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Preface

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel and distributed computing.
Euro-Par 2009 was the 15th edition in this conference series. Througout the
years, the Euro-Par conferences have always attracted high-quality submissions
and have become one of the established conferences in the area of parallel and
distributed processing. Built upon the success of the annual conferences and in
order to accommodate the needs of special interest groups (among the confer-
ence participants), starting from 2006, a series of workshops in conjunction with
the Euro-Par main conference have been organized. This was the fifth year in
which workshops were organized within the Euro-Par conference format.

The workshops focus on advanced specialized topics in parallel and dis-
tributed computing. These topics reflect new scientific and technological devel-
opments. While the community for such new and specific developments is still
small and the topics have yet to become mature, the Euro-Par conference offers
a platform in the form of a workshop to exchange ideas and discuss cooperation
opportunities.

The workshops in the past four years have been very successful. The number
of workshop proposals and the number of finally accepted workshops have gradu-
ally increased since 2006. In 2008, nine workshops were organized in conjunction
with the main Euro-Par conference. In 2009, there were again nine workshops.
Compared to 2008, the workshops HeteroPar (Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Platforms) and XtreemOS Summit
(Open Source Grid Operating System) were newcomers, while the workshops
SGS (Secure, Trust, Manageable and Controllable Grid Services) and DPA (Ab-
straction for Distributed Systems) were discontinued in 2009. The following nine
workshops were held in conjunction with EuroPar 2009:

– HPPC 2009 was the 3rd Workshop on Highly Parallel Processing on a Chip.
Architectures with a large on-chip parallelism for special and general-purpose
computation have been marketed in recent years with various degrees of
success. Although the shift toward many-cores is inevitable and generally
accepted, the road to travel is still unclear as currently there are many dif-
ferent architectural designs and products by both large and smaller vendors.
HPPC 2009 was a forum for discussion of new research directions into par-
allel (multi-core) architectures, programming models, languages, libraries,
algorithms, and software tools. HPCC 2009 started with a well-attended in-
vited talk “The Next 25 Years of Computer Architecture” by Peter Hofstee.
It concluded with an interesting and lively panel “Are Many-Core Com-
puter Vendors on Track?” with panelists Uzi Vishkin, Peter Hofstee, Chris
Jesshope, and Ahmed Jerraya.



VI Preface

– HeteroPar 2009 was a workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Platforms. HeteroPar 2009 was the
seventh edition of this workshop, but this was the first time that it was co-
located with the Euro-Par conference. The workshop intends to be a forum
for people working with heterogeneous platforms and trying to find efficient
problem solutions on heterogeneous systems. It started with an invited talk
by Dick Epema, who discussed different forms of heterogeneity in large-scale
systems and the problem of processor co-allocation. HeteroPar 2009 received
a large number of submissions and eventually ten papers were accepted for
presentation at the workshop.

– PROPER 2009 was a workshop addressing productivity and performance-
tools for HPC application development. The topics covered tools for parallel
program development and analysis as well as general performance measure-
ment and visualization. On the one hand, efficient and ease-of-usage of HPC
systems is a very important requirement, and on the other hand scalability
is essential for achieving high performance. This was the second workshop
in co-location with the Euro-Par conference following the success in 2008.
The papers presented at the PROPER 2009 workshop discussed performance
analysis tools and new design ideas of these tools.

– ROIA 2009 was the International Workshop on Real-Time Online Interac-
tive Applications on the grid. It was organized in conjunction with the Euro-
Par conference for the second time. The workshop intends to cover all areas of
real-time distributed technologies, from research of basic real-time methods
to applications in real-world environments. In order to promote this research
area and to allow more people to become acquainted with ROIA-related ap-
plications, the workshop included two tutorial sessions. The papers presented
at the workshop discussed the following topics: real-time interactive paral-
lel and distributed tools and environments, real-time interactive distributed
(massively multiplayer) online gaming, real-time interactive e-learning ap-
plications, integration of Cloud computing virtualization technologies with
real-time interactive applications, techniques for real-time quality of service
(QoS) monitoring and enforcement, utility business models and service level
agreements (SLA) for ROIAs, and experiences in deployment and use of
real-world distributed ROIAs.

– UNICORE Summit 2009 was a unique opportunity for grid users, de-
velopers, administrators, and researchers working with the UNICORE grid
technology to meet. UNICORE is a well-known grid middleware system
which provides a seamless, secure, and intuitive access to distributed grid
resources. This was the fifth time the UNICORE Summit was held in con-
junction with the Euro-Par conference. The topics discussed by the papers
presented at the workshop include: extensions of UNICORE, data manage-
ment, and deployment.

– VHPC 2009 was the 4th Workshop on Virtualization in High-Performance
Cloud Computing held in conjunction with the Euro-Par conference. The
workshop intends to bring commercial providers of cloud computing ser-
vices and the scientific community together in order to foster discussion,
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collaboration, and mutual exchange of knowledge and experience. It pro-
vided a good opportunity for the Euro-Par community to get acquainted
with this new and very active research domain. The closing session of this
year was a panel forum. The discussions at the panel session were very lively
and fruitful; the workshop attracted quite a high number of participants.

– XtreemOS Summit 2009. XtreemOS is a Linux-based operating systems
that includes grid functionalities. It is characterized by properties such as
transparency, hiding the complexity of the underlying distributed infrastruc-
ture; scalability, supporting hundreds of thousands of nodes and millions of
users; and dependability, providing reliability, high availability and security.
The XtreemOS summit included presentations and demonstrations about
XtreemOS services and components. The workshop has no proceedings.

– Gecon 2009 was the 6th International Workshop on Grid Economics and
Business Models. The commercial exploitation of grid computing is slowly
starting to become popular under the term “cloud computing.” These ex-
isting solutions are very diverse, ranging from resource-as-a-service (RaaS)
models to software-as-a-service (SaaS) models. However, the existing cloud
offerings can only be purchased directly from a provider; they cannot be
traded in a common market. Such a cloud market would act as a focal point
for grid buyers and sellers to meet. In fact, in an open market, any market
participant could act as a resource provider or resource seller, depending on
the current demand level. This approach would allow companies to benefit:
on the one hand, excess capacity can be sold to reduce costs; on the other
hand, demand peaks can be covered with cheap grid resources. At Gecon
2009 researchers and practitioners from academia and industry were gath-
ered to discuss issues associated with the development of a common market
for computing resources, including networks, storage, and software.

– CoreGRID 2009 was the first workshop organized by the new CoreGRID
Working Group sponsored by ERCIM. The CoreGRID workshop has been
held in co-location with the EuroPar conference a number of times. Previ-
ously, it was organized within the context of the European research Network
of Excellence in developing the foundations, software infrastructures, and
applications for large-scale, distributed grid and P2P technologies. In 2009
the CoreGRID Working Group was founded after the successful completion
of the European Research Network of Excellence project. The CoreGRID
Working Group aims to conduct research in the area of the emerging Inter-
net of Services, with direct relevance to the Future Internet Assembly. The
grid research community has not only embraced but has also contributed to
the development of the service-oriented paradigm to build interoperable grid
middleware and to benefit from the progress made by the services research
community.

This volume includes the proceedings of the first six workshops; the work-
shops CoreGRID 2009 and Gecon 2009 have separated proceedings.

The workshops had their own Program Committees and managed their own
paper-reviewing process. First of all, we thank all the authors who submitted
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papers to the various workshops. We are grateful to all the workshop organiz-
ers, members of Program Committees, and the many reviewers. Without their
contribution organizing the workshops would not have been possible.

Last but not least, we owe a debt of gratitude to the members of the Euro-
Par Steering Committee for their support; in particular to Luc Bougé for all his
advice regarding organizational issues in workshops. We thank Tomàs Margalef
of the organization of Euro-Par 2008 and Eduardo César of the organization of
the Euro-Par 2008 workshops for sharing their experience with us. A number
of institutional and industrial sponsors contributed toward the organization of
Euro-Par 2009. Their names and logos appear on the Euro-Par 2009 website at
http://europar2009.ewi.tudelft.nl/.

It was our pleasure and honor to organize and host the EuroPar 2009 work-
shops at Delft University of Technology. We also thank Delft University for
the support and facilities they provided during the preparation and during the
Euro-Par 2009 workshops.

March 2010 Hai-Xiang Lin
Michael Alexander

Martti Forsell
Adreas Knüpfer

Radu Prodan
Leonel Sousa
Achim Streit
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Foreword

To counter the relative decline in traditional, single-processor performance, ar-
chitectures with significant on-chip parallelism for special and general-purpose
computation have been marketed in the past few years with various degrees of
success. Although the shift toward (general-purpose) parallel processing is in-
evitable and generally accepted, the road to travel is still essentially unclear –
perhaps even unknown, as witnessed by the many different architectural propos-
als and products by both large and smaller vendors, the usual hype, as well as
research projects in many different directions. At present, generally agreed, easily
understandable, tractable model architectures, programming models, and pro-
gramming language concepts to sustain a parallel algorithmics and productive
software development (which presupposes a high degree of functional and per-
formance portability) all seem to be missing. The use of highly parallel, special-
purpose architectures, which, where applicable, achieve the highest and most
efficient performance, is difficult, development intensive, limited in scope, and
software development to a large extent suffer from lack of portability. It is obvi-
ous that a considerable research, development and teaching effort is called for in
the coming decade, and it may well be that the current economics of the software
industry cannot be sustained, i.e. that software development may again become
seriously labor intensive endeavor.

The Workshop on Highly Parallel Processing on a Chip (HPPC) is a forum
for presentation and discussion of new research into parallel (multi-core) ar-
chitectures, programming models, languages, libraries, algorithms, and software
tools, including the efficient use of highly parallel special-purpose architectures
for general-purpose parallel processing. The workshop especially aims to attract
new and tentative work that seriously addresses the problems of managing signif-
icant amounts of on-chip parallelism at the levels mentioned. To be able to relate
to the parallel processing community at large, which we consider essential, the
workshop is organized in conjunction with Euro-Par, the main European (but

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 3–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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international) conference on all aspects of parallel processing. To provide a wider
outlook the workshop now regularly features two prominent, opinionated theo-
retical and practical researchers as invited speakers. To foster discussion between
attendees, the invited speakers, and additionally invited panelists, HPPC 2009
featured a (well-visited) panel (“Are many-core computer vendors on track?”).
This format will be continued for the next issues of the workshop.

For HPPC 2009, the third installment of the workshop, 5 papers were selected
for presentation and subsequent publication out of the 18 received submissions.
The submitted papers were all relevant to the workshop themes, some more than
others, and due also to the limited time for the workshop, only about 30% of the
submissions could be accepted. The workshop organizers thank all contributing
authors, and hope that they will also find it worthwhile to submit contributions
next year. All contributions received at least four reviews (many had five, a few
even six) by members of the program committee, who are likewise all thanked
for the time and expertise they put into the reviewing work, and for getting it
done within the rather strict time limit. We feel that all papers were given as
fair a reading and treatment as is possible these days of severely limited time.
The final decision on acceptance was made by the program chairs based on the
recommendations from the program committee.

The Euro-Par 2009 workshop day was lively and well-organized, and the
HPPC workshop had a high, cumulative attendance of more than 60. In ad-
dition to the 5 contributed talks, the workshop had two longer, invited talks by
Peter Hofstee (on “The next 25 years of computer architecture?”) and Ahmed
Jerraya (on “Software Development and Programming of Multi-core SoC”). The
HPPC 2009 workshop organizers thank all attendees, who contributed much
to the workshop with questions, comments and discussion, and hope they found
something of interest in the workshop, too. We also thank the Euro-Par organiza-
tion for creating the opportunity to arrange the HPPC workshop in conjunction
with the Euro-Par conference, and of course all Euro-Par 2009 organizers for their
help and (excellent) support both before and during the workshop. Our sponsors
VTT, NEC Laboratories Europe and Euro-Par 2009 are warmly thanked for the
financial support that made it possible to invite Peter Hofstee and Ahmed Jer-
raya, both of whom we sincerely thank for accepting our invitation to speak and
for their excellent talks.

These post-workshop proceedings include the final versions of the presented
HPPC papers (as a matter of principle, accepted papers not presented at the
workshop will not be included in the proceedings), taking the feedback from
reviewers and workshop audience into account. In addition to the reviews by the
program committee prior to selection, an extra, post-workshop (blind) “reading”
of each presented paper by one of the other presenters has been introduced with
the aim of getting fresh, uninhibited high-level feedback for the authors to use
at their discretion in preparing their final version (no papers would have been
rejected at this stage – bar major flaws). This idea was introduced with HPPC
2008, and will be continued also for HPPC 2010.



HPPC 2009: 3rd Workshop on Highly Parallel Processing on a Chip 5

The contributed papers are printed in the order they were presented at the
workshop. The abstracts of the two invited talks by Peter Hofstee and Ahmed
Jerraya have also been included in the proceedings, as has the panel pream-
ble with five short statements by the panelists. Thematically, the contributed
papers cover aspects of multi-core architectures, (“Distance constrained map-
ping to support NoC platforms based on source routing” by Tornero, Kumar,
Mubeen, and Orduña), parallel programming for multi-cores (“Toward metapro-
gramming for parallel systems on a chip” by Howes, Lokhmotov, Donaldson, and
Kelly, “Automatic calibration of performance models on heterogeneous multicore
architectures” by Augonnet, Thibault, and Namyst), and use of special-purpose
architectures (“Parallel variable-length encoding on GPGPUs” by Balevic, “Dy-
namic detection of uniform and affine vectors in GPGPU computations” by
Collange, Defour, and Zhang).

The HPPC workshop is planned to be organized again in conjunction with
Euro-Par 2010.

October 2009 Martti Forsell, VTT, Finland
Jesper Larsson Träff, NEC Laboratories Europe, Germany
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Peter Hofstee
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USA
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Abstract. This talk speculates on a technology-driven path computer
architecture is likely to have to follow in order to continue to deliver ap-
plication performance growth over the next 25 years in a cost- and power
constrained environment. We try to take into account transistor physics,
economic constraints, and discuss how one might go about programming
systems that will look quite different from what we are used to today.

Short Biography: H. Peter Hofstee is the IBM Chief Scientist for the Cell Broad-
band Engine processors used in systems from the Playstation 3 game console
to the Roadrunner petaflop supercomputer. He has a masters (doctorandus) de-
gree in theoretical physics from the Rijks Universiteit Groningen, and a PhD
in computer science from Caltech. After two years on the faculty at Caltech,
Peter joined the IBM Austin research laboratory in 1996 to work on the first
GHz CMOS microprocessor. From 2001 to 2008 he worked on Cell processors
and was the chief architect of the Synergistic Processor Element.
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Ahmed Jerraya

CEA - LETI MINATEC
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Abstract. SoC designs integrate an increasing number of heterogeneous
programmable units (CPU, ASIP and DSP subsystems) and sophisti-
cated communication interconnects. In conventional computers program-
ming is based on an operating system that fully hides the underlying
hardware architecture. Unlike classic computers, the design of SoC in-
cludes the building of application specific memory architecture and spe-
cific interconnect and other kinds of hardware components required to
efficiently execute the software for a well-defined class of applications.
In this case, the programming model hides both hardware and software
interfaces that may include sophisticated communication and synchro-
nization concepts to handle parallel programs running on the processors.
When the processors are heterogeneous, multiple software stacks may
be required. Additionally, when specific Hardware peripherals are used,
the development of Hardware dependent Software (HdS) requires a long,
fastidious and error prone development and debug cycle. This talk deals
with challenges and opportunities for the design and programming of
such complex devices.

Short Biography: Dr. Ahmed Jerraya is Director of Strategic Design Programs
at CEA/LETI France. He served as General Chair for the Conference DATE
in 2001, Co-founded MPSoC Forum (Multiprocessor System on Chip) and is
the organization chair of ESWEEK2009. He supervised 51 PhD’s, co-authored
8 Books and published more than 250 papers in International Conferences and
Journals.
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1 Introduction

The last session of the HPPC 2009 workshop was dedicated to a panel discussion
between the invited speakers and three additional, selected panelists. The theme
of the panel was originally suggested by Uzi Vishkin, and developed with the
moderator. A preamble was given in advance to the five panelists, and provoked
an intensive and determined discussion. The panelists were given the chance to
briefly summarize their view- and standpoints after the panel.

Panelists: Martti Forsell, Peter Hofstee, Ahmed Jerraya, Chris Jesshope, Uzi
Vishkin.

Moderator: Jesper Larsson Träff.

2 Preamble: Background and Issues

The current proliferation of (highly) parallel many-core architectures (homo-
and heterogeneous CMP’s, GPU’s, accelerators) puts an extreme burden on the
programmer seeking (or forced) to effectively, efficiently, and with reasonable
portability guarantees utilize such processors. The panel will consider whether
what many-core vendors are doing now will get us to scalable machines that can
be effectively programmed for parallelism by a broad group of users.

Issues that may be addressed by the panelists include (but not exclusively):
Will a typical computer science graduate be able to program mainstream, pro-
jected many-core architectures? Is there a road to portability between differ-
ent types of many-core architectures? If not, should the major vendors look for

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 9–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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other, perhaps more innovative, approaches to (highly) parallel many-core archi-
tectures? What characteristics should such many-core architectures have? Can
programming models, parallel languages, libraries, and other software help? Is
parallel processing research on track? What will the typical computer science
student need in the coming years?

3 Martti Forsell

The sequential computing paradigm formulated in the 50’s has been tremen-
dously successful in the history of computing. The main reason for this is the
right type of abstraction capturing the essential properties of the underlying ma-
chine and providing good portability between machines with substantially dif-
ferent properties. The idealized properties of the computational model – single
cycle access time and sequential operation – can be emulated well enough even
with speculative superscalar architectures and considerably deep memory hier-
archies applying paging virtual memory. At the same time, sequential computing
is easy to learn and use, there is a thorough theory of sequential algorithms, and
efficient teaching in universities. Synchronization of subtasks of originally paral-
lel computational problems is trivial due to deterministic sequential execution.
Performance enhancement techniques, including exploitation of low-level paral-
lelism, speculations, and locality exploitation, are well-known and linked to the
paradigm.

Parallel computers introduced in the 60’s and the related parallel computing
paradigms have had a totally different reception than sequential ones, having
doomed them to marginal uses except in high-performance computing. During
this decade the situation has, however, changed totally with the arrival of multi-
core processors. Parallel computing is here to stay with no way back to sequen-
tial machines any more. This is because of power density problems preventing
exponential growth of clock frequencies for microprocessors. Unfortunately cur-
rent approaches to parallel computing (e.g. SMP, NUMA, CC-NUMA, vector
computing, and message passing) are weak making the whole paradigm poor.
Namely, the abstraction of the underlying parallel machinery is too low and in-
appropriate: A programmer is forced to take care of mapping of functionality,
partitioning of data, and synchronization. In the message passing model, one
even needs to take care of low-level sending and receiving messages between
processes. As a result, programming is difficult and error-prone. The portabil-
ity between machines with different properties is often limited and easily leads
to a need to rewrite the entire software for the new machine. The generality
of the theory of parallel algorithms is severely limited by architecture depen-
dency of current solutions, and teaching is virtually nonexistent at elementary
level even in universities. Execution of subtasks is asynchronous and the cost
of doing an explicit barrier synchronization is easily hundreds or thousands of
clock cycles. This severely limits the applicability of current approaches and
effectively rules out fine-grained parallel algorithms. Performance enhancement
techniques are not particularly innovative nor well-linked to thread-level paral-
lel execution since they are mostly copied from sequential computing, whereas
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efficient techniques for parallel computing, including co-exploitation of ILP and
TLP, concurrent memory access, and multioperations, are missing.

Historically speaking, the trends of architectural approaches towards increas-
ingly parallel and complex machines seem to point towards more difficult pro-
grammability. There exists, however, approaches to parallel computing, e.g.
vector computing and PRAM, that are easy to program and therefore would
solve most of the problems listed above. While the somewhat successful vector
computing approach is limited to vectorizable algorithms due to an inability to
exploit control parallelism, the more flexible and theoretically beautiful PRAM
has been widely considered impossible to implement. According to our imple-
mentation estimation studies on advanced parallel architectures this conception
appears to be wrong. Therefore, to address programmability and applicability
issues, we are developing CMP architectures realizing the PRAM model and re-
lated application development methodology. We have just started a project to
build our first FPGA prototype. Interestingly we are not alone, two out of five
panel participants are doing research in this direction.

4 Peter Hofstee

Driven by the need to deliver continuous performance improvements without dis-
turbing the existing code base, all major high-performance CPU vendors have
opted for shared-memory multi-core/multi-thread architectures. With this ap-
proach, existing applications with a modest amount of concurrency still benefit
from the larger caches, increased memory capacity and bandwidths, and in-
creased I/O capabilities that a next-generation processor provides. The need to
provide incremental performance improvements on all applications also is forcing
vendors to continue to make modest improvements to per-thread performance,
and this limits their ability to achieve the best possible power efficiencies for con-
current applications. All major vendors now integrate the memory controllers.
Integration of I/O and graphics is likely to be next leading to more heterogeneous
multi core processors. Large machines can be expected to be built as clusters
of these SMP nodes, though it is likely that even across these clusters address
spaces will be increasingly unified and shared.

Given this type of hardware, the SMP node memory looks more or less “flat”,
i.e. access latencies to memory are not significantly dependent on which core
on the chip is accessing what memory attached to the node. Even if memory is
shared across the cluster, latency and bandwidths are substantially different for
memory attached to the local node and memory attached to remote nodes.

In order to prepare students for the future we need a fundamentally new ap-
proach to the way students are taught. The fundamentals that drive algorithmic
efficiency on today’s and future hardware are:

Classical notions of complexity – The total number of operations (memory
accesses, algorithmic operations etc.) as taught today.

Concurrency – A more concurrent algorithm of the same overall complexity
is more valuable.
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Predictability – An algorithm in which data references and control flow are
predictable is more valuable (data parallelism can be regarded as a form of
data and control flow predictability).

Locality – An algorithm with better data and control flow locality is more
valuable.

Each of these notions of complexity leads to fundamental transformations of
the algorithms that are beyond a compiler’s ability to perform automatically.
Language designers should therefore build on these fundamental notions of algo-
rithmic efficiency while preserving conciseness of expression and semantic clarity.
Of course libraries can help those who program computers, not every driver has
to be a mechanic, but we should teach computer science students the fundamen-
tals, as we will need many skilled people to restructure our code base such that
it can be efficiently targeted at today’s and future highly parallel processors.

5 Ahmed Jerraya

The shift from the single processor to heterogeneous multiprocessor architec-
tures poses many challenges for software designers, verification specialists and
system integrators. The main design challenges for multi-core processors are: pro-
gramming models that are required to map application software into effective
implementations, the synchronization and control of multiple concurrent tasks
on multiple processor cores, debugging across multiple models of computation
of MPSoC and the interaction between the system, applications and software
views, and the processor configuration and extension.

Programming an MPSoC means to generate software running on the MPSoC
efficiently by using the available resources of the architecture for communication
and synchronization. This concerns two aspects: software stack generation and
validation for the MPSoC and communication mapping on the available hard-
ware communication resources and validation for MPSoC. Efficient programming
requires the use of the characteristics of the architecture. For instance, a data
exchange between two tasks mapped on different processors may use different
schemes through either the shared memory or the local memory of one of these
processors. Additionally, different synchronization schemes (polling, interrupts)
may be used to coordinate this exchange. Furthermore, the data transfer be-
tween the processors can be performed by a DMA engine, thus permitting the
CPU to execute other computation, or by the CPU itself. Each of these com-
munication schemes has advantages and disadvantages in terms of performance
(latency, throughput), resource sharing (multitasking, parallel I/O) and com-
munication overhead (memory size, execution time). The ideal scheme would be
able to produce an efficient software code starting from high-level program using
generic communication primitives.

For the design of classic computers, high-level parallel programming concepts
(e.g. MPI) are used as an Application Programming Interface (API) to abstract
hardware/software interfaces during high level specification of software applica-
tions. The application software can be simulated using an execution platform of
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the API (e.g. MPICH) or executed on existing multiprocessor architectures that
include a low level software layer to implement the programming model. In this
case the overall performances obtained after hardware/software integration can-
not be guaranteed and will depend on the match between the application and the
platform. Unlike classic computers, the design of heterogeneous MPSoC requires
a better matching between hardware and software in order to meet performances
requirements. In this case, the hardware/software interfaces implementation is
not standard; it needs to be customized for a specific application in order to get
the required performances.

Therefore, for this kind of architectures, classic programming environments
do not fit: (i) high level programming does not handle efficiently specific I/O and
communication schemes, while (ii) low level programming explicitly managing
specific I/O and communication is time consuming and error-prone activity. In
practice, programming these heterogeneous architectures is done by developing
separate low level codes for the different processors, with late global validation
of the overall application with the hardware platform. The validation can be
performed only when all the binary software is produced and can be executed
on the hardware platform. Next generation programming environments need
to combine the high level programming models with the low level details. The
different types of processors execute different software stacks. Thus, an additional
difficulty is to debug and validate the lower software layers required to fully map
the high-level application code on the target heterogeneous architecture.

6 Chris Jesshope

Are manufacturers doing enough is perhaps the wrong question. We should be
asking whether they did enough to manage the entirely predictable shift from
sequential computing to parallel computing as a direct consequence of the power
wall. And the answer is probably no; we are unprepared.

Users have come to expect universality; sequential code works on all archi-
tectures either using source-code or binary-code compatibility and this is what
they now expect from multi-cores and concurrent heterogeneous systems. Con-
currency however, introduces all sorts of difficult problems, including the map-
ping and scheduling of work, races, deadlocks and fairness issues, etc. Ideally
applications engineers (programmers) should not be exposed to the latter.

A key issue therefore is whether we can separate algorithm-engineering issues
from concurrency engineering ones. Algorithm engineering does not usually re-
quire concurrency, just a deterministic parallel implementation. A major problem
is in dealing with synchronisation state, it complicates algorithm engineering un-
necessarily and constrains the problem mapping. It is not strictly necessary and
there are approaches, which aim to provide such a separation of concerns. These
are emerging technologies however, and are academic rather than commercial.

A further issue is whether we can program in a manner which is independent
of the scale of concurrency to which the the code will eventually be targeted,
i.e. can we code once and run anywhere, in order to have code portability across
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different classes of target architecture. Again there seems to have been little work
moving us in this direction. It requires abstract concurrent programming models
that allow the capture of maximal concurrency and, ideally, also capture locality.
A typical approach is to take code and to parallelise it to given target with a
given granularity of parallelism. However, when you change the parameters or
the target it needs to be rewritten. The alternative is to program at the finest
grain possible and then sequentialise the code automatically when a target is
chosen. In this way the same code can be efficiently executed on any target
and the procedure of sequencing parallelism is a rather trivial one compared to
parallelisation. Again work is being carried out in this area but is also academic.

Models that are maximally concurrent but abstract (e.g. SVP) and coordi-
nation languages that allow this separation of concerns (e.g. S-Net) have been
developed in the EU AETHER project, which has taken a 10-year-out view on
programming highly concurrent and heterogeneous systems (see: http://www.
aether-ist.org/).

7 Uzi Vishkin

Hardware vendors have been forced into replacing the serial paradigm that has
worked for them well for decades by parallel computing based on many-core
architectures. To date, no commercial easy-to-program general-purpose many-
core machine for single-task completion-time has been available. In fact, several
decades of parallel architectures have been able to produce only rather limited
success stories. A 2003 NSF Blue Ribbon committee effectively declared their
programming a “disaster area” by noting that to many programmers it is “as
intimidating and time consuming as programming in assembly language”. Hard-
ware vendors need to reproduce the serial success for many-cores. Adopting,
without significant modification, the same parallel architectures would instead
drag mainstream computing into the same disaster area.

Customers buying a computer interact with its software, but their link to
the hardware is indirect, by nature. However, the cyclic process of hardware
improvements leading to software improvements, which lead back to hardware
improvements and so on, known as the software spiral, facilitated for many years
a direct link between customers and hardware. Hardware designers could directly
serve their customers by helping to run serial code faster. Alas, the software spi-
ral is now broken. Consequently, getting application software developers (ASDs)
to switch to the emerging generation of many-core systems has become much
more critical to serving these customers. However, the incentive to develop soft-
ware for the new machines has decreased considerably. Code development and
maintenance is much more expensive, as initial development time is higher and
code is more error prone. Not only that the investment is higher, the returns
on it are much riskier: even if machines continue to support the current devel-
opment platform, some hard-to-predict future upgrades may offer new options
for optimization of performance, allowing competitors to develop better software,
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at a lesser cost, by just adopting a wait-and-see approach. Thus, computer de-
signers need to understand the legitimate concerns of software developers and
do what they can to “woo” them.

The explicit multi-threading (XMT) approach www.umiacs.umd.edu/users/
vishkin/XMT/ could affect the above discussion in two ways. First, it affirms
concerns that hardware improvements that may significantly reduce investment
in code development by just waiting till they are installed are indeed possible.
The second way is that incorporation of the hardware upgrades that XMT sug-
gests, could make it possible to support the broad family of PRAM algorithms,
greatly alleviating current concerns about ease-of-programming. Moreover, ev-
ery person majoring in CS should be able to program the commodity many-core
system of the future. Teachability of XMT programming has been demonstrated
at various levels from rising 6th graders to graduate students, and students in a
freshman class were able to program 3 parallel sorting algorithms.
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Abstract. Efficient NoC is crucial for communication among processing
elements in a highly parallel processing systems on chip. Mapping cores
to slots in a NoC platform and designing efficient routing algorithms are
two key problems in NoC design. Source routing offers major advantages
over distributed routing especially for regular topology NoC platforms.
But it suffers from a serious drawback of overhead since it requires whole
communication path to be stored in every packet header. In this paper,
we present a core mapping technique which helps to achieve a mapping
with the constraint over the path length. We have found that the path
length constraint of just 50% is sufficient in most cases. We also present
a method to efficiently compute paths for source routing leading to good
traffic distribution. Evaluation results show that performance degrada-
tion due to path length constraint is negligible at low as well as high
communication traffic.

Keywords: Network on Chip, Core Mapping, Routing Algorithms,
Source Routing.

1 Introduction

As Semi-conductor Technology advances, it becomes possible to integrate a large
number of Intellectual Property (IP) cores, like DSPs, CPUs, Memories, etc, on a
single chip to make products with complex and powerful functions. Efficient com-
munication infrastructure is crucial for harnessing enormous computing power
available on these Systems on Chip (SoCs). Network on Chip (NoC) is being
considered as the most suitable candidate for this job [1].

Many design choices and aspects need to be considered for designing a SoC
using NoC paradigm. These include: network topology selection, routing strat-
egy selection and application mapping. Both application mapping and routing
strategy have big impact on the performance of the application running on a
NoC platform. The application mapping problem consist of three tasks: i) the
� This work has been jointly supported by the Spanish MEC and European Commis-

sion FEDER funds and the University of Valencia under grants Consolider Ingenio-
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application is split into a set of communication tasks, generally represented as a
task graph; ii) the tasks are assigned and scheduled on a set of IP cores selected
from a library; iii) the IP cores have to be placed onto the network topology in
such a way that the desired metrics of interest are optimized. The first two steps
are not new since they have been extensively addressed in the area of hard-
ware/software co-design and IP reuse [2] by the CAD community. The third
step, called topological mapping, has recently been addressed by a few research
groups [3], [4].

One way to classify the routing algorithms is by considering the component
in the network where the routing decision to select the path is done. Under
this consideration the routing algorithms are classified into source routing and
distributed routing algorithms. In source routing algorithms, the path between
each pair of communicating nodes is computed offline and stored at each source
node. When a core needs to communicate with another core the encoded path
information is put in the header of each packet. In distributed routing, the header
only needs to carry the destination address and each router in the network has
competence to make the routing decision based on the destination address.

Source routing has not been considered so far for NoCs due to its perceived
underutilization of network bandwidth due to the requirement of large number
of bits in the packet header to store path information. This conclusion may be
valid perhaps for large dynamic networks where network size and topology are
changing. But in a NoC with fixed and regular topology like mesh, the path
information can be efficiently encoded with small number of bits. Saad et. al. [5]
have made a good case for use of source routing for mesh topology NoCs. It can
be easily shown [6] that two bits are sufficient to encode information about one
hop in the path. Since the packet entering a router contains the pre-computed
decision about the output port, the router design is significantly simplified. Also,
since NoCs used in embedded systems are expected to be application specific,
we can have a good profile of the communication traffic in the network [7]. This
allows us to offline analyze the traffic and compute efficient paths according to
the desired performance characteristics, like uniform traffic load distribution,
reserved paths for guaranteed throughput etc.

Figure 1 shows an application, that has been assigned and scheduled on eight
cores, topologically mapped on a 4x2 mesh. The Application Characterization
Graph (APCG) of this application can be seen in Figure 1(a), where a node
corresponds to a core and a directed edge corresponds to communication between
two connected cores. APCG will be defined more formally in section 2. Assuming
minimal routing, the maximum route length required is equal to the diameter
of the topology. It means that, if the diameter was used for this example, the
required path length would be 4 hops and therefore 10 bits would be required
to code a route (see Figure 1(b)). However, it is possible to find a mapping in
which the maximum distance between two communicating cores is much smaller
than the diameter. Figure 1(c) shows such a mapping for the example in which
the maximum distance is just two hops and only 6 bits are required for the path
information.
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Fig. 1. Different mappings of the same application. a) the APCG, b) A distance un-
constrained mapping, c) A 2-hops constrained mapping.

Close compactness of mapping could lead to higher congestion in certain links.
Since routers for source routing are relatively faster than routers for distributed
routing, the above disadvantage will be adequately compensated [6].

Related Work
A large number of routing algorithms have been proposed in literature for NoCs.
Most proposals fall in the category of distributed adaptive routing algorithms
and provide partial adaptivity thus providing more than one path for most com-
municating pairs and at the same time avoiding possibility of deadlocks. In [7],
Palesi et al. propose a methodology to compute deadlock free routing algorithms
for application specific NoCs with the goal of maximizing the communication
adaptivity.

Several works have been proposed in literature in the context of core mapping.
Hu et al. present a branch and bound algorithm for mapping cores in a mesh
topology NoC architecture that minimizes the total amount of power consumed
in communications [8]. Murali et al. present a work to solve the mapping prob-
lem under bandwidth constraint with the aim of minimizing the communication
delay by exploiting the possibility of splitting the traffic among various paths
[3]. Hansson et al. present an unified single objective algorithm which couples
path selection, mapping of cores, and channel time-slot allocation to minimize
the network required to meet the constraints of the application [9]. Tornero et al.
present a communication-aware topological mapping technique that, based on
the experimental correlation of the network model with the actual network per-
formance, avoids the need to experimentally evaluate each mapping explored [4].
In [10], Tornero et al. present a multi-objective strategy for concurrent mapping
and routing for NoC. All the aforementioned works address the integration of
mapping and routing concurrently but taking into account only the distributed
routing functions.

Although source routing has been shown to be efficient for general networks
[11], it had not been explored so far for NoC architectures. Recently Mubeen
et.al [5] have made a strong case for source routing for small size mesh topol-
ogy NoCs. The author, has demonstrated that source routing can have higher
communication performance than adaptive distributed routing [6]. In this paper
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we modify our earlier approach and tackle the integration of topological mapping
for NoC platforms which use limited path length source routing for inter-core
communication.

2 Problem Formulation

Simply stated, our goal is to find an arrangement of cores in tiles together with
path selection such that the global communication cost is minimized and the
maximum distance among communicating cores is within the given threshold.
The value of the threshold comes from the fixed on-chip communication infras-
tructure (NoC) platform which uses source routing with an upper limit on the
length of the path. Before formally defining the problem, we need to introduce
the following definitions [8].

Definition 1. An Application Characterization Graph APCG = G(C, A) is
a directed graph, where each vertex ci ∈ C represents a selected IP core,
and each directed arc a ∈ A characterizes the communication process from
core ci to core cj . For each communication a ∈ A∧ a = (ci, cj), the function
B(a) returns the bandwith requirements of a. This is minimum bandwith
that should be allocated by the network in order to meet the performance
constraint for communication a.

Definition 2. An Architecture Characterization Graph ARCG = G(T, L) is a
directed graph which models the network topology. Each vertex ti represents
a tile, and each directed arc lij represents the channel from tile ti to tile tj .

We must solve two problems: first, we have to find a mapping within the con-
straint of maximum distance allowed by the communication platform. The sec-
ond problem to be solved is to compute efficient paths for all communicating
pairs of cores such that there is no possibility of deadlock as well as the traffic is
well balanced. We can formulate the first problem as follows. Given the APCG
and the ARCG, that satisfy |C| � |T |, find a mapping function M from C to T
which minimizes the mapping cost function Mc:

min{Mc =
∑

∀ci,cj∈C
a=(ci,cj)∈A

B(a) ∗ (dist(M(ci), M(cj)))3} (1)

such that:

dist(M(ci), M(cj)) ≤ Threshold ∧ a = (ci, cj) ∈ A . (2)

In the equation 1, the second term of the summation is raised to power 3
with the aim of giving more importance to the distance in the search for a
pseudo-optimal mapping. This value is a trade-off between the quality of the
results and the computation time (the power 2 provides poor quality of results
and power of 4 and higher ones are too much time consuming). Condition 2
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guarantees that every pair of communicating cores should be mapped such that
the Manhattan distance between them is less than the threshold. We assume
that the underlying source routing uses only minimal distances. Nevertheless,
this threshold cannot be smaller than the lower bound on the path length
required for mapping APCG on ARCG. The lower bound in this context refers
to a value such that any possible mapping will have at least one pair with distance
more than or equal to the lower bound. For example, the lower bound for the
APCG in our example is 2, since there is no possibility to find a mapping with
distance 1. The APCG together with the ARCG can be analyzed in order to
find the lower bound for the mapping.

In a 4x2 mesh topology, a node can be connected to maximum three other
cores with a distance 1. A core can be connected to up to 6 cores if distance of 2
hops is allowed. There may not be any 2 distance constrained mapping available
for an APCG with maximum out-degree 5. If L is the lower bound, then one can
start by searching for a mapping with constraint equal to L. If one fails then one
must repeat the process of finding a feasible mapping by using L + 1, L + 2, . . .
and so on as the constraint.

Once the cores are mapped satisfying (2), the second problem is to find a path
for every communicating core pair Ci and Cj such that: the path length is equal
to Manhattan distance between Ci and Cj ; there is no possibility of deadlock
when some or all other core pairs communicate concurrently and the traffic load
on all the links in the network is as balanced as possible.

3 The Distance Constrained Mapping Algorithm

We have modified our earlier mapping approach developed for NoC platforms us-
ing distributed routing techniques [4] to obtain distance constrained topological
mapping. This approach considers the network resources and the communication
pattern generated by the tasks assigned to different cores in order to map such
cores to the network nodes. The method is based on three main steps.

Step 1. Model the network as a table of distances (or costs) between each pair
of source/destination nodes. The cost for communicating each pair of nodes
is computed as inversely related to the available network bandwidth.

Step 2. Perform a heuristic search in the solution space with the aim of obtain-
ing a near-optimal mapping that satisfies our distance restrictions.

Step 3. Repair the mapping found in the second step if some communicating
pairs violate the distance constraints.

We have computed steps 1 and 2 as in our previous work ([4]). If the map-
ping found by the heuristic method does not satisfy the distance constraint,
then a heuristic repair procedure, step 3, tries to repair the solution found. This
procedure, based on [12], consists of a hill-climbing that minimizes the number
of constraints violated by the solution mapping. The advantage of this procedure
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Fig. 2. Feasible mappings with distant constraint

is that it is fast to compute, but presents some drawbacks like the capacity to fall
in a local minimum that does not satisfy the distance constraint. This drawback
could be reduced by repeating the same ı̈¿ 1

2procedure several times.
It should be noticed that the goal of this work is to prove that it is possible

to obtain efficient solutions for the problem of distance constrained mapping by
using a mapping technique analogous to the one shown in our previous work
([4]). In order to achieve this goal, we have used the same heuristic method for
solving step 2 than the one shown in [4]. Since that method was not designed
for this problem, a new heuristic method specifically developed for solving this
problem is likely to provide better solutions.

3.1 Feasibility Experiments

In order to test the distance constrained topological mapping method we have
made a set of feasibility experiments. These consists of mapping 500 random
APCGs on several 2-D mesh topologies. We have used a 5x5, 6x6, 6x8 and 7x7
mesh topologies. Each node of each APCG presents an out-degree log-normally
distributed with a mean of 2 and a standard deviation of 1 communications.
This distribution was motivated by analysis of multi-media applications used
in literature [7,8]. We have used an uniform probability distribution for spatial
communications. It means that the probability of a core ci communicating with
a core cj is the same for every core. The communication bandwith between
each pair of communicating cores is distributed uniformly between 10 and 100
Kbytes/sec.

Figure 2 shows the result of the experiments. The X-axis shows the topologies
and the Y-axis shows the percentage of feasible mappings. Each bar in the figure
presents for each topology the percentage number of APCGs the method is
able to map given a distance. As can be seen, 96% of the cases, the mapping
technique is able to map the 500 APCGs with a distance of only 5 hops for
all the topologies tried. It means that the path length of the header flit1 can
be reduced from the diameter of the topology to 5 hops reducing the network
overhead.

1 Flit stands for flow control digit and represents the unit of data that is transmitted
over a logical link (channel) in a single step.
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Table 1. Best routing algorithm for a traffic type

Traffic Type Best Routing Algorithm

Random Traffic XY
Hot-Spot Traffic Odd-Even
East-Dominated Traffic West First
West-Dominated Traffic East First
Transpose Traffic Negative First

4 Efficient Path Computation for Source Routing

After the cores have been mapped on the NoC platform which supports distance
constrained source routing, the next step will be to compute efficient paths for
all the communicating pairs of cores. For each source core these paths will be
stored as a table in the corresponding resource (core) to network interface (RNI).
The RNI will use this table to append the path in the header flit of the packet.
Beside avoiding deadlocks, the computed paths should also avoid congestion and
uniformly distribute traffic among the links in the network as much as possible.

4.1 Routing Algorithm Selection

A large number of deterministic and adaptive routing algorithms are available
for deadlock free routing in mesh topology NoCs. The most famous among these
are XY, Odd-Even, West First and North Last routing algorithms. XY is a deter-
ministic routing algorithm and allows a single path between every pair of nodes.
The other algorithms are partially adaptive routing algorithms and prohibit the
packets to take certain turns, but allow path adaptivity for most pairs. It has
been shown that no single routing algorithm provides best performance for all
types of traffic. Table 1 gives relatively best routing algorithm for some specific
types of communication traffic [6].

A traffic is called West-Dominated if majority of communication (considering
number of communications and communication volume) is from east to west.
We analyze and classify the traffic using the mapped APCG and select the most
appropriate routing algorithm. The analysis uses the relative position of source
and destination cores and the communication volume between pairs [6].

4.2 Path Computation

One can easily compute a path for each communication pair using the routing
algorithm selected using the analysis in the previous subsection. In the case of
deterministic routing the only path available is selected. In the case of partially
adaptive routing algorithm the path is constructed by making a choice with a
uniform probability at all intermediate routers where a choice among multiple
admissible ports is available. Our study has shown that communication traffic
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Algorithm Path-Computations(RA, C, P)

/* Implicit inputs: Mappings of cores to slots in topology */

/* Inputs: RA - Routing Algorithm, C - Set of Communications */

/* Outputs: Set of paths P = {Pi, i = 1..N, P i used for Ci} */

begin

1. Initialize load on each link li = 0, i = 1..Number of links
2. Order communications Ci, i = 1..N in ascending order based on

communication volume

3. For i = 1 to N do

- Find a path Pi for Ci using RA considering

current loads on various links and update the loads

end

Fig. 3. Pseudocode of the algorithm for path computation

type is rarely pure. For example, it is rare to have an application with pure West-
Dominated traffic. To handle this we use adaptivity of the routing algorithm to
balance load on the links and avoid/reduce congestion. Figure 3 describes a
constructive algorithm to achieve this.

All the communications are sorted in ascending order according to their com-
munication volume. Then in each iteration a path is computed for one communi-
cation using the selected routing algorithm. At every router where there exists a
choice among multiple output ports, the port is selected if a lower load is already
mapped to the corresponding output link. We keep updating the estimated load
on links after each iteration. It has been shown that this methodology leads to
efficient paths for communication [6].

5 Evaluation and Results

For evaluation purposes, we have evaluated the proposed approach using a set of
random traffic scenarios. Each traffic scenario has been generated as described
in section 3.1. For each scenario we have computed a random mapping, a near-
optimal unconstrained mapping and a near-optimal constrained mapping for
5 hops. The Figure 4 shows the performance results in terms of latency and
throughput for two of such traffic scenarios. In this figure the random mapping,
the near-optimal unconstrained mapping and the near-optimal distance con-
strained mapping have been labeled as RNDMAP, UNCONSTDISTMAP and
MINDISTMAP respectively.

The performance evaluation has been carried out using a NoC simulator de-
veloped in SDL language [6]. The simulator implements a NoC Platform based
on a 2-D 7x7 mesh topology and source routing. The simulated NoC also uses
wormhole switching with a packet size fixed to 10 flits, the input buffers have
capacity for keep 4 flits. We have used the source packet injection rate (pir) as
load parameter. A Matlab based tool has been developed to compute efficient
paths for source routing as described in Section 4. For each load value, latency
and throughput values are averaged over 20,000 packets drained after a warm-up
of 2000 packets drained.
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Fig. 4. Simulation results for two random APCGs

Figure 4(a) and Figure 4(c) show the simulation results for average latency
in cycles. These figures show that at both low traffic loads and high traffic loads
both the UNCONSTDISTMAP and MINDISTMAP present similar behaviour
and save more than 20% cycles and 25% over RNDMAP respectively.

The throughput results, measured in packets/cycle, are shown in Figure 4(b)
and Figure 4(d). As we can look at the throughput achieved by the MINDISTMAP
is almost the same as the throughput achieved by the UNCONSTDISTMAP and
much higher than the throughput achieved by a RNDMAP close to saturation.

Therefore, the evaluation results show that is possible reduce the path length
of the header flit at least to half of the network diameter without significantly
degradation of the performance.

6 Conclusions and Future Work

We have addressed the application mapping problem for NoCs when the commu-
nication infrastructure is pre-designed as 2-D mesh topology using source routing
and the path length header field is delimited up by a number of hops significantly
less than the network diameter. In such a scenario we have demonstrated that
our distance constrained mapping technique is able to map 96% of applications
tried with a distance constraint less than half of the network diameter. We
have proposed an efficient method, based on existing distributed deadlock free
routing algorithms, to compute efficient paths required for source routing. The
simulation based evaluation results show that our distance constrained mapping
gives more than 20% latency improvement over random mapping at low traf-
fic loads. The saturation points traffic load also shows around 25% . Performance
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degradation as compared to path length constraint is negligible at low com-
munication traffic and saturation packet injection rate is also only reduced by
just 5%.

To the best of our knowledge this is the first attempt to consider core mapping
for NoC platforms based on source routing. As future work, we plan to use
intelligent heuristic search method to further lower the path length thus reducing
bandwidth underutilization of NoC. We are also working on methods to improve
computed paths for better link load balancing. Testing this approach on large
realistic applications will also demonstrate the feasibility of our approach.
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Abstract. Variable-Length Encoding (VLE) is a process of reducing
input data size by replacing fixed-length data words with codewords of
shorter length. As VLE is one of the main building blocks in systems for
multimedia compression, its efficient implementation is essential. The
massively parallel architecture of modern general purpose graphics pro-
cessing units (GPGPUs) has been successfully used for acceleration of
inherently parallel compression blocks, such as image transforms and
motion estimation. On the other hand, VLE is an inherently serial pro-
cess due to the requirement of writing a variable number of bits for each
codeword to the compressed data stream. The introduction of the atomic
operations on the latest GPGPUs enables writing to the output memory
locations by many threads in parallel. We present a novel data parallel
algorithm for variable length encoding using atomic operations, which
archives performance speedups of up to 35-50x using a CUDA-enabled
GPGPU.

1 Introduction

Variable-Length Encoding (VLE) is a general name for compression methods
that take advantage of the fact that frequently occurring symbols can be rep-
resented by shorter codewords. A well known example of VLE, Huffman cod-
ing [1], constructs optimal prefix codewords on the basis of symbol probabilities,
and then replaces the original symbols in the input data stream with the corre-
sponding codewords.

The VLE algorithm is serial in nature due to data dependencies in comput-
ing the destination memory locations for the encoded data. Implementation of
a variable length encoder on a parallel architecture is faced by the challenge of
dealing with race conditions when writing the codewords to a compressed data
stream. Since memory is accessed in fixed amounts of bits whereas codewords
have arbitrary bit size, the boundaries between adjacent codewords do not co-
incide with the boundaries of adjacent memory locations. The race conditions
would occur when adjacent codewords are written to the same memory location
by different threads. This creates two major challenges for creating a parallel im-
plementation of VLE: 1) computing destination locations for the encoded data
elements with a bit-level precision in parallel and 2) managing concurrent writes
of codewords to destination memory locations.

In recent years, GPUs evolved from simple graphics processing units to mas-
sively parallel architectures suitable for general purpose computation, also known
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as GPGPUs. The NVIDIA GeForce GTX280 GPGPU used for this paper pro-
vides 240 processor cores and supports execution of more than 30,000 threads
at once. In image and video processing, GPGPUs have been used predominantly
for the acceleration of inherently data-parallel functions, such as image trans-
forms and motion estimation algorithms [2,3,4]. The VLE entropy coding to our
best knowledge has not been implemented on GPUs so far, due to its inherently
serial nature. Some practical compression-oriented approaches on GPUs include
compaction and texture compression. The compaction is a method for removing
unwanted elements from the resulting data stream by using the parallel pre-
fix sum primitive [5]. An efficient implementation of the stream reduction for
traditional GPUs can be found in [6]. The texture compression is a fixed-ratio
compression scheme which replaces several pixels by one value. Although it has
a fast CUDA implementation [7], it is not suitable for codecs requiring a final
lossless encoding pass, since it introduces a loss of fidelity.

We propose a fine-grain data parallel algorithm for lossless compression, and
present its practical implementation on GPGPUs. The paper is organized as
follows: Section 2 gives an overview of GPGPU architecture, in Section 3 we
present a design and implementation of a novel parallel algorithm for variable-
length encoding (PAVLE), and in Section 4, we present performance results and
discuss effects of different optimizations.

2 GPGPU Architecture

The unified GPGPU architecture is based on a parallel array of programmable
processors [8]. It is structured as a set of multiprocessors, where each multi-
processor is composed of a set of simple processing elements working in SIMD
mode. In contrast to CPU architectures which rely on multilevel caches to over-
come long system memory latency, GPGPUs use fine-grained multi-threading
and a very large number of threads to hide the memory latency. While some
threads might be waiting on data to be loaded from the memory, the fine-grain
scheduling mechanism ensures that ready warps of threads (scheduling unit) are
executed, thus providing effectively highly parallel computation resources.

The memory hierarchy of the GPGPU is composed of global memory (high-
latency DRAM on the GPU board), shared memory and register file (low-latency
on-chip memory). The logical organization is as follows: the global memory can
be accessed among all the threads running on the GPU without any restrictions;
the shared memory is partitioned and each block of threads can be assigned one
exclusive partition of the shared memory, and the registers are private to each
thread. When GPU is used as a coprocessor, the data needs to be transferred
first from the main memory of host PC to the global memory. In this paper, we
will assume that the input data is located in the global memory, e.g. as a result
of a computation or explicit data transfer from the PC.

The recent Tesla GPGPU architectures introduce hardware support for atomic
operations. The atomic operations provide a simple method for safely handling
race conditions, which occur when several parallel threads try to access and
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modify data at the same memory location, since it is guaranteed that if an
atomic instruction executed by a warp reads, modifies, and writes to the same
location in global memory for more than one of the threads of the warp, each
access to that memory location will occur and will be serialized, but the order
in which they occur is not defined [9]. The CUDA 1.1+ GPU devices support
the atomic operations on 32-bit and 64-bit words in the global memory, while
CUDA 1.3 also introduces support for shared memory atomic operations.

3 The Parallel Variable-Length Encoding Algorithm

This section presents the parallel VLE (PAVLE) algorithm for GPGPUs with
hardware support for atomic operations. The parallel variable-length encoding
consists of the following parallel steps: (1) assignment of codewords to the source
data, (2) calculation of the output bit positions for compressed data (codewords),
and finally (3) writing (storing) codewords to the compressed data array. A high-
level block-diagram of the PAVLE encoder is given in Fig. 1. Pseudocode for the

Fig. 1. Block diagram of PAVLE algorithm

parallel VLE is given in Listing 1 with lines 2 - 5 representing the step 1, lines 6 -
8 being the step 2 and lines 9 - 28 representing the step 3. The algorithm can be
simplified if one assumes a maximal codeword length, as is done in the case for
the JPEG coding standard. Restricting the codeword size reduces the number of
control dependencies and also reduces the amount of temporary storage required,
resulting in much greater kernel efficiency.

3.1 Codeword Assignment to Source Data

In the first step, variable-length codewords are assigned to the source data. The
codewords can be either computed using an algorithm such as Huffman [10], or
they can be predefined, e.g. as it is frequently the case in image compression
implementations. Without loss of generality, we can assume that the codewords
are available and stored in a table. This structure will be denoted as the codeword
look-up table (codeword LUT). Each entry in the table contains two values: the
binary code for the codeword, and codeword length in bits, denoted as a (cw,
cwlen) pair. Our implementation uses an encoding alphabet of up to 256 symbols,
with each symbol representing one byte. During compression, each source data
symbol (byte) is replaced with the corresponding variable-length codeword.
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The PAVLE is designed in a highly parallel manner, with one thread pro-
cessing one data element. The threads load source data elements and perform
codeword look-up in parallel. As the current GPGPU architecture provides more
efficient support for 32-bit data types, the source data is loaded as 32-bit un-
signed integers to shared memory, where it is processed by blocks of threads. The
32-bit data values are split into four byte symbols, which are then assigned cor-
responding variable-length codewords from the codeword LUT. The codewords
are locally concatenated into an aggregate codeword, and the total length of the
codeword in bits is computed.

Algorithm 1. Parallel Variable Length Encoding Algorithm
1: k ← tid
2: for threads k = 1 to N in parallel
3: symbol ← data[k]
4: cw[k], cwlen[k] ← cwtable[symbol]
5: end for
6: for threads k = 1 to N in parallel
7: bitpos[1..N ] ← prefixsum(cwlen[1..N ])
8: end for
9: for threads k = 1 to N in parallel

10: kc ← bitpos[k] div ws
11: startbit ← bitpos[k] mod ws
12: while cwlen[k] > 0 do
13: numbits ← cwlen[k]
14: cwpart ← cw[k]
15: if startbit + cwlen > wordsize then
16: overflow ← 1
17: numbits ← wordsize − startbit
18: cwpart ← first numbits of cw[k]
19: end if
20: put bits atomic(out, kc, startbit,numbits, cwpart)
21: if overflow then
22: kc ← kc + 1
23: startbit ← (startbit + numbits) mod wordsize
24: remove first numbits from cw[k]
25: cwlen[k] ← cwlen[k] − numbits
26: end if
27: end while
28: end for

3.2 Computation of the Output Positions

To store the data which does not necessarily match the size of addressable mem-
ory locations, it is necessary to compute the destination address in the mem-
ory and also the starting bit position inside the memory location. Since in the
previous parallel step the codewords were assigned to input data symbols, the
dependency in computation of the codeword output locations can be resolved
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based on the knowledge of the codeword lengths. The output parameters for each
codeword are determined by computing the number of bits that should precede
each codeword in the destination memory. The bit offset of each codeword is
computed as a sum of assigned codeword lengths of all symbols that precede
that element in the source data array. This can be done efficiently in parallel by
using a prefix sum computation.

The prefix sum is defined in terms of a binary, associative operator +. The pre-
fix sum computation takes as input a sequence x0, x1, ..., xn−1 and produces an
output sequence y0, y1, ..., yn−1 such that y0 = 0 and yk = x0+x1+...+xk−1. We
use a data-parallel prefix sum primitive [11] to compute the sequence of output
bit offsets yk on the basis of codeword lengths xk, that were assigned to source
data symbols. A work-efficient implementation of parallel prefix sum performs
O(n) operations in O(log n) parallel steps, and it is the asymptotically most
significant component in the algorithmic complexity of the PAVLE algorithm.
Given the bit positions at which each codeword should start in the compressed

Fig. 2. An example of the variable-length encoding algorithm

data array in memory, the output parameters can be computed knowing the
fixed machine word size, as given in the lines 10-11 of the pseudocode.It is as-
sumed that the size of addressable memory locations is 32-bits, and it is denoted
as wordsize. The variable k is used to denote the unique thread Id. It also corre-
sponds to the index of data element processed by the thread k in the source data
array. The kc denotes index of the destination memory word in compressed data
array, and startbit corresponds to the starting bit position inside that destination
memory word.

Fig. 2 is given as an illustration of the parallel computation of the output index
and starting bit position on a block of 8 input data elements: The first two steps
of the parallel encoding algorithm result in the generation of matching codewords
for the input symbols, codeword lengths (as the number of bits), and output pa-
rameters for the memory writes to the output data stream. The number of bits
for each compressed data block is obtained as a byproduct of the first phase
of the parallel prefix sum algorithm. Since a simple geometric decomposition
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is inherently applied on the GPUs as a step of the mapping process, this result
can be used for concatenating the compressed data blocks into a contiguous
array prior to data transfers from GPU to system memory.

3.3 Parallel Bit-Level Output

Bit-level I/O libraries designed for general-purpose CPUs process data serially,
i.e., the codewords are stored one after the other into the memory. Implemen-
tation of a VLE on a parallel architecture introduces a problem of correctly
dealing with race conditions that occur when different threads attempt to write
their codewords to a same memory location. A recently introduced hardware
support for atomic bitwise operations enables efficient execution of concurrent
threads performing bit-level manipulations on the same memory locations, thus
providing a mechanism for safely handling race conditions. The parallel output
of codewords will produce correct results regardless of the write sequence, pro-
vided that each sequence of read-modify-write operations on a single memory
location can be successfully completed without interruption, and that each out-
put operation operation changes only the precomputed part of the destination
word. The parallel bit-level output is executed in two stages: First, the contents

Fig. 3. Setting memory contents at index kc to the desired bit-values (codeword)

of the memory location at the destination address are prepared for the output by
masking the numbits number of bits corresponding to the length of the codeword
starting from the pre-computed bit output position. Second, the bits at these
positions in the destination location are set to the value of the codeword, as il-
lustrated in Fig. 3. If the contents of the destination memory are set in advance
(all zeros), the output method can be reduced to only one atomic or opera-
tion. The implementation of the put bits atomics procedure for the GPGPUs
supporting atomic operations (CUDA1.1+ compatible) is given in the code list-
ing below.

A situation when a codeword crosses boundaries of a destination word in
memory can occur during variable length encoding, e.g., when the startbit is near
the end of the current word, and the codeword to be written requires more bits
than what is available in the reminder of the current word. The crossing of the
word-boundary is detected and handled by splitting the output of the codeword
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into two or more store operations. When the codeword cross boundaries of several
machine words, some of the atomic operations can be replaced by the standard
store operation. The inner parts of the codeword can be simply stored to the
destination memory location(s), and only the remaining bits on both sides of
the codeword need to be set using the atomic operations.

device void put bits atomic(unsigned int∗ out, unsigned int kc,
unsigned int startbit, unsigned int numbits,
unsigned int codeword) {

unsigned int cw32 = codeword;
unsigned int restbits = 32−startbit−numbits;

#ifndef MEMSET0
unsigned int mask = ((1<<numbits)−1);
mask <<= restbits;
atomicAnd(&out[kc], ˜mask);

#endif

if ((startbit == 0) && (restbits == 0)) out[kc] = cw32;
else atomicOr(&out[kc], cw32 << restbits);

}

4 Performance Results

Performance of several kernel implementations was benchmarked on a PC with
an 2.66 GHz Intel QuadCore CPU, 2 GB RAM memory, and a NVIDIA GeForce
GTX280 GPU supporting atomic instructions on 32-bit words. The test data set
was composed of randomly generated test data files of different sizes and different
amount of information content (entropy between 0.5-8 bits/symbol). The test
files were assigned variable-length codewords using the Huffman algorithm with
the restriction on the maximal codeword length. The performance of a CPU
encoder running on one 2.66 GHz CPU core is given as a reference. Fig. 4(a)
gives a performance comparison on a data set with 2.2 bits/symbol entropy. The
GPU encoder gm32 concatenates codewords for every 4 consecutive symbols
(bytes) and writes the aggregate codeword to the GPU memory using global
memory atomic operations. The performance of the serial encoder and the global
memory (GM) encoder gm32 are closely matching. However, by performing the
atomic operations on a temporary buffer in shared memory (SM), as in sm32,
a speed-up of more than an order of magnitude is achieved. The performance
of the scan kernel, which is the asymptotically dominant part of the parallel
algorithm, is given as a reference.

The gm32 and sm32 kernels operate under the assumption that the size of
the aggregate codeword for four consecutive symbols (bytes) will not exceed the
original data length, i.e. it will always fit into one 32-bit word. When using
Huffman codewords, it may happen that the aggregate codeword exceeds the
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Fig. 4. Kernel execution times as a function of data size

original data size. We designed a second SM kernel, denoted as sm64huff, that
has a temporary buffer for the aggregate codeword of twice the original data
size (a typical buffer size in compression implementations). The performance of
sm64huff is slightly lower than the performance of sm32 kernel, since it must
perform one additional test during the codeword output. The situation when
a codeword spans more than two destination memory locations is however cor-
rectly supported. In this case, no atomic operation is needed for the part of the
codeword that spans an entire memory location, and a standard store operation
can be used. However, empirical evaluation showed that atomic operations on
the shared memory are implemented very efficiently, and that introduction of
the additional test actually hurts the performance due to the increased warp
serialization.

Additional performance improvements can be achieved by caching the code-
word LUT, instead of looking up the codeword for each symbol in the global
memory every time a symbol occurs. Fig. 4(b) gives a comparison of kernel exe-
cution times when the codeword look-ups are performed on the shared memory.
Similar results are achieved by using the texture memory, which is cached by
each multiprocessor. Use of low-latency shared memory for caching the code-
word LUT improved the performance of GM kernels by approximately 20%, and
the performance of SM kernels by up to 55%. As the symbols that appear more
frequently are replaced by the codewords of shorter length, the low entropy data
(well-compressible) will result in more shorter codewords that should be stored
by different threads at the same memory location. This issue could be miti-
gated by processing more than one 32-bit data element per thread. The average
number of bits that are written by each thread in one atomic operation to the
destination memory location is increased and fewer atomic operations are issued.

Additionally, increasing DPT reduces the total number of data elements that
is processed by the prefix sum (scan), which significantly influences the run time.
Fig. 5(a) shows performance gains using the ideal DPT value; performance of
scan using the original and reduced number of blocks are given as a reference.
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Fig. 5. Effects of processing more data per thread (lin scale)

Additional improvements are achieved by (1) caching the codeword LUT as pre-
viously described, and (2) caching aggregate codewords for every DPT elements
in a local buffer. However, further increasing DPT radically increases memory
requirements, since data is compressed in a shared memory buffer prior to trans-
fer to the global memory. Fig. 5(b) gives a comparison of run times using several
different DPT values. The investigation showed that the maximal DPT is lim-
ited by the shared memory requirements, and is relatively low (DPTmax = 8
when only codeword table is cached, and DPTmax = 4 when also aggregate
codewords are cached). The best results are obtained using DPT= 4, resulting
in a 35x speed-up.

5 Conclusion

In this paper, we presented a method for parallel bit-level output of data and a
novel parallel algorithm for variable-length encoding (PAVLE) for GPGPU archi-
tectures supporting atomic operations. The PAVLE algorithm was implemented
on a CUDA1.3-enabled GPGPU using atomic operations on the shared mem-
ory for managing concurrent codeword writes, parallel prefix sum for computing
the codewords offsets in compressed data stream and caching of the codeword
look-up tables in the low-latency memory. The optimized version of PAVLE for
CUDA 1.3 compatible GPGPUs achieves performance of approximately 4GB/sec
using Huffman codes for encoding the data on the NVIDIA GeForce GTX280
GPGPU. We observed considerable speedups compared to the serial VLE on the
state of the art PCs (up to 35x on 2.66GHz CPU, and up to 50x on a 2.40GHz
CPU), thus making the PAVLE an attractive lossless compression algorithmic
building block for GPGPU-based applications.
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Abstract. We demonstrate that the performance of commodity parallel systems
significantly depends on low-level details, such as storage layout and iteration
space mapping, which motivates the need for tools and techniques that separate a
high-level algorithm description from low-level mapping and tuning. We propose
to build a tool based on the concept of decoupled Access/Execute metadata which
allow the programmer to specify both execution constraints and memory access
pattern of a computation kernel.

1 Introduction

We evaluate several implementations of simple image filters on x86 multicore systems
and a GPU-accelerated system. Our experimental results demonstrate that efficiently
implementing an algorithm to execute on commodity parallel hardware requires care-
ful tuning to match the hardware characteristics, as the performance depends signifi-
cantly on low-level details such as iteration space mapping and storage layout. While
such manual tuning is possible, it is not practical: the number of versions to write and
maintain grows with the number of target architectures. For applications consisting of
multiple kernels such development and maintenance becomes infeasible.

We believe that innovative tools and techniques that separate a high-level algorithm
description from low-level mapping and tuning will make software engineering for par-
allel systems more productive and disciplined. We propose to build such a tool based
on the concept of Access/Execute (Æcute) metadata which capture both execution con-
straints and memory access patterns [1].

2 Mean Filter

Consider a one-dimensional mean filter, for which the output at t is given by the formula

Ot =
1
D

D−1∑
k=0

It+k, where (1)
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– I is an input array of N + D real elements;
– O is an output array of N real elements;
– D is the diameter of the filter, i.e. the number of input elements over which the

mean is computed (typically, D � N ).

A naı̈ve parallel algorithm can run N threads, each producing a single output element,
which requires Θ(ND) reads and arithmetic operations. A good parallel algorithm,
however, must be efficient and scalable [2].

2.1 Scalable Algorithm

The algorithm in Listing 1 strips the computation, where up to T outputs in the same
strip are computed serially in two phases. The first phase in lines 2–6 computes Ot0
according to (1). The second phase in lines 8–14 computes Ot for t ≥ t0 + 1 as
Ot−1 +

(
It+D−1 − It−1

)
/D.

1for(int t0 = 0; t0 < N; t0 += T) {
2// first phase: convolution
3float sum = 0.0f;
4for(int k = 0; k < D; ++k)
5sum += I[t0+k];
6O[t0] = sum / (float)D;
7
8// second phase: rolling sum
9for(int dt = 1; dt < min(T,N-t0); ++dt) {
10int t = t0 + dt;
11sum -= I[t-1];
12sum += I[t-1+D];
13O[t] = sum / (float)D;
14}
15}

Listing 1. Scalable mean filter algorithm in C

This algorithm performs Θ(N + ND/T ) reads and arithmetic operations, consid-
erably reducing memory bandwidth and compute requirements for T � D. Since the
t0 loop carries no dependences, up to 	N/T 
 threads can run in parallel. Thus, this
algorithm trades off parallelism against work efficienty.

Note that since the order of arithmetic operations is undefined in (1), both the naı̈ve
and scalable algorithms are functionally, if not arithmetically, equivalent.

2.2 Vertical and Horizontal Mean Image Filters

Mean filtering is a simple technique for reducing noise in digital images.
The vertical mean image filter is the one-dimensional mean filter applied to columns

of a two-dimensional image of W × H pixels:
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Ox,y =
1
D

D−1∑
k=0

Ix,y+k, where 0 ≤ x < W, 0 ≤ y < H − D. (2)

Similarly, the horizontal mean image filter is the mean filter applied to rows of an image:

Ox,y =
1
D

D−1∑
k=0

Ix+k,y, where 0 ≤ x < W − D, 0 ≤ y < H. (3)

Using the algorithm of §2.1, the mean image filters perform Θ(N + ND/T ) reads and
arithmetic operations, and can run up to 	N/T 
 parallel threads, where N is the number
of output pixels and T is the number of output pixels per strip.

Clearly, the optimal value of T depends on problem parameters W , H and D, and on
hardware parameters such as the number of supported threads and memory bandwidth.
In our evaluation (§4), we find the optimum by iteratively compiling the kernels for a
range of values of T and evaluating the performance.

3 Implementation

We describe efficient implementations of the mean image filter kernels for a GPU, with
the NVIDIA Compute Unified Device Architecture (CUDA) [3], and for a multicore
CPU, with Intel Streaming SIMD Extensions (SSE) [4]. We assume that the image
pixels are represented as single-precision floating-point numbers, and that the images
are stored in row-major order.

3.1 Architecture Overview

Roughly, a CUDA thread corresponds to an individual SSE vector lane, whilst a CUDA
thread block corresponds to a full SSE vector. A GPU core (streaming multiprocessor)
executes blocks of multiple threads in SIMD groups of 32 threads (warps) using the
8-lane SIMD unit; a CPU core operates on 4-element vectors using the 4-lane SIMD
unit. As a rule of thumb, a GPU runs thousands of threads, whilst a CPU only tens of
threads (counting vector lanes).

SSE only supports coalesced access to off-chip memory, e.g. storing a vector regis-
ter into a contiguous (and preferably aligned) 128-bit memory region; CUDA supports
uncoalesced access to off-chip memory, albeit at a lower memory bandwidth.1 To re-
duce off-chip memory access, SSE provides a family of instructions for shuffling data
in vector registers, whilst CUDA provides on-chip memory shared between threads in
a block. Effectively, these mechanisms enable fast inter-thread cooperation.

3.2 Vectorisation

Vertical mean filter. Conceptually, the vertical mean filter has a parallel outer loop
iterating over each column and a parallel inner loop iterating over strips of rows:

1 Rules for coalescing vary between different architecture generations.
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parfor(x = 0; x < W; ++x) // for each column
parfor(y0 = 0; y0 < H-D; y0 += T) // for each strip of rows

// two-phase computation here

To enable memory coalescing, threads in a thread block (lanes in a vector) must access
a contiguous (and preferably aligned) memory region, which is achieved by assigning
adjacent columns to adjacent threads: technically, the loop x is interchanged with the
loop y0, and then stripmined into vectors.

Horizontal mean filter. The horizontal mean filter has a parallel outer loop iterating
over each row and a parallel inner loop iterating over strips of columns:

parfor(y = 0; y < H; ++y) // for each row
parfor(x0 = 0; x0 < W-D; x0 += T) // for each strip of columns

// two-phase computation here

Serialisation within strips of columns, however, results in no memory coalescing: adja-
cent threads access adjacent rows with a stride of W . One option, illustrated in Fig. 1,
is to transpose the W × H input image I to an H × W intermediate image T′, run the
vertical mean filter on T′ to produce an H × (W − D) intermediate image T′′, and
then transpose T′′ to produce the (W − D) × H output image O. Another option is
to effectively fuse transposition and computation into one optimised kernel, by using
on-chip memory on a GPU or shuffle instructions on a CPU.

Fig. 1. The horizontal mean filter kernel implemented as a pipeline of the forward transpose,
vertical mean filter and the backward transpose kernels. Shadows represent the padding that may
be necessary to improve the bandwidth of the transpose kernels (§4.1).

3.3 Parallelisation

Given a low thread count on a CPU, the inner loop computation can be completely se-
rialised, resulting in maximum work efficiency: the CPU out-of-order issue logic can
extract adequate instruction level parallelism from the serial instruction stream. In con-
trast, a GPU exploits limited instruction level parallelism and relies on thread level
parallelism to cover memory latency.

On a GPU, thread blocks are located in a grid. For two-dimensional iteration spaces
over images, a two-dimensional grid is most natural, with each block producing a rect-
angular section of the output image. As Fig. 2a illustrates for the vertical mean filter,
significant portions of thread blocks covering the right edge of the image may be idle if
the image width is not a multiple of the number of columns per thread block.
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Fig. 2. Different mapping strategies result in different utilisation of threads. Light and dark re-
gions of blocks denote busy and idle threads, respectively. WPBX and WPBY stand for work per
block in the x and y dimensions, respectively. For 128 × 1 thread blocks used in our evaluation
(§4), WPBX = 128 and WPBY = T .

This issue can be alleviated by mapping the iteration space onto a one-dimensional
grid that covers the image by wrapping around its right edge, as illustrated by Fig. 2b.
As we show in §4.1, a mapping that maximises thread utilisation suffers from misalign-
ment, if the image width is not a multiple of the warp size; a better mapping takes
alignment into account by wasting a small number of threads on the right of the image,
thus ensuring that the first pixel of each row is handled by the first thread in a warp.

4 Experimental Results

4.1 GPU

We present results obtained on a dual-core 3GHz Intel Core 2 Duo E8400 system with
2 GiB RAM, equipped with an NVIDIA GTX 280 card, running 64-bit Linux Ubuntu
8.04. Code is compiled using CUDA SDK 2.2 and GCC 4.2.4 with the “-O3” optimisa-
tion setting. We measure the kernel execution time only and report the best throughput
out of 50 runs. In all the experiments, we fix the number of threads per block at 128
(128 × 1), as we nearly achieve the peak memory efficiency with this setting: ≈ 10
Gpixel/s × 4 bytes/pixel × (2 reads + 1 write) = 120 GB/s (close to the bandwidth of
aligned copy on this card).

Vertical mean filter. Fig. 3a shows that the 1D and 2D grid versions of the vertical
mean filter (Fig. 2) are similar in throughput when applied to a 5120 × 3200 image,
where 5120 is a multiple of 128 pixels. The throughput is below 0.8 Gpixel/s (not
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(b) 5121 × 3200 image. 2D grid. Data padded to multiples of 16, 32, 64, and 128 pixels.
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Fig. 3. CUDA implementations for the vertical mean filter on a 5120 × 3200 image (a) and on a
5121 × 3200 image (b & c), with different iteration space mapping and storage layout
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Fig. 4. CUDA implementations for the horizontal mean filter on a 5120 × 3200 image

shown) when each thread produces a single pixel (T = 1), climbs fast with increasing
serial efficiency, achieving the peak throughput of 9.9 Gpixel/s at several points, and
then declines with decreasing parallelism.

When applied to a 5121 × 3200 image, however, the 2D grid version only achieves
7.0 Gpixel/s, as shown by the bottom line in Fig. 3b. Whilst we allocate memory using
the cudaMallocPitch function, which pads the image to a multiple of 16 pixels to
enable memory coalescing (5136 pixels in this case), such allocation leads to DRAM
partition conflicts. We remedy the conflicts by manually padding the image to a multiple
of 32, 64 and 128. Since the results of padding to a multiple of 64 and 128 are very
close, we fix the image padding at a multiple of 64 (5184 pixels) for all subsequent
experiments.

Fig. 3c shows that the 1D grid mapping that maximises thread utilisation by wrap-
ping on 5121 pixels hardly achieves 6.0 Gpixel/s, whilst wrapping on the image padding
of 5184 pixels performs worse than wrapping on the warp size multiple of 5152 pixels.

To summarise, for the misaligned image padded to 5184 pixels, the 1D grid version
wrapped on 5152 pixels achieves 9.6 Gpixel/s, whilst the 2D grid version achieves only
9.1 Gpixel/s; thus, the 1D grid version is 6% faster than the 2D grid version.

Horizontal mean filter. Fig. 4 shows that the vanilla horizontal mean filter version
on a 5120 × 3200 image achieves only 230 Mpixel/s, for most values of T . The ver-
sion that uses on-chip memory to effectively fuse transposition and computation into
one optimised kernel, achieves 2.4 Gpixel/s and 3.7 Gpixel/s when using 64 and 32
threads.

The composite version that uses separate transpose and vertical mean kernels (Fig. 1)
achieves 3.0 Gpixel/s. Note, however, that this performance is only achieved when the
intermediate images T′ and T′′ are both padded by 64 pixels, resulting in the bandwidth
of 80.1 GiB/s and 63.3 GiB/s for the forward and backward transposes, respectively.
Without the padding, the bandwidth is only 60.2 GiB/s and 19.1 GiB/s.
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Fig. 5. Comparison of different CPU implementations on a 5120 × 3200 image. The large sur-
rounding boxes represent the peak memory copy throughput for each of the systems, as obtained
by running the STREAM benchmark [5].

We estimate that assembling the composite version from the already available com-
ponents took half a day versus five days for the on-chip memory version. Tuning the
kernels and finding the optimal padding parameters to improve the bandwidth, however,
took another half a day.

4.2 CPU

We present results on a 2.3 GHz quad-core AMD Phenom 9650 system with 8 GiB RAM
(AMD) and on a 3 GHz dual-core Intel Core 2 Duo E8400 system with 2 GiB RAM (In-
tel), both running 64-bit Linux Ubuntu 8.04. Code is parallelised using OpenMP prag-
mas and compiled using Intel C Compiler 11.0 with the “-xHost -fast” setting.

Vertical mean filter. In the worst performing version in Fig. 5a (“XY”), the loop over
columns x and the loop over strips of rows y0 have not been interchanged, which re-
sults in strided memory accesses. Applying loop interchange (“YX”) results in a vast
performance increase. Performance on the AMD system increases with enabling more
cores, whilst the Intel system achieves the peak performance with a single core, which
can be attributed either to the compiler better optimising for Intel’s own architecture or
to lower performance of a single core on the AMD system. On both systems, it is al-
ways more beneficial to parallelise across multiple cores the x loop (“parallel X”) than
the y0 loop (“parallel Y”).

Horizontal mean filter. The best performing version in Fig. 5b is obtained by the Intel
compiler optimising a naı̈ve C implementation that runs through memory sequentially
in the horizontal dimension (“horizontal”), thus triggering the CPU cache prefetching
mechanism. On the CPUs, the forward and backward transposes are too costly even
when using the highly optimised Intel MKL library (“transpose only”), and adding a
best performing version of the vertical mean filter (“vertical + transpose”) makes little
difference. Indeed, the naı̈ve implementation is so fast that there is nothing to gain from
vectorisation but a lot to lose from transposition.
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5 Towards Metaprogramming

5.1 Decoupled Access/Execute Metadata

To ease the programmer’s burden of mapping and tuning computation kernels to par-
allel systems on a chip, we propose extending a kernel’s description with decoupled
Access/Execute (Æcute) metadata [1]. Execute metadata for a kernel describe its iter-
ation space ordering and partitioning; access metadata describe locations in uniform
memory that the kernel may access on each iteration.

1// Array descriptors (C array wrappers)
2Array2D<float> arrayI(&I[0][0], W, H);
3Array2D<float> arrayO(&O[0][0], W, H-D);
4
5// Execute metadata: parallel iteration space
6IterationSpace1D x(0,W);
7IterationSpace1D y(0,H-D);
8IterationSpace2D iterXY(x,y);
9
10// Access metadata: iteration space -> memory
11VerticalStrip2D_R accessI(iterXY, arrayI, D);
12Point2D_W accessO(iterXY, arrayO);

Listing 2. Æcute metadata for the vertical mean image filter

Listing 2 gives an example of Æcute metadata for the vertical mean image filter.
Accesses to plain C arrays I[W][H] and O[W][H-D] are wrapped using Æcute ar-
ray descriptors arrayI and arrayO to cleanse the kernel of uncontrolled side-effects
(lines 1–3). A 2D iteration space descriptor iterXY is constructed from 1D descrip-
tors x and y, having the same bounds as the output image dimensions (lines 5–8). By
default, an iteration space is parallel in every dimension. Finally, we specify that on
each iteration the kernel reads a vertical strip of D pixels from arrayI and writes a
single pixel to arrayO (lines 10–12).

5.2 Related Work and Discussion

Effectively orchestrating data movement in software-managed memory hierarchies is
paramount to achieving high performance but is tedious and error-prone. The CUDA-
lite [6] tool seeks to automate data movement between on-off chip and on-chip GPU
memories by generating appropriate code from ad-hoc source code annotations. We
have addressed the problem of generating data movement code between two levels of
memory hierarchy on the Cell BE architecture in our previous work [1]. We now aim
to address a broader problem of generating code for both data movement across the full
memory hierarchy (including the host memory) and the iteration space traversal.

Similar to the Sequoia language [7], we seek to separate a high-level algorithm rep-
resentation from a system-specific mapping. Unlike Sequoia, we base our mapping on



Towards Metaprogramming for Parallel Systems on a Chip 45

partitioning (manually or automatically) an iteration space into disjoint subspaces and
infer memory access of subspaces from Æcute metadata. For a GPU-accelerated sys-
tem, a hierarchy of iteration space partitions can specify subspaces to be executed: at
the lowest level, by individual threads; at the middle level, by blocks of possibly coop-
erating threads; at the highest level, by possibly cooperating compute devices:

iterXY.partitionThreads(1,T); // 1xT outputs/thread
iterXY.partitionBlocks(128,T); // 128xT outputs/block
iterXY.partitionDevices(W/2,H-D); // (W/2)x(H-D) outputs/device

Ryoo et al. [8] also highlight the need for design space exploration, which they call
optimization carving, but leave out the question of automatically generating different
code versions from a high-level representation.

6 Future Work

OpenCL [9], a new low-level standard API, aims to provide software portability across
heterogeneous systems. Thus, instead of writing, for example, separate CUDA and
SSE kernels, the programmer will be able to write an OpenCL kernel and run it on
any standard-compliant implementation. However, OpenCL per se does not address the
problem of performance portability, since low-level code optimised for one device may
perform dismally on another, as we have demonstrated in this paper.

We aim to tackle this problem by designing and implementing a framework that will
take a device-independent algorithm representation with Æcute metadata and generate
efficient device-specific OpenCL code to be processed by vendor compilers.
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Abstract. We present a hardware mechanism which dynamically de-
tects uniform and affine vectors used in SPMD architecture such as
Graphics Processing Units, to minimize pressure on the register file and
reduce power consumption with minimal architectural modifications. A
preliminary experimental analysis conducted with the Barra simulator
shows that this optimization can benefit up to 34 % of register file reads
and 22 % of the computations in common GPGPU applications.

1 Introduction

GPUs are now powerful and programmable processors that have been used to
accelerate general-purpose tasks other than graphics applications. These pro-
cessors rely on a Single Program Multiple Data (SPMD) programming model.
This model is implemented by many vector units working in a Single-Instruction
Multiple-Data (SIMD) fashion, and vector register files. Register usage is a crit-
ical issue as the number of instance of the same program that can be executed
simultaneously depend on the number of hardware registers and the register
usage per instance. Making this bad situation worse, vectorizing scalar opera-
tions in an application makes inefficient use of registers and functional units. To
efficiently handle scalar data, Cray-like vector machines incorporate scalar func-
tional units as well as scalar registers. Modern GPUs lack such scalar support,
leaving it to vector units. These vector units execute the same instruction on the
same data leading to as many unnecessary operations as the length of the vector
when uniform data are encountered. These unnecessary operations involve data
transfers and activity in functional units that consume power, which is a critical
concern in architectural and microarchitectural designs of GPUs.

We observed through our experiments that standard GPGPU applications
manipulate a significant number of degenerated vectors containing replicated
scalar data, that we name uniform vectors. A closer look shows that this number
is even higher when additionally considering affine vectors, which contain a
sequence of regularly-stepped values (e.g. (2, 4, 6 . . . , 2n + 2)) Motivated by this
observation, we propose and evaluate by simulation a technique that tags a
vector register file according to the type of registers: uniform, affine or generic
(non-degenerate) vector.
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The rest of the paper begins with a brief description of the NVIDIA archi-
tecture upon which our model is based. Section 3 presents our performance
evaluation methodology, based on a functional simulator named Barra. We use
it to both evidence the presence of redundancy in calculations in Section 4 and
evaluate the proposed technique described in Section 5. We discuss technical is-
sues in Section 6. Section 7 presents quantitative results and figures, and Section
8 concludes the paper.

2 Architecture Model

The base architecture we consider in our simulations consists of a vector pro-
cessor, a set of vector register files, a set of vector units, and an instruction set
architecture that mimics the behavior of the NVIDIA GPUs used in the Com-
pute Unified Device Architecture (CUDA) environment [1]. This environment
relies on a stack composed of an architecture, a language, a compiler, a driver
and various tools and libraries.
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Fig. 1. Processing flow of a CUDA program

A CUDA program runs on an architecture composed of a host processor CPU,
a host memory and a graphics card with an NVIDIA GPU with CUDA support.
All current CUDA-enabled GPUs are based on the Tesla architecture, which is
made of an array of multiprocessors. Tesla GPUs execute thousands of threads in
parallel thanks to the combined use of multiple multiprocessors, SIMD processing
and hardware multithreading [2]. Figure 1 describes the hardware organization
of such a processor. Each multiprocessor contains the logic to fetch, decode
and execute SIMD instructions which operate on vectors of 32 elements. There
are 256 or 512 vector registers, each register being a 32-wide vector of 32-bit
values. In addition to the register file, each multiprocessor contains a scratchpad
memory (or shared memory, using NVIDIA’s terminology) and separate caches
for constant data and instructions.

The hardware organization is tightly coupled with the parallel programming
model of CUDA. The programming language used in CUDA is based on C with
extensions to indicate if a function is executed on the CPU or the GPU. Functions
executed on the GPU are called kernels. CUDA lets the programmer define if a
variable resides in the GPU address space and specify the kernel execution across
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different granularities of parallelism: grids, blocks and threads. As the underlying
hardware is a SIMD processor, threads are grouped together in so-called warps
which operate on 32-wide vector registers. Each instruction is executed on a
warp by a multiprocessor. Warps execute instructions at their own pace, and
multiple warps can run concurrently on a multiprocessor to hide latencies of
memory and arithmetic instructions. This technique helps hide the latency of
streaming transfers, and improve the effective memory bandwidth. The register
file of a multiprocessor is logically split between the warps it executes. As a
GPU includes several multiprocessors, warps are grouped into blocks. Blocks
are scheduled on the available multiprocessors. A multiprocessor can process
several blocks simultaneously if enough hardware resources (registers and shared
memory) are available.

The compilation flow of a normal CUDA program is a three-step process di-
rected by the CUDA compiler nvcc. First, according to specific CUDA directives
from the CUDA Runtime API, the program is split into a host program and
a device program. The host program is then compiled using a host C or C++
compiler and the device program is compiled through a specific back-end for the
GPU. The resulting device code is binary instruction code (in cubin format) to
be executed on a specific GPU. The host program and the device program are
linked together using the CUDA libraries, which includes the necessary functions
to load a cubin either from inside the executable or from a stand-alone file and
send it to the GPU for execution.

3 Barra, a Functional Simulator of NVIDIA GPUs

Several options exist to model the dynamic behavior of CUDA programs. CUDA
offers a built-in emulation mode that run POSIX threads on the CPU on behalf
of GPU threads, thanks to a specific compiler back-end. However, this mode
differs in many ways with the execution on a GPU: the behavior of floating-point
and integer computations, the scheduling policies and memory organization are
different.

GPU simulators running CUDA’s intermediate languagePTX such as GPGPU-
Sim [3] or Ocelot [4] can offer a greater accuracy, but still run an unoptimized
intermediate code instead of the instructions actually executed by a GPU.

Recent versions of CUDA include a debugger that allows watching the values
of GPU registers between each line of source code. Though this mode offers
perfect functional accuracy, it cannot be modified for instrumentation or feature
evaluation purposes.

Barra [5] simulates the actual instruction set of the NVIDIA Tesla architecture
at the functional level. The behavior of all instructions is reproduced with bit-
accuracy, with the exception of transcendentals (exp, log, sin, cos, rcp, rsq).
To our knowledge, Barra is the only publicly-available tool that both executes
the same instructions as Tesla GPUs and allows viewing the exact contents of
registers during the execution.

This simulator consists of two parts: a driver, and a simulator. The driver is a
shared library with the same name and exporting the same symbols as NVIDIA’s
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libcuda.so so that CUDA Driver API calls can be dynamically redirected to the
simulator. It includes major API functions to load, and execute a CUDA program
and manage data transfers. The simulator takes the binary code compiled by
NVIDIA’s nvcc compiler as input simulates the execution of the kernel, and
produces statistics for the each instruction.

3.1 Logical Execution Pipeline

The instruction-set simulator executes each assembly instruction according to
the model described in Figure 2. First, a scheduler selects the warp ready for ex-
ecution according to a round-robin policy and reads its current program counter
(PC). Then the instruction is fetched and decoded. Then operands are read from
the register file or from on-chip memories (scratchpad) or caches (constants). The
instruction is executed and its results are written back to the register file.
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Fig. 2. Overview of the functional execution pipeline during the execution of a MAD
instruction

3.2 Vector Register File

General Purpose Registers (GPRs) are dynamically split between threads during
kernel launch, allowing a trade-off between the number of registers per threads
and the latency hiding capability. Barra maintains a separate state for each active
warp in the multiprocessor. These states include a program counter, address and
predicate registers, mask and address stacks, a window to the assigned register
set, and a window to the shared memory.
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4 Uniform and Affine Data in SPMD Code

NVIDIA’s so-called “scalar” architecture is actually a pure vector (SIMD) archi-
tecture. At the hardware level, all instructions, including memory and control-
flow operations, operate on vectors, and all architecturally-visible registers are
vectors. It can alternatively be seen from the programer’s perspective as a
SPMD machine executing independent “scalar” threads. Though this provides a
developer-friendly programming model and allows scalable implementations by
abstracting away the vector length, it can become a source of inefficiency when
performing inherently scalar operations.

We define an uniform vector V as having every component contain the same
value Vi = x. Two main causes lead to uniform vector patterns. First, constant
values and data read from memory with a uniform address vector (broadcast)
generate uniform vectors. Second, uniform control flow is governed by uniform
conditions. For example, a for loop with uniform bounds will also have a uni-
form counter. Modern GPUs also allow non-uniform conditions in conditional
statements by allowing sub-vector control-flow. However, best performance is
achieved when the control condition is uniform across a warp [1]. This means
that in optimized algorithms, all lanes of registers that are used as conditions
will hold the same value.

Similarly, to maximize memory bandwidth, memory accesses should follow
specific patterns, such as the coalescing rules or conflict-free shared-memory
access rules. Programs following NVIDIA’s guidelines to access memory will
operate mostly on consecutive addresses. This specific pattern is often referred as
unit-stride access in the vector-computing literature. The vector register storing
the addresses of such access will contain consecutive addresses.

This leads us to define an affine vector as a vector V having each of its
component (interpreted as an unsigned integer) such that Vi = x+ iy, for x and
y non-negative integers. One can notice that the uniform pattern is a specific
case of the affine pattern when y = 0.

To quantify how often both of these patterns occur, we use Barra to dynam-
ically check for each input and output operand in registers if they are uniform
or affine vectors. We perform this analysis on two kinds of applications.

First, we used the examples from the CUDA SDK. Even though these ex-
amples are not initially meant to be used as benchmarks, they are currently
the most standardized test suite of CUDA applications. As code examples, they
reflect the best practices in CUDA programming.

The second benchmark is a bioinformatics application. RNAFold GPU is a
CUDA program which performs RNA folding. Based on dynamic programming,
it achieves a 17-time speedup compared to a multicore implementation [6].

The proportion of uniform and affine inputs/outputs from and to registers is
depicted in figure 3. Uniform or affine input data represent the percentage of
uniform (affine) vectors among the data transferred between the register file and
functional units.
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Similarly, uniform or affine output data is the proportion of uniform (affine)
data written back to the register file. It can be observed that whenever the
output is uniform (affine), the operation itself is executed on uniform (affine)
data only.

We observe that a respective average of 27 % (44 %) of data read from the
vector register file are uniform (affine) and 15 % (28 %) of data written back are
uniform (affine). This proportion of uniform or affine inputs/outputs is signifi-
cant enough to justify specific optimizations.
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Fig. 3. Proportion of uniform and affine operands in registers. Averages are 27 %
uniform inputs, 15 % uniform outputs, 44 % affine inputs and 28 % affine outputs.

5 Proposed Technique

In this section we describe a technique which can detect if registers contain uni-
form or affine data as defined in Section 4. The first objective is to minimize
memory and bus activity between the register file and the functional units for
the proportion of input data captured by the proposed technique. The second
objective extends the first one and goes further, by detecting uniform or affine
data that are provided at the input of functional units and that remains uniform
or affine at the output. In that case, the result can be computed by dedicated
scalar hardware like in Cray processors or by relying on the existing vector hard-
ware. As we target power reduction, the scalar solution would provide automatic
reduction. However, this solution would cause data duplication in the register
file and make the operand datapath more complex. The second solution can
benefit from techniques that were not available at the time Cray machines were
designed, such as clock-gating. This second solution can reuse the same vector
hardware, with one or two scalar units enabled to compute the result, the other
units being shut down using fine-grained stage-based clock gating as in the case
of the IBM Cell SPU FPU [7]. The large vector length (32) used in the Tesla ar-
chitecture promises larger power reductions than observed for more conventional
SIMD extensions (typical length 4).

Instructions executed by GPUs show that most of uniform and scalar data
come from a broadcast of some data or a copy of the register that contains
the thread identifier. For these cases, uniform and scalar detection can be done
statically for once at compile time or dynamically in hardware.
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A static detection involves architectural as well as microarchitectural modi-
fications. First, each instruction and register detected as uniform or scalar by
the compiler has to be tagged in the instruction word. Then at runtime during
the decode stage, the hardware can automatically schedule instructions accord-
ing to the tag data. A dynamic detection keeps the instruction set unchanged.
However, the burden of detecting uniform and scalar data is transfered from the
compiler to the hardware. This solutions requires for example a tagged vector
register file.

We tested the dynamic solution based on a tagged vector register file where
each tag contains the type of data stored in the associated register (uniform,
affine or generic vector) using the Barra simulator. At kernel launch time, the
tag of the register that contains the thread identifier is set to the affine state.
Instructions that broadcast values from a location in constant or shared memory
set the tag of the result to the uniform state. Tags are then propagated across
arithmetic instructions according to a simple set of rules, as shown in table 1. We
arbitrarily restrict the allowed strides to powers of two to allow efficient hardware
implementations, and conservatively make multiplications between affine and
uniform data return vectors. Additionally, the information stored in this tag
may be used by memory access units as it gives information about memory
access patterns.

Table 1. Examples of rules of uniform and affine tag propagation. For each operation,
the first row and first column indicate the tag of the first and second operand, respec-
tively (Uniform, Affine or Vector). The central part contains the computed tag of the
result.

+ U A V
U U A V
A A V V
V V V V

× U A V
U U V V
A V V V
V V V V

<< U A V
U U A V
A V V V
V V V V

Cost. A tag array contains two bits per vector register. Each multiprocessor of
a NVIDIA GT200 GPU features five hundred and twelve 1024-bit registers, for
a total register-file size of 512 kb (not accounting for the size of error-correction
codes, if any). In a basic implementation, the associated tags would require 1 kb
of extra storage, making it comparatively almost negligible.

In terms of latency, reading the tags adds one level of indirection before read-
ing registers. In NVIDIA GPUs, registers are read in sequence for a given instruc-
tion to minimize bank conflicts [8]. Therefore, operand reads can be pipelined
with tag reads. Additionally, GPUs can tolerate large instruction latencies us-
ing fast context switching between threads. The tag of the output can then be
computed using a few boolean operations from the tags of the input, so the
required hardware modifications are minimal. Support for broadcasting a word
across all SIMD units is already available to handle operands in Constant and
Shared memory.
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Benefits. When an input or output operand is known to be uniform, only one
lane needs to be accessed. Likewise, affine vectors v such that vi = x + iy can
be encoded using the base x and the stride y. Thus, their storage requirements
are only two vector lanes. This reduces the used width of the register file ports
and internal buses, thus saving power.

Computing a uniform or affine result function of uniform and affine inputs
can be performed using only one or two Scalar Processing (SP) units with a
throughput of one cycle instead of the full SIMD width during two cycles. Indeed,
most arithmetic operations on affine vectors can be reduced to operations on the
base and stride.

6 Technical Issues

Some issues may limit the efficiency of the proposed method and need to be
taken into account in an implementation.

Partial writes. GPUs handle branch divergence using predication. A predicated
instruction does not write in every lane of its output register, keeping some of
them in their previous state. In this case, even if the output value is uniform (or
affine), the uniform (affine) property cannot be guaranteed for the destination
register.

Half registers. The Tesla architecture allows access to lower/higher 16-bit sub-
registers inside regular 32-bit registers. To handle this correctly, separate tags
are needed for the lower, higher and whole parts to correctly track uniform/affine
information.

Overflows. An arithmetic overflow may occur in a lane of an affine register,
even if the base and stride are both representable. Overflows have no direct
consequences when using two’s-complement arithmetic, but casts between signed
and unsigned formats of various sizes can occur, resulting for instance in an
overflowing 16-bit affine value being extended into a non-affine 32-bit value.

This problem can be worked around by checking for overflows when per-
forming affine computations, and re-issue the offending instruction as a vector
operation when one is detected. Support for re-issuing instructions is already
present to handle bank conflicts in the constant cache and scratchpad memory.
As overflows should not occur in address calculations of correct programs, we
expect it to be a rare occurrence. Indeed, we did not encounter this case in any
of the benchmarks we ran.

Conversions from affine to generic vector. Instructions such as an addition in-
volving both an affine and a generic vector may require first converting the affine
input to a generic vector. As long as stride values are restricted to small powers
of two, this can be implemented efficiently in hardware. However, if this situation
does not appear frequently, it may be advantageous to reuse the conventional
SIMD ALUs to perform the conversion, then re-issue the instruction.
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7 Results and Validation

Figures 4 and 5 represent the respective proportions of uniform and affine operand
captured with the proposed technique. We observe that on average, 19 % of
inputs and 11 % of outputs can be identified as uniform data. These ratio go up
to 34 % and 22 % respectively when considering affine data.

This means that the proposed methods reduce the bus activity between the
register file and functional units for 34 % of the reads transfers. Likewise, the
activity within the functional units can be reduced during 22 % of the opera-
tions executed in GPGPU computations. The power reduction brought by this
technique, proportional to the activity reduction, is known to be of a critical
issue for GPU [9]. Future works have to precisely quantify it.
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Fig. 4. Proportion of uniform operands in registers captured using our technique
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Fig. 5. Proportion of affine operands in registers captured using our technique

It can be noted that the tag technique is not optimal, as it fails to detect some
uniform and affine vectors. This is mostly due to the partial write effect as de-
scribed in Section 6, and complex address calculations involving multiplication,
division or modulo operations. Further work may improve the accuracy of the
detection.
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8 Conclusion
In this paper, we presented a technique to exploit two forms of value locality spe-
cific to vector computations encountered in GPUs. The first one corresponds to
the uniform pattern present when computing conditions which avoid divergence
in sub-vectors. The second one corresponds to the affine pattern used to access
memory efficiently. An analysis conducted on common programs used in the field
of GPGPU showed that both of them are common. The novel idea of using both
forms of value locality with the proposed modifications significantly reduces the
power required for data transfers between the register file and the functional units
as well as the power drawn by the SIMD arithmetic units. Future work will focus
on improving the accuracy of the hardware-based dynamic technique presented in
this article, as well as considering software-based static implementations.
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on Heterogeneous Multicore Architectures
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Abstract. Multicore architectures featuring specialized accelerators are
getting an increasing amount of attention, and this success will probably
influence the design of future High Performance Computing hardware.
Unfortunately, programmers are actually having a hard time trying to
exploit all these heterogeneous computing units efficiently, and most ex-
isting efforts simply focus on providing tools to offload some compu-
tations on available accelerators. Recently, some runtime systems have
been designed that exploit the idea of scheduling – as opposed to of-
floading – parallel tasks over the whole set of heterogeneous computing
units. Scheduling tasks over heterogeneous platforms makes it necessary
to use accurate prediction models in order to assign each task to its
most adequate computing unit [2]. A deep knowledge of the application
is usually required to model per-task performance models, based on the
algorithmic complexity of the underlying numeric kernel.

We present an alternate, auto-tuning performance prediction approach
based on performance history tables dynamically built during the appli-
cation run. This approach does not require that the programmer pro-
vides some specific information. We show that, thanks to the use of
a carefully chosen hash-function, our approach quickly achieves accu-
rate performance estimations automatically. Our approach even outper-
forms regular algorithmic performance models with several linear algebra
numerical kernels.

1 Introduction

Multicore architectures are now widely adopted throughout the computer ecosys-
tem. There is also clear evidence that solutions based on specialized hardware,
such as accelerator devices (e.g. GPGPUs) or integrated coprocessors (e.g. Cell’s
SPUs) are offering promising answers to the physical limits met by processor de-
signers. Future processors will therefore not only get more cores, but some of
them will be tailored for specific workloads.

In spite of their promising performance in terms of computational capabilities
and power efficiency, such heterogeneous multicore architectures require appro-
priate tools. This introduces challenging problems at all levels, ranging from
programming models and compilers to the design of libraries with a real support
for heterogeneity. As they offer dynamic support for what has become hardly
doable in a static fashion, runtime systems have a central role in this software
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stack. In previous work, we have therefore developed StarPU [2], a unified run-
time system that offers support for heterogeneous multicore architectures. Its
specificity is that it not only targets accelerators (GPUs, Cell’s SPUs, etc.) but
also multicore processors at the same time, in a portable fashion. StarPU also
provides portable performance thanks to a high-level framework for designing
portable scheduling policies.

Performance modeling is a very common technique in the scheduling litera-
ture. Whenever doable, practically building such models usually requires conse-
quent efforts along with a certain knowledge of both the application algorithm
and the underlying architecture. This is even more difficult in the case of het-
erogeneous platforms. But without an appropriate interface, such knowledge is
not available from the runtime system’s perspective: describing a task as a func-
tion pointer and pointers to the data (similar to OpenMP 3.0 tasks) does not
really give much information to the runtime system in charge of the scheduling.
(Un)fortunately, current accelerators reintroduce the problem of data manage-
ment across a distributed memory model, so that we have to adopt much more
expressive task APIs anyway. The majority of the programming models that tar-
get accelerators (and that do not just delegate data movements to the program-
mer!) require to explicitly describe which data is accessed by a task [6,7,10,1].
While this adds constraints on the programmer who has to adapt its applications
to those expressive programming interfaces, the underlying runtime system gets
much more information.

In this paper, we explain how StarPU takes advantage of that expressiveness to
seamlessly build performance models on heterogeneous multicore architectures.
Then, we illustrate how this systematic approach performs in terms of predic-
tion accuracy and regarding its impact on the actual performance. Finally, we
show that StarPU not only grabs information from the programming interface
to perform better scheduling, but it also returns performance feedback informa-
tion thanks to convenient tools which are helpful for instance in the context of
auto-tuned libraries or when analyzing performance.

2 StarPU, a Runtime System for Heterogeneous
Machines

In this section, we briefly present StarPU, our unified runtime system designed
for heterogeneous multicore platforms, described in more details in a previous
paper [2]. It distributes tasks onto both accelerators and processors simultane-
ously while offering portable performance thanks to generic scheduling facilities.

2.1 A Unified Runtime System

The design of StarPU is organized around three main components: a portable
offloable-task abstraction, a library that manages data movements across het-
erogeneous platforms, and a flexible framework to design portable scheduling
policies.
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Fig. 1. Execution of a Task within StarPU. Applica-
tions submit tasks that are dispatched onto the differ-
ent drivers by the scheduler. The driver offloads the
computation, using the proper implementation from the
codelet, and the DSM (Distribution Shared Memory)
ensures the availability of coherent data. A callback is
executed when the task is done.

Fig. 2. The “Earliest Fin-
ish” Scheduling Strategy

A unified execution model. StarPU exposes the structure of codelet, which
is the set of implementations of the same computation kernel (e.g. a vector sum)
for different computation units (e.g. CPU and GPU). A StarPU task is then
an instance of a codelet applied to some data. Figure 1 shows the path followed
by tasks in StarPU. The programmer explicitly submits (graphs of) tasks to
StarPU which maps them as efficiently as possible on the eligible processing
units. Instead of hard-coding all the interactions between the processing units,
StarPU makes it possible to concentrate on the design of efficient computational
kernels and algorithmic problems instead of being stuck by low-level concerns.

A data management library. Maintaining data coherency (and availability)
is a crucial issue with accelerators. In a previous paper [1], we have designed
a high-level data management library that is integrated in StarPU. Mapping
data statically is not necessarily sufficient when multiple processing units access
the same pieces of data. The resulting data transfers are critical for the overall
performance so that integrating data management within StarPU made it pos-
sible to apply optimizations (e.g. prefetching, reordering, asynchronous memory
transfers) and to guide the scheduler.

A scheduling framework. StarPU not only executes tasks, but it also maps
them as efficiently as possible thanks to its expressive scheduling interface.
Hence, StarPU offers a flexible framework to implement portable scheduling
policies [2]. Such policies are portable in the sense that they are directly ap-
plicable to platforms as different as a Cell processor and a hybrid GPU/CPUs
machine.

2.2 Scheduling Strategies Based on Performance Models

In a previous paper [2], we have presented various scheduling policies imple-
mented in StarPU with relatively little effort. For instance, one of these policies
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is similar to the HEFT scheduling strategy [12]. As shown in Figure 2, the sched-
uler keeps track of the expected duration until the different processing units are
available. When a task is submitted to the scheduler, it is attributed to the pro-
cessing unit that minimizes termination time according to the expected duration
of the task on the different architectures (depicted by hatchings).

We have for instance used this rather simple strategy successfully to obtain
superlinear speedups on an LU decomposition thanks to per-architecture per-
formance models that take into account the (lack of) affinity of tasks with the
different processing units. However this strategy requires that we can approxi-
mate the execution time of the tasks on the various architectures.

3 Dynamically Building Performance Models

In this section, we discuss how we can build performance models, and we give a
systematic approach to dynamically construct and query a performance model
based on historical knowledge, seamlessly for the programmer.

In the context of dynamic task scheduling, we do not need perfectly accurate
models, but we need to take appropriate decisions when assigning the tasks onto
the different processing units. Our performance models should for instance cap-
ture the relative speedups as well as the affinities between tasks and processors.

3.1 How to Define a Performance Model?

In order to define a performance model, we need to decide which parameters the
model should depend on.

The most obvious parameters to describe a task are the kernel and the archi-
tecture: in the case of a matrix product on CUDA, we could for instance identify
a task by the pair (SGEMM, CUDA) and associate it with its predicted execu-
tion time. A trivial refinement is to consider the total size of the tasks’ data,
so we can also associate this pair with a parametric cost function depending on
that size (e.g. O (

S3/2
)

in the case of SGEMM applied on a matrix of size S).
The total size is often not sufficient: in the case of a kernel handling a

(n×m) matrix in O(n2m), we must make a distinction between (1024×512) and
(512× 1024) matrices (for example). Such multivariate models are however only
applicable if we have sufficient knowledge of the algorithm, which a runtime sys-
tem could hardly infer automatically in a generic way. Finding an explicit model
of the execution time can also be awkward because of architectural concerns
such as the size of caches. Using piecewise models is possible, but it requires to
delimit the boundaries of the pieces, which can be time demanding, especially
for a multivariate model and in a heterogeneous environment.

In many classes of algorithms, we can reasonably make some extra regular-
ity assumption such as most tasks handling blocks of fixed size (e.g. in tiled
algorithms), or a limited set of sizes (e.g. in divide and conquer algorithms). In
this case, explicitly modeling the performance as a function of the data size can
be unnecessarily complicated. A history-based approach would be much sim-
pler: instead of using a complicated multivariate model to differentiate between
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a (1024 × 512) matrix and a (512 × 1024) one, we simply store the execution
time that was measured for those different input configurations. The advantage
of this approach is that it is transparent to the programmer as long we have
some mechanism to match a task with those previously executed. This method
is however not applicable to irregular applications: if we know the performance of
a kernel on a (1024× 512) matrix, no prediction can be made for a (1026× 510)
matrix for instance. In the next section, we present how StarPU implements
history-based models with sufficient performance feedback to help programmer
easily decide whether this is an appropriate model or not.

3.2 How to Build Performance Models?

There are various ways to determine the parameters required to build the perfor-
mance models that we have described in the previous section: either completely
manual, or completely automated, depending on the type of the adopted model.

Building a performance model by hand (e.g. using the ratio between the num-
ber of operations and the speed of the processor) is hardly applicable to modern
processors and require a detailed knowledge of both the application and the
architecture. In the case of heterogeneous multicore processors, with multiple
processing units to handle, this becomes rather unrealistic. It is however possi-
ble to design a model based on the amount of computations per task, and to
calibrate the parameters by the means of a regression.

It is common to use specific precalibration programs to build those models.
While this may be suited for kernels that are widely used (e.g. BLAS), this
requires a specific test-suite and the corresponding inputs, which often represents
an important programming overhead. In the context of multicore architectures,
it is even harder to create a realistic workload: independently benchmarking the
various processing units without taking into account the various interactions
(e.g. cache sharing or bus contention) may not result in reliable measures.

On the other hand, it is possible to measure the performance of the different
tasks during an actual execution. This does not require any additional programs,
and it provides realistic performance measurements. StarPU can therefore auto-
matically calibrate parametric models, either at runtime using linear regression
models (e.g. of the form O(nα)) or offline in the case of non-linear models (e.g.
of the form αnβ + γ, as shown in Figure 7). StarPU also builds history-based
performance models by storing the performance of the tasks on different inputs,
transparently for the application.

3.3 A Generic Approach for Building History-Based Performance
Models Dynamically

This section shows how StarPU keeps track of the performance obtained by
the tasks on the different input, and how it is possible to match a task with
its similar predecessors. As shown in Figure 3, this process involves three main
steps: measuring the actual duration of the tasks when they are executed and
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Fig. 3. Performance feedback loop

Task Y =AX︷ ︸︸ ︷

hdata = h (hY , hA, hX)
= h (h(ny), h(nx, ny), h(nx))

signature =
(
sgemv, gpu︸ ︷︷ ︸

Table

, hdata︸ ︷︷ ︸
Entry

)

Fig. 4. Uniquely identifying a task

integrating these measurements in the history log of the task; being able to look-
up the performance of some task according to the previous measurements; and
offering some performance feedback to the application.

Measuring tasks’ duration. Measuring the time spent to compute a task is
usually simple thanks to the cycle counter facility provided by most manufac-
turers. In the case of Cell processors, which lacks such functionality, we had to
make the SPUs transmit those measurements to the PPU along with the output
data, this is not intrusive since DMA transfers are overlapped.

Identifying task kinds. We use the layout and size of the data to distinguish
the different kind of instances of a computational kernel. We now explain how
to compute a hash value to characterize the data layout of a task.

StarPU’s data management library not only manipulates buffers described by
a pointer and its length, but it also handles a mixture of various high-level data
interfaces [1]. In Figure 4, a matrix-vector product accesses a set of matrices and
vectors. There can also be much more complex data interfaces (e.g. compressed
sparse matrices), but the size of any piece of data must be characterized by a
k-tuple of parameters (p1, . . . , pk) where k and the parameters depend only on
the data interface. A matrix is for instance described by a pair (n, m), and a
single parameter is sufficient to describe the length of a vector.

We now define a hash function that computes a unique identifier for such a
set of parameters. As shown in Figure 4, we characterize the size of each piece
of data by applying a hash function1 to the parameters p1, . . . , pk−1 describing
it. By then applying the hash function to the different per-data hashes, we get
a characterization of the data layout and size for the whole task. Applying this
method on a tiled algorithm would for instance result in having as many hash
values as there are tile sizes.

Feeding and looking up from the model. It is now extremely simple to
implement a model based on the history in StarPU: each computational kernel

1 For example, we can use the usual CRC hash functions: h(p1, . . . , pk) =
CRC(p1, . . . , CRC(pk−1, CRC(pk, 0))).
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is associated with a hash table per architecture. When a task is submitted to
StarPU, it computes its hash, and consults the hash table corresponding to the
proper kernel-architecture pair to retrieve the average execution time previously
measured for this kind of task. The average execution time and other metrics
such as standard deviation are updated when a new measure is available. Hash
tables can be saved (or loaded) to (from) a file so that these performance models
are persistent between different runs. We therefore rapidly calibrate models by
running small problems that have the same granularity as the actual problems.

4 Experimental Validation

We have implemented these automatic model calibration mechanisms in StarPU
which runs on multicore CPUs, GPUs and Cell processors. In this section, we give
evidence that they have a significant impact on performance; we also illustrate
the performance feedback offered by StarPU, and how StarPU provides some
tools to help the programmer to understand the obtained performance, and to
select the most appropriate models in consequence. We here show how these
mechanisms perform in the case of a hybrid platform with a nVidia Quadro
FX4600 GPU and a E5410 Xeon quad-core CPU.

4.1 Sharpness of the Performance Prediction

Figure 5 shows the results obtained on an LU decomposition for two different
problem sizes. The first line exhibits the average and standard deviation of the
reference performance obtained when using a greedy scheduling policy to dis-
tribute tasks to CPUs and the GPU. The second line shows the results obtained
when calibrating the history-based performance model after either one, two or
three runs and the average performance (and standard deviation) obtained after
4 runs. During the first execution, the greedy strategy clearly outperforms the
non-calibrated strategy based on performance models. But once the model is cal-
ibrated, the performance obtained by the model-based strategy gets better, not
only in terms of average speed, but also with respect to the standard deviation.

Speed (GFlop/s)
�������Policy

Size
(16k × 16k) (30k × 30k)

Greedy (avg.) 89.98 ± 2.97 130.68 ± 1.66

Perf.
Model

1st iter. 48.31 96.63
2nd iter. 103.62 130.23
3rd iter. 103.11 133.50
≥ 4 (avg.) 103.92 ± 0.46 135.90 ± 0.64

Fig. 5. Impact of performance sampling on the
speed of an LU decomposition (in GFlop/s)
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The improvement between the runs is explained by the fact that the application
runs on a hybrid CPU/GPU platform: the better the accuracy, the better the
load balancing. Until the models are properly calibrated, some processing units
receive too much work while others are not kept busy enough.

Figure 6 depicts the evolution of the prediction inaccuracies depending on the
number of collected samples. More precisely, the error is computed by taking
the sum of the absolute differences between prediction and measurements, for
all tasks, and by dividing this total prediction error by the total execution time.
As suggested by Figure 5, the accuracy of the models becomes better as we keep
collecting measurements. We finally obtain an accuracy of an order of 1% for
multicore CPUs, and below 0.1% for a GPU. This difference is due to complex
interactions occuring within multicore CPUs (e.g. cache sharing and contention)
while computations are not perturbed on GPUs. The large majority of tasks
in an LU decomposition are matrix products, whose performance is especially
regular even on CPUs, so that we obtain a relatively good overall accuracy.

4.2 Performance Feedback Tools

StarPU provides tools to detect tasks that are not predictable enough (e.g.
BLAS1 kernels). Figures 7 and 8 are automatically generated by StarPU, which
can collect performance measurements at runtime.

Figure 7 summarizes the behaviour of a kernel on all input sizes and the
performance variations observed for the different sizes, and for the different ar-
chitectures; it also shows the non-linear regression-based performance models
automatically generated by StarPU so that we can figure out whether such a
model is applicable or not. It also illustrates in which situation it is worth using
accelerators or CPUs, therefore helping to select the most appropriate gran-
ularity. Using a small grain size on CPUs results in variable execution times,
certainly explained by a poor cache use which makes performance very sensitive
to the bus contention for instance. This problem disappears as we take large
tiles, or if we use a GPU that is much less sensitive to such variations.
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Figure 8 shows the actual distribution of the measurements that were collected
for a given hash value. This not only gives a precise idea of the performance
dispersion, but it can also be used to understand the actual performance issues:
on the very predictable GPUs, we obtain a very thin peak, while on the CPUs,
the distribution exhibiting two hills suggests that there may be some contention
issue which should be further analyzed.

5 Related Works

Auto-tuning techniques have been successfully used to automatically generate
the kernels of various high-performance libraries such as ATLAS [4], FFTW,
OSKI or SPIRAL; and similar results are obtained in the context of GPU com-
puting by the MAGMA project[9]. While performance models permit to generate
efficient computational kernels even on heterogeneous systems, computations are
usually mapped statically on the different processing resources when dealing with
hybrid systems [11].

Iterative compilation frameworks also use performance feedback to take the
most appropriate optimization decisions. Jimenez et al. [8] keep track of the
relative speedups of the applications on the different architectures to decide
which processing unit should be assigned to an application. Their approach is
much less flexible since it does not allow to actually schedule interdependent
tasks within an application.

Different runtime systems currently offer support for accelerators [3], or even
hybrid systems. Similarly to StarPU, the Harmony runtime system targets hy-
brid platforms while proposing some scheduling facilities, possibly based on per-
formance modeling [5]. Its performance is modeled by the means of (possibly
multivariate) regression models. This approach is hardly applicable without any
support from the programmer, and possibly requires a large number of samples
to have a reliable model. Thanks to the high-level support for data management
integrated within StarPU, the history-based solution that we propose in this
paper is simpler as it is completely transparent for the programmer.

6 Conclusion

We have proposed a generic approach to seamlessly build history-based perfor-
mance models. It has been implemented within the StarPU runtime system with
the support of its integrated data management library, and we have shown how
StarPU’s performance feedback tools help the programmer to analyze whether
the resulting performance prediction are relevant or not.

Such history-based performance models naturally rely on some regularity hy-
pothesis since it cannot predict the behaviour of a task if all its predecessors had
different sizes: in that case, a parametric performance model calibrated by the
means of regressions is more suitable. Our history-based approach also requires
computational kernel with a static flow control. Tasks’ execution time should
be independent from the actual content of the data, the latter is often unknown
when the scheduling decisions are taken anyway. This does not require any effort
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from the programmer who can easily use our auto-tuning mechanisms to see
whether such models results into performance improvements or not.

This technique is directly applicable to the case of complex hybrid setups
(e.g. heterogeneous multi-GPU). This work could also be extended to model the
performance of memory transfers to schedule them as well. Scheduling policies
could take advantage of performance models that depend on the actual state
of the underlying machine: using hardware performance counters, the history-
based models could for instance keep track of contention or cache usage. Finally,
performance feedback can be valuable: this not only helps to understand the
behaviour of an application during a post-mortem analysis, but this is also useful
for iterative compilation environments and auto-tuned libraries.
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Preface

The International Workshop on Algorithms, Models and Tools for Parallel Com-
puting on Heterogeneous Platforms (HeteroPar) workshop is intended to be a
forum for people working on algorithms, programming languages, tools, and the-
oretical models aimed at efficient problem solutions on heterogeneous platforms.
The topics to be covered target heterogeneous systems and platforms and include
parallel programming paradigms and models, parallel algorithms, programming
languages and libraries, fault tolerance, tools for grid, cloud and green comput-
ing, and the usage of these complex platforms for solving the different type of
problems and applications.

Heteropar 2009 is the seventh edition of this workshop, but it is the first
year that we have the workshop co-located with the Euro-Par conference. Out
of 24 manuscripts submitted this year, 10 were accepted for presentation at the
workshop in Delft in August 25, corresponding to an acceptance rate of 41%.
Submissions have been prepared from authors from 14 countries and received
4 reviews each from members of the Program Committee. Apart from the pre-
sentations of the 10 accepted papers, the workshop had one invited speaker of
international reputation, Dick Epema, who discussed different forms of hetero-
geneity in large-scale systems, namely: the problem of processor co-allocation in
multi-cluster systems with their heterogeneous local and wide-area networks; the
exploitation of different social roles in cooperative downloading in BitTorrent-
based peer-to-peer systems.

The paper entitled “static worksharing strategies for heterogeneous computers
with unrecoverable failures” extends classic results from divisible load theory for
master-slave platforms to optimally distribute a given workload to computers
that may differ in speed and subject to interruptions of known likelihood, that
may kill all work in progress on one of these computers.

The “resource allocation for multiple concurrent in-network stream-processing
applications” paper analyses the operator-mapping problem for multiple con-
current in-network stream-processing applications, by attempting to use as few
resources as possible for a given Quality of Service (QoS) requirement of the
application. This paper has received the best paper award of the workshop.

The paper entitled “distributed data partitioning for heterogeneous processors
based on partial estimation of their functional performance models” presents
a new algorithm to perform optimal data partitioning on parallel computers
with heterogeneous processors. Instead of assuming the speed functions to be
given, the proposed algorithm uses a computational kernel to estimate the speed
functions of the processors for different problem sizes during its execution.

The “two-dimensional matrix partitioning for parallel computing on heteroge-
neous processors based on their functional performance models” paper addresses
2D matrix partitioning for parallel computing on heterogeneous processors based
on their functional performance models. The presented experimental results
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showed the efficiency of the proposed partitioning algorithm for matrix
multiplication.

“An efficient weighted bi-objective scheduling algorithm for heterogeneous
systems” paper proposes the Makespan and Reliability Cost Driven (MRCD)
heuristic, a static scheduling strategy for heterogeneous distributed systems that
not only minimizes the makespan but also maximizes the reliability of the ap-
plication. Instead of considering both objectives in a hierarchical fashion, the
proposed cost function integrates both objectives.

The “accelerating S3D: a GPGPU case study” paper focuses on experiences
from accelerating S3D, a high-fidelity turbulent reacting flow solver, on graphics
processors. This paper also addresses the issue of floating point accuracy and
precision on the GPU, a topic of enormous importance to scientific computing.

The paper “using hybrid CPU-GPU platforms to accelerate the computation
of the matrix sign function” investigates the numerical computation of the matrix
sign function of large-scale dense matrices in heterogeneous architectures, such as
a current general-purpose multi-core processor connected to a graphics processor.
Parallelism is extracted in both processors by linking sequential versions of the
codes with multi-threaded implementations of BLAS.

The “modelling pilot-job applications on production grids” paper presents
a performance model for pilot-job applications running on production grids.
Statistics are derived about the number of available pilots along time and the
makespan of the application given the number of submitted pilots. Results ob-
tained on a radiotherapy application running on the EGEE production grid show
the accuracy of the model to correctly describe the behavior of the application.

The paper “modeling resubmission in unreliable grids: the bottom-up ap-
proach” analytically and experimentally studies resubmission in the case of ran-
dom brokering, by considering that jobs can be resubmitted to the broker or
to the computing. The obtained results show that resubmits to the broker is a
better strategy.

The “reliable parallel programming model for distributed computing environ-
ments” paper presents a trustworthy programming model for grid computing
environments that achieves reliability in a transparent manner for the program-
mer. It is based on an active replication scheme, capable of supporting arbitrary
fail-silent and fail-stop node failures.

As Program Chair I wish to acknowledge all those that contributed to the
success of HeteroPar 2009, in particular to the authors of the submitted papers,
and to the Program Committee members for their valuable time and expertise
to the selection process.

October 2009 Leonel Sousa
Program Chair
HeteroPar 2009
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Abstract. One has a large workload that is “divisible” (its constituent
work’s granularity can be adjusted arbitrarily) and one has access to p
remote computers that can assist in computing the workload. How can
one best utilize the computers toward this end? Two features complicate
this question. First, the remote computers may differ from one another
in speed. Second, each remote computer is subject to interruptions of
known likelihood that kill all work in progress on it. One wishes to or-
chestrate sharing the workload with the remote computers in a way that
maximizes the expected amount of work completed, given the risk of in-
terruptions. We consider three versions of the preceding problem. Two
versions envision heterogeneous computing resources: the remote com-
puters may differ from one another in speed; one version envisions ho-
mogeneous computing resources: the remote computers are identical. One
of the heterogeneous versions ignores communication costs (i.e., assumes
that they are negligible); the other two versions account explicitly for
communication costs. We provide exact expressions for the optimal work
expectation for all three versions of the problem. For the most general
version (heterogeneous resources, with communication costs), we provide
a recurrence for computing this expectation; for the other two versions,
we provide closed-form expressions.

1 Introduction

This paper extends well-known results from divisible load theory [11] concerning
master-worker computing platforms. Our goal is to optimally distribute a large
workload to p remote computers (the “workers”) that may differ in speeds; the
workers are connected to the “master” via a bus or network. The master wants to
send a fraction of the load to each worker, seriatim. The problem is to determine,
for each worker, the fraction of the load that it should be sent and the order
in which it should be served. This problem has received considerable attention
in recent years, and closed-form expressions have been derived for these load
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fractions [7, 4]. We revisit this problem in the context of remote computers
that are subject to unrecoverable interruptions [5], and we aim to maximize
the expected amount of total work that will be completed. For intuition: An
“unrecoverable interruption” may correspond to a hardware crash, an event that
is increasingly likely with the advent of massively parallel grid platforms [1, 2]; it
may also correspond to the unexpected return of a remote computer’s user/owner
during an episode of cycle-stealing [3, 10, 12]. Consider the following scenario:
on Friday evening, a PhD student has a large set of simulations to run. S/he has
access to a set of computers from the lab, but each computer can be reclaimed
at any instant by its owner. In any case, everybody will be back to work on
Monday 8am. What is the student’s best strategy? How much simulation data
should s/he send to, and execute on, each accessible computer?

We cleave to the preceding scenario and assume that remote computers are
vulnerable to interruption, with a risk that grows linearly with the time the
computer has been available. Other probability distributions can be envisioned,
but the linear distribution is very natural in the absence of further informa-
tion. Also, the linear risk function turns out to be tractable: we have derived
optimality results for this distribution. The major achievement of this paper is
to provide a distribution strategy that maximizes the expected total amount of
work completed.

The paper is organized as follows. We describe the formal framework in de-
tail, in Section 2. We then address three optimization problems. The simplest
problem ignores communication costs, but considers a heterogeneous set of re-
sources that may differ in speed (Section 3). The other two problems account
for communication costs, first with identical remote computers (Section 4) and
then with computers that may differ in speed (Section 5). We provide exact ex-
pressions for the optimal work expectation for all three problems. For the first
two problems we provide explicit, closed-form expressions; for the last (and most
general) problem, we have to resort to a complicated recurrence formula that
yields the optimal solution for specific instances in linear time. We provide a brief
overview of related work in Section 6; in particular, we compare our approach
and results with those of our previous work [5]. We close with some conclusions
and perspectives in Section 7.

2 Framework

We have W units of divisible work to execute on p remote computers. Each com-
puter is susceptible to unrecoverable interruptions that “kill” all work in progress
(on that computer). All remote computers share the same perfectly known in-
stantaneous probability of being interrupted, and this probability increases with
the amount of time the computer has been operating (whether working or not).
Within our model, all computers obey the same risk function Pr(T ) of having
been interrupted by the end of the first T time units.

The risk function that is the focus of our study is the linear function Pr(w) =
κw. It is the most natural model in the absence of further information: the risk of
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interruption grows linearly with the time that the computer has been available,
or equivalently with the amount of work that it could have done. The density
function is then dPr = κdt for t ∈ [0, 1/κ] and 0 otherwise, so that

Pr(T ) = min

{
1,

∫ T

0
κdt

}
= min{1, κT }.

We assume that all p computing remote computers obey the same probability
failure distribution. For instance, in the earlier-mentioned cycle-stealing scenario,
the remote computers are computers from the CS department that can be loaned
during the week-end, so they have the same probability of having their owner
returning. With more information about the owners, we could refine the scenario
and assume different laws for, say, students and staff.

The speed of computer Pi is speedi. The computers are interconnected by a
bus or homogeneous network of bandwidth bw. Each computer will receive a
single message from the master that contains its work chunk, i.e., all the data
necessary to execute its assigned work: in the terminology of [7], this is a single-
round distribution strategy. Work is transmitted sequentially to each remote
computer, as in the standard divisible load model of [7]. This corresponds to
a (somewhat pessimistic) one-port model [9], with single-threaded execution
and blocking send/receive MPI primitives [13]. We introduce two important
notations:

– z = κ
bw , the failure-rate per unit-load communication from the master to any

computer;
– xi = κ

speedi
, the failure-rate per unit-load computation by computer Pi.

If we send a load w1 to computer P1 and then a load w2 to computer P2, then
the expected amount of work executed by P1 is

E1 = w1 (1 − (z + x1)w1) . (1)

To understand (Eq. 1), simply observe that P1 is communicating during the
first w1/bw time-units and is computing during the next w1/speed1 time-units.
P1’s risk of being interrupted increases linearly with elapsed time, regardless of
whether it is communicating or computing. Similarly, we derive that the expected
amount of work executed by P2 is

E2 = w2 (1 − z(w1 + w2) − x2w2) .

Indeed, P2 starts computing only after both communications from the master
to P1 and P2 have completed, which takes (w1 + w2)/bw time-steps; then it
computes during w2/speed2 additional time-steps. Again, P2’s risk of being in-
terrupted increases linearly with elapsed time, regardless of whether it is waiting
(while the master communicates to P1), or communicating, or computing. If we
had only these two remote computers (p = 2), then our goal would be to maxi-
mize E1 + E2, the expected total amount of work done.



74 A. Benoit et al.

Note that the formula for expectation E1 (Eq. 1) assumes that (z+x1)w1 ≤ 1.
If this condition is not satisfied, then E1 = 0. To avoid such cases, we make a
technical assumption and assume that the total load is small enough so that we
distribute it entirely to the p computers. Indeed, if the total load is too large,
then all computers will be interrupted with certainty (probability 1) before they
complete their chunk. In the following, we assume that the p chunks received by
the computers partition the original load, and that there is a nonzero probabil-
ity that the last computer is not interrupted before or during its computation.
A sufficient condition for this latter condition to hold is W ≤ 1

z+xmax
, where

xmax = κ
min1≤i≤p speedi

is the failure-rate per unit-load computation of the slowest
computer. To see this, simply note that the last computer, say Pi, can always
start computing at time-step Y/bw, where Y ≤ W is the total load sent to all
preceding computers: introducing idle times in the communication cannot im-
prove the solution, as the risk of interruption grows with time. Then Pi needs
V/speedi time-steps to execute its own chunk of size V , where Y + V ≤ W ,
whence the claim. We can now formally state the optimization problem:

Definition 1. We let Distrib(p) denote the problem of computing Eopt(W, p),
the optimal value of the expected total amount of work completed when partition-
ing and distributing the entire workload W ≤ 1

z+xmax
to the p remote computers.

We turn now to the case z = 0, wherein communication costs can be neglected.
Then we shall tackle the case with communication costs and identical remote
computers (xi = x for 1 ≤ i ≤ p) before moving on to the general case with
communication costs and different-speed remote computers.

3 Heterogeneous Workers, No Communication Costs

In this section we deal with the Distrib problem when we have p remote com-
puters that differ in speed, but we ignore communication cost (the case z = 0).
This scenario models situations wherein computations dominate in the applica-
tion. We need to introduce symmetric functions to state our result.

Definition 2. For integers n ≥ 1 and i ∈ {0, . . . , n}, we denote by σ
(n)
i the

i-th symmetric function of x1, . . . , xn: σ
(n)
i =

∑
1≤j1<···<ji≤n

∏i
k=1 xjk

. By

convention σ
(n)
0 = 1.

For instance with n = 3, σ
(3)
1 = x1 + x2 + x3, σ

(3)
2 = x1x2 + x1x3 + x2x3 and

σ
(3)
3 = x1x2x3.

Theorem 1. When z = 0 the optimal solution to Distrib(p) sends a chunk of
size

∏
k �=i xk

σ
(p)
p−1

W = σ(p)

xiσ
(p)
p−1

to computer Pi. In this case,

Eopt(W, p) = W − σ
(p)
p

σ
(p)
p−1

W 2 = W − 1∑p
i=1

1
xi

W 2.
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Proof. Let αi,p =
∏

k �=i xk

σ
(p)
p−1

and fp = σ(p)
p

σ
(p)
p−1

. We show the result by induction. Note

that it holds for p = 1, because α1,1 = 1 and f1 = x1.
To help the reader follow the derivation, we prove the result for p = 2 before

dealing with the general case. Assume that the size of the chunk sent to P1 is Y .
The size of the chunk sent to P2 is thus W −Y . Both chunks are sent in parallel,
as no cost is assessed for communications. The expected amount of work done is

E(Y ) = Y (1 − x1Y ) + (W − Y ) (1 − x2(W − Y )) .

We rewrite E(Y ) = W − x2W
2 − (x1 + x2)Y 2 + 2x2WY . The optimal value is

Y (opt) = x2
x1+x2

W = α1,2W as desired (and W − Y (opt) = x1
x1+x2

W = α2,2W ).
Importing the value of Y (opt) into the expression of E(Y ), we derive that

Eopt(W, 2) = E(Y (opt)) = W − f2W
2,

where

f2 = x2 − x2
2

x1 + x2
=

x1x2

x1 + x2
=

σ
(2)
2

σ
(2)
1

.

This proves the claim for p = 2.
Assume now that the result holds for ≤ n workers. Consider the case of n + 1

workers, and assume that the size of the chunk sent to Pn+1 is W − Y . By
induction, the optimal expected amount of work done by the first n computers
is Eopt(Y, n) = Y (1 − fnY ), and this is achieved by sending a chunk of size αi,nY
to Pi for 1 ≤ i ≤ n. The expected amount of work done by the n + 1 workers is
then

E(Y ) = Y (1 − fnY ) + (W − Y ) (1 − xn+1(W − Y )) .

We proceed as in the preceding case. The optimal value is Y (opt) = xn+1
fn+xn+1

W ,
and we derive that Eopt(W, n + 1) = E(Y (opt)) = W − fn+1W

2 where

fn+1 = xn+1 −
x2
n+1

fn + xn+1
.

We recognize that σ
(n)
n + xn+1σ

(n)
n−1 = σ

(n+1)
n so that fn + xn+1 = σ(n+1)

n

σ
(n)
n−1

, and

fn+1 = xn+1 −
x2
n+1σ

(n)
n−1

σ
(n+1)
n

=
xn+1

(
σ

(n+1)
n − xn+1σ

(n)
n−1

)
σ

(n+1)
n

=
xn+1σ

(n)
n

σ
(n+1)
n

=
σ

(n+1)
n+1

σ
(n+1)
n

as desired. Also, Y (opt) = xn+1
fn+xn+1

W =
xn+1σ

(n)
n−1

σ
(n+1)
n

W . By induction, for 1 ≤ i ≤ n,

we get αi,n+1 = αi,n
xn+1σ

(n)
n−1

σ
(n+1)
n

=
xn+1σ

(n)
n−1

∏
1≤k≤n,k �=i xk

σ
(n)
n−1σ

(n+1)
n

=
xn+1

∏
1≤k≤n,k �=i xk

σ
(n+1)
n

=∏
1≤k≤n+1,k �=i xk

σ
(n+1)
n

as desired. It remains to check the value of αn+1,n+1 = 1 −
xn+1σ

(n)
n−1

σ
(n+1)
n

=
σ(n+1)

n −xn+1σ
(n)
n−1

σ
(n+1)
n

=
∏

1≤k≤n xk

σ
(n+1)
n

which concludes the proof. �
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We see that the optimal solution is symmetric: each worker’s “contribution”
to the expectation is a (somewhat complicated, but) symmetric function of all
computer speeds.

4 Homogeneous Workers, with Communication Costs

We move now to the case with communication costs. Before dealing with the
general case of heterogeneous remote computers, which turns out to be difficult,
we address the homogeneous problem, with identical remote computers:

Theorem 2. When xi ≡ x (i.e., speeds are identical), the optimal solution to
Distrib(p) distributes equal-size chunks to the workers, i.e., chunks of size W/p.
In this case,

Eopt(W, p) = W − (p + 1)z + 2x

2p
W 2.

Proof. The proof is similar to that of Theorem 1. Let fp = (p+1)z+2x
2p . We show

the result by induction. Note that it holds for p = 1, because f1 = z + x.
Assume that the result holds for ≤ n workers. Consider the case of n + 1

workers, and assume that the size of the chunk sent to Pn+1 is W − Y . By
induction, the optimal expected amount of work done by the first n workers is
Eopt(Y, n) = Y (1 − fnY ), and this is achieved by sending a chunk of size Y/n to
each Pi, for 1 ≤ i ≤ n. The expected amount of work done is then

E(Y ) = Y (1 − fnY ) + (W − Y ) (1 − zW − x(W − Y )) .

To understand the value of the contribution of Pn+1 to E(Y ), simply note that
it has to wait for the whole workload to be distributed (accounted for by the
term zW ) before it can start computing its own chunk (accounted for by the
term x(W − Y )). We rewrite E(Y ) as

E(Y ) = W − (z + x)W 2 − (fn + x)Y 2 + (z + 2x)WY.

The optimal value is Y (opt) = z+2x
2(fn+x)W and we derive that Eopt(W, n + 1) =

E(Y (opt)) = W − fn+1W
2, where fn+1 = z + x − (z+2x)2

4(fn+x) .

Using the induction hypothesis, we get fn + x = (n+1)z+2x
2n + x = (n+1)(z+2x)

2n ,
so that

fn+1 = z + x − n(z + 2x)
2(n + 1)

=
(n + 2)z + 2x

2(n + 1)

as expected. We also obtain Y (opt) = n
n+1W , so that each Pi (with i ≤ n)

receives a chunk of size Y (opt)

n = W
n+1 . We deduce that Pn+1 receives a chunk of

that same size (or we can directly check that W − Y (opt) = W
n+1 ). �

Interestingly, the optimal solution mandates sending equal-size chunks to all
workers. This contrasts with the standard divisible load setting. In that setting,
when one aims to minimize the total time needed to execute a certain amount
of work, one has all workers terminate their computations simultaneously [7], so
that the earlier workers served by the master receive larger chunks than do the
later workers.
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5 Heterogeneous Workers, with Communication Costs

We are now ready for the general case, which accounts for communication costs
while serving different-speed computers. We need a few notations before stating
the main result of this paper:

Definition 3. Define the sequence λ = λ0, λ1, . . ., as follows:
λ0 = λ1 = 4; for n ≥ 2, λn = λn−1 − 1

4λn−2
For convenience, let λ−1 = 0.

Note that λn = 4(1 + n)/2n for all n ≥ 0. We use the sequence λ is used to
characterize the optimal solution to the general problem.

Theorem 3. In the general case, the optimal solution to Distrib(p) does not
depend upon the ordering of the communications from the master. When using
the ordering P1, P2, . . . , Pp, the optimal solution sends a chunk of size αi,pW to
Pi, where

1. αp,p =
2fp−1 − z

2(fp−1 + xp)
for p ≥ 2 and α1,1 = 1;

2. αi,p = αi,i
z + 2xi+1

2(fi + xi+1)
for p − 1 ≥ i ≥ 2;

3. α1,p = 1 − α2,p for p ≥ 2.

In this case, Eopt(W, p) = W − fpW
2, where fp =

∑p
i=0 λiσ

(p)
p−iz

i∑p−1
i=0 λiσ

(p)
p−i−1zi

for p ≥ 1

Proof. The proof is similar to those of Theorems 1 and 2 but it is more involved.
Due to lack of space, we refer to the companion research report [6] for a complete
proof. Note that the theorem holds for p = 1, because f1 = λ0x1+λ1z

λ0
= z + x1.

To give intuition for the result, in particular why the ordering of the com-
munications is not important, consider the case with two workers, P1 and P2,
that are served in this order (first P1, then P2). If we send a chunk of size Y to
P1 and one of size W − Y to P2, we derive that the expected amount of work
completed is

E(W ) = Y (1 − f1Y ) + (W − Y ) (1 − (zW + x2(W − Y )) .

As before, to understand this reckoning, we note that P2 waits for the first chunk
to be sent to P1; then it receives its own chunk; both steps account for the term
zW on the righthand side. Finally, P2 computes its chunk, whence the term
x2(W − Y ). We rewrite

E(Y ) = W − (z + x2)W 2 − (f1 + x2)Y 2 + (z + 2x2)WY.

The optimal value is Y (opt) = z+2x2
2(f1+x2)W = α1,2W , and we derive that

Eopt(W, 2) = W − f2W
2

where f2 = z + x2 − (z+2x2)2

4(f1+x2) . After some easy manipulation, we see that
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f2 =
4x1x2 + 4(x1 + x2)z + 3z2

4(x1 + x2 + z)
,

as desired. We see that the formula is symmetric in x1 and x2, thereby showing
that the ordering of the communications has no significance. Please refer to [6]
for the general case of the induction. �

The interested reader can check that we end up with the values of fp and αi,p

given in Theorem 1 when z = 0, and those given in Theorem 2 when xi = x.

6 Related Work

The divisible-load model is a reasonable abstraction of an application made up of
a large number of identical, fine-grained parallel computations. Such applications
are found in many scientific areas, and we refer the reader to the survey paper [11]
and the journal special issue [8] for detailed examples. Also, the divisible-load
approach has been applied successfully to a variety of computing platforms,
such as bus-shaped, star-shaped, and even tree-shaped platforms. Despite the
extensive literature on the divisible-load model, to the best of our knowledge, the
current study is the first to consider the divisible-load problem on master-worker
platforms whose computers are subject to unrecoverable failures/interruptions.

Our earlier work [5], and its predecessors [3, 10, 12], also consider comput-
ers with unrecoverable failures/interruptions, but with major differences in the
models. The current paper allows heterogeneous computers and communication
costs, while [5] focuses only on identical computers without communication costs.
To “compensate” for the additional complexity in the model we study here, we
have restricted ourselves in this paper to scenarios where the entire workload is
distributed to the remote computers, a strategy that is often suboptimal, even
when scheduling a single remote computer [5]. Furthermore, we have not consid-
ered here the possible benefits of replicating the execution of some work units on
several remote computers, a key tool for enhancing expected work production
in [5]. Obviously, it would be highly desirable to combine the sophisticated plat-
forms of the current study with the sophisticated algorithmics of [5]. We hope
to do so in future work, in order to deal with the most general master-worker
problem instances—instances that allow heterogeneous computing resources and
communication costs, that do not insist that all work be distributed, and that
give the scheduler the option of replicating work on multiple remote computers.

7 Conclusion

In this paper we have revisited the well-known master-worker paradigm for
divisible-load applications, adding the hypothesis that the computers are sub-
ject to unrecoverable failures/interruptions. In this novel context, the natural
objective of a schedule is to maximize the expected amount of work that gets
completed. We have succeeded in providing either closed-form formulas or linear
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recurrences to characterize optimal solutions, thereby providing a nice counter-
part to existing results in the classical context of makespan minimization. In
particular, our demonstration that the ordering of communications has no im-
pact on the optimal solution is a very interesting (and somewhat unexpected)
result, as it shows that the scheduling problem has polynomial complexity: there
is no need to explore the combinatorial space of all possible orderings.

As discussed in Section 6, we have adopted certain simplifications to the gen-
eral problem we ultimately aspire to. We have insisted on distributing the entire
workload to the remote computers, without replication of work. Our not allowing
work replication is particularly unfortunate when contemplating environments
that have access to abundant computing resources. This, then, is the first pro-
jected avenue for extending the current work. Several other extensions of this
work would be desirable also, for instance: (i) including a start-up overhead-cost
each time a computer executes a piece of work (e.g., to account for the cost of
initiating a communication or a checkpointing); (ii) studying computers that
obey not only linear, but also different risk functions (e.g., when several user
categories have different probabilities of returning to reclaim their computers);
(iii) studying risk functions that are no longer linear (e.g., standard exponen-
tial or, importantly, heavy-tailed distributions); and (iv) analyzing multi-round
strategies, wherein each remote computer receives its share of work in several
rounds. Altogether, there are many challenging algorithmic problems to address!
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Abstract. This paper investigates the operator mapping problem for in-
network stream-processing applications. In-network stream-processing is
the application of one or several trees of operators, in steady-state, to
data that are continuously updated at different locations in the network.
The goal is to generate final results at a desired rate. Different operator
trees may share common subtrees, so that intermediate results could be
reused in different applications. This work provides complexity results for
different instances of the basic problem and proposes several polynomial-
time heuristics. Quantitative comparison of the heuristics in simulation
demonstrates the importance of mapping operators to appropriate pro-
cessors, and allows us to identify a heuristic that achieves good results
in practice.

1 Introduction

We consider applications structured as trees of operators, where leaves corre-
spond to basic data objects distributed in a network. Each internal node in the
tree denotes the aggregation and combination of the data from its children, which
in turn generates new data that is used by the node’s parent. The computation
is complete when all operators have been applied up to the root node, thereby
producing a final result. We consider the scenario in which the basic data ob-
jects are constantly being updated, meaning that the tree of operators must be
applied continuously. The goal is to produce final results at some desired rate.

The above problem is called stream processing [1] and arises in several do-
mains. One such domain is the acquisition and refinement of data from a set of
sensors [2]. For instance, [2] outlines a video surveillance application in which the
sensors are cameras located at different locations over a geographical area. An-
other example arises in the area of network monitoring [3,4]. In this case routers
produce streams of data pertaining to forwarded packets. More generally, stream
processing can be seen as the execution of one of more “continuous queries” in
the relational database sense of the term (e.g., a tree of join and select opera-
tors). Many authors have studied the execution of continuous queries on data
streams [5,6].

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 81–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



82 A. Benoit et al.

In practice, the execution of the operators must be distributed over the net-
work. In some cases the servers that produce the basic objects may not have
the computational capability to apply all operators. Besides, objects must be
combined across devices, thus requiring network communication. Sending all ba-
sic objects to a central compute server often proves unscalable due to network
bottlenecks, or due to the central server not providing sufficient computational
power. The alternative is to distribute the execution by mapping each node in
the operator tree to one or more servers in the network, including servers that
produce and update basic objects and/or servers that are only used for applying
operators. One then talks of in-network stream-processing. Several in-network
stream-processing systems have been developed [7,4]. These systems all face the
same question: where should operators be mapped in the network?

In this paper we study the operator-mapping problem for multiple concurrent
in-network stream-processing applications. The problem for a single application
was studied in [8] for an ad-hoc objective function that trades off application
delay and network bandwidth consumption. In a recent paper [9] we have stud-
ied a more general objective function, enforcing the constraint that the rate at
which final results are produced, or throughput, is above a given threshold. This
corresponds to a Quality of Service (QoS) requirement of the application that
should be met while using as few resources as possible. In this paper we extend
the work in [9] in two ways. First, we study a “non-constructive” scenario, i.e.,
we are given a set of compute and network elements, and we attempt to use as
few resources as possible. Instead, in [9], we studied a “constructive” scenario
in which resources could be purchased and the objective was to spend as little
money as possible. Second, while in [9] we studied the case of a single applica-
tion, in this paper we focus on multiple concurrent applications that contend
for the servers, each with its own QoS requirement. Indeed, with several ap-
plications from several users running concurrently, it is more likely to share an
existing set of resources for a common deployment, hence the call for the non-
constructive scenario. Higher performance and reduced resource consumption is
possible by reusing common sub-expression between operator trees when appli-
cations share basic objects [10]. We consider target platforms that are either
fully homogeneous, or with a homogeneous network but heterogeneous servers,
or fully heterogeneous. We formalize operator mapping problems for multiple
in-network stream-processing applications and give their complexity; and we
propose heuristics to solve the problems and evaluate them in simulation.

2 Framework

Application Model – We consider K applications, each needing to perform several
operations organized as a binary tree (see Fig. 1). Operators are taken from the
set OP = {op1, op2, . . . }, and operations are initially performed on basic objects
from the set OB = {ob1, ob2, . . . }. These basic objects are made available and
continuously updated at given locations in a distributed network. Operators
higher in the tree rely on previously computed intermediate results, and they
may also require to download basic objects periodically.
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Fig. 1. Sample application
structured as a binary tree of
operators

For an operator opp we define objects(p) as
the index set of the basic objects in OB that
are needed for the computation of opp, if any;
and operators(p) as the index set of operators
in OP whose intermediate results are needed
for the computation of opp, if any. We have
|objects(p)| + |operators(p)| ≤ 2.

The tree structure of application k is defined
with a set of labeled nodes. The ith internal node
in the tree of application k is denoted as n

(k)
i ,

its associated operator is denoted as op(n(k)
i ),

and the set of basic objects required by this op-
erator is denoted as ob(n(k)

i ). Node n
(k)
1 is the

root node. Let opp = op(n(k)
i ) be the opera-

tor associated to node n
(k)
i . Then node n

(k)
i has

|operators(p)| child nodes.
The applications must be executed so that they produce final results, where

each result is generated by executing the whole operator tree once, at a target
rate. We call this rate the application throughput, ρ(k), specified as a QoS require-
ment for each application. Each operator in the tree of the kth application must
compute (intermediate) results at a rate at least as high as ρ(k). Conceptually,
operator opp executes two concurrent threads in steady-state. (1) It periodically
downloads (or continuously stream) the most recent copies of the basic objects
in objects(p), if any. Basic object obj has size dj (in bytes) and needs to be
downloaded by the processors that use it for application k with frequency f

(k)
j .

This consumes an amount of bandwidth of rate
(k)
j = dj × f

(k)
j on each involved

network link and network card. If a processor requires object obj for several ap-
plications with different update frequencies, it downloads the object only once
at the maximum required frequency ratej = maxk{rate

(k)
j }. (2) It receives in-

termediate results computed by operators(p), if any, and performs computation
using basic objects it is continuously downloading and/or data received from
other operators. The computation of operator opp requires wp operations, and
produces an output of size δp.

Platform Model – The distributed network is a fully connected graph (i.e.,
a clique) interconnecting a set of processors P . Operators are mapped onto
these processors. Some processors also hold and update basic objects. Processor
Pu ∈ P is interconnected to the network via a network card with maximum
bandwidth Bu. The network link between two distinct processors Pu and Pv is
bidirectional and has bandwidth bu,v(= bv,u), shared by communications in both
directions. Processor Pu ∈ P has compute speed su. Processors that only provide
basic objects and cannot compute are simply given compute speed 0. Resources
operate under the full-overlap, bounded multi-port model [11]: Processor Pu can
simultaneously compute, send, and receive data. With the “multi-port” assump-
tion, each processor can send/receive data simultaneously on multiple network
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links. The “bounded” assumption enforces that the total transfer rate of data
sent/received by processor Pu is bounded by its network card bandwidth, Bu.

Mapping Model and Constraints – The objective is to map internal nodes of ap-
plication trees onto processors. If only one node is mapped to processor Pu, while
Pu computes for the t-th final result it sends to its parent (if any) intermediate
results for the (t−1)-th final result and it receives data from its children (if any)
for computing the (t + 1)-th final result. All three activities are concurrent. If
several nodes are mapped to Pu the same overlap happens, but possibly on dif-
ferent result instances. A basic object can be duplicated, and thus available and
updated at multiple processors. We assume that such duplication is achieved in
some application-specific manner (e.g., via a distributed database that enforces
sufficient data consistency). In this case, a processor can choose among multiple
data sources for a basic object (or perform a local access if the basic object is
available locally.)

We use an allocation function, a, to denote the mapping of the nodes onto the
processors in P : a(k, i) = u if node n

(k)
i is mapped to processor Pu. Conversely,

ā(u) is the index set of nodes mapped on Pu: ā(u) = {(k, i) | a(k, i) = u}.
Also, we denote by aop(u) the index set of operators mapped on Pu: aop(u) =
{p | ∃(k, i) ∈ ā(u) opp = op(n(k)

i )}. We introduce the following notations:

• Ch(u) = {(p, v, k)} is the set of (operator, processor, application) tuples
such that processor Pu needs to receive an intermediate result computed by
operator opp, which is mapped to processor Pv, at rate ρ(k); operators opp are
children of aop(u) in the operator tree.

• Par(u) = {(p, v, k)} is the set of (operator, processor, application) tuples
such that Pu needs to send to Pv an intermediate result computed by opera-
tor opp at rate ρ(k); p ∈ aop(u) and the sending is done to the parents of opp in
the operator tree.

• Do(u) = {(j, v, k)} is the set of (object, processor, application) tuples where
Pu downloads object obj from processor Pv at rate ρ(k).

Given these notations, we can express constraints for the application throughput:
each processor must compute and communicate fast enough to respect the pre-
scribed throughput of each application with nodes allocated to it (Eq. 1). Note
that each operator is computed only once at the maximum required throughput.

∀Pu ∈ P
∑

p∈aop(u)

(
max

(k,i)∈ā(u) | op(n
(k)
i )=opp

(
ρ(k)

) wp

su

)
≤ 1 . (1)

Communication occurs only when child and parent nodes are mapped on differ-
ent processors. An operator computing for several applications may send/receive
results to/from different processors. If the parent/child nodes corresponding to
the different applications are mapped onto the same processor, the communica-
tion is done only once, at the most constrained throughput. In expressions below
v �= u since we neglect intra-processor communications.
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Pu must have enough bandwidth capacity to perform all its basic object down-
loads, to support downloads of the basic objects it may hold, and also to perform
all communication with other processors, all at the required rates (Eq. 2). The
first term corresponds to basic object downloads; the second term corresponds to
download of basic objects from other processors; the third term corresponds to
inter-node communications when a node is assigned to Pu and its parent node
is assigned to another processor; and the last term corresponds to inter-node
communications when a node is assigned to Pu and some of its children nodes
are assigned to another processor.

∀Pu ∈ P
∑

(j,v,k)
∈Do(u)

rate
(k)
j +

∑
Pv∈P

∑
(j,u,k)
∈Do(v)

rate
(k)
j +

∑
(p,v,k)
∈Ch(u)

δpρ(k) +
∑

(p,v,k)
∈Par(u)

δpρ(k) ≤ Bu (2)

Finally, the link between processor Pu and processor Pv must have enough
bandwidth capacity to support all possible communications between the nodes
mapped on both processors, as well as the object downloads (Eq. 3).

∀Pu, Pv ∈ P
∑

(j,v,k)
∈Do(u)

rate
(k)
j +

∑
(j,u,k)
∈Do(v)

rate
(k)
j +

∑
(p,v,k)
∈Ch(u)

δpρ(k) +
∑

(p,v,k)
∈Par(u)

δpρ(k) ≤ bu,v (3)

Optimization Problems – The goal is to achieve a prescribed throughput for each
application while minimizing a cost function. Several relevant problems can be
envisioned. Proc-Nb minimizes the number of used processors; Proc-Power
minimizes the compute capacity and/or the network card capacity of used pro-
cessors (e.g., a linear function of both criteria); BW-Sum minimizes the sum of
the used bandwidth capacities; and BW-Max minimizes the maximum percent-
age of bandwidth used on all links. Different platform types may be considered
depending on resource heterogeneity. We consider the fully homogeneous case
(su = s, Bu = B and bu,v = b), which we term Hom. The case in which network
links can have various bandwidths is termed Het.

3 Complexity

Problem Proc-Nb is NP-complete in the strong sense even for a simple case:
a Hom platform and a single application (|K| = 1), that is structured as a left-
deep tree [12], in which all operators take the same amount of time to compute
and produce results of size 0, and in which all basic objects have the same size.
We refer the reader to [9] for the proof. It turns out that the same proof holds
for Proc-Power on a Hom platform.

The BW-Max problem is NP-hard because downloading objects with differ-
ent rates on two processors is the same as the NP-hard 2-Partition problem [13].
Here is a sketch of the straightforward proof for a single application. Consider
an application in which all operators produce zero-size results, and in which
each basic object is used only by one operator. Consider three processors, with
one of them holding all basic objects but unable to compute any operator. The
two remaining processors are able to compute all the operators, and they are
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connected to the first one with identical network links. Such an instance can be
easily constructed. The goal is to partition the set of operators in two subsets so
that the bandwidth consumption on the two network links is as equal as possible.
This is exactly the 2-Partition problem.

The BW-Sum problem can be reduced to the NP-hard Knapsack problem [13].
Here is a proof sketch for a single application. Consider the same application as
for the proof of the NP-hardness of BW-Max above. Consider two identical
processors, A and B, with A holding all basic objects. Not all operators can be
executed on A and a subset of them need to be executed on B. Such an instance
can be easily constructed. The problem is then to determine the subset of op-
erators that should be executed on A. This subset should satisfy the constraint
that the computational capacity of A is not exceeded, while maximizing the
bandwidth cost of the basic objects associated to the operators in the subset.
This is exactly the Knapsack problem.

All above problems can be solved via linear programming (see [14] for Integer
Linear Program formulations). However, they cannot be solved in polynomial
time (unless P=NP).

4 Heuristics

In this section we propose polynomial heuristics1 for solving the Proc-Power
problem when considering only the compute capacities of used processors. We
propose 5 heuristics to map application nodes to processors. Each heuristic can
use one of 4 generic processor selection strategies to select which processor a node
should be mapped to. We consider two processor selection strategies, each with a
blocking and a non-blocking version. Blocking means that once chosen for a given
operator op1, a processor cannot be used later for another operator op2 unless op2
is a relative (i.e., father or child) of op1. Non-blocking heuristics impose no such
restriction. We obtain four strategies (S1) Select the fastest processor (blocking);
(S2) Select the processor with the fastest network card (blocking); (S3) Select the
fastest processor (non-blocking); and (S4) Select the processor with the fastest
network card. Note that the processor and network card speeds used for the
selection are computed while accounting for operators that may have already
been mapped to servers.

All our heuristics attempt to re-use results from common operator sub-trees
across applications. For this purpose they try to add additional communications
as show in Fig. 2 on an example. We consider the following 5 heuristics:

• (H1) Random – H1 randomly picks the next node to map and attempts to
reuse sub-trees across applications. If the node’s operator has not already been
mapped, possibly for another application, but the node’s parent, H1 tries to map
the node to the same processor. If unsuccessful, it makes similar attempts with
the node’s children. Otherwise if the node’s operator has already been mapped
somewhere else in the forest, H1 tries to add a communication from the already
1 To ensure the reproducibility of our results, the code for all heuristics is available on

the web [15].
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Fig. 2. Example for the reuse of nodes. op1 is only computed once and its result is
reused for the computation of op2 and op4. op3 uses the result of op2 in application 1
for its computation.

mapped operator to the father of the current node to reuse the common result.
In this case, H1 marks the whole subtree (rooted at the operator) as mapped.
Otherwise, H1 chooses a new processor according to the selected processor se-
lection strategy. If unsuccessful, then H1 fails.
• (H2) TopDownBFS – H2 performs a breadth-first-search (BFS) traversal
of all application trees, using an artificial node at which all application trees are
rooted. For each node, H2 checks whether its operator has not been mapped yet
and whether its father’s has. In this case, H2 tries to map the operator on the
same processor as its father, and in case of success continues the BFS traversal.
If the node’s operator has already been mapped, H2 tries to add a communi-
cation link between the mapped operator and the node’s father: the mapped
operator sends its result not only to its father but also to the node’s father. If
none of these two conditions holds, or if the mapping was not possible, H2 picks
a processor according to the the processor selection strategy. If the mapping is
successful, the BFS traversal continues, otherwise H2 fails.
• (H3) TopDownDFS – H4 uses the same mechanism as H2, but with a depth-
first-search (DFS).
• (H4) BottomUpBFS – Like H2, H4 performs a BFS traversal of the appli-
cation trees. For each node, H4 verifies whether it’s operator has already been
mapped. In this case a communication link is added (if possible), connecting the
mapped operator and the node’s father. If the operator is not yet mapped and if
it has children, H4 tries to map the operator to one of its children’s processors.
If unsuccessful, or if the operator is at the bottom of a tree, H4 tries to map
the operator onto a new processor chosen according to the processor selection
strategy. If the mapping is successful, the traversal continues, otherwise H4 fails.
• (H5) BottomUpDFS – H5 is similar to H4, but uses a DFS traversal. This
adds complexity as more cases need to be considered. For each node H5 checks if
its operator has already been mapped and none of its children has. In this case
H5 goes up in the tree until it reaches the last node n1 such that there exists a
node n2 somewhere else in the forest whose operator is already mapped, and such
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that op(n1) = op(n2). In this case H5 tries to add a communication between n2
and the n1’s father to share a sub-tree. If the children have already been mapped
H5 simply tries to map the operator to one of the children’s processors. If this
is not possible, or if the additional communication was not possible, or again
if the operator has not been mapped anywhere in the forest, H5 tries to map
the operator onto a new processor chosen according to the processor selection
strategy. Otherwise H5 fails.

5 Experimental Results

We have conducted several experiments to assess the performance of the different
heuristics described in Section 4. In particular, we are interested in the impact
of node reuse on the number of solutions found by the heuristics. The applica-
tion trees are fixed to a size of at most 50 operators, and in general we consider
5 concurrent applications. The following parameters are chosen randomly: The
basic objects (leaves in the tree) are chosen among 10 different types. The size d
of each object type varies between 3MB and 13MB. The download frequencies of
objects for each application, f , as well as the application throughput, ρ, are such
that 0 < f ≤ 1 and 1 ≤ ρ ≤ 2. The operands of operators are also chosen ran-
domly. The computation amount wi for an operator lies between 0.5MFlop/sec
and 1.5MFlop/sec, and the output size of each operator δi varies between 0.5MB
and 1.5MB. We dispose of 30 processors, equipped with a network card of band-
width between 50MB and 180MB each. We use the same range for processor
compute speed : 50MIPS to 180MIPS. Processors are interconnected via het-
erogeneous communication links, whose bandwidths are between 60MB/s and
100MB/s. The 10 different types of objects are randomly distributed over the
processors, where objects are maximal twice available on processors. When de-
ciding about basic object downloads, we first try to download from processors
which are already used in the mapping (with minimal available bandwidth),
before downloading from an unused processor. Execution time and communica-
tion time are scaled units, thus execution time is the ratio between computation
amount and processor speed, while communication time is the ratio between
object size (or output size) and link bandwidth.

We study the relative performance of each heuristic compared to the best
solution found by any heuristic. This allows to compare the cost, in amount of
resources used, of the different heuristics. The relative performance for heuristic
h is obtained by: 1

|runs|
∑|runs|

r=1 ah(r), where ah(r) = 0 if heuristic h fails in

run r and ah(r) = costbest(r)
costh(r) . costbest(r) is the best solution cost returned over

all heuristics for run r, and costh(r) is the cost in the solution returned by
heuristic h. The number of runs is fixed to 50 in all experiments. The complete
set of results is available on the web [15].

Summary of Experiments – We have performed different test series, varying
the number of processors, the number of applications and the application size.
Also we tested the impact of the Communication-to-Computation Ratio (CCR),
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Fig. 3. Experiment: Increasing number of processors. Number of successful runs.

which is the ratio between the mean amount of communications and the mean
amount of computations. Finally we were interested in the influence of applica-
tion similarities on the heuristics’ performance. Due to lack of space, we resume
our experimental results, but a detailed description is available in [14].

Our results show that a random approach for multiple applications performs
considerably bad. Not reusing results from common subtrees dramatically limits
the success rate (see Fig. 3) and also the quality of the solution in terms of cost
(relative performance). The TopDown approach turns out to be the best, and
in most cases BFS traversal achieves the best result. The BottomUp approach
is only competitive using a BFS traversal. The DFS traversal seems unable to
reuse results efficiently (it often finds itself with no bandwidth left to perform
necessary communications.) Furthermore we see a strong dependency of the pro-
cessor selection strategy on solution quality. The blocking strategies outperform
the non-blocking strategies when the CCR is large. Overall, H2 in combination
with strategy S3 proves to be a solid combination.

6 Conclusion

We have studied the operator mapping problem of multiple concurrent in-network
stream-processing applications onto a collection of heterogeneous processors.
These applications come as a set of operator trees, that have to continuously
download basic objects at different sites of the network and at the same time
have to process this data to produce some final result. We have identified four
relevant optimization problems. All are NP-hard but can be formalized as inte-
ger linear programs. Focusing on one of these optimization problems, we have
designed several polynomial-time heuristics, which we have evaluated in simu-
lation. Our experiments show the importance of node reuse across applications.
Reusing nodes leads to an important number of additional solutions, and also
the quality of the solutions improves considerably. We conclude that top-down
traversal of the application trees is more efficient than bottom-up traversal.
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As future work, we could develop heuristics for the other optimization prob-
lems defined in Section 2. We could also envision a more general cost function
wi,u (time required to compute operator i onto processor u), in order to express
even more heterogeneity. This would lead to the design of more sophisticated
heuristics. Also, we believe it would be interesting to add a storage cost for ob-
jects downloaded onto processors, which could lead to new objective functions.
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Abstract. The paper presents a new data partitioning algorithm for parallel 
computing on heterogeneous processors. Like traditional functional partitioning 
algorithms, the algorithm assumes that the speed of the processors is character-
ized by speed functions rather than speed constants. Unlike the traditional algo-
rithms, it does not assume the speed functions to be given. Instead, it uses a 
computational kernel to estimate the speed functions of the processors for dif-
ferent problem sizes during its execution. This makes the algorithm distributed 
as its execution involves all the heterogeneous processors. The algorithm does 
not construct the complete speed function for each processor but rather builds 
and uses their partial estimates sufficient for optimal data distribution with a 
given accuracy. The low execution cost of this algorithm makes it ideal for em-
ployment in self-adaptable applications. Experiments with a parallel matrix 
multiplication application employing this algorithm are performed on a local 
heterogeneous computational cluster. The results show that the algorithm con-
verges very fast and that its execution time is several orders of magnitude less 
than the total execution time of the application. 

Keywords: distributed algorithms, data partitioning algorithms, functional per-
formance models, heterogeneous platforms. 

1   Introduction 

Conventional data partitioning algorithms for parallel computing on heterogeneous 
processors [1-2] are based on a performance model, which represents the speed of a 
processor by a constant positive number, and computations are distributed amongst 
the processors such that their volume is proportional to this speed of the processor. 
The constant characterizing the performance of the processor is typically its relative 
speed demonstrated during the execution of a serial benchmark code solving locally 
the core computational task of some given size.  

The traditional constant performance models (CPMs) proved to be accurate enough 
for heterogeneous distributed memory systems if partitioning of the problem results in 
a set of computational tasks that fit into the main memory of the assigned processors. 
But these models become less accurate in the presence of paging. The functional 
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Fig. 1. Optimal data distribution showing the geometric proportionality of the number of 
chunks to the speed of the processor 

performance model (FPM) of heterogeneous processors proposed and analyzed in [3] 
has proven to be more realistic than the CPMs because it integrates many important 
features of heterogeneous processors such as the processor heterogeneity, the hetero-
geneity of memory structure, and the effects of paging. The algorithms employing it 
therefore distribute the computations across the heterogeneous processors more accu-
rately than the algorithms employing the CPMs. Under this model, the speed of each 
processor is represented by a continuous function of the size of the problem. This 
model is application centric because, generally speaking, different applications will 
characterize the speed of the processor by different functions. 

The problem of distributing independent chunks of computations over a 
unidimensional arrangement of heterogeneous processors using this FPM has been 
studied in [3]. It can be formulated as follows: Given n independent chunks of 
computations, each of equal size (i.e., each requiring the same amount of work), how 
can we assign these chunks to p (p<n) physical processors P1, P2, ..., Pp with their 
respective full FPMs represented by speed functions s1(x), s2(x), ..., sp(x) so that the 
workload is best balanced? An algorithm solving this problem with a complexity of 
O(p×log2n) is also proposed in [3]. This and other similar algorithms, which relax the 
restriction of bounded heterogeneity of the processors [4] and which are not sensitive 
to the shape of speed functions [5], are based on the observation that the optimal data 
distribution points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on a straight line passing 
through the origin of the coordinate system and are the intersecting points of this line 
with the graphs of the speed functions of the processors. This is shown in Figure 1. 
These algorithms are used as building blocks in algorithms solving more complicated 
linear algebra kernels such as the dense factorizations [6].  

The cost of experimentally building the full FPM of a processor, i.e., the FPM for 
the full range of problem sizes, is very high. This is due to several reasons. To start 
with, the accuracy of the FPM depends on the number of experimental points used to 
build it. The larger the number, the more accurate the FPM is. However, there is a cost 
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associated with obtaining an experimental data point, which requires execution of a 
computational kernel for a specified problem size. This cost is especially high for prob-
lem sizes in the region of paging. Also, the number of experimental points required to 
build the full FPM increases remarkably as the number of parameters used to represent 
the problem size increases, as shown in the experimental results in this paper.  

The problem of minimization of the cost of experimentally building the full FPM 
of the processor has been studied recently proposing a relatively efficient sub-optimal 
solution [7]. However, even if an ideal optimal procedure becomes available to build 
approximations of the FPM of heterogeneous processors, the fact remains that the cost 
of building the full FPM is too high to forbid the use of data partitioning algorithms, 
employing the full FPM, in self-adaptable applications.  

The paper presents a new algorithm of data partitioning for parallel computing on 
heterogeneous processors. Like traditional functional partitioning algorithms, the algo-
rithm assumes that the speed of the processors is characterized by speed functions 
rather than speed constants. Unlike the traditional algorithms, it does not assume the 
speed functions to be given. Instead, it uses a computational kernel to estimate the 
speed functions of the processors for different problem sizes during its execution. This 
makes the algorithm distributed as its execution involves all the heterogeneous proces-
sors. The algorithm does not construct the complete speed function for each processor 
but rather builds and uses their partial estimates sufficient for optimal data distribution. 
The proposed algorithm does not return a partitioning perfectly balancing the load of 
the processors but a partitioning balancing their load with a given accuracy. 

Using experimental results for parallel matrix multiplication on a local heterogene-
ous computational cluster, we demonstrate that the execution time of the proposed 
distributed partitioning algorithm is several orders of magnitude less than the total 
execution time of the parallel application, thereby making it very suitable for em-
ployment in self-adaptable applications. 

The rest of the paper is organized as follows. In Section 2, we present the contribu-
tion of this paper, which is the distributed iterative partitioning algorithm. This is 
followed by experimental results on a local heterogeneous computing cluster in Sec-
tion 3. For the experiments, we use a parallel matrix multiplication application em-
ploying the data partitioning algorithm. Finally, we present numerical results demon-
strating the efficiency of the distributed iterative partitioning algorithm. 

2   Distributed Functional Partitioning Algorithm (DFPA) 

The data partitioning problem that we are trying to solve can be formulated as 
follows: 

• Given 

─ A set of n independent units of computation each of equal size (i.e., each 
requiring the same amount of work); 

─ A set of p (p<n) processors P1, P2, ..., Pp, whose speeds of processing x units, 
si=si(x), can be obtained by measuring the execution time, ti(x), of a computa-
tional kernel, si(x)=x/ti(x), 

─ ε, a required relative accuracy of the solution; 
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• Partition the set of computation units into p subsets so that  

 There is one-to-one mapping between the partitions and the proces-
sors, and 

 
1 ,
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≤

, where ni is the number of computation units 

allocated to processor Pi (1≤i≤p). 

Thus, the problem we study is to balance the load of heterogeneous processors with a 
given accuracy. The fundamental assumption, which makes efficient solution of this 
problem particularly difficult, is that the speeds of the processors are not known a 
priori. Therefore, if a partitioning algorithm needs the speed of processing of a given 
number of computation units by one or the other processor, it has to execute the 
corresponding number of units on this processor. Our solution to this problem is the 
following distributed data partitioning algorithm.    

Distributed Functional Partitioning Algorithm (DFPA): The inputs to the algorithm 
are  

• n, the number of computation units; 

• p (p<n) processors P1, P2, ..., Pp; 

• ε, the termination criterion.  

The output d is an integer array of size p, the i-th element of which is the number  
of computation units allocated to processor i. The algorithm can be summarized as 
follows: 

• Initialization: 

─ All the p processors execute n/p computation units in parallel; 

─ The execution times are gathered on processor P1, 
))/(,),/((),,( 11 pntpnttt pp …… ← ;  

─ If 
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ε
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 then the even distribution of computations solves 

the problem and the algorithm stops; 

─ Otherwise, processor P1 calculates the absolute speeds of the processors, 
si(n/p)=(n/p)/ti for pi ≤≤1 and builds the first approximation of their FPMs in 

the form of constant models, )/()( pnsxs ii = , as illustrated in Figure 2. 

• Iterating: At each step,  

─ Using the data partitioning algorithm [3], processor P1 calculates  a new distri-

bution of computation units, ),,( 1 pdd … , which will be optimal for the current 

approximations of the FPMs, and then sends a message to each processor Pi 
informing the latter of its new allocation of computation units, di ( pi ≤≤1 ); 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Steps of the distributed functional partitioning algorithm (DFPA) illustrated using four 
heterogeneous processors. The dotted curves are real-life speed functions. 
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─ Each processor Pi  then executes di computation units in parallel with the other 
processors, pi ≤≤1 ; 

─ The execution times are gathered on processor P1, 
))(,),((),,( 111 ppp dtdttt …… ← ; 

─ If ε≤⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≤≤

i

ji

pji t

tt
,1

max , then the current distribution of computation units, 

),,( 1 pdd … , solves the problem and the algorithm stops; 

─ Otherwise, processor P1 calculates the absolute speeds, which the processors 

demonstrated for this distribution of computation units, 
i

i
ii t

d
ds =)(  ( pi ≤≤1 ), 

and uses these newly obtained points of the FPMs of processors Pi, 

))(,( iii dsd , to build their more accurate piecewise linear approximations (as 

illustrated in Figure 2). Namely, let ( ) ( )
1{( , ( ))}j j m

i i i jd s d =  ( (1) ( )m
i id d< <… ) 

be the experimentally obtained points of ( )is x  used to build its current piece-

wise linear approximation, then 

o If (1)
i id d< , then the line segment 

(1) (1) (1)(0, ( )) ( , ( ))i i i i is d d s d→  of this approximation will be re-

placed by two connected line segments 

( )(0, ( )) ( , ( ))i i i i is d d s d→  and (1) (1)( , ( )) ( , ( ))i i i i i id s d d s d→ ; 

o If ( )m
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this approximation will be replaced by the line segment 
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─ Then, the algorithm proceeds to the next step.  

Proposition. Given the full FPMs of the processors P1, P2, ..., Pp satisfy the assump-
tions about their shape stated in [3], the DFPA algorithm always converges. 

Space limitations do not allow us to give the full formal proof of this proposition. In 
brief, its main points are as follows. First of all, by construction, the piecewise linear 
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approximations of the full FPMs used in the algorithm will satisfy the same assump-
tions about their shape as the full FPMs themselves. Therefore, at each iteration step, 
application of algorithm [3] to the set of approximate FPMs will be successful and 
return the optimal solution for these approximate FPMs. Second, each next iteration 
step of the algorithm results in more accurate approximation of the segments of the 
full FPMs that contain the points of the optimal solution. Therefore, after a number of 
iterations, the approximations of the full FPMs will become accurate enough in order 
algorithm [3] to return a solution sufficiently close to the optimal one. 

Figure 2 illustrates the operation of the DFPA algorithm using an example with 
four heterogeneous processors (P1,P2,P3,P4). 

3   Experimental Results 

We use a small heterogeneous local network of 16 different Linux processors (hcl01-
hcl16) for the experiments. The specifications of the network are available at the URL 
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit 
Ethernet with a switch enabling parallel communications between the computers. The 
software used is MPICH-1.2.5 and ATLAS [8], which provides an optimized BLAS 
library.  

Figure 3(a) shows the parallel matrix multiplication application. It implements 
matrix operation C=A×B, multiplying matrix A and matrix B, where A, B, and C are 
dense square matrices of size n×n matrix elements on a network of p heterogeneous 
processors. We use a 1D processor arrangement of size 3 for illustration purposes. 
Each element is a square matrix block of size b×b (the value of b used is 16). The 
matrices A and C must be horizontally sliced such that the height of the slice is 
 

 
(a) 

 
(b) 

Fig. 3. (a) Matrix operation C=A×B on a network of three heterogeneous processors. Matrices A 
and C are horizontally sliced such that the height of the slice (nb) is proportional to the speed of 
the processor. (b) The computational kernel (shown here for processor 2 for example) performs 
a matrix update of Ab of size nb×1 and Bb of size 1×n to give a dense matrix Cb of size nb×n. 
The matrix elements represent b×b matrix blocks. 
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proportional to the speed of the processor owning the slice. All the processors contain 
all the elements of matrix B. We assume that only one process is configured to 
execute on a processor. We purposely choose an application with no communications 
because the goal of the experiments is not to show how to multiply matrices in 
parallel but to demonstrate the practical speed of convergence of the distributed 
partitioning algorithm. The results will not differ significantly for more complicated 
algorithms involving communications. 

For this application, the core computational kernel performs a matrix update of a 
matrix Cb of size nb×n using Ab of size nb×1 and Bb of size 1×n as shown in Figure 
3(b). Each element is a square matrix block of size b×b. The size of the problem is 
represented by two parameters, nb and n. The total number of matrix elements stored 
on each processor will be (2×nb×n+n×n). We use a combined computation unit, which 
is made up of one addition and one multiplication, to express the volume of computa-
tion. If n is large enough, the total number of computation units needed to solve this 
problem will be approximately equal to nb×n (namely, multiplications of two b×b 
matrices). Therefore, the absolute speed of the processor exposed by the application 
when solving the problem of size (nb, n) can be calculated as nb×n divided by the 
execution time of the matrix update. This gives us a function, f: N2 → R+, mapping 
problem sizes to speeds of the processor. The FPM of the processor is obtained by 
continuous extension of function f: N2 → R+ to function g: R+

2 → R+ (f(n,m)=g(n,m) 
for any (n,m) from N2). Figure 4(a) depicts this function for one of the processors, 
hcl11, used in experiments. Figure 4(b) shows the relative speed of two processors, 
hcl09 and hcl02, calculated as the ratio of their absolute speeds. One can see that the 
relative speed varies significantly depending on the value of variables x and y (the 
variables represent nb and n).  

The heterogeneity of the network due to the heterogeneity of the processors is cal-
culated as the ratio of the absolute speed of the fastest processor to the absolute speed 
of the slowest processor. For example, consider the benchmark code of a local 
DGEMM update of two matrices 2560×16 and 16×2560, the absolute speeds of the 
processors hcl01-hcl16 in million flop/s performing this update are {7696, 5196, 
7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661, 14194, 11182, 14410, 
12008, 15257}. As one can see, hcl16 is the fastest processor and hcl02 is the slowest 
processor. The heterogeneity is therefore 3.  

We compare the efficiency of the DFPA-based matrix multiplication application 
with the application based on the Full-Functional-Model Partitioning Algorithm 
(FFMPA). The difference between these applications is that the FFMPA-based one 
uses pre-built full FPMs of the processors for partitioning the matrices. More specifi-
cally, it uses the piecewise linear approximation of the full FPMs obtained with the 
GBBP procedure [7], which employs the same computational kernel as the DFPA-
based application. Unlike the FFMPA-based application, the DFPA-based application 
does not need the FPMs of the processors as input. In all our experiments, the FFMPA 
returned the same data distribution as the DFPA. 

Figure 5 shows the execution times of the sequential application and the parallel 
applications employing the FFPMA and DFPA and solving the same matrix multipli-
cation problem. The sequential application uses optimized BLAS library (ATLAS) 
and is executed on the fastest processor (hcl09). The execution of the parallel matrix 
multiplication application consists of two parts. Firstly, all the processors execute the 
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(a) 

 
(b) 

Fig. 4. (a) The absolute speed of a processor ‘hcl11’ as a function of the size of the computa-
tional task of updating a dense x×y matrix. (b) The relative speed of two processors (‘hcl09’, 
‘hcl02’) calculated as the ratio of their absolute speeds. 

 

Fig. 5. Execution times of sequential and parallel applications with FFPMA and DFPA solving 
the same matrix multiplication problem 
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DFPA/FFPMA data partitioning algorithm to partition the matrices and then they 
perform the parallel matrix multiplication itself. For problem sizes (n>5120), the 
sequential application fails due to the problem size exceeding the memory limit of the 
processor. One can conclude that the parallel applications outperform the sequential 
application. 

Table 1. Execution times of the parallel matrix multiplication application employing FFPMA 
and DFPA 

Size of the 
matrix 

(n) 

Number of 
iterations of 

DFPA 

DFPA 
execution 
time (sec) 

Execution 
time using 
DFPA (sec) 

Execution 
time using 

FFPMA (sec) 

1024 2 0.06 0.2 0.2 
2048 2 0.09 2.2 1.9 
3072 2 0.3 9.9 8.5 
4096 5 2 28 25.3 
5120 5 3 53.3 50.5 
6144 5 3 84.4 80.7 
7168 5 4 137.7 132.4 
8192 5 5 204.3 199.7 
9216 5 7 295.3 287.6 

10240 5 11 405.9 393.3 

 
Table 1 shows the execution times of the parallel matrix multiplication applications 

employing the FFPMA and the DFPA. The second column shows the number of itera-
tions of DFPA. The third column shows the execution time of the DFPA. The fourth 
column shows the total execution time of the DFPA-based application. This includes 
the execution time of the DFPA. The fifth column shows the total execution time of 
the parallel application employing the FFPMA algorithm, which obviously does not 
include the time of construction of the FPMs of the processors. 

One can see that the execution times of the parallel applications employing the 
FFPMA and DFPA differ only marginally. The difference is the execution time of the 
DFPA algorithm shown in the third column of Table 1. Most of it is spent in the par-
tial estimation of the FPMs of the processors. It should be noted that the execution 
time of the parallel application employing the FFPMA does not take into considera-
tion the time taken to build the full FPMs of the processors.  

The execution time taken to build the full FPMs of the processors, which are used 
in the FFPMA-based application, is 425 seconds. The range of problem sizes, (nb, n), 
used for building them satisfy the inequalities, nb≤10240, n≤10240, and nb≤n. One can 
see that the execution time is significant compared to the DFPA execution times 
shown in the third column. The maximum number of experimental points used to 
build the full FPMs for this range is 60. This is compared to a maximum of 6 using 
DFPA (number of iterations plus one shown in column 2 of Table 1).  

Thus, we can conclude that the DFPA converges very fast and its execution time is 
several orders of magnitude less than the execution time of the application. It is also 
efficient in terms of the number of experimental points. 
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Abstract. This paper proposes the Makespan and Reliability Cost
Driven (MRCD) heuristic, a static scheduling strategy for heterogeneous
distributed systems that not only minimizes the makespan but also max-
imizes the reliability of the application. The scheduling decisions made
by MRCD are guided by a weighted function that considers both ob-
jectives simultaneously instead of prioritizing only one of the objectives.
This work also introduces a classification of the solutions produced by
weighted bi-objective schedulers to aid users to tune the weighting func-
tion in order to generate an appropriate solution in accordance with their
needs. In comparison with related work, MRCD produced schedules with
makespans that were significantly better then those produced by other
strategies at expense of an insignificant deterioration in reliability.

1 Introduction

Resources in large parallel and distributed systems may not be available for a
long period of time. Therefore, when executing an application on such systems
it is important to tackle reliability and fault-tolerance issues. Aiming an effi-
cient execution of parallel applications on distributed heterogeneous system, this
work specifies a schedule strategy that considers not only the minimization of
the running time or makespan, but also maximizes the reliability of the applica-
tion execution. The target application is represented by a directed acyclic graph
(DAG), whose vertices are the tasks and edges are dependencies between them.
A weighted bi-objective cost function that integrates both objectives guides the
decisions to schedule the tasks of the parallel application on heterogeneous sys-
tems susceptible to failures.

In the literature, there is a variety of works that deal with this problem, which
specifies in the cost function the two objectives in distinct ways. The work in [1]
is a real time system oriented scheduling algorithm which orders the tasks of a
parallel application by their deadlines. The cost function is a hierarchical one,
since for each task, the subset of processors that maximizes the reliability is iden-
tified, and then the processor from this subset that minimizes the earliest start
time is selected. As a consequence, the results favour the reliability rather than
the execution time of the application. The authors in [2] derived the importance of
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the product failure rate × task execution time for the case of scheduling indepen-
dent tasks onto processors and proposed an extension of list scheduling heuristics,
like HEFT [3], by taking into account reliability. In [4] a weighted bi-objective list
scheduling algorithm (BSA) is proposed. After sorting the tasks in non-increasing
order of their priority, the chosen processor is the one that minimizes a weighted
integrated cost function. The objectives makespan and reliability are normalized
by their maximum values and combined in the function. Nonetheless, [4] presents
the use of only three solutions: the one that minimizes only the makespan; the one
that weights equally both objectives; and the one that maximizes only the relia-
bility. It must be pointed out that there are also works which manipulate multi-
ple objective functions [5]. However, these approaches usually belong to a class of
heuristics which are out of the scope of this paper.

The Makespan and Reliability Cost Driven (MRCD) proposed here is a list
scheduling heuristic that takes into account the reliability and makespan based
on [1]. However, instead of considering both objectives in a hierarchical fashion,
the proposed cost function integrates both objectives simultaneously. The way
in which the strategy was designed allows that the maximization of the reliabil-
ity does not compromise the minimization of the makespan. The experimental
analysis shows that MRCD produced schedules with very efficient performance
when compared with other works from the literature. Besides, a classification of
the solutions generated by weighted bi-objective schedules is presented as a way
to aid the choice of a solution that better achieves the users’ needs.

2 Scheduling Model for Distributed Systems with Faults

In this work, the application model is based on the class of parallel applications
that can be represented by directed acyclic graphs (DAGs). A task graph is
denoted by G = (V, E, ε, ω), where: the set of vertices V represents tasks; E, the
precedence relation among them; ε(v) is the amount of work associated with task
v ∈ V ; and ω(u, v) is the weight associated with the edge (u, v) ∈ E, representing
the amount of data units transmitted from task u to v.

The architectural model specifies the main features of the target architecture.
Given the set P = {p0, p1, . . . , pm−1} of available heterogeneous processors, the
computational slowdown index csi(pj) is associated to each pj ∈ P , which is in-
versely proportional to the computational power of pj , as identified by [6]. The
communication delay index cdii,j estimates the latency cost associated with each
communication link (pi, pj). Therefore, the execution time of a task v on a proces-
sor pj is et(v, pj) = ε(v)× csi(pj). The communication time to send the amount
ω(u, v) of data between the adjacent tasks u and v allocated to distinct processors
pu and pv is given by ct(u, v) = ω(u, v) × cdi(pu, pv). Note that cdi(pu, pv) = 0
if pu = pv. Upon the definition of these costs, a schedule algorithm may need
to calculate the earliest time that a task v can start its execution on processor
pj , which is EST (v, pj) = maxu∈pred(v){EST (u, pu) + et(u, pu) + ct(u, v)} and
depends on the schedule of v’s predecessor tasks and the availability of the pro-
cessor. The earliest finish time of task v on processor pj is then EFT (v, pj) =
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EST (v, pj) + et(v, pj). A schedule Sch of a DAG G specifies, for each v ∈ V ,
the processor and the time in which v must be completed. The schedule length
or makespan of Sch is defined as M(Sch) = max∀v∈V {EFT (v, pv)}.

The reliability of a system is based on the probability in which resources of the
system execute tasks without any failure [1]. In this work, only processor failures
are considered, which are statistically independent and follow a Poisson Law with
a failure rate of FR(pj) ∀pj ∈ P [7]. This rate represents the number of processor
failures per unit of time that can occur. It is assumed here that the communica-
tion links between processors are reliable, based on the assumption that commu-
nication protocols are able to tolerate their failures [7].The task reliability cost
associated with the execution of v in pj is then RC(v, pj) = FR(pj) × et(v, pj),
which should be minimized. Given the set of tasks allocated to pj , Vpj ⊂ V ,
the processor reliability cost is then RCp(pj) =

∑
∀v∈Vpj

RC(v, pj). As a conse-
quence, the system reliability cost associated with the execution of G on P in
accordance with a schedule Sch is RCs(G, P, Sch) =

∑
∀pj∈P RCp(pj). Finally,

as in [1], the total reliability of the scheduled G in P is RT = e−RCs(G,P,Sch),
which is the probability that the application G can run successfully on the set P
under the schedule Sch during its execution. As a matter of fact, RT should be
maximized and also, by minimizing the task reliability cost RC(v, pj), the total
reliability RT becomes close to one.

3 A Weighted Bi-objective Scheduling Strategy

The MRCD scheduling algorithm follows the traditional list scheduling frame-
work: firstly, during the ordering phase, a priority is associated with the tasks.
Then, during the scheduling phase, each task with the highest priority is al-
located to the processor that minimizes a cost function. This work defines a
weighted bi-objective function to guide the scheduling process, such that not
only the makespan of the application is minimized but also the total reliabil-
ity of the application scheduled in P is maximized. The specification of proper
weights to the objectives can be however, troublesome. On an attempt to pro-
vide information to aid this specification, a metric is also generated by MRCD,
which is the average difference between the two objectives.

The bottom level blevel(v) is the priority assigned to the tasks in V as in [3].
During the scheduling phase, the algorithm seeks for the processor that opti-
mizes the cost function. For doing so, MRCD also implements the tasks inser-
tion procedure from [3]. Let v be the next task to be scheduled with the highest
blevel(v). The chosen processor pv is the one that minimizes the cost function
f(v, pv) = minpj∈P {(1 − w)EFT (v, pj) + wRC(v, pj)}. When w = 0, MRCD
becomes similar to HEFT [3], in which the objective is only the minimization of
the makespan. When w = 1, MRCD only considers the reliability.

A closer look to f(v, pj) can take one to note that the values of the ob-
jectives are not comparable and aggregating them is not straightforward. In
Therefore, it is necessary to normalize both objectives EFT (v, pj) and RC(v, pj)
for each task in V over the set of processors P . The normalization procedure
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transforms all the objectives so that they share the same minimum and max-
imum values 0 and 100. Then, the linear operator applied to the ith objective
is Oi

n = norm(0, 100, Omin
i , Omax

i ) = 100 × Oi−Omin
i

Omax
i −Omin

i
, where Omin

i and Omax
i

are the minimum and maximum values of the ith objective, respectively. In this
work, Oi

n can be either the normalized values EFTn(v, pj) or RCn(v, pj).

Algorithm 1. MRCD(G,P ,w)

1 Vord = 〈v0, v1, . . . , vn−1〉/blevel(vi) ≤ blevel(vi+1), i = 0, . . . , n − 2;
2 for i = 0, . . . , n − 1
3 F = ∞;
4 ∀pj ∈ P

5 Calculate EST (vi, pj) using taskInsertion(vi, pj);
6 EFT (vi, pj) = EST (vi, pj) + et(vi, pj);
7 RC(vi, pj) = FR(pj) × et(vi, pj);

8 EFTmin = minpj∈P {EFT (vi, pj)}; EFTmax =
maxpj∈P {EFT (vi, pj)};

9 RCmin = minpj∈P{RC(vi, pj)};
10 RCmax = maxpj∈P{RC(vi, pj)};
11 ∀pj ∈ P

12 EFTn(vi, pj) = norm(0, 100, EFTmin, EFTmax, EFT (vi, pj));

13 RCn(vi, pj) = norm(0, 100, EFTmin, RCmax, RC(vi, pj));
14 f(vi, pj) = (1 − w) × EFTn(vi, pj) + w × RCn(vi, pj);
15 if (f(vi, pj) < F )
16 F = f(vi, pj); pvi = pj ;

17 if (M(Sch) < EFT (vi, pvi)) M(Sch) = EFT (vi, pvi);
18 RCs = RCs + RC(vi, pvi);
19 Sch = Sch ∪ 〈vi, pvi , EST (vi, pvi)〉;
20 RT = e−RCs ; D(Sch) =

∑
vi∈V RCn(vi,pvi

)−EF Tn(vi,pvi
)

n
;

Algorithm 1 shows the steps of the MRCDAlgorithm for a givenG = (V, E, ε, ω)
and set of processors P . The ordering phase of MRCD generates the list Vord

of tasks in non-decreasing order of blevel(v) (line 1). The scheduling phase is
executed for each vi ∈ Vord from lines 2 to 19, where in lines 4 to 7, the ear-
liest finishing time EFT (vi, pj) and the minimal task reliability RC(vi, pj) are
calculated, for each pj ∈ P . In lines 8 to 10, both the minimal and maximal
values for EFT (vi, pj) and RC(vi, pj) over all pj ∈ P are collected and then
applied to the normalization procedure. The normalized values of EFTn(vi, pj)
and RCn(vi, pj) are then applied to the cost function f(vi, pj) where the pro-
cessor which minimizes it is identified (lines 15 and 16). MRCD generates the
final schedule Sch, its makespan M(Sch) and the total reliability cost RT , as
seen in lines 17, 19 and 20, respectively. Furthermore, with the normalized
values EFTn(vi, pvi) and RCn(vi, pvi), for each vi in its best processor pvi , their



106 I.M. Sardiña, C. Boeres, and L.M. de A. Drummond

difference portrays the imbalance degree between both objectives. The average
difference or imbalance degree between the objectives D(Sch) of the resulting

schedule Sch is given by D(Sch) =
∑

vi∈V RCn(vi,pvi
)−EFTn(vi,pvi

)
n , as seen in

line 20. The sign of D(Sch) shows which objective most contributed to the spec-
ification of the produced schedule. If negative, the reliability cost contributed
more, otherwise, the makespan dominates. In this way, if its module |D(Sch)|
is close to zero, the imbalance degree is practically negligible and an equally
contribution of the objectives are held.

3.1 A Classification of the Weights Applied to the Cost Function

When many and probably conflicting objectives are optimized simultaneously,
there is no longer a single optimal solution but rather a whole set of possible
solutions of equivalent quality. In the problem tackled in this work, the two
objectives might be conflicting: while a processor can finish the execution of an
application task quickly, a high failure rate can be assigned to it depending on
the reliability model. Therefore, there is no single optimum solution to be found
and actually a variety of solutions can be optimal in some sense. This work
provides the users the option to assess the trade-offs between the objectives
with additional information about this set of solutions.

Let S be the set of all feasible solutions for the bi-objective problem tackled
here. Let Sk = 〈Schk,M(Schk), RT (Schk), D(Schk)〉 be one solution of the bi-
objective problem and the associated additional information to be analysed. A
solution Sk ∈ S dominates another solution Sq if the following conditions are sat-
isfied: (i) Sq is not better than Sk in both objectives, i.e. M(Schk) ≤ M(Schq)
and RT (Schk) ≥ RT (Schq); (ii) Sk is absolutelly better than Sq in at least one
of the objectives, i.e. M(Schk) < M(Schq) or RT (Schk) > RT (Schq). The solu-
tion Sk is dominant and Sq is dominated by Sk. If Sk does not dominate Sq and
vice-versa, the solutions are incomparable [5]. A variety of feasible solutions can
be produced by MRCD for the same input DAG G and target system if different
w values are given to the algorithm. Let W be the set of values associated with
w of the cost function in MRCD. In accordance with the dominance condition
(i) and (ii) described above, the set of all solution in S that are dominants and
incomparable is denoted as S′ (non-dominated). Note that the solutions in S′

are not dominated by any other solution in S. The concept of dominance can
be sometimes too weak for applications, in cases where one objective can be im-
proved significantly at a cost of a small deterioration of the other. This concept
does not necessarily tell which solutions to chose, but rather which solutions to
avoid [5].

A classification is then proposed, having the knowledge of the solutions in S′.
The solution Se ∈ S′ that offers an equilibrium between the objectives are those
with the smallest value of |D(Sche|. The set of solutions SRT is compounded of
those Sk ∈ S′ with the smallest D(Schk), and consequently are the ones with
the highest total reliability RT (Schk). On the other hand, the set of solutions
denoted by SM contains the Sk ∈ S′ with the highest D(Schk), i.e. are those
with the minimum makespan M(Schk).
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4 Experimental Results

The proposed scheduling algorithm MRCD was compared with other schedul-
ing strategies from the literature, which were divided into two classes: the first
one produces a unique solution, denoted as Class 1, encompasses the heuristics
HEFT [3], RCDMod (based on [1] ) and RHEFT (based on [2]); and Class 2, con-
taining BSAMod based on [4] that can also produce several solutions. BSAMod
emplows a cost function that although seems similar to MRCD produces differ-
ent results, added to the fact that a distinct normalization procedure is used.
In order to have a fair comparison with MRCD, some of these heuristics were
implemented with small changes, as will be describe next.

In Class 1, since HEFT minimizes only the makespan of the resulting
schedule, to fairly compare with MRCD, this work derived RT based on the
final schedule produced by HEFT. The work [1] also gives a solution for the bi-
objective scheduling problem, but uses a hierarchical cost function. Differently
from the original proposal, RCDMod was implemented with no time
constraints (deadlines) and the employed cost function used the tasks comple-
tion times instead of their start times. Finally, RHEFT implements the list
scheduling approach of HEFT, but considers both objectives in its cost func-
tion as the multiplication of the execution time and failure rate as in [2]. In
Class 2, BSAMod also tackles the bi-objective problem by using the function

f(v, p) =

√
w
(

EFT (v,pj)
maxp∈P {EFT (v,p)}

)2
+ (1 − w)

(
RC(v,pj)

maxp∈P {RC(v,p)}
)2

, as proposed

in [4], but sorts tasks by blevels(v) and executes the task insertion procedure.
All heuristics were executed over synthetic applications represented by three

classes of DAGs: one that represents the Gaussian Elimination, denoted by Gn;
the diamond DAG Din, which represents, for example, matrix multiplication;
and random generated DAGs Rn, graphs with irregular topologies. In all the
cases, n denotes the number of tasks of the DAG. In all graphs, a unit cost was
associated with the communications between tasks. The same does not hold for
the tasks weights. In Gn, each v ∈ V has a distinct computation weight, while
in both Rn and Din, the weight ε(v) = 50.

The simulated distributed system was composed of m processors divided into
three groups, denoted as P0, P1 and P2, each one with m/3 processors. The
processor failure rate, FR(pi), was uniformly generated in [10−5, 3.3 × 10−5],
∀pi ∈ P0; [3.4 × 10−5, 6.6 × 10−5], for pi ∈ P1; [6.7 × 10−5, 10−4], for pi ∈ P2,
as proposed in [1]. Concerning the computational slowdown index, the adopted
values were csi(pi) = 73, for pi ∈ P0; csi(pi) = 53, for pi ∈ P1; csi(pi) = 33, for
pi ∈ P2, which were obtained from [6]. The failure rate is per second and the
makespan value in seconds.

An illustration of the proposed scheduling algorithm and the classification of
w values given by MRCD considering G702 and the architectural scenario with
24 processors is shown in Table 1 where: w is the weight applied to the cost
function f(v, pj); M is the makespan of the produced schedule; RT is the total
reliability; and the associated average difference D. The columns in bold show
S′, the non-dominated solutions. Among them, three solutions are particularly
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interesting under the classification proposed in Section 3.1: SM, SRT and Se

for w = 0.4, w = 0.9 and w = 0.7, respectively. From the definition of D and
the normalized values RCn and EFTn in Algorithm 1, for high values of w and
consequently, low values of D, MRCD tends to maximize reliability, otherwise,
the makespan is minimized.

Table 1. Solution provided by MRCD for G702

w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M 902.8 902.8 902.8 902.8 906.3 1266.4 3463.3 7072.2 12687.4
RT 0.44084 0.44768 0.45400 0.45539 0.46016 0.48362 0.53184 0.59064 0.62604
D 49.1 45.7 42.8 41.0 38.7 27.8 -4.8 -36.3 -57.3

4.1 Comparing MRCD with Other Heuristics

The first set of experiments compares the results of MRCD with the heuristics in
Class 1. Table 2 presents the pair makespan and the system reliability (M, RT ),
and also average difference D for each DAG, considering the three following
comparisons. The first comparison C1 gives the results of HEFT and MRCD,
C2 shows the results of RCDMod and MRCD, and C3 compares RHEFT and
MRCD. In each case, the MRCD solutions selected were: SM from S′ in C1 for
a fair comparison with HEFT; SRT ∈ S′ in the case of C2, since RCDMod gives
higher priority to the processors that maximizes reliability; and the dominant
solution or in case of MRCD solutions do not dominate the RHEFT solution,
the MRCD solution closest to the RHEFT one is shown. A solution Si is the
closest one to another solution Sj if it presents the smallest Euclidian distance
from it considering normalized values.

It can be observed that with the increase of n, the makespan also grows and
the reliability decreases. As the number of tasks executed on a fixed number
of processors grows, the processors loads also increase and consequently their
reliability costs. Table 2 also shows that the solutions in C1 have worse reliabil-
ity than the results in C2 and C3, but the makespan are amazingly smaller. It
happened because in the employed environment, the fastest processors were also
the most susceptible to failures, and the chosen values for w gave priority to the
minimization of the makespan. Most interestingly, MRCD presented better solu-
tions than HEFT in all graphs. By choosing MRCD solutions with the greatest
D values (the SM solution), the algorithm showed to be capable of producing
solutions with makespans as good as (or better than) those of HEFT, but with
better reliability.

In C2, RCDMod presented slightly better reliability than the results SRT for
each DAG in Table 2. Remark that such heuristic employs a hierarchical cost
function that prioritizes the reliability only, and although the MRCD solutions
also consider reliability, the makespan was not neglected since the cost function
integrates both objectives. However, it is important to note that the makespan of
the RCDMod are almost the double of those presented by MRCD. Finally in C3,
MRCD solutions dominated RHEFT solutions in many graphs. RHEFT employs
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Table 2. Results for Gauss, Random and Diamond DAGs on m = 24 processors in
Class 1

C1 C2 C3
DAGN HEFT MRCD D RCDMod MRCD D RHEFT MRCD D
G152 (190.0, (190.0, 30.3 (2406.0, (1283.3, -58.7 (694.9, (449.4, -13.2

0.92071) 0.93294) 0.95761) 0.95546) 0.94573) 0.94287)
G252 (318.7, (318.7, 31.0 (5201.9, (2715.6, -58.1 (1309.6, (856.3, -7.6

0.83511) 0.85879) 0.91061) 0.90609) 0.88130) 0.87844)
G377 (480.4, (480.4, 32.7 (9603.8, (4981.5, -57.2 (2204.6, (1494.8, -6.3

0.71847) 0.75140) 0.84124) 0.83350) 0.78693) 0.78560)
G527 (675.1, (675.1, 35.6 (15976.7, (8211.0, -57.1 (3560.9, (2273.0, -4.4

0.58537) 0.61228) 0.75007) 0.73851) 0.66798) 0.66578)
G702 (902.8, (902.8, 41.0 (24685.6, (12687.4, -57.3 (5258.9, (3463.3, -4.8

0.44064) 0.45539) 0.64124) 0.62604) 0.52865) 0.53184)

R80 (330.0, (330.0, 27.7 (5840.0, (3066.0, -58.7 (1022.0, (949.0, -13.2
0.82648) 0.84159) 0.90021) 0.89523) 0.85271) 0.86478)

R98 (330.0, (330.0, 29.9 (7154.0, (3650.0, -58.7 (1460.0, (1314.0, -10.6
0.79053) 0.80765) 0.87917) 0.87303) 0.83060) 0.84035)

R152 (396.0, (396.0, 42.0 (11096.0, (5694.0, -56.9 (1679.0, (1533.0, -5.95
0.69599) 0.69907) 0.81895) 0.81015) 0.73349) 0.75338)

R256 (528.01, (528.00, 38.2 (18688.0, (10512.0, -60.0 (1606.01, (1314.0, 12.8
0.54215) 0.54215) 0.71434) 0.70276) 0.56659) 0.58304)

R364 (759.0, (759.0, 49.2 (26572.0, (13505.0, -54.5 (2993.0, (1825.0, 15.3
0.41596) 0.41804) 0.61983) 0.60385) 0.45685) 0.46744)

Di81 (580.9, (580.9, 43.6 (5913.0, (3066.0, -59.7 (3285.0, (3066.0, -59.7
0.83000) 0.83218) 0.89903) 0.89393) 0.89249) 0.89393)

Di100 (660.0, (660.0, 43.9 (7300.0, (3723.0, -60.5 (4599.0, (3723.0, -60.5
0.79495) 0.79665) 0.87686) 0.87061) 0.87214) 0.87061)

Di144 (825.0, (825.0, 44.7 (10512.0, (5329.0, -61.0 (6935.0, (5329.0 -61.0
0.71535) 0.71903) 0.82760) 0.81907) 0.82170) 0.81907)

Di256 (1155.0, (1155.0, 46.6 (18688.0, (9417.0, -62.5 (12994.0, (9417.0, -62.5
0.54076) 0.54940) 0.71434) 0.70122) 0.70626) 0.70122)

Di361 (1452.0, (1452.0, 49.5 (26353.0, (13286.0, -62.7 (19126.0, (13286.0, -62.7
0.41585) 0.42095) 0.62228) 0.60623) 0.61335) 0.60623)

a cost function that also integrates both objectives but in a distinct manner than
from MRCD. In C3, MRCD presented makespans which are almost half of those
produced by RHEFT, while the reliabilities were very close.

The second set of experiments was performed with a varying number of proces-
sors, on the DAGs: G1034, R546 and Di529, as seen in Table 3. With an increasing
number of processors, the makespan diminishes while reliability increases, since
the scheduling strategies can allocate tasks on more appropriate processors con-
cerning failure rates and computational slowdown indexes. In relation with the
comparisons C1, C2 and C3, the same behaviour previously described is also
detected.

9 The next sets of experiments were performed considering BSAMod of Class
2. The set S was generated by executing both MRCD and BSAMod with W =
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} for 24 processors, initially. A varying
number of tasks and processors were also considered in these experiments. Ta-
ble 4 shows the percentage difference of both makespan and reliability for each
w value. The line M presents the percentage improvement on the makespan pro-
duced by MRCD over BSAMod and in line RT , the percentage improvements on
the reliability of BSAMod over MRCD. Note that an outstanding improvement
on the makespan is produced by MRCD while the reliability remains almost the
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Table 3. Comparison in Class 1 for G1034, R546 and Di529 with a varying number m
of processors

C1 C2 C3
DAGN m HEFT MRCD D RCDMod MRCD D RHEFT MRCD D
G1034 24 (1504.1, (1499.8, 41.3 (44389.8, (22758.4, -55.8 (8743.9, (5309.0, 2.1

0.86253) 0.86628) 0.92320 0.91922) 0.88970) 0.89017)
45 (1335.8, (1335.8, 35.2 (44389.8, (23805.3, -51.5 (9291.4, (4623.8, -11.0

0.84661) 0.88030) 0.93558) 0.92982) 0.91737) 0.91816)
66 (1335.8, (1335.8, 31.5 (22229.9, (9640.3, -49.8 (5673.5, (4940.6, -29.3

0.85161) 0.89391) 0.95234) 0.94698) 0.93053) 0.93929)
87 (1335.8, (1335.8, 28.4 (22229.9, (7797.8, -54.9 (4885.1, (4137.6, -25.5

0.84610) 0.90048) 0.95234) 0.94846) 0.93406) 0.93877)
108 (1335.8, (1335.8, 28.4 (44389.8, (11617.2, -54.4 (6556.8, (4108.4, -15.6

0.84508) 0.90251) 0.95234) 0.94738) 0.93440) 0.93349)

R546 24 (1122.0, (1122.0, 36.4 (39858.0, (20513.0, 54.8 (4453.0, (2628.0, 16.5
0.87705) 0.87737) 0.93076) 0.92717) 0.88868) 0.89193)

45 (629.0, (627.0, 57.7 (39858.0, (20805.0, -49.8 (2920.0, (2263.0, 1.44
0.87248) 0.87358) 0.94196) 0.93659) 0.89700) 0.90978)

66 (627.0, (627.0, 46.5 (19929.0, (8541.0, -51.3 (2847.0, (1533.0, 5.8
0.87567) 0.88199) 0.95710) 0.95214) 0.90954) 0.91425)

87 (627.0, (627.0, 49.3 (19929.0, (6935.0, -56.0 (2409.0, (1347.0, 2.91
0.87032) 0.88323) 0.95710) 0.95350) 0.91396) 0.91838)

108 (627.0, (627.0, 39.7 (39858.0, (10804.0, -47.2 (2628.0, (1274.0, 7.3
0.86827) 0.89088) 0.95710) 0.95271) 0.91306) 0.91814)

Di529 24 (1881.0, (1881.0, 51.2 (38617.0, (19418.0, -63.2 (29492.0, (19418.0, -63.2
0.87795) 0.87919) 0.93284) 0.92927) 0.93114) 0.92927)

45 (1571.1, (1571.1, 66.7 (38617.0, (20367.0, -52.1 (31828.0, (20367.0, -52.1
0.86558) 0.87024) 0.94371) 0.93856) 0.94131) 0.93856)

66 (1505.1, (1505.2, 65.3 (19418.0, (8833.0, -54.6 (16133.0, (8833.0, -54.6
0.86760) 0.87470) 0.95841) 0.95399) 0.95778) 0.95399)

87 (1485.1, (1485.2, 69.7 (19418.0, (7081.0, -59.6 (13067.0, 7081.0, -59.6
0.86033) 0.87114) 0.95841) 0.95513) 0.95719) 0.95513)

108 (1485.1, (1485.2, 66.1 (38617.0, (10293.0, -57.8 (22630.0, (10293.0, -57.8
0.86340) 0.87542) 0.95841) 0.95412) 0.95688) 0.95412)

same as BSAMod. A set of similar experiments was carried out considering a
varying number of processors, for the DAGs G1034, R546 and Di529. The main
conclusion is that the improvements on the makespan provided by MRCD were
significant at a cost of a small deterioration of the reliability for any number of
processors, as can be seen in Table 5.

Table 4. Comparison between BSAMod and MRCD for G702

DAG 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Average
M(%) 0.00 18.50 49.00 75.00 106.00 142.00 113.00 10.00 17.00 13.00 0.00 49.4

RT (%) 0.00 2.80 3.90 5.60 7.80 8.20 5.20 -0.80 0.30 0.20 0.00 3.01

Finally, comparing all the solutions generated by MRCD with BSAMod for
the values in W for G152, G702, Di81, Di361 on 24 processors, it could be observed
that all MRCD solutions were dominant or incomparable. In the case of R80 and
R364, in only one case MRCD was dominated by BSAMod. In summary, one
can conclude the benefits of applying the implemented list scheduling algorithm
together with the cost function f(v, pv) in MRCD. Actually, it was observed that,
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Table 5. Comparison between BSAMod and MRCD for a varying number of processors

G1034 R546 Di529
m 24 87 213 24 87 213 24 87 213

Avg. M(%) 47.2 41.1 41.1 -3.34 5.55 8.25 105 71.5 68.3
Avg. RT (%) 0.61 1.41 1.28 -0.13 2.04 0.52 1.23 3.08 2.79

since the normalization procedure of BSAmod only divides by the maximum
value of the given objective, it leaded to poor choices.

5 Concluding Remarks

This work proposes a weighted cost function and a classification of the solutions
provided by MRCD. An experimental analysis shows that MRCD can find effi-
cient solutions when compared with the other heuristics under evaluation. The
comparison with HEFT shows the importance of using a bi-objective function
that considers both minimization of the makespan and maximization of the re-
liability. From the evaluation of RCDMod and MRCD, one can conclude the
importance of using an integrated bi-objective function, while the importance
of the weights and the cost function provided by MRCD are shown when com-
paring with RHEFT. Finally, when considering BSA, which is also a weighted
bi-objective scheduling heuristics, MRCD provides outstanding improvements on
the makespan while keeping similar reliability results. As future work, MRCD
will be used in conjunction with a fault tolerance approach that is primary-
backup based, with the objective to recover real MPI applications from faults
and execute them efficiently on distributed heterogeneous systems.

References

1. Qin, X., Jiang, H.: A novel fault-tolerant scheduling algorithm for precedence
constrained tasks in real-time heterogeneous systems. Parallel Computing 32(5),
331–356 (2006)

2. Dongarra, J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems. In: Proc. 19th
Annual ACM Symp. on Parallelism in Algorithms and Architectures (SPAA ’07).
ACM Press, New York (2007)

3. Topcuouglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3),
260–274 (2002)

4. Hakem, M., Butelle, F.: Reliability and scheduling on systems subject to failures.
In: Proc. of the Int. Conf.e on Parallel Processing (ICPP), p. 38 (2007)

5. Gal, T., Hanne, T., Stewart, T. (eds.): Multicriteria Decision Making: Advances
in MCDM Models, Algorithms, Theory, and Applications. Kluwer Academic,
Dordrecht (1999)

6. Nascimento, A.P., Sena, A.C., Boeres, C., Rebello, V.E.F.: Distributed and dynamic
self-scheduling of parallel MPI grid applications. Concurrency and Computation:
Practice and Experience 19(14), 1955–1974 (2007)

7. Girault, A., Saule, 1., Trystram, D.: Reliability versus performance for critical ap-
plications. J. Parallel and Distrib. Computing 69(3), 326–336 (2009)



H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 112–121, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Two-Dimensional Matrix Partitioning for  
Parallel Computing on Heterogeneous  
Processors Based on Their Functional  

Performance Models 

Alexey Lastovetsky and Ravi Reddy 

School of Computer Science and Informatics, University College Dublin,  
Belfield Dublin 4, Ireland 

{Alexey.Lastovetsky,Manumachu.Reddy}@ucd.ie 

Abstract. The functional performance model (FPM) of heterogeneous proces-
sors has proven to be more realistic than the traditional models because it  
integrates many important features of heterogeneous processors such as the 
processor heterogeneity, the heterogeneity of memory structure, and the effects 
of paging. Optimal 1D matrix partitioning algorithms employing FPMs of het-
erogeneous processors are already being used in solving complicated linear al-
gebra kernel such as dense factorizations. However, 2D matrix partitioning 
algorithms for parallel computing on heterogeneous processors based on their 
FPMs are unavailable. In this paper, we address this deficiency by presenting a 
novel iterative algorithm for partitioning a dense matrix over a 2D grid of het-
erogeneous processors and employing their 2D FPMs. Experiments with a par-
allel matrix multiplication application on a local heterogeneous computational 
cluster demonstrate the efficiency of this algorithm.  

Keywords: data partitioning algorithms, functional performance models, het-
erogeneous processors, parallel matrix multiplication. 

1   Introduction 

Traditional data partitioning algorithms for parallel computing on heterogeneous 
processors [1-3] are based on a performance model, which represents the speed of a 
processor by a constant positive number and computations are distributed amongst the 
processors such that their volume is proportional to this speed of the processor. The 
number characterizing the performance of the processor is typically its relative speed 
demonstrated during the execution of a serial benchmark code solving locally the core 
computational task of some given size.  

The traditional constant performance models (CPMs) proved to be accurate enough 
for heterogeneous distributed memory systems if partitioning of the problem results in 
a set of computational tasks that fit into the main memory of the assigned processor. 
But these models become less accurate in the presence of paging. The functional  
performance model (FPM) of heterogeneous processors proposed and analysed in [3] 
has proven to be more realistic than the CPMs because it integrates many important 
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Fig. 1. Optimal data distribution showing the geometric proportionality of the number of 
chunks to the speed of the processor 

features of heterogeneous processors such as the processor heterogeneity, the hetero-
geneity of memory structure, and the effects of paging. The algorithms employing it 
therefore distribute the computations across the heterogeneous processors more accu-
rately than the algorithms employing the CPMs. Under this model, the speed of each 
processor is represented by a continuous function of the size of the problem. This 
model is application centric because, generally speaking, different applications will 
characterize the speed of the processor by different functions.  

The problem of distributing independent chunks of computations over a one-
dimensional arrangement of heterogeneous processors using this FPM has been stud-
ied in [4]. It can be formulated as follows: Given n independent chunks of 
computations, each of equal size (i.e., each requiring the same amount of work), how 
can we assign these chunks to p (p<n) physical processors P1, P2, ..., Pp with their 
respective full FPMs represented by speed functions s1(x), s2(x), ..., sp(x) so that the 
workload is best balanced? An algorithm solving it with a complexity of O(p×log2n) 
is also presented. This and other similar algorithms, which relax the restriction of 
bounded heterogeneity of the processors [5] and which are not sensitive to the shape 
of speed functions [6], are based on the observation that the optimal data distribution 
points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on a straight line passing through the 
origin of the coordinate system and are the intersecting points of this line with the 
graphs of the speed functions of the processors. This is shown in Figure 1. These 
algorithms are used as building blocks in algorithms solving more complicated linear 
algebra kernel such as the dense factorizations [7].  

However, 2D matrix partitioning algorithms for parallel computing on 
heterogeneous processors and employing their FPMs are unavailable. We address this 
deficiency in this paper by presenting a novel iterative algorithm of optimal 2D data 
partitioning for parallel computing on a 2D grid of heterogeneous processors and 
employing their 2D FPMs. The algorithm assumes the 2D FPMs are given. Using 
experimental results with parallel matrix multiplication applications on a local hetero-
geneous computational cluster, we demonstrate the efficiency of this algorithm. 
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The rest of the paper is organized as follows. In Section 2, we present the contribu-
tion of this paper, which is the data partitioning algorithm. This is followed by ex-
perimental results on a local heterogeneous computing cluster in Section 3. For the 
experiments, we use parallel matrix multiplication applications demonstrating the 
efficiency of the algorithm. 

2   Data Partitioning Algorithm 

The data partitioning problem that we are trying to solve can be formulated as 
follows: 

• Given 

─ The problem size represented by a set of two parameters, (m,n), i.e., m×n inde-
pendent chunks of computations each of equal size (i.e., each requiring the same 
amount of work). The problem size characterizes the amount and layout of data 
in two dimensions, for example, a dense matrix of size m×n; 

─ (p,q), the dimensions representing the 2D processor grid of size p×q, Pij, 
[1, ], [1, ]i p j q∈ ∈  

─ The FPMs of the processors, S={sij(x,y), [1, ], [1, ]i p j q∈ ∈ . The execution 

time t to execute a problem size (x,y) on a processor i can be calculated using 
the formula (x×y)/si(x,y); 

─ ε, the termination criterion, which represents the required relative accuracy of 
the solution. 

• Assign each processor, Pij, a block of rij rows and cij columns satisfying the condi-

tions, [ ]qjmr
p

i ij ,1 ,
1

∈∀=∑ =
 and [ ]pinc

q

j ij ,1 ,
1

∈∀=∑ =
, meaning that it is re-

sponsible for computing rij×cij computational chunks, such that  

─ The rectangular partitions, rij×cij form a two-dimensional p×q arrangement, and 
─ The maximum relative difference (MRD) between execution times on the proc-

essors is less than or equal to ε, i.e., MRD≤ε. 

Data Partitioning Algorithm (DPA-FPM-2D): The inputs to the algorithm are  

• The problem size represented by a set of two parameters, (m,n); 
• (p,q), the dimensions representing the 2D processor grid of size p×q, Pij, 

( [1, ], [1, ]i p j q∈ ∈ ); 

• The FPMs of the processors, S={sij(x,y)}; 
• The termination criterion, ε. 

The outputs r and c are integer arrays of size p×q. The (i,j)-th element of r is the 
number of rows allocated to processor Pij and the (i,j)-th element of c is the number of 
columns allocated to processor Pij. The algorithm can be summarized as follows: 
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• Initialization: 

─ The execution times to execute the problem size, (m/p, n/q), on all the proces-
sors, Pij ( [1, ], [1, ]i p j q∈ ∈ ), are calculated using the formula 

( ) ( )1 1 ( , )ij ij
m n m nt sp q p q

⎛ ⎞= ×⎜ ⎟
⎝ ⎠

. If MRD≤ε, the algorithm terminates. 

The optimal distribution is rij=m/p, cij=n/q; 
─ Otherwise, the algorithm proceeds to the next step, for which the inputs are the 

single-number speeds, ( )1 1 1,ij ij ijs r c  where p
mrij =1 , q

ncij =1 . 

• Iteration: At step k+1,  

─ The procedure, HCOL(m, n, p, q, s) illustrated in Figure 2, is invoked to deter-
mine the column-based data distribution, which is optimal for the single-number 

speeds, ( ),k k k
ij ij ijs s r c= . The resulting data distribution is ( )1 1,k k

ij ijr c+ + ; 

─ The execution times, 1k
ijt + , are then calculated using the formula 

( )1 1 1 1 1 1( , )k k k k k k
ij ij ij ij ij ijt r c s r c+ + + + + += × . If MRD≤ε, the algorithm terminates. 

The optimal distribution is 1 1( , )k k
ij ijr c+ + . If MRD>ε, the algorithm proceeds to 

the next step; 
─ The MRD in each processor column is checked. For each of the processor col-

umns where MRD>ε, the algorithm executes the procedure, HSPF(m, c, p, S), 
which returns the optimal distribution of m independent chunks over p hetero-
geneous processors Pi of respective speed functions S={sij(x,c)} where c is a 
constant. Here c is the size of the column block, which is the same for all the 
processors in a processor column. For the sake of simplicity, let us assume the 

existence of one such column x. The inputs to the procedure are then m, 1
1

+k
xc , p, 

1
1 1={ ( , )}k p

i x iS s x c +
= . The resulting data distribution is ( ) [ ]pir k

ix ,1,1 ∈∀+ . The  

algorithm then proceeds to the next iteration, for which the inputs from this 

processor column are the speeds, [ ]picrs k
x

k
ix

k
ix ,1),,( 1

1
11 ∈∀+++ . For the processor 

columns for which the MRD≤ε, the inputs are the speeds, 1 1 1( , )k k k
ij ij ijs r c+ + + . 

HCOL: This procedure invokes the data partitioning algorithm [1,3], which determines 
the optimal 2D column-based partitioning of a dense matrix of size m×n on a 2D het-
erogeneous processor grid of size p×q. The matrix is partitioned into uneven rectangles 
so that they are arranged into a 2D grid of size p×q and the area of a rectangle is pro-
portional to the speed of the processor owning it. The inputs to the algorithm are 

• The dense matrix of size m×n; 
• (p,q), the dimensions representing the 2D processor grid of size p×q, Pij, 

[1, ], [1, ]i p j q∈ ∈ ; 

• The single number speeds of the processors, sij. 
• The output is the heights and the widths of the rectangles, (rij,cij).  
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Fig. 2. Example of two-step distribution of a 6×6 square over a 3×3 processor grid. The relative 
speed of processors is given by {0.11, 0.25, 0.05, 0.17, 0.09, 0.08, 0.05, 0.17, 0.03}. (a) At the 
first step, the 6×6 square is distributed in a one-dimensional block fashion over processors 
columns of the 3×3 processor grid in proportion 0.33:0.51:0.16 ≈ 2:3:1. (b) At the second step, 
each vertical rectangle is distributed independently in a one-dimensional block fashion over 
processors of its column. The first rectangle is distributed in proportion 0.11:0.17:0.05 ≈ 2:3:1. 
The second one is distributed in proportion 0.25:0.09:0.17 ≈ 3:1:2. The third is distributed in 
proportion 0.05:0.08:0.03 ≈ 2:3:1. 

The algorithm can be summarized as follows: 

• First, the area m×n is partitioned into q vertical slices, so that the area of the j-th 

slice is proportional to ∑ =

p

i ijs
1

(see Figure 2(a)). It is supposed that blocks of the 

j-th slice will be assigned to processors of the j-th column in the p×q processor 
grid. Thus, at this step, the load between processor columns in the p×q processor 
grid is balanced, so that each processor column will store a vertical slice whose 
area is proportional to the total speed of its processors; 

• Then, each vertical slice is partitioned independently into p horizontal slices, so 
that the area of the i-th horizontal slice in the j-th vertical slice is proportional to sij 
(see Figure 2(b)). It is supposed that blocks of the i-th horizontal slice in the j-th 
vertical slice will be assigned to processor Pij. Thus, at this step, the load of proces-
sors within each processor column is balanced independently. 

HSPF: This procedure returns the optimal distribution of m independent chunks over 
p heterogeneous processors of P1, P2, ..., Pp of respective speeds S={s1(x,y), s2(x,y), ..., 
sp(x,y)} (HSPF stands for Heterogeneous Set Partitioning using Functional model of 
heterogeneous processors). It is composed of two steps: 

• Surfaces, zi=si(x,y), representing the absolute speeds of the processors are sectioned 
by the plane x=c (as shown on Figure 3 (a) for 3 surfaces). A set of p curves on this 
plane (as shown in Figure 3 (b)) will represent the absolute speeds of the proces-
sors against variable y given parameter x is fixed; 

• Apply the set partitioning algorithm [4] to this set of p curves to obtain an optimal 
distribution. 

The DPA-FPM-2D algorithm can be intuitively explained as follows. The goal of the 
algorithm is to determine points (rij,cij,sij(rij,cij)) in the (r,c,s) space such that  
(rij×cij)/sij(rij,cij)=C, where C is a constant (and also the execution time). Each iteration 
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Fig. 3. (a) Two surfaces representing the absolute speeds of 2 processors are sectioned by the 
planes x=c. (b) Curves on this plane represent the absolute speeds of the processors against 
variable y, given parameter x is fixed. 

step facilitates convergence to the optimal solution along the coordinate c and the 
execution of HSPF procedure within the processor columns provides the optimal 
solution along the coordinate r by fixing the value of the coordinate c. During the 
execution of the procedure HSPF, the coordinate ‘c’ of the (r,c,s) space is kept con-
stant and 1D FPMs of the processors, (rix,six(rix,c1x)), are built against parameter r in 
the (r,s) plane, taking one processor column x for instance. These are a set of p curves 
representing the absolute speeds of the p processors against parameter r given parame-
ter c is fixed. It can be visualized as the plane y=c intersecting the speed surfaces in 
the (r,c,s) space to give p curves in the (r,s) plane. The data partitioning algorithm [4] 
is then applied to this set of p curves to obtain optimal data distribution for these 1D 
FPMs so that rix/six(rix,c1x)=C1, [1, ]i p∈ ,where C1 is a constant. Since c1x is the same 
for all the processors in the column x, (rix×c1x)/six(rix,c1x)=C2 [1, ]i p∀ ∈ , where C2 is 
a constant too.  
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The speeds from the new data distribution are employed again to determine the 
new value of the coordinate c, which would be closer to the optimal solution, and 
the iteration procedure is repeated. Thus in this manner, the algorithm converges to 
the optimal solution. 

3   Experimental Results 

We use a small heterogeneous local network of 16 different Linux processors (hcl01-
hcl16) for the experiments. The specifications of the network are available at the URL 
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit 
Ethernet with a switch enabling parallel communications between the computers. The 
software used is MPICH-1.2.5.  

 

Fig. 4. One step of the algorithm of parallel matrix multiplication employing a 2D 
heterogeneous processor grid of size 3×3. Matrices A, B, and C are partitioned such that the 
area of the rectangle is proportional to the speed of the processor owning it. First, each b×b 
block of the pivot column ka•  of matrix A (shown with curly arrows) is broadcast horizontally, 
and each b×b block of the pivot row •kb  of matrix B (shown with curly arrows) is broadcast 
vertically. Then, each b×b block cij of matrix C is updated, cij=cij+aik×bkj. 

Figure 4 shows the parallel matrix multiplication application used for the experi-
ments. It implements the matrix operation C=A×B, multiplying matrix A and matrix 
B, where A, B, and C are dense matrices of size m×k, k×n, and m×n matrix elements 
respectively on a 2D heterogeneous processor grid of size p×q. We use dense square 
matrices and a 2D heterogeneous processor grid of size 3×3 for illustration purposes. 
Each matrix element is a square block of size b×b (value of b used in the experiments 
is 64). The heterogeneous parallel algorithm used to compute this matrix product is a 
modification of the ScaLAPACK outer-product algorithm [8]. We assume that only 
one process is configured to execute on a processor. The data partitioning problem is 
that the matrices A, B, and C must be divided into rectangles such that there is one-to-
one mapping between the rectangles and the processors, and the area of each 
rectangle is proportional to the speed of the processor owning it.  

For this application, the core computational kernel performs a matrix update of a 
matrix Cb of size mb×nb using Ab of size mb×1 and Bb of size 1×nb as shown in Figure 
5. The size of the problem is represented by two parameters, mb and nb. We use a 
combined computation unit, which is made up of one addition and one multiplication, 
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to express the volume of computation. Therefore, the total number of computation 
units (namely, multiplications of two b×b matrices) performed during the execution of 
the benchmark code will be approximately equal to mb×nb. Therefore, the absolute 
speed of the processor exposed by the application when solving the problem of size 
(mb,nb) can be calculated as mb×nb divided by the execution time of the matrix update. 
This gives us a function, f: N2 → R+, mapping problem sizes to speeds of the proces-
sor. The FPM of the processor is obtained by continuous extension of function f: N2 
→ R+ to function g: R+

2 → R+ (f(n,m)=g(n,m) for any (n,m) from N2). 

 

 

Fig. 5. The computational kernel (shown here for processor P12 for example) performs a matrix 
update of a dense matrix Cb of size mb×nb using Ab of size mb×1 and Bb of size 1×nb. The matrix 
elements represent b×b matrix blocks. 

The heterogeneity of the network due to the heterogeneity of the processors is cal-
culated as the ratio of the absolute speed of the fastest processor to the absolute speed 
of the slowest processor. For example, consider the benchmark code of a local 
DGEMM update of two matrices 2560×64 and 64×2560, the absolute speeds of the 
processors hcl01-hcl16 in million flop/s performing this update are {130, 258, 188, 
188, 188, 214, 125, 127, 157, 232, 147, 137, 157, 197, 194, 201}. As one can see, 
hcl02 is the fastest processor and hcl07 is the slowest processor. The heterogeneity is 
therefore 2. 

Figure 6 shows the execution times of the sequential application and three parallel 
applications solving the same matrix multiplication problem. The execution of the 
parallel applications consists of two parts. First, all the processors execute a data par-
titioning algorithm to partition the matrices and then they perform the parallel matrix 
multiplication itself.  

The first parallel application employs a data partitioning algorithm (DPA-CPM-
2D) that uses the CPMs of the processors [1,3]. The constant single number speeds of 
the processors are calculated from the execution of a local DGEMM update of two 
matrices of sizes, (m/p)×b and b×(n/q) respectively where (m,n) is the problem size, 
p=4, q=4, and b=64. The second parallel application employs a data partitioning algo-
rithm DPA-FPM-1D that optimally partitions the matrix over a 1D arrangement of 
processors based on their FPMs. The inputs to DPA-FPM-1D are the problem size (m, 
n), the 1D arrangement of 16 processors and their FPMs. The third parallel applica-
tion employs DPA-FPM-2D. The parameters to DPA-FPM-2D are the problem size 
(m, n), p=4, q=4, ε=0.05, and the full FPMs of the processors.  

The sequential application is executed on the fastest processor (hcl02). For problem 
sizes ((m,n), m>10240 & n>10240), the sequential application fails due to the problem 
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Fig. 6. Execution times of the parallel application employing DPA-FPM-2D, a parallel applica-
tion employing 1D grid of heterogeneous processors and their associated FPMs, a parallel 
application employing a data partitioning algorithm using constant single-number speeds and a 
sequential application solving the same matrix multiplication problem. 

 

Fig. 7. Optimal data distribution using DPA-FPM-2D whose parameters are m=n=20544,  
p=4, q=4 

size exceeding the memory limit of the processor. One or more processors start paging 
around the problem sizes ((m,n), 1≤m≤12288 & 1≤n≤12288). The parallel application 
employing the DPA-CPM-2D algorithm fails for problem sizes ((m,n), m>15360 & 
n>15360).  

Figure 7 shows the optimal data distribution of the dense matrices A, B, and C 
determined by DPA-FPM-2D for the problem size (m,n)=(20544,20544). One can 
see that the parallel application employing the DPA-FPM-2D algorithm outper-
forms the other applications. The total number of iteration steps of DPA-FPM-2D 
observed are 1 for the problem sizes, ((m,n), 1≤m≤12288 & 1≤n≤12288) and 2 for 
the problem sizes in the region of paging, ((m,n), m>12288 & n>12288). Therefore, 
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we can conclude the DPA-FPM-2D algorithm converges very fast. Its execution 
time is also found to be several orders of magnitude less than the execution time of 
the parallel matrix multiplication.  

This publication has emanated from research conducted with the financial support 
of Science Foundation Ireland under Grant Number 08/IN.1/I2054. 
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Abstract. The graphics processor (GPU) has evolved into an appeal-
ing choice for high performance computing due to its superior memory
bandwidth, raw processing power, and flexible programmability. As such,
GPUs represent an excellent platform for accelerating scientific applica-
tions. This paper explores a methodology for identifying applications
which present significant potential for acceleration. In particular, this
work focuses on experiences from accelerating S3D, a high-fidelity tur-
bulent reacting flow solver. The acceleration process is examined from a
holistic viewpoint, and includes details that arise from different phases
of the conversion. This paper also addresses the issue of floating point
accuracy and precision on the GPU, a topic of immense importance to
scientific computing. Several performance experiments are conducted,
and results are presented from the NVIDIA Tesla C1060 GPU. We gen-
eralize from our experiences to provide a roadmap for deploying existing
scientific applications on heterogeneous GPU platforms.

1 Introduction

Strong market forces from the gaming industry and increased demand for high
definition, real-time 3D graphics have been the driving forces behind the GPU’s
incredible transformation. Over the past several years, increases in the memory
bandwidth and the speed of floating point computation of GPUs have steadily
outpaced those of CPUs. In a relatively short period of time, the GPU has
evolved from an arcane, highly-specialized hardware component into a remark-
ably flexible and powerful parallel coprocessor.

1.1 GPU Hardware

Originally, GPUs were designed to perform a limited collection of operations
on a large volume of independent geometric data. These operations fell into to
only two main categories (vertex and fragment) and were highly parallel and
computationally intense, resulting in a highly specialized design with multiple
cores and small caches. As graphical tasks became more diverse, the demand for
flexibility began to influence GPU designs. GPUs transitioned from a fixed func-
tion design, to one which allowed limited programmability of its two specialized

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 122–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Accelerating S3D: A GPGPU Case Study 123

pipelines, and eventually to an approach where all its cores were of a unified,
more flexible type, supporting much greater control from the programmer.

1.2 CUDA

The striking performance numbers of modern GPUs have resulted in a surge of
interest in general-purpose computation on graphics processing units (GPGPU).
GPGPU represents an inexpensive and power-efficient alternative to more tra-
ditional HPC platforms. In the past, there has been a substantial learning curve
associated with GPGPU, and expert knowledge was required to attain impres-
sive performance. This involved extensive modification of traditional approaches
in order to effectively scale to the large number of cores per GPU. However, as
the flexibility of the GPU has increased, there has been a welcomed decrease
in the associated learning curve of the porting process. In this study, we utilize
NVIDIA’s Compute Unified Device Architecture (CUDA), a parallel program-
ming model and software environment. CUDA exposes the power of the GPU
to the programmer through a set of high level language extensions, allowing
for existing scientific codes to be more easily transformed into GPU compatible
applications.

Fig. 1. CUDA Programming Model – Image from NVIDIA CUDA Programming
Guide[1]

Programming Model. While a full introduction to CUDA is beyond the scope
of this paper, this section mentions the basic concepts required to understand
the scope of the parallelism involved. CUDA views the GPU as a highly parallel
coprocessor. Functions called kernels, are composed of a large number of threads,
which are organized into blocks. A group of blocks is known as a grid, see Figure
1. Blocks contain a fast shared memory that is only available to threads which
belong to the block, while grids have access to the global GPU memory. Typical
kernel launches involve one grid, which is composed of hundreds or thousands
of individual threads, a much higher degree of parallelism than normally occurs
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with traditional parallel approaches on the CPU. This high degree of parallelism
and unique memory architecture have drastic consequences for performance,
which will be explored in a later section.

1.3 Domain and Algorithm Description

S3D is a massively parallel direct numerical solver (DNS) for the full compressible
Navier-Stokes, total energy, species and mass continuity equations coupled with
detailed chemistry[2, 3]. It is based on a high-order accurate, non-dissipative
numerical scheme solved on a three-dimensional structured Cartesian mesh.
S3D’s performance has been studied and optimized including I/O[4] and control
flow[5]. Still, further improvements allow for increased grid size, more simulation
timesteps, and more species equations. These are critical to the scientific goals
of turbulent combustion simulations in that they help achieve higher Reynolds
numbers, better statistics through larger ensembles, more complete temporal de-
velopment of a turbulent flame, and the simulation of fuels with greater chemical
complexity.

Here we assess S3D code performance and parallel scaling through simulation
of a small amplitude pressure wave propagating through the domain for a short
period of time. The test is conducted with detailed ethylene-air (C2H4) chem-
istry consisting of twenty-two chemical species and mixture-averaged molecular
transport model. Due to the detailed chemical model, the code solves for twenty-
two species equations in addition to the five fluid dynamic variables.

2 Related Work

Recent work by a number of researchers has investigated GPGPU with impres-
sive results in a variety of domains. Owens et. al. provide an excellent history of
the GPU [6], chronicling its transformation in great detail. It is not uncommon
to find researchers who achieve at least an order of magnitude improvement
over reference implementations. GPUs have been used to accelerate a variety
of application kernels, including more traditional operations like dense[7, 8, 9]
and sparse[10] linear algebra as well as scatter-gather techniques[11]. The GPU
has been successfully applied to a wide variety of fields including computational
biophysics[12], molecular dynamics[13], and medical imaging[14, 15]. Our work
takes a slightly higher level approach. While we do present performance measure-
ments from an accelerated version of S3D, we examine the acceleration process
as a whole, and endeavor to answer why certain applications perform so well on
GPUs, while others fail to achieve significant performance improvements.

3 Identifying Candidates for Acceleration

3.1 Profiling

The first step in identifying a scientific application for acceleration is to iden-
tify the performance bottlenecks. The best case scenario involves a small num-
ber of computationally intense functions which comprise most of the runtime.
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This is a fairly basic requirement and is a direct consequence of Amdahl’s law.
The CPU based profiling tool Tau identified S3D’s getrates kernel as a major
bottleneck[16]. This kernel involves calculating the rates of chemical reactions
occurring in the simulation at each point in space. This computation comprises
about half of the total runtime with the current chemistry model. As the chem-
ical model becomes more complex, we anticipate that the getrates kernel will
begin to comprise a stronger majority of total runtime. As the kernel’s total per-
centage of runtime increases, the greater the potential for application speedup.
Therefore, when choosing kernels to accelerate, the first to be examined should
be the most time consuming.

3.2 Parallelism and Data Dependency

One of the main advantages of the GPU is the high number of processors, so
it follows that kernels must exhibit a high degree of parallelism to be success-
ful on a heterogenous GPU platform. While this can correspond to task-based
parallelism, GPUs have primarily been used for data-parallel operations. This
makes it difficult for GPUs to handle unstructured kernels, or those with intricate
patterns of data dependency. Indeed, in situations with irregular control flow, in-
dividual threads can become serialized, which results in performance loss. Since
the memory architecture of a GPU is dramatically different than most CPUs,
memory access times can differ by several orders of magnitude based on access
pattern and type of memory. For example, on the Tesla, an access to shared
block memory is much faster than an access to global memory. Therefore, ker-
nels must often be chosen based on memory access pattern, or restructured such
that memory access is more uniform in nature. In S3D, the getrates kernel oper-
ates on a regular three dimensional mesh, so access patterns are fairly uniform,
an easy case for the GPU.

The following psuedocode outlines the general structure of the sequential ge-
trates kernel. The outer three loops can be computed in parallel, since points in
the mesh are independent.

for x = 1 to length
for y = 1 to length

for z = 1 to length
for n = 1 to nspecies

grid[x][y][z][n] = F(grid[x][y][z][1:nspecies])

where length refers to the length of an edge of the cube, nspecies refers to the
number of chemical species involved, and function F is an abstraction of the
more complex chemical computations.

4 Kernel Acceleration

Once a suitable portion of the application has been identified, the acceleration
process can begin. Parallel programming is inherently more difficult than
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sequential programming, and developing high performance code for GPUs also
incorporates complexity from architectural features. This “memory aware” pro-
gramming environment grants the programmer control over low level memory
movement, but demands meticulous data orchestration to maximize performance.

For S3D, the mapping between the getrates kernel and CUDA concepts is
fairly simple. Since getrates operates on a regular, three-dimensional mesh, each
point in the mesh is handled by a single thread. A block is composed of a local
region of the mesh. Block size was chosen to be 256, based on the available
number of registers per GPU core, in order to maximize occupancy.

During the development of the accelerated version of the getrates kernel, the
memory access pattern was the most important factor for performance. When
threads read or write memory in a highly parallel fashion, CUDA coalesces the
memory access into a single operation, which has a dramatic and beneficial effect
on performance. The optimized versions of the getrates kernel also use batched
memory transfers and exploit block shared memory. This attention to detail pays
off–accelerated versions of the getrates kernel exhibit promising speedups over
the serial CPU version: up to 14.6x for the single precision version, and 9.3x for
the double precision version for a single iteration of the kernel, see Figure 2. The
serial CPU version was measured on an Intel Harpertown running at 2.5Ghz
with 8GB of RAM.

Fig. 2. Accelerated Kernel Results

5 Accuracy

While the evolution of the GPU has been remarkable, architectural remnants
of its original, specialized function remain. Perhaps the most relevant of these
to the scientific community is the bias towards single precision floating point
computations. Single precision arithmetic was sufficient for the GPU’s original
tasks (rasterization, etc.). GPU benchmarking traditionally involved only these
single precision computations, and performance demands have clearly shaped
the GPU’s allocation of hardware resources. Many GPUs are incapable of double
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precision, and those that are typically pay a high performance cost. This cost
generally arises from the differing number of floating point units, and it is almost
always more than the performance difference between single and double precision
on a traditional CPU. In S3D, the cost can clearly be seen in the performance
difference in the single versus double precision versions of the getrates kernel.

From a performance standpoint, single precision computations are favorable
compared to double precision, but the computations in scientific applications
can be extremely sensitive to accuracy. Moreover, some double precision opera-
tions are not always equivalent on the CPU and GPU. GPUs may sacrifice fully
IEEE compliant floating point operations for greater performance. For example,
scientific applications frequently make extensive use of transcendental functions
(sin, cos, etc.), and the Tesla’s hardware intrinsics for these functions are faster,
but less accurate than their CPU counterparts.

5.1 Accuracy in S3D

In S3D, the reaction rates calculated by the getrates kernel are integrated over
time as the simulation progresses, and error from inaccurate reaction rates com-
pounds and propagates to other simulation variables. While this is the first com-
parison of double and single precision versions of S3D, the issue of accuracy has
been previously studied, and some upper bounds for error are known. S3D has an
internal monitor for the estimated error from integration, and can take smaller
timesteps in an effort to improve accuracy. Figure 3 shows the estimated error
from integration versus simulation time. In this graph, the CPU and GPU DP
versions quickly begin to agree, while the single precision version is much more
erratic. In both double precision versions, the internal mechanism for timestep
control succeeds in settling on a timestep of appropriate size. The single preci-
sion version has a much weaker guarantee on accuracy, and the monitor has a

Fig. 3. Estimated Integrated Error. 1.00E-03 is the upper bound on acceptable error.
The GPU DP and CPU versions completely overlap beginning roughly at time 4.00E-04.
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Fig. 4. Simulation temperature. Note the time gap of the increase in temperature at
time roughly 3.00E-04. This corresponds to a delay in the prediction of ignition time.

Fig. 5. Chemical Species H2O2. The CPU and GPU DP versions completely agree,
while the GPU SP version significantly deviates, and fails to identify the dip at time
4.00E-O4.

difficult time controlling the timestep, oscillating between large timesteps with
high error (sometimes beyond the acceptable bounds), and short timesteps with
very low error. The increased number of timesteps required by the GPU single
precision version will have consequences for performance, which will be explored
in a later section.

The error from low precision can also be observed in simulation variables
such as temperature (see Figure 4) or in chemical species, such as H2O2(see
Figure 5). The current test essentially simulates a rapid ignition, and a relatively
significant time gap can be seen between the rapid rise in temperature in the
GPU single precision kernel versus the other versions. In the sensitive time scale
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Table 1. Performance Results - Normalized cost is the average time it takes to simulate
a single point in space for one nanosecond. S - Single Precision D - Double Precision.

Size Kernel Speedup % of Amdahl’s Actual Speedup Normalized Cost (ms)
S D Total Limit S D CPU GPU DP GPU SP

32 13.05x 8.17x 46.01% 1.82x 1.78x 1.61x 16.7 10.44 9.49
60 14.56x 9.32x 58.02% 2.38x 2.32x 2.27x 13.53 5.95 5.97

of ignition, this gap represents a serious error. In Figure 5, the error is much more
pronounced, as the single precision version fails to predict the sudden decrease
in H2O2 which occurs roughly at time 4.00E-04.

A similar trend can be observed throughout many different simulation vari-
ables in S3D. The CPU version tends to agree almost perfectly with the GPU
double precision version, while the single precision version deviates substantially.
Consequently, while the single precision version is much faster, it may be insuf-
ficient for sensitive simulations.

6 S3D Performance Results

In an ideal setting, the chosen kernel would strongly dominate the runtime of
the application. However, in S3D, the getrates kernel comprises roughly half of
the total runtime, with some variation based on problem size. Table 1 shows how
speedup in the getrates kernel scales to whole-code performance improvements.
Amdahl’s limit is the theoretical upper bound on speedup, s∞ ≈ 1

1−fa
, where

fa is the fraction of runtime that is accelerated.

Fig. 6. Timestep Size – This graph shows the size of the timesteps taken as the rapid ig-
nition simulation progressed. S3D reduces the timestep size when it detects integration
inaccuracy. While the double precision versions take timesteps of roughly equivalent
size, the single precision version quickly reduces timestep size in an attempt to preserve
accuracy.
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In S3D, there is a complex relationship between performance and accuracy.
When inaccuracy is detected, timestep size is reduced in an attempt to decrease
error, see Figure 6. Since single precision is less accurate, one can see erratic
timestep sizes. This means that given the same number of timesteps, a highly
accurate computation can simulate more time. In order to truly measure perfor-
mance, it is important to normalize the wallclock time to account for this effect.
In Table 1, normalized cost is the wallclock time it takes to simulate one nanosec-
ond at one point in space. While the getrates kernel can be executed faster in
single precision, the lack of accuracy causes the simulation to take very small
timesteps. In some cases, the loss of accuracy in single precision calculations
causes the total amount of simulated time to decrease, potentially eliminating
any performance benefits.

7 Conclusions

Graphics processors are rapidly emerging as a viable platform for high perfor-
mance scientific computing. Improvements in the programming environments
and libraries for these devices are making them an appealing, cost-effective way
to increase application performance. While the popularity of these devices has
surged, GPUs may not be appropriate for all applications. They offer the great-
est benefit to applications with well structured, data-parallel kernels. Our study
has described the strengths of GPUs, and provided insights from our experi-
ence in accelerating S3D. We have also examined one of the most important
aspect of GPUs for the scientific community, accuracy. The differences in ac-
curacy between GPU and IEEE arithmetic resulted in drastic consequences for
correctness in S3D. Despite this relative weakness, the heterogeneous GPU ver-
sion of the kernel still manages to outperform the more traditional CPU version
and produce high quality results in a real scientific application.
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Abstract. We investigate the numerical computation of the matrix sign
function of large-scale dense matrices. This is a common task in vari-
ous application areas. The main computational work in Newton’s itera-
tion for the matrix sign function consits of matrix inversion. Therefore,
we investigate the performance of two approaches for matrix inversion
based on Gaussian (LU factorization) and Gauss-Jordan eliminations.
The target architecture is a current general-purpose multi-core proces-
sor connected to a graphics processor. Parallelism is extracted in both
processors by linking sequential versions of the codes with multi-threaded
implementations of BLAS. Our results on a system with two Intel Quad-
Core processors and an nvidia Tesla C1060 illustrate the performance
and scalability attained by the codes on this system.

Keywords: Matrix sign function, hybrid platforms, GPUs, multi-core
processors, linear algebra, high performance computing.

1 Introduction

Consider a matrix A ∈ Rn×n with no eigenvalues on the imaginary axis, and let

A = T−1
(

J− 0
0 J+

)
T, (1)

be its Jordan decomposition, where the eigenvalues of J− ∈ R
j×j /J+ ∈

R(n−j)×(n−j) all have negative/positive real parts [1]. The matrix sign function
of A is then defined as

sign(A) = T−1
(−Ij 0

0 In−j

)
T, (2)
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where I denotes the identity matrix of the order indicated by the subscript.
The matrix sign function is a useful numerical tool for the solution of con-
trol theory problems (model reduction, optimal control) [2], and the bottleneck
computation in many lattice quantum chromodynamics computations [3] and
dense linear algebra computations (block diagonalization, eigenspectrum sepa-
ration) [1,4]. Large-scale problems as those arising, e.g., in control theory often
involve matrices of dimension n → O(10, 000 − 100, 000) [5].

There are simple iterative schemes for the computation of the sign function.
Among these, the Newton iteration, given by

A0 := A,
Ak+1 := 1

2 (Ak + A−1
k ), k = 0, 1, 2, . . . ,

(3)

is specially appealing for its simplicity, efficiency, parallel performance, and
asymptotic quadratic convergence [4,6]. However, even if A is sparse, {Ak}k=1,2,...

in general are full dense matrices and, thus, the scheme in (3) roughly requires
2n3 floating-point arithmetic operations (flops) per iteration.

In the past, large-scale problems have been tackled using message-passing
parallel solvers based on the matrix sign function which were then executed on
clusters with a moderate number of nodes/processors [7]. The result of this effort
was our message-passing library PLiC [8] and subsequent libraries for model
reduction (PLiCMR, see [9]) and optimal control (PLiCOC, see [10]). Using this
library, 16–32 processors showed to provide enough computational power to solve
problems with n ≈ 10, 000 in a few hours.

Following the recent uprise of hardware accelerators, like the graphics proces-
sors (GPUs), and the increase in the number of cores of current general-purpose
processors, in this paper we evaluate an alternative approach that employs a
sequential version of the codes in the PLiC library, and extracts all parallelism
from tuned multi-threaded implementations of the BLAS (Basic Linear Algebra
Subprograms) [11,12,13]. The results attained in a hybrid, heterogeneous archi-
tecture composed of a general-purpose multi-core processor and a GPU demon-
strate that this is a valid platform to deal with large-scale problems which, only
a few years ago, would have required a distributed-memory cluster.

The rest of the paper is structured as follows. In Section 2 we elaborate on
the hybrid computation of the matrix inverse on a CPU-GPU platform. This
is followed by experimental results in Section 3, while concluding remarks and
open questions follow in Section 4.

2 High-Performance Matrix Inversion

As equation (3) reveals, the application of Newton’s method to the sign function
requires, at each iteration, the computation of a matrix inverse. We next review
two different methods for the computation of this operation, based on the LU
factorization and Gauss-Jordan transformations.
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2.1 Matrix Inversion via the LU Factorization

The traditional approach to compute the inverse of a matrix A ∈ Rn×n is based
on Gaussian elimination (i.e., the LU factorization), and consist of the following
three steps:

1. Compute the LU factorization PA = LU , where P ∈ Rn×n is a permutation
matrix, and L ∈ Rn×n and U ∈ Rn×n are, respectively, unit lower and upper
triangular factors [1].

2. Invert the triangular factor U → U−1.
3. Solve the system XL = U−1 for X .
4. Undo the permutations A−1 := XP .

LAPACK [14] is a high-performance linear algebra library which provides
routines that cover the functionality required in the previous steps. In particular,
routine getrf yields the LU factorization (with partial pivoting) of a nonsingular
matrix (Step 1), while routine getri computes the inverse matrix of A using the
LU factorization obtained by getrf (Steps 2–4).

The computational cost of computing a matrix inverse following the previous
four steps is 2n3 flops. The algorithm sweeps through the matrix four times
(one per step) and presents a mild load imbalance, due to the work with the
triangular factors.

2.2 Matrix Inversion via Gauss-Jordan Elimination

The Gauss-Jordan elimination algorithm [15] (gje) for matrix inversion is, in
essence, a reordering of the computation performed by matrix inversion methods
based on Gaussian elimination, and hence requires the same arithmetic cost.

Figure 1 illustrates a blocked version of the gje procedure for matrix inversion
using the FLAME notation [16,17,18]. There m(A) stands for the number of
rows of matrix A. We believe the rest of the notation to be intuitive; for further
details, see [16,17]. (A description of the unblocked version, called from inside
the blocked one, can be found in [19]; for simplicity, we hide the application
of pivoting during the factorization, but details can be found there as well.)
The bulk of the computations in the procedure can be cast in terms of the
matrix-matrix product, an operation with a high parallelism. Therefore, gje is
a highly appealing method for matrix inversion on emerging architectures like
GPUs, where many computational units are available, provided a highly-tuned
implementation of the matrix-matrix product is available.

We next introduce three implementations for the gje method (with partial
pivoting) on two parallel architectures: a multi-core CPU architecture and a GPU
from nvidia. The following variants differ on which part of the computations is
performed on the CPU (the general-purpose processor or host), and which part
is off-loaded to the hardware accelerator (the GPU or device). They all try to
reduce the number of communications between the memory spaces of the host
and the device.



Using Hybrid CPU-GPU Platforms 135

Algorithm. [A] := GJEblk(A)

Partition A →
(

ATL ATR

ABL ABR

)
where ATL is 0 × 0 and ABR is n × n

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

ABL ABR

)
→

⎛
⎝A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠

where A11 is b × b

⎡
⎣A01

A11

A21

⎤
⎦ := GJEunb

⎛
⎝
⎡
⎣A01

A11

A21

⎤
⎦
⎞
⎠ Unblocked Gauss-Jordan

A00 := A00 + A01A10 Matrix-matrix product
A20 := A20 + A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 + A01A12 Matrix-matrix product
A22 := A22 + A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with

(
ATL ATR

ABL ABR

)
←

⎛
⎝A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠

endwhile

Fig. 1. Blocked algorithm for matrix inversion via GJE without pivoting

Implementation on a multi-core CPU: gje(CPU). In this first variant all
operations are performed on the CPU. Parallelism is obtained from a multi-
threaded implementation of BLAS for general-purpose processors. Since most of
the computations are cast in terms of products of matrices, high performance
can be expected from this variant.

Implementation on a many-core GPU: gje(GPU). This is the GPU-
analogue to the previous variant. The matrix is first transferred to the device; all
computations proceed there next; and the result (the matrix inverse) is finally
moved back to the host.

Hybrid implementation: gje(Hybrid). While most of the operations per-
formed in the gje algorithm are well suited for the GPU, a few are not. This
is the case for fine-grained operations, as the low computational cost and data
dependencies deliver low performance on massively parallel architectures like the
GPU. To solve this problem, we propose a hybrid implementation. In this new
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approach, operations are performed in the most convenient device, exploiting
the capabilities of both architectures.

In particular, in this variant the matrix is initially transferred to the device. At
the beginning of each iteration of the algorithm in Figure 1, the current column
panel, composed of

[
AT

01, A
T
11, A

T
21
]T is moved to the CPU and factorized there.

The result is immediately transferred back to the device, where all remaining
computations (matrix-matrix products) are performed. This pattern is repeated
until the full matrix inverse is computed. The inverse is finally transferred from
the device memory to the host.

In summary, only the factorization of the current column panel is executed
on the CPU, since it involves a reduced number of data (limited by the algorith-
mic block size), pivoting and BLAS-1 operations which are not well suited for
the architecture of the GPU. The matrix-matrix products and pivoting of the
columns outside the current column panel are performed on the GPU.

3 Experimental Results

In this section we evaluate four parallel multi-threaded codes to compute the
inverse of a matrix:

– LAPACK(CPU): The four steps of the LAPACK approach, with all compu-
tations carried out on the CPU and parallelism extracted by using a multi-
threaded implementation of BLAS; see subsection 2.1.

– gje(CPU), gje(GPU), and gje(Hybrid): The implementations described in
subsection 2.2.

Two different implementations of the BLAS (Goto BLAS [20] –version 1.26– and
Intel MKL [21] –version 10.1–) were used to execute operations on the general-
purpose processor, while on the nvidia GPU, CUBLAS [22] (version 2.1) was
the library that we used.

The experiments employ single and double precision and the results always
include the cost of data transfers between the host and device memory spaces.
The target platform consists of two Intel Xeon QuadCore processors connected
to an nvidia Tesla C1060. Table 1 offers more details on the hardware.

Figure 2 reports the GFLOPS (109 flops per second) rates attained by the
different implementations of the inversion codes operating on single-precision
matrices with sizes between 1,000 and 8,000. Several algorithmic block sizes

Table 1. Hardware employed in the experiments

Processors #cores Frequency L2 cache Memory Single/Double
precision peak
performance

(GHz) (MB) (GB) (GFLOPS)

Intel Xeon QuadCore E5405 8 2.3 12 8 149.1/74.6
Nvidia TESLA c1060 240 1.3 – 4 933.0/78.0



Using Hybrid CPU-GPU Platforms 137

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1000  2000  3000  4000  5000  6000  7000  8000

G
F

LO
P

S

Matrix size

Single Precision Matrix inversion on Caton2  + Goto 1.26

LAPACK
GJE(GPU)
GJE(GPU)

GJE(Hybrid)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1000  2000  3000  4000  5000  6000  7000  8000

G
F

LO
P

S

Matrix size

Single Precision Matrix inversion on Caton2 + MKL 10.1

LAPACK
GJE(CPU)
GJE(GPU)

GJE(Hybrid)

Fig. 2. Performance of the matrix inversion codes
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Fig. 3. Execution times of the Newton iteration for the matrix sign function with the
matrix inversion implemented using the different variants discussed

(parameter b in Figure 1) were tested but, for simplicity, the results in all figures,
hereafter, correspond to those obtained with the optimal block size.

The LAPACK code executed using all 8 cores of the two general-purpose
processors yields the lowest GFLOPS rate, while the gje algorithm using the
same resources performs slightly better. Both implementations that employ the
GPU outperform the ones executed only on the CPU. The Hybrid approach is
the best option for small/medium matrices, while the version executed entirely
on the GPU is the best for large matrices.
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Figure 3 shows execution times of the Newton’s iteration for the matrix sign
function, using the previous matrix inversion codes and both single and double
precision data. As expected, the LAPACK implementation delivers the highest
execution time, followed by gje(CPU). Codes for GPU are notoriously/slightly
faster in single/double precision. Gains from GPU codes are larger for single
precision computations and for large matrices.

4 Concluding Remarks and Future Work

We have demonstrated the benefits of using a current GPU to off-load part of the
computations in a dense linear algebra operation rich in level-3 BLAS like the
matrix inversion. This operation is the basis for the computation of the matrix
sign function via Newton’s iteration and is also the key to the efficient solution
of important problems in control theory such as model reduction and optimal
control.

The evaluation of matrix inversion codes clearly identify the superior per-
formance of the procedures based on Gauss-Jordan elimination over Gaussian
elimination (the LU factorization).

Our research poses some open questions which form the basis of our ongoing
and future work:

– Most applications in control theory and linear algebra require double pre-
cision but current GPUs deliver considerable lower performance when they
operate with this data type. Is it possible to compute the sign function in
single precision and then use iterative refinement [23] to obtain a double
precision solution at a low cost?

– Can we overlap CPU and GPU computations so that while the CPU is
computing some blocks the GPU updates others? Note that this requires a
careful synchronization of the data transfers between the memory spaces of
host and device.

– Is it possible to overlap computation on the GPU with data transfers between
the CPU and the GPU memory spaces to improve the performance for the
small problem sizes?
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Abstract. Pilot-job systems have emerged as a computation paradigm
to cope with heterogeneity of production grids, greatly improving fault
ratios and latency. Tools like DIANE, WISDOM-II, ToPoS and Condor
glideIns are now being widely adopted to conduct large-scale experiments
on such platforms. However, a model of pilot-job applications is still lack-
ing, making it difficult to determine submission parameters such as the
number of pilots to submit to achieve a given performance level. The
variability of production conditions and the heterogeneity of the under-
lying middleware and infrastructure further complicates this issue. This
paper presents a performance model for pilot-job applications running on
production grids. Based on a probabilistic modelling, we derive statistics
about the number of available pilots along time and the makespan of the
application given the number of submitted pilots. Results obtained on
a radiotherapy application running on the EGEE production grid show
that the model is accurate enough to correctly describe the behavior of
the application, setting the basis for further optimization strategies.

1 Introduction

Large-scale production grids such as EGEE1 are now used by a variety of applica-
tions benefiting from computing power and storage space provided by federations
of computing centers. Shared by thousands of users, those infrastructures have
become complex systems, providing heterogeneity, high variability, low reliabil-
ity and high latencies as a downside of the huge amount of resources. On EGEE,
dozen of minutes of latency with similar standard-deviations and fault ratios of
20% are a common toll to access some of the 80,000 provided CPUs.

Applications relying on such grids had to adopt pragmatic solutions to han-
dle heterogeneity. Among these, pilot jobs provide a submission scheme where
tasks are no longer pushed through the grid scheduler but are put in a master
pool and pulled by pilots running on computing nodes. Although pilots are still
submitted through the regular grid middleware, such a pull model nicely adapts
to heterogeneity (pilots running on faster resources pull more tasks than the
others), reduces faults and improves latency.

Several pilot-job frameworks have been developed. In particular, systems in-
terfaced with EGEE include DIANE [11], WISDOM-II [1,7], ToPoS2, BOINC
1 http://eu-egee.org/
2 https://wiki.nbic.nl/index.php/ToPoS

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 140–149, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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tasks [9] and gPTM3D in radiology [3]. Condor3 also has its pilot-job submission
framework, coined glideIns [15]. However, models are lacking to describe, ana-
lyze and optimize the performance of applications relying on pilot-job systems on
production grids [8]. This paper proposes such a model and evaluates it in real
conditions. Following previous works [5,6], we adopt a probabilistic approach re-
lying on the latency distribution to derive statistics about metrics of interest. The
model is detailed in section 2 and evaluated using a radiotherapy application in
section 3. Results and capabilities of the model are discussed in section 4.

2 Definitions and Modelling

2.1 Pilot Jobs

Production grids such as EGEE are operated as super-batch systems in which
jobs are submitted to a grid scheduler which determines to which computing
center they have to be sent. Computing centers then implement their own batch
queue to schedule jobs on the computing nodes. By default, applications split the
workload into jobs before submitting (i.e. pushing) them to the grid scheduler.
Although quite simple, this has disadvantages in terms of fault tolerance and
job turn-over. Failed jobs have to be resubmitted to the grid scheduler and
go through all middleware components before reaching again a computing node.
Besides, heterogeneity can hardly be coped with since the workload is split before
the actual computing nodes are known to the application.

In the pilot-job model, the workload is divided in tasks by the application
and submitted to a master managing a task pool on the application host. In
parallel, generic grid jobs are submitted to the grid scheduler. Once they reach
a computing node, those pilots (also called agents or workers) keep on fetching
tasks from the master until they all successfully complete. With such a late
task-to-node binding, heterogeneity is naturally handled since pilots running on
fast resources fetch more tasks than the others. Moreover, failures have a limited
impact because failed tasks can directly be executed by other pilots (faulty pilots
are removed). Finally, latency is reduced since tasks are directly scheduled by
the master on the pilots without going through the whole grid middleware.

2.2 Notations and Assumptions

Given a number of submitted pilots, the modelling aims at estimating (i) the
evolution of the number of available pilots along time, i.e., the number of pilots
that have reached a computing node and (ii) the makespan of the application,
i.e., the duration between the submission of the first pilot and the completion of
the last task.

In the following, L denotes the latency (i.e. the total duration between job
submission and the beginning of its execution), N the number of available pilots,
n the total number of pilots submitted at t = 0 and w0 the total amount of work
3 http://www.cs.wisc.edu/condor/
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to be performed by the application. w0 is expressed as a work time and includes
both computing and data transfers. Probabilistic density functions (pdf ) are
denoted with f and cumulative ones (cdf ) with F . Capitals are random variables
and lowercases are fixed values.

The following assumptions are made. First, pilots are assumed to be submitted
at t = 0, which assumes that they belong to a specific user and that he/she only
executes a single application at a time. Moreover, pilots are also assumed generic,
i.e., a given pilot can execute any task of the application.

Besides, failed jobs are considered to have an infinite latency, which is adapted
to model pilots that are submitted to the grid but never connect back to the
master. Those faults occur with ratio ρ. To improve readability, ρ will be omit-
ted in the following of this section: equations taking faults into account can be
derived by replacing FL by (1 − ρ)FL everywhere. Although this simple model
probably does not hold on platforms such as the ones mentioned in [14,2], it
is here supported by evidence found in [10] (Fig. 9), based on an analysis of
the trace of 33 millions of EGEE jobs submitted between 2005 and 2007. Re-
sults show that using such a (1 − ρ)FL fault model instead of the actual fault
distribution only has a small impact on the considered parameter estimation.

The modelling also assumes that pilots face independent and identically dis-
tributed (iid) latencies. In particular, no saturation of the grid scheduler or
queues during the application run is considered. This is realistic as long as we
consider applications of reasonable size with respect to the grid infrastructure
(i.e. the application itself does not cause system saturation, which makes sense
on production grids given their large scale) and that no significant burst period
occurs during the run. Handling bursts is a problem currently under study and
exploiting works such as [12] may further improve our modelling. Another bot-
tleneck potentially breaking this iid assumption is the job submission process.
Though jobs can usually be submitted at once (e.g., using bag-of-tasks or DAG
submission facilities), applications often still use sequential submission for scal-
ability reasons. How the modelling handles this particular case is described in
section 2.5. Another potential limit of the iid assumption is the evolution of grid
conditions while the application is running. In particular, time, day of week and
month may have an impact on the latency. To cope with that, experimental data
such as the one reported in [4] could be exploited to adapt the model along time.

2.3 Number of Available Pilots

At instant t, the probability to have k pilots available out of n submitted is:

fN (k, t) = (n
k )FL(t)k(1 − FL(t))(n−k)

where (n
k ) = n!

k!(n−k)! . Indeed, any k pilots among n may be available at instant
t (i.e. L ≤ t for k pilots, which occurs with probability FL(t)k), while the other
(n − k) are still being scheduled or queued (L ≥ t for n − k pilots, probability
(1 − FL(t))n−k). We can notice that at a given instant N follows a binomial
distribution with parameter FL(t). Thus its expectation and variance are:
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EN (t) = nFL(t) (1)
σN (t)2 = n(1 − FL(t))FL(t) (2)

From equation 1 we have limt→∞ EN (t) = n(1 − ρ), i.e., after enough time, the
user will manage to control all resources he/she submits to, up to the failure
ratio. This remains realistic as long as the number of submitted pilots is lower
than the number of available computing resources, which is reasonable for large-
scale grids such as EGEE that gathers some 80,000 CPUs.

2.4 Makespan

We assume here that the total amount of work (CPU time and data transfers)
of an application can be split in any number of tasks, and that linear speed-up
w.r.t the number of available pilots is achieved. The latter considers that an
application running on a given set of pilots would behave as if all the pilots
were achieving the average performance. Although asymptotically realistic, this
may lead to some inaccuracies in transient phases. To cope with that, the model
could be enhanced by including distributions of host performance. However, to
our knowledge, no such model is available on EGEE and building it may be
challenging since it is very likely to depend on the application.

Let us denote W (t) the remaining work time at time t (W (0) = w0). Since
linear speed-up w.r.t the number of pilots is assumed, we have:

dW = −N(t)dt

so that the remaining amount of work at a given instant is:

W (t) = max(w0 −
∫ t

0
N(u)du, 0)

and given equation 1:

EW (t) = max(w0 − n

∫ t

0
FL(u)du, 0)

The expectation EM (n) of the makespan M(n) of an application is then obtained
by solving the following in t:

w0 − n

∫ t

0
FL(u)du = 0, i.e. :

∫ EM(n)

a

FL(u)du =
w0

n
(3)

where a is the lower bound of the support of FL (a is the largest value for which
FL(a) = 0). In case L is a fixed value (L=a), then FL(t) = 1 for every t > a so
that EM (n) = a + w0

n . We also have the following limit:

lim
n→+∞EM (n) = a (4)
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2.5 Determination of FL for Sequential Job Submission

In case jobs have to be sequentially submitted to the grid scheduler, the assump-
tion of iid latencies obviously does not hold. This is for instance the case when
using EGEE’s Resource Broker, as done in the experiment section of this paper.
In such a case, the submission of a job is delayed by the sum of the submission
times of its predecessors, so that the latency faced by the ith submitted job of
an application is:

Ri = Ti + G

where Ti is the submission time of job i (it depends on the number of previously
submitted jobs) and G is the rest of the grid latency. On the other hand, grid
latency measures (e.g. based on probe monitoring) capture the following:

M = S + G

where S is the submission time of a single job.
We can consider that Ti are iid and the job rank i is uniformly distributed

between 1 and n. Thus, Ti = T and T has the following pdf :

fT (t) =
1
n

(
n∑

k=1

fkS(t)

)
=

1
n

(
n∑

k=1

f∗k
S (t)

)

where fkS denotes the pdf of random variable
∑k

j=1 S and f∗k
S is fS convolved

k times with itself. Then, L = T + G and we have:

FL(t) =
∫ ∞

0

1
n

(
n∑

k=1

f∗k
S (u)

)
FG(t − u)du (5)

Equations 1, 2 and 3 still hold and FL can be computed from the latency
distribution using equation 5.

3 Experiment Set-Up and Results

The modelling was evaluated on a radiotherapy simulation application running
on the EGEE grid with the DIANE pilot-job framework [13]. The experiments
were conducted on the biomed Virtual Organisation (VO) of the EGEE grid,
gathering approximately 190 computing sites and more than 40 grid schedulers
(Resource Brokers) at the time of the experiment.

Nineteen (19) runs of the application (6h45min each on a 2.4 GHz Intel Core
Duo PC) were performed, varying the number of submitted pilots (n) from 25
to 150. Pilots were submitted to a single grid scheduler.

The distribution of the grid latency (FL) was measured from probe round-
trip times, which can be problematic, e.g., when schedulers are configured to
use different priorities depending on job length, user or recent resource usage.
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Fig. 1. Number of available pilots along time: the model is figured with plain lines
(EN(t) is the central black line, ±σN (t) is in green and ±3σN (t) is in red) and the
measure with dashed lines. The x-axis represents time in seconds and the y-axis denotes
the number of agents. When monitoring probes are reliable enough (Exp 1 to 15) the
model fits the data with a 7% error w.r.t the number of submitted pilots.
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In such cases, historical data from the considered user and application could
be used to estimate the latency distribution. This could be obtained either by
application-level monitoring or by querying middleware services.

To avoid biases, probes and application jobs were submitted from machines
located in different cities, using different user credentials and different submission
codes. To evaluate the relevance of our modelling of sequential job submission
(section 2.5), we used an EGEE Resource Broker with sequential submission.

A fixed number of probes was permanently maintained inside the system. To
ensure that enough probes were used to build the latency cdf, probes submitted
up to 1 hour before the experiment were considered in addition to the ones
submitted during the experiment. For each experiment those probes were used
to build FL using equation 5. A total number of 1093 probes has been used for
the 19 experiments, among which a global 6.8% fault ratio has been measured.
Their mean latency was 767 seconds and the standard-deviation was 766 seconds.

The computation of EN (t) and σN (t) was done straight from equations 1
and 2. The total work time w0 was estimated as the value leading to the minimal
mean-square error between modelled and experimental makespans.

3.1 Results

Figure 1 compares the theoretical and measured number of available pilots
throughout the 19 experiments. For each graph, the central black plain line
corresponds to EN (t) as computed from equation 1. The interval delimited by
plain green lines covers EN (t) ± σN (t) and the red covers EN (t) ± 3σN (t),
σN (t) being computed from equation 2. The blue horizontal line corresponds to
limn→∞ EN (t), i.e. to n(1−ρ) where ρ is the fault ratio among monitoring probes.
Experimental data is figured with dashed black lines. For each experiment, the
number of submitted pilots n, the number of probes used to parametrize the
model, the probes fault ratio ρ and the model error are shown. Model error is
computed as

1
k

∑
i<k |mi−ei|

n with k the total number of measure samples, mi the
value of EN (ti) obtained from equation 1, ei the corresponding experimental
value (measure) and n the number of submitted pilots for the experiment.

Figure 2 plots the experimental and modelled makespans. The w0 value min-
imizing the mean square error w.r.t the data is 39,600s (11 hours). More than
80 grid sites were used for those experiments.

4 Discussion

4.1 Number of Available Pilots

The model is clearly off on 4 of the 19 experiments presented on figure 1, with
mean errors greater than 20% (Exp 16 to 19). For those experiments, a high
number of faults (> 55%) is observed among the monitoring probes while the
application is not impacted. In these cases, the asymptotic line of the model
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Fig. 2. Measured VS modelled makespans after mean square minimization of the model
w.r.t w0. Mean error is 5min27s; w0 is 11 hours.

(blue line with y-value n(1− ρ)) is very low while the experimental curve grows
to regular values. A detailed inspection of the data revealed that such a fault ra-
tio was indeed not faced by pilots submitted during the experiment. Accurately
measuring fault ratios is challenging because some kinds of faults occur during a
very localized time period, for instance when a service becomes unavailable for
a couple of minutes while being restarted. Since the model is parametrized with
probes acquired up to 1 hour before the experiment, such localized faults com-
pletely puzzle the monitoring system while the experiment may not be impacted
at all. In such cases, the grid behavior is too dynamic to be properly captured.
In the following discussion we only consider Exp 1 to Exp 15 for which fault
ratios remain under 15%, a common value on EGEE.

Excluding those 4 experiments, the average model error is 7% with respect to
n. This can be considered quite low given the grid variability and the indepen-
dence of the monitoring probes from the experiments. All the measures but some
of Exp 1 stay in the red interval [EN (t)− 3σN (t),EN (t)+3σN (t)] and a signifi-
cant proportion is in the green [EN (t)−σN(t),EN (t)+σN (t)]. From a qualitative
point of view, the shape of the experimental data is properly captured by the
model: for instance, Exp 3 shows a strong bi-modal behavior nicely described
by the model. The model generally tends to overestimate the performance of the
application, in particular when the number of submitted pilots is important (see
in particular Exp 1,5, 6, 7, 8 and 9 for which n ≥ 75). This may be due to the
fact that in some cases, the makespan is lower than the total submission time,
thus reducing the actual number of submitted pilots.
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4.2 Makespan Estimation

The experimental makespan (green crosses on figure 2) shows significant variabil-
ity for a given value of n, which is explained by the variability of grid execution
conditions and the heterogeneity of the infrastructure. Still, one can notice a
clear decreasing trend between n = 25 and n = 50 followed by a stable phase
around 2000s where the makespan seems to reach a limit, as forecast by the
theoretical study in section 2. However, this limit is clearly superior to the value
given by the theory, supposed to be a, the lower bound of the support of the grid
latency cdf (150s for the 1093 monitoring probes considered here). The reason
for that is obviously the application latency, mainly composed of data transfers
and the initialization step.

The model (red crosses on figure 2) is able to properly capture the behavior
of the experimental makespan. After mean-square error minimization, the mean
error between the model and the experimental data is 327 seconds (5 min 27 s).
Given the standard-deviation measured on the latency of the monitoring probes
(766s), this error can be considered as very small. The dynamicity of the grid is
captured thanks to the monitoring system while the evolution with respect to n
is correctly described by the probabilistic model.

Finally, the w0 value given by the minimization (11 hours) approximates the
mean measured w0 (11 hours 13min) with an error of only 2%, which is extremely
accurate for an application running in production conditions. We thus conclude
that (i) the model is able to explain the observed makespan and (ii) the model
is able to estimate the total work time w0 of the application.

5 Conclusion

We presented a model for pilot-job applications, an execution scheme becoming
increasingly adopted by applications to cope with heterogeneity of production
grids. Based on the distribution of the latency, the mean and standard-deviation
of the number of available pilots along time as well as the makespan of the appli-
cation are described. An estimation of the total work time of the application is
also provided. Sequentially submitted jobs can also be handled. Faults are taken
into account by applying a basic transformation on the latency distribution.

Nineteen (19) experiments have been carried-out on a radiotherapy simula-
tion application running on the EGEE production grid using DIANE pilot jobs.
Relying on a parametrization of the model using independent monitoring probe
jobs, results show that (i) the model is able to correctly describe the evolution
of the number of available pilots along time, provided that the fault ratio of the
monitoring probes remains reasonable, (ii) the makespan of the application is
accurately described and (iii) the total work time of the application is estimated
with a 2% error.

The proposed model is thus a suitable tool for analyzing the behavior of
pilot-job applications. Though the experiments were carried-out using DIANE,
the modelling does not include any implementation-specific assumption, which
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makes the results applicable to other pilot jobs systems deployed on the same
type of production grid infrastructures.
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Abstract. Failure is an ordinary characteristic of large-scale distributed
environments. Resubmission is a general strategy employed to cope with
failures in grids. Here, we analytically and experimentally study resub-
mission in the case of random brokering (jobs are dispatched to a com-
puting elements with a probability proportional to its computing power).
We compare two cases when jobs are resubmitted to the broker or to the
computing element. Results show that resubmit to the broker is a better
strategy. Our approach is different from most existing race-based one as
it is a bottom-up one: we start from a simple model of a grid and derive
its characteristics.

1 Introduction

Computational grids such as EGEE [6] or TeraGrid [13] are routinely used for
executing scientific jobs. However, such environment are subject to failures. In-
deed, a 9 months study [5] (from Feb. 2006 to Nov. 2006) of the SEE virtual
organization of EGEE shows that only 30% of jobs finished with an OK status
at the first try and 10% ultimately failed. Another study [10] covers the submis-
sion of 230 474 jobs in the the EGEE/LCG Grid during 280 days, among which
23 208 (9.93%) failed.

In order to tackle reliability problem, the main strategy commonly employed
is to resubmit a failed job [3,1,8]. There are several ways to resubmit a job. It
is possible to resubmit the job to the scheduler or to the computing element
allocated to it.

To the best of our knowledge, comparing these two strategies in the context
of computational grids has never been rigorously conducted. The goal of this
work is therefore to model these strategies and to provide experimental insights
on when and how a strategy is better than the other. We focus on a special
kind of a grid environment directly inspired from EGEE. Jobs are submitted to
a resource broker that dispatches them to a computing element where they are
queued and treated according to their arrival date.

In general, scheduling algorithms that allocate jobs to resources assume that
the arriving time and/or the duration of the jobs are known in advance. How-
ever, such an assumption is not always realistic (the duration of the job can only
be known after its execution, and the arrival depends on the clients hence is not
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always deterministic). To cope with this uncertainty, we use a stochastic model
where the job inter-arrival follows a Poisson law and the job duration follows an
exponential law. Therefore, the resource brokering algorithm is a random one
where each job is allocated to a computing element with a probability propor-
tional to its accumulated speed. Thanks to this approach, very few assumptions
are required, which leads to a general case that could easily be applied to pro-
duction environments.

Moreover, to model the unreliability of the environment, we assume that each
node has a probability of failure (i.e the probability that a job is not correctly
executed on this node). Furthermore, to increase realism, we do not assume that
this characteristic is known by the resource broker.

The contribution of our paper is the following. First, we model the behavior
of the resubmission strategies. Second, we assess the quality of these models by
comparing the predicted values with the real ones. We show that in almost every
case our models are very precise. Last, we compare the strategies with regards
to the execution time of a given set of jobs and we are able to determine when
it is better to use a given strategy. It is important to note that our methodology
is bottom-up one while most of the resent studies are top-down. This means
that in this paper we start from a simple model of a grid and try to analytically
compute the model while in the top-down approach, the model is derived from
traces.

2 Related Work

Modeling a grid system (waiting time, throughput, failure) has already been
studied in the literature. Concerning job duration and submission reference stud-
ies are [10] concerning EGEE, or [7,9] concerning different traces. Concerning
modeling failures [12] covers high performance computing systems and [11], study
the Condor system.

The common methodology of all these approaches is that they tackle the
problem using a top-down approach. The top down-approach (or trace-based
approach) consists in deriving the characteristics through an analysis of the
traces. This approach is very useful to derive accurate understanding of a given
setting but is limited when one change the target environment. In our approach
(bottom-up) we start from a very general model of the environment and compute
analytically a model of the behavior of this environment. This study is therefore
an attempt to bridge the gap between the two approaches (trace-based/top-down
vs. analytical/Bottom-up).

3 System, Job, and Resubmission Models

3.1 Grid Model

The model of computational grid we propose here is directly inspired from exist-
ing ones such as EGEE [6] and has already been presented in [2]. This system is
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composed of N sites (or computing elements) Ci. Each site Ci is assumed to be
homogeneous: it is composed of ci homogeneous computing nodes of speed si.
The power of a computing element is the product of the number of nodes times
the speed of its node: ci × si.

A set of jobs (or tasks) is submitted to this grid. All jobs, as most of those
submitted to EGEE, are sequential (i.e. executed by a single processor).

A job is submitted to a resource broker or job dispatcher. The broker uses
a random strategy to dispatch jobs to the computing elements. Computing el-
ement Ci has a probability γi = ci×si

C to be chosen, where C =
∑N

i=1 ci × si

is the total power of the considered grid system. Therefore, jobs are submit-
ted to a computing element with a probability proportional to its power. The
intuition beyond this strategy is that the more powerful a computing element,
the more jobs should be submitted to it. Moreover, it is important to note that
this strategy is very simple to implement and does not require to estimate job
duration.

We use a stochastic model for the submission date of jobs and their execution
duration. The arrival of jobs to the resource broker follows a poissonian distribu-
tion with an inter-arrival rate λ. In this paper we focus on computational grids
and therefore, we only consider coarse-grain jobs, where the run-time is domi-
nating the whole execution time (i.e. network latencies and transfer times are
neglected and we thus do not take into account the data localization). Hence,
each submitted job l is given a number of operations to perform μ� and the
execution time on computing element Ci is μ� × si. The only assumption made
about μ� is that it follows an exponential distribution of parameter μ. Each com-
puting element is equipped with a FIFO queue where incoming jobs are stored
and wait for a node to become available for execution.

A grid system is never perfectly reliable: job can fail due to several factors.
To model that, each node of site Ci has a probability pi < 1 to produce a faulty
result. As computing this probability is not always easy or possible, the resource
broker does not use this parameter when dispatching jobs to resources. Finally,
we suppose that failures are transient: when a job is erroneous it is possible to
use again the processors that has executed this job.

3.2 Fault-Tolerant Strategies

In order to cope with failures, we propose 2 fault tolerant strategies. Global
resubmission: when a job has failed, it is resubmitted to the resource broker.
The resource broker then chooses a new computing element using the same
strategy as described above. Local resubmission: when a job has failed on a
given computing element, it is resubmitted and queued to the same computing
element.

We will consider two variants. One with a limited number of R submissions, the
other with an unbounded number of resubmissions (R = +∞). The system stops
resubmission when the job is correct or after R submissions. When R is finite, it
is not guaranteed that the job will finally be correctly executed, while when R is
unbounded, it can take a very long time for the job to be correctly executed.
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4 Analysis of the Strategies

We propose to study 3 metrics. The saturation load which is the load above which
the system cannot treat all the incoming jobs (the queue sizes are growing with
time). The average waiting time which is the time during which a job stays in
the system. The last metric is the failure probability which gives the chance that
this job is not correctly executed.

4.1 Unlimited Global Resubmission

In this section, we assume that a job can be resubmitted an unlimited number
of times. This guarantees that, when it exits the system, a job is correct.

Saturation Load. Let ν = λ
μC be the input load (the input rate divided by the

computational rate). Let α = 1
C

∑N
i=1 cipisi =

∑N
i=1 γipi be the probability that

a job scheduled by the Resource Broker fails. Let δi be what exits Ci. A part of
this flow is sent back to the resource broker, and is then added to the input rate
λ. We assume that the input flow plus the resubmitted jobs can be considered as
a poissonian flow (this is an approximation, but we assume that if the input flow
is (much) larger than the feedback, this assumption is reasonable). We denote
by λE the effective input rate, i.e. λ plus the resubmissions.

We are here interested by non saturated systems ( λE

μC < 1), which means that
the input flow is equal to the output flow. Indeed, the system does not saturate
when the output rate λE is lower than the computational rate μC. With this
approximation, we have δi(output rate of Ci) = λE

cisi

C (input rate of Ci) and
λE = λ+

∑
k δkpk = λ+

∑
k λE

cksk

C pk = λ+λE
1
C

∑
k ckpksk = λ+λEα = λ

1−α .
Therefore, if the system input flow is ν = λ

μC , we have an effective load of

ν
E

= λE

μC =
λ

1−α

μC = ν
1−α . Hence, the system saturates for an input load of

ν = λ
μC > 1 − α.

Average traversal time of Ci (Fi). For a load of νE , we know [2] that the

average queue size of computing element Ci is Qi(νE ) = E[Qi] = b
ν

E
ci+1·cci

i

ci!(1−ν
E

)2

where b =
[∑ci−1

k=0
(ν

E
ci)k

k! + (ν
E

ci)ci

ci!
1

1−ν
E

]−1

. On computing element Ci, the

average time before the end of an execution (called Fi), with an effective load of
ν

E
on Ci is then Qi(νE

)
μici

+μ−1
i . Hence, if the input load is ν, Fi(ν) =

Qi( ν
1−α )+ci

μici
.

Let F be the average traversal time. We then have F =
∑N

i=1 γiFi, because
γi is the probability for a job to be sent on Ci. Hence, F = 1

C

∑N
i=1 cisiFi =

1
C

∑N
i=1

cisi

μici
(Qi( ν

1−α ) + ci) = 1
μC

[∑N
i=1

(
Qi( ν

1−α ) + ci

)]
.

Average waiting time. Let W be the average time before a job exits the sys-
tem, and wi the average waiting time for a job starting running on Ci (whatever
the number of rounds). We have: W =

∑N
i=1 γiwi because γi is the probability

for a job to be sent on Ci, and wi = Fi + piW because the average waiting time
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can be split in the average waiting time on Ci (Fi), plus, if the job failed (with a
probability pi), the same waiting time than a job entering the system (W ). We
then have W =

∑N
i=1 γiFi +

∑N
i=1 γipiW = F + αW = 1

1−αF .

4.2 Limited Global Resubmission

In this section, we add the constraint that a job cannot be executed more times
than some value R given by the system.

Saturation load. We first compute the probability for a job to fail. If a job
failed, it means that it failed at each rounds, included the Rth. We then have:
P[failure] = P[failure at the first round ∧ · · · ∧ failure at the Rth round] =∏R

i=1 P[failure at the ith round] =
∏R

i=1 α = αR. The probability for a job to exit
the system at the end of its execution on Ci is the probability either to succeed
(1−pi), or to have already R−1 failures before the current round (αR−1pi). The
proportion of jobs exiting Ci but sent back to the input is then pi(1 − αR−1).
We can now compute the input flow: λE = λ+

∑N
k=1 δkpk(1−αR−1) = λ+(1−

αR−1)
∑N

k=1 λEγkpk = λ + (1 − αR−1)λEα = λ
1−(1−αR−1)α = λ

1−α+αR .
Therefore, we can show that if the input load is ν, we have an effective load

ν
E

of ν
1−α+αR . According to this, the system will then saturate at a load of

1 − α + αR.

Average traversal time on Ci (Fi). With the same kind of arguments and
notation as for the limited resubmission, we have Fi = Qi(νE

)
μici

+ μ−1
i . There-

fore, if the input load is ν, Fi(ν) =
Qi

(
ν

1−α+αR

)
μici

+ μ−1
i . We then have F =

1
μC

[∑N
i=1

(
Qi

(
ν

1−α+αR

)
+ ci

)]
.

Waiting time. We will use the following notations: Wk is the average time that
a job entering the system takes to exit the system, if it can still be resubmitted
k times (W0 is then the average run-time of a job which exits the system at the
end of its execution, even if it fails). wk,i is the average time a job entering Ci

takes to exit the system, if it can still be resubmitted k times. Hence, when R
submissions are allowed WR−1 is the average time for executing a job.

Lemma 1. WR−1 = 1−αR

1−α F where F is defined in the above section.

Due to lack of space, the proof is not given. Note that we have limk→∞ Wk = W ,
where W is the average waiting time for unlimited resubmission.

4.3 Unlimited Local Resubmission

In this scenario, a failed job is re-submitted in the queue of the computing
element where it was running. We use the same notation (λi = λγi, λ′

i and δi)
as in Section 4.1.

Saturation load. In order to evaluate the saturation load, we assume that the
feedback flow (δipi) is poissonian. We have λ′

i = δi (the flow coming in the queue
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equals the flow going out), and λi + δipi = δi. Therefore, λ′
i = δi =

λi

1 − pi
. The

saturation load of Ci is then 1 − pi. And the saturation load of the system is
then min(1 − pi) = 1 − max pi.

Average traversal time on Ci (Fi). With the same argument as for the global

resubmission, we get Fi(ν) =
Qi( ν

1−pi
)+ci

μici
.

We can see that the traversal time of the queue i is only influenced by its own
failure probability, while in the global case, this traversal time depends upon
every pk (in α).

Average waiting time. We use the W and wi definition from global resubmis-
sion. We have W =

∑N
i=1 γiwi and wi = Fi + piwi = Fi

1−pi
.

Therefore, W =
∑N

i=1 γi
Fi

1−pi
=
∑N

i=1
cisi

C

Qi( ν
1−pi

)+ci

μsici(1−pi)
=

1
μC

∑N
i=1

1
1−pi

(
Qi( ν

1−pi
) + ci

)
.

4.4 Limited Local Resubmission

We can use the same argument as in the global case: the failure probability on
Ci is pi

R. The failure probability for a job entering the system is
∑N

i=1 γipi
R.

Effective load. The probability that a job exits the system is the probability
that it was correct, or had already too many rounds: P[resubmission] = 1 −
P[exit] = 1 − P[succeed ∨ final failure] = 1 − ((1 − pi) + pi

R) = pi(1 − pi
R−1).

Then the input flow of Ci is λ′
i = λi +δipi(1−pi

R−1) = λi +λ′
ipi(1−pi

R−1) =
λi

1−pi+pi
R .

Saturation load. We can then get that the saturation load on Ci is 1−pi+pi
R.

Then, the system one is min(1 − pi + pi
R) = 1 − max(pi − pR

i ).
For the Average traversal time of Ci (Fi), it is straightforward that Fi(ν) =

Qi

(
ν

1−pi+pi
R

)
+ci

μici
.

Average waiting time

Lemma 2. Using the same notation as for the global resubmission we have:
WR−1 = 1

μC

∑N
i=1

1−pi
R

1−pi

(
Qi

(
ν

1−pi+pi
R

)
+ ci

)
.

Due to lack of space, the proof is not given. Here again we have limk→∞ Wk = W ,
where W is the average waiting time for unlimited local resubmission.

5 Experimental Validation

5.1 Experimental Settings

We have used the SimGRID simulator [4] to perform a set of experiments for
measuring the different metrics proposed in the above sections as well as the total
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running time for the execution of a given number of jobs. For these simulations,
the unit of time is set as the average job run-time and hence μ = 1. We have
designed 6 platforms where we have executed 1000, 4000, 7000 and 10000 jobs. A
sum-up of the six platforms is shown in Table 1. Platforms characteristics vary in
number of clusters, number of nodes per cluster, speed of the nodes and failure
probability of each nodes. The load submitted to each platform (λ) is set such
as saturated and non-saturated modes are both observed. For each platform we
use three failure probability factors of 1, 0.1 and 0.01. This is a multiplication
factor that is applied to the pi value given in Table 1. The goal of these factors
to obtain 3 different variants from low reliability (probability factor set to 0.1)
to high reliability (probability factor set to 1). For instance, with a probability
factor of 0.1 the probability failure of the 4 computing elements of platform 4
switches from (0.7,0.5,0.3,0.1) to (0.07,0.05,0.03,0.01)).

Table 1. Description of the different platforms used for the experiments

Platform Nb Nodes per cluster Node speed Node proba λ
id clusters ci si of failure: pi min:inc:max

1 3 (3,2,5) (1,3,2) (0.5,0.5,0.5) 1:0.5:15
2 6 (20,30,10,30,3,50) (0.1,0.1,0.2,0.1,2,0.05) (0.5,0.4,0.5,0.2,0.9,0.1) 1:0.5:25
3 4 (6,6,6,6) (0.1,0.3,0.5,0.7) (0.1,0.3,0.5,0.7) 1:0.5:25
4 4 (6,6,6,6) (0.1,0.3,0.5,0.7) (0.7,0.5,0.3,0.1) 1:0.5:25
5 4 (6,6,6,6) (0.1,0.3,0.5,0.7) (0.9,0.9,0.01,0.01) 1:0.5:25
6 4 (6,6,6,6) (0.4,0.4,0.4,0.4) (0.99,0.99,0.01,0.01) 1:0.5:25

We have set R, the maximum number of submission from 1 (no resubmission)
to 10 and to infinity. The experiments were done by executing each setting
(number of jobs, platform id, different load and 3 probability factors) 50 times
to obtain relevant average values. At the end, a total of more than 5 millions
experiments have been run.

5.2 Model Validation

For each experiments, We have measured the different metrics. Here, we compare
our models with the experimental measures to assess their quality.

Saturation. When a system is not saturated, the measured average waiting
time of job does not depend on the number of submitted jobs. However, when
a system is saturated, the input load exceeds its treatment capacities, therefore,
the average waiting time increases with the number of submitted job.

For each tuple (probability factor, heuristic, platform, number of copies/
maximum resubmission, λ) we have measured how the average queue size varies
when the number of job increases from 1000 to 10000. This increase is mea-
sured by the slope of a linear interpolation. When this slope is smaller than a
threshold, there is no saturation and when this slope is greater than a threshold
there is saturation. By binary search we have found that the best discriminating
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threshold is about 0.001 (for instance the average waiting time is 10 for a 1000
jobs and 19 for 10000 jobs). A good news is that this value does not depend
on the considered heuristic (local resubmission or global resubmission). More
precisely, for global resubmission, only 0.14% of the cases have a slope greater
than 0.001 while considered by the model as non saturated cases and 0.7% have
a slope lower than 0.001 while considered by the model as saturated cases. For
local resubmission the percentage of error are respectively 0.6% and 3.9%.

From the above results, we see that models for resubmission are very accurate
(local resubmission being a little bit less accurate due to some simplification
hypothesis made).

Probability of failure. The accuracy of our model for determining the proba-
bility of failure is shown in Figure 1(a). For each case and each heuristic, we have
compared the probability of failure given by the model (pf1) and the fraction of
failure we have measured during our simulation (pf2). The error e of the model
is computed as follows e = 100 |pf2−pf1|

pf2 . In the graph of Fig. 1(a), we plot an
error threshold on the x-axis and the fraction of cases that have an error lower
than this threshold on the y-axis. Hence, such graph is similar to a cumulative
distribution function (CDF) as for any value on the x-axis, we plot the fraction
of experiments that have an error lower than a given value.

Note that unlimited resubmission is not shown here as the failure probability
is 0. From this figure we see that more than 80% of the cases have an error lower
than 5%. We see that the model for global resubmission is the least accurate
though still very good (more than 90% of the cases have an error lower than
15%).
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Fig. 1. Accuracy of the model

Average waiting time. To show the accuracy of the model concerning average
waiting time, we show the same kind of graph as above: in Fig. 1(b), we plot
the error threshold on the x-axis and, on the y-axis, the fraction of experiments
that have an average waiting time error lower than this fraction. The error being
computed as e = 100 |wt2−wt1|

wt2 , where wt1 is the model prediction and wt2 is the
measured value.
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Fig. 2. Comparison of the unlimited local vs. global resubmission

We see that the global resubmission model (both for the unlimited or limited
case) is very accurate, almost 90% of the experiments have an error lower than
10%. The local resubmission model is less accurate but the unlimited case is still
very good. The model for the local limited resubmission is acceptable with half
of the cases having an error lower than 5% and 80% of the cases having an error
lower than 40%.

5.3 Comparison of the Heuristics

Local vs. Global Unlimited Resubmission. Here we compare the unlim-
ited resubmission heuristics (jobs are resubmitted to the system until they are
successfully executed). Therefore, the probability of success is 1.

In Fig. 2(a) we show the average run-time of both heuristic for the 6 different
considered platforms. We see that the local strategy never outperforms the global
one. The two strategies provide similar results when no computing element is
highly unreliable (platform 1 and to a less extent platforms 3 and 4). When
the highest unreliable computing element has a probability of failure close to
0.9 (platform 2 and 5) the global strategy is better than the local one. When a
platform has a highly unreliable computing element (such as in platform 6) the
global heuristic greatly outperforms the local one.

In Fig. 2(b) we show the average run-time of both strategies when varying
the probability factor, which is multiplicative factor of the given probability of
failure of each computing element of the platform. From that figure, we see that
when the probability factor is low (i.e. platforms are reliable), the local strat-
egy matches the global one. However, when the probability of failure increases
(probability factor of 1), the local strategy is outperformed by an average factor
of 10.

We see that the local resubmission outperforms the global resubmission in
2.6% of the cases when the probability factor is 1 (platform are highly unreliable),
in 36.6% of the cases when the probability factor is 0.1 and 49.1% of the cases
when the probability factor is 0.01 (the platform is fairly reliable). This confirms
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that the less reliable the platform the less efficient the local resubmission. In any
cases, the local resubmission never outperforms the global resubmission with a
ratio better than 1.08. This means that when local resubmission is better than
global resubmission this is only by a very small margin.

Global resubmission is better than the local resubmission is explained by the
fact that, if a job fails, this means that the processor that has executed this job
is not reliable and therefore it is better to not reuse it for further execution and
hence, it is better to resubmit the job globally to the system.

Local vs. Global limited Resubmission. Here, we compare both approaches
when only limited resubmission is possible. When the maximum number of re-
submission is allowed, the probability of success is lower than 1 and is different
if one use the local or global submission. We already know that when proba-
bility of success is one (unlimited resubmission), the global strategy is better
than the local strategy. Hence, here, we fix the maximum probability of failure
and see if the local strategy can, sometimes outperform the global one. To do
so, for each possible combination (platform, input load, and probability factor),
we have fixed the success threshold to the one obtained by the global strategy
when one resubmission is allowed (i.e. R = 2 and the exact success probability
is α2). From Table 2, we see that, in more than 90% of the cases the local re-
submission needs more than 2 resubmissions to exceed this success threshold of
the global resubmission when R = 2. Hence, the local resubmission needs more
resubmission to achieve the same reliability. Moreover, when the success thresh-
old is exceeded by the local strategy, it leads to a better throughput in only 31%
of the cases. But, in these cases, when we compare the throughput of the local
strategy to the one of the global strategy we see that the improvement is only
marginal (at most 4.3%) (detailed results for all platforms are given in table 2).
This means that the local strategy sometimes requires a lot of resubmissions to
match the reliability of the global strategy. When it does so, it is at the cost
of a lower throughput in general and in any case, the local strategy is almost
never able to outperform both the reliability and the throughput of the global
strategy. Our explanation comes from the fact that, when a job has failed, it
requires, on the average, a lot more local resubmissions than global ones to be
successfully executed.

Table 2. Performance of the local strategy when asking to exceed the reliability ob-
tained by the global strategy when R = 2

Platform Total Percentage of cases requiring more Percentage of Overall best
id cases than 2 resubmissions to exceed cases with throughput

the reliability of the global strategy better throughput ratio

1 87 48.3% 48% 0.5%
2 147 93.9% 35% 4.3%
3 147 91.2% 54% 2.1%
4 147 93.2% 11% 0.7%
5 147 99.3% 16% 1.2%
6 147 100% 22% 0.5%

Overall 822 90.5% 31% 4.3%
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6 Conclusion

Failure is an ordinary characteristic of large-scale distributed environments. In
this paper we have studied the problem of random brokering on unreliable plat-
forms directly inspired from existing grids such as EGEE. We propose a different
approach from the usual trace-based (top-down) where the model is analytically
computed from a general model of the environment and the submission strategy.

Here, our bottom-up approach is based on a simple model where incoming jobs
are randomly dispatched to computational elements with a probability propor-
tional to the accumulated speed of this element. As we assume that job execution
can fail, we study two strategies to improve the reliability (namely local resub-
mission and global resubmission). For each heuristic we are able to model the
saturation ratio (when the incoming load exceed the maximum throughput of
the environment), the average waiting time of the jobs and the probability of
success of each job. Our experiments show that the proposed models are very
realistic. For each of the above metric the models usually predict a very precise
value. Furthermore, experiments show that, on the average, the global resub-
mission is the best strategy as it outperforms, in almost every case, the local
resubmission.

Future works are directed towards the evaluation of more metrics such as
resource usage, load balance, etc. An other direction of future research is to
improve the submission model by adding new laws for inter-arrival or duration
or by mixing laws (i.e.. some job durations follow an exponential law while others
follow a Weibull). The ultimate goal is to be able to come-up with analytical
model that would match real traces using this approach.
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Abstract. With the advent of large-scale heterogeneous platforms such
as clusters and grids, resource failures are more likely to occur and have
an adverse effect on the applications. Consequently, there is an increas-
ing need for developing techniques to achieve reliability during execution.
This paper presents FT-Jace, a new reliable programming model for grid
computing environments. FT-JACE achieves reliability in a transparent
manner for the programmer. It is based on active replication scheme, ca-
pable of supporting r arbitrary fail-silent (a faulty node does not produce
any output) and fail-stop (no node recovery) node failures. The strength
of our programming environment is that the deployment of the applica-
tion does not require complicated mechanisms for failure detection. More
precisely, node failures are masked and there is no need for detecting
and handling such failures. We provide experimental results conducted
on Grid’50001 platform to demonstrate the usefulness of FT-Jace.

1 Introduction

In large-scale heterogeneous grids, the probability of a failure is much greater
than in traditional parallel systems. Consequently, reliability is becoming a cru-
cial area in grid computing since the difficulty for setting up a coherent platform
is higher as the number of nodes gets larger. The most popular fault-tolerance
mechanism is checkpointing[10,6,7,14,3,8,9], i.e., periodically saving the state of
the application on stable storage, usually a hard disk. After a crash, the ap-
plication is restarted from the last checkpoint rather than from the beginning.
Checkpointing is used in grid computing by systems such as Condor [13] , Cac-
tus [1] and MPICH-V2 [6]. One of the disadvantages of checkpointing is its fault
tolerance overhead, even if there are no crashes. In addition it assumes a reli-
able server where checkpoints can be stored. Writing the state of the process
to stable storage is the main source of this overhead. Another problem of most
checkpointing schemes is the complexity of the crash recovery procedure, es-
pecially in dynamic and heterogeneous grid environments where retrieving and
transferring the checkpoint data between nodes is non-trivial. The fault toler-
ant scheme we propose does not suffer from this problem, because crashes can
1 http://www.grid5000.org

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 162–171, 2010.
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be masked without the need of detecting and handeling them. The likely best-
known family of fault tolerance techniques is task replication [5]. There are two
main approaches, as described below :

i) Passive replication (primary/backup): This is the traditional fault-tolerant
approach where both time and space exclusions are used. The main idea of this
technique is that the backup task is activated only if the fault occurs while
executing the primary task. This technique assumes that there is a fault detec-
tion/recovery mechanism that detects and handles node failures.

ii) Active replication (N-Modular redundancy): This technique is based on space
redundancy, i.e., multiple copies of each task are mapped on different nodes,
which are run in parallel to tolerate a fixed number of failures. For instance,
Genaud and Rattanapoka [11] propose P2P-MPI a Peer-To-Peer framework for
robust execution where multiple node failures are considered. Unfortunately, this
technique also assumes that there is a fault detection/recovery mechanism that
detects and handles node failures. To the best of our knowledge, P2P-MPI is the
closest work to the one presented in this paper.

We strongly believe that the active replication scheme is an alternative solution
which does not require i) any specific reliable resource to store system states
and ii) complicated mechanisms for failure detection/recovery. Our programming
environment should provide automatic and transparent mechanisms to improve
reliability of the system network.

Our motivation in this work is to propose a mechanism that has smaller over-
head and is simpler to implement than more general techniques such as check-
pointing. This is the reason why we propose FT-Jace, a solution based on task
replication. Such a mechanism can have very low overhead, as no synchronization-
coordination between processes is needed and no data needs to be stored on
stable storage. The programming model we present in this paper is robust since
it resists to eventual failures even without being detected. It could serve as a
basis for fault tolerance and self configuration.

The rest of this paper is organized as follows: in Section 2, we outline our fault-
tolerance mechanism and describe its implementation. In Section 3, first we give
some properties of FT-Jace and next we outline its threads management level
and reliability analysis. We present the results of the performance evaluation of
our mechanism in Section 4. Finally, we conclude in Section 5.

2 FT-Jace Platform

Our mechanism is an improved version of JACE, a Java programming and ex-
ecuting environment [2] that was introduced/developed to implement efficient
asynchronous algorithms as simply as possible. FT-Jace builds a distributed
virtual machine, composed of heterogeneous machines scattered over several dis-
tant sites. It proposes a simple programming interface to implement applications
using the message passing model. The interface completely hides the mecha-
nisms related to asynchronism, especially the communication manager and the
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global convergence control. In order to propose a more generic environment, FT-
Jace also provides primitives to implement synchronous algorithms and a simple
mechanism to swap from one mode to another. The improved version that we
propose relies on three components: the daemon, the computing task and the
spawner.

2.1 The Daemon

The daemon is the entity responsible for executing user applications. It is a Java
process running on each node taking part in the computation. Figure 1 shows
the internal architecture of the daemon which is composed of three layers : the
worker service, the application layer and the communication layer.

TCP/Socket NIO

Communication Layer

Tasks Manager

Messages Manager

RMI

Grid Infrastructure

Network Layer

Application Layer

Worker Service

User Task’s

Fig. 1. FT-Jace daemon architecture

The Worker Service. When a daemon is launched, a service is started on it
and is continuously waiting for remote connections. This server provides com-
munications between the daemons and the spawner. It is used to manage the
FT-Jace environment like for example: initializing the daemons, monitoring and
gathering the results.

The Application Layer. This layer provides task-replicas execution and global
convergence detection. A daemon may execute multiple task-replicas, allowing to
reduce distant communications. It is designed to control the global convergence
process in a transparent way. Tasks only compute their local convergence state
and call the FT-Jace API to retrieve the global state. The internal mechanism
of the convergence detection depends on the execution mode i.e. synchronous or
asynchronous.

The Communication Layer. Communications between task-replicas are per-
formed using the message/object passing model. FT-Jace uses waiting queues to
store incoming/outgoing messages and two threads (sender and receiver) to
deal with communications. According to the kind of algorithm used, synchronous
or asynchronous, queues managements are different. For a synchronous execu-
tion, all messages sent by a task-replica must be received by other task-replicas.
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Whereas on an asynchronous execution, only the most recent occurrence of a
message, with the same source or destination and containing the same type of
information is kept, in the queues. The older one, if existing, is deleted.

To not take into account the redundant messages due to replication, each
daemon mantains an information table. Each entry is composed of two fields:
< src tag >, < counter >, where src is the FT-Jace rank of sender task, tag is a
tag number of FT-Jace task and counter is the number of calling FT Jace Send.
At the reception of a message, the daemon checks if a message whith the same
< src tag > field already exists in its information table. If a message exists, it
checks the counter value. If the counter value of the new message is greater than
or equal to the counter value in the table, the message is updated by the newer
one. Otherwise, the message is ignored. But if the message does not exists, it
simply puts that message in its information table.

For scalability issues and to achieve better performances, the communica-
tion layer should use an efficient protocol to exchange data between remote
task-replicas. For this reason FT-Jace is based on several protocols : TCP/IP
Sockets, NIO (New Input/Output) and RMI. NIO is a Java API (introduced
in Java 1.4). It provides new features and improved performances in the areas
of buffer management, scalable network and file I/O. The most important dis-
tinction between the original I/O library and NIO is how data is packaged and
transmitted. Original I/O deals with data in streams, whereas NIO deals with
data blocks and consumes a block of data in one step. Furthermore, previously
for network applications, users would have had to deal with multiple socket con-
nections by starting a thread for each connection. Inevitably, they would have
encountered issues such as operating system limits, deadlocks, or thread safety
violations more specially in a large scale context. With NIO, selectors are used
to manage multiple simultaneous socket connections on a single thread.

2.2 The Computing Task

As in MPI-like environments, the programmer decomposes the problem to be
solved into a set of cooperating sequential tasks. These tasks are executed on
the available nodes and invoke special routines to send or receive messages. A
task is the computing unit in FT-Jace, which is executed like a thread rather
than a process. Thus, multiple task-replicas may execute in the same daemon
and can share the system resources. The task-replicas running in the same node
use shared memory to exchange data.

To write a FT-Jace application, the user simply needs to extend the Task class
and to define a run() method containing its program code. The Task class may
be considered as the programming interface of FT-Jace. It contains a limited set
of methods and attributes dedicated to implement asynchronous/synchronous
algorithms in a message passing style. To summarize, we can find:

– the non-blocking send/receive,
– the blocking send/receive (for synchronism),
– the global communications: barrier, broadcast, rendezvous,
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– the convergence control,
– the finalization.

2.3 The Spawner

The spawner is the entity that effectively starts the user application. After start-
ing daemons on all nodes, computations begin by launching the spawner program
with the following parameters:

– the number of task-replicas to be executed;
– the URL of the task byte-code;
– the parameters of the application;
– the list of target daemons;
– the mapping algorithm (round robin).

Then, the spawner broadcasts this information to all the daemons. Now, when
a task-replica is spawned, an identification number (task ID or rank) is assigned
to it. This number is an integer whose value ranges from 0 to n(r + 1)− 1, with
n being the global number of tasks in the FT-Jace application A. This mapping
is done by FT-Jace and by default uses a round robin algorithm (see Figure 2).

n ← number of FT-Jace tasks;
r ← fault tolerance degree;
m ← number of available nodes;
k ← 0;
for i = 0 to n do

for j = 0 to r do
rank(t) = i + n × j;
map a task t on a node k;
k = (k + 1) mod m;

end for
end for

Fig. 2. Rank assignement algorithm Fig. 3. A message sent from task t0 to t1

Task replication. Our implementation is based on an active replication scheme,
capable of supporting r arbitrary fail-silent/fail-stop node failures. This replica-
tion management is absolutely transparent for the programmer. When specifying
a desired number of tasks, the programmer requests the system to run for each
task an arbitrary number of copies called replicas. In the following, we denote by
S(t) the set of r +1 replicas of tasks t. Also, we denote by t(k) those replicas, for
1 ≤ k ≤ r + 1. Thus, S(t) = {t(1), t(2), . . . , t(r+1)}. P

(
t(k)

)
is the node on which

replica t(k) is assigned by the spawner. The task-replicas are run in parallel on
different nodes (space exclusion, see Property 1) since the goal is to allow the
continuation of the execution even if some node failures occur.
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Now, we explain how the task replication is related to FT-Jace rank assign-
ment. Our model uses an active replication scheme to tolerate a fixed number
r of failures. The spawner takes the number of FT-Jace tasks n and the fault
tolerance degree (or reliability factor) r as arguments and then tries to mappe
the task-replicas using a round-robin matching as shown in Figure 2. Since all
replicas of the receiver side receive the sent message from all replicas of the
sender side, there is no need to manage/coordinate the replicas behavior. The
communication scheme is kept coherent with the semantics of the original fault
free version of FT-Jace application.

In Fig 3, we show the FT-Jace rank matching computed by the spawner when
the programmer executes an FT-Jace application requiring two tasks and fault
tolerance degree of 1, i.e., the equivalent of FT-Jacerun -np 2 -r 1. Rank
0 refers to the task which collects the results. It is not executed at requesting
user’s node. Thus, it is also replicated. Therefore, the number of task-replicas
involved for execution is n(r + 1).

3 Analysis of the FT-Jace Environment

In this section, first we present some properties of our fault tolerant scheme, and
express its communication/computation overhead, next we detail its threads
management level and reliability analysis.

Property 1. For an active replication scheme, a task ti in the FT-Jace appli-
cation A is guaranteed to execute in the presence of r permanent faults if and
only if P (tki ) �= P (tk

′
i ), for 1 ≤ k, k′ ≤ r + 1.

Proof. If r nodes fail, then there is P (tzi ), 1 ≤ z ≤ r + 1 which did not fail, and
therefore P (tzi ) executes successfully since there are r+1 copies of ti assigned to
r + 1 different nodes. However, if there is a node P (tki ), 1 ≤ k ≤ r + 1, such that
P (tki ) = P (tzi ) = P ∗ and P ∗ fails, then neither tki nor tzi can execute successfully.

Property 2. Let t and t∗ two tasks involved in communication. If a replica of
task t and a replica tz∗ of t∗ are mapped on the same node P , then there is no
need for other replicas of t∗ to send data to node P .

Proof. if P is operational, then the replica of t on P will receive the message
from tz∗ (intra-node communication). Otherwise, P is down and does not need
to receive anything.

Proposition 1. If at most r node failures occur in the system network, then the
matching computed by the spawner remains valid and resists to r failures.

Proof. FT-Jace is based on an active replication scheme with space exclusion.
Thus according to Property 1, each task is replicated r + 1 times onto r + 1
distinct nodes. We have at most r node failures at the same time. So at least
one copy of each task is executed on a fault free node.
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Latency bounds: Let t̂ be the last task to be executed in the application.
The lower bound M∗ of the response time (latency) of the application can be
achieved if no node permanently fails during the execution of the application. It
is defined as follows:

M∗ = max
t̂i∈A

{
min

1≤k≤r+1

{F(t̂ki , P (t̂ki )
}}

(1)

To compute the upper bound of the response time M, which is achieved in the
presence of r permanent failures, we use the following formula:

M = max
t̂i∈A

{
max

1≤k≤r+1

{F(t̂ki , P (t̂ki )
}}

(2)

Proposition 2. The latency achieved by FT-Jace is L ≤ M despite r perma-
nent failures.

Proof. Since the application A can be represented as a Directed Asyclic Graph
(DAG), the proof is similar to that presented in [5].
– Communication/computation overhead: To resist to r failures, each task
t ∈ A is replicated r+1 times. Allocating many replicas of each task will increase
the total number of communications required by the application: we move from
m communications in a matching with no replication (fault free application), to
m(r +1)2 with replication (fault tolerant application), a quadratic increase. But
in fact our mechanism exploits threads to manage both communications and
computations (see below). This leads to a significant reduction of fault tolerance
overhead.
– Threads management level: The initial version of Jace is a multi-threaded
environment which runs three threads in parallel: the computation thread, the
sender thread and the receiver thread. The new version that we prpose redefines
the threads management policy, in partiular when several task-replicas runs on
the same node. This case becomes more and more relevant due to the gener-
alization of multi-cores processors. So, to avoid synchronizations between the
computation and the communication threads a unique sending queue is used.
So, when k task-replicas running on a node we get 1 sending queue and k receiv-
ing queues. The threads scheduling is also modified. Indeed, according to sev-
eral experimentations it appears that the Asynchronous Iterations Asynchronous
Communications (AIAC) algorithms are more efficient when the sender thread
is of high priority. This can be explained by the fact that in this case, messages
are more frequently updated and consequently the algorithm converges more
quickly.
– Improving reliability: For serial and parallel configurations of components
which turn up in many different systems, the reliability of each component can
be given in a variety of ways: mean time to failure MTTF , reliability percent-
age over a period of time, failure rate, etc. For complex systems, a component’s
failure rate is measured meticulously using extended benchmarks and simula-
tions. Modern fail-silent processors can have a failure rate of the order of 10−6



Reliable Parallel Programming Model 169

per hour [12]. The overall reliability of a system which is composed of a chain
of components can be calculated as the probability of all components execut-
ing successfully. In other words, it is the product of the individual reliabilities:
Rsyst =

∏
i

Ri. For a system of components running in parallel, the overall reli-

ability is 1 minus the probability that all components fail:

Rsyst = 1 − Fsyst = 1 −∏
i

Fi = 1 −∏
i

(
1 −Ri

)
Node failures in the system network are assumed to be statistically independent
and follow an exponential law with a probability density function (PDF) f(t) =
λe−λt, t ≥ 0, where λ is the constant failure rate. Thus, from a node’s failure
rate, we can derive the reliability of that node over a period of time t as follows:

R(T > t) = 1 − P (T ≤ t) = 1 −
∫ t

0
f(t) = e−λt

where T is a random variable associated to a node. Thus, if a node is estimated
to have a failure rate of 5 failures every 10000 hours, then its reliability over a
24 hour period is calculated to be approximately 99%.

For a mapping without repliaction, the execution of the application is suc-
cessful if and only if each node is operational (no failure) while it is executing its
assigned tasks. So, the reliability of the system network is the probability that the

application A can run successfuly during the mission. Formally: RA =
n∏

i=1
Ri.

It follows that for a mapping with replication, successful execution of the
application A requires that at least one replica of each task ti ∈ A be executed

successfuly: RA =
∏
i

Ri =
∏
i

(
1 −∏

j

(
1 −Rj

))
, 1 ≤ i ≤ n, 1 ≤ j ≤ r + 1.

4 Experimental Results

In this section, we report the experiments we have performed on the French
Grid’50002 platform. We have used 50 nodes located at Sophia-Antipolis. The
nodes used are equipped by bi-core AMD Opteron 2.0 GHZ and connected in
Gigabit Ethernet. We have implemented both synchronous and asynchronous
iterative mode of Jacobi method to solve linear systems (Ax = b). For more
details concerning this method, readers are invited to consult [4]. The size of the
matrix A is 108 × 108.

As a first evaluation, the metrics which caracterize the performance of FT-
Jace are the achieved execution time (latency) and the overhead due to the
active replication scheme. The overhead is computed as OverheadFT−Jace =
LF T−Jace−LF F

LF F
, where LFT−Jace is the execution time achieved by FT-Jace, and

LFF the execution time of the fault free mapping defined as the matching gener-
ated by the spawner without replication, assuming that the system is completely
safe, setting r = 0. We let r = {1, 2, . . . , 10}, which corresponds to a reasonable
number of failures for an architecture of 50 nodes.
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Fig. 4. Asynchronous mode
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Fig. 5. Synchronous mode

Table 1. Fault tolerance overhead (%)

Reliability factor (r) 2 4 6 8 10
Asynchronous mode 0.04 0.06 0.17 0.30 0.56
Synchronous mode 0.06 0.16 0.52 0.69 1.06

As expected, we observe from figures 4, 5 and table 1 that we deal with two
conflicting objectives. Indeed, the fault tolerance overhead increases together
with the number of supported failures. We also see that latency increases together
with the presecribed fault tolerance degree. However, FT-Jace achieves a really
good performance, which is very close to the fault free version. In addition, the
fault tolerance overhead induced by the active replication scheme is reasonable
and increases slightly as the reliability factor (fault tolerance degree) goes up.

We did not have time to test the impact of crashes on the preformance of FT-
Jace, but we expect as shown in [5] that when the number of failures increases,
there will not be really much difference in the increase of the latency achieved
by FT-Jace, compared to the latency achieved with 0 crash (the lower bound).
This is explained by the fact that the increase of latency is already absorbed by
the replication done previously, in order to resist to eventual failures.

We are currently working on: (i) evaluating the impact of crashes on the
achieved latency and (ii) testing FT-Jace in a large scale context with more
than 200 nodes and with some other scientific intensive applications. These tests
will allow us to better evaluate/analyse the behaviour of FT-Jace.

5 Conclusion

In this paper, we have presented a new parallel programming model for grid
environments. It is based on an active repliaction scheme and does not require
complicated mechanism for fault detection/recovery. Our fault-tolerant scheme
has the potential to become a viable platform for Grid applications as no syn-
chronisation between tasks is needed and no data needs to be stored on stable
2 http://www.grid5000.org
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storage. In addition, it exploits threads to manage both communications and
computations, this leads to a significant reduction of fault tolerance overhead.

An extension of FT-Jace would be to change the mapping algorithm of the
spawner by an effective scheduling strategy that take into account both algo-
rithmic and architectural characteristics (resources capability and reliability) to
achieve a good mapping of task-replicas to nodes. We would then need to solve
a challenging bi-criteria optimization problem (latency and reliability).
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PROPER 2009: Workshop on Productivity and
Performance – Tools for HPC Application Development

The PROPER workshop addresses the need for productivity and performance in high
performance computing. Productivity is an important objective during the development
phase of HPC applications and their later production phase. Paying attention to the
performance is important to achieve efficient usage of HPC machines. At the same time
it is needed for scalability, which is crucial in two ways: Firstly, to use higher degrees
of parallelism to reduce the wall clock time, i.e. the response time for the user. And
secondly, to cope with the next bigger problem, which requires more CPUs, memory,
etc. to be able to compute it at all.

Support for the user via specialized tools is essential for productivity and perfor-
mance. Therefore, the workshop covers tools and tool approaches for parallel program
development and analysis, for debugging and correctness checking, and for perfor-
mance measurement and evaluation. Furthermore, it provides an opportunity to report
successful optimization strategies with respect to scalability and performance.

All of this year’s successful contributions focus on performance analysis tools and
new ideas for their design. They can be divided into the two traditional and fundamental
methods, profile accumulation and event-trace recording. Yet, all contributions indicate
a trend of convergence between both methods. On the one hand, sophisticated reduc-
tion of event traces allows higher scalability while keeping the high level of detail event
tracing is known for. On the other hand, enhancement of the profiling concept allows
to provide more fine grained performance data or specific information that is not de-
livered by traditional profiling tools. This increases the level of detail while retaining
the inherently good scalability. Even though profiling and tracing are generally seen
as complementary methods, the paper by Fürlinger et. al. goes so far as to attempt a
synthesis of both.

We would like to thank all the authors for their very interesting contributions and
their presentations during the workshop. And furthermore, we would like to thank the
EuroPar 2009 organizers for their support and for the chance to offer the PROPER
workshop in conjunction with this attractive conference.

Andreas Knüpfer
Jens Doleschal

Matthias Müller
Felix Wolf
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Abstract. Profiling tools relate measurements to code context such as
function names in order to guide code optimization. For a more detailed
analysis, call path or phase-based profiling enhances the context by call
chains or user defined phase names, respectively. In this paper, we pro-
pose argument controlled profiling as a new type of context extension us-
ing the value of function arguments as part of the context. For a showcase
simulation code, we demonstrate that this simplifies and enriches the un-
derstanding and analysis of code—in particular recursive functions. Due
to the new profiling technique, we found optimizations resulting in more
than 16% runtime improvement. Argument controlled profiling is imple-
mented as extension of Callgrind, a simulation-based profiling tool using
runtime instrumentation.

1 Introduction

As program codes today typically consist of millions of lines of code, as computer
architectures are diverse and sophisticated, and as there is a high pressure on the
developer to deliver the whole software on time, writing fast code out of the box
is a complex, demanding, almost impossible challenge. On the one hand, it is
hard to predict in which code parts most of the runtime is spent. On the other
hand, these code parts have to be tailored to the actual hardware. Profiling is
the tool of choice to identify the code parts and to get hints on how to do an
optimization.

However, use of direct or indirect recursion can make the results of a profiler
difficult to understand. To provide useful data such as inclusive cost, functions
which are part of recursive cycles need to be suppressed by introducing artificial
cycle functions comprising all functions of this recursive cycle. They are identified
by strongly connected components in the dynamic call graph [6]. Unfortunately,
this discards a lot of information and, sometimes, renders results useless for
analysis. The solution is to relate event counts measured by the profiling tool
not only to the function name, but to a more elaborated context which better
describes the code position. A similar argument holds for non-recursive functions
whose runtime behavior depends significantly on their arguments.

One typical extension is the calling context [1, 15] which takes the call chain
to the current function into account. Unfortunately, this does not help when the
behavior of a recursive function does not depend on the call chain leading to
it, but on values in data structures instead. This is often the case, and conceals

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 177–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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important information. For example, in a code where a recursive function is
visiting nodes of a tree or graph structure in some order, it is valuable to to see
how often one node type follows after another node type, as this helps optimizing
often executed code paths.

Thus, it is useful to enhance the function context by incorporating a program
state. To distinguish a function with respect to a state, it has to be specified
by the user before entering the function. A natural choice is to use the value of
function arguments. In the output of the profiling tool, the same function with
different states then is treated as individual symbols. Thus, cost is also assigned
to different symbols. This is the main idea presented in this paper: the argument
controlled profiling.

We apply this technique to our cache simulation tool Callgrind [13], which uses
the runtime instrumentation framework Valgrind [9]. The simulation approach
using runtime instrumentation has two specific advantages: first, any overhead
generated by collecting separate metrics for an increased number of symbols
does not matter, as runtime overhead does not influence results of the simulator.
Second, it is important to selectively use this feature as the number of symbols
can explode. The runtime instrumentation approach allows to do multiple pro-
filing runs with different selective configurations using the same binary without
recompilation. The latter is important if long recompilation times required for
different instrumentation would be prohibitive for an in-depth analysis.

The remainder is organized as follows: First, we discuss related work. Second,
the usage of argument controlled profiling is described with a small example.
Third, we provide details on our prototype implementation. A practical show-
case is given afterwards, together with the applied optimization approach and
results on runtime improvements. A short conclusion with an outlook closes the
discussion.

2 Related Work

The simplest useful result of a profiling tool is the flat profile. All performance
cost such as time (clock ticks) or cache events is related to code which triggered
the cost. However, entries in a flat profile may point to code parts which reside in
a library unavailable for modifications, or they carry no potential for optimiza-
tion in themselves. Here, tracking back the call stack for optimizable code parts,
i.e. lines which invoke the expensive functions, is valuable. For this, the context
is enriched by the call path: it becomes a calling context. A lot of papers in the
area of profiling tools discuss the efficient collection of full call paths (starting
at the entry point of the program), using precise yet low-overhead measurement
strategies [1, 11, 5, 15, 3]. Many profiling tools provide the calling context on
request [7, 10, 13, 12,4].

For tools performing real-time measurements, there is always a tradeoff
between accuracy and completeness because of the influence of measurement
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overhead. A good compromise is to allow selective instrumentation. The devel-
oper helps minimizing overhead by providing hints on what type of informa-
tion she is looking for before the measurement starts. The TAU Performance
System [10] implements so-called phase-based profiling [8]. The developer can
indicate logical phases of her program by calling a profiling interface (API).
These phase names, arbitrary strings, can be constructed to contain function
arguments. In contrast to our approach, this technique requires the user to man-
ually modify the source code and recompile it. Another selective instrumen-
tation method is incremental call path profiling [2], where specified functions
are dynamically instrumented to do full stack walks for determining the calling
context.

Sampling is a strategy not based on instrumentation. It allows the overhead
to be tunable, but provides statistical results. Only every n-th occurrence of
an event of interest is collected. To get the calling context at sample points,
stack walks at arbitrary points of execution need to be supported. Some tools
such as Intel’s PTU [4] rely on debug information generated by the compiler.
However, not all compilers produce reliable debug information. By contrast,
hpcrun [12] uses binary analysis to generate meta information needed for stack
walks.

A lot of the tools mentioned above preserve recursive invocations in the calling
context. However, if it is known that the behavior of a recursive function does not
depend on recursion depth, an overwhelming amount of unneeded information
is generated.

3 Usage and Example

Argument controlled contexts allow to distinguish profiling results of the same
function according to function arguments. Yet, this can not be done for ev-
ery argument-value combination of every function, as this would lead to an
explosion of profiling results. Instead, the programmer needs to specify that
she wants a distinction for a given function according to selected values of
arguments.

In our prototype extension of Callgrind, we support the command line option
--separate-par=function:num[:b1[,b2...]]. Here, function is the name of the
function for which we request the creation of an enhanced context: the num-th
4-byte-value on the stack, interpreted as 4-byte integer value (which also works
for booleans), is to be incorporated into the context name. Optionally, bi values
can be given, representing bucket borders. E.g. for value x and borders (5, 10),
the ranges x <= 5, 5 < x <= 10, and 10 < x are distinguished.

We consider the following 2-dimensional Fibonacci-like function

int fib2(int i, int j) {
if ((i<2) || (j<2)) return 1;
return fib2(i, j-1) + fib2(i-1, j) + fib2(i-1, j-1);

}
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Fig. 1. The call graph of fib2(4,4)

together with the main function calling fib2(4,4). Executing

> valgrind --tool=callgrind \
--separate-par=fib2:1 --separate-par=fib2:2 ./fib2

produces among others profiling data visualized in Fig. 1, if we select the symbol
“fib2:p1=4:p2=4” to be displayed. Each node represents a profile for function
fib2, but is distinguished by the requested argument values. Edges between
nodes represent calls with the call count shown in parenthesis. The number given
in the nodes and next to edges is the inclusive cost for the event “Instructions
Executed”. This is the event collected by Callgrind when cache simulation is
switched off.

Fig. 1 is generated by the “Export Graph” functionality of our profile visual-
ization tool KCachegrind [13]. The screenshot in Fig. 2 shows on the left a list of
functions (with fib2:p1=4:p2=4 selected). The functions are grouped according
to the “ELF object” they reside in. These groups are shown in the list above the
functions. The selected group “fib2” is the main executable, i.e. the function list
only shows functions residing in the binary “fib2”. On the right, the interactive
call graph visualization for the selected function is displayed. This is just one of
many visualization types supported by KCachegrind, such as caller/callee lists,
tree map visualizations of the callee tree, or source/assembly annotations.
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Fig. 2. Screenshot of KCachegrind with call graph view

4 Implementation

For Callgrind, it is important to be able to relate the effect of every memory
access to a context (e.g. function name, calling context, thread number, and so
forth). Thus, it is helpful to have the context readily available whenever an event
is triggered. The calling context is updated every time a function is entered or
left. This is done by code inserted by runtime instrumentation. The first time
a function (more precisely, a basic block) is executed, Valgrind forwards the
code to Callgrind which inserts instrumentation as needed. The instrumented
code then is put into a translation cache and executed instead of the original. At
instrumentation time (i.e. only once per basic block), the function name is related
to the code by a lookup in the debug information. At execution time, inserted
code can easily detect when the currently active function changes. Whether this
change was triggered by a call or return event is heuristically determined with the
help of the instruction opcode, the value of the stack pointer, and a shadow call
stack data structure. Whenever the tool detects that a new function is entered
or left, the above mentioned calling context is updated.

We modified the existing implementation in the following way to allow for ar-
gument controlled profiling. On entering a function selected by --separate-par,
the inserted code does not directly push the symbol name of the entered function
to the calling context, but generates a new symbol by appending argument value
information to the function name. At this point in time, the value of the stack
pointer is readily available to allow access to the function arguments. Finally,
the new symbol name is used to update the calling context.
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5 Case Study

In the following, we optimize a PDE solver working on adaptive Cartesian
grids [14], and we place special emphasis on the benefit of the argument
controlled profiling throughout the manual optimization efforts. Although this
is an example from scientific computing only, similar rationale, reasonings, and
techniques apply to many fields of application.

The solver traverses a tree-like data structure (Fig. 3) with a recursive algo-
rithm which is split up among several routines, and we pick out and concentrate
on one particular subroutine. This routine is computationally demanding, as it
realizes both the handling of the adaptivity as well as structure of the grid—
the grid structure is analyzed, data is preprocessed, and the recursive calls are
invoked—and the grid changes due to refinements as well as coarsenings. The
tree data structure may change throughout the computation and the routine has
to implement the corresponding data transitions and modifications.

The analyzed code part accepts two parameters indicating, on the one hand,
whether the global tree will change at all—an information available due to the
data structure’s public signature—and, on the other hand, whether the current
recursion step corresponds to a leaf, i.e. whether it invokes further recursive
function calls or not. We run Callgrind, make it distinguish the values of both
boolean arguments, and end up with four different parameter constellations for
the observed function. The profiling reveals that the first boolean argument
holds for most of the recursive calls. Furthermore, the control flow of a recursion
tail identified by the latter argument differs significantly from the control flow
of all other recursion steps. Entry conditions for some basic blocks never hold.
Consequently, these paths are never executed, and the operations to evaluate
the entry conditions—they are realized as calls to small helper routines—are
obsolete.

A simple refactoring due to this insight delivered by the new tool facility
provides two variants of the original code: A standard variant and a variant
coming into play whenever the tree data structure does not change (according
to the first function argument) or whenever the end of the recursion is reached.
We hereafter continue to analyze the effect of the recursion state/flag combina-
tion on the individual traversal code parts and apply similar optimizations on

Fig. 3. Cascade of regular 2D Cartesian grids (left), adaptive Cartesian grids (middle),
and 3D grids with corresponding tree data structure (right)
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several code fragments, i.e. we remove, for one code variant, unnecessary calls
to helper functions wherever possible. While all these optimized variants can be
derived manually, Callgrind’s argument controlled profiling allows us to quantify
the performance improvement a priori and often identifies code parts we had not
thought about before. The quantification is particularly important if the opti-
mization leads to code duplication, i.e. if it worsens the code’s quality. Here,
it is important to balance two contradicting coding principles: software quality
and performance. Finally, spending only three development days on that kind of
optimizations reduced the code’s runtime by a factor of more than 16%.

6 Conclusion and Future Work

Argument controlled profiling is a useful feature for analyzing code which makes
heavy use of recursive functions. Such code structures are e.g. found within so-
phisticated PDE solvers where the use of recursive data structures is mandatory
for the implementation of adaptive grids. In an industry cooperation, we cur-
rently analyze a code which is another candidate for argument controlled profil-
ing: Here, expressions represented by abstract syntax trees (AST) are evaluated.
Our approach is valuable in finding often used node type sequences which are
candidates for new super node types, potentially shrinking the AST—and thus,
evaluation time—significantly. To sum it up, we believe that our new profiling
technique is of great value for any application traversing tree or graph struc-
tures, but also generally for functions whose runtime behavior depends on its
arguments.

The current Callgrind prototype is available at http://mmi.cs.tum.edu.
However, to include our extension into future Callgrind releases, we are going to
make it user friendly, flexible, and portable. The user wants to specify function
arguments by name. Further, the tool should support more data types (it cur-
rently solely works with integer types). Finally, it should run on all architectures
supported by Valgrind (currently, it is Linux/x86 only).

Profiling using architecture simulation can be cumbersome to apply to parallel
codes. However, for sequential optimization of parallel code, it is usually possible
to profile the one-process special case, where our prototype works fine. For future
work, it would be interesting to implement our technique also for profilers using
real-time measurement, e.g. sampling tools on Linux (such as OProfile [7]). This
would make argument controlled profiling applicable also for usage with parallel
application runs. The key here is to efficiently and reliably check whether a given
instruction address (in the IP register or a return address from the stack) is part
of a function whose symbol should be augmented by the value of a function
argument, and how to get at this value.
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Abstract. Performance evaluation tools enable analysts to shed light on
how applications behave both from a general point of view and at con-
crete execution points, but cannot provide detailed information beyond
the monitored regions of code.

Having the ability to determine when and which data has to be
collected is crucial for a successful analysis. This is particularly true
for trace-based tools, which can easily incur either unmanageable large
traces or information shortage.

In order to mitigate the well-known resolution vs. usability trade-off,
we present a procedure that obtains fine grain performance information
using coarse grain sampling, projecting performance metrics scattered
all over the execution into thoroughly detailed representative areas.

This mechanism has been incorporated into the MPItrace tracing
suite, greatly extending the amount of performance information gath-
ered from statically instrumented points with further periodic samples
collected beyond them.

We have applied this solution to the analysis of two applications
to introduce a novel performance analysis methodology based on the
combination of instrumentation and sampling techniques.

1 Introduction

Performance evaluation tools are able to characterize the behavior of an applica-
tion using different mechanisms. However, the details obtained by these tools are
strictly limited to the monitored regions of code. In order to identify the precise
behavior of the application, it is required to add more and more monitors, with
the consequent overhead and larger volume of data generated.

Instrumentation and sampling are two different mechanisms used to monitor
applications. Instrumentation allows injection of monitors in specific points of the
target application simply modifying the source code, compiling the application
with special flags or specific libraries, or by using instrumentation packages like
DynInst [7]. On the other hand, sampling can be used to trigger monitors at
intervals or by external events and it is not related to any specific application
point.

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 185–198, 2010.
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We are confident that performance analysis using traces is the best approach
to detail time and space variations of the behavior of applications, which can be
easily masked out by profilers while summarizing information. In addition, trace
visualizers provide further qualitative and quantitative analysis [17,15].

Most performance tools based on traces [22,19,1,2] rely on instrumentation to
detail performance characteristics of the applications. Such tools cannot provide
information beyond the instrumented points, and the granularity and size of the
resulting trace strictly depends on the application structure.

Our main objective is to use basic instrumentation and coarse grain sampling
so as not to increase the execution overhead and the amount of data to be
analyzed, while obtaining highly detailed information. To achieve this objective
we first extend the MPItrace tracing package with sampling mechanisms, and
then apply a process that improves the granularity of the obtained samples, if
needed.

MPItrace is a trace-based instrumentation tool that collects performance in-
formation about parallel applications. The resulting combination provides more
data of the application by gathering information from uninstrumented regions
of code, independent of the application structure.

The rest of this paper is structured as follows: Section 2 provides informa-
tion about the implementation of the sampling mechanism combined with the
MPItrace instrumentation package. Section 3 introduces the methodology used
to analyze traces containing information gathered by the instrumentation and the
sampling mechanisms. This methodology is evaluated in section 4. Section 5 gives
an overview of related work. Finally, we plot the conclusions and future trends in
Section 6.

2 Instrumentation and Sampling Mechanisms

MPItrace is an instrumentation tool that collects performance information of
parallel MPI applications automatically through the MPI profiling interface [11].
It also provides information of OpenMP constructs and some pthread calls by
replacing the references to the runtime found in shared libraries by using dynamic
library interposition mechanisms and allows the user to add his owns events in
the resulting trace manually.

The sampling mechanism added to the MPItrace instrumentation package
is built on top of PAPI [6] because it provides a flexible and precise way
to determine the sampling rate [14]. This library provides a method called
PAPI_overflow to setup the sampling frequency based on a hardware counter
and a threshold. Once the selected counter reaches the given threshold, it trig-
gers an exception that is captured by PAPI and forwarded to a callback func-
tion. The programmed callback collects processor performance metrics and the
address within the process that was being executed. We consider henceforth a
sample as the set of data containing the performance metrics on a specific time
and the process address.

The utility of this framework, which extends with sampling the typical traces
obtained with MPItrace, is shown in Figure 1 of the Paraver visualization tool.
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Paraver represents on the y-axis the application’s threads while the x-axis repre-
sents time. On both images, Paraver is configured to draw the number of floating
point operations. In the left image, the number of floating points operations are
drawn at instrumentation points, whereas in the right image the number of float-
ing point operations are drawn at sampling points using a fine resolution. It is
noticeable that the Figure 1(b) plots performance information not only on the
default instrumented points (MPI routines in this case), but along the iteration.
The figure on the right improves the quality of the analysis by detailing the
achieved floating operation performance in a finer way than the figure on the
left. Details that can be observed in the image on the right are: a) variance at
the very beginning and end of each iteration, and, b) that every iteration has
three separated regions of code that deliver a high number of floating point op-
erations, and that each of those three regions has a short and sharp decrease of
performance in the middle of the region.

(a) Paraver windows showing the automatic informa-
tion gathered by the instrumentation showing the vari-
ation of Mflops

(b) Paraver view showing the variation of Mflops us-
ing a trace with data captured by instrumentation and
sampling

Fig. 1. Paraver windows showing information captured by instrumentation with and
without sampling mechanism

3 Analysis Methodology

The procedure we follow to characterize applications focuses on selecting the
most time consuming routines, avoiding library internals and inline or intrinsic
routines. We want to provide detailed performance metrics, the number of invo-
cations, the time they need to execute and their variation across the iterations
for the selected routines. This methodology requires the user to know in advance
which routines are important, possibly by previously analyzing the application
with profilers. We know that this is a limitation of the methodology and we
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are currently working on a more automatic way to make it easier to apply. In
this paper we aim to increase the details of the selected routines by using both
instrumentation and sampling mechanisms.

The first step consists of obtaining a trace using the MPItrace instrumentation
package with sampled information. Then the analyst will evaluate the applica-
tion afterwards using Paraver. This tool provides quantitative and qualitative
analysis of the traces using timelines and histograms and also contains a set of
predefined windows to conduct the analysis and facilitate the characterization
of the target application. Among them, there are several related windows that
provide information for user routines and performance metrics.

As the knowledge about the target application may be limited, choosing a
proper sampling rate to detail the application enough is a blind process. In case
the selected rate results in too few metrics scattered all over the execution, they
can be combined to produce highly detailed representative areas using a process
that we call folding.

The folding process is suitable for applications based on iterative methods,
which is a representative part of the applications found in high performance
computing environments. For the rest of applications, a new trace could be
generated with finer sampling resolution.

To proceed with the combination, the process can work at three different
granularities: full iteration, instrumented user routines and running bursts (i.e.
intervals between MPI calls).

The full iteration granularity provides a detailed view of a single iteration.
Using this behavior each sample that is run within the main application loop is
treated equally, independent from where it was emitted. The second granularity
focuses only on user code that has been instrumented by the analyst and ignores
the rest. Finally, the last option allows working separately on different intervals
delimited by MPI calls. This granularity grants working only on user code and
its results are not interfered by MPI calls.

We detail the folding process for full iterations in section 3.1. Applying the
folding process to the rest of granularities just implies splitting the iteration
every time an instrumented function or a MPI call is found.

Concerning the implementation, little modifications of the source code are
required to perform the iteration folding. The user just needs to instrument the
main loop so as to delimit the beginning and end of each iteration and gather
the performance counter values at these points, and optionally, instrument the
interesting user functions.

3.1 Folding Iterations

If the chosen sampling rate is too coarse, the performance metrics will not be
precise enough to characterize any region of code. We are interested in how to
obtain precise information under these circumstances. Our objective is to build
a synthetic trace to provide information of the behavior of an iteration per MPI
task with high precision. The subsequent analysis procedure must only target
the resulting iteration and then extrapolate the results to the rest. The ability of
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treating each task independently allows spotting performance differences across
tasks.

To properly obtain fine grained information relative to the performance coun-
ters we apply a two-step procedure within each task: migration of samples into
a single iteration and hardware counter interpolation. To proceed with the last
step, the user must indicate the desired number of output samples. Requesting
more samples yields more detailed results.

Hardware Counters Folding. We define folding an iteration (source) into
another (destination) as the operation that migrates samples from source to
destination preserving the offset of source iteration and converts its performance
counter values so as they are relative to the beginning of the iteration they orig-
inally belong. Figures 2(a) and 2(b) illustrate an example. The top figure shows
a timeline of a program that runs 3 iterations of its main loop and the bottom
figure shows the same timeline after folding the second and third iterations into
the first one.

Considering applications that have a regular and iterative control and data
flow and dedicated systems with low external interferences (such as preemptions,
interrupts, network and memory contention, etc...), the resulting set of iterations
conform to an ergodic system. This is to say, any iteration matches up with the
typical iteration and, thus, samples can be migrated from one to another without
altering the gathered values of the performance metrics.

In practice, executions are non deterministic. Even using dedicated systems,
applications face different interferences each run, which may result in slight per-
formance variations on each iteration. Considering the duration of the iteration
as a normally distributed variable, we can safely remove those iterations that last
more than twice the standard deviation. After this removal, we are still work-
ing with a representative set of iterations because we are keeping the iterations
that their duration are within the interval of confidence of the 95% of the whole
samples.

Concerning the output resolution, folding all the iterations into a single
one results in a single iteration that contains all the samples scattered across

(a) Samples in full application run with 3 iterations

(b) Samples in folded iterations

Fig. 2. Flags in those figures represent points where information is located before (a)
and after (b) folding all iterations. The superindices and colors of flags on Figure (b)
show which was their original iteration.
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iterations, or in other words, the resolution of the folded iteration is proportional
to the number of iterations folded.

Hardware Counters Interpolation. Once the hardware counter metrics have
been folded into a single iteration, we take as many equidistant samples from
this set of data as the user requested. Since hardware counters information is
punctual in time, we build a continuous function that closely fits the set of data
to estimate all the hardware counters values across the whole folded iteration.

This process is known as interpolation and in order to apply it we explored
several approaches: polynomial fitting, Bézier curves [5] and Kriging [21] inter-
polation. Polynomial fitting requires choosing the grade of the polynomial and
this cannot be done independently from the data. In addition, choosing a low
order polynomial will give soft but inaccurate fitting, while a high order poly-
nomial will fit better but will result in big fluctuations. Bézier curves do not
require additional data but the points themselves. Bézier fitted well on our tests
but on the stationary points. The Kriging interpolation is a general version of
the Bézier curve typically used in contouring. Kriging algorithm works with the
sample points plus some interpolation parameters (including fitting strictness).
After some tests, we found a typical combination of parameters that fitted the
samples well even in stationary points.

Although performance counters are monotonically increasing in a single iter-
ation, it may not be completely monotonic when considering the whole set of
samples. Consider the case shown in Figure 3. This figure plots the graduated
instructions across time. There are several points with more graduated instruc-
tions than near points in the future due to variations of performance counters
values on each iteration. Even though this effect was previously minimized by
the outlier removal and by the tendency of the interpolation function to ignore
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spurious values, they can still appear. Whenever this happens, they are just
ignored.

This process must be repeated for each task present in the tracefile and con-
cludes reintroducing the values of the interpolated performance counters into
the trace.

4 Case Study

This section shows how the folding process and the combination of instrumented
and sampled performance information contributes to improve the detailed
analysis of real applications.

Table 1. Characteristics of the system used for the evaluation

Experimental systems characteristics
Processor family Intel Itanium 2
Processor frequency 1.6 GHz
PAPI version 3.6.2
Linux kernel 2.6.16.46-0.12
Compilers (C/Fortran) icc and ifort 11.0

Table 2. Setup of the different experiments

Application NAS bt.B Alya
Number of processors used 16 4
Sampling frequency (in million cycles) 50 1000
Average duration per iteration 183ms 18.2s
Samples per iteration 5 - 6 28 - 29
Number of timesteps 200 100
Runtime overhead 1.5% 3%

To perform our analysis using the folding process we choose bt.B from
the NAS MPI Parallel Benchmark Suite 3.2 [3], and Alya [12], a computa-
tional mechanics simulator that is typically run in our production environment.
Table 1 describes the characteristics of the system used in this study and table 2
provides information about the setup of the different experiments. The overhead
row in table 2 comprises the overhead of the sampling mechanism plus the MPI
instrumentation and the manually added events used to identify the iterations.

We request a thousand samples in the target folding iteration regarding the
performance metrics. This is equivalent to set a sampling frequency 200 and
35 times higher in bt.B and Alya respectively with the proportional increase of
overhead. In addition to that, we use the user function granularity of the folding
process in order to improve the understanding of the results by providing detailed
information of representative functions.
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Fig. 4. Evolution of completed instructions for the 1st task in bt.B benchmark in the
instrumented routines after applying the folding mechanism

4.1 NAS bt.B

Previous experience on this benchmark has shown that the interesting routines
are: copy_faces, x_solve, y_solve, z_solve and add.



Detailed Performance Analysis Using Coarse Grain Sampling 193

Figures plotted in Figure 4 show the evolution of the completed instruction
performance counter among each of the five routines in the first task. The x-axis
represent the time (normalized from 0 to 1) in the routine, the left y-axis is used
to show the value of the counter (normalized from 0 to 1) within the routine
and the right y-axis is used to range the slope of the interpolation. Each plot
presents three types of information:

– Samples gathered during instrumentation and folded into the chosen itera-
tion and within the user functions that were taken. Samples are shown by
crosses.

– Interpolation of the gathered samples. It is shown by a segmented line.
– Slope of the interpolation of the gathered samples. It is shown by a segmented

line with crosses.

The slope of the interpolation facilitates the location of hot-spots (or even cold-
spots). For example, in Figure 4(a) three different behaviors exist. First, a small
section, which lasts about the first 10% of time, aggregates completed instruc-
tions very slowly. Then comes a region with a higher instruction completion rate.
And finally, a long region that has four peaks separated by valleys. Looking at
the source code of the routine, we find that this behavior corresponds with the
execution of a loop in the subroutine compute_rhs that is executed four times.

Routines x_solve, y_solve and z_solve, which are shown in Figures 4(b),
4(c) and 4(d) respectively, present a very similar pattern. There is a region
that lasts approximately the 80% of time with four peaks that accumulate more
than the 90% of the completed instructions. The remaining count of completed
instructions come from the remaining 20% of time.

Finally, Figure 4(e) shows the behavior of the add routine. It starts by accu-
mulating a high number of completed instructions and then it decreases slowly.
At 75% of the routine time it increases again to decrease at the end of the
routine.

4.2 Alya

Alya developers helped us locating the most time consuming routines. These
routines are: nsi_elmope, gmrpls and cgrpls. We focus on the second task
because the parallel computation is done in all tasks except the first, which
synchronizes the parallel computation.

Figures plotted in Figure 5 show the evolution of the stalled cycles perfor-
mance counter among each of the three routines in the second task. The stalled
cycles performance counter provides information of the amount of time that the
CPU has been waiting for resources to execute an instruction. Such counter is
useful to locate code region with bottlenecks that prevents the application going
at full speed.

Although there are three instrumented routines, one of them is executed twice
in an iteration and thus we present two different plots for it (one for each ex-
ecution). As seen in the BT example, x-axis represent the time in the routine, the
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Fig. 5. Evolution of stalled cycles for the 2nd task in the Alya in the selected routines
after applying the folding mechanism

left y-axis ranges the value of the counter within the routine and the right y-axis
delimits ranges the slope of the interpolation. Each plot presents three types of
information: samples gathered, interpolation and the slope of the interpolation.

First of all, it is noticeable that the two calls of nsi_elmope behave differ-
ently. This routine does the assembly of the continuity and momentum matrices.
Regarding its performance, the first call plot is shown in Figure 5(a). The plot
presents a steady behavior across the execution except for the margins. However,
the second call, which is shown in Figure 5(b), accumulates most of the cycles
stalled at the beginning of the run and it suddenly decreases at the 80% of the
routine after a peak at that position.

The gmrpls routine implements an iterative gmres solver for nonsymmetric
matrices. We see in Figure 5(c) that the slope of the evolution of the performance
counter behaves as a wave with small amplitude and with a wavelength of 20%
of the routine duration.

Finally, the plot in Figure 5(d) shows the performance behavior of the the rou-
tine cgrpls, which implements a conjugate gradient method. It behaves steadily
across the whole execution.
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5 Related Work

In this section we summarize the approaches done to combine both instrumenta-
tion and sampling mechanisms in the performance analysis area, and how they
differ with our work.

The widely known gprof [10] exploits both sampling and instrumentation
mechanisms to emit functions call count and estimated spent time. Gprof re-
quires the application to be compiled with a special flag that is responsible for
instructing the compiler to add counting monitors in the user routines. Gprof
also uses sampling mechanisms to attribute time to the user routines during
the execution. The visualization tool echoes to the standard output the fraction
of time spent when a routine directly called another one and the number of
invocations for each routine. The main difference with our work is that gprof
is a performance tool based on profiling whereas our tool is based on tracing.
Gprof just provides summaries for simple and concrete function metrics. The
solution we propose combines information gathered by tracing and instrumenta-
tion to generate a trace with timestamped details that makes the analysis more
detailed and precise.

The Sun Studio Performance Analyzer [13] comprises a set of tools for
collecting and viewing application performance data using tracing and profiling
mechanisms. Its collecting tool is able to trace information relative to synchroniza-
tion calls, heap allocation and deallocation, OpenMP constructs, MPI routines,
data-race and deadlock detection, and counting the number of times each instruc-
tion was executed. Furthermore, it uses sampling clock-based or hardware counter
overflow mechanisms to profile the target application. Its visualization tool is a
multifunctional window that presents the data collected in a wide variety of fla-
vors, including: flat routine profile (similar to gprof), calling and called routines,
link to source and disassembly, and a timeline window. It exploits the sampling
to accumulate the execution time for different routines, and, identify which parts
of the user program are responsible for cache or floating point inefficiencies. Al-
though being a powerful set of tools, it needs to collect again the performance
data if the results are not detailed enough. This is not an issue for the solution we
propose if the application matches a set of requirements described in section 3.1.

Azimi, Stumm and Wisniewski present in [?] an online performance anal-
ysis tool that gathers counter values periodically or after a designated num-
ber of hardware counter occurrences. This tool presents the evolution among
the selected counters in a timeline and provides accurate information on which
micro-architecture components are stressed using a model called Statistical Stall
Breakdown. To provide information for all performance counters it multiplexes
counters taking advantage of the underlying functionalities provided by the oper-
ating system. Although they offer some instrumentation capabilities, their work
is just focused on the sampling mechanism to characterize the whole system and
not applications.

SimPoint [20] and SMARTS [23] use sampling in a different context so as
to accelerate detailed micro-architecture simulations. Their primary goal is to
reduce long-running applications down to tractable simulations. The authors of
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both frameworks met this goal by statistically sampling the instruction mix of a
running serial application to determine where the application spent time. They
combine instrumentation and sampling to collect a sequence of instructions each
time the sampling mechanism fires up. The result they obtain is a collection of
instruction traces related to each sampling point. These traces will be simulated
independently to get detailed performance on the simulated micro-architecture.
Our approach, however, combines performance information gathered at different
timesteps into a single timestep and the coarse grain sampling produces low
overhead penalty in the application run.

A tracing package with some sampling capabilities is presented in [16]. Its
functionality is closely related to SimPoint but combining pSiGMA [18] and
DynInst [7] instrumentation. Their approach works identifying the timesteps
of the application using special instrumentation calls and fully instrumenting
the application using the SiGMA toolkit. A DynInst-based tool instruments the
special calls added to check whether the executed timestep matches a list of
timesteps given by the user to enable or to disable the pSiGMA instrumenta-
tion. The fully instrumentation inflicts large overhead penalty when gathering
performance data, although it can be greatly reduced by sampling a small set of
iterations. Our approach, however, is to take few samples along the application
execution and then construct an ideal iteration from the data collected.

6 Conclusions and Future Work

We have explored the possibility of combining both sampling and instrumenta-
tion mechanisms to generate more detailed traces.

Our main contribution is the design and implementation of a process called
folding that provides detailed performance information using coarse grain sam-
pling. It provides detailed performance information at three different levels: it-
eration, user routines and running bursts. It is suitable for applications based
on iterative methods, which is a representative part of the applications found
in HPC environments. For the rest of applications, a finer sampling resolution
should be chosen to obtain a trace with more details.

To demonstrate its utility we have extended the MPItrace instrumentation
package with a sampling mechanism using hardware counters to record perfor-
mance information across the whole execution. The combination of instrumen-
tation and sampling produces traces containing performance information from
both instrumented and uninstrumented regions of code.

The additional performance information provided by the sampling, and the
ability to project it into representative areas, brings a new methodology into play
that has proven useful for the detailed analysis of real applications. In particular,
we have shown detailed performance analysis for the representative routines of
the NAS BT benchmark and the Alya application.

Finally, we believe that some of issues in the methodology are still open.
First, provide a way to automatically determine which are the interesting and

representative user routines to be analyzed without using a profiler. Samples
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could also store the stack trace, in addition to the performance counter values
and the address of the instruction that triggered the sample, in order to provide
information of the executed routines.

Second, automatically identify the application iterations structure using pe-
riodicity or application structure detectors like [8] and [9]. These detectors work
directly with Paraver traces and the reported information could be used as input
of the folding mechanism to delimit the regions to be folded instead of adding
manually events into the application source code.

Finally, we would like to study the impact of the sampling rate and the number
of sampled timesteps on the folding results.
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Abstract. Developing efficient parallel programs for supercomputers is
a challenging task. It requires insight into the application, the paral-
lelization concepts, as well as the parallel architectures. Performance
analysis tools such as Periscope, an automatic performance analysis tool
currently under development at Technische Universität München, help
the programmer in detecting performance bottlenecks. The goal of the
ISAR project is to enhance the existing Periscope research prototype
and deliver a production version. This paper focuses on the evaluation
of Periscope’s main features based on two large scale simulation codes.

Keywords: Performance analysis, program tuning, program transfor-
mations.

1 Introduction

Periscope [2] is an automatic performance analysis tool that searches for prede-
fined performance properties which are based on measurements during program
execution. In contrast to other tools, it is based on a formal specification of per-
formance properties and applies an online search via a network of analysis agents
while the application is running. This approach guarantees the applicability to
large scale simulations, i.e., simulations running on large number of processors
for a long time.

While many HPC applications are well tuned with respect to parallel execu-
tion, they use only a small percentage of the compute core’s peak performance.
This gap is very significant and will probably become even more important as the
processor’s systems structure gets more and more complex. Therefore, Periscope
features performance properties that identify inefficient usage of the processors,
especially of the memory hierarchy. This support is based on the stall cycle coun-
ters of the Itanium 2 processor used in the Altix supercomputer at the Leibniz
Supercomputing Centre (LRZ). The results shown in this paper are focusing on
the single node performance.
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In this paper, we evaluate Periscope based on two large scale simulations, the
plasma physics code GENE and the geophysics code SeisSol.

The analysis of the two large scale simulation codes are part of the BMBF re-
search project ISAR1, that is funded until 2011. Within this project, the current
research prototype of Periscope will be productized. In addition, an HPC system
monitoring tool will be developed based on Periscope that allows the compute
center to monitor all applications running on large scale supercomputers to de-
tect inefficient applications that could profit from further tuning.

The rest of the paper is organized as follows. Section 2 gives an overview of
Periscope and Section 3 presents related work. Section 4 discusses the techniques
used in Periscope to guarantee scalability. Sections 5 and 6 introduce the two
application codes and present the results for each of the code.

2 Periscope

Periscope is a scalable automatic performance analysis tool currently under de-
velopment at Technische Universität München. It consists of a frontend and a
hierarchy of communication and analysis agents (Figure 1). One analysis agent,
i.e., a leaf of the agent hierarchy, has one or more application processes to an-
alyze. Each of the analysis agents searches autonomously for inefficiencies in a
subset of the application processes.

The application processes are linked with a monitoring system that provides
the Monitoring Request Interface (MRI). The agents attach to the monitor via
sockets. The MRI allows the agents to configure the measurements; to start, halt,
and resume the execution; and to retrieve the performance data. The monitor
currently only supports summary information.

Periscope starts its analysis from the formal specification of performance prop-
erties on the User Region. Before the instrumentation of the code, the user has
to define the region of interest, i.e., the User Region. Further analysis is made
to detect other regions, such as loop regions, call regions and sub regions. The
specification determines the condition, the confidence level, and the severity of
performance properties. The severity is the percentage of the time lost due to
the problem the property describes. We examine relative values of time as per-
centage rather than absolute values. An example of a typical property is time
lost due to stall cycles. Its severity is therefore computed as:

Severity = (StallCycles/PhaseCycles) ∗ 100%

and associated condition of this property depends on the a defined threshold:

Condition = Severity > Threshold

This means that the condition can only be true or false. Besides properties for
MPI and OpenMP, Periscope has properties for detecting inefficient single-node
1 http://www.in.tum.de/en/forschung/verbundprojekte/

clusteraktivitaeten/isar.html
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Fig. 1. Periscope consists of a frontend and a hierarchy of communication and anal-
ysis agents. The analysis agents configure the MRI-based monitors of the application
processes and retrieve performance data.

or better single-core performance. The search is performed according to a search
strategy selected when the frontend is started [3]. At the end of the local search,
the detected performance properties are reported back via the agent hierarchy
to the frontend.

All the current properties in Periscope give the percentage of execution time
lost by this property. This allows to rank all the found properties and let
the programmer start optimizing the code for the worst one. Properties are
implemented in Periscope in form of C++ classes.

Changes to previous strategies include improvements performed in MPI Strat-
egy. A new strategy available called All was developed and this includes all the
previously defined strategies, namely Stall Cycle Analysis and MPI.

3 Related Work

Some well known performance analysis tools for parallel systems are already avail-
able. The most notable ones are Paradyn, TAU, Vampir, KOJAK, SCALAS-CA,
and mpiP.

Paradyn [4,5] was the first tool that automated performance analysis. Its Per-
formance Consultant guides instrumentation and searches for bottlenecks based
on summary information during the program’s execution. TAU [6] is a com-
prehensive environment supporting trace-based and profiling-based performance
analysis. It performs an offline analysis and provides a wide variety of graphical
and text-based displays.
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KOJAK [7] also provides trace-based analysis of parallel applications. It in-
cludes Expert, a component that automatically deduces performance properties
from the trace files. SCALASCA [1] can be seen as a more scalable version of
KOJAK. KOJAK’s search for performance properties is now done in a parallel
post-processing step on the same CPUs which were used for the execution of the
application.

4 Concepts for Scalability

The current version of Periscope runs on the Altix supercomputer installed at
the Leibniz Supercomputing Centre in Munich.

The Altix supercomputer is a ccNUMA system with 19 partitions, each of
which has 256 Itanium 2 dual core processors with a peak performance of 12.8
GFlops. The NUMA link4 communication network has a fat tree topology in the
partitions and a 3D torus topology across the partitions. Each NUMA link has
a peak communication bandwidth of 3.2 GB/s in each direction. Periscope can
be used in other architectures, namely AMD64, IA32 with Linux and IA32 with
Windows.

The application and the agent network are started through the frontend pro-
cess. It analyzes the set of processors available, determines the mapping of ap-
plication and analysis agent processes, and then starts the application and the
agent hierarchy. After startup, a command is propagated down to the analysis
agents to start the search.

To be able to analyze large test runs, Periscope has to support batch jobs.
The specific problem here is that jobs with many cores will be spread over
multiple partitions. Periscope’s frontend gathers information about all the par-
titions with cores assigned to the job before it starts optimizing the mapping
of application processes and analysis agents. The computed mapping is then
enforced via the dplace command and appropriate mapping files for each
partition.

For the communication among the agents and between the agents and the
application we use sockets. For small scale runs the socket range could be defined
before starting the search. For large scale runs, there are always blocked sockets
and thus, we had to modify the startup process to enable dynamic selection of
sockets. Prior to supporting large runs, Periscope had as a baseline runs with
less than 64 processes.

The next modification required was to reduce access to the registry. The
registry is a book keeping mechanism which keeps track of network data such as
where the application and the agents are executing and via which port they can
be contacted. Since the registry is handling only a single request at a time, the
startup of thousands of application processes and the requests of the agents for
accessing this information became a severe bottleneck. Therefore the application
now collects all the information about the processes in a master process which
then transfer it into the registry. The identifiers returned from the registry for
each process are now distributed via MPI too.
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When getting the properties found for over 1000 processes, it became obvious
that the user will not be able to look at all the results. Therefore, we started to
investigate using clustering techniques to identify classes of processes behaving
in the same way. This technique is currently introduced into the Periscope GUI
which will become available soon.

5 GENE

The Gyrokinetic Electromagnetic Numerical Experiment (GENE) of the Max
Planck Institute for Plasma Physics in Garching, a large-scale simulation tool,
supports the magnetic confinement fusion community involved in nuclear reac-
tors research to solve the problem of plasma microturbulence. GENE aims at
solving the non-linear gyrokinetic equations in a 5-dimensional phase space to
identify the turbulence in magnetized fusion plasmas.

GENE consists of 47 source files with 16,258 lines written in Fortran 95 and
parallelized with MPI. This section shows results obtained from the experiments
conducted with Periscope on this code. The large-scale runs were performed
by submitting it in batch jobs to the ALTIX machine. The results reveal the
properties in different code regions of GENE and the single node performance
for a 1024 processor run.

We did test runs of GENE with 1, 8, 16, 32, 64, 128, 256, 512 and 1024
processors. The test runs were started via Periscope’s frontend. It first starts
the application and, after the processes registered with the registry, starts the
analysis agents. For small-scale runs, such as, 1, 8, or 16 processors, a single
analysis agent and a master agent was used for analysis. However, for large-scale

Fig. 2. Properties in different code regions of GENE. You see the file name, the line
number, and the region type (U for user , L for loop, S for subroutine, C for call).
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Fig. 3. Single node performance of GENE for 1024 processor run in ALTIX

runs, the processes were started on multiple partitions of the Altix, and hence
multiple analysis agents were used.

The main program, gene.f90, has three main steps such as i) it reads the
parameters, ii) sets the initial condition and iii) enters into the explicit time loop
before it ends. The user-region indicating the phase for the incremental analysis
covers the code for one time step. The explicit time loop runs iteratively to solve
the gyrokinetic partial differential equation.

Periscope identified the properties, namely, stalls in the processor pipeline,
stalls due to L1D TLB misses, stalls due to pipeline flush and much more.
Figure 2 shows the mean severity for all processes for the most critical program
regions. It is interesting that the code suffers more from stalls due to integer
loads than from stalls due to floating point registers.

As an example, the following graph (Figure 3) depicts the single node perfor-
mance of GENE code on considering 1024 processor run. In this graph, proces-
sor 112 had an unexpected peak of 13 severity points from its average for IA64
pipeline stalls, and processor 868 had 19 severity points for Stalls due to L1D
TLB misses. It can be revealed that, processors 844 to 853 had comparatively
good performance due to less severity than other processors.
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6 SeisSol

SeisSol [8] is an application for large-scale simulations of seismological activ-
ity, developed by the Department of Earth and Environmental Sciences at the
Ludwig-Maximiliam-Universität. It provides wave propagation solutions in an
elastic medium in 3D with geometrically complex domains. Several real world
scenarios have already been modelled with this solver. The computational ef-
fort of solving two scenarios was analyzed with Periscope and its results are
presented.

The main calculations involve solving linear systems of equations along the
discretized cells. The parallel version of SeisSol starts from an already partitioned
domain. SeisSol takes as input the coordinates of a meshed domain along with
material parameters and boundary conditions. The mesh is preprocessed to have
different configurations related to the number of MPI tasks. The MPI tasks read
the data from an input file and process each block in parallel allowing boundary
communication at each subdomain.

SeisSol has four main program sections. The first one, data initialization, reads
input files required for running the simulation. Most of the calculations are done
in the second section, going over multiple time steps and numerous mesh cells to
solve large systems of equations. The User Region was therefore defined within
the file calc seissol.f90 which contains the main loop. The other two sections,
analysis of results and final output, were not analyzed given that they don’t
contain several nested loops with heavy calculations.

Fig. 4. Graph showing maximum value of the severity of properties found. One analysis
agent was used to analyze SeisSol on 64 processors. The first line of the region inside
the code is shown.
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Fig. 5. Maximum severity of the properties found with Periscope agent hierarchy on
512 processors

The instrumented executable from SeisSol ran on configurations 4, 8 and 64
processors with one analysis agent from Periscope. Furthermore, configurations
with 256 and 512 processors were also tested using the Periscope hierarchy, which
includes the frontend, highlevel agents and analysis agents.

The properties found using 64 processors and the Stall Cycle Analysis Breadth
First strategy are presented in Figure 4. The experiment showed that the CALL

REGION, which is a call to an MPI all-reduce, has several pipeline stall cycles
and L3-Cache misses, with an average of 32% of loss of computation time. Given
that the pipeline stall cycles are at an MPI all-reduce call, we infer that some
processors are idle waiting for the entire group communication to be finished
which thus might indicate that load imbalance could be a potential problem
among partitions. L2-Cache misses drew our attention to the SUB REGION and
LOOP REGION of galerkin3d tetra.f90. This section of the code contains calls to
solvers with matrix multiplication. In order to optimize these regions we can
think of data locality optimizations to avoid cache misses.

The hypothesis that the MPI all-reduce call is creating stall cycles due to load
imbalance of the partitions was further investigated with Periscope. The results
for the strategy All and a configuration for 512 processors are shown in Figure 5.
The severity of excessive MPI communication time shows that 65% of the time
is lost in one or more processors waiting for the blocked communication.

7 Summary and Conclusions

Periscope has proven to be scalable with both applications, GENE and Seis-
Sol. The tests executed with the applications were run on up to 1024 processors
on GENE and 512 on SeisSol. The configuration data sets for larger scale runs in
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both applications were not available. Nevertheless, a scalability of 2048 proces-
sors was achieved with Periscope on a test code.

Advances in Periscope included the improvement of the instrumentation pro-
cess. The applications can now be instrumented using a script called from the
code’s makefile, thus simplifying the instrumentation step. Several problems lim-
iting the scalability on the side of Periscope were solved and larger scale runs are
possible. Successful tests were executed to base the communication on MPI as well.
A new strategy available called All was developed and this includes all the previ-
ously defined strategies, namely Stall Cycle Analysis and MPI.

As part of the three year project ISAR, Periscope will also be ported to
other machines, such as the Blue Gene P. This requires to change the current
implementation of the communication within the agent network and between
the analysis agents and the application processes.
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{d.boehme,m.geimer,m.a.hermanns,f.wolf}@fz-juelich.de
2 Aachen Institute for Advanced Study in Computational Engineering Science

RWTH Aachen University, Germany

Abstract. In our previous work [1], we introduced performance simula-
tion as an instrument to verify hypotheses on causality between locally
and spatially distant performance phenomena without altering the ap-
plication itself. This is accomplished by modifying mpi event traces and
using them to simulate hypothetical message-passing behavior. Here, we
present enhancements to our approach, which was previously restricted
to blocking communication, that now allow us to correctly simulate mpi
non-blocking communication. We enhanced the underlying trace data
format to record communication requests, and extended the simulator
to even retain the inherently non-deterministic behavior of operations
such as MPI Waitany.

1 Introduction

As a prerequisite for the productive use of state-of-the-art supercomputers, the
hpc community needs powerful and scalable performance-diagnosis tools that
make the optimization of parallel applications both more effective and more
efficient. One major difficulty application developers are confronting with tra-
ditional performance tools is that the tools often diagnose only the symptoms
of performance problems but not necessarily their causes. Often, the symptoms
appear much later or on a different processor than the event causing it. The tem-
poral or spatial distance between cause and symptom constitutes a substantial
challenge in deriving helpful conclusions from a set of performance data.

In our earlier work [1], we have presented a simulator called silas (SImula-
tion of LArge-Scale parallel applications) that can be used to verify hypotheses
on causal connections between different performance phenomena at very large
scales. The verification is accomplished by modifying event traces according to a
hypothesis and using them to simulate the hypothetical message-passing behav-
ior. The predicted behavior can then be scanned for wait states to investigate
how the modification would influence (and hopefully reduce) their occurrence
in various parts of the program. Typical questions the simulation can answer
encompass how the performance behavior changes if a specific computation is
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more evenly distributed across the machine or if a specific communication op-
eration is replaced or eliminated. The simulator performs a parallel real-time
reenactment of the communication to be simulated using the original execution
configuration. This eliminates the need for modeling communication and, thus,
circumvents a major source of prediction inaccuracy.

So far, our simulator was able to replay only mpi blocking point-to-point and
collective communication, but not non-blocking communication, as information
on communication requests was not yet recorded in the trace data. In this pa-
per, we outline extensions to the trace format and the simulator itself that allow
us to correctly simulate all aspects of mpi non-blocking communication, thus
making our simulation approach applicable to a much broader range of mpi
applications. Special emphasis is given on the feature of retaining the inher-
ent non-determinism exhibited by operations such as MPI Waitany or MPI Test,
which may yield different results during simulation than they did during trace
recording.

After discussing related work and briefly recapitulating the working princi-
ple of the simulator in the remainder of this section, we describe the required
extensions to the trace format in Section 2. In Section 3, we present the basic
approach for simulating non-blocking communication and mechanisms to retain
non-deterministic behavior in the simulation. Finally, an experimental evalua-
tion to demonstrate the scalability and accuracy of our approach is given in
Section 4, before concluding in Section 5.

1.1 Related Work

The principle of trace-driven performance prediction has already been intensively
studied. An early performance-analysis toolkit offering trace-based simulation
capabilities as one element of a comprehensive feature catalog is aims [2], which
estimates the scalability of parallel applications by extrapolating previously gen-
erated execution traces to higher numbers of processors and larger problem sizes.
dimemas [3] provides the ability to simulate the execution behavior of parallel
programs based on previously generated event traces. The underlying prediction
model allows the adjustment of relative processor speeds, network bandwidth
and latency within and across nodes, the number of input and output links, and
the processor scheduling policy. Predicting application performance for emerg-
ing architectures larger than those at one’s disposal is the focus of BigSim [4].
BigSim combines an emulator that is capable of running larger numbers of vir-
tual processes on a smaller number of physical processors with a post-mortem
simulator that uses traces generated during an emulated run.

Compared to the approaches described above, our work clearly concentrates
on the effects of fine-grained alterations of application-level behavior with respect
to the performance under an identical execution configuration. The most impor-
tant methodological difference is the use of a parallel real-time replay of the sim-
ulated communication at the original scale, which offers scalability advantages
and relieves us of the burden of modeling the extremely complex communication
infrastructures found on today’s large-scale machines.
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Fig. 1. Workflow for verifying optimization hypotheses. Dark rectangles denote pro-
grams, light rectangles with the upper right corner turned down denote files, and light
rectangles with rounded corners denote data objects residing in memory. Stacked sym-
bols indicate multiple instances of programs, files, or data objects running or being
processed in parallel. The target application generating the event trace is the entry
stage of the workflow. Judging the difference between normal execution and the pre-
dicted outcome of the optimization displayed in the report browser is the final stage.

1.2 Hypothesis Verification

Here, we briefly review the intended usage scenario for our simulator in the con-
text of the Scalasca toolset [5]. Figure 1 illustrates the role of the simulator in
the procedure of verifying hypotheses on causality between temporally or spa-
tially distant performance phenomena. The general objective of the process is to
generate wait-state analyses from both the measured and the predicted behavior
and compare the results to allow conclusions on the effects of hypothetical pro-
gram modifications with respect to wait states and other performance metrics.
The workflow starts with running the instrumented target application in the ex-
ecution configuration we want to make predictions for and generating an event
trace consisting of one trace file per application process. During all subsequent
steps, access to the event trace occurs through a parallel object-oriented high-
level api [6]. The primary usage model of the api assumes a one-to-one mapping
between application and tool processes, that is, for every process of the target
application, one tool process is created which loads the corresponding trace data
into main memory and offers random access to individual events. Data exchange
among tool processes is accomplished via mpi communication.

A hypothesis includes the specification of a trace transformation, which may
prescribe the adjustment of event timestamps, the deletion of existing events, or
the insertion of new events to model changes in the application’s source code.
Currently, a set of parametrized standard transformations including the scaling
of functions or the elimination of messages can be specified. After the transfor-
mation has been applied, the simulator performs a parallel real-time replay of
the events stored in the trace. Computation intervals are simulated simply by
elapsing the time in between using busy wait, whereas communications are sim-
ulated by reenacting the communication operations recorded in the trace. Thus,
the time of a communication is determined by the time needed to execute the
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corresponding mpi call under modified conditions. As the simulation progresses,
event timestamps are adjusted to reflect the time elapsed since simulation start.

2 Trace Format Extensions

The trace format used by our performance analysis and simulation tools stores
data in event records. There is a number of fixed event record types, for example
for entering or exiting source code regions, or sending and receiving messages,
respectively. Each event record contains a timestamp and, according to its type,
other data such as the receiving location for send events or a source code region
identifier for region-enter events. Event records are written consecutively in the
order of the timestamps, with each process writing its own trace file.

In its previous form, our trace format did not provide explicit support for
mpi non-blocking communication. Only send start events for MPI Isend and re-
ceive completion events for MPI Wait* or MPI Test* regions were recorded using
generic send/receive records. While this is sufficient to detect some communica-
tion inefficiencies (e.g., Late Sender) in our parallel performance analyzer, it does
not allow accurate replay of communication as it is required for the simulation.
In particular, neither information on the send completions and receive starts
associated with the respective non-blocking send starts and receive completions,
nor on failed tests for completion in MPI Test is available in the trace.

2.1 Attribute Records

In order to enhance application traces with additional information at minimal
impact on our current code base, we introduced the notion of attribute records to
store additional, optional data for events. An event can have an arbitrary num-
ber of attributes, which are written as attribute records immediately before the
corresponding event record in the trace. Unlike event records, attribute records
do not contain a timestamp field, which keeps the record size as small as possible.
Compared to the alternative approach of adding more fixed-size special-purpose
event records, using attribute records to augment a particular event with addi-
tional information offers far more flexibility and better extensibility.

2.2 Non-blocking Event Record Types

For a full representation of non-blocking communication, we introduced request
IDs to identify individual communication requests and to associate a request
start with its completion. During trace recording, the opaque MPI Request ob-
jects are mapped onto unique request IDs, which are stored in the trace for every
non-blocking communication request start and completion.

While we added new event record types to store the request ID for receive
starts and send completions, we continue to use the generic point-to-point send
and receive record types for send start and receive completion events. Here, the
request ID is stored in an attribute to the generic event. Using an attribute
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Fig. 2. Trace format extensions. Previous format: (1) send event; (2) receive event. Ex-
tensions: (3) receive start; (4), (7) request attribute; (5) test event; (6) send completion.
White circles denote region enter events, black circles denote region exit events.

instead of new special-purpose event records keeps backward compatibility and
allows us to reuse large portions of existing code in our analysis tools.

In addition to events for send completion and receive request, we also added
a tested event, which indicates that a request has been unsuccessfully probed
for completion in a call to MPI Test or MPI Waitany/some, and a cancel event
which indicates a request that has been canceled using MPI Cancel. Figure 2
shows the use of the new event records.

3 Simulation of Non-blocking Communication

Given a trace enhanced with additional data as described in Section 2.2, replay
of deterministic non-blocking communication in the performance simulator is
now straightforward. When a non-blocking request start operation is encoun-
tered during trace replay, a corresponding MPI Isend or MPI Irecv operation is
invoked, and the MPI Request object obtained from mpi is saved in a (request
ID, MPI Request) map. Upon request completion, the requests corresponding to
the request IDs found in the trace are completed using MPI Wait or MPI Waitall.

3.1 Retaining Non-deterministic Behavior in the Simulation

Our basic non-blocking communication simulation approach sketched above al-
lows accurate simulation of non-blocking communication if only MPI Wait or
MPI Waitall are used for request completion, but some difficulties arise for in-
herently non-deterministic operations like MPI Test or MPI Waitany/some. For
example, a call to MPI Waitany may yield a different result in the altered, simu-
lated scenario than it did during trace acquisition. Likewise, a test for completion
using MPI Test which failed in the original run could succeed in the replay, or
vice versa. Essentially, in an application scenario modified according to a per-
formance hypothesis, the order and source code location of request completions
can change compared to the original application’s behavior, which may have
a significant effect on the observed performance characteristics. Restricting re-
quest processing in the simulation to the order and locations found in the trace
would therefore not accurately predict the application’s communication behavior
for non-deterministic operations. Hence, our non-blocking communication model
needs to take reordering and relocating of request completions into account.
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Fig. 3. Retaining non-deterministic behavior of Waitany and Test

Simulating Waitany. For MPI Waitany regions, the trace contains a comple-
tion event record with the request ID that completed in the original run, and
tested event records with the request IDs that were also passed to the original
call to MPI Waitany. In the simulation, the request objects for all given request
IDs are passed to MPI Waitany. If the request that completed in the simulation
is not the same as in the original run, we swap the completion events and remap
the request, that is, the remaining events with the request ID that completed
in the simulated run are mapped to the ID of the request that completed in the
original run (Figure 3a and 3b). As a result, these test or completion events will
now be handled for the request that completed originally. Since the positions
of subsequent events in the trace pertaining to a certain request ID are known
from a preprocessing step, the extra effort for request remapping is negligible.
By allowing the simulation in MPI Waitany to complete a request different from
the one completed in the original run, we can accurately model the application’s
intended communication behavior (“return the first request which completes”).

Simulating Tests. For calls to MPI Test that are unsuccessful (i.e., do not
complete a request), a tested event with the corresponding request ID is stored
in the trace (Figure 3c). In this case, the simulator calls MPI Test with the
associated request. If the request does complete in the simulation, the completion
is pre-drawn: the test event will be replaced with the requests’ completion event,
and all remaining test events with this request ID are deleted from the trace.
If the last test or completion event remaining in a region is deleted, that region
will be removed from the simulation altogether (Figure 3d).
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More difficulties arise for MPI Test calls which are successful in the original
run, but fail in the simulation. In this case, the application would try to complete
the request again later on. However, the simulation is bound to the trace that
was recorded in the original run, which does not contain any information on
how the application would have handled the request. Since there is no useful
strategy for the simulator to process the request later if the MPI Test call was
unsuccessful, we explicitly complete a request using MPI Wait if an mpi test
operation succeeded in the original application run. This approach may, however,
introduce some waiting time which would not have occurred in the modified
application.

3.2 Limitations

While our simulator handles non-blocking communication well for most cases,
there are a few noteworthy restrictions.

Non-deterministic operations pose a fundamental limitation on our simula-
tor. Applications can take entirely arbitrary actions depending on the outcome
of a non-deterministic operation, whereas our simulator is bound to the trace
recorded in the original run. In some cases, our heuristics for retaining non-
determinism by reordering and relocating request completions may fail to re-
produce the application’s behavior, or in extreme cases even deadlock. The user
can therefore enable a deterministic simulation mode, which restricts request
processing to the exact order found in the trace, at the cost of losing some
simulation precision. It should be noted, though, that severe problems occur
only for pathological cases exhibiting a highly unusual communication behavior.
Typical communication patterns, such as looping MPI Waitany on a fixed list
of requests, work as expected. Genuinely reproducing the application behavior
for different outcomes of MPI Test operations is not possible without knowl-
edge of the application semantics, which currently exceeds the scope of our re-
play approach. As such, our heuristic represents a best-effort approach which
at least allows conclusions, e.g., on the number of tests needed to complete a
request.

Also, our model currently does not handle persistent communication requests
explicitly. Instead, they are handled as ordinary non-blocking communication,
which may slightly overestimate the processing time for those requests in the
simulation.

4 Results

We conducted a number of experiments to demonstrate accuracy and scalability
of our approach, using small synthetic benchmarks and more complex real-world
benchmark codes. All experiments were performed on the 72-rack Blue Gene/P
supercomputer Jugene and the 448-core Power6 cluster Jump at the Jülich Su-
percomputing Centre.
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4.1 Simulation Accuracy

One effective way of validating the simulation accuracy is an identity simulation,
where a simulation run without any performance hypothesis applied is compared
to the original program behavior. We conducted identity simulation experiments
with bt from the NAS parallel benchmark suite [7] with 256 and 1024 processes
on Jugene. The runtime of the benchmark kernel in the original, uninstrumented
benchmark executable is compared with the runtime during trace recording and
the simulated runtime. The results are shown in the following table.

Table 1. NAS bt measurement and simulation results

Comm. Runtime (sec) Deviation from Original

No. procs fraction Original Traced Simulated Traced Simulation
256 16 % 46.56 47.23 46.82 1.44 % 0.56 %

1024 30 % 14.93 16.57 15.67 10.98 % 4.96 %

Note that the deviation between original and traced runtime is about 2.5 times
(256 procs) and 2.2 times (1024 procs, respectively) higher than the deviation
between original and simulated runtime. Synthetic experiments confirm that the
overhead of tracing is indeed higher than the overhead created by the replay of
communication in the simulator. Especially small, short-running functions like
MPI Irecv can have a high relative tracing overhead.

In general, inaccuracies introduced by tracing may also negatively influence
the simulation, which is based on the trace. While the overall simulation accu-
racy for non-blocking communication in the presented case is good, the relation
between simulation accuracy and measurement overhead during trace recording
still requires further investigation.

4.2 Non-deterministic Behavior Simulation

A simple synthetic benchmark demonstrates the necessity of retaining non-
deterministic behavior in the simulation. Figure 4a outlines the working prin-
ciple. The master process is waiting for messages from the remaining processes
in a loop using MPI Waitany. Due to a load imbalance in code region foo, the
messages arrive in the order of process ranks.

We recorded an example trace of the program with four processes on our
Power6 cluster and performed simulation runs both with request relocation and
reordering enabled (non-deterministic mode) and disabled (deterministic mode).
First, we performed an identity simulation, then another simulation with a per-
formance hypothesis to balance code region foo applied. The result of the latter
was compared to a modified version of the original program with foo balanced.

Table 2 shows the results of the experiments. While for the identity simulation,
both deterministic and non-deterministic mode yield accurate results, only the
non-deterministic mode is able to predict the program’s behavior with region foo
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Table 2. Non-deterministic behavior simulation: Deviation of simulation result from
original (identity simulation) and modified program behavior (balance experiments)

Runtime Identity simul. Δ Balanced simul. Δ

Metric original modified non-det. det. non-det. det.
Total time 34.82 s 31.65 s 0.0003 % 0.0003 % 0.0689 % 8.14 %
Point-to-Point 5.60 s 2.40 s 0.0013 % 0.0009 % 0.0029 % 33.34 %
Late Sender 5.59 s 2.39 s 0.0041 % 0.0036 % 0.0083 % 33.36 %
Synchronization 2.70 s 2.70 s 0.0048 % 0.0011 % 0.0022 % 66.67 %

balanced correctly. This is because by balancing region foo, the order of message
arrival in the MPI Waitany call is reversed due to another load imbalance in code
region bar (Figure 4b). By retaining non-deterministic behavior in our simulator,
we can predict this effect correctly. In deterministic mode, however, the simulator
is restricted to the original order of message arrival in the program, and therefore
introduces larger waiting times.

5 Conclusion

We have presented enhancements to our performance simulator and underlying
trace data format which allow us to accurately simulate the message-passing be-
havior of applications that utilize mpi non-blocking communication. Using both
new event records and attribute records, we could amend application traces with
communication request tracking capabilities requiring only minimal changes to
the existing code base of our analysis tools. Moreover, attribute records may pro-
vide a generic and flexible approach to enhance application traces with additional,
optional information. By reordering and relocating communication requests, our
simulator can accurately predict even non-deterministic communication behavior
for most typical communication patterns.
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Further enhancements we plan to incorporate into our simulator are explicit
support for persistent communication requests and support for mpi-2 one-sided
communication. We are also investigating more detailed performance analy-
sis procedures for non-blocking communication using the new request tracking
capabilities in our parallel performance analyzer.

Acknowledgment

Financial support from the Deutsche Forschungsgemeinschaft (German Research
Association) through grant GSC 111 and from the Helmholtz Association of
German Research Centers under Grant No. VH-NG-118 is gratefully
acknowledged.

References

1. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality between
distant performance phenomena in large-scale mpi applications. In: Proceedings of
the 17th International Conference on Parallel, Distributed, and Network-Based Pro-
cessing (February 2009)

2. Yan, J., Sarukkai, S., Mehra, P.: Performance Measurement, Visualization and Mod-
eling of Parallel and Distributed Programs using the AIMS Toolkit. Software –
Practice and Experience 25(4), 429–461 (1995)

3. Rodriguez, G., Badia, R.M., Labarta, J.: Generation of simple analytical models
for message passing applications. In: Danelutto, M., Vanneschi, M., Laforenza, D.
(eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 183–188. Springer, Heidelberg (2004)

4. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based per-
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Abstract. A high-level understanding of how an application executes
and which performance characteristics it exhibits is essential in many
areas of high performance computing, such as application optimization,
hardware development, and system procurement.

Tools are needed to help users in uncovering the application character-
istics, but current approaches are unsuitable to help develop a structured
understanding of program execution akin to flow charts. Profiling tools
are efficient in terms of overheads but their way of recording performance
data discards temporal information. Tracing preserves all the temporal
information but distilling the essential high level structures, such as ini-
tialization and iteration phases can be challenging and cumbersome.

Wepresent a technique that extends an existing profiling tool to capture
event flow graphs of MPI applications. Event flow graphs try to strike a
balance between the abundance of data contained in full traces and the
concise information profiling tools can deliver with low overheads.

We describe our technique for efficiently gathering an event flow graph
for each process of an MPI application and for combining these graphs
into a single application-level flow graph. We explore ways to reduce the
complexity of the graphs by collapsing nodes in a step-by-step fashion
and present techniques to explore flow graphs interactively.

1 Introduction

Understanding performance characteristics of applications at a high level is es-
sential in many diverse areas of high performance computing. Application de-
velopers, hardware engineers, or computing center support and procurement
experts use tools to establish that the application uses the available resources
efficiently or if there is potential for improvement.
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Many techniques made available by current tools are insufficient for getting a
high-level understanding of the “execution flow” of an application. Most perfor-
mance tools can be categorized into either profiling or tracing. Profiling tools are
efficient in terms of overheads but their way of recording performance data dis-
cards temporal information. Tracing preserves all the temporal information but
uncovering the essential high level structures, such as initialization and iteration
phases can be challenging and cumbersome.

We present a technique that extends an existing profiling tool to capture event
flow graphs of MPI applications with very low overhead. Event flow graphs try to
strike a balance between the abundance of data contained in full traces and the
concise information profiling tools can deliver with low overheads. The graphs
are similar in concept to flow charts used to describe algorithms and design
software systems.

We describe our technique for efficiently gathering an event flow graph for
each process of an MPI application and for combining multiple graphs into a
single application-level flow graph. We explore ways to reduce the complexity of
the graphs by collapsing nodes in a step-by-step fashion and present techniques
to explore flow graphs interactively.

The rest of this paper is organized as follows: In Sect. 2 we give a short
overview of the integrated performance monitoring (IPM) tool that we extended
to capture event flow graphs. In Sect. 3 we describe our approach to recording
the flow graphs in MPI applications, and in Sect. 4 we describe techniques for
the interactive visualization and exploration of the graphs and apply the tool to
some example applications. In Sect. 5 we survey related work and in Sect. 6 we
conclude and discuss areas for future work.

2 Application Profiling and Workload Characterization
with IPM

IPM is a profiling and workload characterization tool for MPI applications. IPM
achieves its goal of minimizing monitoring overhead by recording performance
data in a fixed-size hash table resident in memory and carefully optimizing time-
critical operations. At the same time, IPM offers very detailed and user-centric
performance metrics. IPM’s performance data is delivered as an XML file that
can subsequently be used to generate HTML pages, avoiding the need for special
graphical user interfaces. Pairwise communication volume between processes,
communication time breakdown across ranks, MPI operation timings, and MPI
message sizes (buffer lengths) are some of IPM’s most widely used features.
IPM is available from http://ipm-hpc.sourceforge.net for download and is
distributed under the LGPL license.

3 Recording Event Flow Graphs of MPI Applications

We assume the following general model of performance monitoring for MPI ap-
plications: An MPI application is composed of n processes each identified by an
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integer in [0, . . . , n− 1], its rank. A set of events Ei ⊆ E happen in each process
i. We do not further formally specify what the events are, but we assume they
occur at a certain time and have duration. Each event e has an associated signa-
ture σ(e) ∈ S which captures the characteristics we are interested in. σ : E �→ S
is the signature function. Concretely we think of a signature σ(e) as a k-tuple
σ(e) = (σ1(e), σ2(e), . . . , σk(e)), where each σj() is a signature component. Use-
ful components of signature functions are listed in Fig. 1.

Signature component Signature function Data type Typical Size (#bits)

Wallclock time time(e) floating point 32/64
Sequence number seq(e) integer 32
Type of MPI call call(e) integer 8
Data size size(e) integer 32
Data address address(e) integer 64
Own rank rank(e) integer 32
Partner rank partner(e) integer 32
Callsite ID csite(e) integer 16
Program region region(e) integer 8

Fig. 1. Components of an event signature function

Our goal for performance observation is to get an event inventory of an ap-
plication (i.e., understand the events that happened and their characteristics)
by associating performance data (number of occurrences, statistics on the du-
ration) with event signatures. If the signature includes time() this essentially
models tracing; if it does not we have a model for profiling.

IPM is a profiling tool and for efficiency reasons we would like to keep the
signature space much smaller than the event space (|E| >> |S|). In this case the
signature function is not injective and performance data can be envisioned as a
table indexed by the signature, with a number of columns for the statistics we
are interested in. In IPM we implement this indexing using a hash table resident
in memory, the hash keys are 64 to 128 bits long and the hash values are on the
order of 160 bits (20 bytes) big.

Evidently, if the signature does not include time() or seq() we lose the tem-
poral dimension of the performance data, and with it the ability to understand
which events happened before or after each other from the measured data. In
this paper we show that some important temporal information can be recovered
by keeping track of the sequence of event signatures. We call the resulting graphs
which are akin to control flow graphs event signature flow graphs or simply event
flow graphs.

To construct a flow graph consider an application executing with n processes
and let Ei = {e0, e1, . . .} be the sequence of events at rank i, σ : Ei �→ Si be the
signature function at rank i, and s0

i ∈ Si some initial signature value. Then σ′

with

σ′(e0) = (s0
i , σ(e0))
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σ′(ei) = (σ(ei−1), σ(ei)) (i > 0)

is the history signature for σ. The directed weighted graph G = (Ni, Li, wi, s
0
i )

with

Ni = {σ(ei)} ei ∈ Ei

Li = {σ′(ei)} ei ∈ Ei

wi : Li �→ N wi(l) = |{ei : σ′(ei) = l}| l ∈ Li

is the event signature flow graph for rank i and s0
i is the start node of the graph.

An example flow graph is shown in Fig. 3. Nodes correspond to MPI calls, edges
between the nodes correspond to transitions between them.

3.1 Merging Graphs from Multiple Processes

Event flow graphs form different processes can be merged in a straightforward
way to form a multigraph (a graph with multiple edges between a pair of nodes).
We build the merged graph by identifying similar nodes among the graphs (i.e.,
having identical σ(ei) with respect to some equality criterion) and inserting
the edges and weights from each depending on the signature component we are
concerned with.

The best way for identifying two event signatures σ(ei) as being identical
depends on the signature components:

Signature component Equality test

Type of MPI call Exact equality
Data size Exact equality or approximate (same magnitude) equality
Data address Exact equality
Own rank Discarded, since we merge across ranks
Partner rank Equality of relative ranks
Callsite ID Equality in unified calltrees
Program region Exact equality

Fig. 2. Unification of signature components across MPI processes

Identifying identical callsite IDs requires us to unify the calltree of each rank.
During the execution a calltree is recorded (nodes are the callsites of MPI calls)
and numerical IDs are assigned consecutively. Depending on the sequence in
which functions are executed, the same callsites can be assigned different IDs
on different processes. A unification step which IPM performs after the program
terminates guarantees a consistent assignment of callsite IDs.

For comparing ranks we use differences (relative ranks) since in many appli-
cations parallelism is exploited in the form 2-D or 3-D domain decomposition
and the MPI communication pattern is often based on the topological position
of a processor (i.e, nearest neighbor communication in a grid). For this reason it is
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most often convenient to convert the absolute partner rank of a communication
event into a relative rank (e.g., a MPI Send to processor with relative rank -4).

One further simplification step can be performed on the edges between nodes.
To simplify presentation and understanding of the graphs we cluster edges with
the same multiplicity or weight together.

An example for a resulting application level event flow graph for a very simple
application is shown in Fig. 3. The program is executed with four MPI processes,
where ranks 0, 2 perform a receive operation and ranks 1, 3 perform a send.

void main(int argc, char* argv[]) {
MPI_Init(...);

MPI_Comm_size(...);

MPI_Comm_rank(..., &myrank);

for(i=0; i<10; i++) {
if(myrank is odd)

MPI_Send(10 doubles to rank -1);

else

MPI_Recv(10 doubles from rank +1);

}
MPI_Finalize();

}

MPI_Recv 80 (+1)

9x (0,2)

MPI_Finalize

1x (0,2)

MPI_Send 80 (-1)

1x (1,3)9x (1,3)
MPI_Comm_size MPI_Comm_rank

1x (0-3)

1x (0,2)

1x (1,3)MPI_Init
1x (0-3)

Fig. 3. A simple MPI program, executed with four MPI processes and its accompanying
merged event flow graph using relative rank addressing

3.2 Implementation in IPM

We have implemented the event flow recording scheme as described in Sect. 3 in
our profiling tool IPM. IPM keeps event statistics (number of occurrences, total
duration, and so on) in a hash table and the hash key derived from the MPI
communication events correspond to the event signatures. To record the event
flow information, the hash key is extended to contain both the current signature
σ(ei) as well as the signature of the previous event σ(ei−1). The previous event’s
signature is recorded in a variable and updated on each insert into the hash
table.

Using this scheme event statistics are now correlated with pairs of event sig-
natures that form the edges of the event flow graph. Upon program termination,
the hash table is inspected and the flow graph is reconstructed from the hash
table by looking for matching pairs of event flow edges.
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4 Visualizing and Exploring Event Flow Graphs

The flow-graphs are recorded by IPM on a per-rank basis and written to a
file. The merging and unification step is performed by a perl script in a post-
processing step which generates a number of event flow graph files suitable for
input into Graph::Easy [1] and further layout by dot [3].

Consider the table in Fig. 4. It shows the number of events in a full trace of
several applications of the NAS parallel benchmark suite as well as the number
of nodes in the event flow graph using the signature components indicated in the
first column. These application contain no developer-provided phase markers and
the MPI call type can be derived from the callsite ID, so size(), partner(), csite()
provide the largest signature space and a subset of these signature functions will
generally lead to fewer nodes in the flow graphs.

Evidently, the callsite ID is essential to achieve a large signature space. In
fact, adding partner() and size() components does not add more nodes to the
flow graphs for all but one application (MG). For MG both the communication
partner and the transmit data size need to be added to differentiate between all
events.

Fig. 5 shows the flow graph of the IS application. For this small application the
entire flow graph is easily visualized. For larger applications the direct approach
becomes infeasible. Considering the results from Fig. 4, we decided to focus
the on methods to interactively explore the event flow graphs along the callsite
dimension by developing a combined calltree-eventgraph display.

The user is presented with a calltree display alongside with a portion of the
flowgraph which depends on the node selected in the calltree. An example for
this is shown in Fig. 6. The leafes of the calltree on the left correspond to the
MPI events that comprise the flowgraph on the right.

Assume a user selects an internal node foo() of the calltree. Then there is
effectively a partitioning of the flowgraph nodes into three sets: (1) nodes that
are immediate children of the selected node, (2) those that are children but not
immediate children, and (3) all other nodes.

Method BT CG EP FT IS LU MG SP

Full Trace 29856 20184 36 85 165 255213 8988 49828
Event Flow Graph:
size(), partner(), csite() 404 240 36 45 57 277 2796 352
size(), partner() 184 72 28 36 45 93 236 124
size(), csite() 404 240 36 45 57 277 2644 352
partner(), csite() 404 240 36 45 57 277 1140 352
size() 76 60 28 36 45 75 220 76
partner() 76 48 24 32 41 56 60 60
csite() 404 240 36 45 57 277 852 352

Fig. 4. Number of events in the full traces and number of nodes in the event flow
graphs for the NAS parallel benchmark suite (size A, 4 processors)
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1x MPI_Irecv/-1 cs=19

1x MPI_Send/+1 cs=16

1x MPI_Wait/-1 cs=20

1x (1-2) 1x MPI_Reduce/0 cs=17

1x (0)

1x (1-3) 1x MPI_Finalize cs=18
1x (0-3)

1x MPI_Reduce/0 cs=14 1x (1-3)

1x (0)

1x MPI_Comm_rank cs=4 1x MPI_Comm_size cs=5
1x (0-3)

1x MPI_Allreduce cs=7
1x (0-3)

1x MPI_Alltoall cs=8

1x (0-3)

1x MPI_Alltoallv cs=9

10x MPI_Allreduce cs=11

1x (0-3)

10x MPI_Alltoall cs=1210x (0-3)
10x MPI_Alltoallv cs=13

10x (0-3)

1x (0-3)

9x (0-3)

1x (0-3)

1x MPI_Init cs=3
1x (0-3)

1x (0-3)

1x (0)

1x (1-2)

1x (3)

1x (1-2)

1x (3)

Fig. 5. Full event flow graph of the IS application from the NAS parallel benchmark
suite

Set (1) corresponds to MPI functions called directly from foo() (i.e, leaves
one level below foo(); these nodes and their transitions are shown directly in the
flowgraph display to the right. Nodes in set (2) correspond to functions called
from functions called from foo() (leaves two or more levels below foo()). Those
nodes are replaced by a representative, which is the child function called from
foo() that leads to their execution. Nodes in set (3) are not displayed at all
unless there is a transition to a visible node (from sets (1) or (2)). In this case
the node is displayed with a dotted border and a dotted line, indicating a control
flow coming from the “outside”.

An example of this display technique is shown in Fig. 6. This method is very
effective at narrowing down the set of nodes in the flow graph to a manageable
set for interactive exploration and understanding of application code.

5 Related Work

Control flow graphs are an important topic in the area of code analysis, gener-
ation, and optimization. In that context, CFGs are usually constructed based
on a compiler’s intermediate representation (IR) and are defined as directed
multi-graphs with nodes being basic blocks (single entry, single exit) and nodes
representing branches that a program execution may take. The difference to the
CFGs in our work is primarily twofold. First, the nodes in our graphs are not
basic blocks but communication events. Second, the edges in our graphs record
transitions that have actually happened during the execution and also contain
a count that shows how often the transition occurred.

Dragon [2] is a performance tool from the OpenUH compiler suite. It can display
static as well as dynamic performance data such as the calltree and control flow
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Fig. 6. Combined calltree-controlflow visualization. The user selects a node on the
calltree to the left and depending on the selection only a subset of the event flow graph
is presented on the right.

graph. The static information is collected from OpenUH’s analysis of the source
code, while the dynamic information is based on the feedback guided optimiza-
tion phase of the compiler. In contrast to our approach, the displays are based on
the compiler’s intermediate representation of source code. The elements of our vi-
sualization are the constructs of the user’s model of execution to contribute to a
high-level understanding of the program execution characteristics.

The work of Preissl et al. [5] tries to detect recurring patterns of communica-
tion events for optimization purposes. Events are recorded as an array of 32-bit
integer values (i.e., a trace) and repeating sequences of events are searched for by
either a convolution or suffix-tree based method. The identified and matched re-
peating sequences, together with source code analysis using Rose [6], are the basis
for source code transformations such as replacing a series of point to point op-
erations with the corresponding collective. Compared to their method, our tech-
nique avoids the overhead of generating, storing, and analyzing traces. Instead
our technique of recording the execution control flow directly exposes repetitive
structures as loops in the flow graphs.
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Finally, the work of Noeth [4] shares some similarities with our approach. In
this trace compression scheme, region descriptors are applied to perform both
intra-node and inter-node compression. Although this approach is able to reduce
traces from applications employing regular communication patterns to near con-
stant size independent of the number of nodes, runtime overhead is incurred for
establishing and maintaining the region descriptors. In contrast, our approach
has negligible cost at runtime, while we don’t guarantee that the trace can be re-
covered completely. In fact, the potential to recover the original trace employing
node ordering heuristics is part of our ongoing work.

6 Conclusion

We have discussed a technique to efficiently gather an event flow graph from
MPI applications. Nodes in the graph are representations of MPI communica-
tion events and edges represent the number of transitions between them. Event
flow graphs try to strike a balance between the abundance of data contained in
full traces and the concise information profiling tools can deliver with low over-
heads. The graphs are conceptually similar to flow charts used in algorithm and
application development. We presented ideas to reduce the complexity of the
graphs by collapsing nodes in a step-by-step fashion and presented techniques
to explore flow graphs interactively.

Future work is planned with respect to several directions. First, while timing
statistics are already recorded for each edge of the flow graph, they are cur-
rently not used in the visual display. It should be straighforward to develop a
coloring scheme to color nodes according to MPI communication time and the
data volume sent or received. This would draw the user’s attention to the most
interesting parts of the graph for optimization purposes.

As a bigger step we plan to explore the usability of the flow graphs to perform
MPI process clustering at petascale. With very large numbers of MPI processes
used at that scale, performance data visualization that involves the rank ID as
a dimension becomes impractical or even impossible. An automated clustering
of ranks into a small number of processes that qualitatively exhibit the same
behavior would be a solution to this problem. Another area for future exploration
is the application of techniques from graph theory to our flow graphs. Examples
include cycle detection and extraction to automatically delineate computational
and iterative phases.
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Abstract. Parallel event trace visualizations can aid in discovery of the root 
causes of certain performance problems on high-end systems. However, 
traditional trace visualizations are not inherently scalable and require 
considerable effort on the part of the user to identify similarities and differences 
in performance across parallel entities. In this work, we evaluate several 
methods for deciding when traces of different processes in a run are similar 
enough that only one of the traces needs to be retained and rendered in the 
visualization. We show visualizations of reduced traces and evaluate them for 
compression, error, and retention of correct diagnostic information. 

1   Introduction 

Performance analysts working on today’s high-end systems require event-based 
measurements to correctly identify the root cause of certain performance problems 
[3]. For example, traces of MPI function entries and exits might be collected to 
analyze communication overhead.  The data might then be analyzed automatically 
with a tool such as Scalasca [5], or manually, using a trace visualization tool such as 
Jumpshot [21].  Current trace visualization tools commonly present Gantt charts, 
showing a bar plot of event occurrences over time, left to right, with one bar per 
process or task (See Fig. 5.). Generally, the visualization initially shows the entire 
timeline, and the user has the option to zoom in on portions of the timeline, and 
possibly on specific ranks, to see more detail.  

Traditional event tracing tools often cannot scale up to the demands of current high 
end applications.  The number of events can become quite large, especially for long-
running and highly-parallel executions. For example, in one study, we encountered 
event counts on the order of 1010, for 32-process runs of Sphot that only ran for a few 
minutes [14]. The file size of the merged trace was 424 GB.  At the high end, full-
scale trace visualizations quickly exhaust resources such as disk space, and become 
extremely difficult to read, as the tool user must scroll through thousands of processes 
and lengthy time lines. It becomes a matter of either being able to see the whole 
picture, but not being able to see enough detail to draw conclusions about patterns in 
the trace; or being able to see the needed details, but losing the perspective of the 
whole picture. The scalability of trace visualizations is not a new topic [7, 8, 9, 13, 
16]; however, the continuing upward scaling of high end systems drives a continuing 
need for more scalable solutions. 
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We address this goal using a similarity-based inter-process trace reduction 
technique. We select representative traces from a subset of the processes in an 
execution and discard the trace data from the remaining processes. Candidate traces 
for discard are chosen based on similarity to representative traces, evaluated on a 
pairwise basis. This inter-process reduction has the potential to vastly improve the 
scalability of traditional trace visualization, making it possible to see more details and 
more of the whole picture at the same time. Removing similar processes has the effect 
of reducing the number of bars, increasing the chance for the data to fit on one or two 
screens, thereby reducing top to bottom scrolling.  The goal is to convey important 
performance-related information about the application such as whether all processes 
are exhibiting the same behavior, in a way that still works for very high scale runs.  
An alternative approach, which we have explored in previous work [15], would be to 
reduce the number of events within each trace, thereby decreasing the left to right 
length of each bar. 

A good trace reduction approach for visualization should lead to a significant 
reduction in the number of process bars for the common cases, with good scaling 
behavior and an acceptable amount of processing overhead.  Data reduction and 
overhead are straightforward to evaluate; however, evaluating retention of 
performance trends is challenging. When we represent a process’ behavior using a 
representative trace from another process, we introduce error. Depending on the 
algorithm used for deciding if traces match, we might introduce errors in event 
measurements, message passing parameters, and possibly even event occurrence and 
ordering. To address this, we present a method for deciding whether these errors 
change the conclusions that an analyst would reach when looking at the reduced trace, 
compared to those reached when looking at the full trace.  

2   Related Work 

Trace Reduction. Aguilera et al. [2], Nickolayev et al. [17], and Lee et al. [12] apply 
statistical clustering to traces and select a representative trace for each cluster of 
processes. Both Nickolayev and Lee use the Euclidean distance for clustering, while 
Aguilera uses a distance metric based on the amount of communication between two 
processes. Noeth et al. detect patterns of MPI calls and store a single representative of 
each pattern, and optionally statistical performance measurements [18, 19]. Their 
focus is on collecting traces for the purpose of simulation, while our focus is on traces 
for performance analysis and visualization.    

Visualization. Freitag et al. reduce traces and data in visualizations by finding intra-
process patterns, while Knüpfer et al. reduce by identifying intra- and inter-process 
patterns. Freitag et al. show a fixed number of repeated patterns for each thread or 
process [4]. Knüpfer et al. present visualizations in Vampir NG with repeated patterns 
for each thread or process shown as color blocks that can be interactively decomposed 
[11]. Nickolayev et al. present an inter-process reduction and show a representative 
trace for each cluster of processes [17]. Our work most closely resembles that of 
Nickolayev et al. because we focus solely on inter-process reduction as well. We  
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int main(){ 
       start_segment(“init”); 
       MPI_Init(); 
       end_segment(“init”); 
       for(i=0; i < 100; ++i){ 
           start_segment(“main.1”); 
           do_work(); 
           MPI_Allgather(); 
           end_segment(“main.1”); 
       } 
       start_segment(“final”); 
       MPI_Finalize(); 
       end_segment(“final”); 
} 

Fig. 1. Segment Context Marking. We show a single function, main() with the instructions 
added to mark the segment contexts.  We mark initialization, finalization, and all loops.  
Segment marking is automated using a dynamic instrumentation library. 

differ in that Nickolayev et al. implement trace matching for windows of time in the 
trace and store a representative for each window, while we require the entire trace to 
match and store the entire representative trace. 

3   Our Approach 

We explore several methods and criteria for deciding similarity of traces with the goal 
of reducing the number of representative traces that need to be displayed by a 
visualization tool. In this section, we present our trace matching methodology, two 
relaxations on matching criteria designed to increase matches while still retaining the 
important performance behaviors, and the criteria we use to evaluate the matching 
methods. 

3.1   Trace Matching Methodology 

We collected full traces of time stamped function entries and exits for the benchmarks 
and application as follows. We refer to the trace for a single process simply as a trace. 
We broke the traces into sections we call segments. We mark segments as shown in 
Fig. 1. The segment context is the section of code, for example, the main.1 loop in 
Fig. 1. We used the dynamic instrumentation library Dyninst [10] to instrument the 
full application for both function entry and exit tracing as well as inserting segment 
begin and end markers. The simple benchmarks were marked manually. 

Given two traces with equal numbers of segments, we compare each pair of 
segments in order and determine if they are similar. If all segments in both traces are 
deemed similar, we say that the traces match and retain a single representative trace. 
After comparing all traces, we end up with a set of representative traces that can be 
merged for visualization into a merged representative trace. We give an example of 
trace matching in Fig. 2. In addition to comparing event measurements, we also check 
message passing parameters: source/target rank, bytes transferred, message tags, and  
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Fig. 2. Segment Matching. The top and bottom bars represent traces for different ranks of the 
program in Fig. 1. Time values on the bars increase from left to right. Segments markers are 
gray rectangles with text that tells the segment context. Events are white boxes. Between the 
traces, we show the result of segmentation.  We name the segments s0.x and s1.x; x indicates 
the rank that wrote the trace. In the segments, the time stamps for the events and segment end 
times are adjusted relative to the segment start time. To decide matching, we examine the 
segments pairwise in order, comparing segment start times and all event timings. 

communicators. All parameters save the source/target rank must be identical; the 
source/target rank can be either the same offset, e.g. rank+1 in a nearest neighbor 
communication pattern, or the same rank, e.g. all ranks send to rank 0.  

3.2   Matching Criteria Relaxation 

Strictly speaking, segment matching requires that all events be sufficiently similar, 
including any message passing parameters. However, ignoring some segments or 
message passing parameters may result in a higher rate of matching without loss of 
important information. We consider two relaxations: 

Ignore Segments: There are cases when we may want to relax the requirement that 
traces contain all the same events in the same order. For example, in MPI programs, 
the process with rank 0 is often treated specially and given additional tasks, such as 
extra function calls in initialization and finalization segments that aren’t important to 
overall performance. If we selectively ignore these segments when matching traces, 
we may identify more trace matches. In this study, we optionally ignore the 
initialization and finalization segments. 
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Relax Messages: By default, we require that all message passing parameters save 
source/target rank match exactly, meaning we are more closely preserving the 
behavior across processes. However, two processes could exhibit analogous behavior 
with different message parameters, and relaxing the requirements could increase 
matches. We optionally relax checks on message tags and bytes transferred. 

In later sections, we refer to matching with no relaxation as none, ignoring 
segments as ignore, and relaxing checks on message tags and bytes as msgs. 

3.3   Evaluation Criteria 

We use three criteria to evaluate the methods and relaxation strategies: 

Trace Matching. We present percentage file size and degree of matching  to show 
trace reduction. The percentage file size gives a relative measurement of the size of 
the merged representative traces to the size of the merged original traces. The degree 
of matching is the ratio of the number of matches to the number of possible matches, 
which is limited by the structure of the program.  

Trace Error. We present the approximation distance metric as the amount of error in 
a reduced trace as the 90th percentile of absolute error between the measurements in 
the original and representative traces.  

Retention of Performance Trends. Arguably, the most important criterion for 
evaluating a trace matching metric for performance analysis is deciding whether or 
not the reduced trace still indicates the same performance problems as the full trace. 
To evaluate retention of performance trends, we use an automated performance 
diagnosis tool called Scalasca. [5].  Scalasca parses a merged trace file,  producing a 
hierarchical list of performance diagnoses [20] and their relative severity.  We convert 
the Scalasca visualization into a compact form for our comparative analysis. 

4   Experimental Design 

In this section, we detail the test programs we used and the methods for deciding trace 
matching. For our study, we reduced traces of benchmarks with known performance 
behavior and an application. 

Benchmarks. We created benchmarks with performance problems that require 
tracing for correct diagnosis using the APART Test Suite (ATS), a collection of 
utilities designed to create programs with known behavior [6]. We chose three 
example benchmarks to illustrate our approach: dyn_load_balance, early_gather,  and 
late_reciever. The early_gather and late_sender benchmarks exhibit very regular 
behavior in each iteration. In early_gather,  rank 0 is always early to the gather 
operation. In late_sender, the even ranks are late to the sending operations, causing 
the odd ranks to block in receives. The dyn_load_balance benchmark has different 
behavior in each iteration. The upper half of ranks get progressively more work over 
time until a simulated load balancer is triggered and the work is evenly distributed.  

Application. We chose Sweep3D 2.2b, a structured mesh application that computes  
a 1-group time-independent discrete ordinates three-dimensional Cartesian geometry 
 



 Scalable Event Trace Visualization 233 

 

Fig. 3. Percentage File Size and Degree of Matching. Here we show percentage file size (PFS) 
degree of matching (DM). The thresholds used, in order of the bars, were: 0.8, 0.8, 0.8, 104, 
103, 104, 0.6, 0.4, 0.6, 0.8, 0.8, 0.8, 104, 104, 104, 0.1, 0.1, 0.1, 0.8, 0.8, 0.8, 106, 106, 106, 1.0, 
0.6, 1.0, 0.8, 0.8, 0.8, 106, 106, 105, 2.0, 2.0, 1.2, 0.98, 0.98, 0.98, 106, 106, 105, 1.4, 1.4, 1.4.  

neutron transport problem [1]. We collected traces for two runs of this application. 
The 8-process run, sweep3d_8p, used the input file input.50 from the application 
distribution; the 32-process run, sweep3d_32p, used the input.150 file.  

Distance Metrics. The distance metrics we use to compare trace segments are the 
relative difference (relDiff), absolute difference (absDiff), and Euclidean distance 
(Euclidean) at different thresholds.   

relDiff. We compare the relative differences between measurements against a 
threshold; if greater, the segments are not equal. The formula we use is: 
relDiff = (|x1-x2|)/max(x1,x2). To see how relDiff matches segments, consider our 
example in Fig. 2 using a threshold of 0.4. To compare s0.0 with s0.1, we begin with 
the start times of the segments: x1=25 and x2=24, and compute a relative difference of 
0.04. Since the relative difference is less than 0.4, we check the start times of the 
do_work event: x1=1 and x2=1, relative difference 0. We continue checking the 
timings pairwise until we reach the end of the segment. If the segments match, we 
move on to compare the next segments, s1.0 and s1.1. The end times of do_work are 
x1=40 and x2=23, with relative difference 0.42. This is above our threshold, so the 
segments do not match, and therefore the match fails for the traces of ranks 0 and 1. 

absDiff. As with the relDiff, each measurement is compared with its counterpart. A 
fixed size difference, determined by a threshold, is allowed for each measurement 
pair. Using our example segments in Fig. 2, and a threshold of 15, we see that s1.0 
will not match s1.1, because the end times of do_work are 17 time units apart.  

Euclidean. We compute the Euclidean distance between measurements in segments 
and compare it to a threshold multiplied by the maximum value in the measurements. 
Using our example in Fig. 2, to compare s1.0 and s1.1, we create a vector of the 
measurements for s1.0, (75, 1, 40, 41, 50, 51), and for s1.1, (76, 1, 23, 24, 54, 55) and 
compute a distance of 24.7 between them. The largest measurement in the pair of 
vectors is 55. Given a threshold 0.2, then the highest the computed distance can be for 
a match is 11. Thus, the traces for rank 1 and rank 0 do not match. 
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Fig. 4. Performance Trends for dyn_load_balance with No Relaxation. Each bar represents the 
severity of the performance problem from low (blue) to high (red), or white for 0.  Each box 
within the bar represents one MPI rank.   We abbreviate the diagnoses:  EX: Execution, MP: 
MPI, CM: Communication, CO: Collective, NN: Wait at NxN. 

5   Experimental Results 

We evaluate the matching criteria based on amount of trace matching, error in the 
trace, and whether the reduced trace visualization leads to the same performance 
conclusion as a visualization of a full trace.   

Trace Matching. In Fig. 3 we present the percentage of original trace file size and 
degree of matching achieved when reducing the traces using our matching methods 
and relaxation strategies. Considering only the event stream and not the behavior of 
the programs, the highest possible matches for each are: 7 for dyn_load_balance and 
early_gather; 6 for late_sender; 0 and 16 for sweep3d_8p and sweep3d_32p, 
respectively, with no relaxations, and 2 and 23 when relaxing message passing 
checks, respectively. We found that relDiff was not able to find any acceptable 
matches for all but sweep3d_32p. AbsDiff found acceptable matches for all but 
sweep3d_8p and for dyn_load_balance when ignoring segments. For sweep3d_32p, 
when relaxing message passing parameter checks, absDiff was able to find more 
matches and still retain performance trends. The Euclidean method was able to find 
acceptable matches for all but the two sweep3d runs. When Euclidean was able to 
find matches for sweep3d, they were always unacceptable.  

Observing the results for the different relaxation strategies, we see that there seems 
to be benefit for ignoring segments for dyn_load_balance with Euclidean and 
early_gather with absDiff and Euclidean. The sweep3d_32p program benefitted from 
relaxing message passing checks with absDiff, but suffered from the relaxation with 
relDiff, because all matches found were unacceptable. 

Trace Error. We computed the approximation distance for each method, relaxation, 
and program. Interestingly, we found that the highest errors were  introduced into the 
late_sender program, for which all methods but relDiff  were able to find matches that 
still retained performance trends. High errors were also introduced into sweep3d_32p 
for relDiff and absDiff, while still retaining correct performance trends. For 
early_gather, high error was introduced by absDiff and Euclidean when ignoring 
initialize and finalize segments. 
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Fig. 5. Trace Visualization of sweep3d_32p. The top shows the complete set of traces. The 
bottom shows the reduction from absDiff at 106 with no relaxation. 

Retention of Trends. We examined the reduced traces for the methods and relaxation 
strategies at differing thresholds. We show an example in Fig. 4. The first line in  
Fig. 4 is the results for the original, complete trace. We show the acceptable (top bars) 
and unacceptable (bottom bars) matches for each method with no relaxation for 
dyn_load_balance in Fig. 4. RelDiff only found matches at a threshold of 1.0, but  lost 
performance trends. AbsDiff and Euclidean both found matches that retained trends, at 
thresholds 104 and 0.6, and degrees of matching of 0.6 and 0.4, respectively.  
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In Fig. 5, we show example trace visualizations of sweep3d_32. The top screenshot 
shows the complete set of process traces. The bottom shows the set of representative 
traces from absDiff at threshold 106 with no relaxation. From this, we can see the 
groups of processes that had the same performance and message passing behaviors. In 
order to understand the exact message passing patterns, we may need to provide 
additional information in the visualization, such as the pattern of communication 
being shown, e.g. ranks send to rank+1 in a nearest neighbor communication pattern. 

Discussion. Each of the methods behaved differently when matching traces. We 
found that relDiff matched nothing except at the highest threshold. This occurred 
because the relative difference between small time stamps caused matching failures, 
e.g. for time stamps s1=1 and s2=0, the relative difference is 1.0 even though there is 
only 1 time unit between them. Because any amount of error was allowed at threshold 
1.0, the matching was very aggressive and the trends were not retained in the reduced 
trace. For all programs except sweep3d_32p, relDiff failed to produce an acceptable 
match. AbsDiff did well on all programs but sweep3d_8p and dyn_load_balance. 
When ignoring segments with dyn_load_balance, absDiff allowed five matches 
instead of just the optimal four, causing a loss of performance trends. Four matches is 
optimal because of the eight processes in the run, two groups of 4 behaved similarly. 
Euclidean did well on the benchmarks, but, for sweep3d, found only matches in 
which trends were lost. 

6   Conclusions 

In this study, we examined methods for inter-process trace reduction for the purpose of 
visualizing application performance. Although none of the methods performed perfectly, 
we conclude that absDiff performed the best, because it was able to find the most 
acceptable matches for the largest number of program traces. We found that it is indeed 
possible to reduce the number of trace lines in a visualization, while deducing the same 
performance diagnosis as when examining the full set of traces. Ongoing directions for 
this work include examination of other distance methods for deciding trace matching; 
investigating other relaxation strategies that could increase matching while not losing 
important diagnostic information; a study of larger-scale applications; and exploring 
information that could help clarify message passing patterns in reduced traces.  

References 

[1] The ASCI sweep3D readme file (January 2009), 
http://www.c3.lanl.gov/pal/software/sweep3d/ 
sweep3d_readme.html 

[2] Aguilera, M.G., Teller, P.J., Taufer, M., Wolf, F.: A systematic multi-step methodology 
for performance analysis of communication traces of distributed applications based on 
hierarchical clustering. In: IPDPS (2006) 

[3] Fahringer, T., Gerndt, M., Mohr, B., Wolf, F., Riley, G., Traff, J.: Knowledge 
specification for automatic performance analysis. Technical Report Revised Edition, 
ESPRIT IV Working Group on Automatic Performance Analysis: Resources and Tools 
APART (January 2001),  
http://www.fz-juelich.de/apart-1/reports/wp2-asl.ps.gz 



 Scalable Event Trace Visualization 237 

[4] Freitag, F., Caubet, J., Labarta, J.: A trace-scaling agent for parallel application tracing. 
In: Proceedings of the 14th IEEE International Conference on Tools with Artificial 
Intelligence (ICTAI’02), Washington, DC, USA, p. 494. IEEE Computer Society,  
Los Alamitos (2002) 

[5] Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based performance 
analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. 
LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006) 

[6] Gerndt, M., Mohr, B., Träff, J.L.: A test suite for parallel performance analysis tools. 
Concurrency and Computation: Practice and Experience 19(11), 1465–1480 (2007) 

[7] Hackstadt, S., Malony, A., Mohr, B.: Scalable performance visualization for data-parallel 
programs, May 1994, pp. 342–349 (1994) 

[8] Heath, M., Malony, A., Rover, D.: The visual display of parallel performance data. 
Computer 28(11), 21–28 (1995) 

[9] Heath, M.T., Etheridge, J.A.: Visualizing the performance of parallel programs, vol. 8, 
pp. 29–39. IEEE Computer Society Press, Los Alamitos (1991) 

[10] Hollingsworth, J., Miller, B., Cargille, J.: Dynamic program instrumentation for scalable 
performance tools. In: Proceedings of Scalable High Performance Computing 
Conference, Knoxville, TN, USA, May 23-25, pp. 841–850 (1994) 

[11] Knüpfer, A., Voigt, B., Nagel, W.E., Mix, H.: Visualization of repetitive patterns in event 
traces. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. 
LNCS, vol. 4699, pp. 430–439. Springer, Heidelberg (2007) 

[12] Lee, C.W., Mendes, C., Kalé, L.V.: Towards scalable performance analysis and 
visualization through data reduction. In: 13th International Workshop on High-Level 
Parallel Programming Models and Supportive Environments (HIPS 2008) held in 
conjunction with IPDPS (2008) 

[13] Miller, B.P.: What to draw? when to draw?: an essay on parallel program visualization. J. 
Parallel Distrib. Comput. 18(2), 265–269 (1993) 

[14] Mohror, K., Karavanic, K.L.: Towards scalable event tracing for high-end systems. In: 
Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. 
LNCS, vol. 4782, pp. 695–706. Springer, Heidelberg (2007) 

[15] Mohror, K., Karavanic, K.L.: Evaluating similarity-based trace reduction techniques for 
scalable performance analysis. In: SC ’09: Proceedings of the 2009 ACM/IEEE 
conference on Supercomputing (2009) 

[16] Naím, O., Hey, A.J.G.: Visualization of do-loop performance. In: HPCN Europe,  
pp. 878–887 (1997) 

[17] Nickolayev, O., Roth, P., Reed, D.: Real-time statistical clustering for event trace 
reduction. International Journal of High Performance Computing Applications 11(2),  
69–80 (1997) 

[18] Noeth, M., Mueller, F., Schulz, M., de Supinski, B.R.: Scalable compression and replay 
of communication traces in massively parallel environments. In: 21th International 
Parallel and Distributed Processing Symposium IPDPS’07 (March 2007) 

[19] Ratn, P., Mueller, F., de Supinski, B.R., Schulz, M.: Preserving time in large-scale 
communication traces. In: ICS ’08: Proceedings of the 22nd annual international 
conference on Supercomputing, pp. 46–55. ACM, New York (2008) 

[20] Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S.: An algebra for cross-experiment 
performance analysis. In: Proc. of the International Conference on Parallel Processing 
(ICPP), Montreal, Canada, August 2004, pp. 63–72. IEEE Society, Los Alamitos (2004) 

[21] Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visualization 
with Jumpshot. The International Journal of High Performance Computing 
Applications 13(3), 277–288 (Fall 1999) 



 
 
 
 
 
 
 
 
 
 
 
 
 

Workshop on Real-Time Interactive  
Applications on the Grid (ROIA 2009) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Preface

Through recent advancements in network technologies, graphics cards and
displays, a new type of Real-time Online Interactive Applications (ROIA) has
become increasingly popular. Everyday life is currently being affected and trans-
formed not only by the use of Web technologies, but also by collaborative
multimedia applications, networked computer games, cooperative scientific vi-
sualisations, networked virtual environments and real-time graphics displays.
Computer-Supported Cooperative Work (CSCW) and Massively Multiplayer
Online Gaming (MMOG) are two huge growing sectors worldwide with challeng-
ing demands with respect to real-time distributed and interactive technologies.

ROIA 2009 is the second edition of this workshop organised in conjunction
with the Euro-Par conference at the Technical University of Delft, Netherlands.
The focus of the workshop is on all areas of real-time distributed technologies,
from research of basic real-time methods, to applications in real-world environ-
ments. The ROIA workshop has offered possibilities to discuss the benefits of
real-time applications for human users, to show the latest results, products or
research prototypes, and to establish connection between developers and users
of associated technologies.

The topics of interest discussed at the workshop included real-time interactive
parallel and distributed tools and environments, real-time interactive distributed
(massively multiplayer) online gaming, real-time interactive e-learning applica-
tions, integration of Cloud computing virtualisation technologies with real-time
interactive applications, techniques for real-time Quality of Service (QoS) mon-
itoring and enforcement, utility business models and Service Level Agreements
(SLA) for ROIAs, and experiences in deployment and use of real-world dis-
tributed ROIAs.

This year’s workshop organised by the FP6 IST-034601 edutain@grid STREP
project consortium accepted six technical papers and two tutorials scheduled
over two half days. To ensure high quality, each paper underwent two rounds of
reviews carried out by at least three international experts.

The first day has been dedicated to presentations regarding the edutain@grid
project that targeting real-time scalability, resource management and business
support for ROIA in Grid environments.

The first paper by Stuart Middleton et al. titled “Bipartite Electronic SLA
as a Business Framework to Support Cross-Organisation Load Management of
Real-Time Online Applications” presents a novel Grid-based business framework
that makes use of bipartite SLAs and dynamic invoice models to model complex
business relationships in a massively scalable and flexible way. For evaluation it
looks at existing and extended value chains, the QoS metrics measured and the
dynamic invoice models that support this work. The causal links from customer
quality of experience (QoE) and service provider quality of business (QoBiz)
through to measured quality of service are examined. Finally it discusses a shared

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 241–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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reward business ecosystem and suggests how extended SLAs and invoice models
can support this.

The second paper by Vlad Nae et al. titled “Monitoring and Fault Tolerance
for Real-Time Online Interactive Applications” presents a monitoring system
which collects data from all resources in a distributed environment and from the
ROIA managed by the edutain@grid platform. It also describes a fault tolerance
service which addresses not only the faults commonly encountered in distributed
systems, but also faults manifesting at service level, within the platform’s man-
agement services. Finally, a use-case consisting of the platform running a MMOG
as a concrete ROIA demonstrates the roles of the monitoring and fault tolerance
services.

The third paper by Frank Glinka et al. titled “A Service-Oriented Interface
for Highly Interactive Distributed Applications” describes a service-oriented in-
terface that comprises a Real-Time Framework (RTF) supporting a high-level
application development process which frees the software developer from the
low-level details of distributed computation and communication, and the Hoster
Management Interface (HMI) supporting transparent resource management for
a running application, in particular the creation, controlling and monitoring of
ROIA instances. The paper presents an efficient implementation of the interface
and describes its use for two particular distributed application scenarios.

The first day of the workshop concluded with a tutorial by Alexander
Ploß et al. on “Scaling Real-Time Games on Grid Resources”. The tutorial
addressed had two goals targeted towards two demographic audiences, namely
real-time application developers and edutain@grid platform hosters, both being
platform-users, but as different business actors. The first goal of the tutorial was
an introduction to the utilisation of the RTF library, enabling real-time appli-
cations to be managed within edutain@grid. The second target familiarised the
participants with the edutain@grid management services and their functionality
accessed through a special purpose management portal. Both parts contained
live demonstrations of the involved concepts.

The workshop continued on the next day with a tutorial by Stuart Middelton
et al. on “Dynamic SLA, QoS Measurement and Invoicing Support for ROIA
in edutain@grid” that showed how the edutain@grid business layer framework
supports the three stages of SLA management, contract definition, negotiation,
and enforcement, in a way suitable for ROIA requirements.

The first technical paper of the second day by Eryk Ciepiela et al. titled
“CompTalks – From a Meta-Model Towards a Framework for Application-Level
Interaction Protocols” introduces a new concept of conversation protocol to en-
able custom fine-grained and elaborate message exchange between distributed
yet tightly-coupled parties. The framework is successfully applied to develop a
protocol for GSEngine which serves as the runtime system of the ViroLab vir-
tual laboratory, enabling development and execution of complex collaborative
applications.

The second paper by Alexandru Iosup titled “CAMEO: Continuous Analytics
for Massively Multiplayer Online Games on Cloud Resources” introduces a new
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architecture that provides various mechanisms for MMOG data collection and
continuous analytics of a pre-determined accuracy in real settings. The paper
assess the capabilities of the proposed approach by taking and analysing com-
plete or partial snapshots from Runescape, one of the most popular MMOGs
with a community of over 3,000,000 active players. Notably, it shows evidence
that CAMEO already supports simple continuous MMOG analytics, and give a
first estimation of the costs of the analytic process.

The last paper presented at the workshop by Tomasz Jaskiewicz titled “Com-
plex Multiplayer Urban Design System – Concept and Case Studies” explores
the idea of creating a software and hardware system supporting collaborative ur-
ban planning and design. The paper demonstrates several working case studies
of various parts of such system and illustrated a selected strategy for a computer
supported cooperative work for the field of architectural and urban design and
planning.

As Program Chair, I wish to acknowledge all those that contributed to the
success of ROIA 2009, in particular to the authors of the submitted papers, and
to the Program Committee members for their valuable time and expertise to the
selection process.

December 1, 2009

Radu Prodan
Program Chair

ROIA 2009
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Abstract. Online applications such as games and e-learning applications fall 
within the broader category of real-time online interactive applications (ROIA), 
a new class of ‘killer’ application for the Grid that is being investigated in the 
edutain@grid project. The two case studies in edutain@grid are an online game 
and an e-learning training application. We present a novel Grid-based business 
framework that makes use of bipartite service level agreements (SLAs) and dy-
namic invoice models to model complex business relationships in a massively 
scalable and flexible way. We support cross-organization load management at 
the business level, through zone migration. For evaluation we look at existing 
and extended value chains, the quality of service (QoS) metrics measured and 
the dynamic invoice models that support this work. We examine the causal 
links from customer quality of experience (QoE) and service provider quality of 
business (QoBiz) through to measured quality of service. Finally we discuss a 
shared reward business ecosystem and suggest how extended service level 
agreements and invoice models can support this. 

Keywords: SLA, business model, value chain, cross-organization, load man-
agement, ROIA, Grid. 

1   Introduction 

As Grid technology matures [8] it raises the possibility of improving the way that on-
line applications such as games and e-learning applications are provisioned and man-
aged. The edutain@grid project [7] is investigating just this. This type of application 
needs resource provisioning that is secure, robust, scalable and flexible enough to 
support the value chains found in real-time online domains. As case studies within the 
edutain@grid project we have two distinct ROIAs, a real-time massively multiplayer 
online (MMO) game developed by Darkworks and an e-learning search and rescue 
training simulator developed by BMT Cordah. Through these case studies we aim to 
evaluate how Grid technology can support and provision ROIAs and their associated 
business relationships. 

The online game market sector is growing, soon to be worth billions [5], and the  
e-learning market is currently worth millions [10]. Analysis of the business relationships 
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is key to developing a commercially viable supporting middleware. In edutain@grid 
we have implemented a business layer that flexibly supports complex value chains in a 
way where multi-organizational resource provision can scale massively and gracefully 
with ROIAs as they become more successful and attract more customers. Extending an 
existing business Grid middleware, GRIA [17], we make use of bipartite service level 
agreements (SLAs) and dynamic invoice models to encode business relationships. 
Although not the focus of this paper, our middleware supports single sign-on security, 
with X.509 credentials and Security Assertion Markup Language (SAML) access con-
trol tokens put in place prior to user's game play to avoid real-time performance costs. 

This paper presents our novel business framework, using scalable dynamic bipar-
tite service level agreements and invoice models based on quality of service. Our 
business level support for cross-hoster load management, though zone migration, is 
not currently seen with ROIA provisioning today. The concept of zone depends on the 
application and can be 3D areas in a game world, training scenarios etc. In addition to 
our proof of concept implementation we present a new shared reward business eco-
system that could help shape ROIA provisioning models as they grow in scale over 
the coming years. 

2   Related Work 

Most Grid middleware systems such as the Globus toolkit [9], gLite [6], and  
UNICORE [3] have somewhat rigid infrastructures and are not very cost-effective at 
supporting changes to the basic business infrastructure associated with a dramatic 
scaling-up of service provision requirement. In edutain@grid our support for bipartite 
business relationships makes the provisioning network flexible and easy to grow over 
time. Supporting cross-hoster service provision and load management by design al-
lows us to manage the changes in ROIA scale cost-effectively. 

The use of service level agreements has been used as part of the paper management 
of supply chains and telecommunication services for decades. As service provision 
becomes more dynamic, with increasingly agile service composition, electronic ser-
vice level agreement lifecycle management gains importance. A number of standardi-
zation attempts have been seen [13] but failed to gain traction within the community 
(e.g. WLSA, SLAng). Currently WS-Agreement [1] is the most widely adopted stan-
dard to represent service level agreements, but focuses on protocol and lacks detailed 
standards for representing quality of service metrics, constraints and penalties. Edu-
tain@grid builds on this work defining bipartite service level agreements between 
coordinators and hosters to model our business relationship networks in a flexible 
way, and to set quality of service expectations from ROIA provisioning that can be 
measured and monitored. 

The associated area of cloud computing has come about from an evolution of grids 
and service oriented architectures [18] and gained popularity when IBM and Google 
[12, 14] announced their collaboration. Clouds focus on virtualization coupled with 
time / CPU multiplexing, load balancing and multi-user service hosting to provide 
scalability. The cloud middleware hides the complexity involved in finding and pre-
paring remote 'bare metal' computing resources. Cloud computing is a scalable solu-
tion but current implementations ignore geographic location (important for network 
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performance), are single-hoster and lack support for dynamic service level agreements 
[4]. In edutain@grid we support load balancing between multiple hosters and use 
bipartite service level agreements to manage complex business relationships. 

In the gaming space there are a number of existing commercial implementations of 
middleware for large scale 3D worlds supporting massive multiplayer online games. 
The Grid community has had some impact into this area with commercial offerings 
from Butterfly Grid [11] and BigWorld [2]. Butterfly Grid is based on the Globus 
toolkit and provides a peer to peer network of servers at a single hoster along with IP 
level security and single sign-on for in-game user accounts. BigWorld server provides 
single-hoster cluster management along with zone migration and bandwidth control 
via level of detail prioritization. Edutain@grid moves beyond these capabilities by 
supporting multiple hosters, and cross-hoster load management through zone migra-
tion, allowing massive scale-up to gracefully occur around successful ROIAs. 

For the e-learning sector frameworks [16] have been developed using client-server, 
peer to peer and web service architectures but all suffer from associated poor scalabil-
ity and fault tolerance / reliability. More recently Grid technology has been introduced 
in an attempt to bring in scalable distributed resources and allow e-learning applica-
tions with higher resource demands to be developed cost-effectively. This Grid focus 
is on automated service composition and adaption. In edutain@grid we support e-
learning applications with real-time performance criteria, a new aspect that has not 
been applied to e-learning Grids yet. 

3   Real-Time Online Interactive Application Case Studies 

The edutain@grid project includes two exemplar case study applications; an online 
multiplayer game and an e-learning multi-student training application. These applica-
tions have allowed the edutain@grid project to build a proof of concept architecture 
and test different aspects of our approach to ROIA provisioning. Figure 1 provides 
screenshots from these applications in action. 

A massively scalable online 3D first person cooperative shoot-em-up game has 
been developed by Darkworks called ‘Hunter’. This is a fast paced game with a mas-
sively scalable 3D hexagonal segmented play area that grows as new players connect. 
Key quality of service metrics are client packet latency (<500ms) and server frame 
rate (>15 frames/sec). This pilot application is typical of massively multi-player 
online (MMO) first person perspective (FPS) games where games support 1000’s of 
players from multiple geographic regions. 

An e-learning shell application has been developed by BMT Cordah to run training 
applications such as their Search and Rescue (SAR) application within a multi-user 
voice over IP (VOIP) support environment. Supervisors and students remotely con-
nect, and control is shared via a hot-seat protocol. The supervisor can monitor each 
student’s progress as they participate in coast-guard role-play training simulations and 
communicate using video and audio. The application supports the Sharable Content 
Object Reference Model (SCORM) standard in common with most commercial e-
learning applications. Sessions can involve up to 100 students and a few supervisors 
from multiple geographic regions. The key quality of service metric is data through-
put to ensure acceptable VOIP performance during training sessions. 
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Fig. 1. Hunter online game and Search and Rescue (SAR) e-learning application screenshots 

4   Flexible Business Models Suitable for ROIA 

The value chain for existing commercial ROIA provision is relatively simple, with a 
single service provider, or ‘hoster’, provisioning model underpinned by written fixed 
term service level agreements, between a customer and the hoster. This service level 
agreement defines the hardware that will be provided for the duration of the contract 
and cost to the customer. Penalties are often written in to compensate for failure of 
hardware availability or uptime. The scalability of this type of provisioning model is 
limited to the number of servers a hoster can provide. Vendor lock-in is a restriction 
for customers, and for ROIAs with large user-bases in many geographic regions mul-
tiple vendor agreements are often needed to ensure servers are geographically close to 
clients to increase communication performance. 

In edutain@grid we have experimented with bringing Grid concepts to support 
more scalable multi-hoster value chains. We recognize that ROIA provision needs to 
start small, with an entry level low-cost single-hoster provision, and scale up grace-
fully through several orders of magnitude of users as a ROIA grows in success and 
popularity. We have introduced a third actor into the current commercial provisioning 
relationship, a broker or ‘coordinator’, that allows flexible value chains made up of 
many on-demand bipartite business relationships. The customer, or game player, is 
assigned a server provisioned by a hoster via the coordinator. We use on-demand 
electronic bipartite service level agreements to encode pricing and expected quality of 
service between the coordinator and hoster. User account management is provided by 
the coordinator for the customer. Hosters run a trade account service to record in-
voices for provisioned service and coordinators make use of existing customer pay-
ment models (e.g. PayPal). 

Electronic on-demand service level agreements allow pricing based on measured 
quality of service and resource usage, not just hardware costs. This flexibility to pay 
for what is actually used allows coordinators to start small, sharing hoster resources 
with other coordinators. As users for a ROIA increase a greater share of each hoster’s 
resource can be taken and new hosters brought in to provision the increased load. 
Edutain@grid supports cross-hoster zone migration allowing seamless load balancing 
between hosters with differing resource available from different geographic regions. 

Supporting the electronic service level agreements in edutain@grid is a flexible in-
voice model that provides variable pricing, with cost components proportional to the 
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quality of service measured, and banded pricing, where the overall cost is linked to 
bands based on quality of service threshold levels achieved by the provider. Classic 
invoicing components are also provided for cost per duration and penalty fees for 
breaches of quality of service thresholds. These invoice tools provide us with a flexi-
ble business layer that supports a variety of mechanisms to provide business incen-
tives for key actors in the ROIA value chain. 

5   Case Study: edutain@grid Business Layer Architecture 

The edutain@grid business layer implementation supports the three phases of the 
service level agreement lifecycle, contract definition, negotiation and enforcement. 
For contract definition we have implemented a workflow, shown in figure 2. Multiple 
service level agreements can be setup for multiple coordinators and ROIAs providing 
a flexible and scalable bipartite value network.  

(4) Hoster loads the SLA template

(1) coordinator requests a trade account with hoster

(2) Hoster approves the trade account

(3) negotiate SLA terms and pricing
[offline process between hoster and coordinator]

Management
client

SLA service

Trade account
service

Coordinator

Hoster

ROIA

 

Fig. 2. edutain@grid SLA contract definition workflow 

SLA template [edutain@grid]

Duration
Start time, End time, Currency [€]
Price per time unit [e.g. 1€ per day]
Billing interval [e.g. per month]

Pricing term [peak QoS value]
Metric definition [URI, unit]
Price per unit of the peak value

Pricing term [accumulated QoS value]
Metric definition [URI, unit]
Price per unit of the accumulated value

Pricing term [penalty value]
Metric definition [URI, unit]
Threshold values [upper, lower]
Penalty price if threshold breached

example values from edutain@grid SLA
3 month duration, 1€ per day, billed every month

1€ cost per accumulated client connection count
penalty 20€ if upper client packet latency > 100ms

 

Fig. 3. edutain@grid XML SLA template outline 

The edutain@grid service level agreement XML template structure, figure 3, con-
tains sections for static hardware provision, cost for duration of provision, variable 
cost components based on quality of service measurement and penalties based on 
breaches of agreed thresholds. We use metrics for server packet latency (ms), packet 
loss (%), data throughput (bytes/s), server tick time (ms) and client connection count. 

We have implemented a discrete offer protocol for contract negotiation (figure 4) 
in addition to session management; hosters have local provisioning sessions and 
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coordinators have global sessions to manage collections of local session. More com-
plex multi-stage negotiation strategies are possible but not cost effective for the 
value of individual provisioning contracts (typically €€ 100’s for a few months). 
 

(2) Hoster approves SLA instance
[discrete offer protocol]

(1) Coordinator proposes SLA instance
based on SLA template

(3) Coordinator sets up a global session

(4) Hoster creates a local session to be
managed by the global session

(6) real-time layer is instructed
to start measuring QoS metrics

(5) Coordinator tells Hoster which SLA instance
is assigned to the local session

Local session
service

Global session
service

Management
client SLA service

 

Fig. 4. edutain@grid SLA contract negotiation workflow 

edutain@grid real-time & management layer

(6) Hoster produces an invoice at each
billing period based on QoS
Measurements and SLA pricing terms

(2) QoS measurements recorded
by real-time layer

(7) Payment is made offline
[via normal accounting processes]

(4) Coordinator monitors QoS

(1) ROIA executes providing
service to customer

(3) SLA service gets periodic QoS
Measurement summaries via a pull point
mechanism

(5) Coordinator migrates zones as required
for cross-hoster load management

ROIA (client) ROIA (server)

QoS monitor

Local session
service

SLA service

Trade account
service

Global session
service

  

Fig. 5. edutain@grid contract enforcement workflow 

The final step is contract enforcement, shown in figure 5, where users join ROIA 
sessions and quality of service metrics are recorded for the duration of each session 
runtime. The coordinator will monitor quality of service levels and can choose to 
(manually and/or automatically) migrate zones from one hoster’s session to another, 
allowing cross-hoster load balancing. Edutain@grid thus implements business level 
control over real-time hoster to hoster zone management, something not seen in 
ROIAs today. The invoice is based on the terms in the service level agreement  
and actual payment by the coordinator to the hoster is made via normal accounting 
procedures. 
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6   Evaluation beyond Quality of Service for ROIA Provision 

If we look at the whole business eco-system [15] we see that quality of service (QoS) 
are objective facts that are measureable, but what really matters to actors in the  
ecosystem depends on their perspective. The customer is primarily interested in the 
quality of experience (QoE) that good quality of service allows, ensuring the ROIA 
delivers as expected. The coordinator and hoster are interested in the quality of busi-
ness (QoBiz), in particular the value gained for doing their role in service provision. If 
the QoE and QoBiz are causally linked to measureable QoS then the business ecosys-
tem as a whole should be able to prosper. 

From the customers perspective QoE for a game is linked to the ability to connect 
to a server, play with friends, ease of connection and use of the ROIA and the lack of 
any game perceivable game lag. For an e-learning application QoE means the ability 
to connect to server, talk to the supervisor and the quality of coaching received. There 
is a relatively clear cause and effect from QoE to the key QoS metrics. The data 
throughput will affect the ability of students to understand the supervisor via VOIP. 
The server frame rate and client packet latencies will affect game lag. Simple single 
sign-on security ensures easy login. 

The impact QoE has on the value chain is on customer repeat business and the like-
lihood of attracting new business through word of mouth. These effects will impact 
future customer numbers, and thus the value of the overall business proposition for a 
ROIA provision network. 

From the coordinator and hosters perspective the QoBiz comes down to the reve-
nue obtained from the business proposition. Each decision they must make is done so 
in the context of how it will affect their QoBiz. For hosters key decisions are: 

 will they accept new load 
 will they signal to the coordinator they are (or might be) having trouble pro-

visioning existing load 
 are they able to shift internal resource to ensure QoS for existing load 
 how much to charge a coordinator for provision of service. 

For coordinators key decisions are : 

 which hoster (who, where) should receive new load 
 when, where and who to migrate ROIA load cross-hoster 
 if, when and where a new hoster should be brought into the scalable value 

network for a specific ROIA 
 how much to charge a customer for using a ROIA 
 how much to pay hosters for service provision. 

In order to ensure good QoBiz pricing incentives must be associated with each key 
business decisions and ultimately causally linked back to the final customers QoE. In 
this way a value chain and associated business model is setup so that all stakeholders 
are incentivised to increase overall QoBiz. Figure 6 shows the business ecosystem 
from a QoBiz perspective, showing actors and how revenue flows between them. 

We have investigated within the edutain@grid business layer implementation pric-
ing instruments for hardware prices for a duration, variable prices per quality of ser-
vice measurement, penalty costs for quality of service breaches and price banding. 
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A hardware cost per duration incentivises the hoster to accept load at every oppor-
tunity. A penalty cost reduces the incentive to under-provision and provides a basic 
incentive framework in which ROIAs can be provisioned. However there is no incen-
tive for the hoster to work to provide better quality of experience, or help grow the 
quality of business; the only incentive is to provide momentary quality of service on a 
case by case basis.  

Introducing variable pricing based on measured quality of service allows us to de-
fine customer focused metrics such as the number of client connections, server frame 
rate, client connection latency and data throughput. Banded pricing provides an in-
creasing scale of penalty for bad quality of service and helps to discourage systematic 
under-provisioning that would otherwise be in the hosters interest since it would en-
sure resources are fully loaded at all times. These incentives link hoster provisioning 
to factors that affect customer quality of experience. It is up to the coordinator to 
select carefully the key quality of service metrics that really do have a causal link 
back to QoE; this might be difficult if the causal link is not clear. Improving QoE is 
likely to indirectly improve the QoBiz, via long term return business, so the coordina-
tor is well motivated to ensure this. 
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Fig. 6. Business ecosystem for actors in the ROIA value chain 

We have found from experience in edutain@grid that these techniques are the 
limit with which the service and ROIA providers are really commercially comfort-
able, being not too far from the existing single-hoster fixed contract provisioning 
models that work commercially today. These pricing instruments do not, however, 
give hosters any direct incentive to work together to that ensure cross-hoster QoE is 
maintained. 
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We envisage a further enhancement to this incentive framework where the revenue 
from customers is directly shared, via coordinators, with the hosters. This shared 
value network has the advantage that hosters have a direct incentive to see the QoBiz 
grow. A service level agreement could define variable quality of service rewards in 
terms of a percentage of the revenue obtained from each customer, with a banded 
reward adjustment based on a longer term business metrics such as player number 
growth or increased coordinator income. Such shared rewards should encourage a 
limited degree of cooperation between hosters, encouraging proactive load sharing for 
under-provisioned hosters. Figure 7 shows what a shared incentive service level 
agreement might look like. 

SLA template [QoBiz enabled]
Hardware QoS

Server hardware [CPU,Disk space,Memory]
Network hardware [Bandwidth]
Duration [start, end, cost, billing interval]

Variable QoS
Client packet latency [cost, limits, penalty]
Packet loss [cost, limits, penalty]
Server frame rate [cost, limits, penalty]
Data throughput (in, out) [cost, limits, penalty]
Number of client connections [cost, limits, penalty]

Customer QoE
User feedback / complaints [bonuses / penalties]
Average length of play [bonuses / penalties]
Number of return visits [bonuses / penalties]

Longer term QoBiz
Revenue per quarter [banded pricing]
Number of players per month [banded pricing]

 

Fig. 7. Example QoBiz enabled SLA template 

7   Conclusions 

The edutain@grid business layer implements a scalable bipartite value chain, under-
pinned by electronic service level agreements, which can scale gracefully as small 
ROIAs with low numbers of users grow by several orders of magnitude to large suc-
cessful ROIAs. We support invoice models that provides variable pricing, banded 
pricing, cost per duration and penalty fees. These invoice tools provide us with a 
flexible business layer that supports a variety of incentive mechanisms for key actors 
in the ROIA value chain. 

The edutain@grid project includes two exemplar case study applications; an online 
multiplayer game and an e-learning multi-student training application. Key quality of 
service metrics are client packet latency, server frame rate and data throughput. We 
implement these applications as proof of concept demonstrators. Our business layer 
implementation supports contract definition using XML service level templates to 
define pricing and metrics. Contract negotiation follows a discrete offer protocol and 
contract enforcement is provided by continuous quality of service monitoring, on-
demand cross-hoster zone migration and flexible invoice models. 

We evaluate our value chains and incentive models in the context of both quality of 
experience and quality of business. We suggest setting up enhanced incentive models 
that share rewards between coordinators and hosters, providing a reason for hosters to 
cooperate with coordinators on cross-hoster load balancing. We show that whilst this 
is technically achievable the real question to be answered is will an evolving ROIA 
market see sufficient commercial benefits to make adoption worthwhile. 
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Abstract. The edutain@grid European project [1] is developing a sup-
port platform for deployment, management and execution of Real-Time
Online Interactive Applications (ROIA) on Grid. In this paper we present
a monitoring system we developed which collects data from all the re-
sources in a distributed environment and from the ROIA managed by our
platform. We also describe a fault tolerance service which addresses not
only the faults commonly encountered in distributed systems, but also
faults manifesting at service level, within the platform’s management ser-
vices. Finally, a use-case consisting of the platform running a massively
multiplayer online game as a concrete ROIA, is presented in order to
demonstrate the roles of the monitoring and fault tolerance services.

1 Introduction

The IST-034601 edutain@grid project [1] is focusing on enabling Grid support
for general Real-time Online Interactive Applications (ROIA), with particular
focus on online games and e-learning applications, including massively multi-user
applications embracing large user communities. To achieve this goal, the project
classifies ROIA as a new class of Grid applications with the following distinctive
features that make them unique in comparison to traditional parameter study or
scientific workflows, highly studied by previous Grid research [2]: (1) they often
support a very large number of users connecting to a single application instance;
(2) users sharing an application interact as a community, but they have different
goals and may compete (or even try to cheat) as well as cooperate with each
other; (3) users connect to applications in an ad-hoc manner, at times of their
choosing, and often anonymously or with different pseudonyms; (4) the applica-
tions mediate and respond to real-time user interactions, and involve a very high
level of user interactivity; (5) the applications are highly distributed and highly
dynamic, able to change control and data flows to cope with changing loads and
levels of user interaction; (6) the applications must deliver and maintain certain
Quality of Service (QoS) parameters related to the user interactivity even in the
presence of faults.
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Two of the main objectives of the edutain@grid project are unsupervised man-
agement of ROIA and load balancing of ROIA sessions by starting new servers or
migrating users from overloaded servers to less loaded or newly started ones. In
working to achieve these goals in distributed environments, fault tolerant services
must be used and dynamic resource and ROIA-session monitoring information
needs to be collected and processed. We designed, as part of the edutain@grid
management layer, a monitoring service capable of collecting information about
the current state and load of resources as well as low-level internal data from
ROIA. We also designed and developed a fault-tolerance service which monitors
the correct operation of the management services and the employed load distri-
bution and load balancing actions taking the appropriate measures in case of
faults.

We introduce the edutain@grid architecture and detail its management layer
in Section 2. The monitoring service and the fault tolerance service are described
in Section 3 and Section 4, respectively. Section 5 presents a use-case involving
the monitoring and fault tolerance services and Section 7 concludes the paper
and outlines future work.

2 Architecture
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Fig. 1. The edutain@grid architecture. Detail
of management services.

We designed a distributed service-
oriented architecture depicted in
Figure 1 to support transpar-
ent access1 and scalability for
an increased number of end-users
(compared to current state-of-the-
art) to existing ROIA. A scal-
able ROIA session is distributed
across several ROIA server pro-
grams, called ROIA servers from
here on, that run on distributed
resources provided by multiple
hosters. A real-time communica-
tion framework (RTF) [3] provides
the fundamental protocols for par-
allelising and distributing the ROIA session across multiple ROIA servers. By
distributing the load of a session on multiple resources, a larger number of end-
users can be accommodated. The architecture is composed of three main actors
described in the following subsections.

2.1 End-User

This actor seeks a connection to a suitable ROIA session, which provides the
needed ROIA type and desired QoS. The client ROIA application negotiates
1 The complex underlying hardware and software stacks are hidden from the end-users.
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these terms with the Coordinator, transparently to the end-user. Once the ap-
propriate ROIA session details are obtained from the Coordinator, the end-user
connects to the respective ROIA server directly, connection called here “real-time
connection”, as depicted in Figure 1.

2.2 Coordinator

The coordinator receives from the end-user specific QoS requirements which can
be performance-related (e.g. maximum latency, minimum bandwidth, minimum
throughput) or ROIA-specific (e.g. ROIA type, number of participants). Its role
is to distribute end-users to ROIA servers, which is accomplished as a distributed
negotiation between the coordinator and hosters, each of them trying to optimise
its own specific metrics expressing individual interests. The relation between
the end-user and the coordinator is materialised as a client account and the
coordinator-hoster negotiation is finalised as a contract. While the coordinator
purely negotiates in terms of end-user-centric QoS parameters, the hosters try
to optimise metrics related to their own and often contradicting interests such
as maximising resource utilisation or income. Eventually an equilibrium that
represents a balance between risks and rewards for all participating parties is
reached. The result of the negotiation process is a performance contract that
the coordinator offers to the end-user and which does not necessarily match the
original QoS request. The end-user has the option to accept the contract and
connect to the proposed session, or reject it.

2.3 Hoster

The hoster actor represents an organisation that provides the necessary com-
putational and network infrastructure for running the ROIA sessions, similar
to the “resource provider” from the scientific scene. The hoster also runs the
management services, all within a server container, which monitor the provided
resources, steer the hosted ROIA sessions and negotiate new connections with
the coordinator.

Resource Allocation Service. Each hoster owns one resource allocation ser-
vice, responsible for allocating local resources to a large number of connecting
end-users. The coordinators make requests based on the load of the ROIA they
operate (either statically or dynamically computed), and the hosters respond
with offers based on their local time-space renting policy, their internal moni-
toring data collected by the monitoring service and their load prediction. The
resource allocation is realised by a request-offer matchmaking mechanism based
on three criteria that favour the hoster [4].

Capacity Management Service. There may occur factors during the execu-
tion of a ROIA session which affect the performance, such that the negotiated
contracts are difficult or impossible to be further maintained. Typical perturbing
factors include external load on unreliable Grid resources, or overloaded ROIA
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servers due to an unexpected concentration of end-users in certain “hot spots”.
The capacity management service interacts at runtime with the monitoring ser-
vice for preserving the negotiated QoS parameters for the entire duration of
the ROIA session. Following an event-action paradigm, a violation of a QoS
parameter triggers appropriate adaptive steering or load redistribution actions.

Load Prediction Service. The load of a ROIA session depends heavily on
internal events such as the number of entities that interact altering each other’s
state. Alongside internal events, there may also occur external events such as the
connected end-user number fluctuation over the day or week with peak hours
in the early evening [5]. Hence, it becomes crucial for a hoster to anticipate the
future ROIA load.

In our load prediction service, for a fast system reaction time, we employ com-
putationally inexpensive time series prediction models (like exponential smooth-
ing and variants thereof) which generate predictions based on the data collected
by the monitoring service. Although their predictive power is limited, they of-
fer sufficiently high accuracy for this kind of trace data and, most importantly,
have a very short prediction time which allows the capacity management service
enough time to apply its ROIA session steering actions. For massively mul-
tiplayer online games, a particular subset of ROIA, we found in [6] a novel
algorithm based on neural networks which offers a better accuracy than the
aforementioned time series prediction models, while offering the predictions at
comparable speeds.

Information Service. To store meta-information about the deployment, invo-
cation, and execution of ROIA, we designed a generic information system with
the database schema defined as a composition of independent, generic, type-
specific schemas called beans, each bean consisting of one or more customised
tables. The information service also stores data generated by the monitoring
service and because the ROIA are very dynamic applications and generate large
amounts of monitoring data in short time intervals, we optimised our informa-
tion system’s performance with a special emphasis on the data storing speed on
top of the MySQL database platform. We evaluated this service by carrying out
a series of scalability experiments which are detailed in [7].

3 Monitoring Service

The monitoring service’s conceptual architecture and its interactions with the
involved entities (i.e. monitored entities and clients) are presented in Figure 2.

There are three entities that can be monitored by this service, namely ROIA
servers, ROIA sessions and hosts (i.e. the computational and networking infras-
tructure offered by hosters), for each one, the monitoring service including a
profiled probe: ROIA probe, ROIA session probe and host probe, respectively.
Each monitoring probe can be attached to a serialization probe whose function
is to buffer the monitoring data generated by its attached probe and, eventu-
ally, serialize the collected data. Separate probes are constructed for each of the
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Fig. 2. The architecture of the monitoring service

monitoring service’s clients, called monitoring clients from here on, and each
one represents a separate monitoring session with specific metrics to monitor
and monitoring time intervals. If the monitoring clients request notifications for
their monitoring, they are registered with the notification dispatcher and each
time new monitoring data is generated by their probes, they receive a notifica-
tion. The monitoring clients are the other management services (all described
in Section 2), the coordinator and the end-users through the client ROIA ap-
plications or through access portals. Monitoring clients have different privileges
which limit the range of metrics they have access to, or the right to serialize data.
The management services are granted all the monitoring privileges, whereas the
end-users and portals only have access to restricted sets of public metrics.
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Fig. 3. The monitoring service utilisation
workflow

Figure 3 presents the workflow the
monitoring clients must follow in or-
der to utilise the monitoring service:

Step 1. Choose the entity to moni-
tor, select the needed metrics to mon-
itor, the monitoring time interval and
invoke the monitoring service with
these parameters to start the mon-
itoring process. At this point, the
monitoring probes are created and
started;
Step 2.[optional] Request the serial-
ization of the monitoring data. Now,
the serialization probes are created
and started;
Step 3. [optional] Request notifica-
tions for new monitoring data. Here, the monitoring client is registered with
the notification dispatcher;
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Step 4. Collect the existing monitoring data. This step has to be performed reg-
ularly, but not necessarily at the same time interval as the monitoring is done,
thanks to the buffering mechanism provided by the monitoring service;
Step 5. [optional] Stop the notifications for new monitoring data. At this point
the monitoring client is unregistered from the notification dispatcher;
Step 6. [optional] Stop the serialization of the monitoring data. Here the moni-
toring client’s serialization probes are destroyed;
Step 7. Stop the monitoring. Here, the monitoring client’s probes are destroyed;

Clients can monitor sets of metrics of their choosing at time intervals greater or
equal to one second. The monitoring service provides monitoring data buffers for
all its probes, whose size can be adjusted prior to the service start. This facilitates
the monitoring data collection process for the users because they are thus allowed
to collect their data at intervals asynchronous to the monitoring interval. In
addition, the monitoring service provides notification callbacks, in case the users
need to collect the monitoring data synchronously with the monitoring interval.

4 Fault Tolerance Service

The fault tolerance service is designed to ensure a high level of tolerance to
resource faults (to cope with the known problem of highly distributed and het-
erogeneous systems, like the Grid), as well as to internal faults (e.g. a subset of
the management services failing).

4.1 Resource Level Fault Tolerance

In highly distributed and heterogeneous environments like the Grid, a multitude
of unexpected events take place which can lead to resource failures, or the im-
possibility to access or use hosts. The fault tolerance service is designed to cope
with faults of the following types:

A. Host unavailability The management services continuously check for avail-
able hosts and their status in the current setup and will only utilise the hosts
which acknowledge and report a functional state;

B. Host failure If this event takes place while the host is being used (i.e. there
are ROIA servers hosted on it) the management services will change the
host’s state to “unavailable” and will issue new connection details for the
clients serviced by the host in question at the time of the failure. If the event
takes place while the host is not involved in any ROIA sessions, then the host
is simply reported as “unavailable”, and will not be used until it recovers
from the fault.

C. Deployment issue The management services do not hold exclusive rights to
alter deployments. Human intervention, such as non-automated deployments
and updates, is allowed which can generate faults. The fault tolerance service
does not monitor the deployments (as is the case with hosts), instead they
employ a lazy fault detection technique which is more efficient as it does not
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generate overhead on the monitored hosts nor on the management services
themselves. This technique involves the detection of faults in deployments at
access time, when the needed ROIA files (e.g. invoking the ROIA executable)
and handled accordingly, namely the deployment is marked as “unusable”
and the ROIA server is started on other available hosts.

4.2 Service Level Fault Tolerance

As is the case in complex systems, the ROIA management services can be faced
with unexpected events, which can lead to service faults. In order to remove
or, if not possible, at least minimise the effects of such issues, all management
services implement runtime diagnose methods and low-level control interfaces.
This enhances the level of control over the management services at runtime,
without having to restart the ROIA server container in case of faults or critical
problems in any of the services. Moreover, the management services need to
function without interruption since they monitor the volatile state of the ROIA
sessions; a restart of the management service container is equivalent to a hoster
site downtime and additionally the loss of all ongoing ROIA sessions. To this
end, we have developed and implemented two monitoring, diagnose and control
services designed to watch over all management services and take the necessary
countermeasures to prevent and, if necessary, to handle service faults, namely
the service thread manager and the service internal state monitor.

The Service Thread Manager. The management services are loosely cou-
pled and implemented using independent threads, each thread managing a small
subset of the functionality of a service. All the threads belonging to manage-
ment services are automatically registered with the service thread manager which
transparently monitors their states and activity. All threads can be in only one of
the following states at any point during their lifetimes: sleeping, blocked/waiting,
or working. The working state is not considered safe, thus the service thread
manager is monitoring the actions of the threads in this state by means of
checkpointing. In addition, the service thread manager continuously monitors
the amount of work (i.e. consumed active processor time) for each thread and,
at regular time intervals, assesses their sanity with one of the three defined qual-
ifiers: safe, overloaded and hung. The sleeping and blocked/waiting states are not
prone to faults, thus they are considered safe states and they do not require the
service thread manager’s intervention. Threads spending unusually long amounts
of time in the working state are marked first as overloaded, and eventually, if
the problem is not resolved in a predefined amount of time, are marked as hung.
The service thread manager sends signals to all threads at regular intervals in
case issues which could impede their normal functionality are detected. All the
management service threads implement countermeasures for the overloaded and
hung signals. Each service has its own customised mechanisms to cope with
such problems, but the main actions which can be taken when overloaded or
hung signals appear are:
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A. For the overloaded signal:
a) If the thread has a variable amount of workload, the sleeping/blocking
time or distribution over time of the respective workload can be adjusted
(e.g. for a monitoring serialization thread which writes data to disc in uneven
chunks, a buffering solution is applied in an attempt to balance the workload
between cycles);
b) If the thread has a fixed workload each cycle, an attempt to share the
load with a newly spawned thread can be made, or if by design the thread
should not reach this state (e.g. light threads, monitoring threads), it will
be flagged as a problematic thread and if the problem persists, its qualifier
will be changed to hung and the corresponding signal will be sent;

B. For the hung signal:
a.) If the thread receiving this signal does not keep internal data related to
the ROIA sessions’ states, the service thread manager restarts it and resets
its associated internal monitoring data;
b.) If the thread manages data related to the ROIA sessions’ states, the
service thread manager will try to first restart it attempting to reuse its
full current internal state, then, on consecutive identical signals, will try
restarting the thread and reusing gradually less of its present internal state
(where possible) by discarding some of the internal data structures in the
reverse order of their importance2. If this restart–hung cycle continues, the
service thread manager will eventually restart the thread in question without
reusing its internal state. Because this last resort measure can cause some
disturbance in the normal activity of the affected service it is implemented
only in threads which cannot compromise the global state of the management
layer. A relevant example are the monitoring service’s threads which are
prone to such hung signals because of their reliance on network services.
They can safely be restarted without preserving their internal states, in the
worst case causing a loss of monitoring data on short intervals.

The Service Internal State Monitor. The service internal state monitor ’s
task is to monitor the management services’ internal data. This service’s purpose
is twofold:

– Monitors the internal data generation and implicit memory consumption and
prevents faults caused by insufficient memory by issuing purge commands.
A purge command is sent to services as a signal to clear or reduce their data
buffers in order to free memory for the new incoming data;

– Provides a safety measure against memory leaks (i.e. implementation over-
sights which cause data that should have been removed from memory to be
accidentally kept in memory). The service observes the aberrant memory us-
age in the faulty threads and orders a cleanup of their internal data. This mea-
sure can be destructive (i.e. the service in question could lose important data
during the forced cleanup), but it also has the potential to prevent more seri-
ous faults which could lead to the service or even service container shutdown.

2 The importance of a data structure is directly proportional to the likelihood that a
fatal failure can occur upon its corruption.
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5 Massively Multiplayer Online Game Use Case

We present a use case for the monitoring and fault tolerance services, involving
a massively multiplayer online game (MMOG), a popular ROIA type, which
demonstrates how our ROIA management services cope with a resource-level
fault. MMOG are based on a client/server architecture, in which the game server
simulates a world via computing and database operations and receives and pro-
cesses commands from the clients. Based on the actions submitted by the play-
ers, the game servers compute the global state of the game world represented
by the position and interactions of the entities, and send appropriate real-time
responses to the players containing the new relevant state information. The more
populated the game world is and the more interactions between entities exist,
the higher the load of the underlying game server will be.
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Fig. 4. Monitoring session traces. The clients connected to a game session and their
distribution on the game servers within a game session.

We use a MMOG, which supports two methods of load distribution. One,
called zoning, is based on the spatial partitioning of the game world in zones to
be handled independently by separate machines. Clients can freely move between
zones by means of transfer portals. The other, called replication, distributes load
by replicating the same game world (or zone) on several machines [8]. Clients may
be transparently migrated between replicated game servers, this representing
the actual load sharing mechanism behind this load distribution method. These
methods are dynamically employed by our ROIA management services described
in Section 2.

Figure 4 shows the total number of clients connected to the distributed MMOG
session (top side) and their distribution on the game servers (middle and bot-
tom). The data here shown is collected using the serialization probes of the
monitoring service. The session consists of two zones (“zone 0” and “zone 1”),
initially running on two machines. At second 15 we initiate a wave of 70 clients
connecting to the session, distributed among the two zones. When the initial
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game servers are getting close to an overload, the management services start
replication game servers; for zone 0 at second 60 and for zone 1 at second 78. We
simulate a failure of the host running zone 1 at second 125 which results in the
disconnection of all the clients connected to it. The fault tolerance service detects
the host failure and treats it as described in Section 4.1, by immediately recon-
necting the clients to another game server hosting zone 1 (zone 1 [1st replica])
in order to hide the fault for the involved clients. In a few seconds, because of the
additional load generated by this new wave of clients on the zone 1 [1st replica]
server, the capacity management service starts a new replication process and
migrates a subset of the zone 1 clients onto it.

6 Related Work

In the area of distributed systems monitoring a significant amount of work has
been carried out [9] [10]. While the existing monitoring solutions address dis-
tributed systems, some of them having a strong emphasis on performance, they
either only support machine and infrastructure level monitoring [9], or only ap-
plication instrumentation [10]. In contrast, our approach combines the machine
level monitoring using the SNMP protocol [11] with the application instrumen-
tation, ensured by the RTF [3], into a single unified system.

Regarding fault tolerance, while comprehensive platforms for fault diagno-
sis and recovery exist [12] [13] [14], they mostly focus on the correctness of
the services’ output and root cause of the failures rather than on their overall
availability. Our approach lacks the capability to detect the cause of failure in
real-time, but, in turn, it has a light design which ensures a fast reaction time
in case of failures, thus guaranteeing an almost continuous availability of the
managed services which is of utmost importance in ROIA management.

7 Conclusions

We focus our research towards the development of a service oriented ROIA man-
agement platform. Here, we presented the architecture and the component ser-
vices of such a platform. A monitoring system which collects data from resources
in the distributed environment as well as from the managed ROIA was described.
We also detailed the functionality of our fault tolerance service which addresses
not only the resource and deployment related faults, commonly encountered in
distributed systems, but also faults manifesting at service level, within the plat-
form’s other management services. Finally, a use-case consisting of the platform
running a massively multiplayer online game as a concrete ROIA, was presented
in order to demonstrate the roles of the monitoring and fault tolerance services.
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Abstract. The emerging class of Real-time Online Interactive Applica-
tions (ROIA) include massively-multiplayer online games and e-learning
applications. They pose completely new challenges for application devel-
opers, including very high level of user interactivity with real-time QoS
requirements on distributed performance and scalability. We describe a
service-oriented interface that comprises: (1) the Real-Time Framework
(RTF) supports a high-level application development process which frees
the software developer from the low-level details of distributed compu-
tation and communication; (2) the Hoster Management Interface (HMI)
supports the transparent resource management for a running application,
in particular the creation, controlling and monitoring of ROIA instances.
We present our efficient implementation of the interface and describe its
use for two particular distributed application scenarios.

1 Introduction

This paper is motivated by an emerging class of Internet-based applications –
Real-Time Online Interactive Applications (ROIA). Popular and market-relevant
representatives of ROIA are multiplayer online computer games, as well as train-
ing and e-learning applications based on high-performance simulation.

The challenging features of ROIA which distinguish them from traditional
distributed applications are as follows:

– Highly intensive user interaction: the application supports a very large num-
ber of users which interact with each other (many-to-many) very often and
in a real-time manner.

– Concurrency at a single application instance: several users connect to a single
instance, thus sharing the application, cooperatively or competitively.

– Ad-hoc connections : users connect to applications in an ad-hoc manner, at
times of their choice, and register anonymously or with different pseudonyms.

– High Quality of Service (QoS): the applications must maintain certain strict
QoS parameters related to the user interactivity (response time, etc.).

We aim at using the concepts of grid and service-oriented computing for overcom-
ing the main problems of ROIA: cumbersome low-level programming, manual
hosting, static resource management, and no Quality of Service (QoS) guaran-
tees, which become problematic with a massive number of simultaneously active
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users. Efficient development tools and resource management for ROIA will allow
these applications to become a “killer application” for the Internet of Services
and Grid computing, and increase the visibility of these technologies by target-
ing a huge community of non-expert users who are ready to subscribe and pay
for provided services.

In this paper, we present a novel, service-oriented interface for developing and
running ROIA that consists of two parts addressing two main challenges:

– The Real-Time Framework (RTF) simplifies the development of scalable
grid-enabled applications. The framework implements various parallelization
concepts and introduces integrated monitoring and controlling facilities. Ap-
plications on top of this framework are developed as a collection of services.

– The Hoster Management Interface (HMI) connects the development of scal-
able, grid-enabled real-time applications and the on-demand resource man-
agement for their operation in a service-oriented approach. We show how
this is connected to the corresponding business needs.

We briefly describe a highly optimized C++ implementation of the interface and
present its use for two kinds of multiplayer online games. As compared to our pre-
vious work [1,2,3], this paper introduces the new design of HMI and its integra-
tion with RTF, and demonstrates the usage for developers and service providers.
The integration allows an application developer to focus on application-specific
parts when working with RTF and not being bothered with service provision
related aspects (e.g., authentication and security issues, resource management)
while the HMI is used by the application service provider for the run-time re-
source management or setup of security.

The paper is organized as follows. Section 2 describes the multi-layered ar-
chitecture of edutain@grid [4,5], and Section 3 then focuses on the application
development within the real-time layer. The service-oriented interface that inter-
connects real-time and management layer is presented in Section 4 and followed
by the discussion of the implemented prototype and the available demonstrator
applications in Section 5. A summary and discussion of related work and our
future studies concludes the paper in Section 6.

2 The Multi-layered Architecture of ROIA

The main reasons that still hinder the development of efficient multiuser applica-
tions for the future Internet are their real-time and business-related requirements
and the complexity of making applications scalable and grid-enabled. Multiplayer
online games, e.g., require fast and low-overhead communication facilities with
extremely short response time to client’s inputs (less than 100ms). On the busi-
ness side, besides security, service level agreements (SLA) are required based
on quality of service (QoS) related metrics of real-time applications, as clients
continuously expect a certain QoS while using a real-time application. Examples
for such metrics are the response time or the possibility to join or leave an ap-
plication instance at any time. Shortcomings of the current grid technology are:
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(1) slow, often web-service based communication facilities which are not suitable
to drive real-time computation and communication, and (2) the missing support
for business models and on-demand resource management that are mandatory
for commercial applications in this domain.

To reduce the complexity of the application development and operation, we
develop a multi-layered architecture that separates all the related aspects of the
application development and operation into three major categories:

– The real-time aspects cover the development of applications that rely on
fast and grid-aware communication facilities and sophisticated paralleliza-
tion support. Monitoring and controlling facilities are also related to these
aspects, although they are of particular interest for resource management.

– The management aspects cover application controlling and monitoring, as
well as resource allocation to the grid resources. Also the transition of SLA
and QoS to the necessary resource management is covered.

– The business aspects cover the payment-, security- and QoS-related topics
relevant for the application service provisioning and the client access to it.

Fig. 1. ROIA layered architecture

Each layer of our multi-layered architecture deals with a particular aspect,
although not all aspects can be exclusively assigned to one layer only. Figure 1
illustrates the three corresponding layers from business (top) over management
to the real-time layer (bottom). This architecture represents the natural tran-
sition from high-level business-related agreements between application service
providers and customers to the low-level operation of the real-time applications.

The edutain@grid project analyzed the business actors, value chains and work-
flows that are present in the current market models and have to be supported
by the presented architecture [1]. The four major actors involved are:
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– Application developer : develops the application and its multimedia contents.
– Hoster : an organization that provides computational and network infras-

tructure and hosts ROIA deployments and services.
– Coordinator : an organization that makes a ROIA accessible to customers and

coordinates one or more hosters to deliver the required application service.
– Customer : accesses the ROIA via the coordinator. Customers are, e.g., online

game players or e-learning instructors and students.

Figure 1 illustrates the four actors within the multi-layered architecture. An
SLA between hoster and coordinator, e.g., can specify that a hoster is obliged
to operate application X for up to hundred concurrent users while maintaining
a server response time of at most 100 ms for a fixed payment. A customer, on
the other side, has a contract with the coordinator that guarantees the access
to an instance of application X for an agreed price. This is one of the variety of
use cases supported by the multi-layered architecture.

In Figure 1, links across layer boundaries are only present within one organi-
zation. For example, a hoster in the business layer is connected with itself in the
management layer. By avoiding cross-layer interactions, each organization can
manage actions and respond at the appropriate level, passing instructions down
to the layers below, and feeding back information and exceptions to the upper
layers. The flow of information from top to bottom urges different components to
fulfill the hoster’s commitments to other organizations. The flow from bottom to
top keeps the management layer informed of any failure or exhaustion of critical
resources, and keeps the business layer informed about the available capacity,
thus ensuring that the hoster does not offer new SLA terms which cannot be
fulfilled. Each actor controls its own resources and interacts with other actors to
fulfill the SLA. There are no global information services or decision point, which
enables high scalability to support thousands of different actors.

3 ROIA Development: The Real-Time Layer

In order to enable the management- and business layer to realize the appli-
cation service provisioning, a grid-aware ROIA must implement a variety of
management-related functionalities: start or stop application, join or remove
customers, monitor QoS, add or remove resources, etc. Although these function-
alities are related to the service provisioning, the developer’s expertise is usually
restricted to the technical implementation within the corresponding application
context. Our goal is that all the business- and management-related aspects of
forming SLA, different types of SLA and the resource management should be
hidden from the developer in the real-time layer.

To realize this separation of concerns, we provide the highly optimized C++
Real-Time Framework (RTF) to the developer which provides the following
features a)-e).

a) Simplified development of scalable and grid-enabled ROIA. The framework
liberates the developer from the low-level communication-related tasks and sup-
ports three different parallelization concepts for ROIA: zoning, instancing and
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replication. The high-level development methodology which we offer together
with RTF [2] abstracts from the underlying (grid-)resources, such that devel-
opers can focus on how to realize their application accordingly to the chosen
parallelization concept. This development approach simplifies the adoption of
grid computing for ROIA.

b) Integrated monitoring and controlling facilities. To allow management- and
business layer to monitor and control ROIA service, we ensure that the run-
time characteristics are exposed and controlling commands are accepted by a
ROIA. This allows, e.g., the management-layer to monitor the performance of an
application and assign new resources if required. RTF can automatically expose
a configurable amount of information: communication latencies and bandwidth
consumption, number of processed client messages, CPU load, etc.

c) Applications developed as a collection of services. Besides the communi-
cation and parallelization aspects of the ROIA development, also persistence,
audio chat, authorization management may be relevant for the application. RTF
provides additional services that provide easy-to-use audio communication and
persistence services to be usable within an application.

d) Decoupling the real-time layer from the management- and business layers.
While events and update processing within the ROIA are only allowed to take
milliseconds, the procedures within the management- and business layer may
take multiple seconds. For example, an SLA between a coordinator and a hoster
might be negotiated in multiple steps, potentially including human decision-
makers, until it is finally formed and a hoster’s action of resource addition to a
ROIA might take seconds to be finished.

e) Translation between C++-based real-time applications and the Java- or
web-services-based management and business layers. The technologies that are
used within the different layers differ. While ROIA are traditionally realized
in the game industry using C++ in order to allow real-time-aware and highly
optimized implementations, the management and business layer are usually Java-
and web-services based.

The features a)-e) of RTF allow the ROIA developer to concentrate on the appli-
cation development within its domain of knowledge. Moreover, the access to the
application is automatically provided by the RTF to the management and busi-
ness layer. Therefore, the upper layers can create and operate ROIA instances
and can manage them during run-time to deliver a certain QoS promised to
coordinators or customers.

RTF is realized in a modular-based manner, each module providing a specific
set of services to the application developer and the upper management- and
business layers. Figure 2 shows the modules of RTF and the connection to the
customers and upper layers. The developer can choose which particular module
to use in its application, it is not forced to use all of them. But if the controlling
and monitoring module is not used, then no dynamic and extended management
options are available and the upper layers are only able to start/stop/kill ROIA
instances. Figure 2 also shows a connection between the controlling and moni-
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Fig. 2. The RTF Modules and the connection to the management layer

toring module and the Communication and Computation Parallelization Module
(CCP Module) of RTF because the CCP Module implements a lot of the stan-
dard controlling/monitoring profiles for the developer. The CCP Module is the
RTF component which realizes the distribution and communication functionality
of a ROIA for the developer. The module can gather a lot of relevant informa-
tion for the monitoring profiles as it is well integrated with the application state.
More information on profiles follows in Section 4.

4 The Hoster Management Interface (HMI)

ROIA which are implemented on top of RTF are offered as services that will
be deployed and operated in practice by a hoster (organization hosting games).
A hoster that chooses to offer a ROIA as a service to the coordinator or a
customer first deploys a ROIA on its resources and then integrates it into its
resource management system.

To create, control and monitor a ROIA instance, we develop the service-
oriented Hoster Management Interface (HMI). Figure 3 shows the two compo-
nents of the HMI:

1. A ROIASessionManager instance is the access point for the hoster to the
management of ROIA. A ROIA session represents an application instance
which is composed of one or several participating ROIA processes. A ROIA
process represents a system process on a particular resource of the hoster that
is executing a single-server or parts of a distributed multiserver application.
Besides the ROIA creation, the ROIASessionManager allows a hoster to
monitor and control the run-time behavior of the application through the
monitoring and controlling profiles implemented by the application.
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Fig. 3. The hoster management interface to the ROIA

2. The ROIAServerStarter is a light-weight service that must be deployed by
the hoster on each of the available resources. This service is used by the
ROIASessionManager to start a ROIA on a particular resource.

4.1 Setting Up a ROIA Service via HMI

The start-up of a ROIA service is triggered by the coordinator which requests
the availability of a specific ROIA (e.g., for a new customer) from the hoster.
This availability is assured by the hoster to the coordinator by previously formed
SLA. Upon the coordinator’s request, the hoster conducts the following steps:

1. A ROIA session is created via the ROIASessionManager which initially con-
tains no ROIA processes and consumes no resources. The ROIASession-
Manager provides from now on an access to this ROIA session which, e.g.,
contains the application name, version and a list of the participating ROIA
processes (none at the beginning).

2. A ROIA process is created via the ROIASessionManager on one of the
hoster’s resources. The ROIASessionManager uses the ROIAServerStarter
on the particular resource to start the corresponding system process. Al-
though the ROIA process is active on the resource - it does not process any
application data so far.

3. The hoster now can add new zones, instances or replicated areas to a process.
This step is application-specific and the hoster needs to have the appropriate
meta-data about the application which specifies which zone/instances/repli-
cated areas can or must be started.



A Service-Oriented Interface 273

Table 1. Monitoring Profiles provided by RTF

Module Purpose

RTFNetwork Gives detailed information regarding communication
bandwidth and latency of the communication. Most of
this data is provided internally by RTF itself.

RTFClient The application can report client-specific status informa-
tion via this interface.

RTFEntityModel If the CCP module is used, this profile reports detailed
information about the number and location of dynamic
entities or the segmentation of the virtual environment.
Most of the data will be provided internally by the CCP
module itself.

RTFRealTimeApplication Reports generic monitoring data of ROIA, especially the
performance metrics like saturation of the real-time loop
and the load of the application process.

RTFSystem Provides information about the uptime of the application,
the number and addresses of other connected servers, etc.

MonitoringPassThrough A generic profile; allows the application to report arbi-
trary <key,value> data.

After the setup is completed and the ROIA service is operating, the hoster can
monitor and control the ROIA through the monitoring and controlling profiles
that are implemented by the ROIA.

4.2 Controlling and Monitoring via HMI

The controlling part of the controlling and monitoring module provides the pos-
sibility to send controlling commands directly into a running ROIA process. Such
commands may be very different for different applications: For example, a mul-
tiplayer action game may incorporate the possibility to change the game world
environment (usually called map) during runtime, while an e-learning application
does not incorporate such maps and, therefore, does not support a correspond-
ing command. However, an e-learning application may require other application-
dependent commands, like switching into a more secured test mode or loading
the next lesson. For supporting different commands for different ROIA, the con-
trolling and monitoring module offers various profiles to be implemented by the
particular application. For a particular profile, RTF offers a C++-interface to be
implemented by the application developer. Currently, three controlling profiles
have been specified: a generic ROIA profile and two dedicated profiles for online
games and e-learning applications, respectively. For an additional class of ROIA
to be supported by the edutain@grid system, new profiles can be specified by
the developer itself and used within the controlling and monitoring module.

The real-time layer receives the particular controlling commands to be sent to
a particular ROIAProcess from the management layer and transfer the command
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to the RTF instance running inside the process. The controlling module inside
that RTF instance forwards the command to the particular target profile imple-
mentation.

Monitoring constitutes the counterpart to the controlling part: here, internal
application-specific as well as ROIA-general status information is now sent from
the ROIAProcess out to the edutain@grid system. Here, again, different values of
interest are organised in different profiles, which the application has to implement
in order to supply the corresponding monitoring information. The thus obtained
monitoring data is made available to the upper business and management layers
via the real-time layer interfaces.

The various monitoring data to be supplied by the applications is organised
in different profiles, of which the application can implement the suitable ones.
The following table provides an overview of the so far specified profiles (see
Table 1). RTF helps in acquiring data relevant for these profiles and provides
the pass-through functionality to the upper business and management layers.

5 Experimental Evaluation

We have evaluated the presented service-oriented architecture using two applica-
tions from the class of multiplayer online computer games. The main objective
of the evaluation is to verify the architectural concepts, estimate the quality
of the developed services for different groups of actors and measure different
performance characteristics, in particular scalability.

Our first designated application is a future commercial product which is
currently being developed as a project demonstrator within the edutain@grid
project to evaluate and exploit the project achievements. The French game de-
veloper studio Darkworks S.A. [6] develops a fast-paced action game.

Figure 4(a) shows a screenshot of the current prototype which already uses
our described RTF, together with the service-oriented HMI interface. The con-
tents of the game are as follows: Multiple players are assigned to teams and try
to capture hovering spheres while others try to pre-empt or disturb the cap-
turing. RTF allows the game developers to concentrate on the implementation
of the game logic and GUI. They never get in touch with SLA-related topics
like forming a legal SLA, different kinds of SLA or SLA breaches. We get very
positive feedback from the company about the RTF API and RTF’s replication
functionality, as well as the automatic monitoring; all these features are already
used. The resource management services which are currently supported include
the start-up, shutdown as well as the seamless run-time migration and resizing
of a game session using multiple resources.

Our second test application – Bioclysm – is shown in Figure 4(b). Bioclysm
is a massively multiplayer online role-playing game which was designed and
implemented at the University of Muenster and exploits the whole variety of the
parallelization concepts offered by RTF. Clients move their avatars though a 3D
environment, interact and attack other participants or contact other elements of
the game world.
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(a) Darkworks’ demonstrator (b) Bioclysm demonstrator

Fig. 4. Two applications based on RTF exploiting HMI’s functionalities

We used the Bioclysm application to test the described HMI-based resource
management between management- and real-time layer for the following practice-
relevant scenario. Multiple customers have a contract with the coordinator that
guarantees the access to an instance of the game which supports 500 simul-
taneous players and should maintain a minimal response time of 100 ms. As
soon as the coordinator has selected the hoster of its choice (maybe the cheap-
est one or with highest promised QoS), it requests a session of Bioclysm under
the constrains of the contracts with its customers (response time and supported
number of simultaneous players). The hoster matches these requirements against
the available resources and starts the session via the HMI on as little resources
as possible. When players start to join the Bioclysm session, the hoster dynam-
ically adds resources, in order to accommodate up to 500 players with <100 ms
response time. If a considerable amount of players leaves the game then under-
utilized resources will be dynamically removed from the Bioclysm session. The
usage of all concepts offered by RTF enables Bioclysm to be scalable for high
client numbers during one single game session; at the same time the game session
is automatically controlled and monitored.

Finally, our experiments addressed the overhead introduced to the runtime of
ROIA by the high-level RTF framework. The question is how large is the price to
be paid for the additional comfort offered to the application developer. For our
study, we used a very popular multiplayer online game Quake 3 which belongs
to the most challenging genre of First-Person Shooter games. It is known to be
one of the best optimized games regarding responsiveness and computational
load. We developed a port of the open source Quake 3 version from a single- to a
multiserver implementation using the RTF middleware described in this paper.

Our preliminary results already show that the ported version achieves an
equal responsiveness compared to the original Quake 3 while the CPU utilization
increases from about 20% with the original Quake 3 to 40% with the RTF
version with 24 players, see [3] for details. Future work will start to optimize
RTF regarding the computational overhead in order to reduce the gap between
the original Quake 3 and the RTF version.
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6 Related Work and Conclusion

We described a service-oriented approach to the development and run-time sup-
port of the novel class of Real-Time Online Interactive Applications (ROIA)
that allows to develop these distributed challenging applications at a high level
of abstraction and to organize a dynamic resource management at run-time.

A work related to ours is performed within the BEinGrid project which con-
ducts a business experiment [7] for a virtual hosting environment for distributed
online games which investigates how application service providers can rapidly
deploy and manage their services in a secure and accountable way. Also [8] dis-
cusses a hosting environment which is able to start and stop single instances of
a game on-demand on a given resource pool. Both infrastructures support the
hosting of games and real-time applications, but little is said so far about how
these applications, used by multiple customers simultaneously, adapt to changing
resource demands. In contrast, the aspect of the dynamic resource management
is the focus of our HMI interface together with the RTF middleware.

Frameworks which investigate the dynamic runtime composition of services
under hard real-time constraints are, e.g, investigated in [9,10]. Both frame-
works work with worst-case execution time throughout the system and discuss
how scheduling and the overall architecture is affected by the real-time con-
straints (e.g. communication performance, discovery, etc.). However, ROIA are
not always decomposable into separated services and barely have an assessable
worst-case execution time. Therefore, we have described in this paper special
mechanisms for a ROIA resource adaption at the hoster (service provider) side,
which allow the hoster to assign the appropriate amount of resources necessary
to fulfil its service commitment.

We evaluated our approach using two real-life case studies. The HMI interface,
which is the main contribution of this paper, has allowed in both games to go
far beyond the current state of the art in steering functionalities for multiplayer
online games: a game is solely started and stopped with a predefined resource
allocation setup. HMI adds integrated monitoring and controlling facilities and
allows to add resources to a game if the current user demand requires this,
either because a lot of players joined or left the game or because they use more
compute-intensive parts of the game. The main advantage of our approach is
that the online game is now provided as an adaptable service that adjusts to the
actual service demand.

Besides the in-depth evaluation of RTF’s performance characteristics, we are
currently investigating how the presented HMI can be integrated with infras-
tructure services like Amazon’s EC2 [11]. The resources of such a service can
be easily used for the ROIA service provision as a ROIA can be deployed into
a virtual machine package without any problems. This way, a dedicated hoster
could even use external resources for, e.g., an unexpected resource shortage. Al-
though the hoster can outsource some of its hardware requirements this way, it
still covers the risk of maintaining the ROIA service under the terms of an SLA
with the coordinator.
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On the application side, we are investigating the applicability of our approach
to a broader class of applications. RTF is currently integrated into an interactive
marine safety e-learning application [12], as well as into a real-time interactive
crowd simulation which uses RTF’s distribution and scalability features.
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Abstract. This work presents CompTalks – a novel concept and meta-model 
for specifying application-level communication protocols. The goal is to enable 
custom fine-grained and elaborate message exchange between distributed yet 
tightly-coupled parties. Hence, the concept of a conversation protocol is 
introduced. Its reference implementation – the CompTalks Framework – is a 
Java-based middleware toolkit that supports development, testing, analysis, 
validation and running highly interactive services. An important feature is the 
ability to verify the developed protocols at compile time by using a Petri Net-
based analyzer. The framework was successfully applied to develop a protocol 
for GSEngine which serves as the runtime system of the ViroLab virtual 
laboratory, enabling development and execution of complex collaborative 
applications. 

Keywords: Service-Oriented Architecture, interaction, conversation, application-
level protocols, application framework, Java, Petri Net. 

1   Introduction 

The subject of the research discussed in this paper is focused on paradigms and 
implementation aspects of stateful and highly interactive services in Service-Oriented 
Architectures. Our work was motivated by the need for development of a new 
protocol between the GSEngine [1] client and server which constitute the core of the 
runtime system of the ViroLab virtual laboratory [2, 3]. The requirements included 
interactive and collaborative execution of complex applications (experiments) on the 
server together with online streaming of input and output data together with user 
interaction message exchange with the client. The rationale for our research is that a 
whole class of stateful and interactive services is not adequately addressed by the 
state-of-the-art paradigms and technologies applied in modern service-oriented 
distributed systems. 

Currently available service models and frameworks assume the services are loosely 
coupled with clients and that their interfaces comprise a set of advisably idempotent 
operations which are to be invoked in a blocking and synchronous manner. Message-
Oriented Middleware (MOM) enables asynchronous messaging, however it only 
offers predefined styles of messaging (e.g. queues and publish-and-subscribe topics) 
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and is therefore intended for loosely-coupled parties. In both approaches consecutive 
invocations of operations or message passing proceed in no implicit session context, 
which leaves system designers with few options to explicitly preserve such context. 
As a result, session tracking code often becomes mixed with service business logic 
code, preventing it from being system architecture-agnostic and thus reducing its 
reusability and maintainability.  

Current approaches do not suffice for use cases that need finer-grained interaction 
when: 

• Input data is provided to the service in parts – e.g. in a continuous way, in batches, 
periodically etc. 

• The service asks its client to make decisions that determine further processing – 
e.g. the service performs some steps, but there are check points when it has to ask a 
decision-maker for further processing instructions, validation, confirmation etc. 

• Input data is heavyweight and is the subject of a chain of service operation 
invocations which are not known beforehand – e.g. input data is sent once, before 
the client decides which processing chain to apply to this data. 

• The service has to ensure richer client experience and responsiveness – e.g. inform 
about processing status, provide the client with intermediary and partial results and 
other relevant information from the client’s point of view. 

In order to address these issues, we propose a new concept of a Conversation Protocol 
as a way for modelling interaction between services and their clients that is 
conceptually simplistic, yet generic and scalable enough to be capable of describing 
complex stateful interactions schemes. Its goal is to natively support session context 
preservation, asynchronous communication, highly interactive data and control flows. 
The proposed Conversation Protocol Meta-Model further allows for formal modelling 
of conversation protocols, thus enabling analysis, simulation and validation e.g. by 
using the Petri Nets [15] model. The above mentioned concepts are implemented in 
our Java-based CompTalks Framework which serves as a basis for the GSEngine 
protocol. 

The paper is organized as follows: Section 2 discusses the state-of-the-art 
architectures and technologies. The Conversation Protocol concept is introduced in 
Section 3 with further details including formal modelling of conversation protocols 
enabling analysis, simulation and validation that use the Petri Nets model (Section 4). 
Section 5 the presents Java-based CompTalks Framework which is a reference 
implementation supporting Conversation Protocols. Performance tests are reported in 
Section 6. We conclude with the evaluation of the advantages and limitations of the 
proposed solution and an outline of the future prospects for CompTalks in Section 7.  

2   State of the Art 

The Web Services [4] approach considers a service interface as a set of operations 
which typically are to be invoked sequentially in a blocking, synchronous and 
asymmetric request-response manner. Another shortage of the Web Services 
Description Language (WSDL) [5] is that it does not cover the intended sequence in 
which operations need to be invoked in order to carry out given use case scenarios. 
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Such directions are not formalized, forcing developers to refer to additional, usually 
plaintext, documentation, which may lead to improper use of services. 

The Web Services Conversation Language (WSCL) [6] proposes a specification 
for describing the flow of documents exchanged between a Web Service and its 
client. Such descriptions are intended to be interpreted by Web Service infrastructures 
and development tools. Although the specification enables describing conversation 
protocols, it is dedicated to loosely-coupled parties interacting via document 
exchange. Hence, it is focused on building another abstraction layer over services 
communicating with SOAP-like [7] protocols rather than on communication protocols 
allowing for finer-grained interaction and tighter coupling of parties.  

Some Web Service-oriented approaches support operations on the state associated 
with a service. In such cases, the result of an operation depends on prior operations. 
Web Services Resources (WS-R) [8], Web Services Transfer (WS-T) [9] and 
Representational State Transfer (REST) [10] follow similar paradigms [11] for 
managing state and offer advanced access mechanisms, e.g. notifications about state 
changes or accessing the state in parts. Such an approach can be regarded as state 
model-centric and document-based; therefore it is poorly suited for interaction-
oriented applications, which require a means for specifying custom interaction 
schemes that reach beyond those offered by the aforementioned specifications. 

The Extensible Messaging and Presence Protocol (XMPP) [12] is an XML-based 
protocol for near-real-time messaging, presence, and request-response services [13]. 
Contrary to WSCL it enables finer-grained interaction and bidirectional stream-like 
communication. It originally served as a streaming medium for Instant Messaging, the 
message exchange cannot be managed by any protocol rules thus cannot support 
custom application-level conversation protocols. 

The Blocks Extensible Exchange Protocol (BEEP) [14] is an attempt to provide a 
generic application-level meta-protocol for connection-oriented, asynchronous 
interactions. It enables defining various styles of message exchange (request-
response, asynchronous calls and streaming) but keeps it asymmetric with only the 
server being capable of streaming and generating responses and the client limited to 
sending requests. 

In order to enable interactive connectivity to grid infrastructure nodes several 
utilities like glogin [21] emerged that patch grid toolkits in order to maintain direct 
client-service bidirectional data streaming channel. This constitutes powerful 
foundation for interactive message exchange but still needs high-level model for 
specifying application-level protocols. 

3   CompTalks Conversation Protocol Concept 

The CompTalks Conversation Protocol proposes a novel and more general way for 
defining and describing service interfaces. In CompTalks, an interface to a service is 
regarded as an interaction protocol that specifies messages and rules of message 
passing between a service and its clients. More precisely, the description of an 
interface consists not only of a set of messages the service can exchange, but also 
contains information about the allowed sequences of messages sent between a service 
and its client. Allowed sequences are specified through a state machine with 
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transitions denoting messages sent to or from a service. Interactions between 
endpoints in CompTalks reach beyond the asymmetric client-server request-response 
model by supporting stateful, asynchronous, non-blocking and symmetric 
communication in order to enable elaborate, interactive and finer-grained message 
exchange schemes. 

In CompTalks a conversation is defined as a message exchange that follows some 
rules that are agreed a priori by communication endpoints. We distinguish basic 
conversation rules that constitute a rudimentary contract between communicating 
endpoints, guaranteeing effectiveness, predictability and determinism of conversation. 
Over that, application-specific rules, expressed in the form of a conversation protocol, 
define allowed messages and message sequencing. 

Basic CompTalks conversation rules are codified as follows: 

1. They assume a medium for carrying messages comprises two streams – one for 
each direction between the client and the server. Messages are delivered in the 
order in which they were inserted into the stream. Latency and jitter in message 
delivery is allowed. Depending on use case reliability has or has not to be ensured. 
These requirements (including reliability) are met e.g. by the Transmission Control 
Protocol (TCP) – therefore, the Internet TCP/IP protocol stack can be successfully 
used as a medium. 

2. On each side of a medium there is exactly one endpoint. Each endpoint specifies 
the messages it can receive. A message, in turn, specifies in which conversation 
state it can be sent, which conversation state ensues after it is sent and whether it 
hands over control over the conversation. Control denotes whether the endpoint, 
after receiving such a message, is allowed to send subsequent messages or should 
expect another message. Therefore, the conversation defines a conversation state 
diagram constructed by nodes, denoting conversation states, and edges, 
representing messages sent between endpoints. The role of messages is to transfer 
business-logic data as well as to carry conversation state transitions between 
endpoints, hence synchronizing conversation state in endpoints. A message can be 
sent only if the sending endpoint has control over the conversation and the 
conversation state diagram allows for sending such a message in a given state. 

3. The conversation state diagram has to be deterministic; that is, there should be only 
one endpoint which has control over the conversation in a given state, no matter 
which transition sequence has led to this state. 

4. Endpoints can pass messages to each other in an asynchronous and non-blocking 
way: the sending operation returns once the message is successfully committed to 
the medium. Messages delivered by the medium are placed in the buffer queue and 
processed sequentially by the recipient endpoint in the same dedicated thread. 
Therefore, the conversation is driven by a pair of conversation threads, one per 
each endpoint. 

5. Conversation thread being a mediator in message delivery is the entity that takes 
care of timing and/or reliability aspects, i.e., it can decide whether to suspend the 
endpoint processing by holding up sending operation return or whether to postpone 
or give up sending messages according to some timing policy (e.g. jitter 
compensation policy). 
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6. The conversation is initiated by starting both endpoints’ conversation threads. Both 
endpoints are initially in the init state. The client’s conversation thread starts the 
exchange by sending the first message to the server. 

7. The conversation stops as soon as it reaches the final state and all messages are 
processed by conversation threads. 

8. Messages can also set up sub-conversations whose life-cycle is contained in the 
scope of a single state of the parent conversation. Sub-conversations can be 
created by an endpoint only if it currently has control over the conversation. A sub-
conversation handle can be passed to a remote endpoint along with a message. The 
recipient endpoint can use this handle in order to start a sub-conversation. The sub-
conversations allow for modularization and decomposition of the complex 
conversation schemes into fine-grained, easily maintainable parts and consequently 
enables tree-like scaling to larger and more complex conversation patterns. 

4   Conversation Protocol Meta-model 

An important feature of CompTalks is that it proposes a way of modelling 
conversation protocols. Once modelled, a protocol can be subjected to analysis, 
simulation and validation.  

The conversation Protocol Meta-Model defines a Conversation that comprises 
Client and Server Endpoints. Each endpoint specifies a set of Messages it accepts. 
Each message, in turn, is defined by its Signature, Required State, Implied State and 
Control Passing Flag. This can be formalized using a UML class diagram, as 
presented in Fig. 1. 

 

Fig. 1. Conversation Protocol Meta-Model expressed as a UML class diagram 

For example let us examine a simple conversation depicted as a UML object 
diagram in Fig. 2 (a). The conversation starts when the client sends the foo message to 
the server. The foo message conducts text data of type String and causes transition 
from init to intermediate conversation state. It also hands over the control over the 
conversation to the server. After successfully committing the foo message to the 
medium the client enters the intermediate state and loses control over the conversation. 
After receiving the message, the server takes control over the conversation and enters 
the intermediate state where it processes the received data. Having control and being in 
the intermediate state, the server is able to send the bar message, which carries text 
data of type String, causing transition from the intermediate to the final state and 
handing control over to the client. Once the server successfully commits the bar 
message to the medium, it enters the final state and hence the conversation thread on 
the server side ends. Once the client receives the message, it similarly enters the final 
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state and processes the received data. After the data is processed, the conversation 
thread on the client side ends. A sequence diagram describing such a course of this 
sample conversation is shown in Fig. 2 (b). 

Owing to its intrinsic scalability, CompTalks allows for creating more robust and 
complex conversation protocols. It supports conversation state diagrams of unbounded 
finite sizes and provides mechanisms for nesting an unbounded finite number of sub-
conversation within the scope of a parent conversation. The conversations are then 
organized in a tree-like structure, where conversation lifecycle of child conversation is 
contained in the scope of one of the states of the parent conversation, while sibling 
conversations’ lifecycles are independent and proceed in parallel. 

 

Fig. 2. Sample conversation model that conforms to the Conversation Protocol Meta-Model 
expressed as a UML object diagram (a) along with a sequence diagram of the course of this 
conversation (b) 

4.1   Methods for Analysis and Validation of Conversation Protocol Models  

The Conversation Protocol, modelled in the aforementioned way, can be subject to 
analysis, simulation and, eventually, validation in terms of conformance to CompTalks 
conversation rules. This section shows how to transform the conversation protocol into 
a powerful and thoroughly explored Petri Net [15] model which enables studying static 
and dynamic properties of asynchronous and concurrent systems.  

Transformation from the Conversation Protocol Model to the Petri Net model 
involves tree steps: 

1. Transforming each message specification into a subnet of places and transitions 
according to the following rules: 

 

a. Message m accepted by the server, with conversation transition from state p 
to q and with control passing, results in the subnet depicted in Fig. 3 (a) 

b. Message m accepted by the server, with conversation transition from state p 
to q and without control passing, results in the subnet depicted in Fig. 3 (b) 

c. Message m accepted by the client, with conversation transition from state p 
to q and with control passing, results in the subnet depicted in Fig. 3 (c) 
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d. Message m accepted by the client, with conversation transition from state p 
to q and without control passing, results in the subnet depicted in Fig. 3 (d) 

 

2. Merging all subnets obtained in step 1. 
3. Setting initial marking by placing tokens in client state initial, server state initial 

and client control places. 

According to the transformation procedure, for the conversation composed of m 
messages and s states the resulting Petri Net is consisting of 2*s+m+2 places and 2*m 
transitions, therefore the size and complexity of a net is merely linearly correlated with 
a number of states and messages of a conversation. The sample protocol described in 
the previous section can be represented as a Petri Net, as shown in Fig. 3 (e). 

 

Fig. 3. Conversation Protocol Model to Petri Nets model transformation rules (a-d); sample 
protocol model transformed to the Petri Nets model (e) and its marking graph (f) 

For the obtained Petri Net, a marking graph can be computed and subsequently 
analyzed. The conversation is considered valid if and only if all the following 
constraints are met by the marking graph: 

1. Each send X transition is followed only by receive X transition. 
2. Each receive transition is followed only by zero or more send transitions. 
3. The only dead marking is the final marking with tokens placed in client state final, 

server state final and client control places. 
4. The final marking is reachable from each marking that is reachable from the initial 

marking. 

As the marking graph for the sample protocol shown in Fig. 3 (f) meets all above-
listed requirements the conversation is considered valid. 

Such analysis and validation on the model level is useful in ensuring correctness, as 
it takes place on an early stage of design and at a high level of abstraction. The 
presented method is abstract and can be implemented using notations specific to a 
particular framework, e.g. the reference implementation of the CompTalks Framework 
presented below. 
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5   CompTalks Framework 

The CompTalks Framework is a Java-based reference implementation of CompTalks. 
The conversation protocols are specified by a pair of Java interfaces which extend 
ServerEndpoint and a ClientEndpoint interfaces respectively and specify methods 
responsible for message interception. Such methods are to be annotated with a 
Transition annotation, which, in turn, specifies the required state of a message (from 
field), its implied state (to field) and the control passing flag (control field). As an 
illustration, the CompTalks specification of the sample conversation protocol from 
Fig. 2 is shown in Fig. 4. 

. 
public interface SampleServer extends ServerEndpoint<SampleClient> { 
 @Transition(from = Transition.INITIAL_STATE, to = "intermediate", 
 control = true) 
 public void foo(String text); 
} 
public interface SampleClient extends ClientEndpoint<SampleServer> { 
 @Transition(from = "intermediate", to = Transition.FINAL_STATE, 
   control = true) 
 public void bar(String text); 
} 

 

Fig. 4. SampleServer and SampleClient interfaces (irrelevant code fragments omitted) 

Applied annotation approach allows for keeping the specification of the protocol in 
a single source code entity, namely Java interface, and in a single binary entity of Java 
class file what keeps source code self-documenting on the one hand, and binary file 
self-contained and easily distributable on the other. 

A pair of interfaces, being a specification of a conversation protocol, can be subject 
to conversation protocol model analysis and validation. The CompTalks Framework 
offers an analyzer, that, given a pair of compiled interfaces and using the Java 
Reflection API, determines whether the model is valid according to the Petri Net 
method presented in the previous section. 

Endpoint interfaces’ definitions should be provided to the client and the server 
sides and realized by concrete endpoint implementations, such as the ones presented 
in Fig. 5. Implementation can be examined in terms of conforming to a given model, 
e.g., whether implementation ensures that messages are sent only in allowed 
conversation states etc. This kind of validation may be performed by applying 
bytecode analysis techniques to the code of implementation classes. Such two-level 
validation (model validation followed by implementation validation) allows for rapid 
and early evaluation of software correctness. Moreover, as validation takes place at 
compile time, it greatly tightens the development-test-feedback loop and eliminates 
performance-consuming correctness checking at runtime. 

The CompTalks Framework is currently available for use and offers support for 
two types for message passing media: TCP-based and TCP/TLS-based media, where 
the latter uses TLS [16] for the purpose of authentication and maintaining the 
confidentiality of exchanged data. Both basic and complex data types in message 
signatures including Java basic types and Plain Old Java Objects (POJOs) are 
supported and serialized to XML through standard Java API for XML Binding 
(JAXB) [17]. Conversation Protocol Model Analyzer is able to examine protocols 
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public class SampleServerImpl implements SampleServer { 
private SampleClient sampleClient; 
public void setRemoteEndpoint(SampleClient remoteEndpoint) { 

this.sampleClient = remoteEndpoint; 
 } 

public void foo(String text) { 
    // entered 'intermediate' state 

this.sampleClient.bar("some business logic data");
    // entered 'final' state 
 } 
}
public class SampleClientImpl implements SampleClient { 

private SampleServer sampleServer; 
public void setRemoteEndpoint(SampleServer remoteEndpoint) { 

this.sampleServer = remoteEndpoint; 
 } 

public void start() { 
    // entered 'init' state 

this.sampleServer.foo("some business logic data"); 
    // entered 'intermediate' state 
 } 

public void bar(String bar) { 
    // entered 'final' state 
 } 
}  

Fig. 5. Sample realizations of SampleServer and SampleClient interfaces (irrelevant code 
fragments omitted) 

modelled as a pair of endpoint interfaces in terms of validity, based on the Petri Net 
formalism. The current distribution of CompTalks Framework includes command-line 
tools for running server and client endpoints and a set of sample demo protocols. 

6   Validation and Tests 

The CompTalks framework has been developed in the course of the ViroLab [2] 
Virtual Laboratory [3] project. CompTalks-powered GSEngine [1] forms the core of 
the Virtual Laboratory and enacts scientific workflows called experiments. These 
experiments are expressed as Ruby [18] scripts and are capable of accessing resources 
(such as data sets and services), interact with human actors and provide rich end-user 
experience. Enactment of scripts by a remote GSEngine service involves complex 
client-server interaction, including: streaming standard input and output, serving input 
forms to end users, uploading and downloading data and script files, tracing the status 
of experiments, sending results, notifications etc. All these features have been 
successfully implemented with CompTalks. Satisfactory stability and performance of 
the solution has allowed for employment of CompTalks in the production setup of the 
Virtual Laboratory. 

Estimation of the performance of the CompTalks framework was carried out by 
measuring the time and memory required by the client in order to carry out a number 
of simultaneous benchmark conversations. Since the sample conversation discussed in 
this paper represents the simplest bidirectional message exchange, and its reference 
implementation consumes as little time and memory as possible, it is a useful 
benchmark for estimation of the overhead introduced by the framework itself.  
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The test results, presented in Fig. 6, were obtained on a testbed constituted by the 
64-bit Sun Blade server, with dual-core Intel Xeon 5150 2.66GHz CPU running 
Ubuntu OS version 4.0.3 (Linux version 2.6.15-28-amd64-server) and HotSpot Java 
Virtual Machine version 1.6.0 update 10. Both client and server were running on the 
same machine and were communicating through the localhost network interface (RTT 
latency measured using ping equal to 0,006±0,001ms), via a plain TCP medium. The 
obtained results show that time and memory consumption is linearly dependent on the 
number of simultaneous conversations. Time consumption estimation is 235ms (bias) 
plus 1,6ms per each conversation. Memory consumption is estimated as 14,8MB 
(bias) plus 0,09MB per each conversation. 

 

Fig. 6. Performance test results: time and memory required by the client to simultaneously 
carry out a number of benchmark conversations in the testbed environment 

7   Conclusions and Future Prospects 

The research described in this paper has shown that vital design and implementation 
issues related to a certain class of services, thus far unaddressed, can be remedied by 
using the proposed conversation protocols model. The example of GSEngine and 
ViroLab shows that this concept is applicable, and establishes the framework as a 
convenient and productive software development facility as well as effective 
middleware technology. 

As we find this concept worth further research, the development of CompTalks is 
still ongoing and the following challenges are expected to be addressed next: 

• Support for distribution, clustering and load balancing between servers by 
employing a master-worker architecture in order to make the solution scalable in 
terms of throughput (currently at a prototype stage). 

• Enabling the Conversation Protocol Endpoint Implementation Analyzer to examine 
whether the endpoint implementation meets a given conversation protocol model. 
This will be based on ASM [19] Java Virtual Machine (JVM) [20] bytecode 
analysis and manipulation library (currently at a proof-of-concept stage). 

 

The other further areas of research can be targeted at supporting multi-actors, 
multicast conversation and development of rich, interactive GUI design patterns that 
would integrate seamlessly with the proposed Conversation Meta-Model. 
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Abstract. Massively Multiplayer Online Games (MMOGs) have grown
to entertain tens of millions of players daily. Currently, the game opera-
tors and third-parties using gameplay information rely on pre-provisioned
resources to analyze the current status of the player community and the
evolution of this status over time. Instead, with the appearance of cloud
computing it has become attractive to use on-demand resources to run
automated MMOG data analytics tools. Thus, in this work we intro-
duce CAMEO, an architecture for Continuous Analytics for Massively
multiplayEr Online games on cloud resources. Our architecture provides
various mechanisms for MMOG data collection and continuous analytics
of a pre-determined accuracy in real settings. We assess the capabilities
of our approach by taking and analyzing complete or partial snapshots
from Runescape, one of the most popular MMOGs with a community of
over 3,000,000 active players. Notably, we show evidence that CAMEO
already supports simple continuous MMOG analytics, and give a first
estimation of the costs of the analytic process.

1 Introduction

Massively Multiplayer Online Games (MMOGs) gather tens of millions of players
into a fractioned online community. To serve the interests of these players, the
game operators and the third-party entities such as community and fan-owned
web sites need to collect, analyze, and then synthesize the status of the commu-
nity components. While the final synthesis may differ from entity to entity, the
data collection and analysis (collectively, the game analytics) can benefit from
recent advances in the availability of on-demand resources through cloud com-
puting services such as Amazon’s Elastic Compute Cloud (EC2). In this work
we present CAMEO, an architecture for continuous analytics of data taken from
massively multiplayer online games on cloud resources.

Online data crawling has often been employed in the past to determine the
stationary and dynamic characteristics of Internet-based communities. However,
the focus of the research community has been either in making the crawling
process more parallel [1, 2, 3], or analyzing the acquired data using more scal-
able parallel or distributed algorithms [4,5]; both these approaches assume that
� We thank the Delft ICT Talent Grant for the financial support.
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enough resources are available for the task. In contrast, in this work we focus on
a domain-specific application, MMOGs, and focus on a different problem which
stems from a restricted resource availability (which in turn is the direct result
of minimizing costs): continuous analytics of a pre-determined accuracy in real
settings. Our contribution is threefold:

1. We present a first formulation of the problem of continuous analytics for
MMOGs (Section 2);

2. We introduce CAMEO, an architecture for continuous analytics of data taken
from massively multiplayer online games that uses cloud computing environ-
ments to dynamically obtain resources(Section 3);

3. We show that CAMEO can be used to acquire and track data from Runescape,
a popular MMOG, and give a first cost estimation for this process (Section 4).

2 Continuous Analytics for MMOGs

In this section we present the problem of continuous analytics for MMOGs.

2.1 Definition

MMOGs generate data that need to be analyzed at various levels of detail and
for various purposes, from high-level analysis of the number of players in a com-
munity for in-game reward allocation to the detailed analysis of the user mouse
clicking behavior for audit and cheat detection. Usually, a replica of the data
to be analyzed needs to be created, which raises the problem of maintaining
consistency between the original and the replica(s). Similar to other cases of
information replicas in distributed systems, creating exact copies of the data for
analysis purposes may not be only expensive, but also unnecessary [6]. Instead of
ensuring that the replicas are strongly consistent, our goal is to maintain infor-
mation replicas whose difference is bounded and the bound is under the control
of the analyst. This goal stems from traditional work on continuous consistency
of information replicas with deviation in the staleness of information [6] and
quasi-copying [7].

We can now define continuous analytics for MMOGs as the process through
which relevant MMOG data are analyzed in such a way that prevents the loss
of important events affecting the data. The relevance of the data is application-
specific, as it depends on the target of the analysis. Similarly, the important
events allow for the information replicas to be loosely consistent with the original,
within application-specific bounds.

2.2 Challenges

Every data analysis process includes data collection, storage, processing, and
presentation, each of which raises generic challenges in supporting continuous
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MMOG analytics. We focus here only on the MMOG-specific challenges, chal-
lenges due to data characteristics, and challenges due to data ownership, which
we describe in turn.

MMOGs pose unique data scale and rate challenges. MMOGs generate and
manage massive amounts of information; for example, the database logging user
actions for Everquest 2, a popular MMOG, stores over 20 new terrabytes (TB)
of data per year. Other projects such as CERN’s Large Hedron Collider or the
Sloan Digital Sky Survey produce data orders of magnitude larger than MMOGs,
but these projects are using large and pre-provisioned (expensive) computational
and data infrastructure that game companies cannot afford. Furthermore, the
data production rate for these other projects is stable over time spans of days
or even weeks, whereas for MMOGs the daily user activity has peaks and may
even change hourly [8].

MMOGs pose unique data ownership challenges. MMOGs often involve multi-
ple companies in their design-development-distribution-use process; each of these
companies may have different commercial interest and thus compete for gener-
ating and managing game-related data. Moreover, there may be many types of
data users, from audit companies who should access all data to fan communi-
ties that may only be allowed to access information open to everyone. Thus,
MMOGs raise data access challenges. Other commercial applications, notably
financial and government public relations services, face similar problems. How-
ever, in contrast to MMOGs these services produce data for entities that can
afford expensive data collection and processing infrastructure, such as brokering
agencies or news corporations.

2.3 Applications

There are many applications for continuous MMOG analytics, both for the gam-
ing industry and for other domains. We describe the most important such ap-
plications in the following.

Within the gaming industry, the main applications are to audit the process
of each company involved with the MMOG, to understand the play patterns of
users and support future investment decisions, to detect cheating and prevent
game exploits, to provide user communities with data for ranking players, to
broadcast gaming events, and to produce data for advertisement companies and
thus increase the revenue stream for the MMOG owners.

In other areas, by domain the applications may include studying emergent
behavior in complex systems (systems theory), understanding the emergence
and evolution of the contemporary society [9] (social sciences) and economy [10]
(economics), uncovering the use of MMOGs as cures and coping mechanisms [11]
(psychology), investigating disease spread models [12] (biology), etc.

3 The CAMEO Architecture

In this section we present the CAMEO architecture for continuous MMOG ana-
lytics. The CAMEO architecture is built around the idea of enabling continuous
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Fig. 1. The CAMEO architecture

MMOG analytics while using resources only when needed. To achieve this goal,
it acquires and releases computational and storage resources dynamically from
cloud computing environments such as Amazon’s EC2+S3.

3.1 Overview

The five main components of the CAMEO architecture are depicted in Figure 1.
The Cloud Resource Management component (component 1 in Figure 1) pro-
vides access to the computational and storage resources of the cloud computing
environment, and is maintained by the cloud owner. The Resource Management
component (#2) acquires and releases resources from the cloud and runs the
analytics applications. It also uses the monitoring information provided by the
cloud resource management and the resources as input for further management
actions, such as transparent fault tolerance through application instance repli-
cation. The Capacity Planning component (#3) is responsible for deciding how
many resources must be acquired for the analytics process. The decisions are
based on the system’s capability to produce results, analyzed during the course
of the analytics process, and on the accuracy and cost goals of the process.
The Data Presentation component (#4) formats and presents the results of the
analytics process to the user. The Steering component (#5) is responsible for co-
ordinating the analytics process. Towards this end, it takes high-level decisions,
expressed through the configuration of each other’s component process.

Except for the use of cloud computing resources, our architecture uses a tra-
ditional approach. However, the components have unique features specific to the
targeted application. We describe in the remainder of this section three distinc-
tive features of CAMEO.

3.2 Resource Management Mechanisms

The triggering of the analytics process depends on the nature of the application
and on the system status. On the one hand, the nature of the application may
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allow the system analyst to design a stable analysis process such as a daily
investigation of the whole community of players. On the other hand, special
analysis may be required when the system is under unexpectedly heavy load, or
when many players are located in the same area of the virtual world. To address
this situation, we design the Resource Management component to provide two
mechanisms for using cloud resources: one static and one dynamic. The steady
analytics1 mechanism allows running a periodic analytics operation on cloud
resources. The dynamic analytics mechanism allows running a burst of analytics
operations on cloud resources. Optimizing the allocation of resources for static
analytics or for mixed static-dynamic analytics is a target for this component,
but beyond the scope of this work. Similarly, the case when the cost of data
transfers is significant, that is, similar or higher to the cost of the computational
resources, is left for future work.

3.3 Steering through Snapshots of Different Size

The analytics process includes collecting the necessary information from the data
source. The collection results in a snapshot, that is, a read-only dataset which
has been extracted from the original data. We further call complete snapshot
a snapshot that includes data for all the players managed by the MMOG, and
contrast it to a partial snapshot. Taking snapshots complies with the continuous
analytics definition introduced in Section 2.1.

Depending on the goal of the analysis, it may be possible to obtain meaningful
results through continuous analytics based on partial snapshots; for example,
when the goal is to obtain statistical information about the player community
it may suffice to continuously analyze a randomly chosen group of players of
sufficient size. We design the Steering component to be able to perform a two-step
analytics process in which first complete snapshots are taken from the system
with low frequency, and partial snapshots are acquired often.

3.4 Controlling the Process

The taking of a snapshot has a certain duration, which depends on the perfor-
mance of the cloud resources and also on the limitations set by the owners of the
original data; to prevent denial-of-service attacks and to improve scalability with
the number of requests, it is common for the data owners to limit the network
bandwidth available for an individual resource (IP address).

Assume that a single machine can acquire a new snapshot every T time units
(seconds). Then, we can achieve linear scaling (to a certain degree) in the number
of acquired snapshots by installing new machines; K machines can acquire K
snapshots every T time units. We can then control either how many snapshots we
acquire every T time units, or the minimal performance that has to be delivered
by each machine to acquire exactly one snapshot every T time units.

1 We do not use the term “static" to underline that this is a continuous process.
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Table 1. The resource characteristics for the instance types offered by Amazon EC2

Resource Cores RAM Architecture I/O Disk Cost
Type (ECUs) [GB] [bit] Performance [GB] [$/h]
m1.small 1 (1) 1.7 32 Med 160 0.1
m1.large 2 (4) 7.5 64 High 850 0.4
m1.xlarge 4 (8) 15.0 64 High 1,690 0.8
c1.medium 2 (5) 1.7 32 Med 350 0.2
c1.xlarge 8 (20) 7.0 64 High 1,690 0.8

4 Experimental Results

In this section we show evidence that our approach (and CAMEO implementa-
tion) can be used for continuous MMOG analytics. (Analyzing the results of a
continuous MMOG analytics process falls outside the scope of this work.)

4.1 Experimental Setup

The Analyzed MMOG. Using CAMEO, we have taken and analyzed several
complete snapshots of the state of Runescape over a period of one and a half
years. We have also also taken partial snapshots of the state of Runescape in
quick succession, which enables us to study in the future the dynamics present
in the Runescape community. We have written application-specific web crawlers
for the data collection process.

The Platform. We have used Amazon EC2 resources to acquire and pro-
cess Runescape data. The EC2 user can use any of the five resource (instance)
types currently available on offer, the characteristics of which are summarized in
Table 1. An ECU is the equivalent CPU power of a 1.0-1.2 GHz 2007 Opteron or
Xeon processor. The theoretical peak performance can be computed for different
instances from the ECU definition: a 1.1 GHz 2007 Opteron can perform 4 flops
per cycle at full pipeline, which means at peak performance one ECU equals
4.4 gigaflops per second (GFLOPS). Throughout the experiments conducted for
this work we have used the m1.small instances; extending the Capacity Planning
module with the ability to use multiple instance types is left as future work.

4.2 Analytics Results

Using CAMEO, we analyzed the skill level of millions of RuneScape players,
which shows evidence that CAMEO can be used for measurements several orders
of magnitude larger than the previous state-of-the-art [13]. CAMEO collected
in August 2008 official skill level data for 2,899,407 players2, of which 1,817,211
(over 60%) had a skill level above 100; the maximum skill level is 2280. The values
for players with skill level below 100 include application-specific noise (mostly
starting players) and are therefore polluted. Thus, we present here only data for
2 The current population of Runescape has increased to over 3,000,000 active players.
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Fig. 2. Pareto graph, that is, combined PDF (left vertical axis) and CDF (right vertical
axis) depiction of the skill level of the RuneScape player population. Each bar represents
a range of 100 levels. CDF stands for cumulative distribution function; CDF (x) is the
total number of players with skill level up to and including x. Note that the left vertical
axis is not linear. See text for why the CDF of the skill level does not start at 0%.

all players with skill above 100, and for a single measurement. Figure 2 depicts
the overall skill level of RuneScape players, with bins of 100 levels. The number
of players per bin is well characterized by a skewed normal-like distribution; the
majority of the players are of average skill or below, the most populated skill
level bins are those corresponding to the middle skill level, and the number of
high-level players is significant. We have explored the implications of this skill
level distribution in our previous work on automatic content generation [14].

4.3 Resource Management

To demonstrate the capability of CAMEO to perform both dynamic and steady
analytics, and to monitor the process, we show in Figure 3 the evolution of the
cumulative number of consumed CPU hours over time. The dynamic analytics
are based on uneven bursts of activity, of which the burst during March 10 is the
most prominent. The steady analytics part of the experiments reveals an even
use of resources over time, with the steps indicating a new work cycle.

One of the contributions of this work is getting a first estimation on the cost
of continuous MMOG analytics. Figure 4 shows the total cost incurred by the
continuous analytics process over the course of one month. For this simple anal-
ysis process, which acquired partial snapshots and only browsed the data in
memory during the processing phase, the cost is below $500 per month. It is
not our intention to argue that the cost of continuous analytics for an MMOG
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Fig. 3. Resource consumption in the two analytics modes: dynamic and static

Fig. 4. Putting a cost on continuous analytics for MMOGs

can be this low; much more complex analytics taking many more computational
hours are performed for any of the applications presented in Section 2.3.

4.4 Platform Capabilities

An important assumption in our work is that resources can be acquired on-time,
that is, that whenever resources are requested by the Resource Management
component of CAMEO the cloud will provide them within a reasonable time.
We now show that this is indeed the case.

We have made initial install time measurements in August 2007, and found
that the average install time was steady around 50s [15]. To understand the long-
term evolution of the install time in EC2, we have obtained the measurement
results published online by the independent CloudStatus team [16]. We have
written web crawlers and parsing tools and taken samples every two minutes
from August until October 2008 (set #1, two months), and from December 2008
until May 2009 (set #2; only the first four months are depicted in Figure 5).
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Fig. 5. Evolution of the VM Install time in EC2 (hourly average) over six months (two
data sets collected from CloudStatus.com)

Figure 5 shows that the install time fluctuates by around 5 seconds within short
time intervals (days), but that the average install time has increased from 50s in
August 2007, to 64s in August 2008, and to 78s in April 2009. This indicates a
doubling of the rate of the increase in install time every half year. If this trend
continues, conservatively the install time will reach 80s in 2009 (confirmed), and
around two minutes by June 2010. We leave as future work a detailed study of
the time patterns that may occur in the install time, e.g., effects of the hour-of-
the-day and of the day-of-the-week. We conclude that the resource acquisition
time is steady within a short period of time (hours, days) and has a slow yearly
increase. An investigation of the storage capabilities of the Amazon cloud [17]
allows us to reach the conclusion that the use of cloud resources for continuous
MMOG analytics is possible even for bursts of user activity.

5 Related Work

We have already discussed the main differences between our work and generic
web crawling approaches [1, 2, 3] and parallel or distributed analytics [4, 5]. In
contrast with this body of previous research, ours focuses on a more restricted
application–albeit with millions of users– but focuses on using (and paying for)
the resources used in the analytics process only when they are needed.

Closest to our work, Provost and Kolluri [4] examine many basic techniques for
scaling up inductive algorithms. While data analytics (as a superset of inductive
algorithms) has evolved considerably in the decade passed since this survey, the



298 A. Iosup

problem of continuous MMOG analytics raises new challenges, and our approach
is based on using on-demand resources (cloud computing) instead of a fixed
computational platform.

6 Conclusion and Future Work

The growing world of Massively Multiplayer Online Games (MMOGs) raises
important derivative online applications and interesting new challenges to the
distributed computing community, including the problem of massive game data
analytics. Motivated by a subset of this problem, in this work we have introduced
CAMEO, an architecture for continuous analytics of data taken from massively
multiplayer online games on cloud resources. Using a reference implementation
of CAMEO and resources leased from the Amazon EC2 cloud, we have taken
complete and partial snapshots of the Runescape multi-million player commu-
nity for a period of over eighteen months. Our results give evidence that cloud
computing resources can be used for continuous data acquisition and analysis.
Furthermore, we have devised within CAMEO mechanisms for controlling the
analytics process, including taking partial snapshots of a given size, whose anal-
ysis leads to a pre-determined accuracy of the results. Last, we have provided a
first cost estimation for the continuous analytics process.

For the future, we plan to investigate in more detail the trade-off between
the amount of data acquired and the quality of the analysis results for MMOGs.
We will also investigate the use of more heterogeneous resource types coming
from one or more clouds, and the restricted use of cloud resources when local
resources are available.
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Abstract. This paper explores the idea of creating a software and hardware 
system supporting collaborative urban planning and design. It demonstrates 
several working case studies of various parts of such system. Using these 
examples a selected strategy for a computer supported cooperative work for the 
field of architectural and urban design and planning is illustrated. Proposed 
strategy is part of the Protospace system and laboratory development at the 
Delft Univesity of Technology, faculty of Architecture. 

1   Introduction 

Urban planning is an inherently collaborative activity, where multiple decision 
makers, stakeholders or even general public may participate. Numerous, complexly 
interlinked factors influencing the plans are involved in the project process. It is not 
uncommon for urban plans to develop into several versions and multiple scenarios. 
Creation of an urban plan is never a predetermined process. Urban plans and 
strategies are often revised, corrected or even entirely replaced before their final 
implementation [1]. This is primarily due to the very high degree of complexity of 
urban systems, resulting in significant unpredictability of occurring activities and 
effects that interventions into such systems may cause [2]. It is also acknowledged 
that urban planning can be approached as an act of creating and/or modifying 
complex (adaptive) systems [3]. 

The state-of-the-art in design support systems in the field of urban planning is 
underdeveloped in comparison to architecture or other design fields. Design support 
provided by existing systems is very limited and facilitates only selected tasks. GIS 
[4] (Geographical Information Systems) applications are relatively common tools that 
can be employed to map various features of urban and other plans to geographic 
locations. Nevertheless, basic drafting software such as Autodesk Autocad or Adobe 
Illustrator, or even manual drafting techniques are to this day the most widely used 
tools for creating urban plans, typically accompanied by vast textual descriptions. All 
those approaches leave collaborative aspects of the design to take place without any 
form of computer support. 

Many attempts were made to increase the employment of digital technologies in 
urban planning in order to facilitate dealing with the complexity of those undertakings. 
The first group of these attempts includes development and use of spatial decision 
support systems (sDSS) [5] aiming at improving the collaborative aspect of urban 
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planning and design. The second group brings together extensions of traditional CAD 
(computer aided design) drafting techniques or GIS systems, by actively involving 
agent-based simulations, parametric urban modeling, genetic algorithms, various 
applications of neural networks, data mining and many other techniques. Nevertheless, 
no tools or standards in either category have yet been commonly accepted by the wide 
community of urban planners. 

Case studies presented in this paper are aimed at investigating possibilities of a 
synergy between these two trends, while allowing further exploration of new 
possibilities on both tracks by pursuing an integrated approach towards creation of an 
extensible urban design support system. Its development is based on design system 
architecture formulated by the team including the author and other members of the 
research group Hyperbody in the scope of the ongoing Protospace [6] project.  

Protospace constitutes of a software system (Protospace software) and physical 
environment (Protospace lab) that are being developed to facilitate collaborative 
designing in architectural and urban design context, using novel computer design 
tools and multimodal interfaces. Certain collaborative design activities of Protospace, 
such as design sessions involving selected specialists may, happen in the physical 
space of the laboratory. Nevertheless, there is large demand for facilitating online 
connectivity to the design model for a wider group of specialists, authorities and last 
but not least the general public. 

2   Approach Strategy 

Most commonly, urban and architectural design systems are based on hierarchical 
models, where hierarchies follow the scale of (usually nested) design components. 
Traditionally, the main canvas for such systems is established by the meta-hierarchy 
of a: region - city/landscape - building/street/square - interior/finishing/furniture. This 
approach requires revision, because in reality dependencies between design 
components, occurring also across different scales, are bidirectional [7] and form 
multiple feedback loops. For that purpose investigations were made into the concept 
of behavioral modeling in urban and architectural design. Behavioral modeling [8] 
involves creation of virtual models that are composed of multiple autonomously 
operating components, dynamically related to each other. In this way models can be 
created that: a) exhibit dynamic properties b) may natively include agent-based 
systems c) their different components can be modified or manipulated simultaneously, 
without concern for the hierarchical dependencies d) are open for further extensions, 
also throughout a particular design or planning process. At the same time, however, 
such strategy requires substantial amount of computing power, exponentially 
increasing with the amount of elements and users involved in the design process. 

In this context, behavioral modeling needs a larger system to be embedded in. Due 
to the nature of urban design and planning, such models need to be formulated 
collaboratively and need to be connected to other models, depending on the 
specificity of the project. In that process, ideally all participants would be present at 
the same location. In reality this is often not viable and, therefore, a wide range of 
possibilities for remote on-line access to the design model is required. 

As a working concept, it has been agreed that urban design system should support 
the entire process of collaborative and multidisciplinary design. It should allow for 
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parallel work on the main design model, real-time connectivity to other models, and it 
should provide a possibility of creation, simulation and validation of multiple design 
variations. The design model should be open for extensive modifications and 
adjustments throughout the entire design process and after project completion. In 
addition to that, it was decided that all urban activities should be performed in a real-
time navigable 3d environment instead of a two-dimensional one, the latter being still 
commonly practiced in urban design and planning. 

3   System Vision 

Proposed solution model for the problem consists of three generic layers. The 
server(s) host all project data. Various tools (client applications) connect to project 
database. Access rights vary among them and depend on their role in the system. 
Client applications may include web applications, dedicated specialist tools or 
collaborative design support systems dealing with multiple user teams. The third layer 
includes a flexible set of interfaces that can be used to control client applications. 
Typical mouse/keyboard/screen interface can be replaced by CAVE (cave automatic 
virtual environment) systems, alternative pointer devices, gesture and speech 
recognition and other interfaces facilitating work in a collaborative environment. 

 

Fig. 1. Complete range of proposed system architecture variations for creating a multiuser 
design system model. Branches of this system were independently explored in case studies 
presented further. 
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Although there are no analogous systems in existence, client applications 
available to members of the general public willing to participate in the urban design 
process or obtaining information about developed plans could be compared to 
features currently available in version 5.0 of the Google Earth [9] service. In a 
similar way in which 3d building models can be uploaded and visualized in that 
application, variants of buildings and other future development plans could be 
displayed in the client application of the proposed system, allowing general public to 
view, express opinions, debate or vote for most desirable solutions (optionally using 
real-time controlled avatars). On the other end of the spectrum of possibilities, 
existing specialized applications such as road network design or traffic simulation 
software (e.g. OmniTrans International) could be connected to the system through 
custom APIs (application programming interfaces). 

4   Case Studies 

On the path of agile development and identification of the specificity of problems that 
are expected to be faced when creating the proposed system, several research projects 
and case studies were conducted at the Delft University of Technology, faculty of 
Architecture, the Hyperbody group, under the umbrella of the Protospace laboratory 
development, in which the author has actively participated. Several other projects by 
the author that are also presented in this paper are satellite projects of this 
development, carried out in connection to educational activities of Hyperbody group. 

All explorations were strongly rooted in ideas influenced by computer games. Most 
important concepts were this of a multiplayer game system and real-time interaction 
in a 3d environment. The main structure of proposed systems involved a server 
application (MySQL based, or custom Virtools Dev game server solution) and several 
diverse client applications or multiple instances of one application. Virtools Dev 
(currently 3DVIA Virtools), visual programming environment for prototyping 3d 
computer games, was used as a development platform. 

4.1   Paracity Project 

The Paracity [10] project continued on the ideas developed in an earlier project: 
Protospace Demo 1.1 case study. Protospace Demo 1.1 was developed by the author 
in a team directed by prof. Kas Oosterhuis, involving cooperation of dr. Nimish 
Biloria and Dieter Vandoren. It was meant as a conceptual prototype study for an 
architectural design support system. The development was based on the concept that a 
structural engineer, project manager, architect and material expert would work 
together on one design model, having each a different interface to it. Thus, the 
architect would insert and deform functional volumes. The structural engineer would 
control the structural topology, individual lengths and sections of structural struts. The 
material expert would choose materials and control sub-surface deformations and the 
project manager would work with a spreadsheet overview of all materials and 
involved costs. Due to short project timeframe, the four views were switched in a 
sequence, yet it would have been possible to provide them simultaneously. The 
software included an internal project database that was simultaneously accessible by 
different client applications. 
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Fig. 2. Screenshots of architect, structural engineer and material expert interfaces of Protospace 
Demo 1.1 application, followed by the real-time render of a combined model 

The later Paracity project was built on a similar principle, yet its aim was to 
support urban scale design. However, the application did not consist of several 
interfaces to the same tool, but went beyond that concept by creating a distributed 
system of multiple autonomous applications, each corresponding to a different aspect 
of the proposed design process. 

 

 

Fig. 3. Screenshot collage of all consecutive client applications of the Paracity project 

The prototyped design system was consisted of seven “layers”, each layer 
operating as an autonomous application. First layer was providing a context of the 
project by defining the state of neighboring areas. The second layer was establishing 
the topology of all spatial connections within and around the designed area, including 
roads and pedestrian pathways. The third layer was evaluating that topology based on 
program distribution and connectivity, using an agent-based simulation. The fourth 
layer was calculating the potential intensities of various types of user movements 
through the project area and estimating probabilities of different types of functions to 
spontaneously appear in an urban environment. Based on those probabilities a 
program distribution was generated in the fifth layer, whereas the sixth layer allowed 
for top-down insertion of space organizing points and lines that interactively modified 
the generated layout in three dimensions. The last, seventh layer, dynamically 
generated a half-abstract 3d project model. The model is a representation of all 
parameters constituting the plan, including specifications of functional volumetric 
masses, urban block envelopes and program distribution shown as color gradients and 
numeric data. Streets and urban topology are shown schematically as remaining 
spaces between the blocks. 

Unlike in other computer aided approaches to urban design, all operations in the 
system were performed in real-time, at more than 15 iterations (including rendering) 
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per second. Similarly to the Protospace Demo 1.1 project, the Paracity application did 
not offer any possibilities of multiuser operation, other than sequential switching 
between different layers of the process that were meant to be operated by different 
design process participants, however that functionality could have been potentially 
added to the system if the project had been developed further. 

4.2   Protospace Demo 1.2 

In terms of content, Protospace Demo 1.2 project is analogous to the 6th layer of the 
Paracity project and can be considered to be a detailed elaboration on the activity of 
program distribution during the urban design/planning process. The project team 
included same participants as Protospace Demo 1.1, with additional support from dr. 
Bert Bongers and Maaslab office specializing in interaction design. The main purpose 
of the project was to test a possibility of multiple user interactions with the design 
system using one display and multiple controllers. For this, a large projection display 
was used in combination with two wireless game controllers, a standard OSX speech 
recognition system, pressure sensor embedded floor mat and an IR beacon tracking 
system computed using the MAX|MSP platform. The system was designed to be 
operated by a team of four design process actors. Each of the team members was 
controlling a different cursor. An algorithm was developed to control camera position 
and direction based on the location of cursors, causing the virtual camera to move 
backwards if the cursors were far from the center and forward if the cursors were in 
the inner part of the screen. Additionally, the view would rotate if an average position 
of all cursors was close to one of the screen edges. In this way 3d navigation was 
performed intuitively and collaboratively. 

 

 

Fig. 4. Screenshots of the running Protospace Demo 1.2 application 

Each of the team members used a different aspect of the interface. The urban 
designer would insert space organizing objects into the system by guiding the cursor 
using a game controller. The controller was additionally equipped with an IR beacon, 
allowing for 3d tracking of its position. In this way selected elements could be 
manipulated not only by controller sticks and buttons, but also by movements of the 
entire device. Similarly, the other team member, the planner, would manipulate 
particles representing specific parts of the functional program, drag them into desired 
areas and allow them to find the most appropriate location in that area on their own, 
based on their pre-programmed behavior. The cost expert would operate in a radically 
different way, by walking around the pressure-sensitive floor, which represented the 
project area. In this way his position in real space was mapped to the virtual 
environment. Based on that input, location specific information was displayed and 
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cost calculations for chosen areas could be adjusted. The last team member, the 
session leader, was only using a headset to switch between different phases of the 
process and save states of the model, while freely moving around, discussing with 
other team members and supervising the progress of their work. 

 

 

Fig. 5. Interfaces of the Protospace Demo 1.2 project 

The resulting installation verified the possibility of having a small team of 
specialists working collaboratively on one model from the same location. The concept 
proved successful. However, four team members was the maximum number that was 
feasible without significantly decreasing team productivity. Further experiments on 
interfaces included use of PDA-based input, custom built controllers and augmented 
displays for role-specific data display. 

4.3   751 Project 

The 751 project was supervised by prof. Kas Oosterhuis and executed by the author as 
part of the Hypebrody Master of Science design course. It was an attempt to validate a 
possibility of a very large team of designers working on one urban design project. The 
approach covered a different problem than the previously described projects. In this 
case all design group members had the same role of urban designers, but were 
assigned to different zones of the design site. The provided site and given assignment 
were set in a way to force designers to be strongly dependent on each other’s 
decisions. To motivate them to work in an out-of-the box manner, without any design 
method preconceptions, the site was defined as a three-dimensional volume in place 
of traditional two-dimensional plot. Design sites were also distributed in three 
dimensions. This meant that some of the designs had to be located above or under 
other, often without any direct access to the outside boundary of the design area. In 
this way projects were mutually dependent, forcing designers to collaboratively solve 
problems of accessibility, structural support, light access, connectivity, transportation 
and many other. 

To facilitate that functionality, a database system was developed for the use of the 
project, which, in this case, was not a usual repository of project parameters, but was 
dedicated to managing only the data being exchanged between projects. Every surface 
separating any two adjacent zones was mapped to a different table in the database. 
Each record consisted of 2d position coordinates on that surface, a 3d vector of 
direction of occurring exchange, its value, units and most importantly, category of 
exchanged information. In this way it was left open to designers to decide what 
information was to exchange in the system. Both flows of people and structural forces 
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could be equally well expressed using this data model and it was up to individual 
designers to decide how this data were to be interpreted in their individual projects. 
Originally, the communication with the database was performed using a standard 
online interface. Throughout the duration of the project an interactive application was 
developed that worked as a viewer of the entire site and allowed for more intuitive 
selection and definition of information to be exchanged. 

 

  

Fig. 6. 751 project, from the left: partially implemented custom database interface application 
and the assembled model in a real-time viewer application 

Workflow progress was twofold. It consisted of working from remote locations and 
personal meetings in subgroups, rarely involving the entire group, which included 23 
designers in total. 

The process of development of the project in many ways resembled the growth of 
real city structures. Since exchanged parameters were forming multiple feedback 
loops, individual sub-projects were continuously being reconfigured and after five 
months of the duration of the project, no complete equilibrium was established. 
However, throughout the process, the project as a whole has evolved into a rich, 
interesting and potentially well functioning city-scale structure of an unprecedented 
scale and form. Despite a certain degree of design task abstraction, it was proven that 
complex designs can be created in an entirely distributed manner, since the used 
database was storing only locally exchanged parameters. 

4.4   A2 Design Studio 

The A2 design studio was taught by dr. Nimish Biloria with H.C.Friedrich and the 
author assisting and developing the design support systems. The system developed for 
the A2 design studio was in certain aspects similar to the 751 project. Yet, it involved 
a more realistic design assignment. In this case the individual zones were areas along 
the A2 highway in the Netherlands, not forming a 3d structure, but a more 
conventional two dimensional plan. In this case each zone had only two neighboring 
plots on its two sides and a straight line as a connection. The collaborative design 
support system was created in a similar manner, yet this time more attention was 
given to the software prototype, including the functional distribution behavioral 
modeler which became the core part of the project. 

The application was embedded in an on-line website that upon opening, requested 
the plot number to be edited and in this way allowed for working on all design zones 
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simultaneously, from any location where a standard PC computer and an internet 
connection were available. Additionally, the system included another client 
application, which was overlooking the entire project development in a top-down 
manner, establishing global parameters, accessible from all different zones. These 
parameters were: overall program values for specific functions to be distributed 
throughout the whole design site and included guidelines for building heights along 
the highway represented by a three dimensional curve. In this way each point on the 
ground plane in the entire site was mapped to a specific preferred height value. 

 

 

Fig. 7. Screenshots of the A2 application for distributing functional program elements 

In order to simulate program demand distribution occurring in real life economy, 
insertion of each element of the functional program was causing an increase of 
demand for other functions. This demand was spreading to adjacent zones, while its 
value would also exponentially decrease. A special matrix model was used to 
calculate demands for different functions. 

5   Conclusion 

Presented case studies explore different components of what could together form a 
fully operating multiplayer urban design and planning system. Most of verified 
technical possibilities are being currently applied to the Protospace system 
framework, which in the near future will serve as a platform for implementing 
proposed solutions in their full potential and validate them by testing the system on 
applied projects executed in collaboration with the commercial sector. 

The outcome of presented case studies has been highly influential on the 
development of the Protospace System. An additional developed feature of that 
system, which has not been explicitly demonstrated in presented examples, is 
integration of client applications of external developers. In shown projects, multiple 
“views” on the design are created, either by specialized interfaces, or by connecting 
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multiple applications to one project database. For this, presented systems, such as in 
the Paracity project, consist of different specialized modules (client applications). In 
reality, these modules need to perform much more complex tasks than in presented 
examples and it may not be feasible to develop them within one research group or 
small company. On the other hand, many commonly used commercial applications 
allow scriptable connections to external servers and/or connectivity to their APIs. In 
this way those applications could replace selected modules of proposed systems. 
Several solutions were tested and results are promising. 

However, amount of data being exchanged increases as the system approaches 
real-life applications and with each additional module being introduced. For this H.C. 
Friedrich has introduced a XiGraph [11] data structure and protocol concept, which 
has the potential to become an additional layer of the system, mapping and controlling 
all connected parameters, allowing for multiple databases to be integrated along with 
a possibility of flexible connectivity between modules, evolving throughout the 
project. XiGraph protocol supports flexible creation of dynamic connections and 
dependencies between data sets as well as additionally solves potential conflicts 
between applications when simultaneously editing same project data. 

The development of Protospace system has been put on hold as a result of the 
disastrous fire of the Faculty of Architecture in Delft, on May 2008. The project has 
been recently resumed with new hopes for further developments. 
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distributed Grid resources. UNICORE is a full-grown and well-tested Grid middleware
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as open source under BSD licence at http://www.unicore.eu
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istrators, researchers, and service providers to meet. The first UNICORE Summit was
held in conjunction with “Grids@work - 2nd Grid Plugtests” from October 11 to 12,
2005 in Sophia Antipolis, France. In 2006 the style of the UNICORE Summit was
changed by establishing a Program Committee and publishing a Call for Papers. The
UNICORE Summit 2006 was held in conjunction with the Euro-Par 2006 conference
in Dresden, Germany, from August 30 to 31, 2006. The proceedings are available as
LNCS 4375. The UNICORE Summit 2007 was held in conjunction with the Euro-Par
2007 conference in Rennes, France, on August 28, 2008. The proceedings are available
as LNCS 4854. The UNICORE Summit 2008 was held in conjunction with the Euro-
Par 2008 conference in Las Palmas de Gran Canaria, Spain, on the 26th of August. The
proceedings are available as LNCS 5415. In 2009 the 5th UNICORE Summit was held
again in conjunction with the Euro-Par conference, this time in Delft, The Netherlands,
on the 25th of August.

We would like to thank the Program Committee members Agnes Ansari, Rosa Ba-
dia, Donal Fellows, Anton Frank, Edgar Gabriel, Alfred Geiger, Erwin Laure, Odej
Kao, Paolo Malfetti, Ralf Ratering, Mathilde Romberg, Bernd Schuller, Dave Snelling,
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Abstract. Making applications Grid-aware (or Grid-enabled) requires
the knowledge of the API of different Grid middlewares. The complex-
ity of these systems, both in terms of underlying technology and func-
tionality, remains high. Moreover, Grid middlewares like Globus and
UNICORE are still undergoing many changes. Grid Application Toolkit
(GAT), a high-level API for accessing Grid services, provides application
developers with a unified, simple and middleware-independent interface
to the Grid.

In this paper, we present a newly developed adaptor for GAT to access
UNICORE services. We also describe how the data management client
DataFinder has been Grid-enabled with GAT to access remote files and
submit computational jobs to the Grid. DataFinder provides primarily
an easy-to-use tool for scientific data management in distributed envi-
ronments. Within the project AeroGrid, a BMBF-funded project in the
German D-Grid initiative, DataFinder is being used as user interface for
performing complex simulations in a UNICORE-based Grid infrastruc-
ture.

Keywords: Grid Application, UNICORE, GAT, DataFinder.

1 Introduction

The AeroGrid project [1] provides an efficient Grid based working environment
for the aerospace research community. The AeroGrid environment will be a per-
manent and effective Grid infrastructure for the cooperation between industry,
research centres, and universities in aerospace engineering and research. In this
context, an important role is played by large simulation codes that are developed
in several institutes of the German Aerospace Center (DLR) and at universities.
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Since these codes use very innovative algorithms they are more powerful than
many commercially available products. The simulation codes are used either di-
rectly by industrial companies or by research partners on their behalf. Examples
are the TRACE turbine flow solver [2] of the DLR Institute for Propulsion Tech-
nology, or the TAU unstructured hybrid flow solver [3] of the DLR Institute for
Aerodynamics and Flow Technology. These codes are employed both industrially
and in university training and research.

The basic Grid middleware used for the AeroGrid infrastructure is UNICORE
6 (Uniform Interface to Computing Resources) [4,5]. The AeroGrid environment
consists of two different user interfaces, a Web portal and the data manage-
ment client application DataFinder [6]. DataFinder is a lightweight application
software for managing technical and scientific data [7]. This tool has already
been adapted to use Grid storage resources in the D-Grid [8] Integration Project
(DGI-1). The main functionalities of DataFinder are data organization, annota-
tion of standardized and user-defined metadata on data objects, provision of a
metadata-based search, and script processing to automate workflows (e.g., au-
tomatic up- and downloading or calculations). Within the project AeroGrid,
DataFinder is being extended with interfaces to UNICORE 6 and being used as
user interface for performing complex simulations.

The primary aim of the Grid Application Toolkit (GAT) [9,10], developed
by the EU-funded GridLab project [11], is to decouple the application from
the available Grid middleware and its services. It allows developers to easily
include Grid functionality in application codes by providing them with a uniform
interface to numerous types of Grid middleware. This is performed by writing
plug-ins (called adaptors) for the different Grid middlewares. With the help of
GAT DataFinder can access a wide range of Grid services and middlewares, in
a transparent, secure and effective way, without installing middleware on the
submitting (client) host.

The paper is organized as follows. In Section 2 we introduce GAT, the back-
ground technology for our work. Section 3 describes the concept and imple-
mentation of the UNICORE adaptor (middleware binding) for GAT. Section 4
presents the DataFinder job management design and implementation in detail
and illustrates its current use. Finally, conclusions are drawn in Section 5.

2 Background

Since our work is based on the Grid Application Toolkit, we briefly introduce
this technology.

2.1 Grid Application Toolkit

GAT represents a unique and easy Application Programming Interface (API) to
access the Grid irrespective of the middleware which finally triggers the Grid
operation. So a Grid operation only requires the knowledge of the GAT–API,
and not the knowledge of the API of different Grid middlewares like UNICORE,
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Globus Toolkit [12] or gLite [13]. Programming against the GAT–API is much
easier than coding against Grid middleware directly. According to our experi-
ence, a job submission using the Globus API requires around 100 lines of code,
the same job submission using GAT only 20 lines. The same relation is valid for
file operations.

2.2 GAT Architecture and Implementations

The GAT architecture is divided to two parts: GAT engine and GAT adaptors.
The GAT–API delivers the commands to the GAT engine which selects a so–
called GAT adaptor. Such an adaptor converts a file copy or job submission
statement written in the GAT–API into a file copy or job submission statement
of a Grid middleware. GAT uses the first adaptor which does not fail but it is
also possible to force the usage of selected adaptors.

GAT has first been realized in C within the European GridLab project; the
development of the Java version of GAT (henceforth JavaGAT) has also been
started during the GridLab project. The C Implementation comes with a C++
and a Python wrapper. While C–GAT is out of support, JavaGAT is still main-
tained by the Free University of Amsterdam, and JavaGAT is used within Aero-
Grid. One of the major advantages of JavaGAT compared to C–GAT is that
JavaGAT enables the Grid access without an additional installation of a Grid
middleware. All required software to create a Grid client is rolled out with a
JavaGAT installation which does not take more than 5 minutes, compared to
usually several hours for a Globus installation.

Fig. 1. JavaGAT software architecture

Figure 1 shows the JavaGAT architecture. Beside real Grid adaptors JavaGAT
also offers adaptors for the Sun Grid Engine (SGE), Portable Batch System
(PBS) or simply for local host operations. The availability of local adaptors
enables the software engineer to create his code without needing access to the
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Grid. After the program logic is working correctly on the local host, the Grid
can be taken into account. The recently developed UNICORE adaptor for GAT
is marked red in Figure 1 and will be described in Section 3. JavaGAT is freely
available as open source software.

Beside AeroGrid, the JavaGAT API has been used by several other projects
and institutions:

– AstroGrid–D [14], the German Astronomy Community Grid (GACG), uses
GAT to enable the Grid access for the workflow engine ProC [15].

– TextGrid [16,17], one of the first projects in the humanities in Germany and
Europe, uses GAT to read and write TextGrid objects.

– PartnerGrid [18] uses GAT for the Grid interface in Reconfigurable Com-
puting Environment (RCE) [19].

– Vrije Universiteit Medical Center in Amsterdam (VUMC) submits complex
medical applications to the Grid and performs also its data management
using GAT.

– Amsterdam Medical Center (AMC) uses GAT for Medical data management.
– AMOLF, the Institute for Atomic and Molecular Physics in Amsterdam,

uses GAT in a Fourier Transform Mass Spectrometry (FTMS) analysis ap-
plication. The FTMS dataset can be streamed to compute resources with
GAT using SSH, SFTP and GridFTP.

– The workflow system Triana [20] uses GAT to start jobs on the Grid.
– GAT will complement the Ibis functionality, a Java-based grid programming

environment [21].
– Technical University of Catalonia (UPC) and Barcelona Supercomputing

Center (BSC) use GAT for job submission and file transfer in the COMP
Superscalar Grid framework [22].

Furthermore BWGrid is considering to use JavaGAT, and also the High Per-
formance Computing Center Stuttgart (HLRS) of the University of Stuttgart
is planning to use GAT for the job submission to PBS clusters or UNICORE
resources within the context of the LarKC project [23].

Simple API for Grid Application (SAGA) [24], now being developed by a
research group within the Open Grid Forum (OGF), can be understood as the
successor of GAT. The primary goal of SAGA is to develop a standardized, simple
Grid API. JavaGAT itself is included in the Java implementation of SAGA from
the Vrije Universiteit (VU) in Amsterdam which makes all JavaGAT–supported
middleware (e.g., Globus, gLite, UNICORE, or SSH) available for SAGA.

3 UNICORE Adaptor for JavaGAT

The UNICORE adaptor has been implemented recently at the Max–Plank–
Institute for Gravitational Physics within the scope of the DGI2–FG1 project of
D–Grid [8]. The implementation is based on HiLA [25]. HiLA (High-Level API)
supports the access to UNICORE 5 and UNICORE 6 via an easy and unique
API. Furthermore it is not necessary to install components of UNICORE 5 or
UNICORE 6 on the submitting (client) host.
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The submission of jobs within the UNICORE adaptor of JavaGAT consists
of the following steps [26]:

1. HiLA requires the existence of a so–called site object, which can only be
created if a valid and active execution site (or host) for UNICORE jobs
exists.

2. HiLA submits a job only with a JSDL based job description (Job Submis-
sion Description Language). This JSDL description requires the name of the
executable, and its arguments. The UNICORE adaptor of JavaGAT creates
the JSDL description with information of the GAT JobDescription object;
a JobDescription is necessary to submit a job with GAT.

Pre- and post-staging is not handled in the JDSL description of a
HiLA job. These operations are done separately by using the methods
importLocalFile or exportToLocalFile, of the HiLA File class. The in-
formations about the files which are to be pre-staged or post-staged are
available in the GAT JobDescription object. The pre-staging is done by
the UNICORE adaptor before starting the job, the post-staging after it has
been finished.

3. Having the JSDL description, one can create a job task using the submit
method on the HiLA site and the “submission” returns a task object which
must be used for further operations on the job. The following operations are
implemented up to now:
– starting the job;
– retrieving of the job status;
– stopping the job;
– receiving the exit status of the finished job.

For all these operations the UNICORE adaptor of JavaGAT provides meth-
ods, which translate the statements of the GAT–API into statements of the
HiLA–API.

4 DataFinder Job Management

4.1 Design Approach

In this section, we describe the design for the DataFinder job submission and
management system. The DataFinder job management includes the basic func-
tionality required to manage a job: resource discovery, authentication, job sub-
mission, file transfer, and job status notification. Furthermore, the users are
allowed to resubmit and archive old jobs, and visualize job input and output
with pre- and post-processing tools.

The DataFinder design supports a three step process to job execution (job
life-cycle): job creation, job submission and job monitoring. During the first step
the job is constructed, defined by a job object with the correct host, backend
and application parameters. Afterwards it will be submitted to the target host,
using proper authentication and file transfers. Finally, the job status is retrieved.
If the job completed successfully, the output files will be copied to the local host.
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Fig. 2. Basic components of the DataFinder job management system

Figure 2 shows an overview of the modular design of the DataFinder job
management. The basic job management components include:

– Job (job definition component);
– Application (application definition component) and
– Backend (resource definition component).

The Job component is represented as an object that includes all job charac-
teristics and requirements such as the current state of the job, a job working
directory, number of CPUs, start time, end time, and batch queue. Each job (or
instance of a job class) is identified by the job’s identifier, specified when the job
was created (unique DataFinder job identifier).

The Application component defines all application-specific information such
as executable (a single executable binary or a single shell script), program argu-
ments and environment settings, all staging files from the local machine and all
result files on the computing host.

The Backend component represents a resource or a batch system and in-
cludes information such as hostname or middleware type. DataFinder supports
a number of backend plug-ins which allow the execution of jobs locally and in a
distributed environment. The specialized backend components such as Job Han-
dler and File Handler implement interfaces for different types of batch and local
systems. These handlers have complete freedom to implement their own mecha-
nisms for the local, Grid, and batch submission, so one can write new handlers
and choose between the existing ones. In particular, the Job Handler performs
the job configuration and submission to a chosen processing system and moni-
tors the job progress. The File Handler transfers input and output files between
a local and a remote site.
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4.2 Implementation

DataFinder is implemented in Python [27], an interpreted scripting language,
using an object-oriented approach. In order to access Grid resources, we used the
Java version of GAT. It has all required functionality, ist widely used (Section 2)
and a UNICORE Adaptor for C-GAT (and for its Python Wrapper) is not
available.

Bridging the two languages Python and Java ist not trivial, but there are
different techniques and libraries to access Java from Python like JPype [28] or
JCC [29]. JPype is an open-source Python library that allows Python programs
full access to existing Java class libraries. This is achieved by embedding a Java
Virtual Machine (JVM) instance within the host’s Python process. JCC is a
C++ code generator that produces a C++ object interface wrapping a Java
library via the Java Native Interface (JNI) [30].

JPype and JCC both allow the usage of Java libraries from within Python
code. We found JPype to be a better solution by reason that JCC requires a
separated code generation and compilation step (no “on the fly” wrapping).
DataFinder requests JPype to initialize a Java Virtual Machine, which uses
JNI to communicate back and forth (Figure 3). A Python application code
(DataFinder backend component) then imports and uses JavaGAT classes avail-
able from the JVM. In order to submit a job the Job Handler calls the Java-
GAT API and wraps the Python calls which are then forwarded to the JVM
by JavaGAT with the help of JPype.

Fig. 3. Accessing JavaGAT libraries from DataFinder via JPype

4.3 Job Submission through DataFinder

The process of job submission through DataFinder is shown in Figure 4. The
main DataFinder GUI window is divided in two parts: The left section shows a
local file system view; the right section is used to display a server view. With
the help of the “Create Run” dialog the user creates a new job, specifying the
application type and required input files. Now the user can call the ”Start Run”
option where he can select the resource type (local host, remote host, batch, grid)
and location (hostname or ip address) on which the job will be run. DataFinder
connects to the chosen resource, transfers the required input files and executable
of the job to the resource, and starts the job.
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Fig. 4. Job Submission through DataFinder

Once the job is submitted, DataFinder periodically monitors its status. All
jobs begin in the new state. As soon as a job is successfully submitted by
DataFinder, it is assigned to the running state. This state indicates that the
input data was successfully transfered to the remote host. After the application
successfully executed, the job moves to the finished state or, in case of failure,
to the failed state. The output is automatically retrieved from the worker node
when the job is finished. Furthermore, the user can resubmit the job to different
backends and the restarted job will go back to the new state.

5 Conclusions

Grid APIs such as GAT and SAGA have been developed to allow easy devel-
opment of Grid-aware (or Grid-enabled) applications. GAT/SAGA provides a
common programming interface to the numerous Grid technologies that exist
such as Globus, gLite etc. The adaptor based architecture of GAT/SAGA allows
for easy adaption to new Grid middlewares. We have designed and implemented
a UNICORE adaptor for JavaGAT to access UNICORE services. Using the GAT
engine framework and our UNICORE adaptor, a Grid application developer can
access UNICORE-based resources with the help of an easy and unique API and
without needing to install components of UNICORE 5 or UNICORE 6 on the
submitting (client) host.

The UNICORE adaptor is being used in the UNICORE 6 based AeroGrid
infrastructure. AeroGrid provides a graphical user interface, a data manage-
ment client called DataFinder. In this paper, we presented the DataFinder job
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management concept and the implementation using the UNICORE adaptor.
DataFinder, by design, will use existing Grid middlewares and provide a simple
and unified access to them. DataFinder has been developed in Python as an
easy-to-use tool for scientific data and job management, providing a single user
interface for submission to multiple backends. DataFinder job management com-
ponents are implemented as independent and reusable modules. Jobs can run
locally, on scheduling systems and in Grid environments. DataFinder supports
the transparent submission and monitoring of computational jobs to a variety
of resources. The end-users do not have to know all the technical details about
Grid resources, running a job locally is not different from running it on the Grid,
the details of the Grid will be hidden. Experimental results showed that this ap-
proach is user-friendly and system efficient. More information about DataFinder
development can be found on its web site [6]. DataFinder is available as Open
Source software under the BSD license.
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Abstract. In this paper we report results of the ongoing effort to pro-
vide a seamless authorization for the UNICORE and Globus Toolkit mid-
dlewares using the UNICORE Virtual Organizations System (UVOS).
The UVOS is already well integrated with the UNICORE middleware.
We have designed and created a set of native Globus Toolkit 4 modules
which enable a UVOS based authorization, with a similar functional-
ity as its UNICORE counterpart. Actually the same authorization data
stored on the UVOS server can serve both middlewares simultaneously.
The paper provides an overview of existing approaches to the user man-
agement problem in the Grid environment with a special emphasis on
those which can be used across different grid middlewares. The paper
presents the UVOS system, its features and how its adoption helps to
manage users of the UNICORE and Globus 4 middlewares.

1 Introduction

The problem of user management in the Grid is deliberated from the very begin-
nings of the Grid concept. The fundamental ideas come from the publication [1],
which models the society of grid users as virtual organizations (VO). Over time
numerous implementations were developed including a popular Virtual Organi-
zations Management System (VOMS) [2]. In addition to the centralized VOMS,
an idea of federations started to gain interest, mostly because of the success of
the Shibboleth system [3] used to authenticate and authorize web users. Never-
theless the engineered solutions still contain a number of shortcomings. Primary
problem is a complicated administration, lack of a fine-grained authorization
and a complex deployment procedure. As there are numerous user management
systems available, one of the most important problems now is the interoper-
ability, especially when a homogenous authorization shall be provided across
heterogeneous grid middlewares.

The goal of the work reported in this paper is to create a native support in
Globus Toolkit 4 for user authorization, based on their data stored in a UVOS
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server. UVOS server is a part of the UNICORE Virtual Organizations System
[4] and it is a modern VO solution developed mostly for the UNICORE grid
system. However UVOS is not tightly bound to the UNICORE as it employs
service oriented architecture paradigm. It uses open Security Assertion Markup
Language (SAML) 2.0 protocol for communication [5] which allows for easy
integration with different grid middlewares.

The native support for the UVOS system in the two significant grid middle-
wares can be seen as a big step towards a full grid interoperability in the area
of users authorization. It is even more important as the SAML protocol used
by the UVOS is utilized in the aforementioned Shibboleth federation manage-
ment system. Therefore it is logical to expect that administrators will be able
to switch effortlessly between those different authorization solutions or even use
them together.

The next part of the work discusses the common methods of integration of
the virtual organizations with the grid systems mostly using the UNICORE
and Globus Toolkit middlewares as examples. The subsequent section presents
in more details the UVOS system. The main part of the work — prototype of
the UVOS authorization modules for the Globus Toolkit — is described in the
section 5. The paper is concluded with a summary of the achieved results and
an enumeration of ideas for a future work.

2 The Grid Approach to the User Management Problem

The basic mechanism of user management in most of the grid middlewares is
usage of a database placed locally to a grid site (plain text file in the Globus
Toolkit, a simple SQL database in UNICORE). More advanced solutions are
using one of the two common approaches: the grid-central databases of users or
federations. Both allow for creation of Virtual Organizations i.e. the situation
when users coming from different real organizations get access to the shared
resources, often located in different administrative domains.

The global database approach is simpler in installation and deployment. How-
ever it requires that central database must allow for the administration of its
content (or more strictly speaking its fragments) by multiple managers with
different permissions. There is also a problem of reusing users data stored in al-
ready existing catalogs such as Lightweight Directory Access Protocol (LDAP)
servers. Those problems are addressed by the federation concept, where users
are always authorized by their home (or real) institution. This approach is much
more scalable but also more difficult to set up: it requires a mutual trust (often
formal) between all user privileges providers and resource providers. A common
format and semantics of users privileges must be developed and applied.

There are two practical models of establishing users authorization data used
in the grid systems: a pull and a push models which are presented in the figure
1. One should note that both models may be applied simultaneously.

In the pull mode a service (e.g. a grid node server) contacts the VO server to
obtain the attributes of a user who tries to use it. The attributes received from
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the VO server can be used for an authorization, e.g. server’s policy may permit
only those users who possess certain attributes. The service may use received
attributes to perform other tasks e.g. to map requester to a local UNIX account.
Pull mode is transparent for the grid users. However it is more difficult for grid
administrators to set it up: every grid site must be correctly configured to use
the VO server.

In the push mode a user has to contact a VO server on her own and get
the list of possessed attributes in a signed assertion. Later this assertion can be
attached to the requests which are sent to the grid services. If the service trusts
the assertion issuer then it can use the attributes for authorization. The user can
usually ask the VO server for a subset of owned attributes. In such a case the user
can hide a part of her identity or alter the execution (e.g. by choosing role). The
push mode is more scalable in terms of server administration and easier to set
up. However it requires user interaction and thus is more suitable for advanced
grid users. Also for the push mode a problem with expired assertions arises.

Fig. 1. The figure shows the two alternatives for provisioning client’s attributes to the
grid node: by the service (pull mode) and by the client (push mode)

3 Related Solutions and Efforts

One of the most important developments in the area of authorization is the
GridShib project [6] based on a standard protocols. It was created for the Globus
Toolkit. The primary goal of the GridShib project is creation of a full-fledged
tool which integrates the Shibboleth Identity Provider as the information source
about the users for the Globus middleware.

The system developed by the GridShib project is a production ready solution
with a vast amount of features. It allows for using both push and pull styles of
attribute retrieval. In the first case it can consume attribute assertions attached
to a client’s certificate (both normal X.509 and proxy). Additionally, recent
releases of the GridShib software support VOMS assertions. What is interesting,
the GridShib provides a modified version of a mechanism which establishes local
user names for the grid clients. Instead of direct mapping of client’s certificate
subject name to a local account, GridShib allows for choosing the local name
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based on the client’s attributes. The attribute to handle local name mappings
are stored in a configuration file, local to the grid node.

Unfortunately GridShib can cooperate only with the old, 1.x releases of the
Shibboleth system. It cannot be used with the current SAML 2.0 protocol and
therefore it can not be used with the Shibboleth 2.0 or UVOS systems. Anyway
we can foresee that GridShib would become the fundamental solution used for
interoperable authorization of the Globus Toolkit, when it will be upgraded to
the SAML 2.0.

GridShib possesses also an another shortcoming very important from the prac-
tical point of view. Namely, it is impossible to authorize clients of the legacy
Globus services. Legacy services are not yet converted to the web services tech-
nology and are not OGSA [7] based. In particular there is one such a service
of a critical importance: the GridFTP file transfer server. As a result GridFTP
access must be based on the traditional gridmap file and there is no possibility
for a complete user management via the Shibboleth federations.

In result, authorization stack for the Globus Toolkit must be implemented
in two flavors: for the pre-WS and WS components. A common approach to
overcome this problem is to build or even download a full gridmap file from the
remote server. One of the popular tools is edg-mkgridmap from the Virtual Data
Toolkit project [8]. Another example is GUMS software [9] which is much more
advanced. Those tools, quite interesting for the Globus Toolkit are not a good
base for the interoperable solution because both are using simple “user import”
approach which has general problems such as low performance with large amount
of users.

Along with the development of different user management systems for the
grid, various efforts were undertaken to integrate them. One of the largest is the
IVOM (Interoperability and Integration of VO-Management) project, a part of
the D-Grid initiative. The IVOM aims to develop services that enable integration
of VOMS and Shibboleth-based VO management systems with the grid middle-
wares used in Germany, in particular gLite, Globus Toolkit 4 and UNICORE 5.
As it is explained in the publication [10] for this purposes only the push model is
used. The paper suggests development of SAML enabled components for the grid
middlewares which are in the project’s scope. In the case of Globus Toolkit it is
suggested to use the GridShib system. The paper [10] states that unfortunately
GridShib does not support legacy Globus services.

4 The UVOS Overview

The UNICORE Virtual Organizations System (UVOS) is a new solution for cen-
tralized VO management. It was created in course of the EU-funded Chemomen-
tum project [11]. The fundamental aim of the project was to develop a solution
which will overcome the two important adoption blockers of a VO software: lack
of flexibility and difficult deployment. The UVOS principles are:

– Distributed environment : The single installation can be completely controlled
remotely.
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– Openness : The system consumers can communicate with it using open and
well established protocols.

– Easy of Use: The system can be easily installed and managed.
– Flexibility: The system provide tools and features which will make it useful

in both OGSA (so SOA) environments and WWW environments.

UVOS architecture uses a central UVOS server which acts both as authentica-
tion service and attribute authority. The server is used by two kinds of clients:
consumers and management clients. Consumers do not modify the UVOS con-
tent but query it. Management clients are used to dynamically modify VO data
either by VO administrators or other management software .

The UVOS server (as the whole system) is written purely in Java so it is highly
portable. All operations of the UVOS server are available via the web services
interface. The server uses relational database to internally store the whole data,
therefore it does not depend on any external services like LDAP.

The UVOS consumers use the open standard SAML 2.0 as a protocol to com-
municate with the UVOS server. The server implements the core SAML spec-
ification and to ensure a higher interoperability level it implements additional
profiles:

– XACML Attribute Profile [12].
– SAML Attribute Query Deployment Profile for X.509 Subjects [13],
– SAML Attribute Self-Query Deployment Profile for X.509 Subjects [13],
– OGSA Attribute Exchange Profile Version 1.2 [14],

Finally, the UVOS web server is truly extensible by means of classic Java web
applications (servlets), which can be simply installed by copying them into a
designated server’s installation directory. Two such web applications extending
server’s functionality are provided as ready to be used modules: one provides
authentication form for the SAML authentication request protocol, the second
one supports enrollment of new users.

UVOS access is restricted by it’s own authorization stack. No external compo-
nents/services are used to perform authorization. The authorization mechanism
is advanced and provides a complete control of access on a group level.

4.1 UVOS VO Model

UVOS organizes VO members within a hierarchical group structure. Top level
groups of this structure are called virtual organizations however are not different
than other groups. Each entity can be a member of an arbitrary number of
groups. It may has assigned a set of attributes. In addition, a single entity
can possess multiple representations, for example in different formats. These
equivalent incarnations of the same entity are called identities, and are usually
invisible for an outside user.

Group membership is inherited in UVOS. The member of subgroup becomes
automatically the member of the parent group. This is different than e.g. in
VOMS, but has been requested by the users.
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Every entity has a unique label and one or more tokens that represent it.
Tokens must be in one of the supported formats, which currently are:

– a full X.509 certificate,
– an X.500 distinguished name,
– an e-mail address with an password used for authentication.

A token along with it’s type is called an identity. As explained, an entity typi-
cally possesses one identity, but it can also has more. This reflects the real life
situation where the single user can possess multiple certificates and email ac-
counts. Additional identity formats may be added to the UVOS system with a
intermediate level of effort. It is worth pointing out that all of the identities that
compose an entity share the same characteristics (attributes, group membership,
permissions, etc.): the UVOS works using entities internally.

UVOS attributes are composed of a name and a list of values. A name is a
URI, and values are arbitrary strings. The value list can be empty. UVOS allows
for three different ways of attributes assignment:

– global attributes: an entity can have an attribute assigned globally. Such an
attribute is valid always and in every context,

– group-assigned attributes: an attribute can be assigned to a group, in which
case all members of this group automatically hold this attribute (no mat-
ter if they were added later or prior to the creation of the group-assigned
attribute). It is worth pointing out that this attribute is valid only in the
scope of this group,

– group-scoped entity attributes: those attributes are assigned to the entity,
just like global attributes, but have an additional group restriction and are
valid only in in the scope of the group.

The last two methods introduce a “group-scoped validity” of attributes, which
requires a further explanation. Within this mechanism the requester can ask
(using the API provided by the UVOS service) for the entity’s attribute either
globally or valid only in a specified group. Global query returns global attributes
only. A query limited to a group will return all entity’s global attributes and all
group-scoped attributes valid within the specified group.

4.2 The Client Side

In the UVOS currently there are available two management clients: the command
line client (UVOS CLC) and VO Manager. The command line client can be
used to administer UVOS from the console. It can be used in an interactive or
batch mode. The UVOS VO Manager is a powerful GUI application based on the
Eclipse Rich Client platform. It is much easier to use than a command line client,
offers an intuitive interface so usually UVOS VO Manager a preferred choice.
The VO Manager application can be considered as one of the most important
advantages of the UVOS.

UVOS is available in the standard distribution of the UNICORE 6 middle-
ware. Both push and pull modes are supported. In the push mode user can get
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and attach certain attributes using the UNICORE Rich Client plugin. The pull
mode is implemented as the module of the UNICORE server.

5 Globus Support for UVOS

Globus Toolkit 4 provides a rich interface for building and plugging additional
authorization modules. Unfortunately, as it was briefly noted above, the Globus
Toolkit is currently built using two different technologies. The main part of
Globus employs a web services technology and is deployed in a special Java
container. The rest of services, including the important file transfer subsystem
GridFTP, is programmed in C and still does not use web services technology.
Those services are called as legacy or pre-WS. Obviously the authorization APIs
for both types of services are absolutely different. More advanced and full of
features is interface provided by a Java web services container. To make a situ-
ation even more complicated, the web services version of authorization API was
greatly refactored with the introduction of the version 4.1 of the Globus Toolkit.

The issues described above may be reason for a small popularity of the pull
style solutions for the Globus Toolkit. The most of the popular approaches are
focused on the push model. In the case of the Globus Toolkit pushed attribute
assertions are embedded inside a user’s proxy certificate. This pattern is used
for both VOMS credentials and it is a typical usage scenario for GridShib de-
ployments.

In our solution the pull model was chosen as a base for the implementation.
The main reason for this decision was that client tools need not to be modified
in any way for pull style. This is an important factor as Globus community is
quite well established and in our opinion it would be hard to convince existing
users to use an another client side tools or wrappers, as GridShib does.

The outcome of our project is a set of Globus Toolkit authorization modules.
The modules allow for the pull style authorization based on the information
stored in the UVOS server. The modules provide this functionality for all Globus
Toolkit 4 modules, both 4.0.x series and more recent 4.1.x and 4.2.x. There are
three principal functional components of our implementation:

– UVOS Policy Information Point which solely contacts the UVOS server and
collects the information about the grid client.

– UVOS Gridmap Policy Decision Point allows administrator to store certifi-
cate to local account mappings in the UVOS server. This can effectively
replace the traditional gridmap file. The mappings are stored as scoped at-
tributes of a user, and a group (where the attribute is valid) is used to
distinguish the mappings for different grid nodes if needed.

– UVOS Access Policy Decision Point which provides a possibility to perform
a fine grained authorization decisions based on the attributes received from
the UVOS server.

The Policy Information Point (PIP) and Policy Decision Point (PDP) terms
come from the security domain and have a precise meaning in the Globus Toolkit
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Fig. 2. The figure shows the architecture of the UVOS authorization subsystem for
the version 4.1+ of the Globus Toolkit. All components which are specific to that
particular Globus version are marked. Solid arrows shows information flow through
the system. Dashed lines shows service invocations as performed by a user. Light boxes
are Java components and dark gray boxes are C modules. In the figure there are three
layers of communication marked. In the layer (1) communication is done through a
network. The Policy Information Point (PIP) queries the UVOS server for the user’s
attributes. Communication in the next layer (2) is performed internally by the Globus
security stack which passes assembled information about the client to the authorization
modules. Eventually in the layer no (3) an authorization decision and (optionally) a
mapping to a local account is passed again by the security stack to the invoked service
(or more formally to the Globus policy enforcement code which protects the service
access).
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authorization API. The PIP is responsible for assembling grid client’s credentials
(as for example its identity, attributes) and the PDP makes an authorization de-
cision (using the data provided by the PIPs). In fact this design is used only for
Globus web services. The authorization API for the legacy services is much sim-
pler — it allows only to create a callout which makes an authorization decision.

All three elements of our project are available for the Globus web services
only. In the case of the legacy services only the UVOS Gridmap PDP element
is available. It encapsulates the PIP functionality. The more fine grained access
control would be clearly service specific so we do not plan to develop more
features for our pre-WS Globus authorization module.

The security infrastructure of the Globus WS container allows for using mul-
tiple PIPs and PDPs together. The configuration is flexible with the changes
introduced with the Globus Toolkit 4.1. Among others it is possible to choose
an algorithm which makes a final access/deny decision taking as an input the
decisions of the individual PDPs. As our modules may be installed individually
we can achieve a high flexibility, e.g. by mixing UVOS and classic gridmap file
authorization.

The implementation of our software consists of multiple small modules. The
base implementation of the UVOS PIP was done using the Java language so it
was possible to make use of the UVOS client library. As this implementation
must work in different environments, there are three wrappers for the Globus
Toolkit 4.0, 4.1+ and for the C security API. In the last case the Java Native
Interface technology was used to connect both technologies. The PDP modules
were designed in an analogous way, with the single exception of the code for the
pre-WS services. In this case there is only one module which incorporates a C
PIP wrapper. The whole architecture of our prototype is presented in the fig. 2.

6 Summary

We have designed and developed a prototype of a complete authorization solution
for Globus Toolkit 4.x interoperable with the UNICORE 6. It uses the UVOS
server as a backend. The pull style of attributes acquisition is used. One of the
important results of our work is support for the GridFTP authorization which is
absent in the GridShib system. Additionally, a native and deep integration with
the Globus security stack allows for a more flexible usage of our modules with
the other ones.

The future work will be carried out in multiple directions. In order to produce
a production ready implementation we will have to provide solutions for reliabil-
ity, that is solutions for the proper operation of the system during the failure of
a communication with the UVOS server. Later plan to verify the interoperability
of the system (and also the whole UVOS system) with the Shibboleth 2 middle-
ware. Further integration of our solutions with the GridShib is planned but will
be possible after a SAML 2.0 compatible version of GridShib will be released.
Eventually providing a similar solutions for the other leading grid middlewares,
gLite and NorduGrid ARC can be seen as an ultimate goal.
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Abstract. Within the BIS-Grid project1, a BMBF-funded project in
the context of the German D-Grid initiative, we developed the BIS-Grid
workflow engine that is based upon service extensions to UNICORE 6 to
use an arbitrary WS-BPEL workflow engine and standard WS-BPEL to
orchestrate stateful, WSRF-based Grid services. Although aimed at prov-
ing the feasibility of applying Grid technologies for business information
systems integration, we illustrate that this engine is also well-suited for
scientific workflow execution, making standard WS-BPEL-based tooling
accessible for scientific workflows.

In this paper, we describe using the BIS-Grid engine for the execution
of scientific workflows. This includes a differentiation of scientific and
business workflows in general and an analysis of the suitability of the BIS-
Grid infrastructure to execute scientific workflows. We propose reusable
WS-BPEL patterns for typical scientific workflow activities whereas job
submission is focused. Finally, we prospect our future work.

1 Motivation

Modern Grid middlewares such as UNICORE 62 are based on the Web Service
Resource Framework (WSRF)3, a standard that extends classical, stateless Web
services to be stateful. Like Web services, WSRF-based Web services, also called
Grid services, can be orchestrated to form complex workflows that itself are
provided as services by utilizing the Web Service Business Process Execution
Language (WS-BPEL). Although originally developed for service orchestration
in the business domain, WS-BPEL gained much attention from scientific com-
munities to be adopted for the design and execution of scientific workflows.
1 This work is supported by the German Federal Ministry of Education and Research

(BMBF) under grant No. 01IG07005 as part of the D-Grid initiative.
2 http://www.unicore.eu
3 http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
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Fig. 1. Overview of architecture of the BIS-Grid workflow engine

Within the BIS-Grid4 project, a BMBF-funded project in the context of the
German D-Grid initiative, we developed the BIS-Grid workflow engine that is
based upon service extensions to UNICORE 6 to use an arbitrary WS-BPEL
workflow engine and standard WS-BPEL5 to orchestrate Grid services. These
service extensions act as a WSRF proxy to the functionalities of the original WS-
BPEL engine and to the deployed WS-BPEL workflows itself, cp. Fig. 1, pro-
viding a Workflow Management Service for workflow deployment and a generic
Workflow Service for workflow execution and monitoring. For a more in-depth
view on the architecture of this engine, see [10]. Although originally aimed at
proving the feasibility of applying Grid technologies for the integration of busi-
ness information systems, this engine is also suited for scientific workflow execu-
tion, making standard WS-BPEL-based tooling accessible for scientific workflow
execution. To hide workflow complexity from the scientific user, we propose
reusable WS-BEL patterns for typical scientific workflow activities such as job
submission and data transfers instead of specific language extensions.

The paper is organized as follows. Related work is discussed in Sec. 2, followed
by a short overview of the differences between scientific and business workflows
in Sec. 3. Section 4 discusses the principal requirements for scientific workflow
execution and how they are addressed by BIS-Grid. The use of WS-BPEL for
scientific workflows including our WS-BPEL pattern is shown in Sec. 5 by the
example of job submission. Section 6 provides an outlook on our future work,
and Sec. 7 provides a conclusion.

2 Related Work

The Chemomentum project already provides workflow extensions for
UNICORE 6, consisting of two UNICORE 6 service containers. The first repre-
sents a workflow engine that processes workflows on a logical level, the second
represents a service orchestrator that transforms so-called Work Assignments
into jobs, given in the Job Submission Description Language (JSDL) [1]. Both,
this UNICORE 6 workflow system and the BIS-Grid engine, are implemented

4 http://www.bisgrid.de
5 I.e., we did not modify nor extend the WS-BPEL language.
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as service extensions to the UNICORE 6 service container. However, the UNI-
CORE 6 workflow system does not support the integration of a WS-BPEL work-
flow engine.

Akram et al. [2] identify requirements for scientific workflows – namely mod-
ularity, exception handling, mechanisms compensation/recovery, adaptivity and
flexibility, and workflow management – by the example of a protein crystallog-
raphy workflow. They also describe how the BPEL language addresses these
requirements, and the shortcomings of BPEL for scientific workflows. Most
prominently, these are the limited adaptivity regarding workflow modifications
at run-time, the lack of support for user interactions by the BPEL specification,
and the need to wrap non-portable engine-specific workflow management capa-
bilities using appropriate standards in order to use them in a portable manner.

Regarding the use of BPEL for Grid service orchestration, Leymann pro-
poses BPEL4WS6 as foundation since it already fulfills many requirements of
the WSRF standard [12]. The appropriateness of BPEL is also examined and
confirmed in [5], [6], [7], [8], and [14]. These works mainly focus on scientific
workflows and, except for Ezenwoye et al. [8], rely on extending or adapting
BPEL, thus creating dialects.

The execution of jobs with WS-BPEL is also discussed in [15] in which a
two-stage approach is proposed. In the first stage a base flow is modeled to
define job execution, supplemented by a JSDL job description and a fault-
handling policy based on WS-Policy7. This base flow is expanded automat-
ically in the second stage by additional WS-BPEL fault-handling activities
corresponding to the respective fault-handling policy. The execution of the work-
flow is based on two further non-WS-BPEL services, a job proxy to encap-
sulate job execution and to receive notification messages from a scheduling
system, and a fault-handling service to apply extended fault-handling strate-
gies such as workflow instance migration. The approach was implemented and
tested on IBM software. In [16], Zhao et al. present a visual tool that abstracts
a typical sequence of BPEL activities for scientific computing to a new sin-
gle activity. This sequence comprises steps like submitTask or getTaskStatus
and looks slightly similar to the job submission workflow we present in Sec. 5.
However, Zhao et al. focus on visual complexity in the workflow editor. Be-
fore workflow deployment, the proprietary code is translated to standard WS-
BPEL.

3 Scientific vs. Business Workflows

A comparison between scientific workflows and business workflows is the topic of
several publications – directly or indirectly, as, for example, in [2] and [3]. Thus,
we will not present a complete comparison but focus on the principal differences
of scientific and business workflows, see Tab. 1.

6 BPEL4WS 1.1 is the predecessor of WS-BPEL 2.0.
7 http://www.w3.org/Submission/WS-Policy/
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Table 1. Scientific vs. business workflows

Scientific workflows Business workflows
Data-driven
Control flow is implicit; an activity starts when
the required input data is available.

Control-driven
Data flow is implicit and data is manipulated
when the corresponding activity is executed in
the control flow.

User-centric
Rights are often associated to persons
(scientists) directly. The workflow designer is
often also the workflow executor (does not
necessarily hold for e-Science).

Role-centric
Rights are associated to roles that are associated
to persons. Elaborate role models for workflow
participants/stakeholders.

Voluminous data handling
Data handling often requires third-party
transfers (data transfers between two remote
servers that are initialized by a local client).

Information handling
Workflow data is usually small, regarded as
information and is stored in process variables
during workflow execution.

Experiment implementation
Monitoring is of great importance, especially for
intermediary results of a workflow. Workflows
tend to evolve quickly as knowledge on the
domain/workflow is collected (cp. [3]).

Service provisioning
Workflows must be guaranteed to complete and
provide results as advertised to and
contractually agreed with customers [3].

4 BIS-Grid Engine for Scientific Workflows

As depicted in Sec. 2, WS-BPEL becomes more and more important for the
scientific community regarding the execution of scientific workflows in Grid envi-
ronments. Modern Grid middlewares such as UNICORE 6 and Globus Toolkit 4
provide their functionalities – for example, data transfer and job submission –
as (WSRF-based) Grid services. Scientific workflows that build on these Grid
middlewares must be described as an ordered invocation of such Grid services.
WS-BPEL, as the de facto standard for Web service orchestration, comes natu-
rally in mind for Grid service orchestration, although originally being designed
for business workflows.

Per se, WS-BPEL has some shortcomings that constrains its usability for
scientific workflows. Originally, the language has been designed to orchestrate
stateless Web services. Since data transfer and job execution, for example, have
state, the WSRF standard was developed to enable stateful Web services (Grid
services). Consequently, Grid service invocations are much more complex than
standard Web services – a WSRF service instance has to be created, is used, and
finally must be destroyed. To address this, we developed appropriate WS-BPEL
patterns for Grid service invocations for the Grid middlewares UNICORE 6
and Globus Toolkit 4 [4,11]. Further shortcomings do not originate from the
WS-BPEL language directly but from the workflow execution environments and
workflow design tools. Available WS-BPEL workflow engines, open source or
commercial, are not fully interoperable with the security features of existing Grid
middlewares. Such features are, for example, the support of SAML assertions
[13] to present additional signed security tokens (as roles), or the support of the
Grid Security Infrastructure (GSI) of Globus Toolkit 4 infrastructures that rely
on proxy certificates. Furthermore, available WS-BPEL design tools are usually
not suitable for scientific users because the applied workflow model is close to
the technical WS-BPEL language. Considering this, scientific users require a
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workflow model fitting to their domain. For example, scientific users may need
to run several computations on selected data in a specific order by dropping
boxes (computations) onto a workbench and drawing lines (data flow) between
them. Prospects on these issues are presented in Sec. 6.

Table 2 presents an overview of the principal requirements we identified for
scientific workflows, and presents which of them are addressed by the WS-BPEL
language and tooling, or by the BIS-Grid engine. As shown, RQ-1 is met by
WS-BPEL itself. Regarding monitoring (RQ-2), the BIS-Grid engine supports
mechanisms that base upon the propagation of the monitoring capabilities of the
internal WS-BPEL engine by the UNICORE 6 layer, see Fig. 1, [10], and [11].
Upon these, advanced capabilities such as pull- or push/notification-based mon-
itoring of workflow activities can be implemented. Design-time error handling
and compensation (RQ-3 and RQ-4) are met by WS-BPEL, while run-time error
handling and compensation are matters of the workflow execution environment.
While these are important issues to be addressed in operational execution en-
vironments, they are not focused in BIS-Grid and regarded as underlying the
actual workflow execution engine. Regarding RQ-5, BIS-Grid relies on the the
Netbeans IDE8 and it’s BPMN-oriented visual DSL (Domain-specific language).
Together with appropriate WS-BPEL patterns, this represents an abstraction
from the technical workflow implementation that is comfortable for general pur-
pose workflow design both for business workflows as well as scientific workflows,
and provides a basis for further domain-specific abstraction above the WS-BPEL
pattern layer. RQ-6, voluminous data transfers, is addressed in the following sec-
tions in terms of file staging.

5 WS-BPEL Job Submission Pattern for Scientific
Workflows

Scientific workflows often are realized as (batch) jobs that can be defined as
non-interactive computational tasks that are intended to be executed on high-
performance computing (HPC) systems. Grid middlewares typically support the
submission of such jobs to an HPC system by utilizing the local batch system, but
modern Grid middlewares also provide means for exposing their functionalities
as Grid services, thus enabling service orchestration. Grid services such as job
submission services support further standards like the Job Submission Descrip-
tion Language (JSDL) or OGSA Basic Execution Services (OGSA-BES)9. Using
job submission services results in almost generic sequences of Grid and/or Web
service invocations10 that can be encapsulated in a generic and configurable WS-
BPEL (sub-)workflow. Our BIS-Grid engine allows to execute such a workflow
in Grid environments whereas the workflow itself is provided as a Grid service.
This facilitates reuse in higher-level service orchestrations. In [4] we identified
WS-BPEL patterns for orchestrating Grid services using standard WS-BPEL.
8 http://www.netbeans.org/features/soa/index.html
9 http://www.ogf.org/documents/GFD.108.pdf

10 For most jobs, these sequences are almost identical, cp. [16].
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Table 2. Principal requirements of scientific workflows

RQ Requirement description Compliance
RQ-1 Modularity and composability. Although evolving in

nature, scientific workflows often base upon recurring
standard activities. Regarding different levels of ab-
straction, providing sub-workflows as standard activ-
ities of superior workflows facilitates reuse and main-
tenance. Separating workflows in different parts facil-
itates the scalability of workflow execution.

WS-BPEL is composable by nature.

RQ-2 Monitoring. Scientific workflows are often long-
running; progress monitoring and the inspection of in-
termediary results is therefore an important issue.

The BIS-Grid engine supports basic
monitoring of workflow state. WS-
BPEL EventHandlers improve simple
execution state monitoring.

RQ-3 Error handling and fault tolerance. The long-running
nature of scientific workflows causes interruption due
to errors to be regarded as highly undesirable. Mecha-
nisms should ideally address design-time (error han-
dling for forseen events) and run-time (fault toler-
ance).

WS-BPEL provides mechanisms for
error handling at design time.

RQ-4 Adaptability. As the underlying resource infrastruc-
ture may change during workflow execution, work-
flow adaptability is regarded as desirable. Mechanisms
should ideally address design-time (compensation for
forseen events) and run-time.

WS-BPEL provides mechanisms for
compensation at design-time.

RQ-5 Domain-specificity. Often, scientists are not only the
users of scientific workflows but also their designers.
This requires adequate domain-specific modeling while
technical details should be concealed as far as possible.

BIS-Grid uses Netbeans IDE for work-
flow design, using it’s BPMN-like vi-
sual DSL and appropriate WS-BPEL
patterns [4,11] to abstract from tech-
nical workflow implementation.

RQ-6 Voluminous data transfers. Scientific computations
are often based on voluminous data. This data has to
be transferred to the respective computing resources.

Generally, third party transfers can
be modeled and executed with BIS-
Grid. JSDL-compliant Grid middle-
wares provide file staging mechanisms
as defined by JSDL.

Table 3. Job Submission Pattern

Pattern description
Motivation Scientific workflows often are designed as non-interactive computational tasks in the

form of (batch) jobs. Regarding reuse, there is the need to integrate such jobs in
workflows that are designed on a higher level of abstraction than jobs.

Intention Define a workflow that executes a (batch) job on a UNICORE 6 installation by using
the target system service and it’s job management service to submit and start a job
and its respective data, and to retrieve the job’s outcome upon completion.

Behavior See Figure 2.
Participants The invoker of the job submission workflow, the Target System Factory Service, the

Target System Service, and the Job Submission Service.
Consequences (1) Job submission is encapsulated in a workflow using an appropriate workflow

description language. This facilitates the reuse of existing jobs on a higher level of
abstraction and reduces submission errors and redundant user-triggered submissions
by reuse.
(2) Workflow reuse also simplifies the protocol of high-level workflows and abstracts
from submission details. When the workflow language allows hierarchical composi-
tion, as WS-BPEL, the job submission may be described with the same language as
the high-level workflows.

Based on this pattern we developed a WS-BPEL pattern to encapsulate Grid
service invocations for job submission to UNICORE 6. A description of this job
submission pattern is presented in Tab. 3.

Job submission to UNICORE 6 consists of several phases that are described
briefly in the following. Additionally, Fig. 2 illustrates the corresponding work-
flow. Please note that we omitted exception handling and compensation for the
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Table 4. Signature of the job submission workflow

Name Type Description

Input parameters
TargetSystem
(mandatory) wsa:EndpointReferenceType The endpoint to the Target System Factory Ser-

vice that should be used to create the Target Sys-
tem Service instance.

JSDL
(mandatory) jsdl:JobDefinition Type The job description according to the JSDL stan-

dard.
LifetimeIntervall
(optional) xsd:duration Maximum runtime of the job execution. If omit-

ted, a default lifetime is used.
WaitInterval
(optional) xsd:duration Waiting time between two job execution status

retrievals. If omitted, a default waiting time is
used.

Output parameters
Result xsd:string The result (successful or failed) of the job execu-

tion.

sake of clarity. The current signature of the job submission workflow is described
in Tab. 4. At least, the endpoint to a UNICORE 6 target system and the JDSL
Job description is mandatory as input. At the moment, the output is a job
failed/succeeded message. This workflow itself can be used in high level work-
flows in which a resource broker is invoked to choose a target system with least
load before submitting a job.

1. Job Submission Receive: A JSDL job description and configuration pa-
rameters are received and stored in process variables.

2. Target System Service Instance Create: A Target System Service in-
stance is created via the default factory instance of the Target System Fac-
tory Service.

3. Target System Service Instance Submit Job: The JSDL job description
is submitted to the Target System Service instance which creates a Job Man-
agement Service instance.

4. Job Management Service Instance Start Job: The Job Management Ser-
vice instance is used to start job execution.

5. Job Management Service Instance Retrieve Result: The status of the
job execution is fetched periodically from the Job Management Service until
the job is completed or failed, afterwards the job result is stored in a process
variable.

6. Job Management Service Instance Destroy: The Job Management Ser-
vice instance is destroyed.

7. Target System Service Instance Destroy: The Target System Service
instance is destroyed.

8. Job Result Reply: The job result is returned.

The JSDL standard includes the description of file staging (RQ-6) to initiate
file transfers before (stage-in) and after (stage-out) the actual job execution.
This mechanism can be used to transfer input and output data (often several
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Fig. 2. Job submission process

gigabytes) for a single job execution. Hence, the corresponding job submission
workflow does not include explicit file transfer activities. Note that the proposed
pattern is not directly applicable to all kinds of scenarios. For example, a scien-
tific user may want to run several jobs using the same input data that should
not be transfered for each single job execution. A solution to this scenario is to
provide a special file transfer workflow that can be directly integrated in the job
submission workflow, or in higher-level workflows (cp. Sec. 6).

6 Prospects

As already stated in Sec. 5, file staging for compute jobs is implicitly possible
(cp. RQ-6). The staging is defined in JSDL, placing the responsibility for pre- and
post-job execution of data transfers on the execution environment. More complex
scenarios, however, require more sophisticated functionalities. For example, this
is the case for explicit data staging as input for a bundle of jobs. Generally,
file staging requires to transfer files from a source to a destination – supported
by appropriate protocols such as GridFTP or UNICORE File Transfer Services.
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Typical file transfers are executed between a local user client and a remote
destination, or between a remote source and a remote destination, the latter
being referred to as third-party transfers. Since available workflow engines usually
are not designed to pass and transfer voluminous data (RQ-6) directly, third-
party transfers can be realized by workflows – using the workflow engine solely for
transfer coordination. We propose to regard such transfer workflows as a single,
configurable workflow activity specific to the scientific domain (cp. RQ-5).

We developed a WS-BPEL pattern to invoke Grid services in Globus Toolkit 4
(GT4) [4]. This pattern provides a basis to develop GT4 job submission and file
transfer workflows analogous to those discussed in this paper. However, beside
mere service orchestration it is necessary to address the respective security in-
frastructures. Since the BIS-Grid engine is based on UNICORE 6, the secure
invocation of (external) UNICORE 6 Grid services in workflows is guaranteed.
To enable the secure invocation of GT4 Grid services we plan to support the
GT4 Grid Security Infrastructure (GSI) in the BIS-Grid engine. This will be eval-
uated in an appropriate application scenario which is currently being prepared.
Another important issue for scientific workflows is scalability, which is already
considered in the design of the BIS-Grid engine [9]. Nevertheless, scalability is
currently not supported directly and thus regarded as future work.

7 Conclusion

In this paper, we described to use the BIS-Grid workflow engine, consisting of
service extensions to UNICORE 6 and an arbitrary WS-BPEL engine, for the
execution of scientific workflows. Thereby we focused on job submission as an im-
portant aspect of scientific workflows, and presented an appropriate WS-BPEL
pattern for job submission with UNICORE 6. Previously, we discussed the prin-
cipal differences of scientific and business workflows, and presented the principal
requirements of scientific workflows. We also presented our future work focusing
on advanced file staging mechanisms, on interoperability with Globus Toolkit 4
by supporting the Grid Security Infrastructure and by developing analogous
WS-BPEL patterns specific to Globus Toolkit 4, and on regarding scalability.
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D-52425 Jülich, Germany

Abstract. UNICORE is a state of the art and well tested Grid middle-
ware, designed for seamless and secure access to distributed resources,
applications and data, in an easy to use fashion. A wide variety of
UNICORE applications for example in bio-informatics generate and com-
pute huge amounts of data. These large amounts of data are not easy
to manage reliably and efficiently with the default UNICORE storage
system which is using a standard file system. Hence, the current UNI-
CORE does not support a scalable distributed storage system so far.
We have integrated Apache Hadoop and its supported distributed stor-
age/file systems into the UNICORE storage management service. Thus
allows to build a UNICORE storage system providing data replication,
disaster recovery, durability and elasticity. In this paper we will present
the architecture and operation of a prototype called UniHadoop, which
provides the integration of UNICORE and the distributed storage sys-
tems (DSS) supported by Hadoop and highlight its potential in usage
scenarios.

1 Introduction

Computational power has increased significantly, typical desktop systems are
now far superior to the super computers in the last years, and the current high-
performance systems have reached the PetaFlop/s scale. This allowed to tackle
new computational challenges in applications such as high-energy physics, nu-
clear physics, weather forecasting, data mining, environmental modeling, which
can now be executed in ‘feasible’ time spans. These applications usually produce
data with rapid growth and in large volumes. For example, the High Energy and
Nuclear Physics (HENP) data volume will rise from hundreds of petabytes to
exabytes (1018) from 2012-2015 [1]. These huge chunks of data, produced from
such applications, need to be stored, exchanged, visualized and analyzed for a
variety of purposes. This requires specialized storage systems with high data
availability, reliability and distribution.

UNICORE1 is used as underlying Grid middleware by a number of scientific
applications [2]. At the time of writing, its storage management interfaces do not
1 Uniform Interface to Computing Resources.
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support distributed storage system interaction [3], but are limited to file system
access. In this paper we present the design and integration of Apache Hadoop
and its supported storage systems with UNICORE. The remainder of this paper
is structured as follows. In Section 2 UNICORE’s architecture is elaborated in
detail. Section 3 gives an overview of Hadoop, its design and supported storage
system. in Section 4 we present UniHadoop, i. e. the integration of UNICORE
and Hadoop supported DSS. After discussing the usage scenarios, the paper ends
with a brief conclusion and related work.

2 UNICORE Architecture

UNICORE is a ready-to-run, Open Source Grid middleware that enables seam-
less, secure and transparent access to resources. It hides unnecessary details from
the users and provides single sign-on with well-established security mechanism.
UNICORE offers a number of clients for job creation, submission and monitor-
ing. In its most recent version UNICORE 6 conforms to the Open Grid Service
Architecture (OGSA) [4] and several open Grid standards as mandated by the
Open Grid Forum (OGF) [5]. It is a Web services based implementation using the
Web Services Resource Framework (WSRF) [6]. The user can use various clients
for jobs creation, submission and monitoring, both graphical and command-line
oriented.

From the conceptual point of view, one can divide UNICORE in three tiers:
Client, Server and Target. The user logs into the client and creates the job. The
job along with user information is authenticated by the Gateway and forwarded
to the Web services interfaces offered by the UNICORE/X server. These services
interact with XNJS2 which interacts with XUUDB3 for authorization informa-
tion. Finally, task is handed over to either Target System or Target System
Interface (TSI) which then executes the job.

A Client layer: With growing use of UNICORE and emergence of new appli-
cations and problem domains, a set of clients is supported [7]. It helps in job
definition and application integration from different domains in an easy to do
manner. These are command line as well as GUIs. Java is used as development
language, so it supports many platforms.UNICORE Commandline Client(UCC),
Grid Programming-based Environment(GPE) Client, UNICORE Rich Client,
Web Portal Client and High Level API (HILA) clients be used to communicate
with UNICORE server and underlying resources.

Service layer: The core of UNICORE consists of services and components compli-
ant with the OGSA model and is based on WSRF 1.2, SOAP [8] and WS-I stan-
dards [9]. Analyzing it from top to bottom, request first encounters with Gateway
which acts as a secure entry point for any number of UNICORE sites. Client re-
quests are authenticated and encrypted on this level using X.509 certificates [10].
Next the central job controlling entity of UNICORE is XNJS which provides a
2 eXtended Network Job Supervisor.
3 eXtended UNICORE User Data Base.
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set of services like job management, storage management and data transfer ser-
vices. It communicates with the XUUDB for authorization of users, maps the
jobs to the desired Target Systems using Incarnation Database (IDB),submits
jobs and monitors its progress. It does not only support OGSA-* based open
standards but also has its own proprietary interfaces named UNICORE Atomic
Services (UAS). Storage Management Service (SMS) and File Transfer Service
(FTS), part of UAS, exposes storage resources to users and provides different
operations ranging from storage management to data transfer. Target System
Registry Service (TSR) is another essential component like in any SOA system.
Any client wishing to utilize UNICORE 6 must have information regarding avail-
able services and their description in a specific Grid. The detailed information
is published in TSR. It works as a single point of entry for clients. A TSR is
shareable between sites.

System layer: The Target System Interface (TSI) lies at bottom in UNICORE
architecture. Its role is to communicate between the local operation system and
XNJS. The TSI takes the concrete jobs from the XNJS and executes them on the
target system as the local user determined by the XNJS. A temporary working
directory named USpace is attached with each job. Every job has its own USpace
which stores data related to the specific job and later user can transfer data to
and from storage system (or the client) to the USpace.

3 Hadoop

The Web search engine giant Google processes and stores huge data and thus
requires a storage system with special attributes for instant replies. In 2003,
Google described its highly scalable, fault tolerant, dynamic distributed file sys-
tem called the Google File System (GFS) [11]. This file system is designed to run
on commodity machines and can respond to thousands of queries per second.
Component failure was taken as the norm rather than the exception. Files are
getting huge as compared to traditional files, increased computation power con-
sistently producing more and more data which needs to be organized for future
analysis. It was observed that many applications follow the “Write Once Read
Many” paradigm. The GFS is proprietary software.

The Hadoop distributed file system (HDFS) is an open source implementation
of the ideas and algorithms of Google’s GFS, realised in Java [12]. It is used by
many organizations, notably Yahoo, where it has been proven to scale up to 4000
nodes and 16PB disk size.

Apart from the HDFS, Hadoop offers an implementation of the MapReduce
data processing framework, again as published in a seminal paper by Google
[13].

3.1 HDFS Architecture and Supported File/Storage Systems

The Hadoop distributed file system follows a Master/Slave architecture. One
node in the HDFS cluster works as NameNode, while the others serve as DataN-
odes. The NameNode manages all the meta data regarding filesystem like file
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namespace, file to block mapping, block location information, access control
version, block version numbers etc. As shown in Fig. 1, NameNode runs on a
separate machine and periodically communicates with the DataNodes but this
communication is least started by NameNode. It is the DataNode’s responsibility
to send regular heart beat messages to the NameNode.

Namenode

Datanode 1 Datanode 2 Datanode 3 Datanode N

Heartbeats Block Operations

Client

Replication

Metadata Operation

Read Write

Secondary

Namenode

Namenode Periodic
Image

Fig. 1. HDFS Architecture showing node interdependencies

The NameNode starts up in “safe mode”, no changes are possible in this
mode and it remains in it as per configuration. As the NameNode starts up,
each DataNode sends a heartbeat message to the NameNode. After that the
NameNode asks each DataNode to send its block report. The DataNode com-
putes the block report and returns it to the NameNode. After this the NameNode
exits the safe mode and goes into “normal mode” if all conditions are fulfilled.

During the normal mode and with periodic communications NameNode gets
certain pieces of information such as: if some DataNode is down, any disk fail-
ure on a DataNode, checks the Replica status of files, which DataNode stores
which replica. Finally, Hadoop also supports a number of open source as well as
commercial file/storage systems other than HDFS.

4 UniHadoop

UniHadoop is the integration of multiple Hadoop supported distributed storage
systems with UNICORE 6. As discussed in section 2, UNICORE is a service ori-
ented, flexible system with a number of proprietary and open standard services.
The SMS manages the storage resources and initiates the data transfer with the
FTS. In the UniHadoop prototype, SMS and FTS were extended to allow the
integration of Hadoop with UNICORE. After the integration, user can access
any of the Hadoop supported storage system without altering call interface to
UNICORE.

4.1 UniHadoop Architecture

As UNICORE itself, UniHadoop is realized in Java and uses WS-RF based Web
services. Fig. 2 shows the architecture of the UniHadoop prototype. An abstract
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Fig. 2. UniHadoop Architecture

file system object is used for genericity. New Web services, HadoopSMS and
HadoopFTS are created and deployed in the UNICORE/X component at the
UNICORE service layer. With every client request originated from UNICORE
clients and authenticated by the Gateway, Web service instance reads out the dis-
tributed storage system configuration files and instantiates the abstract filesys-
tem object with the appropriate storage system. This filesystem instance holds
the necessary information to communicate with the distributed storage system
and directly performs operations on the DSS. Simple storage management oper-
ations are performed by HadoopSMS directly while for data transfer it initiates
the HadoopFTS instance with desired data transfer protocol. This FTS service
instance transfer data between DSS and USpace.

HDFS supports multi-user with its own permissions model for files and direc-
tories, a very similar one to POSIX model. UNICORE user is required to have a
user account on the cluster machine with appropriate configuration settings for
authorization. A user can be a single user or a group of users which is identified
with the host operating system. A number of other mechanism for authentication
like Kerberos, LDAP are also under consideration for future release [14].

Currently the UniHadoop prototype is being further refined and integrated
into the core UNICORE server distribution.
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5 Usage Scenarios

Hadoop supports a variety of back-end file systems: Hadoop Distributed File
System (HDFS), CloudStore [15], Amazon Simple Storage System (Amazon S3)
[16], FTP File System, Read-only HTTP and Read-only HTTPS can be used.
Using UniHadoop, these can be used seamlessly in UNICORE.

The primary use case of UniHadoop is the realisation of a large, scalable
storage on commodity hardware using the Hadoop HDFS.

User may need to have multiple UNICORE sites depending upon needs and
resources availability. With UniHadoop integration, user can use multiple sites
to access single distributed storage system. Same configuration files are only
required to realized this scenario. Fig. 2 shows two sites namely site 1 and site
2 retrieve and store data on same Hadoop supported DSS. The number of sites
to shares DSS may range from 1 to N.

UNICORE
Site

HDFSAmazon S3

CloudTera

Local FS

Fig. 3. Single UNICORE Site With Multiple Storage Systems

Since UniHadoop is not tied to any particular back-end, it can also be used
to store data over Amazon Simple Storage System (S3) without any capacity
restriction [17] and few other storage systems as shown in Fig. 3. Amazon Elastic
Compute Cloud (Amazon EC2) can be used for running MapReduce jobs over
data stored in Amazon S3 [18]. Data transfer among to Amazon EC2 is free
which makes Amazon S3 attractive.

6 Conclusion and Outlook

In this paper, we presented UniHadoop, that represents the integration of Hadoop
supported DSS with UNICORE. Now user can use the HDFS file system and
some other prominent and state-of-the-art distributed storage systems as well
like Amazon S3 and CloudTera with UNICORE. It enables users to adminis-
trate the previously mentioned distributed storage systems from UNICORE 6
and also to perform file transfer from these storage systems to UNICORE. A
wide variety of scenarios can be realized with UniHadoop. It is possible to build
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highly scalable distributed storage systems using HDFS. Multiple UNICORE
sites can access the same DSS to achieve load-balancing and/or high-availabity.
With multiple service instances, UNICORE sites can use multiple storage sys-
tems at the same time.

Storing data using the Hadoop storage system brings a number of advantages.
Primarily one can build highly scalable, efficient and reliable storage systems on
commodity hardware.

As an outlook, it will be interesting to leverage the MapReduce [13] framework
available in Hadoop, using HDFS for simplified parallel data processing.

Examples for using MapReduce in Hadoop are demonstrated in Pig [19], a
platform for analyzing large data sets. It uses Pig Latin [20], a very powerful
language for writing jobs. Hive [21], a data warehouse infrastructure built over
Hadoop, can be used with data stored in Hadoop for data summarization, ad
hoc queries and analysis of large set of data. It provides a simple SQL based
query language, Hive QL, for simplifying queries. Theoretically UNICORE can
leverages from all the projects which Hadoop supports.

The Option to run MapReduce jobs directly on the data stored in the HDFS
is very attractive, for example to index large volumes of user-generated data, in
order to provide powerful search and metadata capabilities.
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Abstract. Data produced in scientific and industrial applications is
growing exponentially but most resource middleware systems lack of ap-
propriate support for data and metadata management. In particular easy
and intuitive retrieval of data for later use is a serious problem.

In this context the paper proposes a pragmatic approach for data
management of distributed data with focus on appropriate means for
data organization improving data retrieval.

The paper presents the key concepts and architecture of a dedicated
data management system for sharing data located on heterogeneous stor-
age resources. The different specifics of storage systems such as data
object names, data locations, and data access methods are abstracted
to allow transparent data access. Moreover, the system provides means
for data structuring and organization by supporting custom data models
and annotation of individual metadata on data objects.

Current development status of the system is illustrated by presenting
an integration with the UNICORE Rich Client which has been validated
in the context of the AeroGrid project.

Keywords: UNICORE, DataFinder, Distributed Data Management.

1 Introduction

The amount of data handled by applications is growing and growing. Especially
scientific applications (e.g., in astrophysics) are dealing with hundreds of Ter-
abytes of data today. This trend is similar in the industrial sector, although
the absolute numbers are a little lower. Most of the data originates from ex-
periments and simulations. It is obvious that astrophysical simulation and high
energy physics experiments produce vast amounts of data. At least with the ad-
vent of robust design methods (e.g., for the automotive and aerospace industries)
huge amounts of simulation data are also produced by manufacturing companies.
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With the increasing amount of data stored on disk and tape silos, it is more
and more problematic to find and retrieve needed data sets efficiently. A solution
is the annotation of the data with meaningful metadata.

The specific data structuring and metadata depends very much on the field of
application. In general, the technical requirements for data management such as
the ability for flexibly organizing the data, for annotation with various types of
metadata, and for accessing a variety of storage resources are very similar in most
applications. To support its institutes in this domain, the German Aerospace
Center (DLR) has developed and deployed the data management application
DataFinder [1]. DataFinder allows its users to manage data and metadata in an
efficient manner.

In addition, resource management is as important as data management. Es-
pecially in times with growing energy costs, it is crucial that energy hungry
compute resources are used efficiently. The AeroGrid project [2] a cooperation
between industry, research centres, and universities is using the UNICORE 6
[3,4] middleware as their tool of choice for resource management. Unfortunately,
today most resource management infrastructures lack a serious data and meta-
data management support. Thus a combination and cooperation of the two exist-
ing middleware stacks, UNICORE 6 and DataFinder, would be a good solution
for the DLR and its partners. Hence, in this paper, we describe a first imple-
mentation of a dedicated data management system keeping compatibility with
DataFinder and its integration in the UNICORE 6 middleware.

The paper is organized as follows. Section 2 provides an overview about data
management support in selected distributed resource management middleware
systems and dedicated systems suitable for distributed data management. Sec-
tion 3 describes the data management system concept and the architecture in
detail. The implementation including a description of the AeroGrid test bed is
pointed out in Section 4. Finally, Section 5 gives a summary and describes future
work.

2 Data Management–A Brief Overview

A key problem managing large amounts of data is fast and intuitive retrieval of
produced data for later use. To accomplish this task, a data management system
should support logical organization of data objects independently from storage
resource specifics. Thus transparent data access is achieved without worrying
about for instance migration tasks running in background, concrete data loca-
tions which might get broken over time, or provision of additional authentication
information to gain access. Furthermore, the data management system should
provide advanced means for data organization such as mapping of data object
relations, metadata management, concepts for applying standard metadata sets,
or access to data objects through specification of metadata search queries.

Like in most distributed resource management middleware systems, data man-
agement support in UNICORE 6 is offered in form of simple data transfers
to and between different UNICORE nodes. In addition, a storage service for
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accessing hierarchically organized file systems is available [5]. Nevertheless, this
service does not provide means for accessing data objects independently from
concrete storage locations or advanced data structuring functionalities.

The Globus Toolkit provides a set of Web services for data movement and
data replication [6]. In this context replicas can be identified using logical file
names and data transfer is performed on basis of GridFTP. Specific means for
data structuring or ordering are not provided.

Basically, gLite Grid middleware supports organization of files in logically
arranged hierarchies [7]. Furthermore, means for replica and basic metadata
management are provided. However, this functionality cannot be used separately
from gLite.

The data management system dCache [8] manages disk pools distributed on
different server systems. Data access is achieved independently from concrete
data location through specific dCache commands. However, dCache provides no
support for metadata management.

The Storage Resource Broker [9] is originally developed by San Diego
Super Computing Center (SDSC) and focuses on realization of data federations
beyond location and organization boundaries. In SRB no central control or ad-
ministration exists. Thus every organization keeps control of data of its domain.
SRB supports organization of files in a global, logical name space, data repli-
cation, and basic metadata management with a metadata catalog. Now, work
is focused on the Integrated Rule-Oriented Data System (iRODS) which is the
official successor of SRB.

iRODS [10] is a complete rewrite of the SRB following a rule-based approach.
Customization of iRODS (e.g., adoption to a specific set of data management
policies) is achieved by mapping these policies to iRODS rules without touching
the core system. Beginning with release 2.0 iRODS has nearly caught up with
the SRB functionality and now migration efforts from SRB to iRODS in existing
SRB projects are on the way. However, metadata management functionalities
have conceptually not been extended.

The Chemomentum [11] project focuses on collection, storage, and usage of
shared data and metadata. Key features of data-related services are the provision
of a global, logical data view, flexible metadata management functionalities, and
support of data replication. The provided services are implemented as atomic
Web services and can be used independently from a specific Grid middleware.
However, no separated production release of these services is available so far.

DataFinder [1]is general purpose software for data management with focus on
scientific and technical data. The data is annotated with meta-information and
ordered into data structures. The customization of these structures is achieved
through support of free-definable data models which also facilitate standard
metadata annotations of managed data objects. Thus the system provides a
standardized logical view on the managed data. In addition, DataFinder allows
simple workflows to be automated with scripts and can be easily extended with
additional functionality to achieve integration in an existing working environ-
ment. Furthermore, DataFinder acts as a single point of access to heterogeneous
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data storage resources. DataFinder has been designed as a client-server system
and provides rich user clients to allow usage of the basic data management func-
tionalities encapsulated by a Python Application Programming Interface (API).
Through the API the various storage resources and the metadata server are
accessed. The communication with the metadata server takes place via the stan-
dardized Web-based Distributed Authoring and Versioning (WebDAV) protocol
[12]. DataFinder is available as open source software under BSD license [13].

Most of the considered systems support a kind of storage virtualization (i.e.,
they provide means for arranging data objects independently from storage re-
source specifics). Additionally, some systems provide metadata management
functionalities allowing simple annotations on data objects which are achieved
using a metadata catalog component. Unfortunately, further means regarding
data organization are missing. An exception from that rule are the data-related
services developed in the Chemomentum project and the DataFinder system
which are providing sophisticated means for data organization.

3 Data Management System Concept

A user expects an open standardized interface from a data management system.
Unfortunately, standardization efforts in this direction have not yet gone far
enough to cover our needs (Section 2). Hence, here a pragmatic approach on the
basis of the DataFinder concepts has been chosen. The choice for DataFinder
has been taken as it offers required means for data structuring and metadata
management and its productive use in various scenarios provides a good basis
demonstrating and investigating the developed system.

To provide the desired functionality, it is necessary to introduce abstrac-
tions for common data management concepts like data object names, storage
resources, user and groups, and the methods for interacting with them. These
abstractions hide the specifics of storage systems such as data access methods,
data locations, as well as user authentication and authorization from the user.
Realization of these abstractions can be achieved by defining the following logical
name spaces.

1. Logical data object names: The system allows logical organization of
data objects into hierarchies of collections and files. Additionally, the logical
context of every data object can be expressed by specification of suitable
metadata.

2. Logical storage resource names: The system identifies specific storage
resource by a logical, unique name. This can for instance be used to realize
transparent addition or removal of storage resources.

3. Logical user names: Every user is identified by a unique name within the
system which enables the system to maintain access constraints for specific
data objects.

By the logically organized data objects the system supports the definition of
custom data models for specific parts in the logical data object name space. Thus
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fine-grained restriction of the logical data structure is facilitated. Moreover, every
data type specifies a default metadata set to enforce default metadata annotation
of data objects.

The data management system possesses a client-server architecture which
consists of two principal components, as shown in Figure 1.

Fig. 1. Architecture of the Data Management System

Metadata Service is the core component which implements the logical name
spaces. The name spaces are implemented by maintaining mappings and specific
metadata in persistent metadata store. In detail the service provides file system-
like functionality for data object organization within a global logical name space
(e.g., creating, copying, moving, deleting data objects) and enforces restrictions
of the specifically valid data model. Moreover, it provides information about
data locations of data objects by maintaining global storage service configu-
rations and links to the concrete storage locations. Furthermore, the service is
intended to manage metadata and access privileges of data objects. Additionally,
administrative functionality for maintenance of custom data models and storage
service configurations are provided.

Data Management Client API uses the underlying storage services and
the metadata service to provide data access through a uniform interface. By this
API integration with UNICORE as well as other Grid middleware or software
systems can be achieved. Basically, the client exports the functionalities provided
by the metadata service (e.g., manipulation of logical structure or metadata
access). Additionally, the client handles data access (i.e., it queries the metadata
service for concrete data locations and initiates data transfers). In this context
it is intended to bundle the data management client with existing standardized
data transport interfaces to support interoperability and to reuse existing storage
infrastructures.
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4 Implementation

A first version of the data management client API bundled with data access over
WebDAV and the metadata service component using a WebDAV server as stor-
age backend have been implemented. The service fully implements all described
functionalities except the access privilege management. Moreover, a plug-in for
the UNICORE Rich Client has been developed to integrate the data manage-
ment system with the UNICORE 6 Grid middleware. A first test installation of
the system for further investigation has been established in the AeroGrid project.
The software packages are available on the project site [14].

4.1 Metadata Service Implementation

The metadata service functionalities are provided through an atomic Web
service. Technically, the service is implemented in Java using the Axis2 Web ser-
vice framework. The Axis2 framework [15] has been chosen because it is widely
adopted, supports relevant Web service standards, and allows deployment of
Web services using standard web application containers.

The service has been designed in accordance to the contract first principle,
i.e., beginning with the definition of the service interface using the Web Services
Description Language (WSDL) version 1.1 [16] to provide a clean and simple
interface. The metadata service owns a layered architecture which separates the
core functionality (e.g., creation of a specific data object) from the concrete stor-
age backend by using a dedicated persistence layer. The usage of the persistence
layer allows the interchangeability of the concrete storage backend.

The metadata service uses the WebDAV protocol for the persistence of the
data objects and different configuration resources. In the first place this is re-
quired to keep compatibility with DataFinder. However, WebDAV provides func-
tionalities for the organization of files and collections in hierarchies and for the
management of custom metadata that can be directly used implementing base
concepts of the metadata service. Furthermore, the WebDAV extension Access
Control Protocol [17] defines mechanisms which would allow an easy extension
of the metadata service by access privilege management.

Data Object Name Space. The service manages data objects within a logical
name space which is exemplarily illustrated in Figure 2.

The data object name space is organized hierarchically and starts with a
virtual root data object. Every data object is associated with a logical name and
is clearly addressed by its path (e.g., /Application 1/TRACE/Geometry). In the
hierarchy collections and files are distinguished. Collections can contain further
collections and files. Files comply with leafs in the hierarchy and thus contain
no further data objects.

Collections below the root data object correspond to a specific data man-
agement application (i.e., a specific configuration consisting of a data model
and a set of storage service configurations are specifiable for these applications).
This allows seamless management of data from different domains which implies
different data relations.
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Fig. 2. Exemplary Data Object Name Space

Data Organization. In this context a data model consists of hierarchically
arranged data type definitions beginning with a virtual root data type. This
hierarchy can be seen as a template for the logical structure of data objects in
which every data object is associated with a specific data type. Thus a suitable
data structure reflecting data object relations can be defined to help identifi-
cation of relevant information. Additionally, data types define sets of default
metadata to support standard metadata annotations. In this context a further
distinction of mandatory and non-mandatory metadata is made. The metadata
is annotated on data objects with key value pairs. Metadata values can only be
expressed using simple types such as String, Number, Date. The metadata ser-
vice enforces that structural changes are made in accordance to the data model
and that mandatory metadata is provided on creation time and on succeeding
metadata updates.

For each data management application a custom data model reflecting the
specifics of the managed data objects can be supplied. When creating a new
application a default data model is provided reflecting the file system specific
entities, namely directory and file. Afterwards the data model can be adapted to
the specific requirements of the application by using the administrative interface
of the service.

Data Location Service. To provide the data location service the system main-
tains storage service configurations. These configurations define the interface
used to access data and store interface specific configuration parameters. Each
data management application maintains its own set of configurations.

The following illustrates the treatment of data locations for importing a file:
The data management client is bundled with a specific client-side implementa-
tion for accessing data through standardized data transfer interfaces. These in-
terfaces and additional parameters are referenced in the managed storage service
configurations. When creating a file data object the metadata service requires
the specification of the storage service storing the data. By this information the
service determines the concrete location and returns a Uniform Resource Loca-
tor (URI) [18] identifying the data location. For later data access the metadata
service manages a data location link in the data object‘s metadata.
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4.2 Data Management Client for UNICORE

The basis of the client is the data management client API which allows access
to the above described functionalities of the metadata service and data transfer
using WebDAV. The client is implemented as an Eclipse plug-in with extensions
which permit a seamless communication with the UNICORE 6 Eclipse based
client application.

Its graphical user interface (GUI) design is very similar to the existing Data-
Finder client. It allows users to browse and manipulate data object structure.
Metadata can be manipulated under the constraints given by the active data
model. Integration with the UNICORE 6 client is achieved by allowing users to
select input and output files in the usual file browser fashion.

The implementation of the client is done by inheriting the model view con-
troller pattern. The controller receives all events which originates from the GUI
itself or UNICORE 6 directly. By using the model and GUI components, it
triggers appropriate actions such as transferring data and metadata.

4.3 AeroGrid Test Bed

In the AeroGrid project data resulting from turbo machinery simulation is man-
aged with DataFinder. In particular DataFinder has been extended to automate
the aspects of simulation workflow execution. Figure 3 shows the AeroGrid de-
ployment scenario.

Fig. 3. Deployment Scenario of AeroGrid

The metadata service component has been deployed in the AeroGrid infras-
tructure independently from UNICORE 6. Both components, the metadata ser-
vice and the DataFinder, are using the WebDAV server as metadata storage
backend. In this context data is stored on this WebDAV server as well. The user
is able to access via the UNICORE 6 Client and the developed plug-in logical
data structures already managed with DataFinder through the metadata service.
Data transfers can be performed identifying data locations with the help of the
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metadata service and using the bundled WebDAV data transfer interface. Thus
simulation runs can be initiated using UNICORE Rich Client and DataFinder.

The compatibility of the developed data management system with DataFinder
is basically achieved on level of the metadata service. Both components are using
the WebDAV protocol for storage of logical data structures and configuration re-
sources. Moreover, the metadata service keeps the DataFinder scheme for anno-
tating data objects with metadata as well the format of configuration resources.
This provides a seamless integration of the metadata service with DataFinder.
Moreover, the DataFinder administration client can be used to configure data
models and storage service configurations which is not yet covered by the UNI-
CORE Rich Client plug-in.

On this basis the functionalities of the metadata service and in particular
the compatibility with DataFinder have been successfully validated. Because
the Web service stack is additionally involved when accessing metadata, it is
expected the implemented system causes specific overhead in comparison to
DataFinder. Therefore, an advanced deployment scenario suitable for perfor-
mance assessments and comparisons to DataFinder will be established.

5 Summary and Outlook

In the first part of the paper an overview about data management support in
selected resource middleware systems and dedicated systems suitable for dis-
tributed data management has been given. The considered systems provide a
kind of storage virtualization but no sophisticated means for data organization.
Concerning growing amounts of data produced by current and future applica-
tions, data retrieval for later use becomes a serious problem.

Thus the paper proposes a pragmatic approach for a dedicated data man-
agement system based on DataFinder. The system delivers logical organization
of data objects and abstracts common data management concepts hiding the
specifics of storage systems. On this basis advanced means for data organiza-
tion through metadata management functionalities and support of custom data
models are provided. Moreover, the integration with UNICORE 6 is achieved by
the data management client API which has been integrated in the UNICORE
Rich Client. The developed system and its compatibility with DataFinder have
been successfully validated in the AeroGrid project.

The next step concerns a detailed investigation of system performance which
will be made in the AeroGrid project. Moreover, additional features are intended
to be developed. This concerns the provision of fine-grained access privilege
management by Access Control Lists and the implementation of a data object
retrieval operation by metadata search queries.

Acknowledgments. This work has been partly supported by the German Fed-
eral Ministry for Research and Technology (BMBF) under Grant 01IG07006.
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Abstract. UNICORE middleware was chosen for the deployment of the 
National Grid network of Belarus. For quick and easy UNICORE installation 
on Grid sites the specialized distribution was developed. It includes not only 
UNICORE services and clients, but some other components such as MPI 
libraries and Torque batch system. At the beginning of 2009, there was 
launched the development of a billing system in order to monitor the 
employment of National Grid resources. Billing system provides various 
accounting information from Grid sites through Web-interface.  

Keywords: Grid Computing, SKIF-GRID, UNICORE, distribution, billing. 

1   Introduction 

The Scientific and research program of The Union of Russia and Belarus -“The 
Development and Use of Software and Hardware Grid technologies of  the 
prospective high-performance (supercomputer) computer systems “SKIF” (code 
“SKIF-GRID”1) for the period of 2007-2010, was developed in order to implement 
the decree of the Board of Ministers of the Union d/d June 28th, 2006 [1]. 

One of the goals of the project is to create National Grid networks in Belarus and 
Russia using existing supercomputer centers, as well as participation in international 
projects. 

Russia and Belarus went separate ways in the deployment of National Grid 
networks. In the year 2007, the main Grid middleware products were analyzed: 
UNICORE, gLite, Globus Toolkit, X-COM (the Russian project) and Condor-G. 
UNICORE [2] was selected to deploy the Belarusian National Grid network, and in 
2008, the UNICORE-based distribution was developed in The United Institute of 
Informatics Problems at The National Academy of Sciences of Belarus [3]. We note 
“SKIF-GRID” program also stipulate integration various grid-segments based on 
gLite middleware with pan-European grid nets in framework of BalticGrid-II Project2. 
                                                           
1  Work is supporting financially by Joint Belarusian-Russian Program “SKIF-GRID” and 

performing under the contract to the National Academy of Sciences of Belarus, Minsk. 
2  Work is supporting financially by EU and performing under the contract 223807 to European 

Commission, Brussels. 
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At the beginning of 2009, there was launched the development of a billing system 
in order to monitor the employment of National Grid resources. In future, using of the 
National Grid will become a paid service, and a global billing system will be the only 
way of accounting. 

This paper describes the UNICORE distribution and billing system for the National 
Grid Network in Belarus. 

2   Custom UNICORE-Based Distribution 

UNICORE (UNiform Interface to COmputing REsources) was chosen for the 
deployment of the national Grid network of Belarus among the variety of middleware. 
The package complies with customary requirements of free-of-charge basis and open 
source, and has some other characteristics that made it the premier choice. It’s cross-
platform, small, simple to deploy and administer (just a few basic services, each has 
strictly defined set of functions), constantly evolved and accurately maintained. 

The goal of this project was to develop a UNICORE-based software product, 
which includes installation packages and a complete set of technical documentation. 

The following operating systems were selected for deploying Belarusian Grid sites: 

─ Debian GNU/Linux 4.0 x86_64. 
─ Fedora 8 x86_64. 
─ Scientific Linux 4 i386. 
─ Windows XP 32 bit. 
 

For quick and easy deployment of Grid sites the distribution includes not only 
UNICORE services and clients, but some other components (Fig. 1). For Linux 
systems these are the following: 
 

─ Torque batch system. 
─ Java Runtime Environment. 
─ OpenMPI. 
Respectively, distribution for Windows includes: 
─ MPICH. 
─ Java Runtime Environment. 
─ MinGW & MSYS (GNU utilities and GCC compiler). 

 

For Linux operating systems distribution components come in native formats - DEB 
and RPM. As for the Microsoft Windows, it was decided to create a custom NSIS-
based installer, designed specifically for this platform (Fig. 2). 

Another feature of the Belarusian UNICORE distribution is a specially designed 
configure.py configuration tool’s analogue for Windows. This script has been 
rewritten using the PHP and the language interpreter was included in the distribution. 
The usage of this script is completely similar to configure.py. 

The distribution is supplemented by detailed step-by-step manuals for users (40 
pages) and administrators (80 pages). 
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Fig. 1. UNICORE distribution’s components 

 

Fig. 2. NSIS-based UNICORE installer for Windows 

3   UNICORE Billing System 

One of the current projects to be developed at UIIP National Academy of Sciences of 
Belarus is a billing system for national Grid network. The requirements for the 
product are the following: 
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─ Recording of the actual time of computing resources usage in normalized units 
under SPEC2000. 

─ Ability to identify commercial software usage. 
─ Interaction with the system for different categories of users and providing 

relevant information. 
─ Various text and graphics reports about resources used by individual user, site, etc. 
─ Generating bills based on information above. 
─ All connections are secured with user and service certificates. 
─ E-mail notifications. 
 

Due to National Academy of Sciences of Belarus requirements and special technical 
features, billing system was developed as a standalone web-based application. It 
consists of following components (Fig. 3): 
 

─ Application server. 
─ Database server. 
─ Agents. 
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Fig. 3. Billing system schema 
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3.1   Application Server 

Application server is based on Apache httpd server with mod_ssl and mod_php 
modules included. This solution makes it possible to run billing service under Linux 
or Windows systems. Application server is a main component with passive behavior. 
It doesn't make any network connections. It only responds to two kinds of requests: 

1. Client’s requests. 
2. Billing agents’ requests. 

The both communicate with application server using HTTPS protocol. 

3.1.1   Authentication 
Any person that wishes to use a UNICORE Grid has to identify him/herself by means 
of a UNICORE user certificate, which is a standard X.509 certificate issued on that 
person's name and affiliation by a certification authority that is trusted by the sites in 
the Grid [4].  

Billing application's main authorization unit is user, which is described by integer 
positive number called UserId. Each user can be assigned to multiple UNICORE user 
certificates. However, only the one, valid cert can be used to access billing interface. 
Mod_ssl was configured in a way, that web-server verify the certificate's depth 
(SSLVerifyDepth directive). 

Table 1. Possible user‘s roles 

User role  Comments  

Grid user  ─ Views detailed statistics and resources usage reports 
and billing information;  

─ Receives email notifications.  

User's group 
administrator  

Views detailed statistics and resources usage reports and 
billing information for each member of the group   

UNICORE site's 
operator  

Views detailed statistics and resources usage reports and 
billing information for specified Grid site  

Grid operator  Views detailed statistics and resources usage reports and 
billing information for specified Grid sites or whole Grid  

Billing service 
administrator 
 

─ Views detailed statistics and resources usage reports
and billing information for specified users or user groups,
specified Grid site(s) or whole Grid;  

─ Manages Grid sites, agents; 

─ Manages user, user groups;  

─ Manages certificates;  

─ Manages price table.  
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Additionally, password is used to prevent unauthorized access to billing from user 
web-browser with imported certificate. 

3.1.2   Authorization 
Authorization was implemented using Role-Based Access Control (RBAC) schema, 
which provides a simple yet powerful centralized access control [5]. 

The billing system supports the following five user's roles: 

1. Grid user. 
2. User group’s administrator. 
3. UNICORE site’s operator. 
4. Whole Grid’s operator. 
5. Billing service administrator. 
 

User could be assigned to multiple roles at the same time. 

3.2   Database Server 

MySQL 5.x is used as database server for billing application. Data tables uses InnoDB 
storage engine. Performance tune was done, but no extra patches were applied. To 
avoid data loose binary logs and everyday backups to external storage was set up. For 
best performance database server is set up on dedicated physical server. 

3.3   Agents 

Agent is used to extract billing information from different sources (e. g. PBS 
accounting files or license server log files), match it with XUUDB user record and 
upload results to billing server, which accepts definite format of sent data. It is possible 
to develop a custom agent's version for any source, by the bringing information into 
definite state. Each record of sent data contains following ever-present pieces of 
information: 

─ Task id. 
─ Certificate id. 
─ Task termination time. 
─ Used resources. 

Data is uploaded via HTTPS request. Each agent had it own certificate, signed with 
root UNICORE CA. Agent's certificate should be saved on billing server, otherwise 
billing wouldn't recognize agent and connection will be rejected. 

Now we implement four kinds of agents: 

1. PBS accounting agent. 
2. MAUI accounting agent. 
3. LS-DYNA license agent. 
4. ANSYS license agent. 

The first and the second installed on every Grid site and analyze information about 
resources used while task was computing. The others analyze license server logs and 
fix license usage time. 



 UNICORE-Related Projects for Deploying the Belarusian National Grid Network 369 

All agents are written in PHP using libcurl and gzlib. It makes possible to run 
agents on both Windows and Linux systems natively. 

Data transmission held in four steps: 

1. Agent connects to application server via HTTPS. 
2. Server recognizes agent with its certificate. 
3. Server finds out the last event date stored in the database according to the agent 

and sends it back. 
4. Agent parses logs starting with received date and uploads pieces of information to 

server. 

3.3.1   TSI Modification 
Usual realization of UNICORE supposes the system login presence for each 
UNICORE user. On the other hand, it possible to use one system login for multiple 
UNICORE users. It makes Grid site's administration process simpler, but raises the 
question of identifying task owner. PBS stores information about system login and 
PBS task id, but UNICORE stores information about UNICORE user and UNICORE 
task id. XUUDB data can be exported into csv file, but it was mentioned above, that a 
lot of UNICORE users can be assigned to one system login.  That is why it is 
impossible to find relations between PBS and UNICORE task id without any 
UNICORE modification. Belarusian National Grid network meets the last way of 
managing user accounts.  

The part of TSI responsible for executing submitting command was improved in 
the following way. PBS submit command returns to TSI the PBS id of submitted task, 
at the same time UNICORE task's id and UNICORE user's info is stored in TSI's 
environment. This information is extracted and logged to the text file, which is parsed 
by billing agent. In the result, information with correct correspondences is sent to 
billing server.  

4   Conclusion 

In this paper we presented the following UNICORE-related projects for deploying the 
Belarusian National Grid network: 

─ Custom UNICORE distribution for Linux and Windows-based sites. 
─ Billing system for National Grid. 

The technical details of each project were highlighted. 
The current version of billing due to technical requirements had been implemented 

as a third party web application written on PHP, so it cannot be one of the UNICORE 
parts. The future of this project is to implement the billing system as UNICORE 
official add-on using obtained experience with the full developing guidelines 
compliance.  

In reference to custom UNICORE distribution, it is production-ready and used to 
deploy all of the National Grid sites. 
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Virtualization has become a common abstraction layer in modern data centers,
enabling resource owners to manage complex infrastructure independently of
their applications. Conjointly virtualization is becoming a driving technology
for a manifold of industry grade IT services. Piloted by the Amazon Elastic
Computing Cloud services, the cloud concept includes the notion of a separation
between resource owners and users, adding services such as hosted application
frameworks and queuing. Utilizing the same infrastructure, clouds carry signif-
icant potential for use in high-performance scientific computing. The ability of
clouds to provide for requests and releases of vast computing resource dynami-
cally and close to the marginal cost of providing the services is unprecedented
in the history of scientific and commercial computing.

Distributed computing concepts that leverage federated resource access are
popular within the grid community, but have not seen previously desired de-
ployed levels so far. Also, many of the scientific datacenters have not adopted
virtualization or cloud concepts yet. This workshop aims to bring together in-
dustrial providers with the scientific community in order to foster discussion,
collaboration and mutual exchange of knowledge and experience.

This year’s workshop featured 9 papers on diverse topics in HPC virtualiza-
tion. Papers of note include Checconi et al. examining QoS in VM migration
times using a stochastic model along with Nanos and Koziris presenting a native
I/O driver framework for Myrinet 10G network interfaces in Xen. Two papers
were examining private and public cloud suitability for scientific computing.

The chairs would like to thank the Euro-Par organizers and the members of
the program committee along with the speakers and attendees, whose interaction
contributed to a stimulating environment. VHPC is planning to continue the
successful co-location with Euro-Par in 2010.

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, p. 373, 2010.
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Abstract. With the prevalence of multi-core processors and cloud com-
puting, the server consolidation using virtualization has increasingly ex-
panded its territory, and the degree of consolidation has also become
higher. As a large number of virtual machines individually require their
own disks, the storage capacity of a data center could be exceeded. To ad-
dress this problem, copy-on-write storage systems allow virtual machines
to initially share a template disk image. This paper proposes a hybrid
copy-on-write storage system that combines solid-state disks and hard
disk drives for consolidated environments. In order to take advantage of
both devices, the proposed scheme places a read-only template disk im-
age on a solid-state disk, while write operations are isolated to the hard
disk drive. In this hybrid architecture, the disk I/O performance benefits
from the fast read access of the solid-state disk, especially for random
reads, precluding write operations from the degrading flash memory per-
formance. We show that the hybrid virtual disk, in terms of performance
and cost, is more effective than the pure copy-on-write disks for a highly
consolidated system.

Keywords: Consolidation, Virtual machine (VM), Copy-on-write (CoW),
Hybrid storage.

1 Introduction

Virtualization enables multiple operating systems to run on a single physical
machine, and server consolidation systems using virtualization have expanded
� This work was supported by the Korea Science and Engineering Foundation

(KOSEF) grant funded by the Korea government (MEST) (No. 2009-0080381) and
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H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 375–384, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



376 H. Jo et al.

their territory significantly, especially in large-scale computing systems or cluster
systems. This trend is based on the effort to lower the management cost, which is
one of the primary factors for server hosting centers or the server market. With
server consolidation, fewer physical machines are needed to run the same number
of servers, thus saving power and space. These factors are directly related to the
total cost of ownership; it is known that 50-70% of reduction could be possible
[1]. Moreover, the virtualized system is also advantageous due to the availability
and manageability of servers.

Storage virtualization has been less focused than other resources, such as
memory and CPU, since disks have better density and are easily sharable via
network attached storage. The introduction of cloud computing, however, makes
efficient storage virtualization more relevant in terms of disk capacity. Cloud
environments allow thousands of cloud users to store their own contents and
privately view their storage. With more virtual machines (VMs), one VM will
require more storage space due to operating systems and applications that be-
come richer and larger. Therefore, the capacity requirements for storages are ex-
pected to grow exponentially. Data centers serving a large-scale VM farm cannot
extend their storage infinitely, since the cost of doing so is not inexpensive, after
taking into account ownership costs such as maintenance, cooling, and space.
Since traditional sharing-based storage cannot deal with this requirement, many
data centers are unable to afford the storage capacity for private disks required
by cloud users.

Two representative approaches have been developed to relieve the burst re-
quirement of storage in virtualized environments: copy-on-write (CoW) storage
and content addressable storage (CAS) [2,3]. First, CoW storage enables multiple
VMs to initially share a template disk image. This mechanism allows read-only
sharing by isolating any write attempts from the template disk image. This ap-
proach was adopted in QCOW [4], CoWNFS [5], and Parallax [6]. Second, CAS
uses a content-based address to access a disk block. This mechanism does not
require even template disk image sharing, but incurs computational overheads.
Although these two approaches significantly reduce disk footprints, they do not
improve the disk I/O performances of those mechanisms.

This paper presents a hybrid CoW virtual disk that combines the solid-state
disk (SSD) and hard disk drive (HDD) within a highly consolidated system. The
SSD-HDD-hybrid virtual disk (HVD) uses SSD for read-only template storage,
whereas privately written data are stored in HDD. HVD gains high disk I/O
performance from the fast read operations of SSD, especially for random reads.
Since the read operations of consolidated VMs are multiplexed, a sequential read
stream of each VM could be broken, and thereby realized as small random reads.
Further, the isolation of write operations from SSD eliminates drawbacks from
write I/O, such as erase-before-write and wear-out. Our evaluation results indi-
cate that the hybrid architecture of HVD outperforms HDD-only or SDD-only
storage. For several real workloads, HVD shows more than 40% performance en-
hancement and does not suffer from the heavy write, which is the main weakness
of SSD.
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The rest of this paper is organized as follows: Section 2 describes the design
and implementation of HVD and discusses related challenging issues. Section 3
presents the evaluation results of HVD compared with pure storage by using
several micro-benchmarks and real workloads. Finally, we summarize the paper
and present a future direction in Section 4.

2 Hybrid Virtual Disk (HVD)

This section describes the overall architecture of HVD. First, we give a brief
description of the virtualized environments using CoW storage. Then, we present
the hybrid architecture of HVD and its implementation. Finally, we illustrate
migrating data between SSD and HDD, a challenging issue for HVD architecture.

2.1 CoW Storage in Virtualized Systems

In virtualized environments, the CoW mechanism over virtual disks has been
prevalent due to its efficient use of disk and easy management of snapshot
[12,13,6]. The CoW mechanism is a well-known technique that allows multiple
entities to share a resource, until a write attempt occurs to the shared resource;
once written, the shared resource is copied to a newly allocated space for the
private use of the resource. In this manner, a CoW disk enables multiple VMs
to share a template disk image while presenting each VM with the private view
of its own storage. In addition, the CoW disk can support fast snapshots by
preserving metadata for the current disk image.

The CoW disk is compelling in consolidated environments for three reasons.
First, many VMs typically run the same operating systems and applications, es-
pecially in cluster-based systems, which provide replicated services for reliability
and load balancing [5]. In this system, multiple VMs can share a template disk
image that contains common operating systems and applications in a CoW man-
ner, thereby reducing disk footprints. Second, as the degree of consolidation has
grown considerably, a virtualized data center could accommodate many more
servers than a native data center. Since each server at least requires a system
image from which to boot, a large number of servers may exceed the storage
capacity [14]. The CoW disk can effectively relieve this increased requirement
of storage capacity. Finally, snapshot is a frequent operation used to control the
history of a virtual disk for reliability. As cloud computing has emerged in large-
scale consolidated environments, reliability is now a more important concern to
cloud users. The efficient snapshot functionality of the CoW disk enables fast
backup and recovery of storage.

2.2 SSD-HDD-Hybrid Design

To maximize the advantages and to minimize the drawbacks of SSD, we introduce
HVD for virtualized environments. In HVD, the read-only templates of VM disk
images are stored on SSD to support fast read operations. On the other hand,
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the privately written blocks of a VM are placed on HDD. This design is inspired
by the asymmetric I/O characteristic of SSD; the write operation is slow and
varied, whereas the read operation is fast and uniform.

SSD is currently an emerging storage device for server systems to enhance the
disk I/O performance [9,10]. SSD is a NAND flash memory-based storage de-
vice that is expected to replace HDD in the near future because of its versatile
features, such as non-volatility, solid-state reliability, low power consumption,
shock resistance, and high cell densities [7,8,11]. SSD supports high read per-
formance, especially for random reads, since it does not include HDD-like me-
chanical parts that incur seek and rotational delays. SSD, however, has several
weak points caused by the nature of NAND flash memory. One is the erase-
before-write characteristic that a page, which is the basic unit of read and write
operations, should be erased before being rewritten in the same location. The
erase operations can only be performed on a block, which is larger than a page.
Therefore, SSD shows slow and non-uniform write latency. Another limitation is
the wear-out problem. Unfortunately, each block in flash memory has a limited
number of erase/write cycles, and data in a block become unreliable if the block
reaches this limit. The current limit for single-level cell NAND flash memory is
approximately 100,000 erase/write cycles.

Considering these features of SSD, the SSD-HDD-hybrid scheme has several
advantages. First, HVD supports fast read accesses to a template disk image,
which typically contains rich applications, libraries, and common data contents.
HVD improves user experiences by boosting the startup of applications and the
loading of libraries. In addition, random read accesses to a template disk im-
age benefit from SSD. Since multiple sequential read streams from guest VMs
are fairly multiplexed, each stream might be broken into small random read
operations, which result in the poor performance of HDD. SSD provides better
latency for the broken random reads. Next, isolating writes from SSD eliminates
the aforementioned problems induced from write operations. As HVD preserves
a template disk image on SSD from write operations, SSD does not suffer from
wear-out and overheads for erase-before-write. Finally, HVD allows for cost-
effective storage, in terms of performance and capacity. Since SSD is more ex-
pensive than HDD with the same capacity, pure SSD-based storage might not
be an affordable option to store large amounts of private data of VMs. HVD
requires SSD capacity only for template disk images, making our approach more
cost-effective.

2.3 Implementation

We implemented two versions of HVD: HVD based on cowloop [15] and HVD
based on Parallax. Our approach to hybridizing SSD and HDD for a CoW block
device can be applied with low reengineering costs. Moreover, our approach is
also advantageous in terms of transparency. It can be provided to upper layers
without any modifications due to block level implementation.

Cowloop is a simple and lightweight block device used to support the CoW
behavior. Figure 1 shows the HVD implementation overview based on cowloop. A
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Fig. 1. The HVD implementation overview based on cowloop

VM uses the template disk image as read-only, and when the VM updates blocks,
the write operations are forwarded to its cowfile, which stores the privately
written blocks. If a block is written once, the next access to the block is forwarded
to its cowfile. For example, block 1 of VM1 is read from a template disk image,
and block 6 that is written before is read from the cowfile1. For HVD, we place
the template disk image on SSD, and use HDD as cowfile storage.

On the other hand, Parallax is a novel distributed storage system for Xen
VMs [20] and supports the CoW mechanism to reduce the required storage size.
Furthermore, Parallax provides many features, such as network access, snapshot,
and the efficient lock mechanism. Our Parallax version of HVD spontaneously
inherits these features. To support the CoW behavior, Parallax uses a radix
tree that translates the logical block number (LBN) from a VM to the physical
block number (PBN). If a VM updates a block, the related radix tree nodes are
created, and their leaf node possesses the PBN. In addition to PBN, the entry
of a leaf node indicates whether a data block is read-only or written via a bit
flag. For HVD, we add a 1 bit locator flag that denotes whether a block resides
in SSD or HDD.

2.4 Migration between SSD and HDD

The current placement policy of HVD has optimization chances to migrate data
between SSD and HDD. In cases where a file is first modified and frequently read
afterward, this file is obtained from HDD without the benefit of SSD. Such write-
once read-many blocks can be migrated to SSD so that better read performance
is achieved. There are various possible methods to identify migratable blocks at
different levels of hierarchy.

First, users can specify rules that reflect their preferences. For example, many
configuration files or static web contents (e.g. /etc, html, or web image files) are
initially modified and primarily read for the rest of their lifetimes. In this case,
a user can define that such files should always reside in SSD. This rule-based
approach should collaborate with the file system to inform HVD of blocks in
which a specified file is located. While requiring user intervention, this method
can directly write a specified file to SSD without migration.
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Fig. 2. The raw I/O performance comparison between HDD and SSD

Second, the file system can identify write-once read-many files by monitoring
modification and access times stored in the metadata. This monitoring-based
method enables frequently read files, after being written, to be migrated to SSD
without user intervention. This method, however, requires a monitoring daemon
in each guest VM.

Third, HVD maintains read access frequency for each block stored once in
a location of HDD during a certain period. When detecting a frequently read
block, HVD migrates this block to SSD. This method is guest VM-agnostic,
so that no guest-level daemon is required. On the other hand, the block-level
approach redundantly manages metadata for each block in order to maintain
access frequency.

3 Evaluation

In this section, we evaluate the performance aspect of HVD. Our storage system
is implemented on Xen-3.2.3 with a para-virtualized Linux 2.6.18 kernel for the
x86 architecture. The machine for Xen has an Intel Core2 Duo 2.33 GHz CPU
with 2 GB of RAM. The memory size of a driver VM, which is in charge of I/O
device accesses and contains HVD, is configured to 512 MB, and that of each
guest VM is set to 128 MB. All tests are performed on a local storage to exclude
network overhead.

In all evaluations, we used the cowloop version of HVD, since Parallax has
several functions including a garbage collector and a locking mechanism in ad-
dition to the CoW features. Although Parallax is a more sophisticated virtual
disk, we suppose that the cowloop version of HVD clearly shows the performance
gain from our hybrid approach to exclude the impact of additional features, ex-
cept the CoW mechanism. To demonstrate the impact of our hybrid approach,
we evaluate HVD in comparison with the pure CoW disks: cowloop-HDD and
cowloop-SSD.

Raw device performance. Seagate barracuda with 7200 RPM [18] and Sam-
sung SSD [19] are used in all evaluations. These storage devices are selected for
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Fig. 3. The I/O performance of cowloop-HDD, cowloop-SSD, and HVD for each oper-
ation type

a reasonable performance comparison. Figure 2 shows the raw performances of
HDD and SSD, which are used in this evaluation for several types of disk opera-
tions (sequential read/write, random read/write), and the results are normalized
to HDD. We performed the tests using sysbench [16] on a native machine. As
depicted, except in the case of the random read, HDD performs better than SSD.
In the case of the random read, however, SSD shows better performance than
HDD by the multiple of sixteen.1

Micro-benchmark. Figure 3 shows the evaluation result of micro-benchmark
using sysbench. All the tests are performed on a guest VM, and all I/O op-
erations are delivered to each storage device through a driver VM. The tests
are performed for sequential read/write and random read/write, and the y-axis
shows the normalized throughput.

In the case of the read operation, SSD shows significant effects, especially for
the random read. For the sequential read, unlike a native environment, both
cowloop-SSD and HVD indicate higher throughput than cowloop-HDD. While
HDD maximizes the sequential read performance for a burst read, a driver VM
interrupts read operations, breaking burstness and thus reducing HDD read
performance.

For the write operation, the performance of cowloop-HDD and HVD is similar
as expected. The sequential write operation of HDD is much faster than that of
SSD due to the erase-before-write characteristic of SSD. In the case of random
write, HDD shows little higher performance than SSD, since HDD incurs seek
and rotational overheads.

Real workloads. With regard to real workload evaluations, we performed four
workloads: the booting of VMs, the online transaction processing (OLTP), the
decompression, and the data writing. The first two are read-intensive workloads,
and the decompression is read/write mixed with a ratio of 1.5. The last data

1 A recent high-end SSD for server environments outperforms HDD for all disk oper-
ations, but our current experiments are not conducted with a high-end SSD for a
fair comparison.
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writing is a write-intensive workload. The VM configurations for all the tests are
the same as that of the micro-benchmark test. We evaluate each workload as
increasing the number of VMs. Figure 4 shows the normalized booting time of
guest VMs. The performance gain of HVD is not considerable, since the booting
sequence of a VM involves only a little amount of I/O operations. The next
test is the online transaction processing with Mysql [17] and sysbench, which
requests approximately 130 database transactions per second. The evaluation
results are illustrated in Figure 5, and the y-axis is the normalized average
response time. The response time of cowloop-SSD and HVD are 30-60% less
than that of cowloop-HDD.

On the other hand, the evaluation result of the decompression is presented in
Figure 6. This workload decompresses the source code of Xen and Linux. The no-
table situation occurs when the number of VMs is eight. The execution time of
cowloop-SSD is longer than that of cowloop-HDD, since SSD shows the slowest
operation latency for heavy random writes, due to erase-before-write. The same
case is more clearly shown in the write-intensive workload, the data writing. As
presented in Figure 7, cowloop-SSD results in a longer execution time when the
number ofVMs is more than one. All the results illustrate thatHVDhas higher disk



SSD-HDD-Hybrid Virtual Disk in Consolidated Environments 383

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

9:1 8:2 7:3 6:4 5:5 4:6
N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

Read-write ratio (Read:Write)

cowloop-SSD
HVD

Fig. 8. The execution time of file read/write with different read-write ratios

performance than cowloop-SSD and cowloop-HDD, especially when a large num-
ber of VMs are consolidated. More significantly, outperforming pure SSD means
that HVD is more cost-effective for server consolidation workloads. For more de-
tailed analysis, we performed an additional evaluation that executes file read and
write with different read-write ratios as shown in Figure 8. This evaluation is per-
formed with sysbench and eight guest VMs. The performance of HVD is better
than cowloop-SSD where the write operations are more than 30.

4 Conclusion and Future Work

This paper presents a hybrid virtual disk that makes possible the efficient com-
bination of SSD and HDD within consolidated environments. We derive the per-
formance benefit from fast random reads of SSD by locating a read-only template
disk image in SSD, while written data are stored in HDD. This placement policy
intensifies the advantages of SSD, avoiding overheads caused by write operations.
The contribution of this work is that the hybrid CoW storage is obviously advanta-
geous, in terms of performance and cost, for server consolidation workloads, espe-
cially for those in which sequential operations might be broken into small random
ones.

As future work, we plan to implement sophisticated migration techniques be-
tween SSD and HDD. We expect that the identification of write-once read-many
data is a crucial concern for the migration work. In addition, we also consider using
SSD as a cache that temporarily stores the written blocks from guest VMs. There
are lots of related work including the five-minute rule [21], and we will evaluate
them in the virtualization environment and HVD. Efficient migration will make
the hybrid virtual disk approach more successful for virtualized environments.
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Politécnica de Valencia (UPV), 46022–Valencia, Spain
{jduato,fsilla}@disca.upv.es, apenya@gap.upv.es
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Abstract. Current high performance clusters are equipped with high
bandwidth/low latency networks, lots of processors and nodes, very fast
storage systems, etc. However, due to economical and/or power related
constraints, in general it is not feasible to provide an accelerating co-
processor –such as a graphics processor (GPU)– per node. To overcome
this, in this paper we present a GPU virtualization middleware, which
makes remote CUDA-compatible GPUs available to all the cluster nodes.
The software is implemented on top of the sockets application program-
ming interface, ensuring portability over commodity networks, but it can
also be easily adapted to high performance networks.

Keywords: Graphics processors (GPUs), virtualization, high perfor-
mance computing, clusters, Grid.

1 Introduction

Virtualization of hardware resources is receiving considerable attention in the
last years as a means to reduce the economic cost, ease the administration, and
provide better security in large data centers [4].

On the other hand, graphics processors are increasingly being adopted as a
hardware solution to accelerate computationally-intensive applications [1,13,14].
Improvements in the programmability of these architectures [12,2] and their
excellent performance-power ratio will probably generalize their use in large
clusters for high performance computing (HPC) in the near future. However,
adding one hardware accelerator to every node in an HPC cluster is not efficient,
neither from the performance point of view nor from the power consumption
perspective, because, on one hand, not all applications can take advantage of
the accelerator and therefore there is no need for a large number of them and,
on the other hand, current GPUs have a great impact on the overall power
consumption of the system1. Economic cost, maintenance, and space also advise
1 A GPU may well increase the power consumption of an HPC node by 20-30%.
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against the one GPU per node solution. Thus, future HPC clusters may well
include a few of these accelerators in certain nodes of the system.

In this paper we present a prototype middleware that virtualizes a hardware
resource like a GPU in an HPC cluster, as a front-end virtualization. This type
of virtualization can be implemented by device emulation, that is, by providing
a complete replication of the entire hardware accelerator, so that the architec-
ture can be emulated on a different one. However, for computationally-intensive
applications this approach is not valid due to the emulation overhead. A better
choice to service HPC applications is to offer a virtualized hardware platform,
time-sharing the real resource among the users. This is the approach we adopt in
our proposal by Application Programming Interface (API) remoting. Therefore,
there is no need of hardware support nor silicon changes.

Our middleware offers the possibility of running different parts of an appli-
cation on different accelerators, dynamically selecting the most suitable one.
Although we have focused only on GPUs, our software can be extended to other
types of accelerators. Thus, the goal is to offer virtualized CUDA-compatible
GPU devices that can be used by all nodes in the cluster with low overhead.
Although similar approaches have been recently followed in the field of virtual
machines and graphics [5], the specifics of our target environment and CUDA
led us to adopt a different approach since, among others, we do not have to take
care of visual output or suspend and resume functionality. Instead, we have to
deal with CUDA specifics such as streams and execution control.

The rest of this paper is organized as follows: Section 2 presents the details of
the proposed virtualization solution. Section 3 introduces performance related
issues. In Section 4 we discuss the current development status of our implemen-
tation. Next, Section 5 presents some performance results and, finally, Section 6
summarizes the conclusions of our work.

2 Virtualized GPU Architecture

GPUs are integrated devices in the form of cards that are attached to a server
with a general-purpose processor via a PCI-Express (PCIe) bus. To exploit the
GPU computing power, part of the program has to be written as a kernel, which
at runtime is sent and executed on the GPU. The GPU driver is in charge of
transferring the program, initiating its execution, and handling its completion.

Both the general-purpose server and the GPU feature separate memory maps.
Transferring the data required by the kernel and later retrieving back the results
is explicitly addressed by the user. Therefore, in an HPC system where a node
without a local GPU is running an application that invokes a GPU kernel, we
have to provide support for transferring the kernel and data, and dealing with the
initiation/completion of the kernel execution on a remote GPU. In particular,
our virtualization middleware consists of two parts: the client middleware is
installed as a shared library on all nodes of the HPC cluster which have no
local GPU; and the server middleware is executed in the node(s) equipped with
GPU(s). We name these nodes hereafter as clients and server(s), respectively.
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2.1 Implementation

The current implementation of the virtualization software targets the NVIDIA
CUDA programming environment and the NVIDIA G80 and GT200 series.

CUDA enables general purpose computing on the latest NVIDIA GPUs in a
C-like programming language, exposing the device architecture as a set of SIMD
multiprocessors. This smooths the learning curve for the non-expert program-
mers on graphics-specific programming languages such as OpenGL and Cg. More
detailed information about CUDA can be found in [12].

Client. These nodes employ a library of wrappers to the CUDA Runtime API.
During the compilation of the application, two different object files are generated
exploiting the compiler driver options: the GPU-module comprises the device
code image to be executed on the remote GPU; and the CPU-module contains
the code that has to be executed on the local general-purpose processor. The
global executable file includes all the functionalities required to identify and
connect to the server, locate and send the GPU image file, submit requests for
the execution of a specific kernel and transfer dynamic data, and receive and
pass back to the application the output resulting from the remote execution.

Server. On the server we add a GPU network service which listens for requests
on a TCP port. To deal with the low-level GPU-module operations which are not
supported by the CUDA Runtime API, this daemon has been implemented using
the low-level Driver API. A library scheme of both client and server applications
is shown in Figure 1.

Fig. 1. Scheme for the client and server applications library

The daemon serves requests of CUDA calls on the local GPU. Each remote
execution is served by a new process on an independent GPU context. The use
of threads for this purpose is not considered an option as potential segmentation
faults on Driver API calls could lead to server termination.

In general, the execution of a kernel requires several phases: in the initial-
ization stage, the server receives the GPU code image with the kernels to be
executed and the definition of the variables statically allocated by the client
application. Once this initialization is completed, the server is able to process
a request for executing a kernel. If there is additional data to be used, it must
be transferred from client to server before the execution starts. Once the ker-
nel execution is completed, the output data is available to be sent back to the
client.
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Communication protocol. The data protocol for the communication between
client and server has been designed to be as simple as possible, so that communi-
cations involve little computation and make an efficient use of network resources.
Both data and control flows make use of the network.

Until automatic server discovery is implemented, the first action on the client
side is an explicit call to an initialization function, which connects to a specific
server. This function automatically locates and sends the application-associated
GPU-image file to the server.

In the communication protocol, the first 32 bits of the stream request iden-
tify the function which has been called, while the subsequent data is function-
dependent, specifying the particular parameters of each function call. The server
always sends a 32-bit result code, and possibly more data depending on the re-
quested function.

A sample sequence diagram of the communications generated by a matrix-
matrix multiplication execution is shown in Figure 2, which illustrates the fol-
lowing steps:

1. The client application opens a socket connection to the server, where a dae-
mon process is listening. The client then locates and sends the GPU-image
to the server, which loads it into a new GPU context. Upon completion, the
server sends the result code of the module load operation back.

2. The client requests memory allocation on the GPU memory map for the
three matrices involved in matrix multiplication. For each one of the three
requests, the server replies with the result code of the allocation operation,
followed by the pointer to the allocated memory.

3. The next step consists in sending the source data matrices to the GPU
memory. To do so, the client sends two memory copy requests, each of them
specifying the destination pointer, size of the data to be transferred and
direction of the copy (from host to device2), followed by the corresponding
data. Once a request is received and executed, the server sends back the
result code of the operation.

4. The GPU is then ready to execute the matrix-matrix multiplication kernel.
Next, the client application sends a launch request, specifying the kernel
to be executed and its execution stack, which consists in a grid and block
configuration, as well as the parameters of the kernel (those commonly re-
quired by the BLAS sgemm subroutine). Once the launch is done, the server
daemon sends back the corresponding result code.

5. At this point, the result of the matrix multiplication is stored in the GPU
memory. To transfer it to the local memory, the client application sends a
new memory copy request, this time specifying the direction as “device to
host”. The server response is the corresponding result code followed by the
requested data (only if the copy operation was successful).

6. Allocated memory is released next. To accomplish this, the client application
sends a free request per matrix, receiving a result code per request.

2 In CUDA terminology, host stands for a computer holding a CUDA-compatible
GPU card, and device stands for the GPU itself.
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7. The last step consists in calling a destroy function, which closes the socket.
Upon reception, the daemon server process quits servicing the current exe-
cution and releases the associated resources.

Fig. 2. Matrix-matrix multiplication. Sequence diagram of client-server communica-
tions. Memory allocation and release operations are summarized for legibility purposes.

3 Performance Considerations

Virtualizing the GPUs implies an overhead due to the communications over the
network, which depends on the specifics of the interconnect (latency and band-
width). In our approach we intend to explore both the Gigabit Ethernet standard
accessed via the sockets API and the new extensions to the HyperTransport (HT)
technology, recently proposed in the High Node Count HyperTransport Speci-
fication [3]. This technology provides a non-coherent shared memory map for a
large number of computing nodes with very low latency, as data transfers are
managed by hardware with no intervention from the operating system kernel.

One advantage of the socket-based implementation is that it could be used
even in low performance networks for academic purposes, thus offering access
to a few high performance GPUs concurrently to all the students. On the other
hand, the HT based implementation is expected to offer clients of an HPC cluster
seamlessly access to a remote GPU with negligible overhead.

Users of the virtualization middleware must take into account that the us-
age of asynchronous CUDA calls will notably increase the performance of their
applications reducing the communication overhead.
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To reduce the response time, our server uses a prefork technique as follows:

1. The parent server is started.
2. The parent server creates a child server which will serve all requests from a

single remote execution.
3. The child server receives a connection request.
4. The child server communicates this event to its parent.
5. The parent server spawns another child to attend eventual requests.
6. Children terminate after the connection is closed by their respective client.

In addition, another tweak is introduced to save time: before a child server blocks
waiting for an upcoming connection request, it pre-initializes the CUDA driver
API environment and creates a new context, so it is ready to load a GPU image
immediately when it is received.

Finally, to attain high-performance data transmission over a TCP/IP network,
Nagles’s algorithm [9,10] –TCP layer default congestion control algorithm– has
been disabled on both client and server sides. Basically, this algorithm delays
the effective sending of TCP frames until a buffer is filled in or a timer expires.
This behavior provides good performance in many environments, preventing the
transmission of a large number of small packets, which would waste most of
the network bandwidth transmitting packet headers. However, in HPC a precise
control of the moment a frame must be sent out is desired. In Linux operating
system (OS), this is achieved by explicitly choosing the time when the TCP
transmission buffer must be flushed by managing TCP layer socket options and
policies. A more detailed discussion about Nagle’s algorithm can be found in [7].

4 Development Status

This project is, at the moment of the writing, ongoing so this could be considered
a proof of concept.

We concentrate our development efforts on the TCP based approach, but we
expect to adapt the developed middleware to the HT based interconnect by just
changing the communication routines to send and receive data over the network.

4.1 Implemented Functionality

Thus far we have successfully implemented on both client and server sides the
following of the CUDA Runtime API:

– Device Management Runtime.
– Thread Management Runtime.
– Event Management Runtime.
– Execution Control Runtime.
– Part of the Memory Management Runtime.
– Error Handling Runtime.

This subset of the API is sufficient to build a series of commonly used applica-
tions and obtain some timing results, which are presented in Section 5.
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4.2 Future Work

We are working on the completion of the whole CUDA Runtime API. In partic-
ular, current missing functionalities comprise:

– Stream Management Runtime.
– Texture Reference Management Runtime.
– Part of the Memory Management Runtime, mainly asynchronous operations.

One drawback of the current implementation is that it needs to keep the CPU
and GPU codes in separated files. The GPU code is compiled with the NVIDIA
compiler driver nvcc using its “device code repositories” feature (see [11]) to
obtain the GPU-image file. On the other hand, the CPU code is compiled using
a C or C++ compliant compiler (such as GNU or Intel C Compilers) to obtain
the final executable. This leads to the unavailability of the CUDA C language
extensions (such as the simplified kernel call syntax) on host code. This sepa-
ration is mandatory because during compilation of mixed GPU and CPU code,
nvcc automatically inserts calls to undocumented CUDA Runtime API library
functions, (presumably to allow the application locate the embedded GPU code
in the executable, among others). To address this, we will develop a preprocessor
which will transparently take care of code separation and compilation.

Another limitation of the mandatory code separation step is the impossibility
of using prebuilt CUDA libraries such as CUBLAS, because at the moment
our runtime is unable to locate embedded GPU code. However, we expect to
overcome this problem because GPU code is easily recognized in the executable.

On the final stage of the development, we will deal with multi-server related
functionalities, such as automatic discovery and load balancing.

Additionally, we will explore more network related tweaks, such as TCP defer
accept and quick ack options, and we will adapt our communication routines
to the high performance HT based network.

When completed, we may consider adapting the implementation to Windows
OS based systems, and the recently emerged OpenCL framework [8].

Finally, in the long term we intend to generalize our implementation to dif-
ferent kinds of accelerators.

5 Results

In this section we evaluate the impact of the virtualization overhead, using two
case studies: the product of two matrices and the Fast Fourier Transform (FFT).

The nodes of the cluster employed in the evaluation are equipped with two
Quad Core Intel R© Xeon R© E5410 processors (2.33 GHz, 8 GB RAM), running
the Linux OS (kernel 2.6.18). The node interconnect is a Gigabit Ethernet. The
GPU is an NVIDIA Tesla C1060 (driver version 180.22) attached to a PCIe 2.0
x16 port3. The server daemon has been built over CUDA Toolkit 2.1.

3 A PCIe 2.0 x16 graphics link features a maximum bandwidth of 8 Gbytes/s.
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The matrix-matrix product implemented in routine sgemm as part of Intel
MKL (v10.1) is employed on the CPU. On the GPU, we have used Volkov’s
implementation of the matrix-matrix product routine [15], as this is currently
the base for the tuned implementation in CUBLAS 2.1. On the other hand, we
have used the FFTW library (v3.2) on the CPU and Volkov’s FFT implemen-
tation on the GPU, over 1024 complex single precision points. To exploit the
GPU massive parallel capabilities, our tests comprise different number of FFT
operations, provided that GPU is able to compute multiple FFTs in parallel. To
accommodate network variability times are averaged over 30 executions.

The left-hand plot in Figure 3 shows that the execution of Volkov’s kernel on
a virtualized GPU over small and moderate-size matrices is slightly slower than
the local CPU implementation in MKL –maximum of 2.5 secs. on a 8, 192 ×
8, 192 matrix–, while for large matrices it is up to a 15% faster, saving 10.6
secs. The figure also shows that most of the time is spent in memory transfers,
due to network bandwidth limitations. The right-hand plot in the same figure
reports that the execution times for the FFT are between 150 and 1,150 msecs.
faster in the local CPU than in the remote GPU, once more due to the network
limitations.

Fig. 3. Left: sgemm processing times on CPU vs. virtualized GPU; “Other” includes
initialization, memory allocation, memory release and destruction operations. Right:
FFT processing times; “Other” also includes kernel execution.

This result demonstrates that computing a matrix multiplication over a re-
mote GPU can be faster than doing it over the local CPU, even when the connec-
tion happens to be a commodity network. However, when the problem requires
less computation per data, as is the case for the FFT (the cost of the matrix mul-
tiplication is O(n3) while that of the FFT is O(n log n), where n is the problem
size), there is a serious bottleneck in low bandwidth networks.

A comparison of the execution times of the CUDA function call of our imple-
mentation with those of a “local” CUDA execution, reveals that all the former
functions are slightly slower (around 10 ms. per call), except for memory copies
when a large amount of data is sent over the network (see the plots in Figure 4).
In particular, remote copies are around 15 times slower than local ones, yielding
a maximum overhead of 28 seconds for the largest problem on sgemm.
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Fig. 4. Left: Execution time of the three matrix copies involved in the matrix-matrix
multiplication. Right: Time for the memory copy operations (both directions) of FFT.

Those results illustrate that the overhead introduced by our implementation
is mostly caused by network related delays, as PCIe bandwidth is an order of
magnitude faster than the Gigabit Ethernet one. Therefore, we expect to reach a
performance that is close to that obtained with a local GPU execution when the
target network is based on HT, as this network will attain 3.2 Gbytes/s, which
is –according to our tests– around a half of the effective peak bandwidth of the
GPU reads through the PCIe bus. Furthermore, the latency estimations for the
HT-based network are around a few μsecs. [6], which is an order of magnitude
lower than the latency for a TCP frame on the network used in our tests.

6 Conclusions

We have implemented a GPU virtualization prototype which enables seamlessly
remote CUDA Runtime API calls. The middleware enables an efficient use of an
HPC cluster where only some of the nodes are equipped with accelerators.

We have shown that our approach can deliver reasonable performance for
clusters connected via a commodity network. As a major part of the time is
spent on communications, we expect a negligible degradation in performance in
case the nodes are connected via a high performance network.

There is much future work in completing the whole CUDA API and solving
multi-server related issues. Eventually, we also expect to generalize this solution
to OpenCL compatible accelerators.
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Abstract. Data access in HPC infrastructures is realized via user-level
networking and OS-bypass techniques through which nodes can com-
municate with high bandwidth and low-latency. Virtualizing physical
components requires hardware-aided software hypervisors to control I/O
device access. As a result, line-rate bandwidth or lower latency message
exchange over 10GbE interconnects hosted in Cloud Computing infras-
tructures can only be achieved by alleviating software overheads imposed
by the Virtualization abstraction layers, namely the VMM and the driver
domains which hold direct access to I/O devices.

In this paper, we present MyriXen, a framework in which Virtual Ma-
chines efficiently share network I/O devices bypassing overheads imposed
by the VMM or the driver domains. MyriXen permits VMs to optimal-
ly exchange messages with the network via a high performance NIC,
leaving security and isolation issues to the Virtualization layers. Smart
Myri-10G NICs provide hardware abstractions that facilitate the integra-
tion of the MX semantics in the Xen split driver model. With MyriXen,
multiple VMs exchange messages using the MX message passing protocol
over Myri-10G interfaces as if the NIC was assigned solely to them. We
believe that MyriXen can integrate message passing based applications
in clusters of VMs provided by Cloud Computing infrastructures with
near-native performance.

Keywords: Virtualization, Xen, Myrinet, Ethernet, MyriXen, Myri-10g,
Linux, I/O, DMA, Virtualized I/O, Message Passing, MX.

1 Introduction

Current Cloud Computing research is focused on providing a scalable, on-demand,
clustered computing environment. One of the major challenges in this field is bridg-
ing the gap between Virtualization techniques and high performance network I/O
retrieval techniques [1]. To meet the I/O needs of HPC applications running in
Virtualization environments, research has focused on alleviating overheads that
arise due to intermediate software layers. Hardware vendors [2] have become in-
creasingly aware of this issue and provide the community with smart I/O devices
that can export multiple interface instances using software [3] or hardware [4,5].
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Integrating I/O Virtualization semantics in HPC infrastructures can both
facilitate research and offer software management freedom without affecting iso-
lated application execution. Having a cluster of VMs that is almost identical
to a cluster of workstations and can be set up in hours or minutes seems quite
intriguing.

While HPC interconnects provide abstractions that can be exploited in Virtual
Machine execution environments, they lack architectural support. In this paper,
we describe MyriXen, a framework in which Virtual Machines share network
I/O devices efficiently bypassing overheads imposed by the VMM or the driver
domain model. Specifically, MyriXen allows VMs to optimally exchange messages
with the network via a high performance NIC leaving only security and isolation
issues to be handled by the hypervisor and the NIC itself. In the following
sections, we present some background information followed by MyriXen’s design
architecture.

2 Background

In Virtualization environments, the basic building blocks of the system (i.e.
CPUs, memory and I/O devices) are multiplexed by the Virtual Machine Mon-
itor (VMM). The latter may allow VMs to access these resources directly, in
order to maximize performance. Xen [6] consists of the hypervisor, the driver
domains and the VMs (guest domains). Driver domains are privileged guests
that access I/O devices directly and provide the VMs abstractions to interface
with the hardware via a split driver model. Driver domains host a backend driver
while VM kernels host a frontend driver exposing a generic device API to guest
kernels or userspace. The frontend communicates with the backend via an event
channel communication mechanism along with interrupt routing, page–flipping,
and shared memory techniques.

In Xen, memory is virtualized in order to provide physically contiguous regions
to Operating Systems running on guest domains. This is achieved by adding a
a per-domain memory abstraction called pseudo-physical memory. Therefore,
in Xen, machine memory refers to the physical memory of the entire system,
whereas pseudo-physical memory refers to the memory regions exported to the
Operating Systems running in each guest domain.

Xen Paravirtualized Network I/O. Xen’s paravirtualized (PV) network ar-
chitecture is based on a split driver model. Guest VMs host the netfront driver
which exports a generic Ethernet API to kernelspace. The driver domain, which
directly accesses network hardware, hosts the hardware specific driver, the pro-
tocol interface driver, and the netback driver. The latter communicates with
netfront via a dedicated event channel. Upon initialization of a guest domain,
the netfront binds to the netback driver, which in turn binds to a dummy net-
work interface bridged with the physical network interface in software. Thus,
network packets originating from the VM are transfered (copied or flipped) to
the netback driver and are injected to the NIC via the software bridge.
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Contrary to the previous approach, a Xen guest domain can directly access
an I/O device at the expense of system’s security. For example, suppose a VM
accesses directly a generic Ethernet NIC. To achieve maximum bandwidth the
VM kernel allocates memory for building an Ethernet frame and, with the help
of the VMM, informs the NIC’s DMA engine about the physical address of the
buffer. The NIC then DMAs data from the VM’s space to its packet buffers
and emits the frame to the network. However, the DMA transfer begins without
checking the validity of the source or destination, which evidently raises security
issues.

Xen Grant Mechanism. To efficiently share memory pages across guest do-
mains, Xen exports a grant mechanism to guest domains. Xen’s grants are stored
in grant tables and provide a generic mechanism to memory sharing between do-
mains. Network I/O device drivers are based on this mechanism in order to
exchange control information and data via shared memory. Each domain has its
own grant table.

Myrinet/MX basics. In order to fully comprehend MyriXen’s design, it is of
utmost importance to present the basic structure of Myrinet/Myrinet eXpress
(MX) [7]. To run MX in Virtualization environments, these features have to be
integrated into Xen’s device driver architecture.

Myrinet [8] is a low-latency, high bandwidth interconnection infrastructure
for clusters. Two generations of Myrinet are currently available: Myrinet-2000
and Myri-10G. Myrinet achieves low-latency cut-through switching using source
routing. Myri-10G is based on the same physical layer as 10GbE and can either
use the source-routed Myrinet protocol or 10GbE as the Data Link layer.

Myrinet NICs feature a RISC microprocessor called Lanai, which consists of:
the CPU, the copy engine, two packet interfaces, each with its own on-chip send
and receive packet buffers, a Z-port (XAUI Myri-10G / 10G Ethernet), and a
PCI Express port. The Local Bus (LBUS) is an interface to a fast, synchronous,
static SRAM.

To reduce the overhead of OS involvement, Myrinet employs user-level net-
working techniques. In this model, an application process is allowed to control
the Network Interface (NI) directly; since the OS is no longer invoked for com-
munication, its role is undertaken by a combination of application-level libraries
and firmware executing on the NIC, while data exchange between the two is set
up by privileged code inside an OS kernel module.

To provide user-level networking facilities to applications, the MX message
passing system is used. An application is granted control of the NI by mapping
part of the NI memory space into its own virtual memory. User-level communi-
cation is accomplished by using unprivileged load/store instructions to the rel-
evant VM segments bypassing OS abstractions and copies. This is a privileged
operation, which is done via system calls to the MX kernel module during the ap-
plication’s initialization phase. Each of these parts, called MX endpoints, acts as
an isolated virtual network interface at the process level for the application and
contains an unprotected part, which is mapped to userspace, and a protected,
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Fig. 1. MyriXen

trusted part, which is only accessible by the kernel module and the firmware.
An endpoint provides an entry point to the interconnect’s hardware, protected
from other processes, with fairness relative to the other endpoints opened on the
same NIC.

3 MyriXen

Like most device drivers, the MX driver cannot export multiple interfaces for a
single Myrinet NIC. Thus, a split driver model approach is required for multi-
ple Xen VMs to share a single NIC. In the following sections we describe our
prototype design.

Architecture. Fig 1 illustrates the basic design architecture of MyriXen. The
backend runs on top of the native MX driver in the driver domain. It waits for
incoming requests from the frontend drivers running in the VMs. The frontend
driver replaces the core MX driver and, once loaded, establishes two event chan-
nels with the backend driver: the first one is used to process requests initiated
from the VM; the second one is used for informing the guest domain about MX
events.

The frontend driver is a relatively thin layer and exports to VM userspace the
same API as the core MX driver. One of its tasks is the installation of mappings
for the MX library to access the NIC directly. Moreover, its role is to provide the
mechanism to open and close MX endpoints via the event channel mechanism.
The backend driver sets up the Myrinet NIC to support these features and issues
acknowledgments for event completion or error.

The split driver model used in Xen poses difficulties for user-level direct NIC
access in Xen VMs. To enable driver domain bypass techniques, we need to let
VMs have direct access to certain NIC resources. The building block of MyriXen
is myriback which allows myrifront to communicate with the MX core driver, and
thus, install the prerequisites to send or receive a message to / from the network.
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(a) Xen PV software stack (b) MyriXen software stack

Fig. 2. Xen and MyriXen network I/O Software Stack

The myrifront driver, similarly to the netfront driver, communicates with the
backend via an event channel mechanism. Contrary to the netfront / netback ar-
chitecture, MyriXen utilizes the backend in conjunction with the core MX driver
to grant pages to the VM user space and install mappings that can simulate the
normal case; the netfront driver, on the other hand, uses these channels to send
or receive packets (as a data path). Fig. 2(a) shows Xen PV net I/O software
stack as opposed to MyriXen’s software stack in Fig. 2(b).

MyriXen Semantics. To communicate with the network, an application run-
ning in a VM needs privileged access to the NIC. In order to provide isolated, vir-
tualized access to theMyri-10GNICwemust take into account the following issues:

Initialization: For applications to communicate using MX, the MX library
along with the NIC have to be initialized. The preparation steps needed for ini-
tialization include allocating basic structures for the library to communicate with
the Lanai. This is essentially a mapping operation: the VMs forward requests
to the myriback driver and wait for completion; the backend driver executes the
operation and provides the acknowledgment back to the frontend. The frontend
manages these resources using handles that are provided by the backend via the
event channel mechanism.

Endpoint management: Message passing over the network occurs between
endpoints. Thus, a VM has to open and close an endpoint before and after com-
munication takes place, respectively. Opening an MX endpoint means obtaining
a specific handle from the Lanai and the MX core driver. This is realized in two
steps. During the first step, the frontend requests an endpoint. The backend gets
informed via the relevant event channel and requests a free endpoint from the
NIC. The NIC returns a handle to that endpoint. The second step consists of
the acknowledgment sent back to the frontend along with the handle.
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VM1

I/O TLB MX core driver

I/O TLB

Fig. 3. MyriXen network I/O architecture

Memory registration: After the Initialization and the Endpoint opening phase,
the frontend has to register memory regions that will participate in the message
exchange. The memory registration requests originate from the frontend and
provide grant references to the Xen hypervisor. The MX core driver registers
these memory regions to the Lanai, and forms an on-chip page table cache. This
is a necessary step in order to realize zero-copy data transfer.

Message Matching: MX offers a rich message matching interface to applica-
tions and application libraries in order to alleviate matching overhead imposed
by the kernel or generally OS involvement. Thus, MyriXen can exploit the ex-
isting MX semantics for matching to achieve direct delivery of messages to VMs
bypassing receive-path copies that impose significant overhead.

Protection: As mentioned in section 2, Xen uses a grant mechanism to transfer
pages from privileged to guest domains and vice-versa. MX is based on zero-copy
and OS-bypass techniques to achieve line-rate bandwidth for 10Gbps networks.
However, these techniques can lead to significant throughput degradation due
to Xen’s architecture. To avoid illegitimate access to arbitrary memory regions,
an I/O TLB cache mechanism can be used to transfer valid page tables to the
Lanai SRAM. Thus, memory protection is guarantied by having the Lanai check
for valid memory regions before programming its DMA engines.

Address Translation: DMA transfers between userspace buffers and Lanai’s
on-chip packet buffers are invoked by applications that have already opened an
endpoint and have registered specific memory regions. The registration process
involves pinning pages that will be used for DMA transfers as well as informing
the MX core driver and the NIC about these pages. Address translation in
Xen consists of two steps: the first is a virt-to-phys translation on the VM side
(myrifront) and the second is a pseudo-phys-to-machine translation done be the
hypervisor so as to end up with addresses that the Lanai DMA engines are able
to follow.



Message Passing in Xen Virtual Machines over Myrinet and Ethernet 401

Discussion. Note that initialization, endpoint management, and memory reg-
istration are steps that occur outside the critical path of network intensive ap-
plications. Although these operations are resource intensive (PIO to the NIC,
asynchronous events, grant references, etc.), they take place before or after the
communication phase, and thus, their performance impact is not significant.

In MyriXen, data flows directly from applications to the NIC leaving only
control issues to be handled by the hypervisor or the driver domain. Applications
control the DMA engines of the Lanai chip directly using load/store instructions
to NIC memory mapped regions.

An important feature of our design is the decoupling of data transfers from
the Virtualization layers. The implications of this mechanism for the overall
throughput constitute a possible caveat of our approach. Specifically, the way
the control path interferes with data communication may result in significant
overhead, which needs to be examined with extensive performance evaluation
using microbenchmarks.

Finally, one could also criticize how MyriXen handles isolation: MX provides
isolated access by using MX endpoints exporting a virtual NI to any application
that requests access to the network. Our design of MyriXen is such that MX
semantics to applications remain unaltered, so the isolation features provided by
MX would also characterize MyriXen.

4 Related Work

Previous work has concluded that the integration of Virtualization semantics
in specialized software running on Network Processors can isolate and finally
minimize the hypervisor and driver domain overheard associated with device ac-
cess. Liu et al. [9] describe VMM-bypass I/O using the Infiniband architecture.
Their approach is novel and based on Xen’s split driver model. Many features
presented in this work can be used by modern Virtualization platforms to over-
come the bandwidth and latency limitations imposed by software overheads.
Although their model is thoroughly designed, they focus on Infiniband, which
uses specialized hardware without open specifications.

Mansley et al. [10] developed a safe, direct data path between the VM and
the network using Solarflare Ethernet NICs. However, their approach is device
specific and cannot be used for efficient message passing, since existing messaging
protocols have to be stacked above Ethernet. Our approach accounts for this
problem and aims to keep MX’s full compatibility with the applications.

Santos et al. [1] present a performance analysis of network device I/O in Xen
and identify possible bottlenecks. They also propose optimizations and imple-
ment a small subset of them. The primary objective of this work is to present a
generic framework for sharing smart NICs in Xen VMs. As an extension to [1],
in [3], the authors describe mechanisms to overcome the bandwidth limitations
imposed by the VMM and the driver domain model in Xen and provide an ef-
ficient and direct data path for VMs to access the network. Unfortunately, the
authors do not focus on HPC environments although the features they propose
could be exploited by message passing protocols.
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While the aforementioned studies present a promising framework they have
only been implemented on top of Ethernet ignoring the potential advantages of
Myrinet. This study aspires to provide insight into integrating existing messaging
protocol semantics to Virtualization platforms.

5 Conclusions and Future Work

We have described the basic design of MyriXen, a thin split driver layer on top
of the Myri-10G MX driver to support message passing in Xen VMs over the
wire protocols supported in Myri-10G infrastructures. Message passing occurs
in a direct I/O data path leaving only control and management issues to the
driver domains and the VMM. MyriXen’s design is based on the Xen split driver
model in order to sustain manageable infrastructures that can provide VMs with
security, isolation, and migration capabilities even in heterogeneous hardware
configurations.

MPI applications over a cluster of VMs are liable to significant performance
degradation due to limited network performance [11]. This is mainly caused by
overheads imposed by the driver domains, which directly access I/O devices.
MyriXen accounts for this problem by combining the following two important
features: it utilizes the Xen split driver model and, at the same time, installs a
direct application-to-NIC data path for message exchange.

We believe this approach is a step towards integrating HPC applications in
Virtualization environments, such as Cloud Computing infrastructures. MyriXen
provides VM-level networking semantics in an already deployed Virtualization
platform, Xen, with a vast user base. Our future work will be firmly oriented to-
wards evaluating our prototype design and presenting an extensive performance
evaluation of MyriXen in conjunction with latency breakdown analysis on MPI
applications running on clusters of VMs. We believe that there is scope for these
applications to benefit greatly from MyriXen’s direct data path and achieve
performance close to native.
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Abstract. This paper presents Virtage, Hitachi’s virtualization technology, 
which enables logical partitioning of server platforms. Logical partitioning ar-
chitecture brings two benefits to this virtualization technology, one is hardware 
transparency and another is better performance. 

We first describe its key feature: hardware transparency. With the advantage 
of hardware transparency for logical servers, it is possible to provide the same 
guest Operating System (OS) interface from both physical servers (non-
virtualized servers) and logical servers. Virtage is hypervisor-type virtualiza-
tion, and therefore has a natural performance advantage over host-emulation 
virtualization offerings because guest OSs can be simply and directly executed 
on the virtualized environment without host intervention.   

Then we demonstrate this lower overhead for CPU and I/O with perform-
ance experiments and explain how Virtage brings mainframe-class virtualiza-
tion to blade servers. In this paper we study the factors of virtualization  
overhead for CPU and I/O by using original event monitoring tool that can get 
hypervisor-event information. 

Keywords: virtualization technology; Virtage; server; pass-through method; 
hardware transparency; benchmark; scalability. 

1   Introduction 

Recent developments in server hardware technology have resulted in increased num-
bers of CPU cores and the need to install greater memory capacity on each server, 
thereby making it harder to efficiently utilize the full performance of a server with a 
single Operating System (OS). This problem can be resolved through server virtual-
ization technology, which allows one server to run multiple applications on top of 
independent OSs. Currently, server virtualization technology is mainly used for server 
migration from old and low performance systems to new high performance hardware. 
It is important to have high performance, high availability and easy system manage-
ment for server consolidation. 

Virtage is the new server virtualization technology available on Hitachi's Blade-
Symphony servers. Virtage implements a logical partitioning system, which presents 
the physical server hardware configuration to logical servers without abstraction of 
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the hardware configuration. This is a unique virtualization feature. By using this logi-
cal partitioning system, Virtage users can utilize high availability cluster systems or 
database systems.  

The purpose of this paper is to introduce Virtage and this new approach of server 
virtualization technology. It is suitable for a wide range of business and research ap-
plications. We discuss the design aspects of Virtage and its advantages. In the rest of 
the paper, we describe the key features of Virtage with some examples of system 
implementation and operations management. We also present some experimental 
results of Virtage performance. 

2   Design Policy 

For blade servers—which are often employed in businesses' mission-critical sys-
tems—running a virtualized environment, it is desirable to maintain support for high-
availability and high-operability systems in order to secure the same high reliability 
and operational efficiency as physical servers. 

Research was carried out in the field of mainframe computing systems in the 1970s 
in pursuit of higher performance in virtual machines [2], [3]. Even today, products 
based on logical partitioning are heavily used in mainframe computing systems. 

Our development goal is a server product intended for mission-critical systems, 
which requires a virtualization system suitable for this kind of usage profile. For this 
reason, Virtage adopts the logical partitioning method. 

Virtage has been designed to provide  "hardware transparency" for logical servers. 
It provides the same guest OS interface for both logical servers and physical servers. 
The logical partitioning of systems provides the following benefits: 

─ The same file system can be used in both the virtual and the physical server en-
vironment. (e.g. NTFS, EXT3, etc.) With this Virtage feature, a system disk 
which was deployed in a virtual environment can also be used in a physical 
environment.   

─ Both a CPU dedicated mode and a CPU shared mode are available. The CPU ser-
vice ratio can be assigned in units of one percent when using CPU shared mode. 

─  Less performance overhead caused by the virtualization control. 
─ In a logical server environment, I/O intensive application software works nor-

mally, just as it works on a physical server. Examples are storage management 
software and cluster control software of hot-standby systems. 

In the logical server environment of Virtage, any application software can work nor-
mally, because a guest OS and its applications can access I/O devices in the same way 
they would access the physical server’s hardware interface. 

2.1   Hardware Transparency 

In this section, we discuss hardware transparency, which is a distinctive characteristic 
of Virtage. Here, hardware transparency is defined according to the two conditions 
specified below. We will examine what benefit is delivered by hardware transparency 
when these two conditions are satisfied. 
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1. All I/O commands issued by the guest OSs (OSs on virtual computers) and their 
responses must be identical to those on a physical server. 

2. The format of the disk used by the guest OSs must be identical to that of a physical 
server. 

If the process executed by a guest OS on the disk is just a simple read/write, condition 
1 does not necessarily need to be satisfied. In general, neither condition 1 nor condi-
tion 2 is satisfied with other virtualization software. However, in order to return cor-
rect responses to the execution of control-related commands issued by cluster control 
software etc., condition 1 should be satisfied. To put it another way, when this condi-
tion is met, a cluster of linked logical servers can be structured without special  
restrictions. 

Meanwhile, two advantages are obtained when condition 2 is met. One advantage 
is that, because the file system can be accessed directly, the system can be accessed 
from a backup server that does not support virtualization. This makes it possible to 
adopt the so-called LAN-free backup configuration, in which the incremental change 
data of the disk used by the guest OSs is backed up, file by file, via SAN, without 
going over the LAN. 

The other advantage arises from the ability to write data from the guest OSs to the 
disk unit securely. In general, virtualization software often adopts a virtualized file 
system as the disk unit's recording format. In this case, it is common to prepare a disk 
cache in the server’s memory. If the virtualization software has a disk cache, data is 
likely to be retained in the cache for a certain period of time after a data-write-
completion-response has been returned, even when the guest OSs execute a raw write 
(intending to record data securely on a physical disk). Such caching means that the 
system cannot maintain the journal files necessary to preserve the reliability of trans-
action monitors and database software. Some virtualization software does have raw 
write capability: a guest OS can write data directly into disk units, bypassing the vir-
tualized file system. However, to use this capability, users have to consider which 
volumes must be configured with virtualized file systems and which volumes must be 
configured with normal file systems.  This adds to the complexity of configuring 
production systems. 

2.2   Comparison of I/O Virtualization Methods 

There are two typical I/O virtualization methods. One is the pass-through method and 
the other is the hypervisor emulation method, which is often used in other  virtualiza-
tion software. The pass-through method is desirable in order to achieve hardware 
transparency. 

• Pass-through method 

The pass-through method is a technique that does not need the intervention of the 
hypervisor when a guest OS activates and executes an I/O operation.  

The DMA address set up by the guest OS on the I/O device is a virtualized 
memory address. Therefore, if the I/O device executes data transfer as is, the data 
will be transferred to the wrong memory location. To prevent this error without 
the intervention of the hypervisor, hardware assistance is required. 
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• Hypervisor emulation method 

The hypervisor emulation method is a virtualization technique that executes ad-
dress translation for DMA transfer by guest OSs by means of emulation, using hy-
pervisor traps at the time of I/O activation.  

Fig. 1 shows conceptual diagrams of the two virtualization methods, and Table 1 
compares their functional features. 
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Fig. 1. Structure of I/O virtualization methods 

Table 1. Comparison of I/O virtualization methods 

 Pass-through Method Hypervisor Emulation Method 

I/O performance G 
High performance 
by direct execution 

N
Large overhead  
due to emulation 

Hardware transparency G 
Clustering for hot standby 
system is available 

N
Hard to gain right 
response for control accesses 

File system transparency G 
LAN free backup/ 
DBMS use available N

Virtual file system prevents 
common system use 

Disk virtualization N 
not supported 

G
Virtual Machine migration 
available 

G: Good,   N: Not good 

On the basis of the comparison in Table 1, we decided to adopt the pass-through 
method for virtualization on the BladeSymphony BS1000 servers, which is aimed at 
businesses' mission-critical systems. 

As discussed above, hardware assistance is needed to implement pass-through I/O.  
We developed a unique I/O virtualization assist mechanism to implement this hard-
ware assistance. Thus, we have succeeded in creating a practical pass-through 
method. 
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3   Performance Experiments 

In a real-life virtualized environment, some virtualization control overhead cannot be 
ignored, such as emulation processing.  We have made a performance experiments 
with Virtage. It is a system-level test with a 3-tier application program running on 
several logical servers (LPARs) on a physical server in order to investigate the scal-
ability of this workload.  

In this test, we used a typical ERP workload model, Sell from Stock load Scenario, 
for the system test because it is CPU and memory intensive and uses substantial 
amounts of network traffic and disk I/O. 

Fig. 2 shows the test environment used. The system used for the experiments con-
sisted of application servers on logical servers (one application server per LPAR), a 
database server on a separate physical server, and external test drivers connected to 
the application servers. 

LAN

DB server
(physical 
server)

virtual switch
Physical Server Configuration for AP Servers

CPU : Intel®  X5460 (3.16GHz)  
2 sockets (total 8 CPU cores)

Memory : 32GB
Guest OS : Microsoft® Windows® Server 2003 

R2 SP2(x64)

Processing sequence of 
each transaction

Drivers:
Generate transactions

Physical server
for AP server LPARs as 

AP server  

Fig. 2. 3-tier (database server, application servers, and the drivers) application program model 
and the environment 

We evaluated three levels of transaction workloads; heavy, middle, and light with 
60%, 40%, and 20% of CPU utilization in the system respectively. The performance 
is given by measuring the response time of the transactions with these workloads. The 
test server has eight physical CPU cores. In the test, we used four, six, and eight logi-
cal servers (LPARs) as application servers, and each application server had two vir-
tual CPUs. Therefore, a maximum of 16 virtual CPUs is running in this test.  

In the case of four running application servers, the number of virtual CPU cores 
equals the number of physical CPU cores.  However, with six and eight application 
servers, the number of virtual CPU cores exceeds the number of physical CPU cores. 
We call this processor over-commitment. This ERP workload test is designed to be 
completed with a two second response time for practical use. 

Fig. 3 shows that this condition can be satisfied in the cases of four and six logical 
servers (LPARs) running simultaneously in one physical server for all levels of trans-
actions. On the other hand, in the test with eight logical servers, this condition is satis-
fied only for the middle and light transaction workloads. 
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We can easily understand above phenomenon if we have the graph which plots 
practical consumed physical CPU cores. Fig. 4 shows numbers of CPU cores that 
consumed in each case, heavy, middle and light.  It shows that only one case exceeds 
numbers of existing “physical CPU cores” that is 8 and Fig. 3 shows that only this 
case exceeds the response time limitation.  In other words, if numbers of consumed 
CPU core is less than numbers of existing physical CPU cores, the system achieves 
enough quick response time. 

Therefore, relatively good performance with processor over-commitment is shown 
for light and middle transaction workloads. Only the heavy transaction workload with 
eight logical servers cannot achieve the desired performance. We are investigating 
whether this is due to a performance limitation of this test model (that is, an applica-
tion limitation) or whether it is due to virtualization overhead. 

4   Performance Overhead Analisys 

"CPU performance overhead" in server virtualization is the additional processing time 
which does not exist on physical server processing. From viewpoints of instruction 
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execution time, some hypervisor instruction streams are inserted in the application 
and OS instruction stream in virtualization environment.  The performance overhead 
is the additional time to execute the inserted hypervisor instruction streams. 

Examples of causes of the inserted hypervisor instruction streams are as follows. 

─ Critical resource accessing : If guest OSs access critical resources like control 
registers or I/O registers for MMIO operations, the hypervisor has to emulate 
the resources. 

─ Page fault occurrence : If page fault is occurred on guest OSs, the hypervisor 
has to maintain memory management tables like page table or TLB. 

─ Interrupt from hardware : If external interruptions are occurred on the hardware, 
hypervisor has to emulate another interruption for specified guest OS. 

It is useful to measure the frequency and execution time to detect the cause of  per-
formance overhead and think out the measures, because the frequency of those hyper-
visor events depends on the characteristic of the executions of application programs. 

We developed the event counter and the event tracer functions as a performance 
monitor and put them into the hypervisor. The event counter counts the hypervisor 
events and sum up their execution time respectively. The event tracer records the 
hypervisor events in sequence.   

We measured the virtualization overhead factors using Virtage performance moni-
tor in former ERP workload. The Intel® X5460 platform, Virtage uses SPT(Shadow 
Page Tables) method for guest to host address translation. The overhead is relatively 
high because the hypervisor execution is needed for address translation. Concretely 
hypervisor set the guest to host translation to SPT at Page fault and invalidate it at CR 
access which is issue by OS at guest process switch. 

The Intel® X5570 platform, Virtage uses EPT(Extended Page Tables) method for 
guest to host address translation. In EPT method the address translation is executed by 
hardware and hypervisor execution is not needed. The overhead is 76.6% less than the 
one in SPT method.  

Table 2. Result of performance monitoring 

Factor of VMexit Grouping SPT method EPT method

PF_REASON_INST_EMULATIONMMIO 0.053 0.000
mmioCacheEmulation MMIO 0.000 0.000
External interrupt Interrupt 0.033 0.054
Interrupt window Interrupt 0.003 0.001
CPUID Instruction Emulation 0.000 0.000
MOV DR Instruction Emulation 0.000 0.000
I/O instruction ACPI timer 0.002 0.002
RDMSR Instruction Emulation 0.000 0.000
WRMSR Instruction Emulation 0.000 0.000
TPR below threshold Interrupt 0.003 0.003
APIC(EOI) Interrupt 0.017 0.033
APIC(other) Interrupt 0.090 0.088
vmexitEptViol_COST MMIO 0.000 0.052
HLT(host) Halt 0.009 0.001
PF_REASON_SPT_UPDATE Page Fault 0.482 0.000
CR access CR access 0.306 0.000
INVLPG MMU 0.001 0.000

PF_REASON_GUEST_PF MMU 0.001 0.000

Total 1.0 0.234  
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Table 2 shows the result of the performance monitoring for ERP workload bench-
mark, and Fig. 5 shows performance overhead analysis results between SPT method 
and EPT method in the workload case. 

CR access 30.6 %

Page fault 48.2 %

MMIO 5.3 %

interruption 14.6 %

others 0.4 %

HALT
0.9 %

100 %

23.4 %

(a) SPT Method (b) EPT Method

interruption 17.9 %

MMIO 5.2 %

others 0.3 %

 

Fig. 5. Performance overhead analysis 

It shows that the principal cause of overhead by SPT method is Page Fault and CR 
access. Page Fault occurs when the address required by running program is not 
mapped to the physical address. In virtualization environment, a hypervisor translates 
the  address that required by guest program to the physical address on the host side 
and registers the  translation information into SPT when Page Fault occurs. As long as 
the translation information exists in SPT, when the same page is accessed, processor 
refers SPT and converts guest address  to host physical address. Therefore, Page Fault 
does not occur. The overhead depends on how often new pages access occur. In this 
workload, new page access occurred with certain frequency. Consequently, it can be 
seen a lot of Page Fault overhead. CR access occurs when OS switch the executing 
process. With the occurrence of CR access, Hypervisor switch SPT. This cause an-
other overhead on CR access if there are many processes switches.  

Here we compare it with former research for such analysis of virtualization  
overhead. 

Apparao[13] points out that processing cost increase 600% for context switching 
when numbers of VM increase from 1 to 4, in their virtualization evaluation environ-
ment using Xen hypervisor and SPECjbb2005 workload. It also points out that rea-
sons of the large processing cost are TLB flush, page walk and cache pollution. 

Our workload and virtualization software environment is different to above re-
search, but our measurement results takes on similar aspect to it from viewpoint that 
the primary factor of overhead is management of context switch. 

The analysis of here is from a viewpoint of hypervisor software processing, and 
former research analysis is based on hardware processing factor. That is, the cause of 
“page fault” and “CR access” in fig. 5 is context switch. Hypervisor makes another 
SPT for new context, and it changes current page table contents for new SPT, and 
after that TLB is flushed. Along with execution of new context, page walk process is 
configured by hardware. 
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Page fault overhead time measured in fig. 5 includes these particular actions on 
hypervisor. Similarly CR access on guest OS needs particular actions made by hyper-
visor. Guest OS accesses logical CR to dispatch new process, hypervisor traps it and 
emulates for physical CR access with validity check.  

EPT method has a feature that processor is able to translate from guest address to 
host address directly. It is not necessary SPT management. With no hypervisor inter-
vention, no overhead is achieved with EPT method. As a result, if there is a lot of SPT 
update such as this workload, substantial performance improvement can be expected 
with applying EPT method. 

Fig. 5(b) shows overhead factors of same ERP benchmark workload when the sys-
tem uses Intel® X5570 processor. Factor of page fault and CR access are suppressed 
in EPT method, those are appeared in SPT method, and only the overhead which is 
related to I/O operations like MMIO or interruptions are remain. 

At the result, in principle 78.8% of overhead in SPT method is suppressed because 
of supporting EPT hardware (Fig.5(a)), in practice the overhead of EPT method is 
smaller 76.6% than SPT method (Fig.5(b)). 

This case must be treated carefully as one case, it is not applicable for all cases, but 
we can understand that EPT method is extremely good control method for achieving 
low performance overhead.   

5   Concluding Remarks 

This paper describes a new virtualization technology and presents a comparison be-
tween implementations of hardware transparency by software virtualization and 
hardware-assisted virtualization. In addition, with some performance experiments, we 
show that Hitachi’s virtualization technology, Virtage, has a wide range of practical 
applications, from the enterprise business area to the high performance computing 
area. 

For achieving its performance, Virtage has performance monitor functions, and it 
helps resolving much performance problems on virtualization environment. 

Hardware transparency on Virtage simplifies complicated system configurations 
for enterprise systems thanks to the hardware assist features for I/O control. This 
cannot be achieved with pure software virtualization. The hardware transparency not 
only enables low emulation overhead from the hypervisor, but it also enables efficient 
virtualization control, high availability, and high operability. 

We examined the performance of virtualization overheads and scalability under 
different workloads within a Virtage environment. This experiment indicates that 
Virtage has small virtualization overhead and relatively good performance scalability 
in practical use with processor over-commitment.  Virtage is ready to use for a wide 
range of applications in the business and high performance computing areas. 

However, since with Virtage the guest OS can directly access the hardware specifi-
cations of the physical server, it does not meet some user requirements.  For example, 
that a new server installed with a new chipset should be able to support the old ver-
sion of an OS running on old servers. The new server might be considered unsup-
ported hardware for the old OS. 
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Our future work will be in the areas of enhancing hardware transparency and satis-
fying user needs for supporting old OSs on new servers with new chipsets. Also, 
additional performance evaluation of Virtage in more realistic situations is needed.  
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Abstract. For a large class of scientific data analysis applications it is
becoming important, due to the sheer size of datasets, to have the op-
tion to perform the analysis directly where the data are stored, rather
than on remote computational clusters. A possible strategy is the use
of virtual clusters, thus guaranteeing a high degree of isolation from the
underlying physical computational structure, and a very compact initial
description. Deploying, saving and restoring HPC dedicated virtual clus-
ters introduces, however, a different class of requirements on the virtual
machines managing infrastructure, in particular for what concerns stor-
age I/O requirements, whose scalability boundaries are easily reached.
Here we discuss an alternative approach based on a storage model that
leverages the WORM (write once, read many) character of the data used
by VM management to increase, in a scalable way, the aggregate data
bandwidth available to virtual cluster level operations and provide pre-
liminary results indicating that it is a viable solution.

1 Introduction

Current scientific data production technologies allow for the collection of huge
datasets at a constantly decreasing price. Examples of research fields recently
hit by what has been called the “data deluge” include geosciences with em-
bedded networked sensing [1], life sciences with biomedical imaging [2] and
high-throughput DNA sequencing [3]. Developing new technologies capable of
properly managing these datasets constitutes a precondition for the efficient
extraction of knowledge from the data and an interesting research problem in
itself.

Applications for any nontrivial analysis of such datasets are usually parallel,
and require large computing clusters to be effective. Due to their high installation
and maintenance costs, large clusters are almost always shared between research
groups with different, possibly conflicting software requirements, making their
administration problematic. Moreover, when datasets reach this size, it is usually
much more efficient to analyze them directly where they are stored, rather than
moving them to a remote computational cluster.

A popular solution to this class of problems is OS-level virtualization, which
allows to encapsulate applications, along with all their requirements down to the
operating system, into virtual machines (VMs) thus guaranteeing a high degree

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 414–423, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of isolation and easy migration between different physical hosts. In particular,
the paravirtualization approach, adopted by leading technologies like Xen [4,5],
allows VMs to achieve extremely low performance overhead,1 which makes them
particularly attractive for running HPC applications. Since scientific data are
typically analyzed by means of parallel applications, virtualization leads to com-
putational entities which take the form of virtual clusters (VCs) [6], sets of VMs
which are deployed and managed as single, self-consistent atomic entities.

A VM for data-driven applications like the ones cited above often needs to be
described by a state (file system image and allocated memory) measuring several
gigabytes. For example, a recently developed MapReduce [7] application [8] for
the analysis of deep sequencing datasets employs VMs with 4 GB of RAM and
more than 3 GB of disk space for local caching.

Fig. 1. Left: direct measurements of the total time taken to, respectively, get from a
central NFS repository the same 3 GB image to N VM host nodes, save back to the
repository N 3 GB images taken from the same N VM hosts and restore the N images
from the repository to N VM hosts. Right: corresponding effective bandwidth defined
as the total amount of data transferred divided by the total time taken by the transfer.
The dashed lines are drawn only to guide the eye. The measurements were obtained
using the setup described in section 4.1.

In this context, a virtual cluster’s initial description is usually given in terms of
N initially identical virtual machines, all of which are instantiated from the same
disk image; subsequent events in a typical VC lifecycle include non-destructive
save/restore and shutdown. Thus, while the initial cluster deployment involves
transferring the same image to N VM hosts, other operations require the saving
and, at restart, the restoring, of N different images from/to N different VM
hosts. Fig. 1, on the left, shows direct measurements of the total time taken to,
respectively, get from a central NFS repository the same 3 GB image to N VM
host nodes, save back to the repository N 3 GB images taken from the same
N VM hosts and restore the N images from the repository to N VM hosts.
The right side of the same figure shows the corresponding effective bandwidth,
defined as the total amount of data transferred divided by the total time taken

1 www.xen.org/about/paravirtualization.html
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by the transfer. The measurements were obtained using the setup described in
section 4.1. All these processes are parallel, in the sense that all transfers to and
from the VM hosts are started synchronously.

It is apparent from figure 1 that, while NFS is a perfectly adequate solution
for small clusters, it will not scale as the number of nodes increases. Apart from
the specifics of a given hardware setup, this is a direct consequence of having
an external fixed storage system, whose bandwidth is independent from the
computational cluster’s size. On the other hand, NFS provides much more (e.g.,
supports arbitrary modification on files) than the simple streaming I/O required
for handling VM images.

In this paper we discuss an alternative storage approach based on HDFS,
the Hadoop2 Distributed File System. Differently from general purpose, POSIX
compliant, distributed file systems such as Lustre [9] and GPFS [10], HDFS is
specialized to a model where files, once written, cannot be modified. This dra-
matically simplifies the management of distributed data coherence while guaran-
teeing high throughput for streaming applications. Although limited in general
file system terms, HDFS is perfectly adequate to VC deployment and migration
operations since the latter create what are, essentially, immutable data.

The main point here is that whatever the file system used, it should be able to
use storage on the physical VM hosting cluster, and guarantee scalability. Our
specific choice was HDFS – it could have been a similar storage system such as
CloudStore3 – because our main virtual cluster applications are Hadoop based
and expect the hosting facility to export an HDFS file system.

Our preliminary results indicate that this is indeed a viable solution and that,
at the cost of a moderate increase in the complexity of the VM hosts setup, it
brings good scalability and dramatic performance improvements with respect to
traditional, out of the cluster storage strategies.

The rest of the paper is organized as follows: section 2 discusses related work;
in section 3 we briefly introduce HDFS; section 4 describes experimental setup
and test results; finally, in section 5 we present our conclusions and plans for
future work.

2 Related Work

Virtual clusters have been the subject of intense research activities in the past
years. In [11], OS and network virtualization are used to partition machines into
separate “virtual domains” in order to increase isolation between different or-
ganizational units and optimize resource utilization. In [6], a VC is defined as
an aggregation of atomic virtual workspaces [12], implemented as sets of virtual
machines. Maestro-VC [13] provides on-demand virtual clusters, implemented as
sets of Xen VMs, which are deployed and managed as homogeneous entities. The
problem of efficient and scalable VC installation is addressed in [14] by means

2 http://hadoop.apache.org
3 http://kosmosfs.sourceforge.net
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of pipelined data transfer and automatic caching of frequently used VM images.
In [15], VC deployment and configuration is discussed in an HPC context.

These works are mainly focused on extracting homogeneous, customized en-
vironments from a broader, possibly heterogeneous resource pool by means of
automated installation frameworks. Although it shares similar goals, our work
specifically focuses on deployment systems capable of supporting large images
(in the order of several gigabytes) deployed on hundreds of cluster nodes.

In this work we use Hadoop HDFS as distributed VM image repository. Alter-
native solutions, often available in HPC cluster installations, include GPFS [10],
PVFS [16] and Lustre [9]. However, given the WORM storage model that char-
acterizes VC management, a specialized file system capable of harnessing it to
maximize performance was the natural choice. Concurrent to our work, in an
effort to support MapReduce on GPFS, IBM researchers have shown [17] how
a standard cluster file system, after undergoing substantial modification, could
achieve performances comparable to those of more specialized file system like
HDFS, albeit with increased network traffic.

3 Technologies

The main technologies used in the work described here are HDFS and NFS.
While the latter, being widely adopted, is well known, the former deserves a
short introduction which we will present in the next section.

3.1 HDFS

Hadoop4 is a popular open source implementation of MapReduce [7], a paral-
lel programming framework initially developed by Google. Hadoop includes a
distributed file system for application data storage called HDFS (Hadoop Dis-
tributed File System). HDFS has been specifically designed for very high scala-
bility (thousands of nodes, hundreds of millions of files, tens of petabytes) and
optimized for high throughput processes on very large datasets.

Its key features are:

– fault tolerance: data blocks are replicated according to a configurable repli-
cation factor so that the MapReduce engine can reassign failed tasks to other
nodes;

– WORM (write once, read many) storage model: once a file is written, it
can never be modified. This allows to maximize the aggregate bandwidth
without resorting to complex synchronization mechanisms.

HDFS adopts a master/slave architecture: the master, called namenode, stores
file system metadata and provides a namespace which allows groups of data
blocks to be seen as ordinary files; the slaves, called datanodes, physically store
data blocks and serve read/write requests from clients. By design, user data
never flows through the namenode: when a client requests a file, the namenode
4 http://hadoop.apache.org
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simply replies with a set of block IDs and the addresses of the datanodes on which
those blocks are stored; actual data transfer happens between the client(s) and
the datanodes.

The usual HDFS application is to support the MapReduce computational
framework, typically deployed over the same worker nodes as HDFS. Specifically,
MapReduce, in its Map phase (where all data records are independent) uses
information on data block location to optimize bandwidth to computation by
scheduling tasks closest (in a network topology sense – e.g., on the same physical
nodes or in the same rack) to where blocks are stored and minimize network
traffic: by doing this it is possible, in principle, to reach an effective bandwidth
that scales with the number of datanodes.

In the context of this paper, however, we are using HDFS in a different way. We
are essentially interested only in reading and writing large numbers of VM image
files, concurrently from multiple clients. Thus, while in its usual application
HDFS clients independently read different data chunks corresponding to the
different sections of the MapReduce input stream, in the VM repository case
all clients read/write in sequence the data blocks that constitute each file. In
this case parallelism is governed by a pipeline where each stage corresponds to a
block and uses a group of datanodes to serve the operation. Therefore, even in
the hypothetical case of an infinite size cluster, the depth of the pipeline controls
the maximum bandwidth that can be achieved in a get operation where N clients
concurrently download the same image file from HDFS. A simple model yields
the following for the total time T needed to download from an HDFS cluster of
S nodes to N clients a file of size W = Bbs, where bs is the HDFS block size
and B the number of blocks, in the limit of S ≥ B and large N :

T =
W

bw

(
nt +

tl
τ

)(
1 +

N − ntR

ntRB

)
, (1)

where bw is the point-to-point bandwidth between a client and a datanode,
nt the number of server threads per datanode (in Hadoop, nt defaults to 3),
τ = bs/bw is the time needed to read a block of size bs, tl the latency in-
volved in starting a block read, which ranges from tens to hundreds of mil-
liseconds [18], while R is the HDFS block replication factor and by large N we
mean N � ntR. Eq. 1 predicts an essentially N -independent transfer time for
(N − ntR) � ntRB. Accordingly, the effective bandwidth Ebw = NW/T will
initially grow linearly with N and then saturate at about RBbw. Of course,
this should be regarded as an indication of a general trend: the picture is more
complicated for N smaller than ntR and large N behaviour is also controlled
by the co-location of server and client processes and network effects. Differently
from get, the many-to-many operations save and restore are in principle parallel
since they involve N independent pipelines. However, their scalability is limited
by finite size effects when the number of client and server datanodes becomes
comparable with the hosting cluster size, especially because of competition for
disk access.
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4 Experimental Results

We have conducted a series of experiments to assess the feasibility of employing
HDFS as a VC repository system by running various configurations on a medium
size production cluster.

4.1 Setup

Image transport tests were conducted on a cluster of 384 HP BL460c blades
equipped with two quad-core Intel E5440 (2.8 GHz) CPUs, 16 GB of RAM,
two 250 GB SATA hard disks and two BCM5708S Gigabit Ethernet NICs. The

Fig. 2. Left: direct measurements of the total time taken to, respectively, get from a
distributed HDFS repository the same 3 GB image to N VM host nodes, save back
to the HDFS repository N 3 GB images taken from the same N VM host nodes,
and restore the N images back from the repository to N VM hosts. As a matter of
comparison, the figure also reports analogous measurements done using the NFS-based
repository. HDFS was run with the default settings, i.e., block size equal to 64 MB
and replication factor set to three. Right: corresponding effective bandwidth defined as
the total amount of data transferred divided by the total time taken by the transfer.
The lines are drawn only to guide the eye. The measurements were obtained using the
setup described in section 4.1.

computing blades are contained, in groups of 16, in blade enclosures, in turn
interconnected by 10GbE links to a central switch so that, albeit with potential
latency hits, the cluster can support 1GbE wire speed interconnections between
any arbitrary pair of blades.

The cluster is a shared production environment managed with Sun Grid En-
gine (SGE) [19]: to instantiate HDFS on it, we modified Hadoop On Demand5

in order to use SGE (instead of its default, TORQUE) as its resource manager.
The external storage system used for NFS tests is a Sun StorageTek 5320

NAS Appliance which mounts 400 GB fiber channel and 1 TB SATA disks for a
total capacity of 460 TB.

5 http://hadoop.apache.org/core/docs/current/hod_user_guide.html
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4.2 Measurements

In the following, we will use N to indicate the number of VC nodes and S to
denote the number of nodes of the hosting physical cluster and thus of the HDFS
file system. All scaling measurements are performed on the aforementioned pro-
duction cluster that did not, at that time, support virtualization. On the other
hand, here we are only considering image transport to/from the HDFS repos-
itory to the virtualization hosts and thus the reported measures are expected
to be relevant to a full VC hosting setup. All measurements are the results of
averages on multiple runs and were done while trying to minimize, as much as
possible, the impact of external effects such as node sharing with other jobs and
conflicts on network resources. The results can, therefore, be considered as best
case data that, however, are expected to provide relevant general information on
an actual VC hosting production configuration.

Fig. 2 shows, on the left, the results of direct measurements of the total time
taken to, respectively, get from a distributed HDFS repository the same 3 GB
image to N VM host nodes, save back to the HDFS repository N 3 GB images
taken from the same N VM host nodes, and restore the N images back from the
repository to N VM hosts. As a matter of comparison, the figure also reports
analogous measurements done using the NFS based repository. HDFS was run
with the default settings, i.e., block size equal to 64 MB and replication factor
set to three. Unless specifically mentioned, we maintained these default settings
for all the reported measurements. The simulated physical hosting cluster con-
tained 256 machines, two of which were dedicated to the HDFS and MapReduce
masters (respectively the namenode and the job tracker, with the latter un-
used), while the remaining 254 acted as HDFS slaves (datanodes). HDFS was
configured to use only one of the two disks available on each node, while all
per-host image read and write operations used the other one. As it can be seen
from the figure, the two groups of curves start differing significantly for cluster
sizes larger than four. The HDFS repository has a very weakly N -dependent
behaviour up to VC clusters of size 32, after which competition between HDFS
server and client processes starts to be relevant. It should be noted, however,
that HDFS is still at least one order of magnitude better than NFS. On the
right side of fig. 2 is shown the corresponding effective total bandwidth, de-
fined as the total amount of data transferred divided by the total time taken
by the transfer. As in the previous case, there is a finite size effect for large VC
sizes.

Fig. 3 shows how the time taken by an image transfer for a given cluster
size N depends on the size S of the physical hosting cluster (and thus of the
HDFS repository). On the left is shown the case of the 1-to-N get operation.
Transfer times seem to rapidly converge to their asymptotic, S-independent,
values. Things are qualitatively different, as shown on the right side of fig. 3,
for the N -to-N transport operation required by restore. Convergence is slower,
probably due to competition for chunk reading on the datanodes.
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Fig. 3. Dependency of transfer time on the size of the physical hosting cluster S (and
thus of the HDFS repository) for different VC size (N) values. Left: the 1-to-N get op-
eration. Right: the N-to-N transport operation required by restore. Note the difference
in convergence to the asymptotic values. The lines are drawn only to guide the eye.

Fig. 4 shows transfer timings – respectively get (left), save (center) and restore
(right) – for a fixed physical hosting cluster size S = 256, as a function of VC
size N for three different replication factors. Note how, as expected, the save
operation is the most affected by R, especially as N becomes comparable to S.

Fig. 4. get (left), save (center) and restore (right) timings for a fixed physical hosting
cluster size S = 256, as a function of VC size N for three different replication factors.
The lines are drawn only to guide the eye.

5 Conclusions and Future Work

We have shown that by using HDFS, a simple specialized distributed file system,
it is possible, at the cost of a moderate increase in the complexity of the VM
hosts setup, to provide – in a scalable way – the aggregate data bandwidth
needed by HPC virtual cluster level management operations.

Measurements were obtained, as much as possible, while trying to minimize
the impact of external effects such as node sharing with other jobs and con-
flicts on network resources. Although the results reported here can, therefore,
be considered as best-scenario data, we expect them to provide relevant general
information on actual VC hosting production configurations.



422 P. Anedda et al.

Future work will concentrate on analyzing the impact of the proposed solu-
tion on production virtual clusters. We also intend to compare HDFS with other
distributed file systems (e.g., CloudStore) and to explore issues related to dy-
namical modifications in size and topology of the hosting physical cluster, both
through modeling and experiments.
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Abstract. Cloud computing is an emerging paradigm to provide Infras-
tructure as a Service (IaaS). In this paper we present NEPTUNE-IaaS, a
software system able to support the whole lifecycle of IaaS provisioning
in a Virtual Cluster environment. Our system allows interactive design
of complex system topologies and their efficient mapping onto the avail-
able physical resources of a cluster. It also provides transparent VM
migration features across geographically distributed datacenters, thanks
to the adoption of the Service Switching paradigm. We also evaluate the
effectiveness of the VM mapping procedures and compare our solution
against other existing IaaS solutions.

Keywords: Cloud Computing, IaaS, Xen, Virtual Networking.

1 Introduction

Cloud Computing is an innovative computing model in which “dynamically scal-
able and often virtualised resources are provided as a service over the Internet”[1].
Following what happened in the last century with electric power or water dis-
tribution infrastructures, Cloud Computing enables users to access computing
resources on an as-needed basis, relieving them from the responsibility of buying
and managing a dedicated computing infrastructure. Cloud providers, on the
other hand, can take advantage of scale economies to organize and manage big
datacenters, whose ICT resources can be efficiently used by partitioning and
renting them to a number of customers. Depending on the abstraction level of
the provided resources, Cloud Computing takes different names: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS).

Originally born as a cluster based network emulation system [2], NEPTUNE-
IaaS is a software system developed at University of Napoli Federico II that
allows interactive design of networked virtual infrastructures on geographically
distributed datacenters, to help provisioning of “Infrastructures as a Service”.
Our system consists of an interactive client/server software system used to pro-
vide users with the possibility of describing and designing the desired virtual
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infrastructure and of a set of other components that make it possible for services
deployed at a given datacenter to be transparently migrated in remote datacen-
ters for load balancing or fault/disaster recovery. NEPTUNE-IaaS is based on
the use of Xen for virtualization of computing elements. Xen features are also
used to multiplex the communication resources (e.g. network interfaces) available
in the cluster nodes among several logically distinct virtualized nodes. Transpar-
ent migration of Virtual Machines in NEPTUNE-IaaS is implemented through
the adoption of Service Switching, a novel paradigm that aims at extending the
concept of virtualization to network services, by decoupling service execution
environments and their physical location.

The rest of the paper is organized as follows. In Section II we present NEP-
TUNE-IaaS, its architecture, the web-based management application we have
developed to manage the whole lifecycle of virtual infrastructures. In Section III
we present Service Switching and its role in our system. In Section IV we present
the algorithm we use to efficiently map Virtual Machines onto a cluster’s physical
resources. Finally, in Section V we briefly compare NEPTUNE-IaaS against two
reference IaaS solutions and draw our conclusions.

2 NEPTUNE-IaaS

NEPTUNE-IaaS is a software system for provisioning of IaaS services. In the
context of NEPTUNE-IaaS, a Virtual Infrastructure is a collection of Virtual
Machines provided as a service to an end-user. Virtual Machines are deployed on
a subset of a cluster’s physical nodes and properly configured according to the
user requirements in terms of computational resources, software configuration,
virtual network topology, and so on. A Virtual Infrastructure presents at least
one public IP address, that is used to make the infrastructure accessible from
the public Internet (Entry Point). In general, public IP addresses are assigned
only to a subset of the nodes of a Virtual Infrastructure. Other nodes are as-
signed private IP addresses and can be reached only through the Entry Point
nodes. A typical Virtual Infrastructure comprises a NAT/firewall node and a
set of backend service nodes, whose NICs are assigned private IP addresses. We
will describe later in this paper that the necessity of supporting transparent mi-
gration of Virtual Infrastructures across geographically distributed datacenters
calls for unique assignment of private IP addresses within a Service Switching
domain.

To achieve higher degrees of scalability and resource efficiency, Virtual Infras-
tructures are instantiated by allocating multiple Virtual Machines onto each of
the cluster’s real nodes (node multiplexing). Likewise, multiple virtual links are
multiplexed onto the same shared physical link by associating each virtual link
endpoint to a different virtual NIC (link multiplexing). Multiple fully isolated
Virtual Infrastructures can be concurrently hosted by NEPTUNE-IaaS in the
same datacenter, providing users with the illusion of having allocated a dedicated
infrastructure.
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2.1 NEPTUNE-IaaS Architecture

A cluster managed by NEPTUNE-IaaS (Figure 1) is composed of three compo-
nents: i) a set of worker nodes providing computational resources used to repro-
duce emulated networks, ii) a centralized repository providing storage space to
worker nodes and iii) a front-end node, Neptune Manager. By NEPTUNE-IaaS
we intend the whole collection of system software, of which the management
software running in the Neptune Manager front-end is the most relevant part.
All the physical components of the cluster are connected by two switched LANs,
one for “control traffic” (e.g. node configuration) and another for “operational
traffic” (i.e. traffic generated by users’ applications).

Fig. 1. NEPTUNE architecture

2.2 Virtual Infrastructure Life-Cycle

A Virtual Infrastructure life-cycle can be described by a Finite State Machine
(Figure 2). A Virtual Infrastructure life-cycle begins with the definition of a
virtual network topology. Once the topology is defined, the infrastructure can
be allocated onto the cluster’s physical nodes. On user demand, a running Vir-
tual Infrastructure can be either suspended for future reallocation or definitively
terminated. Allocation of infrastructures onto the cluster is made under control
of system administrators, who need to explicitly accept users requests. Once
accepted, an infrastructure’s topology allocation process starts. Such allocation
process is automatic, involving tasks like virtual nodes mapping on cluster’s
physical nodes and IP addresses assignments.

To define a Virtual Infrastructure, users can either write a topology descrip-
tion in a custom XML format, defining nodes’properties (NICs, RAM, software
configuration, etc.) and links’properties (bandwidth, end points, etc.) or use an
interactive graphic tool embedded into the web user interface (Figure 3). The
tool assists the description of any node or link property suggesting available
choices to the user. It is also possible for users to select pre-defined topologies
for fast infrastructure definition. To define virtual nodes software configuration,
users can access a “Virtual Nodes Template Images Repository” and select a
VM template for each of the virtual nodes. VM templates can be modified and
saved as new templates for reuse.
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Fig. 2. Virtual Infrastructure lifecycle

Fig. 3. Interactive editor

2.3 Implementation Details

Node multiplexing is implemented in NEPTUNE-IaaS by means of Xen [3].
Our current implementation relies on the libvirt virtualization API [4], mak-
ing it feasible supporting different virtualization technologies in the future. The
NEPTUNE-IaaS Management Node is responsible of managing Virtual Machines
lifecycle.

Mapping of virtual nodes onto the cluster physical nodes is described by an al-
location map which can be generated either manually by a system administrator
or automatically, by means of a software module implementing a Lin-Kernighan
derived optimization algorithm (described in Section 4).

When a virtual network is to be deployed on the physical cluster, Neptune
Manager distributes Virtual Machine template instances to the physical cluster
nodes. This distribution process is composed of two phases for each virtual node:
1) raw copy of the virtual machine image file containing VM template, and 2)
VM creation on the target virtual machine monitor. During this last phase,
virtual hardware resources are provided to the virtual node according to node
definition provided by the Virtual Infrastructure topology description.

A major problem when dealing with the creation of virtual links is the need
to assign IP addresses to both ends of virtual links, according to a general IP
addressing scheme. NEPTUNE-IaaS provides an algorithm that automatically
assigns subnets to links and IP addresses to their end-points. Furthermore, since
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several infrastructures can be running on the same shared infrastructure, this
algorithm also ensures non overlapping of address spaces used by different in-
frastructures.

3 The Service Switching Paradigm

Service mobility is a key feature for new generation networks. In distributed ser-
vice hosting environments, service mobility allows satisfaction of requirements
like: efficient management of available resources, computational load balancing,
service continuity even in presence of critical conditions. Service Switching aims
at extending the concept of virtualization to network services by decoupling ser-
vice execution environments and their physical location [5]. Service instances in
a Service Switching environment may be dynamically migrated across geograph-
ically dispersed datacenters, to achieve more efficient utilization of both net-
work and computing resources. The Service Switching paradigm allows creation
and management of Service Execution Environments across different datacenters
with minimal impact on service continuity.

The architectural implementation of the Service Switching paradigm is cen-
tered around a main component, that we call Service Switch. Such a component
is a network node that, in addition to the plain packet and/or flow switching
capabilities, has more advanced features, including the ability to forward pack-
ets towards migrated Service Execution Environments. Service Switches can be
located both at the edges of a network and in its core. Deployment of Service
Switches in the core of the network of course requires cooperation of Internet
Service Providers, but allows faster reconfiguration and migration of services.

Our current implementation of the Service Switching model relies on a com-
bination of system-level virtualization technologies and of the Mobile IP model.
In the following we firstly introduce a brief description of Mobile IP, and then
the Service Switching architecture customized for the NEPTUNE-IaaS context.

IP version 4 assumes that the IP address of a node uniquely identifies its point
of attachment to the Internet: a node must be located on the network indicated
by its IP address in order to receive datagrams which are destined to it. IP Mo-
bility Support (or Mobile IP) provides a mechanism which allows Mobile Nodes
to change their point of attachment to the Internet without changing their IP
address [6]. This mechanism relies on two intermediary entities: the Home Agent
and the Foreign Agent. The role of the Home Agent is to maintain current loca-
tion information of the mobile node, and to re-transmit all the packets addressed
to the Mobile Node through a tunnel to the Foreign Agent to which the Mobile
Node is currently registered. The role of the Foreign Agent, in turn, is to deliver
datagrams to the Mobile Node.

Service Switching allows services to be deployed at different geographic loca-
tions, each of which hosts a cluster of physical machines. A physical cluster is
connected to the Internet through a special router, that we call Edge Service
Switch. In the context of NEPTUNE-IaaS we are interested in transparently mi-
grate a collection of related Virtual Machines (a Virtual Infrastructure, according
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to the definition we gave in Section 2). When a Virtual Infrastructure is deployed
for the first time, it is associated to one of the available datacenters. This allo-
cation choice assigns one or more public IP addresses to the Entry Points of the
Virtual Infrastructures. These IP addresses will be kept for the entire lifecycle
of the Virtual Infrastructure, even in case of migration. Such IP addresses are
referred to as the Virtual Infrastructure’s Home Addresses. The Edge Service
Switch located at the edge of the datacenter in which the Virtual Infrastructure
is initially deployed, will be referred to as the Virtual Infrastructure’s Home
Service Switch. An Edge Service Switch not only behaves as a normal IP edge
router, forwarding incoming packets to the VMs hosted in the cluster and out-
going packets to a next hop router according to its current routing table, but it
also implements specific traffic flow readdressing mechanisms to support service
migration. Such mechanisms have been derived as extensions of the classical Mo-
bile IP model. A generic end user terminal accessing a service will be referred to
as Correspondent Node.

Making the simplistic assumption that a Virtual Infrastructure presents a
unique Entry Point, in order to access a given service, a Correspondent Node
sends packets to this latter, using the VI’s Home Address as IP Destination
Address. Incoming packets will be processed by the VM’s Home Service Switch.
In case a Virtual Infrastructure had to be migrated to a different datacenter,
the Virtual Infrastructure’s Home Service Switch creates an entry in its Mobil-
ity Binding Table (MBT in short) that contains information about the Entry
Point of the migrated Virtual Infrastructure. The MBT keeps the association
between the VI’s Home Address and the corresponding Care-of Address. Such
Care-of Address is the IP address of the Edge Service Switch associated to the
datacenter hosting the migrated Virtual Infrastructure, that we may call the
Virtual Infrastructure’s Foreign Service Switch. Migration of a Virtual Infras-
tructure is performed through a procedure that consists in updating the Home
Network’s MBT and in managing the migration of all the VMs belonging to the
Virtual Infrastructure. Concerning the dataceneter that hosts the migrated Vir-
tual Infrastructure, apart from the configuration of the Foreign Service Switch,
no other settings are needed. Migrated VMs keep using their own VI’s Home Ad-
dress as IP source address for outgoing packets, and Correspondent Nodes, being
unaware of the migration, keep sending packets to the Virtual Infrastructure’s
Home Address. Once these packets reach the Home Service Switch, this latter
forwards them to the Foreign Service Switch, by encapsulating such packets in a
point-to-point tunnel (figure 4). The Foreign Service Switch, in turn, de-tunnels
the incoming packets and delivers them to the migrated VM. As it happens in
the Mobile IP scheme, reverse traffic is sent by the migrated VM directly to the
Correspondent Nodes.

4 Optimal VM Allocation in a Datacenter

One of the key steps in the Virtual Infrastructure deployment process is the map-
ping of Virtual Machines onto the physical resources of the target datacenter.
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Fig. 4. Tunneling mechanism implemented on the edge

Fig. 5. LK best mapping solution times

This problem is known in literature as the network testbedmapping problem[7]. Due
to its complexity, the challenge is to find a good solution in acceptable computa-
tional times. Our approach to manage complexity consists in splitting the mapping
problem in two sub-problems: topology partitioning and a partition mapping.

Several graph partitioning algorithms have been proposed in the literature.
An algorithm that provides good results with reasonable times of calculation is
the Lin-Kernighan (LK) heuristic algorithm [8]. Theoretical complexity of LK is
O(n2 log n). We implemented this algorithm in JAVA to evaluate its applicability
to cluster environments and to assess its performance. A first test was performed
to estimate the solver execution time while varying number of nodes in the graph.
Size of the matrix was varied between 100x100 and 1000x1000 with steps of 100.
The graph was been partitioned into subsets of cardinality equal to 5 while non-
zero elements incidence for considered matrix were 2%. Computational times
represented in Figure 5 were calculated by using a system equipped with 2 GB
of RAM and an Intel CPU T2250 running at 1.73 GHz.

Our algorithm implementation requires that once found a minimum cost so-
lution, the procedure is restarted with a new initial solution. After running 5
iterations the algorithm stops and returns the minimum cost solution. This test
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Table 1. Tests organization

arc/nodes=4 arc/nodes=6 arc/nodes=8
Matrix 20x20 100run 100run 100run
Matrix 100x100 100run 100run 100run
Matrix 400x400 100run 100run 100run

Table 2. Tests results

i*=1 i*=2 i*=3 i*=4 i*=5
Matrix 20x20 arc/nodes=4 47 21 18 7 7
Matrix 20x20 arc/nodes=6 52 21 13 8 6
Matrix 20x20 arc/nodes=8 43 27 14 6 10
Matrix 100x100 arc/nodes=4 23 21 21 23 12
Matrix 100x100 arc/nodes=6 23 21 28 20 8
Matrix 100x100 arc/nodes=8 18 16 26 18 22
Matrix 400x400 arc/nodes=4 18 24 16 18 24
Matrix 400x400 arc/nodes=6 20 24 18 16 22
Matrix 400x400 arc/nodes=8 22 28 14 12 24

Fig. 6. Four-arcs/node case Fig. 7. Six-arcs/node case

highlights the relationship between the iteration i* at which the optimal solution
is found with the size and density (arcs/nodes ratio) of the matrix.

Virtual links and physical links bandwidths have been respectively fixed at
10 and 100. Matrices are generated randomly and before subjecting a matrix to
the solver, it is verified that each node has at least one connection and that the
sum of the costs associated to all the outgoing arcs from one same node does not
exceed 90% of the physical connections bandwidth. Tests organization is shown
in Table 1, while tests results are shown in Table 2.

Results for the case 4 arcs/node and 6 arcs/node are further shown in Figure 6
and in Figure 7.

This test demonstrates that for matrices of small size (20x20), our solver
returns in almost 50% of the cases the least-cost solution at the first iteration.
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When the matrix increases in size (100x100 and 400x400), the probability of
finding good solutions at the first iteration is lower. In these cases, better results
could be obtained by running more iterations, but the rapid increase of compu-
tational times does not encourage this approach. The Lin-Kernighan algorithm
does not guarantee that it is always possible to find an admissible solution, so it
could happen that the found solution does not meet the admissibility constraints.
However, in our tests, the solver always returned an acceptable solution.

5 Related Work and Conlcusions

In the last few months the term “Cloud computing” is transforming from a
buzzword into real world engineering solutions and commercial products. In this
paper we mention two established solutions that have some features in common
with NEPTUNE-IaaS: Amazon EC2 and Eucalyptus.

Amazon’s Elastic Compute Cloud (EC2) [9] is an IaaS commercial system
that first introduced the utility computing model, where computation, storage
and bandwidth resources are rent on an as-needed basis. As well as NEPTUNE-
IaaS, EC2 is based on Xen. Users select an Amazon Machine Image (AMI),
including the machine’s software configuration from a set of AMIs proposed by
Amazon, or create a new one from scratch. To each AMI instance (i.e. a Xen
Virtual Machine) is associated an “instance type” that defines the resources of
the machine in terms of CPU, RAM, HD. Resources are paid on a consumption
basis: a machine is paid for each hour of activity, bandwidth is paid per-gigabyte
of traffic and so on. Amazon provides two ways to access EC2 services: via a
web interface or through web services. A complete set of tools and programming
libraries are provided to access these service.

Eucalyptus [10] is an open-source cloud-computing framework, built to be
interface-compatible with Amazon EC2: users can interact with Eucalyptus us-
ing same tools and interfaces that they use with Amazon EC2. Because the main
goal of Eucalyptus is to provide a common open-source framework that enables
researchers to do experiments and studies, even by replacing or modifying the
implementation of system modules, the system is based on three components,
each with a well defined Web-service interface. The software architecture is hier-
archical: the base level is composed by Instance Managers (IM), responsible to
manage virtual machines running on top of a physical machines, the middle layer
contains Group Managers (GM), each of which manages a set of IMs residing
on the same physical subnet. The top layer is the Cloud Manager (CM), that
manages all the GM making high-level scheduling decisions and represents the
entry-point to Eucalyptus for users as well as for administrators.

NEPTUNE-IaaS has some features in common with both EC2 and Eucalyp-
tus, but also some important differences. In particular, we want to highlight
that NEPTUNE-IaaS provides tools to interactively design virtual networked
infrastructures and supports transparent and efficient migration of infrastruc-
tures across geographically dispersed datacenters. NEPTUNE-IaaS is an on-
going project, whose future development include more complex management
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procedure to handle migration of complex virtual infrastructures in a reliable
way. Integration of NEPTUNE-IaaS with storage services, such as those provided
by Amazon’s S3 are also being investigated.
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Abstract. Cloud computing realizes the advantages and overcomes the
restrictions of the grid computing paradigm. Elastic infrastructures can
be easily created and managed by cloud users. In order to accelerate the
research on data center management and cloud services the OpenCirrus1

Research Testbed has been started by HP, Intel and Yahoo!. Although
commercial cloud offerings are proprietary, an Open Source solution ex-
ists in the field of IaaS with Eucalyptus. This paper examines the I/O and
CPU performance as well as the network transfer rate of cloud comput-
ing infrastructures implemented with Eucalyptus in contrast to Amazon
EC2/S3.

1 Cloud Computing – An Upcoming Trend in IT

During the last years with the support of public funding, grid computing evolved
from a computer scientists’ field of research to a common working environment
for scientific disciplines like physics, medicine and meteorology. A grid definition
from Ian Foster and Carl Kesselman, summarizing the focus of grids is:

A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities. [1]

At the same time another trend became imminent in the commercial IT sector:
Cloud computing [2] aims at consolidating hardware and software resources in
large data centers. Cloud computing realizes the advantages and overcomes the
restrictions of the grid computing paradigm [3].

All resources are marketed by providers as a service over the Internet based
on a utility model. In the world of cloud computing dynamically scalable (elas-
tic) infrastructures can easily be created and managed by the user. Only the
consumed resources are accounted following the pay-as-you-go principle. Many
different cloud definitions exist and according to our understanding we want to
phrase the following short and concise definition:
1 Open Cirrus is a trademark of Yahoo! Inc.
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Building on compute and storage virtualization, and leveraging the
modern Web, cloud computing provides scalable, network-centric, ab-
stracted IT infrastructure, platforms, and applications as on-demand
services that are billed by consumption. [4]

Based on this definition we compare grids and clouds. Both technologies focus
on IT resources and try to provide an user friendly, inexpensive and pervasive
access to these resources over the internet.

The actual situation is that most grid infrastructures consist of geographically
distributed, heterogeneous resources without central control, are best suited for
special application domains like high energy physics, are publicly funded and
use well developed and maintained middleware systems.

In contrast to grids, most cloud infrastructures consist of one or few data
centers under central control, are well suited for generic applications, have com-
mercial business models and use proprietary middleware systems. A strong ad-
vantage of clouds is the more comfortable usability, as the ownership of resources
is granted to the service consumer.

1.1 Everything as a Service

When talking about cloud computing it must be kept in mind that different
technical types of cloud services exist.

– Infrastructure as a Service (IaaS) implements an abstract view towards
the hardware (servers, network,. . . ) and allows to run virtual instances of
servers without the need to directly access the bare metal.

– Platform as a Service (PaaS) takes the level of abstraction further. PaaS
appears as a virtual appliance and makes it simple to scale from a single
server to many. Here, the user has no need to worry about the operating
system, fundamental software and related application software packages.

– Software as a Service (SaaS) provides enterprise quality software (com-
plete applications) to be consumed as a utility.

Cloud computing has the potential to radically change the way IT services are
implemented and managed. Project and business funds can be spent to support
the core business rather than spending it for IT infrastructure. As they have
resource ownership, cloud users are free to run the operating systems, infrastruc-
tures, applications and programming languages of their choice. The flexibility of
cloud computing has its origin in the combination of virtualization technologies
with web services.

2 The OpenCirrus Research Testbed

In July 2008 the OpenCirrus2 project was announced by HP, Intel and Yahoo!.
OpenCirrus aims to build an open, internet-scale global testbed for cloud com-
puting research focusing on data center management, cloud services, systems
2 http://opencirrus.org
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and application level research. OpenCirrus is a loose federation of three spon-
sors which are HP Labs, Intel Research and Yahoo! At the moment there are
three also academic partners: The University of Illinois at Urbana-Champaign
(UIUC), the Singapore Infocomm Development Authority (IDA) and the Karls-
ruhe Institute of Technology (KIT).

OpenCirrus consists of six sites initially, hosted by the sponsors and partners,
each equipped with 1000–4000 CPU cores and 1 Petabyte of data store.

The basis of the OpenCirrus research testbed is formed by the Physical Re-
source Sets (PRS) [5]. These provide logical mini-datacenters to the researchers
and isolate the experiments from each other. Inside a PRS ensembles of physical
nodes are allocated and isolated via virtual local area networks (VLAN) us-
ing already existing software like Emulab, a network emulation testbed from the
University of Utah and HP Opsware, a tool for server provisioning, configuration
and management.

The PRS are the basis to implement Virtual Resource Sets (VRS). The VRS
abstract from physical resources by the introduction of a virtualization layer. The
virtualization concept applies to all IT aspects like CPU, storage, networks and
applications. The main advantage of VRS is the potential to create IT services
exactly fitting customers varying needs. IT services can be deployed on demand
by automated resource management. Service levels can be easily guaranteed and
live migration of services is possible. As a consequence capital expenditures and
operational expenditures are both reduced.

The VRS are implementing Infrastructure as a Service (IaaS) because they
provide compute, storage and networking services.

OpenCirrus strongly differs from other cloud computing testbeds because it
supports both, system and application level research. In contrast to cloud infras-
tructures like Amazon Elastic Compute Cloud (EC2)3, Amazon Simple Storage
Service (S3)4 and Google AppEngine5, all software layers and the hardware itself
can be accessed and adapted by the OpenCirrus researchers. Intel platform fea-
tures like Intel Data Center Management Interface (DCMI) and Node Manager
(NM) that support cloud computing could also be utilized.

3 Eucalyptus

A cloud service that will be examined by KIT in the OpenCirrus research testbed
is the cloud computing infrastructure service Eucalyptus. Eucalyptus6 is an
Open Source software developed at the University of California, Santa Barbara,
implementing cloud computing on university compute clusters. EUCALYPTUS
stands for Elastic Utility Computing Architecture for Linking Your Programs
To Useful Systems. It implements Infrastructure as a Service (IaaS) while giving
the user the ability to run and control virtual machine instances (Xen) deployed

3 http://aws.amazon.com/ec2/
4 http://aws.amazon.com/s3/
5 http://code.google.com/appengine/
6 http://open.eucalyptus.com
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across a variety of physical resources [6]. The interface is compatible with EC2
which is the most popular IaaS, and Eucalyptus includes Walrus, a basic im-
plementation of the S3 interface and a block storage service that is interface
compatible with Amazon EBS7.

Fig. 1. Structure of Eucalyptus

With Eucalyptus it is possible to build up a private cloud that can be con-
trolled by the same tools known to work with Amazon EC2 and S3. Examples
are the ElasticFox EC2 plugin for the Firefox browser or s3cmd utilities for S3
storage management. Eucalyptus has the potential to help establish an open
cloud computing infrastructure standard. The main components are the Cloud
Controller (CLC), Cluster Controller (CC) and Node Controller (NC) [7]. The
NC runs on every node in the cloud as well as a Xen-Hypervisor8 or KVM9.
The NC provides information about free resources to the CC. The CC sched-
ules the distribution of virtual machines to the NC and collects (free) resource
information. The CLC collects resource information from the CC and operates
like a meta-scheduler in the cloud. Figure 1 shows the structure of Eucalyptus
including CLC, CC and NC.

For preliminary testing an Eucalyptus R&D cloud installation has been set up
at KIT running Eucalyptus 1.4. This installation is used for gaining experience
with Eucalyptus and several performance tests. The R&D cloud consists of:

– 2x IBM Blade LS20 (2x Single Core Opteron at 2.4GHz, 4GB RAM)
– 2x IBM Blade HS21 (2x Dual Core Xeon at 2.33GHz, 16GB RAM)

7 http://aws.amazon.com/ebs/
8 http://www.xen.org
9 http://www.linux-kvm.org
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The LS20 Blade is from 2005 and the HS21 Blade from 2006. One LS20 acts as
CLC, CC and NC. This consolidation leads not to performance issues because
of the small number of NCs in this installation. The other LC20 and the two
HS21 are NCs.

While the performance of an Eucalyptus private cloud depends on the hard-
ware available, it is interesting to see the performance key data of this Euca-
lyptus installation, compared to Amazon EC2/S3. The focus of the performance
benchmarks was storage, network and CPU performance.

3.1 Storage Performance of Eucalyptus

In order to compare the storage performance of Amazon S3 and Eucalyptus 1.4
with Walrus, the benchmark tool Bonnie++10 was used. This software measures
the rate of sequential output and input. The measurements in Figure 2 are
sequential output (per character, per block and rewrite) and sequential input
(per character and per block).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

putchar putblock rewrite getchar getblock

[K
B

/s
]

Sequential Output/Input

Storage Performance

IBM Blade LS20 (36.7GB, 2,5’’, U320, 10K)
IBM Blade HS21 (146GB, 2,5’’, SAS, 10K)

Amazon EC2 US-East
Amazon EC2 EU-West

Fig. 2. Storage Performance of Amazon S3
and Eucalyptus

 0

 5000

 10000

 15000

 20000

 25000

Random
Seeks

Seq
Create

Seq
Delete

Random
Create

Random
Delete

[#
/s

]

Random Seeks and File Creation/Deletion

File Performance

IBM Blade LS20 (36.7GB, 2,5’’, U320, 10K)
IBM Blade HS21 (146GB, 2,5’’, SAS, 10K)

Amazon EC2 US-East
Amazon EC2 EU-West

Fig. 3. Performance of Random Seeks and
File Creation/Deletion for Amazon S3 and
Eucalyptus

The RAM of the Eucalyptus NCs was reduced to overcome memory caching
effects. The storage performance of Eucalyptus depends on the features of the
storage subsystem. For these tests, the write performance of Eucalyptus, using
a modern SAS hard disk with 10000RPM (revolutions per minute) is faster
than Amazon S3. The performance for read in contrast is faster at the Amazon
sites.

10 http://sourceforge.net/projects/bonnie/
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Bonnie++ also measures the performance for random seeks and especially file
creation (Figure 3). Both is faster with Eucalyptus. A possible explanation for
these measurements is that Eucalyptus stores the data at the NCs locally. It
is unknown whether data stored by Amazon S3 is located near or far the EC2
instances. The reason why file deletion at this Eucalyptus installation performs
that much better compared to Amazon S3, remains unclear.

While testing the storage performance of Eucalyptus, the instances were run-
ning alone on the blade servers to avoid interferences. We cannot make any
assertion about the workload of the Amazon S3 system and the load of the
physical server the EC2 instances were hosting at Amazon during our testing.

3.2 Network Transfer Rate

The network transfer rate inside and between the Eucalyptus site and the Ama-
zon EC2 sites was measured at a working day (July 2th 2009) with iperf.
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The strong in-house network transfer rate (Figure 4) is not surprising because
of the 1000Mbit/s Ethernet. But it is evident that the network transfer rate to
the Eucalyptus infrastructure is much more constant in contrast to Amazon EC2.
The network transfer rates inside the Amazon EC2 US East and EU West sites
imply that there is 1000Mbit/s Ethernet also used, but with a higher workload.

Figure 5 shows, that the network transfer rate from Karlsruhe to Amazon
EC2 EU West is approximately twice as much better compared to Amazon EC2
US East. The network transfer rate to Eucalyptus over the German national
research and education network (DFN) is more constant compared to Amazon
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EC2. This is also not surprising. An interesting outcome is that peaks of the
network transfer rate to Amazon EC2 EU West are much better compared to
the connection to the Eucalyptus site in Karlsruhe over the DFN.

3.3 Network Latency

To examine the potential for using Ecalyptus and public cloud infrastructures
at all for HPC, the network latency was measured. The results in Table 1 show
that HPC in the cloud over institutional/geographical borders is impossible.

For MPI-Jobs where every task computes a few seconds like Monte Carlo
methods it is possible to use cloud infrastructures. The network latency inside
Amazon EC2 is poor and a surprising outcome is that the network latency
between Amazon EC2 EU West and Amazon EC2 US East is better than inside
the Amazon sites.

Table 1. Network Latency

ping ip -f -c 10000
time min. Round- avg. Round- max. Round-
[ms] Trip-Time [ms] Trip-Time [ms] Trip-Time [ms]

EC2 EU West from KIT 138262 27.943 28.192 59.399
EC2 US East from KIT 137014 92.839 93.154 118.853
inside EU West 146447 87.493 90.069 145.109
inside EC2 US East 147380 87.527 92.266 115.461
EC2 EU from EC2 US 138451 88.260 90.776 144.078
Eucalyptus at SCC via DFN 131145 15.093 15.197 29.863
inside Eucalyptus at SCC 2064 0.125 0.146 0.806
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3.4 CPU Performance

To compare the CPU performance of Amazon EC2 and Eucalyptus 1.4, the Linux
Kernel was compiled for benchmarking. All available Amazon EC2 instance types
(see Table 2) were tested.

Table 2. Amazon EC2 Instance Types

m1.small (Small Instance) 1.7 GB RAM 1virtual Core
c1.medium (High-CPU Medium Instance) 1.7 GB RAM 2virtual Cores
m1.large (Large Instance) 7.5 GB RAM 2virtual Cores
m1.xlarge (Extra Large Instance) 15 GB RAM 4virtual Cores
c1.xlarge (High-CPU Extra Large Instance) 7 GB RAM 8virtual Cores

For m1.small instances, the single virtual core is equivalent to one EC2 Com-
pute Unit. One Amazon EC2 Compute Unit provides the equivalent CPU ca-
pacity of a 1.0-1.2GHz 2007 Opteron or 2007 Xeon processor. This is also the
equivalent to an early 2006 1.7GHz Xeon processor.11 The virtual cores of the
m1.large and m1.xlarge instances are equivalent to two EC2 Compute Units
each. The virtual cores of the c1.medium and c1.xlarge instances are equivalent
to 2.5 EC2 Compute Units each.

Eucalyptus even provides five instance types (see Table 3) following the iden-
tical naming scheme than EC2.

Table 3. Eucalyptus Instance Types

m1.small (Small Instance) 128 MB RAM 1virtual CPU
c1.medium (High-CPU Medium Instance) 256 MB RAM 1virtual CPU
m1.large (Large Instance) 512 MB RAM 2virtual CPUs
m1.xlarge (Extra Large Instance) 1GB RAM 2virtual CPUs
c1.xlarge (High-CPU Extra Large Instance) 2GB RAM 4virtual CPUs

For CPU benchmarking, the time needed to compile Linux Kernel 2.6.29.3
with 1, 2, 4 and 8 threads was measured. The results in Figure 6 show that
additional RAM and CPUs are leading to a significant performance boost when
using more threads. For none of the instance types more than 8 threads lead to
better results.

The measurements in Figure 6 also show our Eucalyptus infrastructure per-
forms approximately twice better for m1.small instances compared to Amazon
EC2. This is not surprising because the CPU differs and due to the fact that
while testing the CPU performance of Eucalyptus the instances were running
alone on the blade servers to avoid interferences. We cannot make any assertion
about the load of the physical server the EC2 instances were hosting at Amazon

11 http://aws.amazon.com/ec2/instance-types/
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Fig. 6. CPU Performance measurement via Linux Kernel compilation

during our CPU testing. But it is likely that the Amazon servers storing m1.small
instances have to share their resources between lots of instances thus reducing
the CPU performance radically.

Using more threads than virtual/physical CPUs/cores available is not lead-
ing to a performance boost because of the thread context switching overhead.
The reason why using more than 2 threads at c1.xlarge with Eucalyptus at
the IBM LS20 is not leading to a significant performance boost is because
the LS20 has only two single core CPUs. The IBM HS21 has two dual core
CPUs and therefore using 4 threads at c1.xlarge leads to an performance
enhancement.

The CPU performance measurements strongly depend on the workload of
the physical machines. For Eucalyptus, the instances were running alone on the
blade servers to avoid interferences but it is impossible to make any assertion
about the workload of the physical servers inside the Amazon sites.

4 Further Steps

Currently a second Eucalyptus R&D cloud is set up at KIT with 5xHP Blade
ProLiant BL2x220c. Each blade includes two server nodes (2x Intel Quad-Core
Xeon at 2.33GHz, 16GB RAM). This system is running Eucalyptus 1.5.2 with
AppScale 1.1. The purpose of this new installation is to gain experience to oper-
ate the OpenCirrus KIT site with virtualization services based on 2656 Nehalem
cores in 332 HP T2 servers starting in autumn 2009.
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5 Conclusion

Cloud computing allows flexible and elastic resource provisioning. The high de-
gree of automation and the large economies of scale make it attractive for both,
academia and business, pathing the way from manufacture towards the indus-
trialization of IT.

OpenCirrus offers interesting R&D opportunities for cloud systems research
and application development.

With Eucalyptus, an Open Source implementation of the perhaps most pop-
ular IaaS offering of Amazon is available, representing a first step towards the
creation of a cloud standard. Although Eucalyptus is a new development the
software performs sufficiently stable and when using up to date hardware
the users have no need to fear a lower performance as compared to Amazon.
The performance that can be achieved with Eucalyptus depends on the physical
servers and their workload.

With commodity hardware and Open Source software, a private cloud can be
build up providing the same functionality and better performance compared to
the most popular public clouds.
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Abstract. CESGA is operating a totally virtualized grid infrastructure
that supports several production sites for different grid projects (EGEE,
EELA, int.eu.grid (I2G), Ibergrid, and other regional grid projects) as
well as several development sites created on demand to test new middle-
ware releases both for EGEE certification and pre-production activities.
The final architecture that results from several years of development is
described showing how to apply modern virtualization solutions like Xen
hypervisor to migrate from an entire physical cluster to virtual machines.
Thanks to a collaboration with FORMIGA’s project the infrastructure
also includes resources from computer labs. Worker Node VMs are auto-
matically started following a pre-defined schedule that guarantees that
the computers are not in use. Extensive benchmarks, including two of
the most used applications at our supercomputing center, have been
performed to quantify the performance loss of the virtual infrastructure.
Currently cloud computing technologies are being explored as a way to
improve the service deployment process in our platform.

1 Introduction

CESGA has been providing support for an increasing number of new grid users
and projects for the last years. At present CESGA is supporting these projects
EGEE III, I2G, IBERGRID [1], EELA-II [2], Spanish-NGI and FORMIGA [3].

All these projects are based on the gLite middleware [4] developed inside
EGEE, and Spanish NGI also supports Globus 4 Toolkit. Apart from support-
ing these grid projects, CESGA collaborates testing new middleware releases
for EGEE certification and pre-production activities. These activities require a
continuous deployment of updated and new services.

The main reason to migrate CESGA grid services to virtual machines was the
need to support new hardware running old operating systems (OS), like Scientific
Linux 3 (SL3) which was required by gLite in 2007. Thanks to the hypervisor
new hardware (network interfaces, hard disks, etc) can be used in a transparent
way by the guest OS. After new infrastructure deployment the next step was
to integrate it with computer labs to take advantage of unused CPU resources.
This task was done by FORMIGA project, quite similar to BOINC [5] project,
but focused on computer labs gridification for EGEE.

H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 444–453, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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VMs performance is also important to determine migration pros and cons.
Along the past four years numerous papers have been published analysing VM
performance but only a few of them consider real-world parallel applications
when evaluating performance. For this reason, in this paper selected benchmarks
have been included to show specific CESGA virtual platform performance, that
it is relevant for most of our users. From previous papers, perhaps the most
well-known it is the one by Walker [6] comparing MPI and OpenMP running
over an NCSA cluster and Amazon EC2, the results shows up to 21% degrada-
tion for OpenMP and up to 1000% degradation for MPI running computational
fluid dynamics application (SP) using the Beam-Warming approximate factor-
ization method. On the other hand one of the most exhaustive studies is the
one by Bavelski [7] and presented in his final thesis. I/O drive bound tests re-
vealed 5 to 10 times worse performance over Xen virtual machines performance
being even worse in the case of purely hard drive-bound. Ho [8] has also done
an extensive evaluation of Xen performance using Intel MPI Benchmark Suite
and UnixBench including checkpointing evaluation. Both full-virtualization and
para-virtualization are considered in his study, it is found that in the worse case
VMs are up to 2 times slower. Finally, Huang [9] has written a dissertation
about high performance network I/O in VMs over modern interconnects eval-
uating MPI performance and RDMA based migration of VM. The dissertation
includes several parallel benchmarks, including NAS Parallel Benchmarks [10].
In this paper selected benchmarks have been included to show specific CESGA
virtual platform performance, that it is relevant for most of our users.

This paper is structured as follows: in Section 2, CESGA virtual infrastructure
is presented. In Section 3, impact on performance of virtualization is evaluated.
Section 4 describes the use of the emergent cloud technology to improve resource
management. Finally, Section 5 provides a summary of the main conclusions of
this work.

2 CESGA Grid Infrastructure

Two years ago the migration of our worker nodes (WN) to virtual machines
(VM) was started mainly due to limited hardware support in SL3, the only OS
supported by gLite at that time. In these sections the main characteristics of
CESGA infrastructure are presented: virtualization, shared batch system and
WN and the reuse of computer labs resources.

2.1 Virtualization

All grid services at CESGA are now running under a totally virtualized infras-
tructure which allows to easily support new projects on demand. When a new
physical machine arrives it is quickly configured and installed using a specific
kickstart script which automatically installs a new Xen [11] dom0 server from
a local repository using Preboot eXecution Environment (PXE). Each new de-
ployed dom0 can run several VM with different OS like SL3 or SL4, depending
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on the service requirements. When it is needed to configure a new service, a
golden-copy from our local VM repository is used to deploy it into any available
dom0 and then, if it is based on gLite, it is configured using Yaim and CESGA
global site-info.def in a few minutes.

The main advantages of our virtualized grid infrastructure are:

– Better resource utilization: New services can be installed fast and there is
no need to spend money on new hardware. It can be a solution for sites and
users who increasingly demand more services.

– Power saving: Several grid services are consolidated in a single server (up to 8
services depending on the requirements of the service) reducing the number
of servers required and therefore reducing overall power consumption in the
datacenter.

– Easy replication: The deployment of a VM from an existing template or
golden copy is done in just a few minutes.

– Load balancing: If a VM requires more physical resources, it can be given
more resources or migrated to another dom0.

– Fault-tolerance: Xen combined with Logical Volume Manager (LVM) offers
roll-back possibility using snapshots. In case of failure, a VM can be repli-
cated using our daily backups and started in a different dom0.

– Flexibility: Possibility of using old OS versions, like Scientific Linux 3 with
modern hardware.

2.2 Shared Batch System and Worker Nodes

In order to share all the WN among the different grid projects supported at
CESGA a shared batch system is required. In our case Grid Engine (GE) batch
system [12] is used. gLite middleware requires a Computer Element (CE) for
each grid infrastructure (see Figure 1). The batch server is shared using one
single GE qmaster server and a shadow qmaster for fault tolerance purposes
with our current configuration. Jobs are submitted from different sources but
all jobs are collected in a single batch server (qmaster in the GE nomenclature)
that distributes them between all the available WN. At this point, a difficulty
appears due to the fact that different WNs belonging to different grid projects
require a different environment and in some cases even a different middleware
version. This issue is solved by the GE JobManager developed at CESGA, it is
configured on each CE to load the specific gLite environment for each project.

2.3 Integrating Computer Lab Resources

FORMIGA project has extended the gLite middleware to take advantage of
idle resources at computer labs. The project final prototype is already work-
ing in several computer labs of the University of Santiago de Compostela and
CESGA. These computers run Xen or VMware depending on the OS installed
by the computer lab administrator, operating transparently to the user. The
virtual machines installed at computer labs are used as WN that communicate
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Fig. 1. CESGA grid infrastructure schema with shared WN, GE batch system and SE

with one CE allocated in CESGA securely through a virtual private network
(VPN) managed using SSL/TLS for asymmetric encryption between the WN in
computer labs and CESGA servers (CE, SE) (see Figure 1). All nodes are in-
terconnected through the VPN, each virtual machine, after starting its network
interface with connection to Internet, starts the client openvpn service. For se-
curity reasons only computer labs administrators can access directly to running
virtual machines, grid non-privileged users are authenticated using their specific
X.509 certificate signed by a certificate authority (CA) to execute their jobs.
The usage of virtual machines allows an easy deployment of the middleware in
the computer labs and permits to migrate jobs between computers, besides the
use of Xen on the platform provides flexibility to manage them. The VPN helps
to avoid the restrictions of firewall and private networks usually configured in
the computer labs.

3 Benchmarks

One of the main concerns about using a virtual infrastructure is the performance
loss incurred by the virtualization layer. Not many years ago nobody would be-
lieve that a complete production site could be run efficiently under a virtual
environment and at that time virtualization technology was useful only for aca-
demic or testing purposes due to their performance. With the improvements in
virtualization technology and the arrival of Xen, an open source virtual machine
monitor (VMM) that implements the concept of paravirtualization, new doors
have been opened to implement a production grid infrastructure.

To quantify the performance loss incurred by using virtualization technology,
several benchmarks have been performed both using this virtual grid infrastruc-
ture and a physical one and shows a general overview of CESGA infrastructure
performance. The main results of these benchmarks are presented in this section.
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Table 1. VM performance loss by type of benchmark: a comparison with results from
previous papers is also included

CESGA Previous papers

Disk sequential read 0%-1% 66% [7]

Disk sequential write 4%-26% 63% [7]

Disk random read 1% 83% [7]

Disk random write 34% 67% [7]

CPU performance 0%-22% 0% [8] 2%-3% [7]

OpenMP 1% 7%-21% [6]

MPI 294% 40%-1000% [6]

Network latency 41% 41% [8]

Network bandwidth 15% 30% [9]

In our performance evaluation a system composed of two Dell PE1955 blades
with the following characteristics were used:

– 2 x Intel(R) Xeon(R) CPU E5310 @ 1.60GHz QuadCore
– 4GB DDR2-667 RAM, 73.4GB HDD
– Gigabit ethernet: Broadcom 5708
– Dom0: Fedora Core 6 x86 64
– VM: Scientific Linux 4 i386
– Xen: Linux Kernel 2.6.18-1.2798.fc6xen

These two blades are very representative of CESGA configuration where most of
the servers are of this type so it will give us a good estimation of the performance
of our overall grid infrastructure. Each benchmark was executed three times
using these dedicated nodes exclusively, the results shown are the arithmetic
average of the measures.

The benchmarks performed can be divided in two groups, synthetic bench-
marks where the performance of specific components of the system was evalu-
ated, and application benchmarks where a selection of the most commonly used
applications in our supercomputer center has been selected to evaluate their
performance in both platforms.

3.1 Synthetic Benchmarks

Several synthetic benchmarks were selected to measure CPU, filesystem and
network performance:

– Intel Linpack [13]: CPU performance
– Bonnie++ 1.03a [14]: filesystem performance benchmark tool
– Iozone 3.323 [15]: newer filesystem benchmark tool
– Iperf 2.0.4 [16]: modern alternative for measuring maximum TCP and UDP

bandwidth performance



Providing Grid Services Based on Virtualization and Cloud Technologies 449

– Effective Bandwith Benchmark (beff ) 3.5 [17]: measures the accumulated
bandwidth and latency of MPI jobs, an older version of this tool is part of
the well-know HPCC benchmark suite

All those benchmarks were executed using the same parameters both in the
virtual system and in real machines. The detailed results can be downloaded
from [18].

The file system performance of virtual and physical machines is very similar
(less than 1% performance difference) except in the case of the write perfor-
mance tests where there is an important performance penalty incurred by vir-
tual machines. In the sequential write test the VM suffers a 15% performance
degradation with respect to the physical one and in the random write test this
degradation reaches 30%, these results are better than previous published works
[7] (see comparison Table 1), because newer Xen versions have improved I/O
performance. This means that write throughput is seriously impacted in virtual
machines and their use for highly intensive I/O applications is not recommended.
In our virtual infrastructure this is partially avoided by the fact that an exter-
nally exported StorageWorks Scalable File Share (SFS) filesystem [19] is used as
the main storage source for the SE machines.

Another important aspect is the CPU performance, because HPC grid and
cloud computing users demand fast CPUs for their applications and VMs must
provide an adequate performance. It should be mentioned here that CESGA
virtual grid services are running in paravirtual machines. This has the disadvan-
tage that the original guest must be modified to use the Xen kernel but offers
many advantages in terms of performance. In this case the virtual guest is aware
that it is running in a virtualized environment and it communicates directly
with the Xen kernel hypervisor reducing the performance penalty incurred by
virtualization.

To compare CPU performance, all tests were performed running on x86 64
CPUs (with 51.2 Gflops of theoretical peak) using a x86 64 bit Xen kernel version
both for real and VM machines. The synthetic benchmark chosen for these tests
was Intel Linpack, both the x86 64 and i386 versions. This is due to the fact
that the OS of virtual machines is the i386 version of Scientific Linux 4 and not
the x86 64 version because the x86 64 version of gLite still has many bugs for a
production environment.

VM performance running x86 64 linpack is exactly the same than real ma-
chines, showing basically the same conclusion than previous papers (see Table 1).
Unfortunately for i386 binaries the situation is drastically different, VM looses
about 22% performance, in dom0 we obtain 37 GFlops but in Xen VM we obtain
29 Gflops running linpack compiled for i386 architecture. This situation may be
due to the fact that the Xen hypervisor must translate i386 instructions running
into x86 64 kernel. This situation can be critical for user applications compiled
for i386 which are executed on VMs with x86 64 kernels, the best option in this
case is to recompile user applications for x86 64 architecture or change VM to
its x86 64 version.
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Finally, network performance was evaluated using iperf and beff . In this case
two dom0s and two VMs were used to measure network bandwidth between
them. The result for real machines was a bandwidth of 871 Mbits/sec meanwhile
for VMs it decreases to 740 Mbits/sec, this means a 10% loss (about 10%). To
measure MPI network performance the algorithm of effective bandwidth (beff )
was executed. The results for real machines were beff= 53.92 MB/s , Latency=
83.26 μs and for VMs beff= 42.63 MB/s , Latency= 117.14 μs. This means a 41%
loss in MPI latencies and a 15% loss in beff which greatly impacts performance of
communication-bound MPI applications as discussed in the next Section. These
results are in line with previous measurements of network latency from Ho[8] but
greatly improve the previous measurements of network bandwidth by Huang[9]
going from a 30% to a 15% loss as it can be seen in Table 1. This is mainly due
to the high performance networking using segmentation off-load introduced in
Xen 3.0.3 (Huang[9] used the older version 3.0).

3.2 Application Benchmarks

Synthetic Benchmarks could be a good reference to compare different machines
but it is ever better to test real-life applications. In this case two of the most
used applications in our supercomputing center were selected trying to simulate
a real scenario of what it is actually run at CESGA by our users:

– Gaussian G03: Computational chemistry simulation package [20]
– Gromacs 3.3.2: Molecular dynamics simulation package [21]

In Gaussian case was used the serial version program running Na(H2O)4 S4 sym-
metry example (Test339). In this benchmark results were quite similar on both
cases, the test was terminated in 910s and 920s running on a real machine and
VM respectively. This benchmark clearly demonstrates the analogous through-
put between real and VMs when no intensive I/O operations are needed with a
performance loss of just 1%. This result shows a great improvement for OpenMP
applications compared to those previously obtained by Walker [6] where losses
between 7 and 21% were reported depending on the OpenMP application.

The official Gromacs DPPC benchmark was executed using eight MPI pro-
cesses running on same node. DPPC emulates a phospholipid membrane for a
total of 121,856 atoms. VMs are 1% slower running this test and the loss is
almost negligible.

One of the most remarkable characteristics of this test was the great difference
between real and virtual machines running the same DPPC benchmark over
MPI. Two nodes running eight MPI processes in each one were used. On real
machines the test finished in 604s, 28% faster than MPI execution using a single
node, but on the other side, VMs are much slower, finishing the tests in 2379s
(1529s slower that running the same job only using 8 CPUs). This result, 294%
performance loss, is better than the results obtained by [6] (see Table 1), where
up to a 1000% loss was detected, but it is still too high. The main reason of
this significant performance loss is the high dependency on network latencies of
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the DPPC benchmarks and the fact that, as it has been shown in the previous
section, network latency is 41% worse in VMs.

Summarizing, OpenMP applications like Gaussian G03 are well suited to run
in our virtual environment with almost no performance loss if the calculations
do not perform intensive I/O operations. However communication-intensive MPI
applications like our Gromacs example should not be run between VMs since
performance can be even worse than that of a single node.

4 Towards Cloud Computing

As discussed above, most of the CESGA Grid infrastructure is based on virtual
machines, this adds a lot of flexibility to the architecture, specially when services
are necessary in a short time. This infrastructure uses a central repository which
stores different virtual machines as Scientific Linux 4/5, Open Suse 9/10, etc.
These virtual machines are like dummy boxes without any service, when a new
gLite service is needed the dummy virtual machine image is copied by hand
from repository to a specific Xen dom0. After that new VM is started on their
new location, a new IP is assigned to it and middleware services are installed
following the normal process. This procedure saves a lot of work and is very
flexible, virtualization allows moving VM images to another location in a few
seconds, change their available memory in hot, make image snapshots to recover
them from a disaster, change CPU allocated,etc.

Until now virtual machines are started by hand in our virtual grid infras-
tructure, but using a web service like Eucalyptus, VMs (or instances in cloud
terms) could be started with a minimal effort running new gLite services, only
by clicking in a web interface.

At the time of writing this article, we are testing Eucalyptus in our grid farm.
The first tests have been promising, Cloud services do not consume too much
memory and Cloud Nodes (CN) and Controllers use secure internal communi-
cations with WS-security without efficiency lost. There are still questions to be
addressed as fault tolerance if a Node Controller fails, Cluster Controller must
check this issue and replace failing instances in a new dom0. Other question is
about coexistence between Eucalyptus VMs and other VMs on same CN, at the
moment Eucalyptus essentially ignores VMs started outside of its control, but
probably these features will be available in next releases.

5 Conclusions

The main advantages of CESGA virtual grid infrastructure are flexibility, im-
proved resource utilization, easy replication, load balancing and fault-tolerance
capabilities. In order to share available resources between all the different grid
projects supported at CESGA, the infrastructure uses a single batch system
shared among all CE that allows to use a common pool of WN for all projects.
The modifications required in the WN has been described and could be imple-
mented for other grid projects. Additionally idle resources at computer labs are
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included in the infrastructure by using the software developed in FORMIGA’s
project that allows an easy integration of these spare resources with any gLite-
based environment.

The results of our benchmarks show that the performance of the virtual infras-
tructure is very similar to the one of its physical counterpart (less than 1% per-
formance difference) with two exceptions that it is worth to mention: I/O write
performance and MPI latency. In the case of I/O write performance a degrada-
tion up to 30% could be experienced and, in the MPI latency case, benchmarks
show a 40% loss, but the worst throughput result was running Gromacs MPI
over virtual machines.

This means that CESGA virtual grid infrastructure is not recommended for
running highly intensive I/O applications that rely heavily on random write per-
formance or highly parallel MPI jobs where latency plays an important role. The
second limitation does not represent a big problem in a typical grid environment
where most of the jobs are not using MPI, but scientists should be aware of
this performance penalty if they pretend to migrate MPI applications to cloud
computing. To solve this issue, one of the principal virtualization objectives is
to improve drivers performance and develop new OS-bypass and VMM-bypass
mechanisms to avoid VMs I/O overhead.

In our virtual infrastructure the effects of the limited write performance are
partially avoided by the fact that an externally exported SFS filesystem is used
as the main storage source for the SE machines.

The results of the selected application benchmarks show that our virtualized
infrastructure is valuable for most of our grid users. On the other hand, it should
be also stressed that current MPI performance is very poor and it is not rec-
ommended to run communication-intensive MPI applications in a multi-node
virtualized environment.

Cloud services add a new layer of abstraction, where available resources are
managed more easily and grid administrators do not have to worry about search-
ing the pool of resources, cloud does it. To make this possible, new open source
projects like Eucalyptus offer us an excellent bridge to convert our Xen based
infrastructure into a new cloud.
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A., Garcia-Loureiro, A., Aldegunde, M., Seoane, N., Pena, T., Cabaleiro, J., Rivera,
F.: Formiga/g-fluxo: Adding computer labs to the grid. In: Ibergrid’09 (May 20,
2009)

4. EGEE: gLite, http://glite.web.cern.ch/glite (Last visit: 26-06-2009)
5. Anderson, D.: Boinc: A system for public-resource computing and storage. In: Pro-

ceedings 5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh,
EEUU (2004)

6. Walker, E.: Benchmarking Amazon EC2 for high-performance scientific computing.
Login 33, 5 (2008)

7. Bavelski, A.: On the Performance of the Solaris Operating System under the Xen
Security-enabled Hypervisor. PhD thesis, Linkopings universitet, Department of
Computer and Information Science (2007)

8. Ho, C.: Evaluation of Xen: Performance and Use in Parallel Applications. EECE
496 Project Report, 21 (2007)

9. Huang, W.: High Performance Network I/O. In: Virtual Machines Over Modern
Interconnects. PhD thesis, The Ohio State University (2008)

10. NASA: NAS parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB/

(Last visit: 26-06-2009)
11. Pratt, I., Fraser, K., Spector, S., Guyader, J.: XEN web page, http://www.xen.

org (Last visit: 26-06-2009)
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Abstract. This paper addresses the issue of how to meet the strict
timing constraints of (soft) real-time virtualized applications while the
Virtual Machine (VM) hosting them is undergoing a live migration. To
this purpose, it is essential that the resource requirements of a migration
are identified in advance, that appropriate resources are reserved to the
process, and that multiple VMs sharing the same resources are tempo-
rally isolated from each other. The first issue is dealt with by introducing
a stochastic model for the migration process. The other ones by intro-
ducing a methodology making use of proper scheduling algorithms (for
both CPU and network) that allow for reserving resource shares to in-
dividual VMs. Also, an extensive set of simulations have been done by
using traces of a VLC video server virtualized by using KVM on Linux.
The traces have been obtained by patching KVM at the kernel level, and
the same patch constitutes an important step towards the complete im-
plementation of the proposed technique. The obtained results highlight
the benefits of the proposed approach.

1 Introduction

Virtualization technology is gaining more and more interest in the high-
performance computing world. However, its use implies a level of sharing of
the available hardware resources that is unprecedented. In fact, now it is possi-
ble to share the same physical host (PH) across multiple concurrently running
OS instances, and it is possible to live-migrate an entire OS to a different PH
if needed, with very limited service interruption times. Unfortunately applica-
tions may suffer from the concurrent access to shared resources, like CPUs,
network links and storage, if proper allocation policies are not adopted. This is
of particular relevance whenever the hosted applications exhibit real-time/QoS
requirements. This kind of constraints is in place not only for interactive appli-
cations but also for batch activities whose QoS levels need to adhere to precise
service-level agreements.

One key issue about guaranteeing proper QoS levels is how to keep control
of what exactly happens during the live migration of a VM. For example, the
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time needed to migrate a VM from one PH to another may be highly variable
depending on the network load that is being generated by other VMs on the
subnet, as well as on the computational load that is being generated by other
VMs concurrently running on the migration start and end PHs.

Contributions of This Paper. This paper addresses the issue of how to guar-
antee that the process of VM live migration exhibits a temporal behavior that
may be kept under control. This problem is faced with by investigating the
resource requirements needed by the migration process, and by proposing mech-
anisms that may be used to guarantee appropriate resource availability when
the live migration occurs. To this purpose, a theoretical framework is introduced
for estimating the variability of the duration of the overall migration time and
of the down-time, with respect to the page migration policy. Also, the issue of
how to guarantee that the migration process itself does not interfere too much
with the other running VMs is addressed.

2 Background

Migration is the process used to transfer a VM from the host on which it resides
to a different one. A migration is said to be live if the execution of the VM is
not interrupted during most of the transfer.

As described in [1], when a Virtual Machine Monitor (VMM) has to migrate a
VM to a new PH, all the resources associated with the VM have to be transferred
to the new host, comprising the memory, the internal state of the devices and
of the virtual CPU. The most time-consuming resource to transfer is generally
the memory. in several ways, and This paper focuses on the so-called pre-copy of
memory pages, where the VMM begins transferring the pages while the VM is
running, checks what pages are dirtied again after the transfer, and retransmits
them. This process is repeated for a certain number of times, after which the
VM is stopped, the remaining dirty pages are transmitted and the VM is started
on the destination.

In these systems, migration of storage is not usually a concern, because of the
use of network-based storage solutions that allow for a client VM to seamlessly
keep accessing the data after migration to a different host.

Related Work. The use of migration in virtualized environments is a well
known subject in the literature. The first proposed mechanisms just stopped VMs
on the source PH, saving their state, and restarting them using the saved state
on the remote PH (see, e.g., [2]). These approaches suffer of long down times,
that often are not acceptable when VMs are executing interactive applications,
and furthermore make it impossible to keep the VM connections active.

To overcome these limitations, live migration has been introduced, where the
transfer of the VM memory is done while the VM is running. Pre-copy migration
was introduced in [3], the VM is restarted at and later used in NomadBIOS [4],
a VMM built on top of the L4 microkernel [5], and then in Xen [6].
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With demand migration, derived from the copy-on-reference mechanism de-
scribed in [7], memory is migrated to the destination after the VM has restarted
its execution remotely. Recently, in [8], the authors introduced post-copy migra-
tion, which works enhancing the demand-migration approach by reordering the
page transfers for the purpose of minimizing the time spent by the VM waiting
for transfers after it restarts execution. With self-migration, introduced in [9],
the guest OS has awareness of being executed inside a VM, and exploits stan-
dard checkpointing techniques to transfer the memory and internal state of the
OS by itself.

In [10], a comparison between classical static VM allocation and dynamic
resource reallocation enabled by live migration is done. The authors of [11] in-
troduced an analytical model of VM migration to estimate the expected im-
provement of the hosted service’s response time due to a migration decision.

The issues of temporal isolation across multiple VMs concurrently running
on the same host, and of how to run real-time virtualized tasks under such
conditions, have been considered in [12] and [13] by (partially) the same authors
of this paper, but live-migration has not been addressed yet.

3 Live Migration Model

This section presents a stochastic model for real-time migration, whose purpose
is twofold: on one hand, it allows for identifying the requirements of the live
migration process; on the other hand, it constitutes a motivation for the ordering
of pages that are used in the process, as it will be detailed in Section 5.

A VM is characterized by a set of memory pages {p1, . . . , pN} assumed for
simplicity to be of fixed size equal to P bytes. Assume the bandwidth available for
the transfer is constant and equal to b bytes per second (this is possible by using
the techniques described in Section 4), and let T denote the time interval needed
to transfer a single page T = P+H

b (under the assumption that no compression
is used), where H is the overhead in bytes introduced by the migration protocol
for each page. Assume that, for the time horizon spanning the entire migration
process, each page pi has a constant probability πi of being accessed at least once
for writing within each time frame T, and assume the events of write access for
each page are all independent from one another. Assume the migration process
works according to the following steps:

1. at time t1 in which the migration starts, the set of pages D1 to be transmitted
is set to the entire set of pages used by the VM; let n1 denote its cardinality
n1 = |D1| ;

2. for k = 1, . . . , K, repeat the following: all the nk pages in Dk (nk = |Dk|)
are transferred, with a bandwidth of b bytes per second, according to the
order specified by the function φk : {1 . . .nk} → {1 . . .N} (i.e., the pages
are transmitted in the order pφk(1), . . . , pφk(nk)); the transfer ends at tk+1 =
tk + nkT, in which nk+1 pages Dk+1 are found to have become dirty again;

3. stop the VM and transfer the last nK+1 pages in DK+1, up to the migration
finishing time tf = tK+1 + nK+1

P+H
bd

, using a bandwidth of bd bytes per
second, with bd ≥ b.
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Then, the crucial values characterizing the migration process are the down-time
td = tf − tK during which the VM is stopped, and the overall migration time
ttot = tf − t1, which may now be expressed in terms of the other quantities
introduced above:

td =
(

P + H

bd

)
nK+1, ttot =

(
P + H

b

) K∑
k=1

nk + td. (1)

The above introduced notation and assumptions are at the basis of the following
results, that focus on the case K = 1 for the sake of brevity. All proofs are omitted
but they are available at: http://retis.sssup.it/~tommaso/vhpc09-proofs.pdf

Proposition 1. The probability of a page pi that is not dirty at time t1 to become
dirty and thus need to be transmitted in the final migration round is:

Pr {pi ∈ D2 | pi /∈ D1} = 1 − (1 − πi)
n1 . (2)

Proposition 2. The probability of a page pi that is dirty at time t1 to become
dirty again and thus need to be transmitted in the final migration round is:

Pr {pi ∈ D2 | pi ∈ D1} = 1 − (1 − πi)
n1+1−φ−1

1 (i)
, (3)

where φ−1
1 (·) : {1 . . .N} → {1 . . .n1} denotes the inverse of the φ1(·) function.

Theorem 1. The expected overall migration time (with K = 1) is:

E [ttot] =
(

P + H

b

)
n1 +

(
P + H

bd

)⎡
⎣n1 −

n1∑
j=1

(
1 − πφ1(j)

)n1+1−j

+ (N − n1) −
∑
i/∈D1

(1 − πi)
n1

⎤
⎦ . (4)

Theorem 2. The order (φk(1), . . . , φk(nk)) of transmission of the pages that
minimizes the expected number of dirty pages found at the end of the kth live
migration step must satisfy the following condition:

∀j πφk(j)(1 − πφk(j))nk−j ≤ πφk(j+1)(1 − πφk(j+1))nk−j . (5)

Corollary 1. If the probabilities πi are all lower than 1
nk+1 , than the optimum

ordering is obtained for increasing values of the probabilities πi. On the other
hand, if the probabilities are all greater than 1

2 , then the optimum ordering is
obtained for decreasing values of the πi.

Reducing the Overall Migration Time. Among the pages to be transmitted
there are pages which are accessed by the VM with a very high frequency. For
example, pages containing data used by the guest OS for scheduling processes
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are found as always written at each observation instant. Therefore, it is not
convenient to transmit such pages at each migration step, because these pages
would need to be transmitted again in the last step, when the VM is stopped.
Therefore, it is possible to modify the migration algorithm as follows: among the
nk pages that are found as dirty at start of step k, for a set of pages Fk ⊂ Dk

delay the transmission to when the VM is stopped. One possibility is to choose
the pages for which the access probabilities are higher than a threshold value π :
Fk � {pi ∈ Dk | πi ≥ π} . Focusing on K = 1, the following holds:

Proposition 3. If the transmission of the pages F1 � {pi ∈ D1 | πi ≥ π} is
delayed, then the new overall transmission time t̃tot and the new down-time t̃d
satisfy the following:

E
[
t̃d
] ≤ E [td] + |F1| (1 − π)

(
P + H

bd

)

E
[
t̃tot

] ≤ E [ttot] − |F1|
(

P + H

b

)
+ |F1| (1 − π)

(
P + H

bd

)
.

Therefore, with a sufficiently low π, it is possible to achieve a negligible increase
in the expected down-time but with a substantial decrease of the overall migra-
tion duration. Simulations shown in Section 5 will confirm this.

Practical Implications. The theoretical framework introduced above relies on
precise knowledge of the probability πi of access of a VM to each page pi. From
a practical perspective, these probabilities are not actually known, however it is
possible to estimate their values at run-time. One possible way of doing this is
by sampling periodically, with a fixed period what pages in the VM have been
tagged as dirty by the kernel, then resetting the dirty flag bits and repeating the
measure several times.

Building an accurate ordering of dirty pages satisfying Equation 5 may lead
to non-negligible overheads (actually, a possible algorithm for doing this is still
being developed). Therefore, this paper proposes a couple of algorithms: a simple
LRU based approach, where the pages that are transmitted first during each live
migration step are the least recently used ones, and a frequency-based approach,
where the pages are transmitted in order of increasing access frequency. The
results section will show results obtained with the introduced orderings.

4 Real-Time Issues

In order to keep control over the live migration process, so as to achieve a
predictable timing behavior of the process, the technique proposed in this paper
foresees the adoption of proper scheduling strategies for the involved resources,
namely computation and network resources.
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Computation Resources. In order to guarantee proper processor shares to
Virtual Machines that are concurrently running on the same Physical Host, it is
possible to exploit scheduling strategies that are available for the Linux kernel
as separate patches in the domain of soft real-time applications.

For example, the AQuoSA scheduler [14] developed in the context of the
FRESCOR1 European Project provides a user-space API and a set of command-
line tools that allow for providing to a thread, process or group of them, a
scheduling guarantee by the kernel. Such guarantee is expressed in terms of a pair
(Q, P ), with the meaning that within each period of duration P microseconds,
the thread (or thread group) is reserved the CPU for Q microseconds. This
guarantee has a strong theoretical foundation, as the scheduler has been written
as a variation of the Constant Bandwidth Server, a real-time scheduler whose
description can be found in [15].

Also the POSIX Sporadic Server [16] and the framework presented in [17],
both recently developed in the context of the IRMOS European Project2 may
be used for the purpose of temporal isolation among multiple processes running
on the same Linux OS.

Such mechanisms may be used in order to encapsulate each VM (along with
all the threads it is composed of) within a proper scheduling guarantee, whose
parameters need to be found by using appropriate benchmarking techniques.

Network Resources. For the estimation of the overall number of page trans-
missions during the live migration to be accurate, the network bandwidth b
should be of a constant available bitrate. With a fixed size of P bytes per page,
the time slot T for a page to become dirty has a hyperbolic dependence on the
bandwidth b and so is any variation ΔT . Note, that the average probability
πi of a page being accessed in a single slot T increases if the network band-
width decreases. Further, the recursive nature of the iterative process accounts
for an autocorrelated contribution of T to the overall number of required page
retransmissions during each iteration.

Practically, the longer a page transmission takes, the higher is the probability
of pages being dirtied which increases the number of required retransmissions.
With more pages being dirtied, the duration of the follow-up iteration increases
during which more pages can be dirtied again. ΔT propagates analogously, be-
cause a single variation of the time required for a page transmission results in
an autocorrelated propagation of error in the estimation model.

In a managed network computing cluster, the available bandwidth for a possi-
ble migration can be properly reserved. An example for an innovative infrastruc-
ture that considers network resource isolation and reservation under multi-hop
conditions for cloud computing is the Intelligent Service-Oriented Network In-
frastructure (ISONI) of the IRMOS project. For the assumptions of a constant
duration T per page transmission to hold, a constant bitrate scheduling algo-
rithm is recommended to determine whether the required overall migration time
and expected VM downtime are acceptable for the efficiency of the infrastructure
1 More information at the URL: http://www.frescor.org
2 More information at the URL: http://www.irmosproject.eu
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and the SLA of the VM, respectively. Further research would be required to ac-
count for the effect and the allowable degree of bandwidth variations during the
migration mechanism.

5 Evaluation Results

Implementation. In order to support the algorithms described in this paper,
the basic infrastructure has been implemented modifying the KVM hypervisor
and the Linux kernel itself. This comprises a page tracing mechanism 3 that
exposes to user-space the set of pages that have been accessed in write (dirt-
ied) within each observation interval. Page accesses are traced using a bitmap
inside the hypervisor; every time a writable mapping is created by the guest,
the hypervisor sets the bitmap position corresponding to the newly mapped
page. Periodically the bitmap is zeroed and all the writable mappings are reset
to read-only. Currently, a simple user-space program saves this information to
trace files, which have been used for the simulations shown later. A complete
implementation of the live-migration mechanisms proposed in this paper would
just require to exploit this information to affect the transmission order of the
pages in the existing KVM migration code.

Simulations. This section reports simulation results that prove effectiveness
of the proposed technique in reducing both the overall migration time and the
down-time. Simulations rely upon traces gathered from real virtualized applica-
tions running on KVM on Linux, patched with the tracer previously described
in this section.

A virtualized VideoLAN Client (VLC) server has been chosen as the target
application scenario for the evaluation of the proposed technique. This scenario
raises interesting real-time issues (concerning the down time during a live migra-
tion) in the case of live streaming of a video acquired from a camera and trans-
mitted in real-time to the viewers, or in the case of a video streaming service that
needs a low seeking latency (as needed during an interactive distributed video
editing session). A few traces have been collected independently on VMs that were
running the just cited application, while a few clients were accessing the provided
service. The observation period has been set to 250ms. In the collected trace,
the VM had a set of about 6500 mapped pages (with 16 KBytes per page) when
the migration was simulated. This would correspond to an service interruption of
about 8 seconds, if a stop-and-transfer were performed with a bandwidth of 100
MBit/sec (plus the protocol overheads) reserved to the process.

Figure 1 shows the results obtained by simulating the live migration pro-
cess, in terms of achieved number of down-pages, transmitted while the VM
is stopped, and overall number of transmitted pages during the entire migra-
tion. These results have been measured for various number of live migration
steps/rounds, which correspond to the different points on each curve. Also, mul-
tiple page transmission policies have been used in the simulation of the same
3 The tracing patch used to collect the data used in the experimental section is avail-

able at http://feanor.sssup.it/~fabio/linux/kvm/page-trace/
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Fig. 1. Performance achieved at varying values of K (various points within each curve)
and page migration policy (various curves)

live migrations, corresponding to the different curves on the figure. The Simple
curve refers to the standard address-based ordering of pages, which is used by
default by the current version of KVM, the LRU curve is obtained when transmit-
ting first the Least Recently Used pages, and finally the PFR curve is obtained
when transmitting first the pages which have been dynamically measured (at
run-time) to have the lowest write access frequency. The bandwidth guaranteed
to the migration process has been set to 50 Mbit/s.

The rightmost points correspond to K = 1 and the leftmost points correspond
to K = 3. Increasing K, generally leads to an increase of the overall transmission
time, but also to a significant reduction in the down-time. For example, with the
standard KVM policy, with a single round there are 400 pages left to transmit
when the VM is stopped, whilst with 3 rounds these pages are reduced to about
270 (roughly a 48% down-time reduction).

Comparing the rightmost, leftmost and middle points on each curve, it is
evident how a simple LRU reordering of the pages transmitted during a live
migration, as compared to the default address-based order, can achieve a great
reduction in both the down-time and the overall migration time: the pages left
to transmit when the VM is stopped can decrease from about 570 down to about
300 (47% down-time reduction) when K = 1, or a decrease from about 360 to
about 290 (19.4% reduction) with K = 3. Also, the overall number of pages to
transmit during the migration is reduced from about 4800 down to 4500 (6.25%
reduction) with K = 1, or from about 5500 down to about 5000 (9.1% reduction).

The figure also highlights that a further down-time decrease may be obtained
by transmitting the pages in increasing order of write access probability (PFR
curve), however its relevance needs to be compared with the additional overhead
of keeping an exact ordering by frequency of access, as compared to the simple
LRU ordering, which may be implemented by a list that is manipulated in O(1).

Figure 2 reports a similar plot obtained when an LRU page transmission
policy has been used, with the additional trick to delay transmission of the
most frequently accessed pages. The various curves in the figure correspond
to different values of the threshold value π (indicated in the legend) for the
page access probability, over which the page transmission has been delayed (as
described in Section 3). The further improvements achieved by this technique
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are evident from the figure, where the down-pages may be further reduced from
300 down to 220 (27% reduction), and the overall time from 5000 down to 4400
(12% decrease) when using a π = 0.30.

6 Conclusions

This paper presented a technique for live migration of real-time virtualized ap-
plications. The achievement of very low and predictable down times, as well as
the availability of guaranteed resources during the migration process, are key
factors for obtaining outages in the provided service with a negligible impact.

A probabilistic model of the migration process has been introduced, for the
purpose of building a sound mathematical theory over which to found a novel
set of migration policies, such as the proposed one based on a simple LRU order,
or the more complex one based on the observed page access frequencies in the
past VM history. The LRU policy has been proved (by simulation) to achieve a
good degree of effectiveness in decreasing the down-time and overall migration
time, still keeping an acceptable level of overhead.

However, the proposed technique needs a deeper evaluation over the full imple-
mentation that is being developed, especially on the side of the possible trade-offs
between accuracy in gathering the information needed for optimizing the page
transmission order, the corresponding run-time overhead, and possible variations
to the page transmission schemes adopted.
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Appendix: Proofs

Proposition (Was Proposition 1 in the text). The probability of a page pi

that is not dirty at time t1 to become dirty and thus need to be transmitted in
the final migration round is:

Pr {pi ∈ D2 | pi /∈ D1} = 1 − (1 − πi)
n1 . (6)

Proof. The probability may be written as the complement of the probability
of the page never being accessed during the transmission of the n1 pages. Let
Ei, j denote the probability that pi is not accessed during the transmission of
the jth page, with j = 1, . . . , n1. Then, due to the assumptions on the page
access probabilities, the {Ei, j}j=1,...,n1

events are all independent, therefore:
Pr {pi ∈ D2 | pi /∈ D1} = 1 − Pr {Ei, 1 ∧ . . . ∧ Ei, n1} = 1 − ∏n1

j=1 Pr {Ei, j} =
1 − (1 − πi)

n1 . ��
Proposition (Was Proposition 2 in the text). The probability of a page pi

that is dirty at time t1 to become dirty again and thus need to be transmitted in
the final migration round is:

Pr {pi ∈ D2 | pi ∈ D1} = 1 − (1 − πi)
n1+1−φ−1

1 (i)
, (7)

where φ−1
1 (·) : {1 . . .N} → {1 . . .n1} denotes the inverse of the φ1(·) function.

Proof. The probability may be written as the complement of the probabil-
ity of the page never being accessed in the period going from the time the
page starts to be transmitted t1 + φ−1

1 (i)T, to the time the transmission round
is over t1 + n1T, corresponding to a total of n1 + 1 − φ−1

1 (i) time slots of
duration T, i.e., Pr {pi ∈ D2 | pi ∈ D1} = 1 − Pr

{
Ei, φ−1

1 (i) ∧ . . . ∧ Ei, n1

}
=

1 −∏n1

j=φ−1
1 (i) Pr {Ei, j} = 1 − (1 − πi)

n1+1−φ−1
1 (i)

. ��

Theorem (Was Theorem 1 in the text). The expected overall migration
time (with K = 1) is:

E [ttot] =
(

P + H

b

)
n1 +

(
P + H

bd

)[
n1 −

∑
i∈D1

(1 − π1)
n1+1−φ−1

1 (i)

+ (N − n1) −
∑
i/∈D1

(1 − πi)
n1

⎤
⎦ . (8)

Proof. From Equation 1, ttot =
(

P+H
b

)
n1 + td, where the first term is constant

and known, and the expected down-time E [td] may be computed as follows.
Let Xi be a stochastic variable equal to 1 if the page pi is dirty and needs
to be transmitted in the next step, and 0 otherwise. Clearly, the number of
pages n2 that are dirty and thus need to be transmitted in the next step, is
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equal to: n2 =
∑N

i=1 Xi. However, for each page i ∈ D1, the probability that
Xi = 1 is the probability that the page becomes dirty again in the time-interval[
t1 + φ−1

1 (i)T, t1 + n1T
]
, which is computed by means of Equation 7. On the

other hand, for each page i /∈ D1, the probability that Xi = 1 is the probability
that the page becomes dirty in the time-interval [t1, t1 + n1T ] , computed by
using Equation 6. Therefore:

E [n2] = E

[
N∑

i=1

Xi

]
=

∑
i∈D1

E [Xi] +
∑
i/∈D1

E [Xi] (9)

=
∑
i∈D1

[
1 − (1 − πi)

n1+1−φ−1
1 (i)

]
+

∑
i/∈D1

[1 − (1 − πi)
n1 ] (10)

= n1 −
∑
i∈D1

(1 − πi)
n1+1−φ−1

1 (i) + (N − n1) −
∑
i/∈D1

(1 − πi)
n1 (11)

The proof is easily obtained by considering that E [td] =
(

P+H
bd

)
E [n2] . ��

Theorem (Was Theorem 2 in the text). The order (φk(1), . . . , φk(nk)) of
transmission of the pages that minimizes the expected number of dirty pages found
at the end of the kth live migration step must satisfy the following condition:

∀j πφk(j)(1 − πφk(j))nk−j ≤ πφk(j+1)(1 − πφk(j+1))nk−j . (12)

Proof. During the kth algorithm step, nk pages are transmitted in the order
(φk(1), . . . , φk(nk)) . Therefore, the jth transmitted page pφk(j) has nk − j + 1
time slots for becoming dirty again before the next step. The probability of the
page becoming dirty again between the time in which it starts to be transmitted,
and the time in which the step finishes, is: 1 − (

1 − πφk(j)
)nk+1−j

. Now, let Xj

be a stochastic variable equal to 1 if the page pφk(j) gets dirty again and needs
retransmission in the next step, and 0 otherwise. Clearly, the number Nk of pages
that, after being transmitted during step k, become dirty again and need to be
retransmitted in the next step, is equal to: Nk =

∑nk

j=1 Xk. As a consequence,
the expected value of Nk may be written as:

E[Nk] =
nk∑
j=1

E[Xj] =
nk∑
j=1

φφk(j)(nk−j+1) = nk−
nk∑
j=1

(
1 − πφk(j)

)nk−j+1
. (13)

At this point, the theorem proof is easily obtained by absurd. Suppose the min-
imum value of E[Nk] is obtained when the pages do not respect the ordering
in 12. Then, there exists an index j such that Condition 12 does not hold.
The contribution to E[Nk] due to the two pages is 2 − (

1 − πφk(j)
)nk−j+1 −(

1 − πφk(j+1)
)nk−(j+1)+1

, while swapping the two pages into the sequence would

lead to a contribution of 2−(
1 − πφk(j)

)nk−(j+1)+1−(
1 − πφk(j+1)

)nk−j+1
, leav-

ing the contributions due to the other pages unchanged. This, under the assump-
tion of πφk(j)

(
1 − πφk(j)

)nk−j
> πφk(j+1)

(
1 − πφk(j+1)

)nk−j
, corresponds to a

decrease of E[Nk], leading to a contradiction. ��
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Corollary (Was Corollary 1 in the text). If the probabilities πi are all
lower than 1

nk+1 , than the optimum ordering is obtained for increasing values of
the probabilities πi. On the other hand, if the probabilities are all greater than 1

2 ,
then the optimum ordering is obtained for decreasing values of the πi.

Proof. In the first case, for all positive exponents nk−j, the function π(1−π)nk−j

is always monotonically increasing in π, therefore Condition 12 is equivalent
to having increasing probabilities πφk(i) in the sequence

{
πφk(1), . . . , πφk(nk)

}
.

Similarly, in the first case, the function π(1−π)nk−j is monotonically decreasing
in π. Therefore, the same condition translates to requiring decreasing values of
πφk(i) in the sequence

{
πφk(1), . . . , πφk(nk)

}
. ��

Proposition (Was Proposition 3 in the text). If the transmission of the
pages F1 � {pi ∈ D1 | πi ≥ π} is delayed, then the new overall transmission time
t̃tot and the new down-time t̃d satisfy the following:

E
[
t̃d
] ≤ E [td] + |F1| (1 − π)

(
P + H

bd

)

E
[
t̃tot

] ≤ E [ttot] − |F1|
(

P + H

b

)
+ |F1| (1 − π)

(
P + H

bd

)
.

Proof. If these pages were transmitted, then E[|Fk+1|] would be equal to |Fk| −∑
i∈Fk

π
nk−jk(i)+1
i , where jk(i) is the transmission position of the page i. This

may be upper bounded by E [|Fk+1|] ≥ |Fk| −
∑

i∈Fk
(1 − π̃) = |Fk| π̃. Similarly,

at the end of the last step (the Kth), the number of pages in F1 that would
have to be retransmitted would be |Fk|

[
1 − (1 − π̃)K

]
. So, if these pages are

not transmitted at the kth step, then a contribution of
∑K

k=1 |F1|
[
1 − (1 − π̃)k

]
pages is removed from the expected number of pages to be transmitted before
stopping the VM, but a contribution of |F1| (1 − π̃) would be added to the
expected number of pages to be transmitted while the VM is stopped. ��
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