes the supervised learning setting
by considering supervision as a partial order of (soft) constraints over the learner
predictions. In addition, we show (Sect. 2.2) how the suggested generalization can
be instantiated to well-known supervised learning problems. In the same section,
we also discuss how cost functions for learning problems can be cast by using
preferences (Sect. 2.3) and a simple linear model for the learner (Sect. 2.4). Quite
general optimization procedures for training models within the proposed frame-
work are also presented (Sect. 2.5). In Sect. 3, different application scenarios are
described and discussed. In particular, it is discussed how the GPLM applies to a
job candidate selection task and to a patent classification task. In Sect. 4, related
works are sketched and a discussion about the proposed approach is given. Finally,
in Sect. 5, some future extensions to the preference framework are suggested and
final conclusions are drawn.
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2 GPLM: A General Model for Supervised Learning

2.1 The Learning Domain

Let us consider a very general domain with a space of instances X and a space
of class labels Y . For example, this could be the domain of a recommender sys-
tem where instances might correspond to customers while labels to products, or
the domain of an information retrieval system where instances could correspond to
documents while labels to queries.

The basic idea underpinning our general preference learning model is that we
want to learn the set of parameters of a real valued relevance (or scoring) function
defined on instance label pairs

f W X � Y ! R;

which should approximate the actual target function. In a recommender system task,
for example, this target function would represent the actual rating (a real value) a
customer would give to a given product. Similarly, in the information retrieval exam-
ple, the target function could represent the log-ratio of the probability of relevance
of a document given a query.

We can easily note that, once such a scoring function is computed, a predictor
will be able to order instances in X based on their relevance once any label y 2 Y is
selected, and similarly, to order class labels in Y based on their relevance once any
instance x 2 X is selected.

2.2 Prediction and Supervision

In supervised learning, supervision is assumed to be provided according to an
unknown probability distribution D over pairs, where the first member is a descrip-
tion of a domain object (instance) and the second member is the corresponding
expected prediction (target label). We generalize this setting by considering super-
vision as (soft) constraints over the learner predictions, that is constraints whose
violation entails a cost, or penalty, for the solution. Specifically, we assume a learner
makes its predictions on the basis of a set of parameters�, characterizing its hypoth-
esis space. Each supervision constraint S , that cannot be satisfied makes the learner
suffer a cost c.S j�/. It is easy to notice that this generalizes the above-mentioned
case of supervision as instance-label pairs. In fact, this is obtained back when a
unitary cost is given to hypotheses generating incorrect labeling.

Now, we are able to show that, by using the setting presented above, it is possible
to cast the main types of supervised learning tasks into a taxonomy on the basis of
their expected prediction and supervision feedback. To this end, let us first recall the
definition of order relations.
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2.2.1 Definition

A partial order is a pair .P ;�/ in which P is a set and � is a reflexive, antisym-
metric, and transitive binary relation. A partial ranking of length r is a partial order
in which the set P can be partitioned in r sets P1; : : : ;Pr such that z 2 Pi , z0 2 Pj ,
i < j , implies z � z0 and no further information is conveyed about the order-
ing within subsets Pk . A full order on P is defined as a partial ranking of length
jP j. We denote by PO.P/, PR.P/, and FO.P/ the set of partial orders, partial
rankings, and full orders over the set P , respectively.

2.2.2 Label Rankings as Qualitative Preferences

A first important family of supervised learning tasks is related to the ordering of the
classes on the basis of their relevance for an instance, and thus they are characterized
by the fact that predictions should be based on a full order over the labels. This
family of problems is referred to as label rankings. Supervision is in the form of
partial orders over the classes. In our notation, we have supervision S 2 PO.Y/ and
predictions in FO.Y/. Different settings can be obtained corresponding to different
types of supervision. A few well-known instances are listed in the following:

Category Ranking (CR)

In this setting, the goal is to order categories on the basis of their relevance for an
instance. As an example, in a collaborative filtering setting, users could correspond
to our instances and the different movies to our classes. Then, one could be inter-
ested in the ordering (by relevance) of the set of movies based on user preferences.
This is trivially a particular case of label ranking where supervision is given as full
orders over Y .

Bipartite Category Ranking (BCR)

In this task, supervision is given as two groups of classes and it is required to predict
full orders in which the first group of classes is ranked over the second. As a leading
example, in information retrieval, given a document, one might have to rank the
available topics with the aim to return the most relevant topics on the top of the list.
This is again a specific case of label ranking where supervision is given as partial
rankings of length two. This task has been also referred to as category ranking in
literature [10]. Here a different terminology is adopted to avoid confusion between
these two different tasks.1

1 Note that this task and the two that follow are conceptually different from the task to decide about
the membership of an instance. Here, supervision only gives qualitative information about the fact
that some classes are more relevant than others.
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We might also be interested in predictions consisting of the most relevant classes,
that is, of a prefix of the full order induced by the relevance function f .x; y/. This
family of tasks is commonly referred to as classification problems. They can, how-
ever, be considered as subcases of the BCR ranking task. A few examples of this
kind of problems, listed by increasing specificity, is given here:

Q-Label Classification (QC)

In this task, the goal is to select theQ most appropriate classes for a given instance,
with Q fixed. The supervision here is a partial ranking of length two where a set of
exactlyQ labels are preferred over the rest.

Single-Label Classification (SC)

In this well-known classification task, the goal is to select exactly one class (the
most relevant) for an instance. This is a trivial subcase of QC with Q D 1.

2.2.3 Instance Rankings as Qualitative Preferences

Another interesting family of tasks is instance rankings, where the goal is to order
instances on the basis of the relevance of a given class. In our notation, predictions
are in FO.X / and supervision is given in the form S 2 PO.X /.

The duality with respect to label rankings is self-evident. In principle, a corre-
sponding problem setting could be defined for each of the label ranking settings.
We can easily see that the well-known (Bipartite) Instance Ranking (IR) task, cor-
responds to BCR and is the one to induce an order such that a given set of instances
is top-ranked. A natural application of this kind of prediction is in information
retrieval, e.g., when listing the results returned by a search engine. Another inter-
esting application is the one presented in Sect. 3 for job role selections. As in BCR,
here supervision consists of partial rankings (this time over the set X ) of length two.
Another task, which can also be considered in this family, is learning preference
relations from a given set of ranked instances. For example, in information retrieval,
the task to learn preference relations on the basis of basic preferences given as pairs
of documents [19].

The two families of tasks above can be considered qualitative tasks since they
are concerned with order relations between instance-class pairs. On the other side,
quantitative tasks are the ones that are more concerned with the absolute values of
the relevance of instance-class pairs.

2.2.4 Quantitative Predictions

Sometimes there is the necessity to do quantitative predictions about data at hand.
For example, in binary classification, one has to decide about the membership of
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an instance to a class as opposed to rank instances by relevance. These settings
are not directly subsumed by the settings presented above. As we will see, this can
be overcome by adding a set of thresholds and doing predictions based on these
thresholds.

Multivariate Ordinal Regression (MOR)

There are many settings where it is natural to rate instances according to an ordinal
scale, including collaborative filtering, where there is the need to predict people rat-
ings on unseen items. Borrowing the movie-related application introduced above,
suitable rates for movies could be given as “bad”, “fair”, “good”, and “recom-
mended”. With no loss in generality, we can consider the target space as the integer
set Z D f0; : : : ; R 	 1g of R available rates. Following an approach similar to the
one in [26], rates are made corresponding to intervals of the real line. Specifically, a
set of thresholds T D f�0 D 	1; �1; : : : ; �R�1; �R D C1g can be defined and the
prediction based on the rule

Oz D fi W f .x; y/ 2 .�i ; �iC1/g:

In a typical (instance-pivoted) version of the MOR problem, given the target rate
zy w.r.t. the label y, a correct prediction will be consistent with the conditions:
f .x; y/ > �i when i � zy and f .x; y/ < �i when i > zy . Note that, a different
threshold set could also be used for different labels. The well-known (Univariate)
Ordinal Regression(OR) [20, 31] task is a trivial subcase of MOR when a single
class is available. A dual (label-pivoted) version of the MOR problem is also possi-
ble which can raise when one has to rate classes according to an ordinal scale, and
the instance is fixed in this case. An example of this situation is given in Sect. 3.2.

Multilabel Classification (MLC)

In this task, it is required to classify instances with a subset (the cardinality of which
is not specified) of the available classes. For us, it is convenient to consider this task
as an MOR problem, where only two ranks are available, relevant and irrelevant,
and Z D f0; 1g. The well-known Binary Classification (BC) can be considered
a subcase of OR with two ranks Z D f0; 1g. Note that this task is considered
here conceptually different from SC with two classes. An alternative way to look
at the multilabel problem is to add an artificial label, which is always considered
less relevant than relevant labels and more relevant than irrelevant labels. In this
way, supervision of the same type as for label ranking problems can be given. This
approach, named Calibrated Label Ranking, has been recently proposed in [17].

Clearly, the taxonomy presented above is not exhaustive but well highlights how
many different kinds of structured predictions can be seen as simple constraints over
the predictions of a learner. Specifically, they consist of constraints in conjunctive
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Table 1 Supervision of problems in Sect. 2.2. Label and instance rankings (LR and IR, respec-
tively) have a preference for each order relation induced by the supervision S . In ordinal regression
(MOR), a preference is associated with each threshold and z 2 Z is the rank given by the
supervision

Setting Supervision P-sets

LR f.x; yr / � .x; ys/g.x;yr /�S .x;ys/

IR f.xi ; y/ � .xj ; y/g.xi ;y/�S .xj ;y/

MOR f.x; y/ � �igi<z [ f�i � .x; y/gi�z

form where each basic preference is defined over the scoring values and/or a set
of threshold values. In particular, we can differentiate between two types of order
preferences: qualitative preferences in the form

.xi ; yr / � .xj ; ys/

telling that the value of f .xi ; yr / should be higher than the value of f .xj ; ys/, and
quantitative preferences in the form

.x; y/ � � or � � .x; y/; � 2 R

relating the value of f .x; y/ to a given threshold � . In Table 1, a summary of super-
vision obtained for the most general settings are presented. Particular instantiations
to more specific problems are immediate.

2.3 Definition of the Preference Problem

We have seen how supervision of typical supervised learning problems can be
decomposed in terms of sets of qualitative and/or quantitative preferences over the
scoring function of a learner. Here, we show that preferences also give us a flexible
way to express cost functions, which can be directly utilized to optimize a learner.
Specifically, we consider preference graphs, i.e., directed graphs where nodes take
values on the set H � .X � Y/ [ T and edges .h1; h2/ 2 H � H represent prefer-
ences h1 � h2. We say that a scoring function is consistent with a preference graph
whenever it is consistent with all the preferences in the graph. The evaluation of
any scoring function can then be performed by checking for how many graphs the
scoring function is not consistent with.

Even more general cost functions can be obtained by associating weights (or
costs) with the edges of the graphs. In this case, given a preference graph, the cost
incurred by a hypothesis is defined as the maximum cost of its unfulfilled prefer-
ences (edges). When not explicitly indicated, we assume the weight associated with
an edge to be 1. Summarizing, the total cost suffered by a scoring function f for
supervision S , which is given as a set of preference graphs G, is defined as the
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Fig. 1 Examples of label mappings for 2-label classification (a–c) and ranking (d–f)

cumulative cost over all the preference graphs. More formally, we have

c.Gjf / D
X

g2G
c.gjf / and c.gjf / D maxf�.�/j� 2 E.g/ not fulfilled by f g;

where �.�/ represents the weight associated with the preference � and E.g/ is the
set of edges in g.

Cost Functions for Label Rankings

Many different cost functions which can be, useful for label ranking problems can
be easily reproduced in this way. The reader can see [2, 11] for several examples
on how to map this kind of supervision into sets of preference graphs. In Fig. 1,
there are graphically presented very simple examples of how supervision for a 2-
label classification and a ranking problem can be differently mapped into preference
graphs thus obtaining different preference optimization problems. Note that only the
labels and not the instances, which are fixed in this case, are indicated into the nodes.

The map in Fig. 1a defines a cost function indicating if any of the relevant labels
are wrongly classified as irrelevant. The map in Fig. 1b would define a different cost
function counting how many relevant labels are wrongly classified as irrelevant.
Finally, the map in Fig. 1c would give the so-called ranking loss, i.e., the number of
pairs that are not correctly ordered.

Allowing edges with different weights gives further flexibility to the model.
A typical example where costs associated with edges can turn out to be useful is
in the classification setting, where misclassifications can have different costs. This
can be the case in single-label classification when categories are not represented
with the same frequencies in the training and the test set. Another interesting case is
when there is some structure between the available classes and a different metric for
misclassification costs should be introduced. For example, in hierarchical classifica-
tion, it makes sense to pay costs proportional to the path length in the tree between
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the true class and the predicted one. In all these cases, a cost matrix� is used to have
a better control over the learning algorithm, where the element�.yr ; ys/ represents
the cost of classifying a pattern as yr when it is actually in ys .

Cost Functions for Instance Rankings

Concerning the instance ranking setting and BCR-like predictions, a common cost
function used in many different domains including information retrieval is the
so-called AUC (Area under ROC curve) measure. It can be shown that this is propor-
tional to the number of instance pairs incorrectly ordered and thus it can be trivially
represented in our model by using a mapping similar to the one given in Fig. 1c.

Cost Functions for Prediction of Ratings

A natural definition of a cost function for ordinal regression problems is c D jOz.x/	
z.x/j, where Oz.x/ is the rate given as output by the hypothesis and z.x/ the correct
rate. In this setting, we assume that the evaluation function is somewhat proportional
to the distance between ordered rates. Two different maps can be defined to use
GPLM for the solution of an ordinal regression problem which are able to mimic this
cost function. The easiest way is to consider the number of thresholds that are not
correctly ordered w.r.t. f .x; y/. This can be obtained in our framework by mapping
this kind of supervision into R 	 1 graphs where each graph consists of a single
preference of type .x; y/ � �r , whenever r � z.x/, and .x; y/ � �r , otherwise.
A second way is by using costs associated with different preferences, i.e., the r th
preference is set to ..x; y/ � �r /z�iCr whenever r � z, and .�r � .x; y//r�z,
otherwise. Note that, with this last, we have a greater flexibility on the definition of
the cost function. For example, it can be used when the above assumptions about
the distance between different rates are not appropriate for the task at hand.

As an example of application of the second model, consider a R D 4 univariate
ordinal regression problem. Then, we have three thresholds T D f�1; �2; �3g and
cost mappings defined as in the following:

G.r D 0/ D f.�1 � .x; y//1; .�2 � .x; y//2; .�3 � .x; y//3g
G.r D 1/ D f..x; y/ � �1/1; .�2 � .x; y//1; .�3 � .x; y//2g
G.r D 2/ D f..x; y/ � �1/2; ..x; y/ � �2/1; .�3 � .x; y//1g
G.r D 3/ D f..x; y/ � �1/3; ..x; y/ � �2/2; ..x; y/ � �3/1g

It is easy to verify that this mapping respects the costs as they could be obtained
by the natural cost definition given above. For example, considering the instance x
with target rate 1 being rated 3. Then, it means that the scoring function is such that
f .x; y/ 2 .�3;C1/, i.e.,

	1 � �1 � �2 � �3 � f .x; y/ � C1;
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and hence the cost suffered by the hypothesis is correctly computed by

c.r D 1/ D maxf0;C1;C2g D C2:

Trivial extensions of these maps which are suitable for the multivariate ordinal
regression problem can also be defined but they are omitted here.

Multilabel Classification

The standard evaluation measure for multilabel classification, the so-called Ham-
ming loss, is defined by the number of incorrect decisions of the classifier. For
the instance x, missing one of the target classes Y.x/ � Y causes an algorithm
to incur in a loss smaller than when missing more target classes. This seems quite
natural in many real-world situations. In our setting, this cost function directly
derives from the one defined for MOR problems when considering only two rates
firrelevant D 0; relevant D 1g. Finally, cost functions for BC problems can be
obtained as a trivial subcase when a single class is available.

2.4 A Linear Embedding for Preference Optimization

In this section, we show that, using a linear form of the scoring function, the
preference optimization problems defined by our framework become very simple.
Consider a simple form of the relevance function, that is

f .x; y/ D w � �.x; y/;

where �.x; y/ 2 R
d is a joint representation of instance-class pairs and w 2 R

d

is a weight vector [30]. Note that this form generalizes the more standard form
f .x; y/ D wy � �.x/, where different weight vectors are associated with different
labels. In fact, let jYj D m, we can write:

w D .w1; : : : ;wm/ and �.x; y/ D .0; : : : ; 0„ ƒ‚ …
y�1

; �.x/; 0; : : : ; 0„ ƒ‚ …
m�y

/:

With this assumption, it is possible to conveniently reformulate an order constraint
as a linear constraint. Let T D f�1; : : : ; �R�1g be the set of available thresholds,
then in the qualitative case, given � � .xi ; yr / � .xj ; ys/, we obtain

f .xi ; yr / > f .xj ; ys/ , .w; �1; : : : ; �R�1/ � .�.xi ; yr / 	 �.xj ; ys/; 0; : : : ; 0„ ƒ‚ …
R�1

/

„ ƒ‚ …
 .�/

> 0
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while, in the quantitative case when either � � .x; y/ � �r or � � �r � .x; y/, and
using a suitable ı 2 f	1;C1g for shortness, we have

ı.f .x; y/	 �r / > 0 , .w; �1; : : : ; �R�1/ � .ı�.x; y/; 0; : : : ; 0„ ƒ‚ …
r�1

;	ı; 0; : : : ; 0„ ƒ‚ …
R�r�1

/

„ ƒ‚ …
 .�/

> 0:

In general we can see that supervision constraints of all the above-mentioned prob-
lems, can be reduced to sets of linear constraints of the form w �  .�/ > 0,
where w D .w; �1; : : : ; �R�1/ is the vector of weights augmented with the set of
available thresholds, and  .�/ is a suitable representation of the preference under
consideration. The quantity

	A.�jw/ D w �  .�/

will be also referred to as the margin of the hypothesis w.r.t. the preference. Note
that this value is greater than zero when the preference is satisfied and less than zero
otherwise. We will say that a preference � is consistent with an hypothesis when
	A.�jw/ > 0. Similarly, for a preference graph g, which represents a conjunction
of simple preferences, it is required that 	A.�jw/ > 0 for all � 2 E.g/. The margin
of an hypothesis w.r.t. the whole preference graph g can be consequently defined as
the minimum of the margins of preferences contained in g, i.e.,

	.gjw/ D min
�2E.g/

	A.�jw/:

Summarizing, all the problems defined in the taxonomy in Sect. 2.2 can be seen
as an homogeneous linear problem in a opportune augmented space. Specifically,
any algorithm for linear classification (e.g., perceptron or linear programming) can
be used to solve it, provided the problem has a solution.

2.5 Learning with Preferences

In earlier sections, we have discussed the structure behind the supervision, how
cost functions can be modeled using preference graphs, and how preferences can
be linearly embedded by using a linear form for the scoring function. Now, we see
how to give learning algorithms that are able to optimize these kind of preference
optimization problems.

The goal in a batch learning algorithm is to optimize the parameters w so as to
minimize the expected cost over D, the actual distribution ruling the supervision
feedback. More formally, the following has to be minimized

RŒw
 D ES	DŒc.S jw/
:
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Table 2 Examples of approximation losses as a function of the margin. ˇ > 0; � 2 R are intended
to be external parameters

Methods l.	/

Perceptron max.0;�	/
ˇ-margin max.0; ˇ � 	/
Mod. Least Square Œ1� 	
2

C

Logistic Regression log2.1C e�ˇ	/

Exponential e�ˇ	

Sigmoidal .1C eˇ.	��//�1

Although D is unknown, we can still try to minimize this function by exploiting the
same structure of supervision and as much of the information we can gather from
the available training set S.

Specifically, the purpose of a GPLM based algorithm will be to find the hypoth-
esis w that is able to minimize costs c.S jw/. As these are not continuous w.r.t.
the parameter vector w, they are approximated by introducing a continuous non-
increasing loss function l W R ! R

C approximating the indicator function. The
(approximate) cost will be then defined by

Qc.S jw/ D
X

g2G.S/
max
�2g

�.�/l.	A.�jw//:

Examples of losses one can use are presented in Table 2.
The general problem can be given as in the following:

– Given a set V.S/ D S
S2S G.S/ of preference graphs

– Find a set of parameters w in such a way to minimize the functional

Q.w/ D R.w/C �L.V.S/jw/; (1)

where L.V.S/jw/ D P
S2S Qc.S jw/ is related to the empirical cost and R.w/ is

a regularization term over the set of parameters. Note that for the solution to be
admissible when multiple thresholds are used and there are constraints defined
over their values (as in the ordinal regression settings), these constraints should
be explicitly enforced.

The use of a regularization term in problems of this type has different motivations,
including the theory on regularization networks (see e.g., [12]). Moreover, we can
see that by choosing a convex loss function and a convex regularization term (let say
the quadratic term R.w/ D 1

2
jjwjj2) it guarantees the convexity of the functional

Q.w/ in (1) and then the uniqueness of the solution. Indeed, current kernel-based
approaches defined for basic supervised learning tasks can be seen in this form when
using the ˇ-margin with ˇ D 1. This suggests a new universal kernel method, which
is able to solve many complex learning tasks [1].



A Preference Optimization Based Unifying Framework for SL Problems 31

3 GPLM Applications

In the following sections, two recent applications of GPLM are presented: for a job
candidate selection task [4] and a patent classification task [3]. These real-world
applications are discussed in some detail with the aim to give two examples of how
a potential user can approach nonstandard supervised learning problems using a
GPLM-based strategy.

3.1 Job Candidate Selection as a Preferential Task

In a candidate selection task for filling a job role, one or more candidates have to
be selected from a pool of candidates. Without loss of generality, let assume that
the k � 1 most suited candidates for the job are selected. This decision is taken
by looking at each candidate profile. Moreover, we may assume that the number k
of candidates to select is already known from the beginning. This last point is very
important to model the problem. In fact, a candidate will be selected on the basis of
which other candidates are in the pool. In other words, no decisions can be taken for
a candidate without knowing who else is competing for the same position(s).

Assume the training set consists of past decisions about promotions to a given
role. Then, for any of these decisions, we know which candidates were in a selec-
tion pool and how many and which candidates were selected for the job. Thus,
it seems natural to interpret any past decision as a set of preferences in which
the k selected candidates were preferred to the others. More formally, we define
Ct D fc1; : : : ; cnt

g to be the set of candidates for the job role (the pool) at time
t , St D fs.t/1 ; : : : ; s.t/kt

g the set of candidates which got the promotion, and Ut D
fu.t/1 ; : : : ; u

.t/

nt�kt
g the set of candidates which were not selected. Thus, there is evi-

dence that si was preferred to uj for each i 2 f1; : : : ; kt g and j 2 f1; : : : ; nt 	 kt g.
Using our notation, we can write si � uj . Note that a selection having a pool of car-
dinality nt and kt candidates selected for the job will introduce exactly kt�.nt	kt /
preferences. However, since kt  nt , the order of magnitude is still linear in the
number of candidates.

Why not a Simple Binary Task?

One could think of a job role selection as a setting where for each candidate an
independent decision is taken. In this case, at any time t , we would have exactly
nt independent decisions (e.g., a C1 decision, representing that the candidate was
selected for the job role, and a 	1 decision representing that the candidate was not
selected for the job role). This could be modeled as a typical binary task where
any of the 2nt different outcomes are possible. However, a job role selection is
competitive in its nature, i.e., the choice of one candidate instead of another is not
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independent on the other’s candidates potentials and only a fixed number of can-
didates can get the promotion. For this reason, the binary task does not seem to
be the best choice. This will be confirmed in the experimental section where we
have compared the GPLM model against a binary SVM implementation. Finally, it
should be noted that the problem tends to be highly unbalanced when considered as
a binary problem. In fact, the number of promoted candidates is a very small per-
centage of the number of candidates, who compete for the promotion. On the other
hand, GPLM makes no additional assumption on the sign of the relevance function
for different candidates only on the order it induces. This should make the problem
easier and more balanced.

3.1.1 GPLM with SVM

In Sect. 2.4, we have shown how the preferential problem, i.e., the task to find a
linear function, which is consistent with a set of preferences, can be cast as a binary
problem. Examples in this case become  .�/ D si 	 uj for each � � si � uj .
Thus, a standard SVM algorithm applied to this new set of examples can be used to
find a solution to the preferential problem.

Specifically, let  D f.S1; U1/; : : : ; .ST ; UT /g be the sets involved in past pro-
motions given as a training set for a given role, thus the SVM dual problem will be
posed as

arg max
˛

X

t

X

si2St

X

uj2Ut

˛
.t/
ij 	 1

2

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
X

t

X

si2St

X

uj2Ut

˛
.t/
ij  .si � uj /

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌

2

s.t. 0 � ˛
.t/
ij � �;

(2)

and the (primal) SVM solution which solves (1) will be in the form

wSVM D
X

t

X

si2St

X

uj2Ut

˛
.t/
ij  .si � uj /:

Note that the kernel computation in this case consists in computing a kernel between
preferences (i.e., dot product between their vectorial representations). Neverthe-
less, this kernel can be easily reduced to a combination of simpler kernels between
candidate profiles in the following way:

Qk.c1i � c1j ; c
2
i � c2j /D hc1i 	 c1j ; c

2
i 	 c2j iDhc1i ; c

2
i i 	 hc1i ; c

2
j i 	 hc1j ; c

2
i iChc1j ; c

2
j i

D k.c1i ; c
2
i / 	 k.c1i ; c2j /	 k.c1j ; c2i /C k.c1j ; c

2
j /;

where k.ci ; cj / D hci ; cj i is the kernel function associated with the mapping used
for the candidate profiles. We have then reduced a preferential task into a binary task
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which can be easily solved by a standard SVM by just redefining the kernel function
suitably.

Furthermore, using the SVM decision function fSVM.�/ D sgn.hwSVM;  .�/i/
it is possible to determine whether a given order relation is verified between any two
candidates. However, to decide which candidates should be selected for a new event
t , kt � .nt 	 kt / calculations of the above-defined function should be computed to
obtain the relative order of candidates.

In the following, we show that the selection can actually be computed in linear
time. To this end, we can decompose the weight vector computed by the SVM in
the following way:

wSVM D P
t

P
ci2St

P
cj2Ut

˛
.t/
ij  .ci � cj / D P

t

P
ci2St

P
cj2Ut

˛
.t/
ij .ci 	 cj /

D
X

t

X

ci2St

X

cj2Ut

˛
.t/
ij ci 	

X

t

X

ci2St

X

cj2Ut

˛
.t/
ij cj :

This decomposition allows us to decouple, in the computation of the relevance
function for a new candidate, the contribution of candidate profiles given in the
training set

f .c/ D hwSVM; ci D P
t

P
ci2St

 
P

cj2Ut

˛
.t/
ij

!
hci ; ci

	
X

t

X

cj2Ut

0

@
X

ci2St

˛
.t/
ij

1

A hcj ; ci

D
X

t

X

ci2St

0

@
X

cj2Ut

˛
.t/
ij

1

A k.ci ; c/ 	
X

t

X

cj2Ut

0

@
X

ci2St

˛
.t/
ij

1

A k.cj ; c/

D
X

t

X

ci2St

˛
.t/
i k.ci ; c/ 	

X

t

X

ci2St

˛
.t/
j k.cj ; c/:

Hence, the relevance function can be directly computed by post-processing the
output of the SVM (the ˛ vector) and then building a new model as follows

f .c/ D
X

cs

ˇsk.cs ; c/;

where ˇs D P
t Wcs2St

˛
.t/
s 	P

t Wcs2Ut
˛
.t/
s . The new model defined by the ˇ’s can

directly be used by an SVM, and it returns the correct relevance for any candidate.
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3.1.2 Experimental Setting

Our data were collected from the Human Resources data warehouse of a bank.
Specifically, we have considered all the events related to the promotion of an
employee to the job role of director of a branch office (target job role). The data used
ranges from January 2002 to November 2007. Each event involves from a minimum
of 1 promotion up to a maximum of 7 simultaneous promotions. Since for each
event a short list of candidates was not available, we were forced to consider as can-
didates competing for the promotion(s) all the employees which at the time of the
event were potentially eligible for promotion to the target job role. Because of that,
each event t typically involves kt “positive” examples, i.e., the employees that were
promoted, and nt � kt “negative” examples, i.e., eligible employees that were not
promoted. As already stated, kt ranges from 1 to 7, while nt ranges (approximately)
from 3;700 to 4;200, for a total of 199 events, 267 positive examples, and 809;982
negative examples.2 Each candidate is represented, at the time of the event, through
a profile involving 102 features. Of these features, 29 involve personal data, such
as age, sex, title of study, zone of residence, etc., while the remaining 73 features
codify information about the status of service, such as current office, salary, hours
of work per day, annual assessment, skills self-assessment, etc. The features, and
the way they are numerically coded, were chosen in such a way that it is impossible
to recognize the identity of an employee from a profile. Moreover, we were careful
in preserving, for each numerical feature, its inherent metric if present, e.g., the ZIP
codes where redefined so that the geographic degree of proximity of two areas is
preserved in the numerical proximity of the new codes associated with these two
areas.

3.1.3 Results

To test whether learning preferences was better than using a binary classifier where
binary supervision is used for training and the score of the resulting classifier used
to rank the instances belonging to the same event, we have performed a set of exper-
iments on a representative subset of the whole dataset. The binary classifier was
an SVM with gaussian kernel and the values to use for the hyperparameters were
decided through a validation set. The gaussian kernel was used also for learning
preferences. The results showed that it is better to learn preferences as the SVM
obtained a total accuracy of 61.88% versus an accuracy of 76.20% obtained for the
approach based on learning preferences. The accuracy measures how many ranking
relations are correctly predicted. The cost mapping we used for the GPLM is the
one described in Sect. 3.1 that is each training selection was mapped into the set of

2 Note that the same employee can play the role of negative example in several events. Moreover,
it might also be a positive example.
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preferences obtained between any “selected” profile and any “not selected” profile.
The SVMlight [22] implementation has been used for all the experiments.

3.2 Three-Layered Patent Classification as a Preferential Task

In many applicative contexts in which textual documents are labeled with thematic
categories, a distinction is made between the primary and the secondary categories
that are attached to a given document. The primary categories represent the top-
ics that are central to the document, while the secondary categories represent topics
that the document somehow touches upon, albeit peripherally. For instance, when
a patent application is submitted to the European Patent Office (EPO), a primary
category from the International Patent Classification (IPC) scheme3 is attached to
the application, and that category determines the expert examiner who will be in
charge of evaluating the application. Secondary categories are instead attached for
the only purpose of identifying related prior art, since the appointed expert exam-
iner will need to determine the novelty of the proposed invention against existing
patents classified under either the primary or any of the secondary categories. For
the purposes of EPO, failing to recognize the true primary category of a document
is thus a more serious mistake than failing to recognize a true secondary category.

We now propose GPLM models for the principled solution of the three-layered
classification task. Let d denote a document having the set P.d/ D fcpg (a sin-
gleton) as the set of its primary categories, S.d/ D fcs1 ; : : : ; csk g as the (possibly
empty) set of its secondary categories, and N.d/ D fcn1

; : : : ; cnl
g as the set of its

noncategories, such that C D P.d/[ S.d/[N.d/.

GPLM: Ordinal Regression for Three-Layered Classification

One could be tempted to interpret the three-layered classification problem as a label-
pivoted (multivariate) ordinal regression (MOR) problem, i.e., the problem to give
a rank from the ordered set {primary, secondary, noncategory} to each category for
a given instance. In the following, we first give a GPLM mapping already presented
in [2] which can be demonstrated to be equivalent to the ordinal regression method
in [7]. Then, we discuss why, in our opinion, this setting does not exactly match the
three-layered classification in the patent classification application. Our experiments,
which will be summarized in the following, will support this claim.

For ordinal regression, a GPLM model is built by considering two thresholds (see
Fig. 2), e.g., �p and �s . For each training document, the relevance function of a pri-
mary category should be above the threshold �p, while the relevance function for any
other category (either secondary or non-category) should be below the threshold �p.

3 http://www.wipo.int/classifications/en/

http://www.wipo.int/classifications/en/
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Fig. 2 GPLM mapping for ordinal-regression supervision

On the other hand, the relevance function of any secondary category should be above
the threshold �s , while any noncategory should be below the threshold �s. Summa-
rizing, the preference graph for a given training document will be as in Fig. 2. As a
simple example, consider the set of categoriesC D fc1; c2; c3; c4; c5g and a training
document d such that P.d/ D fc1g, S.d/ D fc2; c3g, and N.d/ D fc4; c5g. The
set of preferences we generate is

 D f.c1 �d �p/; .�p �d c2/; .�p �d c3/; .c2 �d �s/; .c3 �d �s/;
.�s �d c4/; .�s �d c5/g

Finally, three-layered classification will be performed by selecting the category
reaching the highest relevance score as primary category, and among the others,
all the categories reaching a relevance score above the threshold �s, as secondary
categories.

At this point, we can discuss a little more about the OR-based preference model.
In particular, in (multivariate) ordinal regression, it is assumed that, for each doc-
ument, the rate given to a category is independent from the rate given to other
categories. This assumption would be reasonable when discriminating between rel-
evant categories (primary and secondaries) and noncategories, since this is not a
“competitive” decision, but is far less reasonable when one has to choose exactly
one (the most relevant) among relevant categories as the primary category for a
document, since in this case we actually have a “competitive” decision. Thus, in
this last case, the choice of the primary category is strongly dependent on which
are the relevant categories. This difference recalls the difference between single-
label classification (which is competitive) and multilabel classification (which is
not competitive) in multiclass classification tasks. In other words, requiring the rel-
evance score for the primary category to be higher than a given threshold seems
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Fig. 3 GPLM mapping for supervision with (a) nonempty secondary category set and (b) empty
secondary category set

an unnecessary constraint which eventually could lead to a deteriorate overall
performance.

GPLM: Ad-Hoc Mapping for Three-Layered Classification

A variant of the ordinal regression scheme, which seems more suitable for the task
of three-layered classification, can be built as follows. Let us interpret the primary
category as the most relevant among the relevant categories. This constraint is intro-
duced by the insertion of a set of qualitative preferences between the primary and all
the secondary categories. Moreover, given the multilabel nature of the problem to
discern the secondary categories with respect to the remaining categories, a single
threshold � on the relevance scores has to be added between the secondary cate-
gories and the noncategories. The categories reaching a relevance score above the
threshold (apart from the one recognized as the primary category) will be predicted
as secondary categories. See Fig. 3a for a graphical representation of this kind of
preference model. Note that whenever S.d/ D ;, this means that the relevance
values for categories in CnP.d/ are all below the threshold. To cope with this
situation, the qualitative preferences can be collapsed into a direct quantitative pref-
erence between the primary category and the threshold. See Fig. 3b for a graphical
description of this kind of preference. As a simple example, consider the set of cat-
egories C D fc1; c2; c3; c4; c5g and a training document d such that P.d/ D fc1g,
S.d/ D fc2; c3g, and N.d/ D fc4; c5g. The set of preferences we generate is

 D f.c1 �d c2/; .c1 �d c3/; .c2 �d �/; .c3 �d �/; .� �d c4/; .� �d c5/g:
Similarly, if d is instead such thatP.d/ D fc1g, S.d/ D ;,N.d/ D fc2; c3; c4; c5g,
this will generate the set of preferences

 D f.c1 �d �/; .� �d c2/; .� �d c3/; .� �d c4/; .� �d c5/g



38 F. Aiolli and A. Sperduti

3.2.1 Experimental Setting

We have evaluated our method on the WIPO-alpha Intellectual Property Organiza-
tion (WIPO) in 2003. The dataset consists of 75,250 patents classified according to
version 8 of the International Patent Classification scheme (IPC). Each document
d has one primary category (known as the main IPC symbol of d ), and a variable
(possibly null) number of secondary categories (the secondary IPC symbols of d ).
To avoid problems due to excessive sparsity, and consistently with previous litera-
ture [13], we only consider categories at the subclass level of the IPC scheme; each
of the 630 IPC subclasses is thus viewed as containing the union of the documents
contained in its subordinate groups.

WIPO-alpha comes partitioned into a training set Tr of 46,324 documents and
a test set Te of 28,926 documents. In our experiments, we used the entire WIPO-
alpha set of 75,250 documents. Each document includes a title, a list of inventors, a
list of applicant companies or individuals, an abstract, a claims section, and a long
description. As in [13], we have only used the title, the abstract, and the first 300
words of the “long description”. Pre-processing has been obtained by performing
stop word removal, punctuation removal, down-casing, number removal, and Porter
stemming. Vectorial representations have been generated for each document by the
well-known “ltc” variant of cosine-normalized tfidf weighting. We refer the reader
to [3] for a complete description of the experimental setting and the dataset.

Two additional baseline methods have been defined. In the first baseline (dubbed
“Baseline1”), a binary classifier is built for each c 2 C (by using as positive
examples of category ci all the documents that have ci either as a primary or as
a secondary category) and use the real-valued scores returned by each classifier for
d : the category for which the largest score has been obtained are selected as the
primary category, while the set of secondary categories are identified by optimizing
a threshold for each individual category and selecting the categories whose associ-
ated classifier has returned a score above its associated threshold. We have indeed
implemented this approach (by using standard binary SVMs). A slightly stronger
approach (dubbed “Baseline2”) consists in performing two different classification
tasks, a first one (by means of an SVM-DDAG [28] single-label classifier hP ) aimed
at identifying the primary category of d , and a second one (by means of a multilabel
classifier hS consisting of m SVM-based binary classifiers hiS , one for each cate-
gory ci 2 fc1; : : : ; cmg) aimed at identifying, among the remaining categories, the
secondary categories of d . The hP classifier is trained by using, as positive exam-
ples of each ci , only the training documents that have ci as primary category. Each
of the hiS is instead trained by using as positive examples only the training docu-
ments that have ci as secondary category, and as negative examples only the training
documents that have ci as noncategory (those that have ci as primary category are
discarded).

3.2.2 Results

The results obtained for the different classifiers are summarized in Table 3. Ad-
hoc evaluation measures have been used. In particular, the F1 measure is computed
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Table 3 Micro-averaged F 3
1 values obtained by the classifiers

F PS
1 F SN

1 F PN
1 F 3

1

Baseline1 0.851 0.180 0.482 0.499
Baseline2 0.886 0.200 0.464 0.504
Ordinal regression 0.7847 0.1774 0.5343 0.5077
GPLM Adatron 0.8433 0.2138 0.5129 0.5206

for each pair of layers and then combined to form a single measure F 31 . The first
two rows report the performances of the two baseline classifiers. It can be observed
that they have almost identical F 31 and are not so good in telling apart secondary
categories from noncategories (F SN

1 ). The third row reports the performance of the
ordinal regression classifier, which turns out to have the best separation between pri-
mary and noncategories (F PN

1 ) but a quite low performance on separating primary
and secondary categories (F PS

1 ). These results seem coherent with the analysis we
have given in Sect. 3.2 as the separation between primary categories and noncate-
gories is overconstrained by the ordinal regression model. The overall performance
(F 31 ) slightly improves over the baseline classifiers. The fourth row reports the per-
formance of the GPLM using an own implementation of the Kernel–Adatron [15]
as optimizer. With respect to the baselines and the ordinal regression classifier, there
is a clear improvement on F SN

1 , while F PS
1 decreases. Overall, however, there is a

significant improvement in F 31 .

4 Related Work and Discussion

Some other efforts have been made to generalize label ranking tasks. The first work
on this we are aware of is [18] where the authors show how different label ranking
problems can be cast into a linear problem which is solvable by a perceptron in an
augmented feature space. In [21], a variant is presented in which the ranking is per-
formed based on a voting strategy on classifiers discriminating between label pairs.
In [11], the authors propose a setting in which a label ranking problem is map into
a set of preference graphs and a convex optimization problem is defined to solve it.
Our preference model proposed in [5] generalizes on these two previous approaches,
by proposing a more flexible way to model cost functions for the same problems, and
giving a kernel-based large margin solution for these kind of tasks. More recently,
in [30], a large margin method to solve single-label problems with structured (e.g.,
hierarchical) output has been proposed. This last approach is not, however, directly
applicable to solve general label ranking tasks as it requires the solving of an opti-
mization problem with a different constraint for each possible (label) ranking and
also the decoding step can show exponential complexity for general cost functions.
In [24] it has been shown that this technique is, however, feasible when applied to
certain cost functions that are relevant for information retrieval ranking tasks.
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The general task of instance ranking is gaining a large popularity especially
in the information retrieval community where the typical need is to rank docu-
ments based on their relevance for a query. In this context, this task is commonly
referred to as learning to rank. The approaches to this general task can be divided
into three categories: point-wise, pair-wise, and list-wise. This taxonomy is similar
to the one presented in this chapter. In the point-wise approach, see for example
[9,16,25,27,29], the input space are single documents and the output space are real
values or ordinal categories. This kind of settings are a subset of the tasks that have
been referred to as quantitative tasks in this chapter, namely the class of instance-
pivoted Multivariate Ordinal Regression. In the pair-wise approach, see for example
[6, 8, 14, 20, 23], the input space are document pairs (basically preferences) and the
output space are documents ordered by relevance. This kind of settings are those
tasks which have been here referred to as qualitative tasks, and Instance Rankings
in particular. Finally, in the list-wise approach, see for example [32], the input space
is the whole document set and typically a direct optimization of the evaluation func-
tion is required. This last approach is very challenging as these evaluation functions
are often noncontinuous and nondifferentiable.

One clear advantage of the approach presented in this chapter, with respect to all
the ones sketched in this section, is its ability to treat uniformly the label and the
instance ranking settings as well as the regression setting, exploiting a preference-
centric point of view. Reducing all of these problems to preference optimization
implies that any optimization technique for preference learning can be used to solve
them all.

5 Conclusion and Future Extensions

We have discussed a general preference model for supervised learning and appli-
cations to complex prediction problems, as job selection and patent classification.
The first application is an instance-ranking problem while the second application is a
label-ranking problem where categories have to be associated with patents according
to a three-layered structure (primary, secondary, non-category).

An interesting aspect of the proposed preference model is that it allows to cod-
ify cost functions as preferences and naturally plug them into the same training
algorithm. In this view, the role of the cost functions resembles the role of ker-
nels in kernel-machines. Moreover, the proposed method gives a tool for comparing
different algorithms and cost functions on a same learning problem.

In the future, it would be interesting to explore extensions to the model, includ-
ing: (a) Considering models with disjunctive preferences as it would increase the
flexibility of the model. (b) Studying new fast (approximate) algorithms when the
number of examples/preferences are simply too large to be coped with by standard
learning algorithms. (c) Extending the concept of preferences to preferences to a
given degree, i.e., when a preference constraint have to be fulfilled with a given
margin.



A Preference Optimization Based Unifying Framework for SL Problems 41

References

1. F. Aiolli, Large margin multiclass learning: models and algorithms. Ph.D. thesis, Depart-
ment of Computer Science, University of Pisa, 2004. http://www.di.unipi.it/phd/tesi/tesi_2004/
PhDthesisAiolli.ps.gz

2. F. Aiolli, A preference model for structured supervised learning tasks, in Proceedings of the
IEEE International Conference on Data Mining (ICDM) (2005), pp. 557–560

3. F. Aiolli, R. Cardin, F. Sebastiani, A. Sperduti, Preferential text classification: Learning
algorithms and evaluation measures. Inf. Retr. 12(5), 559–580 (2009)

4. F. Aiolli, M. De Filippo, A. Sperduti, Application of the preference learning model to a human
resources selection task, in Proceedings of the IEEE Symposium on Computational Intelligence
and Data Mining (CIDM) (Amsterdam, NL, 2009), pp. 203–210

5. F. Aiolli, A. Sperduti, Learning preferences for multiclass problems, in Advances in Neural
Information Processing Systems (MIT, Cambridge, MA, 2005) pp. 17–24

6. C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G.N. Hullender,
Learning to rank using gradient descent, in Proceedings of the International Conference on
Machine Learning (ICML) (2005), pp. 89–96

7. W. Chu, S. Sathiya Keerthi, Support vector ordinal regression. Neural Comput. 19(3), 792–815
(2007)

8. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10 243–
270 (1999)

9. K. Crammer, Y. Singer, Pranking with ranking, in Advances in Neural Information Processing
Systems (NIPS) (2002), pp. 641–647

10. K. Crammer, Y. Singer, A family of additive online algorithms for category ranking. J. Mach.
Learn. Res. 3, 1025–1058 (2003)

11. O. Dekel, C.D. Manning, Y. Singer, Log-linear models for label ranking, in Advances in Neural
Information Processing Systems (2003)

12. T. Evgeniou, M. Pontil, T. Poggio, Regularization networks and support vector machines. Adv.
Comput. Math. 13, 1–50 (2000)

13. C.J. Fall, A. Törcsvári, K. Benzineb, G. Karetka, Automated categorization in the International
Patent Classification. SIGIR Forum 37(1), 10–25 (2003)

14. Y. Freund, R.D. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining
preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

15. T.T. Friess, N. Cristianini, C. Campbell, The kernel adatron algorithm: a fast and simple learn-
ing procedure for support vector machines, in Proceedings of International Conference of
Machine Learning (ICML) (1998), pp. 188–196

16. T.T. Friess, N. Cristianini, C. Campbell, Subset ranking using regression, in Proceedings of
the International Conference on Learning Theory (COLT) (Springer Berlin/Heidelberg, 2006),
pp. 605–619

17. J. Fürnkranz, E. Hüllermeier, E. Mencía, K. Brinker, Multilabel classification via calibrated
label ranking. Mach. Learn. 73(2), 133–153 (2008)

18. S. Har-Peled, D. Roth, D. Zimak, Constraint classification for multiclass classification and
ranking, in Advances in Neural Information Processing Systems (2002), pp. 785–792

19. R. Herbrich, T. Graepel, P. Bollmann-Sdorra, K. Ober-mayer, Learning a preference relation for
information retrieval, in Proceedings of the AAAI Workshop Text Categorization and Machine
Learning (1998)

20. R. Herbrich, T. Graepel, K. Obermayer, Large margin rank boundaries for ordinal regression,
in Advances in Large Margin Classifiers (MIT, 2000), pp. 115–132

21. E. Hüllermeier, J. Fürnkranz, W. Cheng, K. Brinker, Label ranking by learning pairwise
preferences. Artif. Intell. 172(16–17), 1897–1916 (2008)

22. T. Joachims, Making large-scale svm learning practical, in Advances in Kernel Methods -
Support Vector Learning ed. by B. Schölkopf, C. Burges, A. Smola (MIT, 1999)

23. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the
Conference on Knowledge Discovery and Data Mining (KDD) (2002) pp. 133–142

http://www.di.unipi.it/phd/tesi/tesi_2004/PhDthesisAiolli.ps.gz
http://www.di.unipi.it/phd/tesi/tesi_2004/PhDthesisAiolli.ps.gz


42 F. Aiolli and A. Sperduti

24. Q. Le, A. Smola, Direct optimization of ranking measures. Technical report, NICTA, Canberra,
Australia, 2007

25. P. Li, C. Burges, Q. Wu, Mcrank: Learning to rank using multiple classification and gradi-
ent boosting, in Advances in Neural Information Processing Systems (NIPS) (MIT, 2008),
pp. 897–904

26. P. McCullagh, J.A. Nelder, Generalized Linear Models (Chapman & Hall, 1983)
27. R. Nallapati, Discriminative models for information retrieval, in Proceedings of the Conference

on Research and Development in Information Retrieval (SIGIR) (ACM, 2004), pp. 64–71
28. J.C. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAGs for multiclass classification, in

Advances in Neural Information Processing Systems (NIPS) (1999), pp. 547–533
29. A. Shashua, A. Levin, Ranking with large margin principle: Two approaches, in Advances in

Neural Information Processing Systems (NIPS) (2002), pp. 937–944
30. I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, Support vector machine learning for

interdependent and structured output spaces, in Proceedings of the International Conference
on Machine learning (ICML) (2004), pp. 1453–1484

31. H. Wu, H. Lu, S. Ma, A practical svm-based algorithm for ordinal regression in image retrieval,
in Proceedings of the ACM international conference on Multimedia (2003), pp. 612–621

32. F. Xia, T. Liu, J. Wang, W. Zhang, H. Li, Listwise approach to learning to rank: theory and algo-
rithm, in Proceedings of the International Conference on Machine Learning (ICML) (2008),
pp. 1192–1199



Part I
Label Ranking



Label Ranking Algorithms: A Survey

Shankar Vembu and Thomas Gärtner

Abstract Label ranking is a complex prediction task where the goal is to map
instances to a total order over a finite set of predefined labels. An interesting aspect
of this problem is that it subsumes several supervised learning problems, such
as multiclass prediction, multilabel classification, and hierarchical classification.
Unsurprisingly, there exists a plethora of label ranking algorithms in the literature
due, in part, to this versatile nature of the problem. In this paper, we survey these
algorithms.

1 Introduction

Binary classification [20, 63] is a well-studied problem in supervised machine
learning. Often, in real-world applications such as object recognition, document
classification etc., we are faced with problems where there is a need to predict multi-
ple labels. Label ranking is an example of such a complex prediction problem where
the goal is to not only predict labels from among a finite set of predefined labels,
but also to rank them according to the nature of the input. A motivating application
is document categorization where categories are topics (e.g., sports, entertainment,
politics) within a document collection (e.g., news articles). It is very likely that a
document may belong to multiple topics, and the goal of the learning algorithm is
to order (rank) the relevant topics above the irrelevant ones for the document in
question. Label ranking is an interesting problem as it subsumes several supervised
learning problems such as multiclass, multilabel, and hierarchical classification [27].
This survey is intended to provide an overview of label ranking algorithms.
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2 Preliminaries

We begin with some definitions from order theory, and describe distance metrics
and kernels that will be used in this paper.

A binary relation � on a (finite) set ˙ is a partial order if � is asymmetric
(a � b ) :b � a) and transitive (a � b ^ b � c ) a � c). The pair .˙;�/ is
then called a partially ordered set (or poset).

We denote the set f.u; v/ 2 ˙ j u � vg by p.�/ and the set of all partial orders
over˙ byP˙ . Note that every partially ordered set .˙;�/ defines a directed acyclic
graph G� D .˙; p.�//. This graph is also called as preference graph in the label
ranking literature.

A partially ordered set .˙;�/ such that 8u; v 2 ˙ W u � v _ v � u is a totally
ordered set and � is called a total order, a linear order, a strict ranking (or simply
ranking), or a permutation. A partial ranking is a total order with ties.

A partial order �0 extends a partial order � on the same ˙ if u � v ) u �0 v.
An extension �0 of a partial order � is a linear extension if it is totally ordered
(i.e., a total order �0 is a linear extension of a partial order � if 8u; v 2 ˙ ,
u � v ) u �0 v). A collection of linear orders �i realizes a partial order � if
8u; v 2 ˙; u � v , .8i W u �i v/. We denote this set by `.�/. The dual of a
partial order � is the partial order N� with 8u; v 2 ˙ W u N�v , v � u.

2.1 Distance Metrics

Spearman’s rank correlation coefficient (	) [70] is a nonparametric measure of cor-
relation between two variables. For a pair of rankings � and � 0 of length k, it is
defined as

	 D 1 	 6D.�; � 0/
k.k2 	 1/ ;

where D.�; � 0/ D Pk
iD1.�.i/ 	 � 0.i//2 is the sum of squared rank distances. The

sum of absolute differences
Pk
iD1 j�.i/ 	 � 0.i/j defines the Spearman’s footrule

distance metric.
Kendall tau correlation coefficient (�) [51] is a nonparametric statistic used to

measure the degree of correspondence between two rankings. For a pair of rankings
� and � 0, it is defined as

� D nc 	 nd
1
2
k.k 	 1/ ;

where nc is the number of concordant pairs, and nd is the number of discordant
pairs in � and � 0. The number of discordant pairs defines the Kendall tau distance
metric.
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2.2 Kernels

We now define kernels on partial orders and describe their properties.

2.2.1 Position Kernel

Define

k# W P � P ! R by kp.�;�0/ D
X

u2˙
�
�jfv 2 ˙ j v � ugj; jfv 2 ˙ j v �0 ugj�;

where � is a kernel on natural numbers.

– This function is a kernel and can be computed in time polynomial in ˙ .
– It is injective (in the sense that k.�; �/ D k.�0; �/, �D�0) for linear orders

but not for partial orders.

2.2.2 Edge Kernel

Define
kp W P � P ! R by kp.�;�0/ D jp.�/\ p.�0/j:

– This function is a kernel and can be computed in time polynomial in jp.�/j.
– This kernel is injective (in the sense that k.�; �/ D k.�0; �/, �D�0).
A downside of this kernel is that a � b is as similar to b � a as it is to a � c.
However, we can overcome this problem easily. Let N� be the dual partial order
of �. Define

k Np.�;�0/ D kp.�;�0/	 kp. N�;�0/:
– This function is a kernel (the feature space has one feature for every pair of

elements and the value of feature uv is Cp
2 iff u � v, 	p

2 iff v � u, and 0
otherwise).

– It can be computed in time polynomial in jp.�/j.

2.2.3 Extension Kernel

Define
k` W P � P ! R by k.�;�0/ D j`.�/\ `.�0/j:

– This function is a kernel.
– It is injective (in the sense that k.�; �/ D k.�0; �/, �D�0).
– The kernel cannot be computed in polynomial time as counting linear extensions

(or, equivalently, computing k.�;�/) is #P-complete. However, it can possibly
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be approximated as (i ) the number of linear extensions can be approximated, and
(i i ) the set of linear extensions can be enumerated almost uniformly.

– We have k`.�;�0/ D 0, 9u; v 2 ˙ W u � v ^ v �0 u. We call such partial
orders contradicting.

– For noncontradicting partial orders �;�0 define the partial order � [ �0 such
that 8u; v 2 ˙ W u.� [ �0/v , u � v _ u �0 v.

2.3 Label Ranking: Problem Definition

Let X � R
m be the input (instance) space, ˙ D f1; : : : ; kg D ŒŒk

 be a set of

labels, and Y be the output space of all possible partial orders over ˙ . Let T D
fxi ; yigiDŒŒn�� � X � Y be a set of training examples. Let Gi D .Vi ; Ei / denote the
preference graph corresponding to yi , for all i 2 ŒŒn

. The goal of a label ranking
algorithm is to learn a mapping f W X ! Y , where f is chosen from a hypothesis
class F , such that a predefined loss function ` W F � Y � Y ! R is minimized. In
general, the mapping f is required to output a total order, but it is also possible to
envisage settings where the desired output is a partial order. Let kX W X � X ! R

and kY W Y �Y ! R denote positive semidefinite kernels on X and Y , respectively.

2.4 Related Problems

We now describe some problems that are related to label ranking. A comprehensive
survey of literature for these problems is beyond the scope of this paper. Neverthe-
less, we refer to, what we believe, are important (and classical), and possibly also
recent contributions.

2.4.1 Multilabel Classification

Multilabel classification [30, 37, 65, 66] is a generalization of multiclass prediction
where the goal is to predict a set of labels that are relevant for a given input. It is a
special case of multilabel ranking [11] where the preference graph is bipartite with
directed edges between relevant and irrelevant labels.

2.4.2 Object Ranking

In this setting, the preference information is given on a subset of the input space
and not on the labels. The goal is to learn a ranking function f W X ! R such
that for any a; b 2 X , f .a/ > f .b/ iff a � b. Thus, a total order is induced on
the input space. This setting has attracted a lot of attention recently, in particular,
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in information retrieval applications. Various approaches to solve this problem have
been proposed in the literature [12, 13, 18, 23, 32, 34, 44, 50, 64]. Learning object
ranking functions on structured inputs (graphs) was proposed recently in [1, 2, 78].
A survey on object ranking algorithms also appears as a chapter in this book.

2.4.3 Ordinal Regression

Ordinal regression [16,17,43,44] is a form of multiclass prediction where the labels
are defined on an ordinal scale and therefore cannot be treated independently. It is
closely related to the object ranking problem where the preference information on
(a subset of) the input space is a directed k-partite graph where k is the number of
ordinal values (labels).

3 Learning Reductions

Learning reductions are an efficient way to solve complex prediction problems
using simple models such as (binary) classifiers as primitives. Such techniques have
been applied to solve problems such as ranking [7], regression [54], and structured
prediction [26], just to name a few.

Label ranking can be reduced to binary classification using Kesler’s construction
[60]. This approach was proposed in [40, 41] under the name of constraint classifi-
cation. The idea is to construct an expanded example set T 0 in which every example
.x; y/ 2 R

m �Y with its corresponding preference graphG D .V;E/ is embedded
in R

km � f	1; 1g, with each preference .p; q/ 2 E contributing a single positive
and a single negative example. The Kesler mapping P is defined as follows:

PC.x; y/ D f.x ˝ 0p; 1/ j .p; q/ 2 Eg � R
km � f1g

P�.x; y/ D f.	x ˝ 0q;	1/ j .p; q/ 2 Eg � R
km � f	1g;

where 0j is a k-dimensional vector whose j th component is one and the rest are
zeros. Let P.x; y/ D PC.x; y/ [ P�.x; y/. The expanded set of examples is then
given by

T 0 D P.T / D
[

.x;y/2T
P.x; y/ � R

km � f	1; 1g:

A binary classifier (linear separating hyperplane) trained on this expanded set can
be viewed as a sorting function over k linear functions, each in R

m. The sorting
function is given as argsortj2ŒŒk��

˝
wj ; x

˛
, where wj is the j -th chunk of the weight

vector w 2 R
km, i.e., wj D .w.j�1/mC1; : : : ;wjm/.

A well-known reduction technique known as pairwise classification [35] can be
used to reduce the problem of multiclass prediction to learning binary classifiers.
An extension of this technique known as ranking by pairwise comparison (RPC)
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was proposed in [36, 46] to solve the label ranking problem. The central idea is to
learn a binary classifier for each pair of labels in ˙ resulting in k.k 	 1/=2models.
Every individual model Mpq with p; q 2 ˙ learns a mapping that outputs 1 if
p �x q and 0 if q �x p for an example x 2 X . Alternatively, one may also learn
a model that maps into the unit interval Œ0; 1
 instead of f0; 1g. The resulting model
assigns a valued preference relation Rx to every example x 2 X :

Rx.p; q/ D
(
Mpq.x/ if p < q

1 	 Mpq.x/ if p > q

The final ranking is obtained by using a ranking procedure that basically tries to
combine the results of these individual models to induce a total order on the set of
labels. A simple ranking procedure is to assign a score sx.p/ D P

p¤q Rx.p; q/
to each label p and obtain a final ordering by sorting these scores. This strategy
exhibits desirable properties such astransitivity of pairwise preferences. Further-
more, the RPC algorithm minimizes the sum of squared rank distances and an
approximation to the Kendall tau distance metric under the condition that the binary
models Mpq provide correct probability estimates, i.e., Rx.p; q/ D Mpq.x/ D
PrŒp �x q
.

4 Boosting Methods

A boosting [33] algorithm for label ranking was proposed by Dekel et al. [27].
A label ranking function f W X � ˙ ! R is learned such that for any given
x 2 X , a total order is induced on the label set by p �x q ” f .x; p/ >

f .x; q/. The label ranking function is represented as a linear combination of a set
of L base ranking functions, i.e, f .x; p/ D PL

lD1 �lhl .x; p/, where f�lgl2ŒŒL�� are
parameters that are estimated by the boosting algorithm. We denote the label ranking
induced by f for x by f .x/ (with a slight abuse of notation). A graph decomposition
procedure D, which takes a preference graph Gi D .Vi ; Ei / for any xi 2 X as its
input and outputs a set of Si subgraphs fGi;sgs2ŒŒSi ��, has to be specified as an input
to the learning algorithm. A simple example of a graph decomposition procedure is
to consider every edge e 2 Ei as a subgraph. Other examples include decomposing
the graph into bipartite directed graph Gi;s D .Ui;s; Vi;s; Ei;s/ such that jUi;sj D 1

or jVi;sj D 1 (see Fig. 2 in [27] for an illustration). The generalized loss due to
f .xi / w.r.t. Gi is the fraction of subgraphs in D.Gi / with which f .xi / disagrees.
The generalized loss over all the training instances is defined as

`gen.f; T ;D/ D
nX

iD1

1

Si

SiX

sD1
ı.f .xi /; Gi;s/;
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where ı.:; :/ is a loss function defined on the subgraphs such as the 0-1 loss or the
ranking loss [66]. While minimizing such a discrete, nonconvex loss function is
NP-hard, it is possible to minimize an upper bound given by

ı.f .xi /; Gi;s/ � log2.1C
X

e2Ei;s

exp.f .xi ; term.e// 	 f .xi ; init.e////:

where init.e/ (resp. term.e/) is the label corresponding to the initial (resp. terminal)
vertex of any directed edge e 2 Ei;s. To minimize this upper bound, Dekel et al.
proposed to use a boosting-style algorithm for exponential models [19, 56] to esti-
mate the model parameters � and also proved a bound on the decrease in loss in
every iteration of the algorithm.

5 Label Ranking SVM

Elisseeff and Weston [30] proposed a kernel method for multilabel classification.
A straightforward generalization of this approach results in a label ranking algo-
rithm. Define a scoring function for label p and input x as hp.x/ D hwp ; xi, where
wp is a weight vector corresponding to label p. These scoring functions together
will define the mapping f by a sorting operation, i.e., f .x/ D argsortj2ŒŒk��

˝
wj ; x

˛
.

The ranking loss [66] w.r.t. to a preference graph G D .V;E/ is defined as
`.f; x; y/ D 1

jE j j.p; q/ 2 E s:t: hp.x/ � hq.x/j. The following optimization
problem minimizes the ranking loss:

min
fwj gj DŒŒk��

kP
jD1

jjwj jj2 C �
nP
iD1

1
jEi j

P
.p;q/2Ei

�ipq

subject to W hwp 	 wq ; xi i � 1 	 �ipq ;8.p; q/ 2 Ei ;8i 2 ŒŒn


�ipq � 0;8.p; q/ 2 Ei ;8i 2 ŒŒn

;

where � > 0 is the regularization parameter that tradesoff the balance of the loss
term against the regularizer.

Shalev-Shwartz and Singer [67] considered the setting where the training labels
take the form a feedback vector � 2 R

k . The interpretation is that label p is ranked
higher than label q iff �p > �q . The difference �p 	 �q encodes the importance of
label p over label q and this information is also used in the optimization problem.
The loss function considered in this work is a generalization of the hinge-loss for
label ranking. For a pair of labels .p; q/ 2 ˙ , the loss w.r.t. f is defined as

`p;q.f .x/; �/ D Œ.�p 	 �q/ 	 .hp.x/ 	 hq.x//
C;

where Œa
C D max.a; 0/. At the heart of the algorithm lies a decomposition frame-
work, similar to the one described in the previous section, that decomposes any
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given feedback vector into complete bipartite subgraphs, and losses are defined
and aggregated over these subgraphs. This decomposition framework makes the
approach very general, albeit at the cost of solving a complex optimization problem.
Interestingly, the quadratic programming formulation for multilabel classification
as proposed by Elisseeff and Weston [30] can be recovered as a special case of this
approach.

6 Structured Prediction

Discriminative structured prediction algorithms infer a joint scoring function on
input–output pairs and, for a given input, predict the output that maximizes this
scoring function. Let ˚ W X � Y ! R

m (with a slight abuse of notation)
denote a joint feature map of input–output pairs. Note that the mapping can be
an infinite dimensional feature space, such as the reproducing kernel Hilbert space
(RKHS). The scoring function is parameterized by a weight vector w and for a
pair .x; y/ 2 X � Y is defined as f .x; yI w/ D hw; ˚.x; y/i. The goal of the
learning algorithm is to estimate w typically based on the structural risk minimiza-
tion principle. The final prediction is performed according to the following rule:
Oy D argmaxy2Y f .x; y/ D argmaxy2Y hw; ˚.x; y/i. This optimization problem is
known as the decoding problem in structured prediction literature.

The motivation behind using a structured prediction framework to solve the label
ranking problem stems from the added flexibility to use arbitrary loss functions and
kernels, in principle, on the output space. In the following sections, we assume that
Y is the space of all total orders of the label set ˙ .

6.1 Large-Margin Methods

In the max-margin framework [73–75], one considers the following optimization
problem to estimate the parameters w:

min
w;�

jjwjj2 C �
nP
iD1

�i

subject to W hw; ˚.xi ; yi /i 	 hw; ˚.xi ; y/i � �.yi ; y/ 	 �i ;8y 2 Ynyi ;8i 2 ŒŒn


�i � 0;8i 2 ŒŒn

;

(1)
where� W Y�Y ! R is a loss function on total orders. While there are exponential
number of constraints in the optimization problem, it is possible to use cutting-plane
optimization technique [75] by designing an oracle that returns the most violated
constraint in polynomial time. The most violated constraint w.r.t. a training example
.x; y/ can be computed using the following optimization problem:

Oy D argmax
z2Y

f .x; y/C�.z; y/:
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Note that the optimization problem is similar to the prediction problem, the only
difference being the additional loss term.

The oracle and the decoding subroutine can be designed using techniques des-
cribed by Le and Smola [55]. The scoring function f takes a slightly different form.
Let g.x; pI wp/ D ˝

�.x/;wp
˛

(� is feature map of inputs) denote the scoring func-
tion for an individual label p 2 ˙ parameterized by weight vector wp. Now define
the scoring function f for the pair .x; y/ as follows:

f .x; yI w/ D
kX

jD1
g.x; j /c.y/j D

kX

jD1
h�.x/;wj ic.y/j ;

parameterized by the set w D fwj gjDŒŒk�� of weight vectors, where c is a decreas-
ing sequence of reals and c.y/ denotes the permutation of c according to y, i.e.,
c.y/j D cy.j / for all j 2 ŒŒk

. The final prediction Oy D argmaxy2Y f .x; y/ is
obtained by sorting the scores g.x; p/ of the individual labels. This is possible due to
the Polya–Littlewood–Hardy inequality [55]. The decoding problem is thus solved.
We now turn our attention to designing a separation oracle. The goal is to find

Oy D argmax
z2Y

f .x; y/C�.y; z/

D argmax
z2Y

kP
jD1

h�.x/;wj ic.y/j C�.y; z/:
(2)

For certain loss functions that are relevant in information retrieval applications, Le
and Smola [55] showed that the above optimization problem can be formulated as a
linear assignment problem and can be solved using the Hungarian marriage method
(Kuhn–Mungres algorithm) in O.k3/ time. For arbitrary loss functions, it may not
be feasible to solve (2) efficiently. Note that the term�.:; :/ in the separation oracle
and also in the constraint set of (1) specifies an input–output dependent margin.
Replacing it with a fixed margin � .D 1/ would greatly simplify the design of
separation oracle since it reduces to a sorting operation as in the decoding problem.
The optimization problem (1) can be kernelized in its dual form. Let f˛izgi2ŒŒn��;z2Y
denote the set of dual parameters. Let the joint scoring function on input-output
pairs be an element of H with H D HX ˝ HY where HX ;HY are the RKHS of
kX ; kY respectively and ˝ denotes the tensor product. Note that the reproducing
kernel of H is then kŒ.x; y/; .x0; y0/
 D kX .x; x

0/kY .y; y0/. The dual optimization
problem is then given as

min
˛

P
i;j2ŒŒn��;z;z02Y

˛iz˛j z0kX .xi ; z/kY .z; z0/ 	P
i;z
˛iz

subject to W P
z2Y

˛iz � �; 8i 2 ŒŒn


˛iz � 0; 8i 2 ŒŒn

; 8z 2 Y:



54 S. Vembu and T. Gärtner

This allows one to use arbitrary kernel functions on the output space such as those
described in Sect. 2.2.

6.2 Least-Squares Formulation

We now consider the setting where a set of training examples .x1; Y1/; : : : ; .xn; Yn/
is given from X � 2Y . A least-squares approach for structured prediction similar
in the spirit of regularized least-squares regression [62] was recently proposed by
Gärtner and Vembu [38,39]. The goal is to learn a scoring function f W X �Y ! R

that, for each xi 2 X , orders (ranks) Y in such a way that it assigns a higher score
to all y 2 Yi than to all z 2 YnYi . A kernel method based on the structural risk
minimization principle can be used to solve this problem. Let � W Y ! R

d be a
finite dimensional embedding of Y with a corresponding dot-product kernel kY . Let
kX W X � X ! R be a kernel on X . Let the joint scoring function on input–output
pairs be an element of H with H D HX ˝ HY as in the previous section. The goal
is to solve the following optimization problem:

h
 D argmin
f 2H

�khk2 C P
i2ŒŒn��

R.f; i/; (3)

where R W H � ŒŒn

 ! R is the empirical risk on a training example. Since for each
xi the aim is to order all elements of Yi before all elements of YnYi , the AUC-loss
can be used as the empirical error of (3):

Rauc.f; i/ D P
y2Yi

P
z2YnYi

�Œf .xi ; z/ 	 f .xi ; y/
; (4)

where � is the modified step function: �.a/ D C1 if a > 0, �.a/ D 0 if a < 0, and
�.a/ D 1=2 if a D 0. To obtain a convex function one needs to upper bound it by
the exponential loss

Rexp.h; i/ D P
y2Yi

P
z2YnYi

exp Œ1C f .xi ; z/ 	 f .xi ; y/
 � Rauc.h; i/:

Despite being convex the exponential loss does not allow compact formulations, but
using its second order Taylor expansion at 0, i.e., texp.a/ D 1CaC 1

2
a2 
 exp.a/,

does. Ignoring constants that can be accommodated by the regularization parameter,
we get

R.h; i/ D
X

y2Yi

X

z2YnYi

�
f .xi ; z/ 	 f .xi ; y/C 1

2
f 2.xi ; z/

	f .xi ; z/f .xi ; y/C 1

2
f 2.xi ; y/

�
: (5)
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Similar loss functions were considered in previous work on structured prediction
problems. Altun et al. [6] introduced the ranking loss (4) for structured prediction
and minimized an upper bound given by the exponential loss for discriminative
sequence labeling. A closely related loss function to the approximation in (5) is the
one minimized by least-squares SVM [72] and also its multiclass extension [71].
The approach described above can therefore be seen as an extension of least-squares
SVM for structured prediction. The main reason behind deviating from the standard
max-margin hinge loss [73–75] is to make the problem tractable, and indeed, as
shown by Gärtner and Vembu [38, 39], using the loss function of (5) results in a
polynomially sized unconstrained optimization problem.

The crux of this approach lies in the polynomial time computation of the vec-
tor � D P

z2Y �.z/ and the matrix C D P
z2Y �.z/�>.z/ leading to a tractable

optimization problem for training structured prediction models. Let the finite dimen-
sional embedding of the set of permutations Y of ˙ be defined as � W Y ! R

˙�˙ .
Then jYj D j˙ jŠ and with �.uv/.z/ D 1 if u �z v, �.uv/.z/ D 	1 if v �z u, and
�.uv/.z/ D 0 otherwise, we have � D 0, and

C.uv/.u0v0/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

	j˙ jŠ if u D v0 ^ u0 D v

Cj˙ jŠ if u D u0 ^ v D v0
Cj˙ jŠ
3

if u D u0 xor v D v0

	j˙ jŠ
3

if u D v0 xor v D u0

0 otherwise

For prediction, the decoding problem needs to be solved. While exact decoding is
hard, there is an efficient 1=2-factor z-approximation algorithm [38].

7 Online Methods

Online classification and regression algorithms such as perceptron [63] typically
learn a linear model f .x/ D hw; xi parameterized by a weight vector w 2 R

m. The
algorithms operate in rounds (iterations). In round t , nature provides an instance to
the learner; the learner makes a prediction using the current weight vector wt ; nature
reveals the true label yt of xt ; learner incurs a loss `.

˝
wt ; xt

˛
; yt / and updates its

weight vector accordingly. Central to any online algorithm is the update rule that is
designed in such a way so as to minimize the cumulative loss over all the iterations.
In label ranking scenarios, online algorithms [24, 25, 69] maintain a set of weight
vectors fwj gjDŒŒk��, one for every label in ˙ , and the update rule is applied to each
of these vectors.

Online algorithms for label ranking have been analyzed using two different
frameworks: passive–aggressive [22] and primal–dual [68]. Passive-aggressive
algorithms for label ranking [25] are based on Bregman divergences and result in
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multiplicative and additive update rules [53]. A Bregman divergence [9] is similar
to a distance metric, but does not satisfy the triangle inequality and the symmetry
properties. In every iteration t , the algorithm updates its weights in such a way that
it stays close to the previous iteration’s weight vector w.r.t. the Bregman divergence,
and also minimizes the loss on the current input-output .xt ; yt / pair. LetW 2 R

k�m
denote the set of weight vectors in matrix form. The following optimization problem
is considered:

W t D argmin
W

BF .W jjW t�1/C �`.f .xt IW /; yt /;

where BF is the Bregman divergence defined through a strictly convex function F .
The choice of the Bregman divergence and the loss function result in different
update rules. Additive and multiplicative update rules can be derived, respectively,
by considering the following optimization problems [25]:

W t D argmin
W

jjW 	W t�1jj2 C �`.f .xt IW /; yt /;

and
W t D argmin

W

DKL.W jjW t�1/C �`.f .xt IW t /; yt /;

where DKL is the Kullback–Liebler divergence [21]. The loss functions considered
by Crammer and Singer [25] is similar to the ones defined by Dekel et al. [27] (refer
also Sect. 4), i.e., a preference graph is decomposed into subgraphs using a graph
decomposition procedure, and a loss function such as the 0-1 loss or the ranking
loss is defined on every subgraph. The loss incurred by a ranker W for a graph
decomposition procedure D.G/ is given as

`.f .xIW /; y/ D
X

g2D.G/
jf.r; s/ 2 g W hwr ; xi � hws ; xig ¤ ;j:

The primal–dual framework [68] was used by Shalev–Shwartz and Singer [69]
resulting in a unifying algorithmic approach for online label ranking. The loss func-
tion considered in this work is a generalization of the hinge-loss for label ranking.
The training labels are assumed to be a set of relevant and irrelevant labels (as in
multilabel classification). For a given instance x 2 X , let ˙r � ˙ denote the set
of relevant labels. The hinge-loss for label ranking w.r.t. an example .xt ; ˙ t

r / at
iteration t is defined as:

`� .W t I .xt ; yt // D max
r2˙ t

r ;s…˙ t
r

Œ� 	 .˝wtr ; xt
˛ 	 ˝

wts ; x
t
˛
/
C:

The central idea behind the analysis is to cast online learning as an optimization
(minimization) problem consisting of two terms: the complexity of the ranking
function and the empirical label-ranking loss. The notion of duality in optimization
theory [8] is used to obtain lower bounds on the optimization problem, which in turn
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yields upper bounds on the number of prediction mistakes made by the algorithm.
The reader is referred to [69] that presents several update rules for label ranking, and
these are also shown to generalize other update rules such as the ones defined in [24].

8 Instance-Based Learning

In instance-based learning, the idea is to predict a label for a given instance based
on local information, i.e., labels of neighboring examples. In label ranking, these
labels are rankings (partial orders, total orders, partial rankings) and one has to
use aggregation algorithms [3, 4, 29, 31, 76] to combine rankings from neighbor-
ing examples. Instance-based learning algorithms for label ranking were proposed
recently in [10, 11, 15]. Let fyigbDŒŒB�� denote a set of B neighboring rankings for
any given instance x 2 X . The goal is to compute a ranking Oy that is optimal w.r.t.
a loss function ` W Y � Y ! R defined on pairs of rankings. More formally, the
following optimization problem needs to be solved:

Oy D argmin
y2Y

BX

iD1
`.y; yi /: (6)

This is a very general statement of the problem. Various aggregation algorithms,
which we survey in the sequel, can be used to solve this optimization prob-
lem depending on the nature of the loss function and also on the inputs (of the
optimization problem).

8.1 Aggregating Total Orders

The problem of finding an optimal ranking when the inputs in (6) are total orders
can be formulated as a feedback arc set problem in digraphs (specifically in tour-
naments) [4]. A tournament is a directed graph G D .V;E/ such that for each pair
of vertices p; q 2 V , either .p; q/ 2 E or .q; p/ 2 E . The minimum feedback arc
set (FAS) is the smallest set E 0 � E such that .V;E 	 E 0/ is acyclic. The rank
aggregation problem can be seen as special case of weighted FAS-tournaments; the
weight wpq of an edge .p; q/ is the fraction of rankings that rank p before q.

Optimizing the Spearman footrule distance metric in (6) is equivalent to find-
ing the minimum cost maximum matching in a bipartite graph with k nodes [29].
A 2-factor approximation algorithm with time complexity O.Bk C k log k/ was
proposed by Fagin et al. [31]. Optimizing the Kendall tau distance metric in (6)
is NP-hard [47] and therefore one has to use approximation algorithms [4, 76]
to output a Kemeny optimal ranking. There exists a deterministic, combinatorial
8=5-approximation algorithm for aggregating total orders [76]. The approximation
ratio can be improved to 11=7 by using a randomized algorithm [4] and to 4=3 by
using a deterministic LP-based algorithm [76]. A polynomial time approximation
scheme was proposed by Mathieu and Schudy [52].
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8.2 Aggregating Partial Rankings

A typical application of this setting is multilabel ranking. There exists a determin-
istic, combinatorial 8=5-approximation algorithm for aggregating partial rankings
[76]. The running time of this algorithm is O.k3/. A slightly better approximation
guarantee of 3=2 can be obtained by using a deterministic, LP-based algorithm [76].
These algorithms minimize the Kemeny distance between the desired output and the
individual partial rankings. An exact method for aggregating partial rankings using
(generalized) sum of squared rank distance metric was proposed by Brinker and
Hüllermeier [11].

8.3 Aggregating Partial Orders

Let the labels be partial orders and the desired output is a total order. To the best of
our knowledge, there are no approximation algorithms to aggregate partial orders,
but it is possible to reduce the problem to that of aggregating total orders as follows:
given a partial order, sample a set (of some fixed cardinality) of linear extensions
[45] and use existing approximation algorithms for aggregating total orders. If the
desired output is a partial order and not a total order, one can consider the following
optimization problem:

Oy D argmax
y2Y

nX

iD1
kX .xi ; x/kY .yi ; y/:

Under the assumption that kX � 0 and kY � 0, and if the edge kernel (defined
in Sect. 2.2) on partial orders is used, the above optimization problem can be
approximately solved using the maximum acyclic subgraph algorithm [42, 58].

9 Probabilistic Methods

In this section, we describe discriminative probabilistic methods for label ranking
where the goal is to estimate the conditional yjx from the training data.

9.1 Instance-Based Method

An instance-based probabilistic method for label ranking was recently proposed by
Cheng et al. [14]. It uses the standard Mallows model [57] given by p.yj�; z/ D
exp.	�D.y; z//=Z.�; z/ to model the conditional distribution, where Z.�; z/ DP
y2Y exp.	�D.y; z//, z is the location parameter, � � 0 is the spread param-

eter, and D.:; :/ is a distance metric on permutations. In instance-based learning,
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predictions are performed using local neighborhood information as described in the
previous section. Let fyigiDŒŒB�� denote a set of B neighboring rankings for any
given instance x 2 X . Under the assumption that the conditional distribution p.:jx/
on Y is locally constant around the query x, and by further assuming independence
of the observations (neighbors), the probability to observe y D fyigiDŒŒB�� given
the parameters .�; z/ is p.y/ D QB

iD1 p.yi j�; z/. The maximum-likelihood esti-

mate (MLE) of z is given by Oz D argminz2Y
BP
iD1

D.yi ; z/, which is the (generalized)

median of the rankings fyi giDŒŒB��. The MLE of the spread parameter � is derived
from an estimate of the expected distance EŒD.y; z/j�; z
:

1

B

BX

iD1
D.yi ; Oz/ D k exp.	�/

1 	 exp.	�/ 	
kX

jD1

j exp.	j�/
1 	 exp.	j�/ :

The above model can be extended to the setting with incomplete preference
information such as partial orders. In this setting, the probability of yi is given
by p.E.yi // D P

y2E.yi /
p.yj�; z/, where E.yi / denotes the set of linear exten-

sions of yi . Computing the MLE of .�; z/ is nontrivial because the number of linear
extensions is possibly exponential in the size of the input. However, Cheng et al.
[14] proposed an expectation-maximization algorithm [28] to estimate the parame-
ters where the main idea is to replace the incomplete ranking yi by its most probable
linear extension y
i 2 E.yi /.

9.2 Structured Prediction Method

Probabilistic discriminative methods for structured prediction were recently ana-
lyzed by Vembu et al. [77] with an emphasis on predicting combinatorial structures.
In label ranking, the combinatorial output space is the set of permutations. The
goal is to estimate the conditional yjx using exponential families via p.yjx; �/ D
exp.h�.x; y/; �i 	 lnZ.� jx//, where �.x; y/ are the joint sufficient statistics of
x and y, and Z.� jx/ D P

y2Y exp.h�.x; y/; �i/ is the partition function that takes
care of the normalization. Maximum-a-posteriori estimation is then performed by
imposing a normal prior on � . This leads to optimizing the negative joint likelihood
in � and the conditional yjx:

O� D argmin
�

"
�k�k2 C 1

n

nX

iD1
ŒlnZ.� jxi / 	 h�.xi ; yi /; �i


#
:

The difficulty in solving this optimization problem lies in the computation of the
partition function. The optimization is typically performed using gradient descent
techniques (and advancements thereof). Therefore, it also needed to compute the
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gradient of the log partition function, which is the first order moment of the sufficient
statistics, i.e., r� lnZ.� jx/ D EyÏp.yjx;�/Œ�.x; y/
.

Computing the log partition function and its gradient are in general NP-hard.
Fortunately, the latter can be approximated using concentration inequalities. Vembu
et al. [77] showed how to approximate the partition function using a well-known
reduction from counting to sampling [49]. The technique is a Markov chain Monte
Carlo-based approximation and is widely used to solve #P-complete problems. The
standard approach [48] is to express the quantity of interest, i.e., the partition func-
tion Z.� jx/, as a telescoping product of ratios of parameterized variants of the
partition function. Let 0 D ˇ0 < ˇ1 � � � < ˇl D 1 denote a sequence of parameters
also called as cooling schedule and expressZ.� jx/ as a telescoping product

Z.� jx/
Z.ˇl�1� jx/ � Z.ˇl�1� jx/

Z.ˇl�2� jx/ � � � � Z.ˇ1� jx/
Z.ˇ0� jx/ �Z.ˇ0� jx/:

The next step is to design an appropriate cooling schedule and also to define a ran-
dom variable fi , for all i 2 ŒŒl 

, such that it is an unbiased estimator of each of
the above ratios. These ratios can now be estimated by sampling according to the
distributions p.yjx; ˇi�/ and by computing the sample mean of fi . The desider-
atum is an upper bound on the variance of the estimator. Having a low variance
implies a small (and polynomial) number of samples to approximate each ratio.
The final estimator Z.� jx/ is then the product of the reciprocals of the individual
ratios.

The next step is to design sampling algorithms to sample according to distribu-
tions p.yjx; ˇi�/. Under the assumption that it is possible to obtain exact samples
uniformly at random from the output space Y , Vembu et al. designed a Markov
chain using Metropolis process [59] that can be used to sample structures from
p.yjx; ˇi�/. The Markov chain is very simple: In any state y, select the next state
z uniformly at random and move to z with probability minŒ1; p.zjx; �/=p.yjx; �/
.
Vembu et al. also analyzed the mixing time of this chain using coupling [5] and
coupling from the past [61].

The final step is to design an algorithm that can be used to obtain exact samples
uniformly at random. For permutations, an exact sample can be obtained uniformly
at random by generating a sequence (of length k, the number of labels) of integers
where each integer is sampled uniformly from the set ŒŒk

 without replacement.

10 Conclusion

The problem of label ranking has attracted a lot of interest in recent years as evi-
denced by the increasing number of algorithms attempting to solve it. A detailed
description of these algorithms is beyond the scope of this paper. However, we
hope that by giving an overview of existing literature on label ranking, the reader
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would be able to delve deeper into the analysis of individual algorithms using the
references in this survey paper as a starting point.
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Preference Learning and Ranking
by Pairwise Comparison

Johannes Fürnkranz and Eyke Hüllermeier

Abstract This chapter provides an overview of recent work on preference learning
and ranking via pairwise classification. The learning by pairwise comparison (LPC)
paradigm is the natural machine learning counterpart to the relational approach to
preference modeling and decision making. From a machine learning point of view,
LPC is especially appealing as it decomposes a possibly complex prediction prob-
lem into a certain number of learning problems of the simplest type, namely binary
classification. We explain how to approach different preference learning problems,
such as label and instance ranking, within the framework of LPC. We primarily
focus on methodological aspects, but also address theoretical questions as well as
algorithmic and complexity issues.

1 Introduction

Preferences on a set of alternatives can be expressed in two natural ways, namely by
evaluating individual and by comparing pairs of alternatives. As for human decision
making, the comparative (relational) approach is intuitively appealing and, more-
over, supported by evidence from cognitive psychology. Indeed, instead of directly
choosing one alternative from a set of options, or ranking all alternatives directly
according to their desirability, it is often much simpler to start by comparing alter-
natives in a pairwise fashion. The actual problem, whether choosing a single best
alternative or ranking all of them, is then solved in a second step on the basis of these
pairwise comparisons. Essentially, this is known as Thurstone’s Law of Compara-
tive Judgment [43]. Modern decision-theoretic methodologies, such as the Analytic
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Hierarchy Process [38], are often based on pairwise comparisons between different
options in various stages of complex decision processes [39].

The decomposition of the original problem into a set of presumably simpler sub-
problems is not only advantageous for human decision making but also useful from
a machine learning point of view. In fact, as will be argued in more detail later on,
the resulting learning problems can typically be solved in a more accurate and effi-
cient way. The price to pay is a possibly more involved prediction step. Roughly
speaking, the pairwise comparisons, being made independently of each other, can
be conflicting, so that their aggregation into a solution of the original problem may
become nontrivial. On the other hand, such a two-step procedure – learning a binary
comparison relation and aggregating the pairwise comparisons into a (complex) pre-
diction afterward – also has another advantage: It is modular in the sense that the
learning part is decoupled from the prediction part; thus, it becomes possible to solve
different types of prediction problems on the basis of the same learning algorithm
(ensemble of binary classifiers), simply by changing the aggregation procedure in
the second step.

The idea of learning by pairwise comparison (LPC), or simply pairwise learn-
ing, has been explored quite extensively for conventional classification, where it is
known under a variety of names, such as all pairs, 1-vs-1, or round robin learn-
ing. Here, it is used as a special binarization technique, that is, to decompose a
polytomous classification problem into a set of pairwise problems, thereby mak-
ing multiclass problems amenable to binary classification methods. Motivated by
its successful use for classification as well as its intuitive appeal from a preference
and decision-making perspective, the LPC approach has been extended to different
types of preference learning and ranking problems in recent years. The purpose of
this chapter is to give an overview of existing work and recent developments in this
line of research.

In Sect. 2, we briefly recall the use of pairwise learning in conventional classi-
fication. This approach can be generalized in a quite natural way to the setting of
label ranking, as will be explained in Sect. 3. The use of LPC for label ranking has in
turn motivated its application for a number of generalized classification problems,
and these will be discussed in Sect. 4. Section 5 is devoted to the application of pair-
wise learning for the problem of instance ranking. Section 6 reviews some formal
results regarding the optimality of LPC for specific prediction problems, and Sect. 7
addresses the aspect of complexity. Finally, we conclude this chapter with a short
summary and an outlook on future work in Sect. 8.

2 LPC for Classification

The use of the pairwise approach to preference learning, the main topic of this chap-
ter, is motivated by its successful application in conventional classification. As a
special type of binary decomposition technique, it allows one to tackle multiclass
problems with binary classifiers. The key idea is to transform a k-class problem
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(a) One-vs-all classification transforms each k-class
problem into k binary problems, one for each class,
where each of these problems uses the examples of its
class as the positive examples (here o), and all other
examples as negatives.

xxx
x x x x

x
x x

x x

x
x

+

+

+

+
+

+

+

+
+

+

+
+
+

+

– –
––– ––

– – –
– –

–
–

––

–

#

#

#
#
##

##
~

~
~ ~

~
~~

~~
~

~
~

~

#
#

#
#

–

+ +

+
+

(b) Pairwise classification transforms each k-class
problem into k.k�1/=2 binary problems, one for each
pair of classes (here o and x) ignoring the examples of
all other classes.

Fig. 1 Decomposition techniques for multiclass classification

involving classes Y D fy1; y2; : : : ; ykg into k.k 	 1/=2 binary problems, one for
each pair of classes. More specifically, a separate model (base learner) Mi;j is
trained for each pair of labels .yi ; yj / 2 Y �Y , 1 � i < j � k, using the examples
from these two classes as their training set; thus, a total number of k.k	1/=2models
is needed. Mi;j is intended to separate the objects with label yi from those having
label yj . At classification time, a query instance x 2 X is submitted to all models
Mi;j , and their predictions Mi;j .x/ are combined into an overall prediction. In the
simplest case, each prediction Mi;j .x/ is interpreted as a vote for either yi or yj ,
and the label with the highest number of votes is proposed as a final prediction.

In comparison to alternative decomposition techniques, such as the one-vs-all
approach which learns one model for each label, the pairwise decomposition facil-
itates effective learning as it leads to maximally simple problems. In particular, the
pairwise problems are computationally less complex, since each of them contains
fewer training examples (because all examples that do not belong to either of the
two classes are ignored). Perhaps even more importantly, these problems typically
have simpler decision boundaries. This is illustrated in the example shown in Fig. 1,
where each pair of classes can be separated with a linear decision boundary, while
more complex functions are required to separate each class from all other classes.
Evidence supporting the conjecture that the decision boundaries of the binary prob-
lems are indeed simpler can also be found in practical applications: In [26], it was
observed that the classes of a digit recognition task were pairwise linearly separable,
while the corresponding one-vs-all task was not amenable to single-layer networks.
Similarly, in [16] the authors obtained a larger advantage of pairwise classification
over one-vs-all for support vector machines with a linear kernel than for support
vector machines with a nonlinear kernel.
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The basic idea of pairwise classification is fairly well-known from the literature.
It has been used in the areas of statistics [3, 8], neural networks [25, 26, 31, 37],
support vector machines [15,16,28,40], and others. We refer to [9] for a brief survey
of the literature on this topic.

3 LPC for Label Ranking

In the label ranking scenario, the problem is to predict, for any instance x (e.g., a
person) from an instance space X , a ranking of a finite set Y D fy1; y2; : : : ; ykg
of labels or alternatives (e.g. politicians in an election), i.e., a total order relation
�x � Y � Y where yi �x yj means that instance x prefers the label yi to the
label yj .

The training information consists of a set of instances for which (partial) knowl-
edge about the associated preference relation is available. More precisely, each
training instance x is associated with a subset of all pairwise preferences yi �x yj ,
1 � i; j � k. The top of Fig. 2 shows a training set consisting of seven examples,
each described in terms of three attributes A1, A2, and A3. Each training example
is associated with some preferences over the set of possible labels Y D fa; b; cg.
For example, for the second training instance, we know that a � b and c � b, but
we do not know whether a or c is the most preferred option. Thus, even though
we assume the existence of an underlying (“true”) ranking, we do not expect the
training data to provide full information about that ranking. Besides, to increase

Fig. 2 Schematic illustration of learning by pairwise comparison
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the practical usefulness of the approach, we even allow for inconsistencies, such as
pairwise preferences which are conflicting (cyclic) due to observation errors.

3.1 Learning Preference Relations

Pairwise classification (cf. Sect. 2) can be extended to the above problem of learning
from label preferences in a natural way [11]. To this end, a preference (order) infor-
mation of the form yr �x ys is turned into a training example .x; z/ for the learner
Mi;j , where i D min.r; s/ and j D max.r; s/. Moreover, z D 1 if r < s and z D 0

otherwise. Thus, Mi;j is intended to learn the mapping that outputs 1 if yi �x yj
and 0 if yj �x yi :

x 7!
�
1 if yi �x yj
0 if yj �x yi

: (1)

The model is trained with all examples x for which either yi �x yj or yj �x yi is
known. Examples for which nothing is known about the preference between yi and
yj are ignored.

The mapping (1) can be realized by any binary classifier. Alternatively, one may
also employ base classifiers that map into the unit interval Œ0; 1
 instead of f0; 1g,
and thereby assign a valued preference relation Rx to every (query) instance x 2 X :

Rx.yi ; yj / D
�

Mi;j .x/ if i < j

1 	 Mj i .x/ if i > j
(2)

for all yi ¤ yj 2 Y . The output of a Œ0; 1
-valued classifier can usually be inter-
preted as a probability or, more generally, a kind of confidence in the classification:
the closer the output of Mi;j to 1, the stronger the preference yi �x yj is supported.

3.2 An Example

Figure 2 illustrates the entire process. First, the original training set is transformed
into three two-class training sets, one for each possible pair of labels, contain-
ing only those training examples for which the relation between these two labels
is known. Then three binary models, Mab , Mbc , and Mac are trained. In our
example, the result could be simple rules like the following:

Mab W a > b if A2 D 1:

Mbc W b > c if A3 D 1:

Mac W a > c if A1 D 1 _A3 D 1:
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Given a new instance with an unknown preference structure (shown in the bottom
left of Fig. 2), the predictions of these models are then used to predict a ranking. As
we will see in the next section, this is not always as trivial as in this example.

3.3 Combining Predicted Preferences into a Ranking

Given a predicted preference relation Rx for an instance x, the next question is
how to derive an associated ranking. This question is nontrivial, since a relation
Rx does not always suggest a unique ranking in an unequivocal way. For example,
the learned preference relation is not necessarily transitive. In fact, the problem of
inducing a ranking from a (valued) preference relation has received a lot of atten-
tion in several research fields, e.g., in fuzzy preference modeling and (multiattribute)
decision making [6]. In the context of pairwise classification and preference learn-
ing, several studies have empirically compared different ways of combining the
predictions of individual classifiers [1, 10, 20, 44].

A simple though effective strategy is a generalization of the aforementioned
voting strategy: each alternative yi is evaluated by the sum of (weighted) votes

S.yi / D
X

j¤i
Rx.yi ; yj /; (3)

and all labels are then ordered according to these evaluations, i.e., such that

.yi �x yj / ) .S.yi / � S.yj //: (4)

Even though this ranking procedure may appear rather ad-hoc at first sight, it does
have a theoretical justification (cf. Sect. 6).

4 LPC for Generalized Classification Problems

It has been observed by several authors [5, 11, 14] that, in addition to classification,
many learning problems, such as multilabel classification, ordered classification,
or ranking may be formulated in terms of label preferences. In this section, we
summarize work on using pairwise learning to address such problems.

4.1 Multilabel Classification

Multilabel classification refers to the task of learning a function that maps instances
x 2 X to label subsets Px � Y , where Y D fy1; y2; : : : ; ykg is a finite set of
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(a) the set of preferences representing a
multilabel classification problem

2

(b) introducing a calibration label y0
that separates P and N

2

(c) the set of preferences representing a
calibrated label ranking problem

0

(d) at prediction time, the calibration label y0 indicates the split into labels that are predicted
relevant ( OP) and labels that are predicted irrelevant ( ON )

Fig. 3 Calibrated Label Ranking

predefined labels, typically with a small-to-moderate number of alternatives. Thus,
in contrast to multiclass learning, alternatives are not assumed to be mutually exclu-
sive such that multiple labels may be associated with a single instance. The set of
labels Px are called relevant for the given instance, the set Nx D YnPx are the
irrelevant labels.

In conventional label ranking, a training example typically consists of an instance
x 2 X , represented in terms of a fixed set of features, and a set of pairwise pref-
erences over labels Rx � Y � Y , where .y; y0/ 2 Rx is interpreted as y �x y

0.
In multilabel classification, the training information consists of a set Px of relevant
labels and, implicitly, a set Nx D YnPx of irrelevant labels. The idea of apply-
ing methods for (pairwise) label ranking in the context of multilabel classification
is based on the observation that this information can be expressed equivalently in
terms of a set of preferences (cf. Fig. 3a):

ORx D f.y; y0/ j y 2 Px ^ y0 2 Nxg (5)
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In fact, this representation is in a sense even more flexible than the original one; for
example, it easily remains applicable in the case where the relevance of some labels
is unknown. The preferences (5) can be used to train a pairwise label ranker, which
is then able to predict a ranking over all possible labels of a new, unseen example.

Note, however, that a ranking, while determining an order of the labels, does actu-
ally not define a partitioning into subsets of relevant and irrelevant labels. A natural
way to obtain such a partitioning as additional information is to find an appropriate
split-point t in the ranking, suggesting that the first t labels in the ranking are rel-
evant while the remaining ones are irrelevant. A “calibrated” ranking of that kind
nicely combines two types of prediction, namely a label ranking and a multilabel
classification [4]. From a ranking point of view, it covers additional information
about absolute preferences; from the point of view of multilabel classification, it
offers additional order information, i.e., information about the relative preferences
within the two sets of relevant and irrelevant labels.

In [45], a few straightforward approaches for determining such split-points are
discussed, including methods for determining a fixed threshold for all examples or
individual thresholds for each possible label. However, none of these approaches
allows one to adjust the thresholds for each individual example.

In [4, 12], we therefore proposed to incorporate the split-point into the learn-
ing process. This was achieved by introducing an artificial (neutral) label, which
is associated with the split-point and thus calibrates the ranking: For each training
instance, this label is preferred to all irrelevant labels, but is less preferable than all
relevant labels; see Fig. 3b. A calibrated label ranker trained on the enhanced set of
preferences (Fig. 3c) is then able to predict a ranking of all labels, including the arti-
ficial one. The position of this label indicates where the ranking has to be split into
a relevant and an irrelevant part. Experiments have shown that this approach out-
performs standard methods for multilabel classification, despite a slight tendency to
underestimate the number of relevant labels.

4.2 Ordered and Hierarchical Classification

Ordered classification and hierarchical classification are problems in which the
target label set has an inherent structure. In ordered classification, this structure
is a total order, such as small < medium < large. In hierarchical problems, the
structure is a partial order in the form of a hierarchy, typically defined by various
subconcept/superconcept relations; for example, Hessen < Germany < Europe and
Bayern < Germany < Europe (while Hessen and Bayern are incomparable, i.e.,
neither Hessen < Bayern nor Bayern < Hessen).

The use of conventional loss functions, such as the 0/1 loss, is obviously ques-
tionable in the context of ordered and hierarchical classification, as it does not
take the relation between class labels into account. If small is the true class, for
instance, then medium is a better prediction than large, despite the fact that both are
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(b) the training set for the classifier M1;4 is enriched with
the examples of class 5.

Fig. 4 Enriched pairwise classification in ordered domains (figures taken from [33])

incorrect. An obvious idea, then, is to express this type of information in the form
of preferences on labels.

Within the framework of LPC, this can be done by associating a training instance
with all pairwise preferences that can be inferred from the label structure. For exam-
ple, if we know that an instance is of class small, we not only know that the label
small is preferred to all other labels, but we can also infer that medium would be
a better classification than large. In other words, the set of training examples for
which it is known that medium � large could be enriched by instances from the
class small. Similarly, if we know that an object belongs to the class Hessen, we can
infer that the label Rheinland-Pfalz would be preferred over Lower Austria, because
the former is also a German state, while the latter is in a different country.

One idea is to directly add such inferred preferences to the pairwise training
data [33]. Figure 4 illustrates this for a problem with five classes, which are labeled
from 1 to 5. Here, the classifier M1;4 is enriched with examples from class 5, for
which the prediction 4 is clearly preferred to the prediction 1. Note that the examples
of class 3 are not added to class 4: Since the underlying scale is only ordinal but
not numerical, it is not legitimate to assume that 3 is “closer” to 4 than to 1 and,
therefore, that predicting 4 for an example from class 3 is preferred to predicting 1.

An analogous technique can be used for hierarchical classification, where the
preferences can be defined via common ancestors in the hierarchy. Interestingly,
in [41] it was shown that this method may be viewed as a generalization of the
so-called Pachinko-machine classifier [27], which contains one binary classifier for
each internal node of the label hierarchy.

Even though the above idea of using pairwise preference learning for ordered and
hierarchical classification has not yet been explored in full depth, first experimental
results suggest that it does not improve the performance of the conventional pairwise
classifier. There is a number of possible reasons and explanations for this. Notably,
enriching the training data comes with a loss of a key advantage of the pairwise
approach, namely the simplicity of the binary problems and the decision boundaries
of the binary classifiers. The more inferred preferences are added, the more complex
the decision boundary of a single binary classifier will become, eventually approach-
ing the complex decision boundaries of a one-vs-all classifier. Moreover, unlike the
example in Fig. 4a, it seems that in many hierarchical and ordered classification
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problems, the structure on the labels is not so clearly reflected in the topology of
the instance space. This means that examples that are “close” in label space are not
necessarily neighbored in instance space.

This aspect has been investigated in more detail in [17]. This work also aimed at
answering the question to what extent existing techniques and learning algorithms
for ordered classification are able to exploit order information, and which properties
of these techniques are important in this regard. The main conclusions that could be
drawn from this study are as follows: Most learning techniques for ordered classifi-
cation are indeed able to exploit order information about classes if such information
is present, which is often the case though not always. An important factor in this
regard is the flexibility of the learner. Roughly speaking, the less flexible a learner
is, the more it benefits from an ordinal structure. Interestingly enough, it was found
that pairwise classification is fully competitive to other meta-learning techniques
specifically designed for ordered classification problems [7]. This result is surpris-
ing, since pairwise classification, in its original form, does not explicitly exploit
an ordinal structure (and, compared to the other techniques, even uses a smaller
amount of training information in terms of the total number of training examples).
However, by training only on pairs of classes, it is trivially consistent with each
ordinal structure. In a sense, one can argue that it exploits ordinal structure in an
implicit way whenever this is possible, but as its binary problems are not explicitly
tailored toward the assumption of an ordinal structure, it does not deteriorate when
this assumption is invalid.

5 LPC for Instance Ranking

Recall that the term instance ranking is used in this book as a generic term of
bipartite and multipartite ranking. Multipartite ranking proceeds from the setting
of ordinal classification, where an instance x 2 X belongs to one among a finite
set of classes Y D fy1; y2; : : : ; ykg and, moreover, the classes have a natural order:
y1 < y2 < : : : < yk . Training data consist of a set T of labeled instances.

In contrast to the classification setting, however, the goal is not to learn a classifier
but a ranking function f .�/. Given a subset X � X of instances as an input, the
function produces a ranking of these instances as an output (typically by assigning
a score to each instance and then sorting by scores). A prediction of this type is
evaluated in terms of ranking measures, such as the C-index. Ideally, a ranking is
produced in which instances from higher classes precede those from lower classes.

The use of LPC for multipartite ranking was recently proposed in [13]. As usual,
a separate model Mi;j is induced for each pair of classes .yi ; yj / 2 Y � Y , 1 �
i < j � k, using the subset Ti;j � T of examples from these classes as training
data. At classification time, a query x is submitted to all models.

To predict a ranking of a set of query instances X � X , each instance x 2 X is
scored in terms of an aggregation of the predictions
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fMi;j .x/ j 1 � i; j � k g:

More specifically, the score is defined as the (weighted) sum of the predictions “in
favor of a higher class”, that is

f .x/ D
X

1�i<j�k
.pi C pj / fj;i .x/ D

X

1�i<j�k
.pi C pj /Mj;i.x/; (6)

where pi is the probability of class yi (estimated by the relative frequency in the
training data).

In first experimental studies, this approach has been compared to state-of-the-art
ranking methods such as SVMRank [24] which, instead of decomposing the orig-
inal problem into a set of small binary classification problems, transforms it into
a single, large classification problem. The results suggest that LPC is competitive
in terms of predictive accuracy while being much more efficient from a compu-
tational point of view. Roughly speaking, the reason is that solving several small
problems is typically more efficient than solving a single large one (cf. Sect. 7). In
this particular case, the transformation into a single classification problem is espe-
cially critical, as it may come with a considerable increase of the number of original
training examples.

6 Theoretical Foundations

Despite their intuitive appeal and practical success, it is of course important to justify
pairwise learning methods from a theoretical point of view. In particular, one may
wonder whether LPC is provably able to produce predictions that are optimal in the
sense of minimizing (the expectation of) a given loss function.

Corresponding results have recently been derived, not only for classification
(Sect. 6.1) but also for ranking (Sects. 6.2 and 6.3). Apart from further technical
assumptions, which are not detailed here, these results typically rely on the idealized
assumption that the prediction of a pairwise model, Mi;j .x/, can be interpreted as a
probability, for example the probability that, in the label ranking associated with x,
label yi precedes label yj . Needless to say, assumptions of that kind are not always
easy to satisfy in practice, especially because probability estimation is a challenging
problem potentially more difficult than classification.

Besides, the pairwise approach suffers from an inherent limitation, which is
sometimes called the “noncompetence” problem in the literature. Roughly speak-
ing, this problem is caused by the fact that a pairwise model is only trained on
parts of the instance space and, therefore, possibly not competent for inputs com-
ing from other parts. In conventional classification, for example, a pairwise model
Mi;j is only trained on examples from classes yi and yj and, therefore, arguably
noncompetent for classifying instances from other classes. Several proposals for
addressing this problem can be found in the literature. In [32], it was proposed to
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combine the pairwise models Mi;j with a separate set of models Mij; NYi;j
, which

predict whether an example belongs to the classes yi or yj , or to the remaining
classes NYi;j D Ynfyi ; yj g. A similar proposal is to learn ternary models Mi;j; NYi;j

,
which directly discriminate between the three options yi , yj , or none of the two
[2]. Both approaches have to sacrifice one of the key advantages of the pairwise
approach, namely the simplicity of the learned binary models.

6.1 Classification

Despite the existence of more sophisticated methods, such as pairwise coupling [15,
44], the most popular strategy for aggregating the predictions of pairwise classifiers
is “voting”. In binary voting, each classifier Mi;j can give a “vote” for either yi
or yj . In weighted voting, it may split its vote among the two classes, for example
according to its probability estimate. Having queried all models, the class with the
highest number of votes (sum of weighted votes) is eventually predicted.

Empirically, weighted voting is known to perform very well. A theoretical jus-
tification for this performance has been derived in [23]. Under some technical
assumptions, it was shown there that weighted voting may be considered as an
approximation of a generalized voting strategy, called adaptive voting, which in
turn was shown to be optimal in the sense of yielding a maximum posterior prob-
ability (MAP) prediction of the true class. Besides, weighted voting appears to be
even more robust than adaptive voting in the sense of being less sensitive toward
violations of the underlying model assumptions.

Moreover, it was shown that the pairwise approach to learning, at least in a
slightly generalized form, is able to produce Bayes-optimal decisions in the context
of conventional classification [42].

6.2 Label Ranking

In the context of label ranking, it was shown that many standard loss functions on
rankings can be minimized in expectation [22]. For example, under some technical
assumptions, straightforward weighted voting is a risk minimizer for the sum of
squared rank distances as a loss function (thus, it maximizes the expected Spear-
man rank correlation between the true and the predicted label ranking). Replacing
weighted voting by another aggregation strategy, one can also minimize the number
of pairwise inversions (i.e., maximize Kendall’s tau); the aggregation problem itself,
however, is NP-hard.

On the other hand, there are also loss of functions that cannot be minimized
by LPC. Roughly speaking, this is due to a loss of information caused by decom-
posing the original problem into a set of pairwise problems. Examples include the
Spearman footrule and Ulam’s distance [21].
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6.3 Position Error

It may also be reasonable to compare a predicted ranking with a single target label
instead of target ranking. For example, given a predicted label ranking, the position
error is defined by the position on which the true class label is found or, stated differ-
ently, the number of labels that are ranked ahead of this target label. In a normalized
form, this measure directly generalizes the conventional 0/1-loss for classification,
assuming a value of 0 (1) if the target label is put on the first (last) position. The
problem of predicting a ranking that minimizes the expected position loss can again
be solved in a theoretically optimal way by LPC [21].

Practically, it was shown that the problem can be reduced to an iterated classifi-
cation problem, which in turn can be solved effectively through a procedure called
empirical conditioning. This procedure amounts to iteratively predicting a label and
re-training the classifier on the remaining labels. While this is practically infeasible
in the general case (essentially one needs to train one classifier for each label sub-
set), it can be realized efficiently by means of LPC. This is because, in the pairwise
approach, re-training of the classifiers is not necessary; instead, only the aggregation
phase needs to be changed [21].

7 Complexity

At first sight, it seems that LPC is very inefficient for high numbers of labels because
one has to train a quadratic number of classifiers. However, a closer look reveals that
this is often outweighed by a positive effect, namely that the individual problems are
much smaller. In fact, an ensemble of pairwise models can often be trained much
more efficiently than a single classifier, even when both have the same total number
of training examples. In particular, this holds true for expensive learning algorithms
whose time complexity is super-linear in the number of training examples. Thus, the
key problem of LPC is typically not the training time, but instead the prediction time
and storage capacity. In the following, we will recapitulate some important results
concerning these problems.

7.1 Training Time

For the pairwise classification scenario, it is known that even though the number
of binary classifiers is quadratic in the number of labels, their joint training time is
only O.k � n/, i.e., linear in the number labels [9]. The reason is that the individual
training sets are much smaller because each of the n examples will only occur in
k	1 different training sets. This distribution of the training effort on a large number
of comparably smaller problem increases the advantage in particular for expensive
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classifiers with a super-linear time complexity. Obviously, these results also hold for
ordered and hierarchical classification.

For multilabel classification [12], the crucial factor determining the efficiency of
the approach is the average number d of labels per training example (which is often
small in comparison to the total number of labels). The training complexity in this
case isO.d �k �n/ D O.k � l/ when l is the total number of labels in the training set.

In the worst case, when all training examples are associated with a complete rank-
ing of all labels, the training complexity is quadratic in the number of labels [22].

7.2 Prediction Time

A more interesting problem is the efficiency at prediction time. In principle, one has
to query a quadratic number of classifiers to derive a final ranking of the classes.
However, when one is only interested in classification, it is not necessary to query
all classifiers to determine the winning class. For example, if one class has received
more votes than every other class can possibly achieve in their remaining evalua-
tions, this class can be safely predicted without querying the remaining classifiers.
The QWeighted algorithm [34] tries to enforce this situation by always focusing
on the class that has lost the least amount of voting mass. Experiments showed
that QWeighted has an average runtime of O.k � log k/ instead of the O.k2/ that
would be required for computing the same prediction with all evaluations. Because
it nevertheless produces the same predictions as regular weighted voting and thus
has the same theoretical guarantees (cf. Sect. 6.1), it is preferred to algorithms like
the pairwise DAGs [36], which only approximate the correct prediction. The algo-
rithm can also be generalized to multilabel prediction [30] and to general ternary
error-correcting output codes [35].

7.3 Memory Requirements

Even if training is quite efficient, and classification can be handled without the need
to query all classifiers, we still have to store all k � .k 	 1/=2 binary classifiers
because each classifier will be needed for some examples (unless some labels are
never predicted). For example, we have recently tackled a large-scale real-world text
categorization problem, namely the annotation of the EUR-Lex database of legal
documents of the European Union with labels that are taken from the EUROVOC
ontology [29]. This multilabel classification task involved around 20,000 docu-
ments, each of which was labeled with about 5 out of 4,000 possible labels. The
key problem that had to be solved for this task was that the ensemble of almost
8,000,000 binary classifiers (perceptrons) that were trained for tackling this task
could no longer be kept in main memory. The problem was solved by resorting to
the dual representation of the perceptron, which reduced the total number of weights
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that had to be stored at the expense of a somewhat higher classification time. This
made the pairwise ranking approach feasible for problems of this size. This solution,
however, is only applicable to classifiers that can re-formulate their hypothesis as a
linear combination of the input examples, such as perceptrons or SVMs.

For concept descriptions with varying sizes, such as rule sets or decision trees,
one can expect that the learned theories for the pairwise classifiers are much smaller
than the theories for larger problems such as those of a one-vs-all classifier. How-
ever, it is unclear whether these savings on individual theories can compensate for
the higher number of classifiers that have to be stored. Moreover, a general solution
not restricted to any specific classifier is still an open research problem. Presum-
ably, one will have to resort to fixed approximation techniques, which allow that
some classifiers are not trained at all.

8 Conclusions and Outlook

This chapter has reviewed recent work on preference learning and ranking via pair-
wise classification. The learning by pairwise comparison (LPC) paradigm has a
natural motivation in the context of preference learning and goes hand-in-hand with
the relational approach to preference modeling. Roughly speaking, a pairwise clas-
sification corresponds to a pairwise comparison between two alternatives, which in
turn can be seen as a basic building block of more complex decision-making proce-
dures. Eventually, complex prediction problems can thus be reduced to the solution
of a set of “simple” binary classification problems, which makes the LPC approach
especially appealing from a machine learning point of view.

It was shown that LPC can be used in a quite general way to solve different
types of preference learning problems. It disposes of sound theoretical foundations
and has shown very strong performance in a number of empirical studies. Despite
the high number of binary classifiers needed (quadratic in the number of class
labels), the training time of the approach seems to be competitive with alternative
approaches. Storing and querying such a large number of classifiers, however, is a
more significant problem, and an active research area.

Besides, there are several other open questions and promising lines of research.
From a practical point of view, for example, it would be interesting to develop a
unified framework of LPC for label, instance, and object ranking. The task in label
ranking, discussed in Sect. 3, is to learn a model that orders a fixed set of labels,
where the ordering depends on the context as specified by an instance. This instance,
which constitutes the input of the model, is characterized by properties (e.g., in
the form of an attribute-value representation) that can be exploited by the learner,
whereas the labels are mere identifiers. In object ranking, the task is to learn a model
that accepts a set of objects as input and outputs a preferential order of these objects.
As opposed to label ranking, the objects to be ordered are now characterized by
properties, but the sought ranking is not context-dependent. Instance ranking may
be viewed as a special case of both cases. In many applications, it would be desirable
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to combine the above two settings, i.e., to have a unified framework in which both
the instances (e.g., users of a recommender system) and the labels/objects (e.g., the
items to be purchased) can be described in terms of properties. While this can be
achieved in a quite straightforward way for other approaches (see e.g., Aiolli and
Sperduti, this volume), it is much less obvious for LPC, mainly because the set of
“labels” may become very large and change from prediction to prediction.

Another line of research concerns the prediction of preference relations more
general than rankings, in particular relations which are not necessarily total (i.e.,
partial orders) or not strict (i.e., allow for the indifference between alternatives). As
an interesting point of departure for a generalization of this type, we mention recent
work on the learning of valued preference structures [18, 19]. Instead of producing,
in the first step, a single binary relation Rx from which the final prediction (e.g.,
a ranking) is then derived, the idea is to predict a complete preference structure
consisting of three such relations: a strict preference relation, an indifference rela-
tion, and an incomparability relation. A structure of that kind conveys much more
information which can then be used, among other things, for predicting generalized
preferences such as weak or partial orders.
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Decision Tree Modeling for Ranking Data

Philip L.H. Yu, Wai Ming Wan, and Paul H. Lee

Abstract Ranking/preference data arises from many applications in marketing,
psychology, and politics. We establish a new decision tree model for the analysis of
ranking data by adopting the concept of classification and regression tree. The exist-
ing splitting criteria are modified in a way that allows them to precisely measure the
impurity of a set of ranking data. Two types of impurity measures for ranking data
are introduced, namely g-wise and top-k measures. Theoretical results show that
the new measures exhibit properties of impurity functions. In model assessment,
the area under the ROC curve (AUC) is applied to evaluate the tree performance.
Experiments are carried out to investigate the predictive performance of the tree
model for complete and partially ranked data and promising results are obtained.
Finally, a real-world application of the proposed methodology to analyze a set of
political rankings data is presented.

1 Introduction

Ranking data are frequently collected when individuals are asked to rank a set of
items based on certain pre-defined criterion. It is a simple and efficient way to
understand judges’ perception and preferences on the ranked alternatives. In many
preference studies, ranking responses and additional information about the inves-
tigated raters are observed, e.g., socioeconomic characteristics. It is often of great
interest to determine how these covariates affect the perceived rankings.

Our aim in this paper is to develop new decision tree model to analyze rank-
ing data for discovering the factors that affect the judgement process by which
people make choice. It will serve as a complement to existing parametric ranking
models (see review in [6, 20] for more details), and algorithms in label ranking
and preference learning (see [9, 13] for more details). Decision tree models are
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nonparametric statistical methodology designed for classification and prediction
problems. It produces a set of decision rules for predicting the class of a categorical
response variable on the basis of the input attributes/features/predictors/covariates.
This classification technique is widely used in statistics, machine learning, pat-
tern recognition, and data mining because of its ease of interpretability comparing
with other statistical models, and it can handle input attributes in both categorical
and interval measurement. Comparing to parametric ranking models, the merit of
decision tree lies in its ease of interpretability of nonlinear and interaction effects.
Additionally, learning a decision tree can be seen as a process of variable selec-
tion for the data. Questions on adding explanatory variables and interaction terms
between variables are handled automatically.

A variety of algorithms have been proposed to construct a decision tree for
a single discrete/continuous response in a top-down recursive divide-and-conquer
manner, such as ID3 [21], C4.5 [22], CHAID [18], and QUEST [19]. More deci-
sion tree algorithms are available in the literature, many of them are a variation of
the algorithmic framework mentioned above (see [24] for details). Among all the
tree building methodologies, the most popular one is the CART procedure [3]. Con-
struction of CART comprises two stages: growing and pruning. Detailed review of
CART will be provided later in Sect. 2.

Nominal data, ordinal data as well as continuous data can be handled by the
decision tree model. It was extended to cope with multivariate data recently through
building the tree with a two-stage splitting criteria [25] and through a so-called out-
put kernel trees that are based on a kernelization of the output space of regression
trees [10]. Karlaftis [17] used the recursive partitioning models to predict individ-
ual mode choice decisions by considering both univariate and multivariate splits.
It has been found that trees performed surprisingly well and were comparable to
discrete choice logit models. Therefore, we propose extension of this machine learn-
ing method for ranking data and it has been presented in the Preference Learning
Workshop in ECML PKDD 2008.

In principle, existing tree models for discrete choice data can be applied to pref-
erence data by two approaches. The first approach is to build tree based on the
top choice of the given ranking data. Another approach is to treat each ranking
of m items as a discrete choice. So each possible ranking outcome contributes to
one target level, resulting a total of mŠ levels. For instance, given three alternatives
(y1, y2 and y3), a top-choice tree with 3 target levels or a tree with 6 target levels
(y1 � y2 � y3, y1 � y3 � y2, y2 � y1 � y3, y2 � y3 � y1, y3 � y1 � y2 and
y3 � y2 � y1) can be constructed.

However, in observational studies, discrete choice tree can provide only limited
insights about the underlying behavioral processes that give rise to the data. For the
second approach, it will be too heavy-handed in practical, because even moderate
values ofm would lead to overwhelmingly large number of ranking outcomes (4Š D
24 and 5Š D 120). Moreover, these nominal trees are restricted only for consistent
ranking responses, which all individuals rank the same number of given items. They
also are not suitable to handle data with tie ranks because more rank combinations
would be involved and this would tremendously increase the number of target levels.
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Another drawback of this method is ignorance of the ordinal structure in rankings,
which is often useful in explaining individuals’ preference judgement. Therefore, it
is impractical to build tree for ranking data using conventional algorithms.

In view of all the limitations and inappropriateness of existing decision tree mod-
els for rankings, we are interested to develop a tree model specifically for preference
data. In this article, binary tree is considered. Following the landmark CART pro-
cedure, we extend the splitting criteria Gini and entropy to accommodate complete
and partial ranking data by utilizing the rank-order structure of preference data in the
tree growing process. Other distance-based splitting criterion is considered in [4],
which uses a weighted average of the within-leaf variances as a goodness-of-split
measure.

Another issue that will be addressed in this paper is the performance assessment
of the built decision tree model. The most frequently used performance measure is
misclassification rate, which equals to the number of misclassified samples divided
by the total number of samples. However, we will not consider it to be the perfor-
mance measure of our tree model because a sample can be classified either correctly
or incorrectly, overlooking the fact that a ranking can be partially agreed with the
predicted ranking. That means some items in the rank permutation, but not all, are
in the correct ordered position.

We consider goodness-of-fit measures for parametric ranking models for our tree
model, such as log-likelihood or other likelihood-based statistics (e.g., BIC). But
these approaches may not be suitable because maximizing entropy or deviance is
equivalent to maximize the log-likelihood [23]. This will lead to bias toward deci-
sion tree that is built on entropy. Therefore, an assessment method independent of
the splitting criteria will be more favorable.

The Receiver Operating Characteristic (ROC) curve provides a visualization of
the performance of scoring classifier by plotting sensitivity versus 1-specificity at
all possible values of the classification threshold. It starts at the bottom-left corner
and rises to the top-right corner. Moving along the ROC curve represents trading
off false positives for false negatives. In the worst case, random models will run up
the diagonal, and the performance of classifier improves as the ROC curve gets near
the top-left corner of the plot. Unfortunately, in a comparison of two classifiers, one
classifier may not always outperform another at all thresholds. Ambiguous conclu-
sion would be drawn when the two curves intersect. More inadequacies of the ROC
curve were discussed in [7].

The area under the ROC curve (AUC) provides a single measure of overall per-
formance of a classifier based on the ROC curve. It is simple and attractive because
it is not susceptible to the threshold choice and it is regardless of the costs of the
different kinds of misclassification and class priors. The calculation of AUC can be
referred to [2] and [11]. The value of AUC always fall within [0.5, 1.0] – it equals
0.5 when the instances are predicted at random and equals 1.0 for perfect accuracy.
Statistically, the AUC of a classifier can be seen as the probability that the classi-
fier will rank a randomly chosen positive instance higher than a randomly chosen
negative instance. This is equivalent to Mann–Whitney–Wilcoxon test statistic [12].



86 P.L.H. Yu et al.

Traditional ROC curves analysis mainly focus on data with binary target, recently
it is extended to multiple class data [11]. In this paper, we adopt the approach of
multiclass AUC and generalize the performance measure to pairwise ranking data.
The choice of extension to pairwise data over top-2 data is because pairwise data
concentrates on two items, while keeping away other irrelevant alternatives.

The remainder of this paper is organized as follows. Section 2 reviews the CART
methodology. In Sect. 3, the framework of growing and pruning a decision tree for
ranking data is presented. Two new impurity measures, top-k and g-wise measure,
are introduced and they are shown to possess the properties of impurity function.
Methods for assessing the performance of the tree-structured classifier are discussed
in Sect. 4. To illustrate the feasibility of the proposed algorithm, some examples and
evaluation studies, and an application on real data are presented in Sect. 5. Finally,
some concluding remarks and further research are given in Sect. 6.

2 Review of Classification and Regression Tree (CART)

Suppose we have a learning sample of size n with measurements .Ci ;Ai /; i D
1; : : : ; n, where C is our target variable and A is the vector of Q attributes Aq; q D
1; : : : ;Q. A and C can be interval, ordinal or categorical variables. The goal is to
predict C based on A via tree-structured classification.

CART is a binary decision tree that is constructed by recursively partitioning the
n learning sample into different subsets, beginning with the root node that contains
the whole learning sample. Each subset is represented by a node in the tree. In a
binary tree structure, all internal nodes have two child nodes whereas the nodes with
no descendants are called terminal/leaf nodes. At each partition process, a splitting
rule s.t/, comprised of a splitting variable Aq and a split point, is used to split a
group of N.t/ cases in node t to left node NL.t/ and right node NR.t/. Decision
tree identifies the best split by exhaustive search. The number of possible splits of
a categorical attribute Aq of I categories is 2I�1 	 1. For an interval Aq with F
distinct values or an ordinal attribute with F ordered categories, F 	 1 possible
splits will be produced on Aq .

2.1 Growing Stage of Decision Tree

The key step of tree growing is to choose a split among all possible splits at each
node so that the resulting child nodes are the “purest”. To measure the purity of
a node t , [3] proposed a measure called impurity function i.t/. Let p .j j t/; j 2
1; : : : ; J be the conditional probability of having class j in the learning sample in
node t ,

PJ
jD1 p .j j t/ D 1. Impurity function should satisfy the following three

properties: (a) It is minimum when the node is pure (p .j j t/ D 1 for one j 2
f1; : : : ; J g); (b) it is maximum when the node is the most impure (p.1j t/ D : : : D
p.J j t/ D 1

J
); (c) renaming of items does not change the node impurity.
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It can be shown that if the impurity function is concave, properties (a) and (b) will
be satisfied. Property (c) is required because labeling of classes is arbitrary. CART
includes various impurity criteria for classification trees, namely the Gini criterion
1	PJ

jD1 p .j j t/2 and Two-ing criterion. Another frequently used impurity-based

criterion applied is entropy 	PJ
jD1 p .j j t/ log2 p .j j t/. Modification of exist-

ing measures of node homogeneity is essential for building decision tree model for
ranking data and they will be discussed in Sect. 3.1.

Based on the impurity measure for a node, a splitting criterion 4i.s; t/ can be
defined as the reduction in impurity resulting from the split s of node t .

4i.s; t/ D i.t/	 pLi.tL/	 pRi.tR/; (1)

where pL D NL.t/=N.t/ and pR D NR.t/=N.t/ are the proportion of data cases
in t to the left child node tL and to the right child node tR, respectively. The best split
is chosen to maximize a splitting criterion. The concavity property of i.t/ assures
that further splitting does not increase the impurity, so we can continue growing
a tree until every node is pure, and some may contain only one observation. This
would lead to a very large tree that would overfit the data. To eliminate nodes that are
overspecialized, pruning is required so that the best pruned subtree can be obtained.

2.2 Pruning Stage of Decision Tree

The minimal cost-complexity pruning method is developed by Breiman et al. in
1984 [3]. Before proceeding to the algorithmic framework, some notations are first
defined. Let QT be the set of terminal nodes of tree T , and the number of terminal
nodes, denoted by j QT j, is defined as the complexity of T . Define R.t/ to be the mis-
classification cost of node t . An obvious candidate of R.t/ is the misclassification
rate; there are also other choices for the cost function. In a class probability tree, [3]
considered pruning with the mean square error, which corresponds to take R.t/ as
the Gini diversity index. For entropy tree, it is natural to takeR.t/ as deviance. Chou
[5] developed a class of divergences in the form of expected loss function and it was
shown that Gini, entropy and misclassification rate can be written in the proposed
form. In this paper, we specify the cost functions R.t/ such that they coincide with
impurity functions for ranking data. More details will be given in Sect. 3.3.

For any tree T , the cost-complexity function R˛.T / is formulated as a linear
combination of the cost of T and its complexity: R.T / C ˛j QT j. The complexity
parameter ˛ measures how much additional accuracy a split must add to the entire
tree to warrant the addition of one more terminal node. Now consider Tt 0 as the
subtree with root t 0. As long as R˛.Tt 0/ < R˛.t

0/, the branch Tt 0 contributes less
complexity cost to tree T than node t 0. This occurs for small ˛. When ˛ increases to
a certain value, the equality of the two cost-complexities is achieved. At this point,
the subtree Tt 0 can be removed since it no longer helps improving the classification.
The strength of the link from node t , g.t/, is therefore defined as R.t/�R.Tt /

j QTt j�1 .
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The V -fold cross-validation cost-complexity pruning algorithm works as fol-
lows. The full learning dataset L is divided randomly into V equal-size subsets
L1; L2; : : : ; LV and the vth learning sample is denoted to be Lv D L 	 Lv.
Using the full learning dataset L, an overly large tree T 0 is built. g.t/ are calcu-
lated for all internal nodes in T 0 and the node with the minimum value g.t1/ is
located. A pruned tree T 1 is created by turning the weakest-linked internal node
t1 into a leaf node. This process is repeated until T 0 is pruned up to the root
Tm. Denote by ˛i the value of g.t/ at the i th stage. A sequence of nested trees
T 0 � T 1 � T 2 � : : : � T � is generated, such that each pruned tree T i is opti-
mal for ˛ 2 Œ˛i ; ˛iC1/. Here, the word “nested" means that each subsequent tree in
the sequence is obtained from its predecessor by cutting one or more subtrees, and
thus the accuracy of the sequence of progressively smaller pruned trees decreases
monotonically.

Next, for v D 1; : : : ; V , the vth auxiliary maximal tree T 0v is constructed
based on Lv and the nested sequence of pruned subtrees of T 0v is generated
.T 0v � T 1v � T 2v � : : : � T �v /. The cross-validation estimate of the misclassi-
fication rate RCV .T i / is then evaluated as 1

V

PV
vD1R.Tv.

p
˛i ˛iC1//, where Tv.˛/

is equal to the pruned subtree T iv in the i th stage such that ˛i � ˛ � ˛iC1. Note
that the misclassification cost of the pruned subtree Tv.

p
˛i ˛iC1/ is estimated by

the independent subset Lv. The simplest subtree T 
 is selected as the final tree
model from fT 0; T 1; : : : ; T �g by the following ruleRCV .T 
/ � mini RCV .T i /C
SE.RCV .T i //. The 1-SE rule is adopted because the position of the minimum
RCV .T 
/ is uncertain [3]. As a consequence, we get a more conservative estimate
for the cross-validatedRCV .T 
/.

2.3 Class Assignment of Terminal Nodes of Decision Tree

Each terminal node of the final selected tree T 
 carries with it a class label j 
 2
f1; : : : ; J g, which represents the predicted class for target C, of the samples which
fall within this node. The class label is usually determined by the plurality rule, so
that the misclassification rate of the tree is minimized. Decision tree classifies an
instance by passing it down the tree from the root node till it ends up in a class j 

leaf node and obviously the instance will be assigned to class j 
.

3 Decision Tree Model for Ranking Data

In this section, we describe our methodology for constructing decision tree using
a learning dataset of rankings. Following the idea of the CART method, our algo-
rithm involves two stages – growing and pruning – to generate the final best subtree.
Mathematically, in a completely ranked data of k items, a ranking can be described
by a permutation function � D .�.1/; : : : ; �.m// from f1; : : : ; mg onto f1; : : : ; mg



Decision Tree Modeling for Ranking Data 89

such that �.j /, j D 1; : : : ; m is the rank assigned to item j . The convention that
smaller ranks correspond to the more preferred items is adopted.

Let A be a vector of Q attributes Aq ; q D 1; : : : ;Q observed in the data of
a preference study and � be the observed ranking responses. We are interested to
examine how the covariates affects the n individuals’ choice behavior on the basis of
the learning sample .�i ;Ai /; i D 1; : : : ; n, via tree-based method. Input attributes
A can be measured in continuous, ordinal, or nominal scale.

3.1 Impurity Measures for Ranking Data

In tree construction, our approach searches for the best-splitting rule based on an
impurity function. It is not easy to compute the impurity of ranking data based
on the permutation function, therefore we introduce two new measures, namely
top-k and g-wise measures. Before proceeding, we first define some notations and
terminology of choice probabilities and measures for ranking data.

Definition 1. For top-k measured data .k � m/ in node t , p� .y1; : : : ; ykj t/ and
N �
y1;:::;yk

.t/ indicates, respectively, the proportion and number of judges who rank
item y1 first, item y2 the second, and so on, and yk in the kth place. Rankings of
the remainingm 	 k items are not considered.

Definition 2. For g-wise measured data .g � m/ in node t , let pw.y1; : : : ; yg j t/
and N w

y1;:::;yg
.t/ to be the proportion and number of judges which item y1 ranks

higher than y2, which in turn higher than y3, and so on. Items other than
y1; y2; : : : ; yg are not taken into consideration.

For example, in node t , p� .1; 2j t/ denotes the proportion of data which item 1 ranks
first, and item 2 ranks second, whereas pw.1; 2j t/ is the proportion of data which
item 1 is preferable to item 2, regardless on the ranks of the two items.

Nevertheless, there are advantages and disadvantages for both methods. The
advantage of top-k measure is that existing tree methods for nominal response
can be directly applied, owing to the fact that the sum of all proportions of top-k
measured data equals one. Therefore, impurity measures such as Gini and entropy
can still be employed. However, g-wise measured data do not satisfy this property,
therefore we need to modify the impurity measures such that they can estimate the
node heterogeneity for ranking data based on g-wise comparison. The advantage of
g-wise measure is that it takes account of the ordinal nature of ranking. Top-k mea-
sures treat every combination of top-k ranking equally, thereby treating preference
data as nominal data. For g-wise measure, it models the rankings by making g-wise
comparison for all items.

Definition 3. Given m items, denote by Rm;d a set of rankings with members
from all m-choose-d permutations in f1; 2; : : : ; mg. Rm;d contains Pm

d
.Cm
d

� dŠ/
rankings coming from Cm

d
possible ranked d -item subsets and each d -item sub-

set gives dŠ possible rank permutation. Furthermore, denote a subset of rankings
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Rm;d
fy1;y2;:::yd g to represent the d Š rank permutations for item subset fy1; y2; : : : ; yd g

and ˝m
d to indicate all Cm

d
d -item subsets based onm items.

For example, we have an arbitrary item set f1; 2; 3; 4g, then R4;2 includes f.1; 2/;
.2; 1/, .1; 3/, .3; 1/, .1; 4/, .4; 1/, .2; 3/, .3; 2/, .2; 4/, .4; 2/, .3; 4/, .4; 3/g and
all members of R4;2

f1;2g are f.1; 2/; .2; 1/g, whereas ˝4
2 represents all pairwise

combinations f.1; 2/,.1; 3/,.1; 4/; .2; 3/; .2; 4/; .3; 4/g.

3.2 Growing Stage of Decision Tree for Rankings

In Sect. 2, impurity functions for unordered categorical responses are described.
Following this reasoning, we provide extension of impurity functions Gini and
entropy to deal with ranking data. As mentioned before, top-k ranking data can be
viewed as a kind of nominal data, the corresponding impurity functions thus have
similar properties with those for nominal target. Properties of g-wise impurity func-
tions are different: (a) it is minimum when there is only one ranking observed for
each of Cmg ranked item subsets; (b) it attains maximum when all gŠ rank permu-
tations are equally distributed in each of Cmg ranked item subsets; (c) renaming of
items do not change the value of impurity.

Theorem 1 proves that an impurity measure for nominal data can be extended to
handle g-wise measured data if it satisfies certain conditions. A definition is given
before theorem 1:

Definition 4. If an impurity function i.t/ D �.p.1j t/; p.2j t/; : : : ; p.J j t//, sat-
isfying

PJ
jD1 p.j j t/ D 1 can be written as

PJ
jD1 f .p.j j t//, then it can be

generalized to g-wise impurity measure, denoted as i .g/w .t/ D �.g/w .pw.�j t/;8� 2
Rm;g/, with value equals to

P
�2Rm;g f .pw.�j t//.

Theorem 1. The g-wise impurity function i .g/w .t/ satisfies the following conditions:

1.1 Concave . @	
.g/
w .pw.�j t//

@pw.�aj t/@pw.�b j t// � 0;8�a; �b 2 Rm;g .

1.2 Minimum when one of pw.�j t/; � 2 Rm;g

fy1;:::;ygg equals 1 8 fy1; : : : ; ygg 2
˝m
g .

1.3 Maximum when all pw.�j t/ D 1=gŠ.
1.4 Symmetric with respect to pw.�j t/.
The proof is given in Appendix.

Using g-wise and top-k measures defined above, we can write down, for exam-
ple, the Gini index of a node t . Given a ranking dataset of m items,
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top-k Gini: i .k/� .t/ D 1 	
X

�2Rm;k

Œp� .�j t/
2 (2)

g-wise Gini: i .g/w .t/ D 1

Cmg

X

Bg2˝m
g

0

B@1 	
X

�2Rm;g

Bg

Œpw.�j t/
2
1

CA (3)

The normalizing term 1=Cmg is to bound i .g/w .t/ in the range of 0 and 1. In g-
wise impurity measure, Rm;g

Bg
denotes the set of permutations for each of all Cmg

ranked item subset in Rm;g . Top-k and g-wise splitting criteria can thus be con-
structed based on i .k/� .t/ and i .g/w .t/ correspondingly to measure the reduction of
heterogeneity between two subnodes. The split that best separates the parent node
into two subgroups having the highest consensus in ranking should be chosen. The
node will continue splitting until the node size is less than the user-specified mini-
mum node size value. In our case studies, the minimum node size is set to 1=10 of
the training sample size.

3.3 Pruning Stage of Decision Tree for Rankings

We consider pruning the model in a bottom-up manner, using the minimal cost-
complexity algorithm introduced in Sect. 2.2 with tenfold cross-validation to obtain
the final tree that minimizes the misclassification cost. With reference to [5], our
cost function R.t/ D P.t/ � E� Œ`.�; Op.�j t// j t 
 is expressed as an expected loss
function based on the impurity function of the partition, whereP.t/ is the proportion
of judges classified into node t in testing data. The loss functions arising from top-k
Gini and entropy are

top-k Gini: `.�; Op� .�j t// D 1C
X

�2Rm;k

Œ Op� .�j t/
2 	 2 Op� .�j t/ (4)

top-k entropy: `.�; Op� .�j t// D 	 log2 Op� .�j t/ (5)

It should be aware that Op� .�j t/ and Opw.�j t/ are evaluated by the learning data,
whereas N �

�.t/ and N w
� .t/ are obtained from the testing data. The cost function of

g-wise impurity measure can be extended analogously, by taking the expectation
over all possible Cmg item subsets.

3.4 Assignment of Terminal Nodes of Decision Tree
for Rankings

We consider various approaches to make the assignment. For every leaf node, (a)
mean rank of each item is calculated and the predicted ranking is obtained by
ordering the mean ranks; (b) top-choice frequency of each item is calculated and



92 P.L.H. Yu et al.

is ordered to give the predicted ranking; (c) the most frequently observed ranking
represents the predicted ranking; (d) look at the paired comparison probabilities of
each item pair or the top-5 most frequently observed ranking responses. The first
three approaches reveal the predicted ranking of the items. However, in some situa-
tions, the predicted rankings are not of primary concern, when the tree plays a role
in facilitating investigation of attributes, which influence individuals’ difference in
item evaluation. For this kind of exploration purpose, method (d) will give us a more
general idea of how the preference orders distributed within a terminal node.

4 Performance Assessment

To compare the performance of the tree models generated by different splitting crite-
ria, we apply the area under the ROC curve in a testing dataset of size Nts. Suppose
we have grown a decision tree T with z terminal nodes, the AUC of an item pair
.i; j / is calculated as follows:

1. Calculate the pairwise probability Opw.i; j j t/, t D 1; : : : ; z for every leaf node.
2. Assign Opw.i; j j t/ to judges who fall in terminal node t .
3. Rank the judges in the testing dataset in increasing order according to Opw.i; j j t/

and assign rank �v for the vth individual who prefer item i over item j , v D
1; : : : ; N w

ij . Note that equal rank is assumed when tied.
4. Calculate the number of judges who rank item i higher than item j .ct /, and the

number of judges who rank item j higher than item i .dt / for t D 1; : : : ; z.
5. Compute the sum of the ranks (S ) for individuals with preference order i � j ,

where S D Pz
tD1 ct�t .

6. Evaluate the AUC of item pair .i; j /, Aij by Aij D S�c0.c0�1/=2
c0d0

, where c0 DPz
tD1 ct is the total number of judges who rank item i higher than item j , and

d0 D Pz
tD1 dt is the total number of judges who rank item j higher than item i .

The overall performance measure for tree T is defined as the average of AUC over
all item pairs AUC.T / D 2

m.m�1/
P
i<j Aij for i; j D 1; : : : ; m, where m is the

number of items to be ranked. Tree model with larger AUC reflects better predictive
ability. Standard error of the AUC for a two-class problem is given in [11]. How-
ever, for multiclass measure of AUC, they recommended using bootstrap method to
estimate the standard error because the derivation is difficult.

5 Case Studies

In this section, we illustrate the tree methodology for ranking data described in
Sects. 3 and 4. The first example involves a toy dataset and a simulation ranking
data generated for the second case study. The third section details the performance
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evaluation of the tree algorithm on complete and partially ranked dataset. The last
part is a real data analysis of political values priority among Europeans.

5.1 Example

A toy example is given to illustrate the performance of different impurity measures.
Ranking data is a high dimension data, especially when the number of items is large.
Top-k and g-wise measures reduce the dimension of ranking data, and it may lead
to information loss. For example, for a ranking dataset ofm items, pairwise measure
reduces the dataset frommŠ		1 parameters into Cm2 parameters and top-k measure
reduces it into Pm

k
	 	1 parameters. Generally speaking, information loss due to

pairwise measure is larger because number of parameters is less. However, it may
not always be the case.

Suppose we have 32 observations in a ranked dataset of three items. The Gini
index of top-3 and pairwise measured data in the parent node t are i .3/� .t/ D 0:8320

and i .2/w .t/ D 0:4987, respectively. Now consider 2 candidate splits by variable A
and B that partition the data into the left and right node as below. The Gini reduc-
tions of the two splits based on different measures are computed. No difference is
observed in the two splits by viewing the data using top-3 measure as both splits
give the same Gini reduction of 0.0977.

However, if the impurity reduction is evaluated by pairwise measure, the differ-
ence between them will stand out (�i.A; t/ D 0:0977 and �i.B; t/ D 0:0326).
It is trivial when the preference is presented in paired rankings based on the two
splits. Clearly, a split based on variable A is preferred. The pairwise measure selects
the correct splitting variable, whereas top-3 measure cannot distinguish between the
two splits.

Ranking (�) N�
� .t/ N �

� .tL/ in Left Node N�
� .tR/ in Right Node

in Node
t Split A Split B Split A Split B

1�2�3 5 5 5 0 0
1�3�2 5 5 0 0 5
2�1�3 5 0 5 5 0
2�3�1 5 0 0 5 5
3�1�2 6 3 3 3 3
3�2�1 6 3 3 3 3

Paired N w
� .tL/ in Left Node N w

� .tR/ in Right Node
Ranking .�/

Split A Split B Split A Split B

1�2 13 8 3 8
1�3 10 10 5 5
2�3 5 10 10 5
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5.2 Simulation Study

In this study, pairwise and top-3 measures are compared using a simulation ranking
dataset of 3 items. There are two independent variables, namely A and B , which
both have two levels 0 and 1. A total of 100 simulation trials has been carried out. In
each trial, 40 samples are simulated. Each sample has equal chance of having A to
be 0 or 1. If A D 0, then the sample must have B to be 0. If AD 1, then B will have
half chance to be 0 and half chance to be 1. This results in three possible independent
variables combinations .0; 0/, .1; 0/ and .1; 1/ with probability 0.5, 0.25 and 0.25.

The ranking responses are generated by ordering the random utility Ui of item i .
It is assumed that Ui depends on the two independent variables via �i0 C �i1A C
�i2AB C �i for i D 1; 2; 3. Here �i is a random noise and follows iid N.0; 1/. The
simulation study is carried out with .�10; �11; �12; �20; �21; �22; �30; �31; �32/ D
.0; 2; 0; 1; 0;	2; 2;	3; 2/. In this setting, the corresponding modal rankings of
.A;B/ = (0, 0), (1, 0), and (1, 1) are (3 � 2 � 1), (1 � 2 � 3), and (1 � 3 �
2), respectively.

It is trivial that the root node should be split according to variable A. For every
simulation trial, Gini reduction of the two candidate splits based on pairwise and
top-3 measures are calculated to determine which split is preferred. It is found that
pairwise measure gives a perfect selection of variable A but top-3 measure mistak-
enly chooses variable B to split for 19 times. This indicates that pairwise measure
performs better in this simulation study. The main reason is that pairwise mea-
sure describes a dataset in three parameters pw.1; 2j t/; pw.1; 3j t/, and pw.2; 3j t/,
but top-3 measures use five parameters p� .1; 2; 3j t/; p� .1; 3; 2j t/; p�.2; 1; 3j t/;
p� .2; 3; 1j t/, and p� .3; 1; 2j t/, and thus the standard error of the impurity is larger
for top-3 measured data.

5.3 Experiments and Results

In this section, we test the performance of our proposed tree model on both com-
plete and incomplete preference/ranking data. Due to the lack of suitable real-world
datasets, artificial data is generated by adopting a setting described in [14] from a
Naïve Bayes classifier. Four synthetic ranking datasets are simulated on the basis of
the following multiclass datasets – iris, car, dermatology and thyroid from the UCI

Table 1 Summary of four synthetic ranking datasets

Dataset No. of No. of No. of Attribute
instances classes attributes characteristics

Iris 150 3 4 real
Car 1;728 4 6 categorical
Dermatology 358 6 34 categorical, integer
Thyroid 3;772 3 21 categorical, real
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Respiratory of machine learning databases [1]. Table 1 provides the description of
the datasets, their characteristics and attributes in this experimental evaluation.

In a nutshell, the data generation works as follows: A Naive Bayes classifier is
first trained on each multiclass dataset. Next, for each instance, the set of ranked
alternatives is ordered with respect to the predicted class probabilities. The most
preferred alternative is the one with the highest predicted class probability and so
on. In the case of ties, alternatives with lower indices are ranked higher. For the sake
of comparison, partially ranked datasets are further produced based on the complete
ranked datasets. We independently sample some instances and at the same time
determine the number of missing ranks for those sampled instances from a uniform
distribution. In this study, tree performance was evaluated with six scenarios of dif-
ferent proportions of missing data, including the noise-free scenario (0% of missing
data) and 10–50% missing data with an increment of 10%.

For each scenario, the dataset is randomly partitioned into learning data (70%)
for building the decision tree and testing data (30%) for evaluating the algorithm. We
train the tree classifier using top-3 Gini, top-3 Entropy, pairwise Gini, and pairwise
Entropy as the impurity measures. The accuracy is derived in terms of the averaged

Table 2 Summary of experimental results on four synthetic Datasets

Proportion of missing data
0% 10% 20% 30% 40% 50%

Iris
G 0.980(0.006) 0.963(0.007) 0.966(0.010) 0.961(0.007) 0.952(0.009) 0.945(0.008)
E 0.993(0.004) 0.987(0.004) 0.979(0.004) 0.972(0.006) 0.966(0.004) 0.955(0.006)
PG 0.975(0.012) 0.962(0.008) 0.961(0.009) 0.956(0.009) 0.953(0.007) 0.948(0.005)
PE 0.992(0.005) 0.987(0.004) 0.979(0.004) 0.971(0.006) 0.965(0.004) 0.959(0.006)

Car
G 0.873(0.013) 0.853(0.009) 0.841(0.005) 0.826(0.006) 0.810(0.012) 0.801(0.008)
E 0.885(0.007) 0.866(0.007) 0.855(0.005) 0.839(0.005) 0.828(0.003) 0.813(0.005)
PG 0.877(0.009) 0.853(0.005) 0.841(0.007) 0.826(0.005) 0.814(0.007) 0.800(0.006)
PE 0.886(0.006) 0.854(0.009) 0.841(0.006) 0.828(0.004) 0.818(0.007) 0.804(0.006)

Dermatology
G 0.834(0.014) 0.828(0.018) 0.808(0.019) 0.782(0.017) 0.779(0.029) 0.743(0.023)
E 0.857(0.011) 0.841(0.013) 0.819(0.015) 0.801(0.012) 0.792(0.010) 0.789(0.010)
PG 0.853(0.011) 0.836(0.011) 0.826(0.019) 0.816(0.014) 0.802(0.013) 0.787(0.018)
PE 0.873(0.008) 0.847(0.015) 0.839(0.007) 0.822(0.014) 0.814(0.012) 0.798(0.014)

Thyroid
G 0.902(0.005) 0.875(0.004) 0.858(0.006) 0.835(0.006) 0.821(0.006) 0.805(0.009)
E 0.910(0.005) 0.879(0.008) 0.862(0.007) 0.841(0.010) 0.831(0.011) 0.806(0.009)
PG 0.911(0.005) 0.881(0.004) 0.857(0.008) 0.836(0.004) 0.815(0.008) 0.793(0.015)
PE 0.909(0.004) 0.879(0.010) 0.864(0.007) 0.842(0.010) 0.831(0.011) 0.809(0.009)

Remark: For each of the four synthetic datasets, the mean AUC of four impurity measures (G:
Top-3 Gini, E: Top-3 Entropy, PG: Pairwise Gini, PE: Pairwise Entropy) are reported and their
corresponding standard deviations are shown in the brackets.



96 P.L.H. Yu et al.

AUC over ten repetitions. Table 2 summarizes the detailed AUC numbers and the
corresponding standard errors of the 24 trials of each synthetic dataset.

As shown below, our experimental results are encouraging. High means of AUC
are achieved for the four complete artificial ranked datasets using various impu-
rity measures: Iris (0.980–0.992); Car (0.873–0.886); Dermatology (0.834–0.873);
and Thyroid (0.902–0.911). The box plots in Fig. 1 depict the performance of the
four impurity measures toward missing rankings for each of the four datasets. It
can be observed that all methods produced comparable classifier performances. As
expected, higher proportion of missing data tends to cause greater deteriorations
in performance of the decision tree. However, the drop in accuracy is not seri-
ous. The average decrease in AUC per 10% increment of missing data for Iris, Car,
Dermatology, and Thyroid are 0.007, 0.015, 0.015, and 0.021, respectively.

5.4 European Value Priority Data

The partially ranked dataset was obtained from the International Social Service Pro-
gramme (ISSP) in 1993 [16]. It mainly focused on value orientations, attitudes,
beliefs, and knowledge concerning nature and environmental issues, and included
the so-called Inglehart Index, a collection of four indicators of materialism/ post-
materialism as well. Respondents were asked to pick the most important and the
second most important goals for their Government from the following four alter-
natives: (a) Maintain order in nation [ORDER]; (b) Give people more to say in
Government decisions [SAY]; (c) Fight rising prices [PRICES] (d) Protect freedom
of speech [SPEECH]. The survey gave a ranked dataset of 5,737 observations with
top choice and top-2 rankings. In addition, the data provide some judge-specific
characteristics and they are applied in tree partitioning. The candidate splitting
variables are summarized in Table 3.

Respondents can be classified into value priority groups on the basis of their
top 2 choices among the four goals. “Materialist” corresponds to individual who
gives priority to ORDER and PRICES regardless of the ordering, whereas those
who choose SAY and SPEECH will be termed “post-materialist”. The last category
comprises judges giving all the other combinations of rankings, and they will be
classified as holding “mixed” value orientations.

Inglehart’s thesis of generational based values has been influential in political
science since the early 1970s. He has argued that value priorities were shifting
profoundly in economically developed Western countries, from concern over sus-
tenance and safety needs toward quality of life and freedom of self-expression, thus
from a materialist orientation to a post-materialist orientation [15]. In this analy-
sis, we study the Inglehart hypothesis in five European countries by our decision
tree approach, which helps identifying the attributes that affecting Europeans’ value
priority.

The data is divided randomly into 2 sets, 70% to the learning set for growing the
initial tree and finding the best pruned subtree for each of the four splitting criteria;
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Fig. 1 (Continued)
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sures. The cross plotted inside the box of the box plot represents the mean AUC of each
scenario
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Table 3 Description of European ranking data of political values

Attribute Description/Code Type No. of possible values

Country West GermanyD 1, East GermanyD 2, Nominal 5
Great BritainD 3, ItalyD 4, PolandD 5

Gender MaleD 1, FemaleD 2 Binary 2
Education 0–10 years D 1, 11–13 yearsD 2, Ordinal 2

14 or more yearsD 3
Age Value ranges from 15 to 91 Interval 76
Religion Catholic and Greek CatholicD 1, Nominal 4

Protestant D 2, OthersD 3, NoneD 4

Table 4 Summary of the best pruned subtrees of 4 splitting criteria

Method Avg. AUC S.E AUC No. of Leaves Depth

Top-2 entropy 0.61947 0.0056 0.62951 12 5
Pairwise Gini 0.61896 0.0058 0.62902 12 5
Pairwise entropy 0.61857 0.0056 0.62709 11 5
Top-2 Gini 0.61425 0.0063 0.61931 9 4

and 30% to the testing set for performance assessment and selection of the split-
ting criterion to build the final tree. As decision tree is an unstable classifier, small
changes in the learning set can cause major changes in the fitted tree structure; we
therefore repeat this procedure 50 times and compare the four splitting criteria with
their averaged AUC. Lastly, the final tree model is created using the entire dataset
for interpretation. Notice that the testing set is not involved in the tree building pro-
cess and pruned subtree selection, therefore it serves as an out-of-sample dataset for
model comparison. The four splitting criteria for rankings include top-2 and pair-
wise measure of Gini and entropy. Here, we apply pairwise and top-2 measures
as the data only contain individuals’ preference orders of the most and the second
most desirable goals. Table 4 shows the averaged AUC and their standard error of
the best pruned subtrees for each splitting criterion based on 50 repetitions. The tree
structure and performance of the final models are also presented in the same table.
Figure 2 displays the six ROC curves of each item pairs that arise from the top-2
entropy tree. The tree did a better job of predicting the item pair “SAY vs PRICES”,
but poor for “SAY vs SPEECH”. We do not illustrate the ROC curves of other trees
as the performance of the four trees is comparable and it is hard to distinguish them
in the graph.

The four tree models are found to have similar node partitions. The root node
is split according to whether the judges came from Poland or not (country D 5

vs ¤ 5). At the second level, the splits are based on age. For Polish, the respondents
are divided with the rule “age<59?”, while the remaining judges are split according
to age<53 or not. Further partitions involved education level, country, and age. The
factors religion and gender seem not to be influential. It is observed that in the
learning phase, top-2 Gini tends to give a smaller tree, while top-2 entropy gives
a more complicated tree on average. Based on the assessment criterion, the top-2
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Fig. 2 ROC curves of top-2 entropy tree. The four value items are coded as follows 1D [ORDER],
2D [SAY], 3D [PRICES], and 4D [SPEECH]. The 45ı diagonal line connecting (0,0) and (1,1)
is the ROC curve corresponding to random chance. Given next to the legends are the areas under
the corresponding dashed ROC curves

entropy tree is chosen as the best model and it is applied for further analysis. As
shown in Fig. 3, this tree has 5 levels of depth and 12 leaves. For sake of brevity,
we do not show the other three tree structures. A summary of the terminal nodes
of the final tree is reported in two tables. Table 5 lists the mean rank of the four
political goals and the three most frequent top-2 ranking, whereas Table 6 shows the
individuals’ value priority and the proportion of six pairs of political goals in each
leaf node.

We now turn to examine the attributes and interaction effects based on the final
tree model. In Poland, individuals were more likely to favor materialistic items
ORDER and PRICES (in leaves 5, 8, and 9). In East Germany, judges appeared
to support ORDER and SAY more, particularly those older generations gave higher
priority to ORDER (in leaf 12). Respondents of West Germany showed stronger
emphasis on SAY. Those better educated West Germans were more post-materialist
than the lower educated ones as they preferred SAY and SPEECH, rather than the
other two materialist items (in leaf 15). Mixed value orientations were anchored
in British because all the related leaf nodes give us a preference prediction of
ORDER � SAY or SAY � ORDER.

The result can be summed up in two observations: (a) Despite some cross-
national differences, our findings do not deviate much from Inglehart’s theory,
which claimed that societies embrace post-materialist values as they move toward
more economic security and affluence. The older European generations experi-
enced economic and social insecurity in their pre-adult years during World War II,
they thus gave stronger concern on the materialist values compared to the younger
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Fig. 3 Tree structure diagram based on top-2 entropy. In each node, the node ID and the number
of judges are shown. The splitting rule is given under the node. The abbreviation “edu” stands for
the variable education

Table 5 Importance of 4 political values in terminal nodes of top-2 entropy tree

Node.t / Node Mean rank Frequent top-2 ranking
Size Order Say Prices Speech 1st 2nd 3rd

5 402 1.69 3.08 1.99 3.24 1,3 (40.3%) 3,1 (24.9%) 1,2 (7.5%)
8 943 2.10 2.70 1.95 3.26 3,1 (25.7%) 1,3 (22.5%) 3,2 (13.0%)
9 177 2.16 2.49 2.40 2.95 1,3 (17.3%) 3,1 (13.7%) 1,2 (12.2%)

12 412 1.65 2.42 2.63 3.30 1,3 (27.5%) 1,2 (22.2%) 2,1 (18.2%)
14 383 2.33 2.11 2.64 2.92 2,1 (17.0%) 2,3 (12.3%) 2,4 (12.0%)
15 233 2.73 1.86 2.97 2.44 2,4 (25.9%) 4,2 (15.7%) 2,3 (11.7%)
17 415 2.31 2.05 2.80 2.83 2,4 (15.7%) 2,1 (14.9%) 1,2 (14.2%)
19 241 1.88 2.40 2.83 2.89 1,3 (22.1%) 2,1 (14.9%) 1,2 (13.8%)
20 652 2.28 1.95 2.67 3.09 2,1 (20.1%) 2,3 (19.1%) 1,2 (13.4%)
21 1009 2.09 2.20 2.62 3.10 1,3 (18.0%) 1,2 (16.1%) 2,1 (15.8%)
22 340 2.22 2.30 2.40 3.07 1,3 (18.1%) 2,3 (15.9%) 1,2 (12.3%)
23 530 1.83 2.62 2.48 3.07 1,3 (28.2%) 1,2 (16.2%) 3,1 (9.6%)

Remark: In the last three columns, the code 1–4 represents each of the political goals: 1 D
[ORDER], 2 D [SAY], 3 D [PRICES], and 4 D [SPEECH]; “i; j ” implies goal i � goal j and
the percentage beside indicates the proportion of instances having the corresponding top-2 ranking
in node t .
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Table 6 Value priority and pairwise probabilities in leaf nodes of top-2 entropy tree

Node.t / Node Value Pairwise probabilities
Size pw.1; 2j t / pw.1; 3j t / pw.1; 4j t / pw.2; 3j t / pw.2; 4j t / pw.3; 4j t /

5 402 M 83.1% 60.8% 87.3% 21.0% 53.7% 83.1%
8 943 M 65.3% 45.9% 79.3% 31.0% 64.8% 82.1%
9 177 M 58.8% 55.9% 69.2% 47.7% 61.9% 63.8%

12 412 B 67.5% 77.7% 90.0% 53.9% 72.0% 68.3%
14 383 B 27.4% 32.1% 41.0% 37.6% 40.1% 36.0%
15 233 P 44.1% 57.8% 64.8% 63.6% 69.5% 57.3%
17 415 B 44.5% 63.1% 61.0% 68.3% 71.1% 51.0%
19 241 B 60.8% 76.3% 74.5% 58.3% 62.2% 51.9%
20 652 B 41.6% 59.7% 70.6% 68.9% 77.3% 61.5%
21 1009 B 52.6% 64.5% 74.1% 60.0% 72.8% 62.6%
22 340 B 51.3% 55.6% 71.2% 52.8% 68.2% 67.9%
23 530 M 69.0% 69.1% 78.7% 45.7% 61.8% 66.8%

Remark: The third column “Value” shows the value priority group of judges in each leaf node,
where BDMixed values; MDMaterialist and PDPost-materialist. For columns 4 to 9, the four
political goals are labeled as: 1D[ORDER], 2D[SAY], 3D[PRICES], and 4D[SPEECH].

cohorts. Younger post-war generations developed post-materialist values as they
grew up during periods of relative prosperity. (b) There is a clear tendency in each
country for the higher educated to be the more postmaterialist groups. Duch and
Taylor [8] stated that the post-materialist items tap certain fundamental democratic
values, such as liberty and rights consciousness. The better educated would have
had more opportunity to learn to appreciate such principles, and thus they will prefer
post-materialist items more.

For comparison, we tried to learn a decision tree in another setting for this dataset,
by transforming the top-2 ranking problem into six binary classification problems
of pairwise preferences (1 � 2 vs 2 � 1, . . . , 3 � 4 vs 4 � 3). However, due to large
proportion of ties in some pairwise preferences (61.6% for {2, 4} and 71.5% for {3,
4}), not all information can be utilized to build this alternative tree model and so the
model comparison is not relevant.

6 Conclusion and Future Work

We have investigated the use of decision tree model for analyzing ranking data,
which makes explanation of individuals’ rank-order preference differences easier
compared to existing parametric ranking models and algorithms in label ranking
and preference learning, especially when nonlinearity and high-order interactions
are involved in the studied covariates. It is noteworthy that our tree methodology
includes the multinomial tree as a special case and it can accommodate inconsis-
tent rankings, as well as tie rankings. We have proposed two impurity measures,
namely g-wise and top-k measures, to evaluate the goodness of split for ranking



Decision Tree Modeling for Ranking Data 103

data. Examples and simulations showed that the established impurity functions
effectively measure the node heterogeneity. It is interesting to find that pairwise
impurity measure in some instances is more preferred than top-k measure. The main
reason is that pairwise measure describes a dataset with less parameters, and thus
the corresponding standard error of the impurity is smaller.

The tree algorithm is easy to implement and flexible that we can specify the
number of ranks used in splitting for the top-k measures and the value of g in
the g-wise measure according to the ranking data being analyzed. To assess the
predictive performance of the final tree, the AUC is used for the purpose. Experi-
mentation has shown that our tree classifier is capable of dealing with both complete
and incomplete preference data without much loss in accuracy. We further illustrate
the proposed methodology through a real application of European values priority
data. The AUCs of the four competitive trees are compared. Nevertheless, we are
not trying to draw any conclusion about which splitting criterion is more superior,
as it is definitely related to the types of the observed rankings.

In future work, we plan to generalize the method to other data, such as paired
comparison data and rating data. In addition, other impurity measures or splitting
criteria will be investigated to further improve the predictive accuracy of the tree
classifier. Another more straightforward extension of our technique will be tree-
structured ranking model. The two-stage modeling approach helps us to capture
those effects of attributes that are not detected by the tree as primary node split-
ters. This compensates the weakness of tree classifier in representing strong linear
covariates structure.
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Appendix

In this appendix, the proof of Theorems 1, 2, and 3 will be provided. Recall that
the size of the ranked item set is m. We hereafter omit t , which stands for node t to
simplify the notation of proportion and impurity.

Proof of Theorem 1

Proof. Denote pw.�/;8� 2 Rm;g as p� , and thus we have i .g/w D �.g/w .p� /. Also,
define Bg to be a g-item subset from f1; : : : ; mg

1.1. Let �a; �b 2 Rm;g . If �a ¤ �b , it is trivial that

�
@	

.g/
w .p� /

@pw.�a/@pw.�b/

�
D 0.
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If �a D �b , since �.g/w .p� / can be written as

X

Bg2 ˙mg

X

�2Rm;g

Bg

f .pw.�// (6)

and
P
�2Rm;g

Bg

pw.�/ D 1, hence f .pw.�// is concave, and the permutation

�a (WLOG assume �a D f�a1
; : : : ; �ag

g) will only appear once in the func-

tion �.g/w .p� /, therefore

�
@	

.g/
w .p� /

@pw.�a/@pw.�b/

�
D
	

@f.pw.�a//
@pw.�a/@pw.�a/



� 0 (sum of

concave functions is concave).
1.2. Since �.g/w .p� / can be written as (6), and note that

P
�2Rm;g

Bg

pw.�/ D 1,

8Bg 2 ˝m
g , therefore minimizing �.g/w .p� / will be equivalent to minimizeP

�2Rm;g

Bg

f .pw.�//;8Bg 2 ˝m
g 2 f1; : : : ; mg. The condition will be for

each of Bg 2 ˝m
g , one of the ranking probabilities pw.�/; � 2 Rm;g

Bg
equals 1.

Note that g-wise measured data are derived from full ranking, and some com-
binations of g-wise data are intransitive. For example, it is impossible to have
pw.1; 2/ D 1, pw.2; 3/ D 1, and pw.3; 1/ D 1. Another contradictory example
is pw.1; 2; 3/ D 1 and pw.3; 2; 4/ D 1. Therefore, by eliminating those intran-
sitive g-wise data combinations, the minimizing condition of g-wise impurity
functions can be reduced to: one of the probability P.y1 � y2 � : : : � ym/D1
and all other full ranking probabilities equal to zero. The proof is given in
Theorem 2.

1.3. Since �.g/w .p� / can be written as (6), and note that
P
�2Rm;g

Bg

pw.�/ D 1,

8Bg 2 ˝m
g , therefore maximizing �.g/w .p� / will be equivalent to maximizeP

�2Rm;g

Bg

f .pw.�//;8Bg 2 ˝m
g 2 f1; : : : ; mg. The condition will be for

each of Bg 2 ˝m
g , all ranking probabilities pw.�/; � 2 Rm;g

Bg
equal to 1=gŠ.

The g-wise impurity function is maximized at all pw.�/ equal. However,
unlike the above minimum case, it cannot be generalized to the case when all
full ranking probabilities are uniformly distributed. For example, a full ranking
of 3 items with p� .1; 2; 3/ D p� .3; 2; 1/ D 0:5 implied pairwise measure of
pw.1; 2/ D pw.2; 1/ D pw.1; 3/ D pw.3; 1/ D pw.2; 3/ D pw.3; 2/ D 0:5.
However, under special condition (see Theorem 3), pw.�/8� 2 Rm;g equal
implies evenly distributed full ranking probabilities.

1.4 When item yi and yj are swapped, all values of pw.�/ with yi ; yj 2 � and
pw.�/ with yi ; yj 62 r remain the same. All values of pw.�/ with yi 2 �; yj 62
� and pw.�/ with yj 2 �; yi 62 � exchange. Afterall, there is no effect in i .g/w .

Theorem 2. A set of pairwise measured data with m items to be ranked, with all
fpw.i; j / W i ¤ j I i; j 2 Œ1;m
g equals to either 0 or 1 and are transitive, represent
a unique full ranking with probability P.y1 � y2 � : : : � ym/ D 1, for all distinct
y1; y2; : : : ; ym 2 Œ1;m
.
Proof. There are two cases induced by the set of paired comparison probabilities
fpw.i; j / W i ¤ j I i; j 2 Œ1;m
g, which have value of either 0 or 1: (i) if there
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exists distinct y1; y2; : : : ; yb 2 Œ1;m
 such that pw.y1; y2/ D pw.y2; y3/ D : : : D
pw.yb; y1/ D 1, then intransitive ranking occurs; (ii) no cyclic occurs in the rank
structure. The set of fpw.i; j /g with cyclic structure cannot be induced by a full
ranking, because a full ranking satisfies y1 � y2, y2 � y3, . . . , and yb�1 � yb
should imply y1 � yb .

Note that pw.i; j / D 1 and pw.j; k/ D 1 imply pw.i; k/ D 1, then fpw.i; j /g are
weakly stochastically transitive. By Theorem 2 of [6], the full ranking induced by
fpw.i; j /g is strongly unimodal. AssumeP.y1 � y2 � : : : � ym/; y1; y2; : : : ; ym 2
Œ1;m
 is implied by fpw.i; j / W i ¤ j I i; j 2 Œ1;m
g, and P.y1 � y2 � : : : � yb �
: : : � yc � : : : � ym/ > 0; where b < c. For any different full ranking which the
bth best item is c and the cth best item is b, the probability should be zero, because
P.y1 � y2 � : : : � yb � : : : � yc � : : : � ym/ > 0 ) pw.yb ; yc/ D 1

and hence pw.yc ; yb/ D 0. Therefore, only y1 � y2 � : : : � yb � : : : �
yc � : : : � ym is possible. Hence, the transitive pairwise probabilities fpw.i; j /g
with equal to either 0 or 1 will lead to one and only one possible full ranking with
P.y1 � y2 � : : : � ym/ D 1, from some distinct y1; y2; : : : ; ym 2 Œ1;m
.
Theorem 3. A set of pairwise measured data with m items to be ranked, with all
fpw.i; j / W i ¤ j I i; j 2 Œ1;m
g equal to 0.5 and are transitive, represent a
full ranking with probability P.y1 � y2 � : : : � ym/ D 1=mŠ for all distinct
y1; y2; : : : ; ym 2 Œ1;m
, if the ranking is derived from an independent random util-
ity (IRU) model, and the cdf of random utility Ui ; i 2 Œ1;m
 can be written as
Gi .x/ D G.x 	 �i /.
Proof. Let gi ; i 2 Œ1;m
 be the pdf of Ui . Under IRU model, pw.y1; : : : ; ym/ D
P.Uy1

> : : : > Uym
/. Consider three items i; j; and k. pw.j; i/ D P.Ui <

Uj / D P.Ui 	 Uj < 0/ D R1
�1 P.Ui 	 x < 0/gj .x/dx D R1

�1Gi .x/dGj .x/ DR1
�1G.x 	 �i /dG.x 	 �j /. Similarly, pw.j; k/ D R1

�1G.x 	 �k/dG.x 	 �j /.
Since pw.j; i/ D pw.j; k/8i; k ¤ j; �i D �k8i; k 2 Œ1;m
, and this implies
U1; : : : ; Um are iid. Therefore, P.Uy1

> : : : > Uym
/ equals for all distinct

y1; y2; : : : ; ym 2 Œ1;m
.
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and Tom Heskes

Abstract Situations when only a limited amount of labeled data and a large amount
of unlabeled data are available to the learning algorithm are typical for many real-
world problems. To make use of unlabeled data in preference learning problems,
we propose a semisupervised algorithm that is based on the multiview approach.
Our algorithm, which we call Sparse Co-RankRLS, minimizes a least-squares
approximation of the ranking error and is formulated within the co-regularization
framework. It operates by constructing a ranker for each view and by choosing
such ranking prediction functions that minimize the disagreement among all of the
rankers on the unlabeled data. Our experiments, conducted on real-world dataset,
show that the inclusion of unlabeled data can improve the prediction performance
significantly. Moreover, our semisupervised preference learning algorithm has a lin-
ear complexity in the number of unlabeled data items, making it applicable to large
datasets.

1 Introduction

Semisupervised learning algorithms have gained more and more attention in recent
years as unlabeled data is typically much easier to obtain than labeled one. Multi-
view learning algorithms, such as co-training [1], split the attributes into independent
sets and an algorithm is learnt based on these different “views”. The goal of the
learning process consists in finding for every view a prediction function (for the
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learning task) performing well on the labeled data of the designated view such
that all prediction functions agree on the unlabeled data. Closely related to this
approach is the co-regularization framework described in [20], where the same
idea of agreement maximization between the predictors is central. Briefly stated,
algorithms based upon this approach search for hypotheses from different Repro-
ducing Kernel Hilbert Spaces [19], namely views, such that the training error of
each hypothesis on the labeled data is small and, at the same time, the hypotheses
give similar predictions for the unlabeled data. Within this framework, the disagree-
ment is taken into account through a co-regularization term. Empirical results show
that the co-regularization approach works well for classification [20], regression
[2], and clustering [3] tasks. Moreover, theoretical investigations demonstrate that
the co-regularization approach reduces the Rademacher complexity by an amount
that depends on the “distance” between the views [18, 21].

We consider the problem of learning a function capable of arranging data points
according to a given preference relation [8]. Training of existing kernel-based rank-
ing algorithms, such as RankSVM [10], may be infeasible when the size of the
training set is large. This is especially the case when nonlinear kernel functions are
used. Recently, a sparse preference learning algorithm, called Sparse RankRLS, that
can take advantage of a large amount of data in the training process, has been pro-
posed [23]. In this paper, we formulate a co-regularized version of RankRLS, called
Sparse Co-RankRLS, and aim to improve the performance of RankRLS by making
it applicable to situations when only a small amount of labeled data, but a large
amount of unlabeled data, is available.

We evaluate our algorithm on a parse ranking task [5, 24] that is a common
problem in natural language processing. In this task, the aim is to rank a set of
parses associated with a single sentence, based on some goodness criteria giving a
score to the parse. In our experiments, we consider the case when both scored and
a large amount of unscored data is available to the learning algorithm. We demon-
strate that Sparse Co-RankRLS is computationally efficient when trained on large
datasets and the obtained results are significantly better than the ones obtained with
the standard RankRLS algorithm. We consider the parse ranking task as label rank-
ing. However, in the parse ranking task the labels (i.e. the parses of a sentence) are
instance-specific. That is, for each sentence, we have a different set of labels, while
in the conventional label ranking setting labels are not instance specific.

2 Problem Setting

Let X be a set of instances and Y be a set of labels. The learning scenario we
consider is label ranking [6,8], i.e., we want to predict for any instance x 2 X (e.g.,
a person) a preference relation Px � Y � Y among the set of labels Y , where each
label y 2 Y can be thought of as an alternative. An element .y; y0/ 2 Px means
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that the instance x prefers the label y compared to y0, also written as y �x y
0. 1

We assume that the (true) preference relation Px is transitive and asymmetric for
each instance x 2 X . As training information, we are given a finite set f.qi ; si /gniD1
of n data points, where each data point .qi ; si / D ..xi ; yi /; si / 2 .X � Y/ � R

consists of an instance-label tuple qi D .xi ; yi / 2 X � Y and its score si 2 R. We
say that the pair of data points ..x; y/; s/ and ..x0; y0/; s0/ is relevant, iff x D x0.
Considering relevant pair ..x; y/; s/ and ..x; y0/; s0/, we say that instance x prefers
label y to y0, iff s > s0. If s D s0, the labels are called tied. Accordingly, we write
y �x y

0 if s > s0 and y �x y
0 if s D s0.

A label ranking function is a function f W X � Y ! R mapping each instance-
label tuple .x; y/ to a real value representing the (predicted) relevance of the label
y with respect to the instance x. This induces for any instance x 2 X a transitive
preference relation Pf;x � Y � Y with .y; y0/ 2 Pf;x , f .x; y/ > f .x; y0/. Ties
can be broken arbitrarily. Informally, the goal of our ranking task is to find a label
ranking function f W X � Y ! R such that the ranking Pf;x � Y � Y induced by
the function for any instance x 2 X is a good “prediction” for the true (unknown)
preference relation Px � Y � Y .

In order to incorporate the relevance information, we define an undirected pref-
erence graph which is determined by its adjacency matrix W such that for each i
and j .1 � i; j � n; i 7 j / ŒW 
i;j D 1, if .qi ; qj / is relevant, and ŒW 
i;j D 0 if
.qi ; qj / is not relevant. To avoid loops, we set ŒW 
i;i D 0 for i D 1; : : : ; n, although
an instance-label tuple is relevant to itself. Furthermore, let Q D .q1; : : : ; qn/

t 2
.X � Y/n be the vector of instance-label training tuples and S D .s1; : : : ; sn/

t 2 R
n

the corresponding vector of scores. Given these definitions, our training set is the
triple T D .Q; S;W /.

Let us define R
Q D ff W Q ! Rg with Q D X � Y and let H � R

Q be the
hypothesis space of possible ranking functions. To measure how well a hypothesis
f 2 H is able to predict the preference relationsPx for all instances x 2 X , we con-
sider the following cost function that captures the amount of incorrectly predicted
pairs of relevant training data points:

d.f; T / D 1

2

nX

i;jD1
ŒW 
i;j

???sign
�
si 	 sj

� 	 sign
�
f .qi /	 f .qj /

�???; (1)

where sign.�/ denotes the signum function

sign.r/ D
(
1; if r > 0

	1; if r � 0
:

It is well-known that the use of cost functions such as (1) leads to intractable optimi-
zation problems. Therefore, we consider the following least-squares approximation,

1 As described in [8], one can distinguish between weak preference .�/ and strict preference .�/,
where y �x y

0 , .y �x y
0/^ .y0 �x y/; furthermore, y 	x y

0 , .y �x y
0/^ .y0 �x y/.
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which in fact regresses the differences si	sj with f .qi /	f .qj / of relevant training
data points qi and qj :

c.f; T / D 1

2

nX

i;jD1
ŒW 
i;j

	
.si 	 sj / 	 .f .qi /	 f .qj //


2
: (2)

Note that the above cost function c also takes the extent of discrepancy between the
predicted preference .f .qi / 	 f .qj // and the training preference .si 	 sj / of pairs
of relevant training data points into account.

3 Regularized Least-Squares Ranking

The co-regularized ranking algorithm presented in this paper stems from the results
developed in [12] and [23]. For completeness, we briefly review these results in this
section.

We aim to construct an algorithm that selects a hypothesis f from H which
minimizes (2) and which is, at the same time, not too “complex”, i.e., which does
not overfit at training phase and is therefore able to generalize to unseen data. We
consider the framework of regularized kernel methods [19], in which H is a so-
called Reproducing Kernel Hilbert Space (RKHS) defined by a positive definite
kernel function.

3.1 Regularization Framework

Let k W Q � Q ! R be a positive definite kernel defined on the set Q. Then we
define H as

H D
n
f 2 R

Q j f .�/ D
1X

jD1
ˇjk.�; qj /; ˇj 2 R; qj 2 Q; kf kH < 1

o
; (3)

where k � kH denotes the norm in H. Using the RKHS H as our hypothesis space,
we consider the optimization problem

A.T / D argmin
f 2H

J.f /; (4)

where J.f / D c.f; T / C �kf k2H and � 2 R
C is a regularization parameter con-

trolling the tradeoff between the cost on the training set and the complexity of the
hypothesis. By the generalized representer theorem [19], the minimizer of (4) has
the form

f 
.�/ D
nX

iD1
aik.�; qi / (5)
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with appropriate coefficients ai 2 R. Hence, we can focus on functions f 2 H
having the above form. Defining the kernel matrix K 2 R

n�n with entries of
the form ŒK
i;j D k.qi ; qj / and f .Q/ D .f .q1/; : : : ; f .qn//

t 2 R
n, we can

write f .Q/ D KA and kf k2H D AtKA, where A D .a1; : : : ; an/
t 2 R

n is a
corresponding coefficient vector.2

3.2 RankRLS

Let L D D 	 W be the Laplacian matrix [4], where D denotes the diagonal
matrix with elements of the form ŒD
i;i D Pn

jD1 ŒW 
i;j . Using a slightly different
notation, it is shown in [12] that the cost function (2) can be rewritten as

c.f; T / D .S 	KA/tL.S 	KA/: (6)

Considering this representation of the cost function c, we get the following opti-
mization problem called RankRLS in [12]:

A.T / D argmin
A2Rn

J.A/; (7)

where J.A/ D .S 	KA/tL.S 	KA/C �AtKA. Using the fact that L is positive
semidefinite [15] and assuming that K is positive definite, it is easy to see that the
Hessian matrixH.J / D 2K tLKC2�K of J is positive definite. Thus, J is strictly
convex and the global minimum of J can be obtained by setting the first derivative

d
dAJ.A/ D 	2K tL.S 	KA/C 2�KA to zero and by solving the resulting system
of equations with respect to A. The optimal solution for (7) is

A D .KLK C �K/�1KLS D .LK C �I/�1LS; (8)

where I denotes the identity matrix. The computational complexity of the matrix
inversion in (8) is O.n3/.

Fact 1 [12] For fixed � 2 R
C, the solution of the RankRLS optimization problem

(7) can be found in O.n3/ time.

3.3 Sparse RankRLS

Similarly to [14] and [22], an approximation algorithm aiming at reducing the cubic
running time of the RankRLS approach is developed in [23]: The cost function c is
evaluated over all points, but only a subset of the coefficients a1; : : : ; an is allowed

2 Unless stated otherwise, we assume that a kernel matrix K is positive definite, i.e., B
t
KB > 0

for all B 2 R
n; B ¤ 0. This can be ensured, for example, by performing a small diagonal shift.
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to be nonzero, thus an approximation of the optimization problem is considered.
Let R D fi1; : : : ; irg � f1; : : : ; ng be a subset of indices. Then, we only allow the
coefficients ai1 ; : : : ; air to be nonzero in (5), i.e., we search for minimizers bf 2 H
having the form

bf .�/ D
rX

jD1
aij k.�; qij /: (9)

By defining NK 2 R
n�r to be the submatrix of K 2 R

n�n that only contains the
columns indexed by R and by defining bK 2 R

r�r to be the submatrix of NK only
containing the rows indexed by R, we can express bf .Q/ D .bf .q1/; : : : ;bf .qn//t 2
R
n as bf .Q/ D NKbA and kbf k2H D bAtbKbA, where bA D .ai1 ; : : : ; air /

t 2 R
r . Given

these notations, the approximation presented in [23], called Sparse RankRLS, can
be formulated as

A.T / D argmin
bA2Rr

bJ .bA/; (10)

where bJ .bA/ D .S 	 NKbA/tL.S 	 NKbA/ C �bAtbKbA. Setting the derivative of bJ to
zero and solving the resulting system of equations with respect to bA leads to

bA D . NK tL NK C �bK/�1 NK tLS: (11)

The overall training complexity of the Sparse RankRLS algorithm is O.nr2/, see
[23] for more details.

Fact 2 ([23]) For fixed � 2 R
C, the solution of the Sparse RankRLS optimization

problem (10) can be found in O.nr2/ time.

Hence, selecting r to be much smaller than n results in a significant acceleration of
the training procedure. Clearly, the selection of the index set R may have an influ-
ence on results obtained by the above approximation approach. Various methods
for subset selection have been proposed (see e.g.[17, 25]), however, for simplicity
and computational efficiency, we consider random selection of data points contained
in R.

3.4 Constructing Kernels with Subsets of Regressors

Considering the Sparse RankRLS algorithm, the label predictions for the training
data points can be obtained by NKbA. Using the Woodbury matrix identity [9] and (11)
and by defining eK D 1

�
NKbK�1 NK t , we can reformulate this expression as follows:

NKbA D NK. NK tL NK C �bK/�1 NK tLS

D NK
 
1

�
bK�1 	 1

�
bK�1 NK t

�
1

�
L NKbK�1 NK t C I

��1
1

�
L NKbK�1

!
NK tLS
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D .eK 	 eK.LeK C I /�1LeK/LS
D .eK.I 	 .LeK C I /�1LeK/LS
D .eK..LeK C I /�1.LeK C I / 	 .LeK C I /�1LeK/LS
D eK.LeK C I /�1.LeK C I 	 LeK/LS
D eK.LeK C I /�1LS:

Note that because L is positive semidefinite and eK is positive definite, their prod-
uct LeK contains only nonnegative eigenvalues [11]. Hence, LeK C I is invertible.
Further, the last term can be rewritten as eK.LeK C I /�1LS D MK.L MK C �I/�1LS ,
where MK D NKbK�1 NK t 2 R

n�n. These derivations show that the Sparse RankRLS
algorithm operating with a kernel function k is essentially equivalent to the standard
RankRLS algorithm operating with a modified kernel Mk. In the following section, we
use this fact for constructing different Hilbert spaces by taking different sets of basis
vectors.

4 Co-Regularized Least Squares Ranking

The co-regularization approach is based on the idea of constructing M prediction
functions from M different RKHSs such that the error of each function on the
labeled data is small and, at the same time, the functions give similar predictions
for the unlabeled data. These RKHSs can stem from different data point descrip-
tions (i.e., different features), from different kernel functions, and/or from different
subsets of the data. Note that the case of different data point descriptions can be
obtained by applying the kernel functions only to appropriate subsets of features.
Further, as depicted in Sect. 3.4, taking different subsets of the data leads to dif-
ferent RKHSs. Hence, we will consider M RKHSs H1; : : : ; HM along with their
corresponding kernel functions kv W Q � Q ! R; 1 � v � M , to incorporate the
co-regularization approach.

4.1 Co-Regularized RankRLS

Considering our ranking task, we have a training set T D .Q; S;W / originat-
ing from a set f.qi ; si /gniD1 of data points with scoring information, where Q D
.q1; : : : ; qn/

t 2 Qn, S D .s1; : : : ; sn/
t 2 R

n, andW is the matrix incorporating the
relevance information. Moreover, we have a training set eT D .eQ; eW / from a set
fqnCigliD1 of data points without scoring information, eQ D .qnC1; : : : ; qnCl/t 2
Ql , and an appropriate adjacency matrix eW . To avoid misunderstandings with
the definition of the label ranking task, we will use the terms “scored” instead of
“labeled” and “unscored” instead of “unlabeled”.

In the ranking task, we search for a vector f D .f1; : : : ; fM / 2 H1 � : : : � HM

of prediction functions which minimizes
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J.f/ D
MX

vD1
c.fv; T /C �

MX

vD1
kfvk2Hv

C �

MX

v;uD1
Qc.fv; fu;eT /; (12)

where �; � 2 R
C are regularization parameters and Qc is the loss function measuring

the disagreement between the prediction functions of the views on the unscored
data:

Qc.fv; fu;eT / D 1

2

lX

i;jD1
eŒW 
i;j

	�
fv.qnCi /	 fv.qnCj /

�	 �fu.qnCi /	 fu.qnCj /
�
2
:

Applying the representer theorem [19] in this context shows that the minimizers
f 
v 2 Hv of (12) for v D 1; : : : ;M have the form

f 
v .�/ D
nX

iD1
a
.v/
i kv.�; qi /C

lX

iD1
a
.v/
nCi kv.�; qnCi / (13)

with adequate coefficients a.v/1 ; : : : ; a
.v/
nCl 2 R. Using matrix notations, we can

reformulate (12) as

J.A/ D
MX

vD1
.S 	 LvAv/

tLL.S 	LvAv/C �

MX

vD1
Av
tKvAv (14)

C �

MX

v;uD1
.UvAv 	 UuAu/

tLU .UvAv 	 UuAu/;

where Av D .a
.v/
1 ; : : : ; a

.v/
nCl /

t 2 R
nCl , and A D .At1; : : : ; A

t
M /

t 2 R
M.nCl/.

The matrix Lv 2 R
n�.nCl/ has entries of the form ŒLv
i;j D kv.qi ; qj / and the

matrix Uv 2 R
l�.nCl/ has entries of the form ŒUv
i;j D kv.qnCi ; qj /. Stacking both

matrices up gives the matrixKv:

Kv D
�
Lv

Uv

�
2 R

.nCl/�.nCl/:

Further, LL 2 R
n�n and LU 2 R

l�l denote the Laplacian matrices corresponding
to W and eW , respectively. Hence, we have the following optimization problem:

A.T ;eT / D argmin
A2RM.nCl/

J.A/: (15)
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4.2 Sparse Co-Regularized RankRLS

Similar to the non-co-regularized case, the above optimization problem could be
difficult to solve due to the computations involving the complete kernel matrices.
Hence, as in Sect. 3, we aim at solving an approximation of the above optimization
problem by only allowing a subset of the coefficients in (13) to be nonzero for
each view. This corresponds to taking submatrices of the original matrices, i.e., for
each view v we define NLv 2 R

n�r to be the submatrix of Lv that only contains
the columns corresponding to r selected basis vectors qcv.1/

; : : : ; qcv.r/
. Here, the

number cv.i/ 2 f1; : : : ; nC lg denotes the index (column) of the i th selected vector
of view v. Accordingly, we define NUv 2 R

l�r to be the submatrix of Uv that only
contains the columns corresponding to qcv.1/

; : : : ; qcv.r/
. Finally, we define bKv 2

R
r�r to be the kernel matrix with elements

h
bKv

i

i;j
D kv.qcv.i/

; qcv.j /
/. Hence, we

obtain the following optimization problem, which we call Sparse Co-RankRLS:

A.T ;eT / D argmin
bA2RMr

bJ .bA/; (16)

where

bJ .bA/ D
MX

vD1

	
S 	 NLvbAv


t
LL
	
S 	 NLvbAv



C �

MX

vD1
bAv
tbKvbAv (17)

C �

MX

v;uD1

	 NUvbAv 	 NUubAu


t
LU

	 NUvbAv 	 NUubAu



;

bAv D .a
.v/
cv.1/

; : : : ; a
.v/
cv.r/

/t 2 R
r , andbA D .bAt1; : : : ;bAtM /t 2 R

Mr . For ease of nota-
tion, we consider the same number of basis vectors for each view. Given this matrix
formulation of our optimization problem, we can follow the framework described in
[2] to find a closed form for the solution: Taking the partial derivative ofbJ .bA/ with
respect to bAv we get

d

dbAv

bJ .bA/ D 	2 NLtvLL.S 	 NLvbAv/C 2�bKvbAv

	4�
MX

uD1;u¤v

NU tv LU . NUubAu 	 NUvbAv/:

By defining G
v D 2�.M 	 1/ NU tv LU NUv, G�v D �bKv and Gv D NLtvLL NLv, we can
rewrite the above term as
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d

dbAv

bJ .bA/ D 2.Gv CG
v CG�v /
bAv 	 2 NLtvLLS

	4�
MX

uD1;u¤v

NU tv LU NUubAu:

At the optimum we have d

dbAv

bJ .bA/ D 0 for all views, thus we get the exact solution

by solving

0
BBBBB@

NG1 	2� NU t1LU NU2 : : :

	2� NU t2LU NU1 NG2 : : :

:::
:::

: : :

1
CCCCCA

0
BBBBBB@

bA1

bA2

:::

1
CCCCCCA

D

0
BBBBB@

NLt1LLS

NLt2LLS

:::

1
CCCCCA

with respect to bA1; : : : ;bAM , where NGv D Gv CG
v CG�v . The left-hand side matrix
is positive definite and therefore invertible (see Appendix). By defining

B D

0

B@
G1 0 : : :

0 G2 : : :
:::

:::
: : :

1

CA D D

0

B@
G�1 0 : : :

0 G�2 : : :
:::

:::
: : :

1

CAE D

0

B@

NLt1LLSNLt2LLS
:::

1

CA

C D

0

B@
G
1 	2� NU t1LU NU2 : : :

	2� NU t2LU NU1 G
2 : : :
:::

:::
: : :

1

CA

we can formulate the solution of the system as follows:

bA D .B C C CD/�1E: (18)

The computational complexity of constructing the vectorE is O.Mnr/. Further, the
matrices B , C , and D can be constructed in O.Mr2n/, O.M 2r2l/, and O.Mr2/,
respectively. The resulting matrix .B C C C D/ 2 R

Mr�Mr can be inverted in
O.M 3r3/. Hence, our algorithm scales linearly in the number of unscored data
items. Note that the multiplications involving the Laplacian matrices LL and LU
can be accelerated using the approach described in [23]. Assuming l � n, we have
shown the following theorem:

Theorem 1. For fixed parameters �; � 2 R
C and assuming l � n, the solution

of the Sparse Co-RankRLS optimization problem (16) can be found in O.M 3r3 C
M 2r2l/ time.
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5 Efficient Regularization Parameter Selection

When performing experiments, the recurrent matrix inversion in (18) for each
combination of the regularization parameters � and � could be time-consuming.
Therefore, we propose a procedure which accelerates this parameter selection pro-
cess. Writing D as D D � KD with an appropriate (positive definite) matrix KD and
rewriting KD as KD D PP t using the Cholesky decomposition [9], we obtain

.B C C CD/�1 D .B C C C � KD/�1

D .PP�1.B C C/.P t /
�1
P t C �PP t /

�1

D .P t /�1.P�1.B C C/.P t /�1 C �I/
�1
P�1:

Further, the matrix P�1.B CC/.P t /�1 can be eigen decomposed to VV t , where
 is a diagonal matrix containing the eigenvalues and V is the matrix composed of
the eigenvectors [9]. Hence, we get

.B C C CD/�1 D .P t /�1.VV t C �I/
�1
P�1

D .P t /�1V.C �I/
�1
V tP�1

and the solution in (18) can be rewritten as

bA D .P t /�1V.C �I/
�1
V tP�1E:

Thus, by fixing the parameter �, we can efficiently search for the second regular-
ization parameter �. The decompositions and the inversion of P can be calculated
in O.M 3r3/ time, and hence, the overall training complexity is not increased. The
computational cost of calculating . C �I/�1 is O.Mr/, since it is a diagonal
matrix. If the matrices V tP�1E 2 R

Mr�1 and .P t /�1V 2 R
Mr�Mr are stored

in memory, the subsequent training with different values of � can be performed in
O.M 2r2/ time.

6 Experiments

We evaluate the performance of the Sparse Co-RankRLS algorithm3 on the task of
ranking given parses for an unseen sentence. For this purpose, we use the BioIn-
fer corpus [16] which consists of 1,100 manually annotated sentences. A detailed
description of the parse ranking problem and the data used in the experiments is
given in [24]. Each sentence is associated with a set of candidate parses. The manual

3 Python implementation of the algorithm and the dataset are available on request.
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annotation of the sentence, present in the corpus, provides the correct parse. Further,
each candidate parse is associated with a goodness score that indicates how close
to the correct parse it is. The correct ranking of the parses associated with the same
sentence is determined by this score. While the scoring induces a total order over
the whole set of parses, the preferences between parses associated with different
sentences are not considered in the parse ranking task.

Using the definitions presented in Sect. 2, we consider each sentence as an
instance and the parses generated for the sentence as the labels associated with it.
The score of an input indicates how well the parse included in the input matches the
correct parse of the sentence. We have previously demonstrated that the RankRLS
algorithm performs comparably to some state-of-the-art ranking methods [12]. In
this section, we will compare the performance of the Sparse Co-RankRLS algorithm
with that of the RankRLS algorithm.

6.1 Experimental Setup

From the 1,100 sentences of the BioInfer corpus, we randomly select 500 and 600
sentences for the training and final validation phase, respectively. To simulate a
semisupervised setting, we consider that only half of sentence-parse pairs in the
training set are scored, while the remaining sentence-parse pairs do not have the
scoring information associated with them. For the evaluation of the Sparse Co-
RankRLS method, we set the number M of views to 2. Further, we randomly
select 20 sentence-parse pairs from the training data set as basis vectors for the
first view and repeat this procedure for the second view. According to Sect. 4, we
select different basis vectors for each view.

Both algorithms have the regularization parameter � that controls the tradeoff
between the minimization of the training error and the complexity of the learnt
function(s). In addition, the Sparse Co-RankRLS algorithm has the regularization
parameter � that controls the agreement between the predictions of the different
views. As a similarity measure for parses, we use the best performing graph kernel
with the appropriate parameter considered in [13]. The values of the regularization
parameters for RankRLS as well as for Sparse Co-RankRLS are estimated during a
fivefold cross-validation procedure, with the splits being performed on the sentence
level ensuring that all parses associated with the same sentence are present in the
same fold. In the semisupervised setting each fold consists of one tenth of scored
and unscored data present in the training set. For the cross-validation phases, we
randomly select parses for each sentence to be associated with it, out of which 30
parses are used for training the model and 30 for testing. Finally, we use 30 parses
per sentence for the final validation procedure.
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Table 1 Comparison of the parse ranking performances of the standard RankRLS and the Sparse
Co-RankRLS algorithms using a normalized version of the disagreement error (1) as performance
evaluation measure. The results of the Sparse Co-RankRLS algorithm are obtained by averaging
the predictions of the two views

Standard RankRLS Sparse Co-RankRLS

0:348 0:326

6.2 Results

The normalized version of the disagreement error (1) is used to measure the perfor-
mance of the ranking algorithms. The error is calculated for each sentence separately
and the performance is averaged over all sentences.

The algorithms are trained on the whole parameter estimation data set with the
best found parameter values and tested with the 600 sentences reserved for the
final validation. The results of the validation are presented in Table 1. They show
that the Sparse Co-RankRLS algorithm notably outperforms the RankRLS method.
We note that random selection of the basis vectors for both methods has an influ-
ence on the performance of the learning algorithm. To avoid variations in the final
results obtained with particular set of basis vectors, we perform complete experi-
ment 5 times, selecting different sets for basis vectors in all of the experiments and
report averaged results.

Furthermore, to test the statistical significance of the performance difference
between the Sparse Co-RankRLS and RankRLS algorithms, we conduct the
Wilcoxon signed-ranks test [7]. The sentences reserved for the final validation are
considered as independent trials. We observe that the performance differences are
statistically significant (p < 0:05).

6.3 Learning Curve

To evaluate performance of the Sparse Co-RankRLS algorithm with respect to
the number of unscored sentence-parse pairs used for training, we divide 4,000
sentence-parse pairs into 4 parts containing 1,000, 2,000, 3,000, and 4,000 unscored
data, respectively. The algorithm is trained using complete scored training set with
best found parameters that were estimated with fivefold cross-validation proce-
dure. The separate test set is used for final validation of the algorithm. Each of
the unscored data sets is re-sampled 5 times and obtained results are averaged. The
outcomes of the experiments are presented in Fig. 1.
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Fig. 1 The plot shows the relation between the disagreement error and the amount of unscored
data

7 Conclusions

We propose Sparse Co-RankRLS, a semisupervised regularized least-squares algo-
rithm, for learning preference relations. The computational complexity of the algo-
rithm is O.M 3r3 CM 2r2l/, where l is the number of unscored training examples,
M is the number of views, and r is the number of basis vectors. We formulate
the algorithm within the co-regularization framework, which aims at improving the
prediction performance by minimizing the disagreement of all prediction hypothe-
ses on the unscored data. In our experiments, we consider a parse ranking task and
show that the Sparse Co-RankRLS algorithm significantly outperforms the standard
RankRLS algorithm on this task.

Due to the fact that our semisupervised preference learning algorithm has a linear
complexity in the number of unscored examples, it is primarily applicable in cases
when only a small amount of scored but a large amount of unscored data is available
for training. In the future, we aim to evaluate our Sparse Co-RankRLS algorithm on
various tasks where scored data is scarce.
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Appendix

We will show that the matrix

0
BBBBB@

NG1 	2� NU t1LU NU2 : : :

	2� NU t2LU NU1 NG2 : : :

:::
:::

: : :

1
CCCCCA

is positive definite. To prove that, we decompose the above matrix into a sum of
matrices

X1 D

0

BBBBB@

NG1 	 2�.M 	 1/ NU t1LU NU1 0 : : :

0 NG2 	 2�.M 	 1/ NU t2LU NU2 : : :

:::
:::

: : :

1

CCCCCA

and

X2 D

0
BBBBB@

�.M 	 1/ NU t1LU NU1 	� NU t1LU NU2 : : :

	� NU t2LU NU1 �.M 	 1/ NU t2LU NU2 : : :

:::
:::

: : :

1
CCCCCA
:
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The matrix X1 is positive definite as each block matrix is positive definite (we
require the matrix bKv to be positive definite). Further, the matrix X2 is positive
semidefinite as we can write it as a sum of positive semidefinite matrices of the
form 0

BBBBBBBBBBBB@

0 � � � 0 � � � 0 � � � 0
:::

:::
:::

:::

0 � � � � NU ti LU NUi � � � 	� NU ti LU NUj � � � 0
:::

:::
: : :

:::
:::

0 � � � 	� NU tjLU NUi � � � � NU tjLU NUj � � � 0
:::

:::
:::

:::

0 � � � 0 � � � 0 � � � 0

1

CCCCCCCCCCCCA

D X t.i;j /X.i;j /;

where X.i;j / D �
0; : : : ; 0;

p
�P NUi ; 0; : : : ; 0;	p

�P NUj ; 0; : : : ; 0
�
. Here, the pos-

itive semidefinite matrix LU is decomposed as LU D P tP using the Cholesky
decomposition [9].
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A Survey on ROC-Based Ordinal Regression

Willem Waegeman and Bernard De Baets

Abstract Ordinal regression can be seen as a special case of preference learning,
in which the class labels corresponding with data instances can take values from
an ordered finite set. In such a setting, the classes usually have a linguistic inter-
pretation attached by humans to subdivide the data into a number of preference
bins. In this chapter, we give a general survey on ordinal regression from a machine
learning point of view. In particular, we elaborate on some important connections
with ROC analysis that have been introduced recently by the present authors. First,
the important role of an underlying ranking function in ordinal regression models
is discussed, as well as its impact on the performance evaluation of such models.
Subsequently, we describe a new ROC-based performance measure that directly
evaluates the underlying ranking function, and we place it in the more general con-
text of ROC analysis as the volume under an r-dimensional ROC surface (VUS) for
in general r classes. Furthermore, we also discuss the scalability of this measure and
show that it can be computed very efficiently for large samples. Finally, we present a
kernel-based learning algorithm that optimizes VUS as a specific case of structured
support vector machines.

1 Introduction

In many situations, humans compare items or objects to choose the appropriate item
for a specific goal. Think for example of buying clothes, listening to music, the
dish one orders in a restaurant, etc. Continually, we evaluate objects on criteria such
as appropriateness, beauty, correctness, etc. In research areas like decision mak-
ing, preference modeling, fuzzy modeling, statistics and machine learning, scientists
have proposed various ways to characterize this human behavior with mathematical
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models. In a preference modeling scope, mainly two learning settings can be distin-
guished: ranking models and pairwise preference models. The connection between
both types of models is characterized by the transitivity property, since transitive
pairwise preference models can be expressed in terms of a ranking [46, 49]. Here,
we will concentrate on a particular type of ranking problems, namely, the ordinal
regression problem, where classes typically correspond to quotations or linguistic
terms – varying from “very bad” to “brilliant” for example – that express a dif-
ference in correctness, quality, beauty, or any other characteristic of the analyzed
objects.

We will start in Sect. 2 with a general introduction to ordinal regression as a
special case of the more general ranking framework. Subsequently, in following
sections, we particularly focus on the important role of ROC analysis in ordinal
regression. In binary classification, ROC curves provide a way to select possibly
optimal models for discriminating two kinds of objects without the need of spec-
ifying the cost or class distribution. The area under the ROC curve (AUC) has
a graph–theoretic interpretation and corresponds to the Wilcoxon–Mann–Whitney
test statistic. It is nowadays commonly used as performance measure for evaluating
binary classifiers. As a consequence, it is straightforward to think of introducing
similar techniques for ordinal regression problems as well, by investigating the
underlying ranking function.

In the machine learning field, it is known that existing measures for evaluating
ordinal regression models suffer from a number of important shortcomings. Because
of that, we develop in Sect. 3 alternative measures by extending existing ROC mea-
sures for classification to ordinal regression problems, and we investigate whether
these measures can compete with the existing ones. Similar to multiclass classifica-
tion problems, we generalize the AUC and its underlying probabilistic interpretation
to ordinal regression problems such that it now corresponds to the volume under
an r-dimensional surface (VUS) for r ordered classes. By counting the number of
correctly ranked r-tuples consisting of one data object of each class, VUS rather
evaluates the ranking returned by an ordinal regression model instead of measuring
the error rate. This is a way of thinking which is especially advantageous in case of
skew class or cost distributions. We give theoretical and experimental evidence of
the advantages and different behavior of VUS compared to error rate, mean abso-
lute error, and other ranking-based performance measures for ordinal regression.
The results demonstrate that the models produced by ordinal regression algorithms
minimizing the error rate or a pairwise error function not necessarily impose a good
ranking on the data.

The computation of VUS as well as the U-statistics estimators of its variance and
covariance for two models is believed to be complex. That is why we analyze its
scalability in Sect. 4, where new algorithms to compute VUS and its (co)variance
estimator are presented. In particular, the volume under the ROC surface can be
found very efficiently with a simple dynamic program dominated by a single sorting
operation on the data set. Simulation experiments confirm that the presented algo-
rithms scale well with respect to the size of the data set and the number of classes.
For example, the volume under the ROC surface could be rapidly computed on very
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large data sets of more than 500,000 instances, while a naive implementation spent
much more time on data sets of size less than 1,000.

Finally, in Sect. 5 we discuss how VUS can be embedded as a loss function in
a learning algorithm, unlike the conventional approach of minimizing the pairwise
error. This leads to a new type of kernel method based on structured support vector
machines. This method tries to optimize the fraction of correctly ranked r-tuples.
A large number of constraints appear in the resulting quadratic program, but the
optimal solution can be computed in O.n3/ time for samples of size n with a cutting
plane algorithm and graph-based techniques. Our approach can offer benefits for
applications in various domains. On various synthetic and benchmark data sets, it
outperforms the pairwise approach for balanced as well as unbalanced problems. In
addition, scaling experiments confirm the theoretically derived time complexity.

2 Ordinal Regression as a Special Case of Ranking

We start by introducing some notations. Let us assume that examples, training
data as well as test data, are identically and independently drawn according to an
unknown distribution D over X �Y with X the object space and Y the set of labels.
As mentioned above, Y D fC1; : : : ; Crg will be an ordered set of class labels con-
taining r elements. The conditional distribution of an object given that it belongs to
class Ck will be denoted Dk . Furthermore, a data set of size n, i.i.d. according to
D, will be denotedD D f.x1; y1/; : : : ; .xn; yn/g and it will contain nk elements of
class Ck .

During the last decade, a lot of interesting papers on ordinal regression and the
related setting of pairwise preference learning have appeared in the machine learn-
ing community [3,5–12,15,16,23,24,26,31,32,35,41,44,45,51,52,55,56,58,64,66].
We do not intend to explain all these approaches in detail, but we will rather focus
on the common aspects.

2.1 Formal Definition of an Ordinal Regression Model

Formally speaking, an ordinal regression model h W X ! Y maps a data object to
one of the classes of Y . The vast majority of existing ordinal regression models can
be represented in the following general form

h.x/ D
8
<

:

C1; if f .x/ < b1;
Ck; if bk�1 < f .x/ � bk; k D 2; : : : ; r 	 1;

Cr ; if f .x/ > br�1;
(1)

with b1; : : : ; br�1 free parameters and f W X ! R any function that assigns a real
value to a data object. It is possible to impose an ordering on a sequence of data
objects with f and therefore it is commonly referred to as a ranking function. In
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this way, consecutive quality levels are modeled by consecutive intervals on the real
line. This is a direct extension of binary classification, where only two intervals are
considered and a single threshold b defines in the linear case a hyperplane perpen-
dicular to the discriminant function. Roughly speaking, we will consider in general
r	1 hyperplanes for linear ranking functions in an r-class ordinal regression setting.

Ordinal regression models with an underlying ranking function like (1) have less
parameters compared to their multiclass classification counterparts: with r classes, r
ranking functions are inferred in a one-versus-all ensemble [53] and even r.r 	 1/=2

functions are inferred in a one-versus-one ensemble [25, 33]. Owing to this simpli-
fication, one can often interpret ordinal regression models more easily and less data
is required to get stable estimates of the parameters and the predictions. In Fig. 1,
we give a graphical illustration of the reduced complexity of an ordinal regression
model compared to a multiclass classification model.

Yet, can the reduction to a single ranking on the other hand result in a too simple
model? The answer is usually no, since in any realistic application of ordinal regres-
sion the assumption that the humanly assigned ordinal labels originate from a latent
(thus unobserved) continuous variable is made. In some way, the ranking function of
the ordinal regression model represents this latent variable. Moreover, by inferring
a single function, ordinal regression models also reduce the possibility of making
“big” errors, i.e., misclassifying objects into a much lower or higher class than the
real one. In exceptional cases, when such an underlying latent variable is missing,
the data might be too complex to be modeled with a single ranking function. Then,
a multiclass classification scheme would be preferred [38,56]. We will not consider
that kind of problems in this work. On the other hand, one can also wonder whether
a multiclass classification model can be simplified to an ordinal regression model in
some occasions. The answer to that question can be found in [59, submitted].

The vast majority of existing methods for ordinal regression comply with the
assumption of an underlying latent variable and can therefore be represented as (1).
This holds for example for traditional statistical methods [2], kernel methods
[10, 55], Bayesian approaches [7]), ordinal decision trees [23, 41], neural mod-
els [16], etc. Since this work will not concentrate on clarifying the main differ-
ences between these approaches, we will not give a detailed explanation of all of
them. Hereunder, the proportional odds model and the basic kernel-based ordinal
regression model are presented.

2.2 The Proportional Odds Model

In statistics, the proportional odds model [47] is without doubt the best known and
most applied technique to represent ordinal responses. This kind of model involves
modeling cumulative logits. Given a data setD � X �Y , the cumulative probability
of observing an outcome greater than or equal to Ck is defined as follows:

Pik D Prfyi � Ck j xig;



A Survey on ROC-Based Ordinal Regression 131

(a) A linear one-versus-one classifier.

(b) A linear ordinal regression model.

(c) A non-linear ordinal regression model.

Fig. 1 Graphical illustration of the difference between one-versus-one multiclass classification
and ordinal regression models. A three-class hypothetical data set is considered



132 W. Waegeman and B. De Baets

1

0.8

0.6

0.4

P

0.2

0
-4 -3 -2 -1 0

x
1 2 3

1 vs 2+
1,2 vs 3+
1,2,3 vs 4

4

Fig. 2 An example of a proportional odds model with a one-dimensional input and four classes

for i D 1; : : : ; n and k D 1; : : : ; r . Similar to the logistic regression model for
binary responses, the proportional odds model fits a linear model to the log-odds of
these cumulative probabilities, i.e.,

log
	 Pik

1 	 Pik



D w � xi C bk;

for i D 1; : : : ; n and k D 1; : : : ; r . Note that this construction can be translated
into (1). Since a single vector w of parameters is used, the model has the same
effect for each class. As a consequence, all response curves for individual classes
have the same shape. They share exactly the same rate of increase or decrease but
are horizontally displaced by the thresholds bk . An example is given in Fig. 2. One
can see that the proportional odds model is a direct generalization of the logistic
regression model by considering a threshold for each class [2]. If a different slope
for each class would be considered too, a one-versus-one ensemble with logistic
regression models as binary classifiers would be obtained.

Remark that the proportional odds model can easily be generalized to nonlinear
ranking functions by putting

log
	 Pik

1 	 Pik



D f .xi /C bk; (2)

but much of its interpretability gets lost.
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2.3 Support Vector Ordinal Regression

The support vector ordinal regression algorithm has been introduced in [55] as
a direct generalization of SVMs to more than two ordered classes. Later, this
algorithm was enhanced in [9, 10] by repairing some shortcomings of the initial
algorithm. They actually presented two slightly different support vector approaches
to ordinal regression. We will only expound one of them, namely the version with
implicit constraints on the thresholds. Similar to other kernel methods, we consider
a model of the form

f .x/ D w � �.x/;
corresponding to a linear function in a given feature space of basis expansions [17,
54]. This model acts as a ranking function that forms the basis of (1). In this way, the
thresholds can be interpreted as hyperplanes in kernel space that lie perpendicular
to the direction w. According to Tikhonov regularization, the vector w and r 	 1

thresholds bk are inferred such that the weighted sum of the error on training data
and the regularizer 1

2
jjwjj2 are minimized. Errors occur when an object of class Ck

does not lie in the part of the space defined by the thresholds bk�1 and bk . When
more than one hyperplane is located in between the part of the space defined by
the real and the predicted class, then all these errors will be taken into account
separately. This is known as an all-threshold loss function [52]. Similar to the SVM,
individual errors are denoted with slack variables �. Let us introduce xki to denote the

i th object of class Ck and �j
ki

to denote the slack variable associated with this object
on threshold bj , then we arrive at the following (primal) optimization problem:

min
w;bk

1

2
jjwjj2 C C

r�1X

jD1

 
jX

kD1

nkX

iD1
�
j

ki
C

jX

kD1

nkX

iD1
�

j
ki

!

subject to

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

w � �.xki /	 bj � 	1C �
j

ki
;

�
j

ki
� 0;

for k D 1; : : : ; j and i D 1; : : : ; nk I
w � �.xki /	 bj � C1 	 �
j

ki
;

�

j
ki

� 0;

for k D j C 1; : : : ; r and i D 1; : : : ; nk ;

(3)

where j runs over 1; : : : ; r	1. A visualization of the all-threshold loss function and
the resulting active constraints is given in Fig. 3.

Like for other kernel methods, the transformation to the basis � must not be com-
puted explicitly due to the kernel trick. Optimization problem (3) can be rewritten
in terms of dot products by introducing Lagrange multipliers. The dual problem is
optimized by a variant of the sequential minimal optimization algorithm for support
vector machines [50]. More details about the derivation of the dual problem and the
implementation can be found in [10].
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Fig. 3 An example to illustrate the all-threshold loss function of the support vector ordinal regres-
sion method. The red lines denote active slack variables �. As shown in the figure, the misclassified
red data object gives rise to two active slack variables, since two hyperplanes are situated in
between its predicted class and its real class. On the other hand, only one slack variable becomes
active for the misclassified green and blue data objects

3 ROC Analysis in Ordinal Regression

Different measures are used in the literature to evaluate the performance of an
ordinal regression model. Although it is established that accuracy has serious short-
comings, various authors nowadays still report it as a measure of the goodness of
fit of an ordinal regression model. Accuracy gives a biased view of the perfor-
mance, because it does not take into account the magnitude of an error. For example,
misclassifying an object of class C4 into class C1 is a more serious error than mis-
classifying it into class C3. Other frequently used measures that take the magnitude
between the real and the predicted class into account are the mean squared error and
the mean absolute error (MAE), i.e.,

MAE.h;D/ D 1

n

nX

iD1
jh.xi / 	 yi j: (4)

However, here one assumes a metric on the output space Y , but no metric can be
defined on an ordinal scale. So, the use of mean squared error and mean absolute
error in ordinal regression settings should be avoided too.

In the statistical literature, often the C-index or concordance index is reported as
a measure of the goodness of fit. This measure is an estimator of the concordance
probability of an ordinal regression model by counting the number of (lower-class;
higher-class) object couples that are correctly ranked by the model [27]. Compared
to the mean squared error, it has the important advantage that no metric on Y is
required. Given a model h W X ! Y defined by (1), the C-index ignores the thresh-
olds bk and assesses the predictive power of f . In machine learning, it is often
replaced by the equivalent pairwise error [35]. The C-index is formally given by:

bU pairs.f;D/ D 1P
Ck<Cl

nknl

X

yi<yj

If.xi /<f.xj /;
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with I the indicator function returning 1 when its argument is true and zero other-
wise. Thus, bU pairs.f;D/ counts the number of couples of objects in the data set D
correctly ranked by the franking function f . It yields an unbiased estimate of the
probability that the order of two objects .X1; Y1/ and .X2; Y2/, independently drawn
from D, is consistent with the order of their class labels, i.e.,

Upairs.f / D Pr.X1;Y1/;.X2;Y2/	D
˚
f .X1/ < f .X2/ j Y1 <Y Y2

�
:

Remark that <Y denotes the linear order relation on the classes. One can easily ver-
ify that bU pairs.f;D/matches the area under the ROC curve (AUC) when Y contains
only two labels. For more than two classes, bU pairs.f;D/ is related to the multiclass
AUC of [28] for evaluating one-versus-one multiclass classification models. The
one-versus-one multiclass AUC simply takes the average over the AUCs measured
on binary scoring classifiers for all pairs of classes. Contrary to multiclass classifi-
cation, let us now employ the same ranking function for each pair of classes, then
we get the following performance measure

bU ovo.f;D/ D 2

r.r 	 1/
X

k<l

bAkl.f;D/;

bAkl.f;D/ D 1

nknl

X

yiDCk

X

yjDCl

If.xi /<f.xj /; (5)

withbAkl.f;D/ the AUC obtained when only objects of classes Ck and Cl are consid-
ered. In nonparametric statistics, bU ovo.f;D/ is known as the Jonckheere–Terpstra
statistic, a more powerful alternative to the Kruskal–Wallis statistic for simultane-
ously testing whether more than two ordered populations significantly differ [37].
bU ovo.f;D/ yields un unbiased estimate of

Uovo.f / D 2

r.r 	 1/

X

k<l

PrX1	Dk;X2	Dl

˚
f .X1/ < f .X2/

�
:

Like bU ovo.f;D/, bU pairs.f;D/ can also be expressed in terms of binary AUCs:

bU pairs.f;D/ D 1P
Ck<Cl

nknl

X

k<l

nknlbAkl .f;D/:

Evaluating the ranking by pairwise comparisons might in many cases not be the best
option. This is for example the case in information retrieval applications, where
typically one is primarily interested in the top of the ranking. Measures such as
normal discounted cumulative gain and mean average precision better reflect the
desired performance in information retrieval applications. To this end, several rank-
ing methods that concentrate on learning the top of the ranking have been proposed
recently, see e.g., [5, 11].
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The idea of focusing on correctly predicting the top of the ranking might be
advisable for other application domains as well, but correctly predicting one end
of the ranking does not have to be important in general. One could be interested in
correctly predicting the top and the tail simultaneously, or, in other situations, all r
classes could be equally important. The first situation, for example, arises when the
ordinal levels express a linguistic degree of uncertainty about the class of the object,
which is typical for label assignments by humans. When the goal does not consist
of predicting the top end of the ranking correctly, the traditional pairwise approach
might manifest important shortcomings as well. The main reason is that the pairwise
approach to evaluation, as well as the multiclass AUC, subdivides the performance
evaluation into evaluations of pairs of classes individually. However, the observed
trend might be substantially different for each pair of classes. Let us illustrate this
claim with a rather extreme example. Table 1 gives an overview of a hypothetical
ranking of a data set containing 18 instances from three ordered classes. Computing
the AUC for each pair of classes yields:

bA1;2.f;D/ D 0:556; bA2;3.f;D/ D 0:694; bA1;3.f;D/ D 0:419:

Intuitively, one would expect that

bA1;3.f;D/ � maxfbA1;2.f;D/;bA2;3.f;D/g:

In preference modeling, this property is known as strong stochastic transitivity.
However, the pairwise AUC as defined by (5) is in the example even not weakly
stochastically transitive, i.e.,

bA1;3.f;D/ � 1

2
;

does not hold. The pairwise AUC can be interpreted as a specific type of proba-
bilistic relation that was introduced recently for comparing collections of dice and
independent random variables in a pairwise manner. Such probabilistic relations
exhibit a specific type of cycle-transitivity, namely dice-transitivity [20, 21], which
is much weaker than strong stochastic transitivity. We refer to [18, 19] for an
introduction to the general framework of cycle-transitivity and the various types
of transitivity it covers. Here, we only want to illustrate that both bU pairs.f;D/ and
bU ovo.f;D/ can yield quite inconsistent performance evaluations with regard to the

Table 1 A hypothetical example of a data set containing 18 objects with three possible labels to
illustrate the inconsistency that can occur when the ranking function is evaluated with pairwise
comparisons. The ordering of the objects in the table represents the obtained ranking, increasing
from left to right (example taken from [20])

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yi C3 C1 C1 C1 C2 C2 C2 C2 C2 C3 C3 C3 C3 C3 C1 C1 C2 C1
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performance on each pair of classes individually, because they are constructed from
binary AUCs. This effect was, for example, observed for unbalanced data sets in
[64]. When the data set is very unbalanced, models minimizing the pairwise error
might overfit on the most occurring classes and these classes are often not the classes
in which one is the most interested.

We aim to assess the ranking in a global way instead of considering pairwise
comparisons. Therefore, let us consider the following probability:

U.f / D PrXk	Dk

n
f .X1/ < : : : < f .Xr /

o
;

which is an evident generalization of the concept of expected ranking accuracy
introduced in [1] for bipartite ranking. Contrary to Upairs.f /, U.f / can be nat-
urally expressed in terms of the conditional distributions Dk . As for the AUC, a
nonparametric unbiased estimator of U.f / is given by

bU .f;D/ D 1Qr
kD1 nk

X

yj1
<:::<yjr

If.xj1
/<:::<f.xjr /

:

We refer to [43] for an in-depth explanation why the U-statistics estimators pre-
sented in this article are unbiased estimators. Instead of counting the number of
correctly ranked object couples, we now examine all sequences of r objects, one of
each class. Furthermore, bU .f;D/ has a geometrical interpretation. Several authors
[22, 48, 63] remarked that bU .f;D/ corresponds to the volume under the ROC sur-
face (VUS) for r ordered classes.1 In this case, the ROC space is spanned by the
true positive rates of each class (i.e., the fraction of correctly classified instances of
that class).

Theorem 1 ([63]). Given a ranking function f W X ! R that imposes a rank-
ing over a data set D � X � Y , then bU.f;D/ corresponds to the volume under
the r-dimensional ROC surface (VUS) spanned by the true positive rates of each
class.

For three ordered classes, the ROC surface can be visualized. We have constructed
this ROC surface for a synthetic data set. We sampled 3 � 100 instances from 3

bivariate Gaussian clusters representing consecutive classes. The mean of the clus-
ters was set to (10,10), (20,10) and (20,20) respectively, �1 and �2 were set to 5 for
the first two clusters and �3 was set to 7 for the last cluster. 	 was fixed to 0. This
data set is visualized in Fig. 4a. We used the support vector ordinal regression algo-
rithm of [9] to estimate the ranking function f , without looking at the thresholds.
The obtained ROC surface is shown in Fig. 4b.

1 Unlike Nakas and Yannoutsos [48] who mainly place ROC analysis in a medical decision-making
perspective, we rather focus on its use in a machine learning context. The approach in [22] is
limited to the three-class case.
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(a) A synthetic data set with three bivariate Gaussian clusters
representing three ordered classes with respective means (10,10),
(20,10) and (20,20). The standard deviation was set to (5,5) for the
first two clusters and to (7,7) for the last cluster, while � was fixed
to 0.
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(b) The ROC surface obtained for the synthetic data set given in (a) and the ranking
returned by a support vector ordinal regression algorithm.

Fig. 4 The ROC surface visualized for a three-class ordinal regression data set

In [63], several experiments were reported to illustrate that different models
will be obtained when different performance measures are optimized in an ordinal
regression setting. In one of these experiments, the multiobjective particle swarm
optimization algorithm MOPSO was used to find the tradeoff between different per-
formance measures in the region of the hypothesis space where the better solutions
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Fig. 5 The set of nondominated solutions aggregated from 20 runs of the MOPSO-algorithm. The
six-dimensional Pareto front is plotted as a matrix of two-dimensional scatter plots showing the
tradeoff for each pair of objectives

are located. Six different objectives were considered, namely accuracy (or equiva-
lently “1 - mean zero-one error”), “1 - mean absolute error”, bU.f;D/, bU ovo.f;D/,
bU pairs.f;D/ and a sixth objective bU cons.f;D/ that is similar to bU ovo.f;D/, but not
further discussed due to lack of space. The algorithm was executed 20 times for 100
iterations with a population of 500 particles and different seeds for the random gen-
erator. In all runs, the nondominated solutions found during the search were stored
in a repository and afterward the global nondominated set of these 20 repositories
was computed. This set is visualized by a matrix of two-dimensional Pareto fronts
in Fig. 5.

One can easily see that none of the six measures manifests a monotone rela-
tionship with another. Accuracy and mean absolute error, on the one hand, and the
ranking-based measures, on the other hand exhibit a relatively large tradeoff, as
almost all solutions lie on the two-dimensional front. The ranking-based perfor-
mance measures give also rise to tradeoffs, but here the monotonic association is
more prominent. The multiclass approaches bU cons.f;D/ and bU ovo.f;D/ turn out
to approximate the behavior of bU .f;D/ better than simply counting all correctly
ordered pairs. Apparently, for bU pairs.f;D/ the optimal models are biased toward
correctly ranking the biggest classes (due to the skew class distribution, the data set
contains only 640 object pairs of classes C4 and C5 compared to more than 15,000
object pairs of the biggest classes C1 and C2). Methods minimizing the error rate or
the number of incorrect instance pairs hence will both overfit on the biggest classes.
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4 Scalability Aspects

In the previous section, the concept of an ROC curve was generalized to an
r-dimensional surface for r ordered classes so that the volume under this ROC sur-
face (VUS) measures the overall power of an ordinal regression model to classify
objects of the various classes. However, the computation of this criterion as well as
the U-statistics estimators of its variance and covariance for two models is believed
to be complex. New algorithms to compute VUS and its (co)variance estimator are
presented in this section. In particular, the volume under the ROC surface can be
found very efficiently with a simple dynamic program dominated by a single sorting
operation on the data set.

4.1 Variance and Covariance Estimators of VUS

As mentioned, the generalization of ROC analysis presented in the previous chapter
has been reported in [22, 48] from a medical decision making perspective, in which
the observed numbers are treated as random variables instead of outcomes of an
ordinal regression model. Based on U-statistics, these authors derive expressions for
the variance of the volume under the ROC surface and the covariance of the volumes
obtained for two different ranking functions f1 and f2, as well as nonparametric
estimators of these quantities. We briefly recapitulate their observations. To this
end, let us define � as the set of all splits of Y into two (possibly empty) disjoint
parts, i.e.,

� WD f.Z1;Z2/ j Z1 [ Z2 D Y ^ Z1 \ Z2 D ;g:
Let f W X ! R be a fixed ranking function and let D � X � Y be any data set of
size n identically and independently distributed according to D with nk instances
sampled according to Dk as defined in Sect. 2, then Nakas and Yiannoutsos define
the variance of the volume under the ROC surface as:

�2U .f / D 1Qr
kD1 nk

X

.Z1;Z2/2�

	 Y

Cl2Z2

.nl 	 1/


.qv.f;Z1;Z2/ 	 U.f /2/:

In this expression, qv.f;Z1;Z2/ is still undefined. For each .Z1;Z2/ 2 � , we
introduce random variablesXi and X 0i as follows:

Xi � Di ; 8i W Ci 2 Y;
X 0i D Xi ; 8i W Ci 2 Z1;
X 0i � Di ; 8i W Ci 2 Z2:

Then qv.f;Z1;Z2/ is defined as:

qv.f;Z1;Z2/ D Pr
n
.f .X1/ < : : : < f .Xr // ^ .f .X 01/ < : : : < f .X 0r//

o
:
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The measure qv.f;Z1;Z2/ represents the probability that two r-tuples are cor-
rectly ranked by the ranking function f , in which each r-tuple is randomly sampled
according to D1 � : : : � Dr with the restriction that the objects sampled from the
classes Ck 2 Z1 are identical. Thus, we consider a single random variable for classes
Ck 2 Z1 and two random variables for classes Ck 2 Z2. This expression for the
variance is a natural extension of the one in the binary case [14, 29, 30].

The variance of the volume under the ROC surface still depends on the unknown
distribution D of the data but can be estimated from a fixed data set D � X �Y , by
estimating U.f / and qv.f;Z1;Z2/ fromD, i.e.,

b�2U .f;D/ D 1Qr
kD1 nk

X

.Z1;Z2/2�

	 Y

Cl2Z2

.nl 	 1/


.bqv.f;D;Z1;Z2/ 	 bU .f;D/2/:

We first introduce

n WD
rY

kD1
nk

Y

Cl2Z2

nl ;

and a shorter notation for the indicator function of a given ranking function and a
k-tuple, i.e.,

If .j1; : : : ; jk/ WD Iff.xj1
/<:::<f.xjk

/g:

Using these notations, the following estimator for qv.f;Z1;Z2/ is proposed:

bqv.f;D;Z1;Z2/ D 1

n

X

yj1
<:::<yjr

X

y
j 0

1
<:::<y

j 0

r

8Ck2Z1WjkDj 0

k

If .j1; : : : ; jr / � If .j 01; : : : ; j 0r /:

This estimator counts the number of couples of r-tuples that are correctly ranked
by f , with the restriction that the data objects sampled from Dk must be identical
objects when Ck 2 Z1.

A similar strategy can be followed to derive an expression for the covariance of
the volumes obtained for two ranking functions f1 and f2, i.e.,

CovU .f1; f2/ D 1Qr
kD1 nk

X

.Z1;Z2/2�

	 Y

Cl2Z2

.nl 	 1/



(6)

.qc.f;Z1;Z2/ 	 U.f1/ � U.f2//

and

qc.f1; f2;Z1;Z2/ D Pr
n
.f1.X1/ < : : : < f1.Xr// ^ .f2.X 01/ < : : : < f2.X 0r//

o
;
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with X1; : : : ; Xr ; X 01; : : : ; X 0r random variables as formerly defined. We derive a
nonparametric unbiased estimator in the same way as for the variance, i.e.,

bqc.f1; f2;D;Z1;Z2/ D 1

n

X

yj1
<:::<yjr

X

y
j 0

1
<:::<y

j 0

r

8Ck2Z1WjkDj 0

k

If1
.j1; : : : ; jr /

�If2
.j 01; : : : ; j 0r /: (7)

Then an unbiased estimator of the covariance bCovU .f1; f2;D/ is obtained by
inserting this estimator in (6).

Let us now analyze the computational complexity of the estimators. For the esti-
mation of U.f /, all r-tuples are examined and hence, this number rapidly grows
when the sample size or the number of classes increases. For a five-class ordinal
regression data set with 20 instances per class, 3,200,000 such r-tuples can be
formed! In general, the number of different r-tuples to be analyzed on a data set
of n elements and r classes is of the order O.nr /.

For the covariance (and consequently also for the variance as �2U .f / D CovU
.f; f /) all splits of Y are considered. The procedure for estimating qc.f1; f2;Z1;
Z2/ and qv.f;Z1;Z2/ thus must be repeated 2r times, but fortunately this is not a
big issue since in realistic ordinal regression applications r will only occasionally
exceed 10. Again, the inspection of r-tuples gives rise to the biggest bottleneck.
Now couples of r-tuples with at most 2r different objects are investigated. As
a result, the estimation of qc.f1; f2;Z1;Z2/ and qv.f;Z1;Z2/ by exhaustively
examining all couples of r-tuples is here for some splits of Y of the order O.n2r /.

Naive exhaustive implementations of the estimators for U.f /, its variance and
covariance, in which the indicator function is verified on all r-tuples (or couples of
r-tuples), will become computationally heavy for large data sets. Fortunately, much
faster algorithms can be constructed by using some combinatorial tricks. To that
end, the estimators are reformulated in terms of graphs. We start with recapitulating
some basic material on graph theory.

4.2 Algorithm for Computing VUS

In order to present a better algorithm for VUS, we first introduce some basic graph
concepts. Formally, let us define a graph G D .V;E/ as a data structure consisting
of a set of vertices or nodes V and a set of edges E , where an edge e 2 E corre-
sponds to a relation between two elements v; v0 2 V , denoted as e D .v; v0/. We will
only consider directed graphs, which means that E contains couples (ordered pairs)
of instances. In a weighted graph G D .V;E;w/, there is an additional function
w W E ! R defined on the edges. Next, in a bipartite graph the set of vertices V
can be split into two disjoint subsets V1 and V2 so that no two nodes from the same
subset are connected. In a multipartite graph, this property extends to splits of V
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into more than two subsets V1; : : : ; Vk . Finally, in a layered graph the set of vertices
can be split into k ordered subsets (or layers) V1; : : : ; Vk so that any edge connects
nodes from successive layers. We will call a layered graph complete when any two
nodes from successive layers are connected.

Definition 1. Let f W X ! R be a function that imposes a ranking on an i.i.d.
data set D and let Y contain r categories, then we define the �-graphG.f;D/ D
.V;E/ of f and D as a directed weighted layered graph with r C 2 layers V D
.V0; : : : ; VrC1/ in which a node of layer Vk is associated with any element in the
data set of category Ck , for k D 1; : : : ; r . The first and last layers contain only a
start node (source) and an end node (sink) without a reference to any element of the
data set (V0 D fvsg; VrC1 D fveg). All nodes of successive layers are connected
and the weight of the edge e D .v1; v2/ connecting the nodes v1 D .x1; y1/ 2 Vk
and v2 D .x2; y2/ 2 VkC1 is defined as:

w.e/ D
�C1; if k 2 f0; rg
f .x2/	 f .x1/; if k 2 f1; : : : ; r 	 1g:

Remark that a layered graph simply means a graph for which the set V of nodes can
be subdivided into a number of subsets (in this case V1; : : : ; Vr ) such that all edges
in the graph only connect nodes of consecutive subsets, thus nodes of layer Vl can
only be connected with nodes of layers Vl�1 and VlC1.

Definition 2. Let f W X ! R be a function that imposes a ranking on an i.i.d. data
set D, let G.f;D/ D .V;E/ be the corresponding�-graph, then we define a path
$ between vs and ve as a sequence of r C 1 edges$ D .e1; : : : ; erC1/ connecting
vs and ve, i.e.,

e1 D .vs ; v1/;

e2 D .v1; v2/;
:::

er D .vr�1; vr/;
erC1 D .vr ; ve/:

The set of all paths connecting vs and ve will be denoted� .

Lemma 1. Let f W X ! R be a function that imposes a ranking on an i.i.d. data
set D, let G.f;D/ D .V;E/ be the corresponding �-graph with � the set of
paths connecting source and sink, then

bU .f;D/ D jf$ 2 � j 8e 2 $ W w.e/ > 0gjQr
kD1 nk

:
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Fig. 6 The �-graph visualized for a hypothetical ranking on 10 data objects (see text for further
details)

In order to clarify these graph concepts a small example is given. Let us consider a
data set of 10 instances for which the following hypothetical ranking is obtained:

i 1 2 3 4 5 6 7 8 9 10
yi C1 C2 C1 C3 C2 C3 C1 C2 C3 C3
f .xi / 1 2 4 5 8 11 12 16 17 20

The �-graph characterizing this data set is visualized in Fig. 6. One can verify by
enumeration that for this small data set 16 of the 27 paths from the start to the end
node consist of solely positive edges, resulting in a volume under the ROC surface
of 16/27. The �-graph forms one of the main building blocks in the next section
to construct a learning algorithm, but bU .f;D/ itself can be found very efficiently
without constructing the graph.

Definition 3. Let Zk D fC1; : : : ; Ckg contain the first k elements of Y and let D �
X � Y be a data set sorted according to a ranking function f W X ! R, i.e.,

8i; j 2 f1; : : : ; ng W i < j ) f .xi / < f .xj /;
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then, for any p � n, we define the function � by:

�.f;D;Zk ; p/ D
X

yj1
<:::<yjk8Cl2Zk Wjl�p

If .j1; : : : ; jr /:

�.f;D;Zk ; p/ can be interpreted as the number of correctly ordered k-tuples
occurring in the first p elements of the data set D, where a k-tuple, as defined
in Sect. 4.1, consists of a sequence of one randomly drawn element of each of the k
lowest classes that is part of the first p elements of the data set D.

Proposition 1. Given a ranking function f W X ! R that imposes a ranking on a
data set D � X � Y , bU .f;D/ can be computed in O.nlog.n// time.

We construct a fast algorithm by writing � as a recurrence equation. Let the data
set D be sorted according to f . From the definition of �.f;D;Z; p/ it follows that

bU .f;D/ D 1Qr
kD1 nk

�.f;D;Y; n/:

We can write �.f;D;Zk ; p/ as a recurrent function:

�.f;D;Zk ; p/D
�
�.f;D;Zk ; p 	 1/; ifyp ¤ Ck;
�.f;D;Zk ; p 	 1/C �.f;D;Zk�1; p 	 1/; ifyp D Ck;

(8)

for k D 2; : : : ; r and for p D 1; : : : ; n. For k D 1 and p D 1; : : : ; n, we have:

�.f;D;Z1; p/ D
�
�.f;D;Z1; p 	 1/; if yp ¤ C1;
�.f;D;Z1; p 	 1/C 1; if yp D C1:

In addition, the starting values (p D 0) are:

�.f;D;Zk ; 0/ D 0;

for k 2 f1; : : : ; rg. Algorithm 1 computes bU .f;D/ in O.nlog.n// time. Instead of
implementing�.f;D;Y; n/ recursively, this simple dynamic program computes the
desired quantity in one iteration over the sorted data set. The algorithm is dominated
by the sorting of D according to f , which takes O.nlog.n// time.

We demonstrate Algorithm 1 on the ranking function and hypothetical data set
of Table 2. In this example, the cardinality of Y is r D 5. The labels yi of a fictive
data set are shown and it is also assumed that the data set is sorted according to a
fictive ranking function f1. Our algorithm computes the number of correctly ordered
r-tuples in one iteration over the data. For example, the r-tuple .1; 2; 4; 7; 12/ is
correctly ranked by f1 and the r-tuple .1; 5; 4; 7; 12/ is incorrectly ranked because
the object of class C3 precedes the object of class C2. An overview of the subsequent
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Algorithm 1 Computation of bU .f;D/.
Input: data set D D f.x1; y1/; : : : ; .xn; yn/g, ranking function f
Sort D according to f
Initialize �.f;D;Zk/ D 0 for k D 1; : : : ; r

for j D 1 to n do
yj corresponds to class Ck
if k D 1 then
�.f;D;Z1/ �.f;D;Z1/C 1

end if
if k > 1 then
�.f;D;Zk/ �.f;D;Zk/C �.f;D;Zk�1/

end if
end for
bU.f;D/ D 1Qr

kD1 nk
�.f;D;Zr /

Output:bU.f;D/

Table 2 Algorithm 1 for the computation ofbU.f;D/ demonstrated on a hypothetical data set D
and fictive ranking function f . In this example, it is assumed that the data is ranked from left to
right. This results in 78 of the 432 different r-tuples that are correctly ranked, giving a volume
under the ROC surface of 0.181

Steps in the algorithm

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
yi C1 C2 C1 C3 C2 C3 C4 C1 C2 C3 C4 C5 C4 C5 C3 C4 C5
�.f1;D;Z1/ 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
�.f1;D;Z2/ 0 1 1 1 3 3 3 3 6 6 6 6 6 6 6 6 6
�.f1;D;Z3/ 0 0 0 1 1 4 4 4 4 10 10 10 10 10 16 16 16
�.f1;D;Z4/ 0 0 0 0 0 0 4 4 4 4 14 14 24 24 24 40 40
�.f1;D;Z5/ 0 0 0 0 0 0 0 0 0 0 0 14 14 38 38 38 78

steps in the algorithm after sorting the data set is given and one can see that for this
example 78 of the 3 � 3 � 4 � 4 � 3 D 432 r-tuples are correctly ranked resulting
in a volume of 0.181.

So, the construction of the �-graph can be avoided for the computation of VUS.
In [62], we considered similar graph–theoretic reformulations for the variance and
covariance estimators. Unlike the computation of VUS, these reformulations really
helped to construct scalable algorithms for the variance and covariance estimators.
In a nutshell, the estimators were reformulated in terms of recurrent functions over
graphs and we showed that with dynamic programming techniques for evaluat-
ing the recurrent functions, much faster algorithms could be constructed compared
to exhaustive algorithms that evaluate all r-tuples. In particular, O.2rn2/ and
O.2rn4/ algorithms were designed for estimating the variance and the covariance
respectively.

Simulations confirmed our theoretical observations and showed that the algo-
rithms for computing bU .f;D/ andb�2U .f;D/ are applicable to very large data sets.
Our algorithm for computing the covariance estimator resulted in a smaller time
gain compared to an exhaustive algorithm, but still scaled well with increasing r .
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5 Optimizing VUS with Structured SVMs

As a final step, we develop in this section a learning algorithm that optimizes
bU .f;D/ or, equivalently, that learns a layered graph with a maximal number of
paths connecting source and sink. It means that we will convert bU.f;D/ into a
suitable loss function to embed it into the framework of kernel methods. We add
the large margin principle to our framework by constructing a loss function from
bU .f;D/. Therefore, we will define a single slack variable for each r-tuple in the
data set. Given a data set D we will use the shorthand notation for j D .j1; : : : ; jr /

to denote an r-tuple. We introduce S as the set of all r-tuples in D, i.e.,

S WD fj D .j1; : : : ; jr / j yj1
< : : : < yjr

g;

and the symbol s D jSj D Qr
kD1 nk will represent the cardinality of this set. Let us

consider such an r-tuple j of data objects, then we define the corresponding slack
variable �j as

�j D max
n
0; max
k2f1;:::;r�1g

f1 	 .f .xjkC1
/ 	 f .xjk

//g
o
:

This means that the slack variable �j of an r-tuple j will differ from zero only
when the difference of the function values of any couple of consecutive elements
of the r-tuple is less than one. In particular, �j will take 1 minus the lowest value of
these r 	 1 differences in function values for any couple of consecutive objects in
the r-tuple j, or, in terms of the �-graph, �j equals 1 minus the weight of the edge
with the lowest weight on the path from source to sink defined by the r-tuple j.

Let us consider learning in reproducing kernel Hilbert spaces F induced by a
kernel functionK W X 2 ! R and let us minimize a regularized risk functional, then
the learning algorithm can be summarized as finding the function bf 2 F such that:

bf D arg min
f 2F

n
�.f;D/C �J.f /

o

with � a sample-based loss which is in our case defined as

�.f;D/ D
X

j2S
�j;

J W F ! R a penalty functional defining the complexity of a particular ranking
function and � a regularization parameter. For the time being, let us suppose that
the feature map � for which K.x1; x2/ D �.x1/ � �.x2/ is known, then we are
learning ranking functions of the form f .x/ D w � �.x/ and the corresponding
penalty functional is defined by

J.f / D 1

2
jjwjj2:
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Similar to the C -formulation of the support vector machine [4] or the kernel-based
ordinal regression method of [35], we arrive at the following primal optimization
problem:

min
w;�j

1

2
jjwjj2 C C

X

j2S
�j

subject to

8
<

:

mink2f1;:::;r�1g
˚
w � ı.j; k/� � 1 	 �j

�j � 0

j 2 S
(9)

in which we used the shorthand notation ı.j; k/ WD �.xjkC1
/ 	 �.xjk

/. The con-
straints of this optimization problem can be interpreted as follows: for each r-tuple
(i.e., a path in the graph) we require that all consecutive pairs in this r-tuple are cor-
rectly ordered and have a separation of 1 (the margin). We penalize that pair in the
r-tuple for which this condition is the most violated (with the minimum operator).
Since a constraint pops up for each r-tuple, we have in total nr constraints.

The quadratic program can be solved by a QP-solver by deriving the dual
quadratic program and in the dual formulation the ranking function f .x/ D w ��.x/
can be written only in terms of kernels and Lagrange multipliers. Unfortunately, the
large number of constraints (exponential in r) gives rise to an identical number of
Lagrange multipliers in the dual formulation and, hence, the running time required
by a QP-solver will be excessively high, especially when the number of classes
increases. However, we will show that the same solution can be found within a rea-
sonable amount of time by using an approximation algorithm that only considers a
subset of the constraints.

Recently, in [39, 57] one proposed a general support vector algorithm for struc-
tured outputs and multivariate performance measures, which basically consists of
the optimization of a quadratic program with a combinatorial number of constraints.
Instead of optimizing this huge quadratic program, they start optimizing the uncon-
strained objective function and iteratively add new constraints to the optimization
problem. We will follow a similar approach. Let us therefore consider the following
optimization problem:

min
w;�

1

2
jjwjj2 C C�

subject to

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

w � �1
s

X

j2S
cjı.j; tj/

� � 1

s

X

j2S
cj 	 �

� � 0

j 2 S
c 2 f0; 1gs
t 2 f1; : : : ; r 	 1gs

(10)
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Algorithm 2 Optimization of bU .f;D/.
Input: data set D D f.x1; y1/; : : : ; .xn; yn/g, C , K, �
W  ;
repeat
bw optimize w over working set W
b�  corresponding � forbw
.c; t/ arg max c2f0;1gs

t2f1;:::;r�1gs

n
1
s

X

j2S
cj �w � 1

s

X

j2S
cjı.j; tj/

o

�max  max c2f0;1gs

t2f1;:::;r�1gs

n
1
s

X

j2S
cj � w � 1

s

X

j2S
cjı.j; tj/

o

W  W [ f.c; t/g
until �max �b� C �
Output:bw

with w, C and S as defined before. Remarkably, it contains only one slack variable.
The following theorem reveals the connection between both optimization problems.

Theorem 2 ([61]). The solutions of optimization problems (9) and (10) result in
identical models w and their errors are related: � D 1

s

P
j2S �j.

Optimization problem (10) has even more constraints than the previous one. Nev-
ertheless, it can be optimized much more efficiently with a cutting plane algorithm
[40]. Algorithm 2 gives an overview of this iterative procedure. Of crucial impor-
tance is that not all constraints are active in the quadratic program. Normally, for
only one .c; t/ the inequality constraint will become an equality constraint. To
this end, a working set W of active constraints is introduced, so W � f0; 1gs �
f1; : : : ; r 	 1gs.

Given a data setDDf.x1; y1/; : : : ; .xn;yn/g with corresponding Gram matrix K,
regularization parameter C and stopping criterion �, the algorithm starts with
W D ;. In each iteration, first the optimal solutionbw and corresponding slackb� are
computed. Then, the constraint with maximum violation is added to the working set
(this is the constraint for which the inequality becomes an equality with regard to the
current solution bw). In the next iteration, the objective function is re-optimized over
the adjusted working set of constraints. Consequently, the constraints not belonging
to W are not necessarily observed. The algorithm repeatedly adds new constraints
to the working set until no constraint is violated more than the stopping criterion �.
It has been proven before that such a cutting plane algorithm stops after adding a
constant number of constraints, independent of the data set size. The total running
time therefore strongly depends on the time required to find the maximum violat-
ing constraint. As discussed in [60,61], this constraint can be found very efficiently
by using a graph–theoretic reformulation and dynamic programming techniques,
leading to the following theorem.

Theorem 3 ([61]). For any C > 0, � > 0, positive definite kernel K W X 2 ! R

and training sample D D f.x1; y1/; : : : ; .xn; yn/g, Algorithm 2 has a O.n3/ time
complexity.



150 W. Waegeman and B. De Baets

Another interesting property of our approach is that the whole procedure can
be expressed in terms of kernels such that the transformation function to a high-
dimensional feature space must not be modeled explicitly. In our software, both
Algorithm 2 and the algorithm to find the maximum violating constraint are imple-
mented in terms of the dual representation. The dual in each iteration is solved with
the quadratic solver of the MOSEK-package.2 This solver implements an interior
point algorithm and was for example formerly used by [34, 42] in the context of
machine learning. The prediction rule for a new object x 2 X can be written in
terms of kernels as follows:

f .x/ D
X

.cC;c�/2W
˛.cC;c�/

1

s

nX

iD1

�
.cCi 	 c�i /K.x; xi /

�
;

with ˛.cC;c�/ Lagrange multipliers and .cC; c�/ a compressed version of the active
constraints in the working set W . This prediction rule will also serve as input for
computing the maximum violating constraint during training. In this way, all parts
of the optimization procedure are carried out without explicitly processing w and �.

Sparsity in the obtained solution can be ensured in two ways:

1. For constraints that are added to W , many elements of the n-dimensional vectors
cC and c� will manifest zeroes. Zeroes are encountered when no ingoing and
outgoing edges of the corresponding node in the graph have minimal weight for
any path from source to sink. This happens frequently.

2. Once a new constraint .cC; c�/ is added to W and the dual is re-optimized,
the corresponding Lagrange multiplier ˛.cC;c�/ will typically decrease in further
iterations. Because the upper bound C on

X

.cC;c�/2W
˛.cC;c�/

will normally be reached during any iteration in the cutting plane algorithm, at
least one Lagrange multiplier has to decrease when a new constraint is added
to W . Many Lagrange multipliers tend to become zero again in practice, few
iterations after adding them to the quadratic program.

6 Conclusion

In this chapter, we gave an introduction to ordinal regression and its frequently used
performance measures. We argued that evaluating the ranking returned by an ordinal
regression model is often more appropriate than looking at accuracy or mean abso-
lute error, especially with skew class or cost distributions. To that end, we extended

2 The MOSEK-package can be freely downloaded for noncommercial use from www.mosek.com.
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the concept of expected ranking accuracy for ordinal labeled data and showed that a
nonparametric unbiased estimator bU .f;D/ of this quantity corresponds to the vol-
ume under the ROC surface (VUS) spanned by the true positive rates of each class.
We conclude from Sect. 3 that existing methods for ordinal regression, which typi-
cally minimize a loss based on error rate or the number of incorrectly ranked object
pairs, might not construct appropriate models when the class or cost distributions
are skew. ROC analysis offers in this case a valuable alternative allowing to pick a
classifier from the surface for a specific setting of cost. The volume under the ROC
surface gives a good overall indication of the quality of the model for different costs
without favoring the majority classes.

In Sect. 4, we further analyzed the scalability of VUS and we presented a fast
exact algorithm to compute this estimator efficiently. In this way, it is possible to
perform ROC analysis on large data sets and to estimate U.f / on large ordinal
regression models. The proposed algorithms can be directly plugged into the statis-
tical tests developed by [48]. Moreover, new ranking methods can be constructed
for using or optimizing the volume under the ROC surface. Such algorithms have
been proposed for the binary case and in particular optimizing ranking-based mea-
sures can lead to noticeably different models compared to minimizing the error rate
[13, 36, 65].

In Sect. 5, we further exploited these ideas to develop a new algorithm for ordi-
nal regression learning. Inspired by the graph-theoretic reformulations for VUS,
we called this setting the layered ranking problem because each correctly ranked
r-tuple, consisting of one object of each class, induces a path in the correspond-
ing layered ranking graph. Notwithstanding the increasing complexity of such an
approach, we believe that looking at correctly ranked r-tuples instead of correctly
ranked pairs has important benefits and leads to better models. Several experiments
in [61] clearly support this claim. On synthetic data and several benchmark data sets,
a statistically significant improvement in performance was measured, definitely in
terms of the VUS, but also in terms of the C-index. For some unbalanced problems,
a small tradeoff appeared between optimizing VUS on the one hand and the C-index
on the other hand. We argued that the pairwise approach might focus too strongly on
some of the categories instead of assessing the ranking model globally. Neverthe-
less, we acknowledge that the complexity of ranking r-tuples remains a bottleneck
for large samples.
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Ranking Cases with Classification Rules

Jianping Zhang, Jerzy W. Bala, Ali Hadjarian, and Brent Han

Abstract Many real-world machine learning applications require a ranking of
cases, in addition to their classification. While classification rules are not a good
representation for ranking, the human comprehensibility aspect of rules makes them
an attractive option for many ranking problems where such model transparency is
desired. There have been numerous studies on ranking with decision trees, but not
many on ranking with decision rules. Although rules are similar to decision trees in
many respects, there are important differences between them when used for rank-
ing. In this chapter, we propose a framework for ranking with rules. The framework
extends and substantially improves on the reported methods for ranking with deci-
sion trees. It introduces three types of rule-based ranking methods: post analysis
of rules, hybrid methods, and multiple rule set analysis. We also study the impact
of rule learning bias on the ranking performance. While traditional measures used
for ranking performance evaluation tend to focus on the entire rank ordered list, the
aim of many ranking applications is to optimize the performance on only a small
portion of the top ranked cases. Accordingly, we propose a simple method for mea-
suring the performance of a classification or ranking algorithm that focuses on these
top ranked cases. Empirical studies have been conducted to evaluate some of the
proposed methods.

1 Introduction

Many real-world machine learning applications require a ranking of cases, in
addition to their classification. Such ranking is often based on some measure of
reliability or likelihood or a numeric assessment of the quality of each classification
(e.g., probability value of a class membership). In other words, the decision-making
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process extends the class membership prediction to include an estimate of the
reliability for this prediction. For example, in credit application processing, the goal
is to rank applicants in terms of their likelihoods of profitability or loan defaults.
This is significantly different than simply classifying them into qualified versus
nonqualified groups. Other decision-making applications where case ranking could
be of importance include bankruptcy prediction, medical diagnosis, customer tar-
geting for marketing campaigns, and customer churn prediction. Ranking of cases
is particularly important for those decision-making applications where it is prefer-
able to abstain from decision making altogether in the absence of sufficient support.
Examples include medical and military applications.

While classification rules are not a good representation for ranking, the human
comprehensibility aspect of rules makes them an attractive option for many ranking
applications where such model transparency is desired or even an essential require-
ment. There have been numerous studies on ranking with decision trees [1, 8–10],
but not many on ranking with decision rules. Although rules are similar to decision
trees in many respects, there are important differences between them when used
for ranking. Separate and conquer (covering) techniques of rule learning algorithms
may generate rules that overlap, whereas divide and conquer techniques of deci-
sion trees do not result in such overlapping of decisions. Rules may not cover some
areas of a feature space, but the leaf nodes of a decision tree cover the entire area of
the feature space (see Fig. 1). In addition, a rule learning algorithm for a two-class
problem may only learn rules for one class, but a decision tree always includes leaf
nodes for both classes. Rule learning algorithms tend to generate fewer rules than
leaf nodes of a decision tree. Such differences bring both research challenges and
opportunities for developing methods for ranking cases with rules.

In this chapter, we propose a framework for ranking with rules. The framework
extends and substantially improves on the reported methods for ranking with deci-
sion trees. It introduces three types of rule-based ranking methods: post-analysis of
rules, hybrid methods, and multiple rule set analysis (i.e., rule ensembles and redun-
dant rules). Methods for combining scores from overlapping rules are also proposed
and studied.

(a) (b)

Fig. 1 Decision boundaries of a decision tree (a) vs. those of a rule-based classifier (b)
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We also study the impact of rule learning bias on the ranking performance. While
traditional measures used for ranking performance evaluation tend to focus on the
entire rank ordered list, the aim of many ranking applications is to optimize the per-
formance on only a small portion of the top ranked cases. Accordingly, we propose
a simple method for measuring the performance of a classification or ranking algo-
rithm that focuses on these top ranked cases. More specifically, instead of measuring
the entire area under the ROC curve, the proposed method computes only the left
most part of it (i.e., the part covering only the top n% of the ranked cases). Empiri-
cal studies have been conducted to evaluate some of the more popular post-analysis
methods, methods for combining scores of overlapping rules, and the impact of rule
learning bias.

The remainder of the chapter is organized as follows. Related work is discussed
in Sect. 2. Section 3 describes the proposed framework. Section 4 describes the
empirical results of two separate studies: (1) a real-world application in investiga-
tions of companies suspected of financial fraud, and (2) performance evaluation
using six of the UCI Machine Learning Repository data sets. Finally, Sect. 5
concludes the chapter with future research.

2 Related Work

2.1 Expert Systems and Fuzzy Logic

Ranking examples using rules is not a novel undertaking. There have been many
attempts in the past, including those by the researchers in the fields of expert sys-
tems, fuzzy logic, and cognitive science [2]. MYCIN [4] is a well-known rule-based
expert system, in which each rule is assigned a certainty factor (CF) by domain
experts. CF of different rules may be combined or propagated to produce the CF of
a decision inferred by MYCIN. In PROSPECTOR [12], an expert system to assist
geologists working in mineral exploration, rules are assigned probability by human
experts and are propagated and combined using Bayesian inference.

Development of fuzzy rules has been studied widely in fuzzy logic, e.g., [13].
Here, a general method is developed to generate fuzzy rules from numeric data,
using linguistic variables. The degree of class membership of an example depends
on the degree of match of the example to a fuzzy rule.

2.2 Machine Learning

There are also several related rule-based machine learning studies, e.g., [13]. These
studies generally focus on methods for generating partial matching, whereby the
scores for individual examples are computed based on how well they match the rules.
In these approaches, examples that satisfy all conditions of a rule share the same
score.
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Extensive studies have been dedicated to the incorporation of ranking capabilities
into the decision tree learning paradigm.

Related work generally falls into the following four groups of methods: learning
probability estimation trees [10], geometric methods [1], hybrid trees including: the
Perceptron Tree [11] and NBTree [8], and ensembles of trees [3]. Other methods
have also been reported in [7, 9].

3 Framework for Ranking with Classification Rules

A rule-based classifier, typically defined as a disjunctive normal form of conditional
rules, is a mapping function from a set of m arguments or attributes (which can be
either nominal or numeric) to a single nominal value, known as the class. Let us
represent by D the set of d classification decisions, generally labeled by numbers
0; 1; 2; : : : d 	 1, and by E the set of unlabeled examples. A classifier is a function
f W E ! D. In a simplified scenario, a classifier with ranking capability computes
a number or score for every example e 2 E and for every class i 2 D.

A score may be interpreted differently depending on the application. In statistics,
a score ranges from 0 to 1 and indicates the probability of an example belonging
to a given class. In expert systems, a score may be interpreted as a certainty factor.
In fuzzy logic, a score represents the degree of membership in a class. Similarly, in
cognitive science, a score could be defined as the typicality of the example being
a member of the class. In other applications, a score is just a measure for ranking
cases.

The framework for ranking cases with classification rules presented in this chap-
ter consists of a grouping of methods that can be used independently or jointly.
Figure 2 depicts the taxonomy of these methods.

Computational Methods for Rule-based Ranking

Post Analysis of Rules

Probability
Estimation

Geometric
DIstance

Naïve Bayes
Classifier

Prototype
Learning

Perceptron

From
“Outside”
the Rule

From
“Inside”
the Rule

Class
Frequencies

Smoothed
Probabilities

(Laplace Correction)

Other
Linear Classifiers

Ensembles Redundant
Rule Sets

Hybrid Learning Multiple Rule Sets

Fig. 2 Computational methods for rule-based ranking
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The framework extends and substantially improves on the reported methods for
ranking with decision trees. It introduces the following three groups of rule-based
ranking computation methods:

– Post-analysis of rules
– Hybrid methods
– Multiple rule set analysis (i.e., rule ensembles and redundant rules)

In addition to the three groups of rule-based ranking methods, we introduce meth-
ods for combining the scores of overlapping rules. We also study the impact of the
inductive bias on the ranking performance.

3.1 Post Analysis of Rules

In this group of methods, ranking scores are computed using the rules generated by
some rule induction algorithm plus some additional information such as the number
of positive and negative examples covered or the ranges of attribute values. There are
two subgroups of methods under this group: probability estimation and geometric
methods.

3.1.1 Probability Estimation

With probability estimation, the score of the example covered by a rule is com-
puted as the ratio of the number of positive examples covered and the total number
of examples covered by a rule. This approach has been explored in Probability
Estimation Trees.

In the simple probability estimation method, scores assigned by two different
rules are identical as long as the above-mentioned ratio is the same, no matter
how many positive examples are actually covered by each rule. For example, all
rules covering no negative examples result in the same score, namely one. A simple
method for overcoming this problem is the Laplace correction, in which the score
is computed using kC1

nCC , where k and n are the numbers of positive examples and
the total number of examples covered, respectively, and C is the number of classes.
Here, the scores are the same for all the examples covered by a given rule. This
becomes a serious problem when the number of rules generated by a rule induction
algorithm is small, as many of the examples will end up with identical scores.

The probability estimation method, even with the Laplace correction, ignores the
absolute number of examples covered by the rule. A rule covering 9 positive exam-
ples and 10 negative examples receives the same score as a rule covering 90 positive
examples and 100 negative examples. In real applications, however, even when
having similar precisions, rules covering more examples are generally preferred.
An alternative option would be to use the F-measure for scoring:

F 	 measure.r/ D ˇ2 C 1

ˇ2

recall.r/ C 1
precision.r/

; (1)
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where ˇ is a parameter for assigning relative weights to recall and precision. When
ˇ is set to 1, recall and precision are weighted equally. F-measure favors recall with
ˇ > 1 and favors precision with ˇ < 1. Namely, an F-measure with a large ˇ value
favors more general and less precise rules, while one with a small ˇ value favors
more specific and more precise rules. When ˇ D 0, F-measure score is the same as
probability estimation.

3.1.2 Geometric Methods

As indicated above, the probability estimation method assigns the same score to all
examples covered by the same rule. When the number of rules generated is small,
this causes a problem for applications that need a fine-grained ranking. For example,
in one of our data mining applications, only 0.1% of the top ranked cases are selected
for further investigations. If all rules cover more than 0.1% of the examples, we have
no way to accurately select 0.1% of the top ranked cases. Geometric methods can
help generate such fine-grained rankings.

Geometric methods have been used in decision trees [1] and assume that classifi-
cations/rankings of the examples near the rule boundary are less certain. In ranking
with rules, there are two types of geometric methods, one for examples covered
by a rule and the other for examples that are not covered by any rules. The latter
is also called partial matching. For an example covered by a rule, we can mea-
sure the distance between the example and the rule boundary or the center of the
rule. The closer the example is to the boundary (or the farther from the center), the
smaller its score gets. The distance may also be weighted by the estimated proba-
bility of the rule. The geometric method for covered examples works for numeric
attributes.

Partial matching also computes the distance of an uncovered example to the
boundary of a rule, but from outside of the rule. The closer to the boundary, the
larger the score is. Again, the distance could be weighted by the estimated probabil-
ity of the rule. Partial matching is different from strict matching, where an example
has to satisfy all the conditions of the matched rule. Partial matching computes a
degree of match between an example and a rule. The degree of match can vary in the
range of 0 (matches no condition) to 1.0 (matches all conditions). Partial matching
works for both numeric and nominal attributes.

3.2 Hybrid Methods

Hybrid methods integrate rule induction with other learning techniques that have
ranking capabilities. These latter techniques include the perceptron algorithm, naïve
Bayes, instance-based learning, and prototype-based learning. For example, a sepa-
rate perceptron may be learned for examples covered by each rule. Figure 3 shows
a rule with a linear classifier in a two-dimensional space. The rectangle represents
the rule and the line inside the rectangle represents the linear classifier. The white
circles represent the positive examples, while the gray ones represent the negative
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Fig. 3 A rule and the corresponding linear classifier

examples. The linear classifier is used to assign a score to each of the examples
covered by the rule.

Rules and linear or naïve Bayes models may be learned together to optimize
the performance of the hybrid method. Alternatively, rules may be learned first and
other models then generated for each rule. As discussed in Sect. 2, there are many
studies on building hybrid decision trees, e.g., Perceptron Tree and NBTree.

3.3 Rule Ensembles and Redundant Rules

Previous studies have shown that ensemble techniques can significantly improve the
ranking performance of decision trees [3,10]. In ensemble learning, multiple classi-
fiers are learned, using approaches such as bagging and boosting. Typically, in such
ensembles, a majority vote technique is used to determine the final classification of
an example and the average score can be used as the final score for each example.
Although little work has been done in building ensembles of rules, we believe such
an ensemble can yield improved ranking performance.

Previous studies have also shown how redundant rules could improve classifi-
cation performance. Since redundant rules allow for finer grained rankings, it is
worthwhile to design a rule induction algorithm for generating redundant rules for
ranking.

3.4 Combining Scores from Overlapping Rules

A rule induction algorithm usually generates a set of overlapping rules. In this
section, we discuss three simple methods: Max, Average, and Probabilistic Sum
(P-Sum) for combining the scores of an example covered by more than one rule. The
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Max approach simply takes the largest score of all the rules that cover the example.
Given an example e and a set of l rules RS D fR1; : : : ; Rlg, the combined score
of e using Max is computed as follows:

score.e; RS/ D maxliD1score.e; Ri / (2)

where score.e; Ri / is the score of e assigned by Rule Ri . Similarly, the combined
score of e using Average is computed as follows:

score.e; RS/ D 1

l
�
lX

iD1
score.e; Ri / (3)

For rules that do not cover e, score.e; Ri / D 0 unless partial matching is applied.
For the P-Sum method, the formula can be defined recursively as follows:

score.e; fR1g/ D score.e; R1/

score.e; fR1; R2g D score.e; R1/C score.e; R2/

	 score.e; R1/ � score.e; R2/

score.e; fR1; : : : ; Rng D score.e; fR1; : : : ; Rn�1g/C score.e; Rn/

	 score.e; fR1; : : : ; Rn�1g/ � score.e; Rn/

Both Average and P-Sum generate a finer grained ranking than Max. These three
methods may also be used to combine the scores in a rule ensemble.

3.5 Impact of the Rule Induction Algorithm

Most rule induction algorithms have been designed for maximizing the classification
accuracy. Recently, some learning algorithms have been proposed that optimize the
AUC (Area Under the Curve) of an ROC (Receiver Operating Characteristics) curve
[6]. The design of a rule induction algorithm for optimizing the AUC could be an
interesting future research objective.

Rule induction algorithms typically include parameter settings that allow the
users to trade generality for accuracy. When such parameters are set to favor accu-
racy, more rules may be generated. On the one hand, more rules result in a finer
grained ranking, but on the other hand, the rules themselves tend to be over-specific.
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4 Empirical Studies

4.1 Study 1: Detection of Public Companies Suspected
of Financial Fraud

This section focuses on a real-world data mining application to prioritize human
investigations of companies suspected of engaging in fraudulent behavior based on
their financial filings.

4.1.1 The Problem

Incidents of financial statement fraud have increased substantially over the past two
decades and affected individuals, especially investors and creditors, have lost bil-
lions of dollars as a result. Financial statement fraud involves the misstatement of a
company’s financial information with the intent to mislead users of such informa-
tion, such as investors and creditors. Typical falsifications of financial statements
include manipulation of assets, sales, profits, liabilities, expenses, or losses. Such
frauds are often difficult to detect, because they are typically committed by a com-
pany’s top management team, who understands the limitations of an audit, with an
opportunity and motive to distort the financial statements.

Prevention of financial statement fraud by internal or external auditors is prob-
ably the best strategy; however, sometimes the auditors themselves are involved
in the fraud activity or make mistakes. Thus, to minimize the potential economic
impact, there is a need for early detection of financial statement fraud by regulatory
organizations. There have been several past studies to address such a need.

This section focuses on a data mining application to prioritize a list of target
companies suspected of engaging in fraudulent behavior based on their financial
statements. Such prioritization of potentially large volumes of targets is particu-
larly crucial for applications such as this one where the decisions ultimately rest
with human examiners with limited resources. In other words, only companies
deemed as highly suspicious, normally a small percentage of the total population,
will eventually go through the vigorous task of in-depth examination.

The application involves building predictive models for identifying companies
that may have failed to comply with accounting principles or violated securities laws
with respect to the accuracy of public disclosure information. The raw data used
in this application contains SEC registered public organizations’ financial filings
(publicly available SEC EDGAR filings), including those of companies with mate-
rially misstated financial statements. Each training example corresponds to a
company filing and is a vector of about 100 attribute values that are primarily
numeric. Positive examples are all filings for companies that had issued material
restatements, while negative examples are filings of companies that had not issued
such restatements.

As mentioned previously, the learned predictive models are intended to help
the human investigators prioritize which companies to look at more closely and to
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optimize investigative resources and increase efficiency by focusing examiners on
highly suspicious companies that warrant the most attention. The investigators use
the predictive models as a tool to generate a rank ordered list of target companies
to be examined. These predictive models will neither replace human inspectors nor
fully automate the suspicious behavior detection processes.

4.1.2 A Ranking Performance Metric

Since only a very small percentage, typically 1–2% depending on the resources
available, of top ranked companies may be selected for detailed inspections, it is
important to maximize the classification precision (or true positive rate) on these
top ranked companies. The classifier’s performance on lower ranked companies, as
such, becomes rather irrelevant. This problem is similar to that of web search, in
which a search engine might return thousands of web pages for a given query, but
only a small number of which, typically the top ranked pages, is ever viewed by the
user. Thus, it is much more important for an effective search engine to optimize the
relevance on top ranked pages than the lower ones.

While existing research offers an array of machine learning algorithms that
can accommodate such ranking of classification decisions, these algorithms, and
measures such as the area under the ROC curve (AUC) used to evaluate their per-
formance, generally tend to focus on the entire rank ordered list. Based on the need
for our application, we propose a simple method for measuring the performance
of classification/ranking algorithms that instead of measuring the entire area under
the ROC curve, it computes only the left most portion of it (i.e., the part covering
only the top n% of the ranked cases). We have named the aforementioned area as
LAUC (Left-most portion of the Area Under the Curve). Figure 4 shows the ROC
curves obtained from two different learning algorithms. With LAUC as a measure
(i.e., to the left of the cutoff point), Algorithm 2 achieves a better performance than

Fig. 4 Example ROC curves. The LAUC cutoff point is depicted by the dashed line
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Algorithm 1, whereas Algorithm 1 is preferred over Algorithm 2 with the AUC.
The have been some recent studies by machine learning researchers focusing on the
notion of LAUC [9].

4.1.3 Data and Setting

For these experiments, we create input records for each company based on cases that
are publicly available on the SEC EDGAR filing site. Each input record is a vector
of attribute values that are primarily numeric. These are a combination of origi-
nal data that is contained in sources, such as SEC required financial filings as well
as calculated and derived attributes. These input records are split into two datasets
based on the year, one for training and one for testing. The training set includes
the data from 2003 to 2004, while the test set contains the data from 2005. Exam-
ples in both sets are described by 130 attributes, 95 of which are numeric and the
other 35 are symbolic. The training set includes 4,932 positive and 38,792 negative
examples. The test set is composed of 836 positive and 18,780 negative examples.
In our experiments, we randomly selected 50% of the examples from the training
set to learn the rules and the process was repeated five times. Rules were then tested
on the test set and the results were reported using the average of the five runs. The
classification performance has been evaluated with both the AUC and the LAUC as
the measure. Here, LAUC is the area under the ROC curve at the left of the 1% false
positive rate cutoff point, normalized by the total area to the left of that point. LAUC
is 0.005 for random selection.

The classification task is quite challenging due to factors such as noisy data,
which is generally the result of the mechanism by which the positive and negative
examples have been labeled. Here, negative examples are not truly negative, rather
their class memberships are not known. As such, it is not quite possible to learn rules
with high recall and precision. For example, when minimum precision and minimum
recall were set to 0.6 and 0.03, respectively, no rules were generated. Only a small
number of positive examples could be covered by rules with high precision. Since
there is no well-established baseline performance data for the comparison of our
results, we compared the performance of our model with the random choice model
by assuming that target class examples are drawn at random from all the potential
examples.

4.1.4 Results

In the first experiment, with minimum recall and minimum precision parameters set
to 0.01 and 0.6, respectively, we varied ˇ from 0.001 to 0.1. Accordingly, all the
rules learned have a recall larger than 1% and a precision larger than 60%. With
ˇ D 0.001, a set of highly specific and precise rules was generated. Each increase
in ˇ resulted in more general and less precise rules. Probability estimation with
Laplace correction, using three different score combining methods: Max, Average,
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and P-Sum, was applied to the learned rules to obtain the scores of all the test exam-
ples. Figure 5 shows the AUCs for different ˇ values and different score combining
methods. The general trend of the performances of all three score combining meth-
ods seems to be upward with an increase in ˇ until it reaches 0.07 and then the
performances start to drop sharply. When ˇ is small, the generated rules are highly
specific and precise, so they cover only a small number of positive examples. There-
fore, many of the positive examples not covered by these rules are assigned a score
of 0 and are consequently ranked low. When ˇ increases, rules become more gen-
eral and cover more positive examples and the ranks of these newly covered positive
examples move up, so the performance increases accordingly. When ˇ becomes too
large, however, rules tend to get much more general and much less precise, so that
many negative examples are also covered. This causes the performance to drop.
The three score combining methods perform similarly. It can also be seen that the
reported AUC values barely beat the random performance. This shows the difficulty
of the problem. Many positive examples cannot be covered by any rules with a recall
larger than 1% and a precision larger than 60%.

Figure 6 shows the LAUC values. In contrast to the AUC, the best performances
are achieved with smaller ˇ values. This is what we had initially expected because
a small ˇ value results in highly specific and precise rules. As such, not many neg-
ative examples were covered by these rules. When ˇ gets larger, however, rules
cover more negative examples because they are more general and less precise. These
covered negative examples are ranked high, so the performances on top ranked
examples degrade. The three score combining methods seem to perform about the

Fig. 5 AUC values reported for the first experiment
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Fig. 6 LAUC values reported for the first experiment

Fig. 7 True positive rates at cutoff point of 1% false positive rate reported for the first experiment

same for smaller ˇ values and more specific rules. For larger ˇ values, however,
P-Sum and Average are better than Max, with P-Sum working slightly better than
Average. This is because the chance of specific rules overlapping is smaller than
that of general rules. Figure 7 displays the true positive rate at the cutoff point of
1% false positive rate. They are about 5–7 times better than random.
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Fig. 8 ROC curves for ˇ D 0.001 and ˇ D 0.07 plotted for the first experiment

Figure 8 shows the ROC curves for ˇ D 0:001 and ˇ D 0:07 for the Max method.
It can be seen that the performance on top ranked cases is better when ˇ D 0:001,
while the performance on all ranked cases is better when ˇ D 0:07. The results
of this study tend to suggest that smaller ˇ values are better for achieving a high
performance on top ranked cases.

In the second experiment, we varied the minimum recall parameter value from
0.005 to 0.04 with ˇ D 0:001 and minimum precision D 0.4. Figure 9 shows the
reported AUC values, which tend to go down with an increase in minimum recall.
Since the rule induction algorithm is forced to generate rules with a high recall
and a low precision, many negative examples are covered by these rules and corre-
spondingly ranked higher. When both minimum recall and minimum precision are
low, the rule induction algorithm is able to generate more rules so that more pos-
itive examples are covered. Figure 10 reports the LAUC values. Again, following
the same reasoning, an increase in minimum recall results in a decrease in perfor-
mance. Here, P-Sum and Max tend to do better than Average for lower minimum
recall values.

In the third experiment, we varied the minimum recall parameter value from
0.005 to 0.04 with ˇ D 0:001 and minimum precision D 0.7. Figure 11 shows the
reported AUC values, which tend to go down with an increase in minimum recall for
reasons similar to those discussed above for the second experiment. The difference
is that when the minimum recall is increased, the number of rules generated goes
down quickly. Actually, when the minimum recall is larger than 0.03, no rule is
generated, so the reported AUC values are the same as those of a random selection.
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Fig. 9 AUC values reported for the second experiment

Fig. 10 LAUC values reported for the second experiment
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Fig. 11 AUC values reported for the third experiment

Figure 12 reports the LAUC values. Here, the same reason causes the performance
to decrease quickly when the minimum recall is increased.

In the fourth experiment, we varied the minimum precision parameter value
from 0.2 to 0.9 with ˇ D 0.001 and minimum recall D 0.01. Figure 13 shows the
reported AUC values, which seem to go down with an increase in minimum preci-
sion. When the minimum precision is increased, fewer rules are generated and so
fewer positive examples are covered and the performance goes down as a result.
When the minimum precision is kept low, the performance is better than those in
all previous experiments. Figure 14 reports the LAUC values. While the three score
combining methods perform similarly for larger values of minimum precision, the
performances are quite varied when minimum precision is smaller. In the latter case,
P-Sum seems to do the best. This is because when the minimum precision is small,
many rules are generated and as such may overlap more often. So P-Sum improves
the performance. When the minimum precision is large, fewer rules are generated
and they are also more specific. So rules overlap less often and P-Sum and Average
cannot improve the performance.

4.1.5 Summary

The experimental results clearly show that the performance measured by LAUC
does not necessarily correlate with that measured by the AUC. They also show that
the inductive bias impacts LAUC and AUC differently. More specific and more
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Fig. 12 LAUC values reported for the third experiment

Fig. 13 AUC values reported for the fourth experiment
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Fig. 14 LAUC values reported for the fourth experiment

precise rules work better with LAUC as the measure, while more general rules work
better with AUC. The three score combining methods achieved about the same per-
formance with AUC, while P-Sum generally did better than the other two methods
with LAUC. The experimental results suggest that a smaller ˇ, minimum recall
and minimum precision values together with P-Sum should be used to achieve the
optimal performance as measured by LAUC.

4.2 Study 2: Public Data Sets

We conducted experiments on six of the publicly available UCI Machine Learning
Repository data sets. These are D1: Breast Cancer, D2: Chess (two-class scenario),
D3: German Credit, D4: Japanese Credit, D5: Magic, and D6: Yeast. The sam-
ple sets present a wide range of domains and cover a comprehensive suite of data
characteristics. To generate rules, we used the RIPPER algorithm [5] that induces
classification rules from a set of preclassified cases.

The reported AUC values for each data set were calculated using a tenfold cross
validation. Experiments were conducted with three groups of rules representing
varying levels of simplifications for the generated rule sets (i.e., a larger number
of more specific and precise rules or a smaller number of more general and over-
lapping rules). These variations were achieved by changing the RIPPER parameter
settings. The training and test data sets were kept the same among these three groups
of rule sets.
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Six different scoring methods were used. The first three use probability estima-
tion with three different methods, Max, Average, and P-Sum, for combining the
scores of an example covered by multiple rules as describe in Sect. 3.4. These three
methods are denoted as follows.

– AUC-FR0: Max
– AUC-FR1: Average
– AUC-FR2: P-Sum

The remaining group of methods utilizes the Laplace corrections, also with the three
score combining methods. They are denoted as:

– AUC-LC0: Max
– AUC-LC1: Average
– AUC-LC2: P-Sum

We also use a measure that represents the average number of scores per example. It
takes a value from 0 to 1 and is computed by dividing the number of unique scores
divided by the number of test examples. For finer grained rankings, this number is
generally closer to 1. In many applications, a finer grained ranking is preferred. This
ranking-grain measure is used for the six different score computation methods as
described above (RankGrain-FR0, RankGrain-FR1, RankGrain-FR2, RankGrain-
LC0, RankGrain-LC1, and RankGrain-LC2).

Figure 15 depicts the summary of the reported AUC values for the six differ-
ent methods. The reported values are the average on all six datasets. In the figure,
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Fig. 15 Graphical summary of the reported AUC values
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Series 1 is the rule set with the most general rules, Series 2 is the rule set with less
general rules, and Series 3 is the rule set with the most specific rules. Except for
FR0, rules of Series 2 and Series 3 outperformed rules of Series 1. Namely, specific
rules outperformed general rules. It means specific rules are better for ranking than
general rules, because specific rules are able to produce finer grained rankings than
general rules. However, rules of Series 2 and Series 3 performed about the same.
This suggests that highly specific rules may help with ranking. Highly specific rules
tend to include more perfect rules, which could be better for ranking. It is also shown
in the figure that P-Sum performed better than Average, which in turn did better than
Max. P-Sum and Average produce finer grained rankings than Max and assume that
examples covered by multiple rules should be ranked higher. Laplace correction
achieved about the same performance as the simple probability estimation.

Table 1 reports the detailed AUC values for each of the six data sets. The R mea-
surement represents the ratio of the number of perfect rules (rules that do not cover
negative examples) to the total number of rules in a given rule set. Here, the aver-
age value of R is depicted (for each of the three runs on the six data sets). The R
measurement is affected by using RIPPER’s s parameter, which simplifies or spe-
cializes the generated rule set (i.e., trading off generality for accuracy by the degree

Table 1 Reported AUC values

Dataset AUC-FR0 AUC-RF1 AUC-FR2 AUC-LC0 AUC-LC1 AUC-LC2

Series 1 R D 0:19

D1 0.98 0.98 0.98 0.98 0.98 0.98
D2 0.77 0.79 0.79 0.77 0.78 0.79
D3 0.92 0.92 0.92 0.92 0.92 0.92
D4 0.82 0.84 0.84 0.82 0.84 0.84
D5 1.00 1.00 1.00 1.00 1.00 1.00
D6 0.91 0.91 0.91 0.91 0.91 0.91
Averages 0.90 0.91 0.91 0.90 0.91 0.91

Series2 R D 0:25

D1 0.99 0.99 0.99 0.99 0.99 0.99
D2 0.84 0.85 0.88 0.83 0.85 0.87
D3 0.95 0.95 0.96 0.95 0.95 0.96
D4 0.85 0.88 0.89 0.84 0.87 0.89
D5 1.00 1.00 1.00 1.00 1.00 1.00
D6 0.92 0.93 0.93 0.92 0.93 0.93
Averages 0.92 0.93 0.94 0.92 0.93 0.94

Series 3 R D 0:28

D1 0.92 0.99 0.99 0.95 0.99 1.00
D2 0.84 0.85 0.87 0.83 0.85 0.87
D3 0.96 0.96 0.96 0.95 0.95 0.96
D4 0.85 0.88 0.89 0.84 0.87 0.89
D5 0.90 1.00 1.00 1.00 1.00 1.00
D6 0.93 0.93 0.93 0.93 0.93 0.93
Averages 0.90 0.93 0.94 0.92 0.93 0.94
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Fig. 16 Graphical summary of the reported RankGrain values

of hypothesis simplification). When the parameter is set to favor the generation of
more specific rules, then more accurate results can be achieved.

Figure 16 shows the summary of the RankGrain values graphically. Table 2
reports the RankGrain values. As seen in the figure, it seems that more specific
rules result in finer grained rankings. The difference between Series 2 and Series 3
is small. Average and P-Sum produce more scores than Max. The number of dif-
ferent scores for Max cannot be larger than the number of rules and the number
of scores for Average and P-Sum can never be smaller than Max. When there are
many overlapping rules, Average and P-Sum may generate many more scores. It is
interesting to see that Average produces more scores than P-Sum, which may be due
to the number of perfect rules. As long as an example is covered by a perfect rule,
P-Sum can assign it a perfect score of 1, no matter how many rules it is covered by.
On the other hand, Average may give a different score to examples covered by some
perfect rules. If all rules are perfect rules, both Max and P-Sum produce only two
scores 0 and 1, but Average is still able to produce more scores. Laplace correction is
able to produce slightly more scores than the simple probability estimation method
because of the perfect rules. With Laplace correction, perfect rules may produce
different scores depending on the number of examples covered.

The following are some of the conclusions drawn from the results:

– Specific rules produce higher AUC values than general rules.
– P-Sum generates the best AUC results in comparison with Average and Max.
– Simple probability estimation method performs about the same as Laplace cor-

rection.
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Table 2 The reported RankGrain values

Dataset RankGrain- RankGrain- RankGrain- RankGrain- RankGrain- RankGrain-
FR0 FR1 FR2 LC0 LC1 LC2

Series 1 R D 0:19

D1 0.11 0.31 0.24 0.11 0.31 0.31
D2 0.02 0.13 0.05 0.07 0.6 0.19
D3 0.13 0.29 0.29 0.13 0.29 0.29
D4 0.11 0.18 0.18 0.11 0.18 0.18
D5 0.03 0.37 0.24 0.03 0.37 0.25
D6 0.09 0.21 0.21 0.09 0.21 0.21
Averages 0.08 0.25 0.20 0.09 0.27 0.24

Series 2 R D 0:25

D1 0.15 0.36 0.26 0.13 0.39 0.36
D2 0.02 0.13 0.05 0.07 0.27 0.19
D3 0.22 0.65 0.64 0.21 0.65 0.65
D4 0.19 0.45 0.44 0.18 0.45 0.45
D5 0.06 0.63 0.35 0.06 0.63 0.36
D6 0.15 0.49 0.44 0.14 0.49 0.45
Averages 0.13 0.45 0.36 0.13 0.48 0.41

Series 3 R D 0:28

D1 0.14 0.40 0.28 0.13 0.42 0.37
D2 0.02 0.13 0.05 0.07 0.27 0.19
D3 0.23 0.68 0.66 0.23 0.68 0.68
D4 0.20 0.48 0.48 0.19 0.48 0.48
D5 0.06 0.63 0.35 0.06 0.63 0.35
D6 0.14 0.50 0.46 0.14 0.50 0.47
Averages 0.13 0.47 0.38 0.14 0.50 0.42

– Specific rules produce more scores than general rules.
– Average generates the best RankGrain results, while Max generates the worst

RankGrain results.
– RankGrain values computed using the Laplace correction (RankGrain-LCn) are

slightly better than the ones computed using class frequencies (RankGrain-FRn)
– The AUC value correlates with and increases with the number of scores.

5 Conclusions

In this chapter, we proposed a framework for ranking with rules. The framework
introduces three types of rule-based ranking methods: post-analysis of rules, hybrid
methods, and multiple rule set analysis. We also proposed three methods, Max, Aver-
age, and Probabilistic Sum, for combining the scores of an example covered by
multiple rules. A successfully deployed data mining application in financial fraud
detection was also discussed. The application aims at prioritizing human investiga-
tions of public companies suspected of engaging in fraudulent behavior based on
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their financial filings. Additional empirical studies were conducted using six of
the UCI Machine Learning Repository data sets to evaluate the two simplest rule-
based ranking methods: probability estimation with and without Laplace correction,
as well as the three rule score combining methods. We investigated the impact of
the inductive bias on the ranking performance. Experimental results clearly suggest
that the inductive bias has an impact on the ranking performance. It is also shown
that Probabilistic Sum and Average generally perform better than Max. It seems that
a method that produces more scores usually outperforms a method that produces
fewer scores. More experiments need to be conducted to verify this.

Future research will include an empirical validation of some of the other methods
in the framework, specifically the ones that use geometric measures. Since with
geometric methods more scores could be produced, it would be interesting to see
whether such methods could improve the ranking performance. Also considered is
a study comparing the performance of rule-based and decision tree-based ranking
approaches.
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A Survey and Empirical Comparison of Object
Ranking Methods

Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho

Abstract Ordered lists of objects are widely used as representational forms. Such
ordered objects include Web search results or bestseller lists. In spite of their impor-
tance, methods of processing orders have received little attention. However, research
concerning orders has recently become common; in particular, researchers have
developed various methods for the task of Object Ranking to acquire functions for
object sorting from example orders. Here, we give a unified view of these methods
and compare their merits and demerits.

1 Introduction

We survey methods for learning to estimate orders, and empirically compare these
methods. The term Order indicates a sorted sequence of objects according to some
property. For example, the responses from Web search engines are lists of pages
sorted according to their relevance to queries. Bestseller lists, which are item-
sequence sorted according to sales volume, are used on many E-commerce sites.
In particular, several methods have been developed for learning functions used to
sort objects from example orders. We call this task Object Ranking and empha-
size its usefulness for sensory surveys,1 information retrieval, and decision making.
We give a unified view of the object ranking task that are independently proposed
and discuss the connection with the other types of tasks dealing with orders. We
then show experimental results to reveal the pros and cons of these object ranking
methods.

1quantification of respondents’ sensations or impressions
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We formalize the object ranking task in Sect. 2. We survey methods in Sect. 3.
Experimental results on artificial data and on real data are shown in Sects. 4 and 5,
respectively. We discuss and summarize the results in Sect. 6.

2 Orders and Object Ranking

This section shows basic notions regarding orders and formalizes the object ranking
task.

2.1 Basics About Orders

We begin by defining basic notations regarding orders. An object or entity to
be sorted is denoted by xj . The universal object set, X 
, consists of all pos-
sible objects. Each object xj is represented by the attribute value vector xj D
Œxj1; xj2; : : : ; xjk 


>, where k is the number of attributes. An order is denoted by
O D xja

�xjb
� � � � �xjc

. Note that the subscript j of xj does not mean “The j th
object in this order,” but that “The object is uniquely indexed by j in X 
.” An
order x1 � x2 represents “x1 precedes x2.” An object set X .Oi / or simply Xi is
composed of all the objects in the order Oi . The length of Oi , i.e., jXi j, is shortly
denoted by Li . An order of all objects, i.e., Oi s:t: X .Oi / D X 
, is called a com-
plete order; otherwise, the order is incomplete. Rank, r.Oi ; xj / or simply rij , is
the cardinal number that indicates the position of the object xj in the order Oi .
For example, for Oi D x1�x3�x2, r.Oi ; x2/ or ri2 is 3. For two orders, O1 and
O2, consider an object pair xa and xb such that xa; xb 2 X1 \ X2; a ¤ b. These
two orders are concordant w.r.t. xa and xb if the two objects are placed in the same
order, i.e., .r1a 	 r1b/.r2a 	 r2b/ � 0; otherwise, they are discordant. Further,
O1 and O2 are concordant if O1 and O2 are concordant w.r.t. all object pairs such
that xa; xb 2 X1 \ X2; a ¤ b.

We then describe the distance between two orders, O1 and O2, composed of the
same sets of objects, i.e., X .O1/ D X .O2/ � X . Various kinds of distance for
orders have been proposed [1]. Spearman distance dS.O1; O2/ is widely used. It is
defined as the sum of the squared differences between ranks:

dS.O1; O2/ D
X

xj2X

�
r1j 	 r2j

�2
: (1)

By normalizing the range to be Œ	1; 1
, Spearman’s rank correlation 	 is derived.

	 D 1 	 6dS.O1; O2/

L3 	L ; (2)
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where L is the length of orders, i.e., L D jX j. This exactly equals the correlation
coefficient between ranks of objects. The Kendall distance dK.O1; O2/ is another
widely used distance. Consider a set of object pairs, f.xa; xb/ 2 X � X g; a ¤ b;

xa; xb 2 X , including either .xa; xb/ or .xb; xa/. The Kendall distance is defined as
the number of discordant pairs between O1 andO2 w.r.t. xa and xb. Formally,

dK.O1; O2/ D 1

2

0

@M 	
X

f.xa;xb/g
sgn..r1a 	 r1b/.r2a 	 r2b//

1

A ; (3)

where sgn.x/ is a sign function that takes 1 if x > 0, 0 if x D 0, and 	1 otherwise.
M D .L 	 1/L=2 is the number of all object pairs. By normalizing the range to be
Œ	1; 1
, Kendall’s rank correlation � is derived.

� D 1 	 2dK.O1; O2/

M

D 1

M

X

f.xa;xb/g
sgn
�
.r1a 	 r1b/.r2a 	 r2b/

�
: (4)

The computational costs for deriving 	 and � are O.L logL/ and O.L2/, respec-
tively. The values of � and 	 are highly correlated, because the difference between
two criteria is bounded by Daniels’ inequality [2]:

	 1 � 3.LC 2/

L 	 2
� 	 2.LC 1/

L 	 2 	 � 1: (5)

Another inequality between dK and dS is Durbin–Stuart’s inequality:

dS � 4

3
dK

�
1C dK

L

�
:

In [1], you can find further description about other types of distance, such as
Spearman’s footrule, Cayley distance, and Ulam distance, and their characteristics.

Note that dK is a metric, but dS is not due to the violation of the triangular
inequality condition. If two or more objects are tied, we give the same midrank
to these objects [1]. For example, consider an order x5 � x2 � x3 (“�” denotes tie
in rank), in which x2 and x3 are ranked at the 2nd or 3rd positions. In this case, the
midrank 2:5 is assigned to both objects.

2.2 An Object Ranking Task

An Object Ranking task can be considered a regression or a fitting task whose tar-
get variables are orders. Further, input samples comprise not a set of vectors, but a
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Fig. 1 The object ranking task

set of orders, S D fO1; : : : ; ON g, where N is the number of samples. The regres-
sion curve corresponds to a regression order. Analogous to the case of a regression
function, a regression order is estimated so as to be concordant not only with given
sample orders in S , but also with orders that will be generated in future. This task
differs from a regression in two ways. First, since the target variables are orders, the
modeling methods of regression orders and errors are needed. A regression order is
modeled by a ranking function, ord.�/, which represents a rule for sorting objects.
Given an object set Xu, a ranking function outputs the ideal order that consists of all
objects in Xu. Although errors of real values are modeled by an additive term of a
random variable, errors in orders are modeled by a random permutation ".�/. That is
to say, a sample order Oi is generated by ".ord.Xi //. Second, since sample orders
are generally incomplete, there may be objects not observed in given samples (e.g.,
x4 in Fig. 1). Such objects should be ranked under the assumption that the neigh-
boring objects in the attribute space would be close in rank. Object ranking is also
different from classification, because no ordinal relations should be defined between
classes.

We say that a ranking function is absolute if outputs of the function are con-
cordant with each other; otherwise, it is relative. That is to say, for any Xu � X 
,
while an absolute ranking function outputs orders that are concordant with orders
a regression order that consists of all objects in X 
, a relative ranking function
does not. Being absolute is also equivalent to the condition 3, “The independence of
irrelevant alternatives,” of the Arrow’s impossibility theorem [3]. Concretely, given
unordered sets fx1; x2; x3g and fx1; x2; x4g, an absolute ranking function outputs
orders that are concordant w.r.t. x1 and x2 regardless of the existence of objects x3
or x4. However, a relative ranking function differently sorts x1 and x2 due to the
existence of the other objects, e.g., x1 � x2 � x3 and x2 � x4 � x1. An absolute
ranking function would be preferable in applications such as filtering or recommen-
dation. For example, if one prefers an apple to an orange, he/she will always rank
an apple higher than an orange when sorting any set of fruits according to degree of
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preference. One example application appropriate for relative ranking can be found
in [4]. When summarizing multi-documents, after extracting important sentences,
these sentences are ordered. In this case, appropriate order of sentences would be
affected by the other extracted sentences.

Object ranking is closely related to a notion of a Center of Orders [1]; given
sample orders S , center NO is defined as the order that minimizes the sum of the
distances

P
Oi2S d.Oi ; P. NO;Xi //. Note thatP. NO;Xi / denotes the projection of NO

on the set Xi , which is the order that consists of the objects in Xi and is concordant
with NO . This notion is also referred by the other terms, such as aggregated ranking
[5], in machine learning or information retrieval disciplines. We here adopt the term
“center of orders” in statistics because this would be the first given denotation. This
center differs from the above regression order in the points that concordance only
with given samples is considered and that no description of objects, e.g., attribute
values, is employed. The computation of centers is generally NP-hard, except for
the cases such as employing Spearman’s distance.

Object ranking is also related to Ordinal Regression [6, 7], which is a regres-
sion whose type of dependent variables is ordered categorical. Ordered categorical
variables can take one of a finite set of predefined values, like categorical vari-
ables, and order these values additionally; for example, a domain of a variable is
{“good”,“fair”,“poor”}. Ordered categories and orders are different in two points.
First, while orders provide purely relative information, ordered categorical values
additionally include absolute information. For example, while the category “good”
means absolutely good, x1 � x2 means that x1 is relatively better than x2. Sec-
ond, the number of grades that can be represented by ordered categorical variables
is limited. Consider that there are four objects. Because at least two objects must
be categorized into one of the three categories, {“good”,“fair”,“poor”}, the grades
of these two objects are indistinguishable. However, orders can represent the differ-
ences of grades between any two objects. Because a task of object ranking is more
complicated than ordinal regression, object ranking methods can be applicable to
solve ordinal regression, but the converse is not true. But, generally speaking, since
it is not efficient to solve too much complicated tasks, these two tasks should be
carefully differentiated. For example, the computational cost of SVMs for object
ranking (see Table 3) is about the square of O.N 2 NL4/, where NL is the mean length
of sample orders. The SVM specially designed for ordinal regression [8] demands
less computational cost O.N 2jYj2/, where jYj is the number of grades.

3 Object Ranking Methods

We present five object ranking methods. Their abbreviations are given in parentheses
in the section titles.
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3.1 Cohen’s method (Cohen)

Cohen’s method [9] is designed to find the order OOu that maximizes

X

xa�xb2 OOu

PŒxa�xbjxa; xb
; (6)

where PŒxa � xbjxa; xb
 is the conditional probability given the attribute vectors
of xa and xb, and xa � xb 2 OOu denotes all the ordered pairs concordant with
OOu. Note that Ou consists of all the objects in a given set of unordered objects,
Xu. Unfortunately, because the maximization of (6) is known as a linear ordering
problem [10], which is NP-hard, it is not tractable to find the optimal solution if jXuj
is large. Cohen et al. hence proposed a greedy algorithm that sequentially chooses
the most preceding object in Fig. 2. They proposed a more elaborate approximation
method too, but any strict or approximation algorithms to solve the linear ordering
problem [10] can be applied for this optimization.

PŒxa � xbjxa; xb
 is learned by Cohen et al.’s Hedge algorithm. The Hedge is
an online algorithm, which is a variant of the Winnow [11]. Pairwise preference
judgments are determined based on the linear combination of subordinate order-
ing functions. Given one preference feedback sample, a weight for an ordering
function is increased according as the ˇ parameter and the contribution of the
ordering function to the concordance with the feedback. We set the ˇ to 0:9; the
attributes fxjl ;	xjl gklD1 are used as ordering functions in our experiments. To use
the Hedge algorithm in offline mode, the objects in S are iteratively given as feed-
back, and iterations are repeated until the loss becomes stationary. Their Hedge
algorithm is designed so that it takes only ordinal information of attributes into
account and discards the numerical values themselves. Hence, our experimental
condition in which objects are represented by nominal or numerical attributes are
rather disadvantageous to this method.

1: OOu  ;
2: for all x 2 Xu do
3: score.x/ P

x0

2Xu
PŒx�x0jx; x0


4: end for
5: while Xu ¤ ; do
6: xtop  arg maxx score.x/
7: OOu  OOu�xtop , Xu  Xu � fxtopg
8: for all x 2 Xu do
9: score.x/ score.x/� PŒx�xtopjx; xtop 


10: end for
11: end while
12: return OOu

Fig. 2 Cohen’s greedy sorting algorithm
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3.2 RankBoost (RB)

Freund et al. proposed RankBoost [12, 13], that is a boosting algorithm targeting
orders. Inputs of the RankBoost are the feedback function˚.xa; xb/, which implies
xb � xa if ˚.xa; xb/ > 0, and a set of ranking features fl.xi /, which conveys
partial information about the target ordering. Given these inputs, RankBoost returns
the final ranking H.xi / that works as a score function. First, the initial distribution
is calculated by D1.xa; xb/ D max.˚.xa; xb/; 0/=Z1, where Z1 is a normalization
coefficient. Then, for each round t D 1; : : : ; T , the algorithm repeats the selection
of weight ˛t and weak learner ht .x/, and the update of distribution by:

DtC1.xa; xb/ D 1

Zt
Dt .xa; xb/ exp

�
˛t .ht .xa/	 ht .xb//

�
:

Weak learners capture some information about target orders from ranking features,
and output hypotheses such that ht .xb/ > ht .xa/ implies xb � xa. ˛t and ht are
selected so that the normalization factor Zt is minimized. Once these weights and
weak learners are acquired, unseen objects, x 2 X 
, are sorted in descending order
of H.x/ D PT

tD1 ˛tht .x/.
In our experiment, as ranking features, we adopt all terms that appear in n-order

polynomials of object attributes after attribute values are transformed so as to range
in Œ0; 1
. Let˚.xa; xb/ be 2PŒxb � xa
	1. Weak learners are set to ranking features
themselves, i.e., h.x/ D fl.x/. Selection method of ˛t and ht is the third option in
Sect. 3.2 in [13]. The number of rounds, T is set to 100.

3.3 SVM-Based Methods: Order SVM (OSVM)
and Herbrich’s Method (SVOR)

We show two SVM-based methods: Order SVM and SVOR. In summary, the
former is designed to discriminate whether or not a given object is ranked higher
than j th, while the latter judges which of two objects precedes the other.

Since this paper concerns not categorical but ordinal rank, this method may
appear to be a groundless attempt to discriminate high-ranked objects from low-
ranked ones. However, we showed that the probability of finding an object sorted
above a fixed rank is concordant with the true score function. Thus, if a classifier
will discriminate the top j objects from the rest, its discrimination function must be
concordant to some extent with probability and therefore with the true score func-
tion. This observation leads to the use of SVM as the estimator of a score function
in [14].

We first show Order SVM [14]. To enhance the reliability of this estimation, we
proposed training multiple SVMs with different threshold ranks and sorting unseen
objects using the average of those SVMs. Its learning is formulated as the following
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optimization problem:

min
w;vt ;bt

1

2
kwk2 C �

2

L�1X

tD1
kvtk2 C C

L�1X

tD1

mX

iD1

LX

jD1
�
j
i .t/ (7)

s:t: sgnŒj 	 t 
..w C vt / � xji C bt / � 1 	 �ji .t/; �ji .t/ � 0; forall i; j; t;

where xji is the feature vector of the j th ranked object in the i th order, fxji gjD1:::LiD1:::m
are the training samples, and C and � are hyperparameters. In our experiments, we
set C D 0:1 and � D 1 based on preparatory experiments on a small data set. The
sgnŒz
 is 1 if z � 0; otherwise, 	1. The SVM that discriminates the top t objects
from the rest is ft .x/ D .w C vt / � x C bt . Thus, the second regularizer

P
t kvtk2

makes all ft .x/ agree on the predicted orders as much as possible. The order is
predicted by sorting objects according to the score w � x. The dual problem of (7) is
similar to that of standard SVMs, and any kernel function can be used instead of the
inner products between feature vectors [14]. This method performs discriminations
whether an object is ranked higher than t for each t D 1; : : : ; L 	 1. The number
of failures in these discriminations is equivalent to the absolute difference between
object ranks in the estimated order and sample order. These differences are then
summed up over all objects in orders. This sum can be considered as representing
Spearman footrule [1], which is absolute distance between two orders. Therefore,
this method aims at minimizing the sum of distances in Spearman footrule between
an estimated order and each sample order.

We refer to the other SVM-based method as Support Vector Ordinal Regression
(SVOR) [15] since its formulation is very similar to standard SVMs and the work on
it appears to be inspired by that of past ordinal regression works [16]. This method
was independently developed as Ranking SVM by Joachims [17] and was proposed
in [18].

SVOR discriminates correctly ordered pairs from incorrectly ordered pairs. In
contrast to the Cohen method in which precedences are independently learned from
pairs and there is no guarantee that transitivity holds among the learned preferences,
SVOR uses a single score function for learning and thus avoids the intractability
problem of the sorting process shown in [9].

SVOR’s learning is formulated as the following optimization problem:

min
w

1

2
kwk2 C C

mX

iD1

X

1�j<l�L
�
jl
i (8)

s:t: w � .xji 	 xli / � 1 	 �jli ; �
jl
i � 0; for 8i; j < l;

where the same notations as OSVM are used for xji ,m,L, and C (In our experiments,
C D 1). SVOR tries to find the direction w along which sample objects are ordered
so that the narrowest separation between samples is maximal. The prediction of
orders is done by sorting objects according to the score w � x. As in the case of
OSVM, the dual problem of (8) can be written using only the inner products of x;
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thus, we can use any kernel function in SVOR as well. This method is designed so
that for each object pair in orders, the discrimination whether one object precedes
the other is performed. The number of failures in these discriminations is equivalent
to Kendall distance. Therefore, this method aims at minimizing the sum of distances
in Kendall distance between an estimated order and each sample order.

3.4 Expected Rank Regression (ERR)

We turn to our Expected Rank Regression method [19]. In this method, after
expected ranks of objects are derived, the function to estimate these expected ranks
is learned using a standard regression technique.

To derive expected ranks, assume that orders Oi 2 S are generated as follows:
First, a complete sample order O
i , which cannot be observed and consists of all
objects in X 
, is generated. jX 
j 	 jOi j objects are then selected uniformly at
random, and these are eliminated from O
i ; then, the Oi is observed. Under this
assumption, a theoretical result in order statistics [20] shows that the conditional
expectation of rank of the object xj 2 Xi in the unobserved complete order O
i
given the sample orderOi is

EŒr.O
i ; xj /jOi 
 / r.Oi ; xj /
jOi j C 1

: (9)

These expected ranks are calculated for all the objects in all the orders in a sam-
ple set S . Next, standard regression techniques are applied to derive weights of
regression function, f .xj /, which predicts the above expectation of ranks. Samples
for regression consist of the attribute vectors of objects, xj , and their correspond-
ing expected ranks, r.Oi ; xj /=.jOi j C 1/; thus, the number of samples becomesP
Oi2S jX .Oi /j. Once weights of f .xj / are learned, the order OOu can be estimated

by sorting the objects xj 2 Xu according to the corresponding values of f .xj /.
Below, we describe a rationale why this ERR works: We assume that sample

orders are generated according to the Thurstone’s model (case V) [21]. In this
model, sample orders are generated by sorting objects x 2 Xu in the ascending
order of the scores, x, f 
.x/, that follow the following normal distribution:

f 
.x/ � N .�.x/; �2/; (10)

where�.x/ and � are mean and standard deviation, respectively. A complete regres-
sion order, NO
, is determined by sorting all objects in X 
 in the ascending order
of the mean scores �.x/, and random permutation is caused by the additive noise
in scores of objects; the above complete sample orders, O
i ; i D 1; : : : ; jS j, are
consequently generated. Next, we consider the probability that a pair of adjacent
objects in NO
 permutes. We assume that such probabilities are equal over all adja-
cent pairs, because there is no prior information that one pair is more frequently
permuted than the other pair. This assumption makes the differences of the mean
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scores between these adjacent pairs, j�.xi/ 	 �.xj /j, to be constant. Further, these
mean can be replaced with rank in NO
 without loss of generality, because an order
derived based on scores is invariant for any linear transformation in scores. We then
learn a function to predict rank r. OO
; x/ for any object x. Expectations of these
ranks over random elimination of objects can be obtained by (9), and noise in scores
follows normal distribution as in (10). Consequently, we can estimate ranks in NO

by applying standard regression to samples, .xj ; r.Oi ; xj /=.jOi j C 1//.

In our experiments, n-order polynomials are adopted as a class of regression
functions. No regularization terms were adopted in regression.

4 Experiments on Artificial Data

To reveal the characteristics of object ranking methods, we applied these methods
to artificial data.

4.1 Experimental Conditions

Artificial data were generated in three steps. First, we generated two types of vec-
tors: numerical (num) and binary (bin). Each numerical vector consists of 5.�k/
attributes, which follow the normal distribution, N.0; 1/. Binary vectors are com-
posed of 15.�k/ attributes, and are randomly generated so that every object is
represented by different value vectors. Note that, when the methods designed for
numeric attributes, binary values are converted to the number, 0 or 1. Second, true
regression orders are determined based on these attribute values. Objects are sorted
according to the values of the function:

utility.xj / D
 
1C

kX

lD1
wlxjl

!dim

;

where wl are random weights that follow the normal distribution,N .0; 1/. We tested
two settings: linear (dim D 1) and nonlinear (dim D 2 or 3), denoted by li and
nl, respectively. Finally, N sample orders Oi 2 S were generated by randomly
eliminating objects from the true regression orders.

As an error measure, we used Spearman’s 	 (2) between the estimated order and
the above true regression order. If 	 is 1, the two orders are completely concordant;
if it is 	1, one order is the reverse of the other. We will show the means of 	 over
a tenfold cross validation for 10 different weight sets of utility.xj /. Regardless of
the length of training orders, the size of the unordered set, jXuj, is set to 10, because
errors cannot be precisely measured if orders are too short.
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4.2 Experimental Results

As the basic experimental condition, we chose N D 300, Li D 5, and jX 
j D
1;000. Under this condition, the probability that one object in Xu is unobserved
in the training samples seems rather low (25:8%). However, the probability that the
object pairs in Xu become unobserved, which is intrinsic to ordinal relations, is fully
high (99:5%). Therefore, we consider that this data set is well suited to evaluate the
generalization ability. Note that algorithm parameter settings described in Sect. 3 are
tuned for this basic condition under a noisy condition described later. By default, we
used this basic condition in the following experiments. The other settings were: For
Cohen, we adopt their Hedge and their greedy search algorithm. Note that we also
applied the exhaustive search to derive the optimal orders that maximizes (6), but
the results were rather inferior to that by the greedy search in Fig. 2. For RB, ranking
features are all terms of a second-order polynomial. For SVOR and OSVM, Gaussian
kernels with � D 1 were used. For ERR, the second-order polynomials was used as
class of regression functions.

Table 1a shows the means of 	 under this basic setting. Each row corresponds
to each of the four data sets described in Sect. 4.1, and each column corresponds
to each method in Sect. 3. The rank of each method is shown in brackets. Except
for the difference between RB and SVOR of nl/bin, the difference between each
method and the next-ranked one is statistically significant at the level of 1% when
using a paired t-test and a Bonferroni multiple comparison.

Defects of the Cohen would be due to the fact that only the ordinal information of
attributes is considered, as described in Sect. 3.1. The ERR methods were inferior
in bin cases, but were superior in num cases. The performance with nl/bin data
was unstable because the weights of a regression function have to be determined
based on two points, 0 and 1. The SVM-based method could avoid this problem
by adopting the regularization property. The two SVM-based methods, OSVM and
SVOR, also bear a resemblance to each other. The RB was rather inferior for the nl
case, but it could be improved by increasing the number of rounds T . For example,
when we tried the number of iterations T D 1;000 for basic data under a noisy

Table 1 Basic Results: jX�j D 1000, Li D 10, N D 300

(a) Under Noiseless Conditions
Cohen RB SVOR OSVM ERR

li/num 0:860 Œ5
 0:959 Œ2
 0:914 Œ3
 0:886 Œ4
 0:982 Œ1


li/bin 0:966 Œ2
 0:978 Œ1
 0:885 Œ4
 0:868 Œ5
 0:895 Œ3


nl/num 0:682 Œ5
 0:763 Œ4
 0:911 Œ2
 0:878 Œ3
 0:935 Œ1


nl/bin 0:786 Œ5
 0:875 Œ1
 0:866 Œ2
 0:842 Œ3
 0:830 Œ4


(b) Under Noisy Conditions
Cohen RB SVOR OSVM ERR

nl/num 0:652 Œ5
 0:719 Œ4
 0:818 Œ1
 0:797 Œ3
 0:813 Œ2


nl/bin 0:764 Œ5
 0:842 Œ1
 0:817 Œ2
 0:809 Œ3
 0:796 Œ4
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condition in Table 1b, the 	 improved from 0:720 to 0:765. However, it was too
slow compared with other methods, so we had to set T D 100 when performing our
experiments.

Table 1a shows the results under a noiseless condition; that is to say, all the
sample orders are perfectly concordant with the corresponding regression order. To
test the robustness of the methods against the noise in the orders, we permuted
two randomly selected pairs of adjacent objects in the original sample orders. By
changing the number of times that objects are permuted, the noise level could be
controlled. The order noise level is measured by the probability that the 	 between
the original order and the permuted one is smaller than the 	 between the original
order and a random one. This probability can be computed by using the statistical
property of Spearman’s 	. We generated four types of data whose noise levels were
0%�10%. Note that the 0% level noise is equivalent to the noiseless case.

Figure 3 shows the means of 	 in accordance with the order noise level for the
nl/num data. In accordance with the increase of noise, the empirical 	 (between
the estimated order and the permuted sample order) drastically became worse,
whereas true 	 (between the estimated order and the noiseless order that cannot
be observed in nonartificial data) did not decrease to a significant degree. For exam-
ple, at the 10% noise level, the empirical 	 by the ERR for the nl/num data is
0:409, while the true 	 is 0:904. We then examined the robustness of these meth-
ods against noise in attribute values. For the numerical attributes, the ˛% level of
noise is obtained by multiplying the true values by the random factors that follow
N.1; ˛=100/. Note that sample orders were calculated based on noiseless attribute
values. Figure 4 shows the means of 	 in accordance with the level of attribute
noise for the nl/num data. We generated five types of data whose ˛ values were
set to 0%�160%. The results shown in Figs. 3 and 4 indicate a clear contrast. The
SVM-based methods were robust against attribute noise, but not against order noise.
Conversely, the other methods were robust against order noise, but not against
attribute noise. This could be explained as follows: The SVM-based methods are
sensitive to order noise because the exchanged ordered pairs tend to become support

0.5

0.6

0.7

0.8

0.9

1

10%1%0.1%0%

Cohen
RB

SVOR
OSVM

ERR

	

Fig. 3 Variation in the order noise

0.5

0.6

0.7

0.8

0.9

1

160%80%40%20%0%

Cohen
RB

SVOR
OSVM

ERR

	

Fig. 4 Variation in the attribute noise
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vectors, while perturbation of attribute values does not affect the support vectors as
much. Inversely, the non-SVM-based methods can learn correctly if correct orders
constitute the majority of the sample orders; thus, these methods are robust against
order noise. However, any perturbation in attribute values affects their performance.

The noiseless setting of Table 1a is unrealistic, because real data generally
include noise. We therefore investigated the behavior of object ranking methods
under more realistic noisy conditions. According to the above results, the relative
superiority of the prediction performance among the methods heavily depended on
types of noise. That is to say, while the non-SVM-based methods were superior
for data with more order noises, the SVM-based ones were superior for data with
more attribute noises. Instead of comparing the relative superiority of methods,
we investigated the patterns of the changes of the relative predictive performance
in accordance with the variation of data properties. To check these, noise levels
were selected so that ERR and SVOR gave roughly equal performance. In both the
nl/num and the nl/bin data sets, order noise levels were set to 1%. While the
attribute noise level of the nl/num was 40%, binary values were flipped with a
probability of 1% for the nl/bin. We, however, used noiseless data when testing
the variation in the predictive performance according to the length of sample orders
(Fig. 5c), because the shorter sample orders were more seriously influenced by order
noise. Along with fixing the algorithm parameter settings, we tested the changes of
the prediction performance according to variation in the number of objects jX 
j, the
number of sample orders N , and the length of orders Li .

Table 1b shows the results under this noisy condition for the basic data. Except
between SVOR and ERR of nl/num, the difference between each method and the
next-ranked one is statistically significant at the level of 1% when using a paired
t-test and a Bonferroni multiple comparison. Figure 5 shows the means of 	 in
accordance with the variations in the other properties of samples sets. The results
for the nl/num and the nl/bin data are shown in each column. Rows (a), (b), and
(c) show results when the number of objects jX 
j, the number of sample orders N ,
and the length of orders Li were varied, respectively.

In terms of Fig. 5a, the probability that an object in test orders has not been
included in training samples decreases in accordance with the increase of jX 
j;
accordingly, a greater generalization ability is required. SVM-based methods were
better if jX 
j was small, but their performance dropped for larger jX 
j. Adoption of
soft-margin parameter C tuning for jX 
j was required in order for the SVM-based
methods to work well. The non-SVM-based methods results were rather flat. This
would be because the number of model parameters to determine is fewer in these
methods than in the SVM-based ones.

Turning to Fig. 5b and c, the Cohen method performed more poorly for the larger
Li . This would be because the paired comparison model used in the Cohen method
assumes independence among ordered pairs. For small N or Li , the performance
of the SVM-based methods was inferior to those of the others. However, the per-
formance was improved in accordance with the increase of N or Li . This might be
because the SVM-based methods are overfitted when the sample set is so small that
the learned functions are not sparse. We also expected that this observation arises
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(a) jX�j D f100; 1000; 10000g
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(b) N D f50; 100; 300; 500; 1000g
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(c) Li D f2; 3; 5; 7; 10g

Fig. 5 Variation in the number of objects jX�j, the number of sample orders N , and the length of
sample orders Li

from the strength of model biases. Hence, we further checked the performance by
changing the parameters of the methods, but we could not find a simple relation
between the number of parameters to learn and the number of observed samples.



A Survey and Empirical Comparison of Object Ranking Methods 195

5 Experiments Using Real Data

We applied the methods described in Sect. 3 to real data from the following ques-
tionnaire surveys. The first data set was a survey of preferences in sushi (Japanese
food), and is denoted as SUSHI1 [19, 22]. In this data set, N D 500, Li D 10, and
jX 
j D 100. Objects are represented by 12 binary and 4 numerical attributes. By
using the k-o’means clustering method [23, 24], we generated two sample orders
whose ordinal variances were broad and narrow. The probabilities that objects were
selected in Oi were not uniform, as assumed in an ERR method. Objects were
selected independently with probabilities that range from 3:2% to 0:13% from X 
.
The second data set was a questionnaire survey of news articles sorted according
to their significance, and is denoted as NEWS. These news articles were obtained
from “CD-Mainichi-Newspapers 2003.” In this data set, N D 4;000, Li D 7, and
jX 
j D 11;872. The variance among sample orders was slightly broader than the
tight SUSHI data. Articles were represented by keyword and document frequencies,
and these 22;297 elements were compressed to 20 attributes using latent semantic
indexing (a contribution ratio is about 0.9). Additionally, we used 8 binary attributes
to represent article categories. For both data sets, the N or Li were varied by elim-
inating sample orders or objects. Orders became difficult to estimate as N and/or
Li decreased. Errors were measured by the empirical 	 between the sample order
and the estimated one. The algorithm’s parameters were set to the practical setting
in Sect. 4.2. Ideally, these parameters should be tuned by using cross-validation,
but some methods were too slow to perform such fine tuning. Therefore, these
experiments reveal not the relative superiority among methods but the changes in
performance along with the variation in N and/or Li .

In Table 2, we show the means of 	. The column labeled N WLi represents the
number and the length of sample orders, and the letters “b” and “n” denote the types
of variance, broad or narrow, respectively. In the SUSHI case, the differences among
methods were less clear than those in artificial data. Although we expected that the
SVM would work well for a tight data set, the variance in sample orders was less
affected. We could say that this is due to the fitness of the SUSHI data to a linear
model; we observed that the other method worked well when using a linear model.
ERR showed good performance for large N or Li , but poorer results for small
N or Li . This is due to too complicated model for regression, because the mean
	 increased to 0:249 by adopting a simpler linear regression model for 100W2W.b/.
Inversely, RB was better for small N or Li . This is due to the setting of T D 100,
the number of rounds. When T D 300, we observed that performance for large N
or Li improved, but it was depressed for small N or Li because of overfitting. In
the case of NEWS, sample orders were tight, but the correlation between sample
orders and attributes were remarkably weak. Thus, all methods performed poorly.
For such weak attributes, Cohen performed very poorly, even though we tuned ˇ
parameters. Again, ERR was better for large N or Li , but was poorer for small N

1 This data set can be downloaded from http://www.kamishima.net/sushi/
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Table 2 Results on real data sets

N WLi Cohen RB SVOR OSVM ERR

S
U

S
H

I 500:10(b) 0.364 [5] 0.384 [4] 0.393 [3] 0.400 [1] 0.397 [2]
100:5(b) 0.354 [2] 0.356 [1] 0.284 [4] 0.315 [3] 0.271 [5]
100:2(b) 0.337 [1] 0.281 [2] 0.115 [4] 0.208 [3] 0.010 [5]

500:10(n) 0.543 [5] 0.583 [4] 0.719 [1] 0.708 [2] 0.705 [3]
100:5(n) 0.548 [5] 0.612 [4] 0.646 [2] 0.655 [1] 0.617 [3]
100:2(n) 0.577 [1] 0.542 [2] 0.522 [4] 0.540 [3] 0.421 [5]

N
E

W
S 4000:7 �0.008 [5] 0.350 [3] 0.244 [4] 0.366 [2] 0.386 [1]

1000:5 �0.009 [5] 0.340 [3] 0.362 [1] 0.353 [2] 0.312 [4]
1000:2 �0.009 [5] 0.338 [3] 0.349 [1] 0.344 [2] 0.149 [4]

or Li . However, this was due to the model complexity as in the above SUSHI case.
In summary, the performances of four methods other than Cohen were roughly equal,
when dealing with these real data.

6 Discussion and Conclusions

We first discuss the relation between object ranking methods and the probabilistic
generative models for orders (see Appendix A). These models can be categorized as
four types [1, 25]:

– Thurstonian: Objects are sorted according to the corresponding score.
– Paired comparison: Objects are compared in pairwise, and all objects are sorted

based on these comparison results.
– Distance-based: Orders are generated with the probability that is determined

based on the distance from a modal order.
– Multistage: Objects are sequentially arranged top to end.

Object ranking methods are commonly designed by incorporating a way to deal
with attributes into these models. Error or loss in orders are designed based on these
generative models. In Cohen, because the precedence between object pairs is first
determined based on the learned model, we consider that this method adopts a paired
comparison model. Regarding RB and SVM methods, a modal order is determined
by sorting the outputs of a score function. Loss functions between a modal order and
sample orders are defined based on the discordance between them. Therefore, these
methods can be considered to be related to the distance-based model. While RB
and SVOR adopt Kendall distance, OSVM adopts Spearman footrule. Finally, ERR is
based on the Thurstonian model as described in Sect. 3.4.

We next summarize computational complexities of learning and sorting time in
the first and second rows of Table 3. We assume that the number of ordered pairs
and of objects in S are approximated by N NL2 and N NL, respectively, where NL is
the mean length of the sample orders. The SVM’s learning time is assumed to be
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Table 3 Computational complexities

Cohen RB SVOR OSVM ERR

Learn N NL2k N NL2k N 2 NL4k N 2 NL4k N NLk2
Sort L2 L logL L logL L logL L logL

quadratic in the number of training samples. The learning time of Cohen’s Hedge
algorithm or the RB is linear in terms of the N NL2, if the number of iteration T is
fixed. However, if T is adaptively chosen according to N NL2, their time complex-
ity becomes superlinear. In terms of the number of attributes k, the SVM-based
methods depend on the number of nonzero attribute values; thus, it is practically
sublinear. Standard regression used in ERR can be computed faster, if attributes are
sparse. Generally, in practical use, the learning time of the SVM-based methods is
slow, that of Cohen and RB is intermediate, and that of ERR are much faster. In
terms of time for sorting of xj 2 X , the Cohen greedy requires O.L2/ while the
others perform more quickly,O.L logL/.

We finally summarize the pros and cons of each method. Our new ERR method
was practically the fastest without sacrificing its prediction performance. This
quickness make it to try many parameter settings in relatively short times. Even for
the result where ERR were poor, e.g., SUSHI:100:2(b), we observed that it could
be improved by re-tuning. In this method, the uniform distribution of the object
observation is assumed, but SUSHI result demonstrated the robustness against the
violation of this assumption to an extent. However, this method requires quadric
time in terms of k, if attribute vectors are dense.

The most prominent merit of Cohen is to be an online method. For online learning
purposes, the other methods cannot be used. Although the Cohen performed rather
poorly in our experiments, this is because the Hedge algorithm is designed to take
into account as its attributes only ordinal information. We observed that the perfor-
mance could be improved by using other classifier, such as the naïve Bayes, instead
of the Hedge, because this method was designed to deal with categorical or numer-
ical attributes. Further, our experiments were absolute ranking task (see Sect. 2.2),
but the Cohen acquires relative ranking function, because this method adopts a paired
comparison model.

The unique property of the RB is rich options of weak learners. Because of this
property, various types of attributes can be used. If objects are represented by vectors
whose attribute types are mixtures of ordinal and numerical/categorical, the other
algorithm cannot be used. Our experimental results of RB were rather inferior, but
we observed that this could be considerably improved by adaptively increasing T .
Due to too slow convergence, we had to stop iterations after the end of the drastic
error drops at the beginning stage. However, it takes as same or more computation
time as the SVM-based methods until complete convergence, and it should be also
noted that too large T would cause overfitting.

Like a standard SVM, the SVOR and OSVM are advantageous if k is large. The
our experimental results demonstrated that the two SVM-based methods and the
others are robust against different types of noise. Hence, for data in which orders
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are permuted, the non-SVM-based methods are preferable, while for data whose
attributes are disturbed, the SVM-based methods are preferable. The demerit of the
SVM-based methods are slowness. The learning complexity of the two SVM-based
methods is the same, but the OSVM is practically slower. However, it was more robust
against order noise than SVOR.

A Probabilistic Generative Models for Orders

We briefly summarize the probabilistic generative models for orders. Readers that
needs further information should refer a textbook [1] or a survey paper [25]. As
described before, these models can be categorized into four types: Thurstonian,
paired comparison, distance-based, and multistage. All these are generative model
for complete orders, in which all objects are included. We sequentially introduce
these four types.

As indicated by the name Thurstonian, this type of models were first proposed by
Thurstone [21] and are also called by order statistics models. In this model, objects,
xi 2 X 
, are sorted according to their corresponding scores. This score is a real
value probabilistic function that is defined as

score.xi / D �.xi /C �.xi /;

where �.xi / is the mean score for the object xi and �.xi / follows the distribution
with zero mean. In original Thurstone’s model, the normal distribution is used as
�.xi /. Especially, the “case V”, in which the variance of the normal distribution is
constant over all objects, is widely used. In this case, the probability the object xi
precedes the xj is simply computed by [26]:

PŒxi � xj 
 D PŒscore.xi / > score.xj /
 D ˚

�
�.xi /	 �.xj /p

2�

�
;

where ˚.�/ is the normal c.d.f. and �2 is its variance.
In a paired comparison model, which object precedes the other is determined for

each pair of objects. Accordingly, L.L 	 1/=2 ordered pairs are generated, where
L is the total number of objects, i.e. L D jX 
j. If this set of ordered pairs is cyclic,
i.e., xi � xj , xj � xk , and xk � xi0, then this set is discarded, and all pairs are
re-generated; otherwise, a total order is uniquely determined. The saturated model
havingL.L	1/=2 parameters, which represent the probabilities that one object pre-
cedes the other, is called by Babington Smith model. Babington Smith first showed
the moments of this model in [27]. After that, some models with fewer parameters
have been proposed. The next model having L parameters is called Bradley–Terry
model [28]:

PŒxi � xj 
 D f .xi /
f .xi /C f .xj /

;

where f .�/ is positive real function.
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In distance-based model, orders,O , follows the following distribution

PŒO
 D 1

Z.�/
exp

	
	�d.O0; O/



;

where � is a concentration parameter, which is nonnegative real value, the O0
is a modal ranking, at which this distribution is peaked, d.�; �/ denotes the dis-
tance between orders, and Z.�/ is a normalization factor. Especially, this model
is called Mallows �-model and Mallows �-model if Kendall and Spearman distance
are adopted, respectively. This is because these are the special cases of the Mallows
model [29], which is a kind of a paired comparison model. If i th and j th ranked
objects in a generated order are xi and xj , respectively, Mallows model is defined as

PŒxi � xj 
 D � i�j��1

� i�j��1 C �j�i�
;

where � and � are positive real parameters. If � D 1 (resp. � D 1), this model
becomes Mallows �-model (resp. Mallows �-model).

Finally, in multistage model, objects are sequentially arranged top to end.
Plackett–Luce model [30], which is a kind of a multistage model, generates an order,
O D xi1 � xi2 � � � � xiL , with the following procedure. The top ranked object, xi1 ,
is chosen with the probability:

f .xi1/P
x2X�

f .x/
;

the second ranked object, xi2 , is chosen with the probability:

f .xi2/P
x2X�;x¤xi1

f .x/
;

and these procedures are iterated L 	 1 times. Orders generated by this model
satisfies Luce’s choice axiom: Roughly speaking, the probability that an object is
top-ranked equals to the product of the probability that the object is top-ranked in
any subset and the probability that the subset contains the object. More formally,
PX Œx
 denotes the probability that an object x is top ranked among the object set, X ,
and PX ŒX 0
; X 0�X , denotes the probability that the top object in X is contained in
X 0. A set of choice probabilities is said to satisfy Luce’s choice axiom if 8X � X 

with at least two objects, xi and xj , satisfy:

– If Pfxi ;xj gŒxi 
 > 0 8xi ; xj 2 X then 8xk 2 X 0 � X ;PX Œxk
 D PX 0 Œxk
PX ŒX 0
,
– If Pfxi ;xj gŒxi 
 D 0 9xi ; xj 2 X then if xj 2 X ; xj ¤ xi , PX Œxj 
 D PXnfxi gŒxj 
.

This Plackett–Luce model is equivalent to the above Thurstonian model, if �.�/
follows Gumbel distribution, whose c.d.f. is 1 	 exp.	 exp.x//.



200 T. Kamishima et al.

Acknowledgements A part of this work is supported by the grant-in-aid 14658106 and 16700157
of the Japan society for the promotion of science. Thanks are due to the Mainichi Newspapers for
permission to use the articles.

References

1. J.I. Marden, Analyzing and Modeling Rank Data, Vol. 64, Monographs on Statistics and
Applied Probability (Chapman & Hall, 1995)

2. M. Kendall, J.D. Gibbons, Rank Correlation Methods, 5th edn. (Oxford University Press, 1990)
3. K.J. Arrow, Social Choice and Individual Values, 2nd edn. (Yale University Press, 1963)
4. D. Bollegala, N. Okazaki, M. Ishizuka, A machine learning approach to sentence ordering

for multidocument summarization and its evaluation, in Proceedings of the Natural Language
Processing society of Japan (2005)

5. C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank aggregation methods for the Web, in
Proceedings of The 10th International Conference on World Wide Web (2001), pp. 613–622

6. A. Agresti, Categorical Data Analysis, 2nd edn. (Wiley, 1996)
7. P. McCullagh, Regression models for ordinal data. J. Royal Stat. Soc. B 42(2), 109–142 (1980)
8. A. Shashua, A. Levin, Ranking with large margin principle: Two approaches, in Advances in

Neural Information Processing Systems, vol. 15 (2003), pp. 961–968
9. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10, 243–

270 (1999)
10. M. Grötschel, M. Jünger, G. Reinelt, A cutting plane algorithm for the linear ordering problem.

Oper. Res. 32(6), 1195–1220 (1984)
11. N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold

algorithm. Mach. Learn. 2, 285–318 (1988)
12. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combin-

ing preferences, in Proceedings of The 15th International Conference on Machine Learning
(1998), pp. 170–178

13. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining
preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

14. H. Kazawa, T. Hirao, E. Maeda, Order SVM: a kernel method for order learning based on
generalized order statistics. Syst. Comput. Jpn. 36(1), 35–43 (2005)

15. R. Herbrich, T. Graepel, P. Bollmann-Sdorra, K. Obermayer, Learning preference relations
for information retrieval, in ICML-98 Workshop: Text Categorization and Machine Learning
(1998), pp. 80–84

16. R. Herbrich, T. Graepel, K. Obermayer, Support vector learning for ordinal regression,
in Proceedings of the 9th International Conference on Artificial Neural Networks (1999),
pp. 97–102

17. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of The 8th
International Conference on Knowledge Discovery and Data Mining (2002), pp. 133–142

18. O. Luaces, G.F. Bayón, J.R. Quevedo, J. Díez, J.J. del Coz, A. Bahamonde, Analyzing sensory
data using non-linear preference learning with feature subset selection, in Proceedings of the
15th European Conference on Machine Learning (2004), pp. 286–297 [LNAI 3201]

19. T. Kamishima, H. Kazawa, S. Akaho, Supervised ordering – an empirical survey, in Proceed-
ings of The 5th IEEE International Conference on Data Mining (2005), pp. 673–676

20. B.C. Arnold, N. Balakrishnan, H.N. Nagaraja, A First Course in Order Statistics (Wiley, 1992)
21. L.L. Thurstone, A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927)
22. T. Kamishima, Nantonac collaborative filtering: Recommendation based on order responses, in

Proceedings of The 9th International Conference on Knowledge Discovery and Data Mining
(2003), pp. 583–588

23. T. Kamishima, J. Fujiki, Clustering orders, in Proceedings of The 6th International Conference
on Discovery Science (2003), pp. 194–207 [LNAI 2843]



A Survey and Empirical Comparison of Object Ranking Methods 201

24. T. Kamishima, S. Akaho, Efficient clustering for orders, in Mining Complex Data, vol. 165,
Studies in Computational Intelligence, ed. by D.A. Zighed, S. Tsumoto, Z.W. Ras, H. Hacid
(Springer, 2009), pp. 261–280

25. D.E. Critchlow, M.A. Fligner, J.S. Verducci, Probability models on rankings. J. Math. Psychol.
35, 294–318 (1991)

26. F. Mosteller, Remarks on the method of paired comparisons: I – the least squares solution
assuming equal standard deviations and equal correlations. Psychometrika 16(1), 3–9 (1951)

27. B. Babington Smith, Discussion on professor ross’s paper. J. Royal Stat. Soc. B 12, 53–56
(1950) (A.S.C. Ross, “Philological Probability Problems”, pp. 19–41)

28. R.A. Bradley, M.E. Terry, Rank analysis of incomplete block designs – i. The method of paired
comparisons. Biometrika 39, 324–345 (1952)

29. C.L. Mallows, Non-null ranking models, I. Biometrika 44, 114–130 (1957)
30. R.L. Plackett, The analysis of permutations. J. Royal Stat. Soc. C 24(2), 193–202 (1975)



Dimension Reduction for Object Ranking

Toshihiro Kamishima and Shotaro Akaho

Abstract Ordered lists of objects are widely used as representational forms. Such
ordered objects include Web search results and bestseller lists. Techniques for pro-
cessing such ordinal data are being developed, particularly methods for an object
ranking task: i.e., learning functions used to sort objects from sample orders. In
this article, we propose two dimension reduction methods specifically designed to
improve prediction performance in an object ranking task.

1 Introduction

Orders are sequences of objects sorted according to some property and are widely
used to represent data. For example, responses from Web search engines are lists of
pages sorted according to their relevance to queries. Bestseller lists, which are item
sequences sorted according to sales volume, are used on many E-commerce sites.
Processing techniques for orders have immediate practical value, and so research
concerning orders has become very active in recent years. In particular, several
methods are being developed for learning functions used to sort objects represented
by attribute vectors from example orders. We call this task Object Ranking [1, 2]
and emphasize its usefulness for sensory tests [2, 3],1 information retrieval [4–8],
and recommendation [9].

Several methods have been developed for the object ranking task. However, when
the attribute vectors that describe objects are in very high-dimensional space, these
object ranking methods are degraded in prediction performance. The main reason
for this is that the number of model parameters to be learned grows in accordance

1 measurement of respondents’ sensations, feelings or impressions.
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with the increase of dimensionality; thus, the acquired functions might not perform
well when sorting unseen objects due to overfitting.

Dimension reduction techniques are one obvious solution to the problems caused
by high dimensionality. Dimension reduction is the task of mapping points orig-
inally in high-dimensional space to a lower dimensional subspace, while limiting
the amount of lost information. Principal component analysis (PCA) is one of the
typical techniques for dimension reduction. PCA is designed so that variations in
original data are preserved as much as possible. It has been successfully used for
other learning tasks but is less appropriate for an object ranking task. Since PCA
is designed so as to preserve information regarding the objects themselves, useful
information in terms of the target ordering might be lost by this approach. There-
fore, in this paper, we propose Rank Correlation Dimension Reduction (RCDR)
for dimension reduction in conjunction with object ranking. RCDR is designed to
preserve information that is useful for mapping to the target ordering.

We propose our RCDR methods in Sect. 2. Experimental results are shown in
Sect. 3. We discuss and summarize the results in Sect. 4.

2 Rank Correlation Dimension Reduction

In this section, we show a dimension reduction technique specially designed for
object ranking methods. Note that the notations and the task of object ranking are
described in our survey chapter of this book [1].

To obtain satisfactory results when using data mining or machine learning algo-
rithms, it is important to apply preprocessing methods, such as feature selection,
dealing with missing values, or dimension reduction. Appropriate preprocessing of
data can improve prediction performance, and can occasionally reduce computa-
tional and/or memory costs. Some preprocessing techniques for mining or learning
methods dealing with orders have been proposed. Bahamonde et al. [10] applied
wrapper-type feature selection to an object ranking task. Slotta et al. [11] performed
feature selection for classification of orders. In [12, 13], rank statistics were used
for selecting informative genes from microarray data. To measure the similari-
ties between orders, Kamishima and Akaho proposed a method to fill in missing
objects in orders [14]. To our knowledge, however, dimension reduction techniques
specially designed for an object ranking task have not yet been developed.

Similar to other types of learning tasks, such as classification or regression,
dimension reduction techniques will be beneficial for object ranking tasks, in par-
ticular, if the number of attributes, K , is very large. With reduced dimensions, the
generalization ability can be improved. Because the number of model parameters to
be learned grows in accordance with K , the acquired functions might not perform
well when sorting unseen objects due to overfitting. In particular, if there are many
noninformative attributes or if complex models are used, the problem of overfitting
will be alleviated by reducing dimensions.
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To reduce the number of dimensions before performing object ranking, one might
assume that reduction techniques used for other learning tasks can be used. How-
ever, this is not the case. Principal component analysis (PCA) is one of typical
techniques for dimension reduction. PCA is designed so that information about data
in original attribute vector space is preserved as much as possible. This approach
is less appropriate for an object ranking task. Specifically, because an object rank-
ing task must find a mapping from attribute vectors to the target ordering, it is not
sufficient to preserve information only in source vectors. On the other hand, Dia-
conis’ spectral analysis [15] for orders is another possibility. This is a technique
to decompose distributions of orders into subcomponents. For example, first-order
components represent the frequency that the object xj is l th ranked, while second-
order components represent the frequency that objects xj and xk are l th and mth
ranked, respectively. However, our goal is not to find decomposition in an ordinal
space, but to find a subspace in an attribute vector space.

From the above discussion, it should be clear that we had to develop reduc-
tion techniques that preserve information about mappings from attribute vectors to
the target ordering. This is analogous to Fisher’s discriminant analysis, which is a
dimension reduction technique to preserve information about a mapping from an
attribute vector to target classes.

Additionally, the computational cost for reducing dimensions should not be much
higher than that for object ranking methods. Computational complexities of object
ranking methods in the learning stage are summarized in Table 1. These columns
show the complexities for Cohen’s method [4], RankBoost [9], Order SVM [16],
Support Vector Ordinal Regression (SVOR) [5] (also known as RankingSVM [6]),
and Expected Rank Regression (ERR) [2]. You can find a summary of these methods
in [1]. We assume that the number of ordered pairs and objects in S are approxi-
mated by N NL2 and N NL, respectively ( NL is the mean length of the sample orders).
The SVM’s learning time is assumed to be quadratic in the number of training sam-
ples. The learning time of Cohen’s method or the RankBoost is linear in terms of
N NL2, if the number of iterations is constant. However, in practical use, the number
of iterations should be increased adaptively. In the experiment in [9], the num-
ber of iterations was linearly increased in accordance with the number of ordered
pairs, N NL2. Therefore, their time complexities approachN 2 NL4k. When dimension

Table 1 Computational complexities of object ranking algorithms

Cohen RankBoost SVOR Order SVM ERR

N NL2K N NL2K N2 NL4K N2 NL4K N NLK2

Note: NL: the mean length of sample orders, N : the number of samples, and K: the dimension of
attribute vectors. The number of ordered pairs and objects in S are approximated by N NL2 and
N NL, respectively. The SVM’s learning time is assumed to be quadratic in the number of training
samples. The learning complexities of Cohen’s method or the RankBoost are as above if the num-
ber of iterations is constant. However, in practical use, because the number of iterations should
be increased adaptively in accordance with the number of ordered pairs, their time complexities
approach N2 NL4k.
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reduction methods require much higher computational costs than those in Table 1,
the reduction of dimensions greatly lessens scalability.

Taking into account what is mentioned above, our dimension reduction methods
should satisfy two requirements.

1. It must be designed so as to preserve information about mappings from object
attributes to targeting orders.

2. The computational complexity for dimension reduction should not be much
larger than that for object ranking algorithms.

To fill these requirements, we propose Rank Correlation Dimension Reduction
(RCDR). Given a basis that consists of l vectors, the next l C 1 vector is selected so
as to preserve as much information about target ordering as possible. By repeating
this procedure, we obtain the final subspace.

First, we outline our RCDR method. Let w.l/ be the l th vector of a basis. The sub-
space spanned by the basis, fw.1/; : : : ;w.l/g, is called the l th subspace. We represent

this sub-space by the matrix, W .l/ D Œw.1/; : : : ;w.l/
. Let W .l/? be the comple-
mentary space of theW .l/ that is spanned by .K	l/ vectors which are orthogonal to
all vectors in the basis, fw.1/; : : : ;w.l/g. We are given sample orders S and attribute
vectors, fxj g, and the basis of the l th subspace. This condition is depicted in Fig. 1.
The objects in the originalK-dimensional spaces (marked by “ı” in Fig. 1) are pro-

jected to the complementary spaceW .l/? of the l th subspace. The projected objects
(marked by “�” in Fig. 1) are denoted by x.l/j , and x.0/j � xj . By this projection, we

can eliminate information about the target ordering contained in the subspaceW .l/.
For each k D 1; : : : ; K , objects are sorted in descending order of the kth attribute

values of the objects projected to W .l/?. In Fig. 1, examples of those orders are
x1�x3�x2 in the first attribute and x1�x2�x3 in the second attribute. The rank cor-
relations between each of these orders and each sample order are calculated. Then,
the sum of these rank correlations are denoted byR.l/

k
(strict definition will be given

sample
orders

original space

space

-th subspace
-th complementary

Fig. 1 An outline of rank correlation dimension reduction method
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later). This R.l/
k

represents the concordance between the target ordering and the kth
attribute values of the objects projected on the l th complementary space. A new vec-
tor, w.lC1/, is chosen so that each element of this vector, w.lC1/

k
, is as proportional

to the corresponding concordance,R.l/
k

, as possible.

Now, we formally describe our RCDR. Let w.l/ D Œw.l/1 ;w
.l/
2 ; : : : ;w

.l/
K 

> be the

l th vector of a basis. These vectors are orthonormal to each other, i.e., w.l/
>

w.m/D0;
l¤m and kw.l/kD1. The dimension of the final subspace is denoted byK 0. We are
given a set of sample orders S D fO1; : : : ; ON g, the basis of the l th sub-space,
W .l/, and the objects fxj jxj 2 XSg; XS � [Oi2SXi . From these, we derive the

.lC1/th vector, w.lC1/, as follows. First, we define R.l/1 ; : : : ; R
.l/
K as the concor-

dances between sample orders and the attribute values of the objects projected on

the complementary space, W .l/?. Let us focus on the sample order Oi and the kth
attribute values of objects. Because the goal of an object ranking task is to estimate
the orders of objects, the relative ordering of attribute values is more important than
the attribute values themselves. We therefore sort the kth attribute values x.l/

jk
of all

objects xj 2 X .Oi / in descending order, where x.l/
jk

denotes the kth attribute value

of the object, x.l/j projected on the l th complementary space. Note that the projected

objects are represented as Œx.l/j1 ; : : : ; x
.l/
jK 

> on the coordinates of the original space.

The resultant order is denoted by O.Xi ; x.l/jk /. Because both this O.Xi ; x.l/jk / and
the sample order Oi consist of the same set of objects, the concordance between
these two orders can be measured by Kendall’s � . Such rank correlations are cal-
culated between the kth attribute values and each of sample orders in S , and these
correlations are summed up:

R
.l/

k
D
X

Oi2S
�.Oi ; O.Xi ; x.l/jk //: (1)

We use this sum as a measure of the concordance between the kth attribute values
of objects and the target ordering. Next, to fill the first requirement of the RCDR,
the .lC1/th vector is chosen so that the above concordance is preserved as much as
possible. Let us consider the vector,

R.l/ D ŒR
.l/
1 ; : : : ; R

.l/
K 

>:

Because the elements of this vector are the concordances between attribute values
and the target ordering, this vector would point in the direction that preserves infor-
mation about the target ordering in the attribute space. Therefore, we choose the
vector w.lC1/ so that it maximizes the cosine between w.lC1/ and R.l/ in the com-
plementary space, W .l/?. Further, the vector R.l/ is constant, and w.lC1/ D 1;
thus, the maximization of this cosine is equivalent to the w.lC1/. This optimization
problem is formalized as follows:
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Inputs: S D fO1; : : : ; ON g: a sample order set
xj 2 XS  [Oi2SXi : attribute value vectors
K 0: the dimension of sub-space

1: x.0/j  xj
2: for all l in 0; : : : ; .K 0 � 1/ do
3: compute R.l/ s.t. R.l/k D

P
Oi2S

�.Oi ; O.Xi ; x
.l/

jk //

4: if l > 0 then
5: W .l/DŒw.1/; : : : ;w.l/


6: R.l/?D.I�W .l/W .l/>/R.l/

7: else
8: R.l/?DR.l/

9: end if
10: w.lC1/ D R.l/?=kR.l/?k
11: for all xj in XS do

12: x.lC1/
j D x.l/j � w.lC1/w.lC1/>x.l/j

13: end for
14: end for
15: return W .K0/ D Œw.1/; : : : ;w.K0/


Fig. 2 Kendall rank correlation dimension reduction

w.lC1/ D arg max
w

w>R.l/; (2)

subject to: kw.lC1/kD1;w.lC1/>w.m/ D 0; mD1; : : : ; l:

Note that one might think that w.l/ becomes a zero vector, if l � 2, but this is
not the case. When the performing standard regression and Pearson’s correlation is
maximized, w.l/ would be a zero vector for l � 2. This is because zero Pearson’s
correlation implies such orthogonality in the attribute space. However, because rank
correlation does not imply orthogonality, w.l/ is generally a non-zero vector even if
l � 2.

Next, we solve (2). The derivation of w.lC1/ can be easily shown by the following
procedure: Calculate the vector of the correlations sums, R.l/, project this vector
to the l th complementary space, and normalize the projected vector. Once a new
vector is derived, objects in the l th complementary space, x.l/, are mapped to the
new complementary space, and iteratively the next vector can be computed. This
algorithm is shown in Fig. 2. R.l/ is computed in line 3, projected to the current
complementary space in lines 4–9, and normalized in line 10 so that its norm is
one. In lines 11–13, the objects in the current complementary space are projected to
the new complementary space. Because the concordance is measured by Kendall’s
� , we call this method Kendall RCDR. The computational complexities of lines, 3,
4–9, 10, and 11–13 are O.N NL2K/, O.KK 0/, O.K/, and O.N NLK/, respectively;
thus, the complexity per one iteration is O.N NL2K/ (generally N NL2 � K 0), and
the total complexity is O.N NL2KK 0/. As noted before, because the complexity of
Cohen’s method and RankBoost practically approaches O.N 2 NL4K/, our Kendall
RCDR is strictly faster than object ranking methods except for ERR (see Table 1).
In practical use, RCDR is not so slow than ERR, because NL is generally small. To
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further save time complexity, we replace Kendall’s � in line 3 of the algorithm by
Spearman’s 	, because 	 and � are highly correlated. We call this method Spearman
RCDR. Because its time complexity is O.NKK 0 NL log NL/, this method becomes
faster than the ERR method ifK 0 log NL < K . Therefore, our RCDR methods satisfy
the second requirement. Note that the Kendall RCDR is faster than the Spearman
RCDR in the special case: Li D 2, Oi 2 S . Joachims et al. proposed a method to
implicitly collect sample orders whose lengths are two [6]. The Kendall RCDR is
useful in such cases.

3 Experiments

After showing a simple example of our RCDR methods, we describe the experimen-
tal results for real data sets.

3.1 A Preliminary Experiment

To show what is produced by our two RCDR methods, we present a simple example
using artificial data. We give the ideal weight vector by w
 D Œ1; 1; 0:5; 0; 0
, and set
the dimensions of the original space asK D 5 and the number of objects as jX 
j D
1;000. For each object xj 2 X 
, the first to the fourth attribute values are randomly
generated according to the normal distribution,N.0; 1/, while the fifth value is equal
to the fourth. We generated 300 sample orders as follows: Five objects were selected
uniformly at random from X 
; then these objects were sorted in descending order
of w
>xj . We applied Kendall RCDR, Spearman RCDR, and PCA to this data set.
The first and second vectors are shown in the upper and lower parts of Table 2,
respectively. In each row, we show vectors derived by Kendall RCDR, Spearman
RCDR, and PCA. The first to the fifth columns show the elements of vectors. In
the last column, the norm lengths of the sum vector of rank correlations per sample
order, kR.l/k=N , are shown for the RCDR cases, and the contribution ratios are
shown for the PCA cases.

Let us look at the first vector. The vectors derived by the two RCDR methods
show resemblance. This indicates that one can use the faster RCDR method; con-
cretely, Spearman RCDR is better except for the case Li D 2. Because the fourth
and the fifth elements of the w
 are zero, no information useful for the target order-
ing is represented in these axes. In our RCDR cases, the fourth and the fifth weights
of vectors are almost zero; thus, these useless axes can be ignored. In the PCA case,
the fourth weight is far from zero, because no information about the target ordering
is taken into account. The PCA merely ignores axes that are correlated in attribute
space, such as in the fifth element. Further, because variances in all dimensions are
equal, the contribution ratio is not so large, even if the target ordering is decided by
a linear function.
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Table 2 Vectors of a Basis derived by our RCDRs and the PCA

Method 1 2 3 4 5

The first vector
KRCDR 0:70 0:64 0:31 �0:06 �0:06 0:146

SRCDR 0:70 0:64 0:32 �0:06 �0:06 0:173

PCA 0:02 �0:74 0:54 �0:39 0:00 0:393

The second vector
KRCDR �0:27 �0:17 0:93 �0:13 �0:13 0:007

SRCDR �0:30 �0:15 0:94 �0:05 �0:05 0:007

PCA �0:06 �0:18 0:39 0:90 0:00 0:213

Note: The first to fifth columns of each table show the components of vectors, w.1/ and w.2/. In the
last columns, values of kR.l/k=N are shown for the RCDRs and the contribution ratio is shown for
the PCA.

We turn to the second component. In the RCDR cases, the correlation vector
size kR.2/k=N is much smaller than kR.1/k=N ; this means that the second vector
is far less informative than the first, because the target ordering is generated by a
linear function in this example. In the PCA case, the contribution ratio indicates that
useful information still remains in this vector. Note that it is not guaranteed that the
kR.l/k=N decreases in accordance with the increase of l , and vectors with bigger
kR.l/k=N do not always contribute to predicting the target ordering. However, we
empirically observed that if kR.l/k=N is very small, the corresponding vector is not
informative. We believe that kR.l/k=N can be used as an index for the importance
of vectors.

3.2 Experiments on Real Data Sets

We applied the methods described in Sect. 2 to real data from questionnaire sur-
veys.2 The first data set was a survey of preferences in sushi (Japanese food), and is
denoted by SUSHI. In this data set, N D 500, Li D 10, and jX 
j D 100. Objects
are represented by 12 binary and 4 numerical attributes. The second data set was
a questionnaire survey of news article titles sorted according to their significance,
and is denoted by NEWS. These news articles were obtained from “CD-Mainichi-
Newspapers 2003.” In this data set, N D 4;000, Li D 7, and jX 
j D 11;872. The
variance among sample orders was slightly broader than the SUSHI data. Titles
were represented by 0-1 vectors indicating whether a specified keyword appears in
the title. Among 18,381 keywords, we selected 595 keywords that were observed
30 or more times. Additionally, we used 8 binary attributes to represent article
categories; thus, the number of attributes was 603 in total.

2 http://www.kamishima.net/sushi/

http://www.kamishima.net/sushi/
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To evaluate the usefulness of our dimension reduction methods, we applied the
Support Vector Ordinal Regression (SVOR) [5] (also known as RankingSVM [6]),
and Expected Rank Regression (ERR) [1, 2]. to these two data sets. We used our
original implementation for the ERR and the SVMlight 3 for the SVOR. We chose
these two methods, because they differently behaved in the survey [2]. The SVOR
was robust for the noise in attribute values, but not for the perturbations in sample
orders. Contrarily, the ERR could resistant to ordinal noises, but not to the variation
in attribute values. As a family of fitting functions, no kernel was used and a linear
model was adopted.

Sample order sets were partitioned into testing and training sets. The ranking
function was learned from training a sample order set with original attributes or
reduced attributes. After learning, prediction performance was measured by the
mean of 	 between an order in a testing set, Ot , and the corresponding estimated
order, OOt . The larger 	 was, the better the prediction performance was. The num-
ber of folds in cross-validation was ten for SUSHI and five for NEWS. Note that
we reduced the number of folds in the NEWS experiment, because the size of the
NEWS data set was larger and we had to save required computational time. In
the left and right parts of the Figs. 3 and 4, we show the variation of mean 	 in
accordance with the dimensions of the reduced space, K 0, for SUSHI and NEWS,
respectively. For both data sets, N or Li was varied by eliminating sample orders
or objects; the results for these sets are shown in each subfigure. The charts that
labeled, ERR and SVOR, show the results derived by the expected rank regression
and the support vector ordinal regression, respectively.N and/or Li increased from
the subfigure (a) to (c); thus, orders became the most difficult to estimate in the
sub-figure (a) case. The curves labeled by “KRCDR”, “SRCDR”, and “PCA” show
the mean 	 derived by ERR after applying Kendall RCDR, Spearman RCDR, and
PCA, respectively. The label “ORIG” indicates that no reduction method was used,
and original attribute vectors were adopted.

From these figures, the following conclusions can be drawn. First, in terms of the
variation according to the increase of the dimensions, both the ERR and the SVOR
behaved very similarly. This showed that our RCDR technique is independent from
the learning algorithms. Second, the two RCDR methods show resemblance; thus,
the faster method can be used for dimension reduction. Third, both RCDRs per-
formed better in prediction than PCA. The difference was particularly clear when
the number of dimensions K 0 was small. This means that RCDR successfully pre-
served information useful for estimating target orders. Therefore, we can say that
RCDR is more effective than PCA when carrying out an object ranking task. Fourth,
our RCDR technique could improve the prediction performance. The curves labeled
“SRCDR”/“KRCDR” were compared with those labeled “ORIG.” The reduced vec-
tors could lead to better prediction than the original vectors. We think that this is
because the models used for ordering were simplified while useful information was
preserved. This can be confirmed by the fact that the improvements were prominent

3 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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Fig. 3 Comparison of dimension reduction methods on SUSHI data sets
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214 T. Kamishima and S. Akaho

when N and/or Li were small. The simpler model could produce better generaliza-
tion ability for a limited number of samples. Therefore, our reduction technique is
useful for improving prediction performance.

Finally, we can exploit the components of vectors for qualitative analysis. We
obtained the first vector, w.1/, derived from the SUSHI, ND500, LiD10 data set
by applying our Kendall RCDR method. The components of the vectors, w.1/1 ; : : : ;

w.K/K , were sorted in descending order of their absolute values, jw.1/
k

j. The top 5
components were as follows:

w.1/13 D 0:5951 the frequency the user eats

w.1/15 D 0:4278 how many restaurants supply the sushi

w.1/1 D 0:4237 red fish (e.g., fatty tuna)

w.1/14 D 0:2822 inexpensiveness
w.1/12 D 	0:2317 lightness or non-oiliness in tasting

From these components, we can say that “users primarily prefer sushi that they
frequently eat and that is supplied in many sushi restaurants.”

4 Discussion and Conclusion

In this paper, we proposed a dimension reduction technique specialized for an
object ranking task. The method was designed so as to preserve information about
a relation from object attribute vectors to the target ordering. For this purpose, we
developed Kendall RCDR and Spearman RCDR. We then applied these methods
to real data sets. From the experimental results, we arrived at the following con-
clusions. First, the RCDR methods outperform PCA when carrying out an object
ranking task. Second, by using the RCDR technique, performance in prediction
can be improved, especially when training samples are not adequate. Finally, our
two RCDR methods are comparable in prediction performance. Therefore, the
faster method should be used; concretely, Spearman RCDR is better except for the
condition where Li D 2.

Intuitively speaking, in the l th iteration of the RCDR, the algorithm finds the vec-
tor that is most relevant to target ordering. After that, by mapping attribute vectors
to the new subspace, components in attributes related to this vector are subtracted.
At this time, it might be effective to subtract the explained component in the target
ordering from sample orders. We will try such improvement by using a technique
similar to Diaconis’ spectral analysis [15].
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Japan society for the promotion of science. Thanks are due to the Mainichi Newspapers for permis-
sion to use the articles. We would also like to thank Thorsten Joachims for providing the SVMlight

software.



Dimension Reduction for Object Ranking 215

References

1. T. Kamishima, H. Kazawa, S. Akaho, A survey and empirical comparison of object ranking
methods, in Preference Learning, ed. by J. Fürnkranz, E. Hüllermeier (Springer, 2010)

2. T. Kamishima, H. Kazawa, S. Akaho, Supervised ordering – an empirical survey, in Proceed-
ings of The 5th IEEE International Conference on Data Mining (2005) pp. 673–676

3. O. Luaces, G.F. Bayón, J.R. Quevedo, J. Díez, J.J. del Coz, A. Bahamonde, Analyzing sensory
data using non-linear preference learning with feature subset selection, in Proceedings of the
15th European Conference on Machine Learning (2004), pp. 286–297 [LNAI 3201]

4. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10, 243–
270 (1999)

5. R. Herbrich, T. Graepel, P. Bollmann-Sdorra, K. Obermayer, Learning preference relations
for information retrieval, in ICML-98 Workshop: Text Categorization and Machine Learning
(1998), pp. 80–84

6. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of The 8th
International Conference on Knowledge Discovery and Data Mining (2002), pp. 133–142

7. F. Radlinski, T. Joachims, Query chains: Learning to rank from implicit feedback, in Proceed-
ings of The 11th International Conference on Knowledge Discovery and Data Mining (2005),
pp. 239–248

8. H. Yu, SVM selective sampling for ranking with application to data retrieval, in Proceed-
ings of The 11th International Conference on Knowledge Discovery and Data Mining (2005),
pp. 354–363

9. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining
preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

10. A. Bahamonde, G.F. Bayón, J.D.J.R. Quevedo, O. Luaces, J.J. del Coz, J. Alonso, F. Goyache,
Feature subset selection for learning preferences: A case study, in Proceedings of The 21st
International Conference on Machine Learning (2004), pp. 49–56

11. D.J. Slotta, J.P. Vergara, N. Ramakrishnan, L.S. Heath, Algorithms for feature selection in
rank-order spaces. Technical Report TR-05-08, Computer Science, Virginia Tech. (2005)

12. M. Dettling, P. Bühlmann, Supervised clustering of genes. Genome Biol. 3(12) (2002).
doi:research0069.1–0069.15

13. L. Deng, J. Pei, J. Ma, D.L. Lee, A rank sum test method for informative gene discovery, in
Proceedings of The 10th International Conference on Knowledge Discovery and Data Mining
(2004), pp. 410–419

14. T. Kamishima, S. Akaho, Filling-in missing objects in orders, in Proceedings of The 4th IEEE
International Conference on Data Mining (2004), pp. 423–426

15. P. Diaconis, A generalization of spectral analysis with application to ranked data. Ann. Stat.
17(3), 949–979 (1989)

16. H. Kazawa, T. Hirao, E. Maeda, Order SVM: a kernel method for order learning based on
generalized order statistics. Syst. Comput. Jpn. 36(1), 35–43 (2005)



Learning of Rule Ensembles for Multiple
Attribute Ranking Problems

Krzysztof Dembczyński, Wojciech Kotłowski, Roman Słowiński,
and Marcin Szeląg

Abstract In this paper, we consider the multiple attribute ranking problem from a
Machine Learning perspective. We propose two approaches to statistical learning
of an ensemble of decision rules from decision examples provided by the Deci-
sion Maker in terms of pairwise comparisons of some objects. The first approach
consists in learning a preference function defining a binary preference relation for
a pair of objects. The result of application of this function on all pairs of objects
to be ranked is then exploited using the Net Flow Score procedure, giving a lin-
ear ranking of objects. The second approach consists in learning a utility function
for single objects. The utility function also gives a linear ranking of objects. In
both approaches, the learning is based on the boosting technique. The presented
approaches to Preference Learning share good properties of the decision rule pref-
erence model and have good performance in the massive-data learning problems. As
Preference Learning and Multiple Attribute Decision Aiding share many concepts
and methodological issues, in the introduction, we review some aspects bridging
these two fields. To illustrate the two approaches proposed in this paper, we solve
with them a toy example concerning the ranking of a set of cars evaluated by mul-
tiple attributes. Then, we perform a large data experiment on real data sets. The
first data set concerns credit rating. Since recent research in the field of Preference
Learning is motivated by the increasing role of modeling preferences in recom-
mender systems and information retrieval, we chose two other massive data sets
from this area – one comes from movie recommender system MovieLens, and the
other concerns ranking of text documents from 20 Newsgroups data set.
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Systems Research Institute, Polish Academy of Sciences
01-447 Warsaw, Poland

J. Fürnkranz and E. Hüllermeier (eds.), Preference Learning,
c

217
DOI 10.1007/978-3-642-14125-6_11,� Springer-Verlag Berlin Heidelberg 2010

kdembczynski, wkotlowski, rslowinski, mszelag
@cs.put.poznan.pl


218 K. Dembczyński et al.

1 Introduction to Multiple Attribute Decision Aiding

In this paper, we consider the multiple attribute ranking problem from a Machine
Learning perspective. It is useful, however, to start with a short survey of the goals
and methodologies known in the field of Multiple Attribute Decision Aiding (also
called Multiple Criteria Decision Aiding or Multiple Criteria Decision Making).
Although these methodologies are rarely based on statistical analysis of data, which
is characteristic for Machine Learning methodologies, some goals, concepts, and
models developed and investigated within Multiple Attribute Decision Aiding are
useful in Machine Learning and, in particular, in the emerging subfield of Machine
Learning, called Preference Learning. We will concentrate on the aspects bridging
these two fields.

1.1 Multiple Attribute Decision Aiding

The aim of scientific decision aiding is to give the Decision Maker (DM) a rec-
ommendation concerning a set of objects (also called alternatives, solutions, acts,
actions, options, candidates, . . . ) evaluated from multiple points of view considered
relevant for the problem at hand and called attributes (also called features, variables,
criteria, . . . ).

For example, a decision can concern:

1. diagnosis of pathologies for a set of patients, where patients are objects of the
decision, and symptoms and results of medical tests are the attributes,

2. assignment of enterprises to classes of risk, where enterprises are objects of
the decision, and financial ratio indices and other economic indicators, such as
the market structure, the technology used by the enterprise, and the quality of
management, are the attributes,

3. selection of a car to be bought from among a given set of cars, where cars are
objects of the decision, and maximum speed, acceleration, price, fuel consump-
tion, comfort, color, etc. are the attributes,

4. ordering of students applying for a scholarship, where students are objects of the
decision, and scores in different disciplines are the attributes.

The following three main categories of decision problems are typically distin-
guished [48]:

– classification, when the decision aims at assigning objects to predefined classes,
– choice, when the decision aims at selecting the best objects,
– ranking, when the decision aims at ordering objects from the best to the worst.

Looking at the above examples, one can say that (1) and (2) are classification
problems, (3) is a choice problem, and (4) is a ranking problem.

The above categorization can be refined by distinguishing three kinds of classifi-
cation problems:
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– taxonomy, when the value sets of attributes and the predefined classes are not
preference ordered,

– ordinal classification, when the predefined classes are preference ordered, while
the value sets of attributes are not, and

– ordinal classification with monotonicity constraints (also known as multiple cri-
teria sorting), when both the value sets of attributes and the predefined classes
are preference ordered [21].

The monotonicity constraints imposed on ordinal classification require that an
improvement of an object’s evaluation on any attribute should not deteriorate its
class assignment. In the above examples, (1) is a taxonomy problem and (2) is an
ordinal classification problem with monotonicity constraints.

An important step in Multiple Attribute Decision Aiding concerns construction
or selection of attributes describing the objects. They are built on, or selected from
among, elementary features of the objects. The aim is to set up a consistent set of
attributes, that makes the pairwise comparison of all objects in the considered set
meaningful. In other words, the consistent set of attributes should permit a mean-
ingful distinction of objects, i.e., objects which are indiscernible with respect to a
given set of attributes should be considered indifferent; if this was not the case, the
given set of attributes would not be consistent.

1.2 Criteria: Attributes with Preference Ordered Scales

Very often, the description of objects by attributes is not neutral with respect to
preferences of the DM, and then there is a need of taking into account that for the
DM some values of attributes are more (or less) preferred than others. In such cases,
in Multiple Attribute Decision Aiding, the value sets of these attributes are translated
into a monotonic preference scale, which may be ordinal or cardinal [50]. Attributes
with monotonic preference scales are called criteria.

When there is no relationship between value sets of attributes and DM’s pref-
erences, then, to distinguish such attributes from criteria, one calls them regular
attributes. For example, in a decision regarding the selection of a car, its price is
a criterion because, obviously, a low price is better than a high price. On the other
hand, the color of a car is not a criterion but a regular attribute, because red is not
intrinsically better than green. One can imagine, however, that also the color of a
car could become a criterion if, for example, a DM would consider red better than
green.

As the concept of criterion plays an important role in Multiple Attribute Decision
Aiding, to make our survey more specific, we formalize this concept a little further.

Let x denote an object belonging to a universe of discourse X . A criterion is a
real-valued function gh defined on X , gh W X ! <, reflecting a worth of objects
from a DM’s point of view, such that to compare any two objects x; x0 2 X from
this point of view, it is sufficient to compare two values: gh.x/ and gh.x0/. Without
loss of generality, gh.x/ � gh.x0/means that “x is at least as good as x0 with respect
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to criterion gh”, which is denoted by x �h x0. Therefore, it is supposed that �h is
a complete preorder, i.e., a strongly complete and transitive binary relation defined
on X on the basis of evaluations gh.�/.

All points of view being relevant for a decision problem at hand form a consistent
set of criteria G D fg1; g2; : : : ; gmg. Comparing to the consistency condition of a
set of attributes mentioned above, the consistency of the set of criteria involves one
condition more, called condition of monotonicity. This condition requires that if for
x; x0 2 X , object x is weakly preferred to object x0 (denoted by x � x0), then for
another object x00 2 X , such that gh.x00/ � gh.x/, for all h D 1; : : : ; m, object x00
should also be weakly preferred to object x0 (x00 � x0) [49].

Remark that while in Multiple Attribute Decision Aiding (or, more precisely,
Multiple Criteria Decision Aiding) the construction of criteria with explicit mono-
tonic preference scales is an important step in the procedure of decision aiding, in
Preference Learning, the relationships between value sets of attributes and DM’s
preferences (if any) are discovered from data for a direct use in classification or
ranking. This means that in Preference Learning, the monotonic preference scales
converting regular attributes to criteria are neither used nor revealed explicitly.

1.3 Dominance Relation in the Set of Objects

For a given finite set of objects X D fx1; x2; : : : ; xog � X , and a set of criteria G,
the only objective information that comes out from comparison of these objects on
multiple criteria is a dominance relation B in set X . Object xi (weakly) dominates
object xj , which is denoted by xi B xj , if and only if gh.xi / � gh.xj / for each
h D 1; : : : ; m. Object xi is nondominated in set X (Pareto-optimal) if and only if
there is no other object xj 2 X dominating xi . Therefore, the dominance relation
B is a partial preorder, i.e., a reflexive and transitive binary relation defined on X
on the basis of evaluations gh.�/, h D 1; : : : ; m.

To simplify notation, in the rest of the paper, we will identify gh.x/ with xh,
whether it concerns the hth criterion or regular attribute .h D 1; : : : ; m/. Thus, any
object x D .x1; x2; : : : ; xm/ 2 X � <m.

Apart from trivial cases, the dominance relation B is rather poor and leaves many
objects incomparable – these are all nondominated objects in set X . To enrich the
dominance relation and make the objects in X more comparable, one needs addi-
tional information about value system of the DM, called preference information.
This information permits to build a more or less explicit model of DM’s preferences,
called preference model. The preference model relates the decision to evaluations of
the objects on the considered criteria. In other words, the preference model aggre-
gates evaluations of objects on multiple criteria. It is inducing a preference structure
in set X . A proper exploitation of this structure leads then to a recommendation in
terms of sorting, or choice, or ranking of objects from set X .

In Preference Learning, the training data are the equivalent of preference infor-
mation in Multiple Attribute Decision Aiding. Moreover, the aim of getting a
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preference model that permits the working out of a final recommendation is the same
for both methodologies – roughly speaking, the difference resides in the statistical
or nonstatistical way of processing the preference information.

It follows from above that the preference information and the preference model
are two crucial components of both Multiple Attribute Decision Aiding and Pref-
erence Learning. Many of the methods existing in both fields differ by these two
components only. Below, with respect to these two components, we review some
recent trends in Multiple Attribute Decision Aiding.

1.4 Preference Information and Preference Model

As to the preference information, it depends on the adopted methodology: prices
and interest rates for cost-benefit analysis, cost coefficients in objectives and tech-
nological coefficients in constraints for mathematical programming, a training set of
decision examples for neural networks and machine learning, substitution rates for a
value function of Multi-Attribute Utility Theory, pairwise comparisons of objects in
terms of intensity of preference for the Analytic Hierarchy Process, attribute weights
and several thresholds for ELECTRE methods, and so on (see the state-of-the-art
survey [12]). This information has to be provided by the DM, possibly assisted by
an analyst.

Very often this information is not easily definable. For example, this is the case
of the price of many immaterial goods and of the interest rates in cost-benefit anal-
ysis, or the case of the coefficients of objectives and constraints in mathematical
programming models. Moreover, the preference information given by the DM is
often processed in a way which is not clear for her/him, such that (s)he cannot see
what are the exact relations between the provided information and the final recom-
mendation. Consequently, very often the decision aiding method is perceived by the
DM as a black box whose result has to be accepted because the analyst’s authority
guarantees that the result is “right”. In this context, the aspiration of the DM to find
good reasons to make decision is frustrated and rises the need for a more transpar-
ent methodology in which the relation between the original information and the final
recommendation is clearly shown. Such a transparent methodology searched for has
been called glass box [28]. A part of such a methodology is certainly the preference
information given in the form of a training set of decision examples.

The decision examples may either be provided by the DM on a set of real or
hypothetical objects, or may come from observation of DM’s past decisions. Such
an approach follows the paradigm of inductive learning used in artificial intelli-
gence [42], or robust ordinal regression becoming popular in operational research
[32]. It is also concordant with the principle of posterior rationality postulated by
March [41] since it emphasizes the discovery of DM’s intentions as an interpretation
of actions rather than as a priori position. This paradigm has been used to construct
various preference models from decision examples, e.g., the general additive utility
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functions [13, 31], the outranking relations [32, 43], the monotonic decision trees
[20], and the set of “if . . . , then . . . ” decision rules [26].

Of particular interest is the last model based on decision rules – it has been
introduced to decision analysis by Greco, Matarazzo, and Słowiński [22, 24, 54].
A popular saying attributed to Slovic is that “people make decisions and then search
for rules that justify their choices”. The rules explain the preferential attitude of the
DM and enable understanding of the reasons of his/her past decisions. The recog-
nition of the rules by the DM [40] justifies their use for decision support. So, the
preference model in the form of rules derived from decision examples fulfills both
explanation and recommendation goals of decision aiding.

For example, in case of a medical diagnosis problem, the decision rule approach
requires as input information a set of examples of previous diagnoses, from which
some diagnostic rules are induced, such as “if there is symptom ˛ and the test result
is ˇ, then there is pathology �”. Each one of such rules is directly related to exam-
ples of diagnoses in the input information, where there is symptom ˛, test result ˇ,
and pathology � .

Decision rules constituting the preference model have a special syntax which
involves partial evaluation profiles and dominance relations on these profiles. The
traditional preference models, which are the utility function and the outranking rela-
tion, can be represented in terms of equivalent decision rules. The clarity of the
rule representation of preferences enables one to see the limits of these aggregation
functions. Several studies [25,27,52] presented an axiomatic characterization of all
three kinds of preference models in terms of conjoint measurement theory and in
terms of a set of decision rules. The given axioms of “cancelation property” type
are the weakest possible. In comparison to other studies on the characterization of
preference models, these axioms do not require any preliminary assumptions about
the scales of preferences of criteria. A side-result of these investigations is that the
decision rule preference model is the most general among all known models.

1.5 Inconsistency of Preference Information
and the Rough Set Concept

Preference information given in terms of decision examples is often inconsistent.
For example, objects with the same description by the set of attributes may be
assigned to different classes. This explains the interest in rough set theory proposed
by Pawlak [45]. Rough set theory permits to structure the data set such that decision
classes are represented by pairs of ordinary sets called lower and upper approxima-
tions. The differences between upper and lower approximations are called boundary
sets, and their cardinalities indicate to what degree the data set is inconsistent.
Moreover, rough set theory provides useful information about the role of particu-
lar attributes and their subsets in the approximation of decision classes. Induction of
decision rules from data structured in this way permits to obtain certain or approx-
imate decision rules [46, 51]. For example, in the above diagnostic context, cases
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where the presence of different pathologies is associated with the presence of the
same symptoms and test results are inconsistent, and thus they are placed in the
boundaries of the classes of pathologies; decision rules supported by these examples
are approximate.

As the classical definition of rough sets is based on indiscernibility relation in the
set of objects, it can handle only one kind of inconsistency of decision examples –
the one related to indiscernibility of objects belonging to different decision classes.
While this is sufficient for classification of taxonomy type, the classical rough set
approach fails in case of ordinal classification with monotonicity constraints, where
the value sets of attributes, as well as decision classes, are preference ordered. In
this case, decision examples may be inconsistent in the sense of violation of the
dominance principle which requires that an object x dominating object x0 on all
considered criteria (i.e., x having evaluations at least as good as x0 on all considered
criteria) should also dominate x0 on the decision (i.e., x should be assigned to at
least as good decision class as x0). To deal with this kind of inconsistency, Greco,
Matarazzo, and Słowiński generalized the classical rough set approach, so as to take
into account preference orders and monotonic relationships between evaluations on
criteria and assignment to decision classes. This generalization, called Dominance-
based Rough Set Approach (DRSA), has been adapted to a large variety of decision
problems [14, 22, 24, 28, 30, 54].

Moreover, DRSA has been adapted to handle granular (fuzzy) information [29],
and incomplete information [7, 23].

The usefulness of DRSA goes beyond the frame of Multiple Attribute Decision
Aiding. This is because the type of monotonic relationships handled by DRSA is
also meaningful for problems where preferences are not considered but a kind of
monotonicity relating ordered attribute values is meaningful for the analysis of data
at hand. Indeed, monotonicity concerns, in general, mutual trends existing between
different variables, such as distance and gravity in physics, or inflation rate and
interest rate in economics. Whenever a relationship between different aspects of a
phenomenon is discovered, this relationship can be represented by a monotonicity
with respect to some specific measures or perception of the considered aspects, e.g.,
“the colder the weather, the higher the energy consumption” or “the more a tomato
is red, the more it is ripe”. The qualifiers, such as “cold weather”, “high energy
consumption”, “red” and “ripe”, may be expressed either in terms of some measure-
ment units, or in terms of degrees of membership to fuzzy sets representing these
concepts.

1.6 Statistical Learning from Preference Information

The above survey concerned those methodologies of Multiple Attribute Decision
Aiding which have some links with Preference Learning, either through the type
of decision problems being solved, or through the type of preference informa-
tion being used, or, finally, through the type of preference model used to work
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out a recommendation. These methodologies are based on nonstatistical ways of
processing preference information given in terms of decision examples. This type
of preference information is characteristic for contemporary methods of Multiple
Attribute Decision Aiding. Recently, we have been able to observe an increasing
interest in statistical methods of processing this information, particularly in situ-
ations where the number of decision examples is very large. Statistical approach
to learning preference models from decision examples is the core of Preference
Learning, which is today one of the main topics in Machine Learning. This inter-
est is motivated by new challenging applications related to Internet, in particular,
recommender systems and information retrieval. In the first, the task is to recom-
mend to the user a new item (like movie or book) that fits her/his preferences. The
recommendation is computed on the base of the learning information describing
the past behavior of the user. In the latter, the task is to sort (or rank) the docu-
ments retrieved by the search engine according to the user’s preferences. There are
several algorithms that are tailored for these kinds of problems. The most popular
ones are based on rank loss minimization. These include variants of support vec-
tor machines [35] and boosting [16]. One should also note that there exist several
other learning approaches in which preferences are modeled [15, 19, 47, 55]. More-
over, an interesting work has been done in the field of ordinal classification with
monotonicity constraints [6, 8, 10, 38].

2 Multiple Attribute Ranking Problem

While in the classification problem the assignment of objects to decision classes is
based on absolute evaluation of objects on attributes, in the ranking problem, the
position of an object in the ranking depends on comparison of its evaluation on
attributes with other objects. Thus, in case of multiple attribute ranking problems,
the preference information given in terms of decision examples concerns pairwise
comparisons of objects. The pairwise comparison of objects x; x0 2 X (on particu-
lar criteria or comprehensively) states what is the intensity of preference of object
x over object x0. The intensity of preference can be expressed either on an ordi-
nal scale or on a cardinal scale. In case of the ordinal scale, only the order of the
intensity of preference matters; in case of the cardinal expression of the intensity,
the interval scale permits to compare differences of the intensity, and the ratio scale
permits, moreover, to express the ratio between the intensities. In the simplest case,
the intensity of preference is expressed on a 3-value ordinal scale coded by 1; 0;	1,
which corresponds to preference (x � x0), indifference (x � x0), and inverse prefer-
ence (x0 � x) for a pair of objects, respectively. The weak preference, denoted by �,
groups the preference and the indifference, i.e., x � x0 , x � x0 _ x � x0.

Several approaches have been proposed to multiple attribute ranking based on
preference information given in terms of decision examples. They mainly differ by
the type of preference model constructed from examples of pairwise comparisons.
Let us mention, for instance:
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– the UTAGMS and GRIP methods for the construction of necessary ranking (par-
tial preorder) and possible ranking (strongly complete and negatively transitive
relation) of objects from set X � X , resulting from consideration of all general
additive utility functions compatible with the preference information [13, 31],

– the construction of necessary and possible outranking (reflexive) relations in set
X � X , resulting from consideration of all outranking models compatible with
the preference information [32, 43],

– the induction of a set of decision rules from a pairwise comparison table using
the Variable Consistency DRSA [53], and exploitation of preference structure
induced by application of the rules on setX�X (X � X ) using Weighted-Fuzzy
Net Flow Score or Lexicographic-Fuzzy Net Flow Score [14].

The last approach based on decision rules is able to handle pairwise comparisons
inconsistent with the dominance principle. In this context, the dominance principle
says that if for two pairs of objects, .x; x0/ 2 X �X and .x00; x000/ 2 X �X , object x
is preferred to object x0 at least as much as object x00 is preferred to object x000 on all
considered criteria, then pair .x; x0/ should be, comprehensively, weakly preferred
to pair .x00; x000/, i.e., the comprehensive preference of x over x0 should not be less
intensive than that of x00 over x000.

In this paper, we consider the multiple attribute ranking problem from a Machine
Learning perspective. We propose two variants of a statistical approach to the learn-
ing of an ensemble of decision rules from decision examples. The learning is based
on the boosting approach. The presented approach shares good properties of the
decision rule preference model mentioned above and has good performance in the
massive-data learning problems.

The decision examples, characterized below, boil down to a set of pairwise
comparisons of objects. The objects used in decision examples constitute a train-
ing set denoted by T D fx1; x2; : : : ; xng. The objects to be ranked constitute set
X D fx1; x2; : : : ; xog. Of course, T ; X � X and, sometimes, T � X .

We investigate two ways of learning of an ensemble of decision rules. They differ
by the type of considered decision rules. The first type of decision rules specifies
conditions on differences of evaluations of a pair of objects on particular attributes,
which result in a comprehensive preference of one object over the other object.
The second type of decision rules specifies conditions on evaluations of a single
object on particular attributes, which result in a given increase or decrease of a
comprehensive utility (called also score or value) of this object.

The ensemble composed of the first type of rules is applied onX �X and the res-
ulting preference structure (represented in a graph form) is exploited using the
Net Flow Score procedure to get the final ranking. The ensemble composed of the
second type of rules is applied onX and the resulting comprehensive utility of indi-
vidual objects induces the final ranking. In both cases, the final ranking is a complete
preorder.

To ease the presentation, we will consider the two approaches as an approach to
learning of an additive real-valued function:
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f D
PX

pD1
rp; (1)

called rule ensemble, where rp is a marginal function corresponding to pth decision
rule, and P is the number of decision rules used in the ensemble. Moreover,

– For the first type of decision rules, the argument of function f and of its marginal
functions rp is a pair of objects x; x0 2 X ; if f .x; x0/ � 0, then one predicts
x � x0, and if f .x; x0/ � 0, then one predicts x0 � x,

– For the second type of decision rules, the argument of function f and of its
marginal functions rp is a single object x 2 X ; if f .x/ � f .x0/, then one predicts
x � x0, and if f .x/ � f .x0/, then one predicts x0 � x.

In the first case, f is called preference function and the resulting weak prefer-
ence relation � is reflexive but, in general, nontransitive, and in the second case,
f is called utility function (or scoring, or value function) and the resulting weak
preference relation � is reflexive and transitive.

We also consider three types of preference information (decision examples)
delivered by the DM, which result in preference relation � for some pairs of objects
from set T :

– Pairwise comparisons of objects, i.e., xi � xj for some xi ; xj 2 T ,
– Complete (linear) ranking of objects, i.e., x1 � x2 � � � � � xn for

fx1; : : : ; xng 2 T , which means xi � xj for all i < j and i; j 2 f1; : : : ; ng,
– Rating of objects on a finite scale corresponding to additional attribute y 2 Y D

f1; 2; : : : ; kg, such that 1 � 2 � : : : � k, i.e., for yi ; yj 2 Y assigned to
xi ; xj 2 T , respectively, if yi > yj , then xi � xj .

Preference information in terms of pairwise comparisons of objects is delivered,
for example, in information retrieval. Let us consider the following example. Having
a list of documents, the user has chosen the first, third, and seventh document. Given
that the abstracts associated with the documents are sufficiently informative, this
gives some indication of user’s preferences. One can infer from this selection that the
third document is more relevant (better) than the second document. Assuming that
the user scanned the list from top to bottom, (s)he must have observed the second
document before clicking on the third one, making a decision not to click on the
second. Similarly, it is possible to infer that the seventh document is more relevant
than the second, fourth, fifth, and sixth [37]. In the presence of such preference
information, the learning problem is often referred to as object ranking.

Preference information in terms of a linear ranking means that the DM (teacher)
has ordered all the training examples in a complete way, and no objects are incompa-
rable. This kind of preference information is often encountered in Multiple Criteria
Decision Aiding [36].

The rating of objects on a finite ordinal scale is typical to ordinal classification,
also called instance ranking or multipartite ranking. In this case, the DM is assign-
ing to each training object a rank from a finite scale. By comparing the ranks of
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objects pairwise, one gets the information on the preference relation in the train-
ing set. This is a common situation in recommender systems, which aim at ranking
items to give a final recommendation. For example, in the movie recommender sys-
tems, such as Netflix [44], the users are often asked to rate movies on a five-value
scale, e.g., one to five “stars”. It is assumed that it is easier to obtain the preference
information by assigning the ranks to movies, than by comparing movies directly
pairwise.

The remainder of the paper is organized as follows. In the next section, we formu-
late the multiple attribute ranking problem in a machine learning setting. Section 4
describes the decision rule approach to the ranking problem. Section 5 presents the
algorithm for learning of an ensemble of decision rules. A toy example that illus-
trates the presented methodology is analyzed in Sect. 6. An experiment on three data
sets: credit rating, MovieLens, and 20 Newsgroups is described in Sect. 7. The last
section concludes the paper.

3 Two Approaches to Multiple Attribute Ranking Learning

From machine learning perspective, the multiple attribute ranking problem can be
seen as a problem of learning:

(a) preference function f .�; �/, and the resulting weak preference relation �, which
is to be exploited such as to get a linear ranking over set X ,

(b) utility function f .�/, which results directly in a linear ranking over set X .

From both approaches, one gets function f , which can be used by a ranking
method to rank setX of objects. We investigate two ranking methods corresponding
to the above approaches: the PrefRules algorithm based on the preference function,
and the RankRules algorithm based on the utility function.

Let us consider two objects x; x0 2 X described bym attributes, x D .x1; x2; : : : ;

xm/, x0 D .x01; x02; : : : ; x0m/. Since in machine learning one assumes that data are
generated according to some probability distribution, the pairwise comparison of
these objects is a random variable s W X � X ! f1;	1g, indicating the preference
or the inverse preference between x and x0, respectively, i.e.:

˘ s.x; x0/ D 1 , x � x0,
˘ s.x; x0/ D 	1 , x0 � x.

We assume that the indifference between these two objects, x � x0, takes place
when Pr.s.x; x0/ D 1jx; x0/ D Pr.s.x; x0/ D 	1jx; x0/.

In approach (a), the goal is to predict the value of s.x; x0/. Let f W X � X ! <
be a preference function that represents a prediction strategy, such that

˘ If f .x; x0/ > 0, then one predicts x � x0,
˘ If f .x; x0/ < 0, then one predicts x0 � x,
˘ If f .x; x0/ D 0, then one predicts x � x0.
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We can measure the quality of preference function f .x; x0/ by the expected value of
the so-called rank loss, defined as:

L
�
s.x; x0/; f .x; x0/

� D
8
<

:

0; if s.x; x0/ � f .x; x0/ > 0;
1
2
; if s.x; x0/ � f .x; x0/ D 0;

1; if s.x; x0/ � f .x; x0/ < 0:
(2)

Let us remark that this formulation of the ranking problem resembles binary
classification problem in which the sign of s.x; x0/ is to be guessed for a pair of
objects .x; x0/. For this reason, the optimal preference function corresponds to the
so-called Bayes optimal decision, given by:

f 
 D arg min
f

E
�
L
�
s.x; x0/; f .x; x0/

�
; (3)

where E stands for the expectation with respect to the probability distribution gen-
erating the data. Thus, for a given pair .x; x0/ 2 X � X , the optimal preference
function has the form:

f 
.x; x0/ D
8
<

:

> 0; if Pr.s.x; x0/ D 1jx; x0/ > Pr.s.x; x0/ D 	1jx; x0/;
0; if Pr.s.x; x0/ D 1jx; x0/ D Pr.s.x; x0/ D 	1jx; x0/;

< 0; if Pr.s.x; x0/ D 1jx; x0/ < Pr.s.x; x0/ D 	1jx; x0/:
(4)

The preference function f induces a weak preference relation � in set X , which
is reflexive but not necessarily transitive. As our goal is to get a linear ranking over
X (reflexive and transitive), we have to exploit properly the preference structure
induced by preference function f on set X . We propose to apply to this end the Net
Flow Score (NFS) procedure characterized in [2, 4, 57]. The net flow score of each
object x 2 X can be calculated using the following formula:

NFS.x/ D
X

x02X; x0¤x

h
sgn.f .x; x0//	 sgn.f .x0; x//

i
. (5)

Obviously,NFS.x/ ranks all objects x 2 X from the best to the worst.

In approach (b), the aim is to learn function f W X ! < that corresponds to the
utility of a single object. To predict the value of s.x; x0/, we will use the difference
of utilities for objects x; x0 2 X , i.e., f .x/	 f .x0/, such that

˘ If f .x/	 f .x0/ > 0, then one predicts x � x0,
˘ If f .x/	 f .x0/ < 0, then one predicts x0 � x,
˘ If f .x/	 f .x0/ D 0, then one predicts x � x0.

Thus, in approach (b), f .x/ 	 f .x0/ plays the role of f .x; x0/ in approach (a). In
this case, the rank loss takes the following form:
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L
�
s.x; x0/; f .x/	 f .x0/

� D
8
<

:

0; if s.x; x0/ � .f .x/	 f .x0// > 0;
1
2
; if s.x; x0/ � .f .x/	 f .x0// D 0;

1; if s.x; x0/ � .f .x/	 f .x0// < 0:
(6)

To distinguish the rank loss in approaches (a) and (b), we will call (2) preference-
based rank loss, and (6) utility-based rank loss.

It is worth noting that the utility-based rank loss is closely related to the so-called
AUC (Area Under the “Receiver Operator Characteristic” Curve) criterion, becom-
ing a popular measure for evaluating the performance of binary classifiers. Binary
classification can be treated as a special case of rating on a finite ordinal scale.
It is often called bipartite ranking. In this case, one has two possible ranks, usually
coded by y 2 f1;	1g, indicating a positive and negative class, respectively. One can
define the random variable s.x; x0/ as, s.x; x0/ D 1, if y > y0, and s.x; x0/ D 	1, if
y < y0, where label is the rank assigned to x, and label0 is the rank assigned to x0.
The AUC criterion is defined as:

AUC.f / D Pr.f .x/>f .x0/jy D 1; y0 D 	1/C 1

2
Pr.f .x/Df .x0/jy D 1; y0 D 	1/,

where f is a real function returned by the classifier. One can observe that max-
imization of the AUC criterion boils down to the minimization of the rank loss,
since:

AUC.f / D 1 	 EŒL.s.x; x0/; f .x/	 f .x0//

2 Pr.y D 1; y0 D 	1// .

In the following, we present approaches (a) and (b) to learning of function f in
a unified framework. The learning is performed on the training set T . For set T �T
we know the value of s.xi ; xj / for all or some i; j D 1; : : : ; n, which represents
the preference relation � in set T following from preference information (decision
examples) delivered by the DM. The goal is to minimize the corresponding loss
function on the training set, the so-called Empirical risk:

Remp D
X

ij

Lij ,

in which Lij denotes L
�
s.xi ; xj /; f .xi ; xj /

�
or L

�
s.xi ; xj /; f .xi /	 f .xj /

�
,

depending on approach (a) or (b).

4 Decision Rules

Decision rule is a simple logical pattern having the form:

“if Œconjunction of elementary conditions
, then Œdecision
”.

The “conjunction of elementary conditions” is called condition part or premise,
and the “decision” is called decision part or conclusion of the rule. Depending on
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approach (a) or (b) to multiple attribute ranking learning, we consider two types of
decision rules distinguished by the syntax of condition and decision parts:

(a) “If .xi1 	 x0i1 � ıi1/ and : : : .xi l 0 	 x0
i l 0

� ıi l 0/ and .xj1 	 x0j1 � ıj1/ and : : :
.xjl 00 	 x0

jl 00
� ıjl 00/, then x � x0 with credibility ˛”,

(b) “If .xi1 � ıi1/ and : : : .xi l 0 � ıi l 0/ and .xj1 � ıj1/ and : : : .xjl 00 � ıjl 00/,
then the utility of x increases by ˛”,

where ı.��/ 2 <, and sets of attribute indices fi1; : : : ; i l 0g � f1; : : : ; mg and
fj1; : : : ; j l 00g � f1; : : : ; mg are not necessarily disjoint. Elementary conditions on
attributes with indices i1; : : : ; i l 0 are called “at least” conditions, and elementary
conditions on attributes with indices j1; : : : ; j l 00 are called “at most” conditions.
For a rule of type (a), when an attribute has an ordinal scale coded in <, then in
the elementary conditions we allow ı.��/ D 0 only, since we cannot say anything
about the intensity of difference between two ordinal values. Thus, we take into
account the sign of the difference only. For both types of rules, in the case of nom-
inal attributes, we perform binarization of each such attribute by replacing it with a
set of new binary attributes. These binary attributes are then treated as ordinal ones.

Let us remark that the negative value of ˛ inverts the decision, i.e., in rules of
type (a), the decision becomes x0 � x with credibility j˛j, and in rules of type (b),
the utility of x decreases by j˛j.

The main advantage of decision rule representation is simplicity and human-
interpretable form that can model interactions between attributes present in the
condition part of the rule. The condition part of each above decision rule defines
an axis-parallel subregion in the attribute difference space (rule of type (a)) or in
the original attribute space X (rule of type (b)). In both cases, the subregion is con-
strained by positive and negative dominance cones corresponding to “at least” and
“at most” elementary conditions, respectively (see [22, 24, 26, 54]).

As an example of decision rule of type (a), we present a rule from the toy example
further discussed in Sect. 6:

if the road holding difference between cars x and x0 is � 0

and the cost difference between cars x and x0 is � 3348:0,
then car x is preferred over car x0 with credibility 0.48.

From the same toy example, we present a decision rule of type (b):

if acceleration of car x is � 28:6,
then the utility of car x increases by 0:520.

From the machine learning perspective, decision rule of type (a) or (b) can be
treated as a simple classifier that gives a constant response for objects satisfying the
condition part, and abstains from the response for all other objects.

For each decision rule of type (a), we define function ˚ W X �X ! f0; 1g, such
that ˚.x; x0/ D 1 if pair of objects .x; x0/ 2 X � X matches the condition part of
the rule, and ˚.x; x0/ D 0, otherwise.
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Similarly, for each decision rule of type (b), we define function ˚ W X ! f0; 1g,
such that ˚.x/ D 1 if object x 2 X matches the condition part of the rule, and
˚.x/ D 0, otherwise.

The contribution of a single rule to a rule ensemble is defined by marginal func-
tion rp appearing in (1), where p is the rule’s identifier. Depending on approach (a)
or (b), marginal function rp is defined as:

rp.x; x0/ D ˛p˚p.x; x0/;
or rp.x/ D ˛p˚p.x/;

where ˛p 2 < is the so-called response of the rule, assigned to the region defined
by its condition part. Let us remark that ˛p is equal to ˛ of the pth rule and that
absolute value of ˛p indicates the weight of the rule.

While in preference learning it is not necessary to know a priori the preference
order in the value sets of attributes, one can use this knowledge when available. For
attributes which are criteria, it is then necessary to impose only “at least” or only “at
most” elementary conditions, depending on the positive or negative sign of response
˛p , respectively. This allows to constrain the search space of elementary conditions.

In the next section, we present a simple algorithm for learning an ensemble of
decision rules that is based on the boosting approach.

5 Learning of an Ensemble of Decision Rules

The rule ensemble is constructed by the minimization of the empirical risk. We
consider two formulations of the problem. The first one corresponds to approach
(a), in which the preference function is built and is referred to as PrefRules. The
second one corresponds to approach (b), in which the utility function is built and is
referred to as RankRules. We will treat these two formulations jointly as long as it
does not lead to any confusion.

The minimization of the rank loss over the training set is a hard optimization task,
since the rank loss (in both approaches) is neither smooth nor convex. Instead, we
use a convex and upper-bounding surrogate of the rank loss based on the exponential
function:

L.y; z/ D e�yz. (7)

Such a loss function is typically used in the boosting learning machines [16, 17]. In
the remainder, we will refer to the rank loss based on (7) as exponential rank loss.

In approach (a), the exponential rank loss is then defined as:

L
�
s.x; x0/; f .x; x0/

� D e�s.x;x0/�f.x;x0/,

while in approach (b), it is defined as:

L
�
s.x; x0/; f .x/	 f .x0/

� D e�s.x;x0/�.f .x/�f.x0//.
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Following the boosting approach, we apply an iterative procedure in which rules
are added to the ensemble one by one, greedily minimizing the exponential rank loss
over the training set. In the pth iteration, the marginal function rp corresponding to
the pth rule is given by:

rp D arg min
r
Remp.fp�1 C r/ D arg min

˚;˛
Remp.fp�1 C ˛˚/,

where fp�1 is the rule ensemble after p 	 1 iterations.
In approach (a), the Empirical risk in the pth iteration is then formulated as

follows:

Remp.fp�1 C ˛˚/ D
X

ij

e�s.xi ;xj /�.fp�1.xi ;xj /C˛˚.xi ;xj //:

For approach (b), we obtain analogous formulation:

Remp.fp�1 C ˛˚/ D
X

ij

e�s.xi ;xj /�.fp�1.xi /�fp�1.xj /C˛.˚.xi /�˚.xj ///:

Let us note that the value of e�s.xi ;xj /�fp�1.xi ;xj / in approach (a), and the value
of e�s.xi ;xj /�.fp�1.xi /�fp�1.xj // in approach (b), is constant in the pth iteration for
each pair of training objects .xi ; xj /. This value can be treated as a weight of the

pair of training objects. To simplify the notation, these weights are denoted by w.p/ij ,
i; j D 1; : : : ; n.

Let us also note that in approach (a), the only pairs of training objects influencing
the empirical risk are those for which˚.xi ; xj / D 1. We will then say that such pairs
are covered by the rule. In approach (b), in turn, the only pairs of training objects
influencing the empirical risk are those for which ˚.xi / ¤ ˚.xj /. In this case also,
we will say that these pairs are covered by the rule, despite the fact that only one
object of each such pair matches the condition part of the rule.

To treat approaches (a) and (b) in a similar way, we transform both formula-
tions to:

Remp.fp�1 C ˛˚/ D e�˛W> C e˛W< CW0.

In the above formulation,W0 is a sum of weights over the pairs not covered by the
rule, W> is a sum of weights over the pairs covered by the rule for which the first
object is preferred over the second one, and W< is a sum of weights over the pairs
covered by the rule for which the second object is preferred over the first one.

More formally, in approach (a) we define these sums of weights as:

W> D
X

s.x;x0/>0

˚.xi ; xj /w
.p/
ij ; W< D

X

s.x;x0/<0

˚.xi ; xj /w
.p/
ij ; W0 D

X

˚.xi ;xj /D0
w.p/ij .
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Analogous definitions for approach (b) are:

W> D
X

s.x;x0/>0;
˚.xi /¤˚.xj /

w.p/ij ; W< D
X

s.x;x0/<0;
˚.xi /¤˚.xj /

w.p/ij ; W0 D
X

˚.xi /D˚.xj /

w.p/ij .

Let us also denoteW D W> CW< CW0.
Now, we can state the minimization problem for approaches (a) and (b) by one

mathematical formulation:

rp D arg min
˚;˛

.e�˛W> C e˛W< CW0/ . (8)

For given ˚p , the problem of finding ˛p is straightforward. After simple calcula-
tions, one obtains a closed-form solution:

˛p D 1

2
ln
W>

W<
. (9)

To find ˚p, we derive impurity measure Lp.˚/ from (8) in such a way that the
minimization problem no longer depends on ˛. Putting optimal value of ˛p given
by (9) into (8) results in the following impurity measure:

Lp.˚/ D 2
p
W>W< CW0.

This can be further simplified by using short multiplication formulas and replacing
W0 by W 	W> 	W< (remark that W is constant in a given iteration). Finally, we
obtain:

Lp.˚/ D 	
ˇ̌
ˇ
p
W> C

p
W<

ˇ̌
ˇ . (10)

One can notice that the form of (10) resembles the measure used in SLIPPER
[5] to generate rules in the binary classification case. A wide discussion on different
rule impurity measures obtained in the boosting framework can be found in [9].

For given Lp.˚/, the procedure constructing ˚p resembles the way in which
decision trees are built. The algorithm constructs only one path from the root to
the leaf. At the beginning, ˚p is empty and in each subsequent step an elementary
condition minimizing Lp.˚/ is added to ˚p . This procedure ends if Lp.˚/ cannot
be decreased anymore. Let us underline that minimal value of Lp.˚/ is a natural
stop condition of the procedure and no other parameters have to be specified. This
is due to the fact that the impurity measure represents a natural trade-off between
misclassification and coverage of the rule.

The learning algorithm has three parameters that control its performance. The
first one is the number P of rules to be generated. This is the main stop condition,
but one can also consider other conditions, like the minimum value of rank loss
computed over the training set. In this case, one can use the exponential rank loss or
just the rank loss defined in the original way.
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The second parameter, � 2 .0; 1
, is responsible for shrinking [34] a newly gen-
erated rule with marginal function rp.x/ D ˛p˚p.x/ toward rules already present
in the ensemble:

fp.x/ D fp�1.x/C � � rp.x/:
This shrinkage parameter can be regarded as controlling the learning rate. For
small �, we obtain a more accurate but less interpretable ensemble, since we need
to generate more rules.

The third parameter, � 2 .0; 1
, determines the fraction of training objects used
in the procedure for finding ˚p . This fraction of training objects is drawn with-
out replacement, similarly as in [18]. Such an approach leads to a set of rules that
are more diversified and less correlated. The diversification usually improves the
performance of the ensemble. Moreover, finding ˚p on a subsample reduces the
computational cost. However, we pay once again the price of the interpretability.

At the end of this section, let us discuss some properties of the rule ensembles
obtained in approaches (a) and (b).

In general, the rules of type (b) can be represented by the rules defined on pairs
of objects (such as in approach (a)), but the inverse is not true. In approach (a), how-
ever, where elementary conditions used in the rules concern differences of attribute
values for two objects, we assume that a given difference has the same intensity
whatever the individual evaluations of the objects are. In other words, we assume
that the difference between two consecutive values of each attribute has a constant
intensity of preference in the entire scale of the attribute.

In approach (a), it is possible that just one rule can rank linearly all the objects
if there exist strong monotonic relationships between attributes and the prefer-
ence relation � in the training set T . This is not the case for the rules of type
(b). In this case, we approximate the utility function by rules corresponding to
piecewise-constant regions. Usually, we need a high number of rules to obtain a
good approximation of the utility function. Otherwise, the resulting ranking would
consist of many ties.

The clear advantage of approach (b) is lower computational complexity, since
rules are defined in the original attribute space. In other words, the number of ele-
mentary conditions to be checked for a given attribute in rule construction procedure
scales linearly with n. In approach (a), rules are defined in the attribute difference
space, which results in checking the number of elementary conditions of order n2.

6 A Toy Example

In this section, we present decision rules and linear rankings generated for the
Thierry’s choice problem [3], in the case of preference function learning and utility
function learning. This problem concerns a ranking of 14 cars, described by means
of five criteria (attributes): cost, acceleration, pick up, brakes, and road holding
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Table 1 Data of the Thierry’s choice problem [3]

# Car Cost Acceleration Pick up Brakes Road holding

x1 Fiat Tipo 18,342 30.7 37.2 2.33 3

x2 Alfa 33 15,335 30.2 41.6 2 2:5

x3 Nissan Sunny 16,973 29 34.9 2.66 2:5

x4 Mazda 323 15,460 30.4 35.8 1.66 1:5

x5 Mitsubishi Colt 15,131 29.7 35.6 1.66 1:75

x6 Toyota Corolla 13,841 30.8 36.5 1.33 2

x7 Honda Civic 18,971 28 35.6 2.33 2

x8 Opel Astra 18,319 28.9 35.3 1.66 2

x9 Ford Escort 19,800 29.4 34.7 2 1:75

x10 Renault 19 16,966 30 37.7 2.33 3:25

x11 Peugeot 309 16V 17,537 28.3 34.8 2.33 2:75

x12 Peugeot 309 15,980 29.6 35.3 2.33 2:75

x13 Mitsubishi Galant 17,219 30.2 36.9 1.66 1:25

x14 Renault 21 21,334 28.9 36.7 2 2:25

(interested reader can refer to [3] for the precise description of the meaning of these
criteria). Evaluations of all 14 cars are presented in Table 1.

In the previous sections we assumed, without loss of generality, that the DM’s
preferences increase with increasing value of given criterion gh, h 2 f1; : : : ; mg.
This is the case for criteria brakes and road holding. However, we can also con-
sider criteria for which the DM’s preferences increase with decreasing value of
the criterion, which is the case for criteria cost, acceleration, and pick up. The
only difference is that, for such a criterion, car x is at least as good as car x0 if
gh.x/ � gh.x0/.

Preference information is given by the DM in terms of a linear ranking of five
cars: x11, x3, x13, x9, x14. Thus, we can consider 20 ordered pairs of cars. If the
DM ranks car xi higher than car xj , then car xi is preferred to car xj . In this case,
we have s.xi ; xj / D 1. Analogously, if the DM ranks car xi lower than car xj , then
inverse preference occurs, which results in s.xi ; xj / D 	1. Thus, from the given
ranking we get, for example, s.x11; x13/ D 1 and s.x9; x3/ D 	1.

Below, we present a list of rules forming an ensemble generated for the prob-
lem of learning preference function f .�; �/ (approach (a)). The rules were iteratively
added to the ensemble until preference-based rank loss, calculated according to (2),
was reduced to zero for each pair of training objects. They involve elementary con-
ditions in the attribute difference space (the difference is always calculated between
the first and the second car in a pair). Decision of each rule concerns pairs covered
by that rule. It can state whether the first car in a pair is preferred over the second
one, or the second car in a pair is preferred over the first one. Moreover, in parenthe-
ses we give two characteristics of each rule, which are, respectively, weight of the
rule and the ratio of covered positive (i.e., supporting rule’s decision) and negative
(i.e., opposing rule’s decision) pairs of cars.



236 K. Dembczyński et al.

# Rule

r1: if the cost difference between cars x and x0 is � 1;049:0

and the brakes difference between cars x and x0 is � 	0:5
then car x is preferred over car x0 (1.46) (10:1)

r2: if the cost difference between cars x and x0 is � 	1;049:0
and the brakes difference between cars x and x0 is � 0:5

then car x0 is preferred over car x (1.66) (10:1)

r3: if the road holding difference between cars x and x0 is � 0:0

and the cost difference between cars x and x0 is � 3;348:0

then car x is preferred over car x0 (0.48) (7:2)

The rules are compact, but at the cost of considering all pairwise comparisons
that gives quadratic complexity with respect to the number of training objects. It
can be noticed that rules r1 and r2 model indifference thresholds on criteria cost and
brakes. Precisely, the indifference threshold for criterion cost is equal to 1,049, while
the indifference threshold for criterion brakes is equal to 0:5. Positive difference on
criterion cost up to 1,049 (i.e., in disfavor of the first car in a pair) and negative
difference on criterion brakes up to 	0:5 (i.e., in disfavor of the first car in a pair,
again) did not prevent from deciding that the first car is preferred over the second
one. Analogously, negative difference on criterion cost not lower than 	1,049 (i.e.,
in favor of the first car in a pair) and positive difference on criterion brakes not
greater than 0:5 (i.e., in favor of the first car in a pair, again) did not prevent from
deciding that the second car is preferred over the first one. Different weights of rules
r1 and r2 are an artifact of the minimization procedure.

The final ranking of cars is built using the NFS procedure, which operates on a
preference structure resulting from application of the above three rules to the set of
all pairs of cars. For the five cars included in the linear ranking given by the DM,
the final ranking is the following:

Rank Car NFS

1 x11 8
2 x3 4
3 x13 0
4 x9 -4
5 x14 -8

This ranking is exactly the same as the input linear ranking. Moreover, let us
analyze how the net flow score is calculated for a single car. The following table
shows which rules cover pairs involving car x11, values of preference function f
for these pairs, and corresponding values of function sgn.f /.
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Pair of cars Covering rules f D P
i

ri sgn.f /

(x11, x3) r1, r2, r3 0.28 1
(x11, x9) r1, r3 1.94 1
(x11, x13) r1, r3 1.94 1
(x11, x14) r1, r3 1.94 1
(x3, x11) r1, r2 	0.2 	1
(x9, x11) r2 	1.66 	1
(x13, x11) r2 	1.66 	1
(x14, x11) r2 	1.66 	1

We compute the net flow score for x11 according to (5):

NFS.x11/ D
X

xi2fx3;x9;x13;x14g

h
sgn.f .x11; xi //	 sgn.f .xi ; x11//

i
.

Since for all pairs .x11; xi /, sgn.f .x11; xi // D 1 and for all pairs .xi ; x11/,
sgn.f .xi ; x11// D 	1, we obtain NFS.x11/ D 8.

For the entire set of 14 cars, we obtained the following final ranking:

Rank Cars NFS

1 x12 21
2 x2, x10 19
3 x3 9
4 x6, x11 6
5 x1 5
6 x5 0
7 x4 	4
8 x7 	6
9 x13 	12
10 x8 	18
11 x9 	21
12 x14 	24

It should be noted that the NFS procedure inverted the ranks of cars x11 and
x3 – in the above ranking car x3 is ranked higher than car x11. Such inversion was
possible because cars x3 and x11 are incomparable. In fact, car x3 is better on criteria
cost and brakes, while car x11 is better on criteria acceleration, pick up and road
holding. In general, although NFS is a popular and intuitive ranking procedure with
good properties, it does not fully respect preference information given by the DM.
This is, however, also the case for other ranking procedures different from NFS
[4,57], especially when the preference structure induced by the preference function
f .�; �/ is intransitive and contains cycles, which is the case in our toy example.
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Now, let us consider the problem of learning utility function f .�/ (approach (b)).
The list of rules generated for this problem is the following:

# Rule

1. if cost of car x is � 18;668:5

then the utility of car x increases by 0:973 (3)

2. if brakes of car x is � 2:165

then the utility of car x decreases by 0:753 (3)

3. if acceleration of car x is � 28:6

then the utility of car x increases by 0:520 (1)

4. if cost of car x is � 20;567:0

then the utility of car x increases by 0:489 (4)

As before, the rules were iteratively added to the ensemble until utility-based
rank loss, calculated according to (6), was reduced to zero for each pair of training
objects. In parentheses, we show the number of cars covered by each rule. The rules
involve elementary conditions in the space of original attributes. Decision of each
rule defines how the utility of a covered car is increased or decreased. Obviously,
the final utility of a car is a sum of utilities given to it by different covering rules.

In the case of the utility function learning, we do not need to apply NFS proce-
dure since utility function already induces a linear ranking of cars. Final ranking of
the 5 cars for which the DM expressed her/his preferences is calculated as follows:

Rank Car r1 r2 r3 r4 f D P
i

ri

1 x11 0.973 0.520 0.489 1.982
2 x3 0.973 0.489 1.462
3 x13 0.973 	0.753 0.489 0.709
4 x9 	0.753 0.489 	0.264
5 x14 	0.753 	0.753

For the entire set of 14 cars, utility function induces the following final ranking:

Rank Car r1 r2 r3 r4 f D P
i

ri

1 x11 0.973 0.520 0.489 1:982

2 x1, x3, x10, x12 0.973 0.489 1:462

3 x7 0.520 0.489 1:009

4 x2, x4, x5, x6, x8, x13 0.973 	0.753 0.489 0:709

5 x9 	0.753 0.489 	0:264
6 x14 	0.753 	0:753
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As it can be seen in the above two tables, preference information given by the
DM in terms of a linear ranking of 5 cars have been preserved in both final rankings
obtained in approach (b). However, we can notice that the final ranking of all 14
cars contains a lot of ties. This is due to the fact that the utility function is here
approximated by piecewise-constant regions (rules). To make a finer distinction, we
would need more rules.

7 Massive Data Experiment

To verify how the proposed approaches behave in practice, we performed compu-
tational experiments on real data sets. The first data set concerns credit rating [11].
Moreover, since the recent research in the field of preference learning is motivated
by an increasing role of modeling preferences in the recommender systems and
information retrieval, we chose two other massive data sets. The first one comes
from movie recommender system MovieLens [33], while the second one concerns
ranking of text documents from 20 Newsgroups data set [39].

Before we move into details of each data set, let us describe how the performance
of the algorithms is assessed in the experiments. For each data set, a separate testing
set X is given and the algorithms are then applied on this set. The output of each
algorithm is the final ranking of the objects from X . For any pair of the objects
(x; x0), the error occurs whenever s.x; x0/ D 	1 and x is ranked higher than x0, or
whenever s.x; x0/ D 1 and x is ranked lower than x0 in the final ranking. In the case
of tie in the final ranking, we count a half of the error. Then, the performance of
the algorithm is the total number of errors over all pairs from X � X normalized
by the number of all pairs (x; x0) such that s.x; x0/ D 1 or s.x; x0/ D 	1. Thus, the
performance measure varies between 0 (no errors) and 1 (all preference relations
are reversed).

Note that we do not assess the performance of the intermediate steps, such as
preference function f .x; x0/. Only the final ranking (based on f .x/ for RankRules
and on NFS.x/ for PrefRules) is compared with the testing data.

All the algorithms used in this experiment were implemented using the Weka
environment [58].

7.1 Credit Rating Data

The credit rating data set is described in [11]. It is based on the rating of 1328 firms
issued by Qui Credit Assessment Ltd., a UK credit rating agency. On the basis of this
rating, the firms are classified into five groups of risk: “Secure”, “Stable”, “Normal”,
“Unstable”, and “High risk”. The firms are also described by 10 numerical attributes,
such as “solvency ratio” or “return on total assets”. The risk groups constitute the
preference information: each time a given firm x is classified into a group higher
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Table 2 Results of the
RankRules and PrefRules on
the credit rating data

# Rules RankRules PrefRules
Error Time [s] Error Time [s]

10 0.095 0.0878 0.054 175.5468
20 0.077 0.1686 0.054 318.4124
50 0.066 0.4472 0.054 602.303
80 0.063 0.7549 0.057 911.6686
100 0.058 0.9688 0.052 1067.0126
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Fig. 1 Performance of RankRules and PrefRules on the credit rating data set as a function of the
number of rules varying from 0 to 100

than that of firm x0, we consider that x is preferred over x0 (i.e., s.x; x0/ D 1).
Similarly, if x is classified into a lower group than that of x0, we have s.x; x0/ D 	1.

We ran RankRules and PrefRules, setting all the algorithms’ parameters to default
values (those values were chosen on the basis of the past experiments with the algo-
rithms, and were not optimized to any extent on the data sets described in this paper).
Only the number of rules in the ensemble varied between 10 and 100. The results
are given in Table 2. The error rate was calculated as described above, by randomly
drawing 5 times testing sets containing 30% of objects. We also visualize the error
rate as a function of the number of rules – see Fig. 1.

One can see that both algorithms perform similarly, with a slight advantage to
PrefRules. On the other hand, PrefRules is much slower, as it works on the pairs of
objects (constructing preference function) instead of single objects, which is the case
of RankRules (constructing utility function). Thus, PrefRules scales quadratically
with the size of the data. However, PrefRules needs much less rules to achieve its
best performance – even 10 rules is enough – while RankRules works best with 100
rules. Therefore, in the next experiments, we decided to run PrefRules with smaller
ensemble sizes. Note that RankRules is able to decrease the training error more than
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Fig. 2 Computational time on the credit rating data set as a function of the number of rules varying
from 0 to 100

PrefRules. This is due to the fact that PrefRules uses differences of attribute values
in the condition part of decision rules. Therefore, the difference between, e.g., 10
and 11 is the same as between 1 and 2, so the rules cannot model a variable intensity
of preference in the scales of attributes.

We also show in Fig. 2 how computational time increases with increasing num-
ber of rules. The dependence is roughly linear. Notice that the time of training
RankRules is negligible comparing to that of PrefRules, since the former scales
linearly with the number of objects, while the latter scales quadratically.

7.2 Recommender System

The first massive data set concerns movie recommender system MovieLens in which
users are asked to rate movies on an ordinal scale, assigning to each movie from
one to five “stars”. We used “100 K” version of the data set, consisting of 100,000
ratings on 1,682 movies given by 943 users. The goal is to sort movies unseen by the
user according to his/her preferences. The task is mapped into our framework in the
following way. Let us fix a user and let x and x0 be two movies. Then s.x; x0/ D 1

if the user ranks movie x higher than movie x0; s.x; x0/ D 	1 if movie x is ranked
lower than movie x0.

We treated the problem of recommendation of movies as a machine learning
problem in the following way. We chose 200 most popular users (i.e., users who
rated the greatest number of movies) and removed the remaining users from the
data set. Then, for each user, we considered ratings of this user as ranks while the
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Table 3 Results of the
RankRules and PrefRules on
MovieLens

# Algorithm Error Time [s]

RankRules 0.29 2,823.691
PrefRules 0.31 99,865.923

ratings of the other 199 users formed the description of movies in terms of attributes.
In other words, each movie is an object, described by 199 ordinal attributes and a
decision attribute associated with a given user. In such a data table, a lot of values
are missing since none of the users ranks all of the movies. We do not fill these
missing values, since decision rules can easily handle them by treating a missing
value on an attribute as a value which never satisfies a rule condition associated
with the corresponding attribute.

The above procedure leads to 200 separate problems, one for each user. The
performance of the algorithms is averaged over all those problems. For each prob-
lem, the data is separated into the training and testing set in a way recommended
in the MovieLens data (for every user, exactly 10 ratings are selected to the testing
set, while all the other ratings constitute the training set). The number of rules for
PrefRules was set to 100, while for RankRules, it was set to 500. The results are
presented in Table 3.

The difference in the performance of both algorithms is small and statistically
insignificant at significance level ˛ D 0:05 (value of Student’s t statistic calculated
by treating difference in performance on each data set as a separate observation
equals 1.397). On the other hand, the computational time for PrefRules is much
higher than for RankRules, which makes RankRules more preferable for this kind
of problems. The main advantage of PrefRules is a more concise model – it needs
much less rules than RankRules.

7.3 Text Ranking

The 20 Newsgroups data set is a collection of approximately 20,000 text messages,
partitioned evenly across 20 different newsgroups. We used the 18,828 version of the
data set [1], where there are no duplicates and each message contains only “From”
and “Subject” headers. We considered five binary problems:

1. class comp.sys.ibm.pc.hardware versus comp.sys.mac.
hardware,

2. class alt.atheism versus soc.religion.christian,
3. class rec.sport.baseball versus rec.sport.hockey,
4. class talk.politics.misc versus talk.politics.mideast,
5. class rec.autos versus rec.motorcycles.

In each problem, we chose similar categories to make the problem harder. Similarly
to previous data sets, we treated ordered classification as ranking by choosing any
of the two considered classes as more preferred. Thus, document x is preferred over
document x0 if x belongs to a more preferred class, while x0 – to a less preferred one.
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Table 4 Results of the RankRules, PrefRules and SVM on the 20 Newsgroups data

# Data set RankRules PrefRules SVM
Error Time [s] Error Time [s] Error Time [s]

Atheism vs. Christian 0.008 10.5 0.017 227.2 0.047 2.7
Pc vs. Mac 0.033 9.4 0.057 192.4 0.115 3.1
Autos vs. Motorcycles 0.016 9.8 0.023 202.1 0.043 1.9
Baseball vs. Hockey 0.007 9.7 0.017 209.9 0.029 1.5
Misc vs. Mideast 0.011 9.7 0.024 208.3 0.036 1.9

To represent messages in a bag-of-words representation, for each binary prob-
lem we performed the feature selection as follows. First, we split message texts
into tokens and removed stopwords. Second, we did stemming using Porter’s stem-
mer. Third, we removed terms that occurred in the considered data set less than
20 times. Fourth, from the remaining terms we selected 500 terms with the highest
frequency of occurrence. Finally, we removed terms that occurred in less than 10
messages. Thus, as a final result, each message was represented in a feature space,
where attribute value of 1 corresponded to the presence of a given term, and attribute
value of 0 – to its absence (i.e., we ignored term frequencies).

To evaluate the performance of the algorithms, we split the data sets into the
training and testing part. We used both RankRules and PrefRules, along with a state-
of-the-art Support Vector Machine [56] classifier (with linear kernel and all the other
parameters set to default values), which serves as a baseline for the comparison.
The results are given in Table 4. RankRules clearly outperforms PrefRules on every
data set, both in terms of error rate and training time, and is a true winner of this
experiment. On the other hand, both of our algorithms outperform SVM, proving
their usefulness in the text mining problems. The differences in performance are
statistically significant at the significance level ˛ D 0:05 – treating difference in
results for each data set as a separate observation. Student’s t statistic equals 4.05
when comparing RankRules with PrefRules, and 3.03 when comparing PrefRules
with SVM (both above the critical value 2.57, using Bonferroni correction).

8 Conclusions

Preference Learning and Multiple Attribute Decision Aiding share many concepts
and methodological issues. In this paper, we have considered a ranking problem,
aiming to propose a methodology having good properties from both learning and
decision aiding perspectives.

The proposed methodology is based on learning of an ensemble of decision rules
from decision examples given by the DM in terms of pairwise comparisons of some
objects. Decision rule models are of particular interest in Multiple Attribute Deci-
sion Aiding, since decision aiding procedures using these models are “glass box”
procedures providing a clear justification of recommended decisions in the language
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of the DM. Moreover, the decision rule model is the most general among all known
preference models. Decision rules can also be efficiently learned in the boosting
framework. As shown in the experiment on a large data set, the rule-based learning
algorithms are competitive to SVM.

We proposed two approaches to ranking learning. In the first one (referred to as
approach (a)), the rule ensemble is represented by a preference function defining
a binary preference relation on the set of objects. The result of application of this
function on all pairs of objects to be ranked is then exploited using the Net Flow
Score procedure, giving a linear ranking of objects. In the second approach (referred
to as approach (b)), the rule ensemble is represented by a utility function for single
objects. This utility function directly induces a linear ranking of objects.

The rules of type (a) concern direct comparison of two objects, while the rules of
type (b) determine a change of utility for single objects. This is why the former rules
are often treated as more intuitive in solving multiple attribute ranking problems.
However, the ensembles based on the latter rules perform better, as shown in the
massive data experiments – their generation is much faster and their accuracy is not
significantly worse; rather, it is better.
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Abstract Lexicographic preference models (LPMs) are one of the simplest yet
most commonly used preference representations. In this chapter, we formally define
LPMs and present learning algorithms for mining these models from data. In par-
ticular, we study a greedy algorithm that produces a “best guess” LPM that is
consistent with the observations and two voting-based algorithms that approximate
the target using the votes of a collection of consistent LPMs. In addition to our
theoretical analyses of these algorithms, we empirically evaluate their performance
under different conditions. Our results show that voting algorithms outperform the
greedy method when the data is noise-free. The dominance is more significant
when the training data is scarce. However, the performance of the voting algorithms
quickly decays with even a little noise, whereas the greedy algorithm is more robust.
Inspired by this result, we adapt one of the voting methods to consider the amount
of noise in an environment and empirically show that the modified voting algo-
rithm performs as well as the greedy approach even with noisy observations. We
also introduce an intuitive yet powerful learning bias to prune some of the possible
LPMs. We demonstrate how this learning bias can be used with variable and model
voting and show that the learning bias improves learning performance significantly,
especially when the number of observations is small.
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1 Introduction

Lexicographic preference models (LPMs) are one of the simplest preference repre-
sentations. An LPM defines an order of importance on the variables that describe
the objects in a domain and uses this order to make preference decisions. For exam-
ple, when choosing between two flights (with the same price), a traveler may prefer
a nonstop flight to a flight with one or more stops. Among the nonstop flights, the
traveler prefers a morning flight to an afternoon flight. This set of preferences can be
represented as an LPM. Similarly, consider the task of picking a movie. Typically,
the most important feature one considers is the genre of the movie (e.g., action,
sci-fi, or romance). Then among the movies in the preferred category, one chooses
the one with the best reviews, if there are still many movies with similar reviews,
one might examine to a feature such as the movie’s director or lead actor.

Despite the simplicity of LPMs, several studies on human decision making
[4,9,14] have experimentally demonstrated that when facing equal cost alternatives,
humans often make decisions using lexicographic reasoning instead of more math-
ematically sophisticated methods, such as linear additive value maximization [6].

In this chapter, we formally define LPMs and present learning algorithms for
mining these models from data. In particular, we study a greedy method [12] that
can discover one of many LPMs that are consistent with preference observations
and two voting-based methods [16] that sample from the set of consistent LPMs and
use the votes of this ensemble to predict the preferred outcome. In addition to our
theoretical analyses of these algorithms, we empirically evaluate their performance
under different conditions.

It is highly likely that a pick-any-consistent model approach (like the greedy
approach we study) will produce poor approximations of the target when there are
few observations. Our experiments show that voting algorithms outperform the aver-
age and worst-case performance of the greedy algorithm when the training data is
scarce but noise-free.

To further improve the performance of the learning algorithms when the number
of observations is small, we investigate the effects of using background knowledge,
to impose a bias on learning. We focus on an intuitive yet powerful learning bias
that defines equivalence classes on the variables, indicating the most important set
of variables, the second most important set, and so on. We show how this learning
bias can be used with voting algorithms and show that the learning bias improves
learning performance significantly, especially when the number of observations is
small.

We also investigate the effect of imperfect data on the learning algorithms. We
consider two kinds of imperfections: faulty observations (noise) and hidden ties
(ties that are broken arbitrarily). Our empirical evaluation demonstrates that all of
the algorithms we consider are robust in the presence of hidden ties. However, even
a small number of faulty observations significantly reduce the performance of the
voting algorithms. On the other hand, the greedy algorithm is resilient: that is, the
performance decline is proportional to the amount of noise in the data. We take a
lesson from this, and adapting one of the voting methods to consider the amount of
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noise in an environment we empirically show the resulting heuristic is on par with
the greedy approach in the case of noisy observations.

In the rest of this chapter, we present LPMs, then describe the greedy learning
algorithm and our voting-based methods. We then introduce the learning bias and
show how we can generalize the voting methods to exploit such a bias. Finally, we
present the results of our experiments, followed by related work and concluding
remarks.

2 Lexicographic Decision Models

In this section, we introduce the lexicographic preference model (LPM). Here and
throughout this chapter, we only consider binary variables whose domain is f0; 1g.
Note that the representation can easily be generalized to monotonic preferences with
ordinal variables, such that 1 corresponds to a preference on the values in increasing
order, and 0 to a decreasing order. For clarity in introducing the algorithms, we
assume that the preferred value of each variable is known, although this assumption
can be relaxed by considering a duplicate set of variables which are compliments of
the originals (see Yaman et al. [15] for details). Without loss of generality, we will
assume that 1 is always preferred to 0.

An object z is represented as a feature vector which means,

z D .z1; z2; : : : ; zm/ 2 Z D Z1 � Z2 � � � � � Zm .

We use Z to denote the set of features (also called variables), i.e. ZDfZ1 : : :Zmg:
We use the notation z.Zi / to refer the value of Zi in the object z.

A lexicographic preference model M on Z is a total order on a subset R of Z .
We denote this total order with �M. Any variable in R is relevant with respect to
M; similarly, any variable in I D Z 	 R is irrelevant with respect to M. If z and
z0 are two objects, then the preferred object given M is determined as follows:

– Find the smallest variable Zi in �M such that Zi has different values in z and z0.
The object that has the value 1 for Zi is the most preferred.

– If all relevant variables in M have the same value in z and obj 0, then the objects
are equally preferred (a tie).

Example 1. Suppose that Z1 � Z2 � Z3 is the total order defined by an LPM
M, and consider objects z1 D .1; 0; 1; 1/, z2 D .0; 1; 0; 0/, z3 D .0; 0; 1; 1/, and
z4 D .0; 0; 1; 0/. z1 is preferred over z2 because z1.Z1/ D 1, and Z1 is the most
important variable in M. z2 is preferred over z3 because z2.Z2/ D 1 and both
objects have the same value for Z1. Finally, z3 and z4 are equally preferred because
they have the same values for the relevant variables.

2.1 Observations

An observation o D .z; z0/ is an ordered pair of objects, connoting that z is pre-
ferred to z0, also denoted as z � z0. Note that this representation does not allow for
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the explicit marking of ties, which would indicate that z and z0 have the same values
for attributes that are relevant to the preference decision but may differ on irrele-
vant attributes. This omission stems from the assumption – which holds in many
practical applications – that preference observations are gathered from the demon-
stration of an expert who breaks ties arbitrarily. Thus, in some observations, z and
z0 may actually be tied even though z is reported to be preferred to z0. We call such
observation, hidden ties. For example, consider the objects z3 and obj4 and the LPM
M introduced in Example 1. The observations .z3; z4/ and .z4; z3/ are hidden ties
because z3 and z4 are equally preferred by M. Note that this case is more general
than one where ties are reported, so our algorithms, which all work in the presence
of hidden ties, are still poised to take advantage of reported ties.

An observation o D .z; z0/ is faulty if z0 is actually preferred over z. Such obser-
vations, also called noise, can be produced due to various reasons such as hardware
and software failures, or can simply be data collected from users who do not always
apply consistent, hard-and-fast preference rules.

2.2 Learning an LPM Consistent with Observations

An LPM M is consistent with an observation .z; z0/ iff M implies that z is preferred
to z0 or that z and z0 are equally preferred.

Example 2. Once again consider, the variables, Z1, Z2, Z3, Z4 and the objects
z1 D .1; 0; 1; 1/, z2 D .0; 1; 0; 0/, z3 D .0; 0; 1; 1/, and z4 D .0; 0; 1; 0/. Given the
set of observations o1 D .z1; z2/, o2 D .z1; z3/, o3 D .z2; z3/, and o4 D .z3; z4/,
the LPMs Z1 � Z2 � Z3 and Z1 � Z2 � Z3 � Z4 are consistent with those
observations.

The problem of learning an LPM is defined as follows: Given a set of observa-
tions, find an LPM M that is consistent with the observations.

Given a noise-free set of observations finding an LPM that is consistent with the
observations, if one exists, can be done in low-order polynomial time (see Sect. 3
for an algorithm that constructs a consistent LPM). However, if the observations are
noisy, or if the target preference model was not an LPM, then we need to rephrase
the learning problem as: Find an LPM that does not violate more than a constant
number of the observations. Schmitt et al. [12] have proven that the complexity of
this problem is NP-complete.

3 Greedy Algorithm

Schmitt et al. [12] proposed a greedy algorithm that is guaranteed to find one of the
LPMs that is consistent with the observations, if one exists.

Algorithm 1 is Schmitt at al.’s greedy variable-permutation algorithm, which we
use as a performance baseline. The algorithm refers to a function MISS.Zi ; O/,
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Algorithm 1 greedyPermutation
Require: A set of variables Z and a set of observations O .
Ensure: An LPM that is consistent withO , if one exists.
1: for i D 1; : : : ; n do
2: Arbitrarily pick one of Zj 2 Z such that

MISS.Zj ; O/D minZk2Z MISS.Zk; O/
3: �.Zj / WD i , assign the rank i to Zj
4: Remove Zj from Z

5: Remove all observations .z; z0/ from O such that z.Zj / ¤ z0.Zj /
6: end for
7: Return the total order � on Z such that Zi � Zj iff �.Zi / < �.Zj /

Table 1 The observation set before each iteration of the for-loop in algorithm 1 and the number
of misses each attribute would cause at each iteration

Iterations O Miss.Z1; 0/ Miss.Z2; 0/ Miss.Z3; 0/ Miss.Z4; 0/ Miss.Z5; 0/
1 fo1; o2; o3g 2 0 0 3 2
2 fo1; o3g 1 – 0 2 2
3 fo3g 0 – – 1 1
4 fg – – – 0 0
5 fg – – – – 0

which is defined as jf.z; z0/ 2 O W z.Zi / < z0.Zi /gj; that is, the number of obser-
vations violated in O if the most important variable is selected as Zi . Basically,
the algorithm greedily constructs a total order by choosing the variable at each step
that causes the minimum number of inconsistencies with the observations. If mul-
tiple variables have the same minimum, then one of them is chosen arbitrarily. The
algorithm runs in polynomial time, specifically O.m2n/, where m is the number of
variables and n is the number of observations.

The following example demonstrates how Algorithm 1 works.

Example 3. Suppose Z D fZ1;Z2;Z3;Z4;Z5g and O contains o1 D ..0; 1; 1;

0; 0/, .1; 1; 0; 1; 1//, o2 D ..0; 1; 1; 0; 1/, .1; 0; 0; 1; 0//, and o3 D ..1; 0; 1; 0; 0/,
.0; 0; 1; 1; 1//. Table 1 shows Miss.Zk; O/, the number of misses that each attribute
would cause had it been selected as the most important attribute in each iteration of
the for-loop in Algorithm 1 and what would O be before each iteration. At every
row, the attribute with the bold-faced entry is selected for the i th rank. Before the
first iteration, the set of observations is O D fo1; o2; o3g. The algorithm produces
the LPM Z2 � Z3 � Z1 � Z4 � Z5 and the set of observations Oi after the i th

iteration are O1 D fo1; o3g, O2 D fo3g, O3 D fg, O4 D fg, and O5 D fg. The
learned LPM is consistent with all of the observations because O5 is empty.

Schmitt et al. [12] have proven that if there is no LPM that is consistent with
all the observations O , then the LPM M that Algorithm 1 produces is guaranteed
to be consistent with at least half of the observations in O . This result suggests
that Algorithm 1 is able to tolerate noisy data to some extent. Schmitt et al. did not
perform any studies on the effect of hidden ties in the data in terms of learning the
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target LPM correctly. In Sect. 6, we provide experimental evidence that observations
with hidden ties produces better approximations of the target.

Another shortcoming of this greedy approach is that it only produces a single
LPM, even though multiple LPMs may fit the data. In the next section, we show that
learning algorithms can sample many of these models while preserving tractability
and theoretical guarantees of convergence and sample complexity. Later, our empir-
ical studies show these voting approaches greatly outperforming Algorithm 1 in
many situations.

4 Voting Algorithms

This section presents a democratic approach for approximating the target LPM that
produced a set of noise-free observations, possibly containing hidden ties. Instead
of finding just one of the consistent LPMs, it reasons with a collection of LPMs that
are consistent with the observations. Given two objects, such an approach prefers
the one that a majority of its models prefer. A naive implementation of a voting
algorithm would enumerate all LPMs that are consistent with a set of observations.
However, since the number of models consistent with a set of observations can be
exponential in the number of attributes, the naive implementation is infeasible.

In this section, we describe two methods – variable voting and model voting –
that sample the set of consistent LPMs and use voting to predict the preferred object.
The following subsections explain the variable voting and model voting methods
and summarize some of our theoretical results.

4.1 Variable Voting

Variable voting uses a generalization of the LPM representation. Instead of a total
order on the variables, variable voting reasons with a partial order (�) to find the
preferred object in a given pair. Among the variables that are different in both
objects, the ones that have the smallest rank (and are hence the most salient) in
the partial order vote to choose the preferred object. The object that has the most
“1” values for the voting variables is declared to be the preferred one. If the votes
are equal, then the objects are equally preferred.

Definition 1 (Variable Voting). Suppose that Z is a set of variables and � is a
partial order on Z . Given two objects, z and z0, the variable voting process with
respect to � for determining which of the two objects is preferred is:

– Define D, the set of variables that differ in z and z0.
– Define D
, the set of variables in D that have the smallest rank among D with

respect to �.
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Algorithm 2 learnVariableRank
Require: A set of Z of variables, and a set O of observations
Ensure: A partial order on Z .
1: ˘.Zi / D 1;8 Zi 2 Z

2: while˘ can change do
3: for Every observation .z; z0/ 2 O do
4: Let D be the variables that differ in z and z0

5: D� D fZi 2 Dj8Zj 2 D;˘.Zi / � ˘.Zj /g
6: Vz is the set of variables in D� that are 1 in z
7: Vz0 is the set of variables in D� that are 1 in z0

8: if jVz0 j � jVzj then
9: for Zi 2 Vz0 such that ˘.Zi / < jZ j do

10: ˘.Zi / D ˘.Zi /C 1
11: end for
12: end if
13: end for
14: end while
15: Return partial order � on Z such that Zi � Zj iff ˘.Zi / < ˘.Zj /

– Define Nz as the number of variables in D
 that favor z (i.e., that have value 1 in
z and 0 in z0) and Nz0 as the number of variables in D
 that favor z0.

– If Nz > Nz0 , then z is preferred. If Nz < Nz0 , then z0 is preferred. Otherwise, they
are equally preferred.

Example 4. Suppose that � is the partial order fZ2;Z3g � fZ1g � fZ4;Z5g. Con-
sider objects z D .0; 1; 1; 0; 0/ and z0 D .0; 0; 1; 0; 1/. D is fZ2;Z5g. D
 is fZ2g
because Z2 is the smallest ranking variable in D with respect to �. Z2 favors z
because z.Z2/ D 1. Thus, variable voting with � prefers z over z0.

Algorithm 2 presents the algorithm learnVariableRank, which learns a partial
order � on the variables from a set of observations such that variable voting with
respect to � will correctly predict the preferred objects in the observations. Specif-
ically, it finds partial orders that define equivalence classes on the set of variables.
The algorithm maintains the minimum possible rank for every variable that does
not violate an observation with respect to variable voting. Initially, all variables are
considered equally important (rank of 1). The algorithm loops over the set of obser-
vations until the ranks converge. At every iteration and for every pair, variable voting
predicts a winner. If it is correct, then the ranks stay the same. Otherwise, the ranks
of the variables that voted for the wrong object are incremented, thus reducing their
importance1. Finally, the algorithm builds a partial order � based on the ranks such
that x � y if and only if x has a lower rank than y.

Example 5. Suppose, as in Example 3 , Z D fZ1;Z2;Z3;Z4;Z5g and O consists
of ..0; 1; 1; 0; 0/, .1; 1; 0; 1; 1//, ..0; 1; 1; 0; 1/, .1; 0; 0; 1; 0// and ..1; 0; 1; 0; 0/,

1 In our empirical results, we also update the ranks when the prediction was correct but not
unanimous. This produces a heuristic speed-up without detracting from the worst case guarantees.
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Table 2 The rank of the variables after each iteration of the for-loop in line 3 of the algorithm
learnVariableRank

Observations Z1 Z2 Z3 Z4 Z5
Initially 1 1 1 1 1
.0; 1; 1; 0; 0/; .1; 1; 0; 1; 1/ 2 1 1 2 2
.0; 1; 1; 0; 1/; .1; 0; 0; 1; 0/ 2 1 1 2 2
.1; 0; 1; 0; 0/; .0; 0; 1; 1; 1/ 2 1 1 3 3

.0; 0; 1; 1; 1//. Table 2 illustrates the ranks of every variable in Z after each iter-
ation of the for-loop in line 3 of the algorithm learnVariableRank. The ranks of the
variables stay the same during the second iteration of the while-loop; thus, the loop
terminates. The partial order � based on ranks of the variables is the same as the
order given in Example 4.

We next summarize our theoretical results about the algorithm learnVariable-
Rank.

Correctness

Suppose that � is a partial order returned by learnVariableRank.Z ;O/. It can be
shown that if the observations are noise-free, then any LPM M such that @M is a
topological sort of � is consistent with O . Furthermore, learnVariableRank never
increments the ranks of the relevant variables beyond their actual rank in the target
LPM. The ranks of the irrelevant variables can be incremented as far as the number
of variables.

Convergence

learnVariableRank has a mistake bound of O.m2/, where m is the number of vari-
ables, because each mistake increases the sum of the potential ranks by at least 1 and
the sum of the ranks that the target LPM induces is O.m2/. This bound guarantees
that given enough observations (as described in the background section), learnVari-
ableRank will converge to a partial order � such that every topological sort of �
has the same prefix as the total order induced by the target LPM. If all variables are
relevant, then � will converge to the total order induced by the target LPM.

Complexity

A very loose upper bound on the time complexity of learnVariableRank isO.m3n/,
wherem is the number of variables and n is the number of observations. This bound
holds because the while-loop on line 2 runs at most O.m2/ times, and the for-loop
in line 3 runs for n observations. The time complexity of one iteration of the for-loop
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is O.m/; therefore, the overall complexity is O.m3n/. We leave the investigation of
tighter bounds and the average case analysis for future work.

4.2 Model Voting

The second method we present employs a Bayesian approach. This method ran-
domly generates a sample set, S, of distinct LPMs that are consistent with the
observations. When a pair of objects is presented, the preferred one is predicted
using weighted voting. That is, each M 2 S casts a vote for the object it prefers,
and this vote is weighted according to its posterior probability P.MjS/.
Definition 2 (Model Voting). Let U be the set of all LPMs, O be a set of observa-
tions, and S � U be a set of LPMs that are consistent with O . Given two objects,
z and z0, model voting prefers z over z0 with respect to S if:

X

M2U
P.MjS/VM

.z�z0/ >
X

M2U
P.MjS/VM

.z0�z/; (1)

where VM
.z�z0/

is 1 if z is preferred with respect to M, and 0 otherwise. VM
.z0�z/ is

defined analogously. P.MjS/ is the posterior probability of M being the target
LPM given S , calculated as discussed below.

We first assume that all LPMs are equally likely a priori. In this case, given a
sample S of size k, the posterior probability of an LPM M will be 1=k if and only
if M 2 S , and 0 otherwise. Note that if S is maximal, this case degenerates into
the naive voting algorithm. However, it is generally not feasible to enumerate all
consistent LPMs – in practice, the sample has to be small enough to be feasible and
large enough to be representative.

In constructingS , we exploit the fact that many consistent LPMs share prefixes in
the total order that they define on the variables. We wish to discover and compactly
represent such LPMs. To this end, we introduce the idea of aggregated LPMs. An
aggregated LPM, .Z1;Z2 : : : ;Zk;�/, represents a set of LPMs that define a total
order with the prefix Z1 � Z2 � � � � � Zk . Intuitively, an aggregated LPM states
that any possible completion of the prefix is consistent with the observations. The
algorithm sampleModels in Algorithm 3 implements a “smart sampling” approach
by constructing an LPM that is consistent with the given observations, returning an
aggregated LPM when possible. We start with an arbitrary consistent LPM (such as
the empty set, which is always consistent) and add more variable orderings, extend-
ing the input LPM. We first identify the variables that can be used in extending the
prefix – that is, all variables Zi such that in every observation, either Zi is 1 in the
preferred object or is the same in both objects. We then select one of those vari-
ables randomly and extend the prefix. Finally, we remove the observations that are
explained with this selection and continue with the rest of the observations. If, at
any point, no observations remain, then we return the aggregated form of the prefix,
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Algorithm 3 sampleModels
Require: Set of variables Z , set of observations O , and rulePrefix, LPM to be extended.
Ensure: An LPM (possibly aggregated) consistent with O .
1: candidates = fZi W Zi … rulePrefix j 8.z; z0/ 2 O; z.Zi / D 1 or z.Zi / D z0.Zi /g.
2: while candidates ¤ ; do
3: if O D ; then
4: return .rulePrefix;
/
5: end if
6: Randomly remove a variable Zj from candidates
7: Remove any observation .z; z0/ from O such that z.Zj / ¤ z0.Zj /
8: Extend rulePrefix: rulePrefix D .rulePrefix;Zj /
9: Recompute candidates

10: end while
11: return rulePrefix

since every completion of the prefix will be consistent with the null observation.
Running sampleModels several times and eliminating duplicates will produce a set
of (possibly aggregated) LPMs.

Example 6. Consider the same set of observations O as in Example 5. Then, the
LPMs that are consistent withO are as follows: ./, .Z2/, .Z2;Z3/, .Z2;Z3;Z1;�/,
.Z3/, .Z3;Z1;�/, .Z3;Z2/, and .Z3;Z2;Z1;�/. To illustrate the set of LPMs
that an aggregate LPM represents, consider .Z2;Z3;Z1;�/, which has a total
of five extensions: .Z2;Z3;Z1/, .Z2;Z3;Z1;Z4/, .Z2;Z3;Z1;Z5/, .Z2;Z3;Z1;
Z4;Z5/, and .Z2;Z3;Z1;Z5;Z4/. Every time the algorithm sampleModels runs, it
will randomly generate one of the aggregated LPMs: .Z2;Z3;Z1;�/, .Z3;Z1;�/,
or .Z3;Z2;Z1;�/. Note that the shorter models that are not produced by sam-
pleModels are all subprefixes of the aggregated LPMs and it is easy to modify
sampleModels to return those models as well.

An aggregate LPM in a sample saves us from having to enumerate all possible
extensions of a prefix, but it also introduces complications in computing the weights
(posteriors) of the LPMs, as well as their votes. For example, when comparing two
objects z and z0, some extensions of an aggregate LPM might vote for z and some
for z0. Thus, we need to find the total number of LPMs that an aggregate LPM
represents and determine what proportion of them favor z over z0 (or vice versa),
without enumerating all extensions. Suppose there are m variables and M is an
aggregated LPM with a prefix of length k. Then, the number of extensions of M is
denoted by FM and is equal to fm�k , where ft is defined to be:

ft D
tX

iD0

 
t

i

!
� i Š D

tX

iD0

.t/Š

.t 	 i/Š
: (2)

Intuitively, ft counts every possible permutation with at most t items. Note that
ft can be computed efficiently and that the number of all possible LPMs when there
are m variables is given by fm.
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Consider a pair of objects, z and z0. We wish to determine how many extensions
of an aggregate LPM M D .Z1;Z2; : : : ;Zk;�/ would vote for one of the objects.
We will call the variables Z1 : : :Zk the prefix variables. If z and z0 have different
values for at least one prefix variable, then all extensions will vote in accordance
with the smallest such variable. Suppose that all prefix variables are tied and m is
the set of all nonprefix variables. Then, m is composed of three disjoint sets a, b,
and w, such that a is the set of variables that favor z, b is the set of variables that
favor z0, and w is the set of variables that are neutral (that is, that have the same
value in z and z0).

An extensionM0 of M will produce a tie iff all variables in a and b are irrelevant
in M0. The number of such extensions is fjwj. The number of extensions that favor
z over z0 is directly proportional to jaj=.jaj C jbj/. The number of extensions of M
that will vote for z over z0 is denoted by NM

z�z0

, which is given by:

NM
z�z0

D jaj
jbj C jaj � .fjmj 	 fjwj/: (3)

The number of extensions of M that will vote for z0 over z is computed similarly.
Note that the computation of NM

z�z0

, NM
z0�z, and FM can be done in linear time by

caching the recurrent values.

Example 7. Suppose Z and O are as defined in Example 5. The first column of
Table 3 lists all LPMs that are consistent with O. The second column gives the
posterior probabilities of these models given the sample S1, which is the set of all
consistent LPMs. The third column is the posterior probability of the models given
the sample S2 D f.Z2;Z3;Z1;�/; .Z3;Z1;�/; .Z3;Z2;Z1;�/g. Given two objects
z D .0; 1; 1; 0; 0/ and z0 D .0; 0; 1; 0; 1/, the number of votes for each object based
on each LPM is given in the last two columns. Note that the total number of votes
for z and z0 does not add up to the total number of extensions of .Z3;Z1;�/ because
two of its extensions – .Z3;Z1/ and .Z3;Z1;Z4/ – prefer z and z0 equally.

Algorithm 4 describes modelVote, which takes a sample of consistent LPMs and
a pair of objects as input, and predicts the preferred object using the weighted votes
of the LPMs in the sample.

Table 3 The posterior probabilities and number of votes of all LPMs in Example 7

LPMs P.LjS1/ P.LjS2/ NM
z�z0

NM
z0

�z

./ 1/31 0 0 0

.Z2/ 1/31 0 1 0

.Z2;Z3/ 1/31 0 1 0

.Z2;Z3;Z1;
/ 5/31 5/26 5 0

.Z3/ 1/31 0 0 0

.Z3;Z1;
/ 16/31 16/26 7 7

.Z3;Z2/ 1/31 0 1 0

.Z3;Z2;Z1;
/ 5/31 5/26 5 0
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Algorithm 4 modelVote
Require: A set of LPMs, S , and two objects, z and z0

Ensure: Returns either one of z or z0 or tie
1: Initialize sampleSize to the number of non-aggregated LPMs in S
2: for every aggregated LPM M 2 S do
3: sampleSizeCD FM
4: end for
5: Vote.z/ D 0; Vote.z0/ D 0
6: for every LPM M 2 S do
7: if M is not an aggregate rule then
8: winner is the object M prefers among z and z0

9: Increment Vote.winner/ by 1=sampleSize
10: else
11: if z and z0 differ in at least one prefix variable of M then
12: M� is an extension of M referring only the prefix
13: winner is the object M� prefers among z and z0

14: Vote.winner/C D FM=sampleSize
15: else
16: Vote.z/C D NL

z�z0

=sampleSize
17: Vote.z0/C D NL

z0

�z=sampleSize
18: end if
19: end if
20: end for
21: if Vote.z/ D Vote.z0/ then
22: Return a tie
23: else
24: Return the object obj with the highest Vote.obj/
25: end if

Returning to Example 7, the reader can verify that model voting will prefer z
over z0. Next, we present our theoretical results on the sampleModels and modelVote
algorithms.

Complexity

The time complexity of sampleModels is bounded byO.m2n/, wherem is the num-
ber of variables and n is the number of observations: the while-loop in line 2 runs
at most m times; at each iteration, we have to process every observation, each time
performing computations that take O.m/ time. If we call sampleModels s times,
then the total complexity of sampling is O.sm2n/. For constant s, this bound is still
polynomial. Similarly, the complexity of modelVote is O.sm/ because it considers
each of the s rules in the sample, counting the votes of each rule, which can be done
in O.m/ time.

Comparison to Variable Voting

The set of LPMs that is sampled via learnVariableRank is a subset of the LPMs that
sampleModels can produce. The running example in the paper demonstrates that
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sampleModels can generate the LPM .Z3;Z1;�/; however, none of its extensions
is consistent with the partial order that learnVariableRank returns.

5 Introducing Bias

In general, when there are not many training examples for a learning algorithm,
the space of consistent LPMs is large. In such cases, it is usually not possible to
find a good approximation of the target model. To overcome this problem, we can
introduce a bias (domain knowledge), indicating that certain solutions should be
favored over the others. In this section, we propose a bias in the form of equivalence
classes over the set of attributes. These equivalence classes indicate the set of most
important attributes, second most important attributes, and so on. For example, when
buying a used car, most people consider the most important attributes of a car to be
the mileage, the year, and the make of the car. The second most important set of
attributes is the color, number of doors, and body type. Finally, perhaps the least
important properties are the interior color and the wheel covers. Throughout this
section, we assume that the preferred value of a variable is known or is given in the
prescribed bias. We now formally define a learning bias and what it means for an
LPM to be consistent with a learning bias.

Definition 3 (Learning Bias). A learning bias B for learning a lexicographic pref-
erence model on a set of variables Z is a total order on a partition of Z . B has the
form E1 � E2 � � � � � Ek , where [iEi D Z . Intuitively, B defines a partial order
on Z such that for any two variables, x 2 Ei and y 2 Ej , x � y iff Ei � Ej . We
denote this partial order by �B .

Definition 4. Suppose that Z D fZ1; : : :Zng is a set of variables, B a learning bias,
and M an LPM. M is consistent with B iff the total order �M is consistent with
the partial order �B.

Intuitively, an LPM that is consistent with a learning bias respects the vari-
able orderings induced by the learning bias. The learning bias prunes the space
of possible LPMs. The size of the partition determines the strength of the bias; for
example, if there is a single variable per set, then the bias defines a specific LPM.
In general, the number of LPMs that is consistent with a learning bias of the form
E1 � E2 � � � � � Ek can be computed with the following recursive formula:

G.Œe1; : : : ek; 
/ D fe1
C e1Š � .G.Œe2; : : : ek
/ 	 1/; (4)

where ei D jEi j and the base case for the recursion is G.Œ
/ D 1. The first term
in the formula counts the number of possible LPMs using only the variables in E1,
which are the most important variables. The definition of consistency entails that
a variable can appear in �M iff all of the more important variables are already in
�M, hence the term e1. Note that the recursion on G is limited to the number of
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sets in the partition, which is bounded by the number of variables; therefore, it can
also be computed in linear time by caching precomputed values of f .

To illustrate the power of a learning bias, consider a learning problem with nine
variables. Without a bias, the total number of LPMs is 905,970. If a learning bias
partitions the variables into three sets, each with three elements, then the number of
LPMs consistent with the bias is only 646. A bias with four sets, where the first set
has three variables and the rest have two, limits the number to 190.

We can easily generalize the learnVariableRank algorithm to utilize the learning
bias by changing only the first line of learnVariableRank, which initializes the ranks
of the variables. Given a bias of the form S1 � � � � � Sk , the generalized algorithm
assigns the rank 1 (most important rank) to the variables in S1, rank jS1j C 1 to
those in S2, and so forth. This initialization ensures that an observation .z; z0/ is
used for learning the order of variables in a class Si only when A and B have the
same values for all variables in classes S1 : : : Si�1 and have different values for at
least one variable in Si .

The algorithm modelVote can also be generalized to use a learning bias B. In
the sample generation phase, we use sampleModels as presented earlier, and then
eliminate all rules whose prefixes are not consistent with the bias. Note that even
if the prefix of an aggregated LPM M is consistent with a bias, this may not be
the case for every extension of M. Thus, in the algorithm modelVote, we need to
replace any references to FM andNM

z�z0

(orNM
z0�z) with F B

M andNM;B
z�z0

(orNM;B
z0�z ),

respectively, where:

– F B
M is the number of extensions of M that are consistent with B, and

– N
M;B
z�z0

is the number of extensions of M that are consistent with B and prefer z.

(NM;B
z0�z is analogous.)

Suppose that B is a learning bias E1 � � � � � Em. Let Y denote the prefix
variables of an aggregate LPM M and let Ek be the first set such that at least one
variable in Ek is not in Y . Then, F B

M D G.ŒjEk 	 Y j; jEkC1 	 Y j; : : : jEm 	 Y j
/.
When counting the number of extensions of M that are consistent with B and

prefer z, we again need to examine the case where the prefix variables equally prefer
the objects. Suppose Y is as defined as above and Di denotes the set difference
between Ei and Y . Let Dj be the first non-empty set and Dk be the first set such
that at least one variable in Dk has different values in the two objects. Obviously,
only the variables in Dk will influence the prediction of the preferred object. If

– di D jDi j, the cardinality of Di , and
– a is the set of variables in Dk that favor z, b is the set of variables in Dk that

favor z0, and w is the set of variables in Dk that are neutral,

then NM;B
z�z0

, the number of extensions of M that are consistent with B and prefer z,
can be computed as follows:

N
M;B
z�z0

D jaj
jaj C jbj � .F B

M 	G.Œdj : : : dk�1; jwj
//: (5)
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6 Experiments

In this section, we explain our experimental methodology and discuss the results of
our empirical evaluations. We define the prediction performance of an algorithm P

with respect to a set of test observations T as:

performance.P; T / D Correct.P; T /C 0:5 � Tie.P; T /

jT j ; (6)

where Correct.P; T / is the number of observations in T that are predicted cor-
rectly by P (including any prediction for t 2 T where t is actually a tie) and
Tie.P; T / is the number of observations in T that P predicted as a tie when one
object should actually have been preferred over the other. Note that an LPM returned
by greedyPermutation never returns a tie. In contrast, variable voting with respect
to a partial order in which every variable is equally important will only return ties,
so the overall performance will be 0:5, which is no better than randomly selecting
the preferred objects. We will use MV , V V , and G to denote the model voting,
variable voting, and the greedy approximations of an LPM.

Given sets of training and test observations, .O; T /, we measure the average and
worst performances of V V , MV , andG. When combined with learnVariableRank,
V V is a deterministic algorithm, so the average and worst performances of V V are
the same. However, this is not the case forMV with sampling, because sampleMod-
els is randomized. Even for the same training and test data .O; T /, the performance
of MV can vary. To mitigate this effect, we ranMV 10 times for each .O; T / pair,
and called sampleModels S times on each run (thus, the sample size is at most S),
recording the average and worst of its performance. The greedy algorithmG is also
randomized (in line 2, one variable is picked arbitrarily), so we ran G 200 times for
every .O; T /, recording its average and worst performance.

For our experiments, the control variables areR, the number of relevant variables
in the target LPM; I , the number of irrelevant variables;NO , the number of training
observations; and NT , the number of test observations. For MV experiments, the
sample size (S ) is also a control parameter. For fixed values of R and I , an LPM
M is randomly generated. (If a bias B is given, then M is also consistent with B .)
We randomly generated NO and NT pairs of objects, each with I C R variables.
Finally, we labeled the preferred objects according to M. In all of the figures, the
data points are averages over 20 different pairs of training and test sets .O; T /.

6.1 Comparison of MV, VV and G

Figure 1a shows the average performance of G, MV with sample size S D 200,
and V V for R D 15, I D 0, and NT D 20, as NO ranges from 2 to 20.
Figure 1(b) shows the worst performance for each algorithm. The average per-
formance of V V and MV is better than the average performance of G, and the
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Fig. 1 (a) Average prediction performance and (b) worst prediction performance of the greedy
algorithm, variable voting, and model voting

difference is significant at every data point. Also, note that the worst-case perfor-
mance of G after seeing two observations is around 0.3, which suggests a very poor
approximation of the target. V V andMV ’s worst-case performances are much bet-
ter than the worst-case performances of G, justifying the additional complexity of
the algorithmsMV and V V .

6.2 Effect of Hidden Ties

Figure 2 shows the prediction performance of V V and G (average and worst case)
for problems with 10 relevant variables (R D 10) and five irrelevant variables
(I D 5). The number of observations (No) is always 50, but the number of these
observations that are hidden ties varies from 0 to 45 (x-axis).

In general, as the number of hidden ties increase in the observations, the pre-
diction performance degrades. This was expected because the number of useful
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Fig. 2 The prediction performance of V V and G for varying number of hidden ties in 50 obser-
vations. The curves for filtered V V and G are obtained by eliminating the hidden ties from the
observations

observations that can help the algorithms learn the ranking on the relevant attributes
decreases as the number of hidden ties increases. The performance of MV on the
same data sets was very similar to VV and has thus been omitted for clarity.

A more interesting result, however, is that the existence of hidden ties in the data
actually improves the performance of both algorithms, over a smaller dataset with
the hidden tie observations omitted (the “filtered” versions in Fig. 2). Our expla-
nation for this phenomenon is while hidden ties do not provide useful information
for learning the order on the relevant attributes, their existence helps the algorithms
identify the irrelevant attributes (because hidden ties can increase the number of mis-
takes that would be caused only by the irrelevant attributes) and push them further
up in the ranking (decreasing their importance), thus allowing the other observations
to clarify the ordering of the identified relevant attributes.

6.3 Effect of Noise

Figure 3 shows the average prediction performance of MV and G for problems
with 10 relevant variables (R D 10) and five irrelevant variables (I D 5). The total
number of observations (No) is always 50 but the number of these observations that
are faulty varies from 0 to 45 (x-axis). Figure 4 shows the worst performance for the
same setting.

The results show that both the average and the worst performance ofMV (which
operates under the assumption of noise-free data) are significantly compromised by
even small amounts of noise, which it interprets as a refutation of the correct model
(as well as many of the “almost correct” models). The asymptotic performance at
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Fig. 3 The average prediction performance of model voting, greedy, and NAMV as the number of
noisy observations increases
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Fig. 4 The worst prediction performance of model voting, greedy, and NAMV as the number of
noisy observations increases

0.5 reflects the fact that this noise causes MV to eliminate all the models from its
version space, causing it to predict a tie for every testing observation (essentially
making it a random selection algorithm). We omitted the results for V V from the
figure since V V ’s behavior closely resembled that of MV .
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The performance of G decays far more gracefully than MV or V V because G
allows for some of the observations to be discarded. Although inferring an LPM
from noisy data is NP-complete, the moderate empirical success of the Greedy
algorithm gives us an intuition as to how a heuristic solution with voting can be
developed. Specifically, the Greedy approach iteratively constructed an LPM where
each added attribute violated the fewest number of observations. We borrow this
intuition in the following heuristic extension of modelVote, which is provided with
the expected number of noisy observations � in a data set. The new algorithm, Noise-
Aware Model Vote (NAMV), changes sampleModels to only consider a variable as
a candidate if adding it will not violate more (in total with the other variables) than
� observations. Notice that this remains a stochastic LPM construction and can still
consider many more LPMs than the greedy approach. In Figs. 3 and 4, we com-
pare the average and worst performance of this approach to the other algorithms in
this paper, including “filtered” versions where the noisy data was omitted (which
provided as baselines). Notice that unlike the original modelVote, which was con-
founded by even a small amount of noise, the gentle decay of NAMV mirrors the
greedy approach’s robustness to noise and performs comparably on this data set.
Asymptotically, if all of the observations are noisy, NAMV still performs better than
modelVote in the average case, because it does not eliminate all of the possible mod-
els, so instead of defaulting to random selection, it favors the test observation with
the most 1s.

6.4 Effect of Bias on Performance

Figure 5 shows the positive effect of learning bias on the performance of voting
algorithms for R D 10, I D 0, and NT D 20, as NO ranges from 2 to 20. In
addition, this experiment aims to show that bias does not undermine the advantage
that voting algorithms held over the greedy algorithm in the unbiased case. To this
end, we have trivially generalized G to produce LPMs that are consistent with a
given bias. The data points are averages over 20 different pairs of training and test
sets .O; T /. We have arbitrarily picked two biases: B1 W fZ1;Z2;Z3;Z4;Z5g �
fZ6;Z7;Z8;Z9;Z10g and B2 W fZ1;Z2;Z3g � fZ4;Z5g � fZ6;Z7;Z8g �
fZ9;Z10g. For our experiments, we have randomly generated LPMs that are con-
sistent with those biases. The performance of V V improved greatly with the
introduction of both learning biases. B2 is a stronger bias than B1, and therefore
prunes the space of consistent LPMs more than B1. As a result, the performance
gain due to B2 is greater than that due to B1. The difference between the bias and
nonbias curves is statistically significant except at the last point. Note that the biases
are particularly effective when the number of training observations is small. The
worst-case performances of G with biases B1 and B2 are also shown in Fig. 5. For
both, the worst-case performance of G is significantly lower than the performance
of V V with the corresponding bias.
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Fig. 6 The effect of bias on averageMV performance, using two arbitrarily selected biases, where
B2 is a stronger bias than B1

Using the same experimental scenario, we obtained very similar results with
MV , as seen in Fig. 6. In summary, the worst-case performance of greedy algo-
rithm with bias B2 outperforms the average performance of MV without any bias.
However, even with a weaker bias such as B1, the average performance of MV is
better than G with B2.

7 Related Work

Lexicographic orders and other preference models have been utilized in several
research areas, including multicriteria optimization [1], linear programming [5], and
game theory [10]. The lexicographic model and its applications have been surveyed
by Fishburn [8].
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The most relevant existing work for learning and/or approximating LPMs are the
approaches presented by Schmitt and Martignon [12], which was summarized in
Sect. 3, and by Dombi et al. [7]. Dombi et al. showed that if there are n variables, all
of which are relevant, then O.n log n/ queries to an oracle suffice to learn an LPM.
Furthermore, it is possible to learn any LPM with O.n2/ observations if all pairs
differ in only two variables. They proposed an algorithm that can find the unique
LPM induced by the observations. In case of noise or hidden ties due to irrelevant
attributes, the algorithm does not return an answer.

In general, preferences and ranking are similar. The ranking problem as described
by Cohen et al. [3] is similar to the problem of learning an LPM. However, that line
of work poses learning as an optimization problem, with the goal of finding the rank-
ing that maximally agrees with the given preference function. Our work generally
assumes noise-free data, for which an optimization approach is not needed.

Torrey et al. [13] employ an inductive logic programming approach to learn
multiattribute ranking rules. In principle, these rules can represent lexicographic
preference models.

A more complex preference representation is CP-Nets [2]. CP-nets can model
conditional preferences under a ceteris paribus (all else being equal) assumption.
However, despite its complexity, this representation will not necessarily capture lex-
icographic preference models, and is therefore not directly applicable to the problem
we have considered.

Another analogy, identified in Schmitt and Martignon [12], is between LPMs
and decision lists [11]. Specifically, it was shown that LPMs are a special case of
2-decision lists, but that the algorithms for learning these two classes of models are
not directly applicable to each other.

8 Conclusions and Future Work

In this chapter, we presented democratic approximation methods for learning lexi-
cographic preference models (LPMs) given a set of preference observations. Instead
of committing to just one of the consistent LPMs, we maintain a set of models and
predict based on the majority of votes. We described two such methods: variable
voting and model voting.

Variable voting implicitly samples possible LPMs by constructing a partial order
on the variables such that any linearization of the partial order will correspond to
a consistent LPM. Model voting, on the other hand, explicitly samples the space
of consistent LPMs but allows aggregation of LPMs to achieve compact repre-
sentation of LPMs that share the same prefix. We showed that both methods can
be implemented in polynomial time and exhibit much better worst- and average-
case performance than the existing methods in case of noise-free data. In addition,
we have defined a learning bias that can improve performance when the number
of observations is small and incorporated this bias into the voting-based methods,
significantly improving their empirical performance.
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Future directions of this work allow for a number of extensions and further the-
oretical investigations. We will improve the voting algorithms by continuing to
investigate heuristics such as NAMV that make them more robust against noise.
While the problem of learning LPMs from noisy data is NP-complete, the supe-
rior performance of the voting algorithms over the greedy method in the noise-free
case indicates that it may be possible to identify and characterize other restricted
problem settings in which heuristic extensions such as NAMV would significantly
outperform the greedy approach.
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Learning Ordinal Preferences on Multiattribute
Domains: The Case of CP-nets�

Yann Chevaleyre, Frédéric Koriche, Jérôme Lang, Jérôme Mengin,
and Bruno Zanuttini

Abstract A recurrent issue in decision making is to extract a preference structure
by observing the user’s behavior in different situations. In this paper, we investigate
the problem of learning ordinal preference orderings over discrete multiattribute,
or combinatorial, domains. Specifically, we focus on the learnability issue of con-
ditional preference networks, or CP-nets, that have recently emerged as a popular
graphical language for representing ordinal preferences in a concise and intuitive
manner. This paper provides results in both passive and active learning. In the pas-
sive setting, the learner aims at finding a CP-net compatible with a supplied set of
examples, while in the active setting the learner searches for the cheapest interaction
policy with the user for acquiring the target CP-net.

1 Introduction

Suppose we observe a user expressing her preferences about airplane tickets. Name-
ly, she prefers an Aeroflot flight landing at Heathrow to a KLM flight landing at
Gatwick, while she prefers an Aeroflot flight landing at Heathrow to a KLM flight
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landing at Heathrow. An intuitively correct hypothesis that explains her behavior is
that she prefers Aeroflot to KLM unconditionally, and Heathrow to Gatwick, again
unconditionally. Such an hypothesis allows for predicting that she will prefer an
Aeroflot flight landing at Heathrow to anything else, and an Aeroflot flight landing
at Gatwick to a KLM flight landing at Gatwick. Yet, this hypothesis is not able
to predict whether she will prefer an Aeroflot flight landing at Gatwick or a KLM
flight landing at Heathrow. Now, if we observe later that she prefers a KLM flight
landing at Gatwick to a KLM flight landing at Heathrow, the current hypothesis
must be updated. A new possible hypothesis, among others, could be that she prefers
Aeroflot to KLM, and Heathrow to Gatwick when flying on Aeroflot and vice versa
when flying on KLM.

The learning problem underlying this scenario is to extract a preference struc-
ture by observing the user’s behavior in situations involving a choice among several
alternatives. Each alternative can be specified by many attributes, such as the flight
company, the airport location, the arrival and departure time, the number of tran-
sits, and so on. As a result, the space of possible situations has a combinatorial
structure. Furthermore, the preferences induced by the user’s behavior are intrinsi-
cally related to conditional preferential independence, a key notion in multiattribute
decision theory [20]. Indeed, the initial hypothesis is unconditional in the sense that
the preference over the values of each attribute is independent of the values of other
attributes. By contrast, in the final hypothesis, the user’s preference between airports
is conditioned by the airline company.

Preferences over combinatorial domains have been investigated in detail by
researchers in multiattribute Decision Theory (DT) and Artificial Intelligence (AI).
In multiattribute DT, researchers have focused on modeling preferences, that is,
giving axiomatic characterizations of classes of preference relations or utility func-
tions, while researchers in AI have concentrated on the development of languages
for representing preferences that are computationally efficient; such languages have
to express preferences as succinctly as possible, and to come with fast algorithms
for finding optimal alternatives.

These classes of models and languages can be partitioned by examining the
mathematical nature of the preferences they consider. Namely, a distinction is made
between ordinal preferences that consist in ranking the alternatives, and numerical
preferences consisting of utility functions mapping each alternative to some number.
Learning or eliciting numerical preferences has received a great deal of attentions
in the literature [7, 9, 10, 16, 18]. A related stream of work is preference elicitation
in the context of combinatorial auctions [26]; what has to be learnt is the valua-
tion function of every buyer, which associates with every combination of goods the
maximum value that she is ready to pay for it. Recently, there has been a growing
interest for learning ordinal preferences using numerical models. Many standard
machine learning methods, such as neural networks [8] or support vector machines
[14], have been adapted to this framework, often called learning to rank instances
by the machine learning community.

In contrast, learning preferences using ordinal models has received much less
attention. In fact, the most studied model is the lexicographic preference model that
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provides ordering relations between examples described as pairwise comparisons
between tuples of values. Dombi et al. [13] propose a learning algorithm that elic-
its a lexicographic preference model by guiding the user through a sequence of
queries involving test examples. Although it is possible to determine in polynomial
time whether there exists a lexicographical model compatible with a set of such
examples, Schmitt and Martignon [27] show that the corresponding optimization
problem of minimizing preference disagreement is NP-hard, and can even not be
approximated in polynomial time to within a constant factor. They also give the
Vapnik–Chervonenkis dimension of lexicographical preference relations: it is equal
to the number of attributes. Finally, Yaman et al. [32] do not commit to a single
lexicographic preference relation but approximate the target using the votes of a
collection of consistent lexicographic preference relations. In a nutshell, learning
lexicographic preference relations proves not to be so hard, but this comes with a
price, namely, the induced hypothesis is highly restrictive.

In this paper, we examine a different class of ordinal preference models, where
the hypotheses we make bear on the preferential dependence structure. As empha-
sized in the above scenario, a key point when dealing with ordinal preferences on
combinatorial domains is the dependence structure between attributes. To this point,
conditional preference networks, also known as CP-nets, are a graphical language
for representing preferences based on conditional preferential independence [5].
Informally, a CP-net consists in a collection of attributes pointing to a (possibly
empty) set of parents, and a set of conditional tables associated with each attribute,
expressing the local preference on the values of the attribute given all possible com-
binations of values of its parents. The transitive closure of these local preferences is
a partial order over the set of alternatives, which can be extended into several total
orders. CP-nets and their generalizations are probably the most popular compact
representation language for ordinal preferences in multiattribute domains.

While many facets of CP-nets have been studied into detail, such as consis-
tency, dominance checking, and optimization (constrained and unconstrained), the
problem of learning CP-nets from examples have only rarely, and very recently,
been addressed. One exception is [12], who proposed an algorithm that, given a
set of examples, outputs a CP-net which implies them (see Sect. 5 for more details).
Although not directly concerned with CP-nets, a related work is [25] which proposes
to learn preference theories in the sense of [15].

The aim of this position paper is to examine the problem of learning CP-nets
according to several dimensions that naturally emerges in preference learning. The
first dimension is to consider whether the user’s preferences are representable, or
not, by a CP-net. If the target preference relation can be described by a CP-net,
the goal is to identify this network. Alternatively, if the target preference relation
is not representable by a CP-net, we can only hope finding an approximation of
it. Among the candidate approximations, some of them are particularly relevant
from a reasoning viewpoint. From this perspective, we shall concentrate on finding
CP-nets for which the target relation is a “completion” of the hypothesized rela-
tion. Orthogonally, a second dimension in CP-net learning is to consider whether
the learning process is merely passive, by simply observing the user’s behavior in
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given situations, or active, by allowing the learner to test the user’s behavior in
some carefully chosen situations. In many contexts, it is relevant to identify, or at
least approximate, a CP-net by mixing both active and passive learning. Consider,
for instance, a system helping a user to find a flat from a large database, such as in
[29, 30]. A flat is described by attributes such as price, location, size, etc. The sys-
tem can start to extract a pool of preferences by observing the user’s behavior, and
then use queries to converge on the ideal hypothesis while minimizing the number
of interactions.

In the different learning models that arise from these dimensions, we will investi-
gate the learnability issues in terms of the worst-case number of resources required
to converge toward the desired CP-net, where resources refer both to the running
time, the sample complexity in passive learning, and the query complexity in active
learning. Section 2 provides the necessary background about CP-nets. In Sect. 3, we
extend the paradigm of concept learning to preference learning and introduce two
frameworks, one for the problem of learning partial orderings that are representable
by a CP-net, and the other for the problem of learning linear orderings that are
not representable by a CP-net. Our learnability results lie in the next three sections.
Namely, Sect. 4 focuses on the VC-dimension and the approximate fingerprint prop-
erty for classes of CP-nets. Section 5 addresses passive learning of CP-nets. Section
6 considers active learning of CP-nets. Finally, Sect. 7 briefly discusses issues for
further work.

Given that this is a position paper, the proofs of the results are only sketched, or
even omitted. They can be found in [11, 21, 23].

2 Conditional Preference Networks

Throughout this paper, we shall assume a finite list V D hX1; : : : ; Xni of attributes,
with their associated finite domainsD D hD1; : : : ;Dni. An attributeXi is binary if
Di has two elements, which by convention we note xi and xi . By V D �Xi2VDi ,
we denote the set of all complete assignments, called outcomes.

For any nonempty subset X of V , we let X D �Xi2XDi . Elements of X are
called X -assignments and denoted using vectorial notation, e.g., x. For any disjoint
subsetsX and Y of V , the concatenation of assignments x 2 X and y 2 Y , denoted
xy , is the .X [ Y /-assignment which assigns to attributes in X (resp. Y ) the value
assigned by x (resp. y).

A preference relation is a reflexive and transitive binary relation � over V . A
complete preference relation is a preference relation � that is connected, that is, for
every x;y 2 X we have either x � y or y � x. A strict preference relation � is
an irreflexive and transitive (thus asymmetric) binary relation over V . A linear pref-
erence relation is a strict preference relation that is connected. From a preference
relation �, we define a strict preference relation in the usual way: x � y iff x � y

and not (y � x).
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Preferences between outcomes that differ in the value of one attribute only, all
other attributes being equal (or ceteris paribus) are often easy to assert, and to
understand. CP-nets [5] are a graphical language for representing such preferences.
Informally, a CP-net is composed of a directed graph representing the preferential
dependencies between attributes, and a set of conditional preference tables express-
ing, for each attribute, the local preference on the values of its domain given all
possible combinations of values of its parents.

Let us call a swap any pair of outcomes .x;y/ that differ in the value of one
attribute only, and let us then call swapped attribute the attribute that has different
values in x and y.

Definition 1. Suppose that V is partitioned into the subsetsX , Y , andZ. Let � be a
linear preference relation over V . Then, we say that X is preferentially independent
of Y given Z (w.r.t. �) if for all x1;x2 2 X , y1;y2 2 Y , z 2 Z ,

x1y1z � x2y1z if and only if x1y2z � x2y2z

Example 1. Consider three binary attributes X1, X2, and X3 and suppose that the
four swaps on X2 are ordered as follows:

x1x2x3 � x1x2x3
x1x2x3 � x1x2x3
x1x2x3 � x1x2x3
x1x2x3 � x1x2x3

We can see that, irrespective of the value ofX3, if x1 is the case, then x2 is preferred
to x2, whereas if x1 is the case, then x2 is preferred to x2. This ordering on the X2-
swaps with two conditional preferences: x1 W x2 � x2 and x1 W x2 > x2. We remark
that X2, given X1, is preferentially independent of X3.

Definition 2. A CP-net N over V D fX1; : : : ; Xng consists in a directed graph
over V , and a set of preference tables CPT.Xi / associated with each Xi 2 V . For
attribute Xi , we denote by Pa.Xi / the set of parents ofXi in the graph ofN , and by
NonPa.Xi / the set V n.fXig [ Pa.Xi //.

Each conditional preference table CPT.Xi / is a list of rows, also called entries
or rules, of the form u W xi1 � � � � � xim , where u is an instantiation of Pa.Xi / and
xi1 � � � � � xim is a linear ordering of the domainDi (with m D jDi j). It indicates
that uzxij � uzxij C1

for every possible instantiation z of NonPa.Xi /.

Example 2. A CP-net over the binary attributes X1, X2, and X3 is:

X1

x1 � x1

X2

x1 : x2 � x2
x1 : x2 � x2

X3

x2 : x3 � x3
x2 : x3 � x3

where an edge fromX to Y means “X is a parent of Y ”. The associated ordering of
the swaps is:
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x1x2x3 x1x2x3 x1x2x3 x1x2x3 x1x2x3 x1x2x3

x1x2x3

x1x2x3

where x ! y means “x is preferred to y”.

The size of a CP-netN , denoted by jN j, is the number of entries in the preference
tables of N :

jN j D
X

Xi2V

Y

Xj2Pa.Xi /

jXj j

which in the case of binary CP-nets boils down to jN j D P
Xi2V 2

jPa.Xi /j.
Although a CP-net only specifies an ordering of all swaps, we are naturally inter-

ested in the transitive closure of this ordering; for a CP-netN , we write �N for this
transitive closure. Note that this relation �N may not be total, and it may not be a
irreflexive since it may contain cycles. Yet, we know from [5] that if the graph of N
is acyclic, then �N is a strict preference relation (i.e. contains no cycles), and we
say that N is consistent. Otherwise, we say that N is inconsistent. Note that even if
N is consistent, �N may still not be connected; it can then be completed in a num-
ber of linear preference relations. If � is one of them, we say that � is a completion
of N , or that it is compatible with N .

It is important to keep in mind that several CP-nets can induce the same pref-
erence relation: for example, if a CP-net N over the binary attributes X1 and X2
contains the table x2 W x1 � x1 and x2 W x1 � x1, then the CP-net N 0 in which
X1 has no parent and the table x1 � x1 is equivalent to N . In general, for every
consistent CP-net N there is a unique CP-net N 0 equivalent to N that is minimal in
the number of parents/table entries for each variable.

It is easy to verify that every linear preference relation is compatible with exactly
one (minimal) CP-net. For instance, x1x2 � x1x2 � x1x2 � x1x2 is compatible
with the CP-net

X1 X2

x2 : x1 � x1
x2 : x1 � x1

x1 : x2 � x2
x1 : x2 � x2

The following property will be frequently used in the remaining sections.

Proposition 1. ([5]) Let N be an acyclic CP-net and x, y two outcomes. Then
x �N y iff there is a sequence of swaps .x0;x1/; .x1;x2/; : : : ; .xk�1;xk/ such
that x0 D x, xk D y , and for every 0 � i < k, xi �N xiC1, that is, if Xji

is the
attribute swapped between xi and xiC1, and if u is the vector of values commonly
assigned by x and y to the parents of Xji

, then N contains u W xiji
� xiC1ji

.
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Although a CP-net is usually defined as above, most of the results presented
here extend to possibly incomplete CP-nets. Such a CP-net is one in which each
conditional preference table CPT .Xi / contains at most one conditional preference
rule per instantiation of Pa.Xi / (instead of exactly one). A particular case is when
some of the tables are empty. The semantics of an incomplete CP-net is still given by
the transitive closure of the dominance relation on swaps induced by the rules. An
important difference is that in an incomplete CP-net, not all swaps are comparable.

The rationale for considering incomplete CP-nets can be understood with the
following example. A user may well know that she prefers traveling by bus rather
than in the subway in Paris, and vice-versa in London, but be unable to state her
preference into a city which she has never been, say Madrid. This does not mean
that she would not have a preference, rather that she does not know it (so far). In
this case, a variable encoding the transportation means (with values subway and bus)
would have the variable encoding the city as its parent, with values Paris, London,
and Madrid, but would contain only two rules.

3 Learning CP-nets: Learning What?

The problem of concept learning is to extrapolate from a collection of examples,
each labeled as either positive or negative by some unknown target concept, a rep-
resentation of this concept that accurately labels future, unlabeled examples. Most
concept learning algorithms operate over some concept class, which captures the set
of concepts that the learner can potentially generate over all possible sets of training
examples.

In the setting suggested by our framework, a concept is a strict preference
relation � over V . We say that a concept � is representable by a CP-net N if the
induced ordering �N coincides with �, that is, �D�N . For example, the preference
relation � defined by fab � ab; ab � ab; ab � ab; ab � abg is representable by
the CP-net N specified by fa W b � b; a W b � b; b W a � a; b W a � ag. A
representation class is a collection N of consistent CP-nets, and the concept class
CN defined over N is the set of all preference relations � that are representable by
a CP-net N in N .

Since we consider consistent CP-nets only, any target concept � in a class CN can
be represented by a unique minimal CP-net N . So, with a slight abuse of language,
we shall simply say that CN is the class of all CP-nets in N . For instance, the concept
class CACY is the class of all acyclic CP-nets; and CTREE is the class of tree-structured
CP-nets.

With these notions in hand, we assume that the user has in mind a target pref-
erence ordering �, and the learner has at its disposal a predetermined and known
class of CP-nets CN . In this study, we shall consider two different types of target
concepts.
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(a) The target concept is a preference relation � that belongs to the learner’s
concept class CN . In other words, there is a CP-net N in N , such that �N
coincides with �. In this context, the goal of the learner is to find N .

(b) The target concept is a preference relation � that does not necessarily belong
to the learner’s concept class CN . For example, we can easily observe that the
linear ordering � defined by fab � ab � ab � abg cannot be represented by
any CP-net. Still, we shall make the assumption that � is a completion of some
representation in N . Specifically, we say that � is a completion of a CP-net N
if x �N y implies x � y for any pair of outcomes .x;y/. For example, the
above ordering � is a completion of N D fa W b � b; a W b � b; b W a �
a; b W a � ag. In this “agnostic” setting, the goal of the learner is to find a
CP-net N of which � is a completion.

Note that the distinction between (a) and (b) is not on the set of objects we want to
learn, but on their interpretation, which has crucial consequences on how examples
are interpreted.

3.1 Learning a Preference Relation Induced by a CP-net

Let us start with context (a) where the target concept is representable by a CP-netN
of some given representation class N . Here, an instance, or example, is a pair .x;y/
of outcomes, and an instance class is a set E of examples. Given a target concept
�N , and an example .x;y/, we say that .x;y/ is positive for �N if x �N y , that
is, x dominates y according to �N . Dually, .x;y/ is negative for �N if x ŸN y. It
is important to keep in mind that, in general, if the pair .x;y/ is a negative example
of �N , then the reverse pair .y ;x/ is not necessarily a positive example of �N .

In this context, our learning problem can be seen as a standard concept learning
problem: given a set T of positive and negative training examples, we want to find
a CP-net that “implies” all positive examples and no negative example.

Definition 3. Let N be a CP-net over V . An example .x;y/ is entailed by N if
x �N y. A set of examples T is implicatively consistent with N , or implied by N ,
if

– all positive examples in T are entailed by N ;
– no negative example in T is entailed by N .

Finally, we shall say that a training set T is implicatively compatible if it is
implied by at least one CP-net.

3.2 Learning a CP-net Which Approximates the User’s
Preferences

Now, we turn to context (b) and make the assumption that the user’s preference
relation � is a linear order, in general not exactly representable by any CP-net. In
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this framework, we start by examining an appropriate notion of consistency between
a CP-net and a training set. Consider the following example:

Example 3. We have two binary attributes X1 and X2 (with domains fx1; x1g and
fx2; x2g), and the set of positive examples

T D f.x1x2 ; x1x2/; .x1x2 ; x1x2/; .x1x2 ; x1x2/g

What do we expect to learn from the above set of examples T ? The transitive clo-
sure of T is the complete preference relation x1x2 � x1x2 � x1x2 � x1x2. This
preference relation is separable (the agent unconditionally prefers x1 to x1 and x2
to x2). The fact that x1x2 is preferred to x1x2 simply means that when asked to
choose between X1 and X2, the agent prefers to give up X2 (think of X1 meaning
“getting rich” and X2 meaning “beautiful weather tomorrow”). Intuitively, since T
is separable, we expect to output a structure N that contains x1 � x1 and x2 � x2.
However, no CP-net implies T , whatever the dependencies. The structureN induces
a partial preference relation in which x1x2 and x1x2 are incomparable. More gen-
erally, no ceteris paribus structure can “explain” that x1 � x1 is “more important”
than x2 � x2 (i.e., with no intermediate alternative). Therefore, if we look for a
structure implying all the examples, we will simply output “failure”. On the other
hand, if we look for a separable CP structure that is simply contingent with the
examples, i.e., that does not imply the contrary of the examples, we will outputN .

The explanation is that when an agent expresses a CP-net, the preference relation
induced by this CP-net is not meant to be the whole agent’s preference relation, but
a subset (or a lower approximation) of it. In other terms, when an agent expresses
the CP-net N , she simply expresses that she prefers x1 to x1 ceteris paribus (i.e.,
for a fixed value of X2) and similarly for the preference x2 � x2; the fact that
x1x2 and x1x2 are incomparable inN surely does not mean that the user really sees
them incomparable, but, more technically, that CP-nets are not expressive enough
for representing the missing preference x1x2 � x1x2.1

Therefore, in such cases we do not look for a CP-net which implies the examples.
Rather, we look for one whose preference relation is consistent with the examples.
A first way of understanding consistency is to require that the learnt CP-net N be
such that the examples are consistent with at least one preference relation extend-
ing N . Yet, there are cases where it may even be too strong to require that one of
the completions of �N contain all the examples, in particular, if they come from
multiple users (given that we want to learn the generic preferences of a group of
users), or a single user in different contexts:

Example 4. Suppose that we learn that all users in a group unconditionally prefer
x1 to x1 and x2 to x2, whereas their preferences between x1x2 and x1x2 may differ
(think as x1 and x2 as, respectively, “being invited to a fine dinner” and “receiving a

1 If we want to do this, we have to resort to a more expressive language such as TCP-nets [6] or
conditional preference theories [31].
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$50 award”): then T � f.x1x2 ; x1x2/; .x1x2 ; x1x2/g. T is clearly inconsistent,
so there cannot be any preference structure whose ordering can be completed into a
linear preference relation that contains T . However, if N D fx1 � x1; x2 � x2g,
then each example in T is (individually) contained in at least one completion of �N .

Such considerations lead us to define two new notions of compatibility of a CP-
net with a set of examples. Note that because the target concept is a linear order,
.x;y/ is a negative example if and only if .y ;x/ is a positive one. For this reason,
we can make the assumption that all examples in the learner’s training set T are
positive, with the implicit knowledge that the reverse .y ;x/ of any pair .x;y/ in T
is negative.

Definition 4. Let N be a CP-net over V . An example .x;y/ is consistent by com-
pletion with N if there is a completion � of �N such that x � y . Furthermore, we
will say that a set of examples T is:

– strongly consistent by completion with N if there is a completion � of �N such
that for all .x;y/ 2 T , x � y;

– weakly consistent by completion with N if every example .x;y/ 2 T is
individually consistent by completion with N .

Finally, we will say that T is strongly / weakly compatible if it is strongly /
weakly consistent by completion with at least one CP-net. Clearly, strong compati-
bility implies weak compatibility. Moreover, since an example .x;y/ is consistent
by completion with a CP-netN if and only if .y;x/ is not implied byN , implicative
compatibility implies strong compatibility.

As it stands, it turns out to be significantly more difficult to search for a CP-net
strongly or weakly consistent with a set of examples than to search for a CP-net
implicatively consistent with it. Therefore, we mainly focus on implicative com-
patibility; strong and weak compatibility will only be discussed in the context of
separable CP-nets, that is, CP-nets where all variables are independent.

4 Learnability of CP-nets

In this section, we investigate the theoretical limits concerning the learnability
issue of CP-nets. In essence, the Vapnik–Chervonenkis dimension of a class gives
upper bounds on the difficulty to learn, in terms of numbers of examples, while the
approximate fingerprint property gives lower bounds.

4.1 Vapnik–Chervonenkis Dimension

The Vapnik–Chervonenkis (VC) dimension of a class of concepts is a fundamental
complexity measure used in theoretical machine learning. Intuitively, the VC-
dimension of C is the maximum number of informative examples which can be
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received by the learner, where an “informative” example is an observation that helps
the learner reducing the number of consistent hypotheses.

Formally, let C be a concept class defined over some representation class R. A
set of instances T is said to be shattered by C if, whatever the partition of T into
T C [ T �, there is a concept N 2 C which admits all instances in T C as positive
examples and all instances in T � as negative examples. The Vapnik–Chervonenkis
dimension of C, denoted VC.C/, is the maximum size of a set of examples T which
is shattered by C. The intuition is that for such a set T , as long as the learner ignores
the label of at least one example, at least two concepts in C are consistent with the
labels it has seen so far.

When the learner has access only to a certain kind of example (e.g., swap exam-
ples), it makes sense to adapt the notion of VC-dimension. So if E is a class of
instances, we write VCE.C/ for the VC-dimension of C with respect to E , that is,
the maximum size of a T � E which is shattered by C. Clearly, if E � E 0, then
VCE.C/ � VCE 0.C/.

Observe that, as there are 2m partitions of a set of m examples into positive and
negative examples, each of which must be captured by a different concept, VC.C/ �
log2 jCj always holds (whatever the class of examples).

We now give the VC-dimension of the class of all CP-nets which have a fixed
graph. The intuition here is that since the parents of each variable are known, the
quantity of information needed to characterize a CP-net is exactly 1 per possible
rule in the CP-net, namely, one pair of outcomes which dictates the conclusion of
the rule.

Call subgraph of G a graph with the same vertices as G but whose set of edges
is included in that of G.

Proposition 2. Let G be a graph, and let CG be the class of all concepts which
are representable by a binary complete CP-net whose graph is G or a subgraph
of G. Then the VC-dimension of CG with respect to swap examples is exactly the
number of conditional preference rules in any such CP-net. If CP-nets are possibly
incomplete, then the VC-dimension (w.r.t. swap examples) is still the number of rules
in any complete CP-net on (a subgraph of) G.

This property can help us finding an upper bound of the VC-dimension of acyclic
CP-nets. Intuitively, the number of acyclic graphs with indegree at most k is lower
bounded by jCG j for a convenient graph with k roots and n	k vertices with indegree
exactly k, and upper bounded by .n 	 1/n.kC1/ (for each vertex, choose at most
k parents). Since any binary-valued CP-net built over an acyclic graph of degree at
most k allows at most n2k entries, there are at most .n	1/n.kC1/2n2k

binary-valued
acyclic CP-nets with degree at most k. We therefore obtain the following result.

Corollary 1. Let k 2 o.n/, and let CkACY be the class of all concepts which are
representable by a possibly incomplete binary CP-net whose graph is acyclic and
with indegree at most k. Then, the VC-dimension of CkACY with respect to swap or
arbitrary examples is in Q�.n2k/.
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Finally, without any restriction over the degree, it can be shown that the VC-
dimension grows as �.2n/, which is still much below the VC-dimension of the
class of all possible CP-nets.

Corollary 2. Let CACY be the class of all concepts that are representable by a pos-
sibly incomplete binary CP-net whose graph is acyclic. Then, the VC-dimension of
CACY with respect to swap examples is in �.2n/.

4.2 Approximate Fingerprints

Approximate fingerprints are a powerful tool for obtaining nonlearnability results
in active learning. Intuitively, a class of concepts C has the approximate fingerprint
property if there is a subset C
 of C such that for any concept N 2 C, there is an
example with whichN is consistent, but with which only a superpolynomially small
fraction of the concepts in C
 are also consistent.

This property can be used to show that in an interactive learning setting, a hypoth-
esis bN 2 C may fail on an example which only gives clues about superpolynomially
few candidate hypotheses. Hence, if the learner only gets information from such fail-
ures, in the worst case it necessarily makes an exponential number of errors before
correctly identifying the target concept. We refer the reader to [2] for formal details.

As for the VC-dimension, the definition of approximate fingerprints can be
restricted to instance classes E . Observe that if E � E 0 and C has the approximate
fingerprint property with respect to E , then it also has this property with respect
to E 0.

Proposition 3 ([21]). Let CACY be the class of all concepts which are representable
by a binary complete CP-net whose graph is acyclic. Then CACY has the approximate
fingerprint property with respect to swap examples.

Proposition 4 ([21]). Let CTREE be the class of all concepts which are representable
by a binary complete CP-net whose graph is a tree. Then CTREE has the approximate
fingerprint property with respect to arbitrary examples.

5 Passive Learning of CP-nets

In this section, we investigate passive learning of CP-nets. In this setting, the only
information about the target concept available to the learner is a set of examples.
We shall concentrate here on the widely studied Probably Approximately Correct
(PAC) learning model introduced by [28]. The intent of this model is to obtain with
high probability a representation that is a good approximation of the target concept.
To formalize the notion of a good approximation, we need to assume that there is
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some fixed, but unknown, probability distribution D defined on the example space
E , from which the available examples were drawn. In our case, D would define a
probability over each instance .x;y/. Given a target concept �, we then define the
error of a hypothesized CP-net bN as the probability that � and �bN disagree on an
example:

error.bN/ D Pr.x;y/	D
h	

x � y and x ŸbN y



or
	
x Ÿ y and x �bN y


i

How does one generate a good approximation? In the PAC model, one does this
by looking at an example set, in which each example .x;y/ has been drawn inde-
pendently at random from the distribution D, and labeled with “C” (positive) if
x � y and with “	” (negative) if x Ÿ y .

Thus, in the PAC setting, training and testing use the same distribution, and there
is no noise in either phase. A learning algorithm is then a computational procedure
that takes a sample of the target concept �, consisting of a sequence of independent
random examples of �, and returns a hypothesis. We can define PAC learnability of
CP-nets as follows.

Definition 5 (PAC learning). A concept class CN is PAC learnable by an exam-
ple class E if there is a polynomial time learning algorithm A and a polynomial
p.�; �; �/ such that for any target concept � in CN over n variables, any probability
distribution D over E , and any parameters ı; � 2 .0; 1/, if the algorithm A is given
at least p.n; 1

�
; 1
ı
/ independent random examples of � drawn according to D, then

with probability at least 1 	 ı, A returns a hypothesis bN 2 N with error.bN/ � �.
The smallest such polynomial p is called the sample complexity of the learning
algorithm A.

The intent of this definition is that the learning algorithm must process the exam-
ples in polynomial time, and must be able to produce a good approximation of the
target concept with high probability using only a reasonable number of training
examples.

It is important to emphasize that our learnability results are defined over specific
instance classes. In particular, if E is the class of all swap instances, then any dis-
tribution D over E will assign a zero probability to any “non-swap” instance. This
restriction has deep consequences on the predictive power of CP-nets. Namely, even
if a positive learnability result with swap instances guarantees that the hypothesized
CP-net bN is expected to correctly classify “swap” instances drawn independently
at random according to the distribution D, such a result does not ensure that the
learner will correctly classify arbitrary outcome pairs. Indeed, even if the probabil-
ity of making a mistake on swaps is low, the probability of making a mistake on an
arbitrary instance .x;y/ may increase along an improving sequence from y to x.

Many positive learnability results in the PAC model are obtained by showing that
(1) there is an efficient algorithm capable of finding a hypothesized representation
that is consistent by implication with a given sample of the target concept (called
a consistent algorithm), and (2) the sample complexity of any such algorithm is
polynomial.
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The sample complexity of a consistent learning algorithm is usually measured
using the VC-dimension of the concept class CN . Indeed, it is shown in [4] that the
sample complexity of a consistent learning algorithm is at most

1

�.1 	 p
�/

�
2VC.CN / ln

6

�
C ln

2

ı

�
(1)

A preliminary work on passive learning of CP-nets is [12]. They give an algo-
rithm which, given a set of positive examples, outputs a CP-net that implies them,
under some conditions. It is not entirely clear yet which class of CP-nets is learned
by this algorithm.

5.1 PAC Learning of Acyclic CP-nets

We first investigate PAC learnability of various classes of acyclic CP-nets when
the examples provided to the learner are swaps. Recall that for such examples, the
dominance test with acyclic CP-nets is linear-time solvable (simple lookup in the
conditional preference table), contrary to the general case.

We first show that even for the restricted class of concepts which are repre-
sentable by a CP-net whose graph is a chain, the consistency problem is NP-
complete. It follows directly (unless P D NP) that this class is not PAC-learnable
with the very weak restriction that the produced hypothesis classifies correctly the
examples received.

Proposition 5. Deciding whether there exists a binary complete CP-net whose
graph is a chain and which implies a given set of swaps is NP-complete. The result
holds even if all examples are positive.

A proof based on a reduction from the Hamiltonian path problem can be found
in [11]. Another interesting class of CP-nets is that of acyclic singlyconnected
CP-nets [5], that is, those acyclic CP-nets in whose graph each pair of vertices is
connected by at most one directed path. Unfortunately, again we have a negative
result for PAC learnability of such CP-nets.

Proposition 6. Deciding whether there exists a binary complete CP-net whose
graph is acyclic singlyconnected and which implies a given set of swaps is NP-
complete. The result holds even if all examples are positive.

This result [11] can be proven with a reduction from propositional satisfiability
(SAT). We conjecture that a similar negative result holds for more general classes
of acyclic CP-nets.

We now turn to positive results with swaps. Observe that if CN 0 is PAC learnable
with swaps and CN � CN 0 , then CN is not necessarily PAC learnable with swaps as
well. So our positive results do not contradict the negative ones. The main result is
that tree CP-nets are PAC-learnable from swaps.
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Proposition 7. The class of all concepts which are representable by a (possibly
incomplete) tree binary CP-net is PAC-learnable from swap examples.

In addition, learning the structure of such a CP-net can be reduced to finding a
spanning tree in a directed graph [11]. Since in general there may be several CP-nets
which imply a given set of examples, it is interesting to impose some restrictions,
e.g., on the degree of the forest (maximum number of children of a node). The next
result states that the class of CP-nets whose graph is a forest with degree at most
k is improperly PAC-learnable (in quasi-polynomial time) [11]. That is, it is “PAC-
learnable”, but the hypothesis may be in a larger representation class than the target
concept.

Proposition 8. There is a quasi-polynomial time algorithm which, given a set of
swaps T over n variables implied by a (possibly incomplete) binary-valued CP-net
whose graph is a forest of degree k, computes a binary-valued CP-net which implies
T and whose graph is a forest of degree at most k C logn.

Finally, we give a more general result about tree CP-nets with a bounded num-
ber of tables on arbitrary examples. By Cayley’s formula, we know that there are
kk�1 rooted trees with k vertices. Each root is labeled by an unconditional rule of
the form p � p, and all other nodes are labeled by conditional rules of the form
p0 W p � p, where p and p0 are literals. There are 2n tables with no condition per
rule and 6n.n 	 1/ (possibly incomplete) tables with one condition per rule. It fol-
lows that the number Ck of CP-trees with at most k tables is bounded by

Pk
iD0 2n

.6kn.n 	 1/ C 1/k�1, which is indeed polynomial in k. So the VC-dimension of
such CP-trees is polynomial in n.

Based on this result, we can use a simple consistent algorithm specified as fol-
lows. Start with the hypothesis set N of all CP-trees with at most k tables. For
each example .x;y/ in T , remove any hypothesis N in N that is inconsistent with
.x;y/, that is, any hypothesisN for which the dominance test over .x;y/ disagrees
with its label. If the resulting set N is empty then T is not consistent with N . Oth-
erwise, pick an arbitrary tree from N . Because the dominance test is quadratic in
the number of variables for binary-valued CP-trees, the running time is polynomial
in Ck .

Proposition 9. The class CkTREE of all concepts representable by a (possibly incom-
plete) binary-valued CP-tree with at most k tables is PAC learnable from arbitrary
examples.

5.2 PAC Learning of Separable CP-nets

We now consider the task of learning a CP-net of the simplest form: the variables
are independent of each other. With binary variables, this means that if the possi-
ble values for variable X are x and x, and the target CP-net is complete, then the
preference table for X contains either x � x or x � x.
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In this case, checking if a given CP-net N entails x �N y for an arbitrary
example is easy. Let Diff.x;y/ D fxi j .x/i D xi and .y/i D xi g [ fxi j .x/i D
xi and .y/i D xi g. Then x �N y if and only if N contains xi � xi for every
xi 2 Diff.x;y/ and xi � xi for every xi 2 Diff.x;y/ (this is a corollary of
Theorems 7 and 8 by [5]).

Now, with each example .x;y/ we associate the clause C�x;y that contains :xi
iff xi 2 Diff.x;y/ and xi iff xi 2 Diff.x;y/. The intended meaning of the literal
:xi is that xi is preferred to xi , whereas the meaning of the literal xi is that xi is
preferred to xi ; hence, the meaning of the clause C�x;y is that x 6�N y for every
separable CP-netN in which at least one of these local preferences is true, by virtue
of the lemma above. For instance, if x D x1x2x3x4 and y D x1x2x3x4, then
Diff.x;y/ D fx1; x2; x4g and C�x;y D x1 _ :x2 _ x4. This clause expresses that
x1 is preferred to x1, or x2 is preferred to x2, or x4 is preferred to x4.

With each positive example .x;y/ we can also associate the cube (conjunction
of literals) CCx;y � :C�x;y . Given a set of training examples T , let �T D VfC 
e j
e 2 T g, where C 
x;y D CCx;y if .x;y/ is a positive example, and C 
x;y D C�x;y if the
example is negative. Clearly, �T is equivalent to a set of clauses.

Now consider the following one-to-one correspondence between truth assign-
ments M over fx1; : : : ; xng and separable CP-nets NM over V : NM contains the
preference xi � xi for every i such that M ˆ xi and the preference xi � xi
for every i such that M ˆ :xi . For instance, if M.x1/ D M.x4/ D > and
M.x2/ D M.x3/ D ?, NM contains the preference tables fx1 � x1; x2 �
x2; x3 � x3; x4 � x4g. Then for an interpretation M , it is easily seen that
M ˆ C�x;y if and only ifNM does not imply .x;y/ or, equivalently, thatM ˆ CCx;y
if and only if NM implies .x;y/.

It follows that a set of examples T is implicatively consistent withNM for a given
modelM if and only if M ˆ �T . Therefore, searching for a CP-net, which implies
a given set of examples, amounts to searching for a model of the corresponding set
of clauses, the size of which grows polynomially with the size of the set of examples.

This technique easily extends to nonbinary variables: we can use a propositional
variable xkli for every pair of distinct values fxki ; xli g for every variable Xi , where
the intended meaning of xkli is xki �N xli , and add clauses to represent the transitiv-
ity of the relation �N ; there is a polynomial number of them (details can be found
in [22]).

The one-to-one correspondence given above is a reduction from our learning
problem to satisfiability. It is actually possible to find a reduction in the opposite
direction (see [22]), from which we get the following result.

Proposition 10. [22] Deciding whether there is a (binary or nonbinary) complete
separable CP-net, that implies a given set of arbitrary examples is NP-complete.
The result holds even if all examples are negative.

It follows directly that this class is not PAC-learnable with the very weak
restriction that the produced hypothesis classifies correctly the examples received.
However,
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Proposition 11. [22] Deciding whether there is a binary-valued, complete, separa-
ble CP-net which implies a given set of positive examples can be done in polynomial
time.

Observe that this result can be extended to PAC-learnability of (possibly incom-
plete) separable CP-nets from positive examples, in the setting of one-sided errors
[28]. This is because there is always a unique minimal (in terms of rules) incomplete
separable CP-net which implies a given set of positive examples.

Now, as soon as T becomes large with respect to the number of attributes n,
the chances that T is implicatively consistent with a separable CP-net become low.
In this case, we may want to determine a separable CP-net that is implicatively
consistent with as many examples of T as possible. This problem amounts to solving
a MAXSAT problem, when each example corresponds to exactly one clause of �T ,
that is when we have no positive example: the separable CP-net that best fits a set
of positive examples corresponds to the interpretation maximizing the number of
clauses from �T satisfied. In this case, we can reuse algorithms for MAXSAT for
computing a separable CP-net that best fits a set of positive examples, as well as
polynomial approximation schemes. This extends to nonbinary variables, with the
difference that the clauses representing transitivity of the local preference tables are
protected.

Finally, again using the same kind of translation, we easily get the following
results.

Proposition 12. If all variables are binary and all examples in T differ at most on
two variables, then deciding whether there exists a separable CP-net, which implies
that T can be done in polynomial time; however, the corresponding optimization
problem remains NP-hard.

5.3 Learning a Complete Preference Relation

We close this section by providing results about the learning context (b) specified
in Sect. 3: the target concept is a linear order, not necessarily representable by a
CP-net. Our goal is to find a CP-net that would be a good representation for this rela-
tion. Recall that since the target is a linear order, we only need to consider positive
examples.

In the rest of this section, we investigate in turn the problems of finding a CP-net
that is weakly consistent with a given set of examples, then strongly consistent with
it. We focus on the problem of finding separable CP-nets. A set of examples is said
to be weakly separable (resp. strongly separable) if there exists a separable CP-net
with which it is weakly (resp. strongly) consistent.

We start by showing how the search for a separable CP-net that is weakly con-
sistent with a set of examples can be rewritten as an instance of propositional
satisfiability (SAT). Recall from Sect. 5.2 that an example .x;y/ can be translated
into a clause C�y;x, the models of which correspond to separable CP-nets that are



290 Y. Chevaleyre et al.

consistent with .x;y/. Given a set of examples T , let ˚T D fC�y;x j .x;y/ 2 T g.
Then, given an interpretationM , a set of examples T is weakly consistent withNM
if and only ifM ˆ ˚T . As a consequence, T is weakly separable if and only if ˚T
is satisfiable.

Example 5. Consider three binary attributes A;B;C , and the set of examples

T D f.abc ; abc/; .abc ; abc/; .abc ; abc/; .abc ; abc/g

˚T has a unique model, corresponding to the separable CP-net N D fa � a; b �
b; c � cg. Therefore, N is the unique separable CP-net weakly consistent with N ,
and T is weakly separable.

As in Sect. 5.2, a similar translation can be used with nonbinary variables, and
algorithms for solving MAXSAT can be used to search for a CP-net that is weakly
consistent with as many examples as possible.

Proposition 13. Deciding whether a set of examples over (binary or nonbinary)
attributes is weakly separable is NP-complete.

Now, let us turn to the notion of strong compatibility. Characterizing such a prop-
erty is less easy. Indeed, the difference between weak and strong compatibility is
that while in weak compatibility we look for a separable CP-net which is consistent
with each individual example in T , in strong compatibility we look for a separable
CP-net which is consistent with the whole set of examples T .

Example 5, continued T is not strongly consistent with N , because T [ �N has
the following cycle:

abc �N abc �T abc �N abc �T abc

Since T is not strongly consistent with any separable CP-net other thanN (because
N is the unique one with which T is weakly compatible), T is not strongly
separable.2

Note that all outcomes in the cycle on the example above appear in T . More
generally, if we denote by O.T / the set of outcomes that appear in T , it can be
proved that T is strongly consistent with N if and only if the restriction of �N [ T
to O.T / is acyclic. Since this restriction has at most 2 jT j vertices, checking if it
possesses a cycle can be done in polynomial time. Thus, checking whether T is
strongly consistent with a given CP-net N is in P, and we have the following result:

Proposition 14. [23] Checking whether T is strongly separable is NP-complete.

Note that although weak and strong separability have the same complexity,
weak separability enjoys the nice property that there is a simple solution-preserving

2 Note that T is both weakly separable and does not contain any cycles as it was the case for
Example 4, yet is not strongly separable.
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translation into SAT (the models of ˚T correspond bijectively to the CP-nets that
are weakly consistent with T ), which allows weak separability to be computed in
practice using algorithms for SAT3. Contrastingly, to compute a separable CP-net
strongly consistent with T , we can generate structuresN weakly consistent with T ,
and test for acyclicity of �N [ T using graph algorithms.

6 Active Learning of CP-nets

In this section, we investigate the learnability issues of CP-nets in the paradigm of
active learning. Recall that in the standard PAC learning model, examples are drawn
at random according to an unknown but fixed distribution. This model of learning
is merely passive in the sense that the learner has no control over the selection of
examples. One can increase the flexibility of this model by allowing the learner
to ask about particular examples, that is, the learner makes membership queries
[1]. This capability appears to increase the power of polynomial-time learning algo-
rithms. For instance, it is known that propositional Horn formulas are PAC-learnable
with membership queries [3], but the results of [19] show that without membership
queries, Horn formulas are no easier to learn than general CNF or DNF formulas.

In the setting of active preference learning, we assume that the user has in mind
a target preference structure �, but does not know how to represent this structure
into a CP-net. However, the user is disposed to help the learner by answering mem-
bership queries of the form “does x dominates y?”, where x and y are outcomes
chosen by the learner. A membership query for a target concept � is a map MQ that
takes as input a pair of outcomes .x;y/ and returns as output yes if x � y , and
no if x Ÿ y.

From a practical perspective, one must take into account the fact that outcomes
are typically not comparable with an equivalent cost. As observed in [17], users can
meaningfully compare outcomes if they differ only on very few attributes. To this
end, we define the width of MQ.x;y/ to be the number of variables on which x

and y differ. A membership query of width 1 is called a swap membership query.
Based on these considerations, a minimal requirement behind active learning is to

ask as few membership queries as possible. An additional desiderata for minimizing
the cognitive effort spent by the user in answering preference queries is to restrict to
swap membership queries.

Definition 6 (PAC learning with membership queries). A concept class CN is
PAC learnable with swap membership queries over an instance class E if there is a
polynomial time learning algorithm A and two polynomials p.�; �; �/ and q.�/ such
that for any target concept � in CN , any probability distribution D over I, and any

3 Such a translation exists for strong separability (which we do not give here), but unfortunately,
the set of clauses generated uses O.n2/ variables (where n is the set of examples), which limits its
practical applicability.
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parameters ı; � 2 .0; 1/, after receiving p.n; 1
�
; 1
ı
/ random examples of � drawn

independently according to D, and asking q.n/ swap membership queries, then with
probability at least 1 	 ı, A returns a hypothesis bN 2 N with error.bN/ � �.
The smallest such polynomial q is called the query complexity of the learning
algorithm A.

6.1 Active Learning with Swap Examples

We now investigate the problem of active preference learning, where the target con-
cept can be represented by an acyclic CP-net, and the questions are restricted to
swap membership queries.

In this setting, we can build an online algorithm for learning actively acyclic CP-
nets. Recall that online learning proceeds into trials. Initially, the learner chooses a
hypothesis ON . During each trial, the learner first receives an example .x;y/, next
predicts the label “C” or “	” of this instance according to its current hypothesis,
and then receives the correct label from the user. If the prediction was incorrect, then
the learner is charged one mistake.

The basic idea underlying our online learning algorithm is to start from the empty
CP-net ON D ¿ and, during each trial, iteratively revise ON by maintaining two
invariants. The first invariant is that each rule (or entry) in the learner’s hypothesis
ON is subsumed by a rule in the minimal representation of the target CP-net N . In

other words, for each rule Ou W x � x in ON , there is a rule u W x � x in the
minimal representation of N , with Ou � u. The second invariant is that each such
rule r D Ou W x � x in ON is supported by an instance .xr ;yr/ of N , that is,
xr �N yr , xr and yr satisfy Ou, xr satisfies x, and yr satisfies x.

Technically, the algorithm proceeds as follows. On seeing an example .x;y/, if
the learner predicts this instance as negative, while it is positive, then it expands its
CP-net with a new rule u W x � x, where the support .x;y/ is stored. Here, x is the
literal in x whose value differs from y, and u is the projection of the outcome x onto
the current parent set of the variable X in ON . Dually, if the learner predicts .x;y/
as positive, while it is negative, then it expands the condition u of the misclassifying
rule u W x � x with a new parent. Using the support .xr ;yr / of this rule, a new
parent can be found by asking at most n 	 1 membership queries. To this end,
we simply need to incrementally transform x into xr by iteratively flipping those
literals that differ from x and xr , until we find the first literal xj for which the
label of .xj Œx
;xj Œx
/ is positive; this literal is kept as a new parent of X . In fact,
only log2 n membership queries are needed to find this parent, by performing a
binary search over this sequence of transformations. A detailed implementation of
this algorithm is given in [21].

Example 6. Assume so far the learner has only learnt the rule x1 W x3 > x3,
supported by x1x2x3x4x5 �N x1x2x3x4x5.
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Now assume it receives the positive example .x;y/ with x D x1x2x3x4x5,
y D x1x2x3x4x5. Then it learns the rule x1 W x3 > x3, and stores .x;y/ as its
support.

Finally, assume it receives the positive example x1x2x3x4x5 �N x1x2x3x4x5,
which contradicts its first rule. Then it searches for a new parent of x3. Using
the support of this rule and the new example, it asks the membership query
x1x2x3x4x5 �N x1x2x3x4x5. Assuming the answer is yes, it goes on with
the membership query x1x2x3x4x5 �N x1x2x3x4x5. Assuming this one answers
no, the learner deduces that x4 is a parent of x3, hence it updates the previously
learnt rules according to their support, resulting in rules x1x4 W x3 > x3 and
x1x4 W x3 > x3, and creates a new rule x1x4 W x3 > x3 so as to cover the new
example.

By using a well-known conversion from online learning to PAC-learning [24],
we derive the following result.

Proposition 15. Acyclic (possibly incomplete) binary CP-nets are PAC-learnable
with swap membership queries, over the instance class of swaps. There is an online
learning algorithmA for this class, such that for any target concept � of description
size s, the algorithm makes at most s mistakes and uses at most s log2 n membership
queries.

6.2 Active Learning with Unrestricted Examples

When the instances supplied to the learner are unrestricted, even predicting their
label is a difficult task, because dominance testing is NP-hard for acyclic CP-nets.
As observed in the previous section, an important class of concepts for which dom-
inance testing can be accomplished in polynomial time is the class of tree CP-nets.
In this section, we briefly discuss an online algorithm for learning tree CP-nets.

The algorithm can be specified as follows. Initially, the learner starts from the
hypothesis ON D ¿ and iteratively expands ON until it finds the target representa-
tionN . An invariant of the algorithm is that ON is always included inN so the learner
can only make mistakes on positive examples .x;y/. In such cases, the algorithm
considers in turn each variable on which x and y differ, and builds its CP-table
and that of all its ascendants in the tree. It stops whenever such a variable already
has a CP-table in its current hypothesis. Again, to find a parent for each candidate
variable, the algorithm can use a binary search strategy.

Proposition 16. Tree (possibly incomplete) binary CP-nets are PAC-learnable with
swap membership queries, over arbitrary examples: there is an online learning
algorithm A for this class, such that for any target concept � with k nodes, the
algorithm makes at most k mistakes and uses O.k log2 n/ membership queries.

We conclude this section by emphasizing that some classes of CP-nets are teach-
able, that is, learnable by asking a polynomial number of membership queries,
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without the need of observing any sample. Thus after making those queries, the
learner is guaranteed to correctly predict any instance.

We focus on the class of acyclic CP-nets whose graph has indegree at most k. The
learner proceeds by using a levelwise generate-and-test procedure and membership
queries for uncovering the set of parents of each variable. Clearly, this approach is
acceptable only for small bounded degrees, such as tree CP-nets.

Proposition 17. The class of concepts representable by a binary-valued acyclic
CP-net whose graph has degree at most k is teachable: there is an algorithm which
outputs such a CP-net using O.knkC12k�1/ membership queries and no other
queries or examples, where n is the number of variables and k is the degree of
the target concept.

7 Conclusion and Open Problems

In this paper, we have addressed many issues related to learning CP-nets. We have
argued that the first important problem is whether the CP-net that we aim at learning
is such that the user’s preference relation coincides with its induced preference rela-
tion, or is an lower approximation of the user’s complete preference relation. Then
we gave a few theoretical results on the learnability of CP-nets, and considered two
different learning frameworks: passive learning (from a set of examples), and active
learning (by queries).

We hope that our preliminary results in the learnability issue of CP-net open the
door to new theoretical results and practical learning algorithms. First of all, we do
not have a general method (other than brute-force search) for computing a CP-net
that is weakly or strongly consistent with a set of examples in the nonseparable case,
nor do we have algorithms for outputting a CP-net that realizes an optimal tradeoff
between simplicity and accuracy.

We have already emphasized the lack of expressivity in CP-nets. Although
CP-nets are a representation language wellsuited to expressing preferential (in)de-
pendencies, they do not allow one, for instance, to express statements of rela-
tive importance between variables, as lexicographic orders do. We may desire to
learn preferences that combine both aspects (preferential dependencies and relative
importance). For this, it is necessary to study preference learning with more expres-
sive languages, such as TCP-nets [6] or (even more general) conditional preference
theories [31].

References

1. D. Angluin, Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
2. D. Angluin, Negative results for equivalence queries. Mach. Learn. 5, 121–150 (1990)
3. D. Angluin, M. Frazier, L. Pitt, Learning conjunctions of Horn clauses. Mach. Learn. 9, 147–

164 (1992)



Learning Ordinal Preferences on Multiattribute Domains 295

4. M. Anthony, N. Biggs, Computational Learning Theory (Cambridge University Press, 1992)
5. C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, D. Poole, CP-nets: a tool for representing

and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21,
135–191 (2004)

6. R. Brafman, C. Domshlak, S. Shimony, On graphical modeling of preference and importance.
J. Artif. Intell. Res. 25, 389–424 (2006)

7. D. Braziunas, C. Boutilier, Local utility elicitation in GAI models, in Proceedings of the 21st
Conference on Uncertainty in Artificial Intelligence (UAI) (2005), pp. 42–49

8. C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender, Learn-
ing to rank using gradient descent, in Proceedings of the 22nd International Conference on
Machine Learning (ICML) (2005)

9. U. Chajewska, L. Getoor, J. Norman, Y. Shahar, Utility elicitation as a classification problem,
in Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI) (1998),
pp. 79–88

10. U. Chajewska, D. Koller, R. Parr, Making rational decisions using adaptive utility elicita-
tion, in Proceedings of the 17th National Conference on Artificial Intelligence (AAAI) (2000),
pp. 363–369

11. Y. Chevaleyre, A short note on passive learning of CP-nets. Rapport de recherche, Lamsade,
mars 2009

12. Y. Dimopoulos, L. Michael, F. Athienitou, Ceteris paribus preference elicitation with predictive
guarantees, in Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009) (2009)

13. J. Dombi, C. Imreh, N. Vincze, Learning lexicographic orders. Eur. J. Oper. Res. 183, 748–756
(2007)

14. C. Domshlak, T. Joachims, Efficient and non-parametric reasoning over user preferences. User
Model. User-adapt. Interact. (UMUAI) 17(1-2), 41–69 (2007)

15. J. Doyle, Y. Shoham, M. Wellman, A logic of relative desire (preliminary report), in Proceed-
ings of the 6th International Symposium on Methodologies for Intelligent Systems (ISMIS)
(Springer, 1991), pp. 16–31

16. Ch. Gonzales, P. Perny, GAI networks for utility elicitation, in Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the 9th International Conference (KR) (2004),
pp. 224–234

17. P. Green, V. Srinivasan, Conjoint analysis in consumer research: Issues and outlook.
J. Consumer Res. 5(2), 103–123 (1978)

18. V. Ha, P. Haddawy, Problem-focused incremental elicitation of multi-attribute utility models,
in Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI) (1997),
pp. 215–222

19. M.J. Kearns, M. Li, L. Pitt, L.G. Valiant, On the learnability of boolean formulae, in
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (1987),
pp. 285–295

20. R. Keeney, H. Raiffa, Decision with Multiple Objectives: Preferences and Value Trade-offs
(Wiley, 1976)

21. F. Koriche, B. Zanuttini, Learning conditional preference networks with queries, in Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009)
(2009)

22. J. Lang, J. Mengin, The complexity of learning ceteris paribus separable preferences, in Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009)
(2009)

23. J. Lang, J. Mengin, The complexity of learning separable ceteris paribus preferences. Rapport
de recherche RR-2009-3-FR, IRIT, Université Paul Sabatier, Toulouse, mars 2009

24. N. Littlestone, From on-line to batch learning, in Proceedings of the Second Annual Workshop
on Computational Learning Theory (Morgan Kaufmann, 1989), pp. 269–284

25. M. Sachdev, On learning of ceteris paribus preference theories. Master’s thesis, Graduate
Faculty of North Carolina State University, 2007



296 Y. Chevaleyre et al.

26. T. Sandholm, C. Boutilier, Preference Elicitation in Combinatorial Auctions, Chap. 10, in
Combinatorial Auctions, ed. by Cramton, Shoham, and Steinberg (MIT, 2006)

27. M. Schmitt, L. Martignon, On the complexity of learning lexicographic strategies. J. Mach.
Learn. Res. 7, 55–83 (2006)

28. L.G. Valiant, A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
29. P. Viappiani, B. Faltings, P. Pu, Evaluating preference-based search tools: a tale fo two

approaches, in Proceedings of the 21st National Conference on Artificial Intelligence (AAAI)
(2006), pp. 205–210

30. P. Viappiani, B. Faltings, P. Pu, Preference-based search using example-critiquing with
suggestions. J. Artif. Intell. Res. 27, 465–503 (2006)

31. N. Wilson, Extending CP-nets with stronger conditional preference statements, in Proceedings
of the 19th National Conference on Artificial Intelligence (AAAI) (2004), pp. 735–741

32. F. Yaman, Th. Walsh, M. Littman, M. desJardins, Democratic approximation of lexicographic
preference models, in Proceedings of the 35th International Conference in Machine Learning
(ICML) (2008), pp. 1200–1207



Choice-Based Conjoint Analysis:
Classification vs. Discrete Choice Models�

Joachim Giesen, Klaus Mueller, Bilyana Taneva, and Peter Zolliker

Abstract Conjoint analysis is a family of techniques that originated in psychol-
ogy and later became popular in market research. The main objective of conjoint
analysis is to measure an individual’s or a population’s preferences on a class of
options that can be described by parameters and their levels. We consider prefer-
ence data obtained in choice-based conjoint analysis studies, where one observes
test persons’ choices on small subsets of the options. There are many ways to ana-
lyze choice-based conjoint analysis data. Here we discuss the intuition behind a
classification based approach, and compare this approach to one based on statistical
assumptions (discrete choice models) and to a regression approach. Our comparison
on real and synthetic data indicates that the classification approach outperforms the
discrete choice models.

1 Introduction

Conjoint analysis is a popular family of techniques mostly used in market research
to assess consumers’ preferences, see [6] for an overview and recent developments.
Preferences are assessed on a set of options that are specified by multiple parame-
ters and their levels. In general conjoint analysis comprises two tasks: (a) preference
data assessment, and (b) analysis of the assessed data. Common to all conjoint
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analysis methods is that preferences are estimated from conjoint measurements, i.e.,
measurements taken on all parameters simultaneously.

Choice-based conjoint analysis is a sub-family of conjoint analysis techniques
named after the employed data assessment/measurement method, namely a sequence
of choice experiments. In a choice experiment a test person is confronted with a
small number of options sampled from a parameterized space, and has to choose
his preferred option. The measurement is then just the observation of the test per-
son’s choice. Choice-based conjoint analysis techniques can differ in the analysis
stage. Common to all methods is that they aim to put all the options on a common
scale computed from the assessed choice data. Most straightforward is to compute
an ordinal scale, i.e., a ranking of all the options, but it is more popular to compute
an interval scale where a numerical value, i.e., a scale value, is assigned to every
option. The interpretation is, that an option that gets assigned a larger scale value is
more preferred. Differences of scale values have a meaning, but there is no natural
zero. That is, an interval scale is invariant under translation and re-scaling by a pos-
itive factor. Note, that here we are not dealing with an instance of an object ranking
problem, see the survey by Kamishima et al. in this volume [7], but a scaling prob-
lem, i.e., our dependent variables (scale values) are measured on an interval scale in
contrast to dependent variables (ranks) on an ordinal scale.

The purpose of our paper is to provide intuition based on geometric duality why
the analysis approach of Evgeniou et al. [3] that uses ideas from maximum margin
classification aka support vector machines performs well (though applicability of the
kernel trick, which mostly contributed to the popularity of support vector machines,
seems not so important for conjoint analysis), and to compare this approach empir-
ically to one based on statistical assumptions on measured and synthetic data. The
latter approach can be seen as an extension of the popular discrete choice methods,
see for example [10], to the case of conjoint measurements. We also study a geo-
metrically inspired regression approach based on computing the largest ball that can
be inscribed into a (constraint) polytope. All approaches compute an interval scale
from choice data, and can be used to compute the scale for either a population of
test persons from choice data assessed on the population, or for an individual solely
from his choice data.

2 Notation

Formally, the options in the choice experiments are elements in the Cartesian prod-
uct A D A1 � : : :�An of parameter sets Ai , which in general can be either discrete
or continuous – here we assume that they are finite. The choice data are of the form
a � b, where a D .a1; : : : ; an/; b D .b1; : : : ; bn/ 2 A and a was preferred over b
by some test person in some choice experiment. Our goal is to compute an interval
scale v W A ! R on A from a set of choice data.

Often it is assumed that the scale v is linear, i.e., that it can be decomposed as

v.a/ D v
�
.a1; : : : ; an/

� D
nX

iD1
vi .ai /;
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where vi W Ai ! R are also interval scales. In the case of continuous parame-
ters Ai the linearity of the scale is (essentially) justified when the parameters are
preferentially independent, i.e., the order �i2IAi for any non-empty subset I of
f1; : : : ; ng is independent of the choice of parameter levels for the remaining param-
eters Aj ; j 2 f1; : : : ; ng n I (see [8] for details). For finite parameter sets linearity
still implies preferential independence, but the reverse is in general not true any-
more. Nevertheless, in practice linearity is almost always assumed. Also the two
methods that we are going to discuss here both assume linearity of the scale.1 The
discrete choice models approach first estimates the scales vi from the choice data
individually first and then combines them in a second step. Note that the choice
data are obtained from conjoint measurements, i.e., choices among options inA and
not in Ai . The classification/regression (maximum margin/largest inscribed ball)
approaches estimate the scales vi simultaneously from the choice data. Note that
both approaches have to estimate the same number of parameters, namely all the
values vi .a/; a 2 Ai ; i D 1; : : : ; n.

3 Conjoint Analysis as Classification Problem

The naive approach to choice-based conjoint analysis would be to compute scale
values vi .a/ 2 R; a 2 Ai ; i D 1; : : : ; n that satisfy constraints of the form

nX

iD1
vi .ai /	 vi .bi / > 0;

whenever a D .a1; : : : ; an/ was preferred over b D .b1; : : : ; bn/ by some test per-
son in a choice experiment. The geometric interpretation of this approach is picking
a point v 2 R

m, where m D Pn
iD1mi and mi D jAi j, in the feasible region, i.e.,

the subset of R
m that satisfies all choice constraints. A choice experiment is defined

by the characteristic vectors �a 2 f0; 1gm, whose i ’th component is 1 if the corre-
sponding parameter level is present in option a, and 0 otherwise. The feasible region
can now be re-written as

vt .�a 	 �b/ > 0; if a � b in a choice experiment,

or equivalently vtnab > 0, where nab D .�a 	 �b/. Note that the feasible region is
a cone whose apex is the origin. Let Hab be the hyperplane fv 2 R

m j vtnab D 0g
with normal nab , and let

HC
ab

D fv 2 R
m j vtnab > 0g and H�ab D fv 2 R

m j vtnab < 0g

1 The linearity assumption can be mitigated by combining dependent parameters into a single one,
see [5] for a practical example.
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be the two open halfspaces bounded by Hab . Note that HC
ab

D H�
ba

. If a was
preferred over b in a choice experiment, then we have a constraint of the form v 2
HC
ab

, otherwise, if b was preferred over a in a choice experiment, then we have
v 2 H�

ab
. That is, we can assign a label C, or 	, respectively to the hyperplane

Hab depending on the outcome of a choice experiment for this hyperplane. Since
the label attached to the hyperplane Hba is just the opposite of the label attached
to Hab we can restrict ourselves to one of the two hyperplanes for every pair a ¤
b 2 A, e.g., by fixing an arbitrary order on the elements of A, and only considering
hyperplanesHab , where a comes before b in this order. The feasible region can be
written as the intersection of the halfspaces

HC
ab

if a � b in a choice experiment, and H�ab if b � a in a choice experiment.

The feasible region contains many points that all encode a ranking of the options
in A that complies with the choices, provided the region is not empty. Since we
have only combinatorial information, namely choices, there is no way to distinguish
between the points in the feasible region. Among all the feasible points in the feasi-
ble region we want to choose one with good generalization properties, namely one
that allows to predict the outcome of further choice experiments. The situation is
similar to linear classification: for data with binary labels that are linearly separable,
i.e., there exists a hyperplane that has the points with different labels on different
sides, we want to choose a separating hyperplane with good generalization proper-
ties when it is used as class boundary. Regularization theory [2] provides theoretical
arguments that the margin maximizing hyperplane has good generalization proper-
ties, i.e., the hyperplane that maximizes the distance to the convex hulls of the data
points of the respective classes. We will discuss now that results from binary clas-
sification can be transferred to our conjoint analysis scenario by geometric duality.

The duality transform that we want to consider here maps points h 2 R
mC1 to

non-vertical hyperplanes H in R
mC1 and vice versa. The non-vertical hyperplane

dual to h D .h1; : : : ; hmC1/ is given as

H D
(

v 2 R
mC1

ˇ̌
ˇ vmC1 D

mX

iD1
hivi 	 hmC1

)
:

The important observation about the duality transform is that relative positions of
points with respect to hyperplanes are maintained: let

HC D
(

v 2 R
mC1

ˇ̌
ˇ vmC1 �

mX

iD1
hivi 	 hmC1

)
;

H� D
(

v 2 R
mC1

ˇ̌
ˇ vmC1 �

mX

iD1
hivi 	 hmC1

)
;
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then we have

p 2
8
<

:

HC
H�
H

if and only if h 2
8
<

:

PC
P�
P

where we denote hyperplanes with capital letters and their dual points with the same
lowercase letter, see also Fig. 1. Unfortunately, our hyperplanesHab can be vertical.
We circumvent this difficulty by augmenting the vectors nab with a .m C 1/’th
coordinate with entry � 2 Œ0; 1
. For small values of � the augmented hyperplane
is almost vertical with respect to the .m C 1/’th dimension, and the augmented
constraints (halfspaces) .nab ; �/t .v; vmC1/ � � are almost equivalent to nt

ab
v � 0

(analogously for “�”) when � and jvmC1j are small. The augmented hyperplanes
have the following non-vertical formulation,

�
v 2 R

mC1
ˇ̌
ˇ vmC1 D 	1

�
ntabv C 1

�
;

and their dual points are 	1
�
.nab ; �/. If we attach the same labels (depending on

the outcome of the choice experiment) to the dual points as we attach to the hyper-
planes, then we can formulate a standard linear binary classification problem, i.e.,
finding the maximum margin hyperplane that separates the labeled points. Let such
a separating hyperplane be given by a non-zero normal vector � 2 R

mC1 and an
offset w=k�k 2 R. Hence we have for all a; b 2 A that have been compared in a
choice experiment,

yab

�
	1
�
�t .nab ; �/ 	 w

�
> 0;

p

q

r

s

t

H

P Q RS T

h

Fig. 1 Duality of non-vertical hyperplanes and points preserves relative positions. Dual points are
labeled by lowercase letters, and dual hyperplanes by capital letters



302 J. Giesen et al.

where yab 2 f˙1g is the label of the dual point of the hyperplane corresponding
choice experiment comparing a with b. Let

d.�/ D min
a;b2AWa has been compared with b

ˇ̌
ˇ̌yab

�
	1
�
�t .nab ; �/ 	 w

�ˇ̌
ˇ̌ > 0:

Thus we have

yab

�
	1
�
�t .nab ; �/ 	 w

�
� d.�/;

or by setting vi D 	�i for i D 1; : : : ; m,

yabvtnab 	 �yab�mC1 � �d.�/C �yabw: (1)

The maximum margin hyperplane problem now reads as

minv;
mC1;w
1

2

�kvk2 C �2mC1
�

s.t. yabvtnab 	 �yab�mC1 � �d.�/C �yabw
if a � b in a choice experiment.

As discussed in [4] taking the limit � ! 0 gives the following optimization problem
for the vector v of scale values whose entries are indexed by the a 2 Ai ; i D
1; : : : ; n:

minv

nX

iD1

X

a2Ai

vi .a/
2

s.t.
nX

jD1
.vi .aj / 	 vi .bj // � 1;

if a D .a1; : : : ; an/ � b D .b1; : : : ; bn/ in a choice experiment.

Note that contradictory information, i.e., choices of the form a � b and b � a

renders the feasible region empty. In practice we will have to deal with contra-
dictory information, especially when we assess preferences on a population, but
also individuals can be inconsistent in their choices. It is essentially the contradic-
tory information that makes the problem interesting and justifies the computation
of an interval scale instead of an ordinal scale (i.e., a ranking or an enumeration
of all partial rankings compliant with the choices) from choice information. The
choice information now can no longer be considered purely combinatorial since
also the frequency of a � b for all comparisons of a and b will be important.
To avoid an empty feasible region we introduce a non-negative slack variable zj
for every choice, i.e., va 	 vb C zj � 0; zj � 0 if a was preferred over b in the
j ’th choice experiment. Now the feasible region will always be non-empty and it
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is natural to aim for minimal total slack, i.e.,
Pk
jD1 zj if we have information from

k choice experiments. That is, we end up with the following (soft margin) opti-
mization problem to compute the scale values (using the standard trade-off between
model complexity and quality of fit on the observed data with trade-off parameter
c > 0):

minv;zj

nX

iD1

X

a2Ai

vi .a/
2 C c

mX

jD1
zj

s.t.
nX

jD1
.vi .aj / 	 vi .bj //C zl � 1;

if .a1; : : : ; an/ � b D .b1; : : : ; bn/ in the l’th choice experiment.
zl � 0; l D 1; : : : ; m

This is exactly the optimization problem suggested by Evgeniou et al. [3] to compute
scale values.

4 Largest Inscribed Ball

We will compare the classification approach from the previous section to a geomet-
rically inspired regression approach, namely computing the largest ball inscribed
into the feasible region defined by the constraints

nX

iD1
vi .ai /	 vi .bi / � 0; if .a1; : : : ; an/ � .b1; : : : ; bn/ in a choice experiment.

We want to estimate the vi .a/ for i D 1; : : : ; n and all a 2 Ai . That is, we want to
estimate the entries of a vector v withm D Pn

iD1mi components, wheremi D jAi j.
As discussed earlier a choice experiment is defined by the characteristic vectors
�a 2 f0; 1gm, whose i ’th component is 1 if the corresponding parameter level is
present in the option a, and 0 otherwise. The feasible region can be characterized by

vt .�a 	 �b/ � 0; if a � b in a choice experiment,

or equivalently vt Nnab � 0, where Nnab D .�a 	 �b/ =k�a 	 �bk.
The distance of a point v 2 R

m to the hyperplane (subspace) fv 2 R
m j

vt Nnab D 0g is given by vt Nnab . The largest inscribed ball problem now becomes
(when using the standard trade-off between model complexity and quality of fit on
the observed data)



304 J. Giesen et al.

maxv;r;z r C c

kX

jD1
zj

s.t. vt Nnab � r 	 zk ; if a � b in the j ’th choice experiment.
zj � 0; j D 1; : : : ; k

where r is the radius of the ball and c > 0 is the trade-off parameter. This is a linear
program, in contrast to the classification approach based on maximizing the margin
which results in a convex quadratic program.

The largest inscribed ball approach does not work directly. To see this observe
that the line given by v1 D v2 D : : : D vm D constant is always in the feasi-
ble region. If the feasible region contains only this line (which often is the case),
then the optimal solution of our problem would be on this line. A solution v1
D v2 D : : : D vm D constant however does not give us meaningful scale values. To
make deviations from the line vi D constant possible we add a small constant � > 0
to the left hand side of all the comparison constraints. In our experiments we chose
� D 0:1.

5 Discrete Choice Models

Finally, we want to discuss a statistically motivated approach to analyze choice-
based conjoint analysis data. Discrete choice models deal with the special case of a
single parameter, i.e., in a sense the non-conjoint case. Let the finite set A denote
this parameter set. Choice data are now of the form a � b with a; b 2 A and the
goal is to compute v W A ! R or equivalently fva D v.a/ j a 2 Ag. Discrete choice
models make the assumption that the observed choices are outcomes of random
trials: confronted with the two options a; b 2 A a test person assigns values ua D
va C �a and ub D vb C �b , respectively, to the options, where (the error terms)
�a and �b are drawn independently from the same distribution, and chooses the
option with larger value. Hence the probabilitypab that a is chosen over b is given as

pab D P rŒua � ub
 D P rŒva C �a � vb C �b 
 D P rŒva 	 vb � �b 	 �a


Discrete choice models can essentially be distinguished by the choice of distribution
for the �a. Popular choices are normal distributions (Thurstone’s (probit) model [9])
or extreme value distributions (Bradley-Terry’s (logit) model [1]), see also [10]. The
values va can be computed for both models either via the difference va	vb from the
probability pab which can be estimated by the frequency fab that a was preferred
over b in the choice experiments, or computationally more involved by a maximum
likelihood estimator. Here we introduce a least squares approach using the frequency
estimates for the pab .
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5.1 Thurstone’s Model (probit)

In Thurstone’s model [9] the error terms �a are drawn from a normal distribution
N.0; �2/ with expectation 0 and variance �2. Hence the difference �b 	 �a is also
normally distributed with expectation 0 and variance 2�2 and hence

pab D P rŒua � ub
 D P rŒ�b 	 �a � va 	 vb


D 1p
4��2

va�vbZ

�1
e�

x2

4�2 dx D ˚

�
va 	 vbp
2�

�
;

where ˚ is the cumulative distribution function of the standard normal distribution

˚.x/ D 1p
2�

xZ

�1
e�y2=2dy:

This is equivalent to
va 	 vb D p

2�˚�1.pab/:

Using the frequency fab that a was preferred over b (number of times a was
preferred over b divided by the number that a and b have been compared) we set

vab D p
2�˚�1.fab/:

5.2 Bradley-Terry’s Model (logit)

In Bradley-Terry’s model [1] the error terms �a are drawn from a standard Gumbel
distribution, i.e., the distribution with location parameter � D 0 and scale param-
eter ˇ D 1. Since the difference of two independent Gumbel distributed random
variables is logistically distributed we have

pab D P rŒua � ub
 D P rŒ�b 	 �a � va 	 vb


D 1

1C e�.va�vb/
D eva�vb

1C eva�vb
D eva

eva C evb
:

This implies
eva

evb
D pab

1 	 pab ;

which is equivalent to

va 	 vb D ln

�
pab

1 	 pab

�
:
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Analogously to what we did for Thurstone’s model we set

vab D ln

�
fab

1 	 fab

�
:

5.3 Computing Scale Values

From both Thurstone’s and Bradley-Terry’s model we get an estimate vab for the
difference of the scale values va and vb . Our goal is to estimate the va’s (and not
only their differences). This can be done by computing va’s that best approximate
the vab’s (all equally weighted) in a least squares sense. That is, we want to minimize
the residual

r.vaja 2 A/ D
nX

a;b2AIb¤a
.va 	 vb 	 vab/

2:

A necessary condition for the minimum of the residual is that all partial derivatives
vanish, which gives

@r

@va
D 2

X

b2AIb¤a
.va 	 vb 	 vab/ D 0:

Hence
jAjva D

X

b2A
vb C

X

b2AIb¤a
vab :

Since we aim for an interval scale we can assume that
P
b2A vb D 0. Then the

values that minimize the residual are given as

va D 1

jAj
X

b2AIb¤a
vab :

We can specialize this now to the discrete choice models and get for Thurstone’s
model

va D
p
2�

jAj
X

b2AIb¤a
˚�1.fab/;

and for Bradley-Terry’s model

va D 1

jAj
X

b2AIb¤a
ln

�
fab

1 	 fab

�
:
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5.4 Multi-Parameter (conjoint) Case

Now we turn to the multi-parameter case where the options are elements in A D
A1 � : : : � An. We assume a linear model and describe a compositional approach
to compute the scales for the parameters Ai . In a first step we compute scales vi
using a discrete choice model for the one parameter case, and then in a second step
compute re-scale values wi to make the scales vi comparable. Our final scale for A
is then given as v D Pn

iD1 wivi , i.e.,

v
�
.a1; : : : ; an/

� D
nX

iD1
wivi .ai /:

To compute the scales vi we make one further assumption: if a D .a1; : : : ; an/ 2 A
is preferred over b D .b1; : : : ; bn/ 2 A in a choice experiment we interpret this as ai
is preferred over bi to compute the frequencies faibi

. If the parameter levels in the
choice experiments are all chosen independently at random, then the frequencies
faibi

should converge (in the limit of infinitely many choice experiments) to the
frequencies that one obtains in experiments involving only a single parameter Ai .

To compute the re-scale values wi we use again a maximum margin approach
(similarly to the one discussed before in Sect. 3). The approach makes the same
trade-off between controlling the model complexity (maximizing the margin) and
accuracy of the model (penalizing outliers). The trade-off is controlled by a param-
eter c > 0 and we assume that we have data from k choice experiments available.

minwi ;zj

nX

iD1
w2i C c

kX

jD1
zj

s.t.
nX

iD1
wi
�
vi .ai /	 vi .bi /

�C zj � 1;

if .a1; : : : ; an/ � .b1; : : : ; bn/ in the j ’th choice experiment.
zj � 0; j D 1; : : : ; k

6 Cross Validation

The classification and regression approaches (but also our re-scaling approach) have
a free parameter c > 0 that controls the trade-off between model complexity and
model accuracy. The standard way to choose this parameter is via k-fold cross
validation. For k-fold cross-validation the set of choice data is partitioned into k
partitions (aka strata) of equal size. Then k 	 1 of the strata are used to compute
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the scale values, which can be validated on the left out stratum. For the validation
we use the scale value to predict outcome in the choice experiments in the left-out
stratum. Given v.a/ and v.b/ for a; b 2 A such that a and b have been compared
in the left-out stratum, to predict the outcome one can either predict the option with
the higher scale value, or one can make a randomized prediction, e.g., by using the
Bradley-Terry model: predict a with probability ev.a/=

�
ev.a/ C ev.b/

�
. The valida-

tion score in both cases is the percentage of correct predictions. For simplicity we
decided to use the percentage of correct predictions.

7 Data Sets

We compared the different approaches to analyze choice-based conjoint analysis
data on two different types of data sets: (a) data that we assessed in a larger user
study to measure the perceived quality for a visualization task [5], and (b) synthetic
data that we generated from a statistical model of test persons. Let us describe the
visualization study first.

7.1 Visualization Study

The purpose of volume visualization is to turn 3D volume data into images that
allow a user to gain as much insight into the data as possible. A prominent example
of a volume visualization application is MRI (magnetic resonance imaging). Turn-
ing volume data into images is a highly parameterized process. Among the many
parameters there are for example:

1. The choice of color scheme: often there is no natural color scheme for the data,
but even when it exists it need not best suited to provide insight.

2. The viewpoint: an image is a 2D projection of the 3D data, but not all such
projections are equally valuable in providing insights.

3. Other parameters like image resolution or shading schemes.

In our study [5] we were considering six parameters (with two to six levels each) for
two data sets (foot and engine) giving rise to 2250 (foot) or 2700 (engine) options,
respectively. Note that options here are images, i.e., different renderings of the data
sets.

On these data sets we were measuring preferences by either asking for the better
liked image (aesthetics), or for the image that shows more detail (detail). That is,
in total we conducted four studies (foot-detail, foot-aesthetics, engine-detail, and
engine-aesthetics). We had 317 test persons for the two details question studies and
366 test persons for the aesthetics studies, respectively. In each study the test persons
were shown two images from the same category, i.e., either foot or engine, rendered
with different parameter settings and asked which of the two images they prefer
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Fig. 2 Data set foot: Which rendering do you like (left or right)?

Fig. 3 Data set engine: Which rendering shows more detail (left or right)?

(with respect to either the aesthetics or the details question). Hence in each choice
experiment there were only two options, see Figs. 2 and 3 for examples.

In [5] we evaluated the choice data using the Thurstone discrete choice model for
the whole population of test persons. There we used a different method to re-scale
the values from the first stage than described here. The method we used is based on
the normal distribution assumption and thus not as general as the method described
here.

7.2 Synthetic Data

We were also interested to see how well the different methods perform when we
only use information provided by a single person. Unfortunately the information
provided individually by the test persons in the visualization studies is very sparse
(only 20 comparisons per person). Thus we also generated synthetic data as follows:

1. We simulated a study with five parameters and five levels each.
2. We generated 200 synthetic test persons represented by a scale value for every

parameter level. The scale values for the levels of each parameter were chosen
from normal distributions with mean 	2;	1; 0; 1 and 2, respectively. The normal
distributions always had the same standard deviation, which we choose to be
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2; 5 or 8 (for three different studies). Varying the standard deviation was used to
model different degrees of heterogeneity in the population.

3. The synthetic test persons provided answers to 200 binary choice problems fol-
lowing the Bradley-Terry model. That is, given two options a and b and test
person dependent scale values v.a/ and v.b/, respectively, the test person prefers
a over b with probability pab D ev.a/=

�
ev.a/Cev.b/

�
. To simulate the choices we

generated random numbers uniformly in Œ0; 1
 and compared them to the pab’s.

8 Results and Discussion

As pointed out in Sect. 5 when assigning scale values to parameter levels in the
discrete choice approach, we estimate the probability that level a is preferred over
level b by the relative frequency fab that a was preferred over b. For sparse data
(only very few comparisons per test person) the frequency matrix can also be sparse
even in the sense of missing entries, i.e., levels a and b that never have been com-
pared. To deal with sparseness we exploit a “transitivity of preferences” assumption.
Whenever a � b and b � c we interpret this also as a (weak) vote for a � c.
We implemented this idea as follows: we initialized fab with either the measured
relative frequency, or when this is not available with 1=2. Then we updated fab itera-
tively until convergence using the following formula (with some constant c 2 .0; 1/,
we obtained good results for c D 0:3):

fab D .1 	 c/fab C c

n 	 2

X

d¤a;b

fadfdb

fadfdb C fdafbd

That is, we smoothed the frequencies using all the information available.

8.1 Visualization Studies

Let us start with a summary of the performance of our analysis methods on the data
from the four visualization studies. The summary is given in Table 1.

Table 1 Average percentage of correct predictions for the four visualization studies. Shown is the
mean for k D 10 strata and the estimated standard deviation in parentheses. See also Fig. 4

Engine-aesthetics Engine-detail Foot-aesthetics Foot-detail

Thurstone 0:7535.8/ 0:8265.8/ 0:6640.10/ 0:7388.5/

Bradley-Terry 0:7536.9/ 0:8267.5/ 0:6640.1/ 0:7387.10/

Classification 0:7529.9/ 0:8401.20/ 0:6638.10/ 0:7411.10/

Largest ball 0:7530.9/ 0:8414.7/ 0:6638.16/ 0:7405.10/
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Table 2 Average percentage of correct predictions for the four visualization studies for individual
test persons. For the prediction only data provided by the individual test person were used. See also
Fig. 4

Engine-aesthetics Engine-detail Foot-aesthetics Foot-detail

Thurstone 0:636.2/ 0:670.2/ 0:597.2/ 0:596.3/

Bradley-Terry 0:640.3/ 0:675.2/ 0:598.3/ 0:599.3/

Classification 0:618.3/ 0:651.2/ 0:585.2/ 0:589.3/

Largest ball 0:616.5/ 0:631.4/ 0:578.3/ 0:580.4/

Fig. 4 Summarizing Tables 1 and 2

We consider the Thurstone and Bradley-Terry discrete choice models, the classi-
fication approach, and the largest inscribed ball regression approach. Here we report
k-fold cross validation values, i.e., the percentage of correct predictions (on the left
out strata). We were using 20 random partitions into k D 10 strata (also for every-
thing that follows) and report the mean and estimated standard deviation of the
percentage of correct predictions (i.e., for every correct prediction percentage that
we report we had 200 data points).

For the data that we report in Table 2 we consider only data provided by a test
person to compute personal scale values for this person. The presented results are
the mean percentage of correct predictions on the left out strata also averaged over
all test persons that participated in the study. The standard deviation is computed
with respect to the left out strata and the different test persons.

While the classification/regression approaches performed slightly but not statis-
tically significant better than the discrete choice approaches in the non-personalized
analysis they perform significantly worse if one uses the approach for personal-
ized prediction on the same data sets. We also generated synthetic data, because we
wanted to study the behavior of the different approaches when we have more data
per test person available. Note that in the visualization studies we were restricted
to only very few choice experiments per test person since these test persons vol-
unteered to take part in the studies during an exhibition at the computer science
department of ETH Zürich. Our conjecture was that the classification/regression
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Table 3 Average percentage of correct predictions for the four visualization studies analyzed with
the classification approach using the values c D 100; 10; 1 and 0:01 for the trade-off parameter

Engine-aesthetics Engine-detail Foot-aesthetics Foot-detail

100 0:7525.6/ 0:8401.20/ 0:6635.10/ 0:7402.10/

10 0:7529.10/ 0:8396.20/ 0:6636.10/ 0:7401.10/

1 0:7529.10/ 0:8341.20/ 0:6638.10/ 0:7411.10/

0.01 0:7405.10/ 0:8313.10/ 0:6585.10/ 0:7167.10/

Table 4 Comparison of the average percentages of correct predictions on the artificial data with
40 choice experiments per person. Shown are prediction percentages for the classification and the
Bradley-Terry discrete choice model approaches (non-personalized and personalized)

Standard Deviation Classification Pers. Bradley-Terry Pers.

2 0:716.1/ 0:765.3/ 0:723.1/ 0:749.4/

5 0:606.1/ 0:783.3/ 0:619.1/ 0:745.2/

8 0:574.1/ 0:784.3/ 0:565.2/ 0:749.4/

approaches outperform the discrete choice models once we have more data per test
person.

Another interesting observation regarding the visualization studies is that we
were not able to detect a statistically significant difference between Thurstone’s
model and Bradley-Terry’s model. We expected Bradley-Terry’s model to perform
slightly better, because of the more realistic fat tail assumption of the underlying
distribution. Actually, it performs slightly better in the personalized analysis, but
the advantage is not statistically relevant.

Finally, in Table 3 we report on the dependence of the classification approach
on the regularization parameter c > 0 that controls the trade-off between model
complexity and training error. Here we report only on a non-personalized analysis,
since the behavior in the other settings is similar.

Interestingly, the classification approach depends only marginally on the choice
of the regularization parameter c. All the results that we report here are at least in
the range of the other approaches.

8.2 Synthetic Data

As we have mentioned earlier our main motivation to generate synthetic data was
to study the effect of the number of choice experiments per test person on the
performance of the different approaches.

To check the validity of our model from which we generated the artificial data
we first show in Table 4 the correct prediction percentages for the classification
approach and the Bradley-Terry discrete choice model for varying standard devia-
tion (which is one of the parameters we can control when generating the synthetic
data).
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Table 5 Average percentage of correct predictions for the synthetic data set using 20 to 200 choice
experiments per (artificial) test person. Shown are results for the classification (maximum margin),
Bradley-Terry, and maximum inscribed ball regression approach. See also the figure below

# Comparisons Classification Non-pers. Bradley-Terry Non-pers. Largest ball Non-pers.

20 0.703(4) 0.717(2) 0.692(4) 0.714(2) 0.658(3) 0.730(1)
40 0.765(3) 0.7164(8) 0.749(4) 0.723(1) 0.754(5) 0.7296(8)
60 0.812(2) 0.7231(6) 0.767(2) 0.7147(5) 0.786(3) 0.7234(4)
80 0.839(2) 0.7192(5) 0.788(1) 0.7169(5) 0.821(4) 0.7197(4)
100 0.847(2) 0.7246(4) 0.805(2) 0.7198(5) 0.839(2) 0.7173(3)
120 0.860(1) 0.7302(3) 0.815(1) 0.7143(5) 0.851(1) 0.7220(3)
140 0.869(1) 0.7306(2) 0.824(1) 0.7295(3) 0.866(1) 0.7207(3)
160 0.8773(9) 0.7291(3) 0.836(1) 0.7259(4) 0.8741(7) 0.7361(3)
180 0.8785(8) 0.7188(3) 0.841(1) 0.7242(3) 0.8806(7) 0.7298(3)
200 0.8841(8) 0.7239(2) 0.850(1) 0.7226(2) 0.8832(4) 0.7357(2)

As expected it becomes more difficult to predict the outcome of a choice exper-
iment on the population level when we increase the standard deviation (which
is meant to model population heterogeneity), whereas in the personalized setting
(where we consider only data provided by a test person to compute personal scale
values for this test person) the prediction accuracy does not depend on the variance.
The heterogeneity is actually large enough that it pays off (in terms of prediction
accuracy) to personalize even for standard deviation 2.

In Table 5 we summarize the dependence on the number of choice experiments
(comparisons) for the different approaches in the personalized setting. The results
for the personalized setting show that – as we expected – the percentage of correct
predictions hardly improves with growing number of choice experiments per test
person. At the same time – which is also expected – the variance of correct pre-
diction percentages goes down. But we do not only observe that the percentage of
correct prediction increases with growing number of choice experiments per test
persons, but also that the classification/regression approaches (which includes the
largest inscribed ball approach) outperform the Bradley-Terry model (which essen-
tially behaves the same as the Thurstone model). Thus here we observe statistically
significant what we already conjectured for the visualization studies, namely, that
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classification/regression outperforms the other methods once enough data are avail-
able. Actually, the results show that the amount of data need not be very large before
classification/regression outperforms the other approaches.

Let us also briefly comment on the results in the non-personalized setting, where
the percentage of correct predictions hardly improves with increasing number of
comparisons per person. This means that if our goal is to compute scale values for
a population of respondents, it can be enough for the test persons to participate in
few choice experiments, e.g., 20 for our model (but probably more for conjoint stud-
ies with more parameters). This is good news for studies in which the respondents
cannot (or are not willing to) participate in many choice experiments.

9 Conclusion

We compared two discrete choice approaches, namely Thurstone’s model and
Bradley-Terry’s model with a classification and a regression approach for choice-
based conjoint data analysis. We introduced a new regression approach based on
inscribing the largest ball into a feasible region, and provided some intuition why
the classification approach should perform well. At least our personalized results on
a synthetic data set suggest that the classification/regression approaches outperform
the discrete choice models – provided there is enough data per test person available.

Our main interest is in using conjoint analysis techniques to measure users’
preferences for visualization and imaging algorithms. In the conjoint studies that
we performed to this end we typically only got test persons to participate in a
small number of choice experiments (about 20 choice experiments per test per-
son – which takes roughly three minutes). In this range of numbers of choice
experiments discrete choice models even seem to have a small advantage over
classification/regression (at least in non-personalized analysis). In the future we
plan to conduct more user studies to figure out the best analysis approach for
varying numbers of choice experiments and objectives (e.g., non-personalized vs.
personalized).
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Learning Aggregation Operators for Preference
Modeling

Vicenç Torra

Abstract Aggregation operators are useful tools for modeling preferences. Such
operators include weighted means, OWA and WOWA operators, as well as some
fuzzy integrals, e.g. Choquet and Sugeno integrals. To apply these operators in
an effective way, their parameters have to be properly defined. In this chapter, we
review some of the existing tools for learning these parameters from examples.

1 Introduction

Several approaches have been proposed in the literature to model preferences [6] on
a set of alternatives. One of them is to use utility functions. Formally, they are func-
tions that evaluate each alternative according to a predefined scale (e.g., in the [0,1]
interval). In general, the larger the evaluation is, the more preferred the alternative.

Real decision making faces an important problem due to the fact that alternative
selection needs to take into account different criteria, instead of a single one. This
type of problems is known as multicriteria decision making [12, 13, 21]. The diffi-
culty is due to the fact that relevant criteria in decision making are not positively
correlated but, usually, in contradiction. For example, in the case of selection of a
home, the most preferred home with respect to size, location, and public transport is
usually not the best option with respect to the afforded price. Therefore, the houses
we prefer the most with respect to price are not the houses we prefer the most with
respect to location or size.

One approach for multicriteria decision making is to build an overall criterion (a
combination of the basic criteria) and then select the preferred alternative according
to this overall criterion. This overall criterion represents a trade-off between the dif-
ferent alternatives. Aggregation operators [19,20] are appropriate tools for building

V. Torra
IIIA, Artificial Intelligence Research Institute, CSIC, Spanish National Research Council
Campus UAB s/n 08193 Bellaterra (Catalonia, Spain)
e-mail: vtorra@iiia.csic.es

J. Fürnkranz and E. Hüllermeier (eds.), Preference Learning,
c

317
DOI 10.1007/978-3-642-14125-6_15,� Springer-Verlag Berlin Heidelberg 2010

vtorra@iiia.csic.es


318 V. Torra

this overall criterion, as they are the usual way of computing a trade-off of a set of
values.

At present a large number of aggregation operators exist. Most of them depend
on a parameter. For example, the weighted mean depends on a weighting vector.
Similarly, other operators have other types of parameters. Then, a relevant issue
when using these operators for expressing the preferences on the alternatives is to
select an appropriate aggregation operator and to select the appropriate parameters.

In this chapter, we present an overview of some aggregation operators together
with their parameters. Then, we discuss how to learn preferences, from the exam-
ples. This corresponds to learning the parameters of the aggregation operators.
The area of learning preferences has attracted much interest recently, and several
alternative approaches have been considered in the literature (see e.g. [8]).

The structure of the paper is as follows. In Sect. 2, we formalize the multicrite-
ria decision-making problem, in terms of alternatives and criteria. We describe the
use of aggregation operators to construct an overall criterion over the set of alterna-
tives. Then, in Sect. 3, we will review some of the most used aggregation operators.
Finally, in Sect. 4, we will review some of the approaches to learn the preferences
from examples. The paper finishes with a summary.

2 Multicriteria Decision Making: A Formalization

Our approach to decision making assumes that we have to select an alternative over a
finite set of them. These alternatives can be either a set of objects in a standard deci-
sion making problem (e.g., cars or houses), or other objects in machine learning, e.g.
cases (in a case-based reasoning system [1]) or examples. We assume that we have
M alternatives and we will denote the set of all alternatives by A D fx1; : : : ; xM g.

As stated above, we assume that the set of alternatives is finite. This is the typical
case in multicriteria decision making. In contrast, multiobjective decision making
usually considers the case of infinite set of alternatives. This is the case of consider-
ing the alternatives to be the values of a continuous variable (e.g., the alternative is
the price we have to assign to a commodity).

Then, let us consider the evaluation of the alternatives in terms of a set of N
criteria. We will represent these criteria by C D fc1; : : : ; cN g. That is, each alter-
native xj is evaluated with respect to each criteria ci . As stated in the introduction,
one approach is to consider that alternatives are evaluated using utility functions. In
this case, this means to have a function for each criteria. Let uci

be the function of
criteria ci in C .

Utility functions evaluate each of the alternatives, in a given domainD. It is usual
to considerD to be a subset of the real line, although other domainsD are conceiv-
able (e.g., ordered scales, fuzzy sets). We will consider the standard approach and
consider D a subset of the real line, and for the sake of simplicity, we consider D
to be the unit interval. Taking all this together, uci

W A ! Œ0; 1
.
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Then, uci
.xj / evaluates alternative xj with respect to criteria ci , and, thus,

expresses our preference of xj with respect to ci . This is so because the larger the
uci
.xj /, the larger our preference. Naturally, uci

.xj / D 1 is our ideal.
Alternative selection consists on determining the preferred elements x 2 A. This

is usually done computing an overall preference or an overall criterion that synthe-
sizes all the criteria and then selecting the elements x in A with the best evaluation.
In the case described above where preferences are expressed through utility func-
tions, this consists of building a criterion cC that synthesises (Combines) the criteria
ci , and building its corresponding utility function uC. This aggregated, or combined,
utility function is defined for each xj as the combination of the values uci

.xj /.
Formally, let C be a function that combinesN values (i.e., C W Œ0; 1
N ! Œ0; 1
);

then, we define uC.aj / as follows:

uC.xj / D C.uc1
.xj /; : : : ; ucN

.xj //:

When C depends on a parameter P , we will use

uCP
.xj / D CP .uc1

.xj /; : : : ; ucN
.xj //:

The arithmetic mean and the weighted mean are typical examples of functions C.
Naturally, the former has no parameter while the latter uses a weighting vector p.

For the sake of simplicity and convenience, as we can just consider aggregation
for a single xj without considering the rest of the xj , we will ignore often in our
notation the element xj . Then, we will use one of the following two expressions:

uCP
D CP .a1; : : : ; aN /

uCP
D CP .u.c1/; : : : ; u.cN //:

So, for a given xj , uci
.xj / will be denoted, when no confusion arises, either by

ai or u.ci /.

3 Aggregation Operators

There are a large number of aggregation operators [19, 20]. Of them, the most well
known are the arithmetic mean and the weighted mean. In this section, we review
a few other operators. We focus on the operators that belong to the family of the
Choquet integral. This family encompasses both arithmetic and weighted mean, in
the sense that the Choquet integral, with some particular parameters, reduces to
these two operators.

In this chapter, we use the term of aggregation operators or aggregation functions
as functions that satisfy the following properties:

Unanimity or idempotency: C.a; : : : ; a/ D a for all a
Monotonicity: C.a1; : : : ; aN / � C.a01; : : : ; a0N / when ai � a0i
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Some researchers (e.g., [3]) replace the unanimity condition by a looser condition
on unanimity on the boundaries of the [0,1] interval. That is, they require unanimity
only on 0 and 1:

Unanimity or idempotency at 0: C.0; : : : ; 0/ D 0

Unanimity or idempotency at 1: C.1; : : : ; 1/ D 1

In this case, t-norms and t-conorms [10] are also considered aggregation opera-
tors. In this case, the aggregation operators satisfying unanimity for all a are known
as mean operators.

In addition to these conditions, there is another one that is often required. This
condition, known as the symmetry, is defined as follows:

Symmetry: For any permutation � on f1; : : : ; N g it holds that

C.a1; : : : ; aN / D C.a�.1/; : : : ; a�.N//:

This condition means that none of the arguments have special significance when
computing the result. There are several operators that satisfy this property. t-norms
and t-conorms, which are some of the operators not satisfying, in general, unanimity,
are some of them. We will not consider this condition as, in general, we want to be
able to express that some of the arguments, some of the criteria, are more important
or relevant than the others. So, we consider aggregation operators that satisfy mono-
tonicity and unanimity for all a in [0,1]. From these two conditions, we can prove
that all aggregation operators satisfy internality. Internality is defined as follows:

Internality: mini ai � C.a1; : : : ; aN / � maxi ai :

3.1 Basic Aggregation Operators

We begin our review with the definitions of the arithmetic mean, the weighted
mean, and the OWA operator. As the latter two combine the data with respect to
a weighting vector, we also give an explicit definition of this weighting vector.

Definition 1. A vector v D .v1 : : : vN / is a weighting vector of dimensionN if and
only if vi 2 Œ0; 1
 and

P
i vi D 1.

Definition 2. A mapping AM: R
N ! R is an arithmetic mean of dimension N if

AM.a1; : : : ; aN / D .1=N /
PN
iD1 ai .

Definition 3. Let p be a weighting vector of dimension N ; then, a mapping WM:
R
N ! R is a weighted mean of dimension N if WMp.a1; : : : ; aN / D PN

iD1 piai .

Now, we present the OWA operator. The definition of this operator is similar to
the one of the weighted mean in the sense that it is a linear combination of the data
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with respect to the weighting vector. Nevertheless, a permutation � plays a central
role in the definition, and causes the weights to have a completely different meaning.

Definition 4. [24] Let w be a weighting vector of dimension N ; then, a mapping
OWA: R

N ! R is an Ordered Weighting Averaging (OWA) operator of dimension
N if

OWAw.a1; : : : ; aN / D
NX

iD1
wia�.i/;

where f�.1/; : : : ; �.N /g is a permutation of f1; : : : ; N g such that a�.i�1/ � a�.i/
for all i D f2; : : : ; N g (i.e., a�.i/ is the i th largest element in the collection
a1; : : : ; aN ).

Note that in the case of the weighted mean, the weight p1 is associated with the
first argument (without taking into account whether this value is large, medium, or
small with respect to the others). So, in the weighted mean, each weight is associated
with an argument. That is, pi corresponds to the weight of the i th argument. Then, if
ai is the data supplied by the i th information source or the i th criterion, we can say
that pi is the importance or reliability of this source or criterion. This is so because,
naturally, the larger the weight pi , the more the value ai influences the outcome of
the aggregation. In particular, if pi D 1 (so, pj D 0 for all j ¤ i ), the outcome of
the aggregation is just ai (i.e., a maximum importance to the i th information source,
implies that all other values are completely disregarded). Therefore, as stated above,
the weights in the weighted mean permits us to weight the criteria.

In contrast to that, in the case of the OWA the weight w1 is always assigned to
the largest value, while wN is always assigned to the smallest value. So, wi corre-
sponds to the weight or importance of the value that occupies the i th position after
the ordering process. Note that this is independent of the information source or cri-
terion that has supplied this value. In this way, the weights in the OWA measure
the importance of the values themselves. So, we can give importance to large val-
ues, or to small ones. Understanding the weights in this way, and from the point
of view of multicriteria decision making, we can interpret the weights of the OWA
in terms of compensation. That is, if we permit compensation of bad criteria with
some good criteria, we would give larger importance to large values than to smaller
ones. Instead, if no compensation is given, then the smallest values of a1; : : : ; aN
would have the largest weights.

Mathematically, compensation is measured with the orness measure. Formally,
the orness of an operator establishes how similar is an operator to the maximum.
Note that the maximum operator achieves maximum compensation because all bad
values are compensated by the largest one. We give below the definition of the
orness, and give a simpler expression for some operators. We include the definition
for the case of the OWA.

Definition 5. Let C be an aggregation operator with parameters P ; then, the orness
of CP is defined by
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orness.CP / WD AV.CP /	 AV.min/

AV.max/ 	AV.min/
; (1)

and the andness of CP is defined by

andness.CP / WD 1 	 orness.CP / D AV.max/ 	AV.CP /
AV.max/	 AV.min/

;

where AV is the average value of CP defined as

AV.CP / WD
Z 1

0

: : :

Z 1

0

CP .a1; : : : ; aN / da1 : : : daN :

Proposition 1. The following equalities can be proven for the average value:

– AV.min/ D N=.N C 1/

– AV.max/ D 1=.N C 1/

– AV.AM/ D 1=2

Proposition 2. The following equalities can be established:

– orness .max/ D 1

– orness .min/ D 0

– orness .AM/ D 1=2

– orness .OWAw/ D 1
N�1

PN
iD1.N 	 i/wi

3.2 The WOWA Operator

Due to the fact that in some decision-making problems the importance of the sources
and the compensation degree are of relevance, the WOWA operator was defined.
This operator combines a set of data with respect to two weighting vectors. We will
denote them by p and w. p is interpreted as the weight of the weighted mean, and
w is understood as the weight of the OWA operator. That is, p permits us to repre-
sent the importance of the criteria, and w permits us to represent the compensation
degree.

The WOWA operator is defined as follows.

Definition 6. [15] Let p and w be two weighting vectors of dimension N ; then, a
mapping WOWA: R

N ! R is a Weighted Ordered Weighted Averaging (WOWA)
operator of dimension N if

WOWAp;w.a1; : : : ; aN / D
NX

iD1
!ia�.i/;
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where � is defined as in the case of OWA (i.e., a�.i/ is the i th largest element in the
collection a1; : : : ; aN ), and the weight !i is defined as

!i D w

0

@
X

j�i
p�.j /

1

A 	 w

0

@
X

j<i

p�.j /

1

A ;

with w
 being a nondecreasing function that interpolates the points
8
<

:

0

@i=N;
X

j�i
wj

1

A

9
=

;
iD1;:::;N

[ f.0; 0/g:

The function w
 is required to be a straight line when the points can be interpolated
in this way.

Several properties can be proven for this operator. Some of the most important
ones are the ones that relate it with the operators defined above. It can be proven
that the WOWA operator generalizes both the weighted mean and the OWA oper-
ator. Formally, when p D .1=N; : : : ; 1=N / we have WOWAp;w D OWAw. That is,
the WOWA operator is equivalent to the OWA when all the criteria have the same
importance. Similarly, when w D .1=N; : : : ; 1=N / we have WOWAp;w D WMp.
That is, the WOWA operator is equivalent to the weighted mean when we require an
average compensation. Note that the vector corresponding to an average compensa-
tion, i.e., w D .1=N; : : : ; 1=N /, if used with the OWA operator, corresponds to an
orness equal to 0.5.

So far, we have reviewed so far the operators moving from simpler ones to more
complex ones. We have seen that the more complex operators generalize the sim-
pler ones. That is, the WOWA generalizes both OWA and weighted mean, and both
OWA and weighted mean generalize the arithmetic mean. We will now review the
definition of the Choquet integral that generalizes all the operators seen so far.

3.3 The Choquet Integral

From a formal point of view, the Choquet integral integrates a function with respect
to a fuzzy measure. To do so, we need to introduce the function to be integrated and
the fuzzy measure. The function will play the role of the data being integrated, and
the fuzzy measure will play the role of the parameters (e.g., weighting vectors) that
have appeared in the previous operators.

Let us first consider the function. Let us recall that in our framework, we are
considering one of the following two expressions as equivalent, and representing
the aggregation of the utilities of the criteria.

– uCP
D C.a1; : : : ; aM /

– uCP
D C.u.c1/; : : : ; u.cM //:
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In the case of using the Choquet integral, the second expression is more appro-
priate as we have a function u over the criterion ci . That is, we will consider
the Choquet integral of the function u defined over the set of criteria C (i.e.,
u W C ! Œ0; 1
).

The second element in consideration is the fuzzy measure. The introduction of
fuzzy measures in multicriteria decision making is based on the fact that we want to
extend the importance of a particular criterion to the importance of sets of criteria.
Note that in the weighted mean, we interpret pi as the weight of the i th criterion.
That is, we can understand pi as follows: pi D p.ci /. From this point of view, we
can consider p a set function, and then define p.fc1; c5g/. Fuzzy measures permit
us to model this situation. These functions, usually denoted by �, need to satisfy
some conditions. They are monotonic (the larger the set, the larger its importance),
and bounded (the importance of the whole set is one – similar to the property that
weights in a weighting vector add to one – and the importance of the empty set is
zero).

The formal definition of fuzzy measures follows.

Definition 7. A fuzzy measure � on a set X is a set function � W }.X/ ! Œ0; 1


satisfying the following axioms:

(i) �.;/ D 0, �.X/ D 1 (boundary conditions)
(ii) A � B implies �.A/ � �.B/ (monotonicity)

Several families of fuzzy measures have been defined in the literature. Such mea-
sures satisfy the previous requirements and some additional ones. We will use the
term unconstrained fuzzy measures for the ones solely satisfying the conditions
of Definition 7, when we need to make a difference between them. Probability
measures are an example of constrained fuzzy measures. They correspond to addi-
tive fuzzy measures, and they are formally defined as fuzzy measures satisfying
�.A [ B/ D �.A/ C �.B/ for A \ B D ;. Decomposable fuzzy measures [23],
Sugeno �-measures [14], hierarchically decomposable fuzzy measures [16], dis-
torted probabilities [4], m-dimensional distorted probabilities [11], and k-order
additive fuzzy measures [7] are some other of the families of fuzzy measures.
See [19] for details and a classification of these families.

There are several properties of interest about fuzzy measures (see e.g. [19] for
details). Here, we only review the Möbius transformation because it is of interest
when learning fuzzy measures from examples. Its definition is as follows.

Definition 8. Let � be a fuzzy measure; then, its Möbius transformm is defined as

m�.A/ WD
X

B�A
.	1/jAj�jBj�.B/ (2)

for all A � X .

An important property of this transform is that given a function m that is a
Möbius transform, we can reconstruct the original measure using the following
expression:
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�.A/ D
X

B�A
m.B/

for all A � X .
Now, once we have defined fuzzy measures we can define the Choquet integral

of a function with respect to a fuzzy measure. The definition is as follows.

Definition 9. Let � be a fuzzy measure on X ; then, the Choquet integral of a
function f W X ! R

C with respect to the fuzzy measure � is defined by

.C /

Z
f d� D

NX

iD1
Œf .xs.i// 	 f .xs.i�1//
�.As.i//; (3)

where f .xs.i// indicates that the indices have been permuted so that 0 � f .xs.1//

� � � � � f .xs.N// � 1, and where f .xs.0// D 0 and As.i/ D fxs.i/; : : : ; xs.N/g.

Several properties can be proved for this integral. See [19] for a detailed descrip-
tion of the properties and for an interpretation of the integral.

4 Learning Preferences

The process of learning preferences can be formalized in different alternative ways,
according to the information available. In this chapter, we discuss some of the
approaches. They are based on the assumptions we have described earlier. That is,
we have a finite set of alternatives, and each alternative is described in terms of a
set of criteria. In addition, in the learning process, we will assume that the utility
functions are known. We also assume to know which kind of aggregation operator
we want to use to aggregate the values of the utility functions. That is, for example,
that we know whether we want to apply a weighted mean or a Choquet integral. See
[19] for details and also for alternative types of problems.

Taking into account the available information, we reconsider our notation. As
the alternative plays an important role in preference learning, we will include the
alternative in our notation in an explicit way. Recall that we used ai to denote the
value of the utility function. We will now use aji to denote the value of this utility
function for the i th criterion when object xj is considered.

Once this framework is fixed, two main approaches to learning exist.
One approach presumes that the only information we have about our preferences

is the final ordering of the alternatives. That is, we have an order for the alternatives,
their numerical evaluation for each of the criteria, and the aggregation operator to
be used. Then, the learning process corresponds to learning the weights from this
information. We refer to this type of problem as the case of parameter learning with
preferences or partial orders.
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Table 1 Data for preference learning

uc1 uc2 : : : ucN RC uC

a11 a12 : : : a1N p1 b1

a21 a22 : : : a2N p2 b2

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

aM1 aM2 : : : aMN pM bM

The other approach presumes that we have not only the final ordering, but also
an estimation of the overall criterion. That is, we know for each alternative an
estimation of the aggregated value. We refer to this problem as the case of parameter
learning with expected outcome.

Table 1 represents the information available for two problems. In both problems,
the values aji are assumed to be known. Then, in the first problem, we assume
that we know the rank of the alternatives. The column RC included in the table
corresponds to this information. pi would be natural numbers corresponding to the
position of the i th element of our ranking. In the second approach, we have the
values of uC. This is also represented in the table.

4.1 Parameter Learning with Expected Outcome

Parameter learning with expected outcome can be mathematically formalized as an
optimization problem, once we have a way to measure the difference between the
estimated value and the correct outcome. Here, the correct outcome corresponds
to uC. In addition, as the aggregation operator requires some parameters, and these
parameters should not be arbitrary but satisfy some constraints, the optimization
problem is a constrained one.

We give below a formulation of the problem, assuming that we use the Euclidean
distance to evaluate the estimated value with respect to the desired one.

Minimize DC.P / D
MP
jD1

.CP .a
j
1 ; : : : ; a

j
N / 	 bj /2

Subject to logical constraints on P

(4)

This problem can be rewritten for any of the operators described in Sect. 3. We
will discuss how to solve it for some of them. We begin with the weighted mean
as it is the simplest problem. That is, C is the weighted mean, and, therefore, its
parameter P is a weighting vector. Formally, as weighting vectors are defined in
terms of positive components that add to one, we have that the parameter is of the
form p D .p1; : : : ; pN /, and such that

P
i pi D 1 and pi � 0. Taking this into

account, the optimization problem given above is rewritten as follows:
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Minimize DWM .p D .p1; : : : ; pN // D
MP
jD1

.
NP
iD1

pia
j
i 	 bj /2

Subject to
NP
iD1

pi D 1

pi � 0

(5)

This optimization problem is of the class of quadratic problems with linear
constraints. This is so because the optimization function, using appropriate transfor-
mations, can be rewritten as .1=2/p0Q0p C r 0p, and the two constraints are linear
with respect to the weights pi . Quadratic problems with linear constraints can be
solved using optimization techniques (as e.g. active set methods), and the optimal
solution can be found easily. See e.g. [19, 25] for details.

An alternative problem is when, instead of the weighted mean, we consider the
OWA operator. This problem is formulated as follows.

Minimize DOWA.w D .w1; : : : ;wN // D
MP
jD1

.
NP
iD1

wia
j

�j .i/
	 bj /2

Subject to
NP
iD1

wi D 1

wi � 0

(6)

This problem is similar to the one of the weighted mean. The only difference is
that we have here the permutation � . It should be noticed that this permutation is not
the same for all alternatives, but it is alternative-dependent. That is, each alternative
needs to define each own permutation as the values are ordered according to the
permutation. That is why we are using �j in the problem instead of just � . Due to
all this, and, especially, because the values aji are assumed to be known just before
the learning process, we can order all the elements before the learning step. In this
way, we can learn the weights of the OWA using the same approach used for the
weights of the weighted mean. That is, we first order for each row the elements
in decreasing order, and then we apply the approach for the weighted mean to the
ordered set. The resulting weights are the ones for the OWA.

This approach permits us to obtain the OWA weights that correspond to a global
optimum of the optimization function.

We will not discuss it here, but there are situations in which the columns of
the matrix are not independent. In this case, for some nonindependent columns, the
problem has no unique solution due to singularities in the matrices involved in the
problem. This problem was studied in some detail in [17, 18]. Indeed, it was shown
that not all nonindependent matrices lead to singularities.
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Note that the problem of nonindependent columns is of relevance in the case of
multicriteria decision making, as this corresponds to the case of non-independent
criteria.

Although standard optimization approaches ensure a global optimum, other
nonoptimal approaches have been defined. Yager [5] proposed a method based on
gradient descent. His approach, which can be applied either to the weighted mean
or to the OWA, consists of removing the constraints for the weights and applying
then the gradient descent. The removal of the logical constraints for the weights is
achieved by considering the unconstrained vector � D .�1 : : : �N /. The weights
pi , if the weights being learned are the ones of the weighted mean, are extracted
from � as follows:

p� D
 

e�1

PN
jD1 e�j

: : :
e�N

PN
jD1 e�j

!
: (7)

This approach has the advantage that any vector � 2 R
N leads to a valid weight-

ing vector. So, given an arbitrary �, we have that p�, constructed using (7), satisfies
pi � 0 and

P
i pi D 1. That is why constraints on p can be removed. Taking this

into account, we obtain the following unconstrained optimization problem.

Minimize DWM./ D
MX

jD1

 
NX

iD1

e�i

PN
jD1 e�j

a
j
i 	 bj

!2
: (8)

Note that this optimization problem is formulated for the weighted mean. A
similar expression would be obtained for the OWA but in this case, we need the
permutation � . All applies in a similar way to the OWA operator.

The application of gradient descent to this problem is based on an iterative pro-
cess. In each step, an example is selected, and then weights are updated according to
the error. Algorithm 1 details this process. In this algorithm, ˇ is the learning rate,
a small value 0 � ˇ � 1. In this algorithm, the selection of example j corresponds
to selecting a row in Table 1.

4.1.1 The WOWA Operator

The optimization problem in the case of the WOWA is not a quadratic one. Due
to this, it is not so easy to find the corresponding weights. A valid approach for
this problem is to apply a combination of the two techniques described above. That
is, to use the approach for finding a global optimal for the weighted mean and the
OWA, together with the gradient descent approach. As the WOWA generalizes both
the OWA and the weighted mean, it is clear that from optimal solutions for such
aggregation operators we can easily find feasible solutions of the WOWA. This is
formalized in Algorithm 2.



Learning Aggregation Operators for Preference Modeling 329

Algorithm 1 Gradient descent for the weighted mean
Algorithm GradientDescentWM (A; b: Examples) returns weighting vector is
begin

int t:=0;
define .t/ WD .1 : : : 1/;
while no convergence do

Select example j
Obj WD WM�.t/.a

j
1 ; : : : ; a

j
N /

ej D
	 Obj � bj


2

compute, for i D 1; : : : ; N

�i .t C 1/ WD �i .t/� ˇ e�i .t/PN
jD1 e�j .t/

.a
j
i � Obj /. Obj � bj /;

t:=t+1;
end while
Use Equation 7 to find weights p from .
return p;

end

Algorithm 2 Hybrid approach for the WOWA operator
Algorithm GradientDescentWOWA (A; b: Examples) returns weighting vectors is
begin

p := GradientDescentWM(A; b); DWM.p/ WD error.WM; p; A; b/;
w := GradientDescentOWA(A; b); DOWA.w/ WD error.OWA;w; A; b/;
DWOWA WD error.WOWA; p;w; A; b/;
DAM WD error.AM;A; b/;
select the pair .p;w/ with minimal D among fDWOWA;DWM ;DOWA;DAMg
define p from p and w from w so that Equation 7 holds
apply gradient descent for the WOWA operator and obtain 
compute p and w from .

end

In this algorithm, the definition of pi and wi from , unless there is one pi or
wi equal to zero, is achieved defining �pi D logpi and �w

i D log wi . Zero weights
can only be approximated with a large enough negative value for �. The gradient
descent for the WOWA operator requires the computation of ej in terms of the
WOWA operator. Then, the computation of the new �i .t C 1/ from �i .t/ (for each
of the two vectors) is based on a numerical approximation of the derivative in:

�i .t C 1/ WD �i .t/ 	 ˇ @ej

@�i

ˇ̌
ˇ̌
�iD�i .t/

4.1.2 The Choquet Integral

Parameter determination for the Choquet integral corresponds to the problem of
determining the appropriate fuzzy measure. The formalization of this problem
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is similar to the one of learning the weights for the weighted mean (that is,
Equation (5)). The formalization uses the Möbius transform of the fuzzy measure
instead of using the fuzzy measure itself (i.e., learning the function m defined in
Definition 8 instead of �).

The minimization of the function is subject to the constraints that make � a
proper fuzzy measure. That is, that the measure of the empty set is zero, the mea-
sure of the whole reference set X is one, and the monotonicity conditions. These
constraints can be expressed as linear constraints. Due to this, the whole transfor-
mation of the problem corresponds to a quadratic problem with linear constraints.
Therefore, using optimization algorithms the optimal solution can be found.

The approach described here is about learning nonconstrained fuzzy measures.
When the problem is about learning constrained ones, some specific algorithms are
required. This is so because the constraints on the measures can lead to nonlinear
expressions in the formalization of the problem. This is the case of distorted proba-
bilities. A Choquet integral with respect to a distorted probability corresponds to the
WOWA operator. Note that we have discussed this problem above and recall that, in
such a case, it corresponds to a nonquadratic optimization problem.

4.1.3 Other Operators

Besides the operators reviewed in this work, there are others that could be suitable
for constructing an overall preference. Some of them are reviewed in [19]. Beliakov
et al. [2] discusses the case of some operators not satisfying unanimity as t-norms
and t-conorms. In some of the cases, the operator causes the problem to be nonlin-
ear, whatever be the constraints considered for the parameters. This is the case of
the Sugeno integral. This fuzzy integral, which has some similarities with the Cho-
quet integral, leads to problems that are nonlinear for any family of fuzzy measures
involved. Some alternatives to standard optimization algorithms have been proposed
for this problem, as e.g. genetic algorithms [22].

4.2 Parameter Learning with Preferences or Partial Orders

The formulation of this problem is based on the order relation defined on the alter-
natives. Let � represent this relation, and let S represent the pairs .r; t/ such that
xr � xt (i.e., the r th alternative is preferred to the t th alternative). Then, given an
aggregation operator C, the goal is to find its parameterP such that for all .r; t/ 2 S
it holds

CP .a
r
1; a

r
2; : : : ; a

r
N / > CP .a

t
1; a

t
2; : : : ; a

t
N /

or, equivalently,

CP .a
r
1; a

r
2; : : : ; a

r
N / 	 CP .a

t
1; a

t
2; : : : ; a

t
N / > 0:
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As it is usually the case that there are no parameters P that make this equation
true for all .r; t/ 2 S , it is preferable to account for some error and minimize the
error. Formally, we rewrite the last equation considering terms y.r;t/ � 0 (the error).
That is,

CP .a
r
1; a

r
2; : : : ; a

r
N /	 CP .a

t
1; a

t
2; : : : ; a

t
N /C y.r;t/ > 0:

In this way, the problem is formalized as finding the parameter P that minimizes
the number of violations when all .r; t/ 2 S are considered. That is, the following
term is minimized: X

.r;t/2S
y.r;t/:

All together, the problem to minimize is as follows:

Minimize
P
.r;t/2S y.r;t/

Subject to
CP .a

r
1; a

r
2; : : : ; a

r
N / 	 CP .a

t
1; a

t
2; : : : ; a

t
N /C y.r;t/ > 0

y.r;t/ � 0

logical constraints on P

(9)

When the operator is the weighted mean, the problem is rewritten as:

Minimize
P

.r;t/2S
y.r;t/

Subject to
NP
iD1

pi .a
r
i 	 ati /C y.r;t/ > 0

y.r;t/ � 0
NP
iD1

pi D 1

pi � 0

(10)

The optimal solution of this problem can be found using the same optimization
techniques considered for the problem of expected outcomes. In this case we have
as before linear constraints, and, in addition, the expression to be optimized is lin-
ear. Similar procedure applies when we use the Choquet integral as the selected
aggregation operator, instead of the weighted mean.

There are a few variations of these models. For example, some require that
the difference between two preferred examples is larger than a certain threshold
(defined as constant), and then maximize the minimum difference between the two
alternatives. See [19] for details.

Note that although the optimal solution can be found using optimization tech-
niques, this does not imply that the cost of obtaining this solution is negligible. The
Simplex algorithm, to be used for linear problems with linear constraints, has an
exponential worst case time complexity.
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The problem stated here is related to object ranking. A survey on object rank-
ing can be found in this book [9]. In both problems, we have a set of alternatives
or objects, and the ordering � on them. The application of object ranking taking
into account the utility functions, that is f.aj1 ; : : : ; ajN /gjD1;:::;M instead of just
x1; : : : xM , would lead to alternative methods for what has been described here.

5 Conclusions

In this chapter, we have reviewed some of the methods to be used for learning prefer-
ences when we can assign an utility value for each pair of alternative and criterion.
We have also described algorithms to be applied when we can assign an overall
utility value for each of the alternatives, and also when we can give an ordering of
the alternatives.
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Preferences in Information Retrieval



Evaluating Search Engine Relevance
with Click-Based Metrics�

Filip Radlinski, Madhu Kurup, and Thorsten Joachims

Abstract Automatically judging the quality of retrieval functions based on observ-
able user behavior holds promise for making retrieval evaluation faster, cheaper,
and more user centered. However, the relationship between observable user behav-
ior and retrieval quality is not yet fully understood. In this chapter, we expand upon,
Radlinski et al. (How does clickthrough data reflect retrieval quality, In Proceed-
ings of the ACM Conference on Information and Knowledge Management (CIKM),
43–52, 2008), presenting a sequence of studies investigating this relationship for an
operational search engine on the arXiv.org e-print archive. We find that none of the
eight absolute usage metrics we explore (including the number of clicks observed,
the frequency with which users reformulate their queries, and how often result sets
are abandoned) reliably reflect retrieval quality for the sample sizes we consider.
However, we find that paired experiment designs adapted from sensory analysis
produce accurate and reliable statements about the relative quality of two retrieval
functions. In particular, we investigate two paired comparison tests that analyze
clickthrough data from an interleaved presentation of ranking pairs, and find that
both give accurate and consistent results. We conclude that both paired compari-
son tests give substantially more accurate and sensitive evaluation results than the
absolute usage metrics in our domain.
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1 Introduction

Most search engine evaluation uses the traditional Cranfield methodology, where
relevance judgments are provided manually by trained experts. For each query in
a test set, the experts provide a label that specifies the relevance of each document
in a corpus on a graded relevance scale. Given a ranking produced in response to
these queries, the judgments for the top ranked documents can then be aggregated to
assess the quality of the ranking. Averaging over many queries yields average per-
formance scores such as Normalized Discounted Cumulative Gain, Mean Average
Precision and Precision at K [21].

However, this Cranfield approach presents a number of challenges. First, the
process of obtaining expert relevance judgments is time consuming [8] and thus
expensive. The associated cost and turnaround times of the Cranfield approach make
it economical only in large domains such as non-personalized Web search. Other
retrieval applications from Desktop Search, to searching Wikipedia, to Intranet
Search usually demand more flexible and efficient evaluation methods.

Second, queries are often ambiguous. The largest Cranfield style test collections
generally used to evaluate the performance of ranking algorithms are produced as
part of the annual TREC competition [29]. In the TREC setting, each query includes
a long description, which is obtained before the judgments are created. When using
arbitrary real queries, it can be difficult for expert relevance judges to reliably infer
such intents from queries, as they are usually too short to unambiguously identify
the users’ information needs (e.g., [27]). Consequently, there is a danger that the
labels provided may not match the extent to which the documents address the users’
actual information needs.

Third, the experts must be knowledgable on the information needs relevant to the
collection. When designing Web search systems for specialized subgroups of the
general population (for instance, academic audiences) or on specialized document
collections (for instance, digital libraries), the cost of obtaining relevance judgments
for evaluation can thus become even more prohibitive.

Finally, even when reliable expert judgments are available for computing stan-
dard performance metrics, some of the standard metrics have been shown to not
always correlate with user-centric performance measures [28].

One promising approach to address these challenges is evaluation based on
implicit judgments from observable user behavior, such as clicks, query refor-
mulations, and response times. The potential advantages are clear: Unlike expert
judgments, usage data can be collected at essentially zero cost, is available in real
time, and it reflects the values of the users, not those of judges far removed from the
users’ context at the time of the information need. The key problem with retrieval
evaluation based on usage data lies in its proper interpretation. In particular, under-
standing how certain observable statistics relate to retrieval quality. We shed light
onto this relationship through a user study with an operational search engine we
deployed on the arXiv.org e-print archive. The study follows a controlled experiment
design that is unlike previous evaluations of implicit feedback, which mostly inves-
tigated document-level relationships between (expert or user annotated) relevance
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and user behavior (e.g., [1,9,12]). Instead, we construct multiple retrieval functions
for which we know their relative retrieval quality by construction (e.g., comparing
a standard retrieval function versus the same function with some results randomly
swapped within the top five positions). Fielding these retrieval functions to real users
of our search engine, we test how implicit feedback statistics reflect the difference
in retrieval quality. We ask whether there are universal properties of user behavior
that can be used to evaluate ranking quality.

Specifically, we compare two evaluation methodologies, which we term “abso-
lute metrics” and “paired comparison tests”. Using absolute metrics for evalua-
tion follows the hypothesis that retrieval quality impacts observable user behavior
in an absolute sense (such as better retrieval leads to higher-ranked clicks, or
better retrieval leads to faster clicks). We formulate eight such absolute metrics
and hypothesize how they will change with improved retrieval quality. We then
test whether these hypotheses hold in our search engine. The second evaluation
methodology, paired comparison tests, was first proposed for retrieval evaluation by
Joachims [14,15]. He follows experiment designs from the field of sensory analysis.
When, for example, studying the taste of a new product, subjects are rarely asked
to independently rate the product on an absolute scale, but are instead usually given
a second product and asked to express a preference between the two (see [19] for a
discussion of sensory analysis).

Joachims [14,15] proposed a method for interleaving the rankings from a pair of
retrieval functions to mirror such paired comparisons. In this setting, clicks provide
a blind preference judgment. We call the algorithm he proposed Balanced Interleav-
ing. In this chapter, we evaluate the accuracy of Balanced Interleaving on arXiv.org,
and also propose a new Team-Draft Interleaving method that overcomes potential
problems of Balanced Interleaving for rankings that are close to identical.

The findings of our user study can be summarized as follows. None of the eight
absolute metrics reflect retrieval performance in a significant, easily interpretable,
and reliable way with the sample sizes we consider. In contrast, both interleaving
tests accurately reflect the known differences in retrieval quality, inferring consistent
and in most cases significant preferences in the correct direction given the same
amount of user behavior data.

2 Related Work

From the perspective of facilitating evaluation of ranking strategies, a number of
researchers have considered how to reduce the amount of labeling effort necessary
for Cranfield-style evaluation (including [4, 6, 7, 26]), or how to obtain evalua-
tion datasets more representative of realistic usage scenarios (e.g., [25]). However,
our focus is on alternative evaluation methodologies, in particular using relevance
feedback provided by users.

Two general strategies have been used for obtaining relevance judgements from
users: explicitly asking for relevance judgments, or implicitly inferring judgments
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from user behavior. Asking users for explicit relevance judgments is onerous, as
it essentially requires users to be expert relevance judges. Without an appropriate
incentive, users have little motivation to provide high-quality relevance judgments.
Hence, evaluating with explicit judgments is generally limited to settings such as
movie ranking, where users are more willing to provide reliable judgments in return
for personalized movie recommendations (e.g., [10,24]). Evaluations using implicit
feedback, based on observing natural user interactions with the search engine, are
more practical in general search settings. This is motivated by the simplicity of
recording user behavior such as querying and clicking.

Numerous proposals for evaluating ranking quality based on user behavior have
previously been explored. Kelly and Teevan give an overview of many previously
studied behavioral metrics [17]. Most of these fall into the category of absolute met-
rics, which we will evaluate in our user study. For instance, Fox et al. [12] learned
to predict whether users were satisfied with specific search results using implicitly
collected feedback. They found a number of particularly indicative features, such
as time spent on result pages and how the search session was terminated (e.g., by
closing the browser window or by typing a new Internet address). However, many
of the most informative features they identified cannot be collected unless users
are using a modified Web browser. In our work, we focus on measures that can
be collected from all Web users without requiring additional downloads or browser
instrumentation. A number of researchers have studied how to transform clicks into
relevance judgments over documents, which could then be aggregated to evaluate
ranking performance, including [1, 2, 11, 15, 22]. With a focus on evaluation with
just clicks, Carterette and Jones [9] looked at whether they can identify the better of
two ranking functions. They found that by training a probabilistic click model, they
can predict the probability of relevance for each result. Aggregating over entire rank-
ings, they were able to reliably predict the better of two rankings in terms of NDCG.
Using clicks and other implicit feedback directly for evaluation of rankings was also
studied by [3,5,13,20]. Most directly related to this work, clicks were first used for
evaluation using the Balanced Interleaving paired comparison test described here by
Joachims [14,15], although without a controlled study to compare the effectiveness
of different evaluation metrics.

In contrast to all the previous studies, we present a controlled real-world exper-
iment evaluating how user behavior given real user-generated queries changes in
response to known changes in ranking quality. We measure how user-based eval-
uation would pick up the differences in quality between five different ranking
functions, as measured by eight different absolute click metrics and two pairwise
comparison algorithms. A somewhat shorter description of this work was presented
in [23].
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3 Design of the User Study

We implemented a search engine over the arXiv.org e-print archive.1 This archive
consists of a collection of several hundred thousand academic articles. It is used
daily by many thousands of users, predominantly scientists from the fields of
physics, mathematics, and computer science. Hundreds of these users use our search
engine on any particular day.

The basic design of our study can be summarized as follows. Starting with an
initial (hand-tuned) ranking function f1, we derive several other ranking functions
by artificially degrading their retrieval quality compared to f1. In particular, we
constructed triplets of ranking functions f1 � f2 � f3, using the notation fi � fj
to indicate that the retrieval quality of ranking function fi is better than that of
fj . For each such triplet of ranking functions, we know by construction that f1
outperforms f2, and that both outperform f3. We then expose the users of arxiv.org
to these three ranking functions as detailed below, and analyze whether, and under
which types of exposure, their observable behavior reflects the known differences in
retrieval quality.

Over four one-month periods we fielded triplets of ranking functions in the
arXiv.org search engine. Our users were unaware of the experiments being con-
ducted. As the users interacted with the search engine, we recorded the queries
issued, and the results clicked on. We then performed aggregate analyses of the
observed behavior, leading to the results reported below.

3.1 Constructing Comparison Triplets

We start by describing how we created two sets of ranking functions with known
relative retrieval performance. Given that our document collection consisted of aca-
demic articles with rich metadata, we started with an original ranking function,
called ORIG, that scores each document by computing a sum of the match between
the query and each of the following document fields: authors, title, abstract, full text,
arXiv identifier, article category, article area, article submitter, any journal reference
and any author-provided comments. The first four fields are usually most important
in matching results to queries. Note that this retrieval function weights, for exam-
ple, words in the title more heavily, since these title words occur in multiple fields
(specifically, in the title field and in the full text field). Our search engine was imple-
mented on top of Lucene,2 which implements a standard cosine similarity matching
function.

1 Made available at http://search.arxiv.org/
2 Available at http://lucene.apache.org/

http://search.arxiv.org/
http://lucene.apache.org/
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3.1.1 “ORIG�FLAT�RAND”-Comparison

To create the first triplet of ranking functions, we first eliminated much of the meta-
data available, then randomized the top search results. Specifically, the first degraded
ranking function, FLAT, only computes the sum of the matches in the article full text,
author list and article identifier. Note that while the abstract and title are included in
the full text, by not scoring contributions on each field independently, we reduced
the weight placed on these (usually particularly important) fields. Second, rank-
ing function RAND reordered the top 11 results returned by FLAT completely at
random. Since the nonrandomized ranking was of reasonable quality, randomiza-
tion reduces the ranking quality. The documents below rank 11 were presented
unchanged. By construction, we now have a triplet of ranking functions where it
is safe to assume that ORIG � FLAT � RAND. In fact, our subjective impression
is that these three ranking functions deliver substantially different retrieval quality –
especially ORIG � RAND – and any suitable evaluation method should be able to
detect this difference.

3.1.2 “ORIG�SWAP2�SWAP4”-Comparison

To create a second triplet of ranking functions that shows a more subtle difference
in retrieval quality, we degraded performance in a different way. Starting again with
our ranking function ORIG, SWAP2 randomly selects two documents in the top 5
positions and swaps them with two random documents from ranks 7–11. This swap-
ping pattern is then replicated on all later result pages (i.e., swapping two documents
between ranks 11 and 15 with two originally ranked between 17 and 21, etc.). For
instance, if ORIG returned the ten documents .d1; d2; d3; d4; d5; d6; d7; d8; d9; d10/,
SWAP2 might present the user with .d1; d7; d3; d9; d5; d6; d2; d8; d4; d10/. Increas-
ing the degradation, SWAP4 is constructed identically to SWAP2, except randomly
selecting four documents to swap. This gives us a second triplet of ranking func-
tions, where by construction we know that ORIG � SWAP2 � SWAP4. We believe
the quality differences in this triplet are smaller than in the previous triplet. In par-
ticular, this is because the top 11 results always contain the same set of documents
for all three ranking functions, just in a different order. In contrast, RAND and FLAT

return different top 11 documents than ORIG.

3.2 Users and System Design

Figure 1 illustrates the user interface of the search engine. It takes a set of keywords
as a query, and returns a ranking of 10 results per page. For each result, we show
authors, title, year, a query-sensitive snippet, and the arXiv identifier of the paper.
We register a “click” whenever a user follows a hyperlink associated with a result.
These clicks lead to a metadata page from where a PDF is available for download.
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Fig. 1 Screenshot of how results are presented

3.2.1 User Characterization

Given the nature of the arXiv document collection, consisting mostly of scien-
tific articles from the fields of Physics, Mathematics, Computer Science, and to a
lesser extent Nonlinear Sciences, Quantitative Biology and Statistics, we suspect
that many of our users are researchers and students from these disciplines. On aver-
age, our search engine received about 700 queries per day from about 300 distinct
IP addresses, registering about 600 clicks on results.
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We identify users by their IP address. Since this definition of user is primarily
used for identifying spammers and bots, as will be described below, we find it suf-
ficient even though in some cases it may conflate multiple people working on the
same computer or accessing arXiv.org through a proxy. The IP address is also used
to (pseudo) randomly assign users to various experimental conditions in our study
(e.g., the condition “users who receive the results from FLAT”). In particular, we
segment the user population based on an MD5-hash of IP address and user agent
reported by the browser. Moreover, for the rankings that involve randomizing the
results returned, the random number generator is seeded with the same information.
This method of assignment and seeding ensures that if a user repeats a query within
a short time frame, he or she will be shown exactly the same results, making for a
consistent user experience.

3.2.2 Data Collection

We recorded queries submitted, as well as clicks on search results for all queries.
Each record included the experimental condition, the time, IP address, browser, a
unique session identifier, and a unique query identifier.

We define a session as a sequence of interactions (clicks or queries) between
a user and the search engine where less than 30 minutes pass between subsequent
interactions. When attributing clicks to query results, we only counted clicks occur-
ring within the same session as the query. This was necessary to eliminate clicks that
appeared to come from saved or cached search results. Note that it is still possible
for clicks to occur hours after the query if the user was continuously interacting with
the search engine.

3.2.3 Quality Control and Testing

To test the system and our experiment setup, we conducted a test run between
November 3rd and December 5th, 2007. Based on this data, we refined our meth-
ods for data cleaning and spam detection (described below), refined the system
and experiment design, and validated the correctness of the software. For all cru-
cial parts of data analysis, the first two authors of this chapter each independently
implemented analysis code then compared their results to detect potential errors.

4 Experiment 1: Absolute Metrics

We can now ask: Do absolute metrics reflect retrieval quality? We define absolute
metrics as search engine usage statistics that can be hypothesized to monotoni-
cally change with retrieval quality. We explore eight such metrics that quantify the
clicking and session behavior of users.



Evaluating Search Engine Relevance with Click-Based Metrics 345

4.1 Absolute Metrics and Hypotheses

We measured the following metrics. Many of them were previously suggested as
performance metrics in the literature, as they reflect the key actions that users can
choose to perform after issuing a query: clicking, reformulating, or abandoning the
search.

Abandonment Rate The fraction of queries for which no results were
clicked on.

Reformulation Rate The fraction of queries that were followed by
another query during the same session.

Queries per Session The mean number of queries issued by a user
during a session.

Clicks per Query The mean number of results that are clicked for
each query.

Max Reciprocal Rank� The mean value of 1=r , where r is the rank of the
highest ranked result clicked on.

Mean Reciprocal Rank� The mean value of
P
1=ri , summing over the

ranks ri of all clicks for each query.

Time to First Click� The mean time from query being issued until first
click on any result.

Time to Last Click� The mean time from query being issued until last
click on any result.

When computing the metrics marked with �, we exclude queries with no clicks to
avoid conflating the metrics with abandonment rate. For each metric, we hypoth-
esize how we expect the metric to change as retrieval quality decreases. The
explanation for the hypothesized direction of change is noted on the right.

Metric Hypothesized change as ranking gets worse
Abandonment rate Increase (more bad result sets)
Reformulation rate Increase (more need to reformulate)

Queries per session Increase (more need to reformulate)
Clicks per query Decrease (fewer relevant results)

Max reciprocal rank Decrease (top results are worse)
Mean reciprocal rank Decrease (more need for many clicks)

Time to first click Increase (good results are lower)
Time to last click Decrease (fewer relevant results)

Even if the hypothesized directions of change are incorrect, we at least expect
these metrics to change monotonically with retrieval quality. We now test these
hypotheses for ORIG � FLAT � RAND and ORIG � SWAP2 � SWAP4.
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4.2 Experiment Setup

We evaluate the absolute metrics in two phases. Data for the triplet of ranking
functions ORIG � SWAP2 � SWAP4 was collected from December 19th, 2007 to
January 25th, 2008 (Phase I); for the ranking functions ORIG � FLAT � RAND,
it was collected from January 27th to February 25th, 2008 (Phase II). During each
phase, each of the three ranking functions were assigned one experimental condi-
tion, receiving 1/6th of search engine visitors. This means that in Phase I, 1/6th of
the users saw the results from ORIG, another 1/6th saw the results from FLAT, and
yet another 1/6th got the results from RAND. In Phase II, the assignment was done
analogously for ORIG, SWAP2, and SWAP4. The remaining 50% of the visitors were
assigned to paired comparison conditions described in Sect. 5.

During our test run prior to these evaluations, we noticed that bots and spam-
mers throw off our results. To compute the absolute metrics robustly, we processed
the raw logs as follows. First, we eliminated all users (IP addresses) who clicked on
more than 100 results on any day of our study. This eliminated under 10 users in each
condition. We then computed each metric for every user, averaging over all queries
submitted by that user. Finally, we computed the median (for the time to click met-
rics) or mean (for the others) across all users.3 This simple per-user aggregation is
fairly robust to spammers and bots, much more so than naive per-query aggrega-
tion. For instance, suppose we have 99 users and one spammer (or bot). Suppose the
spammer ran 100 queries and always clicked on all top 10 results, while each of the
99 normal users ran just one query and clicked on one result. The average number
of clicks per query that we compute is .1 � 10 C 99 � 1/=100 D 1:09, rather than
.100 � 10C 99 � 1/=199 D 5:5 as it would be with query-based averaging.

4.3 Results and Discussion

The measured values (˙ two standard errors/95% confidence intervals) are reported
in Table 1 for each absolute metric and each ranking function. The column labeled
H1 indicates our hypothesized change in the metric if retrieval quality is decreased.
Upon inspection, one observes that none of the metrics consistently follows the
hypothesized behavior. The number of pairs A � B where the observed value fol-
lows (X) or opposes (�) the hypothesized change is summarized in the “weak”
columns of Table 2. It shows that, for example, the abandonment rate agrees with
our hypothesis for four pairs of ranking functions (ORIG � FLAT, FLAT � RAND,
ORIG � RAND, and SWAP2 � SWAP4). However, for the remaining two pairs, it
changes in the opposite direction. Even more strongly, none of the absolute metrics
even changes strictly monotonically with retrieval quality.

3 In other words, we report macro-averages rather than micro-averages.
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Table 1 Absolute metrics for the “ORIG� FLAT� RAND” and the “ORIG � SWAP2 � SWAP4”
comparisons (˙ two standard errors/95% confidence intervals). The second column shows the
hypothesized change when retrieval quality is degraded

ORIG � FLAT � RAND

H1 ORIG FLAT RAND

Abandonment Rate (Mean) < 0.680˙0.021 0.725˙0.020 0.726˙0.020
Reformulation Rate (Mean) < 0.247˙0.021 0.257˙0.021 0.260˙0.021
Queries per Session (Mean) < 1.925˙0.098 1.963˙0.100 2.000˙0.115
Clicks per Query (Mean) > 0.713˙0.091 0.556˙0.081 0.533˙0.077
Max Reciprocal Rank (Mean) > 0.554˙0.029 0.520˙0.029 0.518˙0.030
Mean Reciprocal Rank (Mean) > 0.458˙0.027 0.442˙0.027 0.439˙0.028
Time (s) to First Click (Median) < 31.0˙3.3 30.0˙3.3 32.0˙4.0
Time (s) to Last Click (Median) > 64.0˙19.0 60.0˙14.0 62.0˙9.0

ORIG � SWAP2 � SWAP4
H1 ORIG SWAP2 SWAP4

Abandonment Rate (Mean) < 0.704˙0.021 0.680˙0.021 0.698˙0.021
Reformulation Rate (Mean) < 0.248˙0.021 0.250˙0.021 0.248˙0.021
Queries per Session (Mean) < 1.971˙0.110 1.957˙0.099 1.884˙0.091
Clicks per Query (Mean) > 0.720˙0.098 0.760˙0.127 0.734˙0.125
Max Reciprocal Rank (Mean) > 0.538˙0.029 0.559˙0.028 0.488˙0.029
Mean Reciprocal Rank (Mean) > 0.444˙0.027 0.467˙0.027 0.394˙0.026
Time (s) to First Click (Median) < 28.0˙2.2 28.0˙3.0 32.0˙3.5
Time (s) to Last Click (Median) > 71.0˙19.0 56.0˙10.0 66.0˙15.0

Table 2 Comparing the number of correct (“X”) and false (“�”) preferences implied
by the absolute metrics, aggregated over the “ORIG � FLAT � RAND” and the
“ORIG � SWAP2 � SWAP4” comparison. A preference is weakly correct/false, if observed
value follows/contradicts our hypothesized direction of change. A preference is significantly
correct/false, if the difference between the observed values is statistically significant (95%) in the
respective direction

Absolute metric signals Weak Significant
X � X �

Abandonment Rate (Mean) 4 2 2 0
Reformulation Rate (Mean) 4 2 0 0
Queries per Session (Mean) 3 3 0 0
Clicks per Query (Mean) 4 2 2 0
Max Reciprocal Rank (Mean) 5 1 3 0
Mean Reciprocal Rank (Mean) 5 1 2 0
Time (s) to First Click (Median) 4 1 0 0
Time (s) to Last Click (Median) 4 2 1 1

The lack of consistency with the hypothesized change could partly be due to
measurement noise, since the elements of Table 2 are estimates of a population
mean/median. The column “significant” of Table 2 shows for how many pairs
A � B we can significantly (95% one-tailed confidence t-test for mean, �2-test
for median) reject our hypothesis H1 (�) or reject its negation (X). We do not see a
significant difference in the hypothesized direction for more than three out of the six
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pairs A � B for any of the absolute metrics. With the exception of Max Reciprocal
Rank, not even the “large difference” pairs ORIG � RAND and ORIG � SWAP4 are
consistently significant for any of the metrics. This suggests that, at best, we need
substantially more data to use these absolute metrics reliably, making them unsuit-
able for low-volume search applications such as desktop search, personalized Web
search, and intranet search.

Figures 2 and 3 present a more detailed view of these metrics, giving some insight
into how the estimates developed as more data was collected. The plots show the
respective estimate after the first n distinct users (i.e., distinct IP addresses) were
observed. Each datapoint represents a different cutoff date on which we computed
the metric over all prior data. The error bars indicate one standard error/66% con-
fidence interval. For example, the first point corresponds to roughly the first day
of data, after which we had seen 50 distinct users in each experimental condition.
The second data point corresponds to taking roughly the first two days, after which
we had seen 100 distinct users. As time progressed we saw fewer new distinct IP
addresses per day, hence each data point should not be considered as one day. The
total experiment duration for each plot was one month.

Consider, as an example absolute metric, the mean abandonment rate for
the “ORIG � FLAT � RAND” and “ORIG � SWAP2 � SWAP4” experiments as a
function of the number of users who have visited the search engine. Note that for
“ORIG � FLAT � RAND”, the original (best) ranking function has the lowest aban-
donment rate, while for “ORIG � SWAP2 � SWAP4” the original ranking function
has the highest abandonment rate.4 This not only breaks our intuition about aban-
donment rate, but also indicates that different differences between ranking functions
can have different effects on the abandonment rate, making it an unreliable indicator
as to the relative quality of ranking functions if our assumed relative ordering of the
ranking functions holds.

In general, we see that many of the curves still cross toward the end, indicating
that the estimates have indeed not yet converged with sufficient precision. Second,
the plots show that the (Gaussian) error bars are reasonable as confidence intervals
for the mean, and therefore the t-test is also reasonable. In particular, the curves
do indeed terminate within the two standard error interval of most prior datapoints.
This also suggests that there are no substantial temporal changes (e.g., bot or spam
attacks that we do not catch in our pre-processing) within each of the experiments.
However, note that in Table 1 the Abandonment Rate and the Time to First Click
of ORIG are significantly different between the data collected in December/January
and the data collected in February. Our conjecture is that this is due to differences
in user population and context (e.g., academic break vs. semester). It appears that
the impact of these population differences on some of the absolute metrics can be
of similar magnitude as the differences observed due to retrieval quality, confirming
that only data collected during the same time period can be meaningfully compared.

4 While the two “original ranking function” curves represent the same ranking function, they were
collected on two different months thus explaining the variation between them.
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Fig. 2 Measurements of the first four absolute performance metrics, for ORIG � FLAT � RAND

on the left, and ORIG � SWAP2 � SWAP4 on the right. The error bars indicate one standard
error/66% confidence interval

5 Experiment 2: Paired Comparison Tests

Paired comparison tests are one of the central experiment designs used in sensory
analysis [19]. When testing a perceptual quality of an item (e.g., taste, sound), it
is recognized that absolute (Likert scale) evaluations are difficult to make. Instead,
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Fig. 3 Measurements of the last four absolute performance metrics, for ORIG � FLAT � RAND

on the left, and ORIG � SWAP2 � SWAP4 on the right. The error bars indicate one standard
error/66% confidence interval

subjects are presented with two or more alternatives and are asked to identify a
difference or state a preference. In the simplest case, subjects are given two alter-
natives and are asked which of the two they prefer. For the evaluation of retrieval
functions, this experiment design was first explored by Joachims [14, 15]. In par-
ticular, Joachims proposed a method for presenting the results from two retrieval
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Input: Rankings AD .a1; a2; : : : / and B D .b1; b2; : : : /

I  ./I ka  1I kb  1I
AFirst RandBit./ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . decide which ranking gets priority
while (ka � jAj/^ .kb � jBj/ do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . if not at end of A or B

if .ka < kb/_ ..ka D kb/^ .AFirst D 1// then
if AŒka
 62 I then I  I C AŒka
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .append next A result
ka ka C 1

else
if BŒkb
 62 I then I  I C BŒkb
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append next B result
kb  kb C 1

end if
end while
Output: Interleaved ranking I

functions so that clicks indicate a user’s preference between the two. In contrast to
the absolute metrics discussed so far, paired comparison tests do not assume that
observable user behavior changes with retrieval quality on some absolute scale, but
merely that users can identify the preferred alternative in a direct comparison.

5.1 Balanced Interleaving Method

The key design issue for a paired comparison test between two retrieval functions
is the method of presentation. As outlined in [14], the design should be (a) blind to
the user with respect to the underlying conditions, (b) it should be robust to biases
in the user’s decision process that do not relate to retrieval quality, (c) it should not
substantially alter the search experience, and (d) it should lead to clicks that reflect
the user’s preference. The naRıve approach of simply presenting two rankings side
by side would clearly violate (c), and it is not clear whether biases in user behavior
would actually lead to meaningful clicks.

To overcome these problems, Joachims [14, 15] proposed a presentation where
the results present in two rankings A and B are interleaved into a single ranking I
in a balanced way. The interleaved ranking I is then presented to the user. This
particular method of interleavingA andB ensures that any top k results in I always
contain the top ka results from A and the top kb results from B , where ka and kb
differ by at most 1. Intuitively, a user reading the results in I from top to bottom will
have always seen an approximately equal number of results from each of A and B .

It can be shown that such an interleaved ranking always exists for any pair of
rankings A and B , and that it is computed by Algorithm 1 [14]. The algorithm
constructs this ranking by maintaining two pointers, namely ka and kb , and then
interleaving greedily. The pointers are set to always point at the highest ranked result
in the respective original ranking that is not yet in the combined ranking. To con-
struct I , the lagging pointer among ka and kb is used to select the next result to add
to I . Ties are broken randomly.

Algorithm 1 Balanced Interleaving
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Input Interleaved Rankings
Ranking Balanced Team-Draft

Rank A B A first B first AAA BAA ABA . . .

1 a b a b aA bB aA

2 b e b a bB aA bB

3 c a e e cA cA eB

4 d f c c eB eB cA

5 g g d f dA dA dA

6 h h f d fB fB fB
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Fig. 4 Examples illustrating how the Balanced and the Team-Draft methods interleave input rank-
ings A and B for different outcomes of the random coin flips. Superscript for the Team-Draft
interleavings indicates team membership

Two examples of such combined rankings are presented in the column “Bal-
anced” of Fig. 4. The left column assumes ranking A wins a tie-breaking coin toss,
while the right column assumes that ranking B wins the toss.

Given an interleaving I of two rankings presented to the user, one can derive a
preference statement from user clicks. In particular, let us assume that the user reads
results from top to bottom (as supported by eye-tracking studies [16]), and that the
number of links l viewed in I is known and fixed a priori. This means the user has
l choices to click on, and an almost equal number came from A and from B . So, a
randomly clicking user has approximately an equal chance of clicking on a result
from A as from B . If we see more clicks on results from one of the two retrieval
functions, we can infer a preference.

More formally, let A D .a1; a2; : : :/ and B D .b1; b2; : : :/ be two input rankings
we wish to compare. Let I D .i1; i2; : : :/ be the combined ranking computed by the
Balanced Interleaving algorithm, and let c1; c2; : : : be the ranks of the clicks with
respect to I . To estimate l , [14] proposes to use the lowest ranked click, namely
l 
 cmax D maxfc1; c2; : : :g. Furthermore, to derive a preference between A and B ,
one compares the number of clicks in the top

k D minfj W .icmax D aj / _ .icmax D bj /g (1)

results of A and B . In particular, the number ha of clicks attributed to A and the
number hb of clicks attributed to B is computed as

ha D jfcj W icj
2 .a1; : : : ; ak/gj (2)

hb D jfcj W icj
2 .b1; : : : ; bk/gj: (3)

If ha > hb we infer a preference for A, if ha < hb we infer a preference for B , and
if ha D hb we infer no preference.

To further illustrate how preferences are derived from clicks in the interleaved
ranking, suppose the user clicked on documents b and e in either of the two balanced
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interleavings shown in Fig. 4. Here, k D 2, since the top 3 documents in I were
constructed by combining the top 2 results from A and B . Both clicked documents
are in the top 2 of ranking B, but only one (b) is in the top 2 or ranking A. Hence,
the user has expressed a preference for ranking B .

Over a sample of queries and users, denote with wins(A) the number of times A
was preferred, and with wins(B) the number of times B was preferred. Using a bino-
mial sign test, we can test whether one ranking function was preferred significantly
more often.

5.2 Team-Draft Interleaving Method

Unfortunately, using (1) to estimate the number of results seen from each ranking
can potentially lead to biased results for Balanced Interleaving in some cases, espe-
cially when rankings A and B are almost identical up to a small shift or insertion.
For example, suppose we have two rankings, A D .a; b; c; d / and B D .b; c; d; a/.
Depending on which ranking wins the tie breaking coin toss in Algorithm 1, inter-
leaving will produce either I D .a; b; c; d / or I D .b; a; c; d /. Note that in both
cases, a user who clicks uniformly at random on one of the results in I would pro-
duce a preference for B more often than for A, which is clearly undesirable. This
is because all the documents except a are ranked higher by ranking B , and k is
defined as the minimum cutoff that includes all documents. We now describe a new
interleaving approach that does not suffer from this problem.

The new interleaving algorithm, called Team-Draft Interleaving, follows the
analogy of selecting teams for a friendly team-sports match. One common approach
is to first select two team captains, who then take turns selecting players for their
team. We can use an adapted version of this algorithm for creating interleaved rank-
ings. Suppose each document is a player, and rankings A and B are the preference
orders of the two team captains. In each round, captains pick the next player by
selecting their most preferred player that is still available, add the player to their
team and append the player to the interleaved ranking I . We randomize which cap-
tain gets to pick first in each round. The algorithm is summarized in Algorithm 2,
and the column “Team-Draft” of Fig. 4 gives three illustrative examples (e.g., the
column “BAA” indicates that captain B picked first in the first round, and that
captain A picked first in the second and third rounds).

To derive a preference between A and B from the observed clicking behavior
in I , again denote the ranks of the clicks in the interleaved ranking I D .i1; i2; : : :/

with c1; c2; : : :. We then attribute the clicks to ranking A or B based on which
ranking selected the clicked results (or, in the team sport analogy, which team that
player was playing for). In particular,

ha D jfcj W icj
2 Team Agj (4)

hb D jfcj W icj
2 Team Bgj: (5)
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Input: Rankings AD .a1; a2; : : : / and B D .b1; b2; : : : /

Init: I  ./I TeamA ;I TeamB ;I
while (9i W AŒi
 62 I /^ .9j W BŒj 
 62 I / do . . . . . . . . . . . . . . . . . . . . . . . . if not at end of A or B

if .jTeamAj < jTeamBj/_
..jTeamAj D jTeamBj/^ .RandBit./ D 1// then
k minifi W AŒi
 62 I g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . top result in A not yet in I
I  I CAŒk
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append it to I
TeamA TeamA[ fAŒk
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . clicks credited to A

else
k minifi W BŒi
 62 I g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . top result in B not yet in I
I  I CBŒk
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append it to I
TeamB TeamB[ fBŒk
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . clicks credited to B

end if
end while
Output: Interleaved ranking I , TeamA, TeamB

If ha > hb we infer a preference for A, if ha < hb we infer a preference for B ,
and if ha D hb we infer no preference. For the example in Fig. 4, a user clicking on
b and e in the AAA ranking will click two members of TeamB (hb D 2) and none
in TeamA (ha D 0). This generates a preference for B . Note that the randomized
alternating assignment of documents to teams and ranks in I ensures that, unlike for
Balanced Interleaving, a randomly clicking user will always produce equally many
preferences for A as for B in expectation. This avoids the problem of Balanced
Interleaving.

5.3 Experimental Evaluation

To compare the effectiveness of absolute metrics with paired comparison evalu-
ation, we assigned one experimental condition to each pair of retrieval functions
for each triplet of ranking functions studied. To avoid differences due to tempo-
ral effects, we conducted the evaluation of the Balanced Interleaving test at the
same time as the evaluation of the absolute metrics. This means that data for Bal-
anced Interleaving of ORIG � SWAP2 � SWAP4 was collected between December
19th, 2007 and January 25th, 2008 (Phase I); data for Balanced Interleaving of
ORIG � FLAT � RAND was collected between January 27th and February 25th,
2008 (Phase II). Data for Team-Draft Interleaving was collected between March
15th, 2008, and April 20th, 2008 (Phase III), for both triplets at the same time. In
all cases, each experimental condition was assigned 1/6th of the users.

We performed the same data cleaning as for the absolute metrics. However, in
addition to user-based aggregation that was essential for estimating the absolute
metrics robustly, we also evaluate the paired comparison tests in a query-based

Algorithm 2 Team-Draft Interleaving
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fashion.5 Unlike for absolute performance metrics, it does not matter if some users
run more queries than others: it simply gives heavier users more input into the exper-
iment outcome. Despite this, random spammers or bots will not bias the outcome.
For example a user who always clicks on the top result for thousands of queries
would reduce the signal in our results, but clicking on an equal number from each
“team” would not bias the final outcome. We call this query-based evaluation, and it
simply follows the methods described above, where each query contributes a pref-
erence (or tie). We will compare the results of this query-based evaluation with
user-based evaluation, where each user has exactly one “vote” per condition and that
vote is determined by the majority of the individual click preferences of that user.

5.4 Paired Comparison Results

Table 3 shows how frequently each ranking functions receives a favorable pref-
erence (i.e., “win”) in each pairwise comparison for both Balanced Interleav-
ing and Team-Draft Interleaving. We do not count cases when the user did not
click at all. For both interleaving methods and also for both query-based and
user-based aggregation, the sign of �AB D .wins.A/ 	 wins.B//=.wins.A/ C
wins.B// perfectly reflects the true ordering in both ORIG � FLAT � RAND and

Table 3 Results of the paired comparison tests for the “ORIG � FLAT � RAND” and the
“ORIG � SWAP2 � SWAP4” comparison. Wins and losses are counted on a per-query basis (left)
or on a per-user basis (right). We only consider users and queries with at least one click, and their
number is given in the table. The remaining percentage of queries/users are ties. Pairs where A (the
higher-quality retrieval function) wins significantly (95%) more often than B (the lower-quality
retrieval function) are printed in bold

Interleaving Comparison Pair Query Based User Based
Algorithm A � B A wins B wins # queries A wins B wins # users

Balanced ORIG� FLAT 30.6% 21.9% 857 33.3% 23.8% 538
FLAT � RAND 28.0% 22.9% 907 31.8% 23.3% 529
ORIG� RAND 40.9% 30.1% 930 41.0% 27.1% 553

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ORIG� SWAP2 18.1% 14.6% 1035 23.1% 17.1% 589

SWAP2 � SWAP4 33.6% 27.5% 1061 35.1% 30.0% 606
ORIG� SWAP4 32.1% 24.5% 1173 37.7% 26.7% 591

Team-Draft ORIG� FLAT 47.7% 37.3% 1272 49.6% 36.0% 667
FLAT � RAND 46.7% 39.7% 1376 46.3% 36.8% 646
ORIG� RAND 55.6% 29.8% 1095 58.7% 28.6% 622

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ORIG� SWAP2 44.4% 40.3% 1170 44.7% 37.4% 693

SWAP2 � SWAP4 44.2% 40.3% 1202 45.1% 39.8% 703
ORIG� SWAP4 47.7% 37.8% 1332 47.2% 35.0% 697

5 in other words, using micro-averaging.



356 F. Radlinski et al.

Table 4 Comparing the number of correct (“X”) and false (“�”) preferences implied
by the interleaving methods aggregated over the “ORIG � FLAT � RAND” and the
“ORIG � SWAP2 � SWAP4” comparison. A preference is weakly correct/false, if interleav-
ing attributes more wins/losses to the better retrieval functions. A preference is significantly
correct/false, if the number of wins is significantly (95%) greater than the number of losses

Paired Comparison Signals Weak Significant
X � X �

Balanced Interleaving (per query) 6 0 6 0
Balanced Interleaving (per user) 6 0 5 0
Team-Draft Interleaving (per query) 6 0 4 0
Team-Draft Interleaving (per user) 6 0 5 0

ORIG � SWAP2 � SWAP4. As summarized in Table 4, in no case do any of the
paired tests suggest a preference in the wrong direction. More formally, we statis-
tically test whether the number of wins for the better retrieval function is indeed
significantly larger by using a binomial test against P.A wins over B/ � 0:5. The
significant differences are bolded in Table 3, and 20 out of the 24 pairs are sig-
nificant. While the remaining four pairs fail the 95% significance level, they are
significant at the 90% level. This supports our hypothesis that the paired comparison
tests are able to identify a higher-quality retrieval function reliably.

Table 3 does not give substantial evidence that one interleaving or data aggrega-
tion method is preferable over the other. They each seem to be equally accurate and
of comparable statistical power. However, note that Team-Draft Interleaving forces
a strict preference more often than Balanced Interleaving. For example, any query
with a single click always produces a strict preference in Team-Draft Interleaving,
even if the input rankings are identical. While this does not change the mean, it
might lead to larger variance in the individual preference votes than when using
Balanced Interleaving, especially for retrieval functions that produce very similar
rankings. It appears that the potential problem of Balanced Interleaving identified in
Sect. 5.2 was not an issue in this evaluation.

Interestingly, not only does the sign of �AB correspond to the correct ordering
by retrieval quality, but the magnitude of this difference appears reasonable as well.
In particular, for all tests of a triplet A � B � C , Table 3 shows that �AC >

maxf�AB; �BCg, indicating Strong Stochastic Transitivity [18].

6 Discussion and Limitations

As in any controlled experiment, we were able to explore only a few aspects of the
problem while keeping many variables in the environment fixed. In this section, we
describe in more detail some of the assumptions that are inherent in the evaluation
methods we compare, some of which apply to both absolute and paired comparison
evaluation.
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6.1 Search Setting

Most obviously, online retrieval of scientific documents is only one domain for
information retrieval and other domains may have substantially different proper-
ties. In particular, we believe that most of our users were educated researchers and
students using the system in a research context. It is possible that our users, for
example, consider each result returned more carefully than most Web search users,
and delve deeper into the result sets returned. Web search, intranet search, desktop
search, online purchasing, and mobile search have a much broader and more diverse
user base, as well as a different distribution of queries.

However, as our experiment design is not limited to arXiv.org, it will be inter-
esting to conduct similar studies in those domains as well. The resulting set of
studies would give a more complete view of the relationship between user behavior
and retrieval quality than the single data point we provide here. From a practical
perspective, such an evaluation can be performed in any of these settings without
necessitating the creation of a custom search engine as we have implemented for the
experiments reported here. In particular, through the simple use of a proxy imple-
mented between users and any general purpose search engine, all of the experiments
described here could be performed.

6.2 Click Filtering

For the sake of simplicity, we focused largely on “raw” clicks as feedback signal,
with simple heuristics for removing potentially noisy clicks in the case of abso-
lute metrics. This ignores that some clicks may be made in error (e.g., due to a
misleading snippet). A more differentiated interpretation of clicks (e.g., based on
dwell-time, use of the back button, etc.) may provide a cleaner signal. Additionally,
for some queries the desired information is already presented in the snippet, which
obviates the need for a click. Analyzing additional actions such as copy/paste and
scan-paths collected via eyetracking may provide additional information.

However, it is important to observe that such additional information could be
incorporated into both absolute metrics as well as paired comparison tests. If clicks
followed by a long dwell time on the results are indeed more informative than raw
clicks, filtering for such clicks would be expected to improve the strength of the sig-
nal observed in all the absolute metrics as well as the strength of the signal observed
from interleaved evaluation.

Additionally, if some clicks are malicious, this again may obscure any signal
observed. Apart from a few bots (and possibly some vanity searches), arXiv.org is
a domain relatively free of click-spam. While many domains are similarly free of
click-spam (e.g., personal information search, intranet search), it will be interesting
to see how the paired comparison tests perform under more substantial click-spam
attacks.
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6.3 Snippets versus Documents

One particular assumption in using raw clicks is that clicks on the short snippets
presented to users on results pages tell us about the relevance of the actual docu-
ments. The success of the paired comparison tests suggests that users of arXiv.org
were able to make somewhat reliable relevance judgments of the articles retrieved
based on the snippets generated. To assess the effect of snippets on the experiment
results, we also repeated the paired comparison experiment for the ORIG � FLAT

and ORIG � RAND pairs of ranking functions using alternative snippet generation
algorithms during a fourth month-long experimental phase. We found that showing
normal snippets (about 300 characters), longer snippets (about 450 characters) and
simply showing the beginning of the article abstracts resulted in ratios of preference
judgments that did not differ in a statistically significant manner from those reported
in Table 3. This suggests that the relevance of the articles retrieved can be reliably
conveyed in abbreviated form, probably because titles and author names are already
very informative in the arXiv.org domain.

However, generating meaningful snippets might be more challenging in other
domains (e.g., due to maliciously designed web pages). Furthermore, one has to be
careful that snippet generation is not biased toward any particular retrieval function
(e.g., in terms of abstract length or quality). In particular, this is one reason why
completely independent search engines are difficult to compare with either abso-
lute or interleaving tests. For instance, if results obtained from Web search engine
A were simply interleaved with results obtained from Web search engine B, more
clicks on the results from A may simply indicate that A produces more misleadingly
good snippets, rather than that A is better. Similarly, we could see that A may have
a higher abandonment rate in an absolute metric test because the snippets are a little
shorter.

6.4 Absolute Metric Choices

While we strove for a set of absolute metrics that covers the majority of eas-
ily observable user behavior, there may be other absolute metrics that are more
indicative of ranking quality. For example, there may be sophisticated combinations
of various absolute metrics that are more reliable than any single metric [9, 12].
Furthermore, for many of the absolute metrics, the observed differences were not
statistically significant given the amount of data we could practically collect. In
domains like general Web search, where orders of magnitude more data is available,
some of these absolute metrics might indeed make accurate predictions without the
necessity of performing paired comparison tests.
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6.5 Scale of Differences

In constructing artificially degraded retrieval functions, we aimed to design both
large and small differences in ranking quality. However, further studies are needed
to see how fine a difference paired comparison tests can detect. In particular, it
would be interesting to explore whether Strong Stochastic Transitivity holds in other
settings, and with even smaller quality differences. If some form of (approximate)
stochastic transitivity holds, it is plausible that large numbers of retrieval functions
could be reliably evaluated with far fewer than O.n2/ comparisons using meth-
ods from tournament design, which also has implications for automatically learning
improved retrieval functions based on paired comparison tests [30, 31].

Additionally, absolute metrics by their nature provide an absolute performance
score. This score can then be optimized over time, providing information about long-
term improvements to search systems. In contrast, paired comparison tests simply
provide information about which ranking is preferred by users without necessarily
indicating how much better the preferred ranking function is. It would be interesting
to perform studies that measure how the strength of an interleaving signal compares
with an absolute measure of ranking performance such as mean average precision
or normalized discounted cumulative gain [21].

6.6 Interactive Evaluation Limitations

Finally, interleaved evaluation inherently requires interactive evaluation of ranking
functions. This means that a dataset collected for one interleaving evaluation can-
not later be reused to evaluate other ranking functions. In particular, as interleaving
dynamically creates the ranking presented to users based on two input ranking func-
tions, it would be difficult to infer which results would have been presented and
clicked had one of the input functions been different. This differs from some abso-
lute metric evaluations. For instance, if we were to measure mean reciprocal rank,
assuming that relevant results tend to be clicked on, a new ranking function that
tends to position the previously clicked results closer to the top of the ranking could
be assumed to be better than the original one.

7 Summary and Conclusions

We explored and contrasted two possible approaches to retrieval evaluation based
on implicit feedback, namely absolute metrics and paired comparison tests. In a
real-world user study where we know the relative retrieval quality of several rank-
ing functions by construction, we investigated how accurately these two approaches
predict retrieval quality. None of the absolute metrics gave reliable results for the
sample size collected in our study. In contrast, both paired comparison algorithms,
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namely Balanced Interleaving and the new Team-Draft Interleaving method we pro-
posed, gave consistent and mostly significant results. Further studies are needed to
extend these results to other search domains beyond the arXiv.org e-print archive.
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Learning SVM Ranking Functions from User
Feedback Using Document Metadata and Active
Learning in the Biomedical Domain

Robert Arens

Abstract Information overload is a well-known problem facing biomedical pro-
fessionals. MEDLINE, the biomedical bibliographic database, adds hundreds of
articles daily to the millions already in its collection. This overload is exacerbated
by the lack of relevance-based ranking for search results, as well as disparate levels
of search skill and domain experience of professionals using systems designed to
search MEDLINE. We propose to address these problems through learning ranking
functions from user relevance feedback. Simple active learning techniques can be
used to learn ranking functions using a fraction of the available data, with perfor-
mance approaching that of functions learned using all available data. Furthermore,
ranking functions learned using metadata features from the Medical Subject Head-
ing (MeSH) terms associated with MEDLINE citations greatly outperform functions
learned using textual features. An in-depth investigation is made into the effect of
a number of variables in the ranking round, while further investigation is made into
peripheral issues such as users providing inconsistent data.

1 Introduction

MEDLINE, the National Library of Medicine’s (NLM) bibliographic database, is
a resource used globally by biomedical researchers and professionals. It contains
over 16 million references, with thousands more added every week [28]. The use of
this resource is ubiquitous throughout the biomedical community and beyond, by
researchers, clinicians, and amateurs interested in the field. Users often encounter
information overload when searching MEDLINE. In part, this is due to the enormity
of the database. However, a greater issue is the lack of relevance-based ranking of
these results. This means that the results most relevant to the user’s query may be
buried under thousands of irrelevant results, forcing the user to sort through them
manually.
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Deeper issues exacerbate the problem. To avoid manually searching through
potentially thousands of search results to find the citations they need, medical pro-
fessionals must spend years developing the expertise necessary to use PubMed,
the search engine front-end to MEDLINE, efficiently [4]. Even experienced users
may find themselves unable to construct these efficient queries if they lack deep
knowledge regarding the subject of their search. Improvements to PubMed, whether
focusing on improving the retrieval system itself (e.g., [16, 23, 26]) or on presenta-
tion of search results (e.g., [20, 24, 29, 32]) fail to strike a balance between retrieval
power and user burden.

We propose to address these problems by learning ranking functions from user
feedback. A ranking function learned in this way will put the most relevant results
above the less relevant, making search more convenient for the user. Our rank-
ing functions will be used using a ranking version of the support vector machine
(SVMs) algorithm, a learning method that has been shown effective and efficient
at such tasks. Learning from feedback does not require a great amount of training,
so it can be done by a novice user. Furthermore, a user does not need deep domain
knowledge; giving positive feedback on citations that “look right” ensures that sim-
ilar citations will be ranked highly. Finally, each ranking function will be tailored
to the user training it, while traditional query-based ranking methods such as tf*idf
would produce the same ordering for any given query. Joachims [22] argued that,
“experience shows that users are only rarely willing to give explicit feedback”. We
agree with this point in general, but experience has shown us that biomedical pro-
fessionals are highly motivated to give feedback if the overhead of feedback is offset
by utility they gain from the system.

Our hypothesis is that a ranking function learned from feedback given on a small
percentage of intelligently chosen examples from a retrieval set will perform com-
parably to a ranking function learned from the entire retrieval set. We will explore
how to choose these examples and how much feedback to request from the user.

We further propose to learn our ranking functions from document metadata, as
opposed to textual features. Citations in MEDLINE are annotated using the NLM’s
controlled vocabulary of Medical Subject Headings, called MeSH. We hypothesize
that learning from these features will be superior to learning from query-based tex-
tual features. We will evaluate the quality of the rankings produced by our method,
along with the amount of feedback required to produce that ranking.

2 Biomedical Document Collections and Data Sets

2.1 MEDLINE

As stated in the introduction, MEDLINE is a database of bibliographic references in
biomedicine and health sciences, collected and curated by the NLM. Citations are
taken from approximately 5,200 sources (mostly journals) in 37 languages, with the
majority of journals selected for inclusion by a committee set up by the National
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Fig. 1 Sample view of the results page from PubMed. Inset: document ranking options

Institutes of Health (NIH). Other sources are included based on NLM or NIH pri-
orities (e.g., AIDS research). Dates covered range from 1949 to the present, with
some older material. The database currently contains over 16 million references,
with between two and four thousand added each week. In 2007, 670,000 references
were added.

MEDLINE’s subject coverage is extensive. It covers areas ranging from public
heath policy to clinical care to bioengineering research, from humans to plants to
bacteria. The target audience for MEDLINE is the biomedical community at large,
including researchers, clinicians, educators, and amateurs. Most references include
full citation data, as well as the abstract for the reference. Many references also
contain links to the full article.

Searching MEDLINE is done most often via Entrez PubMed, the NLM’s search
engine operating over the database. Figure 1 shows an example of a results page
from the PubMed search interface. While it is a robust retrieval system, PubMed
lacks relevance-based ranking of search results. Users are limited in their choice
of results sorting to date of publication, author names, or journal of publication.
This leads to information overload for users of the system. As mentioned before,
this is partly due to the size of the MEDLINE database; for example, a search
for “heart disease” returns over eight hundred thousand results. This can lead to
a “search boomerang”, where users alter their search queries with more specific cri-
teria (resulting in too few results), then relaxing their criteria (resulting in too many),
repeating until a reasonably sized result set is obtained.

2.1.1 MeSH Terms

To assist users in navigating through MEDLINE’s wealth of information, each
reference in the database is tagged with a number of MeSH terms. The preface
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Body Regions [A01]
...
Extremities [A01.378]

...
Lower Extremity [A01.378.610]

Buttocks [A01.378.610.100]
Foot [A01.378.610.250]

Ankle [A01.378.610.250.149]
Forefoot, Human [A01.378.610.250.300]

Metatarsus [A01.378.610.250.300.480]
Toes [A01.378.610.250.300.792]

Hallux [A01.378.610.250.300.792.380]
Heel [A01.378.610.250.510]

Hip [A01.378.610.400]
Knee [A01.378.610.450]
Leg [A01.378.610.500]
Thigh [A01.378.610.750]

Fig. 2 Sample MeSH hierarchy

to [27] states that, “The Medical Subject Headings (MeSH) thesaurus is a con-
trolled vocabulary produced by the National Library of Medicine and used for
indexing, cataloging, and searching for biomedical and health-related information
and documents.” The terms themselves are heterogeneous, and are of three types.
Descriptors, or main headings, cover the content of the reference, as well as metain-
formation such as the publication type and components (e.g., clinical trial, editorial,
historical article, etc.) and the country of the reference’s origin. Qualifiers, or sub-
headings, are used with descriptors to group together references dealing with a
particular aspect of the descriptor; for example, pairing the qualifier “abnormali-
ties” with the descriptor “heart” would indicate that the reference in question is
concerned with congenital defects in the heart, as opposed to the heart itself. Finally,
Supplementary Concept Records, or SCRs, catalogue specific drugs and chemi-
cals referenced in the article. Currently, there are 25,186 MeSH descriptors, with
83 qualifiers and over 180,000 SCRs. References are manually tagged by human
annotators.

MeSH is arranged hierarchically in 16 trees, grouped by the most general cate-
gory of the descriptor. There is a tree for descriptors relating to parts of the anatomy,
another for organisms, another for techniques and equipment, etc. As one descends
a tree, the descriptors become increasingly specific. Figure 2 shows a sample from
subtree A01 – Body Regions, the first subtree in tree A – Anatomy. The position of
the entry “Toes” indicates that is more general than “Hallux”, but more specific than
“Forefoot, Human”, which is itself more specific than “Foot”.

Searching MEDLINE with MeSH terms can be done by entering the MeSH term
into a PubMed search, just as one would any other search term. A mapping of
160,000 common terms to their synonymous MeSH headings is used along with
the PubMed query system to expand and refine the user’s query. Figure 3 shows the
full PubMed translation of the query “diabetes”.
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“diabetes mellitus”[MeSH Terms] OR (“diabetes”[All
Fields] AND “mellitus”[All Fields]) OR “diabetes
mellitus”[All Fields] OR “diabetes”[All Fields] OR
“diabetes insipidus”[MeSH Terms] OR (“diabetes”[All
Fields] AND “insipidus”[All Fields]) OR “diabetes
insipidus”[All Fields]

Fig. 3 Full translation of the query “diabetes”

2.2 OHSUMED

OHSUMED is a collection of MEDLINE citations, created to carry out informa-
tion retrieval experiments on MEDLINE [19]. It is composed of the results of 106
queries run against a five-year span of MEDLINE documents. Queries were gener-
ated from a questionnaire filled out by participants in the study, over a ten-month
period, filtering out duplicate topics and author searches, as well as queries with
inadequate information for replication by annotators. Eleven medical librarians and
eleven physicians, all familiar with searching MEDLINE, replicated the searches
and judged the retrieved references for relevance. Of 348,566 available references
from 270 medical journals, 16,140 query-document pairs were retrieved, with the
12,565 unique pairs annotated for relevance. Pairs were classified as definitely, pos-
sibly, or not relevant, with 69.3% annotated as not relevant, 16.3% partially relevant,
and 14.3% relevant. Five queries returned no citations judged relevant by the annota-
tors. Inter-annotator agreement, a measure of how closely any two annotators agreed
in their annotations, was calculated by having 11% of the documents annotated
by two people. A kappa statistic of 0.41 was calculated for agreement, which the
authors claim is comparable with other similar experiments.

2.3 LETOR

LETOR is a benchmark dataset created for information retrieval rank learning appli-
cations [25]. It consists of two parts; the first is based on the .gov dataset from the
2003 and 2004 TREC Web Track [11], and the second is based on OHSUMED (see
Sect. 2.2). We will limit our discussion to the OHSUMED section of LETOR.

LETOR assigns a feature vector to each query-document pair in the OHSUMED
collection. These feature vectors are composed of classical and more recently devel-
oped measures. Both high- and low-level features are calculated, where “[l]ow-level
features include term frequency (tf), inverse document frequency (idf), document
length, (dl) and their combinations” [25], and high-level features include measures
such as BM25 [31]. Vectors contain 25 features, 10 calculated from the title, 10 from
the abstract, and 5 from combined title-abstract text for each of the documents.
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3 Learning Ranking Functions from User Feedback

Presenting retrieved documents according to the likelihood of their relevance to a
user’s query is a standard practice in information retrieval [1]. Here, we present
a framework for learning a function to produce such a relevance ranking from
feedback provided by the user. As this is an online task, two factors beyond raw
system performance must be addressed. First, the system must run quickly enough
to provide the user a reasonable search experience. Second, the amount of feedback
required for learning must be a reasonable fraction of the number of search results.
If either of these factors are not well addressed, the system will provide no benefit to
users over traditional search engines. We choose to employ ranking SVMs for rank
function learning because of their speed, and their performance in learning ranking
functions [6, 22, 35]. To ensure users will have to provide as little feedback as pos-
sible, we employ active learning to choose examples that will be most useful for
learning [10].

3.1 Initial Retrieval

We take initial retrieval as given. PubMed is an excellent retrieval system, employ-
ing many recall-boosting strategies such as term expansion and synonym matching,
which we do not care to replicate. For our experiments, we use the existing
OHSUMED dataset (described in Sect. 2.2) and perform no retrieval on our own.
Our production system will use the Entrez eUtils,1 which will allow users to submit

Fig. 4 Illustration of learning ranking functions from user feedback

1 http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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queries to our system just as they would to PubMed itself. Document abstracts and
their associated feature vectors will be stored locally.

3.2 The Feedback Round

A feedback round is one iteration of choosing examples for feedback, requesting
feedback from the user, learning from the feedback, and checking the stopping cri-
terion. Future references will be made to this sequence of steps as a performance
measure, indicating one measure of how much overhead the user has incurred using
the system. The number of rounds multiplied by the number of examples seen per
round gives the total number of examples seen, which is the other overhead measure
used.

3.3 Ranking

As previously stated, we learn and rank using the ranking SVM algorithm. Given a
collection of data points ranked according to preference relationR
 over a document
set D with two objects di ;dj 2 D, and a linear learning function f , we can say

di � dj ) f .di / > f .dj /; (1)

where � indicates that di is preferred over dj . We can define the function f as
f .d/ D w � d , where

f .di / > f .dj / , w � di > w � dj : (2)

The vector w can be learned via the standard SVM learning method using slack
variables [7],

minimize hw � wi C C
X

i;j2jRj
�ij

subject to 8.di ;dj / 2 D W w � di � w � dj C 1 	 �ij

8.i; j / W �ij � 0:

(3)

Discovery of the support vectors and the generalization of the ranking SVM is
done differently [22]. For data that are linearly separable, the �ij are all equal to 0.
In this case, we can view the ranking function as projecting the data points onto
the separating hyperplane. In this case, the support vectors are the pairs of vectors
(di , dj ) nearest each other on the hyperplane. Generalization is achieved by calcu-
lating w to maximize the distance between these closest pairs. The distance between
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these points is calculated as
w.di 	 dj /

kwk (4)

Taking this as our margin � , we can, as with the classification SVM algorithm [7],
maximize the margin by minimizing kwk for all such pairs.

3.4 Features for Learning

Two sets of features are used for learning. For the first set, we use the features
from LETOR (see Sect. 2.3). We leave these features intact, with no modification.
These textual features model the content of the query-document pair. The second set
is built from the MeSH descriptors (see Sect. 2.1) for the OHSUMED documents.
Each vector is composed of 25,186 binary features, with each feature indicating
inclusion of the MeSH descriptor. These features model the metadata assigned to
the documents by the MeSH annotators. It should be noted that MeSH terms offer
an improvement over the textual features, in that annotators assigning MeSH terms
to citations in MEDLINE have access to the entire article, while LETOR features
are limited to the title and abstract.

We hypothesize that ranking functions learned from MeSH data will outperform
those learned from LETOR data, both in ranking performance and the overhead
required to reach similar performance levels.

3.5 Choosing Examples

In order to learn a ranking function, we require a training set. This set will be pro-
vided to us by the user in the form of explicit preference feedback on a subset of the
retrieved documents. In order to ensure that we are asking for user feedback on as
few examples as possible, we choose this subset via active learning.

Active learning describes a learning method wherein the learning algorithm itself
has some control over which examples are added to its training set. Specifically, we
need to ask a user to provide labels for some number of unlabeled examples. The
learner chooses these examples based on some measure of learning utility; for exam-
ple, choosing examples which will decrease the region of uncertainty in a learned
function [10]. Repeated rounds of active learning improve both the learned function
and the examples chosen for learning. Taking our previous measure as an example,
the reduction in the region of uncertainty produces a function with better general-
ization power; however, reducing the region of uncertainty has an added benefit of
leaving behind only examples which continue to contribute to uncertainty.

Two active learning strategies were employed for example selection. We used
random sampling, simply choosing unseen examples at random, as a baseline
against which these two methods will be compared. The first active learning method
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is top sampling. As discussed in [6], ranking functions should have their perfor-
mance optimized toward top-ranked documents. Therefore, top sampling chooses
unseen documents ranked highest by the current ranking function at each round for
feedback. The other active learning method is mid sampling. Similar to Cohn et al.
[10], we wish to reduce uncertainty in our ranking function. A learned ranking func-
tion will rank the best and worst documents with great confidence, but less so those
in the middle. These middle-ranked documents are the ones ranked with the least
confidence; therefore, learning from them should result in a stronger model.

We hypothesize that both top and mid sampling will outperform random sam-
pling, both in ranking performance and overhead cost. We further hypothesize that
top sampling will outperform mid sampling in ranking performance, as mid sam-
pling is training to improve overall performance as opposed to focusing on the
performance of highly ranked documents.

3.6 Eliciting Feedback

Feedback is elicited by asking the user to rate a document’s relevance to his/her
information need. We allow users to express preference on a neutral point scale
(“yes”, “maybe”, “no”), rather than using a forced-choice (“yes or no”) method,
as the former shows higher measurement reliability [8]. This facilitates simulation
using OHSUMED (see Sect. 2.2), allowing the user to rate a document as “definitely
relevant”, “possibly relevant”, or “not relevant”. Levels of relevance were expressed
numerically, i.e., a document judged to be “definitely relevant” was given a score
of 2, “possibly relevant” a score of 1, and “not relevant” a score of 0. These scores
were used both for rank learning and calculating NDCG scores (see Sect. 4.1). The
numeric value of the preference is associated with the query-document pair’s feature
vector, allowing the documents to be ordered for the rank learner (Sect. 3.3)

The number of examples presented for feedback in each round may influence
both how quickly the ranking function is learned, and the quality of the ranking
function. We investigated varying between one and five examples per round.

We hypothesize that functions learned from more feedback per round will have
better ranking performance than those learned from fewer examples per round. This
is an obvious hypothesis to make; more examples per round means more total train-
ing examples. However, we further hypothesize that learning from more examples
per round will require users to look at fewer total examples. Our intuition is that
since each round of training will produce a stronger ranking function, the active
learning will be better at each round compared to ranking functions trained with
fewer examples.

3.7 Stopping Threshold

At some point, feedback rounds must terminate. Rather than arbitrarily choosing a
number of rounds or amount of feedback required before termination, feedback ends
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when the lists produced by the ranking function appear to be converging toward a
stable list. Our convergence threshold is based on the Kendall’s tau rank correlation
coefficient, calculated between the current and immediately previous orderings pro-
duced by the ranking function. Once the correlation between these rankings exceeds
a certain threshold, feedback rounds terminate. Our intuition is that highly correlated
orderings indicate that rankings produced by the ranking function are converging,
and we are therefore not learning any new information from feedback. Thresholds
between 0.9 and 0.5 were investigated.

We hypothesize that higher thresholds will produce better ranking performance,
but the overhead required to meet the threshold will increase.

4 Simulation Using OHSUMED

We test our framework experimentally via simulation, using the OHSUMED data
set (described in Sect. 2.2). The five queries which returned no relevant citations
have been excluded from the simulations. All experiments were run ten times per
query, and the results averaged.

4.1 Metrics

We evaluate ranking performance using normalized discounted cumulative gain
(NDCG) [21], a commonly used measure when multiple levels of relevance are
considered. Discounted cumulative gain (DCG) at position i in a ranked list of
documents is calculated as

DCG@i D
(
ri if i D 1

DCG@(i -1) C ri
log2 i

otherwise
(5)

where ri is the relevance score of the document at position i . For our evaluation, rel-
evant documents receive a score of 2, possibly relevant documents receive a score
of 1, and irrelevant documents receive a score of 0. NDCG is calculated by divid-
ing the DCG vector by an ideal DCG vector, DCGI , calculated from an ideally
ranked list (all documents scoring 2, followed by documents scoring 1, followed by
documents scoring 0). Perfect ranking scores an NDCG of 1.0 at all positions. We
compute NDCG@10 for our evaluation. We evaluate user overhead by counting the
number of feedback rounds to produce a given ranking. Both metrics are averaged
over the 101 queries used for simulation.
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4.2 Results

Learning from MeSH features clearly outperformed learning from LETOR features
in ranking performance. An upper bound for performance comparison was cal-
culated by ranking documents for each OHSUMED query using a ranking SVM
learned from all documents in the query, for both MeSH and LETOR feature vec-
tors. Table 1 shows ranking SVMs learned from MeSH terms yielded nearly perfect
ranking performance, vastly outperforming ranking SVMs learned from LETOR
features. A performance gain is to be expected, as the MeSH terms are tailored to
this data; however, we did not expect the gain to be this great. This trend continues in
the active learning experiments. As shown in Tables 2–4, across all sampling meth-
ods, thresholds, and examples per round, ranking performance of ranking SVMs
learned from MeSH features outperform their LETOR counterparts. For thresholds
above 0.5, though LETOR SVMs consistently reached convergence before MeSH
SVMs (indicating a much lower overhead), the performance was consistently poor.

Top sampling produced better ranking functions than the other two methods.
Curiously, mid sampling performed worse than random sampling. This may be due

Table 1 NDCG calculated across all queries at positions 1–10 for ranking SVMs trained on all
data available for a query

@1 @2 @3 @4 @5 @6 @7 @8 @8 @10

MeSH 0.995 0.993 0.993 0.992 0.995 0.995 0.995 0.995 0.995 0.995
LETOR 0.624 0.634 0.622 0.617 0.606 0.604 0.596 0.593 0.596 0.596

Table 2 Performance for random sampling method, for all examples per round and thresholds.
Top value in each row is NDCG@10, middle value is number of rounds until the convergence
threshold is met, bottom value is total number of examples seen until convergence

Threshold Random sampling
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 0.446 0.490 0.529 0.559 0.574 0.359 0.369 0.384 0.393 0.405
7.197 4.551 3.542 3.287 2.975 7.329 4.823 3.804 3.386 3.088
7.200 9.100 10.63 13.15 14.88 7.329 9.646 11.41 13.54 15.44

0.6 0.464 0.500 0.532 0.566 0.604 0.358 0.373 0.388 0.401 0.411
6.866 4.722 3.886 3.490 3.393 7.461 4.533 3.858 3.540 3.190
6.870 9.440 11.66 13.96 16.96 7.461 9.065 11.58 14.16 15.95

0.7 0.474 0.510 0.563 0.592 0.626 0.361 0.372 0.392 0.407 0.425
7.591 5.250 4.573 4.201 4.108 7.672 4.788 4.223 3.736 3.601
7.591 10.50 13.72 16.80 20.54 7.672 9.576 12.67 14.94 18.00

0.8 0.484 0.543 0.606 0.648 0.687 0.358 0.376 0.405 0.412 0.422
8.411 6.197 5.881 5.861 5.845 7.760 5.284 4.612 4.326 4.144
8.411 12.39 17.64 23.45 29.22 7.760 10.57 13.84 17.3 20.72

0.9 0.521 0.604 0.668 0.726 0.770 0.370 0.384 0.419 0.440 0.456
10.94 9.593 10.06 10.87 10.90 9.205 7.073 6.681 6.640 6.618
10.94 19.19 30.18 43.48 54.52 9.205 14.15 20.04 26.56 33.09
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Table 3 Performance for mid sampling method, for all examples per round and thresholds. Top
value in each row is NDCG@10, middle value is number of rounds until the convergence threshold
is met, bottom value is total number of examples seen until convergence

Threshold Mid sampling
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5
0.455 0.488 0.504 0.533 0.549 0.346 0.367 0.381 0.389 0.399
7.205 4.142 3.489 3.182 2.943 7.250 4.395 3.564 3.167 3.039
7.205 8.280 10.47 12.73 14.71 7.250 8.790 10.69 12.67 15.19

0.6
0.451 0.495 0.519 0.535 0.561 0.358 0.370 0.385 0.400 0.396
7.065 4.701 3.853 3.324 3.269 7.172 4.564 3.776 3.312 3.122
7.065 9.402 11.56 13.30 16.35 7.172 9.129 11.33 13.25 15.61

0.7
0.465 0.505 0.531 0.559 0.576 0.358 0.370 0.380 0.392 0.401
7.430 5.064 4.200 3.961 3.794 6.957 4.662 3.979 3.703 3.460
7.430 10.13 12.60 15.85 18.97 6.957 9.324 11.94 14.81 17.30

0.8
0.475 0.529 0.551 0.590 0.607 0.361 0.380 0.395 0.395 0.408
8.450 5.961 5.340 5.017 4.967 7.987 5.195 4.395 4.168 4.068
8.450 11.92 16.02 20.07 24.84 7.987 10.39 13.19 16.67 20.34

0.9
0.510 0.567 0.612 0.635 0.655 0.362 0.381 0.407 0.427 0.441
10.54 9.471 9.303 9.079 8.866 9.195 6.574 6.413 6.014 5.975
10.54 18.94 27.91 36.32 44.33 9.195 13.15 19.24 24.06 29.88

Table 4 Performance for top sampling method, for all examples per round and thresholds. Top
value in each row is NDCG@10, middle value is number of rounds until the convergence threshold
is met, bottom value is total number of examples seen until convergence

Threshold Top sampling
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5
0.463 0.522 0.562 0.616 0.669 0.374 0.389 0.412 0.443 0.457
6.956 4.425 3.779 3.446 3.464 7.420 4.571 3.774 3.391 3.192
6.956 8.850 11.34 13.78 17.32 7.420 9.143 11.32 13.56 15.96

0.6
0.481 0.543 0.600 0.666 0.724 0.373 0.395 0.427 0.447 0.468
7.332 4.992 4.443 4.184 4.122 7.433 4.862 3.944 3.677 3.330
7.332 9.984 13.33 16.74 20.61 7.433 9.725 11.83 11.71 16.65

0.7
0.490 0.580 0.667 0.742 0.802 0.382 0.406 0.438 0.464 0.472
7.666 5.958 5.642 5.548 5.451 7.677 4.922 4.163 3.785 3.560
7.666 11.92 16.93 22.19 27.26 7.677 9.844 12.49 15.14 17.80

0.8
0.536 0.660 0.767 0.827 0.866 0.387 0.413 0.456 0.483 0.502
8.862 8.228 8.195 7.975 7.761 8.208 5.469 4.822 4.501 4.414
8.862 16.46 24.58 31.90 38.81 8.208 10.94 14.47 18.00 22.07

0.9
0.648 0.799 0.866 0.897 0.918 0.407 0.461 0.498 0.538 0.541
14.97 14.94 14.75 14.05 12.83 9.432 7.502 6.890 6.843 6.285
14.97 29.88 44.25 56.18 64.14 9.432 15.00 20.67 27.37 31.43
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Fig. 5 Comparison of the total number of examples seen to NDCG@10 for all sampling methods,
at thresholds 0.7, 0.8, and 0.9. Markers indicate number of examples per round, from one to five

to the fact that mid sampling is more likely to encounter documents ranked as pos-
sibly relevant as opposed to definitely relevant or irrelevant than random sampling.
Mid sampling did incur less overhead than the other active learning methods, but it
appears as though it converged to a poor final ranking.

In all cases, a greater number of examples per round produced better ranking
performance. This is to be expected, as more examples per round yields a larger
set of training data (see Fig. 5 and Sect. 6 for more discussion on this topic). More
examples per round also decreased rounds to convergence; however, the decrease
in the number of rounds was never great enough to lead to a decrease in the total
number of examples seen.

As expected, higher thresholds for convergence resulted in higher ranking perfor-
mance, at the cost of more feedback rounds. While performance climbed steadily,
there was a marked jump in overhead between thresholds of 0.8 and 0.9.

5 Simulation with a Gradient Oracle

OHSUMED judgments are used as an oracle, or perfect knowledge, source for the
simulations, as the judgments were made by a panel of professionals in the biomed-
ical field. While actual users of this system are likely to be biomedical professionals
as well, it is possible that due to simple human error they will not provide feedback
perfectly in line with their preferences. Furthermore, we would like nonprofession-
als to be able to use the system as well; their feedback may include guesses as to the
relevance of documents regarding subjects with which they are uninformed. In order
to explore the effects of incorrect feedback on system performance, we conducted a
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Table 5 Results for the gradient oracle experiments

Gradient Oracle 1.0 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60

NDCG@10 0.918 0.828 0.743 0.689 0.614 0.574 0.524 0.447 0.425

experiments using a gradient oracle. The gradient oracle provides correct answers
with a certain probability, and incorrect answers for the remaining probability, i.e., a
0.9 gradient oracle giving feedback with an oracle judgment of 2 would produce a 2
with a 90% probability, a 1 with a 5% probability, and a 0 with a 5% probability. We
repeated the experiment using top sampling, at a threshold of 0.9 with 5 examples
per round, using gradient oracle values from 1.0 to 0.6 at intervals of 0.05.

5.1 Results

Table 5 shows NDCG@10 for the gradient oracle experiments, showing a clear
degradation in performance as the oracle’s quality decreases. A linear interpolation
of the points results in a slope of 1.2236, indicating that a drop in feedback quality
creates an even greater drop in performance. A likely reason for this is that poor
feedback will be used to generate poor examples in future rounds, which cripples
the sampling process. The primary implication of this finding is that the system will
have to implement some form of consistency check if it is to be used by nonex-
perts and would be a benefit as well to even the most knowledgeable and careful
professionals.

6 Discussion

Overall, our results are encouraging. We have achieved ranking performance within
8.2% of perfect ranking after an average of 12.8 feedback rounds and 64.14 exam-
ples seen, using top sampling with five examples per round and a convergence
threshold of 0.9.

Experimental results have shown that our hypotheses regarding ranking perfor-
mance are correct, with the exception of the performance of mid sampling. However,
our assumptions regarding the overhead incurred to reach convergence as it relates
to features for learning and sampling methods seem to have been incorrect. Poor per-
formance was linked with less overhead, with better performance always demanding
more overhead. While rounds to convergence fell slightly as the number of exam-
ples per rounds increased, this small decrease is insignificant as the overall number
of examples seen by the user increased.

This led us to investigate whether the number of examples seen was the dominant
predictor of performance. As shown in Fig. 5, however, sampling method played a
greater role in performance. Top sampling provided better ranking performance for
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Fig. 6 The effect of increasing the number of examples per round on the total number of examples
seen, across all thresholds, for top sampling

any number of examples seen, in many cases requiring fewer than half the number
of examples to reach performance similar to the other active learning methods.

A note must be made regarding the stopping criterion. Since termination is deter-
mined as a function of learning, it effectively falls to the active learning technique
to ensure that termination is not premature, as choosing uninformative examples
will cause little to no shift in the ranking function. If this were the case, the learn-
ing process would not fulfill its potential, denied the chance to exhaust its stock of
“good” examples to learn from. The effect of this would be that an active learn-
ing method which could potentially perform as well as another method would have
worse performance and fewer total examples seen than a method which did not end
prematurely. Examples of this happening may be present in this work, especially at
high thresholds looking at 4 or 5 examples per round.

We argue that this effect is likely to be minimal. It is clear that at lower thresh-
olds and lower examples per round, the active learning method itself is the dominant
factor for performance. In Fig. 6, we see that each active learning method tends
to improve as the number of examples increases; however, at no point does it
appear that a method would “catch up” to a higher performing method if allowed to
continue learning.

The remainder of our analysis focuses on factors affecting top sampling. Some-
thing to note in Fig. 5 is that performance gains began leveling off after reaching an
NDCG@10 of around 0.8, requiring increasingly more examples for smaller gains
in performance. Considering the OHSUMED queries returned 152.27 documents
on average, it may appear that decent performance requires feedback on an unrea-
sonable percentage of the returned data. Recall, however, that queries to MEDLINE
often result in thousands of results. Further investigation is required to see whether
queries which return such large results sets require feedback on a similar percentage
of documents, a similar number of documents, or something in between.

We see in Fig. 6 that increasing examples per round increased the total number
of examples seen before the convergence threshold was reached. This ran counter
to one of our hypotheses; we expected that seeing more examples in each feedback
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Table 6 Standard deviations in performance for top sampling. Italics indicates significantly larger
standard deviations, while boldface indicates significantly smaller standard deviations

Top sampling
1 2 3 4 5

0.5 0.208 0.216 0.216 0.222 0.213
0.6 0.207 0.213 0.224 0.221 0.215
0.7 0.206 0.223 0.215 0.220 0.215
0.8 0.217 0.220 0.224 0.207 0.191
0.9 0.237 0.225 0.218 0.176 0.160

round would reduce the total number of examples required to meet the convergence
threshold. As this was not the case, and since examples per round had only a small
effect on rounds until convergence, rounds until convergence must be dependent
almost entirely on the convergence threshold.

We must initially conclude, therefore, that examples per round and the con-
vergence threshold may be largely immaterial to the learning process. If ranking
performance is tied only to the active learning method and number of examples
seen, there may simply be a lower bound on the number of rounds required for
effective active learning to take place, requiring a number of examples per round
equal to the number of examples needed to reach the desired ranking performance
divided by this number of rounds. Further investigation is required to determine this
lower bound, if indeed it exists.

However, this initial conclusion requires further investigation. Recall that per-
formance has been calculated as an average over all OHSUMED queries. Table 6
shows the standard deviations in the means of the NDCG scores calculated across all
queries, for all thresholds and examples per round for the top sampling method. We
find a mean standard deviation of around 0.212, with this mean having a standard
deviation of around 0.016. At thresholds 0.8 and 0.9, we find standard deviations that
deviate strongly from the mean. At four and five examples per round, the standard
deviations are significantly lower than the mean, indicating that the performance is
more stable across all queries.

7 Related Work

SVMs have proven useful for information retrieval tasks similar to the one proposed
here. Drucker et al. [12] compared the use of SVMs for relevance feedback to the
Rocchio and Ide algorithms, and found that SVMs outperformed both. Cao et al.
[6] looked specifically at the problem of using SVMs for retrieval and ranking of
documents. One important finding of theirs relevant to this work is that while an
information retrieval system ought to be optimized for ranking the most preferable
documents, SVMs optimize generally for both high and low document rankings.
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Ranking SVMs have also been used to learn ranking functions from implicitly
generated feedback [22,30]. In [22], Joachims learned ranking functions from search
engine log files, using the clickthrough data from users as a way to implicitly gather
preference data. Results showed that models learned in this fashion were effective
at improving retrieval.

Much of the literature on active learning for SVMs has focused on classifica-
tion, as opposed to ranking [13, 33]. Brinker [3] applied active learning to learning
ranking SVMs; however, this research focused on learning label ranking functions,
which is a fundamentally different task from document ranking. Tong and Chang
[33] used pool-based active learning for image retrieval. Their method of selecting
examples for labeling was based on the finding that by choosing examples which
shrink the size of the version space in which the optimal weight vector w can lie,
the SVM learned from those examples will approximate w. Therefore, examples
are chosen which will most nearly bisect the version space they occupy. This was
achieved in practice by choosing examples based on their proximity to the SVM
boundary; examples close to the boundary are likely to be more centrally located in
the version space, and are thus more likely to bisect it.

Yu [35] constructed a system similar to the one presented here, operating over
real estate data, and noted that methods such those in [33] could not be extended
to learning ranking SVMs. As the ranking problem is more complex than the clas-
sification problem, active learning for learning ranking SVMs was conducted by
selecting the most ambiguously ranked examples for labeling. This was done by
noting that ambiguity in ranking could be measured based on how similarly the
examples were ranked, with the closest pairs of examples being the most ambigu-
ous. This method for selection is directly analogous to that in [33], even though it
does not address reduction in version space; just as the support vectors in a classi-
fying SVM are those examples closest to the SVM boundary, the support vectors in
a ranking SVM are those examples that are most closely ranked. You and Hwang
[34] used a similar framework and data set to learn ranking in a context-sensitive
manner. Both of these works focused on general data retrieval, however, as opposed
to focusing on document retrieval.

7.1 Other Methods for Learning to Rank from Preferences

While our work builds on methods employing ranking SVMs for learning preference
ranking functions, other strategies to address the problem exist. Cohen, Schapire,
and Singer [9] modeled the ranking problem as a directed graph G D .V;E/ with
instances as the graph’s vertices and the weight on an edge between vertices Eu;v

representing the strength of the preference of u over v. The problem was split into
two steps, i.e., learning the weights and then constructing a ranking from the graph,
and two methods for addressing this latter step were introduced. Independent of
ranking was the learning method, based on the Hedge algorithm, which learned
by updating weights based on expert input [14]. The first ranking algorithm was
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a greedy algorithm which computed the difference between the total weight leav-
ing a vertex and the total weight entering it, with larger values indicating greater
overall preference. The second ranking algorithm improved upon the first by sep-
arating strongly connected vertices into separate ranking problems, and combining
the resulting rankings.

Burges et al. [5] used neural networks to rank using preferences by modeling
a probabilistic cost function for pairs of ranked instances. Cost in this case was
modeled as the cross-entropy cost between the known ranking of the pair and the
probability that the model will produce that ranking. The authors then showed how
these probabilities can be combined, allowing for computation of a cost function for
preference pairs. A neural network training algorithm was then implemented, using
the gradient of this function as an updating rule for the network’s weights.

Har-Peled et al. [17] formulated the problem in terms of constraint classification
using pairwise preferences. Specifically, given a set of instances and a set of labels,
the task is to find a function which will produce an ordering of the labels for each
instance. The authors achieve this by learning a binary classification model Mi;j

for each pair of labels Yi , Yj , with Mi;j predicting Yi � Yj . The output from
each classifier is tallied as a vote for the preferred label, and the labels are ranked
according to these votes.

Though certainly not an exhaustive survey of the available work, the approaches
mentioned here provide context and motivation for using ranking SVMs in our solu-
tion. An approach similar to [9] would not work well in our active learning system,
as it is not clear how well the approach performs on unseen data. The authors of [5]
provide data on how long their system took to train, and with a training time that
had to be measured in hours as opposed to seconds, this approach would be cumber-
some in an online system. [17] appears to be addressing a fundamentally different
problem; however, the results from related work by Fürnkranz and Hüllermeier indi-
cating that performance can be preserved in the face of inconsistent data may prove
useful in the future (see Sect. 5).

7.2 Improvements to PubMed Search

Ours is far from the first work attempting to improve the PubMed search experi-
ence. Improvements to the search functionality itself [16, 23] spare users the task
of learning the PubMed search system, at the cost of losing access to its power-
ful feature set. Other improvements retain the power of PubMed search and still
hide its complexity, but doing so removes access to features some users may require
[26]. Improvements to results presentation often focus on ranking results, either by
“importance-based” measures [20, 29] or by similarity to a user-defined set of doc-
uments [32]. While some users’ preference may be importance-based, many others
may find such a ranking inadequate to reflect their preferences. And while allowing
users to define a set of documents allows for user-based ranking, requiring users to
create such a set every time they query PubMed is an unreasonable burden.
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MeSH terms have, however, been used as a tool to aid biomedical professionals
both in performing searches in PubMed, and in analyzing search results [2, 18, 24].
In particular, Lin et al. [24] used MeSH terms along with keywords to generate
labels for documents clustered together using textual features, while Blott et al. [2]
clustered based on the MeSH terms themselves. To the best of our knowledge, ours
is the only existing work, which attempts document ranking using solely MeSH
terms.

8 Conclusion and Future Work

We have presented a framework for learning ranking functions from user feedback,
designed for biomedical professionals searching MEDLINE. We have shown that
learning these functions using MeSH metadata is superior to learning from textual
features, and that by employing active learning we can achieve near perfect ranking
performance using less than half of the available data. Questions remain regarding
whether the amount of data required to achieve this performance is proportional to
the size of the number of documents retrieved, and whether there is a lower bound
on the number of feedback rounds required to gain the benefit of active learning.

Future work will investigate these questions. It will also include implementa-
tion of the system as a web-based search utility. A user study will be conducted
with parameters similar to experiments presented here to assess its performance on
“live” queries. System capabilities will be expanded to allow users to save results of
previous searches along with their associated ranking functions, as well as applying
previously learned ranking functions to new search results.

The introduction of human users to the system introduces the possibility of incor-
rect or inconsistent feedback. We have shown that this poses a serious threat to
system performance. Future work will address this issue as well. Potential areas
for investigation include using a window of preference data, e.g., training a ranking
model at each round from feedback obtained from the previous n feedback rounds.
Another area of investigation is to ignore some user feedback. Results from [15]
showed that ignoring potentially erroneous feedback results in better performance
over models which included the potentially erroneous feedback.

The system presented here will also be adapted to other domains, particularly
that of legal discovery. As discovery is often carried out over collections containing
millions of documents, we can expect to see feedback on hundreds or thousands
of documents, instead of dozens. However, we clearly cannot expect users to give
feedback on a percentage of retrieved documents similar to the percentage used in
these experiments. Answering the question of how much feedback is required to
learn a reasonable ranking function will be central to the feasibility of application
to this domain.
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Learning Preference Models in Recommender
Systems

Marco de Gemmis, Leo Iaquinta, Pasquale Lops, Cataldo Musto,
Fedelucio Narducci, and Giovanni Semeraro

Abstract As proved by the continuous growth of the number of web sites which
embody recommender systems as a way of personalizing the experience of users
with their content, recommender systems represent one of the most popular appli-
cations of principles and techniques coming from Information Filtering (IF). As IF
techniques usually perform a progressive removal of nonrelevant content according
to the information stored in a user profile, recommendation algorithms process infor-
mation about user interests – acquired in an explicit (e.g., letting users express their
opinion about items) or implicit (e.g., studying some behavioral features) way – and
exploit these data to generate a list of recommended items. Although each type of
filtering method has its own weaknesses and strengths, preference handling is one
of the core issues in the design of every recommender system: since these systems
aim to guide users in a personalized way to interesting or useful objects in a large
space of possible options, it is important for them to accurately capture and model
user preferences.

The goal of this chapter is to provide a general overview of the approaches to
learning preference models in the context of recommender systems. In the first part,
we introduce general concepts and terminology of recommender systems, giving a
brief analysis of advantages and drawbacks for each filtering approach. Then we will
deal with the issue of learning preference models, show the most popular techniques
for profile learning and preference elicitation, and analyze methods for feedback
gathering in recommender systems.

1 Introduction

How many times did you find a lot of unwanted mails opening your mailbox? How
many times did you search something on the Web and you were not able to find
what you were looking for?
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The existence of a large quantity of information, in combination with the dynamic
and heterogeneous nature of the Web, makes retrieval a hard task for the average
user, who is usually overwhelmed by the abundant amount of information.

In this context (we usually refer to this as Information Overload problem), the
role of user modeling and personalized information access is becoming crucial:
although it is too soon to deeply understand the long-term effects of this surplus
of information in our habits and in daily life, it is clear that users need a personal-
ized support in sifting through large amounts of available information according to
their interests and preferences.

Information Filtering systems, such as Recommender Systems, relying on this
idea, adapt their behavior to individual users by learning their tastes during the
interaction to construct a profile that can be later exploited to select relevant items.
Nowadays these systems represent the main solution to the information overload
problem, because they are able to gather and exploit heterogeneous information
about users, emerging as one of the most useful tools to achieve a more intelligent
information access.

In the workflow of a typical recommendation process, learning user preferences
is a primary step: catching and modeling user interests in an effective way can be a
key issue for personalization goals. Gathering user characteristics, acquired through
an explicit (e.g., directly asking to the user) or implicit process (e.g., observing
the user behavior), can produce a user model to be exploited to enable adaptivity
mechanisms during the interaction with an information system.

The problem of recommending items has been studied extensively, and two main
paradigms have emerged. Content-based recommendation systems try to recom-
mend items similar to those a given user has liked in the past, whereas systems
designed according to the collaborative recommendation paradigm identify users
whose preferences are similar to those of the given user and recommend items
they have liked [4]. Further, in the literature we found also other noteworthy
paradigms: demographic recommenders, whose aim is to categorize the user starting
from personal attributes making recommendation based on demographic classes;
knowledge-based systems, which exploit knowledge about how a particular item
meets a particular user need (such as case-based reasoning that solve a problem
retrieving a past similar solved one [30];) hybrid systems, at last, combine differ-
ent recommendation techniques trying to exploit their advantages and reducing at
the same time their drawbacks. Each of above paradigms has particular methods to
elicit user interests and preferences: most of them are related to machine learning
area (probabilistic models, bayesian or neural networks, decision trees, association
rules), but there are also some other techniques (so-called heuristics) which learn
user profiles by exploiting preferences expressed by similar users (usually referred
to as “neighbours”) or processing textual contents describing the items liked. The
goal of this chapter is to provide a general overview of the approaches to learning
preference models in the context of recommender systems, by showing advantages
and drawbacks of each technique and finally giving a brief analysis of the state of
the art.
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This chapter is organized as follows. Section 2 introduces general concepts and
terminology about recommender systems. Preference learning issues in the area of
recommender systems are presented in Section 3, where we also introduce the feed-
back gathering problem and some machine learning techniques used to acquire and
infer user preferences. Conclusions are drawn in the last section.

2 Basics of Recommender Systems

Nowadays it is very important for people to be supported in their decisions, due to
the exponential increase of available information.

Everyday we get advice from other people: “Hey, check out this Web site”, “I saw
this book, you will like it”, “That restaurant is very good!”. When making a choice in
the absence of decisive first-hand knowledge, choosing as other like-minded people
have chosen in the past may be a good strategy. Recommender systems have the
same role as human recommenders: they present information that they perceive to
be useful and worth trying out.

These systems are used in several application domains to support users in taking
decisions, to help them in managing the exponential increase of information and, in
general, to provide a more intelligent form of information access.

The creation and management of personalized recommendations require mainly
three distinct and important components: a user profile, an algorithm to update the
profile given usage/input information, and an adaptive tool that exploits the profile
to provide personalization.

First, the system needs to be able to store relevant information about users that
will be used to infer their preferences and needs. Such information is stored in
an individual user profile. Second, if the system has to adapt with the user over
time, some mechanism is needed to keep the profile up-to-date. This could happen
through explicit data input or implicit recording of user behavior as she interacts
with the system, or a combination of them. Third, the system needs some way to
exploit the current profile data in making recommendations to the user. The types
of information stored in the profile will depend on the goals of the system and the
algorithms it employs to provide recommendations. Different approaches to recom-
mendation will require different pieces of information about the user, thus the profile
structure will differ from system to system.

In this section, we provide a complete overview of the latter step, showing the
main recommending approaches and explaining the benefits and weaknesses of each
one, while in Section 3.1 we analyze thoroughly the techniques used to acquire and
infer user preferences through explicit or implicit feedbacks.

2.1 Content-Based Recommender Systems

The core of the content-based approach is the processing of the contents describing
the items to be recommended. The items can be very different depending on the
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number and type of attributes used to describe them. Each item can be described
by the same small number of attributes with known sets of values, but this is not
appropriate for items, such as Web pages, news or documents, described by means
of unstructured text. In this case, there are no attributes with well-defined values, and
the use of document modeling techniques with roots in information retrieval [3, 45]
and information filtering [5] research is desirable.

A method to represent unstructured data is the Vector Space Model (VSM). The
VSM [50] is a spatial representation of text documents. In this model, each doc-
ument is represented by a vector in a n-dimensional space, where each dimension
corresponds to a term from the overall vocabulary of a given document collection.
Formally, every document is represented as a vector of term weights, where each
weight indicates the degree of association between the document and the term.

The content-based approach can be applied only in the domains where we can
provide some textual source describing the items: for example, text recommenda-
tion systems like the newsgroup filtering system NewsWeeder [26] uses the words
of their texts as features. Otherwise, in the domain of movies, the attributes can
be movie genre (comedy, horror, drama, etc), main actor and actress, producer,
director, etc.

A content-based recommender learns a profile of the user interests based on the
features present in the objects the user rated. For example, if a feature (e.g., Inter, or
football) occurs in some news the user previously liked, we can expect that he will
like other news where this feature often occurs. In this case, a text document may be
recommended based on a comparison between the content of the document and the
user profile. The system exploits the user profile to suggest relevant items by match-
ing the profile representation against that of items to be recommended. The result of
this matching is a binary or continuous relevance judgment, the latter case resulting
in a ranked list of potentially interesting items. If data are represented by the VSM,
the matching might be realized by computing the cosine similarity between the pro-
totype vector and the item vectors. In some cases, the user is asked for feedback
after the document has been shown to her. If the user likes the recommendation, the
weights of the words extracted from the document are increased. This process is
called relevance feedback.

The adoption of the content-based recommendation paradigm has several advan-
tages when compared to the collaborative one:

– USER INDEPENDENCE: Content-based recommenders exploit solely ratings pro-
vided by the active user to build her own profile. Instead, collaborative filtering
methods need ratings from other users to find the “nearest neighbors” of the
active user, i.e., users that have similar tastes (rated the same items similarly).
Then, only the items that are most liked by the neighbors of the active user would
be recommended;

– TRANSPARENCY: Explanations of recommended items can be provided by explic-
itly listing content features or descriptions that caused an item to be recom-
mended. These features are indicators to consult to decide when to trust a recom-
mendation and when to doubt one. On the other hand, collaborative systems are
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black boxes since the only motivation for an item recommendation is that users
with similar tastes liked that item;

– NEW ITEM: Content-based recommenders are capable of recommending items
not yet rated by any user. As a consequence, they do not suffer from the new
user problem, which affects collaborative recommenders relying solely on users’
preferences to make recommendations. Therefore, until the new item is rated by
a substantial number of users, the system would not be able to recommend it.

On the other hand, content-based systems have the following shortcomings.

2.1.1 Limited Content Analysis

Content-based techniques are limited by the features that are associated either
automatically or manually with the objects that these systems recommend. No
content-based recommendation system can provide good suggestions if the con-
tent does not contain enough information to distinguish items the user likes from
items the user does not like. Some representations capture only certain aspects of
the content, but there are many others that would influence a user’s experience. For
instance, there often is not enough information in the word frequency to model the
user interests in jokes or poems, while techniques for affective computing would
be most appropriate. Again, for Web pages, feature extraction by using techniques
for text representation completely ignores aesthetic qualities and all multimedia
information.

To sum up, both automatic extraction and manually assignment of features to
items could not be sufficient to define the distinguishing aspects of items able to
elicit the user interests.

2.1.2 Overspecialization

Content-based recommenders have no inherent method for finding something unex-
pected. The system recommends only items scoring highly against the user profile,
hence the user is limited to being recommended items similar to those already rated.
This drawback is also called serendipity problem. To give an example, when a
user has only rated movies based on novels by Stephen King, she will be recom-
mended just this kind of movies. A “perfect” content-based technique would never
find anything novel, limiting the range of applications for which it would be useful.

2.1.3 New User

Enough ratings have to be collected before a content-based recommender sys-
tem can really understand user preferences and provide accurate recommendations.
Therefore, when few ratings are available, such as for a new user, the system would
not be able to provide reliable recommendations.
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2.2 Collaborative Recommender Systems

We can think of the Collaborative Filtering (CF) paradigm as a computerized pro-
cess of word of mouth. For instance, when looking for a restaurant we usually rely
on friends advice, or when looking for a book to read we ask friends who have the
same taste. Similarly in collaborative recommender systems, user opinions are used
to choose what items the user likes. In CF systems, recommendations are based on
evaluations of users who share similar interests among them. The idea behind these
systems is that a set of users which liked the same items in the past probably share
the same preferences. Thus, picking a user from this set, we can suggest her all the
unseen items which other users with similar tastes showed to like in the past.

Opinions on items can be expressed as explicit user ratings on some scale ranging
from bad to good, or as implicit ratings given by logging user actions. As an example
of the latter, viewing or skipping items could be interpreted as positive and negative
ratings, respectively.

CF systems analyze opinions of other users on items, thus they provide a liking
degree not based on the nature of the item, but on human judgment. Because of this
characteristic, CF systems are generally perceived to be more useful than IF based
systems [19].

The main advantage of collaborative methods is that items in different prod-
uct categories can be recommended. Movies, images, art, and text items are all
represented by opinions of users and thus they can be recommended by the same
system.

In collaborative filtering, a user profile simply consists of the data the user
has specified. These data are compared to those of other users to find overlaps in
interests among users. For example, the nearest neighbor approach, used in some
collaborative recommender system [29], represents the preferences by the items
rated (or purchased) by the user. The profile is represented by the user-item matrix
[34], where for each cell (u,i) we have the rating of the user u on the item i. Thus,
the recommender algorithm exploits the matrix to identify for each user the set of
nearest neighbors. In this case, the recommender algorithm performs three tasks: it
finds similar users, creates the nearest neighbors set for each user, and infers the like
degree for an unseen item based on the nearest neighbors behavior. For example, in
an e-commerce scenario, when the user u puts the “Shining” movie into her basket,
the system recommends her the “Silence of the lambs” book because more users
(who share similar tastes with her, i.e., the nearest neighbors of u) purchased them
together.

Terveen and Hill [58] claim three essentials are needed to support collaborative
filtering: many people must participate (increasing the likelihood that any one per-
son will find other users with similar preferences), there must be an easy way to
represent the user interests in the system, and the algorithms must be able to match
people with similar interests. These three elements are not that easy to develop, and
produce the main shortcoming of collaborative filtering systems. Following are the
main limitations of collaborative systems [4, 27].
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2.2.1 New User Problem

In order to make accurate recommendations, the system must first learn the pref-
erences of the user from her ratings. Several techniques have been proposed to
address this problem. Most of them use a hybrid recommendation approach, which
combines content-based and collaborative techniques.

2.2.2 New Item Problem (Early Rater)

New items are added regularly to recommender systems. Collaborative systems rely
only on users preferences to make recommendations. Therefore, until the new item
is rated by a substantial number of users, the recommender system would not be able
to recommend it. As extreme case of the early rater problem, when a collaborative
filtering system first begins, every user suffers from the early rater problem for every
item. This problem can also be addressed using hybrid recommendation approaches.

2.2.3 Sparsity Problem

In any recommender system, one of the biggest problem to find recommendations
is the extreme sparsity of data in the database. The number of ratings obtained is
usually very small compared to the number of ratings to be predicted. Effective pre-
diction of ratings from a small number of examples is important. Also, the success
of the collaborative recommender system depends on the availability of a critical
mass of users. For example, in a movie recommendation system there might be
many movies that have been rated only by few people and these movies would be
recommended very rarely, even if those few users gave high ratings to them. One
way to overcome the problem of rating sparsity is to use user profile information
when calculating user similarity. That is, two users could be considered similar not
only if they similarly rated the same items, but also if they belong to the same demo-
graphic segment. For example, Pazzani uses gender, age, area code, education, and
employment information of users in a restaurant recommendation application [39].
This extension of traditional collaborative filtering techniques is sometimes called
demographic filtering.

2.2.4 Grey Sheep Problem (Unusual User)

In a small or even medium community of users, there are individuals who would not
benefit from pure collaborative filtering systems because their opinions do not con-
sistently agree or disagree with any group of people. These individuals will rarely,
if ever, receive accurate predictions, even after the initial start-up phase for the user
and the system [13].
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The majority of users falls into the class of the so-called white sheep, those who
have high correlation with many other users and who will therefore, in theory, be
easy to find recommendations for. The opposite type of people are the black sheep,
those for whom there are no or few people who they correlate with. This makes it
very difficult to make recommendations for them. On the positive side, for statistical
reasons, as the number of users of a system increases the chance of finding other
people with similar tastes increases and so better recommendations can be provided.

2.2.5 Scalability Problem

Collaborative filtering systems require a lot of computational resources with the
increasing number of users and items. Collaborative filtering systems require data
from a large number of users before being effective as well as requiring a large
amount of data from each user. The critical dependency on the size and composi-
tion of the user population also influences a users group of nearest neighbors. In a
situation in which feedback fails to cause this group of nearest neighbors to change,
expressing dislike for an item will not necessarily prevent the user from receiving
similar items in the future. Furthermore, the lack of access to the content of items
prevents similar users from being matched unless they have rated the exact same
items.

2.3 Demographic Recommender Systems

These systems aim to categorize the user starting from personal attributes making
recommendation based on demographic classes. Grundy [47], for example, rec-
ommends books by gathering personal information through an interactive dialog
matching users responses against a library of manually assembled user stereotypes.
LifeStyle Finder [25] tries to identify to which cluster a user belongs tailoring rec-
ommendations exploiting preferences of the other users in the cluster. Pazzani [39]
uses machine learning techniques to obtain a classifier based on demographic data.
The representation of demographic information in a user model can vary greatly.
Grundy system uses hand-crafted attributes with numeric confidence values, while
Pazzani extracts features from users’ home pages.

The benefit of a demographic approach is that it may not require a history of user
ratings of the type needed by collaborative and content-based techniques. However,
up to our knowledge, there are not many recommender systems using demographic
data because this form of information is difficult to collect: till some years ago,
indeed, users were reluctant to share a big amount of personal information with a
system. Nowadays with the exponential growth of social network and the continuous
expansion of Web 2.0 platforms like Flickr and YouTube, the situation is changed:
people’s point of view is evolving toward a more open perspective, with users more
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trustful to sharing of information. Despite this, still today demographic approaches
notice less success than others.

2.4 Knowledge-Based Recommender Systems

These systems uses a knowledge-based approach to generate recommendations.
All recommendation techniques make some kind of inference. Knowledge-based

approaches are distinguished in that they have functional knowledge: they have
knowledge about how a particular item meets a particular user need, and can
therefore reason about the relationship between a need and a possible recommen-
dation [11]. The user profile can be any knowledge structure that supports this
inference. In the simplest case, as in Google, it may simply be the query that the
user has formulated. In others, it may be a more detailed representation of the user
needs [59].

A particular kind of knowledge-based recommender systems implement case-
based reasoning (CBR). This recommender solves a new problem by retrieving a
known solution to a similar problem. In [30], four main steps of a CBR recom-
mender are identified: retrieve, reuse, adaptation, and retain. The first step looks in
the knowledge-base for a case similar to the new problem, then reuses the retrieved
solution (making some adaptation, if necessary). Finally, the new adapted case is
stored in the caselibrary. In this system, there is not a user preference elicitation
because the main task of the recommendation algorithm is to retrieve the case most
similar to the problem to solve. From the point of view of the system, the search for
a product to recommend is similar to diagnose a disease. In the first case, the sys-
tem retrieves a product with particular requirements, in the latter case, it retrieves a
disease with particular symptoms.

A knowledge-based recommender system avoids some of the drawbacks of
other recommendation techniques. It does not have a ramp-up problem (“early
rater” problem and the “sparse ratings” problem) since its recommendations do
not depend on a base of user ratings. As stated above, it does not have to gather
information about a particular user because system judgments are independent of
individual tastes. These characteristics make knowledge-based recommenders not
only valuable systems on their own, but also highly complementary to other types
of recommender systems [10].

2.5 Hybrid Recommender Systems

They combine two or more recommender algorithms (the more frequent approach
is to combine collaborative filtering with content-based filtering) to emphasize their
strengths and to level out their corresponding weaknesses.
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Robin Burke proposed a very analytical classification of hybrid systems [11],
listing a number of hybridization methods to combine pairs of recommender algo-
rithms.

– WEIGHTED: In weighted hybrid recommenders, the score (or votes) of a rec-
ommended item is computed from the results of all of the available recommen-
dation techniques present in the system. This means that the scores of several
recommendation techniques are combined together to produce a single recom-
mendation. The simplest combined hybrid would be a linear combination of
recommendation scores.

– SWITCHING: A switching hybrid uses some criterion to switch between recom-
mendation techniques. Switching hybrids introduce additional complexity into
the recommendation process since the switching criteria must be determined,
and this introduces another level of parameterization.

– MIXED: Recommendations from several different recommenders are presented
at the same time. This may be possible where it is practical to make large number
of recommendations simultaneously.

– FEATURE COMBINATION: Features from different recommendation sources are
thrown together into a single recommendation algorithm. For example, content
and collaborative techniques might be merged treating collaborative information
as simply additional feature data associated with each example and using content-
based techniques over this augmented data set.

– CASCADE: The cascade hybrid involves a staged process because one recom-
mender refines the recommendations given by another one. This means that
one recommendation technique is employed first to produce a coarse ranking
of candidates and a second technique refines the recommendation from the
candidate set.

– FEATURE AUGMENTATION: Output from one technique is used as an input fea-
ture to another. This means that one technique is employed to produce a rating
or classification of an item and that information is then incorporated into the
processing of the next recommendation technique.

– META-LEVEL: The model learned by one recommender is used as input to
another. This differs from feature augmentation: in an augmentation hybrid, we
use a learned model to generate features for input to a second algorithm; in a
meta-level hybrid, the entire model becomes the input.

In order to complete the survey, we should also mention some hybrid rec-
ommender systems combining collaborative and content-based methods, such as
Fab [4], WebWatcher [21], P-Tango [13], ProfBuilder, [60], PTV [56], Content-
boosted Collaborative Filtering [31], and CinemaScreen [49].

3 Learning User Preferences in Recommender Systems

Before entering in technical details concerning methods for preference acquisition
and especially techniques for learning user profiles, we need to take a step backward
to thoroughly analyze other important issues: what are preferences?
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As stated by [9], a preference is an ordering relation between two or more items
that lets us to characterize which, among a set of possible choices, is the one that best
fits our tastes. Preferences are something able to guide our choices, discriminating
items we like from those we do not like (or we like the least). In other terms, learning
user preferences is a way to find the solution of a research (or optimization, in some
cases) problem whose space of possible solutions is represented by the set of the
items the user can enjoy (namely, in recommender systems, the set of items that can
be recommended). Although the semantics of the concept of preference is pretty
clear, acquiring user preferences and working with them is a more difficult task.
Indeed, the complexity of the problem of preference learning is strictly related to
the number of dimensions we used to represent the set of possible choices. We can
think at a simple example: choosing a mobile phone. If the only feature to consider
is its price, ordering the set of phones and suggesting user the preferred one (namely,
the cheaper one) is a simple task. However, if we also add only one more feature
(e.g., camera zoom) ordering process becomes more complex and hardly to manage
by users in an effective way. When we choose a restaurant, in the same way, we need
to find a trade-off between a lot of aspects such as price, service, distance, available
time, quality of food, and so on.

So, to generate a user profile, we need to gather user feedback to catch infor-
mation about user preferences and model them using a specific representation.
Next, this information can be processed (e.g., through machine learning-related
approaches) in order to learn user profiles to be exploited in the recommendation
process.

3.1 Feedback Gathering

The information filtering and information retrieval systems rely on relevance feed-
back (RF) to capture an appropriate snapshot of user information needs in order to
allow the user to directly express her notion of relevance with respect to individual
documents [5]. RF has been employed in several classes of personalization systems.
Driven by the need for better representation of information needs, RF was initially
introduced to support basic query expansion [48]. However, its success in inferring
the user’s notion of relevance on a per-document basis has lead to a subsequent
adoption by information filtering and recommendation systems. RF approaches are
based on a feedback gathering scheme, either explicit or implicit. In the former,
object ratings of predefined scale are provided explicitly by users, while implicit
feedback gathering techniques infer object relevance in a transparent fashion, by
monitoring user interaction with the system.

3.1.1 Explicit Ratings

The use of explicit ratings is common in everyday life; ranging from grading stu-
dents’ work to assessing competing consumer goods (see Alton-Scheidl et al. [2]
for a review). Although some forms of rating are made in free text form (e.g., book
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reviews), it is frequently the case that ratings are made on an agreed discrete scale
(e.g., star ratings for restaurants, marks out of ten for films, etc). Ratings made on
these scales allow these judgments to be processed statistically to provide averages,
ranges, distributions, etc.

Several online systems have adopted the explicit ratings approach. For instance,
Grouplens [45] provides the collaborative filtering of Internet news. Grouplens users
rate articles after having read them and the system aggregates ratings and analy-
ses for future use. MovieLens [33] follows a similar technique to provide movie
recommendation services to their members by creating a user profile based on sub-
jective rating of films. Since both these systems originate directly from user explicit
judgments, they lead to an accurate estimation of information requirements.

A central feature of explicit ratings is that the evaluator has to examine an item
and assign it a value on the rating scale. This imposes a cognitive cost on the eval-
uator to assess the performance of an object [37]. Indeed, the act of rating alters
the user behavior from her normal interaction pattern and, consequently, even less
noticeable explicit feedback approaches are considered expensive. Since the results
may not become immediately apparent, users tend to skip the rating task [18].

Also, explicit RF techniques disregard user knowledge on the current topic. Users
are often unclear about their search interests. They browse for more information to
clarify their need and re-formulate their query accordingly. The uncertainty in their
search episodes increases the cognitive load during explicit RF, as users must decide
on the relevance of a document possibly with a lack of confidence.

Finally, the use of explicit ratings imposes privacy issues that have to be resolved
[22]. Irrespective of the underlying reason, users are not always comfortable in pro-
viding direct indications of their interests. Due to the obtrusive nature of explicit
ratings, not many users are willing to provide them. Hence, the performance of
profile capturing and recommendation algorithms of such systems degrades, due to
the dearth of ratings. In social filtering systems based on explicit feedback gathering
policies, the sparsity of RF judgments can often render such systems unusable, since
there are few previous assessments to learn from.

Explicit RF can relying also on critiquing examples. For instance, SmartClient
[42] is a tool for planning travel arrangements. Users are required to criticize exam-
ples of possible solutions. For instance, “the arrival time of this flight leg is too late.”
The interaction is cyclical: (1) the system provides example solutions, (2) the user
examines any of them and may state a critique on any aspect of it, (3) the critique
becomes an additional preference in the model, and (4) the system refines the solu-
tion set. Ricci and Nguyen [46] propose a similar critiquing interaction to provide
recommendations of restaurants in a mobile context.

As discussed in Pu and Chen [41], the motivation for this methodology is that
people usually cannot state preferences in advance but construct their preferences
as they see the available options. However, because the critiques come from the
user in response to the shown examples, the current solutions can hinder the user
from refocusing the search in another direction (the anchoring effect). A complete
preference model can be acquired only if the system is able to stimulate the user by
showing diverse examples.



Learning Preference Models in Recommender Systems 399

3.1.2 Implicit Ratings

Implicit RF gathering techniques are proposed as unobtrusive alternative or sup-
plement to explicit ratings to state (indirect) assessment about usefulness of any
individual item. Such techniques passively monitor user interactions with the sys-
tem to estimate user interests [36]. Click-throughs, time spent viewing a document
and mouse gestures are among the possible sources of implicit feedback [23]. The
main benefits of implicit feedback, over explicit ratings, are that they remove the
cognitive cost of providing relevance judgments explicitly and they can be gathered
in large quantities and aggregated to infer item relevance. Since implicit judg-
ments are derived transparently, they contain less indicative value than explicit
ratings. Although the accuracy of implicit approaches has been questioned [37],
recent studies have shown that they can be effectively adopted to state relevance
feedback [61].

There are several types of feedback that can be implicitly captured. For instance,
whether a message was read or ignored, whether it was saved or deleted, and
whether or not a follow-up message was posted are utilized as an implicit feed-
back source in conjunction with explicit rating by InfoScope [57] to filter Internet
discussion groups. Monitoring the reading time of a document could also be used.
Morita and Shinoda [36] concluded that the time spent reading documents on the
web is closely related to the degree it suits the needs of each user. An alternative
measure of implicit feedback is to assume that all printed documents are relevant
and therefore try to detect the user profile from this kind of behavior [24].

Nichols [37] presented a list of potential types of user behaviors that could
be exploited as sources for implicit feedback. Kelly and Teevan [23] extended a
classification of observable feedback behaviors according to two axes, Behavior
Category1 and Minimum Scope2 to categorize actions that can be observed during
user information seeking episodes. Their work has also focused on classifying exist-
ing scientific literature on implicit feedback according to Behavior Category and
Minimum Scope. Unsurprising, a lot of analyzed works concerns examination with
object scope, i.e., click-through or scrolling measures are largely investigated and
exhibit a strong positive correlation with the explicit ratings. Such data can be eas-
ily captured in realtime at no considerable computational cost, while user behaviors
that fall in the “Reference”, “Annotate”, and “Create” require a more precise control
over individual services and applications and, thus, are hard to capture and benefits
for estimating user interests are not fully clear.

1 The Behavior Category (Examine, Retain, Reference, Annotate, and Create) refers to the
underlying purpose of the observed behavior.
2 Minimum Scope (Segment, Object, and Class) refers to the smallest possible scope of the item
being acted upon.



400 M. de Gemmis et al.

3.2 Modeling User Preferences

Feedback gathering techniques let us collect as much information as possible about
user tastes and interests. However, before this information can be exploited, it needs
to be represented in a way that facilitates the learning of preference models. Tech-
niques for modeling information (we usually refer to this as items, in recommender
systems) can be split depending on the kind of data which will be stored in the user
profile. If we have to handle unstructured data (the ones kind usually exploited by
content-based recommenders), it is necessary to process them through some infor-
mation retrieval-related techniques (such as stemming, lemmatization, indexing, and
so on), which allow us to shift from a textual source to a structured one. For struc-
tured data, such as generic ratings or some well-defined attribute-value pairs (e.g.,
demographic data), instead, it is possible to represent them through a matrix, as it
usually happens in collaborative recommender systems. In both cases, all the infor-
mation provided by the user, apart from their nature, can be also represented in a
more complex way (semantic or neural networks, probabilistic models, etc.) so that
we can use them as input for learning user profiles.

In the next section, we will focus our attention on machine learning techniques
showing how we can learn a user profile and adapt it gathering user feedback on
recommended items. We will complete the analysis trying to give also a com-
plete overview of the state of the art in this area, showing how each approach was
implemented in a real recommender system.

3.3 Techniques for Learning User Profiles

Most systems learn user profiles using an online learning approach, building and
updating the model to make recommendations in real time. Offline learning meth-
ods, instead, fit better in domains where, as stated in [34], user preferences change
slowly with respect to the time needed to build the model.

The application of machine learning techniques is a typical way to fulfill the
task of learning user profiles in model-based recommender systems. A common
approach is to learn the user profile by building a classifier. In [34], a classifier is
defined as a model able to assign a category to a specific input.

In the machine learning approach to categorization, an inductive process auto-
matically builds a classifier by learning from a training set (items labeled with the
categories they belong to) the features of the categories. In this approach, the prob-
lem of learning user profiles is considered as a binary categorization task: each item
has to be classified as interesting or not with respect to the user preferences. There-
fore, the set of categories isC D fcC; c�g, where cC is the positive class (user-likes)
and c� the negative one (user-dislikes).

Classifiers may be implemented using many different machine learning strate-
gies including probabilistic approaches, neural networks, decision trees, association
rules, and Bayesian networks. In this section, we provide a general overview of these
techniques.
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3.3.1 Naïve Bayes

It is the most used probabilistic algorithm and belongs to the general class of
Bayesian classifiers.

These approaches generate a probabilistic model based on previously observed
data. It is usually used in content-based recommender systems where the items to
recommend are represented by textual documents. Thus, the model estimates the
a posteriori probability, P.cjd/, of document d belonging to class c. This esti-
mation is based on the a priori probability, P.c/, the probability of observing a
document in class c, P.d jc/, the probability of observing the document d given c
and, P.d/, the probability of observing the instance d . Using these probabilities,
the Bayes theorem is applied to calculate P.cjd/:

P.cjd/ D P.c/P.d jc/
P.d/

(1)

To classify the document d , the class with the highest probability is chosen:

c D argmaxcj

P.cj /P.d jcj /
P.d/

P.d/ is generally removed as it is equal for all cj . As we do not know the value
for P.d jc/ and P.c/, we estimate them by observing the training data. However,
estimating P.d jc/ in this way is problematic, as it is very unlikely to see the same
document more than once: the observed data is generally not enough to be able
to generate good probabilities. The naïve Bayes classifier overcomes this problem
by simplifying the model by making the independence assumption: all the words
or tokens in the observed document d are conditionally independent of each other
given the class. Individual probabilities for the words in a document are estimated
one by one rather than the complete document as a whole. The conditional inde-
pendence assumption is clearly violated in real-world data, however, despite these
violations, empirically the naïve Bayes classifier does a good job of classifying text
documents [6, 28].

Although naïve Bayes classifiers are not as good as probability estimators, it
has been shown that they can perform surprisingly well in the classification tasks
where the computed probability is not important [17]. Another advantage of the
naïve Bayes approach is that it is very efficient and easy to implement compared to
other learning methods.

The naïve Bayes classifier has been used in several content-based recommenda-
tion systems, such as Syskill and Webert [38,40], NewsDude [7], Daily Learner [8],
LIBRA [35], and ITR [16, 54].

3.3.2 Rocchio’s Method

Some linear classifiers consist of an explicit profile (or prototypical document) of
the category [53]. The Rocchio’s method is used for inducing linear, profile-style
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classifiers. It relies on an adaptation to text categorization of the well-known
Rocchio’s formula for relevance feedback in the VSM [48].

This algorithm represents documents as vectors so that documents with similar
content have similar vectors. Each component of such a vector corresponds to a term
in the document, typically a word. The weight of each component is computed using
the TF-IDF [51] term weighting scheme. Learning is achieved by combining docu-
ment vectors (of positive and negative examples) into a prototype vector for each
class in the set of classes C . To classify a new document d , the similarity between
the prototype vectors and the corresponding document vector representing d are
calculated for each class (e.g., by using the cosine similarity measure), then d is
assigned to the class with which its document vector has the highest similarity value.
More formally, Rocchio’s method computes a classifier 	!ci D .!1i ; : : : ; !jT ji / for
category ci (T is the vocabulary, that is the set of distinct terms in the training set)
by means of the formula:

!ki D ˇ �
X

fdj2POSi g

!kj

jPOSi j 	 � �
X

fdj2NEGi g

!kj

jNEGi j ; (2)

where !kj is the TF-IDF weight of the term tk in document dj , POSi and NEGi
are the set of positive and negative examples in the training set for the specific class
cj , ˇ and � are control parameters that allow setting the relative importance of all
positive and negative examples.

To assign a class Qc to a document dj , the similarity between each prototype

vector 	!ci and the document vector
	!
dj is computed and Qc will be the ci with the

highest value of similarity. Relevance feedback has been used in several content-
based recommendation systems, such as YourNews [1], Fab [4], and NewT [55].

3.3.3 Decision Trees Learners

Decision trees are trees in which internal nodes are labeled by terms, branches
departing from them are labeled by tests on the weight that the term has in the
test document, and leaves are labeled by categories. Decision trees are built by
recursively partitioning training data, that is text documents, into subgroups, until
those subgroups contain only instances of a single class. The test for partitioning
data is run on the weights that the terms labeling the internal nodes have in the doc-
ument. The choice of the term on which to operate the partition is generally made
according to an information gain or entropy criterion [62]. Decision trees are used in
the Syskill and Webert [38,40] recommender system. The most widely used decision
tree learner applied to profiling is ID3 [43].

3.3.4 Decision Rule Classifiers

Decision rules are similar to decision trees, because they are learned in a similar
way to the recursive data partitioning approach described above. An advantage of
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rule learners is that they tend to generate more compact classifiers than decision
trees learners. Rule learning methods usually attempt to select from all the possible
covering rules (i.e., rules that correctly classify all the training examples) the “best”
one according to some minimality criterion. Some examples of inductive learning
techniques are Ripper [14], Slipper [15], CN2 [12], and C4.5rules [44].

3.3.5 Neural Networks

Like the approaches seen above, neural networks have a training phase to learn the
user profile. These networks model complex relationships between input and output
cells. The user interests are represented by the output cells and each of them are
achievable by a specific pattern in the network. When an error occurs, there is a
backward propagation until the responsible cell is achieved, so the cell parameters
are adjusted. Jennings and Higuchi employed a neural network for constructing a
users profile [20].

3.3.6 Bayesian Network

It represents a probability distribution by a direct acyclic graph. There are random
variables (nodes) and relations among them (arcs). The nodes represent attributes
and the arcs represent probability correlations. In [52], a method integrating Case
Based Reasoning and Bayesian Network for the user profiling task is shown.
Bayesian Network is employed to model quantitative and qualitative relationships
between items that users have liked. Bayesian Network is generally used in those
situations where user interests change slowly.

3.3.7 Nearest Neighbor Algorithms

These algorithms, also called lazy learners, simply store training data in memory,
and classify a new unseen item by comparing it to all stored items by using a
similarity function. The “nearest neighbor” or the “k-nearest neighbors” items are
determined, and the class label for the unclassified item is derived from the class
labels of the nearest neighbors. A similarity function is needed, for example the
cosine similarity measure is adopted when items are represented using the VSM.
Nearest neighbor algorithms are quite effective, albeit the most important drawback
is their inefficiency at classification time, since they do not have a true training
phase and thus defer all the computation to classification time. Daily Learner [8]
and Quickstep [32] use the nearest neighbor algorithm to create a model of the
user short-term interest and for associating semantic annotation of papers with class
names within the ontology, respectively.
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4 Conclusions

In this chapter, we surveyed the issue of learning user preferences in recommender
systems area. First, we introduced the topic of recommender systems by showing
the main approaches presented in literature: we described the content-based and
collaborative approaches, showing also the features of some other models such as
demographic, knowledge-based, and hybrid ones. Although each kind of recom-
mender system has its own weaknesses and strengths, all of them are joined by a
common goal: filtering a set of items, identifying which ones the user will like more
by exploiting the information stored in her profile.

In the second part of the chapter, we shift our attention on the core of the
recommendation process investigating the issues of learning and modeling user pref-
erences. Several manners to gather user information are exposed, in particular we
focus on techniques to get user feedback in implicit and explicit way. Thus, tech-
niques for learning user profiles are analyzed. In particular, we presented machine
learning methods, such as Naïve Bayes, Rocchio’s method, etc.

We hope that the survey presented in this chapter will contribute to stimulate
the research community about the next generation of recommendation technologies
and can provide the basis for researches toward new methods for user preferences
gathering and modeling in recommender system area.
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Collaborative Preference Learning

Alexandros Karatzoglou and Markus Weimer

Abstract Every recommender system needs the notion of preferences of a user to
suggest one item and not another. However, current recommender algorithms deduct
these preferences by first predicting an actual rating of the items and then sorting
those. Departing from this, we present an algorithm that is capable of directly learn-
ing the preference function from given ratings.

The presented approach combines recent results on preference learning, state-of-
the-art optimization algorithms, and the large margin approach to capacity control.
The algorithm follows the matrix factorization paradigm to collaborative filtering.
Maximum Margin Matrix Factorization (MMMF) has been introduced to control
the capacity of the prediction to avoid overfitting.

We present an extension to this approach that is capable of using the methodol-
ogy developed by the Learning to Rank community to learn a ranking of unrated
items for each user. In addition, we integrate several recently proposed exten-
sions to MMMF into one coherent framework where they can be combined in a
mix-and-match fashion.

1 Introduction

Recommender systems are used by many websites to suggest content, products, or
services to their visitors. However, suggesting the right items is a highly nontrivial
task: (1) There are many items to choose from. (2) Customers are willing to consider
only a small number of recommendations (typically in the order of ten). Thus, the
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recommender system needs to have a good grasp of the user’s preferences to suggest
one item and not another.

Recommender algorithms often deduct these preferences by first predicting an
actual rating of the items and then sorting those. This does not do justice to the way
the resulting rankings are usually used: Users are presented only a limited subset of
the items. Or a ranked list is shown where the top k (usually 10) items are presented
on the first page and all others are hidden on subsequent pages. The procedure out-
lined above does not guarantee to do well in these scenarios, for example because it
puts equal emphasis on all predictions as opposed to just the top k.

The question of how to evaluate a predicted ranking is nontrivial in itself which
results in a plethora of different ranking measures. Recently, the machine learning
community developed approaches to optimize the prediction directly according to
one of those measures. This is generally known as “Learning To Rank”. While the
initial approaches have been measure-specific, there is a growing interest in unifying
the optimization for all measures in a single learning framework where the measure
is merely a parameter [4, 10].

In this chapter, we show how to transfer these results from the Learning To Rank
community to recommender systems.

Related Work

A popular approach to recommender systems is collaborative filtering. Collaborative
filtering addresses the recommendation problem by learning the suggestion function
for a user from ratings provided by this and other users on items.

A common approach to collaborative filtering is to fit a factor model to the data.
For example by extracting a feature vector for each user and item in the data set
such that the inner product of these features minimizes an explicit or implicit loss
functional (e.g., [7] following a probabilistic approach). The underlying idea behind
these methods is that both user preferences and item properties can be modeled by
a number of factors.

Matrix factorization approaches build upon this idea: The known data can be
thought of as a sparse n � m matrix Y of rating/purchase information, where n
denotes the number of users and m is the number of items. In this context, Yij
indicates the rating of item j given by user i . The rating is often given on a five-star
scale and thus Y 2 f0; : : : ; 5gn�m, where the value 0 indicates that a user did not
rate an item. In this sense, 0 is special since it does not indicate that a user dislikes
an item but rather that data is missing.

The basic idea of matrix factorization approaches is to fit the original matrix Y
with a low rank approximation F . More specifically, the goal is to find such an
approximation that minimizes the sum of the squared distances between the known
entries in Y and their predictions in F . One possibility of doing so is by using a
singular value decomposition of Y and by using only a small number of the vectors
obtained by this procedure. In the information retrieval community, this numerical
operation is commonly referred to as Latent Semantic Indexing.
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Note, however, that this method does not do justice to the way Y was formed.
An entry Yij D 0 indicates that we did not observe a .user; object/ pair. It does,
however, not indicate that user i disliked object j . In [15], an alternative approach
is suggested which is the basis of the method described in this chapter. We aim to
find two matrices U and M where U 2 Rn�d and M 2 Rd�m such that F D UM

with the goal to approximate the observed entries in Y rather than approximating
all entries at the same time.

In general, finding a globally optimal solution of the low rank approximation
problem is unrealistic: in particular, the approach proposed by [15] for comput-
ing a weighted factorization, which is relevant in collaborative filtering settings,
requires semidefinite programming, which is feasible only for hundreds, at most,
thousands of terms. Departing from the goal of minimizing the rank, Maximum
Margin Matrix Factorization (MMMF) aims at minimizing the Frobenius norms of
U and M , resulting in a set of convex problems when taken in isolation and thus
tractable by current optimization techniques. It was shown in [16, 17] that optimiz-
ing the Frobenius norm is a good proxy for optimizing the rank in its application
to model complexity control. Similar ideas based on matrix factorization have been
also proposed in [12, 18].

In the remainder of this chapter, we show how to extend the MMMF approach to
ranking. Additionally, we discuss several extensions to the MMMF model that work
equally well for ranking and rating tasks.

The chapter is organized as follows: Sect. 2 describes the general MMMF model,
its generalization to ranking, and the use of state-of-the-art optimization methods to
train the model. Section 3 describes extensions to that model. In Sect. 4, we discuss
experimental evaluations, and Sect. 5 concludes the chapter with remarks on future
work.

2 Maximum Margin Matrix Factorization

2.1 Optimization Problem

MMMF computes a dense approximation F of the sparse matrix Y which forms
the training data. The approximation is based on the modeling assumption that any
particular rating of item j by user i is a linear combination of item and user features.
Thus, the approximation can be written as F D UM . Here, Ui
 represents the
feature vector for user i and M
j is the feature vector for item j . The predicted
rating of item j by user i is then the inner product between these feature vectors:

Fij D ˝
Ui
;M
j

˛

Finding the appropriate matrices U and M is achieved by minimizing the regular-
ized loss functional where the Frobenius norm (kU k2F D trUU>) of U and M



412 A. Karatzoglou and M. Weimer

is used for capacity control and thus overfitting prevention. The Frobenius norm
has been introduced to the MMMF framework and shown to be a proper norm on
F [17]. This leads us to the following optimization problem:

minimize
U;M

L.F; Y /C �m

2
kM k2F C �u

2
kU k2F (1)

Here, �m, �u are the regularization parameters for the M and U matrix, respec-
tively, and F D UM . Moreover, L.F; Y / is a loss measuring the discrepancy
between Y and F .

The optimization problem can be solved exactly by using a semidefinite refor-
mulation [16]. However, this dramatically limits the size of the problem to several
thousand users/movies. Instead, we exploit the fact that the problem is convex in
U and M , respectively, when the other variables are fixed to perform subspace
descent [11].

2.2 Loss Functions

Squared Loss

In the original MMMF formulation, L.F; Y / was chosen to be the sum of the
squared errors [16]:

L.F; Y / D 1

2

nX

iD0

mX

jD0
Sij .Fij	Yij /2 where Sij D

(
1 if user i rated item j

0 otherwise
(2)

This loss decomposes for the nonzero elements of Y and, consequently, it is
amenable to efficient minimization by repeatedly solving a linear system of equa-
tions for each row/column of U and M separately (i.e., in parallel) – the objective
function in (1) is convex quadratic in U and M , respectively, whenever the other
term is fixed.

The gradient of L.F; Y / with respect to F can be computed efficiently, since
@Fij

L.F; Y / D SijFij 	 Yij . This means that we have

@FL.F; Y / D S:�.F 	 Y /; (3)

where :� implies element-wise multiplication of S with F 	 Y . In other words, the
gradient of the loss is a sparse matrix.
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Non Separable Loss

This decomposition into losses, depending on Yij and Fij alone, fails when deal-
ing with structured losses that take an entire row of predictions, i.e., all predictions
for a given user into account. Such losses are closer to what is needed in recom-
mender systems, since users typically want to get good recommendations about
which movies they are interested in. A fairly accurate description of which movies
they hate is probably less desirable. The recent paper [21] describes an optimization
procedure that is capable of dealing with such problems. In general, a non-separable
loss takes on the following form:

L.F; Y / WD
nX

iD1
l.Fi
; Yi
/ (4)

Gradients of L.F; Y / decompose immediately into @Fi�

l.Fi
; Yi
/. This allows
for efficient gradient computation.

We will now present two ranking scores with their respective loss functions and
gradients: The ordinal regression and the NDCG score. For simplicity of nota-
tion we only study a row-wise loss l.f; y/, where we assume that f WD Fi
 and
y WD Yi
 have already been compressed to contain only nonzero entries in Yi
 with
the corresponding entries of Fi
 having been selected accordingly.

Ordinal Loss

The ordinal regression score [6] is based on the notion that predicted rankings can
be scored based on the number of pairwise mis-orderings. For each pair of items
rated by the user, we incur a loss if the predicted ordering of the two items is not the
ordering the user gave.

In a more formal way, this loss can be described as follows: Assume that y is of
lengthm containingmj movies of score j , that is

P
j mj D m. For a given pair of

movies .u; v/, we consider them to be ranked correctly whenever yu > yv implies
that fu > fv. A loss of 1 is incurred whenever this implication does not hold. That
is, we count

X

yu>yv

C.yu; yv/ ffu � fvg : (5)

Here, C.yu; yv/ denotes the cost of confusing a movie with score yu with one

of score yv. As there are n D 1
2

h
m2 	P

j m
2
j

i
terms in the sum, we need to

renormalize the error by n to render the losses among different users comparable.
Moreover, we need to impose a soft-margin loss on the comparator ffu � fvg to
obtain a convex differentiable loss. This yields the loss
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Fig. 1 The fast procedure to compute the ordinal regression loss

l.f; y/ D 2
h
m2 	

X

j

m2j

i�1 X

yu>yv

C.yu; yv/max.0; 1	 fu C fv/: (6)

The gradient @f l.f; y/ can be computed in a straightforward fashion via

@f l.f; y/ D 	2
P
yu>yv

C.yu; yv/

m2 	P
j m

2
j

: (7)

In general, computing losses using preferences such as (6) is anO.m2/ operation.
However, the reasoning presented in [8] has been extended to more than binary
scores to obtain an O.m logm/ algorithm instead in [23]. The idea is to sort the
values of y by the ordering induced by f . Additionally, one counts how often each
rating is present in y as countŒi 
. Now, one can do one pass over the sorted y.
For each element, the counter for that rating is decremented by one. If we pass an
element where the counters for higher ratings are not zero, a loss is induced based
on the counters of those elements. Figure 1 illustrates this procedure for only two
possible ratings fC1;	1g.

NDCG

The perceived usefulness of a ranking is not only based on the ordering itself, but
also on the position of possible errors. A user may very well tolerate an occasional
error for items she does not like as opposed to items she likes.

This observation leads to the development of various position-dependent ranking
measures. In the paper [21], the way to optimize the predictions for one of these
measures, namely the Discounted Cumulative Gain (DCG), was shown, which is
defined as:

DCG.Yi
; �/@k D
kX

jD0

2Yi�Œj � 	 1
log2.j C 1/

(8)
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The permutation � is computed as the argsort of the predicted values: � D
argsort.Fi
/.1 The parameter k is a cut-off beyond which the actual ranking does
no longer matter. This follows the intuition that typical recommender systems can
only present a limited number of items to the user. Since the DCG depends on the
possible values of Y , a normalized version is commonly used:

NDCG.Yi
; �/@k D DCG.Yi
; �/@k
DCG.Yi
; �s/@k

; (9)

where �s the perfect permutation is the argsort of the true ratings given by the
user: �s D argsort.Yi
/. A NDCG of 1:0 indicates that the model sorts the items in
the same order as the user.

NDCG is position-dependent measure: Higher positions have more influence on
the score than lower positions. Optimizing DCG has gained much interest in the
machine learning and information retrieval communities (e.g., [3]). We present an
effort to optimize this measure for collaborative filtering.

Unlike classification and regression measures, DCG is defined on permutations,
not absolute values of the ratings. Optimizing over the NDCG measure directly is
not possible since the measure is not convex, it is in fact piecewise constant. One
thus resorts to structured estimation techniques [19, 20] to compute a convex upper
bound on the NDCG measure.

The conversion of the NDCG measure into a loss is a three-step process as shown
in [21]:

1. The gain needs to be converted into a loss. This is done by using �.f; y/ D
1 	 NDCG.y; �/.

2. We obtain a linear mapping from f to � .
3. A convex upper bound for the loss is derived.

We now describe the second and third steps in more detail.
A linear mapping is created by employing the following inequality: For any two

vectors a; b 2 R
n, the inner product ha; bi is maximized by sorting a and b in the

same order. That is ha; bi � hsort.a/; sort.b/i. This allows us to encode the per-
mutation � D argsort.f / in the following fashion: denote by c 2 R

n a decreasing
nonnegative sequence, then the function

 .�; f / WD hc; f� i (10)

is linear in f and maximized with respect to � for argsort.f /.
Finally, by adapting a result of [20] to finding convex upper bounds on nonconvex

problems, it was shown in [21] that

l.f; y/ WD max
�

h
�.�; y/C hc; f� 	 f i

i
(11)

1 We assume argsort.f / to sort f decreasingly.
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is a convex upper bound on the NDCG measure and constitutes a proper loss func-
tion. Here,  is defined as in (10) and �
 WD argsort.f / is the ranking induced
by f .

In the same paper, the computation of the max� Œ:::
 is shown to be an instance
of the well-studied linear assignment problem. The gradient of this convex upper
bound can be computed as:

@f l.f; y/ D c N��1 	 c;

where N��1 is the inverted maximizer of (11).

2.3 Optimization

Although (1) is not jointly convex in U and M , it is still convex in U if M is
kept fixed and convex in M if U is kept fixed. We thus resort to alternating sub-
space descent as proposed by [11] by keeping U fixed and minimizing over M and
repeating the process forM with U fixed. We have the following procedure:

repeat
For fixed M minimize (1) with respect to U .
For fixed U minimize (1) with respect to M .

until no more progress is made or a maximum iteration count is reached.

As the overall problem is still nonconvex, the procedure cannot be guaranteed to
converge to a global minimum. However, it proved to be rather efficient and scalable
for problems of up to 108 nonzero entries in Y (Netflix) [21].

Each of the two minimization steps is convex and thus amenable to a wide
range of optimization procedures, such as stochastic gradient descent (SGD) [2]
and LBFGS [9, 25]. However, these methods are guaranteed to converge within 1

�2

steps at best to a solution that is within � of the minimum.
Recently, bundle methods have been introduced with promising results for opti-

mizing regularized risk functions in supervised machine learning and have been
shown to converge within 1

�
steps [13]. This makes them especially suited to the

optimization problem at hand. Each step of the optimization requires a loss and
gradient computation. As we have shown above, this can be a costly operation,
especially for losses, such as NDCG stemming from the structured estimation
framework [20].

The key idea behind bundle methods is to compute successively improving lin-
ear lower bounds of an objective function through first order Taylor approximations
as shown in Fig. 2. Several lower bounds from previous iterations are bundled to
gain more information on the global behavior of the function. The minimum of
these lower bounds is then used as a new location where to compute the next
approximation, which leads to increasingly tighter bounds and convergence.
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Fig. 2 A convex function (solid) is bounded from below by Taylor approximations of first order
(dashed). Adding more terms improves the bound

Algorithm 1 Optimization over U
input Matrix U and M , data Y
output Matrix U
for i D 1 to n do

Select idx as the nonzero set of Yi�
Initialize w D Ui�
Ui;idx D argminw l.wMidx;�; Yi;idx/C �u

2
kwk2

end for

Algorithm 2 Computation of @ML
input Matrix U and M , data Y
output @ML D D>M

for i D 1 to n do
Update w Ui�
Find index ind where Yi� ¤ 0

X  MŒind; W

Update Di� @FL.wX; Yi�Œind
/

end for
return @MLD D>M

The main computational cost in using gradient-based solvers is the computation
of the gradients with respect to M and U . Using the chain rule yields

@ML.F; Y / D U>@FL.F; Y / and @UL.F; Y / D Œ@FL.F; Y /

>M: (12)

This computation is to parallelize, since terms in @FL.F; Y / with respect to each
user can be computed separately.

We assume that the loss decomposes per user. Thus, we can optimize U by opti-
mizing each row of U on its own as shown in Algorithm 1. Note that we effectively
construct and solve a regularized risk model for each user for a dense data matrixX
and parameters w.

When minimizing with respect toM , we need to deal with the entire loss jointly.
The main issue to solve is to compute the loss and its gradient with respect to M .
Algorithm 2 shows an efficient way to compute the gradient which decomposes
again for all users besides the final multiplication.
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Analysis

The only interface of the algorithm to the actual rating data is through the loss
function. All it needs for building the model is a loss value and the gradient for each
iteration. Both these quantities can be computed independently for each user. This
is important for several different reasons:

First of all, users need not to share their rating data with their service provider.
Instead, they can just exchange losses and gradients. This may reassure privacy cau-
tious users. Additionally, it moves one of the costliest parts of the computation off
the service provider’s systems and onto those of the users. Communication hardly
seems like an issue, as the amount of exchanged data is dominated by the number
of rated items per user.

From a similar point of view, the idea of collaborative filtering as a business to
business service becomes feasible. In such a setting, an online service provider may
be reluctant to share one of his key assets, the rating data. This reluctance currently
leads to the problem that the quality of the predictions is mostly determined by the
number of customers a service provider has. Using the algorithm described by us,
service providers could keep their rating data private while still enjoying the benefit
of a way better estimation of M .

Finally, these properties make it trivial to parallelize the algorithm onto a cluster
of compute nodes. There, each node would be responsible for a certain number of
users and computes the loss and the gradient thereof for these users. This allows
the algorithm to be run with loss functions that would otherwise be prohibitively
expensive.

3 Extensions

After describing the generalized MMMF model and procedures to optimize it, we
now discuss extensions of the model to take prior knowledge about the function
class into account.

Offset

Individual users may have different standards when it comes to rating movies. For
instance, some users may rarely award a 5 while others are quite generous with it.
Likewise, movies have an inherent quality bias. For instance, “Plan 9 from Outer
Space” will probably not garner high ratings with any movie buff while other movies
may prove universally popular. This can be taken into account by means of an offset
per movie. This can be incorporated via

Fij D ˝
Ui
;Mj


˛C ui Cmj : (13)
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Here, u andm are bias vectors for movies and users alike. In practice, we simply
extend the dimensionalities of U and M by one for each bias while pinning the
corresponding coordinate of the other matrix to assume the value of 1. In this form,
no algorithmic modification for the U and M optimization is needed. The relative
computational cost of this extension is near zero, since the dimensions of the feature
vectors of the convex optimization problem are extended by only one or two.

Please note that this offset is different from a simple normalization of the input
data and is not meant to replace preprocessing procedures altogether. The offset is
learned for the loss function in use and for each user and movie, while it would be
tricky to find a normalization that does cater for both appropriately at the same time.

Graph Kernels

So far we ignored a crucial piece of information, namely the fact that the ratings
themselves are not random. For instance, knowing that a user rated “Die Hard”, “Die
Hard 2”, and “Top Gun” makes it likely that this user is interested in action movies.
This information can be gained without even looking at the score matrix Y . One
would expect that we should be able to take advantage of this structural information
in addition to the actual scores.

One possibility, proposed by [1] is to use the inner product between the movies
two users rent as a kernel for comparing two different users. Denote by Sij D˚
Cij > 0

�
. In this case, they define the kernel between users i and i 0 to be

hSi
; Si 0
i. It is well known that such a model is equivalent to using a linear model
with user-features given by S . We can use this to improve the user matrix U to
U C SA for a suitably chosen feature matrix A.

Independently, [12] recently developed a related line of thought by assuming that
the user matrix is given byUC NSA, whereU andA are normally distributed and NS is
a row-normalized version of S , that is NSi
 D kSi
k�11 Si
. While their optimization
strategy is very different (they use Markov Chain Monte Carlo sampling), it should
already be clear at this point that the outcome is very similar to that of [1].

We now show that both approaches, which are approximately equivalent (barring
the normalization of S to NS ), are also equivalent to the use of graph kernels on the
bipartite ranking graph defined between users and movies. For this purpose, we
require the following lemma:

Lemma 1. Denote by f W R
n ! R some function and let A 2 R

n�d . Moreover, let
U 2 R

n�d and S 2 R
n�m. Then the following problems are equivalent:

minimize
U;A

f .V /C kU k2 C kAk2 (14)

minimize
V

f .V /C U>.1 C SS>/�1U (15)

Proof. Denote by .U 
; A
/ the optimal solution of (14). Clearly in this case for
V WD U 
 C SA
 the optimization problem
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minimize
A

f .V /C kV 	 SAk2 C kAk2 (16)

needs to have A
 as its solution. What remains is to express A as a function of V
and to show that in this case (14) and (15) are equivalent. Taking derivatives of (15)
with respect to A yields

@A

h
kV 	 SAk2 C kAk2

i
D 2S>.SA	 V /C 2A:

Hence, the gradient of the objective function vanishes forA
 D .1CS>S/�1S>V .
Plugging this back into (15) yields the objective function

f .V /C ���1 	 S.1 C S>S/�1S>

V
��2 C ��.1 C S>S/�1S>V

��2

D f .V /C ��.1 C SS>/�1V
��2 C ��S>.1 C SS>/�1V

��2

D f .V /C V >.1 C SS>/�1V:

Here, we have used the Sherman–Morrison–Woodbury identity to transform the
second term in the second line. The third term follows from the fact that left and
right singular vectors associated with S constitute the eigenvectors of .1 C SS>/
and .1 C S>S/, respectively. Hence, we may “push” S to the left in the third term.
The last equality follows by direct calculation.

This lemma shows that the parametrizationU CSA (or U C NSA, respectively) is
equivalent to using a kernel .1CSS>/�1 as regularization. The latter is well known
as the inverse Laplacian kernel, since SS> encodes the undirected graph obtained
by connecting all users which watched the same movie. The connection strength in
SS> denotes the number of movies both users shared.

The net result of this reparametrization is that (14) is a computationally more
efficient way of dealing with such symmetries rather than computing the inverse of
.1CSS>/. Since we may have millions of users the latter would be computationally
infeasible.

Note also the connection to the spectral theory of graphs [14]: the eigenvalues
and eigenvectors of 1 C NS NS> are close to those of the bipartite graph Laplacian, and
can be used for clustering between movies and users, respectively. This means that
for similar users and movies, we end up using similar parameters.

4 Experiments

We present evaluation results from the papers [21, 24] and [23]. Evaluations have
been done on two aspects of the model described above. First, the impact of the
model extensions has been studied empirically. Second, the performance of the
different loss functions (NDCG, Ordinal, and Regression) has been evaluated. All
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Table 1 Data set statistics Data set Users Movies Ratings

EachMovie 61;265 1;623 2,811,717
MovieLens 983 1;682 100,000
Netflix 480;189 17;770 100,480,507

evaluations have been conducted on data sets that are well known in the recom-
mender systems literature. The statistics of these can be found in Table 1. All these
data sets are obtained from movie recommender services where the movies are rated
by the users on a five-star scale.

Evaluation Measures

To evaluate the predictive performance of the different variants of the MMMF
model, we resort to two evaluation measures. The rating performance is evaluated
with the root mean squared error (RMSE) measure:

L.F; Y / D 1

2

nX

iD0

mX

jD0
Sij .Fij 	 Yij /

2 where Sij D
(
1 if user i rated item j

0 otherwise
;

where Fij is the model prediction and Yij , the value in the test data.
As the focus of this chapter is on ranking, we also evaluated using a ranking

measure. We choose the Normalized Discounted Cumulative Gain (NDCG) score
as defined in 8. In all our experiments, we evaluated using NDCG@10.

Evaluation Procedure

Following [26] and [21], we distinguish two different evaluation scenarios: strong
and weak generalization.

Weak generalization: For each user, a number n of ratings is sampled from the
known data. The system is then trained on these ratings and evaluated on
the remaining items. We present results for n D 10; 20; 50. This evaluation
resembles a system with an established user base that recommendations are
generated for.

Strong generalization: This evaluation procedure has been suggested in [26]:
Movies with less than 50 ratings are discarded. The 100 users with the most rated
movies are selected as the test set, and the methods are trained on the remaining
users. In evaluation, 10, 20, or 50 ratings are sampled from the test users. We
then use these ratings to learn a new user feature matrix Ustrong by performing a
single iteration of the user phase. The remaining ratings are used as the test set.
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Note that sampling a small number of ratings for the training set mimics a real-
world recommender setting where ratings are very scarce compared to the total
number of movies.

In all experiments, the regularization parameters �u and �m were fixed to 10 and
not formally tuned. The dimension ofU andM was set to d D 10 for the evaluation
of the extensions and to d D 100 for the evaluation of the different losses. We did
not observe significant performance fluctuations when comparing the performance
of the system using d D 10, d D 100 in [21] or d D 30 in [12]. This is an
interesting observation in its own right: The preferences of a user for movies can be
described by a relatively small number (in the order of 10) of real numbers.

All experiments were performed ten times with different random draws of the
train and test set from the data sets. In total, we report results from more than 1,000
experiments.

4.1 Results: Model Extensions

In this section, we present results only for the least squares regression loss to isolate
the influence of the extensions.

Weak Generalization

Table 2 contains the results of the weak generalization scenario experiments. We
observe that adding the offset terms yields significant improvements in the perfor-
mance of the model. On the other hand, enabling the graph kernel does not seem
to significantly improve performance. This might be attributed to the fact that the
regularization factors were not tuned. Enabling the graph kernel adds a large set
of additional parameters to the model, which might lead to overfitting without the
adjustment of the regularization parameters. Nonetheless, the graph kernel did add
further improvements together with the offsets.

Table 2 The NGDC@10 accuracy over ten runs and the standard deviation for the weak
generalization evaluation

Method N D 10 N D 20 N D 50

EachMovie Plain 0:625˙ 0:000 0:639˙ 0:000 0:641˙ 0:000
Offset 0:646˙ 0:000 0:653˙ 0:000 0:647˙ 0:000
GraphKernel 0:583˙ 0:000 0:585˙ 0:000 0:590˙ 0:001
OffsetGK 0:576˙ 0:000 0:597˙ 0:000 0:580˙ 0:001

MovieLens Plain 0:657˙ 0:000 0:658˙ 0:000 0:686˙ 0:000
Offset 0:678˙ 0:000 0:680˙ 0:000 0:701˙ 0:000
GraphKernel 0:624˙ 0:001 0:644˙ 0:000 0:682˙ 0:000
OffsetGK 0:670˙ 0:001 0:681˙ 0:000 0:682˙ 0:000
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Strong Generalization

For the strong generalization setting, the generalized MMMF models were com-
pared to Gaussian Process Ordinal Regression (GPOR) [5] Gaussian Process
Regression (GPR), their collaborative extensions (CPR, CGPOR) as well as the
original MMMF implementation [21, 26]. Table 3 shows the results for the gen-
eralized MMMF models compared to the ones from [26].

For the Movielens data, the model with the offset and graph kernel extensions
outperforms the other systems. Additionally, the system with both extensions per-
forms consistently better than the ones with only one extension. On the Eachmovie
data, the generalized MMMF model performs the best with the offset extension
enabled. It appears that the graph kernel in the Eachmovie data set does not
improve the performance but again this could be attributed to a poor choice of the
regularization parameters for this data set.

The generalized MMMF model performance is particularly convincing in the
strong evaluation setting. This is especially notable as the systems we compare to
do use external features of the movies. These features can be obtained by crawling
the Internet Movie Database (IMDB) for information on these movies. The paper
[22] shows how to extend the MMMF models discussed here to use features as well,
but does not provide evaluations on the data sets used here.

The good performance of the generalized MMMF model can be attributed to the
fact that the system performs alternate convex optimization steps over item and user
features. Once a “good” set of item features is obtained, there is reason to believe

Table 3 The NGDC@10 accuracy over ten runs and the standard deviation for the strong
generalization evaluation

Method N D 10 N D 20 N D 50

EachMovie Plain 0:615˙ 0:000 0:633˙ 0:000 0:636˙ 0:000
Offset 0:641˙ 0:000 0:647˙ 0:000 0:644˙ 0:000
GraphKernel 0:574˙ 0:000 0:581˙ 0:000 0:596˙ 0:000
OffsetGK 0:568˙ 0:000 0:594˙ 0:000 0:579˙ 0:000
GPR 0:456˙ 0:015 0:485˙ 0:007 0:538˙ 0:009
CGPR 0:573˙ 0:014 0:599˙ 0:012 0:634˙ 0:011
GPOR 0:369˙ 0:002 0:368˙ 0:003 0:366˙ 0:002
CGPOR 0:379˙ 0:011 0:378˙ 0:006 0:377˙ 0:004
MMMF 0:475˙ 0:034 0:479˙ 0:014 0:549˙ 0:021

MovieLens Plain 0:587˙ 0:001 0:644˙ 0:001 0:630˙ 0:001
Offset 0:583˙ 0:000 0:444˙ 0:000 0:690˙ 0:000
GraphKernel 0:613˙ 0:000 0:634˙ 0:000 0:637˙ 0:001
OffsetGK 0:684˙ 0:000 0:691˙ 0:000 0:692˙ 0:000
GPR 0:494˙ 0:011 0:502˙ 0:009 0:509˙ 0:014
CGPR 0:510˙ 0:008 0:525˙ 0:007 0:544˙ 0:006
GPOR 0:499˙ 0:004 0:500˙ 0:005 0:501˙ 0:005
CGPOR 0:505˙ 0:005 0:509˙ 0:004 0:505˙ 0:004
MMMF 0:552˙ 0:018 0:613˙ 0:018 0:665˙ 0:019
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Table 4 Results for the weak generalization experiments. We report the NDCG@10 accuracy for
various numbers of training ratings used per user. For most results, we report the mean over ten
runs and the standard deviation. We also report the p-values for the best vs. second best score

Method N D 10 N D 20 N D 50

EachMovie NDCG 0:656˙ 0:001 0:664˙ 0:002 0:641˙ 0:004
Ordinal 0:673˙ 0:031 0:724˙ 0:002 0:721˙ 0:008
Regression 0:611˙ 0:022 0:640˙ 0:035 0:569˙ 0:043

MovieLens NDCG 0:640˙ 0:006 0:631˙ 0:006 0:608˙ 0:008
Ordinal 0:623˙ 0:004 0:669˙ 0:006 0:717˙ 0:006
Regression 0:642˙ 0:025 0:651˙ 0:019 0:658˙ 0:019
MMMF 0:606˙ 0:004 0:694˙ 0:004 0:699˙ 0:005

Netflix NDCG 0:608 0:620

Regression 0:608 0:629

that it is a good representation of the items, even for new users. We believe that this
is an important benefit of the generalized MMMF model in many applications, as
it allows for fast accurate predictions for new users without the need to retrain the
whole system.

4.2 Results: Ranking Losses

To compare the performance of the different loss functions, the system was trained
without the extensions to allow for the analysis of the loss function’s impact in
isolation. Experiments were performed with the NDCG, Ordinal Regression, and
Least Squares Regression loss functions. In addition, we also report results obtained
with the original MATLAB implementation of the MMMF model where possible.2

Weak Generalization

Table 4 contains the results of the experiments. The Ordinal Regression loss per-
forms best overall with some exceptions where the Least Squares Regression Loss
performs slightly better.

Strong Generalization

For the strong generalization setting, the NDCG scores are compared to those
reported in [26] (Table 5).

2 The implementation did not scale to the bigger data sets Eachmovie and Netflix.
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Table 5 The NGDC@10 accuracy over ten runs and the standard deviation for the strong
generalization evaluation

Method N D 10 N D 20 N D 50

EachMovie NDCG 0:638˙ 0:001 0:662˙ 0:002 0:677˙ 0:002
GPR 0:456˙ 0:0105 0:485˙ 0:007 0:538˙ 0:009
CGPR 0:573˙ 0:014 0:599˙ 0:012 0:634˙ 0:011
GPOR 0:369˙ 0:002 0:368˙ 0:003 0:366˙ 0:002
CGPOR 0:379˙ 0:011 0:378˙ 0:006 0:377˙ 0:004
MMMF 0:475˙ 0:034 0:479˙ 0:014 0:548˙ 0:021

MovieLens NDCG 0:624˙ 0:024 0:671˙ 0:007 0:646˙ 0:010
GPR 0:494˙ 0:011 0:502˙ 0:009 0:509˙ 0:014
CGPR 0:510˙ 0:008 0:525˙ 0:007 0:544˙ 0:006
GPOR 0:499˙ 0:004 0:500˙ 0:005 0:501˙ 0:005
CGPOR 0:505˙ 0:005 0:509˙ 0:004 0:505˙ 0:004
MMMF 0:552˙ 0:018 0:613˙ 0:018 0:665˙ 0:019

The generalized MMMF model with the NDCG loss performs strongly compared
to most of the other tested methods. Particularly in the strong generalization setting,
it outperforms the existing methods in almost all of the settings. Again, note that all
methods except MMMF use additional extracted features, which are either provided
with the data set or extracted from the IMDB.

4.3 Observations

The variance over the ten runs on different data samples in all experiments is sur-
prisingly low, especially given the fact that a nonconvex function is optimized. The
same is true for the variance on the objective function. The low variance may mean
that the same local minimum is always reached or that this minimum is indeed a
global one.

The model extensions described above are capable of improving the predictive
performance of the MMMF models. Note that the regularization parameters were
not tuned, which might have improved the performance even further. This is espe-
cially true when using the graph kernel which adds an additional set of parameters
to be learned. We also observe that optimizing the NDCG-based loss function does
not necessarily provide for better test NDCG values. This can be attributed to the
fact that the NDCG loss function for the sake of convexity provides only an upper
bound to the actual NDCG measure. Note that we did not provide results for the
Netflix dataset for N D 50 due to restrictions in the computational resources.
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5 Conclusion

In this chapter, we have presented a model for collaborative filtering based on the
well-established Maximum Margin Matrix Factorization (MMMF). We have shown
how to extend the model and the optimization procedure thereof to accommodate
recent results from the Learning to Rank community. To this end, we have discussed
the direct optimization of the Ordinal Regression and NDCG loss functions.

In addition, we have described several extensions to the model recently intro-
duced in the literature. We have introduced offset terms and a graph kernel on the
recommender graph. We have also shown that recent extensions to MMMF [12] as
well as well-known approaches [1] are both instances of a common graph kernel
formulation.

The software developed to evaluate the methods described in this paper is
available on http://www.cofirank.org.
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Discerning Relevant Model Features
in a Content-based Collaborative
Recommender System

Alejandro Bellogín, Iván Cantador, Pablo Castells, and Álvaro Ortigosa

Abstract Recommender systems suggest users information items they may be
interested in. User profiles or usage data are compared with some reference char-
acteristics, which may belong to the items (content-based approach), or to other
users in the same context (collaborative filtering approach). These items are usually
presented as a ranking, where the more relevant an item is predicted to be for a
user, the higher it appears in the ranking. In this scenario, a preferential order has
to be inferred, and therefore, preference learning methods can be naturally helpful.
The relevant recommendation model features for the learning-based enhancements
explored in this work comprise parameters of the recommendation algorithms, and
user-related attributes. In the researched approach, machine learning techniques are
used to discover which model features are relevant in providing accurate recom-
mendations. The assessment of relevant model features, which is the focus of this
paper, is envisioned as the first step in a learning cycle in which improved recom-
mendation models are produced and executed after the discovery step, based on the
findings that result from it.

1 Introduction

A recommender system suggests to a user products or services he might be inter-
ested in. Tastes, interests, and goals are explicitly declared by the user, or implicitly
inferred by the system, based on the user’s behavior. User profiles and usage data
are then compared to some reference characteristics, which might belong to the
recommended items (in content-based approaches) [22], to the user’s social envi-
ronment (in collaborative filtering approaches, CF) [18, 19], or to both information
sources (in hybrid approaches) [6]. These comparisons usually result in numeric
preference values that are used to rank (order) the suggested items for the user. The
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recommendation process can thus be considered as an information-ranking prob-
lem, where a suitable preference model, consisting of user interests, item content
features, and system settings, has to be built.

In this context, research efforts to date can be said to have mainly focused on the
study of the improvement of the recommendation algorithms by using all the avail-
able knowledge and profiling information. However, few studies have addressed
the issue of finding out which of the preference model characteristics are actually
most significant when accurate and nonaccurate recommendations are generated. If
these characteristics were identified, recommendation strategies could be enhanced
by reinforcing or turning down their dependencies with specific stereotypes of users
and items.

We thus envision the construction of a recommender system as a virtuous cycle
with three main steps. First, an initial recommendation model is created with all
the available information. This model is used to compute suggestions for the given
user and item repositories. Next, the obtained outputs are analyzed to identify links
between specific (input) model characteristics and the quality of recommendations.
Finally, considering and adapting the identified characteristics, a new recommenda-
tion model, which is expected to generate more accurate results, is produced. The
main challenge in this cycle, which is the focus of the research presented here, is
in the second step, namely, how to discern (learn) those relevant preference model
characteristics based on sets of system inputs, outputs, and user feedback.

In our proposed approach, Machine Learning (ML) techniques are used as a tool
to determine which user and system characteristics are shared by most of the top
items in a recommendation ranking. Specifically, for each recommendation evalu-
ated (rated) by the user, a training sample is created. The attributes of the sample are
the characteristics we aim to analyze, and their values are obtained from log infor-
mation databases. The class of the training example can be assigned two possible
values, correct and incorrect, depending on whether the user evaluated the corre-
sponding recommendation as relevant or irrelevant. By classifying these examples,
an ML algorithm facilitates the analysis of the above preference characteristics.

We have tested this proposal with News@hand [8], a news recommender system
that suggests news articles according to several recommendation models, namely:
(1) a personalized content-based model, the item suggestions from which are based
on long-term user profiles [9], (2) a context-aware model that exploits user prefer-
ences which are not expressed in the user profile, but can be implicitly detected
in the current user recommendation context [23], and (3) a collaborative model
that finds and exploits implicit interest relations among users to provide enriched
recommendations [7].

As described in the following, the identification of the user profile features and
system settings from which each recommendation model should be executed is
achieved by means of decision trees. The easy interpretability, the possibility of
adding prior knowledge, and the selection of most informative attributes are the
main advantages offered by the ML techniques to our recommendation mechanisms.

The rest of the chapter is organized as follows. Section 2 gives an overview of
related works in which ML techniques have been applied to automatically learn
preferences in personalized content retrieval, recommender and adaptive systems.
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Section 3 introduces News@hand, the news recommender system in which our
preference analysis proposal is evaluated. Along with this system, the base recom-
mendation algorithms, and the attributes that have been chosen for the analyzed
samples are also described. Section 4 briefly explains decision trees, the ML tech-
niques used in our proposal. Section 5 reports on the conducted experiments to
evaluate the proposed approach. Finally, Sect. 6 concludes with some discussion
and future research lines.

2 Related Work

ML techniques are useful when huge amounts of data have to be classified and
analyzed, which nowadays is a very common situation in many scenarios, such as
web information exploitation [20]. They have also proved to be of use in adap-
tive e-learning environments, where student data is used to adapt a system to user
preferences and capabilities to facilitate the learning process. Hence, for example,
in Becker and Marquardt’s work [3], students’ logs are analyzed with the goal
of finding patterns that reveal the system browsing paths followed by students.
Talavera and Gaudioso [21] use classification techniques to analyze student behav-
ior in a cooperative learning environment. Their main goal is to discover patterns
that reflect the students’ behavior, supporting tutoring activities on virtual learning
communities.

Other authors have also investigated the application of these techniques to
Recommender Systems [28], evaluating the performance of personalization mecha-
nisms, particularly Adaptive Hypermedia Systems (AHS) and Adaptive Educational
Systems (AES) [5]. For example, Zaïane proposed using association rules in AEH
domains [27]. His work focuses on two basic points: the first point is to give auto-
mated support to students who take an online course proposing the use of advising
systems; the second is to support the instructor in identifying student behavior pat-
terns, based on the information that students provide when taking online courses.
In the same context, Vialardi et al. [25] use data mining techniques to discover and
present relevant pedagogic knowledge to the teachers. They propose to use classi-
fication trees and association rules to detect opportunities for improvement on the
adaptation decisions of an AES. In [2], several examples where ML techniques are
used to learn a user model (based on previous ratings) and classify unseen items are
explained. A review of these techniques is also given by Adomavicius and Tuzhilin
in [2], where decision trees, clustering, artificial neural networks and Bayesian clas-
sifiers are mentioned. Our system also takes into consideration the current user’s
interest context [23], which is similar to the idea of using short and long term profiles
explained in [17].

Despite the above works, to our knowledge, there have been few attempts to use
ML techniques as we propose here. In our approach, ML techniques are used to
evaluate the system to make explicit improvement on its performance. In this way,
we are more interested in the model generated (which variables are more infor-
mative, which can be discarded by the model, etc.) by the ML techniques than
in the classification itself. This is different from the above approaches, where ML
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techniques are used as an integrated part of the (recommender, learning) system.
Nevertheless, a similar idea can be seen in [24], where ML techniques find patterns
for assisting adaptive hypermedia authors during design and evaluation phases. The
authors build a model representing the student behavior on a particular course, and
use it to obtain and exploit a vision of the behavior and performance of student
groups.

3 News@hand: A News Recommender System

News@hand is a news recommender system that combines textual features and
collaborative information to make news suggestions, and uses a controlled and struc-
tured vocabulary to describe user preferences and news contents. For this purpose,
it makes use of Semantic Web technologies. News items and user profiles are rep-
resented in terms of concepts appearing in domain ontologies. For example, a news
item about a particular football match could be annotated with general concepts as
“football” and “match”, or specific instances of football teams and players (e.g.,
Real Madrid F.C., Zinedine Zidane).

More specifically, user preferences are described as vectors um D .um;1;
um;2; : : : ; um;K/ where um;k 2 Œ	1; 1
 measures the intensity of the interest of user
um 2 U for concept ck 2 O (a class or an instance) in a domain ontologyO,K being
the total number of concepts in the ontology. Similarly, items dn 2 D are assumed
to be annotated by vectors dn D .dn;1; dn;2; : : : ; dn;K/ of concept weights, in the
same vector-space as user preferences.

Ontology concept-based preferences are more precise, and reduce the effect of
the ambiguity caused by simple keyword terms. For instance, if a user states an
interest for the keyword “java”, a system might not have information to distinguish
Java, the programming language, from Java, the Pacific island. However, a prefer-
ence stated as “ProgrammingLanguage:Java” (this is read as the instance Java from
the Programming Language class) lets the system understand unambiguously the
preference of the user, and also allows the exploitation of more appropriate related
semantics (e.g., synonym, hypernym, subsumption, etc.). This, together with disam-
biguation techniques, might lead to the effective recommendation of text-annotated
items.

In News@hand (Fig. 1), news items are classified in 8 different sections: head-
lines, world, business, technology, science, health, sports and entertainment. When
the user is not logged in the system, he can browse any of the previous sections,
but the items are listed without any personalization criterion. He can only sort them
by their publication date, source, or level of popularity (i.e., according to a classic
rating-based CF mechanism). On the other hand, when the user is logged in the sys-
tem, recommendation and profile edition functionalities are enabled, and the user
can browse the news according to his and others’ semantic preferences in different
ways. Short- and long-term preferences are considered. Click history is used to
define the short-term user preferences, and the resultant rankings can be adapted
to the current context of interest.
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Fig. 1 A typical news recommendation page in News@hand system

Characteristics such as the topic section, the type of recommendation (personal-
ized, context-aware, collaborative), and the number of the page in which accurate
recommendations appear are analyzed by our preference learning proposal.

3.1 Semantic Expansion of Preference

Semantic relations among concepts are exploited to enrich the proposed ontology-
based knowledge representations, and are incorporated within the recommendation
processes. For instance, a user interested in animals (superclass of dog) is also rec-
ommended items about dogs. Inversely, a user interested in skiing, snowboarding,
and ice hockey can be inferred with a certain confidence to be globally interested in
winter sports. Also, a user keen on Spain can be assumed to like Madrid, through
locatedIn transitive relation, assuming that this relation had been seen as relevant
for inferring previous underlying user’s interests.

We have developed [23] a semantic preference spreading mechanism that expands
the initial set of preferences stored in user profiles through explicit semantic rela-
tions with other concepts in the ontology (Fig. 2). The approach is based on the
so-called Constrained Spreading Activation (CSA) strategy [13–15]. The expansion
is self-controlled by applying a decay factor to the intensity of preference each time
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Fig. 2 Semantic preference extension

a relation is traversed, and taking into account constraints (threshold weights) during
the spreading process.

News@hand recommendation models output ranked lists of content items taking
into account not only the initial user profiles, but also the semantic extension of user
preferences and item annotations. The question of whether our semantic expansion
technique really benefits the obtaining of more accurate item suggestions is in fact
one preference characteristic we analyze in this work.

3.2 Architecture

Figure 3 depicts how ontology-based item descriptions and user profiles are cre-
ated in News@hand. News items are automatic and periodically retrieved from
several online news services via RSS feeds. The title, summary, and category of the
retrieved news are then annotated with concepts of the system domain ontologies.
Thus, for example, all the news about actors, actresses, and similar terms might be
annotated with the concept “actor”. A TF-IDF technique is applied to assign weights
to the annotated concepts.

With a client/server architecture, users utilize a web interface to receive online
news recommendations, and update their profiles. A dynamic graphical interface
allows the system to automatically store all the users’ inputs, analyze their behav-
ior, and adjust the news recommendations in real time. Explicit and implicit user
interests are taken into account, via manual preferences, tags and ratings, and via
automatic learning from the users’ actions.

Deriving benefit from the semantically annotated news items, the defined onto-
logy-based user profiles, and the knowledge represented by the domain ontolo-
gies, a set of recommendation algorithms is executed. Among other approaches,
News@hand offers personalized [23], context-aware [9], and collaborative multi-
facet recommendations [7]. Configurations and combinations of the above recom-
mendation models are model feature characteristics included in the study presented
herein.

3.3 Content-Based Recommendations

Our notion of personalized content retrieval is based on a matching algorithm that
provides a relevance measure pref.um; dn/ of anitem dn. for a user um. This measure
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Fig. 3 Architecture of News@hand system

is set according to the semantic preferences of the user and the semantic annotations
of the item and based on cosine-based vector similarities

pref.dn; um/ D cos .dn;um/ D dn � um=kdnk � kumk:

The formula matches two weighted-concept vectors, and produces a value in
Œ	1;C1
. Values close to 	1 are obtained when the vectors are dissimilar, and indi-
cate that user preferences negatively match the content metadata. On the other hand,
values close to C1 indicate that user preferences significantly match the content
metadata, which means a potential interest of the user for the item.

The content-based recommendation results can be combined with query-based
scores without personalization [12], and semantic context information, to produce
combined rankings. This last approach is described in the next section.

In this model, the size of the user profile will be a reference characteristic to be
studied when accurate recommendations are obtained.

3.4 Context-Aware Recommendations

We propose a particular notion of context, useful in semantic content retrieval: that
of semantic runtime context, which we define as the background topics under which



436 A. Bellogín et al.

user activities occur within a given unit of time. A runtime context is represented in
our approach [9,23] as a set of weighted concepts from the domain ontologies. This
set is obtained by collecting the concepts that have been involved in the interaction
of the user (e.g., accessed items) during a session.

The context is built in such a way that the importance (weight) of concepts fades
away with time (number of accesses back when the concept was referenced) by a
decay factor � in Œ0; 1
:

C tmŒck 
 D � � C t�1m Œck 
C .1 	 �/ � Reqt Œck 
;

where Reqt Œck 
 in Œ0; 1
K is a vector whose components measure the degree in
which the concepts ck are involved in the user’s request at time t . This vector can
be defined in multiple ways, depending on the application: a query concept-vector
(if a request is expressed in term of a concept-based search query), a concept vector
containing the most relevant concepts in a document (if a request is a “view docu-
ment” request), the average concept-vector corresponding to a set of items marked
as relevant by the user (if a request is a relevance feedback step), etc.

Once the context is built, a contextual activation of preferences is achieved by
finding semantic paths linking preferences to context, as follows:

prefC t .dn; um/ D � � pref.dn; um/C .1 	 �/ � sim.dn; Ct /

D � � cos .dn; EUm/C .1 	 �/ � cos .dn; ECt /;

where � in Œ0; 1
 measures the strength of the personalization component with
respect to the current context. This parameter could be manually established by
the user, or dynamically adapted by the system according to multiple factors, such
as the current size of the context, the automatic detection of a change in the user’s
search focus, etc.

The perceived effect of contextualization is that user interests that are out of
focus, under a given context, are disregarded, reinforcing those that are in the
semantic scope of the ongoing user activity are considered for recommendation (see
Fig. 4).

Analogously to the personalization model, where the size of the user profile is a
critical aspect, the context-aware recommendation approach will be affected by the
size and precision of the current semantic context. These characteristics will be also
included in the analytical experiments.

Fig. 4 Contextualization of user preferences
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3.5 Collaborative Recommendations

Collaborative filtering techniques match people with similar preferences to make
recommendations. Unlike content-based methods, collaborative recommender
systems aim to predict the utility of items for a particular user according to the
items previously evaluated by others [18, 19]. One of the main benefits of these
approaches is the possibility to recommend items that do not share features with
respect to the items rated in the past by the user. However, these approaches intro-
duce certain problems [1]; for example, a new item cannot be recommended to a
user until other users rate it.

The utility gain function g.um; in/ of item in 2 I for user um 2 U is estimated
based on the utilities g.uj ; in/ assigned to item in by those users uj that are “simi-
lar” to user um. In this work, we use two different well-known collaborative filtering
approaches: user-based and item-based [18, 19]. In the first situation, the following
approach has been taken:

g.um; in/ D

X

uj2 OUm

sim.um; uj / � rj;n
X

uj2 OUm

ˇ̌
sim.um; uj /

ˇ̌ ;

sim.um; uj / D

X

in2Im;j

.rm;n 	 Nrm/ � .rj;n 	 Nrj /
s X

in2Im;j

.rm;n 	 Nrm/2
s X

in2Im;j

.rj;n 	 Nrj /2
;

where the similarity function is called Pearson correlation.
In the item-based situation, we use a similar formulation:

g.um; in/ D

X

ij2 OIn

sim.in; ij / � rm;j
X

ij2 OIn

ˇ̌
sim.in; ij /

ˇ̌ ;

sim.in; ij / D

X

um2Un;j

.rm;n 	 Nrn/ � .rm;j 	 Nrj /
s X

um2Un;j

.rm;n 	 Nrn/2
s X

um2Un;j

.rm;j 	 Nrj /2
:

The predicted value g.um; in/ is a very solid information source to know whether
the above algorithms would work in a real scenario, so we will study it in our
experiments, along with the type of collaborative filtering technique used.
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3.6 Log Database

The system monitors all the actions the user performs, and gathers them in a log
database. Table 1 shows the attributes of the database tables.

In this work, we focus on the user evaluation and browsing tables, which store
information about ratings and rated items, and system configurations for specific
actions, respectively. The database tables share a session identifier that allows us
to recognize relationships among actions. More specifically, given a row from the
user evaluation table, we extract the session identifier, the rated item, and the action
timestamp to infer which system configuration was at that moment, as follows:

1. Get all the browsing actions matching a given session identifier.
2. Select the actions with the same item identifier, previously extracted from the

browsing table.
3. Use the timestamp to obtain the system configuration, such as user profile weight

(0 if personalization is off), and context weight.

Table 1 Summary of the log database tables and attributes. Session id is an intertable identifier,
whilst action id is an intratable attribute. Action type is a string distinguishing between different
actions a table can contain (for instance, LOGIN and LOGOUT are stored in user accesses table)

Table Attributes

Browsing actionID, actionType, timestamp, sessionID, itemID,
itemRankingPosition, itemRankingProfile,
itemRankingContext, itemRankingCollaborative,
itemRankingHybridUP, itemRankingHybridNUP,
itemRankingHybridUPq, itemRankingHybridNUPq,
topicSection, interestSituation, userProfileWeight,
contextWeight, collaborative, scoreSearch

Context updates actionID, actionType, timestamp, sessionID, context,
origin, changeOfFocus

Queries actionID, actionType, timestamp, sessionID, keywords,
topicSection, interestSituation

Recommendations actionID, actionType, timestamp, sessionID,
recommendationType, userProfileWeight,
contextWeight, collaborative, topicSection,
interestSituation

User accesses actionID, actionType, timestamp, sessionID
User evaluations actionID, actionType, timestamp, sessionID, itemID,

rating, userFeedback, tags, comments, topicSection,
interestSituation, duration

User preferences actionID, actionType, timestamp, sessionID, concept,
weight, interestSituation

User profiles actionID, actionType, timestamp, sessionID, userProfile
User sessions sessionID, userID, timestamp
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4 Decision Trees for Model Feature Learning

The main goal of our research is twofold: the creation of training samples that corre-
spond to positive (relevant) and negative (nonrelevant) recommendation cases, and
the analysis of these samples with ML techniques to determine which model features
seem to be most significant to provide either positive or negative recommendations.

In this section, we describe the ML algorithms applied for our model feature
learning purposes. We focus on one of these techniques: Decision Trees. However,
a previous work also explored Attribute Selection technique [4]. Information for
creating the samples is obtained from the log database introduced in Sect. 3.6.

Decision Trees apply a divide-and-conquer strategy for producing classifiers with
the following benefits [16]:

– They are interpretable.
– They enable an easy attachment of prior knowledge from human expert.
– They tend to select the most informative attributes measuring their entropy,

boosting them to their top levels.
– They are useful for nonmetric data (the represented queries do not require any

notion of metric, as they can be asked in a “yes/no”, “true/false” or other discrete
value set representations).

However, despite these advantages, Decision Trees are usually overfitted and might
not generalize well to independent test sets. Two possible solutions are applicable:
stopped splitting and pruning. C4.5 is one of the most common algorithms to build
Decision Trees, and uses heuristics for pruning based on statistical significance of
splits. In the experiments, we make use of its well-known revision J48.

It is worth noting that in this paper we are interested in the model generated by
this classifier, instead of its predictive power. Proceeding in this way, Decision Trees
will show which attributes are more informative (those appearing at the top of the
tree), and which of their values tend to classify an instance as positive or negative.

5 Experiments

The experiments have been conducted using News@hand system, presented in
Sect. 3. In the following, a description of the system item database and knowledge
repository is provided. We also explain the two different experiments performed
(stages from now on), including the tasks and phases fulfilled by users during the
evaluation, and conclude with the obtained results.
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5.1 News Item Database and Knowledge Repository

For two months, RSS feeds were collected on a daily basis. A total of 9,698 news
items were stored. With this dataset, we run our semantic annotation mechanism
mentioned in Sect. 3.2, and a total of 66,378 annotations were obtained. For more
details, see [11].

A set of 17 ontologies is used by the current version of the system. They are adap-
tations of the IPTC ontology1, which contains concepts of multiple domains such
as education, culture, politics, religion, science, technology, business, health, enter-
tainment, sports, weather, etc. They have been populated with concepts appearing in
the gathered news items using semantic information from Wikipedia, and applying a
population mechanism explained in [11]. A total of 137,254 Wikipedia entries were
used to populate 744 ontology classes with 121,135 instances.

5.2 Experimental Setup

Two different stages have been designed to discover which model features are
relevant in providing accurate recommendations. The first one is focused on per-
sonalization functionalities, in particular: ontology-based content retrieval, and
semantic context-aware personalization. Ontology-based content retrieval is tested
against a keyword-based approach, whilst context-aware personalization is turned
on and off to investigate its contribution to the user’s experience. Another important
part of these methods has also been evaluated: semantic expansion of preferences.

In the second stage, we analyze which features of our model are more influential
when using a collaborative filtering algorithm. With this objective in mind, we have
integrated two well-known, state-of-the-art collaborative filtering algorithms into
the system, and studied their discriminative power for classifying a news item as
relevant or irrelevant.

First Stage: Evaluation of Content-Based and Context-Aware Recommendation

In this section, we present a first experiment conducted to evaluate the precision of
the personalization and the context-aware recommendation functionalities available
in News@hand (Sects. 3.3 and 3.4). We also aimed to investigate the influence of
each mechanism in the integrated system, measuring the precision of the recom-
mendations when a combination of both models is used. Sixteen members of our
department were requested to participate. There were 12 undergraduate/graduate
students and 4 lecturers.

1 IPTC ontology, http://nets.ii.uam.es/mesh/news-at-hand/news-at-hand_iptc-kb_v01.zip.

http://nets.ii.uam.es/mesh/news-at-hand/news-at-hand_iptc-kb_v01.zip
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Table 2 Summary of the search tasks performed in the experiment

Profile Section Query Task goal

1 World Q1;1 Pakistan News about media: TV, Radio, Internet
Telecom Entertainment Q1;2 music News about software piracy, illegal

downloads, file sharing
2 Business Q2;1 dollar News about oil prices
Banking Headlines Q2;2 fraud News about money losses
3 Science Q3;1 food News about cloning
Social care Headlines Q3;2 internet News about children, young people, child

safety, child abuse

The experiment comprised two phases, each composed of two different tasks.
In the first phase, only the personalization module was active, and the tasks were
different in having the semantic expansion (see Sect. 3.1) enabled or disabled. In the
second phase, the contextualization and semantic expansion functionalities were
active. In its second task, the personalized recommendations were also enabled.
More details are given in the next section.

A task was defined as finding and evaluating those news items that were relevant
to a given goal. Each goal was framed in a specific domain, and we considered three
domains: telecommunications, banking, and social care issues. For each domain,
a user profile and two search goals were set as explained below. Table 2 shows a
summary of the involved tasks.

To simplify the searching tasks, they were defined for a pre-established section
and query. Hence, for example, the task goal of finding news items about soft-
ware piracy, illegal downloads and file sharing, Q1;2, was reduced to evaluate those
articles existing in Entertainment section that were retrieved with the query “music”.

To cover as many system configurations as possible with the available users, the
assignment of the tasks was set according to the following principles:

– A user should not repeat a query during the experiment.
– The domains should be equally covered by each experiment phase.
– A user has to manually define a user profile once in the experiment.

For each phase, the combination of personalized and context-aware recommenda-
tions was established as a linear combination of their results using two weights
wp ;wc 2 Œ0; 1
:

score.dn; um/ D wp � pref.dn; um/C wc � pref.dn; um; context/

In the personalization phase, the contextualization was disabled (i.e., wc D 0).
Its first tasks were performed without semantic expansion, and its second tasks
had the semantic expansion activated. In the contextualization phase, wc was set
to 1, and the expansion was enabled. Its first tasks were done without personaliza-
tion (wp D 0), and its second tasks were influenced by the corresponding profiles
(wp D 0:5).
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As mentioned before, a fixed user profile was used for each domain. Some of
them were predefined profiles, and others were created by the users during the
experiment, using the profile editor of News@hand. In addition, some tasks were
done with user profiles containing concepts belonging to all the three domains.

There is also an important issue about how the users rated. Every time the user
read an item, he had to assess whether the item was relevant to the profile, to the
current goal, or to both/neither of them. In each situation, a different rating criterion
was defined:

– Rate with 1 star if the item was not relevant.
– Rate with 2 stars if the item was relevant to the current goal.
– Rate with 3 stars if the item was relevant to the profile.
– Rate with 4 stars if the item was relevant to the current goal and the profile.

These rating constraints gave us a bounded frame for evaluation. In the next sections,
it will be shown that they also allowed us to have different criteria to set the class
values of the training samples.

5.2.1 Content-Based Phase

The objective of the two tasks performed in the first experiment phase was to eval-
uate the importance of activating the semantic expansion of our recommendation
models. The following are the steps the users had to do in these tasks:

– Launch the query with the personalization module deactivated.
– Rate the top 15 news items.
– Launch the query with the personalization module activated (and the semantic

expansion enabled/disabled depending on the case).
– Rate again the top 15 news items.

At the end of this phase, each user had rated 30 items with expansion enabled and
30 with expansion disabled.

5.2.2 Contextualization Phase

The objective of the two tasks performed for the second experiment phase was
to evaluate the quality of the results when the contextualization functionality is
activated and combined with personalization. The steps done in this case are the
following:

– Launch the query with the contextualization activated (semantic expansion
enabled, and personalization enabled/disabled depending on the case).

– Rate the top 15 news items, and evaluate as relevant (clicking the title) the first
item related to the task goal. Doing this the current semantic context is updated.

– Repeat the last two steps twice (the last time it is not necessary to update the
context, since the evaluation will not continue).
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At the end of this phase, each user had rated 45 items with personalization on and
45 items with personalization off. He had also evaluated as relevant 4 news items
that were incorporated into the context.

5.2.3 Selection of Sample Attributes and Classes
Based on Evaluation Parameters

Each user had to assign a rating depending on the four existing possibilities for each
news item: relevant to the goal (2), the profile (3), both (4), and neither of them (1).
Considering these four options, we defined three different criteria to classify an item
(sample) as relevant:

– The item is relevant in general, if the user has rated it with 2, 3, or 4 stars.
– The item is relevant to the current goal, if the user has rated it with 2 or 4 stars.
– The item is relevant to the profile, if the user has rated it with 3 or 4 stars.

In this work, we focus on the second criterion, although a preliminary analysis with
the first one is also tested because of its generality.

In addition to the sample classes, according to the evaluation made, we selected
those attributes whose impact on the recommendations we wanted to analyze. For
each item rating log entry, we chose several attributes that can be categorized as
follows:

5.2.4 User-Based Features

– Profile type: A string attribute with two possible values: fixed or user-defined
preferences (manual preferences).

– Profile size: An integer attribute indicating the total number of concepts included
in the profile (number of nonzero components in the vector representation).

– Context size: An integer attribute indicating the number of concepts included in
the current context.

5.2.5 Model-Based Features

– Topic section: Name of the news section in which the rated item appeared.
– Ranking result page: Number of the page in which the rated item appeared. Each

page shows five news items.
– Personalized recommendations: a Boolean value indicating whether the person-

alized recommender was activated or deactivated.
– Context-aware recommendations: a Boolean value indicating whether the

context-aware recommender was activated or deactivated.
– Semantic preference expansion: A Boolean value indicating whether the expan-

sion of user preferences and item annotations was activated or not.
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– Context-aware phase: A number indicating how many times the user has clicked
as relevant an item when the context is activated. A value of 	1 is given if the
context-aware recommendations are off.

Second Stage: Evaluation of Collaborative Recommendation

A second experiment was conducted with News@hand to evaluate the collabora-
tive recommendation models included in the system. One of the objectives of this
experiment was to compare the relevance judgments given by the users with the
recommendations obtained using the CF approach explained in Sect. 3.5. The com-
parison will be given by the model built applying the ML techniques explained in
Sect. 4, in such a way that CF values (potential recommended items) should be cor-
related with the relevance judgments, at least, when certain model conditions are
fulfilled.

The 16 members of our department who participated in the previous experiment
were again requested to take part of the evaluation presented herein. Each user
performed three different tasks, assessing news recommendations for three news
sections: Business, Sports, and World (see below why we selected these sections).
For each task, two subtasks were defined:

– In the first subtask, the users had to rate a number of news items from a random
list.

– In the second subtask, the users had to rate several news items from a list
generated with the personalization functionality activated.

Each subtask was defined as finding out and rating those news items that were
“related to” a personal user profile. By “related to” we mean that a news item
contains semantic annotations whose concepts appear in the user’s profile.

Similarly to the experiment described in previous section, the evaluators were
asked to define their preferences. However, in this case, they could only select pref-
erences from a given list of semantic concepts. They were provided a form with a list
of 128 semantic concepts, classified in 8 different domains. From this list, the users
had to select a subset of concepts, and assign them negative/positive weights accord-
ing to personal interests. Table 3 shows the concepts available for each domain, and
the average number of preferences per user. On average, each profile was created
with 7.8 preferences per domain, duplicating the preferences introduced by the users
when they had to manually search the concepts in the ontology browser (first stage).

In the next sections, we explain in detail the different tasks performed by
the users, and the data extracted from their interaction with the system to draw
appropriate conclusions.
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Table 3 Topics and concepts allowed for the user profiles in the evaluation of the hybrid
recommenders
Domain Concepts #prefs Avg.

#pref./user

Computers
Technology
Telecommunica-
tions

Computer, digital, ebay, google, ibm, internet,
mass, media, microsoft, networking, online,
satellite, software, technology, video, website

135 8.4

Wars Armed
conflicts

Al-qaeda, army, battle, combat, crime,
kidnapping, kill, memorial, military, murder,
peace, prison, strike, terrorism, war, weapons

104 6.5

Social issues Aids, assassination, babies, children, death
sentence, divorce, drugs, family, health,
hospital, immigration, love, obesity, smoking,
suburb, suicide

115 7.2

Television Cinema
Music

Actor, bbc, cinema, cnn, film, grammy,
hollywood, movie, music, musician, nbc, radio,
rock, oscar, singer, television

129 8.1

Sports Baseball, cricket, football, lakers, nascar, nba,
new england patriots, new york giants, nfl,
olympics, premier league, running, sports,
soccer, super bowl, tennis

168 10.5

Politics George bush, condolezza rice, congress,
democracy, elections, government, hillary
clinton, john maccain, barack obama,
parliament, politics, president, senate, senator,
voting, white house

104 6.5

Banking Economy
Finance

Banking, business, cash, companies, earnings,
economy, employment, finance, fraud, gas
price, industry, marketing, markets, money, oil
price, wall street

120 7.5

Climate Weather
Natural disasters

Air, climate, earth, earthquake, electricity,
energy, fire, flood, forecast, fuel, gas, pollution,
sea, storm, weather, woods

128 8.0

5.2.6 Interaction with the System

The users had to perform three tasks, each of them in one of the following news
sections: Business, Sports, and World. Successively, for each section, a user had to:

– Deactivate the personalization functionality, and display the news items of the
section. The goal is to present to all the users the same set of news items, to
obtain a “shared” group of rated items (this is very important for the collaborative
filtering model, since this step reduces the sparsity).

– Rate 20 news items that are related (with negative or positive weights) to the user
profile. Taking into account the similarities between item annotations with user
preferences, assign a 1–5 start rating to the selected news items. No restriction is
placed on which items have to be rated.
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– Activate the personalization functionality, and display again the news items of
the section. This time the order (ranking) of the news items is different to the one
shown previously.

– Rate (as explained before) 50 news items not evaluated previously.

With this strategy, the 16 users provided a total of 3,360 ratings for 859 different
news items.

5.2.7 Selection of Training Sample Attributes

The training sample creation was performed similarly as in the previous experiment,
but since the experiment setup was different, the attributes to consider also changed.
For example, this time, context was not evaluated, all the profiles were manu-
ally defined, and semantic preference expansion was always activated. After this
simplification, the relevant sample attributes for this experiment are the following:

5.2.8 User-Based Features

– Profile size: An integer attribute indicating the total number of concepts included
in the profile (the same as before).

5.2.9 Model-Based Features

– Topic section: Name of the news section in which the rated item appeared.
– Ranking result page: Number of the page in which the rated item appeared. Each

page shows five news items.
– Personalized recommendations: a Boolean value indicating whether the person-

alized recommender was activated or deactivated.
– Collaborative filtering algorithm: Since we consider two different collaborative

filtering algorithms, this is a nominal attribute: user-based and item-based. How-
ever, we have preferred to combine samples with values obtained from the same
algorithm to facilitate the ML algorithm classification task. This means that we
have two sets of samples: one for each collaborative filtering algorithm.

– Collaborative filtering value: A number indicating the value given by the recom-
mender system for a particular pair of user and item, given the rest of user ratings
(predicted value, see Sect. 3.5).

5.3 Results

This section presents the results obtained using ML techniques to analyze the
evaluations previously described. These results are classified into three different
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categories, according to the consequences that can be drawn from them. First, we
present the results related to the personalization phase (first stage), where the impact
of the semantic expansion is considered. Second, the contextualization phase (first
stage) results are presented, where the importance of context combined with per-
sonalization is studied. Finally, results related to the collaborative filtering phase are
shown (second stage), where correlation between predicted and real ratings is ana-
lyzed. Furthermore, some conclusions about the evaluation itself are shown in the
discussion section.

For developing these results, Weka ML toolkit [26] and Taste library2 were used.
The Decision Trees presented in the figures of this section were generated using
different parameters according to the stage they refer. Specifically, in the first stage
we generated the trees using the following parameters3: “-C 0.3 -M 5”, whereas in
the second stage we used “-R -N 3 -M 25”. Although we tried with different config-
urations, we chose the ones presented here because they generate comprehensible
but detailed trees.

Furthermore, we have to note that every decision tree presented in this work
report more than a 69% of predictive accuracy in a tenfold cross-validation exper-
iment (the maximum accuracy obtained is 80%). Based on these results, we can
assume the induced models by the decision trees are trustworthy enough to obtain
reliable results.

Learning Model Features from Personalized Recommendations

In the personalization phase, we wanted to investigate whether the semantic expan-
sion helps the user to find relevant news. After using ML techniques, we found more
useful user and system features:

– Profile size. In Figs. 5 and 6, it can be seen that this user feature is useful when
retrieving relevant items, and is connected with expansion and activation of per-
sonalization. In Fig. 5 we can see that, in the Business section, if the profile size
is between 5 and 12 concepts, it is very likely that user will find relevant news.
On the other hand, in Fig. 6, it can be seen that a small profile produces more
irrelevant news to be retrieved.

– Ranking page. Fortunately, the system retrieves relevant news in the first page (top
5 news items), as shown in Figs. 5 and 7. Because of that, our analysis focused on
subtrees where the ranking page has a value of 1.

– Expansion. The importance of this model feature is shown in Fig. 7, where users
find relevant news only when personalization and expansion are activated.

2 http://taste.sourceforge.net/
3 The meaning of these parameters is the following: ‘-C’ sets confidence threshold for pruning,
‘-R’ creates a decision tree using reduced error pruning, when this option is available, ‘-N’ sets the
number of folds used for reduced error pruning.

http://taste.sourceforge.net/
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= Business

profileSize

rankingPage

manualPreferences personalisation

= OTHER= 3= 2

<= 5 > 5

LIKE (60.0/5.0)

LIKE (0.0)LIKE (58.0/9.0)

= 1

Fig. 5 Branch when profile size is less than 12, using all available logs (general evaluation)

= World

rankingPage

= 1

= YES = NO

personalisation

manualPreferences DONTLIKE (89.0/16.0)

DONTLIKE (141.0/2.0) DONTLIKE (139.0/2.0) DONTLIKE (5.0)

= 2 = 3 = OTHER

Fig. 6 Branch when profile size is less than 12, using all available logs (general evaluation)

In general, we have found that using personalization in combination with seman-
tic expansion improves the performance in the first page. Although not all the news
sections behave equally, this seems to be true in general sections such as Headlines,
despite the fact that in the second and third pages, personalization improves little
and needs the help of other strategies, such as contextualization (see next section).

Learning Model Features from Context-Aware Recommendations

In the experiments, we found some model features are more likely to help in context-
aware recommendations. For instance, personalization was a well-performing sys-
tem setting when it is combined with context. Although sometimes context alone
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= Business

rankingPage

= 1

contextSize

expansion

personalisation

= YES = NO

= YES = NO

LIKE (41.0/4.0)

LIKE (10.0/3.0)

< = 0 > 0

DONTLIKE (101.0/19) DONTLIKE (98.0/30.0)

DONTLIKE (35.0/12.0)

DONTLIKE (12.0/5.0)

DONTLIKE (0.0)

= 2 = 3 = OTHER

Fig. 7 Business branch and using all available logs (goal evaluation)

performs well (Fig. 7), in Fig. 8 we show an example where context needs personal-
ization to obtain good results.

Another relevant indicator is the context size (Fig. 8). In previous experiments
[4], it showed better discrimination power, but in the current ones, its main function
is to distinguish between when the context was on or off. A model feature that does
not have influence in context is the fact of having manual preferences or not, since
the context has more to do with the short-term preferences, rather than long-term
ones.

Learning Model Features from Collaborative Recommendations

The goal of the second stage was to investigate whether collaborative filtering
predicted values correlates with human relevance judgments or not. A first conclu-



450 A. Bellogín et al.

contextSize

< = 0

LIKE (5.0) personalisation

= YES

profileSize

< = 9

DONTLIKE (40.0/16.0) DONTLIKE (10.0/4.0)LIKE (16.0/7.0) LIKE (5.0)

> 9 < = 1 > 1

contextSize

= NO

> 0

Fig. 8 Science branch in the third ranking page, using context-related logs (goal evaluation)

> 2.76958

> 55< = 55

profileSize

profileSize profileSize

profileSizecfValue

< = 3.403488 > 3.403488

> 36< = 36 > 86< = 86

> 85< = 85

LIKE (374.0/58.0) LIKE (43.0/5.0)

Fig. 9 Branch with CF value greater than 2.76, using a user-based algorithm

sion can be drawn after analyzing Figs. 9, 10, and 11: in most cases, collaborative
filtering algorithms predict successfully the relevant class of a news item. However,
a different behavior can be found between the two algorithms used here (item-based
and user-based). If we focus on Figs. 10 and 11, we can see differences in the Topic
section classification. Business is a very specific section, and most of its items are
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cfValue

topicSection

< = 1.49524

= World

= 1

LIKE (38.0/19.0) LIKE (50.0/24.0)

LIKE (66.0/21.0)

DONTLIKE (32.0/13.0)

DONTLIKE (25.0/8.0)

DONTLIKE (286.0/85.0)

DONTLIKE (395.0/70.0)

DONTLIKE (220.0/97.0)

LIKE (32.0/12.0)

LIKE (40.0/19.0)

= 2 = 3 = OTHER

= YES = NO

< = 48 > 48

< = 79 > 79

rankingPage

personalisation

profileSize

profileSize

= Sports = Business

> 1.49524

Fig. 10 Branch with CF value less than 2.76, using a user-based algorithm

very similar. Item-based algorithm lacks of information, and needs the assistance of
other methods to be able to classify items as relevant or irrelevant. At the same time,
World section is a very general section, containing objects of different types, which
gives a lot of information to fulfill its goal. User-based algorithm behaves quite the
opposite, which gives us the results shown in Figs. 9 and 10. Sports section has to
be left aside, since most of the users choose no concepts related with this section,
resulting in irrelevant news retrieved by the system very often.

The predictive power of these algorithms can be seen in Fig. 11, where, in this
case, two threshold values can be inferred to guess if the news item will be relevant
or not. In this figure, these two values are 2.752 (above this value a news item can
be considered relevant) and 1.967 (below this value news are irrelevant with a great
confidence). A similar situation happens in Fig. 10, where only the threshold to set
irrelevant news is shown. This situation allows us to focus on a more limited set
of news items: the ones located between the two thresholds. This set is not large,
but ambiguous, since a value of 2.5 can be positive for one person but negative for
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cfValue

< = 2.751958 > 2.751958

> 1.967361< = 1.967361

= World = Sports = Business

= YES

< = 55 > 55

LIKE (98.0/36.0)

LIKE (912.0/189.0)

DONTLIKE (390.0/31.0)

DONTLIKE (247.0/105.0) DONTLIKE (293.0/83.0)

DONTLIKE (89.0/35.0)

DONTLIKE (59.0/22.0)

= NO

cfValue

topicSection

personalisation

profileSize

Fig. 11 Whole tree generated by using an item-based algorithm

another one. It is worthwhile noting that personalization methods are indeed helpful
in discriminating relevant news items pertaining to this small set.

Profile size has been found to be a very informative feature (see Fig. 9). Another
discriminative feature is the ranking page (Fig. 10), although in this experiment it
has less classification power than in the previous ones already explained (compare
with Fig. 7, for example).

Finally, personalization confirms its utility once again. For example, in Fig. 11,
activated personalization helps the collaborative filtering algorithm to classify an
item as relevant when the predicted value is ambiguous (and, in this case, along
with a profile not too big).

In general, we have found that the values predicted by collaborative filtering algo-
rithms are very close to real ones. Indeed, if a predicted value is extreme (above 3.5
or below 1.5), in most of the cases, we can be confident of that, and classify the item
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topicSection

rankingPage rankingPage rankingPage rankingPage

= World= Headlines = Business = Science = Entertainment

LIKE (343.0/42.0)

Fig. 12 Fragment of the decision tree with unbalance node load

accordingly. This situation is improved when it is combined with our personaliza-
tion algorithms. In a future analysis, we have to verify whether such a combination
with our context and expansion models also leads to similar improvements.

6 Discussion

We have presented a method for the automatic, iterative refinement of a rec-
ommender system by a virtuous cycle with three main steps. First, an initial
recommendation model is run on a set of available input data to compute suggestions
for a given user. Next, the obtained outputs are analyzed to identify latent dependen-
cies between model characteristics recommendation quality, in order to single out
the most relevant ones. Finally, adjusting the identified characteristics, a new recom-
mendation model is produced, aiming to generate more accurate results. The work
herein presented focuses on the identification of such relevant model characteristics.

The proposed approach applies ML techniques to learn the user and system fea-
tures that favor correct recommendations by the system. Specifically, for every
recommendation evaluated (rated) by the user a training sample is created. The
attributes of the sample are the target characteristics for analysis, and their values
are taken from log information databases. The training example is assigned one of
the two possible classes, correct or incorrect, depending on whether the user evalu-
ated the corresponding recommendation as relevant or irrelevant. The ML strategy
consists of a classification algorithm on these examples.

The approach discussed above has been tested in the News@hand recommender
system [8]. Further work is needed to measure the performance improvements
obtained in that system after applying the proposed strategy, as well as to inves-
tigate other machine learning techniques, apart from decision trees, to select the
most relevant model features.

Besides assessing the potential direct benefits on recommendation performance,
further findings were drawn from the empiric experience with regards to the exper-
imental methodology itself, identifying shortcomings and weaknesses. We found
out that the first stage of our evaluation was unbalanced in terms of the difficulty
to obtain news items relevant for each task. The decision tree in Fig. 12 is such an
example. The classifier infers that most of the users liked (almost) every news item
in a particular section, while in other sections this is conditional on other parameters
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such as the ranking page or other model characteristics. The task related to the
Science section was identified as ‘very easy’ by the users, probably because the
query used in this task biased the results to be relevant to the goal. We also observed
that some tasks performed better when contextualization was activated. This could
be caused by the fact that a particular goal was very specific, and there was no
profile focused on that domain (in our case, Business section). A similar situation
was the one in which the profiles had to be very specific to get some results. Since
the users were not finding relevant news items, the context was useless (this hap-
pened in Entertainment section). Finally, another important conclusion concerns the
manual profiles. When users create theirs profiles, they do not know anything about
which will be their goals or queries, which makes very difficult for personalization
algorithms to rank relevant news in the first pages.
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by pairwise comparison, 11
performance measure, see Loss function
task, 6

Instance-based learning, 160
CBR, 395
label ranking, 12, 57–58
nearest neighbor, 403
probabilistic, 58

Interleaving
balanced, 351
team-draft, 353

Intranet search, 338

Joint feature map, 52

k-partite ranking, see Multipartite ranking
Kendall’s tau, 50, 57, 76, 183, 189, 196, 199,

207, 372
distance, 183
label ranking, 46
object ranking, 183

Kernel, 148, 150, 188
adatron, 39
edge, 47
extension, 47
Gaussian, 34, 191
graph, see Graph kernel
Hilbert space, 147
inverse Laplacian, 420
linear, 243
methods, 30
partial order, 47–48
position, 47
preference, 32
tree, 84

Kesler’s construction, 49
Kuhn–Mungres algorithm, 53

Label, 3, 45
Label ranking, 4–5, 20, 22–23, 39, 45–61, 68,

76, 108
by pairwise comparisons, 50, 68–70
calibrated, 24, 71, 72
decision tree, 13
instance-based, 12, 57–58
log-linear models, 10
performance measure, see Loss function
probabilistic methods, 58–60
structured prediction, 52–55
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SVM, 51–52
task, 4, 48
utility function, 109

Largest inscribed ball, 299, 303–304
Latent semantic indexing, 195, 410
Latent variable, 130
LAUC, see AUC, left-most portion
Law of comparative judgement, see

Thurstonian model
Learning bias, see Bias
Learning by pairwise comparison, 66, 68

complexity, 77–79
hierarchical classification, 72–74
multiclass classification, see Pairwise

classification
multilabel classification, 70–72
multipartite ranking, 74–75
non-competence problem, 75
ordered classification, 72–74
ranking, 11, 50
theoretical foundations, 75–77

Learning reductions, 49
Learning to order things, 7, 186, 205

complexity, 205
LETOR collection, 14, 367
Lexicographic order, 11, 270
Lexicographic preference model, 252, 253,

274
aggregate, 260
loss function, 265
sampling of, 259, 260, 262–265, 269
weighted voting, 261, 262, 264, 269

Linear assignment problem, 53, 416
Linear ordering problem, 186
Loss function, 75, 129, 412

GPLM, 30
instance ranking, 6, 27
label ranking, 4, 5, 46, 77, 109
least squares, 422, 424
multilabel classification, 28
object ranking, 7
ordered classification, 27–28, 413
pairwise error, 134
retrieval quality, 338

LPC, see Learning by pairwise comparison
LPM, see Lexicographic preference model
Luce’s choice axiom, 199

Möbius transform, 324
Mallows model, 58, 199

� model, 199
� model, 199

Mann-Whitney-Wilcoxon test, see
Wilcoxon-Mann-Whitney

MAP estimation, 59
Markov chain Monte Carlo approaches, 60,

419
Matrix factorization, 15, 410

maximum margin, 411–418
Maximum acyclic subgraph, 58
Maximum margin methods, 52, 299, 370

conjoint analysis, 300–303
label ranking, 52–54
matrix factorization, 411–418

MCMC, see Markov chain Monte Carlo
MEDLINE, 14, 363–367

features, 370
MeSH, 364–366, 381
PubMed, 364–366, 368, 380

MeSH, see MEDLINE
Metropolis process, 60
Midrank, 183
Minimum feedback arc set, 57
Mixing time, 60
MMMF, see Matrix factorization, maximum

margin
Model voting, 256, 259–263

complexity, 262
vs. variable voting, 263

Monotonicity, 8
aggregation operator, 319
constraints, 219, 330
decision trees, 222
fuzzy measure, 324
ordered classification, 219
ordinal variables, 253
preference scale, 219

Multi-view learning, 107
Multiclass classification, 5, 45, 128

by pairwise comparison, see Pairwise
classification

Multilabel classification, 24, 45, 48, 70, 78
by pairwise comparison, 70–72
performance measure, see Loss function

Multipartite ranking, 74
by pairwise comparison, 74–75

Multiple attribute decision aiding, 70, 221
Multiple attribute ranking problem, 224, 227
Multiple attribute utility theory, 221
Multistage model, 199

Naïve Bayes classifier, 94, 160, 197, 401
NDCG, 7, 338, 340, 372, 415, 421

top-10, 372
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Nearest neighbor algorithms, see
Instance-based learning

Net flow score, 11, 228
Neural network, 380, 400, 403, 431
News recommender, 430
News_at_Hand, 432–438
NFS, see Net flow score
Noise, 192–194, 254

attribute, 192, 193, 211
measurement, 347
order, 192, 193, 211
scores, 189, 190
voting, 267

Non-competence problem, 75

Object ranking, 7–8, 48, 49, 181–198, 203, 226
boosting, 187
by pairwise comparisons, 186, 235
complexity of methods, 197
dimension reduction, 203–214
methods, 185–190
paired comparison model, 198
performance measure, see Loss function
regression, 189
SVMs, 187
task, 7, 183–185

Observation
label ranking, 4
object ranking, 253

One-vs.-all, 67, 130
One-vs.-one, see Learning by pairwise

comparison
One-vs.-all, 67, 73, 79
Online learning, 55, 292, 293

label ranking, 55–57
user profile, 400

Ontology, 432–434, 440
EUROVOC ontology, 78
IPTC ontology, 440

Oracle, 52, 271, 375
gradient, 376
separation, 53

Order, 182–183
lexicographic, see Lexicographic order
partial, see Partial order
total, see Total order

Order statistics model, see Thurstonian model
Ordered classification, 5, 8, 49, 72, 78,

129–133, 185, 219, 226
by pairwise comparison, 72–74
Gaussian processes, 423
GPLM, 35–37
machine learning approaches, 274

vs. multiclass classification, 130
multivariate, 24
vs. pairwise classification, 131
SVMs, 188
univariate, 24
with monotonicity constraints, 219

OrderSVM, 187–188, 205
Ordinal classification, see Ordered

classification
Ordinal regression, see Ordered classification
Orness, 322
OWA, see Aggregation operator

PAC learnability, 284, 285
Pairwise classification, 66–68, 74

vs. ordered classification, 131
Pairwise comparison, 8–11, 65

aggregation, 66
labels, 4
learning, see Learning by pairwise

comparison
objects, 7, 224, 227, 275

Pairwise coupling, 76
Pairwise learning, see Learning by pairwise

comparison
Pairwise preference, see Pairwise comparison,

102
Pareto optimality, 139, 220
Partial order, 22, 46, 80, 256

aggregation, 58
learning of, 257, 258, 262–265

Partial ranking, 22, 46, 302
aggregation, 58

Partition function, 59
Perceptron, 29, 39, 55, 78, 160
Performance measure, see Loss function
Permutation, 4, 5, 46, 55, 60, 90, 105, 320,

321, 327, 415
function, 88
greedy, 254, 255, 265
perfect, 415
random, 184, 189

Personalization, 2, 388, 389, 397, 431, 436,
440, 442, 444

Plackett–Luce model, 199
vs. Thurstonian, 199

Polya–Littlewood–Hardy inequality, 53
Position error, 4, 5, 77
Preference, 1

elicitation, 2, 274, 371, 387, 388, 395
expansion, 433–434
function, 226–228, 271
intensity, 224
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inverse, 224
learning, 2
learning applications, 13–15, 31–39
numerical, 274
optimization, 20, 28
ordinal, 274
qualitative, 22, 23
quantitative, 23
ranking, 226
structure, 8, 220
weak, 224, 226

Preference graph, 25, 26, 29, 30, 39, 46
decomposition, 50, 56
undirected, 109

Preference information, 220–222, 226
pairwise comparison, see Preference

relation
ranking, see Preference ranking
utility rating, see Preference rating

Preference learning tasks, 3–8
instance ranking, 6, 48
label ranking, 4
learning to rank, 3
object ranking, 7, 183–185

Preference learning techniques, 8–13
learning preference relations, 10
learning utility functions, 8
local aggregation of preferences, 12
model-based preference learning, 11

Preference model, 2, 21, 220–222
different types, 221
generalized, see Generalized preference

learning model
lexicographic, see Lexicographic

preference model
pairwise, 128
ranking, 128

Preference predicate, see Preference relation
Preference rating, see also user feedback, 226
Preference relation, 2, 10, 50, 108, 226, 276,

281, 369
complete, 276
convert into ranking, 10
lexicographic, 275
linear, 276
partial, 281
representable by a CP-net, 279
strict, 276
valued, 69

Preference scale, 220
monotonic, 219

Preference transitivity, 10, 50, 109, 128, 276,
310

stochastic, 356, 359

Preferential independence, 277, 299
conditional, 274

Prefix variable, 261
Proportional odds, 130
PubMed, see MEDLINE

Q-label classification, 23
Queries per session, 345
Query expansion, 397

Rank aggregation, 13
algorithms, 57
center of orders, 185
local, 12
partial orders, 58
partial rankings, 58
total orders, 57

Rank correlation
Kendall, see Kendall’s tau
Spearman, see Spearman’s footrule

Rank correlation dimension reduction, 204
Kendall RDCR, 208
Spearman RDCR, 209

Rank error, see Ranking loss
RankBoost, 187, 205

learning time, 197
Ranking loss, see also Kendall’s tau, 4, 5, 7,

26, 51, 55, 228
and AUC, 229
exponential, 231
least squares approximation, 109
minimization, 224
preference-based, 229, 235
utility-based, 229, 238

Ranking problem, 3, 218
multi-attribute, see Multiple attribute

ranking problem
RankRLS, 111

co-regularized, 113–114
kernel, 113
sparse, 108, 111–112
sparse co-regularized, 115–116

RankSVM, 108, 368, 369, 373, 379
Ratings, see User feedback
RCDR, see Rank correlation dimension

reduction
Receiver operating characteristic, see ROC
Reciprocal rank, 345
Recommendation, 218, 220

collaborative, see Collaborative filtering
content-based, 388, 434–435
context-aware, 434–436, 443, 448–449



Subject Index 463

multi-facet, 434
offset, 418
personalized, 434, 443, 446–448

Recommender system, 14, 21, 224, 239,
241–242, 389, 409, 429, 431

collaborative, see Collaborative filtering
content-based, 388, 389, 401, 402
demographic, 388, 394
hybrid, 395
knowledge-based, 388, 395

Reformulation rate, 345
Regression, 8, 19, 208, 303–304

ERR, see Expected rank regression
loss function, 422
object ranking, 189
order, 184
ordinal, see Ordered classification
reductions, 49
regularized least-squares, 54
subsets of regressors, 112–113

Regression tree, 83, 84, 86
Regularization, 30, 110–111, 300, 411, 417

co-, see Co-regularization
efficient parameter selection, 117
kernel, 420
least-squares ranking, 110
least-squares regression, see Regression
parameter, 51, 54, 147, 149, 312, 412, 422
Tikhonov, 133

Relevance feedback, 338, 390, 402, 436
Rocchio, 378, 402

Relevance judgment, see Relevance feedback
Ripper, 172, 174, 403
RKHS, 52, 110, 113
RLSR, see Regression, Regularized

least-squares
ROC curve, 85, 100, 128, 164, 168

area under, see AUC
ROC surface, 137, 138, 140

ordered classes, 137
volume under, 128, 137, 140–150

Rocchio classifier, 401
Rough set theory, 222, 223

dominance-based, see DRSA
Round robin learning, see Learning by

pairwise comparison
Rule, 229
Rule ensemble, 218, 225, 226, 231

contribution of a rule, 231
empirical risk, 232
redundancy, 161

Rule learning, 11, 222, 402
bias, 157
bipartite ranking, 158–162

covering, 156
vs. decision tree, 156
vs. SVMs, 244

Sampling, 60, 422
LPMs, 259, 260, 262–265, 269
MCMC, see Markov chain Monte Carlo
mid, see Active learning
random, 370
reduction from counting, 60
top, see Active learning

Scoring function, 21, 51
Search engine, 7, 13, 23, 164, 181, 203, 224,

357
evaluation, 337–360
interleaving results, 358
learning to rank, 14
log, 379
Lucene, 341
PubMed, see MEDLINE
Web, 338

Sherman–Morrison–Woodbury, see Woodbury
matrix identity

Slipper, 233, 403
Snippet, 357–358
Spearman’s footrule, 57, 76, 183, 188, 190,

192, 196, 199, 212, 213
distance, 182, 185
label ranking, 46, 76
object ranking, 182

Strong generalization, 421
Structured prediction, 24, 52, 59, 148
Subspace descent, 416
Supervised learning, 19, 21

taxonomy, 21
Supervised ordering, 8
Support vector machine, 243, 364, 369, 370,

378, 379
GPLM, 32–33
label ranking, 51–52
least squares, 55
multiclass, 67
object ranking, 187
ordered classification, see SVOR
ranking, see RankSVM
vs. rule learning, 244
sequential minimal optimization, 133
structured prediction, 148

Support vector ordinal regression, 133,
188–198, 205, 211–213

kernel, 189
SVM, see Support vector machine
SVOR, see Support vector ordinal regression
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Target ranking, 5, 183, 187
Thurstonian model, 65, 196, 198, 305

vs. Plackett–Luce, 199
Time to click, 345
Top-k evaluation

entropy, 91
Gini criterion, 91
NDCG, 372
ranking, 7

Total order, 3, 4, 22, 46, 48, 50, 57, 253, 255,
259

Tournaments, 13, 57, 359

U-statistics, 128, 137
Ulam’s distance, 76, 183
Unlabeled data, 108, 113, 158, 279, 370
Update rule

additive, 56
multiplicative, 56

User feedback, 14, 186, 364, 368, 397–399
expert, 338
explicit, 339, 369, 371–372, 397
implicit, 338, 340, 399
relevance, see Relevance feedback

User profile, 400, 429, 432–435, 442, 445
User study, 308, 338, 339, 341–344, 381
Utility function, 2, 8, 12, 226, 227, 238, 274,

318
additive, 221, 225
decomposition, 12
label ranking, 9, 109
object ranking, 9
rule-based approximation, 234

Vapnik-Chervonenkis dimension, see
VC-dimension

Variable voting, 256–259
complexity, 259
convergence, 258
correctness, 258
vs. model voting, 263

VC-dimension, 275, 282–283
CP-nets, 283–284

Voting, 67, 70
adaptive, 76
algorithms, 256–263
binary, 76
model, see Model voting
variable, see Variable voting
weighted, see Weighted voting

VUS, see ROC surface, volume under

Weak generalization, 421
Weighted mean, see Aggregation operator
Weighted voting, 11, 76

LPMs, 261, 262, 264, 269
Wikipedia, 338, 440
Wilcoxon signed rank test, 119
Wilcoxon–Mann–Whitney statistic, 6, 85, 128
Winnow, 186
WIPO, 38
Woodbury matrix identity, 112, 420
WOWA, see Aggregation operator
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