
Adding Dynamic Types to C�

Gavin Bierman1, Erik Meijer2, and Mads Torgersen2

1 Microsoft Research
2 Microsoft Corporation

{gmb,emeijer,madst}@microsoft.com

Abstract. Developers using statically typed languages such as C� and Java are
increasingly having to interoperate with APIs and object models defined in dy-
namic languages. This impedance mismatch results in code that is difficult to
understand, awkward to analyze, and expensive to maintain. In this paper we de-
scribe new features in C�4.0 that support the safe combination of dynamically
and statically typed code by deferring type checking of program fragments with
static type dynamic until runtime. When executed, these dynamic code fragments
are type-checked and resolved using the same rules as statically typed code. We
formalize these features in a core fragment of C� and prove important safety
properties. In particular, we show that subtyping remains transitive.

1 Introduction

Real-world software applications are architected in several tiers. The increased use of
JavaScript and other dynamic languages in web-based applications mean that the mid-
tier software, typically written in a statically-typed language such as C� and Java, has
to interoperate with dynamically-typed top-tier code and objects. There is clearly an
impedance mismatch between these two data models, which leads to particularly awk-
ward coding in the mid-tier code.

The Dynamic Language Runtime (DLR) is an API which runs on top of the Com-
mon Language Runtime (CLR). Its purpose is to enable efficient implementations of dy-
namic programming languages—for example, IronRuby and IronPython—on the CLR,
but also to facilitate great interoperability between dynamic languages and statically-
typed CLR languages such as C� [12]. Core to the DLR is the notion of dynamic ob-
jects; i.e., objects that can do their own name binding at runtime instead of having it
done for them by a compiler. These are the currency of dynamic interoperation between
languages.

In this paper we focus on new features in C�4.0 that improve interoperation with
APIs and objects that are defined in dynamic languages and target the DLR. Whilst we
focus on these new features in the context of C�, none of them are especially tied to the
language: the design principles, which we capture in our formalization, could easily be
applied to any class-based object-oriented language.

These extensions to C� consist of a new type dynamic and changes to the type sys-
tem to allow the safe coexistence of statically and dynamically typed code and data.1

1 This combination of static and dynamic typing is sometimes referred to as gradual typing. We
do not use this terminology to avoid confusion with Siek and Waha’s particular approach [21].

T. D’Hondt (Ed.): ECOOP 2010, LNCS 6183, pp. 76–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Adding Dynamic Types to C� 77

The combination of static and dynamic type systems has been the focus of consider-
able previous work [1,22,3,21,16,17] but as far as we are aware the particular approach
described in this paper is novel.

We believe that a formal, mathematical approach is essential to set a precise founda-
tion for researchers, implementors and users of programming languages. For C�4.0 this
is especially true: the new language features require subtle changes to the type system,
and build upon assumed behaviour supported by the runtime (in the actual implementa-
tion this behaviour is supported by the DLR). This can all be captured succinctly with
fairly standard formalization techniques [18]. Moreover, they allow precise compar-
isons with previous approaches. We have found our formal approach to be useful not
only in the design process but also in the production of natural language documentation.

This paper makes a number of contributions:

– We define an imperative, core fragment of C�4.0 called FC�
4. This fragment whilst

reasonably small, contains all the essential features of C� (other fragments are too
weak, e.g. [15]).

– We define C�
CLR, which is the result of type-checking FC�

4 programs and captures
the same semantic information as the MSIL bytecode language that the actual C�

compiler targets. As C�
CLR is more amenable to formal manipulation than MSIL we

consider it to be of independent interest.
– We formally specify a type-directed translation of FC�

4 to C�
CLR. This translation

builds on the techniques of bidirectional type checking first used for local type
inference in System F [19]. Of particular importance is the treatment of the dynamic
type, which we believe to be a considerable improvement on other approaches [21]
since our system maintains transitivity of the subtyping relationship.

– We are able to prove preservation of the translation.
– We give an operational semantics for C�

CLR for which we can establish type
soundness.

The rest of the paper is organized as follows. In §2 we give an informal introduction
to the support for dynamic types in C�4.0. §3 informally characterizes the C� type sys-
tem. §4 formally describes FC�

4, our core fragment of C�4.0, and §5 describes the tar-
get language C�

CLR. §6 shows the translation from FC�
4 to C�

CLR, which represents the
compile-time binding of operations, and §7 gives the operational semantics of C�

CLR, in-
cluding the dynamic binding of operations. We review some related work in §8, before
concluding in §9.

2 An Introduction to Dynamic Types in C�4.0

In this section we give an informal introduction to the support of dynamic types in
C�4.0, including a number of examples to illustrate the key ideas. We assume that the
reader is familiar with C�/Java-like languages.

2.1 Example: JavaScript Access in Silverlight

This example is a snippet of C�3.0 code running in Silverlight and calling into JavaScript
objects running in a browser. Because JavaScript objects live outside the CLR type

78 G. Bierman, E. Meijer, and M. Torgersen

system, in C�3.0 methods and properties can only be accessed indirectly, through a
interpretative string-based interface:

Document doc = HtmlPage.Document;

Window win = HtmlPage.Window;

ScriptObject map = win.CreateInstance("VEMap", "myMap");

map.Invoke("LoadMap");

void UpdateMap(string latitude, string longitude, string name, string address)

{

map.Invoke("DeleteAllShapes");

var x = win.CreateInstance("VELatLong", latitude, longitude);

var pin = map.Invoke("AddPushpin", x);

pin.Invoke("SetTitle", name);

pin.Invoke("SetDescription", address);

map.Invoke("SetCenterAndZoom", x, 9);

}

Customer c = lstPictures.SelectedItem as Customer;

doc.SetProperty("Title", "Information for " + c.Name);

UpdateMap(c.Latitude, c.Longitude, c.Name, c.Address);

Clearly this style of string-based interoperation is weak, fragile, difficult for tools to
support and expensive to maintain. In C�4.0 we have a new type dynamic. The novelty
is that the type system has been extended to allow access to any member of a dynamic
object (just like in a dynamic language). The compiler inserts calls to the DLR to per-
form the familiar C� resolution rules at runtime. (Of course this means that we may get
lookup errors as exceptions during the execution of the program, but the string-based
interfaces had this property already.) Thus in C�4.0, we can rewrite the previous code
and declare the doc, win and map variables to be of type dynamic.

dynamic doc = HtmlPage.Document;

dynamic win = HtmlPage.Window;

dynamic map = win.CreateInstance("VEMap", "myMap");

map.LoadMap();

void UpdateMap(string latitude, string longitude, string name, string address)

{

map.DeleteAllShapes();

var x = win.CreateInstance("VELatLong", latitude, longitude);

var pin = map.AddPushpin(x);

pin.SetTitle(name);

pin.SetDescription(address);

map.SetCenterAndZoom(x, 9);

}

Customer c = lstPictures.SelectedItem as Customer;

doc.Title = "Information for " + c.Name;

UpdateMap(c.Latitude, c.Longitude, c.Name, c.Address);

Notice how all the invocations of Invoke and SetProperty disappear in favour of or-
dinary method calls and member access. This works at runtime because objects such

Adding Dynamic Types to C� 79

as map are dynamic objects that know how to correctly lookup members such as the
AddPushpin method on the underlying JavaScript object. Of course the value returned
from map.AddPushpin() again has the static type dynamic, allowing further dynamic
invocations.

2.2 Example: COM Interop

Many of the APIs on the Windows platform, such as Office and Windows 7 functionality
such as the taskbar, location and sensors, are exposed as native COM components.
Typically, COM components make heavy use of late binding since they are primarily
used via dynamically typed scripting languages such as Visual Basic for Applications
(VBA) or JavaScript. As a result, accessing COM components from previous versions
of C� was notoriously painful.

Besides the introduction of dynamic types that are the topic of this paper, C� 4.0
also adds support for optional and named parameters, which is used in many dynamic
languages in the absence of type-based overloading, and indexed properties. As a result,
accessing COM components from C� 4.0 is as concise and convenient as accessing them
from VBA:

var word = new Word.Application();

word.Visible = true;

word.Documents.Add();

word.Selection.PasteSpecial(Link: true, DisplayAsIcon: true);

Dynamic operations on COM objects are dispatched by a special DLR COM runtime
binder that is shared among multiple languages including IronPython and IronRuby.

2.3 Example: Expando Object

As the new dynamic features of C� 4.0 are built on top of the DLR we can use some
of the features intended for dynamic languages directly in C�. For example, the DLR
supports a class ExpandoObject which allows for the creation of instances that can
have property members added and removed at runtime. This style of programming is
popular in dynamic languages, as it is highly flexible and requires little declaration up
front, allowing for rapid prototyping.

dynamic employee = new ExpandoObject();

contact.Name = "Erik";

contact.Phone = "425-555-0000";

contact.Address = new ExpandoObject();

contact.Address.Street = "101 Lakeside";

contact.Address.City = "Mercer Island";

contact.Address.State = "WA";

contact.Address.Zip = "68402";

Just by assigning to these properties they are brought into existence on the ExpandoObject.
They can be examined like normal properties until they are explicitly removed, at which
point the ExpandoObject will throw an error saying that it does not have such a member.

Console.WriteLine(contact.Address.Zip); // Prints the Zip

contact.Address.Remove("Zip");

Console.WriteLine(contact.Address.Zip); // Throws an error

80 G. Bierman, E. Meijer, and M. Torgersen

2.4 Dynamic Binding of Ordinary Objects

Dynamic objects are useful in that they implement their own lookup, but what hap-
pens when ordinary .NET objects are accessed dynamically? This is interesting because
many dynamic calls will eventually return normal objects, but these will still have the
type dynamic.

C�4.0 takes the approach that binding of any operation can take place dynamically,
and that it will if any of its arguments or operands, not just the receiver, has the type
dynamic. So in the following small example:

dynamic d;

string last = d[d.Length-1];

There are no less than four dynamic operations: (1) to access the Length property; (2) to
perform the minus operator; (3) to perform the indexing; and (4) to perform the implicit
conversion to string. Each of these is looked up at runtime based on the actual runtime
type of the dynamic value.

On the other hand, dynamic binding is not an either/or situation: Even though it hap-
pens at runtime, the binding is not necessarily based entirely on runtime information. In
fact dynamic binding will only examine the runtime type of those contributing expres-
sions that had type dynamic at compile time—for the remaining expressions only their
static information will be used. Consider the following example:

public static void M(byte b, int i)

{

Console.WriteLine("byte, int");

}

public static void M(short s, int i)

{

Console.WriteLine("short, int");

}

static void Main(string[] args)

{

short s = 42;

dynamic d = 7;

int i = 42;

M(s, 7); //(1) short, int

M(42, 7); //(2) byte, int

M(s, d); //(3) short, int

M(42, d); //(4) byte, int

M(i, 7); //(5) FAIL at compile-time - no (int, int) overload

M(i, d); //(6) FAIL at compile-time - no overload permits i

M(d, i); //(7) FAIL at runtime - no (int,int) overload

}

The first two cases show compile-time binding rules of C�’s overload resolution. The
first prefers a precise match. The second, not finding a precise match, prefers the small-
est type, byte, for the first argument. The third and fourth cases are similar but replace
the literal int with the dynamic d, which has the runtime type int. The presence of this
dynamic expression causes the entire method invocation to be resolved dynamically,

Adding Dynamic Types to C� 81

using the runtime type of d, but for the first argument the compile-time type is still used.
In particular in the fourth case, not only is the compile-time type of 42 used (int), but
also the fact that it is a literal, which allows it to be converted to any integral type that
it will fit in, just like in the second case.

The remaining three cases illustrate error situations. Case 5 fails at compile-time
because neither overload accepts an int as their first argument. Somewhat surprisingly,
perhaps, case 6 also fails at compile-time for the same reason—the compiler knows
enough to determine that the invocation could never succeed at runtime, regardless of
the runtime type of d. The last case is allowed at compile-time, but fails to bind at
runtime, because even though the runtime value of d is only 7, its runtime type is int.

2.5 Dynamic Conversions

In C�4.0, expressions of type dynamic can be implicitly converted to any type. The
conversion, like any other operation, will be bound at runtime, using the runtime type
of the expression to determine if a conversion exists. So, for instance, the following:

dynamic d = "Hello World";

int i = d;

is allowed at compile-time and only fails at runtime when a suitable conversion from
string to int is not found. Note that although expressions of type dynamic can be
implicitly converted to any type, it is not the case that dynamic is a subtype of int.
As others have noticed [21], including this subtype rule collapses the subtyping rela-
tion. Our finer analysis allows us to maintain a transitive subtyping relation without the
risk of cycles, while still allowing a smooth path back from dynamic to static through
dynamically-bound implicit conversions.

Summary
In summary, C�4.0 offers a new type dynamic. At runtime this type is replaced by
object, but it is treated specially by the compiler. All types that can be implicitly con-
verted to object can be implicitly converted to dynamic. An expression that synthesizes
type dynamic can be implicitly converted to any type (with a suitable runtime type test
inserted). A method call that involves a subexpression of type dynamic (either the re-
ceiver or any argument) is treated as type-correct by the compiler, and the method call
resolution is deferred until runtime. When resolving a method call at runtime we use the
runtime type of any subexpression that was originally of type dynamic and the compile-
time types of the remaining subexpressions. In all other respects the runtime resolution
is identical to the compile-time resolution.2

3 An Overview of the C� Type System

Before we formalize the support of dynamic types we shall give a brief overview of
the C� type system. At its heart, the C� type system is a bidirectional type system [19]
which uses a variant of coercive subtyping [8]. We expand on these two points below.

2 In the C� system, the runtime and compile-time resolution is actually performed by the same
code!

82 G. Bierman, E. Meijer, and M. Torgersen

Bidirectional type systems distinguish the two distinct phases of type checking and
type synthesis. (There is also a phase of type inference that is used to generate type ar-
guments for generic method invocations [4] although we do not consider it here.) Type
checking is the process of determining whether a given term can be assigned a partic-
ular given type (the C� language specification [12] refers to this as type conversion).
Type synthesis, on the other hand, is the process of automatically determining a type
from a given term. Type synthesis is used when we do not know anything about the
expected type of an expression; for example, the receiver subexpression in a method
invocation. Type conversion is used when the surrounding context determines the type
of the expressions, and we only need to check whether the expression can be assigned
the given type. These two phases, whilst distinct, are actually inter-defined. One partic-
ularly pleasant aspect of defining a bidirectional system is that it is very straightforward
to read off an implementation from the definitions of these two relations.

It is possible to see these two phases directly in C�. Consider the following two
declarations.

T x = e; // Type conversion

var y = e; // Type synthesis

The first declaration uses the type checking phase to ensure that the expression e can
be converted to the type T. In contrast, the second declaration, uses type synthesis to
determine a type for e which is then used implicitly for the declaration of y.

These two phases are subtly different because there are C� expressions that do not
synthesize types, and yet can be converted to a type. For example,

Button x = null; // null can be converted to type Button

var y = null; // Fails as null does not synthesize a type.

The bidirectional type system also makes heavy use of a notion of subtyping. In
C� this is achieved using coercive subtyping, by which we mean that when determining
whether a type T is a subtype of type S, we generate a coercion C that when applied to a
value of type T yields a value of type S. This means that both phases of the bidirectional
type system return translated terms, which contain explicit coercions generated in the
process of checking subtypes.

Finally, in the process of typing a program the C� type system also resolves some
other implicit information including, importantly, calls to overloaded methods (includ-
ing constructor methods). Thus in the process of typing a C� program we both resolve
calls to overloaded methods and insert explicit coercion code. In other words, the typ-
ing of a C� program can also be seen as a type-directed translation to a target language,
where only type correct programs can be translated. The target language in the actual C�

compiler is MSIL, the bytecode language for the CLR; this paper introduces a higher-
level target language, C�

CLR.
Unfortunately most language formalizations use declarative typing and subtype judge-

ments rather than bidirectional type systems and coercive subtyping. Not only does it
mean that there is a potential mismatch between the formalization and the actual lan-
guage but, in our view, it has lead to some misleading conclusions. For example, in
the original work on gradual typing for objects [21] it is claimed that when extending
the type system with dynamic types, one has to forgo transitivity of subtyping, lead-
ing to the replacement of the subtype relation with a ‘matching’ relation. As we will

Adding Dynamic Types to C� 83

demonstrate, this somewhat radical move is not necessary. The bidirectional nature of
the type system is sufficient to enable an elegant extension of the type system to support
dynamic types, without the need to remove familiar properties, such as transitivity of
subtyping.

4 Source Language: Featherweight C�4.0

In the rest of the paper we study the essence of C�4.0. We adopt a formal, mathematical
approach and define a core calculus, FC�

4. Whilst small enough to remain amenable
to formal reasoning, FC�

4 is a relatively large subset of C�, certainly in comparison to
other core calculi such as FJ [14] and ClassicJava [11]. This is not only because we
wish that our core calculus supports all the essential object-oriented features (classes,
generics, overloading, inheritance, side-effects) but also because we wish to formalize
all the additional complications of adding dynamic types to C�. We have, however,
retained what we consider to be the fundamental property of FJ, namely that FC�

4 is a
completely valid subset of C�4.0, i.e. every valid FC�

4 program is literally an executable
C�4.0 program.

An FC�
4 program consists of a sequence of one or more class declarations. Given an

FC�
4 program we assume that there is a unique designated method within the standard

class declarations that serves as the entry point (the mainmethod). Programs are defined
as follows.

p ::= cd Program

cd ::= Class declaration
public class C<X>:C<σ̄> {fd md cmd}

fd ::= public σ f; Field declaration
md ::= Method declaration

public virtual σ m<X>(σ x){s}
public override σ m<X>(σ x){s}

cmd ::= Constructor method declaration
public C<X>(σ x):this(e){s}

public C<X>(σ x):base(e){s}

A class declaration consists of zero or more field declarations, zero or more method
declarations, and one or more constructor method declarations. Methods must be de-
fined either virtual or override and, for simplicity, we require all methods be public.
To simplify matters, we require all methods to return a value, i.e. we do not model
void-returning methods. For conciseness, we do not model static methods, extension
methods (these have been formalized elsewhere [5]) and non-virtual instance methods,
and we do not consider other modifiers such as private and sealed. However, we
do support generic class declarations and generic method declarations. Although con-
structor methods interact with dynamic types (which is why we include them in our
calculus) much of their complications are orthogonal to the concerns of the paper, so
we simplify matters and treat them essentially as normal methods with the distinguished
name .ctor.

84 G. Bierman, E. Meijer, and M. Torgersen

C�4.0 adds to the type grammar of C� a new reference type, dynamic. Thus the
grammar for FC�

4 types is as follows.

σ ::= Type
γ Value type
ρ Reference type
X Type parameter

γ ::= Value Type
bool Boolean
int Integer
byte Byte

ρ ::= Reference Type
C<σ̄> Class type (including object and dynamic)
D<σ> Delegate type

The two main categories of FC�
4 types are value types and reference types. We simplify

the treatment of C� value types and drop both enumeration types and nullable types
(although they are simple to add), and include just the simple types; indeed we shall
consider just three: bool, int and byte (there is an interesting feature of the C� type
system regarding the latter two, which is why we include them).

FC�
4 reference types include class types and delegate types. We write D to range over

delegate types and C to range over class types. Following GJ [14] we use the shorthand
C for C<>. We include two distinguished class types: object and dynamic. For simplicity
we do not model constraints on generic parameters, and we do not include array types.

FC�
4 expressions are split into two categories: ordinary expressions and statement

expressions. Statement expressions are expressions that can be used as statements. The
grammar for expressions is as follows.

e ::= Expression
b Boolean
i Integer
e ⊕ e Built-in operator
x Variable
null Null
(σ)e Cast
e.f Field access
delegate (σ x){s} Anonymous method expression
se Statement expression

se ::= Statement expression
e(e) Delegate invocation
e.m<σ>(e) Method invocation
new C<σ̄>(e) Object creation
x = e Variable assignment

For simplicity, we assume only two classes of literals: booleans and integers. We assume
a number of built-in primitive operators, such as ==, and &&. In the grammar we write
e ⊕ e, where ⊕ denotes an instance of one of these operators. We do not consider
these operators further as their meaning is clear. We assume that x ranges over variable

Adding Dynamic Types to C� 85

names, f ranges over field names and m ranges over method names. We assume that the
set of variables includes the special variable this, which cannot be used as a parameter
of a method declaration. Following FJ [14] we adopt an overloaded ‘bar’ notation; for
example, σ f is a shorthand for a possibly empty sequence σ1 f1, . . . ,σn fn.

Anonymous method expressions (AMEs) were introduced in C�2.0, and provide a
means to define a “nameless” method.3 They are unusual in that they are expressions
that cannot synthesize a type but they can (and must) be converted to a compatible
delegate type. The body of an AME is treated like the body of a method, i.e. any return

statements must respect the return type of the delegate type.
As mentioned earlier, FC�

4 statement expressions are those expressions that can be
used as a statement. This includes two forms of invocation expressions: applying a
delegate to arguments and method invocation. FC�

4 statements are standard and the
grammar is as follows.

s ::= Statement
; Skip
se; Expression statement
if (e) s else s Conditional statement
σ x = e; Variable declaration
e.f = e; Field assignment
return e; Return statement
{s} Block

In what follows we assume that FC�
4 programs are well-formed, e.g. no cyclic class

hierarchies, correct method body construction, etc. These conditions can be easily for-
malized but we suppress the details for lack of space. However, we assume that a cor-
rect program induces a number of important useful functions that are used in the typing
rules. First, we assume an auxiliary function ftype , which is a map from a type and a
field name to a type. Thus ftype(σ, f) returns the type of field f in type σ. Second we
assume an auxiliary function dtype , which is a map from delegate names to their asso-
ciated type. We write delegate types as function types in the System F sense; in general
they are written ∀X.(σ1) → σ2. For example, the following delegate declaration:

List<Y> delegate Map<X,Y>(Func<X,Y> f, List<X> xs);

would be represented as the type

∀X, Y.(Func<X, Y >, List<X>) → List<Y >

In the rules we use type application for conciseness; we write dtype(D)(σ) = σ2 → σ3

to mean first use dtype to determine the type of the delegate D, say ∀X.(σ0) → σ1 and
then substitute the types σ for X resulting in the type σ2 → σ3.

Finally, we assume an auxiliary function mtype that is a map from a type and a
method name to a method group. Thus mtype(σ, m) returns a method group that repre-
sents all the candidate methods called m that are accessible from type σ, i.e. it is a set
of method signatures of the form C<XC><σC>::m<Xm>: (σp) → σ1.

3 C�3.0 introduced syntactic sugar (“lambda expressions”) for these [5] but here we keep the
unsugared form for simplicity.

86 G. Bierman, E. Meijer, and M. Torgersen

As we have mentioned earlier, the treatment of the new dynamic types in C� is
achieved by type-directed translation. Thus in the next section we define the target lan-
guage, C�

CLR, and then in §6 we define precisely the translation of FC�
4 to C�

CLR.

5 Target Language

In this section, we define the target language of the typing of FC�
4 programs. In reality,

the C� compiler targets MSIL, the bytecode language for the CLR. However, this byte-
code language is rather awkward to deal with mathematically so, instead, we define a
C�-like target language that we call C�

CLR. Whilst at first glance it may look like FC�
4, it

is quite different. Four important distinguishing features of C�
CLR are: (1) All non-trivial

conversions are explicit (or, equivalently, the “subtype” relation for C�
CLR is just the

subclassing relation); (2) all method invocations have been fully resolved, so method
invocations no longer involve simply method names, but complete method descriptors;
(3) there are explicit operations to provide the new dynamic behaviour (in reality, these
are simply calls to the appropriate DLR method, but for simplicity we shall treat them as
if they are C�

CLR language constructs); and finally (4) there is no dynamic type in C�
CLR;

it is translated to object. To make this clear we write τ to range over target types, and
θ to range over reference types that exclude dynamic.

C�
CLR expressions are given by the following grammar.

E ::= Target expressions
b Boolean
i Integer
E ⊕ E Built-in operator
x Variable
null Null
E.f Field access
delegate (σ x){S} Anonymous method expression
CE Conversion Expression
DE Dynamic Expression
SE Statement expression

CE ::= Conversion Expression
ByteToInt(E) Byte to Integer conversion
IntToByte(E) Integer to Byte conversion
Box[γ](E) Boxing conversion
Unbox[γ](E) Unboxing conversion
Downcast[ρ](E) Downcast

DE ::= Dynamic Expression
Convert[σ](E) Dynamic type test
MemberAccess[f](E: σ) Dynamic field selection
DInvoke(E:σ, E: σ) Dynamic delegate invocation
ObjectCreate[ρ](E: σ) Dynamic object creation
MInvoke[m](E: σ, E: σ) Dynamic method invocation

MD ::= Target method descriptor
C<XC><τC>::m<Xm><τm>: (τp) → τr

SE ::= Statement expression
E(E) Delegate invocation

Adding Dynamic Types to C� 87

E.MD(E) Method invocation
new MD(E) Object creation
x = E Variable assignment

Notice that there are no cast expressions in C�
CLR, these have either been translated into

explicit conversion calls or removed. There are two new syntactic categories: conver-
sion expressions and dynamic expressions. The former includes operations to convert
the representation of literals, and also boxing and unboxing operations which are an
important feature of C� type system by which a value type can be converted to and
from the object type. Dynamic expressions are used to denote the operations that sup-
port the new dynamic behaviour in C�4.0. Their meaning will become clear when we
define the operational semantics of C�

CLR in §7.
A method descriptor fully identifies a specific method that is being called at a spe-

cific instantiation (both of the class within which it is defined, and of the method itself).
Method descriptions replace method names after overloading resolution,4 and appear
explicitly in MSIL (albeit with type parameters replaced by integers denoting their po-
sition) [26].

C�
CLR statements are given by the following grammar.

S ::= Statement
; Skip
SE; Expression statement
if (E) S else S Conditional statement
τ x = E; Variable declaration
E.f = E; Field assignment
return E; Return statement
{s} Block
Assign[f](E: σ, E: σ); Dynamic field assignment

The type conversion relation for C�
CLR is very straightforward, as it is essentially just

the subclassing relation and a rule that any reference type can be converted to object.
This relation is written τ1 ≤ τ2 and its simple definition is omitted for lack of space.

The type system for C�
CLR is also defined as a bidirectional system. Thus we have

two typing relations: a type conversion relation and a type synthesis relation. The type
conversion relation is written Γ � E ≤ τ and is read informally that “in context Γ ,
the C�

CLR expression E can be converted to type τ .” A context, Γ , is a function from
variables to types. The rules are as follows.

[CLR-Byte]
0 ≤ i ≤ 255

Γ � i ≤ byte
[CLR-Null]

Γ � null ≤ θ

[CLR-AME]
|dtype(D)(τ)|� = τ0 → τ1 Γ, x: τ0 � S1 ≤ τ1

Γ � delegate(τ0 x){S1} ≤ D<τ>

[CLR-Synth]
Γ � e1 ↑ τ0 τ0 ≤ τ1

Γ � e1 ≤ τ1

4 The C� overloading rules [12, §7.4.3] involve the formal parameter types both before and
after instantiation, so the method descriptors store the formal parameter types pre-instantiation
along with the instantiations.

88 G. Bierman, E. Meijer, and M. Torgersen

We make use of a function that translates a FC�
4 type into C�

CLR type, i.e. it replaces
occurrences of the type dynamic with object, and in all other respects is the identity
function. For example |C<int, dynamic>|� = C<int, object>. The type synthesis rela-
tion is written Γ �E ↑ τ and is read informally that “in context Γ , the C�

CLR expression
E synthesizes type τ .” The rules are as follows.

[CLR-S-Int]
Γ � i ↑ int

[CLR-S-Bool]
Γ � b ↑ bool

[CLR-S-Var]
Γ, x: τ � x ↑ τ

[CLR-S-Field]
Γ � E1 ↑ τ1 |ftype(τ1, f)|� = τ2

Γ � E1.f ↑ τ2

[CLR-S-DelInv]
Γ � E1 ↑ D<τ> |dtype(D)(τ)|� = τ1 → τ2 Γ � E2 ≤ τ1

Γ � E1(E2) ↑ τ2

[CLR-S-New]
MD = C<XC><τC>::.ctor: (τp) Γ � e1 ≤ τp[XC := τC]

Γ � newMD(E1) ↑ C<τC>

[CLR-S-VarAssign]
Γ, x1: τ1 � E1 ≤ τ1

Γ, x1: τ1 � x1 = E1 ↑ τ1

[CLR-S-MethInv]

MD = C<XC><τC>::m<Xm><τ1>: (τp) → τr
Γ � E1 ≤ C<τC> Γ � E2 ≤ τp[XC , Xm := τC , τ1]

Γ � E1.MD(E2) ↑ τr

[CLR-S-B2I]
Γ � E ≤ byte

Γ � ByteToInt(E) ↑ int
[CLR-S-I2B]

Γ � E ≤ int

Γ � IntToByte(E) ↑ byte

[CLR-S-Box]
Γ � E ≤ γ

Γ � Box[γ](E) ↑ object
[CLR-S-Unbox]

Γ � E ≤ object

Γ � Unbox[γ](E) ↑ γ

[CLR-S-Downcast]
Γ � E ↑ τ τ ≤ |ρ|�

Γ � Downcast[ρ](E) ↑ |ρ|� [CLR-S-DConv]
Γ � E ≤ object

Γ � Convert[σ](E) ↑ |σ|�

[CLR-S-DMemAcc]
Γ � E ≤ object

Γ �MemberAccess[f](E) ↑ object

[CLR-S-DDelInv]
Γ � E0 ≤ |σ0|� σ0 = dynamic or D<σ> Γ � E1 ≤ |σ1|�

Γ � DInvoke(E0:σ0, E1:σ1) ↑ object

[CLR-S-DNew]
Γ � E ≤ |σ|�

Γ � ObjectCreate[ρ](E:σ) ↑ |ρ|�

[CLR-S-DMethInv]
Γ � E0 ≤ |σ0|� σ0 = dynamic or C<σ> Γ � E1 ≤ |σ1|�

Γ �MInvoke[m](E0:σ0, E1:σ1) ↑ object

The type conversion relation for statements is written Γ � S ≤ τ , and is as follows.

Adding Dynamic Types to C� 89

[CLR-Skip]
Γ � ; ≤ τ

[CLR-ExpStatement]
Γ � SE1 ↑ τ1

Γ � SE1; ≤ τ

[CLR-Cond]
Γ � E1 ≤ bool Γ � S1 ≤ τ Γ � S2 ≤ τ

Γ � if (E1) S1 else S2 ≤ τ

[CLR-FAss]
Γ � E1 ↑ τ1 |ftype(τ1, f)|� = τ2 Γ � E2 ≤ τ2

Γ � E1.f=E2; ≤ τ

[CLR-FAssDyn]
Γ � E1 ≤ |σ1|� Γ � E2 ≤ |σ2|�
Γ � Assign[f](E1: σ1, E2: σ2); ≤ τ

[CLR-ReturnExp]
Γ � E1 ≤ τ1

Γ � return E1; ≤ τ1

[CLR-Seq]
Γ � E1 ≤ τ1 x �∈ dom(Γ) Γ, x: τ1 � S1 ≤ τ

Γ � τ1 x = E1; S1 ≤ τ

6 Translation

This section contains one of the main technical contributions of the paper: the formal
details of a translation from FC�

4 to C�
CLR. This translation is actually quite subtle and

we believe justifies our formal approach.

6.1 Type Conversions

In this section we consider type conversions (or subtyping) in C�. Type conversions are
classified into implicit and explicit conversions, which determines whether an explicit
cast is required. For example, byte can be implicitly converted to int and so an expres-
sion of type byte can be used where an expression of type int is expected. However, an
expression of type int requires an explicit cast to be used where an expression of type
byte is expected.

At the heart of both type conversion relations is the subclass relation which is defined
by the programmer in the class declarations. We write C1<σ1> : C2<σ2> for the subclass
relation, which is defined as follows.

ρ : ρ
class C1<X>:C2<σ2> C2<σ2>[X := σ1] : C3<σ3>

C1<σ1> : C3<σ3>

The implicit type conversion relation is written σ1 <:i σ2 � C where σ1 and σ2 are
FC�

4 types and C is a conversion. A C�
CLR conversion is represented as a linear context,

i.e. a C�
CLR expression with a single hole in it, which we write ‘•’. The intention is that

if σ1 <:i σ2 � C then the C�
CLR expression C is the code which converts a value of

type |σ1|� into a value of type |σ2|�. We write C[E] to denote the context C with the
hole replaced by the expression E. The implicit type conversion relation is defined as
follows.

90 G. Bierman, E. Meijer, and M. Torgersen

[IC-Refl]
σ1 <:i σ1 � • [IC-ByteToInt]

byte <:i int � ByteToInt(•)

[IC-Val-Obj]
γ <:i object � Box[γ](•) [IC-Ref-Obj]

ρ <:i object � •

[IC-Sub] C1<σ1> : C2<σ2>

C1<σ1> <:i C2<σ2> � • [IC-Dynamic]
σ <:i object � C

σ <:i dynamic � C

Rule [IC-Refl] states that all types can be implicitly converted to themselves. Rule
[IC-ByteToInt] states that any value of type byte can be converted to a value of type int,
using the ByteToInt(−) expression. Rule [IC-Val-Obj] captures the property that any
value of a value type can be implicitly boxed to type object. Rule [IC-Ref-Obj] states
that any reference type (either class or delegate) can be implicitly converted to type
object. In other words, these two rules imply that object is the top type. Rule [IC-Sub]
states that one class can be implicitly converted to another if it is a subclass. Note that
these first five rules are unchanged from C�3.0; the only new rule is [IC-Dynamic].
This rule simply states that a type can be implicitly converted to dynamic if it can be
implicitly converted to object.

It is important to note here that unlike the work on gradual typing [21], we allow full
transitivity in the subclass relation, and we do not have a rule that states that the type
dynamic can be implicitly converted to any type. Clearly adding such a rule means that
any two types are implicitly convertible!

The explicit type conversion relation is written σ1 <:x σ2 � C, and is defined as
follows.

[XC-Refl]
σ1 <:x σ1 � • [XC-IntToByte]

int <:x byte � IntToByte(•)

[XC-ObjVal]
object <:x γ � Unbox[γ](•) [XC-ObjRef]

ρ �= dynamic

object <:x ρ � Downcast[ρ](•)

[XC-Down] C1<σ1> : C2<σ2>

C2<σ2> <:i C1<σ1> � Downcast[C1<σ1>](•) [XC-IC] σ1 <:i σ2 � C

σ1 <:x σ2 � C

Interestingly, this relation is almost unchanged from C�3.0; the only slight amendment
is a precondition in the rule [XC-ObjRef] which resolves the potential ambiguity when
determining whether object can be explicitly converted to dynamic (the preferred con-
version is the identity conversion).

Proposition 1 (Type conversion relations are functions).

1. If σ1 <:i σ2 � C1 and σ1 <:i σ2 � C2 then C1 = C2.
2. If σ1 <:x σ2 � C1 and σ1 <:x σ2 � C2 then C1 = C2.

6.2 Term Conversions

The type checking relation for expressions, as for type conversions, comes in two
flavours: one for implicit conversions and one for explicit conversions. The first judge-
ment form is written Γ � e <:i σ � E and is read informally that “in context Γ , the

Adding Dynamic Types to C� 91

FC�
4 expression e can be implicitly converted to type σ yielding C�

CLR expression E.”
The second judgement form is written Γ � e <:x σ � E and is read informally that
“in context Γ , the FC�

4 expression e can be explicitly converted to type σ yielding C�
CLR

expression E.”
The rules for implicit conversion of expressions are as follows.

[IC-Byte]
0 ≤ i ≤ 255

Γ 	 i <:i byte � i
[IC-Null]

Γ 	 null <:i ρ � null

[IC-AME]
dtype(D)(σ) = σ1 → σ2 Γ, x: σ1 	 s1 <:i σ2 � S1

Γ 	 delegate(σ0 x){s1} <:i D<σ> � delegate(σ0 x){S1}

[IC-Synth]
Γ 	 e1 ↑ σ0 � E1 σ0 �= dynamic σ0 <:i σ1 � C

Γ 	 e1 <:i σ1 � C[E1]

[IC-Dynamic]
Γ 	 e1 ↑ dynamic � E1

Γ 	 e1 <:i σ1 � Convert[σ1](E1: dynamic)

The rule [IC-Synth] forms the heart of this relation: an expression e1 can be implic-
itly converted to type σ1 if it synthesizes a type σ0 which is implicitly convertible
to σ1. However, C� includes some other special-case rules for implicit conversion of
expressions. First, we need to add special rules to deal with the null literal and for
AMEs. As mentioned earlier, these are both expression forms that do not synthesize
types but clearly they can both be implicitly converted to appropriate types. In the case
of rule [IC-Null], the null literal can be implicitly converted to any reference type. Rule
[IC-AME] states that an AME can be converted to a delegate type if its contents satisfy
the component types of the delegate type. C� includes special implicit conversion rules
for small literal values. Thus rule [IC-Byte] states that a positive integer literal that fits
into 8 bits can be considered of type byte.

To support dynamic typing, we need only add an extra rule: [IC-Dynamic]. This rule
states that an expression e1 can be implicitly converted to a type σ1 if it synthesizes a
type dynamic. In this case we need to yield code to perform the type test at run-time.
This is the role of the target expression Convert[σ1](E1: dynamic); it performs a runtime
type-test on the target expression E1.

This rule highlights the major design principle in adapting the C�3.0 rules to support
dynamic types: all rules that traditionally synthesized types of subexpressions now have
special cases for when the synthesized type is dynamic.

The two rules for the explicit conversion of expressions are as follows.

[XC-Synth]
Γ 	 e1 ↑ σ0 � E1 σ0 �= dynamic σ0 <:x σ1 � C

Γ 	 e1 <:x σ1 � C[E1]

[XC-Dynamic]
Γ 	 e1 ↑ dynamic � E1

Γ 	 e1 <:x σ1 � Convert[σ1](E1: dynamic)

These rules are similar in that if the expression synthesizes the type dynamic then we
delay the type-test until runtime (rule [XC-Dynamic]), and if not we use the explicit
type conversion relation defined in §6.1 (rule [XC-Synth]).

We also need to type check statements, primarily to ensure that any return state-
ments satisfy the expected return type. Thus we only need one judgement form, which

92 G. Bierman, E. Meijer, and M. Torgersen

we write Γ � s <:i σ � S and is read informally that “in context Γ , the FC�
4 statement

s can be implicitly converted to type σ yielding C�
CLR statement S.” The rules for the

implicit conversion of statements are as follows.

[C-Skip]
Γ � ; <:i σ � ;

[C-ExpStatement]
Γ � se1 ↑ σ1 � SE1

Γ � se1; <:i σ � SE1;

[C-Cond] Γ � e1 <:i bool � E1 Γ � s1 <:i σ � S1 Γ � s2 <:i σ � S2

Γ � if (e1) s1 else s2 <:i σ � if (E1) S1 else S2

[C-FAss]
Γ � e1 ↑ σ1 � E1 σ1 �= dynamic ftype(σ1, f) = σ2 Γ � e2 <:i σ2 � E2

Γ � e1.f=e2; <:i σ � E1.f=E2;

[C-FAssDyn]
Γ � e1 ↑ dynamic � E1 Γ � e2 ↑+ σ2 � E2

Γ � e1.f=e2; <:i σ � Assign[f](E1: dynamic, E2:σ2);

[C-ReturnExp] Γ � e1 <:i σ � E1

Γ � return e1; <:i σ � return E1;

[C-Seq]
Γ � e1 <:i σ1 � E1 x �∈ dom(Γ) Γ, x:σ1 � s1 <:i σ � S1

Γ � σ1 x = e1; s1 <:i σ � σ1 x = E1; S1

These rules are unchanged from C�3.0. The only new rule is [C-FAssDyn], which
follows the pattern of earlier rules. As the receiving expression synthesizes the type
dynamic, we package up the components along with their compile-time types so the
field assignment will be checked and performed at runtime. We make use of an ex-
tended synthesis relation (written ↑+), which we will define and explain in the following
section.

6.3 Type Synthesis

The heart of the C� type system is the type synthesis phase. This is only defined over
expressions; there is no notion of type synthesis for statements. Judgements are written
Γ � e1 ↑ σ1 � E1, and can be informally read as “in context Γ , the FC�

4 expression e1

synthesizes the type σ1 yielding a C�
CLR expression E1.” The rules that are unchanged

from C�3.0 are given in Fig. 1, and those that involve the addition of the dynamic type
are given in Fig. 2.

Space prevents us from a full description of all these rules. Instead we shall de-
scribe just the process of synthesizing a type for a method invocation. This is the
most complicated part of the type synthesis process and involves the rules [S-MInv],
[MInvDyn1] and [S-MInvDyn2]. The intention is to synthesize a type for the FC�

4 ex-
pression e1.m<σ1>(e2).5 The first step is to synthesize a type, σ1, for subexpression
e1. If it synthesizes the dynamic type, we use rule [S-MInvDyn1]: we synthesize types
for the arguments to the invocation and yield a C�

CLR dynamic expression. The intention

5 For simplicity, in FC�
4 we require that all generic method invocations are passed type argument

lists. In C� proper this can be omitted in which case an inference phase is performed to infer
the type argument list [4].

Adding Dynamic Types to C� 93

[S-Bool]
Γ � b ↑ bool � b

[S-Int]
Γ � i ↑ int � i

[S-Var]
Γ, x:σ � x ↑ σ � x

[S-Cast] Γ � e1 <:x σ1 � E1

Γ � (σ1)e1 ↑ σ1 � E1

[S-Field]
Γ � e1 ↑ σ1 � E1 σ1 �= dynamic ftype(σ1, f) = σ2

Γ � e1.f ↑ σ2 � E1.f

[S-DelInv]
Γ � e1 ↑ D<σ> � E1 dtype(D)(σ) = σ1 → σ2 Γ � e2 <:i σ1 � E2

Γ � e1(e2) ↑ σ2 � E1(E2)

[S-New]

CMG
def
= mtype(C<σ>, .ctor)

AMG
def
= {C<XC><σC>::.ctor: (σp) |

C<XC><σC>::.ctor: (σp) ∈ CMG,
|σp| = |e1|, Γ � e1 <:i σp[XC := σc]}

Γ � best(AMG, e1) � md = C<XC><σC>::.ctor: (σp)

Γ � e1 <:i σp[XC := σC] � E1

Γ � new C<σ>(e1) ↑ C<σ> � new |md |�(E1)

[S-VarAssign]
Γ, x1:σ1 � e1 <:i σ1 � E1

Γ, x1:σ1 � x1 = e1 ↑ σ1 � x1 = E1

[S-MInv]

Γ � e1 ↑ σ � E1 σ �= dynamic CMG
def
= mtype(σ,m)

AMG
def
= {C<XC><σC>::m<Xm><σ1>: (σp) → σr |

C<XC><σC>::m<Xm>: (σp) → σr ∈ CMG,
|Xm| = |σ1|, Γ � e2 <:i σp[XC := σC , Xm := σ1]}

Γ � best(AMG, e2) � md = C<XC><σC>::m<Xm><σ1>: (σp) → σr

Γ � e2 <:i σp[XC := σC , Xm := σ1] � E2

Γ � e1.m<σ1>(e2) ↑ σr[XC := σC , Xm := σ1] � E1.|md |�(E2)

Fig. 1. Type synthesis of FC�
4 expressions, part I

is that at runtime this dynamic expression will use the runtime type of the expression
e1 to resolve the method invocation (if possible). Clearly the overall synthesized type
in this case is dynamic.

In synthesizing the types for the arguments we used a modified version of the type
synthesis relation. This relation is written Γ � e ↑+ σ � E and is defined as follows.

Γ 	 i ↑+ intl � i Γ 	 null ↑+ object � null

Γ 	 e1 ↑ σ � E1

Γ 	 e1 ↑+ σ � E1

This relation is a small extension of the normal type synthesis relation, which serves
two purposes: (1) To allow the null literal to synthesize a type (object), and (2)
to record whether an expression that synthesizes the type int is an integer literal or
not. Hence, assuming a variable d of type dynamic then the expressions d.m(42) and
d.m(40+2) and d.m(null) all synthesize the type dynamic, but yield the C�

CLR ex-
pressions MInvoke[m](d: dynamic, 42: intl), MInvoke[m](d: dynamic, 40 + 2: int) and
MInvoke[m](d: dynamic, null: object), respectively. However, the expression
d.m(delegate(int x){ return x; }) fails to synthesize a type as we are unable to
synthesize a type for the argument.

94 G. Bierman, E. Meijer, and M. Torgersen

[S-FieldDyn]
Γ � e1 ↑ dynamic � E1

Γ � e1.f ↑ dynamic � MemberAccess[f](E1: dynamic)

[S-DInvDyn1]

Γ � e ↑ D<σ> � E dtype(D)(σ) = σ2 → σ3

Γ � e1 ↑+ σ1 � E1 · · · Γ � en ↑+ σn � En ∃i.1 ≤ i ≤ n.σi = dynamic

Γ � e(e1, . . . , en) ↑ dynamic � DInvoke(E: D<σ>, (E1:σ1, . . . , En:σn))

[S-DInvDyn2]
Γ � e1 ↑ dynamic � E1 Γ � e2 ↑+ σ2 � E2

Γ � e1(e2) ↑ dynamic � DInvoke(E1: dynamic, E2:σ2)

[S-NewDyn]

CMG
def
= mtype(C<σ>, .ctor)

Γ � e1 ↑+ σ1 � E1 · · · Γ � en ↑+ σn � En ∃j.1 ≤ j ≤ n.σj = dynamic

AMG
def
= {C<XC><σC>::.ctor: (σ′) |

C<XC><σC>::.ctor: (σ′) ∈ CMG,
|σ′| = n, Γ � ei <:i σ′

i[XC := σc] i ∈ 1..n}
|AMG| ≥ 1

Γ � new C<σ>(e1, · · · ,en) ↑ C<σ> � ObjectCreate[C<σ>](E1:σ1, . . . , En:σn)

[S-MInvDyn1]
Γ � e1 ↑ dynamic � E1 Γ � e2 ↑+ σ � E2

Γ � e1.m<σ1>(e2) ↑ dynamic � MInvoke[m](E1: dynamic, E2:σ)

[S-MInvDyn2]

Γ � e ↑ σ � E CMG
def
= mtype(σ,m)

Γ � e1 ↑+ σ1 � E1 · · · Γ � en ↑+ σn � En ∃j.1 ≤ j ≤ n.σj = dynamic

AMG
def
= {C<XC><σC>::m<Xm><σ1>: (σ′) → σr |

C<XC><σC>::m<Xm>: (σ′) → σr ∈ CMG,
|Xm| = |σ1|, |σ′| = n, Γ � ei <:i σ′

i[XC := σC , Xm := σ1] i ∈ 1..n}
|AMG| ≥ 1

Γ � e.m<σ1>(e1, · · · ,en) ↑ dynamic � MInvoke[m](E:σ, (E1:σ1, · · · , En:σn))

Fig. 2. Type synthesis of C�
CLR expressions, part II

Let us return to synthesizing a type for the invocation expression e1.m<σ1>(e2),
where e1 synthesizes a type σ1 which is not dynamic. We now wish to consider whether
any of the invocation arguments are of type dynamic. We use the extended synthesis
relation to synthesize types for the invocation arguments. If one or more of them syn-
thesizes the type dynamic we use rule [S-MInvDyn2] to synthesize the overall type
dynamic and yield a C�

CLR dynamic expression. (In fact, the rule [S-MInvDyn2] con-
tains a slight optimization, but one which will appear in C�4.0. It is checked to see if
there is at least one potential applicable method. If there is not, then there is no point
delaying matters until runtime as we are certain that the method invocation will fail.)

If neither of these two cases hold, then we consider the method invocation in the
same way as for C�3.0, using rule [S-MInv]. Thus from σ1 we generate the Candidate
Method Group (CMG) for method m. This is simply the set of method descriptors for
every method m accessible from type σ1. We then generate the Applicable Method
Group (AMG), which is essentially all the methods from the CMG with the correct
number of type parameters and whose argument types are applicable, i.e. the arguments
e2 can be implicitly converted to the argument types. Next we need to resolve this
set using overloading resolution [12, §7.4.3]. We omit a formalization and simply as-
sume a function best that returns the best method descriptor (if it exists) from a given

Adding Dynamic Types to C� 95

applicable method group given also a context and an argument list. Assuming that there
is a best method descriptor, we then implicitly convert the arguments, synthesize the
return type and yield the appropriate C�

CLR expression (noting that it records the method
descriptor—with occurrences of dynamic replaced with object—not just the method
name).

6.4 Formal Properties

In this section we briefly mention the key property of our translations of FC�
4 to C�

CLR.
We do not give any details of the proof; they are all quite routine and appear in a sup-
porting technical report.

The main technical result is that the translation of FC�
4 into C�

CLR is type-preserving.
In other words, if there is a translation then the resulting C�

CLR fragment is well-typed.

Theorem 1 (Preservation of typing by translation)

1. If Γ � e1 <:i σ1 � E1 then |Γ |� � E1 ≤ |σ1|�
2. If Γ � e1 <:x σ1 � E1 then |Γ |� � E1 ↑ |σ1|�
3. If Γ � s1 <:i σ1 � S1 then |Γ |� � S1 ≤ |σ1|�
4. If Γ � e1 ↑ σ1 � E1 then |Γ |� � E1 ↑ |σ1|�
5. If Γ � e1 ↑+ σ1 � E1 then |Γ |� � E1 ≤ |σ1|�

Proof. By simultaneous induction over the translation relations.

7 Operational Semantics

In this section we define the operational semantics of C�
CLR and show in particular how

the dynamic expressions reuse the compile-time typing and resolution rules at runtime.
We follow closely the MJ operational semantics [7,6] and define evaluation in terms of
a transition relation between configurations, rather than using evaluation contexts.

A configuration is a four-tuple, written 〈H,ST , F,FS 〉, where H is a heap, S is a
stack, F is a frame and FS is a frame stack. A heap is a map from object identifiers
(ranged over by o) to heap objects. A heap object is a pair of a type and a field func-
tion, which is a map from field names to runtime values. A runtime value, r, is either a
value, the null literal, or an object identifier. A value is either an integer or a boolean
literal. A stack is essentially a map from variables to object identifiers. However, to
model correctly the block-structured scoping of C� it is actually a list of list of func-
tions from variables to object identifiers. A frame, F , is either a statement, a sequence
of statements, or an expression. A frame stack is essentially the program context in
which the frame is currently being evaluated. More precisely, it is a list of expressions
or statements containing a single hole. We refer the reader to earlier work for more
details [7,6].

We define a binary transition relation between configurations, which is written
〈H1,ST 1, F1,FS 1〉 � 〈H2, S2, F2,FS 2〉. Given the space restrictions we omit the
transition rules for the standard constructs of C�

CLR as they are almost identical to the
corresponding rules for MJ [7,6]. We give the transition rules for just the conversion
expressions and the dynamic expressions of C�

CLR. The transition rules for conversion
expressions are as follows.6

6 We write
i�8 for the 8-bit truncation of the integer i.

96 G. Bierman, E. Meijer, and M. Torgersen

[E-Box]
o �∈ dom(H) H ′ def

= H † [o �→ 〈γ, {value �→ v}〉]
〈H,ST , Box[γ](v),FS〉 � 〈H ′,ST , o, FS〉

[E-Unbox]
H(o) = 〈γ, {value �→ v}〉

〈H,ST , Unbox[γ](o), FS〉 � 〈H,ST , v, FS〉

[E-ByteToInt] 〈H,ST , ByteToInt(i), FS〉 � 〈H,ST , i,FS〉

[E-IntToByte] 〈H,ST , IntToByte(i),FS〉 � 〈H,ST ,
i�8,FS〉

[E-Downcast]
H(o) = 〈θ, v〉 θ ≤ |ρ|�

〈H,ST , Downcast[ρ](o),FS〉 � 〈H,ST , o, FS〉

The intention of the dynamic expressions is that they perform compile-time typing and
resolution at runtime. To be able to reuse the FC�

4 judgements from earlier, we need to
make a few extensions. First, we extend contexts to additionally map object identifiers
to types; and write |H | to denote the translation of a heap, H , into a context. Secondly,
we add a new form of expression to FC�

4, which we call a payload component, and is
written r: σ where r is a C�

CLR runtime value. Finally, we need to add type synthesis and
type checking rules for a payload component expression. The type synthesis rules for a
payload expression are as follows.

[S-PayODyn]
Γ, o: τ � o: dynamic ↑ τ � o

[S-PayIntDyn]
Γ � i: dynamic ↑ int � i

[S-PayStatic]
σ �= dynamic

Γ � o:σ ↑ σ � o

The rule [S-PayODyn] states that if the payload had the static type dynamic, then at
runtime we look up the runtime type from the context. Rule [S-PayIDyn] states that
if the payload had the static type dynamic and is an integer literal, then we synthesize
the type int. The rule [S-PayStatic] states that a payload expression whose compile-
time type, σ, was not dynamic synthesizes simply σ. Notice that the payload expression
null: dynamic does not synthesize a type.

The rules for the implicit conversion of payload expressions are as follows.

[C-PayODyn]
τ <:i σ � C

Γ, o: τ 	 o: dynamic <:i σ � C[o]

[C-PayNullDyn]
Γ 	 null: dynamic <:i ρ � null

[C-PayIntDyn]
int <:i σ � C

Γ 	 i: dynamic <:i σ � C[i]
[C-PayIntLit]

1 ≤ i ≤ 255

Γ 	 i: intl <:i byte � i

[C-PayStatic]
σ1 �= dynamic σ1 <:i σ2 � C

Γ 	 r: σ1 <:i σ2 � C[r]

Adding Dynamic Types to C� 97

The rule [C-PayODyn] states that if the payload expression has the static type dynamic,
then it can be implicitly converted to a type σ if its runtime type σr can be implicitly
converted to σ. The rule [C-PayIntDyn] states that if the payload had the static type
dynamic and is an integer literal, then it can be converted to a type σ if the type int

can be converted to σ. The rule [C-PayIntLit] applies in conjunction with our extended
synthesis rules (defined in §6.3). If the payload expression had the static type intl then
it was an integer literal at compile-time. Thus the payload expression can be implic-
itly converted to type byte if the integer literal is positive and small enough. The rule
[C-PayStatic] states that a payload expression whose compile-time type, σ1, was not
dynamic can be implicitly converted to a type σ2, if the type σ1 can be implicitly con-
verted to σ2.

The transition rules for C�
CLR dynamic expressions are as follows.

[E-Convert]
|H | 	 o: σ1 <:i σ2 � E

〈H,ST , Convert[σ2](o: σ1),FS〉 � 〈H,ST , E,FS〉

[E-DMemAcc]
|H | 	 (o: σ).f <:i object � E

〈H,ST , MemberAccess[f](o: σ),FS〉 � 〈H,ST , E,FS〉

[E-DNew]
|H | 	 new C<σ>(r:σ′) <:i object � E

〈H,ST , ObjectCreate[C<σ>](r: σ′),FS〉 � 〈H,ST , E,FS〉

[E-DDelInv]
|H | 	 o: σ(r: σ′) <:i object � E

〈H,ST , DInvoke(o: σ, r: σ′),FS〉 � 〈H,ST , E,FS〉

[E-DMethInv]
|H | 	 (o: σ).m(r: σ′) <:i object � E

〈H,ST , MInvoke[m](o: σ, r: σ′),FS〉 � 〈H,ST , E,FS〉

[E-DFAss]
|H | 	 (o: σ).f=(o′: σ′) <:i object � E

〈H,ST , Assign[f](o: σ, o′: σ′);,FS〉 � 〈H,ST , E,FS〉
These rules capture the essence of the design for supporting dynamic types in C�4.0.
Consider the rule [E-DMethInv]. The C�

CLR dynamic expression MInvoke[m](o: σ, r: σ′)
arose from the compilation of a method invocation in FC�

4 where one of the components
synthesized the type dynamic. Thus at this stage we use the compile-time implicit con-
version relation to re-type check the method invocation, except now on the runtime
values. However, our use of payload expressions means that we only use the runtime
types of those expressions whose compile-time type was dynamic (for the others we use
their compile-time type). The result of the implicit conversion of the method invocation
expression yields a new C�

CLR expression, E, which is the result of the transition.7

Formal Properties. It is possible to show type soundness for C�
CLR using the familiar

technique of proving preservation and progress properties. Naturally, we need to extend
the notions of typing to configurations; again the details follow those in earlier work [7].
The key property is the following.

7 If the implicit conversion fails then the actual runtime system would throw an exception, al-
though in our formalization we class this as a known stuck state of the transition system.

98 G. Bierman, E. Meijer, and M. Torgersen

Theorem 2 (Type preservation for C�
CLR)

If �〈H1,ST 1, F1,FS 1〉 ≤ τ1 and 〈H1,ST 1, F1,FS 1〉 � 〈H2,ST 2, F2,FS 2〉 then
�〈H2,ST 2, F2,FS2〉 ≤ τ1.

Proof. Most of the details are routine [7]. The new cases of interest deal with the C�
CLR

dynamic expressions. Consider the transition step [E-DMethInv], for example. Accord-
ing to the typing rule [CLR-S-DMethInv] the dynamic method invocation expression
must be of type object. But, by application of Theorem 1, we have that E is also of
type object, and so this case is done. All the other cases of C�

CLR dynamic expressions
are similar.

8 Comparison with Existing Work

There has been considerable work in the area of adding some form of dynamic typing
to a statically typed language. Early work by Abadi et al. [1] proposed adding a new
Dynamic type along with a constructor dynamic that packages a value (along with its
type) into a value of type Dynamic, and a typecase construct for inspecting the runtime
type tag of a dynamic value. This proposal seems overly explicit in practice where, for
example, migrating code between dynamic and static checking would force wholesale
changes in existing type signatures. Indeed, much of the value of the proposal described
in this paper is its use of implicit conversions to manage the migration between dynam-
ically and statically typed code.

Much closer to our work is the proposal for gradual typing by Siek and Waha for
an object-based language [21], following on from their earlier work on functional lan-
guages [20]. They propose a new type, written ? (equivalent to our dynamic type), which
can be viewed as a “top” type. They state that this means that A is a subtype of ? (as ?
is the top type), and also ? is a subtype of B (as any dynamically typed object can be
used where a statically typed object is expected, provided a runtime test is performed),
for any two types A and B. As one would expect subtyping to be transitive, this means
that A is a subtype of B, which is clearly catastrophic! To fix this problem, Siek and
Waha propose to replace traditional subtyping with a notion of type consistency and a
restricted form of subtyping. Neither of these component type relations is permitted to
be transitive. One of the aims of this paper is to highlight that, contrary to the conclu-
sions of Siek and Waha, it is possible to add dynamic types to a static type system and
retain transitivity of subtyping without leading to a degenerate type system. It would be
interesting to see if the techniques described in this paper could apply to a functional
language.

Independent to our work, Wrigstad et al. [25] have also proposed adding dynamic
types to a Java-like, statically-typed language, Thorn. There appears to be much in com-
mon although they offer additionally an intermediate step between static and dynamic
types. A variable typed with a so-called like type, written like C, is checked statically
against the type C, but also all values bound to the variable are dynamically checked.

There is a good deal of work in the other direction, i.e. adding static typing capa-
bilities to a dynamic language [9,2,13,24]. Such systems aim to reduce the amount of
runtime type checking of dynamically typed code with the hope of improving the over-
all performance. It would be interesting to consider whether such techniques could be
applied to the dynamically typed portions of C�4.0 code.

Adding Dynamic Types to C� 99

Another interesting area is the issue of blame tracking when interoperating between
statically and dynamically typed code [23,10]. We intend to explore to what extent
existing work can apply to the support of dynamic types in C�.

9 Conclusions

In this paper we describe new features in C�4.0 that enable the safe co-existence of
statically and dynamically typed code. This allows more natural interoperation with dy-
namic languages, and offers a form of gradual typing. Thus the C�4.0 developer will be
able to write portions of code as if using a dynamic language and rely on the DLR to
provide efficient implementation. Furthermore, this “dynamic” code can then be trans-
lated into statically typed code later; all within the same language.

This gradual migration of code from dynamically to statically typed has been the
subject of considerable academic study. In this paper we have formalized the support of
dynamic types in C�, and also shown how it is an improvement on previous work.

References

1. Abadi, M., Cardelli, L., Pierce, B.C., Plotkin, G.D.: Dynamic typing in a statically-typed
language. In: Proceedings of POPL (1989)

2. Aiken, A., Wimmers, E.L., Lakshman, T.K.: Soft typing with conditional types. In: Proceed-
ings of POPL (1994)

3. Anderson, C., Drossopoulou, S.: BabyJ: From object based to class based programming via
types. In: Proceedings of WOOD (2003)

4. Bierman, G.M.: Formalizing and extending C� type inference. In: Proceedings of FOOL
(2007)

5. Bierman, G.M., Meijer, E., Torgersen, M.: Lost in translation: Formalizing proposed exten-
sions to C�. In: Proceedings of OOPSLA (2007)

6. Bierman, G.M., Parkinson, M.J.: Effects and effect inference for a core Java calculus. In:
Proceedings of WOOD (2003)

7. Bierman, G.M., Parkinson, M.J., Pitts, A.M.: MJ: An imperative core calculus for Java and
Java with effects. Technical Report 563, University of Cambridge (2003)

8. Breazu-Tannen, V., Coquand, T., Gunter, C.A., Scedrov, A.: Inheritance as implicit coercion.
Information and computation 93(1), 172–221 (1991)

9. Cartwright, R., Fagan, M.: Soft typing. In: Proceedings of PLDI (1991)
10. Findler, R., Wadler, P.: Well-typed programs can’t be blamed. In: Proceedings of ESOP

(2009)
11. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Proceedings of POPL

(1998)
12. Hejlsberg, A., Torgersen, M., Wiltamuth, S., Golde, P.: The C� Programming Language, 3rd

edn. Addison-Wesley, Reading (2009)
13. Henglein, F.: Dynamic typing: syntax and proof theory. Science of Computer Program-

ming 22(3), 197–230 (1994)
14. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java

and GJ. ACM TOPLAS 23(3), 396–450 (2001)
15. Kennedy, A., Syme, D.: Transposing F to C�. Concurrency and Computation 16(7) (2004)
16. Knowles, K., Tomb, A., Gronski, J., Freund, S.N., Flanagan, C.: Sage: Unified hybrid check-

ing for first-class types, general refinement types and Dynamic. Technical report, UCSC
(2007)

100 G. Bierman, E. Meijer, and M. Torgersen

17. Meijer, E., Drayton, P.: Static typing where possible, dynamic typing when needed: The end
of the cold war between programming languages. In: OOPSLA Workshop on Revival of
Dynamic Languages (2004)

18. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
19. Pierce, B.C., Turner, D.N.: Local type inference. In: Proceedings of POPL (1998)
20. Siek, J., Taha, W.: Gradual typing for functional languages. In: Proceedings of Scheme and

Functional Programming Workshop (2006)
21. Siek, J., Taha, W.: Gradual typing for objects. In: Proceedings of ECOOP (2007)
22. Thatte, S.: Quasi-static typing. In: Proceedings of POPL (1990)
23. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to programs. In:

Proceedings of DSL (2006)
24. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed Scheme. In:

Proceedings of POPL (2007)
25. Wrigstad, T., Zappa Nardelli, F., Lebresne, S., Östlund, J., Vitek, J.: Integrating typed and

untyped code in a scripting language. In: Proceedings of POPL (2010)
26. Yu, D., Kennedy, A., Syme, D.: Formalization of generics for the .NET common language

runtime. In: Proceedings of POPL (2004)

	Adding Dynamic Types to C$^{\sharp}$
	Introduction
	An Introduction to Dynamic Types in CC$^{\sharp}$4.0
	Example: JavaScript Access in Silverlight
	Example: COM Interop
	Example: Expando Object
	Dynamic Binding of Ordinary Objects
	Dynamic Conversions

	An Overview of the C$^{\sharp}$ Type System
	Source Language: Featherweight C$^{\sharp}$4.0
	Target Language
	Translation
	Type Conversions
	Term Conversions
	Type Synthesis
	Formal Properties

	Operational Semantics
	Comparison with Existing Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

