
Optimally Tight Security Proofs for Hash-Then-Publish
Time-Stamping

Ahto Buldas1,2,3,� and Margus Niitsoo1,3,��

1 Cybernetica AS, Akadeemia tee 21, 12618 Tallinn, Estonia
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia

3 University of Tartu, Liivi 2, 50409 Tartu, Estonia

Abstract. We study the security of hash-then-publish time-stamping schemes
and concentrate on the tightness of security reductions from the collision-resis-
tance of the underlying hash functions. While the previous security reductions
create a quadratic loss in the security in terms of time-success ratio of the adver-
sary being protected against, this paper achieves a notably smaller loss of power
1.5. This is significant for two reasons. Firstly, the reduction is asymptotically
optimally tight, as the lower bound of 1.5 on the power was proven recently by
the authors in ACISP 2009 and this is the first application for which optimality
in this sense can be demonstrated. Secondly, the new reduction is the first one
efficient enough to allow meaningful security guarantees to be given for a global-
scale time-stamping service based on 256 bit hash functions, which considerably
increases the efficiency of possible practical solutions.

1 Introduction

Time stamps are proofs that electronic data was created at certain time. Time stamps
support rights protection as well as extending the lifetime of public key digital signa-
tures considering the possible revocation of public-key certificates.

Before 1990, it was believed that the only possible way to achieve secure time-
stamping is to use a trusted third party who adds time-readings to electronic data and
then signs the data by using a public-key digital signature scheme. Although this scheme
has been in use, it does have drawbacks. The assumption of a trusted third party is rather
strong and often not feasible in the global corporate scale as nearly everyone has their
own interests. Even when such a trusted party could be found, it is generally impossi-
ble to guarantee absolute security of the private signature keys. It would therefore be
desirable to use time-stamping schemes that are free of secret keys and do not assume
ultimate trustworthiness of third parties.

The so-called hash-then-publish time-stamping schemes were first introduced in
1990 by Haber and Stornetta [6] in connection with attempts to eliminate secret-based
cryptography and trusted third parties from time-stamping schemes. In such a scheme,

� Supported by the European Regional Development Fund through the Estonian Center of Ex-
cellence in Comp. Sci., by Estonian SF grant no. 6944, and by EU FP6-15964: “AEOLUS”.

�� Supported by Estonian SF grant no. 6944 and the Tiger University Program of the Estonian
Information Technology Foundation.

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 318–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 319

a collection ofN documents is hashed down to a single digest of few dozen bytes that is
then published in a widely available medium such as a newspaper. Using Merkle hash
trees [9] as a hashing scheme provides a possibility of creating compact certificates (of
size O(logN)) for each one of the N documents. To create such a certificate, it is suf-
ficient to store all sibling hash values in the corresponding path in the hash tree from a
document to the root of the tree. The sibling hash values are sufficient to re-compute the
root hash value from the document and as such they can be used as a proof of member-
ship. Based on this idea, Haber and Stornetta then drafted a large-scale time-stamping
scheme [1] where a giant Merkle tree is created co-operatively by numerous servers all
over the world and the root value is published in newspapers as the hash value of this
particular unit of time. In such schemes N is potentially very large.

It might seem obvious that the security of hash-then-publish time-stamping schemes
can be reduced to the collision-resistance of the hash function. However, the first correct
security proof of such a scheme was published as late as 2004 [5]. It then became evi-
dent that the numberN of time-stamps explicitly affects the efficiency (security guaran-
tee) of the security proof. In the very first security proof [5] it was shown that if there is
an adversary with running time t that is able to backdate a document with probability δ,
then there is also a collision-finding adversary that works in time t′ ≈ 2t and succeeds
with probability δ′ ≈ δ2

N . When measuring security in terms of time-success ratio intro-
duced by Luby [8] we have to use 2N · t

δ2 -collision resistant hash functions to have a
t
δ -secure time-stamping scheme. This means that the hash function must be roughly 2N

δ
times more secure against collisions than the time-stamping system constructed from
it is against backdating. As N could be very large, the security requirements for the
hash function may grow unreasonably large. Indeed, it is mentioned in [5] that such a
security proof is practical only for hash functions with 400 or more output bits.

In [4], a more efficient security proof was given, where t′
δ′ ≈ 48

√
N · t

δ2 . This was
a considerable improvement because it allowed for much larger values of N . In this
paper, we propose a new security reduction, where t′

δ′ ≈ 14
√
N · t

δ1.5 , i.e. we get a
power 1.5 reduction instead a quadratic one in terms of time-success ratio. This allows
us to use shorter hash functions in practical applications while still maintaining good
security guarantees. Based on a recently proved separation result [2] we also argue why
the exponent 1.5 is the least achievable.

2 Notation

By x← D we mean that x is chosen randomly according to a distribution D. By E[X]

we mean the average of a random variableX . If A is a probabilistic function or a Turing
machine, then x← A(y) means that x is chosen according to the output distribution of
A on an input y. IfD1, . . . ,Dm are distributions and F (x1, . . . , xm) is a predicate, then
Pr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] is the probability that F (x1, . . . , xm)
is true after the ordered assignment of x1, . . . , xm. For functions f, g : N → R, we
write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k) (∀k > k0). We write
f(k) = ω(g(k)) if lim

k→∞
g(k)
f(k) = 0. If f(k) = k−ω(1), then f is negligible. For every

two functions f(k) and g(k), we will write f � g iff f(k) ≥ g(k)− k−ω(1). A Turing
machine M is poly-time if it runs in time kO(1), where k is the input size.

320 A. Buldas and M. Niitsoo

Let F = {Fk}k∈N be a function family such that every h ← Fk is a function
h : {0, 1}�(k) → {0, 1}k, where �(k) = kO(1) and �(k) > k for every k ≥ 0. We
say that F is collision-free if for every poly-time (non-uniform) Turing machine A:

Pr
[
h← Fk, (x, x′)←A(1k, h) : x
= x′, h(x) = h(x′)

]
= k−ω(1) .

3 Hash-then-Publish Time-Stamping

A time-stamping procedure consists of the following two general steps:

1. Client sends a request x ∈ {0, 1}k to Server.
2. Server binds x with a time value t and sends Client a time-certificate c.

Time-stamping protocols process requests in batches X1, X2,X3 . . . that we call rounds.
The rounds correspond to time periods of fixed duration (one hour, one day, etc.) After
the t-th period, a short commitment rt = Com(Xt) of Xt is published. A request x ∈
Xt precedes another request x′ ∈ Xt′ if t < t′. The requests of the same batch are
considered simultaneous. For this scheme to be efficient there must be an efficient way
to prove inclusions x ∈ Xt, i.e. there is a verification algorithm Ver that on input a
request x, a certificate c and a commitment rt returns true if x ∈ Xt. On the one hand,
it should be easy to create certificates for the members x ∈ Xt, i.e. there has to be an
efficient certificate generation algorithm Cert that outputs a certificate c = Cert(x,Xt).
On the other hand, for security, it must be infeasible to create such proofs for non-
members y
∈ Xt, i.e. it is hard to find a certificate c′ so that Ver(y, c′, rt) = true.

Definition 1. A time-stamping scheme is a triple T = (Com,Cert,Ver) of efficient
algorithms, where:

– Com is a commitment algorithm which, on input a set X of requests, outputs a
commitment r = Com(X).

– Cert is a certificate generation algorithm which, on input a set X and an element
x ∈ X, generates a certificate c = Cert(x,X).

– Ver is a verification algorithm which, on input a request x, a certificate c and a
commitment r, outputs yes or no, depending on whether x is a member of X (the set
that corresponds to the commitment r). It is assumed that for every set X of requests
and every member-request x ∈ X the following correctness condition holds:

Ver(x,Cert(x,X),Com(X)) = yes . (1)

3.1 Security Condition for Time-Stamping Schemes

It was shown in [5] that giving a consistent security definition for hash-then-publish
time-stamping schemes is not an easy task. Intuitively, a time-stamping adversary back-
dates a document that never existed before, but the “existence” itself is not that easy to
capture in formal definitions. In this paper, we use the so-called entropy-based security
condition [3] that models the “fresh” documents by using high-entropy distributions.

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 321

Such approach has been the most common in this line of research. This security condi-
tion is inspired by the following attack-scenario with a malicious Server:

1. Server computes a commitment r and publishes it. Server is potentially malicious,
so there are no guarantees that r is created by applying Com to a set X of requests.

2. Alice creates an invention DA ∈ {0, 1}∗ and protects it by obtaining a time stamp.
3. Some time later, DA is disclosed to the public and Server tries to steal it by showing

that the invention was known to Server long before Alice time-stamped it. He cre-
ates a slightly modified version D′

A ofA, i.e. changes the invertor’s name, modifies
the creation time, and possibly rewords the document in a suitable way.

4. Finally, Server back-dates a hash value x of D′
A, by finding a certificate c, so that

Ver(x, c, r) = yes. It is shown in [3] that the hash function that computes x from
D′

A must convert poly-sampleable high entropy input distributions to high entropy
output distributions, and this is in fact also a sufficient condition.

Security definitions for time-stamping are usually based on this scenario. However, to
our knowledge, there have been no academic discussions whether such a scenario is
sufficient for the security level we really expect. One major assumption that has been
made here is that before creating and publishing the commitment r, Server has no infor-
mation about the invention DA. For example, if Alice obtains a time stamp for DA from
malicious Server before r is published (i.e. steps 1 and 2 are exchanged) then during the
computation of r, Server knows the time stamp request x which is partial information
about DA. So, one may imagine that Server tries to extract useful information from
x about DA, create a request x′ for a similar document D′

A that describes the same
invention, and then refuse to issue a time stamp for Alice. If such an attack succeeds,
Server has the earliest time stamp for Alice’s invention. But there are many practical
objections against such an attack:

– Time stamp requests only contain a relatively short hash value of DA which (in
practice) can hardly contain any useful information about the invention.

– It is improbable that all time-stamping servers could be simultaneously corrupted
and Alice is usually free to commit to several of them at the same time. This means
that malicious servers who try to delay the publishing of r in order to have more
time for creating x′ based on x will “lose the race” against honest servers who
create their time stamps earlier.

So, the assumption that server has no information about DA when publishing r is
heuristic but still justified in practice and hence it is reasonable to study the security
of time-stamping schemes under such assumption.

To formalize such an attack, a two-staged adversary A = (A1,A2) is used. The first
stage A1 computes and outputs r and an advice string a, which contains useful infor-
mation for the second stage A2. Note that a may contain all random coins of A1, which
makes all useful information that A1 gathered available to A2. After that, the second
stage A2 finds a new x (which is assumed to be a random variable with a sufficient
amount of entropy) and a certificate c such that Ver(x, c, r) = yes. Note that x must
be unpredictable because otherwise x could have been pre-computed by A1 and there
would be nothing wrong in proving that x existed before r was computed and published.

322 A. Buldas and M. Niitsoo

Hence, for defining the security of time-stamping schemes, the class of possible ad-
versaries is restricted. Only adversaries that produce unpredictable x are considered [3].
A poly-time adversary (A1,A2) is unpredictable if for every poly-time predictor Π:

Pr
[
(r, a)← A1(1k), x′ ← Π(r, a), (x, c)← A2(r, a) : x′ = x

]
= k−ω(1) . (2)

It is reasonable to assume that a contains all internal random coins of A1 (see [3] for
more details). An equivalent definition for the unpredictability of A is that the probabil-
ity Pr [Equ] that A2(r, a) outputs the same x twice is negligible. We can also say that x
should have large (super-logarithmic in k) conditional min entropy H∞(x | A1(1k)).

Definition 2. A time-stamping scheme is secure if for every unpredictable (A1,A2):

Pr
[
(r, a)←A1(1k), (x, c)←A2(r, a) : Ver(x, c, r) = yes

]
= k−ω(1) . (3)

3.2 Hash Tree Time-Stamping Schemes

The commitments rt are computed as the root hash values of Merkle hash trees [9]. To
make the paper more self-contained, we outline the basic facts about hash-chains and
how they are used in time-stamping. We use the notation and definitions introduced in
[3]. By () we mean an empty list.

Definition 3 (Hash-Chain). Let h : {0, 1}2k → {0, 1}k be a twice-compressing hash
function and x, y ∈ {0, 1}k. By an h-link from x to y we mean a pair (s, b), where
s ∈ {0, 1}k and b ∈ {0, 1}, such that either b = 0 and y = h(x‖s), or b = 1
and y = h(s‖x). By an h-chain from x to y we mean a (possibly empty) list c =
((s1, b1), . . . , (s�, b�)) of h-links, such that either c = () and x = y; or (2) there is a
sequence y0, y1, . . . , y� of k-bit strings, such that x = y0, y = y�, and (si, bi) is an
h-link from yi−1 to yi for every i ∈ {1, . . . , �}. We denote by Chainh(x, c) = y the
proposition that c is an h-chain from x to y. Note that Chainh(x, ()) = x for every
x ∈ {0, 1}k. By the shape ρ(c) of c we mean the �-bit string b1b2 . . . b�.

x12 = h(x1‖x2)

x5

r = T h(x1, . . . , x5)

x4x3x2x1 x3 x4

x12

x5

r

Fig. 1. A hash tree for X = {x1, . . . , x5} and the hash chain c = ((x4, 0), (x12, 1), (x5, 0)) with
shape ρ(c) = 010 for x3

Hash-tree time-stamping schemes use Merkle trees to compute the commitments rt
for batches Xt. The commitment Com(Xt) of a batch Xt = {x1, . . . , xN} is rt =
T h(x1, . . . , xN) ∈ {0, 1}k, where T h is a tree-shaped hashing scheme. A certificate

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 323

for x ∈ Xt is a hash chain c such that Chainh(x, c) = rt. The verification procedure
Ver(x, c, rt) returns yes if Chainh(x, c) = rt. In this work, we denote the hash-tree
time-stamping scheme by Th. An example of a hash-tree scheme is depicted in Fig. 1.

Hash-forest time-stamping schemes are obvious generalizations of hash tree schemes.
Input for these schemes is a sequence of batches X1,X2, . . . ,Xm and the commitments
are sequences r = (r1, r2, . . . , rm) of hash values, where every ri = Com(Xi) is
computed by using a hash-tree scheme. A certificate for x ∈ Xt is a pair c = (c′, t)
where c′ is a hash chain such that Chainh(x, c′) = rt. The verification procedure
Ver(x, c, r), having as input a request x, a certificate c = (c′, t), and a commitment
r = (r1, r2, . . . , rm) returns yes whenever there is t ∈ {1, . . . ,m} and Chainh(x, c) =
rt. By the shape ρ(c) of c = (c′, t) we mean the pair (ρ(c′), t).

4 Existing Security Proofs

It was shown in [5] that this scheme cannot be proved secure in a traditional black-box
way by assuming only the one-wayness and collision-resistance of h. In [5] they also
define a restricted scheme, with a modified verification procedure that uses a set N of
allowed shapes with size |N | = N and the verification procedure Ver was completed
with an additional check for ρ(c) ∈ N. Note that N can be considered as the total
capacity of the time-stamping system, i.e. the total number of time-stamps that can be
securely issued in the system. All the known security proofs for hash-tree or hash-forest
schemes use the following general collision-extraction property:

Definition 4 (Collision-Extraction Property). If Verh(x1, c1, r) = Verh(x2, c2, r) =
yes, ρ(c1) = ρ(c2), and (x1, c1)
= (x2, c2), then the h-calls of Verh(xi, ci, r) (i = 1, 2)
comprise an h-collision.

Essentially, this means that given two certificates of the same shape, we can always find
a collision. For hash trees or hash forests it is rather easy to see: if two different hash
chains c and c′ have the same shape and the same root value, there must be an index l
such that cl
= c′l but h(cl) = h(c′l) which gives the collision that we need. Note that
this property also implies that the number of different time-stamp requests per round is
limited to N , for otherwise we would have a collision to the hash function we use.

We now proceed to describe the reduction itself. However, in order to give a better
intuition to the results we use an iterative process of proving increasingly more precise
bounds. All security reductions we illustrate use the following general schema. Having
an adversary A = (A1,A2) for a time-stamping scheme Th with success

δ(k) = Pr
[
h←Fk, (r, a)←A1(1k, h), (x, c)←A2(r, a) : Verh(x, c, r) = yes

]
. (4)

and running time t = t(k), we construct a collision finder CFh,A,T
k (m) (Fig. 2) with

approximate running time t′ ≈ m · t, where m is a reduction-specific parameter and
then analyze the success δ′ of the collision finder. Although the running time t and the
success δ of A depend on the security parameter k, we will use the shorthand nota-
tions t and δ instead of t(k) and δ(k). Let Equ denote the event that xi = xj for some

324 A. Buldas and M. Niitsoo

1. Compute (r, a)← A1(1
k, h).

2. Generate m independent samples: (x1, c1)← A2(r, a), . . . , (xm, cm)← A2(r, a).
3. Find xi �= xj such that Verh(xi, ci, r) = Verh(xj, cj , r) = yes and ρ(ci) = ρ(cj).
4. If such a pair was found, use it to extract a collision and output it. Otherwise, output ⊥.

Fig. 2. Generic collision finder CFh,A,T
k (m)

i
= j and Equ denote the opposite event, i.e. that all the xi-s are different. Consider-
ing the collision-extraction property, it would be good if all the successfully back-dated
bit-strings were different because then it would be sufficient to find two back-dating cer-
tificates of the same shape. Let Coll denote the event that CFh,A,T

k (m) finds a collision
for h. A general estimate for the success of the collision finder CFh,A,T

k (m) is:

Pr [Coll] ≥ Pr
[
Coll ∩ Equ

]
= Pr

[
Coll | Equ

] · (1 − Pr [Equ]) � Pr
[
Coll | Equ

]
,

because Pr [Equ] = k−ω(1) due to the unpredictability of (A1,A2). We can therefore
neglect the event Equ in the analysis on the security reductions, i.e. we can just assume
that all x1, . . . , xm are different, and use the fact that the success probability of the
collision-finder is δ′ � Pr

[
Coll | Equ

]
. Let

Pr [h, r, a] = Pr
[
H ← Fk, (R,A)← A1(1k) : H = h,R = r, A = a

]
,

δ
(n)
h,r,a = Pr

[
(x, c)← A2(r, a) : Verh(x, c, r) = yes, ρ(c) = n

]
,

δ(n) = E
h,r,a

[
δ
(n)
h,r,a

]
, and (5)

δh,r,a = δ
(1)
h,r,a + . . .+ δ

(N)
h,r,a .

We have δ =
∑

h,r,a Pr [h, r, a] · δh,r,a = E
h,r,a

[δh,r,a]and δ = δ(1) + . . . + δ(N). The

success probability of the collision finder is:

δ′ �
∑

h,r,a

Pr [h, r, a] · f(m; δ(1)h,r,a, . . . , δ
(N)
h,r,a) = E

h,r,a

[
f(m; δ(1)h,r,a, . . . , δ

(N)
h,r,a)

]
,

where f(m; δ1, . . . , δN) is a function that computes the probability that CFh,A,T
k (m)

made at least two successive A2-calls (among the total m) with the same certificate
shape (Tab. 1). For example, if N = 1 (we have only one shape) and m = 2 then

f(m, δ) = δ2 and by the Jensen inequality δ′ � E
h,r,a

[
δ2h,r,a

]
≥
(

E
h,r,a

[δh,r,a]
)2

= δ2.

4.1 Tightness Measure for Security Reductions

In order to compare the efficiency of adversaries with different running time and success
probability, Luby [8] introduced time-success ratio t

δ , where t is the running time and δ

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 325

Table 1. The success function f(m; δ1, . . . , δN) and its special cases

N = 1 Arbitrary N

m = 2 f(2; δ) = δ2 f(2; δ1, . . . , δN) = δ2
1 + . . . + δ2

N

Arbitrary m
f(m; δ) =

1−mδ(1− δ)m−1 − (1− δ)m

f(m; δ1, . . . , δN) =

1−∑m
j=0

(
m
j

)
j!σj(δ1, . . . , δN)(1− δ)m−j

is the success of the adversary. A cryptographic primitive is said to be S-secure if every
adversary has time-success ratio t

δ ≥ S. In terms of exact security, this means that the
primitive is (t, δ)-secure for every t and δ with t

δ ≥ S. Time-success ratio provides
a general measure for the tightness of cryptographic reductions. If the time-success
ratio t′

δ′ of the constructed adversary (i.e. CFh,A,T
k (m)) is represented as a function

t′
δ′ = F (t, 1

δ), where t and δ are the running time and the success of the assumed
adversary (i.e. (A1,A2)), then the reduction is tight if F grows slowly and loose if the
growth is faster. The reduction is said to be linear if F (a, b) = O(a) · O(b), quadratic
if F (a, b) = O(a2) · O(b2), and polynomial if F (a, b) = aO(1) · bO(1). The equation
t′
δ′ = F (t, 1

δ) is also called as the security loss (formula) of the reduction.

4.2 Reduction with Quadratic Security Loss

To get a security reduction with quadratic security loss, we take m = 2 and use the
estimate 1 f(2; δ1, . . . , δN) ≥ N ·f(2; δ1+...+δN

N), and hence by using Jensen inequality

δ′� E
h,r,a

[
f(2; δ(1)h,r,a, . . . ,δ

(N)
h,r,a)

]
≥ E

h,r,a

[
N ·f

(
2;
δh,r,a

N

)]
= N · E

h,r,a

[(
δh,r,a

N

)2
]

≥ δ
2

N
.

Such a reduction has the security loss formula t′
δ′ ≈ 2N · t

δ2 and was given in [5].

4.3 Reducing the Power of N

Buldas and Laur [4] used the birthday bound to improve the efficiency of the reduction.
Their main idea was to use the collision-finder CFh,A,T

k (m) with m =
√

N
δ instead of

CFh,A,T
k (2). After generating the samples (x1, c1), . . . , (xm, cm) and verifying them

with Verk, the collision finder CFh,A,T
k (m) has on average δm =

√
N successfully

back-dated bit-strings on average. The birthday bound implies that with a probability of
roughly 1

2 we then have two successfully back-dated bit strings with the same shape n.

1 This holds because δ2
1+...+δ2

N
N

≥
(

δ1+...+δN
N

)2

due to the convexity of the square function.

326 A. Buldas and M. Niitsoo

These can then be used to extract a collision. This idea was made precise in [4] and
resulted in a reduction with security loss 2 t′

δ′ ≈ 48
√
N · t

δ2 . Their reduction was the
best known for this problem so far.

5 New Reduction

We now establish a power 1.5 reduction by first showing an inefficient reduction and
then using combinatorial counting arguments to make it considerably more efficient.
Finally, we obtain a reduction with security loss t′

δ′ = 14
√
N · t

δ1.5 . For this, we use

CFh,A,T
k (m) with m = Θ

(√
N
δ

)
. We start from the case N = 1 when all certificates

have the same shape and we only need two successful A2 calls to get a collision. If the
success of A2 is δ, the success of CFh,A,T

k (m) is:

f(m, δ) = 1−mδ(1− δ)m−1 − (1− δ)m , (6)

where the first negative term is the probability that only one call is successful and the
second negative term is the probability that no call was successful. To explain the theo-
retical obstacles we will meet when going from power 2.0 to power 1.5 reductions, we
first show why it is not trivial to construct a linear reduction even for the case N = 1.

5.1 Problems with Establishing a Linear Reduction

It might seem that when N = 1, it is nearly trivial to construct a linear reduction with
security loss t′

δ′ = c · t
δ . One could just take m = max

{
2,
 1δ �

}
, where δ is the success

of the back-dating adversary (A1,A2), and the success δ′ of C will be:

δ′ ≈ f
(

1
δ
, δ

)
=
{

1− (1− δ) 1−δ
δ − (1− δ) 1

δ if δ < 1
2

1− 2δ(1− δ)− (1 − δ)2 = δ2 if δ ≥ 1
2

.

It is easy to see that limδ→0 f
(

1
δ , δ
)

= 1 − 2e−1 ≈ 0.26424 ≥ 1
4 and if the running

time of A2 is t, we seemingly have that the time success ratio of C is t′
δ′ ≈ 4 · t

δ .
However, this approach overlooks the fact that h is randomly chosen and therefore

the probability δ in (6) depends on particular choices of h and also on the output (r, a) of
A1. This means that the success of C is the mathematical expectation E

h,r,a
[f(m, δh,r,a)].

As f turns out not to be convex, Jensen’s inequality cannot be used and the averaging
becomes a nontrivial task in which the power of δ necessarily has to increase.

5.2 Tightness Bounds for Security Reductions

It is easy to see that any hash function used in hash-then-publish time-stamping schemes3

must be division-resistant [2], i.e. any poly-time adversary A = (A1,A2) has success:

Pr
[
h←Fk, (y,a)←A1(h),x1←{0,1}k, x2←A2(y,a,x1) : h(x1‖x2) = y

]
=k−ω(1) .

2 The larger constant is due to technical reasons and could probably be reduced somewhat.
3 More precisely, in schemes where the set N of allowed shapes contains at least one shape that

begins with a 0-bit. In all schemes that are used in practice, this is indeed the case. If for some
reasons, all allowed shapes begin with a 1-bit, then we can show in a similar way that h must
satisfy a dual condition with success predicate h(x2‖x1) = y instead of h(x1‖x2) = y.

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 327

Indeed, if there is A = (A1,A2), such that ADVk(A) = δ, then we construct (A′
1,A

′
2)

so that A′
1 first calls (r, a) ← A1, creates an h-chain c′ = ((s1, b1), . . . , (s�, b�))

such that 0b1 . . . b� ∈ N, and with output Chainr(c′,=)r′, and outputs (r′, a′) where
a′ = (a, r, c′). The second stage A2(r′, a′) first generates a random x ←{0,1}k, then
executes x2 ← A2(r, a, x) and outputs (x, c), where c = ((x2, 0), (s1, b1), . . . (s�, b�)).
It is easy to see that the modified adversary is unpredictable (because x1 is chosen inde-
pendent of y and uniformly at random) and breaks the h-based time-stamping scheme
in terms of (3) with success δ.

By using oracle separation techniques it has been proved [2] that every black-box
security reduction that derives division-resistance from the collision-resistance of the
same function is at least a power-1.5 reduction. Hence, power-1.5 black-box reductions
are also the best we can get when proving entropy-based security of a hash-then-publish
time-stamping scheme from the collision-resistance of the underlying hash function.

5.3 New Reduction: The Case N = 1

If m = max{ 1√
δ
, 2}, the success of the generic collision-finder CFh,A,T

k (m) is:

δ′ � E
h,r,a

[f(m, δh,r,a)] =
∑

h,r,a

Pr [h, r, a] · f(m, δh,r,a) . (7)

Note that, in general, δ′
� f(m, E
h,r,a

[δh,r,a]) = f(m, δ) because f is not convex

and we cannot apply the Jensen inequality directly. However, f(m, δ) is convex in the

interval
[
0 . . . 1

m−1

]
(Lemma 2 in Appendix A) and lower bounded by the identity

function in the interval
[

1
m−1 . . . 1

]
(Lemma 4 in Appendix A). Defining

p =
∑

h,r,a
δh,r,a≥ 1

m−1

Pr [h, r, a] · δh,r,a ,

we estimate the success δ′ of the collision-finder as follows:

δ′�
∑

h,r,a
δh,r,a<

1
m−1

Pr [h, r, a]·f(m, δh,r,a) +
∑

h,r,a
δh,r,a≥ 1

m−1

Pr [h, r, a] · f(m, δh,r,a) ≥ f(m,δ−p)+p ,

where the first sum is lower-bounded by using Lemma 3 of Appendix A. From the
observation that p ≥ δ

6 or δ− p ≥ 5δ
6 , and that f

(
m, 5δ

6

) ≥ δ
6 (Appendix B), it follows

that δ′ � δ
6 . The security loss of the reduction is t′

δ′ ≈ 6 · t
δ1.5 .

5.4 New Reduction: General Case

We simply use the fact that from δ = δ(1) + . . . + δ(N) it follows that there is n ∈ N

such that δ(n) ≥ δ
N . We now take m = max{ 1√

δ(n)
, 2} and modify the adversary A2

so that it only outputs (x, c) if ρ(c) = n. The success of A is δ(n) by the defining

328 A. Buldas and M. Niitsoo

equation (5). Hence, we reduced the general case to the case N = 1 and the success

of the collision finder CFh,A,T
k (m) is δ′ � δ(n)

6 ≥ δ
6N and the security loss of the

reduction is t′
δ′ ≈ 6 ·N1.5 · t

δ1.5 . In the next section, we show that N1.5 can actually be
reduced to

√
N which makes our reduction strictly better than the one given in [4].

5.5 New Reduction: Reducing the Power of N

The adversary previously considered only used collisions for the most probable certifi-
cate shape. We can get significantly better bounds if we try to take advantage of all
possible collisions. We again use CFh,A,T

k (m) as our adversary construction. However,
we try to bound the success probability δ′ of the collision-finder tighter than before. It
is clear that the adversary can fail to find a collision only when all the certificates re-
turned by the time-stamping adversary are of different shapes or when two certificates
coincide completely. The readers who are not interested in mathematical details of the
proof may skip this subsection.

We analyze what happens if the advice a, the hash function h, and the root hash value
r for A1 have been fixed already. Then the probability of all the successfully back-dated
certificates having different shapes after m tries is

m∑

k=0

(
m

k

)
k!σk(δ(1) . . . δ(N))(1−δ)m−k =

m∑

k=0

(
m

k

)(
N

k

)
k!Sk(δ(1) . . . δ(N))(1−δ)m−k

≤
m∑

k=0

(
m

k

)(
N

k

)
k!S1(δ(1) . . . δ(N))k(1−δ)m−k =

m∑

k=0

(
m

k

)
Nk

Nk
δk(1− δ)m−k , (8)

where σk is the k-th elementary symmetric polynomial, Sk = σk/
(
N
k

)
and Nk =

N ·(N−1) · . . . ·(N−k+1) is the falling factorial power. The MacLaurin’s inequality
says that k

√
Sk ≤ l

√
Sl whenever k ≥ l and δi ≥ 0. Now note that

δk(1− δ)m−k =
m−k∑

i=0

(−1)i

(
m− k
i

)
δi+k =

m∑

j=k

(−1)j−k

(
m− k
j − k

)
δj .

We plug this into (8), change the order of summation and use
(
m
k

)(
m−k
j−k

)
=
(
m
j

)(
j
k

)
to get

S =
m∑

k=0

(
m

k

)
Nk

Nk

⎛

⎝
m∑

j=k

(−1)j−k

(
m−k
j−k

)
δj

⎞

⎠=
m∑

k=0

m∑

j=k

(−1)j+kN
k

Nk

(
m

k

)(
m− k
j − k

)
δj =

=
m∑

j=0

m∑

k=j

(−1)j+kN
k

Nk

(
m

j

)(
j

k

)
δj =

m∑

j=0

(−1)j

(
m

j

)(j∑

k=0

(−1)kN
k

Nk

(
j

k

))

δj .

Computing the first few terms we get 1 − 1
N

(
m
2

)
δ2 + 2

N2

(
m
3

)
δ3 + 3N−6

N3

(
m
4

)
δ4 +

Denote φn =
∑n

k=0(−1)k Nk

Nk

(
n
k

)
and ψn =

(
m
n

)|φn|δn. It turns out that φn satisfy the

recurrence4 φk+1 = k
N (φk − φk−1). Assuming c1

√
N
δ + 1 ≤ m ≤ c2

√
N
δ , we get

4 This recurrence was found using Zeilberger’s algorithm [10]. See Appendix C for a proof.

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 329

ψk+1 =
(

m

k + 1

)
k

N
|φk−1 − φk| δk+1 ≤

(
m

k + 1

)
2k
N

max(|φk−1|, |φk|)δk+1

= max
(

2(m− k)(m− k − 1)
(k + 1)N

(
m

k − 1

)
|φk−1|, 2(m− k)k

(k + 1)N

(
m

k

)
|φk|

)
δk+1

≤ max

(
c22N

Nδ
ψk−1δ

2,
2c2
√
N

N
√
δ
ψkδ

)

= c2
√
δmax

(
2√
N
ψk, c2

√
δψk−1

)
.

To simplify further analysis we assume that N ≥ 4. By noting that ψ1 = 0, we get that
ψ3 ≤ c2

√
δψ2, ψ4 ≤ c22δψ2 and in general, ψk ≤ (c2

√
δ)k−2ψ2 for all k ≥ 2 which

can be easily verified by induction. Using this, we get a simple bound on the sum of the
remaining elements if we assume c2

√
δ < 1:

∣
∣
∣
∣
∣

m∑

k=3

(−1)k

(
m

k

)
φkδ

k

∣
∣
∣
∣
∣
≤

m∑

k=3

ψk ≤
m−2∑

k=1

(c2
√
δ)kψ2 ≤ c2

√
δψ2

1− c2
√
δ
.

We thus know that the success of the adversary for fixed h, r and a is at least

f(N, δ) ≥
(

1− c2
√
δ

1−c2
√
δ

)
1
N

(
m

2

)
δ2 ≥ 1−2c2

√
δ

N(1−c2
√
δ)
c21N

2δ
δ2 =

c21(1−2c2
√
δ)

2(1−c2
√
δ)

δ .

We analyze the lower bound described for convexity. Assuming c1
c2

= const. we can

substitute c2
√
δ = x and disregard a constant multiplier to get x2 1−2x

1−x which is easily
seen to be convex whenever x < 1− 1

3√2
≈ 0.2. In order to guarantee the convexity of

the approximation for f we need to have c2
√
δ ≤ 1 − 1

3√2
for all possible δ. As δ ≤ 1,

this can easily be achieved by taking c2 ≤ 1− 1
3√2

.

Let δh,r,a denote the success when h, r and a are fixed and let δ = E
h,r,a

[δh,r,a]be the

average success. Since f is convex for δ when we fix c2 as described, we can use the

Jensen inequality to get f̄(N, δ) = E
h,r,a

[f(N, δh,r,a)]≥ f
(
N, E

h,r,a
[δh,r,a]

)
. Thus,

t′

δ′
≈ mt

f̄(N, δ)
≤

c1

√
N
δ t

c2
1(1−2c2

√
δ)

2(1−c2
√

δ)
δ

=
2(1− c2

√
δ)
√
Nt

c1(1 − 2c2
√
δ)δ1.5

.

We want to make the bound. Again, assuming c1
c2

= const. and also that δ = N =

const.we can see that the problem we are facing is equivalent to maximizing 1−x
√

δ
x(1−2x

√
δ)

.

The derivative of that function is positive whenever (
√
δx)2 − 2

√
δx+ 0.5 > 0. Since√

δ ≤ 1 and x = c2 ≤ 1− 1
3√2

and both are also greater than 0, the derivative is always

positive and as such the maximum is achieved when we take c2 = 1− 1
3√2

.

330 A. Buldas and M. Niitsoo

We now upper bound 1−c2
√

δ

(1−2c2
√

δ)
. As the function is strictly increasing for c2 fixed

to 1 − 1
3√2

and
√
δ ≤ 1, the upper bound is achieved when δ = 1 when the result is

1
2− 3√2

< 1.4. Taking c1 = 0.2 then gives t′
δ′ ≈ 14

√
Nt

δ1.5 .

6 Practical Implications

In order to show the practical consequences of the new reduction we will compare
three reductions: the reduction given by Buldas and Saarepera in Asiacrypt 2004 [5],
the reduction by Buldas and Laur in PKC 2007 [4], and the new reduction given in
this article. We study a hypothetic global scale time-stamping system capable of is-
suing 67 million (about 226) time stamps per second and with lifetime at least 34
years (about 230 seconds), i.e. we need to take N = 256. Systems of that scale are
indeed in practical use. Our security proof is the first practical statement about the se-
curity of such systems if a 256 bit hash function (such as SHA2-256) is used. This
is because we want the system to be secure against back-dating adversaries with time-
success ratio t/δ = 264. We study adversaries with three different time-success profiles:
(t, δ) ∈ {(1, 2−64), (232, 2−32), (264, 1)}. For each profile and reduction we compute
the necessary output length of the hash function that is used in the time-stamping sys-
tem considering that the hash function’s security is near the birthday barrier, i.e. hash
functions of output size k are 2k/2-secure. The results are presented in Table 2.

Table 2. Efficiency of reductions. The numbers denote hash function’s output size in bits.

Reduction Formula t = 1, δ = 2−64 t = 232, δ = 2−32 t = 264, δ = 1

Asiacrypt 2004 t′
δ′ ≈ 2N t

δ2 370 306 242

PKC 2007 t′
δ′ ≈ 48

√
N t

δ2 324 260 196

This paper t′
δ′ ≈ 14

√
N t

δ1.5 256 224 190

We see that a 256-bit hash function is indeed sufficient for such a time-stamping
scheme though the previously proposed reductions were incapable of showing this.

It is also interesting to analyze how the hash-function output size k depends on the
capacity N and the required security of the time-stamping system against back-dating.
We study two levels of security: against 264-adversaries and against 280-adversaries.
The results are summarized in Table 3. For example, in order to construct a 264-secure

Table 3. Efficiency of reductions. How hash function output size k depends on the capacity N .

Reduction Formula 264-security 280-security

Asiacrypt 2004 t′
δ′ ≈ 2N t

δ2 k = 2 log2 N + 258 k = 2 log2 N + 322

PKC 2007 t′
δ′ ≈ 48

√
N t

δ2 k = log2 N + 268 k = log2 N + 332

This paper t′
δ′ ≈ 14

√
N t

δ1.5 k = log2 N + 200 k = log2 N + 248

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 331

time-stamping system with total capacity N = 256, we need a 256-bit hash func-
tion. Unfortunately, for achieving 280-security with a 256-bit hash function the capacity
should be N ≤ 28 = 256, which is clearly insufficient for a global scale time-stamping
system. As the reduction we have is asymptotically tight, we have almost no hope of
improving the efficiency of the reduction. Hence, in order to draw practical security
conclusions about the large time-stamping systems that use a 256-bit hash function,
we are forced to use security assumptions stronger than collision-freeness, even if the
function is assumed to be collision-free to the birthday barrier.

References

1. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of digital
timestamping. In: Sequences II: Methods in Communication, Security, and Computer Sci-
ence, pp. 329–334. Springer, Heidelberg (1993)

2. Buldas, A., Jürgenson, A., Niitsoo, M.: Efficiency bounds for adversary constructions in
black-box reductions. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594,
pp. 264–275. Springer, Heidelberg (2009)

3. Buldas, A., Laur, S.: Do broken hash functions affect the security of time-stamping schemes?
In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 50–65. Springer,
Heidelberg (2006)

4. Buldas, A., Laur, S.: Knowledge-binding commitments with applications in time-stamping.
In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 150–165. Springer, Hei-
delberg (2007)

5. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J. (ed.)
ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg (2004)

6. Haber, S., Stornetta, W.-S.: How to time-stamp a digital document. Journal of Cryptol-
ogy 3(2), 99–111 (1991)

7. Haber, S., Stornetta, W.-S.: Secure names for bit-strings. In: ACM Conference on Computer
and Communications Security, pp. 28–35 (1997)

8. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press,
Princeton (1996)

9. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980 IEEE
Symposium on Security and Privacy, pp. 122–134 (1980)

10. Petkovšek, M., Wilf, H.S., Zeilberger, D.: A=B. A.K. Peters, Ltd, Wellesley (1996)
11. Simon, D.: Finding Collisions on a One-Way Street: Can secure hash functions be based

on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
334–345. Springer, Heidelberg (1998)

A Properties of the Success Function f

We prove some useful properties of f(m,x) = 1−mx(1 − x)m−1 − (1− x)m.

Lemma 1. If m≥2, then the function f(m,x) is increasing in [0 . . . 1].

Proof. This follows from the observation that d
dxf(m,x) = m(m− 1)x(1− x)m−2 is

always positive in x ∈ [0 . . . 1]. ��

332 A. Buldas and M. Niitsoo

Lemma 2. If m ≥ 2, then the function f(m,x) is convex in
[
0 . . . 1

m−1

]
and concave

in
[

1
m−1 . . . 1

]
.

Proof. We use zeroes of the second derivative of f(m,x). The equation

d2

dx2
f(m,x) = −m(m− 1)(1− x)m−3[(m− 1)x− 1] = 0

implies that x ∈
{

1
m−1 , 1

}
. It is easy to see by using direct computations that the

second derivative is positive if 0 ≤ x ≤ 1
m−1 and negative if 1

m−1 ≤ x ≤ 1. ��

Lemma 3. For every m ≥ 2, for every collection of points x1, . . . , xn ∈
[
0 . . . 1

m−1

]

and coefficients p1, . . . , pn so that
∑

i pi ≤ 1 we have

n∑

i=1

pi · f(m,xi) ≥ f
(

m,

n∑

i=1

pi · xi

)

.

Proof. We use the fact that f(m, 0) = 0, add an artificial term to the sum, and use the
convexity of f(m,x) and apply the Jensen’s inequality. Let p0 = 1−∑i pi and x0 = 0.
Then we have:

n∑

i=1

pi ·f(m,xi) = p0 · f(m,x0)+
n∑

i=1

pi · f(m,xi)≥f
(

m, p0 · x0 +
n∑

i=1

pi · xi

)

= f

(

m,

n∑

i=1

pi · xi

)

,

which proves the claim. ��
Lemma 4. For every m ≥ 2 and x ≥ 1

m−1 we have f(m,x) ≥ x.

Proof. It is sufficient to prove that f
(
m, 1

m−1

)
≥ 1

m−1 for everym ≥ 2 and then use the

fact that f(m,x) is concave in
[

1
m−1 . . . 1

]
. Indeed, f

(
2, 1

1

)
= 1

1 , f
(
3, 1

2

)
= 1

2 , and

f
(
4, 1

3

)
= 11

27 ≥ 1
3 . If m ≥ 5 then

f

(
m,

1
m− 1

)
= 1− m

m− 1
·
(

1− 1
m− 1

)m−1

−
(

1− 1
m− 1

)m

= 1−
(
m+1
m−1

−1
)
·
(
1− 1

m−1

)m−1

≥1−2 ·
(
1− 1

m−1

)m−1

= 1− 2e−1 ≥ 1
4
≥ 1
m− 1

.

As f(m,1)=1 and f is concave in
[

1
m−1 . . .1

]
, we have f(m,x)≥x, ∀x∈

[
1

m−1 . . .1
]
. ��

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 333

B Lower Bound for f(max
{
2, 1√

δ

}
, 5δ

6
)

Theorem 1. For every 0 ≤ δ ≤ 1
4 we have f(max

{
2, 1√

δ

}
, 5δ

6) ≥ δ
6 .

Lemma 5. If 0 ≤ x ≤ 1
m−1 , then f(m,x) ≥ m(m−1)

2 x2 − m(m−1)(m−2)
3 x3.

Proof. First, we expand f(m,x) as follows:

f(m,x) =1−mx(1−x)m−1−(1−x)m =1−mx
m−1∑

i=0

(−1)i

(
m−1
i

)
xi−

m∑

i=0

(−1)i

(
m

i

)
xi

=1+
m−1∑

i=0

(−1)i+1m

(
m−1
i

)
xi+1−

m∑

i=0

(−1)i

(
m

i

)
xi

=1+
m∑

i=1

(−1)im

(
m−1
i−1

)
xi−

m∑

i=0

(−1)i

(
m

i

)
xi =

m∑

i=1

(−1)i

[
m

(
m−1
i−1

)
−
(
m

i

)]
xi

=
m∑

i=1

(−1)im

(
1− 1

i

)(
m− 1
i− 1

)
xi =

m∑

i=2

(−1)im

(
1− 1

i

)(
m− 1
i− 1

)
xi

Obviously, ai = m
(
1− 1

i

) (
m−1
i−1

)
> 0 and if x < 1

m−1 and 2 ≤ i < m then

aix
i

ai+1xi+1
=

1
x

(
1− 1

i

) (
m−1
i−1

)

(
1− 1

i+1

) (
m−1

i

) =
1
x

i−1
i

(
m−1
i−1

)

i
i+1

(
m−1

i

) =
1
x

i2 − 1
i2

(
m−1
i−1

)

(
m−1

i

)

=
1
x

i2 − 1
i2

(m−1)!
(i−1)!(m−i)!

(m−1)!
i!(m−i−1)!

=
1
x

i2 − 1
i2

i!(m− i− 1)!
(i− 1)!(m− i)! =

1
x

i2 − 1
i2

i

m− i

=
1
x

i2 − 1
i(m− i) =

1
x
·
(

1 +
1
i

)
i− 1
m− i ≥

m− 1
m− i · (i− 1) > 1 .

Therefore, the expansion of f(m,x) when x ≤ 1
m−1 is an alternating sum of decreasing

terms. This means that

f(m,x) ≥ p(m,x) = m

(
1− 1

2

)(
m− 1

1

)
x2 −m

(
1− 1

3

)(
m− 1

2

)
x3

=
m(m− 1)

2
x2 − m(m− 1)(m− 2)

3
x3 .

��
Lemma 6. If m = 1√

δ
and 0 < δ < 1 then 5δ

6 ≤ 1
m−1 .

Proof. 1
m−1 = 1

1√
δ
−1

=
√

δ
1−√

δ
= δ√

δ−δ
≥ δ

1 ≥ 5δ
6 . ��

Lemma 7. The polynomial h(δ) = 1
δ · p(1√

δ
, 5δ

6) is decreasing in [0 . . . 1].

334 A. Buldas and M. Niitsoo

Proof. As h(δ) = 25
72 − 175

324

√
δ + 125

216δ − 125
324δ

3/2 and the equation d
dxh(x) = 0 has

no real solutions and limx→∞ h(x) = −∞ we conclude that h(x) is decreasing in
[0 . . .∞) and h(δ) is decreasing in [0 . . . 1]. ��
Therefore, the global minimum of h(δ) in [0 . . . 1/4] is h(1/4) = 25

144 >
1
6 . The func-

tion 1
δ ·f(max

{
2, 1√

δ

}
, 5δ

6) is increasing in [1/4 . . . 1] because then max
{
2, 1√

δ

}
= 2

and 1
δ · f(2, δ) = δ is increasing. Hence, f(max

{
2, 1√

δ

}
, 5δ

6) is lower-bounded by δ
6 .

C Proof of the Recurrence Relation

Lemma 8. Stirling numbers of first kind s(n,m) satisfy the following identity (∀m,n):

n+1∑

k=0

(−1)ks(k,m+ k − n− 1)
(
n+ 1
k

)
=

n∑

k=0

(−1)kk · s(k,m+ k − n)
(
n

k

)
. (9)

Proof. We use the recurrence relation s(a, b−1)−s(a+1, b) = a·s(a, b) and transform
the left hand side sum � of (9) as follows:

� =
n+1∑

k=0

(−1)ks(k,m+ k − n− 1)
(
n+ 1
k

)

= s(0,m− n− 1)
(
n+ 1

0

)
+

n∑

k=1

(−1)ks(k,m+ k − n− 1)
(
n+ 1
k

)
+

+(−1)n+1s(n+ 1,m)
(
n+ 1
n+ 1

)

= s(0,m− n− 1)
(
n

0

)
+

n∑

k=1

(−1)ks(k,m+ k − n− 1)
[(
n

k

)
+
(

n

k − 1

)]
+

+(−1)n+1s(n+ 1,m)
(
n

n

)

= s(0,m− n− 1)
(
n

0

)
+

n∑

k=1

(−1)ks(k,m+ k − n− 1)
(
n

k

)
+

+
n∑

k=1

(−1)ks(k,m+ k − 1− n)
(

n

k − 1

)
+ (−1)n+1s(n+ 1,m)

(
n

n

)

=
n∑

k=0

(−1)ks(k,m+ k − n− 1)
(
n

k

)
+

n∑

k=0

(−1)k+1s(k + 1,m+ k − n)
(
n

k

)

=
n∑

k=0

(−1)k [s(k,m+ k − n− 1)− s(k + 1,m+ k − n)]
(
n

k

)

=
n∑

k=0

(−1)kk · s(k,m+ k − n)
(
n

k

)
,

which is equal to the right hand side of (9). ��

Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping 335

Theorem 2. The sequence φn =
∑n

k=0(−1)k Nk

Nk

(
n
k

)
satisfies the recurrence relation:

φn+1 =
n

N
(φn − φn−1) .

Proof. It is sufficient to show thatA(N) = Nn+1φn+1 andB(N) = nNn(φn−φn−1)
are identical as polynomials with variable N , i.e. all their coefficients coincide. We use
the formula Nm =

∑m
j=0 s(m, j) ·N j , where s(m, j) are Stirling numbers of the first

kind. So, we have:

A(N)=
n+1∑

k=0

(−1)kNkNn+1−k

(
n+ 1
k

)
=

n+1∑

k=0

k∑

j=0

(−1)ks(k, j)
(
n+ 1
k

)
Nn+1+j−k ,

from which it follows that the coefficient coefm(A) of Nm is:

coefm(A) =
n+1∑

k=0

(−1)ks(k,m+ k − n− 1)
(
n+ 1
k

)
,

which is equal to the left hand side of identity (9). Similarly, for B(N) we obtain:

B(N) = nNn(φn − φn−1)

=
n∑

k=0

(−1)kNkNn−kn

(
n

k

)
−

n−1∑

k=0

(−1)kNkNn−kn

(
n− 1
k

)

=
n−1∑

k=0

(−1)kNkNn−kn

[(
n

k

)
−
(
n− 1
k

)]
+ (−1)nNnN0n

(
n

n

)

=
n−1∑

k=0

(−1)kNkNn−kn

(
n− 1
k − 1

)
+ (−1)nNnN0n

(
n

n

)

=
n−1∑

k=0

(−1)kNkNn−kk

(
n

k

)
+ (−1)nNnN0n

(
n

n

)

=
n∑

k=0

(−1)kNkNn−kk

(
n

k

)
=

n∑

k=0

k∑

j=0

(−1)kk · s(k, j)
(
n

k

)
·Nn−k+j

and

coefm(B) =
n∑

k=0

(−1)kk · s(k,m+ k − n)
(
n

k

)
,

which coincides with the right hand side of (9). Hence, coefm(A) = coefm(B) for
every m > 0, and by Lemma 8 the statement follows. ��

	Optimally Tight Security Proofs for Hash-Then-Publish Time-Stamping
	Introduction
	Notation
	Hash-then-Publish Time-Stamping
	Security Condition for Time-Stamping Schemes
	Hash Tree Time-Stamping Schemes

	Existing Security Proofs
	Tightness Measure for Security Reductions
	Reduction with Quadratic Security Loss
	Reducing the Power of N

	New Reduction
	Problems with Establishing a Linear Reduction
	Tightness Bounds for Security Reductions
	New Reduction: The Case N = 1
	New Reduction: General Case
	New Reduction: Reducing the Power of N

	Practical Implications
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

