


Lecture Notes in Computer Science 6168
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Ron Steinfeld Philip Hawkes (Eds.)

Information Security
and Privacy

15th Australasian Conference, ACISP 2010
Sydney, Australia, July 5-7, 2010
Proceedings

13



Volume Editors

Ron Steinfeld
Macquarie University, Department of Computing
North Ryde, NSW 2109, Australia
E-mail: rons@science.mq.edu.au

Philip Hawkes
Qualcomm Incorporated
Suite 301, Level 3, 77 King Street, Sydney, NSW 2000, Australia
E-mail: phawkes@qualcomm.com

Library of Congress Control Number: 2010929205

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, J.1, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-14080-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14080-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The annual Australasian Conference on Information Security and Privacy is the
premier Australian academic conference in its field, showcasing research from
around the globe on a range of topics. ACISP 2010 was held during July 5-7,
2010, at Macquarie University in Sydney, Australia.

There were 97 paper submissions for the conference. These submission were
reviewed by the Program Committee and a number of other individuals, whose
names can be found overleaf. The Program Committee then selected 24 papers for
presentation at the conference. These papers are contained in these proceedings.

In addition to the peer-reviewed papers, two invited speakers presented talks
at the conference: Craig Gentry (IBM, USA); and Stephan Overbeek (Shearwa-
ter Solutions, Australia). We would like to express our gratitude to Craig and
Stephan for contributing their knowledge and insight, and thus expanding the
horizons of the conference delegates.

We would like to thank the authors of all of submission for offering their
research for publication in ACISP 2010. We extend our sincere thanks to the Pro-
gram Committee and other reviewers for the high-quality reviews and in-depth
discussion. The Program Committee made use of the iChair electronic submis-
sion and reviewing software written by Thomas Baignères and Matthieu Finiasz
at EPFL, LASEC. We would like to express our thanks to Springer for continu-
ing to support the ACISP conference and for help in the conference proceedings
production. We also thank the Organizing Committee, led by the ACISP 2010
General Chair Josef Pieprzyk, for their contribution to the conference.

Finally, we would like to thank our sponsors, iRobot, and our hosts, Qual-
comm Inc. and the Centre for Advanced Computing - Algorithms and Cryptog-
raphy (ACAC) at Macquarie University.

July 2010 Ron Steinfeld
Philip Hawkes
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Cryptanalysis of a Generalized Unbalanced
Feistel Network Structure�

Ruilin Li1, Bing Sun1, Chao Li1,2, and Longjiang Qu1,3

1 Department of Mathematics and System Science, Science College,
National University of Defense Technology, Changsha, 410073, China
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2 State Key Laboratory of Information Security, Institute of Software,

Chinese Academy of Sciences, Beijing, 100190, China
lichao nudt@sina.com

3 National Mobile Communications Research Laboratory,
Southeast University, Nanjing, 210096, China

ljqu happy@hotmail.com

Abstract. This paper reevaluates the security of GF-NLFSR, a new
kind of generalized unbalanced Feistel network structure that was pro-
posed at ACISP 2009. We show that GF-NLFSR itself reveals a very
slow diffusion rate, which could lead to several distinguishing attacks. For
GF-NLFSR containing n sub-blocks, we find an n2-round integral distin-
guisher by algebraic methods and further use this integral to construct
an (n2 + n − 2)-round impossible differential distinguisher. Compared
with the original (3n − 1)-round integral and (2n − 1)-round impossible
differential, ours are significantly better.

Another contribution of this paper is to introduce a kind of non-
surjective attack by analyzing a variant structure of GF-NLFSR, whose
provable security against differential and linear cryptanalysis can also be
provided. The advantage of the proposed non-surjective attack is that
traditional non-surjective attack is only applicable to Feistel ciphers with
non-surjective (non-uniform) round functions, while ours could be ap-
plied to block ciphers with bijective ones. Moreover, its data complexity
is O(l) with l the block length.

Keywords: block ciphers, generalized unbalanced Feistel network, inte-
gral attack, impossible differential attack, non-surjective attack.

1 Introduction

Differential cryptanalysis (DC) [6] and linear cryptanalysis (LC) [23] are the
two most powerful known attacks on block ciphers since 1990s. For a new block

� The work in this paper is supported by the Natural Science Foundation of China (No:
60803156), the open research fund of State Key Laboratory of Information Security
(No: 01-07) and the open research fund of National Mobile Communications Research
Laboratory of Southeast University (No: W200807).

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 R. Li et al.

cipher algorithm, designers must guarantee that it can resist these two attacks.
However, even the security against DC and LC can be proved, the algorithm
may suffer other attacks, such as truncated differential attack [13], higher-order
differential attack [13,18], impossible differential attack [4,14], boomerang attack
[27], amplified boomerang attack [16], rectangle attack [5], integral attack [15],
interpolation attack [12], non-surjective attack [24], algebraic attack [8], related-
key attack [3], slide attack [1] and so on. Among these methods, integral attack
and impossible differential attack are of special importance. Take the well-known
128-bit version block cipher Rijndael as an example, six rounds is sufficient
for resisting DC and LC. However, by integral attack or impossible differential
attack, one can break six, seven, even eight rounds [9,11,20,29].

Integral cryptanalysis [15], which is especially well-suited for analyzing ciphers
with primarily bijective components, was proposed by Knudsen et al.. In fact, it
is a more generalization of Square attack [9], Saturation attack [19] and Multiset
attack [2] proposed by Daemen et al., Lucks, and Biryukov et al., respectively.
These methods exploit the simultaneous relationship between many encryptions,
in contrast to differential cryptanalysis, where only pairs of encryptions are con-
sidered. Consequently, integral cryptanalysis applies to a lot of ciphers which are
not vulnerable to DC and LC. These features have made integral an increasingly
popular tool in recent cryptanalysis work.

The concept of using impossible differentials (differentials with probability 0)
to retrieve the secret key of block ciphers was firstly introduced by Knudsen [14]
against the DEAL cipher and further by Biham et al. [4] to attack Skipjack. Un-
like differential cryptanalysis which recovers the right key through the obvious
advantage of a high probability differential (differential characteristic), impossible
differential cryptanalysis is a sieving attack that excludes all the wrong
candidate keys using impossible differentials. Since its emergence, impossible dif-
ferential cryptanalysis has been applied to attack many well-known block ciphers
[20,21,28,29].

Non-surjective attack [24] was introduced by Rijmen et al. and it is applica-
ble to Feistel ciphers with non-surjective, or more generally, non-uniform round
functions such as CAST and LOKI 91. If the round function of Feistel ciphers
is non-surjective (non-uniform), then by analyzing the statistical bias of some
expression derived from the round function, one can apply a key recovery attack.
However, if the round function is a surjective (uniform) one, it is impossible to
apply this kind of non-surjective attack.

At ACISP 2009, Choy et al. proposed a new block cipher structure called
n-cell GF-NLFSR [7], which is a kind of generalized unbalanced Feistel network
[26] containing n sub-blocks. The advantages of this structure are that it allows
parallel computations for encryption and that it can provide provable security
against DC and LC, given that the round function is bijective. Meanwhile, the
designers show the existence of a (3n − 1)-round integral distinguisher and a
(2n − 1)-round impossible differential distinguisher. In the same paper, a new
block cipher Four-Cell is designed as an application of the theoretical model of
4-cell GF-NLFSR.
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Main Contribution. (1) We demonstrate that GF-NLFSR itself reveals a
very slow diffusion rate, which could lead to several distinguishing attacks. We
especially apply algebraic methods to find integral distinguishers in n-cell GF-
NLFSR. In this method, plaintexts of special forms as well as their indeterminate
states are treated as polynomial functions over finite fields, and in many cases,
more precise information among these states could be obtained, which would
lead to a better distinguisher.

Our cryptanalytic results show that, for n-cell GF-NLFSR, there exists an n2-
round integral distinguisher, which could be extended to an (n2 + n− 2)-round
higher-order integral distinguisher. Furthermore, by studying the relationship
between integral and truncated differential, an (n2 + n − 2)-round impossible
differential distinguisher could be constructed. These distinguishers are signifi-
cantly better than the original ones.

(2) We introduce a kind of non-surjective attack by analyzing a variant
structure of GF-NLFSR, whose provable security against DC and LC can also be
provided. The advantage of the proposed attack is that traditional non-surjective
attack is only applicable to Feistel ciphers with non-surjective (non-uniform)
round functions, while ours could be applied to block ciphers with bijective
ones. Moreover, its data complexity is O(l) with l the block length.

Outline. We begin with a brief description of n-cell GF-NLFSR in Section 2.
Encryption properties of n-cell GF-NLFSR by every n rounds are studied in
Section 3. The existence of n2-round integral distinguisher and (n2 + n − 2)-
round impossible differential distinguisher are shown in Section 4 and Section
5, respectively. Section 6 presents a kind of non-surjective attack by analyzing
a variant structure of GF-NLFSR. Section 7 contains results of the experiment
with the proposed non-surjective attack on a toy cipher, and finally Section 8 is
the conclusion.

2 Description of n-Cell GF-NLFSR

As shown in Fig. 1, assume the input, output and round key to the i-th round
of n-cell GF-NLFSR are (x(i)

0 , x
(i)
1 , . . . , x

(i)
n−1) ∈ Fn

2b , (x(i+1)
0 , x

(i+1)
1 , . . . , x

(i+1)
n−1 ) ∈

Fn
2b , and Ki = (ki, k

′
i), then the round transformation can be described as follow:

(x(i)
0 , x

(i)
1 , . . . , x

(i)
n−2, x

(i)
n−1) �→ (x(i+1)

0 , x
(i+1)
1 , . . . , x

(i+1)
n−2 , x

(i+1)
n−1 ),

where {
x

(i+1)
l = x

(i)
l+1, if l = 0, 1, . . . , n− 2

x
(i+1)
n−1 = F (x(i)

0 , Ki)⊕ x
(i)
1 ⊕ x

(i)
2 ⊕ . . .⊕ x

(i)
n−1

and F (·, Ki) � FKi(·) is a permutation on F2b .
From [7], this kind of generalized unbalanced Feistel network can provide its

provable security against DC and LC, which is summarized in the following
proposition.
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F
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( 1)
2n
ix

Fig. 1. The i-th round transformation of n-cell GF-NLFSR

Proposition 1. [7] Let the round function of n-cell GF-NLFSR F : F2b ×F2b ×
Ω → F2b be of the form F (x, ki, k

′
i) = f(x ⊕ ki, k

′
i), where f : F2b × Ω → F2b is

bijective for all fixed k′
i ∈ Ω. If the maximum differential (linear hull) probability

of f satisfies DP (LP )max(f) ≤ p(q), then the differential (linear hull) probability
of the (n + 1)-round encryption is upper bounded by p2(q2).

3 Encryption Property of n-Cell GF-NLFSR

In this section, we study the encryption property of n-cell GF-NLFSR by every
n rounds. From now on, the round function FKi(x) is treated as a permutation
polynomial over F2b .

Firstly, according to the definition of n-cell GF-NLFSR, the following result
could be obtained.

Proposition 2. Let (x0, x1, . . . , xn−1) be the input of the i-th round of n-cell
GF-NLFSR, and (y0, y1, . . . , yn−1) be the output of the (i+n−1)-th round, then{

y0 = FKi(x0)⊕ x1 ⊕ x2 ⊕ . . .⊕ xn−1

ym = FKi+m−1(xm−1)⊕ FKi+m(xm)⊕ xm, if 1 ≤ m ≤ n− 1

and

n−1⊕
j=0

yj = FKi+n−1(xn−1).

Proposition 2 can be verified directly by the encryption procedure of n-cell GF-
NLFSR, based on which we could deduce the following proposition.
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Proposition 3. Let the input of n-cell GF-NLFSR be (x, c1, . . . , cn−1), where
x is a variable and each ci is some constant with 1 ≤ i ≤ n − 1, let the output
of the r-th round be

(
y
(r)
0 (x), y(r)

1 (x), . . . , y(r)
n−1(x)

)
, and 1 ≤ m ≤ n− 1, then

(1) y
(m×n)
i (x) is a permutation polynomial over F2b if i = m,

(2) y
(m×n)
i (x) is a constant if i > m.

Table 1 is the encryption results of every n rounds of n-cell GF-NLFSR when
plaintexts are of the form (x, c1, . . . , cn−1) as described in Proposition 3. Note
that the first column denotes the round number, and each of the other columns
represents the corresponding output sub-block. The letter C denotes some con-
stant which could be different from each other. Pm(x) is some permutation poly-
nomial over F2b with 1 ≤ m ≤ n− 1, and those blank cells (elements under the
diagonal) indicate that their behaviors are unknown.

An immediate conclusion, from Proposition 3 and Table 1, is that the diffusion
rate of n-cell GF-NLFSR is very slow, since the input variable x needs at least
(n− 1)× n rounds to influence the last (rightmost) sub-block of the output.

Table 1. Output of every n rounds of n-cell GF-NLFSR

0 x C C . . . C . . . C C
n P1(x) C . . . C . . . C C
...

. . .
...

...
...

(m − 1) × n Pm−1(x) C . . . C C
m × n Pm(x) . . . C C

...
. . .

...
...

(n − 2) × n Pn−2(x) C
(n − 1) × n Pn−1(x)

4 Integral Distinguisher of GF-NLFSR

4.1 Preliminaries

To apply integral cryptanalysis, one should first find an integral distinguisher of
the reduced-round cipher, then apply the key recovery attack. In this section, we
show how to construct an n2-round integral distinguisher of n-cell GF-NLFSR
by using algebraic techniques.

Firstly, recall that most traditional methods in finding integral distinguish-
ers are based on the so-called empirical methods. They firstly treat each part
of plaintexts with special forms as active or passive state (see definitions be-
low), then study the property (active, passive or balanced) of its corresponding
intermediate state after passing through several encryption rounds.

Definition 1. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is active, if for any 0 ≤ i <
j ≤ 2b − 1, ai �= aj. We use A to denote the active set.
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Definition 2. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is passive or constant, if for
any 0 < i ≤ 2b − 1, ai = a0. We use C to denote the passive set.

Definition 3. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is balanced, if the XOR-sum
of all element of the set is 0, that is ⊕2b−1

i=0 ai = 0. We use B to denote the
balanced set.

Moreover, three principles are widely used when applying empirical methods: (1)
An active set remains active after passing a bijective transform. (2) The linear
combination of several active/balanced sets is a balanced set. (3) The property
of a balanced set after passing a nonlinear transformation is generally unknown.

Obviously, the third one is the bottleneck of empirical methods, thus if one
could determine the property of a balanced set after it passes a nonlinear trans-
formation, integral distinguisher with more rounds can be constructed.

4.2 n2-Round Integral Distinguisher of n-Cell GF-NLFSR

By using the empirical method, the designers presented the following (3n− 1)-
round integral distinguisher:

(A, C, C, . . . , C) → (C, ?, ?, . . . , ?),

where A is active in F2b , C is constant in F2b , and ? is unknown.
Now we describe the newly constructed n2-round integral in the following

theorem, the proof is based on algebraic methods. See Appendix B for a 16-
round integral distinguisher of 4-cell GF-NLFSR as an example.

Theorem 1. There is an n2-round integral distinguisher of n-cell GF-NLFSR:

(A, C, . . . , C) → (S0, S1, . . . , Sn−1),

where A is active, C is constant and (S0 ⊕ S1 ⊕ . . .⊕ Sn−1) is active.

Proof. Let the input of n-cell GF-NLFSR be (x, c1, . . . , cn−1) and the output of
the ((n− 1)× n)-th round be(

y
((n−1)×n)
0 (x), y((n−1)×n)

1 (x), . . . , y((n−1)×n)
n−1 (x)

)
,

then y
((n−1)×n)
n−1 (x) is a permutation polynomial by Proposition 3.

Assume the output of the n2-round is(
y
(n2)
0 (x), y(n2)

1 (x), . . . , y(n2)
n−1(x)

)
,

according to Proposition 2,

y
(n2)
0 (x)⊕ y

(n2)
1 (x) ⊕ . . .⊕ y

(n2)
n−1(x) = FKn2

(
y
((n−1)×n)
n−1 (x)

)
.

Since y
((n−1)×n)
n−1 (x) is a permutation polynomial, so is FKn2

(
y
((n−1)×n)
n−1 (x)

)
,

which ends the proof. �	
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From the idea of higher-order integral [15], the above n2-round integral can be
extended to an (n2 + n− 2)-round higher-order one.

Theorem 2. There is an (n2 + n− 2)-round higher-order integral distinguisher
of n-cell GF-NLFSR:

(A0, A1, . . . , An−2, C) → (S0, S1, . . . , Sn−1),

where (A0, A1, . . . , An−2) is active in Fn−1
2b , C is constant and (S0 ⊕ S1 ⊕ . . .⊕

Sn−1) is balanced.

Proof. First, according to bijective property of the encryption structure of n-cell
NLFSR, if the input is (x0, x1, . . . , xn−2, c), where (x0, x1, · · · , xn−1) is active in
Fn−1

2b , c ∈ F2b is constant, after n− 2 rounds encryption, the intermediate state
must be (y0, c, y2, . . . , yn−1), where (y0, y2, . . . , yn−1) is active in Fn−1

2b .
Next, let’s focus on the set containing these 2(n−1)b intermediate states after

n− 2 rounds encryption. Fix (y2, y3, . . . , yn−1) ∈ Fn−2
2b , we thus get a structure

with 2b elements, which is the input of the n2-round integral distinguisher as
shown in Theorem 1(From now on, we call this structure a Λ set).

Now, these 2(n−1)b intermediate states can be divided into 2(n−2)b indistin-
guishable Λ sets. When each Λ set passes through the n2 rounds encryption,
the XOR sum of the n sub-blocks of outputs is active (thus balanced) in F2b .
Consequently, the XOR sum of the n sub-blocks of outputs for these 2(n−2)b

indistinguishable Λ sets is balanced. Let E
(i)
j (·) denote the j-th sub-block after

i rounds encryption of the input, then we can explain the higher-order integral
distinguisher as follows:

⊕
x0,x1,...,xn−2

n−1⊕
j=0

E
(n2+n−2)
j (x0, x1, . . . , xn−2, c)

=
⊕

y0,y2,...,yn−1

n−1⊕
j=0

E
(n2)
j (y0, c, y2, . . . , yn−1)

=
⊕

y2,...,yn−1

⎛⎝⊕
y0

n−1⊕
j=0

E
(n2)
j (y0, c, y2, . . . , yn−1)

⎞⎠
=

⊕
y2,...,yn−1

0

= 0 �	

5 Impossible Differential of GF-NLFSR

By using the U-method [17], the designers of n-cell GF-NLFSR found a (2n−1)-
round impossible differential: (0, 0, 0, . . . , α) � (ψ, ψ, 0, . . . , 0), where α �= 0,
ψ �= 0. In this section, we show how to construct an (n2 + n − 2)-round im-
possible differential by studying the relationship between integral and truncated
differential as described in the following theorem:
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Theorem 3. The n2-round integral distinguisher of Theorem 1 corresponds to
the following n2-round truncated differential with probability 1:

(δ, 0, . . . , 0) → (δ0, δ1, . . . , δn−1),

where δ �= 0 and δ0 ⊕ δ1 ⊕ . . .⊕ δn−1 �= 0.

Proof. Let the input of the n-cell GF-NLFSR be (x, c1, c2, . . . , cn−1), after n2

rounds, the output is (q0(x), q1(x), . . . , qn−1(x)), then according to Proposition
2, q0(x) ⊕ q1(x) ⊕ . . .⊕ qn−1(x) � q(x) ∈ F2b [x] is a permutation polynomial.

Assume two inputs are (x1, c1, c2, . . . , cn−1) and (x2, c1, c2, . . . , cn−1) with
x1 �= x2, thus q(x1) �= q(x2). Now the input difference is (δ, 0, . . . , 0) with
δ = x1 ⊕ x2 �= 0, and the output difference is (δ0, δ1, . . . , δn−1), satisfying
δ0 ⊕ δ1 ⊕ . . .⊕ δn−1 = q(x1)⊕ q(x2) �= 0. �	
Theorem 4. There exists an (n2 +n−2)-round impossible differential in n-cell
GF-NLFSR of the following form:

(δ, 0, . . . , 0)�(ψ, ψ, 0, . . . , 0),

where δ �= 0 and ψ �= 0.

Proof. From encrypt direction, the n2-round truncated differential (δ, 0, . . . , 0)→
(δ0, δ1, . . . , δn−1) is with probability 1, where δ �= 0 and δ0⊕ δ1⊕ . . .⊕ δn−1 �= 0.
From decrypt direction, the (n−2)-round truncated differential (ψ, ψ, 0, . . . , 0) →
(0, . . . , 0, ψ, ψ) is with probability 1. Since ψ⊕ψ = 0, we find a contradiction. �	

Remark. Wu et al. [30] independently found the same (n2+n−2)-round impossi-
ble differential through a more direct approach. By using the 18-round impossible
differential when n = 4, they presented a key recovery attack on the full round
block cipher Four-Cell. Due to these new distinguishers and the full round at-
tack, the designers have modified Four-Cell to Four-Cell+ for better protection
against the integral and impossible differential attacks.

6 A Kind of Non-surjective Attack

Our goal for introducing this kind of attack is that traditional non-surjective
attack is only applicable to Feistel ciphers with non-surjective (non-uniform)
round functions, while ours could be applied to block ciphers with bijective
ones. Moreover, its data complexity is O(l) with l the block length.

To this end, we describe a variant structure of n-cell GF-NLFSR, denoted
as n-cell VGF-NLFSR. As shown in Fig. 2, the main difference between these
two structures is the round function. In n-cell VGF-NLFSR, the round function
is F (x ⊕ Ki) with F bijective. One can easily demonstrate that the provable
security against DC and LC for n-cell VGF-NLFSR can be provided using the
same technique in [7]. Furthermore, Proposition 2 and 3 also suit for n-cell VGF-
NLFSR, thus there exist the same n2-round integral and (n2 + n − 2)-round
impossible differential as in n-cell GF-NLFSR.

Now, we introduce the non-surjective attack by analyzing VGF-NLFSR in the
following two subsections.
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Fig. 2. The i-th round transformation of n-cell VGF-NLFSR

6.1 Description of the Non-surjective Distinguisher

Let the input of n-cell VGF-NLFSR be (x, c1, . . . , cn−1), according to Proposition
2 and Proposition 3, y

((n−2)×n)
n−1 is a constant, say C, and

n−1⊕
j=0

y
(n2−n)
j = F (C ⊕Kn2−n) � C′.

Thus

y
(n2−n)
0 = C′ ⊕

n−1⊕
j=1

y
(n2−n)
j .

Assume the output of the n2-th round is (q0(x), q1(x), . . . , qn−1(x)), from Propo-
sition 2, we have

q0(x) = F
(
y
(n2−n)
0 ⊕Kn2−n+1

)
⊕

n−1⊕
j=1

y
(n2−n)
j .

Let t = y
(n2−n)
0 ⊕Kn2−n+1, then

q0(x) = F (t)⊕ t⊕Kn2+n−1 ⊕ C′

= F (t)⊕ t⊕ C∗,

where C∗ = Kn2+n−1 ⊕ C′ represents some unknown constant.

Let f(t) = F (t) ⊕ t, and define Df = {y|y = f(t), t ∈ F2b}. From the above
fact, we have the following n2-round distinguisher:
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Theorem 5. Let the input to n-cell VGF-NLFSR be (x, c1, . . . , cn−1), where ci

is constant, and the output of the n2-th round be (q0(x), q1(x), . . . , qn−1(x)), then
there exists some constant C∗ ∈ F2b , such that for any x ∈ F2b , q0(x)⊕C∗ ∈ Df .

Consider the distinguisher in Theorem 5, in this situation, the input to the
(n2 + 1)-th round function F is q′(x) = q0(x) ⊕ Kn2+1, let c∗ = C∗ ⊕ Kn2+1,
then q′(x) ⊕ c∗ = q0(x) ⊕ C∗. In other words, for all x ∈ F2b , there exists some
constant c∗, such that q′(x)⊕ c∗ ∈ Df . Thus we could get the following theorem:

Theorem 6. Let the input of n-cell VGF-NLFSR be (x, c1, . . . , cn−1), where ci

is constant, and the input of the (n2+1)-th round function F be q′(x), then there
exists some constant c∗ ∈ F2b , such that for any x ∈ F2b , q′(x)⊕ c∗ ∈ Df .

One should note that if Df = F2b , then both F (x) and F (x)⊕x are permutations
on F2b , which indicates that F (x) is an orthormorphic permutation [22]. Since
the number of all orthormorphic permutations is small, in general, for a randomly
chosen permutation F (x), f(x) = F (x) ⊕ x can be seen as a random function
(as the Davies-Meyer construction in hash function), thus Df � F2b . From now
on, we will call the above distinguisher a non-surjective distinguisher, since the
range of the function f is only a subset of F2b .

6.2 Description of the Non-surjective Attack

By using the non-surjective distinguisher, one can attack (n2 + n′)-round n-cell
VGF-NLFSR by Algorithm 1, where n′ > 1.

Algorithm 1. Non-surjective attack on n-cell VGF-NLFSR
Step 1 Compute and store Df .
Step 2 Given t plaintexts (xi, c1, . . . , cn−1), obtain the corresponding

(n2 + n′)-round ciphertexts, i = 1, . . . , t.
Step 3 Guess the last (n′ − 1) round-keys rk = (rk1, rk2, . . . , rkn′−1),

decrypt the ciphertext to get the input of the (n2 + 1)-round
function F , denoted by q′rk(xi).

Step 4 For all xi in Step 2, test whether there exists some constant c∗

satisfying q′rk(xi)⊕ c∗ ∈ Df . If not, the guessed round-keys rk must
be wrong.

Step 5 If necessary, repeat Step 2 ∼ Step 5 to further filter the wrong
round keys until only one left.

In order to estimate the complexity of the above attack, we need the following
two lemmas and their proofs can be found in Appendix A.

Lemma 1. Given A ⊆ F2b , |A| denotes the number of different elements in A.
For a randomly chosen set X ⊆ F2b(|X | ≤ |A|), let p be the probability that there
exists some constant c ∈ F2b , such that X ⊕ c = {x⊕ c|x ∈ X} ⊆ A, then

p ≤ 2b × |A|
2b

× |A| − 1
2b − 1

× . . .× |A| − (|X | − 1)
2b − (|X | − 1)

.
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Lemma 2. Let f(x) be a random function from Fq to Fq, Df = {f(x)|x ∈ Fq},
let ε = E(|Df |) and σ2 = V (|Df |) be the expectation and variance of |Df |,
respectively, then

(i) lim
q→∞

ε

q
= 1−

1
e
≈ 0.632,

(ii) lim
q→∞

σ2

q
=

e− 2
e2 ≈ 0.097.

From Lemma 1, for a randomly chosen X ⊆ F2b , if |X |  |A|, the upper bound
of p can be well approximated by 2b ×

(
|A|/2b

)|X|.
From Lemma 2, when q is large, the Chebyshev Inequality [27] indicates

Pr (||Df | − ε| ≤ lσ ) ≥ 1− 1
l2

.

If we choose q = 2b and l = 10, then for a randomly chosen f ,

Pr
(
0.63× 2b − 3× 2b/2 ≤ |Df | ≤ 0.63× 2b + 3× 2b/2

)
≥ 0.99.

Thus we can estimate with high probability that |Df | is less than 0.63 × 2b +
3× 2b/2. Moreover, when b is large, |Df | can be approximated by 0.63× 2b.

Now, the data, time and space complexity of the proposed non-surjective
attack can be analyzed as follows:

Data Complexity. Firstly, we note that when applying integral attack to n-cell
VGF-NLFSR, one must choose at least a structure of all possible (x, c1, . . . , cn−1),
where c′is are constants. While for the non-surjective attack, only a fraction of
them are needed.

Assume the number of chosen plaintexts as (x, c1, . . . , cn−1) is t, let T denote
the set of their corresponding ciphertexts, Trk denote the set of the input to the
(n2 + 1)-round F function from decrypting the ciphertexts in T by guessing the
last n′ − 1 round keys rk.

The crucial step in Algorithm 1 is to check whether there exists a constant
c∗ ∈ F2b such that Trk ⊕ c∗ ⊆ Df . Assume wrong key values can pass such test
with probability Perr, then from Lemma 1,

Perr ≤ (2(n′−1)b − 1)× 2b ×
(
|Df |

t

)
/

(
2b

t

)
� Pt,

thus in order to identify the right keys for the last n′ − 1 rounds, Perr must be
small enough. If b is large, and t  |Df |,

Pt ≈ 2n′b ×
(
|Df |/2b

)t ≈ 2n′b × 0.63t.

Let Pt = 2−λ, where the parameter λ is related to the success probability, and
can be deduced by experiments, then Perr ≤ Pt = 2−λ, which indicates that the
probability that wrong key values can pass the test in Step 4 is less than 2−λ.
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From 2n′b × 0.63t = 2−λ, we get t ≈ 3
2n′b + 3

2λ. Thus the data complexity of
the above non-surjective attack is O(b).

To sum up, for attacking (n2 + n′)-round n-cell VGF-NLFSR, the data com-
plexity is about 3

2n′b + 3
2λ.

Time Complexity. As explained before, Step 4 of Algorithm 1 needs to verify
whether there exists a constant c∗ ∈ F2b , s.t. Trk ⊕ c∗ ⊆ Df for each possible rk.
Assume for each possible c∗, the time complexity for testing whether Trk ⊕ c∗ ⊆
Df is equivalent to u encryptions, then the time complexity is about(

3
2
n′b +

3
2
λ

)
× (2(n′−1)b)× 0.63× 2b × u ≈ (n′b + λ)× 2n′b × u,

thus a good algorithm for testing whether one set is included in another is required.

Space Complexity. Since one must storeDf to apply the non-surjective attack,
the space complexity is about 0.63× 2b.

7 Experiments with the Proposed Non-surjective Attack

This section describes a 32-bit toy cipher based on 4-cell VGF-NLFSR, where
the round function is defined by F (x, k) = S(x⊕k) with S as the S-box of AES.
It is well known that the differential (linear hull) probability of the S-box of AES
is upper bounded by 2−6, thus the differential (linear hull) probability for five
rounds is upper bounded by (2−6)2 = 2−12. Now we can see that the differential
(linear) characteristic probability for 15 rounds is at most (2−12)3 = 236 ≤ 2−32,
that is to say such toy cipher with more than 15 rounds is practically secure
against DC and LC.

As an example, we use the method in Section 6 to mount a non-surjective
attack on the 18-round toy cipher. In this case, b = 8 and |Df | = 163 ≈ 0.63×28.
Table 2 lists our experimental results. For each λ = 2, 4, 6, 8, 10, tλ denotes the
number of chosen plaintexts and pλ denotes the success probability, where the
“success” means the adversary can uniquely recover the right 18-th round key.
For each chosen parameter λ, we do the non-surjective attack 1000 times, and
in each time the plaintext as well as the encryption key are randomly generated.
The success probabilities are 0.474, 0.758, 0.873, 0.965, 0.992.

One could also apply the integral attack to the 18-round toy cipher, however,
to get a high success probability, its data complexity is about 2× 28 = 29.

Table 2. Experiments with the non-surjective attack on the 18-round toy cipher

parameter chosen plaintexts success probability
λ tλ = 3b + 1.5λ pλ

2 27 0.474
4 30 0.758
6 33 0.873
8 36 0.965

10 39 0.992
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8 Conclusion

This paper presents several security analysis on GF-NLFSR. Although such
structure allows parallel computations for encryption and can even provide its
provable security against DC and LC, the structure itself reveals a very slow
diffusion rate, which could lead to several distinguishing attacks.

For n-cell GF-NLFSR, our cryptanalytic results show that there exists an n2-
round integral distinguisher, which could be extended to an (n2 + n− 2)-round
higher-order one. Based on this n2-round integral distinguisher, an (n2 +n− 2)-
round impossible differential is constructed. These results are significantly better
than the original ones and thus imply that the security of n-cell GF-NLFSR must
be carefully reevaluated.

Besides, a kind of non-surjective attack is proposed, which is different in
essence with the one introduced by Rijmen et al., since traditional non-surjective
attack is only applicable to Feistel ciphers with non-surjective (non-uniform)
round functions while ours can be applied to block ciphers with round functions
being bijective. To demonstrate this, we describe a variant structure of n-cell
GF-NLFSR, whose round function is defined by F (x ⊕K). The provable secu-
rity against DC and LC can also be provided for this variant structure, however,
by using the proposed non-surjective attack, an efficient key recovery attack with
very low data complexity could be mounted. Some experimental results are given
for this non-surjective attack on a toy cipher based on the S-box of AES.

It is interesting that whether this kind of non-surjective attack can be applied
to other block ciphers.

Acknowledgments. The authors wish to thank the anonymous reviewers of
ACISP 2010 for their valuable suggestions and comments.
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A Proofs of Lemma 1 and Lemma 2

1. Proof of Lemma 1

First note that the number of different sets chosen from F2b with |X | elements is( 2b

|X|
)
. Consider the subset A ⊆ F2b , the number of different sets chosen from A

with |X | elements is
(|A|
|X|

)
. Now for every fixed c ∈ F2b , the probability pc that

X ⊕ c ⊆ A is upper bound by
(|A|
|X|

)
/
( 2b

|X|
)
. Thus we have

p =
∑

c∈F2b

pc ≤ 2b×
(
|A|
|X |

)
/

(
2b

|X |

)
. �	

2. Proof of Lemma 2

Lemma 2 can be extended to a more general situation, where Fq can be replaced
by any set with n elements and we will prove this more general conclusion. Note
that the result of (i) can also be found in [24], however, by using their technique,
one could not get the result of (ii). So, we introduce a formal method and prove
these two results in a unified approach.

Given a set S, |S| = n, let f be a random function from S to S and Df =
{f(a)|a ∈ S} ⊆ S.

(i) By the definition of expectation,

ε =
∑

f

1
nn

× |Df | =
1
nn

×
∑

f

|Df |. (1)

From the “Principle of Inclusive and Exclusive” [25], we have

∑
f

|Df | =
n∑

t=1

t ·
(

n

t

)
·

t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n

=
n∑

t=1

t ·
(

n

t

)
·

t∑
u=1

(
t

u

)
· (−1)t−u · un (where u = t− i)
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=
n∑

u=1

un ·
n∑

t=u

t ·
(

n

t

)
·
(

t

u

)
· (−1)t−u

=
n∑

u=1

un ·
n−u∑
k=0

(k + u) ·
(

n

k + u

)
·
(

k + u

u

)
· (−1)k (where k = t− u)

=
n∑

u=1

un ·
n−u∑
k=0

(k + u) ·
(

n

u

)
·
(

n− u

k

)
· (−1)k

=
n∑

u=1

un ·
(

n

u

)
·

n−u∑
k=0

(k + u) ·
(

n− u

k

)
· (−1)k

� A + B, (2)

where

A =
n∑

u=1

un ·
(

n

u

)
·

n−u∑
k=0

k ·
(

n− u

k

)
· (−1)k

=
n−1∑
u=1

un ·
(

n

u

)
·

n−u∑
k=1

k ·
(

n− u

k

)
· (−1)k

=
n−1∑
u=1

un ·
(

n

u

)
·

n−u∑
k=1

(n− u) ·
(

n− u− 1
k − 1

)
· (−1)k

= −
n−1∑
u=1

un ·
(

n

u

)
·

n−u−1∑
k′=0

(n− u) ·
(

n− u− 1
k′

)
· (−1)k′

= −n · (n− 1)n,

and

B =
n∑

u=1

un+1 ·
(

n

u

)
·

n−u∑
k=0

(
n− u

k

)
· (−1)k = nn+1.

From (1) and (2), we get

ε =
A + B

nn
=

1
nn

×
(
nn+1 − n · (n− 1)n

)
= n− n · (1− 1/n)n.

Thus

lim
n→∞

ε

n
= lim

n→∞

(
1−

(
1− 1

n

)n)
= 1− 1

e
.

(ii) By the definition of variance,

σ2 =
∑

f

1
nn

× ( |Df | − ε )2 =
1
nn

×
∑

f

( |Df | − ε )2. (3)
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From the result of (i),∑
f

( |Df | − ε )2

=
n∑

t=1

(
t− n

(
1−

(
1− 1

n

)n))2

·
(

n

t

)
·

t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n

=
n∑

t=1

(
t2 − 2nt

(
1−

(
1− 1

n

)n)
+
(

1−
(

1− 1
n

)n)2

· n2

)

·
(

n

t

)
·

t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n

� A + B + C, (4)

where

A =
n∑

t=1

t2 ·
(

n

t

)
·

t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n,

B = −2n

(
1−

(
1− 1

n

)n)
·

n∑
t=1

t ·
(

n

t

)
·

t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n,

C =
(

1−
(

1− 1
n

)n)2

· n2 ·
n∑

t=1

·
(

n

t

)
·

t−1∑
i=0

(
t

t− i

)
· (−1)i · (t− i)n.

Using the same technique as in the proof of (i), after careful calculation,

A = nn+2 − 2n(n− 1)n+1 +
(

2(n− 2)n

(
n

2

)
− n(n− 1)n

)
,

B = −2n

(
1−

(
1− 1

n

)n)
· (nn+1 − n(n− 1)n),

C =
(

1−
(

1− 1
n

)n)2

· n2 · nn.

From (3) and (4), we get

σ2 =
A + B + C

nn
.

Thus

lim
n→∞

σ2

n
= lim

n→∞
A + B + C

nn+1 =
e− 2
e2 .

�	
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Abstract. We present a novel approach for preprocessing systems of
polynomial equations via graph partitioning. The variable-sharing graph
of a system of polynomial equations is defined. If such graph is discon-
nected, then the corresponding system of equations can be split into
smaller ones that can be solved individually. This can provide a tremen-
dous speed-up in computing the solution to the system, but is unlikely
to occur either randomly or in applications. However, by deleting certain
vertices on the graph, the variable-sharing graph could be disconnected
in a balanced fashion, and in turn the system of polynomial equations
would be separated into smaller systems of near-equal sizes. In graph the-
ory terms, this process is equivalent to finding balanced vertex partitions
with minimum-weight vertex separators. The techniques of finding these
vertex partitions are discussed, and experiments are performed to eval-
uate its practicality for general graphs and systems of polynomial equa-
tions. Applications of this approach in algebraic cryptanalysis on sym-
metric ciphers are presented: For the QUAD family of stream ciphers, we
show how a malicious party can manufacture conforming systems that
can be easily broken. For the stream ciphers Bivium and Trivium, we
achieve significant speedups in algebraic attacks against them, mainly
in a partial key guess scenario. In each of these cases, the systems of
polynomial equations involved are well-suited to our graph partitioning
method. These results may open a new avenue for evaluating the security
of symmetric ciphers against algebraic attacks.

1 Introduction

There has been a long history of the use of graph theory in solving systems of
equations. Graph partitioning techniques are applied to processes such as re-
ordering variables in matrices to reduce fill-in for sparse systems [19, Ch. 7] and
partitioning a finite element mesh across nodes in parallel computations [42].
These techniques primarily focus on linear systems over the real or complex
numbers. In this paper, we apply similar graph theory techniques to systems of
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multivariate polynomial equations, and develop methods of partitioning these
systems into ones of smaller sizes via their “variable-sharing” graphs. These
techniques are intended to work over any field, finite or infinite, but are particu-
larly suited to GF(2) for use in algebraic cryptanalysis of symmetric ciphers. In
most algebraic cryptanalysis, the symmetric ciphers are described by systems of
polynomial equations over GF(2) or its algebraic extensions. The graph theory
methods introduced in this paper can be used to improve the efficiency of solving
these systems of equations, which would translate to a reduction of the security
of these ciphers. This will be exemplified with the QUAD [9], Bivium [48] and
Trivium [20] stream ciphers.

Computing the solution to a system of multivariate polynomial equations is
an NP-hard problem [5, Ch. 3.9]. A variety of solution techniques have been de-
veloped for solving these polynomial systems over finite fields, such as lineariza-
tion and XL [18], Gröbner bases, and resultants [6, Ch. 12], as well as recent
ones such as SAT-solvers [7], Vielhaber’s AIDA [50], Raddum-Semaev method
[47], and the triangulation algorithm [35]. Over the real and complex numbers,
numerical techniques are also known, but require the field to be ordered and
complete—GF(2) is neither. The graph partitioning method introduced in this
paper could be a novel addition to the variety of methods available, principally
as a preprocessor.

From a multivariate polynomial system of equations, a variable-sharing graph
is constructed with a vertex for each variable in the system, and an edge between
two vertices if and only if those variables appear together in any equation in the
system. Clearly, if the graph is disconnected, the system can be split into two sep-
arate systems of smaller sizes, and they can be solved for individually. However,
even if the graph is connected, we show that it may be possible to disconnect the
graph by eliminating a few variables by, for example, guessing their values when
computing over a small finite field, and thereby splitting the remaining system.
This suggests a divide-and-conquer approach to solving systems of equations.
When the polynomial terms in the system of equations are very sparse, we show
that the system can usually be reduced to a set of smaller systems, whose solu-
tions can be computed individually in much less time. It should be noted that
for large finite fields, and infinite fields as well, the technique of resultants can
be used to achieve similar objectives [53].

In order for a partition of a system to be productive, the minimum number
of variables should be eliminated, and the two subsystems must be approxi-
mately equal in size. This ensures that the benefit of partitioning the system is
maximised. These conditions lead to the problem of finding a balanced vertex
partition with a minimum-weight vertex separator on its variable-sharing graph,
which is an NP-hard problem [31, 43]. Nevertheless, heuristic algorithms can
often find near-optimal partitions efficiently [32].

In this paper, we offer two cryptographic applications of vertex partitioning
arising from the algebraic cryptanalysis of stream ciphers, where both achieve
positive results. First, we describe a method whereby a manufacturer of a sparse
implementation of QUAD [9], a provably-secure infinite family of stream ciphers,
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could “poison” the polynomial system in the cipher, and thereby enable messages
transmitted with it to be read by the manufacturer. Second, we present an
algebraic cryptanalysis of Trivium [20], a profiled stream cipher in the eSTREAM
project, as well as its reduced versions Bivium-A and Bivium-B, and discuss the
implications of graph partitioning methods on solving the corresponding systems
of equations. Improvements to partial key guess attacks against Trivium and
Bivium are observed.

Section 2 introduces the necessary background in graph theory and graph
partitioning. Section 3 shows how a system of polynomial equations can be split
into ones of smaller sizes using graph partitioning methods. Section 4 provides
results for some partitioning experiments and analyses the feasibility of equation
solving via graph partitioning methods. Section 5 presents the applications of
graph partitioning methods on the algebraic cryptanalysis of QUAD, Bivium
and Trivium. Conclusions will be drawn in Section 6. In Appendix A, we discuss
the possibility for vertex connectivities of variable-sharing graphs becoming a
security criterion for symmetric ciphers.

2 Preliminaries

Let G = (V, E) be a graph with vertex set V and edge set E. Two vertices
vi, vj ∈ V are connected if there is a path from vi to vj through edges in E.
A disconnected graph is a graph where there exists at least one pair of vertices
that is not connected, or if the graph has only one vertex. A graph G1 = (V1, E1)
with vertex set V1 ⊆ V and edge set E1 ⊆ E is called a subgraph of G. Given
a graph G, subgraphs of G can be obtained by removing vertices and edges
from G. Let G = (V, E) be a graph with k vertices and l edges, such that
V = {v1, v2, . . . , vk−1, vk}, E = {(vi1 , vj1 ), (vi2 , vj2 ), . . . , (vil

, vjl
)}. Removing a

vertex vk from V forms a subgraph G1 = (V1, E1) with V1 = {v1, v2, . . . , vk−1}
and E1 = {(vi, vj) ∈ E | vk /∈ {vi, vj}}. We call G1 the subgraph of G induced
by the vertex set (V − {vk}).

Let G1 = (V1, E1) and G2 = (V2, E2) be two subgraphs of G. G1, G2 are
considered disjoint if no vertices in G1 are connected to vertices in G2. Clearly,
the condition V1 ∩ V2 = ∅ is necessary but insufficient.

2.1 Graph Connectivity

The goal of partitioning a graph is to make the graph disconnected by removing
some of its vertices or edges. The number of vertices or edges that needs to be
removed to disconnect a graph are its vertex- or edge-connectivities respectively.

Definition 2.1. The vertex connectivity κ(G) of a graph G is the minimum
number of vertices that must be removed to disconnect G.

Definition 2.2. The edge connectivity λ(G) of G is the minimum number of
edges that must be removed to disconnect G.
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Clearly, a disjoint graph has vertex connectivity zero. On the other extreme, a
complete graph Kn, where all n vertices are connected to each other, has vertex
connectivity (n − 1). The removal of all but one vertex from Kn results in a
graph consisting of a single vertex, which is considered to be disconnected.

2.2 Graph Partitioning

The process of removing vertices or edges to disconnect a graph is called ver-
tex partitioning or edge partitioning respectively. All non-empty graphs admit
trivial vertex and edge partitions, where all connections to a single vertex are
removed. This is obviously not useful for most applications. In this paper, we
only consider balanced partitions with minimum-weight separators, in which a
graph is separated into subgraphs of roughly equal sizes by removing as few
vertices or edges as possible. More specifically, our primary focus is on balanced
vertex partitions.

Definition 2.3. Let G = (V, E) be a graph. A vertex partition (V1, C, V2) of
G is a partition of V into mutually exclusive and collectively exhaustive sets of
vertices V1, C, V2, where V1, V2 are non-empty, and where no edges exist between
vertices in V1 and vertices in V2. The removal of C causes the subgraphs induced
by V1 and V2 to be disjoint, hence C is called the vertex separator.

For a balanced vertex partition, we require V1 and V2 to be of similar size. For
a minimum-weight separator, we also require that C be small. This is to ensure
that the vertex partition obtained is useful for applications.

Definition 2.4. Let G = (V, E) be a graph, and (V1, C, V2) be a vertex partition
of G with vertex separator C. If max(|V1|, |V2|) ≤ α|V |, then G is said to have
an α-vertex separator.

The problem of finding α-vertex separators is known to be NP-hard [31, 43].

Definition 2.5. Let G = (V, E) be a graph. If (V1, C, V2) is a vertex partition
of G, then define

β =
max(|V1|, |V2|)
|V1|+ |V2|

=
max(|V1|, |V2|)
|V | − |C| =

α|V |
|V | − |C|

to be the balance of the vertex partition. Note further if |C|  |V | then α ≈ β.

Suppose the balance of a vertex partition of G into (V1, C, V2) is β, then the
partition also satisfies max(|V1|, |V2|) = β(|V1| + |V2|) ≤ β|V |, and hence the G
has a β-vertex separator. Therefore, theorems that apply to α-vertex separators
would also apply to vertex partitions with balance β. See [43] for more details
of α-vertex separators. Several theorems governing the existence of α-vertex
separators have been shown in [3, 27, 38, 41].

Figure 1 presents examples of balanced and unbalanced partitions, and their
respective β values. The vertex separators C are circled, with the partitioned
vertices V1, V2 outside. The removal of the vertices in the separators disconnects
the graphs. For a balanced partition, β should be close to 1/2.
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unbalanced vertex
partition ( = 5/6)

balanced vertex
partition ( = 1/2)

original graph

Fig. 1. Balanced and Unbalanced Vertex Partitions

2.3 Partitioning Algorithms and Software

While balanced partitioning is an NP-hard problem, a variety of heuristic algo-
rithms have been found to be very efficient in finding near-optimal partitions.

One efficient scheme for balanced graph partitioning is called multilevel par-
titioning. Suppose a graph G0 is to be partitioned. Firstly, G0 “coarsened”
progressively into simpler graphs G1, G2, . . . , Gr by contracting adjacent ver-
tices. The process of choosing vertices for contraction is called matching. After
reaching a graph Gr with the desired level of simplicity, a partitioning is per-
formed. The result is then progressively refined back through the chain of graphs
Gr−1, Gr−2, . . . , G0. At each refining step, a contracted vertices are expanded
and partitioned. The output is then a partition of G0. Details of multilevel
partitioning can be found in [30, 32]. Examples of partitioning and refinement
algorithms include the ones by Kerighan-Lin [34] and Fiduccia-Mattheyses [25].

Balanced edge partitioning is widely used in scientific and engineering applica-
tions, such as electric circuit design [49], parallel matrix computations [37], and
finite element analysis [42]. Software packages are readily available for computing
balanced edge partitions using a variety of algorithms [8, 11, 26, 29, 44, 45, 51].
On the other hand, balanced vertex partitioning has fewer applications, one of
which being variable reordering in linear systems [19]. We are not aware of pub-
licly available software that could be used for directly computing balanced vertex
partitions with minimum-weight vertex separators.

This is also true for multilevel vertex-partitioning algorithms. Therefore, we
have chosen to compute vertex partitionings through the use of the multilevel
edge-partitioning software Metis [33] for our study. The Matlab interface Mesh-
part [28] to Metis is used to access the algorithms. It also contains a routine to
convert an edge partition found by Metis to a vertex partition. We have also
implemented an alternative greedy algorithm for this task. Both are used for
the experiments in Section 4 and for the algebraic cryptanalysis of Trivium in
Section 5.2.

Unless otherwise stated, from here on we will only consider the problem of
balanced vertex partitioning with minimum-weight vertex separators (sometimes
simply referred to as vertex partitioning or partitioning) and its applications to
solving systems of multivariate polynomial equations.
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3 Partitioning Polynomial Systems

In this section, our method for partitioning systems of multivariate polynomal
equations by finding balanced vertex partitions of their variable-sharing graphs
is described.

Definition 3.1. Let F be the polynomial system

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fm(x1, x2, . . . , xn) = 0

of m polynomial equations in the variables x1, x2, . . . , xn. The variable-sharing
graph G = (V, E) of F is obtained by creating a vertex vi ∈ V for each variable
xi, and creating an edge (vi, vj) ∈ E if two variables xi, xj appear together (with
non-zero coefficient) in any polynomial fk.

Example 3.1. Suppose we have the following quadratic system of equations over
GF(2), where the variables x1, x2, . . . , x5 are known to take values in GF(2).

x1x3 + x1 + x5 = 1
x2x4 + x4x5 = 0
x1x5 + x3x5 = 1

x2x5 + x2 + x4 = 0
x2 + x4x5 = 1

(1)

The corresponding variable-sharing graph G and a balanced vertex partition is
shown in Figure ??.

v4v3

v2v1

v5 v4v3

v2

v5

v1

V1 C V2G(V,E)

vertex
partition

Fig. 2. Variable-sharing graph of the quadratic system (1) and a vertex partition

The quadratic system can then be partitioned into two systems of equations
with the common variable x5 as follows.

x1x3 + x1 + x5 = 1 x2x4 + x4x5 = 0
x1x5 + x3x5 = 1 x2x5 + x2 + x4 = 0

x2 + x4x5 = 1
(2)
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Since x5 ∈ GF(2), we can substitute all possible values of x5 into (1) and compute
solutions to the reduced systems to give

x5 = 0 ⇒ no solution
x5 = 1 ⇒ (x1, x3) = (0, 1), (x2, x4) = (1, 0)

⇒ x = (0, 1, 1, 0, 1)

The solution obtained is the same as if we had directly computed the solution to
the full system of equations. However, the systems have been reduced to having
less than half the number of variables compared to the the original, at the cost
of applying guesses to one variable.

This method of guessing and solving will be used for the algebraic cryptanal-
ysis of the Trivium stream cipher in Section 5. For simplicity, from here on we
might use the terms for variables and vertices interchangeably to denote the vari-
ables in the polynomial systems of equations and their corresponding vertices in
the variable-sharing graphs, provided there are no ambiguities.

4 Graph Partitioning Experiments

To evaluate the practicality of partitioning large systems of equations, experi-
ments have been performed on random graphs of different sizes resembling typ-
ical variable-sharing graphs. These experiments were run on a Pentium M 1.4
GHz CPU with 1 GB of RAM using the Meshpart [28] Matlab interface to the
Metis [33] partitioning software.

Definition 4.1. Let G = (V, E) be a graph. The degree deg(v) of a vertex v ∈ V
is the number of edges e ∈ E incident upon (connecting to) v.

Definition 4.2. The density ρ(G) of a graph G = (V, E) is the ratio of the
number of edges |E| in G to the maximum possible number 1

2 |V |(|V | − 1) of
edges in G.

In each experiment, random graphs G = (V, E) are generated, each with pre-
scribed number of vertices |V |, number of edges |E|, and average degree d of its
vertices. Their densities ρ are also computed. For each graph, a vertex partition
is performed to give (V1, C, V2), where C is the vertex separator. The balance
measure β is then computed, and the time required is also noted. Some experi-
mental results are shown in Table 1.

It can be observed from Table 1 that the graph of β is likely to be correlated
with the average degree d of the graphs. Small vertex separators can be obtained
when the number of edges is a small factor of the number of vertices. At d = 16,
the value of β is near its upper bound of 1, which means that those partitions
are unlikely to be useful. Since the maximum number of edges for a graph of size
n is O(n2), the edge density must be smaller with a larger graph for practical
partitions. This is a reasonable assumption for polynomial systems, since certain
sparse systems have only a small number of variables in each equation, regardless
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Table 1. Vertex Partitioning Experiments

|V | |E| ρ d |C| |V1| |V2| β Time
64 64 0.0308 2 5 31 28 0.5254 61.26 ms
64 128 0.0615 4 15 30 19 0.6122 63.06 ms
64 256 0.1231 8 26 28 10 0.7368 80.95 ms
64 512 0.2462 16 32 3 29 0.9063 67.36 ms
128 128 0.0155 2 7 64 57 0.5289 64.80 ms
128 256 0.0310 4 28 60 40 0.6000 66.73 ms
128 512 0.0620 8 55 45 28 0.6164 63.27 ms
128 1024 0.1240 16 62 63 3 0.9545 83.51 ms
1024 1024 0.0020 2 51 508 465 0.5221 74.58 ms
1024 2048 0.0039 4 222 482 320 0.6010 90.05 ms
1024 4096 0.0078 8 418 355 251 0.5858 113.66 ms
1024 8192 0.0156 16 509 511 4 0.9922 168.55 ms
4096 4096 0.0005 2 183 2039 1874 0.5211 122.48 ms
4096 8192 0.0010 4 877 1903 1316 0.5912 175.20 ms
4096 16384 0.0020 8 1697 1539 860 0.6415 289.24 ms
4096 32768 0.0039 16 2037 2047 12 0.9942 548.75 ms

of the total number of variables in the system. This fact is true for the case of
Trivium in Section 5. One could say that the weight or length (i.e. the number
of terms) of the polynomials should be short for useful cuts to be guaranteed.

It is also noted that the time required to compute vertex partitions are quite
short for the practical graph sizes considered. Therefore, we can safely assume
that the time complexity of the partitioning algorithm is negligible compared to
that required to solve the partitioned equation systems, which in the worst case
is exponential in the number of variables and the maximum degree.

5 Applications to Algebraic Cryptanalysis

A bit-based stream cipher can be thought of as an internal state s ∈ GF(2)n

and two maps, g : GF(2)n → GF(2)n and f : GF(2)n → GF(2). At each clock
tick, st+1 = g(st), and so g can be called the state-update function. Also at
each clock tick f(st) = zt is outputted, and this is called the keystream. Given
plaintext bits p1, p2, . . ., the stream cipher encrypts them using the keystream
into ciphertext bits c1, c2, . . . via ct = pt+zt, with the addition being over GF(2).

At the start of an encryption, a key-initialisation phase would take place,
whereby a secret key k and a known initialisation vector IV are used to set s to
its secret initial state s0. The cipher then begins its keystream generation phase,
and outputs a series of keystream bits z1, z2, . . ., as explained above.

By the Universal Mapping Theorem [6, Th. 72], since f and g are maps
from finite sets to finite sets, we know that they can be written as polynomial
systems of equations over any field, but GF(2) is most useful to us. Since stream
ciphers are traditionally designed for implementation in digital circuits, where
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there are economic motivations to keep the gate-count low, f and g can often
be represented by very simple polynomial functions. Then, if both pt and ct

are known for enough timesteps, one can write a system of equations based on
zt = pt + ct using f and g. This forms the foundation of algebraic cryptanalysis.

To perform an algebraic cryptanalysis of the stream cipher, the cipher is first
described as a system of equations. Its variables usually correspond to the bits
in the key k or the initial state s0. If the variables are from k, solving the system
is called “key recovery”, and the cipher is immediately broken. If the variables
are from s0, solving the system is called “state recovery”, and the key could be
derived from the solution, whose difficulty depends on the specific cipher design.

Every attack on every cipher has its nuances, and so above description is nec-
essarily vague. For an overview of algebraic cryptanalysis, see [6]. For techniques
of algebraic cryptanalysis on specific types of ciphers, see [17, 16, 15, 2, 54]. Some
uses of graph theory for algebraic attacks can also be found in [48, 52]. In this
section, two applications of our equation partitioning to algebraic cryptanaly-
sis are presented. Firstly, we show a malicious use of the stream cipher QUAD
[9]. Then, we describe and perform an algebraic cryptanalysis to the stream
cipher Trivium [20] and its variants Bivium-A and Bivium-B [48]. We discuss
only the equations arising from the cipher, and refer the reader to the respective
references of these ciphers for their design and implementation details.

5.1 QUAD

The stream-cipher family QUAD is given in [9]. The security of QUAD is based
on the Multivariate Quadratic (MQ) problem. The heart of the cipher is a ran-
dom system of kn quadratic equations in n variables over a finite field GF(q).
Usually, we have q = 2, but implementations with q = 2s have also been dis-
cussed [55]. This system of equations is not secret, but publicly known, and there
are criteria for these equations, such as those relating to rank, which we omit
here. In a different context, QUAD has been analyzed in [55, 4], and [6, Ch. 5.2].

Equations of QUAD. The authors of QUAD recommend k = 2 and n ≥ 160,
so it is assumed that we have a randomly generated system of 2n = 320 equations
in n = 160 unknowns. The system is to be drawn uniformly from all those
possible, which is to say that the coefficients can be thought of as generated by
fair coins.

Each quadratic equation is a map GF(2)n → GF(2), so the first set of n
equations form a map GF(2)n → GF(2)n called f1, and the second set of n
equations also form a map of the same dimensions called f2. The internal state
is a vector s of 160 bits. The first 160 equations are evaluated at s, and the
resulting vector f1(st) = st+1 becomes the new state. The second 160 equations
are evaluated to become the output of that timestep zt = f2(st). The vector zt is
added to the next n bits of the plaintext pt over GF(2), and is transmitted as the
ciphertext ct = pt +zt. (Each bit is added independently, without carries.) There
is also an elaborate setup stage which maps the secret key and an initialization
vector to the initial state s0.
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Finding a pre-image under the maps f1, f2 i.e. finding si given si+1 and zi, is
equivalent to solving a quadratic system of 2n equations in n unknowns, and is
NP-hard [5, Ch. 3.9]. This is further complicated by the fact that the adversary
would not have si+1, but rather only zi + pi.

Given a known-plaintext scenario, where the attacker knows both the plain-
text p1, p2 . . . , pn and ciphertext c1, c2, . . . , cn, one can write the following system
of equations.

c1 + p1 = z1 = f2(s1)
c2 + p2 = z2 = f2(s2) = f2(f1(s1))

... =
...

ct + pt = zt = f2(st) = f2(f1(f1(f1(· · · f1(︸ ︷︷ ︸
t−1 times

s1) · · · ))))

The interesting fact here is that f2(f1(f1(· · · f1(s1) · · · )))) and higher iterates
might be quite dense even if f1 is sparse. The authors of QUAD have excellent
security arguments when the polynomial system is generated by fair coins. In this
case, the variable-sharing graph of the cipher will have density close to that of a
complete graph, and our graph partition method will have little use. However, it
will have on average 6440.5 monomials per equation or roughly 2 million in the sys-
tem, which would require a large gate count or would be slow in software. Thus, in
their conference presentation, the authors of QUAD mention that a slightly sparse
f might still be secure against algebraic attacks, because of the repeated iterations
and the general difficulty of the MQ problem. Nevertheless, in this case, if a sparse
system can be chosen such that it contains a small balanced vertex separator, then
the cipher can be made insecure by a malicious attacker as follows.

Poisoned Equations and QUAD. One could imagine the following scenario,
which is inspired by Jacques Patarin’s system “Oil and Vinegar” [36]. A malicious
manufacturer does not generate the system at random, but rather creates a
system that is sparse and has vertex connectivity of 20, for some vertex partition
with β ≈ 0.6. Our experiments in Section 4 show that this is a feasible partition.
The malicious manufacturer would claim that the system is sparse for efficiency
reasons and it might have a considerably faster encryption throughput than a
QUAD system with quadratic equations generated by fair coins.

Some separator of 20 vertices divides the variable sharing graph into roughly
56 and 84 vertices. This means that an attacker would need only to know the
plaintext and ciphertext of one 160-bit sequence, and solve the equation

f2(f1(f1(· · · f1(f1(︸ ︷︷ ︸
i−1 times

s1)) · · · ))) = pt + ct (3)

For any guess of the key, this would be solving 56 equations in 56 unknowns
and 84 equations in 84 unknowns. Such a problem is certainly trivial for a SAT-
solver, as shown in [7], [5, Ch. 3] and [6, Ch. 7]. Only 220 such systems would
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need to be solved, and with a massive parallel network, such as BOINC [1], this
would be feasible [12], although experiments would be required for confirmation.

Remedy to Poisoned Systems for QUAD. While finding a balanced vertex
partition of a graph G is NP-hard, calculating the vertex connectivity κ(G) is
easier. If κ(G) > 80, for example, then there is no vertex partition, balanced or
otherwise, with fewer than 80 vertices in the vertex separator. Then, by calcu-
lating κ(G), a manufacturer of QUAD could prove that they are not poisoning
the quadratic system. There are also techniques to generate functions with veri-
fiable randomness [14], which could be used to construct polynomial systems of
equations for QUAD, such that they are provably not poisoned.

5.2 Trivium

Trivium [20] is a bit-based stream cipher in the eSTREAM project portfolio for
hardware implementation with an 80-bit key, 80-bit initialization vector, and a
288-bit internal state. As at the end of the eSTREAM project, after three phases
of expert and community reviews, no feasible attacks faster than an exhaustive
key search on the full implementation of Trivium were found. However, Trivium
without key initialisation, as well as its reduced versions Bivium-A and Bivium-
B with a 177-bit internal state, admit attacks faster than exhaustive key search.
Cryptanalytic results on Trivium and Bivium have been presented in [10, 21, 22,
23, 39, 40, 46, 50].

Equation Construction. The equations governing keystream generation from
the initial state s0 can be found in [20] for Trivium and [48] for Bivium. In
the algebraic cryptanalysis presented in this paper, we do not consider the ini-
tialisation phase from the key k and initialisation vector IV , and hence we are
performing state recovery of the cipher.

Trivium can be described as a system of 288 multivariate polynomial equations
in 288 variables, but we found that this is too dense for partitioning to be useful.
Instead, we use the system of quadratic equations presented in [48], which con-
tains more variables, but is very sparse. The quadratic system of Trivium consists
of 954 sparse quadratic equations in 954 variables, and observed keystream from
288 clocks. Similarly, the polynomial system of Bivium-A and Bivium-B consists
of 399 sparse quadratic equations in 399 variables, and observed keystream from
177 clocks. We attempt to solve these equations via partitioning.

Equation Partitioning. The sparse quadratic equations for Trivium and
Bivium are constructed as per [48], and their variable-sharing graphs are then
computed. Figure 3 shows the adjacency matrix for the variable-sharing graph
of Trivium. The sparsity of this matrix appears promising for a reasonable par-
tition. Graphs for Bivium are of similar sparsity.

Partitioning these variable-sharing graphs G = (V, E) into vertex sets V1, V2
and vertex separator C with [33] as in Section 4 gives the results shown in
Table 2. From these results, it seems that both of the Bivium ciphers admit very
balanced partitions, whereas Trivium did not. Nevertheless, using our alternative
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Fig. 3. Graph Adjacency Matrix of Trivium Equations

Table 2. Partitioning Equations of Bivium-A, Bivium-B and Trivium

State Number of
Cipher Size Variables |C| |V1| |V2| β

Bivium-A 177 399 96 156 147 0.5149
Bivium-B 177 399 14 128 127 0.5020
Trivium 288 954 288 476 190 0.7147

greedy algorithm for converting edge partitions from the Metis software to vertex
partitions, we were able to find a balanced partition for Trivium with |C| = 295
and β ≈ 0.5, at the cost of having a larger vertex separator.

The sizes of the vertex separators C are the number of variables that must
be eliminated to separate the systems into two. In algebraic attacks, this corre-
sponds to the number of variables whose values are to be discovered or guessed
at a complexity of 2|C|. The process of guessing certain bits in order to find a
solution is called partial key guessing. If the guessed bits are correct, then solving
the remaining system would lead to the solution.

For Trivium, the separator size is at least the internal state size, so a partition
on the equation system is not useful, as guessing the variables in the separator is
as costly as an exhaustive search on the initial state. For Bivium and Bivium-A,
the separator sizes are less than the internal state size, but larger than the key
size of 80-bits. This means that the time complexity of partial key guessing on
all bits of the separators would be higher than that of a brute-force search on
the key, but lower than a brute-force search on the initial state.

Partial Key Guessing and Perforated Systems. However, we can attempt
to guess fewer bits than the size of the separator C. The remaining system would
not be separated, but it can still be solved. Since it is close to being partitioned,
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Table 3. Partial Key Guessing on Trivium and Bivium

Cipher All Guesses in |C| n m q Time Memory
Bivium-A No 24 422 193 26 s 42 MB
Bivium-A No 20 421 200 195 s 234 MB
Bivium-A No 18 417 203 2558 s 843 MB
Bivium-A Yes 18 417 195 80 s 127 MB
Bivium-A Yes 16 415 201 1101 s 751 MB
Bivium-A Yes 14 413 202 2023 s 1200 MB
Bivium-B No 80 479 143 392 s 1044 MB
Bivium-B No 78 477 146 740 s 1044 MB
Bivium-B No 76 475 141 1213 s 1044 MB
Bivium-B Yes 70 469 132 12 s 62 MB
Bivium-B Yes 66 465 136 623 s 546 MB
Bivium-B Yes 62 461 141 3066 s 1569 MB
Trivium No 280 1333 329 13 s 80 MB
Trivium No 272 1224 343 155 s 554 MB
Trivium No 264 1217 344 594 s 1569 MB
Trivium Yes 178 1130 499 18 s 596 MB
Trivium Yes 176 1127 499 4511 s 1875 MB
Trivium Yes 174 1126 501 10543 s 3150 MB

we will call such systems “perforated”. We have discovered by experiments that
partial key guesses on subsets of bits in C provide significant advantages over those
on random bits, in that the reduced polynomials systems are much easier to solve.
The experiments were performed using Magma 2.12 [13] with its implementation
of the Gröbner basis algorithm F4 [24] for solving the reduced polynomial systems.
The results are shown in Table 3, where n is the number of bits guessed, m is the
number of equations resulting from the guess, with q of them being quadratic.
Correct guesses are always used to reduce the polynomial systems, which means
that the time and memory use presented are for solving the entire system arriving
at a unique solution. All values are averaged over 10 individual runs.

The experimental results show that the time required for partial key guess-
ing on n bits is reduced significantly if those bits are taken from the separator.
This means that, by finding partitions to the system of equations, we have re-
duced the resistance of these ciphers to algebraic cryptanalysis, since a feasible
partial-key-guess attack can potentially be launched on fewer bits with this ex-
tra information. For example, with Bivium-B, the time to compute a solution
by guessing 78 bits randomly is roughly equivalent to that by guessing 66 bits in
the separator. Hence, the time complexity for an attack on Bivium-B is reduced
from 278TB to 266TB with the use of the separator, where TB denotes the time
complexity required to compute a solution to a reduced system of Bivium-B.
For Trivium, the improvement is even more pronunced. The time complexity
could be reduced from 2280TC to 2178TC , which TC denotes the time complexity
required to compute a solution to a reduced system of Trivium.
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In an actual algebraic attack, many of the guesses will result in inconsistent
equations with no solutions, which can be checked and discarded easily. This
means that the time required to process a guess is at most TB or TC . A full
attack attempt was launched on Bivium-A with a partial key guess on 20 bits
in its separator. About 200, 000 guesses of out the possible 220 were made, with
each guess taking on average about 0.15 seconds to process. This is much faster
than the 45 seconds required from the experimental results to process a correct
guess to completion.

Although the time complexity for the algebraic attack on Trivium is signifi-
cantly reduced through our partitioning method, it is still much higher than that
of exhaustive key search, which is 280. On the other hand, this method applied on
Bivium-A and Bivium-B may be faster than exhaustive key search, depending on
the time complexity of solving the reduced equation systems, which varies with
the equation solving technique employed. Experiments with different techniques
would be needed for a sound conclusion to be drawn.

A Bit-Leakage Attack. There is another scenario whereby the graph parti-
tioning would provide an advantage to algebraic cryptanalysis. Suppose by some
means, accidental or deliberate, some bits of the internal state of a cipher could
be leaked to an attacker. This would occur in a side-channel attack setting. If
the attacker could control which bits are leaked, then the best choices would be
those variables in the separator. If all bits in the separator are leaked, then the
equation system is immediately split into two, and the time complexity of solving
for the remaining bits is significantly reduced. If only some bits in the separator
are leaked, we have shown in the earlier experiments that this leads to faster
attacks than if an equal amount of random bits are leaked. This also means that
if bits can be leaked from the separator, fewer of them would be needed before
the system of equations can be solved in a reasonable time, compared to the case
where bits are leaked randomly.

6 Conclusions

In this paper, the concept of a variable-sharing graph of a system of polynomial
equations was defined. It has been shown that this concept can be used to break
systems of polynomial equations into pieces, which can be solved separately,
provided that the graph has a vertex partition satisfying various requirements:
namely that the vertex separator should be small, and the partition should be
balanced. We also presented methods for finding the partition, and methods for
using the partition to solve polynomial systems of equations over GF(2).It has
been shown that balanced vertex partitions are feasible to obtain for some sparse
systems of polynomial equations. Experiments on random graphs of reasonable
size and sparsity, resembling variable-sharing graphs of equation systems, have
been performed.

The practicality of this partitioning technique has been demonstrated in the
algebraic cryptanalysis of the stream cipher Trivium and its reduced versions,
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where we have found balanced partitions of useful sizes. These partitions pro-
vide information for launching more effective algebraic attacks with partial key
guessing, and improves the attack time by at least a few orders of magnitude.
Furthermore, we show how the partitioning technique can be used to poison
the provably secure stream cipher QUAD, so that a malicious manufacturer can
recover the keystream much more efficiently.

As discussed earlier, this paper has provided a novel technique for preprocess-
ing large sparse systems of equations, which could be used together with popular
techniques such as Gröbner basis methods to significantly reduce the time for
computing solutions to these systems. It has also been shown that this technique
provides improvements to algebraic cryptanalysis, and further research into this
area is warranted, since there may be security implications for other ciphers that
are susceptible to this technique.
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A New Criterion for Symmetric Ciphers?

In this paper, we have shown that our graph partitioning method for solving
equation systems describing ciphers works particularly well when these systems
are sparse. This, in turn, means that the vertex connectivities of their variable-
sharing graphs are low. Therefore, for maximum protection against an algebraic
attack of this kind, a cipher should be designed such that its variable-sharing
graph is close to being a complete graph, and hence does not admit any useful
balanced vertex partition. The vertex connectivity could become the measure
of this criterion, since it can be computed efficiently. This measure can be used
to predict the usefulness of the graph partitioning method, which is primarily
determined by the size of the vertex separator and the balance of the partition.
Furthermore, the vertex connectivity can be computed efficiently. However, care
must be taken to account for the effects of variable relabelling techniques, which
would alter the variable-sharing graph and hence its vertex connectivity. Further
research would be required to refine this possible new criterion for use in practice.
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Abstract. Matsui’s Algorithms 1 and 2 with multiple approximations
have been studied over 16 years. In CRYPTO’04, Biryukov et al. pro-
posed a formal framework based on m statistically independent approx-
imations. Started by Hermelin et al. in ACISP’08, a different approach
was taken by studying m-dimensional combined approximations from
m base approximations. Known as multidimensional linear cryptanaly-
sis, the requirement for statistical independence is relaxed. In this paper
we study the multidimensional Alg. 1 of Hermelin et al.. We derive the
formula for N , the number of samples required for the attack and we
improve the algorithm by reducing time complexity of the distillation
phase from 2mN to 2m2m + mN , and that of the analysis phase from
22m to 3m2m. We apply the results on 4- and 9-round Serpent and show
that Hermelin et al. actually provided a formal model for the hypothesis
of Biryukov et al. in practice, and this model is now much more practical
with our improvements.

1 Introduction

Linear cryptanalysis [12] was formally introduced in 1993 by Matsui, who sug-
gested 2 algorithms to exploit linear approximations of block ciphers. Consider
a block cipher Ek(·) with a linear approximation: g = uX ⊕ vY ⊕ cK and
Pr(g = 0) = 1/2 + ε, where u, v, and c are the selection patterns for the plain-
text, ciphertext and the extended key, respectively, X is the plaintext and Y
is ciphertext, K is extended key of secret key k, and ε is the bias of linear
approximation.

Algorithm 1 in [12] is a known-plaintext attack and it requires a pool of
sufficiently many random plaintext-ciphertext pairs. If successful, the parity cK
can be recovered and N – the number of random samples as (X, Y ) pairs needed
– is proportional to c/ε2, where c is a constant that depends on the success
probability. In 1994 Matsui provided the first experimental cryptanalysis of DES
[13], using two linear approximations derived from the best 14-round expression.

From then researchers started the quest for better attacks by using multi-
ple linear approximations to improve the basic form of Alg. 1 and 2 in [12].
In the same year, Kaliski and Robshaw [11] combined m linear approximations
g1, ..., gm, with biases of ε1, . . . , εm respectively. The linear approximations are
required to have the same selection pattern c for the extended key. N can achieve
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an m-fold reduction while keeping the same success rate, with N proportional
to 1/

∑m
i=1 ε2i . Due to the restriction on the key mask, it recovers at most 1-bit

parity – c ·K. Intuitively speaking, asking 1 parity bit from m approximations
simultaneously would require much fewer samples than from a single approxi-
mation, under the same success rate.

In 2004 Biryukov et al. [2] show a statistical framework for using multiple
approximations in both Alg 1 and Alg 2. In their generalization to Alg. 1, m
statistically independent linear approximation g1, . . . , gm are used, with biases
of ε1, . . . , εm respectively. The attack is able to recover at most m parity bits if
successful, with N proportional to 1/

∑m
i=1 ε2i . In practice, m′ linearly dependent

masks are used with m′ > m. It is expected that the performance in this case is
strictly better than that of m independent approximations, although no explicit
estimation of N was given. They confirmed the reduction in data complexity by
using m′ = 86 approximations for 8-round DES, the 86 approximations only give
10 linearly independent key masks. In 2007, this reduction in N by using multiple
approximations is further confirmed by experiments of Collard et al. [7], with
m′ = 64 for 4-round Serpent from 10 linearly independent text masks. Collard et
al. also observed that the gain increases 8 times faster with 64 approximations
than with 10 approximations. Both [2] and [7] did not analyze why such an
advantage is present. Some intuitive guesses were given by Collard et al. [7],
referring to linear hulls, error correcting codes, etc. They also noticed that in
practice, m and m′ cannot be too large due to computation limits.

Significant reduction in data complexity can be achieved by the methods in
[2]. However, in practice, it is generally not easy to verify whether the m ap-
proximations are statistically independent. Instead, linear independence is used
as a criterion for the m approximations, in both [2] and [7]. In the meantime, it
is also helpful to doubt whether there is a better attack if the m approximations
are linearly independent in text masks but statistically correlated, as shown by
the experimental results in [2] and [7]. Notably, these experiments work with
linearly dependent text masks.

Hermelin et al. [10] introduced a multidimensional framework, in which Mat-
sui’s Alg. 1 is generalized to m-dimensions to exploit correlations between the m
approximations, to achieve a higher capacity. Experiments on 4-round Serpent
have shown that this method reduces N compared with a similar attack in [7]. In
this framework, the requirement for statistical independence of approximations
is relieved. Instead, the approximations only need to have linearly independent
text masks. This resembles the experiment scenarios in [2] and [7]. In fact, in
[10] it is shown clearly that the statistical independence assumption of [2] does
not hold.

In [10], the formula for N is derived as the amount of data needed to tackle the
|Z|-ary hypothesis testing problem, whereZ is the set of key classes. It does not re-
flect how it depends on the approximations g1, · · · , gm and it is not efficiently com-
putable. The reduction in N compared with [2] was observed empirically, rather
than theoretically. Our first contribution is the provision with proof of a much sim-
pler theoretical formula for the number of samples required, to complement this
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theoretical framework in [10]. This formula gives us insights on how much can be
achieved with multidimensional linear cryptanalysis. We can now easily estimate
N given g1, . . . , gm, hence the attack complexity. The simplicity of the formula
eases cryptanalysis greatly since to compute N with the original formula in [10]
(for Nkey) requires a lot of computation when m is large.

A major obstacle for the method in [10] to be useful is that the number of ap-
proximations m is much limited due to complexity bottlenecks in the distillation
phase (2mN) and the analysis phase (22m) of the online stage. This limitation
hinders the application of multidimensional Alg. 1 in practice when more ap-
proximations have to be used. Our second contribution is that we present a
method (Method-A) for the distillation phase to speed up the computation for
distributions to 2m2m + mN , using ideas from [6], and we develop Method-B
to the analysis phase which reduces the complexity to 3m2m. We arrive at an
improved algorithm for the multidimensional generalization of Matsui’s Alg. 1
in [10], better than previous generalizations to a number of degrees. Most im-
portantly, the algorithm is practical, with strong support from theoretical work
in [10]. We show applications to 4- and 9-round Serpent as examples.

The paper is organized as follows. Section 2 contains notations and some basic
notions. Section 3 is about the statistical model and algorithm in [10]. We show
briefly how the distribution of an m-dimensional vectorial Boolean function g
can be constructed from m given approximations g1, . . . , gm as Boolean func-
tions. Section 4 contains our contributions. After the proof for N , we analyze
the algorithm of [10] step-wise, to introduce our improvements, followed by the
descriptions for each improvement. Section 5 describes the improved algorithm
in detail. Section 6 gives the application results on Serpent and comparisons with
previous cryptanalysis results [1] and [4]. In Section 7, we conclude and discuss
the implication of our work.

2 Notations and Background

We follow the notations used in [10]. Denote the space of m-dimensional bi-
nary vectors by Vm or Vm := GF (2)m. The inner product of 2 vectors a =
(a1, . . . , am), b = (b1, . . . , bm), a, b ∈ Vm is ab =

⊕m
i=1 aibi.

The function f : Vm → V1 is called a Boolean function and f : Vn → Vm, f =
(f1, . . . , fm) is called a vectorial Boolean function, where each fi is a Boolean
function for all i = 1, · · · , m.

Let X be a random variable (r.v.) in Vm. Let pη = Pr(X = η), with η ∈
Vm. Then p = (p0, p1, . . . , p2m−1) is the probability distribution (p.d) of r.v.
X . If we associate with a vectorial Boolean function f : Vn → Vm an r.v.
Y := f(X), where X is uniformly distributed in Vm, then the p.d. of Y is
p(f) := (p0(f), . . . , p2m−1(f)) where pη(f) = Pr(f(X) = η), for all η ∈ Vm. Two
Boolean functions f and g are called statistically independent if their associated
r.v.’s f(X) and g(Y ) are statistically independent, with X , Y uniform in Vn.
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The correlation between a binary r.v. X and 0 is ρ = Pr(X = 0)− Pr(X =
1) = 2ε, where ε is the bias of the r.v. X . Let g : Vm → V1 be a Boolean function.
Its correlation with 0 is defined as

ρ = 2−m(#{η ∈ Vm|g(η) = 0})−#{η ∈ Vm|g(η) = 1}) = 2Pr(g(X) = 0)− 1,

where X is uniformly distributed in Vm.

Definition 1. Let p = (p0, . . . , pM ) and q = (q0, . . . , qM ) be two p.d.’s. Then
their (mutual) capacity is

C(p||q) =
M∑

η=0

(pη − qη)2

qη
. (1)

Definition 2. The relative entropy or the Kullback-Leibler (KL) distance be-
tween two distributions p = (p0, . . . , pM ) and q = (q0, . . . , qM ) is defined as

D(q||p) =
M∑

η=0

qη log
qη

pη
.

In [6],Collard et al.presented the following theorems concerning circulantmatrices.

Theorem 1. A circulant S of level k and type (m, n, o, . . . , r) is diagonalizable
by the unitary matrix F = Fm ⊗ Fn ⊗ Fo ⊗ · · · ⊗ Fr

S = F∗diag(λ)F,

where λ is the vector of eigenvalues of S, the symbol ⊗ is the Kronecker product
and Fn is the Fourier matrix of size n× n defined by:

Fn(i, j) =
1√
n

ωij , (0 ≤ i, j ≤ n− 1)

with
ω = e

2π
√−1
n .

Theorem 2. The eigenvalues vector λ of a circulant matrix S of level k and
type (m, n, o, . . . , r) can be computed with the following matrix-vector product:

λ = FS(:, 1)
√

mno . . . r

where S(:, 1) means we take the first column of S.

We recall important results on the Fast Fourier Transform [8], Fast Walsh-
Hadamard Transform [14] and Parseval’s theorem. Given an M -dimensional
vector E = (E1, . . . , EM ) and a matrix FM×M , we have M -dimensional vector

D = FET ,
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where ET is the transpose of E and F is a Hadamard matrix if F(i, j) = (−1)ij ,
for all i, j = 0, · · · , M − 1. If matrix F is either Fourier or Hadamard, vector
D can be computed with complexity O(M log M) instead of O(M2) by Fast
Fourier Transform or Fast Walsh-Hadamard Transform, respectively. We recall
basic facts due to Parseval:

Let f : Vm → R where R is the real field, and a ∈ Vm. We define f1(a) =∑
b∈Vm

(−1)abf(b), A =
∑

a∈Vm
f2(a) and A1 =

∑
a∈Vm

f2
1 (a). Then

2mA = A1

or
2m(

∑
a∈Vm

f2(a)) =
∑

a∈Vm

f2
1 (a). (2)

3 Statistical Model and Algorithm of Hermelin et al.

3.1 Constructing Multidimensional Probability Distribution

Let f : Vl → Vn be a vectorial Boolean function and binary vectors wi ∈ Vn, ui ∈
Vl, i = 1, . . . , m be selection patterns such that pairs of input and output masks
(ui, wi) are linearly independent. Define the functions gi as

gi(η) = wif(η)⊕ uiη, ∀η ∈ Vl, i = 1, · · · , m

and gi has correlation ρi, i = 1, · · · , m. Then ρ1, . . . , ρm are called the base-
correlations, and g1, . . . , gm are the base approximations of f . Let g=(g1, . . . , gm)
be an m-dimensional vectorial Boolean function, and matrices W = (w1, . . . , wm)
and U = (u1, . . . , um) contain the output and input masks for each of the gi,
then we find the p.d. p = (p0, . . . , p2m−1) of

g(η) = Wf(η)⊕ Uη.

Lemma 1. [10] Let g = (g1, . . . , gm) : Vl → Vm be a vectorial Boolean function
and p = (p0, . . . , p2m−1) its p.d. Then

2lpη = 2−m
∑

a∈Vm

∑
b∈Vl

(−1)a(g(b)⊕η).

Define

ρ(a) = 2−l
∑
b∈Vl

(−1)ag(b) = Pr(ag(X) = 0)− Pr(ag(X) = 1),

where X is an r.v. uniformly distributed in Vl.

Corollary 1. Let g : Vn → Vm be a Boolean function with p.d. p and correla-
tions ρ(a) of the combined approximations ag, for all a ∈ Vm. Then for η ∈ Vm,

pη = 2−m
∑

a∈Vm

(−1)aηρ(a). (3)
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3.2 Multidimensional Generalization of Matsui’s Alg. 1

We describe the core idea of the multidimensional algorithm 1 in [10]. Let there
be m linear approximations gi := uiX ⊕ viY ⊕ ciK, (i = 1, · · · , m). Their
corresponding correlations are

ρi := 2Pr(uiX ⊕ viY ⊕ ciK = 0)− 1

where the masks ci for the extended key K are linearly independent. In addition,
the pairs of input and output masks (ui, vi) are linearly independent.

Define g := (g1, . . . , gm) with p.d. p, and h := (h1, . . . , hm), where hi =
uiX ⊕ viY . We call h an experimental function, as we use two of its probability
distributions, namely, the theoretical p.d. q and the empirical p.d. q̂. In the
attack, q is approximated by q̂, which is computed from N samples. Let wi =
ciK, i = 1, · · · , m be the parity bits of the extended key K. As the ci’s are
linearly independent, w = (w1, . . . , wm) defines a key class of K. Thus we have

g = h⊕ w.

Hence, the p.d. q of experimental function h is a permutation of p. Since {ci}
are linearly independent, with the 2m possible parity vectors w, the key space
K can be classified into 2m classes. Let w∗ be the correct key class, as pw∗

is
the permutation of p corresponding to w∗, we have q = pw∗

. By [3], given w, the
relationship between pw and p is

pw
η =

∑
a∈Vm

(−1)a(η⊕w)ρ(a) = pη⊕w, ∀η ∈ Vm. (4)

The KL distance is then used to determine the correct key class w∗, by con-
structing a hypothesis testing problem of finding the closest distribution pw with
q̂ among the 2m possibilities of w. In [10] the following theorem is described.

Theorem 3. Let us have an |Z|-ary hypothesis problem, with |Z| hypotheses
Hw stating that the data originates from pw, where w ∈ Z corresponds to the
key. The hypothesis for which the Kullblack-Leibler distance D(q̂||pw) is smallest
is selected. Given some success probability Psc, the lower bound N for the amount
of data required to give the smallest value of the statistic when the correct key is
used, is given by

N ≈ 4 log2 |Z|
minw 	=0C(p0, pw)

. (5)

Now we analyze the multidimensional algorithm 1 step by step.

Algorithm of Hermelin et al. [10]

Input of offline stage: m linear approximations gi, i = 1, · · · , m with correlation
ρi and p, the p.d. of g.
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Offline: Compute N based on (5) and p.
Input of online stage: N pairs of (X, Y ), with N computed in offline stage.
Online:

1 Distillation phase: Compute empirical p.d. q̂ of h using 2m counters.

2 Analysis phase:
– Construct matrix T2m×2m

, with cell T(w, η) = log( q̂η

pw
η

), for all w, η ∈ Vm.
– Compute D(q̂||pw), for all w ∈ Vm,

D = Tq̂T = (D(q̂||p0), . . . , D(q̂||p2m−1)). (6)

3 Sorting phase: Sort the list of w with D(q̂||pw) in ascending order.
4 Searching phase: Choose the correct key class as the first element in the
sorted list.

Note: in Step 2 the matrix T does not need to be stored. Storing a single row
is sufficient. Other rows can be obtained as (4) by permuting this row when it’s
required for computation.

4 The Improvements

4.1 A Formula for N , the Number of Samples Required

Given g = (g1, . . . , gm) and ρ(a), for all a ∈ Vm, by (5), the capacity of the attack
of [10] is minw 	=0 C(p0||pw). Let p = p0 and q = pw, we derive the following
lemma. The proof is given in Appendix A.

Lemma 2.
C(p||q) ≥ 2

∑
∀a∈Vm\{0}

ρ2(a).

Combining with (5) we have the following theorem.

Theorem 4. The estimation for N in the attack of [10] with m linear approx-
imations gi, (i = 1, . . . , m), where the {ci} are linearly independent and (ui, vi)
are linearly independent, is given by

N ≈ m

2
∑

∀a∈Vm\{0} ε2(a)
. (7)

With the new formula for N , we can now compare the multidimensional Alg.
1 with previous attacks on their data complexities, as shown in Table 1. The
last row contains our formula for N . We can see that the framework provided
by Hermelin et al. in [10] is able to exploit all the combined approximations
systematically, as compared to Biryukov et al. in [2].
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Table 1. Comparisons of data complexities with different attack frameworks

N Framework Comments
1/ε2 [12] Matsui

1/
∑m

i=1 ε2i [11] Kaliski and Robshaw
1/
∑m

i=1 ε2i [2] Biryukov et al.

m/2
∑

a �=0 ε2(a) [10] Hermelin et al. See (7)

4.2 Analysis of the Multidimensional Alg. 1 in [10]

We analyze the multidimensional Alg. 1 of Hermelin et al. step by step and
introduce our improvements.

Identifying the Bottleneck – Complexity Analysis. Offline: An estima-
tion of N can be computed from (5), which is slow – to the best of our knowledge,
no obvious algorithm is much faster than 3m2m steps.

Online:
1 Distillation Phase: Using 2m counters to compute q̂ from N samples. The
complexity is 2mN .
2 Analysis Phase: Computing D has a time complexity of O(22m).

If we increase m, the number of base approximations g1, . . . , gm, we may expect
N to decrease [10], but the complexities in the distillation and the analysis phases
suffer from exponential increase. The actual number of approximations that can
be used is hence limited by the computation resources allowed. It is a trade-off.

Improving the Bottleneck. To compute the KL distance between a p.d. q̂
and pw, we observe that after expanding D(q̂||pw) =

∑
η∈Vm

q̂η log(q̂η/pw
η ) =∑

η∈Vm
q̂η log q̂η −

∑
η∈Vm

q̂η log pw
η , the term

∑
η∈Vm

q̂η log q̂η is a constant and
hence does not affect the ranking of key classes. We can define D̄(q̂||pw) =∑

η∈Vm
q̂η log pw

η and use D̄(·||·) to rank the key class candidates. The list of w

in the sorting phase of the online stage is now sorted by the values of D̄(q̂||pw)
in descending order.

A new matrix T̄ is constructed as

T̄(w, η) = log(pw
η ), ∀w, η ∈ Vm. (8)

In Section 4.3 we show that matrix T̄ is a circulant matrix. By Theorem 1 the
Fast Fourier Transform algorithm can be applied for fast computation. For T̄,
only the first column (T̄(w, 0) = log(pw

0 ) = log(pw), for all w ∈ Vm) needs to be
stored. The memory requirement is 2m. T̄ is used for computing D̄ = T̄q̂T .

Our Improvements:
Offline: We present a formula for N based on p, without using (5).
Online:
Step 1: We present Method-A to calculate q̂ from N samples given. The com-

plexity is 2m2m + mN .
Step 2: We present Method-B to compute D̄. The complexity is 3m2m.
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4.3 Fast Computation of Empirical Distribution – Method A

Method A is for computing the empirical distribution q̂ of the experimental
function h = (h1, . . . , hm) from N samples (X,Y). First, the correlations of the
combined linear approximations bh, for all b ∈ Vm,

γ̂(b) = Pr(bh(X,Y) = 0)− Pr(bh(X,Y) = 1),

are calculated. Then the p.d. q̂ is computed from γ̂(b) by (3).
We show how to compute γ̂(b), for all b = (b1, . . . , bm) ∈ Vm from N samples:

γ̂(b) = γ̂(
m⊕

i=1

bihi) =

∑N
j=1(−1)

⊕m
i=1 bihi(Xj ,Yj)

N

=
∑

a∈Vm

(−1)
⊕m

i=1 biai
Ta

N
=

∑
a∈Vm

(−1)ba Ta

N
,

where a = (a1, . . . , am) and Ta = #{(Xj , Yj), j = 1, . . . , N : hi(Xj , Yj) = ai}.

LetS2m×2m

be thematrixdefinedbyS(b, a)=(−1)ba, and letE=(T0
N , . . . ,

T2m−1
N ),

and γ̂ = (γ̂0, . . . , γ̂2m−1), then

γ̂(b) =
∑

a∈Vm

S(b, a)Ea, ∀b ∈ Vm, or γ̂ = SET .

Since S is a Hadamard matrix, we can apply the Fast Walsh-Hadamard Trans-
form algorithm for computing γ̂(b) for all b ∈ Vm with complexity m2m, and
the storage is O(2m). The complexity for computing the counter vector T =
(T1, . . . , T2m) is mN , by evaluating the m base approximations against each of
the N samples.

Construct the vector R = (R0, . . . , R2m−1) with Rb = 2−mγ̂(b), for all b ∈ Vm.
From (3) we have

q̂η =
∑

b∈Vm

(−1)ηbRb, ∀η ∈ Vm, or q̂ = SRT .

The Fast Hadamard Transform is used again to compute q̂. Hence, the total
complexity is mN + 2m2m for computing q̂ from N samples.

To Summarize Method A

Step 1: Construct the vector E from N samples (X, Y ).
Step 2: Compute γ̂ = SET , then construct the vector R.
Step 3: Compute q̂ = SRT .

4.4 Fast Computation of Kullback-Leibler Distance – Method B

Method-B is used to compute the vector D̄ in (6) with modified matrix T̄ in (8)
based on the idea of circulant matrix in [7]. The proof of the following theorem
can be found in Appendix B.
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Theorem 5. The matrix T̄ is level-m circulant with type (2, 2, . . . , 2)︸ ︷︷ ︸
m-times

.

Method-B: From Theorems 1, 2, and 5 we have

T̄ = F∗diag(λ)F, (F∗F = I), (9)

λ = FT̄(:, 1)
√

2m, (10)

and
D̄ = (D̄(q̂||p0), . . . , D̄(q̂||p2m−1)) = T̄q̂ = (F∗(diag(λ)(Fq̂))).

Applying the Fast Fourier Transform three times for F, diag(λ), and F∗ we get
all the values D̄(q̂||pw), for all w ∈ Vm. The complexity is 3m2m.

5 Efficiency of the Improved Algorithm

The improved algorithm works as follows:

Input of offline stage: m linear approximations g1, . . . , gm and p.d. p and ρ(a)
of g, for all a ∈ Vm.

Offline stage:

Step 1: Compute N by (7).
Step 2: Compute the eigenvalue vector λ of matrix T̄ based on (10) and p.
Input of online stage : N samples (X, Y ).

Online stage :

Step 1 – Distillation: Compute empirical p.d. q̂ of h from N by Method-A.
Step 2 – Analysis: From λ and q̂, compute vector D̄ by Method-B.
Step 3 – Sorting: Sort the key classes w with D̄(q̂||pw) in descending order.
Step 4 – Searching: Choose the correct key class as the first element in the

sorted list.
The improved results are presented in Table 2 to compare with previous results

on the complexities of the distillation phase and the analysis phase, following [10].
In practise mN is always larger than 2m2m, and we estimate O(2m2m + mN) =
O(mN).

Following the definitions of Ns.i. and Nplain in [10], N < Ns.i. < Nplain, m <

m
′
(also see Table 1), we have significant improvement in the time complexities

Table 2. Complexity comparison between different algorithms

Distillation Phase Analysis Phase
Plain Biryukov Hermelin Method-A Plain Biryukov Hermelin Method-B

Data O(Nplain) O(Ns.i) O(N) O(N) - - - -
Time O(mNplain) O(m

′
Ns.i) O(2mN) O(mN) O(m2m) O(m

′
2m) O(22m) O(m2m)

Mem O(m) O(m
′
) O(2m) O(2m) O(2m) O(2m) O(2m) O(2m)
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for the distillation phase and the analysis phase. In addition, we have proved
that the multidimensional algorithm 1 requires fewer samples than Biryukov et
al.[2]. The same result was observed in [10] with only empirical evidence.

6 Application to Cryptanalysis

In this section we apply the improved algorithm to reduced-round Serpent and
derive the attack complexities. We derive attack scenarios by using 4-round and
9-round linear characteristics used in [10] and [4] to show that the improve-
ment made in this paper can improve previous cryptanalysis by many orders of
magnitude.

6.1 Application to the 4-Round Serpent Scenario

In [7] 64 approximations were used to obtain 10 parity bits of 4-round Serpent,
from S4 to S7. The approximations are modified from the first 4 rounds of the
6-round linear characteristic of [4], with the details described in [5]. As shown
in [10], these approximations used are not linearly independent in text masks
and key masks. There are 8 of them with correlation in magnitude of 2−11 and
56 of 2−12. This gives an overall capacity of 4

∑63
i=0 ε2i = 2−17.54 hence estima-

tion of 4m/4
∑m′

i=1 ε2i = 222.86 for N . By selecting a basis of 10 approximations
L0, . . . , L9 from the 64, where Li is uiX ⊕ w0Y ⊕ ciK = 0, Hermelin et al. [10]
studied all the approximations generated as in span{L0, . . . , L9}. Of the 1023
combinations, 8, 64 and 128 are with non-negligible correlation in magnitude of
2−11, 2−12 and 2−13, respectively. Lemma 2 gives capacity C(p||q) of at least
2
∑

a	=0 ρ2(a) = 2 · (8 ·2−22 +64 ·2−24 +128 ·2−26) = 2−16 and hence the estima-
tion for N is 4m/C(p||q) = 221.3, in perfect correspondence to the experimental
results in [10]. With Method-A and Method-B, we can set m = 16, yielding
an attack with better complexity than the multidimensional Alg. 1 of [10] with
m = 10.

The approximations L0, . . . , L9 are derived from the same linear characteristic
with input masks u0, . . . , u9 and the same output mask w0. We obtain 6 addi-
tional ciphertext masks w1, . . . , w6 and use the following 16 approximations as
base approximations: (u0, w0), . . . , (u9, w0), (u1, w1), . . . , (u1, w6). An exhaustive
check of all combined correlations shows that 32, 384, 1664, 3072 and 2048 of
the combined approximations have correlation in magnitude of 2−11, 2−12, 2−13,
2−14 and 2−15 respectively. This gives a capacity of 2−12.8, hence we estimate
N ∼ 4m/C(p||q) = 218.8. We tabulate the comparisons in Table 3. From the
table we can conclude that it is clearly advantageous to be able to have a larger
m, i.e., when using m = 16 instead of m = 10, in the case of Serpent. A larger
m in this case makes it possible to have a larger number of non-negligible approx-
imations, hence larger capacity, which implies reduced data complexity thus the
overall time complexity. Setting m = 16 improves the cryptanalysis due to the
fact that the number of non-negligible approximations in Serpent is exponential
in m. It may appear that the attack is slower with a larger m. However, in fact, it
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Table 3. Attack complexities on 4-round Serpent

m C(p||q) N Distillation Phase Analysis Phase Memory
Hermelin et al. [10] This paper Hermelin et al. [10] This paper

10 2−16 221.3 231.3 224.6 220 214.9 210

16 2−12.8 218.8 234.8 223.2 232 221.6 216

is the reduction in data complexity N that dominates the time complexity, so we
obtain a faster attack. Essentially, this is a trade-off and it is always meaningful
to find an appropriate m for a block cipher to produce optimal attack complexity.
However, by our experiments, in the case of DES, the number of high probability
approximations is much fewer than that of Serpent, so larger values of m do not
give better results than fewer approximations. We believe that SPN block ciphers
with small S-boxes are more likely to be vulnerable to our attack.

6.2 Multidimensional Linear Cryptanalysis of 9-Round Serpent

We take the 9-round linear characteristic of [4], where the details are described in
[5]. This linear characteristic starts from S3 and ends after the next S3, with cor-
relation 2−49. The first round has 11 active S-boxes, which results in a correlation
of 2−11 and the remaining 8 rounds with correlation 2−38. By modification to
the input masks, there is a total of 1011 masks, with the magnitude of first round
correlation from 2−11 to 2−22. By picking 44 independent base input masks, we
can expect to have around 1011 out of the 244 combined approximations giving
non-negligible correlations. We can exploit the huge number of approximations
by a 44-dimensional attack, with capacity

C(p||q) = 2 · [
11∑

i=0

(
11
i

)
· 2i · 811−i · ((2−1)i · (2−2)11−i)2] · (2−38)2 = 2−75

which is 222 times larger than the capacity 2−98 for the single approximation
scenario. Correspondingly the estimation for N is 4m/C(p||q) = 282.5. The time
complexity for the distillation phase is 288 and the analysis phase is 251. Around
244 memory are needed. In [4], this 9-round linear characteristic is used to break
a 10-round and an 11-round Serpent with Matsui’s Alg. 2 extended with multiple
approximations. It requires at least 299 known-plaintext which is much higher
than our estimation. Moreover, the time complexities presented in [4] did not
take into account the distillation phase, which should require no lower than
mN which is greater than 299. Hence, it is much higher than our overall time
complexity 288.

Comparing with extensions of Alg. 2, a disadvantage of Alg. 1 is that an
r-round linear characteristic can be used to attack an r-round block cipher.
However, it is noted in [7] that optimal application of Algorithm 2 with multiple
approximations requires accurate estimation of the biases, which can be unreli-
able if multiple linear characteristics exist with non-negligible probability under
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the same text mask. Intuitively, Alg. 1 is likely to give more reliable estimation
for theoretical cryptanalysis.

7 Conclusions

In this paper, we have presented a new formula for N , in terms of ρ(a) and m, for
the |Z|-ary hypothesis testing problem in the multidimensional generalization of
Matsui’s Algorithm 1 in [10]. The number of known plaintext needed can now be
computed from ρ(a) directly, whereas it is harder to compute minw 	=0 C(p0, pw)
in the original formula (5).

Method-A and Method-B have been presented to compute the empirical dis-
tribution and Kullback-Leibler distance, as improvements to the multidimen-
sional Alg. 1 in [10]. A significant reduction of time complexity in the distil-
lation and analysis phases can be achieved. Breaking these bottlenecks allows
many more base approximations to be used.

As shown in the case of 4- and 9-round Serpent, the increase in m brings sig-
nificant reduction on the data complexity and the time complexity. We expect
this improved algorithm to outperform previous multiple linear cryptanalysis.
We observed that the framework of Hermelin et al. [10], with our improvement,
solves the problem of Biryukov et al. [2] that the statistical independence as-
sumption cannot in general be guaranteed in practice, and in fact, does not need
to be guaranteed, because there exists a large number of combined approxima-
tions with non-negligible correlations. Meanwhile, the series of experiments in
[4] and [7] provide excellent examples for this argument.

It also implies that, for block cipher designs, bounding the maximum cor-
relation for any single linear characteristic is not sufficent to claim security.
Especially for SPN block ciphers with small S-boxes, a single linear trail with
multiple active S-boxes in the first or last round can be modified to have many
approximations, exponential in the number of active S-boxes of outer rounds.
When these approximations are with similar magnitude of correlations, multi-
dimensional linear cryptanalysis as a systematic way to exploit these combined
correlations can reduce the attack complexity greatly. It’s worthy for designers to
have larger security margins or to try to develop specific mechanisms to prevent
an attacker from forming an exponential number of valid linear approximations.
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Appendix

A Proof for Lemma 2

Proof. Let g = (g1, . . . , gm) and given ρ(a), for all a ∈ Vm, from (2), (3)

2m(
∑

p2
η) =

∑
ρ2(a).

We have 2 facts: p0 = p and pw is a permutation of p. From (1), we replace p0 and
pw by p, q respectively in (5). Define u = max{qη, η ∈ Vm} = max{pη, η ∈ Vm}.
Then

C(p||q) =
∑

η∈Vm

(pη − qη)2

qη
≥ 1

u

∑
η∈Vm

(p2
η + q2

η − 2pηqη).
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We have
qη

u
≤ 1 ⇒ −qη

u
≥ −1.

Since q is a permutation of p:∑
η∈Vm

pη = 1 and
∑

η∈Vm

p2
η =

∑
η∈Vm

q2
η.

Hence

1
u

∑
η∈Vm

(p2
η + q2

η − 2pηqη) =
2
u

(
∑

η∈Vm

p2
η)− 2

∑
η∈Vm

qη

u
pη

≥
2 · 2−m

∑
a∈Vm

ρ2(a)
u

− 2(
∑

η∈Vm

pη)

=
2 · 2−m

∑
a∈Vm

ρ2(a)
u

− 2.

From (3),
u = max{pη} ≤ 2−m(

∑
a∈Vm

|ρ(a)|),

so that

C(p||q) ≥
2
∑

a∈Vm
ρ2(a)∑

a∈Vm
|ρ(a)| − 2.

In practice, since ρ(0) = 1 and ρ(a)  1, ∀a �= 0, we have
∑

a∈Vm
|ρ(a)| ≈ 1.

Hence

C(p||q) ≥ 2
∑

∀a∈Vm\{0}
ρ2(a).

B Proof for Theorem 5

Proof. The structure of the modified matrix T̄ 2m×2m

is⎛⎜⎜⎜⎝
log(p0

0) log(p0
1) · · · log(p0

2m−1)
log(p1

0) log(p1
0) · · · log(p1

2m−1)
...

...
. . .

...
log(p2m−1

0 ) log(p2m−1
1 ) · · · log(p2m−1

2m−1)

⎞⎟⎟⎟⎠ .

From the relation between pw (∀w �= 0) and p0 = p:

pw
i =

∑
a∈Vm

(−1)a(w⊕i)ρ(a) =
∑

a∈Vm

(−1)ajρ(a) = pj ,

where j = w ⊕ i.



52 P.H. Nguyen et al.

Hence, log(pw
i ) = log(pj), j = w ⊕ i. It means that T̄ (w, i) = T̄ (0, j) =

T̄ (0, w ⊕ i).
Divide T̄ into 4 blocks, each with size (2m−1 × 2m−1):(

T̄11 T̄12
T̄21 T̄22

)
.

Then for 0 ≤ i, j ≤ 2m−1 − 1:

- T̄11(i, j) = T̄ (i, j) = T̄ (0, i⊕ j),
- T̄21(i, j) = T̄ (i + 2m−1, j) = T̄ (0, (i + 2m−1)⊕ j) = T̄ (0, i⊕ j ⊕ 2m−1),
- T̄12(i, j) = T̄ (i, j + 2m−1) = T̄ (0, i⊕ (j + 2m−1)) = T̄ (0, (i + 2m−1)⊕ j),
- T̄22(i, j) = T̄ (i+2m−1, j+2m−1) = T̄ (0, (i+2m−1)⊕(j+2m−1)) = T̄ (0, i⊕j).

Consequently, T̄11 = T̄22 and T̄12 = T̄21, hence T̄ is 2-block circulant. We
can inductively repeat the same argument to T̄11 with m = m− 1. Since T̄12 =
T̄11 ⊕ 2m−1, the structure of T̄12 is similar to the circulant structure of T̄11.
Hence, the matrix T̄ is level-m circulant with type (2, 2, . . . , 2)︸ ︷︷ ︸

m-times

.
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Abstract. In this paper we provide the first side-channel analysis of the
K2 stream cipher. K2 is a fast and secure stream cipher built upon the
strengths of SNOW 2.0. We apply timing attacks, power analysis, and
differential fault analysis to K2. We show that naively implemented K2
is vulnerable to cache-timing attacks, and describe how to implement
efficient countermeasures to protect K2 against side-channel attacks in
hardware and software.

Keywords: Stream Cipher, K2, side-channel, differential fault analysis,
cache timing attacks, power analysis, SNOW 2.0.

1 Introduction

Many methods of cryptanalysis, such as linear cryptanalysis [15] and algebraic
attacks [5], exploit flaws in the design of the cryptographic algorithm. In con-
trast, side-channel attacks exploit leakage of information during execution of key-
related operations on the cryptographic device. Timing information, power con-
sumption, electromagnetic leaks, or even sound can provide exploitable sources
of leaky state or key information. Side-channel attacks are differentiated from
direct attacks by relying on not only the algorithm design, but also upon its im-
plementation and the characteristics of the hardware on which it is implemented.

Launching side-channel attacks is in most cases likely to require considerable
technical knowledge of the implementation platform. However, potential vulner-
abilities can be detected at the design level, and moreover, algorithm designers
can do much to alleviate the vulnerability of their algorithms at the design stage.

Side-channel attacks can be categorized as passive or active, and invasive or
non-invasive. Passive attacks, such as power analysis, timing analysis and cache-
timing attacks are comparatively inexpensive, and rely on observation of the
algorithm as it encrypts or decrypts using secret material. The attacker is likely
to be undetected. Active attacks, such as fault analysis, disrupt the algorithm
to reveal secret material. The assumptions concerning active attacks are usual
stronger than those for passive attacks, and the attacks are usually expensive,
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requiring a high initial capital investment plus a moderate amount of investment
for each chip attacked (although Skorobogatov and Anderson showed how to
conduct optical induction fault attacks for several tens of dollars [17]).

In this paper, we describe the effect of a handful of side-channel attacks -
timing attacks, power attacks and fault attacks - on the K2 stream cipher [12],
which is based upon the well-known SNOW 2.0 cipher [6]. K2 has additional
strength through a reinforced Finite State Machine, and its ‘Dynamic Feedback
Control’ mechanism, meaning that it is more resilient against many attacks,
while remaining competitively efficient. We provide the first analysis of K2 with
respect to side-channel attacks.

In Section 2, we provide a specification of the K2 stream cipher, and discuss
one reasonable way of implementing it. In Section 3 we reiterate an observation
on LFSR-based stream ciphers that has impact on almost every side-channel
attack that can be applied to K2. In Section 4 we respectively consider both
conventional timing and cache-timing attacks applied to K2, especially in light
of the successful conventional timing attacks and cache-timing attacks applied
to Sosemanuk by Leander, Zenner and Hawkes [14]. In Section 5, we discuss
simple and differential power analysis attacks on K2. In Section 6, we survey
a differential fault analysis of SNOW 2.0, correct mistakes in that attack, and
apply it to K2. In Section 7, we provide concluding notes.

2 Specification

The state of the K2 stream cipher comprises two Feedback-Shift Registers (FSR),
respectively FSR-A and FSR-B, and a finite-state machine FSM-C.

FSR-A consists of five 32-bit stages, denoted just after initialization as
r0, ..., r4 while FSR-B consists of eleven 32-bit stages s0, ..., s10. Sometimes, we
represent the state of FSR-A as a snapshot at time t using A[0]...A[4], and the
state of FSR-B as B[0]...B[10]. The FSM-C contains four 32-bit words of memory
entitled L1, L2, R1 and R2. The total state size of K2 is 640 bits.

Update function. FSR-A is autonomous. The contents of its stages are determined
by the recurrence rt+5 = α0 · rt ⊕ rt+3, where α0 is the root of a polynomial in
GF (24). Each element of this field is in turn expressed in terms of the root of a
polynomial β in GF (28).

FSR-B is driven by FSR-A using Dynamic Feedback Control (DFC). The
contents of its stages are determined by the recurrence

st+11 = (αrt+2[30]
1 ⊕ (α1−rt+2[30]

2 )− 1)st ⊕ st+1 ⊕ st+6 ⊕ α
rt+2[31]
3 st+8

for 32-bit values α1, α2 and α3. r[i] denotes the ith bit of register stage r.
The contents of the Finite State Machine (FSM) registers is determined as

follows:
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L1t = Sub(R2t−1 � st+3)
R1t = Sub(L2t−1 � st+8)
L2t = Sub(L1t−1)
R2t = Sub(R1t−1)

Sub is a 32×32-bit bijection composed of four parallel invocations of an 8×8-bit
s-box S followed by a linear 32× 32 multiplication in GF (28)4. The s-box used
is the AES s-box and the multiplication is the AES MixColumn operation.

Output function. Keystream is generated as the 64-bit word (zH
t ||zL

t ).

zH
t = (st+10 � L2t)⊕ L1t ⊕ rt

and
zL

t = (st � R2t)⊕R1t ⊕ rt+4

Initialization function. The key initialization algorithm must be performed to ini-
tialize the cipher with a new key or IV. A key-IV pair can be used to generate at
most 258 keystream words, after which the key initialization algorithm must again
be invoked. The same key-IV pair cannot be used twice to initialize the stream ci-
pher. Generally initialization will involve the same key and a different IV.

The K2 key initialization schedule has three phases. Phase 1 expands the
master key into a series of extended key words, which are used to populate the
cipher internal state in phase 2. In phase 3, the cipher’s clocking function is
invoked twenty-four times to mix the internal state.

Phase 1 uses a 128-, 192- or 256-bit key K to generate an twelve extended
key words EKi, 0 ≤ i ≤ 11. The extended key word EKi for a 128-bit key
K = K0||K1||K2||K3 is generated as:

EKi =

⎧⎨⎩
Ki if i ∈ {0, 1, 2, 3}
EKi−4 ⊕ Sub((EKi−1 ≪ 8))⊕ Ci if i ∈ {4, 8}
EKi−4 ⊕ EKi−1 if i ∈ {5, 6, 7, 9, 10, 11}

≪ is rotation on 32-bit words, and constants C0, C1 and C2 are respectively
0x01000000, 0x02000000, and 0x03000000.

Phase 2 initializes the FSRs using the extended key words and raw IV words.
The shortest register, FSR-A is populated such that A[i] = EK4−i, ie. it receives
all of the raw key words in the form of EK0...EK3. FSR-B is populated with
the remaining extended key words and the four IV words. The FSM registers
are set to zero.

Phase 3 invokes the update function 24 times to mix the state. The keystream
words zH and zL are not discarded, but added back into the feedback for FSR-B
and FSR-A respectively using exclusive-or.



56 M. Henricksen et al.

2.1 Implementation Aspects

Sub implemented using one table or four Sub is generally implemented as a
single primitive with 32-bit inputs and outputs, using four lookups of a s single
table, each based on one byte of the input. ie. for input x = x0|x1|x2|x3:

Sub(x) = T [x0]⊕ (T [x1] � 8)⊕ (T [x2] � 16)⊕ (T [x3] � 24)

The table occupies one kilobyte. The number of operations in a Sub can be re-
duced by building the rotation operations into tables. This increases the number
of tables to four, occupying four kilobytes, and Sub becomes

Sub(x) = T0[x0]⊕ T1[x1]⊕ T2[x2]⊕ T3[x3]

While this may provide a significant speed boost on machines with poor support
for rotation, we later show there are good reasons of security to avoid using this
technique.

On the α constants. Multiplication by α0 is implemented as α(x) = (x  8)⊕
A0[x � 24] where A is a 28×32-bit table such that A0[i] = (iβ24, iβ3, iβ12, iβ71).
Other α tables have different bases. We usually treat α0..3 as lookup tables.
This has implications with respect to side-channel attacks. We define the macro
ALPHA to implement all four α-table lookups as follows:

1 #define ALPHA(x, table) (x << 8) ˆ table[(x >> 24) & 0xFF];

3 An Observation on LFSR-Based Stream Ciphers

Hoch notes in his differential fault analysis of LFSR-based stream ciphers:

Given n output bits of the LFSR, such that the corresponding linear
relations in the initial state bits are independent, we can reconstruct the
initial state by solving the system of n linear equations in n unknown
bits over GF (2) [9, page 13]

Leander et al. use the same result in their cache-timing attack of Sosemanuk [14]
to note that clocking its ten word LFSR with 32-bit stages can be represented
by applying an invertible 320 × 320 matrix M over GF2, since there exists a
linear bijection φ : GF232 → GF 32

2 , and if the operation is linear in GF232 it is
also linear in GF2. The LFSR can be considered an element in GF 320

2 via the
isomorphisms (st, ..., st+9) → (ψ(st), ..., ψ(st+9)). Then ψ(st+1) can be written
as M t ·ψ(s), and bits obtained by cache timing can be related to initial state bits
via M . They generalize this attack to all LFSR-based stream ciphers by noting
that for an internal state of n elements of GF2m , leakage of k internal state bits
per cycles provides sufficient equations to determine the state of the LFSR in
n ·m · k−1 cycles.
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This means that the LFSR of K2, or of any stream cipher, is not robust against
leakage of information in a side-channel attack, unless suitable countermeasures
are implemented. This observation pinpoints the weakest component of the K2
stream cipher, and it underlies all of our analyses in the following sections. In
particular, if FSR-A can be attacked in isolation, it can be virtually stripped
away from the cipher. Since FSR-A drives the Dynamic Feedback Control mech-
anism, it too can be removed. What remains in the ‘virtually reduced’ cipher
is the linear FSR-B and non-linear FSM. The side-channel technique can be re-
peated on the FSR-B, which also can be removed, and then other techniques
applied to solve the state of the 128-bit FSM.

4 Timing Attacks

Timing attacks exploit a side-channel that leaks information through differen-
tials in the time it takes to execute different operations within the algorithm. The
amount of time it takes to compute a function depends not only on the number and
nature of the operations within the functions, but also upon the inputs passed to
them. If key-dependant operations in an algorithm take variable lengths of time to
execute according to the value of key bits, then by repeatedly measuring these vari-
ations in time, the values of the corresponding key-bits might be deduced. Cache-
timing attacks, in which the location of data in memory forms a side channel, are
also a form of timing attack, addressed in Section 4.2.

4.1 K2 and Conventional Timing Attacks

Conventional timing attacks are well known and easy to avoid by eschewing the
use of conditional branching or operations that have execution times that vary
with the value of the operands.

Most of the operations in the K2 cipher keystream generation are constant-
time operations with respect to conventional timing attacks: exclusive-or, addi-
tion, and table lookups. A naive implementation of Dynamic Feedback Control
might involve branching.

st+11 = (αrt+2[30]
1 ⊕ (α1−rt+2[30]

2 )− 1)st ⊕ st+1 ⊕ st+6 ⊕ α
rt+2[31]
3 st+8

can be implemented as:

1 feedback_b = FSR_B_STAGE(ctx, 1) ˆ FSR_B_STAGE(ctx, 6) ˆ
2 ALPHA(FSB_B_STAGE(ctx, 0),
3 (FSR_A_STAGE(ctx, 1) & DFC_BIT_1) ?
4 alpha_1 : alpha_2);
5
6 feedback_b ˆ= (FSR_A_STAGE(ctx, 1) & DFC_BIT_2) ?
7 ALPHA(FSR_B_STAGE(ctx, 8), alpha_3):
8 FSR_B_STAGE(ctx, 8));
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Lines 2-4 of this listing invoke either the α1 or α2 table lookup depending
on the value of DFC BIT 1. But this conditional ternary operator is not vul-
nerable to a timing attack because the number and order of operations in each
conditional block is identical. Only the data varies.

The same does hold for the conditional of lines 6-9, since depending on the
value of DFC BIT 2, either an α-table lookup on B[8] is performed or it is not.
The remaining operations in both conditional branches are equal, so executing
line (7) will usually take longer than executing line (8). Then a timing differential
that leaks the value of DFC BIT 2 occurs as frequently as in every cipher clock.
From the observation made in Section 3, periodic leakage of this bit, which is
located in FSR-A, will eventually lead the attacker to compute the entire state
of that register.

Nevertheless, a countermeasure is readily available at the cost of a slight re-
duction in throughput. As the bit DFC BIT 2 is pseudo-random, then α3 will
be executed on average once in every two cycles in the unprotected implementa-
tion. In the following countermeasure, it is executed every cycle, and discarded
when the value of DFC BIT 2 is 0, by masking the result of the table with 0 and
0xFFFFFFFF for respective off- and on values of DFC BIT 2. If the α3 table is
invoked, then B[8] must be shifted left by one byte, which is easily implemented
by shifting by the value of DFC BIT 2 multiplied by eight. Then lines 6-9 in the
above are replaced with:

1 feedback_b ˆ= FSR_B_STAGE(ctx, 8) << (DFC_BIT_2 * 8) ˆ
2 (alpha_3[FSR_B_STAGE(ctx, 8) >> 24] & (-DFC_BIT_2));

Examination of K2’s key initialization algorithm reveals no non-constant time op-
erations in phases 1 or 2, and only the aforementioned vulnerability in phase 3.

4.2 K2 and Cache-Timing Attacks

Cache timing attacks rely on measuring the differential in time between accessing
data in cache and data in memory. When the CPU requests data to be fetched
to its registers, the request is directed to the cache interspersed between the fast
CPU and slow main memory. If the data is not present in the cache, then a cache
miss occurs. In this case, the data must be imported from the memory at the cost
of some latency. The cache subsequently keeps a copy of the data. If the data is
again requested, and present in the cache, then a cache hit occurs, and this time
because the data need not be fetched from memory, there is less latency in the
operation. This differential between time to access data present in the cache, and
data present in memory but not in the cache, becomes a side channel.

For reasons of efficiency, data is not imported into the cache on a word-by-
word basis. It is imported line-by-line. On modern processors, lines are usually
collections of 64bytes of adjacent data, and we assume this hereafter. Cache
timing measurements can determine indices in table-lookups, such as s-boxes,
to the resolution of the cache line. For example, measuring the latency of an
s-box lookup into an 8 × 32 table can provide the high nibble of the index.
More generally, the number of bits b leaked by each cache-timing measurement



Side-Channel Analysis of the K2 Stream Cipher 59

is determined by b = c − log2(γ/d), where the table size is 2c bytes, d is the
number of bytes per each table entry, and γ is size of each cache line in bytes.

In a prime-then-probe attack [19], the attacker fills the cache with data just
prior to the victim executing his cryptographic algorithm. Afterwards, the at-
tacker reloads his data, timing the process. Cache hits highlight the cache lines
not used by the victim, since the attacker’s data has been not displaced. Con-
versely, this represents a noisy version of the cache lines used by the victim.
Therefore the attacker learns some of the indexing information used by the vic-
tim’s cryptographic algorithm.

Related Work. Zenner [20] studied the eight eSTREAM software finalists from
the perspective of cache-timing attacks. He initially had most success attacking
HC-256 [18], with a prime-and-probe attack in conjunction with a back-tracking
consistency check algorithm [19]. Complexity for the attack was 255 encryptions
given precise cache measurements for 6148 chosen rounds. He noted that Dragon
[4] is more resistant to cache-timing attacks than might be expected for an
algorithm so heavily dependant on s-boxes, since the twelve invocations per
cycle of each s-box touch on average 8.6 cache lines. The attacker has no way of
knowing which of the 257.7 ways of ordering the s-boxes is applicable. Dragon’s
usage of s-boxes is similar to K2’s.

In [14] Leander, Zenner and Hawkes launched a devastating attack on Sose-
manuk, and generalized it to other LFSR-based registers. The attack relies on
the property in Section 3 and the fact that each lookup table in the LFSR is
accessed at most once per cipher clock. Sosemanuk is similar in structure to K2,
in that it contains an autonomous LFSR that contributes input to both a FSM
and to the keystream generation function. In Sosemanuk, the LFSR consists of
ten 32-bit word stages, with a feedback polynomial that includes α and α−1

multipliers implemented by way of separate lookup tables. Each time the LFSR
is clocked, one access is made to the α table depending on bits 24..31 of one word
of the LFSR, and one access is made to the α−1 table depending on bits 7..0 of
the same word of the LFSR. This has the consequence that in each clock of the
LFSR, on machines with 64-byte cache lines, cache timing measurements leak
eight bits across two words of the state, namely bits (31..28) of st and bits (7..4)
of st+3. After forty words of output, sufficient equations exist to form a system
with full rank, and Gaussian elimination can be used to determine the state of
the Sosemanuk LFSR. Once the state of the LFSR is known, it is easy to de-
termine the contents of the 64-bit FSM by guessing one of the 32-bit words and
using the keystream to determine the other. Determining the FSM dominates the
attack so the cipher can be broken in O(232). This is a practical attack,assuming
that the cache-timing measurements can be practically and reliably obtained.

Application to K2. K2 has several tables that reside in the cache during
keystream generation. These are s-box tables for the finite state machine, and
tables that hold coefficients for feedback polynomials for the shift registers.
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Attacks based on the α tables. There are four such tables, for α0, α1, α2
and α3. Each table occupies sixteen cache lines on our model machine, leaking
four bits of data per displaced cache line during a prime-and-probe attack.

One lookup each to α0 and α3 occurs during every cycle. A further lookup
occurs, either to α1 or to α2, depending on the value rt+2(31..30). Observing
whether α1 and α2 have been loaded leaks the values of bits rt+2[30] and rt+2[31],
in addition to the upper nibbles of rt, st and st+8, for that cycle. There is a clear
linkage between each table and its index. This leakage of DFC information is
sufficient to recover the entire state of FSR-A, due to the intra-word diffusion
offered by α-multiplication. The absence of an α−1 table in K2 means that the
rate of leakage of bits due to cache timing measurements is half that of SNOW
2.0 and Sosemanuk, and only four equations are generated per cycle. However,
the FSR-A register is very short, and forty rounds are sufficient to completely
determine its contents using the following algorithm.

Once the Dynamic Feedback Control bits of FSR-A have been determined,
FSR-B can easily be determined. During each clock cycle, the cipher will access
table α1 with probability 0.5 otherwise it will access α2. There are four different
ways to clock FSR-B, and we know with certainty which way to use at each cycle.
We focus on table α1, and ignore the cache measurements made to α2 and α3.
This helps to ensure that all of the collected equations are linearly independent.
At each cycle, we update the matrix used to formulate the equations according
to which of the tables are selected (See [14] for details on this algorithm). Then
after 88 × 2 rounds on average, we have sufficient equations from α1 to form a
full-rank system of equations and solve FSR-B.

The dominating factor in the attack is determining the state of the four word
FSM. Assume the attacker guesses on R1 at time t, then he knows R2t+1 =
Sub(R1t). Since the known keystream zL

t is formulated in terms of known FSR
contents st and rt+4, known R1t and unknown R2t, the attacker learns R2t and
likewise from zL

t+1, R1t+1. R1t+1 = Sub(L2t⊕st+4), the last term of which is also
known, so L2t is revealed, and then by the relationship with zH

t , L1t also becomes
known. The complexity of the entire attack on the 640-bit state is O(232). We
have verified this empirically, using simulated cache-timing measurements.

Countermeasure. Leander et al. [14] propose the countermeasure of splitting
each alpha table into two smaller tables, such that each fits into one cache
line. As each α table is linear, it can be broken into two tables αH and αL

such that for every x, 0 ≤ x < 16, αH(x) = α(x  4), αL(x) = α(x). Then
α(y), 0 ≤ y < 256 can be computed as αH(y � 4) ⊕ αL(y&0xF). Each table
contains only sixteen elements, so fits into a 64-byte cache line. The performance
degradation is minimal, amounting to a few percent.

This solution does not directly apply to K2, because of the use of DFC to select
α1 or α2. Even with the Leander et al. countermeasure, two of the four cache lines
used to hold these tables remain untouched during each cycle and leak the value
of DFC BIT 1. When DFC BIT 2 = 0, two cache lines also remain untouched.

The solution is to lookup α3 tables irrespective of the value of DFC BIT 2
and to discard when necessary; and to further decompose each of α1 and α2 into
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four interleaved four-element tables accessed respectively on bits (6, 7),(4, 5),
(2, 3) and (0, 1) of x. In this solution, during each cycle of K2, all six cache-
lines holding α-table lookups are accessed, and no information about α-tables
or DFC is leaked. In our optimized implementation, there is no degradation in
throughput due to this countermeasure. See Appendix A for more information
on this technique.

Attacks based on the Sub function. The Sub table is an 8× 32 table that
occupies 16 cache lines. To avoid the use of rotation, the table may be expanded
into four tables occupying 64 cache lines. If only one table is used, then during
one iteration of the keystream generation algorithm, it is invoked sixteen times,
touching on average 10.3 cache lines. In the worst case there are 16! = 244.3 ways
of the ordering the table accesses. If separate tables are used, then on average
during each clock 3.6 cache lines are touched for each table. In the worst case
there are 218.3 ways of ordering the tables. This disparity is a strong motivator
for implementing a single table for the Sub function rather than four tables.

K2 can be attacked using cache-timing measurements to completely determine
FSR-A and FSR-B in isolation. Then the contents of the FSM can be retrieved at
time t by guessing on R1 for a complexity of O(232). But this overlooks that the
FSM also leaks significant information every time a Sub function is accessed. In
particular, during each cycle, the Sub function is accessed four times per cycle,
each time leaking sixteen bits of information from each of four registers, since
the component bytes to its index access separate tables.

The attacker does not need to guess the association of each displaced cache
line with the appropriate nibble of the register. Instead he must just establish the
correct value of any one of the FSM variables, a process that has the complexity
44 · 216 = 224. He deduces the remaining variables using two words of keystream
and the relationships between the FSM variables at time t and t + 1.

Thus without countermeasures against cache-timing attacks, K2 can be bro-
ken with complexity O(224).

If countermeasures are implemented to protect against leakage in FSR-A and
FSR-B, the leakage from the FSM can still be used to recover the entire state
of the cipher. Assume that the attacker knows how to associate displaced cache
lines with Sub operations at time t and t + 1. He uses cache timing information
to guess R2t +B[4+t] (or L2t+B[9+t]) at time t = 0. There are 216 candidates.
However, the cache timing information acquired for L1t+1 = Sub(R2t +B[4+ t])
(or R1t+1) filters those candidates by (2−4)4, leaving on average only a single
candidate left. If the attacker knows the value of R2t (L2t), then he learns the
value of B[4 + t] (B[9 + t]).

In that case, the attacker can apply the following algorithm. To learn words
B[4]...B[4 + b] and words B[9]...B[9 + b], he needs to acquire cache timing mea-
surements for all of the Subs for consecutive cycles t−1...t−1+ b (at time t−1,
he does not know R2t or L2t, so cannot learn FSR-B words, but still needs to
establish the respective values).

He must make as many as (4!)(b+1) guesses for the association between each Sub
and its displaced cache line (this is the worst case, where each Sub uniquely dis-
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places a cache line in its cycle). Then he can acquire B[4]...B[4+b−1], B[9]...B[9+
b − 1] corresponding to his guess. If b = 5, then the attacker knows B[4]...B[13],
which is the complete state of FSR-B. The keystream, phrased in terms of the re-
spective known FSR-B and FSM state words provides six non-consecutive words
of FSR-A; the remaining words can be solved via its recurrence. Then the attacker
uses consistency checking against the keystream to check whether the guess on
cache line-Sub associations is correct.

The complexity of the attack for the four-table version of K2 is (4!)4·(b+1) ·
264+(log2b+1) = 2176.6 Subs. Profiling reveals Sub to be the dominant operation in
the keystream generation algorithm. Since a brute force attack on a 256-bit key
involves 28 cycles of the update algorithm, each involving 4 Subs, we consider this
attack to have the equivalent complexity of checking 2170 keys. The complexity
of attacking the one-table version increases to (16!)(b+1) · 264+(log2b+1) = 2332

Subs, much worse than brute-force.

Countermeasure. There is no need for a countermeasure for the one-table
version of Sub, if countermeasures for the FSR-leakage has been implemented.

Leakage from s-boxes can be ameliorated by using the forthcoming Intel/AMD
AES instructions [8]. The sequence of operations in the Sub function differs from
those in the AES round in that it omits the ShiftRow and KeyBytes operations.
However the K2 tables are identical to those used in optimized 32-bit implemen-
tations of the AES, since the ShiftRow operation is inbuilt into the indices used
to lookup those tables, rather than in the tables themselves, and the KeyBytes
operation is performed externally. On the Intel platform, placing the Sub input
into the most significant word of XMM1, setting XMM2 to 0, then calling AES-
ENC produces the correct result for the Sub function. The tables used by these
instructions are on-chip and never placed in the cache.

5 Power Analysis

Power analysis is a side-channel attack technique in which the adversary studies
the power consumption of a cryptographic hardware device at various stages
of its operation. The attack is non-invasive and passive, and usually conducted
using a digital sampling oscilloscope.

The power consumption of a device is the sum of the power dissipated by
all of its gates, and includes various noise components. The power consumption
varies according to the types of operations being executed and secondarily on
the values of their operands 1. Therefore, assuming that noise can be controlled,
measuring the power consumption of the device leaks information about those
operations [1]. For example, a multiplication operation consumes more power
than an addition operation, and writing ‘on’ bits uses more power than writing
‘off’ bits.
1 Kocher et al. note that measurement errors and noise sometimes subsume power

variations due to operand values [13].
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5.1 Simple Power Analysis

In the latter case, this leads to the notion that an attacker can deduce the
hamming weight of any operands by observing traces, the set of power mea-
surements made during an execution of the algorithm. This forms the basis of
data-dependent Simple Power Analysis (SPA). SPA provides information about
cipher state internals using visual inspection of a single sample. This usage model
is consistent with the stream cipher requirement that each key-IV pair is used
only once during encryption. If the attacker can determine where certain instruc-
tions are being executed, he can determine the Hamming weight of each byte or
word by measuring the power consumption at the cycle of the instruction that
accesses this data.

Another kind of SPA utilizes the dependence of power consumption upon
the order of instructions. The attacker studies the power-consumption trace to
determine the order of instructions. If the order of instructions is related to
values of key bits (ie. conditionals that consist of an expression of key bits),
then those key bits might be deduced. This is similar to the principle underlying
the conventional timing attack. Since we showed how to implement K2 to be
immune to timing attacks, the same advice applies here, and we don’t consider
operation-based SPA further.

The body of work on SPA is very large although there are no pre-existing
results on K2. or In the analysis of K2, we adopt a similar attack model as that
of Gierlichs et al [7], in which the adversary observes a perfect Hamming weight
or Hamming distance leakage. By measuring the hamming weights of 8- and 32-
bit operands, the attacker learns 2.54 and 3.55 bits of information respectively.
K2 uses some 32-bit operations that contain 24 bits of entropy. In these cases,
the attacker can learn 3.34 bits of entropy from the hamming weight.

Application to K2. In our model, the attacker knows keystream produced by
the algorithm using a fixed key and adaptively chosen IVs. He can choose an IV
and reset the device using that IV. However, he cannot reuse the same key-IV
pair as previously.

There are two fruitful sources of information in the keystream generation
algorithm - the α-table lookups and the Sub operations.

Although the operands involved in α-table lookups are 32-bit words, the dif-
ference in Hamming weight is upper bounded by a value of eight, due to the
implementation of the α multiplication as α(x) = (x  8) ⊕ A[x � 24]. While
bit-wise shifting and rotation operations that shift one bit at a time are ex-
tremely vulnerable to SPA, we assume that the shifting here occurs either as a
native instruction or as a byte permutation. Then the attacker might obtain two
separate hamming weights concerning x: the hamming weight of the most signif-
icant byte, and the hamming weight of the remaining 24 bits. Then the leakage
concerning x is 2.54 + 3.34 = 5.88 bits. Since there are three such multiplications
per cycle, the α lookups leak 17.64 bits of the internal state.
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FSM-C involves four Sub operations. Each Sub operation involves four 8× 32
table lookups and three exclusive-or operations implemented as 2:

1 #define SUB(x) (aes_t0[x & 0xFF] ˆ \
2 aes_t1[(x >> 8) & 0xFF] ˆ \
3 aes_t2[(x >> 16) & 0xFF] ˆ \
4 aes_t3[(x >> 24)])

This is a fertile source for Hamming-weight SPA, since the 32-bit x is broken into
bytes, and leaks 2.54 × 4 = 10.16 bits of the contents. The recombination of the
four thirty-two bit quantities using exclusive-or again leaks 3.55×4 = 14.2 bits of
information, although it is not independent of the information leaked at the input.

There are four such Subs in the FSM, leaking at least 10.16 × 4 = 40.64
independent bits of information in addition to the 17.64 bits leaked in the FSRs.
The total of 58.28 bits is insignificant compared to the total state space of
640 bits. While SPA can be conducted across several cycles to derive several
independent measurements of FSR entropy, the high diffusion in the FSM means
that entropy measurements made in the FSM quickly become related to entropy
measurements made in FSR-B. Note that information contained in FSR-A is
extremely slow to diffuse into FSR-B or the FSM. The converse is also true in
keystream generation, when FSR-A is autonomous.

Key initialization algorithm. The initialization algorithm contains three phases.
In the first phase, the secret key is transformed into an extended key consisting
of eleven 32-bit words. Generally these words are composed by chaining using
32-bit exclusive-or operations, each of which leaks 3.55 bits on operation output
but not on the individual key words used. For a 128-bit key, there are two addi-
tional operations involving a 32-bit rotation and a Sub operation. As indicated
previously, the Sub operation leaks 10.16 bits on the input, which in the first
instance consists bits 96..127 of the secret key. For a 256-bit key, only one Sub
operation occurs; this also leaks 10.16 bits about bits 224..255 of the secret key.

It is instructive to consider some empirical results on SPA of a 128-bit key dur-
ing the first phase of key initialization. The attacker monitors the Sub operations
and is able to deduce the Hamming weights of the individual bytes that compose
their inputs and outputs, including EK7 and EK3, and consequently EK6 since
EK6 = EK7 ⊕ EK3. He builds on a byte-by-byte basis candidates for EK3 and
EK7. If there are c1 candidates for EK7 and c2 candidates for EK3, then he also
has c1 × c2 candidates for EK6. If the attacker can independently measure the
hamming weight of EK6, he is able to filter out 86% (based on the median over
twenty thousand trials) of the pool of candidates permitted by the combination
of EK3 and EK7. In some cases, the three values are unambiguously determined.
More information on this experiment is available in Appendix B.

EK6 and EK7 do not contain raw key material, so loss of entropy here is
not directly utilizable unless measurements are taken from the exclusive-ors on
2 In the four-table implementation; however the leakage for the one-table implemen-

tation is identical.
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other other key words. Hamming-weight measurements on exclusive-ors is not
immediately rewarding since if the Hamming weight of only one quantity is
known, this does not restrict the range of Hamming weights of the other two
operands. Only EK3 is directly taken from the master key. The attacker may
learn a further 3×3.55 = 10.65 independent bits of of master key from exclusive-
or operations on EK0..2. So we estimate that SPA removes 35 bits of entropy
from a 128-bit key (24 bits from EK3, and 10.65 bits from the remaining three
master key words). The remaining material cannot easily be brute-forced.

The attacker can make additional measurements, which leaks entropy in ex-
cess of what is described here. However the efficient mixing of K2, in particu-
lar the optimal MixColumn diffusion components, means that while each addi-
tional 32-bit operation leaks 3.55 bits, a significant portion of this is likely to be
known through previous measurements. Untangling that which is known from
that which is not is non-trivial.

Differential Power Analysis. (DPA) relies on the dependence of power con-
sumption upon data. DPA uses multiple samples produced under the same key
but different IVs to reduce algorithmic noise in the observed power traces. In
the stream cipher context, this requirement for multiple samples is frequently
not practical [3]. An advantage of DPA is that detailed knowledge of the device
is not required.

The attack analyses intermediate values of one or several bits, either at one
instant of time (first-order DPA) or at some instants of time (higher-order DPA).
The attack relies heavily on the accuracy of the power consumption model. If
this is wrongly modelled, then key detection is impossible.

DPA works best when involving a non-linear operation in conjunction with
known plaintext (ie. IV) [7]. In K2 the IV is not involved until the second phase
of key initialization, and it is not involved with non-linear elements until the
third. The attacker is principally interested in:

L1−21 = Sub(Sub(Sub(EK5)) � IV2)
L1−20 = Sub(Sub(Sub(EK6 � 0x63)) � IV3)

Since IV2 and IV3 are known constants which can be chosen by the adversary,
EK5 and EK6 are the targets of key hypotheses that allow the prediction of
intermediate values L13 and L14. In a DPA attack, correctly guessing EK5
and EK6 presents a high correlation coefficient, and the attacker can determine
EK2 = EK5 ⊕ EK6.

Note that IV0 and IV1 are not directly involved in the FSM expressions;
because of their placement towards the start of FSR-B, they are never selected
as input into R1 or R2.

For this attack on the Sub, 32 initial key bits are recovered by considering
28 key hypotheses individually for each byte of K5 and K6. The complexity of
recovering the 128-bit master key is O(2 ·4 ·28)+O(296), which is dominated by
the brute-force search of the latter term. The complexity of this attack means it
is not a threat to the security of K2.
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5.2 Countermeasures

In order to generate keystream efficiently, K2 is designed to be implemented as
a series of lookups to large tables in combination with a number of arithmetic
operations. There are as many as eight 28 × 32-bit tables. Gierlichs et al. [7]
consider that masking boolean operations and small tables is inexpensive, while
masking larger (of size greater than 256 byte) tables is more difficult, requiring
additional memory and loss of throughput. Rechberger et al. [16] recommend
using as few kinds of different operations as possible in ciphers for which af-
fordable countermeasures are required. S-boxes which can be implemented as
combinatorial logic are considered easy to mask. Other kinds of s-boxes, such
as K2’s, are more difficult. The cost of protecting K2 against DPA is therefore
expected to be expensive.

6 Fault Analysis

Differential Fault Analysis is an active side-channel attack. In the attack, one
or more faults are injected into the algorithm by an adversary by, for example,
varying external voltage or an external clock, or shining a crypto-processor with
visible or laser light [9]. Such attacks are not necessarily expensive [17].

We generally assume that the attacker can create transient bit-flipping faults
in a particular register (ie. FSR-A, FSR-B, L1, L2, R1 or R2) with precise
timing. In the asymmetric model, as typified in EEPROM, one-bits turn to
zero-bits with much greater frequency than the converse. In this model, Biham
and Shamir were able to show that any symmetric cryptosystem is suspectible
to a simple DFA attack [2]. In the symmetric model, the frequency with which
one-bits and zero-bits flip is equal. We use the following assumptions:

1. The attacker is able to inject exactly one fault at the chosen position of the
internal state of the analysed stream cipher

2. The attacker is able to repeat the fault injection at the chosen position of
the internal state of the analysed stream cipher for the same IV-key pair.

3. The attacker is able to obtain both the correct and faulty keystreams for
analysis.

The second assumption is controversial in the symmetric stream cipher model.

6.1 Related Work

The predominant body of work on DFA of stream ciphers is by Hoch [10,9]. In
his thesis, he presents generic frameworks for attacks on LFSRs with non-linear
filters, clock-controlled LFSRs, and less successfully on LFSRs filtered by Finite
State Machines. He presents specific attacks on real-life ciphers including SNOW
2.0, which he attacks by inducing single-bit faults at bit j in R1 at times t and
t + 2. According to Hoch, as

zt = (st+15 � R1t)⊕R2t ⊕ st (1)
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this induces a difference of ±2j . Therefore, inducing faults at all positions in j
results in recovery of R1. Then, by applying fault induction for t = 0..15, and
utilizing the relationships between R1, R2 and z, and the LFSR recurrence, the
state can be retrieved using 1000 faults. We observed that this can be reduced
to 384 faults by using the recurrence relation of the LFSR. Hoch assumes that
equation 1 leads to unequivocal discovery of the faulty bit value.

Two measures of difference between the keystreams can be used to derive
information about the generated fault.

zt ⊕ z′t = ((st+15 � R1t)⊕R2t ⊕ st)⊕ ((st+15 � R1′t)⊕R2t ⊕ st) (2)

For a single bit fault at position j the pattern of carries from bits 0...j are equal,
so

z
(j)
t ⊕ z

′(j)
t = ((s(j)

t+15 ⊕R1(j)
t )⊕R2(j)

t ⊕ s
(j)
t )⊕ ((s(j)

t+15 ⊕R1′(j)t )⊕R2(j)
t ⊕ s

(j)
t )

= R1(j)
t ⊕R1′(j)t

Using the exclusive-or difference can identify the location of the bit fault at the
least significant bit of the non-zero difference.

Identifying the value of the bit fault requires the following measure of difference:

zt � z′t = ((st+15 � R1t)⊕R2t ⊕ st) � ((st+15 � R1′t)⊕R2t ⊕ st) (3)

At the location of the bit fault:

z
(j)
t � z

′(j)
t = ((s(j)

t+15 ⊕R1(j)
t )⊕R2(j)

t ⊕ s
(j)
t ) � ((s(j)

t+15 ⊕R1′(j)t )⊕R2(j)
t ⊕ s

(j)
t )

= (R1(j)
t ⊕ x) � (R1′(j)t ⊕ x)

where x = (s(j)
t+15⊕R2(j)

t ⊕ s
(j)
t ). If x = 0 and z

(j)
t � z

′(j)
t = 1 then R1(j)

t = 1 and
R1(j)

t = 0; if x = 1 the converse applies. However, x is unknown, and the fault
value cannot be derived.

We made the observation that the attack can corrected for SNOW 2.0 by
utilizing the structure of its embedded AES s-box. Injecting a bit fault into R1
at time t also affects the keystream at time t + 1, since R2t+1 = Sub(R1t).

zt+1 ⊕ z′t+1 = Sub(R1t)⊕ Sub(R1′t)⊕ d⊕ d′

where d = (st+16 �R1t+1)⊕st, but d = d′ since a bit fault in R1 at time t affects
none of the terms in d. The attacker is able to guess the value of R1t and R1′t,
since by the properties of the non-linear s-box there are only 2 or 4 candidates
per byte. Injecting a second bit fault in the same byte reduces the number of
candidates to 1. By varying the byte in which the fault is contained, the attacker
is able to determine the value of R1t in O(28+4). Consequently 8 bit faults are
required to identity the value of R1t, and 96 bit faults are required to determine
the state of the entire cipher.
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6.2 Attacking FSR-A and FSR-B of K2

The construction of K2 allows the contents of FSR-A to be determined in the
asymmetric EEPROM model, where ‘1’-bits flip to ‘D0’ but not the converse.
The location of a random bit fault in FSR-A can be unambiguously detected
within five cycles of keystream. If the fault occurs in A[0], it is immediately
detectable at time t in ΔzH

t = zH
t ⊕ z′Ht . The location of the bit difference in

ΔzH
t directly reflects the location of the faulty bit since A[0] is combined into zH

t

using the bijective bitwise operator exclusive-or (⊕). Likewise a bit fault in A[4]
is reflected in the same location in ΔzL

t . If no difference is forthcoming in ΔzH
t

or ΔzL
t then the bit fault is located in A[1], A[2] or A[3] and the second word of

keystream must be examined. If the difference occurs in ΔzL
t+1 then the location

of the difference bit reflects that the bit fault occurred in the corresponding
location in A[3]. If there is no difference in ΔzH

t+1 or ΔzL
t+1, then the bit fault

occurred somewhere between (inclusive of) bits 0 and 29. This can be determined
by looking at the corresponding difference bit in zH

t+2. Whether or not the bit
fault occurred in bits 31 or 30 of A[2], or in A[1] can be determined by looking at
ΔzL

t+3. If that word contains no difference then the fault occurred in A[1] at the
corresponding location to the bit fault in ΔzH

t+1. Otherwise the bit fault occurred
in A[2] at the corresponding location given by the difference bit in ΔzH

t+2.
If the fault occurs in rt+2[30] then in the next cycle Δst+11 = α1(st)⊕α2(st).

Bytes 0 and 2 of Δst+11 have the full complement of potential values, but bytes
1 and 3 each only have 26 possible values. Because the keystream word ΔzH

t+1 =
(st+11 � L2t+1) ⊕ (s′t+11 � L2t+1), where L2t+1 has the full range of potential
values, it is difficult to know how to utilize this reduction in entropy of Δst+11.

Assuming that the location of the bit fault can be precisely controlled, then in
the asymmetric model the contents of FSR-A can be determined using about 320
bit faults and about 1280 words of keystream, although it is possible to reduce
the amount of keystream by inducing multiple bit faults, the location of which
can be easily determined, due to the simple way in which FSR-A contributes to
the keystream.

In the symmetric model, although the bit fault can be easily located, the value
of the faulty bit cannot be determined due to the absence of non-linear elements
in FSR-A, and the combined noise of FSR-B and the FSM.

Attacking FSR-B has the same methodology as that for FSR-A.

6.3 Attacking the FSM

The FSM in SNOW 2.0 can be attacked by determining candidates for R1 be-
cause the relationship zt+1 ⊕ z′t+1 reduces to Sub(R1)⊕ Sub(R1′).

However, in K2, if a bit fault is introduced into R1, then the relationship
between the correct and faulty keystreams at time t + 1 is:

zL
t+1 ⊕ z′Lt+1 = (st+1 � R2t+1)⊕R1t ⊕ rt+4 ⊕ (s′t+1 � R2′t+1)⊕R1′t ⊕ r′t+4

= (st+1 � R2t+1)⊕ (st+1 � R2′t+1)
= (st+1 � Sub(R1t))⊕ (st+1 � Sub(R1′t))
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For K2, it is necessary to know the pattern of the carries induced by st+1, or to
know st+1. An alternative is to generate enough bit faults over sufficient cycles
for st+1 to be equal to zero, in which case there are no carries.

In either case, the attack is not straight-forward. K2 appears to offer good re-
sistant to temporary-bit flipping differential fault analysis because of it switches
the order of modular and binary addition in the FSM contribution to keystream,
relative to that in SNOW 2.0.

7 Conclusion

The primary weakness of K2 with respect to side channel analysis is that the
state of the autonomous LFSR can be determined with certainty after 160 · k
cycles if one bit is leaked every k cycles. Without countermeasures in place, it
can be attacked independently and stripped from the cipher.

Countermeasures against timing attacks are simple. DFC is naturally imple-
mented using branching but by implementing the α-table lookups in conjunction
with bit masks and variable offsets, no leakage occurs. This slows the algorithm
down since three α-lookups rather than an average of 2.5 must be made per cycle.

Leander, Zenner and Hawkes [14] showed that all word-oriented LFSR-based
stream ciphers are vulnerable to cache-timing attacks when implemented without
countermeasures. Splitting the linear α− tables and interleaving where necessary,
so that each of the respective six caches lines is always touched in each cycle,
and using the Intel/AMD AES instructions to implement the Sub operations
removes all leakage of K2 by cache-timing attacks.

The K2 keystream generation algorithm is well-defended against power anal-
ysis. The Sub operations in conjunction with exclusive-or operations on raw key
material leak about 35 bits of a 128-bit master key. Half of the IV material is
not directly involved with key material during phase 3 of the key initialization,
offering some resistance against DPA. The complexity for the best DPA attack
we have discovered so far is O(296).

K2 seems resilient to differential fault analysis because of the use of incompat-
ible operations in combining elements from FSR-A, FSR-B and FSM to produce
keystream output. An attack on one component must contend with the com-
bined noise of the remainder. We have not found any effective differential fault
attack using single-bit transient flipping.

Table 1. Benchmarks for some implementations of K2

Cipher Options Cycles per byte Megabits per second
K2 optimized with four tables 13.48 1597
K2 optimized with one table 14.66 1467
K2 Leander et al. countermeasure 14.63 1476
K2 beta-tables implementation 28.76 748
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The efficiency cost of the countermeasures are shown in Table 1. The imple-
mentation platform is an Intel Core Duo 2 2.2 GHz. No special optimization
tricks are employed, so the throughput can be improved.

Even without countermeasures, K2 offers reasonable resistance to side-channel
attacks. We note that K2 can only be considered broken by cache-timing mea-
surements if the AES is also considered broken. We have also shown that K2 is
more resistant to cache-timing and DFA attacks than SNOW 2.0.
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A Implementation

The following code is a pseudo-optimized version of the K2 keystream generation
with countermeasures against timing and cache-timing attacks.

#include "k2.h"

ulong alpha_0H[] = {
0X00000000, 0X31801F63, 0X62C33EC6, 0X534321A5, 0XC4457C4F, 0XF5C5632C,
0XA6864289, 0X97065DEA, 0X4B8AF89E, 0X7A0AE7FD, 0X2949C658, 0X18C9D93B,
0X8FCF84D1, 0XBE4F9BB2, 0XED0CBA17, 0XDC8CA574

};

ulong alpha_0L[] = {
0X00000000, 0XB6086D1A, 0XAF10DA34, 0X1918B72E, 0X9D207768, 0X2B281A72,
0X3230AD5C, 0X8438C046, 0XF940EED0, 0X4F4883CA, 0X565034E4, 0XE05859FE,
0X646099B8, 0XD268F4A2, 0XCB70438C, 0X7D782E96

};

/* Entries in this table are interleaved:

* alpha_2(bits 6, 7); alpha_1(bits 6, 7); alpha_2(bits 4, 5);
* alpha_1(bits 4, 5); alpha_2(bits 2, 3); alpha_1(bits 2, 3);
* alpha_2(bits 0, 1); alpha_1(bits 0, 1);

*/
ulong alpha_1L[] = {

0X00000000, 0X8AA735A6, 0X59036A01, 0XD3A45FA7, 0X00000000, 0X7C2F35B2,
0XF85E6A49, 0X84715FFB, 0X00000000, 0X84DC5E8F, 0X45F5BC53, 0XC129E2DC,
0X00000000, 0X1FD646BA, 0X3E818C59, 0X2157CAE3, 0X00000000, 0X2137B1D6,
0X426E2FE1, 0X63599E37, 0X00000000, 0XDAA387B8, 0X996B235D, 0X43C8A4E5,
0X00000000, 0X5BF87F93, 0XB6BDFE6B, 0XED4581F8, 0X00000000, 0XA0F5FC2E,
0X6DC7D55C, 0XCD322972

ulong alpha_3H[] = {
0X00000000, 0XA104F437, 0X27088D6E, 0X860C7959, 0X4E107FDC, 0XEF148BEB,
0X6918F2B2, 0XC81C0685, 0X9C20FEDD, 0X3D240AEA, 0XBB2873B3, 0X1A2C8784,
0XD2308101, 0X73347536, 0XF5380C6F, 0X543CF858

};

ulong alpha_3L[] = {
0X00000000, 0X4559568B, 0X8AB2AC73, 0XCFEBFAF8, 0X71013DE6, 0X34586B6D,
0XFBB39195, 0XBEEAC71E, 0XE2027AA9, 0XA75B2C22, 0X68B0D6DA, 0X2DE98051,
0X9303474F, 0XD65A11C4, 0X19B1EB3C, 0X5CE8BDB7

};

www.erikzenner.name/docs/2009_Dagstuhl_Talk.pdf
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#define CLOCK_INDEX(index, size) index = (index + 1) % size;

#define ALPHA(x, table, offset) \
(SHL32(x, 8) & 0xFFFFFF00) ˆ table[BYTE3(x) + offset]

#define SUB(x, y) \
y = aes_t0[BYTE0(x)] ˆ \
ROL32(aes_t0[BYTE1(x)], 8) ˆ \
ROL32(aes_t0[BYTE2(x)], 16) ˆ \
ROL32(aes_t0[BYTE3(x)], 24);

void K2_update(K2Ctx* ctx, uchar* keystream, const ulong keystream_bytes)
{

ulong l2, r2;
ulong a0, b0;
ulong d, s, t;
ulong i;
ulong a1_offset;
ulong *index = (ulong *)keystream;

for (i = 0; i < keystream_bytes >> 3; i++) {
l2 = ctx->L2;
r2 = ctx->R2;
a0 = ctx->FSR_A[ctx->FSR_A_index];
b0 = ctx->FSR_B[ctx->FSR_B_index];

/* Generate keystream from FSM, FSR-B, FSR-A */

*(index++) = (FSR_B_STAGE(ctx, 10) + l2) ˆ ctx->L1 ˆ a0;
*(index++) = (b0 + r2) ˆ ctx->R1 ˆ FSR_A_STAGE(ctx, 4);

/* clock FSR-A */
CLOCK_INDEX(ctx->FSR_A_index, NUM_A_STAGES)
FSR_A_STAGE(ctx, 4) = FSR_A_STAGE(ctx, 2) ˆ (a0 << 8);
a0 >>= 24;
FSR_A_STAGE(ctx, 4) ˆ= alpha_0H[a0 >> 4] ˆ alpha_0L[a0 & 0xF];

/* update the FSM */
SUB(ctx->L1, ctx->L2)
SUB(ctx->R1, ctx->R2)
SUB(r2 + FSR_B_STAGE(ctx, 4), ctx->L1)
SUB(l2 + FSR_B_STAGE(ctx, 9), ctx->R1)

/* clock FSR-B */
d = FSR_A_STAGE(ctx, 1);
a1_offset = (d >> 28) & 4;

t = FSR_B_STAGE(ctx, 1) ˆ
FSR_B_STAGE(ctx, 6) ˆ
/* alpha-1 or alpha-2 depending upon the value of d; if d = 1
* then the a1_offset = 4; if d = 0, a1_offset = 0, since
* a1 and a2 entries are interleaved in blocks of 4, with a2

* entries first */
(b0 << 8) ˆ
alpha_1L[((b0 >> 30) & 0x3) + a1_offset] ˆ
alpha_1L[((b0 >> 28) & 0x3) + a1_offset + 8] ˆ
alpha_1L[((b0 >> 26) & 0x3) + a1_offset + 16] ˆ
alpha_1L[((b0 >> 24) & 0x3) + a1_offset + 24];

d >>= 31;
s = FSR_B_STAGE(ctx, 8) ;
t ˆ= s << (d << 3);
b0 = alpha_3H[s >> 28] ˆ alpha_3L[(s >> 24) & 0xF];
t ˆ= (b0 & (-d));

CLOCK_INDEX(ctx->FSR_B_index, NUM_B_STAGES)
FSR_B_STAGE(ctx, 10) = t ;

}
}
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B Experimental Observation of Entropy Loss in K2’s
Key Initialization Algorithm due to SPA

We ran an experiment on twenty thousand random keys for K2 initialization. In
the experiment we analysed the entropy loss of the key given that the attacker
knows the the Hamming weights of the inputs and outputs of the Sub operations
in phase 1 of the algorithm. The results are summarized in Table 2. We base the
entropy lost on the median of the samples, due to the large standard deviation.
We note that there are some cases where the three values are unambiguously
determined by Hamming distance.

Table 2. Entropy measurements using SPA on two Subs and one xor

Key Num of candidates Entropy Entropy Lost
Min Max Median Avg Std

EK3 1 14400 192 476.6 779.2 7.58 24.41
EK7 1 10386 210 479.9 771.7 7.71 24.29
EK6 1 5804586 7510 46294 159409 12.87 19.12
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Abstract. In this paper we explore the recovery of key information
from a block cipher when using unbiased linear approximations of a cer-
tain form. In particular we develop a theoretical framework for their
treatment and we confirm their behaviour with experiments on reduced-
round variants of DES. As an application we show a novel form of linear
cryptanalysis using multiple linear approximations which can be used to
extract key information when all pre-existing techniques would fail.
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1 Introduction

The technique of linear cryptanalysis [12,13] has become a standard tool in
symmetric cryptanalysis. When used with block ciphers the essential idea is to
find a linear expression or linear approximation that links bits of the plaintext,
the ciphertext, and the key and which holds with some probability 1

2 + s =
1
2 (1 + ε), where the value s is known as the bias and ε = 2s is known as the
imbalance or correlation [5]. If the bias or imbalance of the linear approximation
is zero, that is s = ε = 0, then we say that the linear approximation is balanced
or unbiased.

As is well-known, a linear approximation can be used to recover one bit of key
information if the bias or imbalance of the linear approximation is nonzero, that
is s, ε �= 0. While elements of doing this were first described in [18], Matsui’s
Algorithm 1 [12] describes how to recover this bit of key information given suf-
ficiently many known plaintext-ciphertext pairs. The more complex Algorithm
2 [12] uses a linear approximation as a reduced-round distinguisher and allows
the recovery of more bits of key from more rounds of the cipher, and its effec-
tiveness has been considered in [3,9,16].

The simultaneous use of multiple linear approximations to find a single bit
of key information was first proposed in [10]. Such an approach can lead to a
reduction in the data-complexity of the attack when compared to the use of a
single linear approximation. Further papers exploring and extending the use of
multiple linear approximations, under different assumptions and different types
of approximations, include [1,4,6,7,8,11].
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As early as 1994, an interesting experimental phenomenon in the use of multi-
ple linear approximations was described in [11]. There it was observed that four
linear approximations could still give an advantage over using three approxima-
tions even though the fourth approximation was the linear algebraic sum of the
other three. Whilst this issue has been revisited theoretically and experimentally,
for instance [1,4], Murphy stressed the importance of considering the dependen-
cies between linear approximations in recent work [14]. This has been confirmed
by the framework of Hermelin et al using what have been called multidimensional
techniques [2,6].

In this paper we highlight a striking consequence of this work and we explore
the role of unbiased but dependent linear approximations. As shorthand, we
will be referring to these approximations as entangled approximations (their
definition will be given below) and, using [14], we will illustrate how to derive
key information from such linear approximations. We will give a full theoretical
treatment of this analysis, including error rates and the data requirements for
key recovery, and we will also present the results of confirming experiments that
have been carried out on reduced-round DES (which is a normal target cipher
for experiments in the field).

We stress that this new technique is not intended as a universal replacement
for traditional linear cryptanalysis, using either single or multiple approxima-
tions. Indeed techniques using biased approximations, when applicable, are likely
to offer the best avenue for attack. However the results in this paper are impor-
tant for two reasons:

1. We show that it is possible to use only the counts related to unbiased linear
approximations in a linear cryptanalytic attack and still recover key infor-
mation.

2. We demonstrate a practical situation where biased approximations cannot be
used and all current linear cryptanalytic techniques would fail. Nevertheless,
the presence of unbiased linear approximations still compromises the cipher.

2 Linear Approximations

Throughout the paper we consider a block cipher that operates on b-bit blocks,
and we suppose that all the subkeys for the block cipher are concatenated to
give an expanded-key k for the block cipher. For plaintext p and ciphertext c, a
linear approximation holding with probability 1

2 (1 + ε) is usually written in the
following way

γp · p⊕ γc · c = γk · k,

where γp, γc, and γk represent bit-masks for the plaintext, ciphertext, and ex-
panded key. For convenience, we rewrite this linear expression by considering the
plaintext and ciphertext masks as a combined single 2b-bit data mask α, and we
use γ = γk to give

αT

(
p
c

)
= γTk.
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In its most basic form [10], an analysis using multiple linear approximations uses
a collection α1, . . . , αl of data (plaintext-ciphertext) masks relating to the same1

bit k = γT
k k of key information to obtain the collection of approximations

αT
1

(
p
c

)
= k with probability

1
2
(1 + ε1),

...

αT
l

(
p
c

)
= k with probability

1
2
(1 + εl).

If we have N plaintext-ciphertext pairs
(

p1
c1

)
, . . . ,

(
pN

cN

)
, then we can estimate

the key bit k in the following way. We let V1, . . . , Vl be the counts corresponding
to the data masks α1, . . . , αl, that is

V1 = #
{(

pi

ci

) ∣∣∣∣αT
1

(
pi

ci

)
= 0

}
,

...

Vl = #
{(

pi

ci

) ∣∣∣∣αT
l

(
pi

ci

)
= 0

}
,

and we let Y1 = V1 − N
2 , . . . , Yl = Vl − N

2 denote the centred counts.
For ease of exposition, we now restrict ourselves to the case of two linear

approximations given by data masks α10 and α01 for which we have access to
two centred counters Y10 and Y01. Next we assume that the two approximations
given by α10 and α01 are unbiased and yet the approximation given by the data
mask α11 = α01 + α10 is biased. Further we assume that for whatever structural
or operational reason, we don’t have access to the counter Y11 that is related to
α11 (see Section 5 for an example of this).

Considered individually, neither of the two centred counts Y10 and Y01 of Sec-
tion 2 can ever give any information about the key bit k. This is reflected in the
typical approaches to multiple linear approximations such as those described
in [1,10] which would be unable to recover the key bit with any advantage.
Furthermore, even multidimensional attacks using the unbiased span approxi-
mations α10 and α01 [2] would not be able to handle this situation since our
problem statement explicitly rules out using counts based on α11.

Nevertheless, the purpose of this paper is to highlight the fact that taken
together, the pair of centred counts (Y10, Y01) can be used to recover key in-
formation. The main result we exploit in using unbiased linear approximations
is Theorem 1 of [14]. This essentially states that if the linear approximation
corresponding to α11 is biased, then the two centred counts Y10 and Y01 are
correlated. We can use this correlation between the two centred counts Y10 and
Y01 for unbiased linear approximations to recover key information. In particular,
1 This condition was first relaxed in [11].
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if Y10 and Y01 have the same sign, then this indicates one particular value for
the key bit k is more likely; whereas if Y10 and Y01 have opposite signs, then this
indicates that the other value for the key bit k is more likely.

We now formalise this notion of two unbiased linear approximations to the
same key bit using notation from [14].

Definition 1. Suppose α10 and α01 are the data masks for unbiased linear
approximations for the key bit k, that is

αT
10

(
p
c

)
= k and αT

01

(
p
c

)
= k

each with probability 1
2 . If α11 = α10 + α01 is the data mask for a biased linear

approximation for key bit k, that is

αT
11

(
p
c

)
= (α10 + α01)

T

(
p
c

)
= k

with probability 1
2 (1 + ε) for some ε �= 0, then the two unbiased linear approx-

imations for the key bit k based on the data masks α10 and α01 are entangled
linear approximations2 with entanglement ε.

The goal of our paper. Now our framework has been set we can state the
result of the paper. When we can only examine the two entangled approxi-
mations, we cannot apply typical multiple approximation techniques [1,10] due
to the zero capacity of the available approximations. Further we cannot apply
multidimensional techniques [6,7] since we don’t have access to the full set of
counts related to the full set of approximations generated by the base approx-
imations. Nevertheless, using results in this paper, we are still able to recover
key information.

3 Key Recovery Using Entangled Approximations

We assume that we have N plaintext-ciphertext pairs for a pair of entangled
unbiased linear approximations with entanglement ε. We now derive an asymp-
totically optimal process for recovering the key bit k from the centred counts
Y10 and Y01. We can rewrite the entanglement condition of Definition 1 as

αT
11

(
p
c

)
= (α10 + α01)

T

(
p
c

)
= 0 with probability

1
2
(
1 + (−1)kε

)
.

Section II of [14] gives a bivariate normal distribution for the asymptotic joint
distribution of the normalised centred counts

Z10 =
2√
N

Y10 and Z01 =
2√
N

Y01

2 Note that entanglement is not exactly coincident with statistical dependence since
we specify that the base approximations are unbiased.
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using central limit theory ideas, so we have

Z =
(

Z10
Z01

)
∼ N

( (
0
0

)
;
(

1 (−1)kε
(−1)kε 1

) )
.

Thus we can write Z ∼ N(0; Σk), where

Σk =
(

1 (−1)kε
(−1)kε 1

)
, so

Σ−1
k =

1
1− ε2

(
1 −(−1)kε

−(−1)kε 1

)
.

We can now give the likelihood function of the key bit value k given data z =(
z10
z01

)
for the normalised centred counts as

L(k; z) = (2π)−1 |Σk|−
1
2 exp

(
−1

2
(
z10 z01

)
Σ−1

k

(
z10
z01

))
= (2π)−1 (1− ε2

)− 1
2 exp

(
−1

2
1

(1− ε2)
(
z2
10 + z2

01 − 2(−1)kεz10z01
))

.

This means that the likelihood ratio for key bit k = 1 versus k = 0 is given by

Λ(z) =
L(1; z)
L(0; z)

=
exp

(
− 1

2
1

(1−ε2)

(
z2
10 + z2

01 + 2εz10z01
))

exp
(
− 1

2
1

(1−ε2) (z2
10 + z2

01 − 2εz10z01)
)

= exp
(
− 2ε

1− ε2
z10z01

)
,

so we have the following log-likelihood ratio statistic

log Λ(z) = − 2ε

1− ε2
z10z01.

Thus the log-likelihood ratio statistic is proportional to P (z) = z10z01, or equiv-
alently to P (y) = y10y01 in terms of the unnormalised centred counts. The
Neyman-Pearson Lemma [17] therefore shows that the asymptotically optimal
test of k = 0 versus k = 1 is given by the sign of P (z) or P (y). For example,
for positive entanglement (ε > 0), we choose k = 0 if the centred counts Y10 and
Y01 have the same sign and we choose k = 1 if the centred counts Y10 and Y01
have the opposite signs, and we swap these choices for negative entanglement.

3.1 Success Rates in Using Entangled Approximations

We now calculate the success rates in using the process of Section 3 to recover a
key bit using a pair of entangled unbiased linear approximations. Without loss
of generality, we suppose that the true value of the key bit k is 0 and that the



On Unbiased Linear Approximations 79

entanglement ε > 0. The accuracy probability a(ε) that this process correctly
identifies the key bit value k as 0 is then given by a(ε) = P(P (z) > 0) =
P(z10z01 > 0) = 2P(z10, z01 > 0). Thus this accuracy probability is given by

a(ε) = 2
∫ ∞

0

∫ ∞

0

1
2π(1− ε2)

1
2

exp
(
−
(

z2
10 + z2

01 − 2εz10z01

2(1− ε2)

))
dz10dz01,

where the integrand is the joint density function of normalised centred count
vector Z. The accuracy and error probabilities for certain entanglements ε are
given in Table 1.

Table 1. Theoretical accuracy and error rates for single key bit recovery using entan-
gled approximations with entanglement ε

Entanglement (ε) 0.002 0.004 0.01 0.02 0.04 0.1 0.2 0.4
Accuracy Rate 0.5006 0.5013 0.503 0.506 0.513 0.532 0.564 0.631

Error Rate 0.4994 0.4987 0.497 0.494 0.487 0.468 0.436 0.369

We are usually interested in the case where the entanglement ε is small. We
can write a(ε) = a(0) + a′(0)ε + 1

2a′′(0)ε2 + o(ε3) and calculate:

a(0) = 2
∫ ∞

0

∫ ∞

0

1
2π

exp
(
−1

2
(
z2
10 + z2

01
))

dz10dz01 =
1
2
,

a′(0) = 2
∫ ∞

0

∫ ∞

0

1
2π

z10z01 exp
(
−1

2
(
z2
10 + z2

01
))

dz10dz01 =
1
π

,

a′′(0) = 2
∫ ∞

0

∫ ∞

0

1
2π

(z2
10 − 1)(z2

01 − 1) exp
(
−1

2
(
z2
10 + z2

01
))

dz10dz01 = 0.

For small ε, we can therefore express the accuracy probability as

a(ε) = 1
2 + ε

π + o(ε3),

which gives the error probability as 1− a(ε) ≈ 1
2 −

ε
π .

These success rates for the recovery of a single key bit k from a pair of entan-
gled unbiased linear approximations do not explicitly depend on the number N
of plaintext-ciphertext pairs. Thus the expression for success rate a(ε) = 1

2 + ε
π is

valid for any sample size N large enough for the central limit normal approxima-
tion to be valid. It would therefore be reasonable to approximate the distribution
of the data class count vector as a multivariate normal random variable with, for
example, N = 64 plaintext-ciphertext pairs. Furthermore, increasing the number
of plaintext-ciphertext pairs beyond a point at which the normal approximation
is reasonable does not materially improve the accuracy of the process.
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3.2 Experimental Confirmation

To illustrate our analysis we consider some experiments using reduced-round
versions of the DES [15], using the notation given by [12]. We first consider a
reduced-round version of DES with three rounds and the following pair of linear
approximations:

PH [7, 18, 24, 29]⊕ CH [7, 18, 24, 29] = K1[22]⊕K3[22], and
PL[15]⊕ CL[15] = K1[22]⊕K3[22].

In the notation of Section 3, we have

αT
10

(
p
c

)
= PH [7, 18, 24, 29]⊕ CH [7, 18, 24, 29],

αT
01

(
p
c

)
= PL[15]⊕ CL[15], and

γT k = k = K1[22]⊕K3[22].

By considering the structure of DES, it can be confirmed that these approxima-
tions are unbiased. Then considering the data mask α11 = α10 + α01 we obtain

αT
11

(
p
c

)
= PH [7, 18, 24, 29]⊕ PL[15]⊕ CH [7, 18, 24, 29]⊕ CL[15].

This data mask coincides with Matsui’s best three-round linear approximation

αT
11

(
p
c

)
= k and so it has an has imbalance 0.391 [12]. As a result, the above

pair of unbiased linear approximations are entangled linear approximations with
entanglement ε = 0.391.

The experimental success rates for key bit recovery using the above pair of
three-round entangled linear approximations are given in Table 2. This table
also gives experimental success rates for key bit recovery for the following pair of
four-round entangled linear approximations with entanglement ε = −0.122 [12]:

PH [7, 18, 24, 29]⊕ CL[7, 18, 24, 29] = K1[22]⊕K3[22]⊕K4[42, 43, 45, 46],
PL[15]⊕ CH [15]⊕ CL[27, 28, 30, 31] = K1[22]⊕K3[22]⊕K4[42, 43, 45, 46].

The structure of DES can be used to confirm that these two approximations are
unbiased. The experimental success rates in Table 2 are based on 10,000 trials.

Table 2. Success rates for key bit recovery for three- and four-round DES using en-
tangled approximations. Results are based on 10,000 trials.

Number of plaintext-
ciphertext pairs (N) 25 26 27 28 29 Theoretical

prediction
Three-round experiment 0.6153 0.6305 0.6294 0.6301 0.6265 0.6279
Four-round experiment 0.5345 0.5432 0.5440 0.5425 0.5358 0.5388
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4 Entangled Approximations and Large Data Sets

We saw in Section 3.1 that we can make an estimate for the key bit k using en-
tangled approximations based on an asymptotic normal approximation, provided
that the number N of plaintext-ciphertext pairs exceeds some bound. Suppose
now that we have n such estimates for the key bit k, each based on a packet of
N plaintext-ciphertext pairs. This gives a process for recovering the key from
T = nN plaintext-ciphertext pairs; given the results for n packets of size N we
should clearly choose the value of the key bit k that is given by the majority of
the packets.

We now determine the success rate of such a packet-based process. The prob-
ability that an individual packet gives the correct value of the key bit k is 1

2 + ε
π .

Thus the number of correct key values in a set of n packets has the following
distribution

Bin
(
n, 1

2 + ε
π

)
≈ N

(
n
2 + nε

π ; n
4

)
.

Thus the probability that at least half of the n packets give the correct value for
the key bit k is 1−φ

(
− 2ε

√
n

π

)
= φ

(
2ε

√
n

π

)
, where φ is the cumulative distribution

function of a standard normal random variable. Thus over n packets of size N ,
where N exceeds the lower threshold established in Section 3.1, the success rate
is given by p = φ

(
2ε

√
n

π

)
. Alternatively, for a given success rate p, we require

n =
(

π
2ε

)2
φ−1(p) packets.

4.1 Experimental Confirmation

We illustrate the use of packets of texts with entangled approximations by con-
sidering the same entangled approximations for reduced-round versions of DES
as we considered in Section 3.2. Table 3 gives the success rates for key bit re-
covery using the entangled approximations of Section 3.2 when using packets of
text. Each packet contains N = 64 plaintext-ciphertext pairs, and the success
rates are based on 10,000 trials.

Note that if we were to use packets of size one, i.e. N = 1, then our method
would coincide with regular linear cryptanalysis with imbalance ε. However the
situations of interest to us in this paper, for instance in Section 5, exclude us

Table 3. Success rates for key bit recovery for three- and four-round DES using en-
tangled approximations and packets consisting of 64 plaintext-ciphertext pairs. Results
are based on 10,000 trials.

Number of
packets (n)

23 24 25 26 27 28 29

Three-round experiment 0.7597 0.8527 0.9270 0.9782 0.9975 1.0000 1.0000
Theoretical prediction 0.7585 0.8394 0.9197 0.9764 0.9975 1.0000 1.0000

Four-round experiment 0.5860 0.6223 0.6588 0.7231 0.8123 0.8890 0.9606
Theoretical prediction 0.5866 0.6216 0.6693 0.7321 0.8094 0.8922 0.9601
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from this case. For packet sizes 2 ≤ N ≤ 63 we don’t have a fully-satisfactory
theoretical model, but experimental results given in Table 4 confirm the following
intuition. For a fixed number of texts, larger packets necessarily implies less
packets and we are exploiting the underlying information less efficiently. This
translates into reading down a column in Table 4 which illustrates a reduced
success rate. For a given packet size, i.e. reading across a row in Table 4, more
data translates into more packets and hence an increased success rate.

Table 4. Success rates using the entangled approximations over four-round DES when
the total number of available texts is split into packets of size N . Results are based on
10,000 trials.

Total number of texts T
26 27 28 29 210 211 212

20 0.8346 0.9155 0.9741 0.9970 1.0000 1.0000 1.0000
21 0.6319 0.6869 0.7512 0.8343 0.9149 0.9786 0.9966

↑ 22 0.6135 0.6456 0.7073 0.7769 0.8656 0.9432 0.9866
N 23 0.5840 0.6154 0.6465 0.7184 0.7909 0.8806 0.9490
↓ 24 0.5488 0.5709 0.6173 0.6694 0.7307 0.8030 0.8871

25 0.5459 0.5577 0.5813 0.6215 0.6695 0.7333 0.8116
26 0.5432 0.5405 0.5553 0.5860 0.6223 0.6588 0.7231

5 Separating Plaintext and Ciphertext

We can imagine situations where the connection between a plaintext and a ci-
phertext block is not known to the cryptanalyst. In a communication or transmis-
sion scenario, blocks might be delivered out of sequence or their ordering might
be hidden or affected by some application. In another situation, cryptanalysis
of an encrypted database can be practically thwarted when the correspondence
between a database query (the plaintext) and its true location in the encrypted
column or row (the ciphertext) is unknown. In such situations, existing linear
cryptanalysis cannot be applied since analysis requires that a plaintext and its
corresponding ciphertext be matched together and treated at the same time.3

However we can still use the ideas in this paper to recover the key.
To demonstrate this we consider Matsui’s best five-round approximation of

DES [12]. Define the key bit

k = K1[42, 43, 45, 46]⊕K2[22]⊕K4[22]⊕K5[42, 43, 45, 46],

and then Matsui’s approximation, for which ε = 0.038, is given by

PH [15]⊕ CH [15]⊕
PL[7, 18, 24, 27, 28, 29, 30, 31]⊕ CL[7, 18, 24, 27, 28, 29, 30, 31] = k.

3 While näıvely one might suggest that all the different plaintexts and ciphertexts be
tried in all combinations, it is clear that this would be completely impractical.
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Now consider launching an attack when the association between plaintext and
ciphertext is lost; the attacker does not know which ciphertext corresponds to
which plaintext. Perhaps we can envisage a less drastic situation where the cor-
relation between plaintext and ciphertext is not completely lost and the at-
tacker knows that groups of ciphertext correspond to groups of plaintexts, but
inside each group the attacker is unsure which plaintext should be associated
with which ciphertext. In either case regular linear cryptanalysis cannot be used
since the attacker cannot compute the necessary counters. But using entangled
approximations we can recover key information in both situations.

To see this, consider the two linear approximations

PH [15]⊕ PL[7, 18, 24, 27, 28, 29, 30, 31] = k, and
CH [15]⊕ CL[7, 18, 24, 27, 28, 29, 30, 31] = k.

The first approximation does not depend on the ciphertext and the second does
not depend on the plaintext. Both linear approximations are unbiased, however
the two approximations are entangled since they are derived from Matsui’s best
five-round DES approximation.

Therefore using the techniques in this paper we can recover the key. We can
do this when complete correlation is lost, by considering one packet of text as
in Section 3.2, or we can use the techniques in Section 4 in the more practical
situation where some packet-level correlation between plaintext and ciphertext
remains. Table 5 gives the experimental success rates in the first instance, when
using a varying number of plaintext-ciphertext pairs, and the success rate for this
method is given by 1

2 + ε
π . Meanwhile Table 6 confirms the predicted success rates

when using the techniques of Section 4 for multiple packets, with each packet
consisting of 64 plaintext-ciphertext pairs. The experimental success rates for
both tables are based on 10,000 trials.

Table 5. Success rates for key bit recovery for five-round DES using entangled approx-
imations with the separation of plaintext and ciphertext. Results are based on 10,000
trials.

Number of plaintext-
ciphertext pairs (N) 25 26 27 28 29 Theoretical

prediction
Five-round experiment 0.5092 0.5024 0.5252 0.5165 0.5127 0.5121

Table 6. Success rates for key bit recovery for five-round DES using entangled approx-
imations with the separation of plaintext and ciphertext and packets consisting of 64
plaintext-ciphertext pairs. Results are based on 10,000 trials.

Number of
packets (n) 23 24 25 26 27 28 29

Five-round experiment 0.5282 0.5442 0.5501 0.5762 0.6116 0.6464 0.7013
Theoretical prediction 0.5274 0.5388 0.5547 0.5771 0.6084 0.6514 0.7090
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5.1 Discussion

It is important to emphasize exactly what the separation of plaintext and cipher-
text entails. In both experiments, with a single packet or multiple packets, the
data processing involves a plaintext counter and a ciphertext counter. The two
counters are entirely separate. Thus we have an analysis using multiple linear ap-
proximations in which the plaintext and ciphertext are processed independently.

There is, of course, a small cost which can be manifested as either a modest re-
duction to the success rate or a moderate increase in the amount of text required
for an unchanged success rate (when compared to regular linear cryptanalysis).
To see the increase in text required, we note that regular cryptanalysis with a
single approximation with imbalance ε needs(

φ−1(p)
ε

)2

plaintext/ciphertext pairs to achieve a success rate p. Using entangled linear
approximations, with n packets of sufficient large size, the number of packets
needed to achieve a success rate p is

n =
(

πφ−1(p)
2ε

)2

.

As was pointed out previously, once we have a sufficiently large packet, the
success rate no longer depends on the size of the packet so packets of size N = 64
will be sufficient. We therefore expect to attain the same success rate using
separated plaintext-ciphertext instead of regular linear cryptanalysis when we
have π2

4 × 26 = 27.3 times the data. This result is confirmed experimentally for
four-round DES in Table 7.

Table 7. Success rates with entangled approximations and theoretical success rates
with regular linear cryptanalysis over four-round DES

Number of plaintext-
ciphertext pairs (T ) 21.7 22.7 23.7 24.7

Success rate (regular) 58.67 62.17 66.94 73.23

Number of plaintext-
ciphertext pairs (T ) 29 210 211 212

Success rate (entangled) 58.60 62.23 65.88 72.31

Note that we are not proposing that entangled approximations be used to
replace regular linear cryptanalysis. Instead we are showing that there are sit-
uations where regular linear cryptanalysis cannot be used but entangled linear
approximations can still give us information about the key.
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6 Conclusions

In this paper we have shown that we can recover key information when using
only unbiased linear approximations. In Section 5 we demonstrated a practi-
cal situation where by using multiple linear approximations in an entirely novel
way—two separate approximations involving only plaintext and ciphertext bits
respectively—we can extract key information when all existing techniques would
fail. However, while much of the underlying analysis has been demonstrated in
this paper the practical implications of entanglement still remain to be quanti-
fied. One particularly interesting situation would be using these techniques on
the constituent components of ciphers. Some other directions for futher work
might also include analysis in the direction of Matsui’s Algorithm 2 [12], the
further development of the statistical models that depend on entanglement, and
an extension to linear approximations that depend on more than one key bit.
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Abstract. Hamsi is one of 14 remaining candidates in NIST’s Hash
Competition for the future hash standard SHA-3. Until now, little anal-
ysis has been published on its resistance to differential cryptanalysis,
the main technique used to attack hash functions. We present a study
of Hamsi’s resistance to differential and higher-order differential crypt-
analysis, with focus on the 256-bit version of Hamsi. Our main results
are efficient distinguishers and near-collisions for its full (3-round) com-
pression function, and distinguishers for its full (6-round) finalization
function, indicating that Hamsi’s building blocks do not behave ideally.

Keywords: hash functions, differential cryptanalysis, SHA-3.

1 Introduction

Hash functions are one of the most ubiquitous primitives in cryptography, with
digital signatures and integrity checks as their main applications. Collision at-
tacks on the deployed standards MD5 and SHA-1 [18, 19,20,21] have weakened
the confidence in the MD family of hash functions. Hence, the US Institute of
Standards and Technology (NIST) launched a public competition to develop a
future SHA-3 standard [13].

The hash function Hamsi [8] is one of 64 designs submitted to NIST in fall
2008. Hamsi is also among the 14 submissions selected for the second round
of the competition in July 2009 as one of the few submissions with no major
weaknesses detected thus far. While Hamsi reuses the round components of the
Serpent block cipher [5], its larger block size and different round structure make
existing cryptanalytic results on Serpent hardly useful in its security analysis.

So far, little research has been published on the resistance of Hamsi to common
cryptanalytic attacks: in a work independent from ours, Çalık and Turan studied

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 87–103, 2010.
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differential properties of Hamsi-256, and presented message-recovery and pseudo-
second-preimage attacks. Near collisions were studied by Nikolić [12] and Wang
et al. [17], as discussed in Section 4.3.

We study the resistance of Hamsi to differential and higher-order differential
cryptanalysis, with focus on the 256-bit version Hamsi-256. In Section 3, we
show by higher-order analysis that the 3-round compression function of Hamsi-
256 does not achieve maximal degree. This is demonstrated by showing that the
output of certain related chaining values (with fixed message word) or related
message words (with fixed chaining value) sums to zero with a high probability.

In Sections 4 and 5, we focus on differential cryptanalysis and construct high-
probability differential paths for the 3-round compression function as well as the
full 6-round output transformation. The former gives near-collisions on (256−25)
bits of the compression function output, with only six differences in the input
chaining value. Section 4 describes a technique for building low-weight, high-
probability differential paths for Hamsi. Finally, Section 5 presents differential
paths for six rounds of Hamsi-256 that show that the output transformation of
Hamsi-256 does not behave ideally.

2 Description of Hamsi-256

This section describes the hash function Hamsi-256, henceforth just called Hamsi.
We refer to [8] for a complete specification.

2.1 High-Level Structure

Like most hash functions, Hamsi builds on a finite-domain compression function,
which is used to process arbitrary-length messages through the use of a domain
extender (or operation mode). The compression function of Hamsi can be divided
into four operations:

Message expansion E : {0, 1}32 → {0, 1}256

Concatenation C : {0, 1}256 × {0, 1}256 → {0, 1}512

Non-linear permutations P, Pf : {0, 1}512 → {0, 1}512

Truncation T : {0, 1}512 → {0, 1}256

The message M to hash is appropriately padded and split into � blocks of 32 bits:
M1, . . . , M�. Each block is iteratively processed by the compression function,
which operates on a 512-bit internal state viewed as a 4×4 matrix of 32-bit
words.

Figure 1 depicts an iteration of the compression function H (or Hf ). Starting
from the predefined initial value (IV) h0, Hamsi iteratively computes the digest
h of M as follows:

hi = H(hi−1, Mi) = (T ◦ P ◦ C(E(Mi), hi−1))⊕ hi−1 for 0 < i < � ,

h = Hf (h�−1, M�) = (T ◦ Pf ◦ C(E(M�), h�−1))⊕ h�−1 .
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concatenation C

message expansion

truncation T

non-linear permutation P /Pf

Mi hi

hi+1

E(Mi)

Fig. 1. Domain extension algorithm of Hamsi

2.2 Internals of the Compression Function of Hamsi

Message expansion. The message expansion of Hamsi uses a linear code to
expand a 32-bit word into eight words (that is, 256 bits). We write an expanded
Mi as (m0, . . . , m7). Thus, the mj ’s are defined as the product of a multiplication
with the generator matrix of the code:

E(Mi) = (m0, . . . , m7) = (Mi ×G) ,

where G can be found in [8].

Concatenation. The concatenation function C forms a 512-bit internal state
from the 256-bit expanded message (m0, . . . , m7) and the 256-bit incoming chain-
ing value hi = (c0, . . . , c7) (Figure 2):

C(m0, . . . , m7, c0, . . . , c7)=(m0, m1, c0, c1, c2, c3, m2, m3, m4, m5, c4, c5, c6, c7, m6, m7),

m3

m0 m1 c0 c1

c2 c3 m2

m4 m5 c4 c5

c6 c7 m6 m7

concatenation C
(m0, m1, . . . , m7, c0, c1, . . . , c7)

Fig. 2. Concatenation of expanded message words m0, . . . , m7 and chaining value words
c0, . . . , c7 in Hamsi

Truncation. The truncation function T selects eight 32-bit words among the
16 from the internal state to form the new chaining value after feedforward
(Figure 3):

T (s0, s1, s2, . . . , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11) .

truncation T

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

s0 s1 s2 s3

s8 s9 s10 s11

Fig. 3. Truncation selects eight out of 16 words of the internal state
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Permutations. Finally, we describe the permutations P and Pf . They only
differ in the number of rounds (three for P and six for Pf )1 and in the round
constants. The round function is composed of three layers. First, constants and
a counter are XORed to the whole internal state. Then there is a substitution
layer, followed by a linear layer.

The substitution layer uses one 4-bit Sbox of the block cipher Serpent [5], in a
bitsliced way. That is, four bits, one from each of the four 32-words of the same
column in the 4×4 internal state matrix are first extracted and then replaced
after application of the Sbox. We denote sj

i the j-th bit of the internal state
word si. The substitution layer can be described as follows, for 0 ≤ j ≤ 31 and
0 ≤ i ≤ 3:

(sj
i , s

j
i+4, s

j
i+8, s

j
i+12) := S(sj

i , s
j
i+4, s

j
i+8, s

j
i+12) ,

where S is the 4×4 Sbox given in Table 7 (Appendix A).
The linear diffusion layer applies the Serpent linear transform L : {0, 1}128 →

{0, 1}128 to each of the four diagonals of the state, as follows:

(s0, s5, s10, s15) := L(s0, s5, s10, s15)
(s1, s6, s11, s12) := L(s1, s6, s11, s12)
(s2, s7, s8, s13) := L(s2, s7, s8, s13)
(s3, s4, s9, s14) := L(s3, s4, s9, s14) .

The algorithm below (read column by column) describes the linear transform L
on input (a, b, c, d), with x ≪ k denoting the left bit rotation of k positions on
the word x and x  k denoting the left bit shift of k positions on the word x.

a := a ≪ 13 d := d ≪ 7
c := c ≪ 3 a := a⊕ b ⊕ d
b := a⊕ b⊕ c c := (b  7)⊕ c⊕ d
d := (a  3)⊕ c⊕ d a := a ≪ 5
b := b ≪ 1 c := c ≪ 22

3 Higher-Order Differential Analysis

This section reports on properties of Hamsi related to higher-order derivatives.
After some definitions, we present upper bounds on the algebraic degree of
Hamsi’s compression function and show how to exploit them to find “k-sums”
and “zero-sums”. This illustrates the fact that, due to its low algebraic degree,
the compression function of Hamsi does not behave ideally.

3.1 Definitions

Higher-order derivatives. Higher-order differential analysis [7, 10] of crypto-
graphic algorithms generalizes the notion of differential cryptanalysis by

1 While 6 rounds remains the official parameter, the designer has suggested 8 rounds
as a conservative alternative. Our results indicate that moving to 8 rounds may be
a necessary precaution.
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considering derivatives of order two or more. It is based on the basic observation
that for a function f with algebraic degree s ≥ 1, the degree of a dth-order
derivative of f is at most (s − d), where s ≥ d. Consequently, an sth-order
derivative of f is a constant and an (s + 1)st-order derivative of f is zero, which
directly gives a 2s+1-sum for f .

In the following we consider derivatives of functions with domain {0, 1}n,
n ≥ 1 and range {0, 1}. Note that a (certain type of) d-th order derivative is
then the XOR of 2d values of the function for the 2d choices of d input bits.

k-sums. The k-sum problem is, given k lists of random n-bit values (for ex-
ample, k distinct instances of a compression function f1, . . . , fk) , to find one
value from each list such that the sum of the k values is zero. The case k = 2 is
essentially the collision problem.

The k-sum problem can be solved in polynomial time (using the XHASH at-
tack [2]) when k ≥ n. However, the problem is believed to be hard for small k.
The standard method for the k-sum problem with small k is Wagner’s “general-
ized birthday” method, which requires time and space O(k2n/(1+log k)) [16] (see
also [3]).

Henceforth, we consider the problem of finding k values whose images by a
same function f sum to zero. Note that if f has degree s < (n− 1), then a 2s+1-
sum can be found by returning the values corresponding to a (s + 1)st order
derivative.

An example of application of k-sums is to forge message authentication codes
(MACs). Let H he a hash function and consider the “prefix-MAC” construction
defined as MACK(m) = trunc (H(K‖m)), where trunc is a function removing
some bits of the hash output to combat length extension attacks. Assume we
know messages m1, . . . , mk such that the probability

Pr
K

[
k⊕

i=1

H(K‖mi) = 0

]
= p

is nonzero. Then by querying MACK with m1, . . . , mk−1 we can determine
MACK(mk) with probability p and thus break the existential forgery of MAC.

This can be generalized to messages whose MAC tags sum to any fixed value,
to other MAC constructions, etc. For example, one may fix a message and forge
the MAC HK(m) where K is the IV of H by making related-key queries.

Zero-sums. We define the zero-sum problem as a particular case of the k-sum
problem: given a function f , find distinct values that sum to zero such that their
images by f also sum to zero.

Both the XHASH attack [2] and Wagner’s generalized birthday [16] can be
adapted to find zero-sums. These methods are generic, and are probabilistic
algorithms whose failure probability can be made exponentially small.

3.2 On the Degree of the Compression Function

Simple bounds. The only nonlinear component of Hamsi’s compression func-
tion is the layer of 4×4 Sboxes. One round thus has degree three (see [14] for
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explicit expressions of the Sboxes used), so N rounds have degree at most 3N ,
with respect to any choice of variables.

If variables are chosen in c0, . . . , c3 only, or in c4, . . . , c7 only, then they are
all in distinct slices and thus go into distinct Sboxes in the first round. Hence,
the first round is linear and after N rounds, the degree is at most 3N−1. This
means that the degree is at most 81 after five rounds, and that at least six rounds
are necessary to reach maximal degree. In particular, the 3-round compression
function has degree at most 9 with respect to choices of 128 variables in distinct
slices, which distinguishes it from a randomly chosen function (whose degree
would be below 9 with negligible probability).

Case of four variables. If four variables are chosen in the LSB’s of c0, . . . , c3,
after the first application of the Sbox, all the LSB’s of a given word depend
on the bit varied in the corresponding column. Since only one bit is varied per
column, the degree of equations corresponding to LSB’s are of degree 1. Then,
the linear function L(a, b, c, d) is applied to each column, and we can determine,
for a given bit of the state, whether it depends on the single variable of its
diagonal. Based on this, we can determine whether a given 4-bit slice depends
on 1, 2, 3, or 4 of the variables.

A simple computer-assisted analysis revealed that each slice depends on only
one variable. Therefore, the (3-round) compression function of Hamsi always has
degree 3 with respect to four variables in the first four LSB’s, for any values of
the other bits. Ideally, the function should have degree 4 with probability 1/2,
over the choice of the other input bits.

3.3 Finding k-sums for the Compression Function

For randomly chosen 256-bit values, finding 4-sums for the compression function
of Hamsi requires an effort of complexity approximately 4 · 2256/3 ≈ 287, using
the generalized birthday method. Below we show efficient methods to find 16-,
8-, and 4-sums.

16-sums. Recall the above observation that three rounds have degree at most 3
with respect to a certain choice of four variables. This observation can directly be
used to find 16-sums, without any computation. Based on empirical observations,
we discovered that we can do better, as presented below.

8-sums. Choose a random value of one 256-bit chaining value, then select seven
other chaining values, which are different from the first one only in the LSB’s of
the first three 32-bit words. Denote these chaining values by h0, . . . , h7. Choose
a random 32-bit message block M , then compute

∑7
i=0 H(hi, M), In 1 000 000

such tests, the above sum was zero in 1458 cases (whereas for a random mapping,
the probability to obtain zero is negligible). This indicates that there are 3rd-
order derivatives with the value zero (or 8-sums) of a high probability for the
compression function of Hamsi. It is very likely that one can identify other 3rd-
order derivatives of higher probabilities (our search was limited).
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4-sums. We found 2nd-order derivatives with value zero, that is, 4-sums. One
example is when one chaining value is the IV of Hamsi specified in [9], and where
the three others differ only in two LSB’s of the second words; the XOR of the
four outputs is the all-zero string (note that the four inputs also sum to zero,
thus this is also a zero-sum).

Via an exhaustive search over all 232 message words, we identified 70 messages
for which the above four chaining values lead to a 4-sum. We also found 4-sums
for the IV given in [8], for 86 values of the 32-bit message block. Although
complete analytical justification of these observations remains to be found, the
results of these observations strongly differ from what one obtains for a random
mapping (for which a 2nd-order derivative is zero with negligible probability).

k-sums for fixed chaining value. Here we report on the case where the
chaining value is fixed and where only the message block is varied. The outputs
of the compression function in this case has a much higher algebraic degree.

Consider h0, the IV specified in [9], and 219 values of the 32-bit message block
obtained by varying the first and second bytes, and the three least significant bits
of the third byte. The remaining bits can be fixed to arbitrary values. Denoting
these message words by m0, . . . , m219−1, we have:

219−1⊕
i=0

H(h0, mi) = 0 .

This observation holds for any initial chaining variable. Here we obtain zero
because we perform a 19th-order derivative of a function of degree 18 only.
Indeed, in the first round at most two bit variables enter a same Sbox, hence
the degree of the first round is 2. Since the two subsequent rounds have degree
3 each, the three rounds have degree 2× 3× 3 = 18.

Note that if Pf is replaced by P in Hamsi’s domain extender, then the above
observation can be used to forge MAC’s (cf. Section 3.1), which shows that the
extended 6-round output transformation is necessary, and cannot be removed
without compromising the security of Hamsi.

3.4 Finding Zero-Sums for the Output Permutation

We describe a dedicated method to find large zero-sums for the 6-round per-
mutation of the finalization function of Hamsi(we stress that it only applies to
the internal permutation and not to the finalization as a whole, for it puts no
restriction on the initial state). Contrary to Wagner’s and the XHASH methods,
it is deterministic rather than probabilistic, and needs to evaluate (and to know)
only half the function.

In the spirit of [15, §9], we present an “inside-out” technique that exploits
the fact that two halves of Hamsi’s permutation have low algebraic degree. This
differs from our method for finding k-sums which exploited the low degree of the
full permutation. The attack works as follows:
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1. Choose an arbitrary value for the state of Hamsi’s permutation after three
rounds.

2. Choose 28 distinct bits of the state.
3. Compute the 228 initial states obtained by varying these bits and inverting

the first three rounds of the permutation.

We obtain 228 values that sum to zero, since their sum is the 28th-order derivative
with respect to three inverse rounds. Their images also sum to zero, since they
are the 28th-order derivative with respect to three forwards rounds (although
the images are unknown, and need not be computed).

The method works whenever a function can be written as the composition of
two low-degree functions. As explained in [4], the proposed technique is slightly
more efficient than previous methods, for finding (here) zero-sums of 228 elements.

4 First Order Differential Analysis

In this section, we analyze the differential properties of the Hamsi round trans-
formations and show how to find high-probability differential paths for up to six
rounds. Since we use XOR differences in our analysis, the differential propaga-
tion is deterministic in the message expansion and in the linear layer based on
the L transform. However, the propagation of differences through the Sbox layer
is probabilistic and depends on the actual values of the input. To maximize the
differential probability of a differential path, we try to minimize the number of
active Sboxes during the path search.

4.1 Differential Properties of the Sbox

The differential distribution table (DDT) of the 4-bit Hamsi Sbox S is given
in Table 8 (Appendix A). Note that about half the differential transitions are
impossible. The probabilities of the non-zero differentials are either 2−2 or 2−3.
In our approach, besides minimizing the number of active Sboxes, we thus try
to minimize the number of probability-2−3 differentials.

4.2 Differential Properties of the Linear Transform L

The linear transform L has on average good diffusion properties, that is, a few
differences in the input lead to many differences in the output. Additionally,
each bit of L contributes to one of the 128 Sboxes in each round. To minimize
the number of active Sboxes, we thus need to minimize number of differences
in L. The Hamming weight (HW) of a difference is a good heuristic to measure
the quality of a differential path. In the following, we first analyze the difference
propagation through the linear layer for differences with HW one.

If we introduce a single input difference at bit position i in one input word,
the HW of the output differences depends on the position and word of the input
difference. In Table 1 and Table 2 give the HW of the output difference for each
of the 128 single bit input differences.
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We observe that for some specific words and bit positions, the resulting HW
can be quite small. This happens if one or more differences are removed by the
shift operation. More specifically, the branch number of L is only 3, so certain 1-
bit input differences lead to only a 2-bit output difference, and vice versa. Table 1
and Table 2 show the worst case of diffusion, that is, the output HW for a multiple-
bit input difference can be upper bounded by summing the corresponding table
entries. However, when inserting many differences in several input words, some
bit differences might erase each other, thus lowering the overall HW.

Table 1. Hamming weight of output differences if a single difference is introduced at
one input word of the 128-bit linear transformation (a′, b′, c′, d′) = L(a, b, c, d) of Hamsi
in forward direction. The total and word-wise Hamming weight of the output difference
is given depending on the bit position i and input word of the input difference.

Difference in Position i of Total HW of HW of output diff. in Conditions (mod 32)input word input difference output diff. a′ b′ c′ d′

a

16,17 3 2 1 - - i + 13 > 28, i + 14 > 24
18 4 2 1 1 - i + 13 > 28, i + 14 ≤ 24

11. . . 15 6 3 1 1 1 i + 13 ≤ 28, i + 14 > 24
else 7 3 1 2 1 i + 13 ≤ 28, i + 14 ≤ 24

b
24. . . 30 2 1 1 - - i + 1 > 24

else 3 1 1 1 - i + 1 ≤ 24

c
21. . . 27 6 2 1 2 1 i + 4 > 24

else 7 2 1 3 1 i + 4 ≤ 24

d 3 1 - 1 1

Table 2. Hamming weight of input differences if a single difference is introduced at one
output word of the 128-bit linear transformation (a′, b′, c′, d′) = L(a, b, c, d) of Hamsi in
backward direction. The total and word-wise Hamming weight of the input difference
is given depending on the bit position i and output word of the output difference.

Difference in Position i of Total HW of HW of input diff. in Conditions (mod 32)output word output difference input diff. a b c d

a′ 2. . . 4 2 1 1 - - i + 27 > 28
else 3 1 1 - 1 i + 27 ≤ 28

b′
28. . . 31 3 1 2 - - i > 28, i > 24
25. . . 28 4 1 2 - 1 i ≤ 28, i > 24
never 6 1 3 1 1 i > 28, i ≤ 24
else 7 1 3 1 2 i ≤ 28, i ≤ 24

c′ 3 - 1 1 1

d′ 29. . . 31 4 1 - 1 2 i > 28
else 5 1 - 1 3 i ≤ 28

4.3 Near-Collisions for the Compression Function

Using our observations on the differential properties of Hamsi’s Sbox and linear
transform, we first searched manually for high-probability paths leading to near-
collisions for the compression function, given some difference in the chaining value.
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Previous work by Nikolic reported near collisions [12] on (256− 25) bits with
14 differences in the chaining value; work by Wang et al. reported [17] near
collisions on (256− 23) bits with 16 differences. Below we present near collisions
on (256 − 25) bits with only six differences in the chaining value, using the
differential path in Table 3.

Table 3. Differential path for three rounds of Hamsi with probability 2−26

It. Sbox input Sbox output Prob.

1

00000000 00000000 00020000 00000002
00004000 00000000 00000000 00000000
00000000 00000000 00020000 00000002
00004000 00000000 00000000 00000000

00000000 00000000 00000000 00000002
00004000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00020000 00000000

8

2

00000000 00000000 00000000 00080000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00080000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00080000

3

3

80000000 00000000 02000000 00000000
00000000 00000000 00000000 00100000
00020000 00000000 00010000 00000000
00000000 00000000 00000000 04000000

00000000 00000000 00000000 04100000
80020000 00000000 02010000 04100000
00020000 00000000 00000000 00000000
80000000 00000000 02010000 00000000

15

End

00000000 80400800 00000000 10C130C0
00040105 00000000 04020000 08000000
00020400 A040A0A2 00000000 10004000
00000040 08000000 00820801 00000000

The differential path in Table 3 is followed with probability 2−26 under stan-
dard uniformity and independence assumptions. However, for the IV defined
in [9] the path is followed with probability 2−23. This is because of the condi-
tion put by the two fixed bits in each Sbox. These probabilities were verified
experimentally.

Finally, note that the near collisions also result in other 4-sums: for example,
for the IV h0 specified in [9], the IV h1 obtained by applying the weight-6 initial
difference in Table 3, and the message M1=C33BE456 and M2=C8D1B855, we have:

1. A near collision between H(h0, M1) and H(h1, M1).
2. A near collision between H(h0, M2) and H(h1, M2).
3. A 4-sum H(h0, M1)⊕H(h1, M1)⊕H(h0, M2)⊕H(h1, M2) = 0.

For inputs of an “ideal” function, the latter equality is unlikely to hold with
probability 2−23, but rather with probability close to 2−256.

In the following, we automate our search for high-probability differential
paths. Our heuristic algorithm, described in the next section, produced good
differential paths for up to six rounds of Hamsi.

4.4 Automated Differential Path Search

As before, we search for differential paths with some difference in the input and
output chaining value, and no difference in the input message. The resulting
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6-round paths allow us to distinguish the output transform from random, as
shown in Sect. 5.4.

Our primary heuristic is to minimise the HW of the differences in each round.
To achieve that goal, we start with a very low HW (1 or 2 bit) difference in the
middle of the path (at the start of round 3 for a 6-round search) and let the
difference spread in both forward and backward directions. Additionally, we try
to maximise the transition probabilities and randomize the search.

More precisely, our automated differential path starts from the input of the
Sbox layer in round 3, forcing a 1-bit or 2-bit input difference on only one Sbox
position i (among the 128 possible bit positions). We then choose one of the best
differential transitions through the forward application of the Sbox and apply
the linear layer on this new internal state. By best Sbox transitions, we mean
the transitions that lead to a low HW after the application of the linear layer. To
keep the search complexity feasible, we apply the L-layer to each active S-box
separately and use the sum of the HWs as an estimate of the total output HW
at the end of each round. Since the path is sparse, the sum of HWs proves to
be a good heuristic. We continue picking the best differential transitions for all
the active Sbox positions until the end of the fifth round of the output function
of Hamsi. As the final output HW of the difference does not influence the path
complexity, we optimise for transition probabilities in the last round, and pick
the most probable differential Sbox transitions (not the ones minimizing the
HW). Finally, we apply the very last linear layer to obtain the full path.

The backward computation is done analogously in the middle rounds, apply-
ing the linear layer backward and picking the best backward differential transi-
tions for all active Sboxes. In the first round (the last round when computing
backward) we impose additional restrictions in order to fulfill constraints on the
message expansion.

As we force no difference in the message input of the compression function,
we expect the 256-bit expanded message word to contain no difference at all.
Hence, in the first round we only allow Sbox transitions where the difference in
the expanded message bits is zero. Note that the probabilities of the first-round
transitions do not affect the complexity of the path, as long as they are different
from 0. Indeed, in the first round we can use the freedom of the chaining input
to fulfill the conditions on the Sboxes and we expect the complexity cost of this
first round to be negligible.

In order to increase our chances to obtain a good trail, we randomized the
search with several parameters. First, we randomized the first 1-bit or 2-bit per-
turbation introduction in the output of round 3, as well as its position i among
the 128 Sbox locations. Furthermore, we are also randomizing the Sbox transi-
tions when several candidates are equally good. Finally, another improvement
has been incorporated in our implementation: after having found a potentially
interesting 6-round candidate, we recompute the forward search by allowing
more differential transitions through the Sbox. Said in other words, after hav-
ing placed ourselves in an interesting differential paths subspace, we look in the
neighborhood if better ones exist.
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Our heuristic search revealed that after three rounds in both backward and for-
ward directions, the diffusion of Hamsi is not sufficient to avoid high-probability
differential paths and we can find a differential path with a rather low total HW
and good probability. We were able to construct a 6-round differential path with
a relatively high probability, which is used to distinguish the the whole Hamsi
output transformation in the following section.

5 Non-randomness of the Ouput Transformation

5.1 The Differential Path

The best 6-round path produced by our randomized search program is depicted
in Table 4. We can find an input pair (chaining values and messages) conforming
to this path with a probability of 2−206. Note that in the first round we have a
probability of 2−58 for a random message and a random chaining value. However,
we can fix a suitable message (see below), and choose a valid chaining value bit-
by-bit such that the desired output difference is guaranteed. This means that
we can find a conforming input pair to the differential path with a complexity
of about 2148.

5.2 First Round and Message Expansion

In the first iteration, active S-boxes impose conditions on the expanded message:
for a given non-zero Sbox differential, only one or two pairs of values of the
corresponding two expanded message bits are possible. Since we have only 32
degrees of freedom in the message, we need to keep the number of active Sboxes
in the first round low. To improve the probability of finding a suitable message
candidate, we can vary the differences in the chaining values, whenever several
input differences lead to the same output difference of the first Sbox layer. These
relaxable differential Sbox transitions are listed in Table 5. In our path, five of the
23 active Sboxes of the first iteration are relaxable. In total, we have only nine
Sboxes with two constraints on the message bits; 12 Sboxes with one constraint
on the message; and two S-Boxes with a “half” constraint on the message (three
of four bit pairs are possible). Therefore, we expect to find 232−2×9−12 ·

( 3
4

)2 ≈ 2
messages satisfying the relaxed first round differential. In practice, we found one
such message using the constants of permutation P and three messages using
the constants of the output permutation Pf (see the full version of this paper
for an example [1]). Note that finding conforming message words can be done in
232 by exhaustive search. The complexity to find chaining values such that the
first four rounds of the path are satisfied is about 225, since we can fulfill the
conditions in the first round deterministically.

5.3 Last Round and Truncation

In order to improve the probability of the differential path, we consider truncated
differentials in the last application of the Sbox. Namely, we relax the Sbox tran-
sitions by fixing some bits in the output difference, while letting the remaining
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Table 4. Differential path for six rounds of Hamsi with probability 2−148

It. Sbox input Sbox output Prob.

start

00000000 00000000 84004880 4081C400

2C020018 000045C0 00000000 00000000

00000000 00000000 84024880 4081C400

28020018 000045C0 00000000 00000000

1

00000000 00000000 84004880 4081C400 04000000 00000000 04000000 40818000

(58)
2C020018 000045C0 00000000 00000000 28020018 000040C0 04020000 00000000

00000000 00000000 84024880 4081C400 00000018 00004100 00000800 00804000

28020018 000045C0 00000000 00000000 04020000 000004C0 80024880 00004400

2

00000000 00000000 00000000 00010000 00000000 00000000 00000000 00010000

17
30000010 00000080 00000000 00000080 30000000 00000000 00000000 00000080

30000010 00000080 00000000 00010080 00000010 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000080 00000000 00000000

3

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3
20000000 00000000 00000000 00000000 20000000 00000000 00000000 00000000

20000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

4

00000000 00000000 00000000 00000008 40000000 00000000 00000000 00000000

5
40000000 00000000 00000000 00000000 40000000 00000000 00000000 00000008

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

5

04038000 00000000 00000200 00000010 80000000 00001000 00000000 00200410

33
80000000 00001000 00000000 00000010 04038002 00001000 00000801 00000000

00000002 00000000 00000a01 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00200400 84038002 00000000 00000a01 00200400

6

08420002 F8022900 00000000 30821140 08830144 A0022100 0C051080 10C01000

90
0903000C 00000000 04001002 00000000 0181014C 58A04845 0C051082 22406340

00000000 A0A26145 00041080 12807200 01800148 58A04845 08011002 22406340

01C0014A 00000000 08051082 10420000 00400002 58000800 00040080 20020140

End

CD9F7546 362513EA 56FE147F 85F6B1E1

8D0682FD F100928A B44C3D06 18A0D101

B8871BEA 70315A82 4819C14B 26257026

A1DD0199 40072022 8329356A A744E830

bits vary. Since the “a”-bits and “c” bits diffuse faster through the linear layer
(see Table 1), we chose to fix these bits in the output of each Sbox. Amongst
four different truncated output differences (?0?0, ?0?1, ?1?0 and ?1?1), we chose,
for each input, the output difference with the highest probability. Table 6 lists
the relaxed input-output transitions for the Sbox. Details of the path used can
be found in the full version of the article [1].

Relaxing the Sbox transitions increases the probability of the last round to
2−61.8, giving a total path complexity 2−120.8. At the same time, since the “wild
card” bits are chosen to have low diffusion, the difference is still fixed in 180 bits
of the chaining value. Thus, we obtain a distinguisher by observing the difference
in these output bits.



100 J.-P. Aumasson et al.

Table 5. Relaxable differential transitions for the first round of the Hamsi Sbox. The
first table shows the possible input differences that give the same output if 1, 4 and 5 are
the only possible Sbox input differences. The second table shows the same possibilities if
2, 8, and 10 are the only possible Sbox input differences. For each underlined transition
two message pairs are possible, while for the other transitions only one message pair is
possible.

Desired 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
output a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Possible 1 4 1 1 1
input 5 5 4 4 5

Desired 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
output a b ab c ac bc abc d ad bd abd cd acd bcd abcd

Possible 2 2 2 2
input 8 8 8 8

Table 6. Relaxed differential transitions for the last round of the Hamsi Sbox. The
table shows the chosen set of output differences for each given input difference. Un-
derlined transitions have probability 2−2, while the other transitions have probability
2−3.

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a b ab c ac bc abc d ad bd abd cd acd bcd abcd

output 12 3 1 10 1 2 4 5 8 2 1 11 1 7 2
14 9 9 3 8 12 7 10 8 9 3 13 10

13 10
15

mask 11?0 ?0?1 ?001 1010 00?1 ?0?0 ?100 ?1?1 10?0 ?0?0 ?001 1011 00?1 ?1?1 ?010

5.4 Distinguishing the Output Transformation

To distinguish the output transformation of Hamsi we use the concept of dif-
ferential q-multicollision introduced by Biryukov et al. in the cryptanalysis of
AES-256 [6] and applied to the SHA-3 candidate SIMD in [11]. Originally, dif-
ferential q-multicollision have been applied to a block cipher but can be eas-
ily adapted to a random function. A differential q-multicollision for a random
(compression) function f(H, M) is a set of two differences ΔH , ΔM and q pairs
(H1, M1), (H2, M2), . . . , (Hq, Mq) such that:

f(H1, M1)⊕ f(H1 ⊕ΔH, M1 ⊕ΔM) =
f(H2, M2)⊕ f(H2 ⊕ΔH, M2 ⊕ΔM) =
. . .

f(Hq, Mq)⊕ f(Hq ⊕ΔH, Mq ⊕ΔM)
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The generic complexity to find differential q-multicollision for a random function
f with output size n is at least q · 2

q−2
q+2 ·n evaluations of f .

In the case of Hamsi-256, the function f is the output transformation, the
message difference ΔM is zero and the output size is n = 256. The generic
complexity to find differential q-multicollision should be q · 2

q−2
q+2 ·256 and we get

for q = 8 a generic complexity of 2156.1. Using our differential path of Section 5.1,
we get for q = 8 a complexity of 8·2148 = 2151. Hence, for q ≥ 8 we can distinguish
the output transfomation of Hamsi from a random function, since we expect to
find a q-multicollision approximately 32 times faster than for an ideal transform.

Due to the relaxed conditions, we only fix a truncated difference in 180 output
bits and hence, we get n = 180. In this case, the generic complexity for q = 11 is
q · 2

q−2
q+2 ·180 = 2128.1. Using the relaxed differential path, we get q · 2120.8 = 2124.3

and hence, can distinguish the output transfomation of Hamsi from a random
function for q ≥ 11.

6 Conclusion

We investigated the resistance of the 256-bit version of the second round SHA-3
candidate Hamsi against differential and higher-order differential attacks.

Using higher-order analysis, we showed that the 3-round compression function
of Hamsi has suboptimal algebraic degree. Using this observation, we provided
sets of four related IV’s such that the outputs of the compression function ob-
tained with a given fixed message sum to zero. We also presented a set of 219

message words such that the output chaining values, using any fixed IV, sum to
zero. The latter result indicates that the compression function of Hamsi, when
seen as a function of message words, does not reach the expected maximal degree
27. As an application, we note that the low degree makes the standalone com-
pression function existentially forgeable in the message authentication setting.

Further, we constructed high-probability differential paths for the 3-round
compression function to demonstrate a near-collision on (256−25) bits with only
six differences in the input chaining value. We have also developed a technique
for building low-weight, high-probability differential paths for more rounds of
Hamsi. Our best differential path for six rounds has probability 2−148, much
higher than expected for a random function. Additionally, we gave a truncated
differential on 180 output bits with probability 2−120.8. These are the first results
on six rounds of Hamsi, allowing us to distinguish the full output transformation
from a random function using differential q-multicollisions.

Although none of our findings directly leads to an attack on the hash algorithm,
they indicate that the buildings blocks of Hamsi exhibit nonrandom behavior. We
expect our work to serve as a starting point for future analysis of Hamsi.

In order to prevent more serious attacks, we recommend increasing the num-
ber of rounds in the output transformation as a precaution. While the current
specification does not include performance figures for the 8-round alternative, this
change is only expected to noticeably affect the speed of hashing short messages.
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A The Sbox of Hamsi

Table 7. The Hamsi Sbox in decimal basis

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S[x] 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

Table 8. The differential distribution table (DDT) of the Hamsi Sbox in decimal basis

In \ Out 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 0 2 0 0 2 2 2 0 4 2
2 0 0 0 4 0 4 0 0 0 4 0 0 0 0 0 4
3 0 4 2 0 0 0 2 0 0 2 0 0 2 0 2 2
4 0 0 0 0 0 0 4 0 0 0 4 4 0 4 0 0
5 0 4 0 2 2 2 2 0 2 0 0 0 2 0 0 0
6 0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2
7 0 0 0 0 4 2 0 2 0 0 2 2 2 0 0 2
8 0 0 0 2 0 2 0 4 0 2 0 0 0 4 0 2
9 0 0 0 2 0 0 0 2 4 2 2 2 2 0 0 0

10 0 0 2 0 2 0 4 0 2 0 4 0 0 0 2 0
11 0 4 0 0 2 0 2 0 2 2 0 0 2 0 0 2
12 0 0 2 0 2 0 0 0 2 0 0 4 0 4 2 0
13 0 4 2 2 0 2 2 0 0 0 0 0 2 0 2 0
14 0 0 2 0 2 0 0 4 2 0 0 0 0 4 2 0
15 0 0 4 2 0 0 0 2 0 2 2 2 2 0 0 0
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Abstract. Many applications using cryptographic hash functions do not
require collision resistance, but some kind of preimage resistance. That’s
also the reason why the widely used SHA-1 continues to be recommended
in all applications except digital signatures after 2010. Recent work on
preimage and second preimage attacks on reduced SHA-1 succeeding up
to 48 out of 80 steps (with results barely below the 2n time complexity
of brute-force search) suggest that there is plenty of security margin left.

In this paper we show that the security margin is actually somewhat
lower, when only second preimages are the goal. We do this by giving two
examples, using known differential properties of SHA-1. First, we reduce
the complexity of a 2nd-preimage shortcut attack on 34-step SHA-1 from
an impractically high complexity to practical complexity. Next, we show
a property for up to 61 steps of the SHA-1 compression function that vi-
olates some variant of a natural second preimage resistance assumption,
adding 13 steps to previously best known results.

Keywords: hash function, cryptanalysis, SHA-1,preimage, secondpreim-
age, differential.

1 Introduction and Overview

After the spectacular collision attacks on MD5 and SHA-1 by Wang et al. and
follow-up work [7,13,37,40,41,42], implementors reconsider their choices. While
starting a very productive phase of research on design and analysis of crypto-
graphic hash functions, the impact of these results in terms of practical and worry-
ing attacks turned out to be less than anticipated (exceptions are e.g. [18,36,38]).
In addition to collision resistance, another property of hash functions is crucial for
practical security: preimage resistance. Hence, research on preimage attacks and
the security margin of hash functions against those attacks seems well motivated,
especially if those hash functions are in practical use.

1.1 Motivation: Security Margin of SHA-1 against Preimage Style
Attacks

SHA-1 continues to get recommended by NIST even after 2010 for applications
that do not require collision resistance [23]. Hence, SHA-1 will globally remain

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 104–116, 2010.
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in practical use for a long time. Even though close to practical collision attacks
for SHA-1 are described in [6,40], it’s resistance against preimage attacks seems
very solid.

1.2 The Contribution

Progress in the cryptanalysis of a round-based primitive is often monitored via
considering the highest number of rounds for which an attack method violates
some assumption about the primitive. For preimage attack, the meet-in-the-
middle approach [3,10,15,17,34,35] proved to be successful in doing so. To this
end, we devise methods that exhibit non-ideal behavior regarding variants of
second preimage resistance for significantly more steps of the SHA-1 compression
function (see Sect. 5.2). Another concern is the efficiency of attacks. Also here,
we can demonstrate significant efficiency improvements for a step-reduced SHA-1
hash function. Details for this can be found in Section 5.1. As a summary, see
Section 1.3 for an overview and a comparison. What is the reason for these
improvements? We exclude preimage attacks and specifically use the knowledge
of a first preimage to get an advantage as an attacker. The approach we use
takes advantage of the existence of differentials with relatively high probability,
i.e. it exploits the similar weaknesses that also led to efficient collision search
attacks.

1.3 Preview of Our Results on SHA-1

We summarize our results on the second-preimage resistance of SHA-1 hash
function and compression function in Table 1 and 2, respectively. There, they
are compared with preimage attacks of De Cannière and Rechberger from Crypto
2008 [8], and to preimage attacks from Aoki and Sasaki, from Crypto 2009 [3].
The method in this paper is sensitive to changes of the Boolean function used in
the round transformation, hence we distinguish between round-reduced variants
that start from step 0, and those that can start anywhere. Note that [8] is not
sensitive to the Boolean function used, and hence the number of rounds can not
be reduced or extended with a different choice, In case of [3], the impact of the
choice of different starting rounds for the reduced variant is more difficult to
assess, but likely to be limited. Interestingly, whereas we can cover many steps
of the SHA-1 compression function and still show less than ideal properties of
it, we fail to do so for the SHA-1 hash function. The efficiency improvement for
34-step SHA-1 however works for both the compression function and the hash
function.

1.4 Related Work

This approach was already proposed for MD4 in its basic form by Yu et al. [44].
There, a characteristic through all 48 steps of MD4 with probability 2−56 was
used to state that one in 256 messages is a weak message with respect to a 2nd-
preimage attack. Leurent noted [19] that for long messages, this can be turned
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Table 1. Comparison of various variants of preimage attacks on the SHA-1 hash func-
tion with reduced number of rounds

rounds
complexity

type technique sourcetime/memory/prob.

34 (00-33) 277/215/ > 0.5 2nd-preimage imp. msg. + P3graph [8]
34 (00-33) 242.42/negl./ > 0.5 2nd-preimage differential Sect. 5
44 (00-43) 2157/221/ > 0.5 preimage imp. msg. + P3graph [8]
45 (00-44) 2159/221/ > 0.5 2nd-preimage imp. msg. + P3graph [8]
48 (00-47) 2159.3/240/ > 0.5 preimage MITM [3]
48 (00-47) 2159.8/negl./ > 0.5 preimage MITM [3]
48 (00-47) 2159.27/negl./ > 0.5 preimage optimized brute force [27]

Table 2. Comparison of various variants of preimage attacks on the SHA-1 compression
function with reduced number of rounds

rounds complexity type technique source
time/memory/prob.

34 (00-33) 269/ − / > 0.5 preimage imp. msg. [8]
34 (00-33) 242.25/negl./ > 0.5 2nd-preimage differential Sect. 5
45 (00-44) 2157/ − / > 0.5 preimage imp. msg. [8]
48 (00-47) 2156.7/240/ > 0.5 preimage MITM [3]
48 (00-47) 2157.7/negl. / > 0.5 preimage MITM [3]
61 (18-79) 1/ negl. /2−159.42 2nd-preimage differential Sect. 5

into an attack actually finding a 2nd-preimage with complexity 256. Considering
second preimage attacks on HMAC when instantiated with concrete hash func-
tions, Kim et al. [16] give e.g. results for MD5 up to 33 out of the 64 steps, and
for SHA-1 for up to 42 steps.

Relations among various notions of preimage-style resistance requirements are
studied in numerous work, e.g. [30,33,39]. Using the notation of [33], we study the
aSec property of SHA-1, and show that the SHA-1 compression function is not
ideally aSec-secure for up to 61 steps. An example of a construction that explicitly
uses the second preimage resistance of a compression function appears in [2].

1.5 Outline of the Paper

We start with a simple definition of second preimage resistance for iterated hash
functions in Section 2, followed by a description of SHA-1 in Section 3. The idea
of the attack is presented in Section 4. We apply the ideas to step-reduced SHA-1
and show an attack on the compression function and the hash function SHA-1
in Section 5. Finally, we discuss our findings and open problems in Section 6.

2 Definitions

Let an iterated hash function F be built by iterating a compression function
f : {0, 1}l × {0, 1}n → {0, 1}n as follows:
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– Split the message m of arbitrary length into k blocks xi of size l.
– Set h0 to a pre-specified IV
– Compute ∀xi : hi = f(hi−1, xi)
– Output F (m) = hk

A basic informal definition of second preimage resistance of a hash function is
as follows:

Definition 1. Given F (·), m, it should be hard to find an m∗ �= m such that
F (m∗) = F (m). For a hash function with n-bit output size, every guess for an
m∗ should have success probability of 2−n, and the work to find an m∗ should be
no less than 2n.

Def. 1 applies analogously to a compression function, i.e. with a fixed length in-
stead of arbitrary length input. For a more formal treatment, we refer to [30,33,39].

3 Description of SHA-1

SHA-1 is an iterative hash function that processes up to 255 512-bit input mes-
sage blocks and produces a 160-bit hash value. Like many hash functions used
today, it is based on the design principle of MD4, pioneered by Rivest [32]. In
the following we briefly describe the SHA-1 hash function. It basically consists
of two parts: the message expansion and the state update transformation. A
detailed description of the hash function is given in [24].

Table 3. Notation

notation description
X ⊕ Y bit-wise XOR of X and Y
X + Y addition of X and Y modulo 232

X arbitrary 32-bit word
X2 pair of words, shortcut for (X, X∗)
Mi input message word i (32 bits)
Wi expanded input message word t (32 bits)

X ≪ n bit-rotation of X by n positions to the left, 0 ≤ n ≤ 31
X ≫ n bit-rotation of X by n positions to the right, 0 ≤ n ≤ 31

N number of steps of the compression function

3.1 Message Expansion

The message expansion of SHA-1 is a linear expansion of the 16 message words
(denoted by Mi) to 80 expanded message words Wi.

Wi =

{
Mi, for 0 ≤ i ≤ 15,
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 for 16 ≤ i ≤ 79 .

(1)
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3.2 State Update Transformation

The state update transformation of SHA-1 consists of 4 rounds of 20 steps each.
In each step the expanded message word Wi is used to update the 5 chaining
variables Ai, Bi, Ci, Di, Ei as follows:

Ai+1 = Ei + Ai ≪ 5 + f(Bi, Ci, Di) + Kj + Wi

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

Note that the function f depends on the actual round: round 1 (steps 0 to 19)
use fIF and round 3 (steps 40 to 59) use fMAJ . The function fXOR is applied in
round 2 (steps 20 to 39) and round 4 (steps 60 to 79). The functions are defined
as follows:

fIF(B, C, D) = B ∧ C ⊕B ∧D (2)
fMAJ(B, C, D) = B ∧ C ⊕B ∧D ⊕ C ∧D (3)
fXOR(B, C, D) = B ⊕ C ⊕D . (4)

After the last step of the state update transformation, the chaining variables
A0, B0, C0, D0, E0 and the output values of the last step A80, B80, C80, D80, E80
are combined using word-wise modular addition, resulting in the final value of
one iteration (feed forward). The result is the final hash value or the initial value
for the next message block.

Note that Bi = Ai−1, Ci = Ai−2 ≫ 2, Di = Ai−3 ≫ 2, Ei = Ai−4 ≫ 2.
This also implies that the chaining inputs fill all Aj for −4 ≤ j ≤ 0. Thus it
suffices to consider the state variable A, which we will for the remainder of this
paper.

4 Violating Second Preimage Resistance Properties with
Differentials

Assuming the existence of a differential with a certain probability p > 2−n, there
are two ways to use such a differential in 2nd-preimage attacks. One is to simply
use this differential for a single attempt to find a second preimage by being
given the first preimage. With p > 2−n, this shows less than ideal behavior of
the function, even though on average it hardly speeds up the search for an actual
second preimage. The second way is to apply this differential in an iterated hash
function on individual message blocks, and thereby increasing this probability to
actually find a second preimage. In this setting, if the number of message blocks
that can be tried is larger than p−1 a second preimage can be expected with
high probability.
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For the description of our approach, we use the framework developed for
SHA-1 characteristics by De Cannière and Rechberger [7], and adapt it to the
second preimage setting at hand. In the following, we briefly recall those parts
that are needed later on.

The expected difference between a particular pair of words X2 will be denoted
by ∇X . For every bit in this pair, we write ’x’ if we expect a difference between
the same bits of both words, and we write ’-’ if we do not expect a difference
between those two bits.

Let us assume that we are given a complete characteristic for N -step SHA-1,
specified by ∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1, detailing for every bit and
every word in the computation, whether or not we expect a difference at a par-
ticular bit position. Our goal is to estimate how much effort it would take to,
given a message, find another message which follows this characteristic, assum-
ing a simple depth-first search algorithm which tries to determine the pairs of
message words L2

i one by one starting from L2
0. In order to estimate the work

factor of this algorithm, we will compute the expected number of visited nodes
in the search tree. But first another definition, which is needed to estimate the
work factor.

Definition 2 ([7]). The uncontrolled probability Pu(i) of a characteristic at
step i is the probability that the output A2

i+1 of step i follows the characteristic,
given that all input pairs do as well, i.e.,

Pu(i) = P
(
A2

i+1 ∈ ∇Ai+1 | A2
i−j ∈ ∇Ai−j for 0 ≤ j < 5, and W 2

i ∈ ∇Wi

)
.

With the definition above, we can now easily express the number of nodes Ns(i)
visited at each step of the compression function during the second preimage
search.

Taking into account that the average number of children of a node at step i
is Pu(i), and that the search stops as soon as step N is reached, we can derive
the following recursive relation:

Ns(i) =

{
1 if i = N ,

Ns(i + 1) · P−1
u (i) if i < N .

The total work factor is then given by

Nw =
N∑

i=1

Ns(i) . (5)

It is now easy to see that we have two different quantities that define the search
for a second preimage. One is the number of step computations Nw, which should
be noticeably below 2n · N to be considered an attack. The other one is the
number of distinct message blocks Nm that need to be tried during the search:

Nm =
N∏

j=1

Pu(j)−1 = Ns(0) . (6)
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Note that Nm could theoretically be above 2n, while the resulting work factor
can still be below an equivalent of 2n compression function computations. This
is because the tree-based model of the search takes early-stop strategies into
account. However, this only works if in addition to the first preimage, also all
intermediate chaining values that lead to the target hash are already available
to the attacker. This may be the case in certain settings, but is certainly not a
standard assumption for second preimage attacks.

Without this additional assumption on data available to an attacker, the
workfactor is in fact

Nw = N ·
N∏

j=1

Pu(j)−1 . (7)

We will refer to this as setting 2, and will use setting 1 (and Eq. 5) when we
assume the availability of internal chaining inputs.

5 Application to SHA-1

In order to find attacks on the SHA-1 compression function, or the SHA-1 hash
function, characteristics need to be found that result in a workfactor Nw which
should be noticeably below 2n · N . The search algorithms we used are based on
methods developed in the early cryptanalysis of SHA-1 regarding collision attacks
[4,20,26,31] with the improvement that exact probabilities as described in [7] in-
stead of Hamming weights are used to prune and rank them. More recent charac-
teristic search algorithms (e.g. [7,12,21,43]) which exploit the fact that non-linear
propagation of differences with low probability can be useful in collision attacks
do not appear to be applicable to the setting considered in this paper. Depend-
ing on whether the hash- or the compression function is considered, the chaining
input ∇A−4 . . .∇A0 is allowed to have a difference or not.

In order to explain various aspects of the method, we consider two case stud-
ies. The first is the SHA-1 hash reduced to the first 34 steps and discussed in
Section 5.1. There we show that better attack complexities can be obtained. The
second is the SHA-1 compression function reduced to 61 steps and discussed in
Section 5.2. There we aim for having results on a higher number of steps.

5.1 Hash Function Attacks: 34-Step SHA-1 as a Case Study

To illustrate the techniques, we consider SHA-1 reduced to the first 34 steps,
and walk through the attack reasoning. We aim for a second-preimage attack
on the hash functions, i.e., we require from a characteristic that input- and
output chaining do not have a difference. The best characteristic we found for
our purpose is the same as the one used by Biham et al. [4, Tab. 1] for a collision
attack, and is also related to those used in Kim et al. [16, Tab. 6], and in [28,
Tab. 6]. First, we recompute the probabilities Pu(i) of the differential specified
by the message difference m′, and the chaining output co′ (a zero difference).
What we are interested in is the probability that, given an m′ from a uniform
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Table 4. Characteristic with probability 2−42.42 used for the 34-step (0-33) attack.
Pu(i) is written as a log2, and Ns(i) is written as log2 as well.

i ∇Ai ∇Wi Pu(i) Ns(i)
-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------------------------------- ------------------------------x- 1 42.42
1 ------------------------------x- -------------------------x------ 2 41.42
2 -------------------------------- -------------------------------- 3 39.42
3 ------------------------------x- x------------------------x------ 2 36.42
4 -------------------------------- x------------------------------- 3 34.42
5 ------------------------------x- -------------------------x------ 2 31.42
6 -------------------------------- x------------------------------x 2.42 29.42
7 -------------------------------x -------------------------xx----- 3 27.00
8 -------------------------------- x-----------------------------xx 4 24.00
9 -------------------------------- -x----------------------------x- 2 20.00

10 ------------------------------x- xx-----------------------x------ 3 18.00
11 -------------------------------- xx----------------------------x- 4 15.00
12 -------------------------------- x------------------------------- 0 11.00
13 -------------------------------- x------------------------------- 0 11.00
14 -------------------------------- x-----------------------------x- 1 11.00
15 ------------------------------x- -------------------------x------ 2 10.00
16 -------------------------------- ------------------------------x- 3 8.00
17 -------------------------------- x------------------------------- 0 5.00
18 -------------------------------- x------------------------------- 0 5.00
19 -------------------------------- x------------------------------- 0 5.00
20 -------------------------------- ------------------------------x- 1 5.00
21 ------------------------------x- -------------------------x------ 1 4.00
22 -------------------------------- -------------------------------- 1 3.00
23 ------------------------------x- x------------------------x------ 1 2.00
24 -------------------------------- x-----------------------------x- 1 1.00
25 -------------------------------- -------------------------------- 0 0.00
26 -------------------------------- x------------------------------- 0 0.00
27 -------------------------------- x------------------------------- 0 0.00
28 -------------------------------- -------------------------------- 0 0.00
29 -------------------------------- -------------------------------- 0 0.00
30 -------------------------------- -------------------------------- 0 0.00
31 -------------------------------- -------------------------------- 0 0.00
32 -------------------------------- -------------------------------- 0 0.00
33 -------------------------------- -------------------------------- 0 0.00
34 --------------------------------

distribution, F (m) = F (m⊕m′). A good lower bound for this probability is the
probability of the particular characteristic as shown in Table 4, which is 2−42.42.

Taking into account also other, strongly related characteristics with lower
probability (see [22,25,28,29] for details), we would arrive at an improved proba-
bility of 2−42.25. The second-preimage finding algorithm hence needs to traverse
the first preimage of a length of about 242.25 (Nm) message blocks in order to
succeed with good probability. The memory requirements for this are negligible
as the first preimage can be processed in an on-line manner. In setting 1, when
intermediate chaining values are also given, most of the time only the first few
step transformations are computed. Hence the computational resources needed
in terms of computing step transformations are about an equivalent of 237.87

computations of 34-step SHA-1 (Nw according to Eq. 5), taking the early stop
technique into account. Without this assumption, the computational effort is
hence about 242.25 (Nw according to Eq. 7).

Comparisons with results obtained by De Cannière/Rechberger. On
one hand, this may be compared with the result from [8], where memory of
order 215 and an equivalent of about 277 computations are needed to find a
second preimage of 34-step SHA-1 with good probability (a first preimage may
be as small as 25 message blocks with this approach, but longer first preimages
do not help to improve the attack).
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Comparison with the generic Kelsey/Schneier 2nd-preimage attack.
On the other hand, this may be compared with the generic method of Kelsey
and Schneier. In [14], Kelsey and Schneier describe a second preimage attack on
iterated hash functions that is independent of the actual compression function.
The approach finds a second preimage for a 2k-message-block message with
about k×2n/2+1+2n−k+1 work. It was then later generalized to also take, among
other aspects, multiple targets into account [1]. Those attacks do not concern our
results on the SHA-1 compression function, but need to be taken into account
when considering the SHA-1 hash function. The new 2nd-preimage result we
described above needs about 242.25 message blocks in order to succeed with good
probability, i.e. k = 42.25. Using the Kelsey/Schneier approach, the resulting
attack complexity is of order 42.25 × 2160/2+1 + 2160−42.25+1 ≈ 2118.75. Hence,
even by neglecting some constants in time complexities comparison, it seems safe
to conclude that the proposed differential based method is considerable faster.

5.2 Compression Function Attacks: 61-Step SHA-1

To further illustrate that the availability of a first preimage helps to improve
upon current preimage attacks on reduced SHA-1, we also seek to increase the
number of steps in which results can be obtained. For this, we relax our require-
ments on 2nd-preimage attacks in three ways:

1. No practical complexity or probability, better than the ideal 2−n is enough.
2. We do no longer require it to beat the generic Kelsey/Schneier result, i.e.

the result will only be valid for the compression function rather the hash
function (as Kelsey/Schneier does not apply there).

3. Any choice of consecutive steps is allowed instead of starting with step 0.

By exploiting all those relaxations, we demonstrate attacks for up to 61 steps,
thereby having reached more steps than in any compression function attack
on SHA-1 before. We used the characteristic given in Table 5. The product of
all uncontrolled probabilities Pu suggests a probability of 2−158.42. However, this
does not take the feed-forward operation into account. For the previous example,
this was ignored safely, as no probabilistic events happen during the feed forward
operation. As can be seen in Table 5 however, we do have a single bit difference
in the chaining input and chaining output. We do require these differences to
cancel out during the feed forward operation, which happens with probability
1/2. Hence a lower bound for the probability to indeed have a second preimage
is 2−159.42.

As before, by taking into account also other, strongly related characteristics
with lower probability (see [22,25,28,29] for details), we would arrive at an im-
proved probability of 2−159.42+1.61 = 2−157.81. This probability is above the ideal
2−160, hence exhibiting less than ideal 2nd-preimage resistance.

Comparisons. The best results in terms of number of rounds on the SHA-1
compression function following the impossible message approach [8] is 45 steps.
Also this approach is not able to take advantage of the relaxation of condition
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Table 5. Characteristic with probability 2−158.42 used for the 61-step (18-79) attack.
Pu(i) is written as log2.

i ∇Ai ∇Wi Pu(i)
- 4 --------------------------------

-3 ------------------------------x-

-2 --------------------------------

-1 --------------------------------

0 -------------------------------- x------------------------------- 1.00
1 -------------------------------- x------------------------------- 0.00
2 -------------------------------- -------------------------------- 0.00
3 -------------------------------- -------------------------------- 0.00
4 -------------------------------- -------------------------------- 0.00
5 -------------------------------- -x------------------------------ 1.00
6 -x------------------------------ ----------------------------x--- 1.00
7 -------------------------------- -x----------------------------x- 2.00
8 ------------------------------x- x--x---------------------x------ 2.00
9 x------------------------------- -x-x-----------------------x---x 5.00

10 -x-----------------------------x ---x---------------------xx-x--- 4.00
11 -------------------------------- xxx---------------------------x- 4.00
12 -------------------------------x xxxx----------------------x---x- 5.00
13 x-----------------------------x- -xxx---------------------x-x---x 6.00
14 x------------------------------- ---x-----------------------x---- 4.00
15 ------------------------------x- -xx----------------------x-----x 4.00
16 -------------------------------x xx------------------------x---x- 3.00
17 -------------------------------- x-----------------------------xx 3.00
18 x-----------------------------x- xxx----------------------x-x--x- 5.00
19 ------------------------------x- xx-----------------------x------ 3.00
20 x-----------------------------x- xxx----------------------x-x--x- 5.00
21 -------------------------------- --x---------------------------xx 4.00
22 x------------------------------x x-------------------------xx---- 5.00
23 -------------------------------- --x----------------------------x 5.00
24 x------------------------------- xx-------------------------x--x- 5.00
25 ------------------------------x- -xx----------------------x-----x 5.00
26 x------------------------------x -x------------------------xx--x- 7.00
27 -------------------------------- --x---------------------------xx 6.00
28 ------------------------------x- xx-----------------------x----x- 5.00
29 ------------------------------x- xxx----------------------x----x- 6.00
30 -------------------------------- xxx---------------------------x- 4.00
31 -------------------------------- ------------------------------x- 2.00
32 ------------------------------x- -------------------------x------ 2.00
33 -------------------------------- x------------------------------x 1.42
34 -------------------------------x x------------------------xx----- 3.00
35 -------------------------------- x------------------------------x 4.00
36 ------------------------------x- -x-----------------------x----x- 4.00
37 ------------------------------x- xx-----------------------x------ 5.00
38 ------------------------------x- -x-----------------------x----x- 4.00
39 -------------------------------- -------------------------------- 3.00
40 ------------------------------x- x------------------------x------ 2.00
41 -------------------------------- ------------------------------xx 2.00
42 -------------------------------x --------------------------x----- 1.00
43 -------------------------------- x------------------------------x 1.00
44 -------------------------------- xx----------------------------x- 2.00
45 ------------------------------x- -x-----------------------x------ 2.00
46 -------------------------------- -x----------------------------x- 2.00
47 -------------------------------- x-----------------------------x- 1.00
48 ------------------------------x- x------------------------x------ 1.00
49 -------------------------------- x-----------------------------x- 1.00
50 -------------------------------- x------------------------------- 0.00
51 -------------------------------- x------------------------------- 0.00
52 -------------------------------- x------------------------------- 0.00
53 -------------------------------- -------------------------------- 0.00
54 -------------------------------- -------------------------------- 0.00
55 -------------------------------- ------------------------------x- 1.00
56 ------------------------------x- -------------------------x------ 1.00
57 -------------------------------- -------------------------------- 1.00
58 ------------------------------x- x------------------------x------ 1.00
59 -------------------------------- x-----------------------------x- 1.00
60 -------------------------------- -------------------------------- 0.00
61 --------------------------------

(3) from above. Following the meet-in-the-middle approach, the best result is
on 48 steps [3]. There, relaxation of (3) may lead to a slightly better result, but
most likely not more than for 1-4 steps.

6 Discussion and Open Problems

Our results on the second preimage resistance of SHA-1 complement earlier
analysis regarding its preimage resistance. Both, attacks for more rounds, and
more computationally efficient attacks, can be obtained if the existence of a first
preimage (especially if it is long) can be assumed. Our results also complement
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similar results on the iteration mode [1,14]: also there, better second preimage
attacks than preimage attacks were obtained. A lesson to be learned from our
results are as follows. In the preimage setting, when it comes to squeezing out
the most in terms of number of rounds or in terms of attack complexity, the help
provided for an attacker by being given an existing preimage is most of the time
not used in earlier preimage-style cryptanalysis of the SHA family.

Overall, applications requiring 2nd-preimage resistance of SHA-1 are not en-
dangered by our results. Even though SHA-1 is arguably one of the more inter-
esting cryptanalytic targets, it will be interesting to see this approach considered
for other hash functions as well.

Acknowledgements. The work in this paper has been supported in part by
the European Commission under contract ICT-2007-216646 (ECRYPT II) and
in part by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy).

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A., Zim-
mer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg (2008)

2. Andreeva, E., Preneel, B.: A New Three-Property-Secure Hash Function. In: Avanzi,
R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 228–244. Springer,
Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0
and SHA-1. In: Halevi [11], pp. 70–89

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer [5], pp. 36–57

5. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

6. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

7. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

8. De Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer,
Heidelberg (2008)

9. Dunkelman, O. (ed.): FSE 2009. LNCS, vol. 5665. Springer, Heidelberg (2009)
10. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-

age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
Cryptology ePrint Archive, Report 2010/016 (2010), http://eprint.iacr.org/

11. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
12. Hawkes, P., Paddon, M., Rose, G.: Automated Search for Round 1 Differentials

for SHA-1: Work in Progress. In: NIST - Second Cryptographic Hash Workshop,
August 24-25 (2006)

http://eprint.iacr.org/


Second-Preimage Analysis of Reduced SHA-1 115

13. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer,
Heidelberg (2007)

14. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer [5], pp. 474–490

15. Khovratovich, D., Nikolic, I., Weinmann, R.P.: Meet-in-the-Middle Attacks on
SHA-3 Candidates. In: Dunkelman [9], pp. 228–245

16. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended Abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

17. Knudsen, L.R., Mathiassen, J.E., Muller, F., Thomsen, S.S.: Cryptanalysis of MD2.
J. Cryptology 23(1), 72–90 (2010)

18. Leurent, G.: Message Freedom in MD4 and MD5 Collisions: Application to
APOP. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer,
Heidelberg (2007)

19. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

20. Matusiewicz, K., Pieprzyk, J.: Finding Good Differential Patterns for Attacks on
SHA-1. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 164–177. Springer,
Heidelberg (2006)

21. McDonald, C., Pieprzyk, J., Hawkes, P.: SHA-1 collisions now 252. In: Eurocrypt
2009 Rump Session (2009)

22. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: The Impact of Carries
on the Complexity of Collision Attacks on SHA-1. In: Robshaw, M.J.B. (ed.) FSE
2006. LNCS, vol. 4047, pp. 278–292. Springer, Heidelberg (2006)

23. National Institute of Standards and Technology: NIST’s Policy on Hash Functions
(2008), http://csrc.nist.gov/groups/ST/hash/policy.html

24. National Institute of Standards and Technology (NIST): FIPS-180-2: Secure Hash
Standard (August 2002), http://www.itl.nist.gov/fipspubs/

25. Peyrin, T.: Analyse de fonctions de hachage cryptographiques. Ph.D. thesis (2008)
26. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-

lision Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005.
LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

27. Rechberger, C.: Preimage Search for a Class of Block Cipher based Hash Functions
with Less Computation (2008) (unpublished manuscript)

28. Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-random
Properties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 119–133. Springer, Heidelberg (2007)

29. Rechberger, C., Rijmen, V.: New Results on NMAC/HMAC when Instantiated
with Popular Hash Functions. Journal = J. UCS 14(3), 347–376 (2008)

30. Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced Target Collision Resistant Hash
Functions Revisited. In: Dunkelman [9], pp. 327–344

31. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

32. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

33. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

http://csrc.nist.gov/groups/ST/hash/policy.html
http://www.itl.nist.gov/fipspubs/


116 C. Rechberger

34. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

35. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2010)

36. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 Challenge and
Response: Extension of APOP Password Recovery Attack. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 1–18. Springer, Heidelberg (2008)

37. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

38. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue CA
certificate. In: Halevi [11], pp. 55–69

39. Stinson, D.R.: Some Observations on the Theory of Cryptographic Hash Functions.
Des. Codes Cryptography 38(2), 259–277 (2006)

40. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

41. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer [5],
pp. 19–35

42. Yajima, J., Iwasaki, T., Naito, Y., Sasaki, Y., Shimoyama, T., Peyrin, T., Kunihiro,
N., Ohta, K.: A Strict Evaluation on the Number of Conditions for SHA-1 Collision
Search (2009)

43. Yajima, J., Sasaki, Y., Naito, Y., Iwasaki, T., Shimoyama, T., Kunihiro, N., Ohta,
K.: A New Strategy for Finding a Differential Path of SHA-1. In: Pieprzyk, J.,
Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 45–58. Springer,
Heidelberg (2007)

44. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4.
In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 1–12. Springer, Heidelberg (2005)



Some Observations on Indifferentiability

Ewan Fleischmann, Michael Gorski, and Stefan Lucks

Bauhaus-University Weimar, Germany
{ewan.fleischmann,michael.gorski,stefan.lucks}@uni-weimar.de

Abstract. At Crypto 2005, Coron et al. introduced a formalism to study
the presence or absence of structural flaws in iterated hash functions. If
one cannot differentiate a hash function using ideal primitives from a
random oracle, it is considered structurally sound, while the ability to
differentiate it from a random oracle indicates a structural weakness.
This model was devised as a tool to see subtle real world weaknesses
while in the random oracle world. In this paper we take in a practical
point of view. We show, using well known examples like NMAC and the
Mix-Compress-Mix (MCM) construction, how we can prove a hash con-
struction secure and insecure at the same time in the indifferentiability
setting. These constructions do not differ in their implementation but
only on an abstract level. Naturally, this gives rise to the question what
to conclude for the implemented hash function.

Our results cast doubts about the notion of “indifferentiability from
a random oracle” to be a mandatory, practically relevant criterion (as
e.g., proposed by Knudsen [17] for the SHA-3 competition) to separate
good hash structures from bad ones.

Keywords: hash function, provably secure, indifferentiability frame-
work, ideal world models.

1 Introduction

Random Oracle Methodology. A hash function H : {0, 1}∗ → {0, 1}n is
used to compute an n-bit fingerprint from an arbitrarily-sized input. Established
security requirements for cryptographic hash functions are collision resistance,
preimage and 2nd preimage resistance. But, in an ideal world, most cryptogra-
phers expect a good hash function to somehow behave like a random oracle [4].

A random oracle is a mathematical abstraction used in cryptographic proofs,
hiding away virtually all real world and implementational details. They are typ-
ically used when no known implementable function provides the mathematical
properties required for the proof – or when it gets too tedious to formalize these
properties. From a theoretical point of view, it is clear, that a security proof in
the random oracle model is only a heuristic indication of the security of the sys-
tem when instantiated with a particular hash function. In fact, many recent sepa-
ration results [2,7,10,13,19,21] illustrated various cryptographic systems secure in
the random oracle model but completely insecure for any concrete instantiation of
the random oracle. Nevertheless, these results do not seem to directly attack any
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concrete cryptosystem. In the random oracle model, one proves that the system
is at least secure with and ”ideal” hash function H . Such formal proof is believed
to indicate that there are no structural flaws in the design of the system.

Building a Random Oracle. In practice, arbitrary length hash functions are
built by first heuristically constructing a fixed-length building block, such as
a fixed-length compression function or a block cipher, and then iterating this
building block in some manner to extend the input domain arbitrarily.

Current practical hash functions, as e.g., SHA-1 [22], SHA-2 [23] or MD5 [26]
are all iterated hash functions using a compression function with a fixed-length
input, h : {0, 1}n+l → {0, 1}n, and the Merkle-Damg̊ard transformation [9,20] for
the full hash function H with arbitrary input sizes. The core idea is to split the
message M into l-bit blocks M1, . . . , Mm ∈ {0, 1}l (with some padding to ensure
that all the blocks are of size l-bit), to define an initial value H0 and to apply
the recurrence Hi = h(Hi−1, Mi). The final chaining variable Hm is used as the
hash output, i.e., H(M) := Hm. The main benefit of the MD-transformation
is that it preserves collision resistance: if the compression function h is collision
resistant, then so is the hash function H .

Strctural Flaws in the Hash Function. Recent results on the security
of the Merkle-Damg̊ard construction [1,14,15,16] indicate that there are some
structural weaknesses in the design of the iteration process itself. They can
be exploited even if the compression function is ideal, i.e., a fixed input length
random oracle. Motivated by the practical need to “say anything about structural
flaws in the design of H itself“, Coron et al. [8] presented a new notion of security
for cryptographic hash functions which is called indifferentiability.

In short, if one models the compression function(s) as random oracles with
fixed-size inputs, then the iterated hash function composed from these compres-
sion functions should be indifferentiable from a random oracle with variably-sized
inputs. They propose these as a practically relevant criterion, e.g., to separate
practical hash functions with a good structure from those which might suffer
from structural flaws, especially in the context of the search for new hash func-
tion standard SHA-3 [17,24]. The current paper discusses this issue.

Preliminaries

In this paper, we use notions such as “efficient”, “significant” and “negligible” as
usual in theoretical cryptography [29], e.g., an algorithm is efficient, if its running
time is bounded from above by a polynomial in the security parameters. In the
following we will call a hash function secure if it is indifferentiable from a random
oracle (a formal definition will be given in Section 2), i.e., there exists a simulator
so that any efficient distinguisher has negligible advantage in distinguishing the
hash function from a random oracle. A hash function is called insecure if there
exists an efficient distinguisher that can distinguish the hash function for any
simulator from a random oracle.
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Remark: One purpose of this paper is to inspire a discussion about the practi-
cal relevance of the notions secure and insecure. More precisely: Does insecure
actually indicate a structural flaw in a hash function whereas secure means the
absence of them?

Our Contribution

Taking in a practical point of view, we will examine to what extent a structure
of a hash function, proven secure using the indifferentiability framework, relates
with instantiations satisfying this structure. This perspective is justified by the
objective of Coron et. al. [8] to deliver a criteria for the design of practical
hash functions that can distinguish between good hash structures and bad hash
structures. On a merely abstract level – i.e., if one views a hash function as a sole
random oracle – the hash structure is trivially secure. Instantiated as one single
collision resistant hash function, it is trivially insecure. We will examine what
happens in between these two poles. We will show that one is able to prove one
and the same practical hash function secure and insecure at the same time. These
hash functions do not differ in their implementations but only on an abstract
modeling level. Also, we will show how a slight modification to a secure hash
function, e.g., concatenation a one way function, can drive it insecure whereas
concatenating an easily invertible function apparently preserves its security. We
are able to derive some weird features that a secure hash function must offer.
Moreover, as we can prove different structures that correspond to one and the
same instantiated hash function secure and insecure, we are faced with an open
problem what to conclude for the security of the practical hash function.

Section 2 gives an detailed paper outline and further motivates this discus-
sion. Taking the practical point of view as a start, we show how one and the
same implementation can be proven secure and insecure in the indifferentiability
model. Section 3 introduces the random oracle model and the concept of “indif-
ferentiability from a random oracle” as a security notion for hash functions and
compares it to other ideal world security models for hash functions. Sections 4,
5, and Appendix C in the full version of the paper [12] will give proofs for this.
In Section 6 we will derive some mandatory design principles for hash functions
being secure in the indifferentiability framework. In Section 7 we discuss and
conclude.

2 (In)Security in the Indifferentiability World

In the following sections we will examine various constructions that are secure
in the indifferentiability framework (details on indifferentiability will follow in
Section 3) involving one or more random oracles and show how slight modifi-
cations to them (or partial instantiations) drive them insecure (at least in this
framework).

In this section we will motivate our research and summarize some of our
results in Table 1. Furthermore, we will give a short example in which way our
results correlate and with the design of practical hash functions.
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Table 1. RO denotes a random oracle (with fixed or variable length input), ROi

an injective random ’oracle’, ROx a random oracle (ROx is a fixed or variable in-
put length, injective or not, random oracle), X,Y and Z collision resistant one-way
functions (CROWF), W is an easily invertible function.

Section Secure Insecure Insecure Secure
(partial instantiation (extension)

or modification)
4 RO X RO ◦ X RO ◦ W

X ◦ RO W ◦ RO
4 RO ◦ RO RO ◦ X RO ◦ RO ◦ X RO ◦RO ◦ W

X ◦ RO X ◦ RO ◦ RO W ◦ RO ◦ RO
5 RO ◦ MDRO RO ◦ MDZ RO ◦ MDRO ◦ X RO ◦ MDRO ◦ W

(NMAC) X ◦ MDRO X ◦ RO ◦ MDRO W ◦ RO ◦ MDRO
[12] ROi ◦ X ◦ ROi ROx ◦ X ◦ Y ROi ◦ X ◦ ROi ◦ Y ROi ◦ X ◦ ROi ◦ W

Appendix C (MCM) Y ◦ X ◦ ROx Y ◦ ROi ◦ X ◦ ROi W ◦ ROi ◦ X ◦ ROi

X ◦ ROx ◦ Y

Our results are even stronger than indicated by Table 1.

Motivational, informal Example. Say we want to design a secure hash function
and come up with the idea to design our hash function as a concatenation of a
preprocessing function modeled as a random oracle RO and a collision resistant
one way function (CROWF) X . Consequently, our hash function H for a message
M is

H(M) := (RO ◦X)(M).

So we try to proof its security in the indifferentiability framework and come to
the conclusion that this hash function is in fact insecure (refer to Theorem 1
(iii)). In the indifferentiability framework we have at least three straightforward
approaches to get H secure:

1. Remove the CROWF X : H1(M) = (RO)(M).
2. “Strengthen” X and make it a random oracle: H2(M) = (RO ◦RO)(M).
3. “Weaken” X and make it an easily invertible function W : H3(M) = (RO ◦

W )(M).

The hash functions H1,H2 and H3 can be proven secure in the indifferentiability
framework (see Theorem 1 (i) and (ii)).

Indifferentiability was devised as a tool to see subtle real world weaknesses
while in the random oracle world. But we can prove H insecure and H3 secure.
In the real world (i.e., comparing the instantiated hash functions) H3 is (almost)
sure to be substantially weaker than H. Additionally, the hash functions H and
H2 could be implemented using exact the same lines of code but one is proved
to be insecure, the other one seems to be secure. What shall we conclude for the
security of our instantiated hash function in the real world?

How can we conclude that H has some real world weaknesses that H2 has
not. Note that mixing complexity-theoretic and ideal building blocks is common
and can e.g., be found in [25].



Some Observations on Indifferentiability 121

3 Indifferentiability from a Random Oracle

For hash functions a random oracle serves as a reference model. It offers all the
properties a hash function should have. This section gives an overview on all
’known methods’ for comparing a hash function with a random oracle: indiffer-
entiability and three weaker models: preimage awarenes, indifferentiability from
a public-use random oracle and indistinguishability.

A random oracle, denoted RO, takes as input binary strings of any length and
returns for each input a random infinite string, i.e., it is a map RO : Z∗

2 → Z∞
2 ,

chosen by selecting each bit of RO(x) uniformly and independently, for every x.
As in [8] we will only consider random oracles RO truncated to a fixed output
length RO : Z∗

2 → Zn
2 .

Indifferentiability from a Random Oracle. The indifferentiability framework was
introduced by Maurer et al. in [19] and is an extension to the classical notion
of indistinguishability. Coron et al. [8] applied it to iterated hash function con-
structions and demonstrated for several iterated hash function constructions that
they are indifferentiable from a random oracle if the compression function is a
fixed input length (FIL) random oracle. Here, we give a brief introduction on
these topics. For a more in-depth treatment, we refer to the original papers. In
the context of iterated hashing, the adversary – called distinguisher D – shall
distinguish between two systems as illustrated in Figure 1.

? FF G

G

HAlg
HRnd

G

S

Ideal Function Algorithm

Case Algorithm: Hash algorithm using
ideal primitives

Case Random: Random hash function,
simulator for the primitives

A −→ B: A has (oracle) access to B

Distinguisher D

Hash

Algorithm
Random

Simulator

Fig. 1. Defining HAlg being indifferentiable from a random oracle HRnd := RO

The system at the left (Case Algorithm) is the hash algorithm HAlg using
some ideal components (i.e., FIL random oracles) contained in the set G. The
adversary can make queries to HAlg as well as to the functions contained in G.
The system at the right consists of a random oracle (with truncated output)
HRnd := RO providing the same interface as the system on the left. To be
indifferentiable to the system at the left, the system at the right (Case Random)
also needs a subsystem offering the same interface to the adversary as the ideal
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compression functions contained in G. A simulator S is needed and its task is to
simulate the ideal compression functions so that no distinguisher can tell whether
it is interacting with the system at the left or with the one at the right. The
output of S should look consistent with what the distinguisher can obtain from
the random oracle HRnd. In order to achieve that, the simulator can query the
random oracle HRnd. Note that the simulator does not see the distinguisher’s
queries to the random oracle. Formally, the indifferentiability of HAlg from a
random oracle HRnd is satisfied if:

Definition 1. [8] A Turing machine HAlg with oracle access to a set of ideal
primitives contained in the set G is said to be (tD, tS , q, ε) indifferentiable from an
ideal primitive HRnd, if there exists a simulator S, such that for any distinguisher
D it holds that:

|Pr[DHAlg ,G = 1]− Pr[DHRnd,S = 1]| < ε.

The simulator has oracle access to HRnd and runs in time at most tS. The
distinguisher runs in time at most tD and makes at most q queries. Similarly,
HAlg is said to be indifferentiable from HRnd if ε is a negligible function of the
security parameter k.

Now, it is shown in [19] that if HAlg is indifferentiable from a random oracle,
then HAlg can replace the random oracle in any cryptosystem, and the resulting
cryptosystem is at least as secure in the ideal compression function model (i.e.,
case Algorithm) as in the random oracle model (i.e., case random).

‘Non-Optimal’ Ideal World Models. At EUROCRYPT’09 Dodis et. al. [11] have
presented two ideal world security models that are strictly weaker than indiffer-
entiability: preimage awareness and indifferentiability from a public-use random
oracle. But both model a hash function fairly inadequate. A function that is
preimage aware is not guaranteed to be secure against such trivial attacks as,
e.g., the Merkle-Damg̊ard extension attack. And a function that is indifferen-
tiability from a public-use random oracle has to ’publish’ any oracle query and
might be only of limited use in the context of some signature schemes.

If a hash function is indistinguishable from a random oracle, an attacker that
can query HAlg – but has no access to the compression functions contained in G
– cannot distinguish it from a random oracle. For hash function constructions,
indistinguishability makes little sense as, for any concrete hash function, the
compression functions in G are public and hence accessible to the adversary.
As opposed to block cipher constructions, there is no secret key or any other
information the attacker has not. For them, indistinguishable from a random
permutation seems to suffice (at least in the ideal cipher model).

Therefore, we will focus in this work on ’indifferentiability from a random
oracle’ since this seems to be the only security model known that is applicable
in all contexts of cryptographic hash functions. The (open) challenge is to find
an ideal world security model that is strong enough to defeat all known attacks
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but it should not be so strong that it leads to real world ambiguities. As we will
show in this paper, the notion of indifferentiability has such ambiguities, namely
we can prove one and the same real world hash function secure and insecure at
the same time.

Security definitions that are based on a random oracle. Note that by assuming
ideal primitives even in the Algorithm case, this definition is inherently based
on the random oracle model. In the standard model we cannot assume ideal
primitives (at least not without allowing an exponentially-sized memory to store
a description of the function), so this notion of security only makes sense in the
random oracle model.

Nevertheless, as we understand [8], a part of their motivation was to introduce
a formalism for aiding the design of practical hash functions. Showing the above
kind of “security” in the random oracle model ought to indicate the absence of
structural flaws in the hash function.

On the other hand, if one can efficiently differentiate a hash function (using
ideal primitives) from a random oracle, this appears to indicate a weakness in
the hash function structure. With this reasoning, we again follow the example of
Coron et al., who debunk certain hash function structures as insecure by pointing
out efficient differentiation attacks [8, Sections 3.1 and 3.2].

4 Concatenation of Random Oracles: RO − RO
We start by investigating a fairly simple construction on what to conclude for
the security of a hash function where a pre/post-processing function is available.

Definition 2. Let

F (∗→n), G(∗→n) : {0, 1}∗ → {0, 1}n and

F (n→n), G(n→n) : {0, 1}n → {0, 1}n

be random oracles. A Subindex ′i′ denotes an injective random oracle, a subindex
′x′ denotes a random oracle where we explicitly don’t care whether it is injective
or not. Let

P (∗→n), Q(∗→n) : {0, 1}∗ → {0, 1}n and

P (n→n), Q(n→n) : {0, 1}n → {0, 1}n

be collision resistant one way functions. Let

W (n→n) : {0, 1}n → {0, 1}n

be a function that is easily invertible.

(i) The hash function HRO◦RO : {0, 1}∗ → {0, 1}n for a message M ∈ {0, 1}∗
is defined by

HRO◦RO(M) := G(n→n)(F (∗→n)(M)).
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(ii) Modification/Partial instantiation I: The hash function HRO◦X : {0, 1}∗ →
{0, 1}n for a message M ∈ {0, 1}∗ is defined by

HRO◦X(M) := F (n→n)(P (∗→n)(M)).

(iii) Modification/Partial instantiation II: The hash function HX◦RO : {0, 1}∗→
{0, 1}n for a message M ∈ {0, 1}∗ is defined by

HX◦RO(M) := P (n→n)(F (∗→n)(M)).

(iv) Extension I: The hash function HRO◦RO◦X : {0, 1}∗ → {0, 1}n for a mes-
sage M ∈ {0, 1}∗ is defined by

HRO◦RO◦X(M) := F (n→n)(G(n→n)(P (∗→n)(M))).

(v) Extension II: The hash function HX◦RO◦RO : {0, 1}∗ → {0, 1}n for a mes-
sage M ∈ {0, 1}∗ is defined by

HX◦RO◦RO(M) := P (n→n)(F (n→n)(G(∗→n)(M))).

Theorem 1. In the indifferentiability framework the following statements must
hold:

(i) HRO◦RO is secure ( i.e., indifferentiable from a random oracle),
(ii) HRO◦X is insecure ( i.e., differentiable from a random oracle),
(iii) HX◦RO is insecure,
(iv) HRO◦RO◦X is insecure,
(v) HX◦RO◦RO is insecure.

Recall that for proving a hash function insecure we have to describe an effi-
cient distinguisher which can decide with non-negligible probability if the hash
function is an algorithm utilizing random oracles (the Algorithm case) or is a
random oracle by itself (the Random case).

Proof. Let H denote the hash oracle.

(i) The proof is easy and will be skipped here. It can be found in Appendix A.
Remark: The proof can be easily generalized to all functions HRO−···−RO(M).

(ii) This result is essentially equivalent to the Coron et al. insecurity result re-
garding the composition of a CROWF with a random oracle [8], but we state
a version of it here for completeness. We describe a distinguisher D to win
this game, regardless of the simulator S:
1. Choose a random message M ∈ {0, 1}∗.
2. Compute u = P (M).
3. Ask the F -oracle for v = F (u).
4. Ask the hash-oracle for z = H(M).
5. If z = v output algorithm, else output random.
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Analysis: Clearly, D is efficient. In the algorithm world we always have

z = H(M) = F (P (M)) = F (u) = v.

so it always outputs algorithm if it interacts with the algorithm and the
ideal primitive F .

A simulator trying to fool the distinguisher D does not know M as he
receives the F (u)-oracle call. In order to answer correctly he has to come up
with M = P−1(u) to ask the hash oracle for H(M). As P is a CROWF this
is not possible. Any such simulator can be used to invert P . Furthermore it
is information-theoretically impossible to recover M ∈ {0, 1}∗ from u.

(iii) Again, we describe a distinguisher D to win this game, regardless of the
simulator S:
1. Choose a random message M ∈ {0, 1}∗.
2. Ask the hash-oracle for z = H(M).
3. Ask the F -oracle for u = F (M).
4. Compute v = P (u).
5. If z = v output algorithm, else output random.
Analysis: Again, D is obviously efficient and always outputs algorithm in
the algorithm world as we have

z = H(M) = P (F (M)) = P (u) = v.

In the random world, D learns a random target z and needs to find u with
z = P (u) whereas u = F (M). So any simulator able to answer the F -oracle
correctly can be used to invert P which is a CROWF.

(iv) The proof is essentially the same as in (ii).
(v) The proof is essentially the same as in (iii). �	

Paradox. As we have proven in (ii) and (iii) the hash functions HRO◦X and
HX◦RO are in fact insecure, if X is a collision resistant one way function. What
happens if we substitute that CROWF with an easily invertible function? It
turns out that both hash functions get secure again. Taking preimage resistance
as an example, we are not able to append an ’additional line of defense’ (namely
the function X) for preimage attacks. without losing the property of being ’indif-
ferentiabity from a random oracle’. Note that we do not point out any paradox
in the indifferentiability framework itself. But, indeed, we do show several am-
biguities we inevitably have to face if we try to apply this framework as a guide
for designing secure and practical hash functions. This situations occur if we try
to decrease the size of the gap between a practical hash function and its ideal
world mapping.

Theorem 2. Using the same notations as in Definition 2 it must hold in the
indifferentiability framework:
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(i) The hash function

HRO◦W (M) := F (n→n)(W (∗→n)(M)).

is secure if W is an invertible function.
(ii) The hash function

HW◦RO(M) := W (n→n)(F (∗→n)(M)).

is secure if W is an invertible function.

Proof. Let H denote the hash oracle.

(i) Note, that the function W : {0, 1}∗ → {0, 1}n is unlikely to be uniquely
invertible in practice (normally, it will be information-theoretically impos-
sible). But if we assume W ’s invertibility we can easily give a simulator S
thus proving the hash function secure.
Description of Simulator S:

- F-oracle queries (parameter A): As we can invert W we can easily cal-
culate M = W−1(A) and ask the hash oracle v = H(M) and return v
to the caller.

(ii) Now we have the function W : {0, 1}n → {0, 1}n. Again, we can give a
simple simulator S. Description of Simulator S:
- F-oracle queries (parameter M): Ask the hash oracle z = H(M) and

return W−1(z) to the caller.
�	

Recall the example of Section 2. Let us start with the hash function HRO◦X . For
X being a CROWF we have shown it to be insecure. If we strengthen X and let
it be a random oracle our hash function gets secure. If we weaken X , i.e., let X
be an invertible function, our hash function gets secure again. The same is true
if we begin our discussion with HX◦RO.

Furthermore, all the theoretical hash functions HRO◦RO, HX◦RO and HRO◦X

are a valid model for the same practical hash function, employing two functions
F and G and defined by H(x) = F (G(x)). Should we conclude that this con-
struction is secure, since we can prove their security if we model both F and G
as random oracles? Or should we conclude that this construction is insecure, as
we can disprove security in two other cases?

Insecurity by (partial) Instantiation. Another point of view of the problem
is given here. We start with the proven-to-be-secure hash function HRO◦RO.
So one should assume that there are no structural weaknesses found in our
construction. In order to get a practical hash function we have to instantiate
the random oracle by efficient collision resistant one way functions. Instead of
instantiating both random oracles at the same time we choose to instantiate them
one after the other. Our intermediate result is either HX◦RO or HRO◦X . Both
of them were proved the be insecure in Theorem 1 – but formally we still have
not left the random oracle world. Informally, we start now with an insecure hash
function and instantiate the other random oracle. Thus, regarding the structural
soundness of our construction we get entirely contradicting messages again.



Some Observations on Indifferentiability 127

5 NMAC: MDRO − RO
Definition 3 (NMAC-Hash). Let

C(n+m→n) : {0, 1}n × {0, 1}m → {0, 1}n and

D(n→n) : {0, 1}n → {0, 1}n

be oracles, M = (M1, M2 . . . , ML) ∈ ({0, 1}m)L be a padded message and H0 ∈
{0, 1}n an arbitrary initial value. The Merkle-Damg̊ard hash function MDC :
{0, 1}n × ({0, 1}m)+ → {0, 1}n is defined by

H1 = C(H0, M1), . . . , HL = C(HL−1, ML),

MDC(H0, M1, . . . , ML) = HL

The hash function NMACC,D : {0, 1}n × ({0, 1}m)+ → {0, 1}n is defined for
fixed H0 ∈ {0, 1}n as follows:

NMACC,D(M1, . . . , ML) = D(MDC(H0, M1, . . . , ML)).
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Fig. 2. The NMAC-Hash NMACC,D – an extension to the plain Merkle-Damg̊ard
hash function MDC

Definition 4. Let F, G, P, Q be as in Definition 2. Additionally, let

F (n+m→n) : {0, 1}n+m → {0, 1}n

be a random oracle.

(i) The hash function HRO◦MDRO : {0, 1}m·L → {0, 1}n for a padded message
M ∈ {0, 1}m·L is defined by

HRO◦MDRO (M) = NMACF (n+m→n),G(n→n)(M)

= G(n→n)(MDF (n+m→n)(M)).
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(ii) Modification/Partial instantiation I: The hash function HRO◦MDX : {0, 1}m·L

→ {0, 1}n for a padded message M ∈ {0, 1}m·L is defined by

HRO◦MDX (M) = NMACP (n+m→n),F (n→n)(M)

= F (n→n)(MDP (n+m→n)(M)).

(iii) Modification/Partial instantiation II:Thehash functionHX◦MDRO :{0, 1}m·L

→ {0, 1}n for a padded message M ∈ {0, 1}m·L is defined by

HX◦MDRO (M) = NMACF (n+m→n),P (n→n)(M)

= P (n→n)(MDF (n+m→n)(M)).

(iv) Extension I: Let

R(∗→m·L) : {0, 1}∗ → {0, 1}m·L

be a padding function. The hash function HRO◦MDRO◦R : {0, 1}∗ → {0, 1}n

for an (unpadded) message M ∈ {0, 1}∗ is defined by

HRO◦MDRO◦X(M) = NMACF (n+m→n),G(n→n)(R(∗→m·L)(M)).

(v) Extension II: The hash function HX◦RO◦MDRO : {0, 1}m·L → {0, 1}n for a
padded message M ∈ {0, 1}m·L is defined by

HX◦RO◦MDRO (M) = P (n→n)(NMACF (n+m→n),G(n→n)(M)).

Theorem 3. Using the indifferentiability framework it must hold:

(i) HRO◦MDRO is secure,
(ii) HRO◦MDX is insecure,
(iii) HX◦MDRO is insecure,
(iv) HRO◦MDRO◦X is insecure.
(v) HX◦RO◦MDRO is insecure,

In [8], the plain Merkle-Damg̊ard hash function with ideal compression functions
MDRO was shown to be insecure.

Proof. (i) Although this result was stated in [8], the proof seems to be missing
in the published version of the paper. A proof is provided in the full version
of the paper [12] in Appendix C.

(ii) This proof is essentially the same as the proof of Theorem 1 (ii). We only
have to take care for the Merkle-Damg̊ard construction. Here, we only give
the distinguisher D:
1. Choose a random message M ∈ {0, 1}∗.
2. Compute u = MDP (M).
3. Ask the F -oracle for v = F (u).
4. Ask the hash-oracle for z = H(M).
5. If z = v output algorithm, else output random.
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(iii) This proof is essentially the same as the proof of Theorem 1 (iii). We only
have to take care for the Merkle-Damg̊ard construction. Here, we only give
the distinguisher D:
1. Choose a random message M ∈ {0, 1}∗.
2. Ask the hash-oracle for z = H(M).
3. Use the F -oracle to calculate u = MDF (M).
4. Compute v = P (u).
5. If z = v output algorithm, else output random.

(iv) The proof is essentially the same as in 1 (iv). So if this hash function is secure,
we could use our simulator to efficiently invert the padding function R.

(v) The proof is essentially the same as in 1 (iv). So if this hash function is secure,
we could use our simulator to efficiently invert the CROWF G. �	

Paradox. Again, as discussed in Section 4, we get a secure hash function if we
substitute the CROWF by an invertible function. For the hash functions (ii)-(v)
similar results as were given in theorem 2 can easily be stated.

Part (iv) of the theorem might be (at least in this form) somewhat surprising.
Most of the padding functions have the property of being easily invertible. But in
the indifferentiability world this is a must-have feature for secure hash functions.
If the padding function R is not efficiently invertible, NMAC would be insecure.

In [8] the authors don’t care with the padding function. But this turns out to
be somewhat shortsighted in the case of indifferentiability secure hash functions.
Even such a simple and (in the analysis phase) easily to be forgotten function
can drive a hash function insecure if it is added.

We have also analyzed the Mix-Compress-Mix (MCM) construction given by
Ristenpart et al. [25]. A short summary is given in the following theorem.

Theorem 4. (i) HROi◦X◦ROi is secure if X is a Δ−regular function ( i.e.,
every image of H has approximately the same number of preimages, for
details see [25]).

(ii) HROx◦X◦Y is insecure.
(iii) HY ◦X◦ROx is insecure.
(iv) HX◦RO◦Y is insecure.
(v) HROi◦X◦ROi◦Y is insecure.
(vi) HY ◦ROi◦X◦ROi is insecure.

A proof and formal definitions are given in the full version of the paper [12] in
Appendix C.

6 Design Principles for Secure Hash Functions

Definition 5. Let k ∈ N. Let S1 : {0, 1}∗ → {0, 1}m, Si : {0, 1}m → {0, 1}m,
(1 < i < k), Sk : {0, 1}m → {0, 1}n, be functions. The hash function H for a
message M is defined by

H(M) = (Sk ◦ Sk−1 ◦ . . . ◦ S1)(M)
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Here, we generally don’t care whether the functions Si, (1 ≤ i ≤ k) are ideal or
not. Using the technique applied above it is easy to show

Theorem 5. (Design Principles for Secure Hash Functions) Let H be defined
as in Definition 5. Let H be a secure (indifferentiable) hash function. Then it
must hold:

(i) S1 is not a one way function.
(ii) Sk is not a one way function.

Proof. (i) If S1 is a one way function we could use the simulator (as H is secure)
to invert S1. The proof is essentially the same as the proof of Theorem 1 (ii).

(ii) If Sk is a one way function we could use the simulator (as H is secure) to invert
Sk. The proof is essentially the same as the proof of Theorem 1 (iii). �	

This simple design principle is mandatory to all (indifferentiable) secure hash
functions. Note that in the MCM construction, the one way function is in the
middle of two random oracles. Applying Theorem 5 we can conclude: It is pos-
sible to prove a structure secure only if the ’first’ and the ’last’ functions are
random oracles or easily invertible functions, but we might be able – under some
circumstances – to choose some functions different to a random oracle. We do
not see how this design principle for indifferentiable secure hash function will
account for more security if constructing a practical hash function.

7 Discussion and Conclusion

The random oracle model. All ideal world notions and their definitions
are inherently based on the random oracle model. Before going into details on
indifferentiability itself in Section 7.1 let us recall some results from the literature
on the random oracle model. As discussed in Section 1, there had been quite
a few uninstantiability results, defining cryptosystems provably secure in the
random oracle model, but insecure when instantiated by any efficient function.
On can argue that all of these constructions are malicious. They are designed
to be insecure. But either one relies on heuristics and intuitions, or one relies
on proofs. If one puts proofs above all other aspects, then counter-examples do
invalidate the proofs.

7.1 The Ambiguity of Indifferentiability in the Design of
Practical Hash Functions

The ideas from Coron et al. [8] have been very influential and inspiring for a lot
of researchers. Namely, there have been quite a few proposals for hash function
structures provably “indifferentiable from a random oracle”, often in addition to
other security requirements as, e.g., in [3,5,18].

But the current paper reveals a contradiction in the reasoning from [8]: The
same formalism can be used to indicate the structural soundness of an imple-
mentation, and the presence of structural weaknesses.
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The contradiction is not on the formal level – we do not claim any flaw in the
theorems or proofs of [8]. If all components (e.g., compression functions) of a
hash function are ideal (i.e., random oracles) we don’t get ambiguous results. If
all components are non-ideal we cannot use the indifferentiability framework to
prove anything. But if some of the primitives are ideal and some are not (as for
example in [3]) we can get ambiguous results for security proofs. Our research
seems to indicate that the indifferentiability model is of limited use for proving
the security of

– mixed-model hash functions (using complexity theoretic and ideal compo-
nents at the same time) and

– practical hash functions (e.g., as the SHA-3 candidates).

One might conclude that if any possible description of a structure is insecure (as
e.g., is the case for Merkle-Damg̊ard) in the indifferentiability framework then
the hash structure is flawed. But it is not clear what we shall conclude for a
concrete instantiation if one modeling is secure but another is not.

Taking a secure function (using only ideal components) we have shown in
Section 4 and 5 how slight modifications (i.e., adding a pre- or post-processing
function) or partial instantiations (i.e., starting our way towards an instantiated
hash function) might possibly drive them insecure.

But, in addition to an inherent theoretical motivation, the notion of security
in [8] has also been motivated by the need to decide if the structure of a hash
function is sound or flawed. A criterion for good hash function structures is very
valuable for hash function designers, indeed. On the strictly theoretical side,
there is nothing wrong, and studying this kind of security remains an interesting
topic for theoretical cryptography.

7.2 Conclusions

The random oracle model makes it possible to design cryptographic functions
secure only in the ideal world. As discussed in Section 3, the notions of in-
distinguishability, preimage awareness and indifferentiability from a public-use
random oracle seem to be too weak for designing a secure, practical and general
purpose hash structure.

The right level of abstraction. If we state the discussion of Section 7.1
somewhat different we can come up with the following: For designing a hash
function one might come up with a model/structure that describes the hash
function on an abstract level. Then one might try to find a indifferentiability
proof for this structure – given that some of the components are ideal. This pro-
cess usually involves some sort of tweaking of the structure in order to ’find’ the
proof. Therefore we state that this structure is secure. But if we start with an
implementation (i.e., a practical hash function) and want to assess its security
in terms of indifferentiability, we are faced with the problem of the right level
of abstraction/kind of modeling. If we abstract all the details and come up with
a structure only consisting of a random oracle, all hash functions are trivially
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secure (again in terms of indifferentiability). If we abstract nothing, the indistin-
guishability framework does not have an answer to our question since we have
no ideal components. But if we start abstracting some of the components we
might be faced with the problem of finding some abstractions that are secure,
and some that are not. And we might not know what to conclude for the security
of the implementation.

Open Problems. It remains an open problem to derive an ideal world criterion
to support the design of general purpose practical hash functions – telling us if
the internal structure of a hash function is flawless or not. Certainly, a security
proof (i.e., a proof of a hash function being indifferentiable from a random
oracle, when modeling some or all the internal functions as random oracles) is
comforting. But pursuing this kind of security property requires great care since
authors of a new hash function could be tempted to change, e.g., some one-way
final transform of their hash function into an easily invertible transformation.
This could enable a theoretical security proof in the first place, while, at the
same time, practically weaken the hash function.

Designers of practical hash functions, who accept the indifferentiability frame-
work at face value, may be tempted to make poor design decisions. The indiffer-
entiability framework suggests corrections to structures which sometimes make
only sense in the ideal world but that have no real-word mapping. Even worse,
the danger is that these very corrections drive the corresponding real-world hash
function less secure.

Authors of new hash functions are well advised to prove other security proper-
ties, such as the established collision-, preimage-, and second-preimage-resistance
under some reasonable standard-model assumptions, perhaps in addition to
proving theoretical security properties, such as the indifferentiability from a ran-
dom oracle.
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A Proof of Security for HRO−RO

Proof of Theorem 1

Proof. Let H := (RO2 ◦ RO1)(M) be the definition of the hash function. We
have to describe an efficient simulator S who is able to emulate the random
oracles RO1 and RO2. The simulator has access to the hash oracle HRO.
Description of the Simulator S:

1. RO1 oracle queries: For all queries we perform record keeping. If we have
answered the same query before we return the same value again. Else we
choose a random value and add it to our database DB

add←− [query, random].
2. RO2 oracle queries: If [?, query] ∈ DB, then use the first entry to ask the

hash oracle HRO and return the answer. Else choose a random value and
add it to our database DB

add←− [random, query]. Use the new chosen random
value to ask the hash oracle HRO and return the answer.

Clearly, S is efficient and any distinguisher D cannot differentiate it from a
random oracle.
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Abstract. In this paper, a new non-committing encryption protocol
without failure during the course of a channel setup procedure is con-
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security in the presence of adaptive adversary assuming that the deci-
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1 Introduction

Designing protocols securely computing any function dates back to the papers by
Yao [15], Goldreich, Micali and Wigderson [11] and Goldreich, Micali and Wigder-
son [12]. These pioneer works have presented general methods to realize non-
adaptively securemulti-party computations in the computational setting. Ben-Or,
Goldwasser and Wigderson [3] and independently Chaum, Crépeau and Damg̊ard
[8] have proposed general methods to realize adaptively secure multi-party com-
putations in the secure channel setting. Interestingly, Canetti, Feige, Goldreich
and Naor [7] have shown that if messages on the secure channel are replaced by
ciphertexts of a non-committing encryption (NCE) on open networks, one obtains
adaptively secure multi-party computations in the computational setting.

1.1 The State-of-the-Art

The research of non-committing encryptions dates back to the papers by Beaver
and Haber [2], Canetti, Feige, Goldreich and Naor [7] and Beaver [1]. Informally,
a non-committing encryption is a semantically secure encryption scheme with
additional property that a simulator can generate special ciphertexts that can
be opened to both a 0 and a 1. However, Nielsen [13] has shown that no non-
interactive communication protocol can be adaptively secure in the asynchronous
model.
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Canetti, Feige, Goldreich and Naor [7] have proposed the first non-committing
encryptions based on so called common-domain permutations in the stand-alone,
simulation-based framework. To encrypt 1 bit, Θ(k2) public key bits are com-
municated. Subsequently, Damg̊ard and Nielsen [10] have proposed generic con-
structions of non-committing encryption schemes based on so called simulatable
public-key encryption schemes. The Damg̊ard and Nielsen’s construction is gen-
eral which may in turn be realized from the decisional Diffie-Hellman, RSA and
worst-cast lattice assumptions. However, the probability that a failure occurs
during the course of one bit communication in their scheme is 1/2.

Very recently, Choi, Soled, Malkin and Wee [9] have presented a new im-
plementation of non-committing encryptions based on a weaker notion called
trapdoor simulatable cryptosystems in the stand-alone, simulation-based frame-
work in the presence of adaptive adversaries. The idea behind their construction
is simple − a receiver first generates total 4k public keys where the first k public
keys are generated by a key generation algorithm of the underlying trapdoor
simulatable encryption scheme while the rest 3k public keys are generated by an
oblivious sampling algorithm, where k is a security parameter. To encrypt a bit
b, the sender sends 4k ciphertexts of which k are encrypted b and the remain-
ing 3k ones are obliviously sampled. Although the non-committing encryption
scheme in [9] is at the expense of higher computation and communication than
the Damg̊ard and Nielsen’s protocol [10], such an implementation is definitely
interesting since the failure model in [10] is eliminated within their framework.

1.2 This Work

This paper studies non-committing encryption schemes without failure during
the course of a channel-step procedure in the presence of adaptive adversaries in
the universally composable framework.

Overview of the protocol. The non-committing encryption scheme presented
in this paper is constructed from the Decisional Diffie-Hellman assumption. Our
protocol is 4-round. In the first round, a sender S randomly selects a bit α and
then generates a random Diffie-Hellman quadruple Sα by means of a key genera-
tion algorithm and a random quadruple S1−α by an oblivious sampling algorithm
(say, the Canetti-Fischlin’s oblivious sampling algorithm). In the second round,
a receiver R randomly selects a bit β and generates a random Diffie-Hellman
quadruple Rβ by means of the key generation algorithm and a random quadruple
R1−β by the oblivious sampling algorithm. R then computes the Naor-Pinkas
randomizer (wS,0, wS,1) for the given quadruples (S0, S1) (notions such as the
Naor-Pinkas randomizer, Canetti-Fischlin’s oblivious sampling algorithm are de-
scribed in Section 3). In the third round, the sender S extracts the bit β selected
by the receiver R. This is possible since the sender S holds the auxiliary string
skS of the given Diffie-Hellman quadruple Sα. In the fourth round, the sender S
sends back the extracted bit β to the receiver R so that both the sender S and
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the receiver R share a bit β that will be used to encrypt a bit m through the
open networks.

The result. We claim that the proposed non-committing encryption scheme
(without failure during the course of a channel setup phase) realizes the UC-
security in the presence of adaptive adversary assuming that the decisional Diffie-
Hellman problem is hard.

The proof of security. According to the functionality of a non-committing
encryption scheme (see Section 2.2 for more details), we know that if either a
party is corrupted, then the security definition does not require anything of the
protocol as a simulator then knows messages and can thus simulate by running
honestly. Therefore all parts of the protocol should be useful only for the inter-
esting case where both parties are honest and where we hence are interested in
hiding the messages.

To prove the security, a simulator S first generates two random Diffie-Hellman
quadruples S0 and S1 on behalf of the honest sender S and two random
Diffie-Hellman quadruples R0 and R1 for the honest receiver R. When a party
P ∈ {S, R} gets corrupted (say, in case that α =β, where α randomly selected
by S while β randomly and independently selected by R), S will interpret S1−α

and R1−β as random quadruples by means of the oblivious faking algorithm
(intuitively, this captures the idea that a simulator can generate special cipher-
texts that can be opened to both a 0 and a 1). This idea applies to the other
cases where the first corruption occurs after a ciphertext c has been received
successfully; or the first corruption occurs after a secure channel has been set
up but before a ciphtertext c is generated; or the first corruption occurs dur-
ing the course of channel setup phase. As a result, we are able to show that
REALπ,A,Z and IDEALF ,S,Z are computationally indistinguishable assuming
that the decisional Diffie-Hellman problem is hard.

Efficiency. Essentially, the proposed non-committing encryption scheme is 4-
round. The total communication for encrypting one bit message requires to gen-
erate two Diffie-Hellman quadruples and two random quadruples. Thus, our uni-
versally composably secure non-committing encryption protocol is as efficient
as the stand-alone, simulation-based non-committing encryption of Beaver [1]
(in [1], the probability that a failure occurs during the course of one bit commu-
nication is 1/2. This stand-alone, non-committing encryption scheme is possibly
the most efficient implementation of non-committing encryptions so far).

Road-map. The rest of this paper is organized as follows: The functionality
and security definition of non-committing encryption protocols are presented
in Section 2. The building blocks are sketched in Section 3. In Section 4, a new
non-committing encryption scheme without failure during the course of a channel
setup phase is proposed and analyzed. We then show that the proposed scheme
realizes the UC-security in the presence of adaptive adversaries. We conclude
our work in Section 5.



138 H. Zhu et al.

2 Non-committing Encryptions: Functionality and
Security Definition

The notion of non-committing encryption schemes introduced in [7] is a cryp-
tographic primitive used to realize secure channels in the presence of adaptive
adversaries. In particular, if a non-committing encryption scheme realizes the
UC-security in the presence of adaptive adversaries, then a simulator can build
a fake transcript to the environment Z in such a way that the simulator can
open this transcript to the actual inputs that the simulator receives from the
functionality when the parties get corrupted.

2.1 The Universally Composable Framework

We briefly review the framework and notations for analyzing non-committing
encryptions proposed by Canetti [4] and [5]. In this framework one first defines
an ideal functionality of a protocol and then proves that a particular implemen-
tation of this protocol operating in a given environment securely realizes this
functionality. The basic entities involved are n players, an adversary A and an
environment Z. The environment has access only to the inputs and outputs of
the parties of π. It does not have direct access to the communication among the
parties, nor to the inputs and outputs of the subroutines of π. The task of Z is
to distinguish between two executions sketched below.

In the real world execution, the environment Z is activated first, generating
particular inputs to the other players. Then the protocol π proceeds by having
A exchange messages with the players and the environment. At the end of the
protocol execution, the environment Z outputs a bit.

In the ideal world, the players are replaced by dummy parties, who do not
communicate with each other. All dummy parties interact with an ideal func-
tionality F . When a dummy party is activated, it forwards its input to F and
receives the output from the functionality F . In addition, F may receives mes-
sages directly from the ideal world adversary S and may contain instructions to
send message to S.

At the end of the ideal world execution, the environment Z outputs a bit.
Let REALπ,A,Z be Z’s output after interacting with adversary A and players
running protocol π; Let IDEALF ,S,Z be Z’s output after interacting with S and
F in the ideal execution. A protocol π securely realizes an ideal functionality F
if REALπ,A,Z and IDEALF ,S,Z are computationally indistinguishable.

2.2 Functionality of Non-commitment Encryptions

The functionality of a non-committing encryption scheme depicted in Fig. 1 (in
terms of secure message transmission) is due to Canetti [4].

Definition 1. We call the functionality F l
NCE a secure message transmission

channel. A real-world protocol π which realizes F l
NCE is called a secure message

transmission protocol.
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Functionality F l
NCE

F l
NCE proceeds as follows, when parameterized by leakage function l: {0, 1}∗ → {0, 1}∗

1. Upon receiving an input (send, sid, m), do: If sid =(S,R, sid′) for some R
then send (send, sid, l(m)) to the adversary, generate a private delayed output
(send, sid, m) to R and halt. Else, ignore the input.

2. Upon receiving (corrupt, sid, P ) from the adversary, where P ∈ {S, R}, disclose
m to the adversary. Next, if the adversary provides a value m′, and P =S, and
no output has been yet written to R, then output (send, sid, m′) to R and halt.

Fig. 1. The non-committing encryption functionality parameterized by leakage func-
tion l

3 Preliminaries

In this section, we sketch the building blocks for constructing non-committing
encryptions. The construction of our non-committing encryption is based on the
Diffie-Hellman randomizer and the Canetti-Fischlin’s oblivious sampling algo-
rithm. The security proof of the given non-committing encryption is relied on
the Canetti-Fischlin’s oblivious faking algorithm.

3.1 The Naor-Pinkas Randomizer

Let p = 2q + 1 and p, q be large prime numbers. Let G ⊆ Z∗
p be a cyclic group

of order q. Let g be a random generator of G. For any 0 �= x ∈ Zq, we define
DLogG(x) ={(g, gx) : g ∈ G}. On input (g1, h1) ∈ DLogG(x1), and (g2, h2) ∈
DLogG(x2), a mapping φ called Naor-Pinkas randomizer is defined below:

φ((g1, g2, h1, h2)× (s, t)) = (gs
1g

t
2 mod p, hs

1h
t
2 mod p)

where s, t ∈U Zq

Denote u= gs
1g

t
2 mod p and v =hs

1h
t
2 mod p. Naor and Pinkas [14] have shown

that

– if x1 = x2 (=x), then (u, v) is uniformly random in DLogG(x);
– if x1 �= x2, then (u, v) is uniformly random in G2.

3.2 The Oblivious Sampling and Faking Algorithms

The oblivious sampling and faking algorithms described below are due to Canetti
and Fischlin [6]. The two algorithms combined together allow a simulator to con-
struct a fake transcript to the environmentZ in such a way that the simulator can
open this transcript to the actual inputs that the simulator receives from the func-
tionality when the parties get corrupted, a core task to prove the security of pro-
tocols against adaptive adversaries in the universally composable security model.
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Oblivious sampling algorithm: Let p =wq +1 for some w not divisible by q,
and G is a cyclic group of order q in Z∗

p . The Canetti-Fischlin oblivious sampling
algorithm sample takes r ∈ {0, 1}2|p| as input and outputs an element rG ∈ G
via the following computations

– the sampling algorithm sample chooses a string r ∈ {0, 1}2|p| uniformly at
random, where |p| be the bit length of the prime number p.

– Let rp = r mod p and rG =rw
p mod p.

Lemma 1. (due to [6]) Let X = [X = x : x ∈U G], and Y = [Y = y : y ←
sample(r), r ∈U {0, 1}2|p|], then the distributions between two random variables
X and Y are statistically indistinguishable.

Oblivious faking algorithm: Let p =wq+1 for some w not divisible by q, and G
is a cyclic group of order q in Z∗

p . The Canetti-Fischlin oblivious faking algorithm
fake takes a random element h ∈ G as input and outputs rh ∈ {0, 1}2|p| via the
following computations

– On input h ∈ G, the faking algorithm fake picks a random integer i ∈ Zw.
Let hp = hxgiq mod p, where xw ≡ 1 mod q;

– fake randomly selects j ∈ Zp and let rh = Len(jp + hp), where Len(x)
denotes the bit length of an integer x.

Lemma 2. (due to [6]) Let X = [X = x : x ∈U {0, 1}2|p|], and Y = [Y = y :
y ← fake(g), g ∈U G], then the distributions between two random variables X
and Y are statistically indistinguishable.

4 Universally Composable Non-committing Encryptions

In this section, a new non-committing encryption is described and analyzed.
We show that the proposed scheme realizes the UC-security in the presence of
adaptive adversaries.

4.1 The Description of Non-committing Encryptions

The non-committing encryption proposed in this paper comprises three phases:
an initialization phases, a channel setup phase and a communication phase. In
the initialization phase, the global public-key is generated and described for all
participants. To set up a secure channel, a sender S randomly selects (S0, S1)
such that either S0 or S1 is a Diffie-Hellman quadruple. The receiver R randomly
selects (R0, R1) such that either R0 or R1 is a Diffie-Hellman quadruple. The
protocol is designed so that the sender S is able to extract the bit b selected by
R. At this point a secure channel for communicating one bit message is set up
between the two parties; The details of protocol are depicted below.

Initialization. The protocol initialization procedure takes security parameter
k as input and outputs (p, q, G), where p is a large safe prime number (i.e.,
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p=2q + 1, q is a prime number) and G is a cyclic group with order q. Let pk
=(p, q, G). The protocol initialization procedure then provides a description des
of algorithm sample defined over G. Let gpk =(pk, des) (the global key for all
participants).

Channel setup. The channel setup phase comprises the following four steps

Step 1: On input 1k, the sender S performs the following computations

– S selects a bit α ∈ {0, 1} uniformly at random;
– S randomly generates a Diffie-Hellman quadruple (Sα,1, Sα,2, Sα,3, Sα,4)

such that logSα,1
(Sα,3) = logSα,2

(Sα,4). Let Sα = (Sα,1, Sα,2, Sα,3, Sα,4)
and skS = logSα,1

(Sα,3) = (logSα,2
(Sα,4));

– S invokes sample to obliviously generate a random quadruple (S1−α,1,
S1−α,2, S1−α,3, S1−α,4). Let S1−α = (S1−α,1, S1−α,2, S1−α,3, S1−α,4);

– S keeps skS secret and sends (S0, S1) to R;

Step 2: Upon receiving (S0, S1), the receiver R performs the following compu-
tations

– R selects a bit β ∈ {0, 1} uniformly at random;
– R randomly generates a Diffie-Hellman quadruple (Rβ,1, Rβ,2, Rβ,3, Rβ,4)

such that logRβ,1
(Rβ,3) = logRβ,2

(Rβ,4). Let Rβ = (Rβ,1, Rβ,2, Rβ,3, Rβ,4)
and skR = logRβ,1

(Rβ,3) = (logRβ,2
(Rβ,4));

– R invokes sample to obliviously generate a random quadruple (R1−β,1,
R1−β,2, R1−β,3, R1−β,4); Let R1−β = (R1−β,1, R1−β,2, R1−β,3, R1−β,4);

– R then selects xR ∈ Zq and yR ∈ Zq uniformly at random, and computes
the Naor-Pinkas randomizer uS,β = SxR

β,1S
yR

β,2 and vS,β = SxR

β,3S
yR

β,4 for the
selected quadruple Sβ . Let wS,β =(uS,β, vS,β).

– R invokes sample to output two random strings uS,1−β ∈ Z∗
p and vS,1−β ∈

Z∗
p for the given quadruple S1−β . Let wS,1−β =(uS,1−β, vS,1−β).

– R keeps skR secret and sends (R0, R1) and (wS,0, wS,1) to S;

Step 3: Upon receiving (R0, R1) and (wS,0, wS,1), the sender S performs the
following computations

– parsing wS,α as (uS,α, vS,α), S checks vS,α
?= uskS

S,α :
• if the check is valid, S selects xS ∈ Zq and yS ∈ Zq uniformly at random,

and computes uR,α = RxS
α,1R

yS

α,2 and vR,α = RxS
α,3R

yS

α,4. S then invokes
sample to output random elements (uR,1−α, vR,1−α) ∈ G2; Let γ =α
and let wR,α =(uR,α, vR,α) and wR,1−α =(uR,1−α, vR,1−α);

• otherwise, S selects xS ∈ Zq and yS ∈ Zq uniformly at random, and
computes uR,1−α = RxS

1−α,1R
yS

1−α,2 and vR,1−α = RxS
1−α,3R

yS

1−α,4; S then
invokes sample to output random elements (uR,α, vR,α) ∈ G2; Let γ
=1− α and let wR,α =(uR,α, vR,α) and wR,1−α =(uR,1−α, vR,1−α);

– S then sends wR,α and wR,1−α to R and outputs γ;
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Step 4: Upon receiving wR,0 and wR,1, the receiver R performs the following
computations

– parsing wR,β as (uR,β , vR,β), R checks vR,β
?= uskR

R,β ; If the check is valid, let
γ =β and outputs γ; otherwise, output ⊥ (notice that the probability that
the honest party R outputs ⊥ is negligible in case that the sender is honest).

Message Transfer. On input m ∈ {0, 1} and γ ∈ {0, 1}, S computes m ⊕ γ.
Let c =m⊕ γ. S then sends c to R. Upon receiving a ciphertext c, R obtains m
by computing c⊕ γ.

This ends the description of the protocol π.

4.2 The Proof of Security

Theorem 1. The protocol π realizes the UC-security in the presence of adap-
tive adversary in the authenticated channel assuming that the decisional Diffie-
Hellman problem is hard.

Proof. We assume the channel between the sender S and the receiver R is au-
thenticated and consider the following cases

– the first corruption occurs after a ciphertext c has been received successfully;
– the first corruption occurs after a secure channel has been setup phase but

before a ciphtertext c is generated;
– the first corruption occurs during the course of a channel setup phase.

Case 1: Upon receiving (corrupt, sid, P ), where P ∈ {S, R}, the simulator S
generates two random Diffie-Hellman quadruples Si=(Si,1, Si,2, Si,3, Si,4) such
that logSi,1

(Si,3) = logSi,2
(Si,4) (=: skS,i, i = 0, 1). The simulator S keeps the

trapdoor string (skS,0, skS,1) secret. Let skS =(skS,0, skS,1). S then selects xR,i ∈
Zq and yR,i ∈ Zq uniformly at random, and computes uS,i = S

xR,i

i,1 S
yR,i

i,2 and vS,i

= S
xR,i

i,3 S
yR,i

i,4 ; Similarly, the simulator S generates two random Diffie-Hellman
quadruples Ri=(Ri,1, Ri,2, Ri,3, Ri,4) such that logRi,1

(Ri,3) = logRi,2
(Ri,4)

(=: skR,i, i = 0, 1). The simulator S keeps the trapdoor string (skR,0, skR,1)
secret. Let skR =(skR,0, skR,1). S then selects xS,i ∈ Zq and yS,i ∈ Zq uniformly
at random, and computes uR,i = R

xS,i

i,1 R
yS,i

i,2 and vR,i = R
xS,i

i,3 R
yS,i

i,4 .
Let P ∈ {S, R} be the first corrupted party after a ciphertext c has been

received by R. The simulator S corrupts the corresponding dummy party
P̃ ∈ {S̃, R̃} in the ideal world and learns m from the functionality F l

NCE. Let γ
← c ⊕ m and β ← γ. The simulator S now invokes fake to interpret R1−γ as
a random quadruple and Rγ as a random Diffie-Hellman quadruple. The ran-
domness rR1−γ used to generate R1−γ is denoted by (rR1−γ,1 , rR1−γ,2 , rR1−γ,3 ,
rR1−γ,4). The randomness rRγ used to generate Rγ is denoted by (rRγ,1 , rRγ,2 ,
rRγ,3 , rRγ,4). S then interprets (uS,γ, vS,γ) as random strings generated by the
Naor-Pinkas randomizer with the auxiliary string (xR,γ , yR,γ). S further inter-
prets (uS,1−γ , vS,1−γ) as random strings generated by fake. The simulator reveals
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the modified randomness (rRγ , rR1−γ ), together with (xR,γ , yR,γ) and skR,γ to
the adversary.

Meanwhile, S interprets (uR,1−γ , vR,1−γ) as random strings generated by fake
and interprets (uR,γ , vR,γ) as random strings generated by the Naor-Pinkas ran-
domizer with the auxiliary string (xS,γ , yS,γ). Finally, S randomly selects a bit
b ∈ {0, 1} and interprets Sb as a random quadruple by the faking algorithm fake
and interprets S1−b as a random Diffie-Hellman quadruple and reveals all these
random strings together with skS,b to the adversary A.

Case 2: The first corruption occurs after a secure channel has been set up
but before a ciphtertext c is generated; Upon receiving (corrupt, sid, P ) from
the environment Z, where P ∈ {S, R}, the simulator randomly selects a bit
γ ∈ {0, 1} uniformly at random as a random bit selected by the receiver R. The
specified bit γ is then shared between the sender S and the receiver R. The rest
work of the simulator is same as that described in case 1 and the details are
thus omitted.

Case 3: The first corruption occurs during the course of the channel setup phase.
Upon receiving (corrupt, sid, P ) from the environment Z, where P ∈ {S, R}, the
ideal world adversary simulates the following two cases:

– if the receiver R gets corrupted at first, then the simulator S learns m from
the functionality F l

NCE. This means that given a ciphertext c, the simulator
can open the ciphertext c to the message m if the shared secret key γ is set
to c⊕m. The rest of the simulation is the same as that described in case 1
and the details are thus omitted.

– if the sender S gets corrupted at first, the simulator S learns m from the
functionality F l

NCE. This means that given a ciphertext c, the simulator can
open the ciphertext c to the message m if the shared secret key γ is set to
c⊕m. If the adversary provides m′ and no output has been yet written to R,
then the functionality F l

NCE outputs m′ to R. The simulation of each case
is the same as that described in case 1 and the details are thus omitted.

By the DDH assumption, we know that REALπ,A,Z and IDEALF ,S,Z are com-
putationally indistinguishable in all cases above. As a result, the real-world pro-
tocol π realizes F l

NCE. �	

5 Conclusion

In this paper, a new non-committing encryption scheme without failure during
the course of the channel setup has been presented and analyzed. We have shown
that the proposed non-committing scheme realizes the UC-security in the pres-
ence of adaptive adversary assuming that the decisional Diffie-Hellman problem
is hard.
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Abstract. We study relations among various notions of complete non-
malleability, where an adversary can tamper with both ciphertexts and
public-keys, and ciphertext indistinguishability. We follow the pattern
of relations previously established for standard non-malleability. To this
end, we propose a more convenient and conceptually simpler indistingui-
shability-based security model to analyse completely non-malleable sche-
mes. Our model is based on strong decryption oracles, which provide
decryptions under arbitrarily chosen public keys. We give the first precise
definition of a strong decryption oracle, pointing out the subtleties in
different approaches that can be taken. We construct the first efficient
scheme, which is fully secure against strong chosen-ciphertext attacks,
and therefore completely non-malleable, without random oracles.

Keywords: Complete Non-Malleability. Strong Chosen-Ciphertext At-
tacks. Public-Key Encryption. Provable Security.

1 Introduction

Background. The security of public-key encryption schemes has been for-
malised according to various goals and attack models. Extensive work has been
done in establishing relations between these security notions, and converging
towards a core set of standard security definitions. Well-studied goals include
semantic security, indistinguishability, and non-malleability; whereas chosen-
plaintext and (adaptive) chosen-ciphertext are the most common attack sce-
narios considered in literature.

An important criterion for selecting security models is the guarantee of nec-
essary security for a class of applications with practical relevance. Conversely,
it is also expected that one can select a security model that is only as strict
as required by a specific application. Otherwise, one might rule out valid solu-
tions without justification, possibly sacrificing other important factors such as
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set-up assumptions, computational cost or communications bandwidth. Another
important criterion is the conceptual simplicity and ease of use of a model.

Indistinguishability of ciphertexts is the most widely used notion of security
for public-key encryption schemes. This notion was proposed by Goldwasser and
Micali [15] as a convenient formalisation of the more intuitive notion of semantic
security. Other notions of security have been proposed in different contexts. Of
particular interest to this work is non-malleability, initially proposed by Dolev,
Dwork, and Naor [12]. Roughly speaking, an encryption scheme is non-malleable
if giving an encryption of a message to an adversary does not increase its chances
of producing an encryption of a related message (under a given public key). This
is formalised by requiring the existence of a simulator that performs as well as
the adversary but without seeing the original encryption.

The relations between different notions of security for public-key encryption
schemes were examined in a systematic way by Bellare et al. [4]. There, the
authors compare indistinguishability of ciphertexts and non-malleability under
chosen-plaintext and chosen-ciphertext attacks. In doing so, they formalise a
comparison-based definition of non-malleability and establish important results
based on this: non-malleability implies indistinguishability for an equivalent at-
tack model, there is an equivalence between these notions for CCA2 model, and
there are separations between the two notions for intermediate attack models.

Bellare and Sahai [8] established a cycle of equivalence between three defini-
tions of non-malleability: a simulation-based definition similar to that of Dolev,
Dwork and Naor, a comparison-based definition as introduced in [4], and a
new definition called indistinguishability of ciphertexts under parallel chosen-
ciphertext attacks. These equivalence relations essentially establish that the
three definitions are alternative formulations of the same notion. Pass, She-
lat, and Vaikuntanathan [18] revisit this equivalence result, and clarify several
technical aspects in the known equivalence proofs. They consider the impor-
tant question of composability of definitions, and establish a separation between
the simulation-based and comparison-based non-malleability definitions, show-
ing that the former is strictly stronger for general schemes.

Besides being theoretically interesting, the above results are also relevant in
practice. They permit designers of encryption schemes to base their analysis on
the simpler and better understood IND-CCA2 security model. This facilitates the
presentation of conceptually simpler proofs, which are less prone to errors, as
well as the direct application of a well-known set of proof techniques.

Complete non-malleability. Fischlin [13] introduces a stronger notion of
non-malleability, known as complete, which requires attackers to have negligible
advantage, even if they are allowed to transform the public key under which
the related message is encrypted. Put differently, the goal of an adversary is to
construct a related ciphertext under a new public key pair, for which the attacker
might not even know a valid secret key.

Fischlin shows that well-known encryption schemes such as Cramer-Shoup
[10] and RSA-OAEP [14] do not achieve even the weakest form of complete
non-malleability. Furthermore, he proves a negative results with respect to the
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existence of completely non-malleable schemes for general relations: there is a
large class of relations for which completely non-malleable schemes do not exist
with respect to black-box simulators. On the other hand, Fischlin establishes a
positive result for a modified version of RSA-OAEP, with respect to a restricted
class of adversaries, in the random oracle model.

Ventre and Visconti [19] later propose a comparison-based definition of this
security notion, which is more in line with the well-studied definitions proposed
by Bellare et al. [4,8]. For chosen-plaintext attacks the authors prove that (a
restricted version of) their definition is equivalent to that of Fischlin. They also
establish equivalence for chosen-ciphertext attacks, for a well-defined class of
relations that do not depend on the challenge public key (known as lacking re-
lations). The authors also provide additional feasibility results by proposing two
constructions of completely non-malleable schemes, one in the common reference
string model using non-interactive zero-knowledge proofs, and another using in-
teractive encryption schemes. Therefore, the only previously known completely
non-malleable (and non-interactive) scheme in the standard model, is quite in-
efficient as it relies on generic zero-knowledge techniques.

Motivation. The initial motivation for complete non-malleability resided on
constructing non-malleable commitment schemes. A commitment scheme can be
constructed from an encryption scheme in the following way. To commit to a
message, one generates a key pair and encrypts the message under the generated
public key. The resulting public key/ciphertext pair forms the commitment. To
de-commit, one reveals a valid secret key or the message/randomness pair used
in encryption. In this setting, it is clearly desirable that the encryption scheme
should be completely non-malleable in order to guarantee non-malleability of
the associated commitment scheme.

Furthermore, new notions of security of high practical relevance have been
emerging in the literature that closely relate to different flavours of complete
non-malleability. The pattern connecting these notions is that adversaries are
allowed to tamper with the keys, under which they are challenged, in order to
gain extra advantage. Robust encryption [1] is one such notion, and it is pitched
at applications where ciphertext anonymity is relevant. This notion requires it
to be infeasible to construct a ciphertext which is valid under two distinct public
keys. Another such notion is security under related-key attacks [5], where cipher
operations can be executed over perturbed versions of the challenge secret key.
This model is of particular relevance in the symmetric encryption setting. Also
worth mentioning are concrete attacks on key-agreement protocols and public-
key signature schemes, where attackers are able to introduce public keys of their
choice in the protocol execution [13].

The relations between these new notions of security are understudied and
constitute a novel challenge in theoretical cryptography. A deeper understanding
of the relations between these notions of security should permit identifying a
core set of security models that facilitate the design and analysis of strongly
secure schemes with practical relevance. The main motivation of this work is,
therefore, to take an important step in this direction. We aim to expand the
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current understanding of complete non-malleability, by establishing relations
among notions of complete non-malleability and ciphertext indistinguishability
that are akin to those already known for standard non-malleability. To this
end, we introduce a new indistinguishability based notion, and demonstrate its
applicability by constructing an efficient and completely non-malleable scheme.

Strong chosen-ciphertext attacks. Our search for a suitable indistingui-
shability-based definition of complete non-malleability resulted in a natural ex-
tension of the standard IND-CCA2 security model, in which the adversary can get
decryptions of ciphertexts under arbitrary public keys of its choice. We call this
a strong chosen-ciphertext attack scenario, and say that the adversary is given
access to a strong decryption oracle. This, in turn, brings together two fields
which previously remained unrelated in provable security, namely complete non-
malleability and certificateless cryptography [2,11]. Indeed, strong CCA attacks
model multi-user scenarios where public keys might not be authenticated, and
were initially proposed as a natural attack model for certificateless schemes that
aimed to do away with public-key certificates.

The question of whether the weakness captured by such a strong model should
be seen as a real vulnerability of public-key encryption schemes has caused some
discussion [11]. Arguments against this approach are based on the fact that such
an attack model is not realistic, since it is highly unlikely that the adversary
is able to get such assistance in a practical scenario. Another way to put this
objection is that security models should be defined through experiments that are
guaranteed to execute in polynomial time: providing decryptions under unknown
secret keys assists the adversary through a super-polynomial time oracle.

The results we present in this paper show that the strength of the complete
non-malleability notion is comparable to that of the strong chosen-ciphertext
attack scenario. This connection allows us to take a more constructive view of
strong decryption oracles, and argue that they can indeed be useful to analyse
the security of practical schemes. To support this view, we show that indistin-
guishability under strong CCA attacks is a convenient formalisation to establish
that a scheme is completely non-malleable. Furthermore, by proposing a concrete
scheme, we also show that both notions are realisable without random oracles.

Finally, we note that strong decryption oracles are closely related to the re-
cently proposed paradigm of adaptive one-way functions [17], which can be used
to construct a number of cryptographic protocols that previously remained open
in the literature. Indeed, the assumptions that underlie the proposed construc-
tions of adaptive one-way functions rely on similar “magic” oracles. It would be
interesting to investigate whether the techniques that we use can be useful in
constructing adaptive one-way functions based on standard assumptions. Con-
versely, the public-key encryption scheme given in [17] seems to achieve strong
chosen-ciphertext security. The relationship between adaptive one-way functions
and strong security models are left for future work.

Contributions. The first contribution of our paper is a general definition of
a strong decryption oracle, which unifies previous definitional approaches. Our
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definition is flexible and expressive in the sense that it allows identifying the
exact power of the decryption oracle that is provided to an adversary in security
analysis. We also show that variants of the strong decryption oracle definition
map to interesting properties of encryption schemes. We establish a connection
with the validity checks that an encryption scheme performs (message validity,
ciphertext validity, public key validity, etc.). More precisely, we identify a sim-
ple and very convenient definition of the strong decryption oracle, which can be
used to analyse schemes that incorporate a well-defined and natural set of va-
lidity checks. For schemes that fail to perform these checks, care must be taken
to identify the exact strength of the strong decryption oracle under which the
scheme can be proven secure.

We then extend the standard indistinguishability and non-malleability models
using strong decryption oracles, and examine the relations between the resulting
notions. Our approach is consistent with that proposed by Bellare et al. [8,4],
which allows us to naturally describe the relation between these stronger mod-
els and the more established ones. We also identify the relation between the
strong chosen-ciphertext models we propose and the existing notions of com-
plete non-malleability. To the best of our knowledge, this relation was not previ-
ously known. It permits fully characterising how these independently proposed
models relate to the more standard definitions of non-malleability. The relation
we establish between strong decryption oracles and complete non-malleability
provides the first convincing argument that the strong CCA models are useful in
analysing the security of practical encryption schemes.

Finally, we propose a concrete scheme that efficiently achieves strong chosen-
ciphertext security based on the decisional bilinear Diffie-Hellman assumption.
The scheme is secure under a very general definition of the strong decryption ora-
cle, which is made possible by the insights regarding validity checks we described
above. The scheme is derived from Waters’ identity-based encryption scheme [20]
using techniques previously employed in constructing certificateless public-key
encryption schemes [11]. Our equivalence result also establishes our scheme as
the first efficient completely non-malleable scheme without random oracles. We
stress that our scheme is based on a standard and well-known problem and does
not rely on interactive assumptions or “magic” oracles.

Organisation. In the next section we fix notation by defining public-key en-
cryption schemes and various algorithms associated to them. In Section 3 we
discuss different approaches in defining strong decryption oracles and propose
a new generic definition. In Section 4 we look at indistinguishability and non-
malleability security models for encryption schemes where adversaries have ac-
cess to strong decryption oracles. We establish relations between these models
and also to models existing literature. We present our scheme in the final section.

2 Preliminaries

Notation. We write x ← y for assigning value y to variable x, and x ←$ X for
sampling x from set X uniformly at random. If X is empty, we set x ←⊥, where
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⊥/∈ {0, 1}� is a special failure symbol. If A is a probabilistic algorithm, we write
x ←$ A(I1, I2, . . .) for the action of running A on inputs I1, I2, . . . with random
coin chosen uniformly at random, and assigning the result to x. Sometimes we
run A on specific coins r and write x ← A(I1, I2, . . . ; r). We denote boolean
values, namely the output of checking whether a relation holds, by T (true) and
F (false). For a space Sp ⊆ {0, 1}�, we identify Sp with its characteristic function.
In other words, Sp(s) = T if and only if s ∈ Sp. We say s is valid with respect to
Sp if and only if Sp(s) = T. When this is clear from the context, we also use Sp
for sampling uniformly from Sp. Unless stated otherwise, the range of a variable
s is assumed to be {0, 1}�. The symbol : is used for appending an element to a
list. We indicate vectors using bold font.

Games. We will be using the code-based game-playing language [7]. Each game
has an Initialize and a Finalize procedure. It also has specifications of pro-
cedures to respond to an adversary’s various oracle queries. A game Game is
run with an adversary A as follows. First Initialize runs and its outputs are
passed to A. Then A runs and its oracle queries are answered by the procedures
of Game. These procedures return ⊥ if queried on ⊥. When A terminates, its
output is passed to Finalize which returns the outcome of the game y. This
interaction is written as GameA ⇒ y. In each game, we restrict attention to
legitimate adversaries. Legitimacy is defined specifically for each game.

Public-key encryption. We adopt the standard multi-user syntax with the
extra Setup algorithm [3], which we believe is the most natural one for se-
curity models involving multiple public keys. A public-key encryption scheme
Π = (Setup, Gen, MsgSp, Enc, Dec) is specified by five polynomial-time algorithms
(in the length of their inputs) as follows. Setup is the probabilistic setup algo-
rithm which takes as input the security parameter and returns the common
parameters I (we fix the security parameter implicitly, as we will be dealing with
concrete security). Although all algorithms are parameterised by I, we often omit
I as an explicit input for readability. Gen(I) is the probabilistic key-generation
algorithm. On input common parameters I, this algorithm returns a secret key
SK and a matching public key PK. Algorithm MsgSp(m, PK) is a deterministic
message space recognition algorithm. On input m and PK this algorithm re-
turns T or F. Enc(m, PK; r) is the probabilistic encryption algorithm. On input a
message m, a public key PK, and possibly some random coins r, this algorithm
outputs a ciphertext c or a special failure symbol ⊥. Finally, Dec(c, SK, PK) is
the deterministic decryption algorithm. On input of a ciphertext c and keys
SK and PK, it outputs a message m or a special failure symbol ⊥. The cor-
rectness of a public-key encryption scheme requires that for any I ←$ Setup(),
any (SK, PK) ←$ Gen(), all m ∈ MsgSp(PK), and any random coins r we have
Dec(Enc(m, PK; r), SK, PK) = m.

Remark. We note that the multi-user syntax permits capturing in a single
framework schemes that execute in the plain model, in which case the global
parameters are empty, as well as those which execute in the CRS model. The
relations that we establish between different models hold in both cases.
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Validity checking algorithms. The following spaces (and associated func-
tions) will be used throughout the paper. All of these spaces are parameterised
by I and are subsets of {0, 1}�.

MsgSp(PK) := {m : MsgSp(m, PK)}
KeySp := {(SK, PK) : ∃r (SK, PK) = Gen(r)}
PKSp := {PK : ∃r, SK (SK, PK) = Gen(r)}
SKSp := {SK : ∃r, PK (SK, PK) = Gen(r)}

Validity assumptions. We assume throughout the paper that the encryp-
tion and decryption algorithms check if m ∈ MsgSp(PK) and return ⊥ if it
does not hold. Often the algorithm MsgSp does not depend on PK in the sense
that for any PK, PK′ ∈ PKSp and any m ∈ {0, 1}� we have MsgSp(m, PK) =
MsgSp(m, PK′). For general schemes, case one can consider the infinite message
space MsgSp(PK) = {0, 1}�. However, given that in this paper we will often
consider the set of all valid messages and sample from it, we restrict our atten-
tion to schemes with finite message spaces. As pointed out by Pass et al. [18],
this means that to avoid degenerate cases we must also restrict our attention to
schemes for which all the elements in the range of decryption can be efficiently
encrypted, including the special failure symbol ⊥. A distribution M on messages
is valid with respect to a public key PK if it is computable in polynomial time
and its support contains strings of equal length which lie in MsgSp(PK). We also
assume that key-pair validity KeySp is efficiently implementable and require that
decryption returns ⊥ if this check fails on the keys passed to it (note that this
can easily be achieved for general public key encryption schemes, by including
the input randomness to Gen in SK). We also assume various algorithms check
for structural properties such as correct encoding, membership in a group, etc.

3 Defining Strong Decryption Oracles

The idea behind a strong chosen-ciphertext attack is to give the adversary access
to an oracle that decrypts ciphertexts of the adversary’s choice with respect to
arbitrary public keys. There are a number technicalities involved in defining such
an oracle precisely, which we now discuss.

proc. SDecU,V(c, PK, R):
WitSp ← {(m, r) : V(c, PK, m, r, st[V])}
(m, r) ←$ {(m, r) ∈ WitSp : R(m)}
st[V] ← U(c, PK, R, m, r, st[V])
Return m

Fig. 1. Generic definition of a strong decryption oracle. In the first step the search
is performed over sufficiently long bit strings and, for messages, it also includes the
special symbol ⊥. The state st[V] is initialised to some value st0.
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We will base our presentation on the generic definition of a strong decryption
oracle presented in Figure 1, which we thoroughly explain and justify in the dis-
cussion that follows. The oracle proceeds in three steps. The first step models the
general procedure of constructing a set of candidate (valid) decryption results.
The second step consists of choosing one of these candidate solutions to return
to the adversary. The final step updates the state of the oracle, if it keeps one.

More precisely, in the first step, the oracle constructs a set of possible decryp-
tion results WitSp using a polynomial-time validity relation V1. Note that the
search for messages includes the special failure symbol ⊥. This permits making
the subtle distinction of returning ⊥ when a candidate decryption result has
not been found2, or when it has been established that the oracle may return ⊥
when queried on a given (c, PK) pair. In the second step, it selects the message
to return from WitSp. To make sure the security model is not restricting the
adversary by choosing the decryption result in a particular way, we allow the
adversary to provide a polynomial-time relation R to characterise a set of mes-
sages of interest to her. The oracle then samples a message at random from this
set and returns it to the adversary. In the third and final step, the oracle updates
any state it may have stored from previous queries. We require that the update
procedure to be polynomial in the size of its inputs, excluding the state3.

Although we have constrained the algorithms in our definition (i.e. V, R and
U) to be polynomial-time, the calculations carried out in the first two steps may
not be computable in polynomial time and may require an exponential number
of executions of these algorithms. Nevertheless, we emphasise that the search
space must be finite. This is guaranteed by the assumption that the message
space of the encryption scheme is finite, and by the fact that the algorithms
associated with the scheme run in polynomial time in their inputs.

The motivation for having such a general definition is that the notion of the
message encapsulated by the ciphertext can be defined in various ways. For con-
creteness, let us fix U so that st[V] is empty throughout the game execution, and
look at two alternative definitions of V. These derive from two interpretations as
to which message(s) might be encapsulated in a public key/ciphertext pair: they
can be seen as alternative witnesses to the validity of the public key/ciphertext
pair. Concretely one can define validity via the encryption operation, in which
case a message/randomness pair is the witness or via the decryption algorithm,
in which case the natural witness is a message/secret key pair4:

V(c, PK, m, r) := c
?= Enc(m, PK; r) (1)

1 This constitutes an NP-relation for the language of valid decryption results.
2 Recall that we assume that sampling from an empty set returns ⊥.
3 Discarding the state size ensures that the run-time of this procedure does not increase

exponentially with queries.
4 Note that we have assumed Dec always performs the key-pair validity check, and so

this is redundant in V′. We include it for the sake of clarity: for schemes which do
not perform the key-pair validity check, this issue must be considered.
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V′(c, PK, m, r) := (SK, PK) ?= Gen(r) ∧m
?= Dec(c, SK, PK). (2)

The first observation to make on these validity criteria is that neither of them
guarantees that if a message is found to be a valid decryption result, it will
be unique. This is because the correctness restriction only guarantees unique
decryptability for correctly constructed (c, PK) pairs: it says nothing about the
result of decryption when an invalid public key and/or an invalid ciphertext
are provided as inputs. In particular, the validity criterion in Equation 1 could
accept multiple messages as valid, when run on an invalid public key. Ambigu-
ity can also occur for the validity criterion in Equation 2, when multiple valid
secret keys correspond to the queried public key, and decrypt an invalid cipher-
text inconsistently. This discussion justifies the need for the second step in the
definition we propose: there could be many valid decryption results to choose
from, and it is left to the adversary to control how this is done. In the simplest
scenario, where there is only one candidate decryption result, one can assume
without loss of generality that the adversary will choose to retrieve that result
by passing in the trivial relation T.

The need for the first step of the definition is justified by observing that the
two witness sets associated with the above validity algorithms do not always
coincide. To see this, consider an encryption scheme where decryption does not
necessarily fail when run on a ciphertext that falls outside the range of the
encryption algorithm. Then the first witness set will be empty whereas the second
may not be. A concrete example is the Cramer-Shoup [10] encryption scheme.
For other schemes, such as RSA-OAEP [14], it may happen that the encryption
algorithm produces apparently valid ciphertexts for invalid public keys. When
this is the case, the first witness set may not be empty, whereas the second one
will surely contain no messages, given that no valid secret key exists.

We note that the above issues do not arise in the standard definition of a
decryption oracle, in which decryption is always carried out with a fixed secret
key. In other words, the decryption oracle is stateful. To allow capturing this
sort of behaviour in strong decryption oracles, we add the last step to the or-
acle definition. This manages the decryption oracle state, and ensures that the
validity checking algorithm can access it in each query.

Specific definitions. Previous attempts to define strong decryption oracles
have been introduced for certificateless public-key encryption, where public keys
are not authenticated [2,11]. These definitions implicitly adopt validity criteria
which are adequate only for the concrete schemes discussed in the referred works.

In the definition proposed in [2] the authors simply describe the oracle as
providing “correct decryptions” even though the secret key could be unknown. A
close analysis of the presentation in this work indicates that “correct decryption”
is defined through a search for a message/randomness pair in the domain of the
encryption, similarly to the first validity criterion presented above. However, the
unique decryptability issue is implicit in the definition, since the concrete scheme
the authors consider ensures that the encryption algorithm fails when queried
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with an invalid public key. Extending this definition to encryption schemes in
general results in the following validity criterion:

VPK(c, PK, m, r||r′) := c
?= Enc(m, PK; r) ∧ (�, PK) ?= Gen(r′).

Note that this is equivalent to the validity relation in Equation 1 for schemes
which check for public key validity in the encryption algorithm. Alternatively,
a solution adopted in literature [13] is to restrict the class of adversaries to
those which query only valid public keys. In our view, such a restriction on
the adversary’s behaviour is unjustified, and we will look for alternatives which
guarantee stronger security.

In a more recent work [11], the strong decryption oracle is described as con-
structing a private key that corresponds to the queried valid public key, and then
using that key to decrypt the ciphertext. The oracle then stores the extracted
secret key to be reused in subsequent queries under the same public key. This
definition is more in line with the intuition that a decryption oracle should re-
flect the behaviour of the decryption algorithm, and it is also consistent with
the stateful operation of the standard decryption oracle. We can capture this
definition through the algorithms presented in Figure 2. Note that, for those
schemes in which there is a unique valid private key per public key or for those
schemes where all valid secret keys behave consistently for all possible, even in-
valid, ciphertexts, the oracle resulting from these algorithms will be identical to
the one using the criterion in Equation 2.

The previous discussion indicates that different definitions of a strong decryp-
tion oracle can be seen as natural for particular classes of schemes. However, we
can also consider other approaches, which are not so easy to characterise. For
example, a straightforward fix to the ambiguity problem described above is to
have the oracle simply return ⊥ when it arises. Agreeably, this approach ad-
dresses the problem of ambiguity directly, but it is hardly intuitive with respect
to the operation of public-key encryption schemes. In particular, this definition
is best suited for the class of encryption schemes for which the ambiguity never
occurs. However, there is no natural characterisation of this class of schemes.

As a final motivation for a general definition of a strong decryption oracle,
let us look at RSA-OAEP [14]. The non-malleability properties of (a modified
version of) this scheme are analysed by Fischlin [13] using a model related to the

proc. V(c, PK, m, r, st[V]):
(SK′, PK′) ← Gen(r)
If ((SK, PK) ∈ st[V] ∧ SK′ �= SK)

PK′ �= PK Return F
If m = Dec(c, SK′, PK′) Return T
Return F

proc. U(c, PK, R, m, r, st[V]):
(SK′, PK′) ← Gen(r)
If PK′ �= PK ∨ (SK, PK) ∈ st[V]

Return st[V]
st[V] ← (SK′, PK′) : st[V]
Return st[V]

Fig. 2. Update and validity algorithms for a stateful strong decryption oracle with
initial state st0 = (SK�, PK�)
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decryption oracle associated with Equation 1. However, the analysis is restricted
to adversaries that only query valid public keys. For such adversaries, the re-
sulting oracle is identical to that resulting from Equation 2, as the decryption
algorithm of the scheme checks for key-pair validity and recovers the random
coins used in encryption. However, once this restriction is dropped, the oracles
are no longer equivalent. Security with respect to Equation 2 is still implied by
Fischlin’s analysis but, with respect to Equation 1 it remains an open issue.

Simplification. We now characterise a class of schemes for which the above
variants of strong decryption oracle collapse into a simpler definition. This class
consists of encryption schemes which perform checks both at encryption and
decryption stages. They check for public key validity upon encryption, returning
a failure symbol if the key is invalid. Furthermore, in decryption, they check both
key-pair validity and that the input ciphertext lies in the range of the encryption
algorithm. Note that for such schemes, whenever encryption and decryption do
not fail, then correctness ensures that the set of messages which can be obtained
using any of the validity criteria above coincide, and have cardinality 1. The
simplified version of the strong decryption oracle that we arrive at is shown in
Figure 3. The scheme that we present in Section 5 has been designed so that
it belongs to this class of encryption schemes, and could therefore be analysed
using this simpler oracle. Indeed, this observation is central to our argument that
we propose a simpler and more convenient security model in which to analyse
schemes that aim to achieve complete non-malleability.

proc. SDec(c, PK):
m ←$ {m : ∃SK, m = Dec(c, SK, PK)}
Return m

Fig. 3. Simplified definition of strong decryption for schemes which perform all checks.
The search over m excludes ⊥.

4 Security under Strong Chosen-Ciphertext Attacks

In this section, we use the general definition of a strong decryption oracle in
Figure 1 to extend different security models for encryption schemes. This allows
for a uniform treatment of strong security models, some of which have been
independently proposed in literature. Then, we investigate the relations among
the resulting security notions, as well as those in [13,19].

4.1 Indistinguishability of Ciphertexts

We now introduce ciphertext indistinguishability under strong chosen-ciphertext
attacks as the natural extension of the standard notions of security for public-key
encryption schemes. The IND-SCCAx advantage of an adversary A for x = 0, 1, 2
against a public-key encryption scheme Π is defined by
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Advind-sccax
Π (A) := 2 · Pr

[
IND-SCCAxAΠ ⇒ T

]
− 1,

where game IND-SCCAx is shown in Figure 4. Implicit in this definition are
the descriptions of the U and V algorithms, which are fixed when analysing a
scheme in the resulting IND-SCCAx model. As seen in the previous section, one
can make general claims of security and still use a simple definition for the strong
decryption oracle (Figure 3) by showing that the scheme satisfies a well-defined
set of natural properties.

proc. Initialize():
b ←$ {0, 1}; I ←$ Setup()
(SK�, PK�) ←$ Gen()
List ← []; st[V] ← st0
Return (I, PK�)

proc. SDec(c, PK, R):
Return SDecU,V(c, PK, R)

proc. LoR(m0, m1):
c ←$ Enc(mb, PK�)
List ← (c, PK�) : List
Return c

Game IND-SCCAxΠ

proc. Finalize(b′):
Return (b′ = b)

Fig. 4. Game defining indistinguishability under strong chosen-ciphertext attacks. An
adversary A is legitimate if: 1) It calls LoR only once with m0, m1 ∈ MsgSp(PK) such
that |m0| = |m1|; and 2) R is polynomial-time and, if x = 0 it does not call SDec, if
x = 1 it does not call SDec after calling LoR, and if x = 2 it does not call SDec with
a tuple (c, PK) in List.

Strong parallel attacks. Bellare and Sahai [8] define a security notion
known as indistinguishability under parallel chosen-ciphertext attacks. Here the
adversary can query a vector of ciphertexts to a parallel decryption oracle exactly
once and after its left-or-right query, receiving the corresponding component-wise
decryptions. It is proved in [8] that parallel security maps well to non-malleability
of encryption schemes. We extend this model to incorporate strong attacks by
defining the IND-SPCAx advantage of an adversary A against an encryption
scheme Π similarly to above, where game IND-SPCAx is shown in Figure 5. Note
that under this definition, and consistently with previous results, IND-SPCA2 is
equivalent to IND-SCCA2: the parallel oracle is subsumed by the strong decryp-
tion oracle that the adversary is allowed to call adaptively after the challenge
phase. We remark that a stronger definition can be adopted, whereby the ad-
versary is allowed to query the parallel oracle with a relation that takes all the
ciphertexts simultaneously. We will return to this issue in the next section.

KEM/DEM composition. The standard proof technique [10] to establish the
security of hybrid encryption schemes consisting of a secure keys encapsulation
mechanism (KEM) and a secure data encryption mechanism (DEM), fails to
extend to the strong chosen-ciphertext models (strong security for KEMs can
be defined in the natural way). This failure is due to the non-polynomial nature
of the decryption oracle, which cannot be simulated even if one generates the
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proc. Initialize():
b ←$ {0, 1}; I ←$ Setup()
(SK�, PK�) ←$ Gen()
List ← []; st[V] ← st0
Return (I, PK�)

proc. SDec(c, PK, R):
Return SDecU,V(c, PK, R)

proc. LoR(m0, m1):
c ←$ Enc(mb, PK�)
List ← (c, PK�) : List
Return c

Game IND-SPCAxΠ

proc. PSDec(c,PK, R):
For i from 1 to #c do

m[i]←$ SDecU,V(c[i],PK[i],R[i])
Return m
proc. Finalize(b′):
Return (b′ = b)

Fig. 5. Game defining indistinguishability under strong parallel chosen-ciphertext at-
tacks. An adversary A is legitimate if: 1) It calls LoR only once with m0, m1 ∈
MsgSp(PK) such that |m0| = |m1|; 2) It calls PSDec exactly once and after call-
ing LoR, on a tuple (c, PK,R) such that for i = 1, . . . , #c, the tuples (c[i], PK[i]) do
not appear in List and R[i] are polynomial-time; and 3) R is polynomial-time and, if
x = 0 it does not call SDec, or if x = 1 it does not call SDec after calling LoR, or if
x = 2 it does not call SDec with a tuple (c, PK) in List.

challenge public key. One way to go around this obstacle is to build schemes
which permit embedding an escrow trapdoor in the common parameters, en-
abling decryption over all public keys.

4.2 Complete Non-malleability

Turning our attention to strong notions of non-malleability, or so-called complete
non-malleability, we shall see in this section how strong decryption oracles can
be used to bring coherence to existing definitional approaches. In particular, we
introduce new definitions using strong decryption oracles that can be used to
establish clear relations with the strong indistinguishability notion introduced
above. We also clarify how the definitions we propose relate to those previously
described in literature.

Simulation-based definition. The first definition of complete non-malleabili-
ty was introduced by Fischlin in [13]. We propose an alternative definition.
We define the SNM-SCCAx advantage of an adversary A with respect to a
polynomial-time relation R and a polynomial-time simulator S against a public-
key encryption scheme Π by

Advsnm-sccax
Π,R,S (A):=Pr

[
Real-SNM-SCCAxAΠ,R⇒T

]
−Pr

[
Ideal-SNM-SCCAxSΠ,R⇒T

]
where games Real-SNM-SCCAx and Ideal-SNM-SCCAx are as shown in Figure 6.
The syntax of public-key encryption that we use includes a Setup procedure
and hence we explicitly include the common parameters I as an input to the
malleability relation. This approach is consistent with the explicit inclusion of the
challenge public key, which is shown in [13] to strictly strengthen the definition.
Additionally, for backward compatibility with [8], our relations also include the
state information stR. For strong decryption oracles that behave consistently
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proc. Initialize():
I ←$ Setup()
(SK�, PK�) ←$ Gen()
List ← []; st[V] ← st0
Return (I, PK�)

proc. SDec(c, PK, R′):
Return SDecU,V(c,PK,R′)

proc. Enc(M, stR):
m ←$ M()
c ←$ Enc(m, PK�)
List ← (c, PK�) : List
Return c

Game Real-SNM-SCCAxΠ,R

proc. Finalize(c,PK,R):
For i from 1 to #c do

m[i]←$ SDecU,V(c[i],PK[i],R[i])
Return R(I,m,m,c,PK�,PK,M,stR)

proc. Initialize():
I ←$ Setup()
(SK�, PK�) ←$ Gen()
st[V] ← st0
Return (I, PK�)

proc. SDec(c, PK, R′):
Return SDecU,V(c,PK,R′)

Game Ideal-SNM-SCCAxΠ,R

proc. Finalize(c,PK,R, M, stR):
For i from 1 to #c do

m[i]←$ SDecU,V(c[i],PK[i],R[i])
m ←$ M()
Return R(I,m,m,c,PK�,PK,M,stR)

Fig. 6. Games defining simulation-based complete non-malleability under strong
chosen-ciphertext attacks. An adversary A, playing the real game, is legitimate if:
1) It calls Enc once with a valid M; 2) R′ queried to SDec is computable in polyno-
mial time; if x = 0 it does not call SDec; if x = 1 it does not call SDec after calling
LoR; and if x = 2 it does not call SDec with a tuple in List; and 3) It calls Finalize
with a tuple such that all relations in R are computable in polynomial time and, for
i = 1, . . . , #c, the tuples (c[i], PK[i]) do not appear in List. A non-assisted simulator,
playing the ideal game, S is legitimate if: 1) It calls Finalize with a valid M; and 2) It
does not call SDec. An assisted simulator, playing the ideal game, is legitimate if: 1)
It calls Finalize with a valid M; 2) R′ queried to SDec is computable in polynomial
time; and 3) If x = 0 it does not call SDec.

with the standard one for PK�, and for a class of relations that matches those in
the original definition, our definition implies standard assisted and non-assisted
simulation-based non-malleability as defined in [8].

A similar line of reasoning does not permit concluding that our definition
also implies Fischlin’s complete non-malleability. A legitimate adversary under
Fischlin’s definition is also a legitimate adversary under the definition in 6. How-
ever, we cannot identify a concrete version of the strong decryption oracle that
captures the environment under which such an adversary should run. This is
because Fischlin’s model implicitly uses two definitions of decryption oracle: one
during the interactive stages of the game, where the adversary has access to
a standard decryption oracle that decrypts using the challenge secret key, and
a second one in the Finalize stage, where the ciphertext produced by the ad-
versary is decrypted by searching through the message/randomness space. We
justify our modelling choice with two arguments. Firstly, the construction of
Finalize in Fischlin’s definition makes it impossible to prove that this secu-
rity model is stronger than the apparently weaker definition of non-malleability
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proposed in [8], which uses the standard decryption oracle to recover messages
from the ciphertexts output by the adversary (recall the particular case of in-
valid ciphertexts under a valid public key, for which the two interpretations of
valid decryption results do not coincide). This suggests that using a consistent
definition of a (strong) decryption oracle in all stages of the game is a better
approach. Secondly, if this change were introduced in Fischlin’s definition, then
this would simply be a special case of our more general definition.

Comparison-based definition. The simulation-based definition due to Fis-
chlin was later reformulated by Ventre and Visconti [19] as a comparison-based
notion. We introduce an alternative definition based on the CNM-SCCAx game
shown in Figure 7 and define CNM-SCCAx advantage of an adversary A against
an encryption scheme Π as

Advcnm-sccax
Π (A) := Pr

[
CNM-SCCAxAΠ ⇒T

∣∣ b=1]−Pr
[
CNM-SCCAxAΠ ⇒T

∣∣ b=0]

Our definition differs from that given in [19] in the following aspects. We provide
the adversary with strong decryption oracles in various stages of the attack. In
both models the adversary is allowed to return a vector of ciphertexts, although
in [19] it is restricted to returning a single public key. Also, procedure Finalize
does not automatically return F if any of the ciphertexts is invalid. The definition
in [19] would therefore be weaker than ours, were it not for our modelling choice
in the Finalize procedure. In Ventre and Visconti’s definition, the relation R is
evaluated by a complete search over (m[1], r1)× . . .× (m[#c], r#c). In our defini-
tion we have constrained the adversary to performing the search using the strong
decryption oracle independently for each component in c, before evaluating R.
This option is, not only consistent with the standard notions of non-malleability
for encryption schemes [8], but is also essential to proving equivalence among
the different notions we propose.

proc. Initialize():
b ←$ {0, 1}; I ←$ Setup()
(SK�, PK�) ←$ Gen()
List ← []; st[V] ← st0
Return (I, PK�)
proc. SDec(c, PK, R′):
Return SDecU,V(c, PK, R′)

proc. Enc(M):
m0, m1 ←$ M()
c ←$ Enc(m1, PK�)
List ← List : (c, PK�)
Return c

Game CNM-SCCAxΠ

proc. Finalize(c,PK,R, R):
For i from 1 to #c do

m[i]←$ SDec(c[i],PK[i],R[i])
Return R(I, mb,m, c, PK�,PK)

Fig. 7. Game defining comparison-based complete non-malleability under strong
chosen-ciphertext attacks. An adversary A is legitimate if: 1) It calls Enc once with a
valid M; 2) It always queries SDec with R′ computable in polynomial time; if x = 0
it does not call SDec; if x = 1 it does not call SDec after calling LoR; and if x = 2
it does not call SDec with a tuple (c, PK) in List; 3) It calls Finalize with a tuple
(c,PK,R, R) such that R and all the elements of R are computable in polynomial time
and, for i = 1, . . . , #c, the tuples (c[i], PK[i]) do not appear in List.
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Remark. Recall that Ventre and Visconti’s proof [19] of equivalence between
comparison and (non-assisted) simulation-based complete non-malleability holds
(for x �= 0) for a restricted class of relations, called lacking relations, which do
not depend on the challenge public key given to the adversary. We note that our
equivalence proof for assisted simulators does not restrict the class of relations
under which equivalence holds. Furthermore, such a restriction would be point-
less in our definitions for non-assisted simulators, since the proof technique of
generating a new key-pair is no longer sufficient to guarantee that the simulator
can answer strong decryption queries under arbitrary public keys.

4.3 Relations among Notions of Security

We now present our main theorem that establishes equivalence between the
security notions we have proposed above. The proof, which can be found in the
full version of the paper, follows the strategy used by Bellare and Sahai [8]. We
note that our result holds for any instantiation of the strong decryption oracle
as given in Figure 1, providing further evidence that the security models we are
relating are, in fact, the same notion presented using different formalisms.

Theorem 1 (Equivalence). The IND-SPCAx, CNM-SCCAx and SNM-SCCAx
notions of security are equivalent, for any x ∈ {0, 1, 2}.

Using a standard hybrid argument one can show that IND-SPCAx self-composes.
Together with our equivalence result, we conclude that our notions of complete
non-malleability also self-compose [18].

5 An Efficient Completely Non-Malleable Scheme

The only completely non-malleable scheme (without random oracles) known
prior to this work, was that of Ventre and Visconti [19], which relied on generic
(and hence inefficient) zero-knowledge techniques. In this section, we will present
an efficient and strongly secure scheme based on standard assumptions.

Our scheme, which is shown in Figure 8, uses a computational bilinear group
scheme Γ and a family of collision resistant hash functions Σ mapping GT×G×G2

to bit strings of size n. Our scheme relies on the decisional bilinear Diffie-
Hellman assumption which requires the distributions (g, ga, gb, gc, e(g, g)abc) and
(g, ga, gb, gc, e(g, g)d), for random a, b, c, and d, to be computationally indistin-
guishable. The scheme’s design is based on the certificateless encryption scheme
of [11], which in turn is based on Water’s identity-based encryption scheme [20].
The construction also uses Waters’ hash [20], defined by WH(w) := u0

∏n
i=1 u

[w]i
i .

Validity algorithms. We examine which of the validity algorithms exists for
this scheme. We assume that Γ specifies algorithms to check for group member-
ship, which are used implicitly throughout the scheme. The MsgSp algorithm
is the same as checking membership in GT . The SKSp algorithm checks mem-
bership in Zp. The KeySp algorithm checks if gSK = X and αSK = Y where
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proc. SetupΓ,Σ,n():
k ←$ Key();
(α,β,u0,. . . ,un) ←$ G�×Gn+2

I ← (Γ, Hk, α, β, u0, . . . , un)
Return I

proc. Gen():
x ←$ Zp; X ← gx; Y ← αx

PK ← (X, Y ); SK ← x
Return (SK, PK)

proc. Enc(m, PK):
t ←$ Zp; (X, Y ) ← PK
If e(X, α) �= e(g,Y )

Return ⊥
C1 ← m · e(Y, βt);
C2 ← αt

w ← Hk(C1, C2, PK)
C3 ← WH(w)t

c ← (C1, C2, C3)
Return c

proc. Dec(c, SK, PK):
(X, Y ) ← PK
If gSK �= X ∨ αSK �= Y

Return ⊥
(C1, C2, C3) ← c
w ← Hk(C1, C2, PK)
If e(C2, WH(w)) �=e(α,C3)

Return ⊥
m ← C1/e(C2, β

x)
Return m

Fig. 8. A strongly secure public-key encryption scheme without random oracles

(X, Y ) = PK. The PKSp algorithm checks if e(X, α) = e(g, Y ). Finally, we
show that decryption rejects all ciphertexts outside the range of encryption. Let
(C1, C2, C3) be a ciphertext. Then, there exists a message m and a t such that
this ciphertext can be written as (m · e(Y, β)t, αt, C3). If this ciphertext is out-
side the range of encryption, then C3 = WH(w)t′ for some t′ �= t. But then
e(C2, WH(w)) = e(α, WH(w))t �= e(α, WH(w))t′ = e(α, C3) and the equality
check in decryption fails.

The next theorem states the security properties of our scheme. Its proof uses
technique recently proposed by Bellare and Ristenpart [6] and is given in the
full version of the paper.

Theorem 2 (Informal). Under the decisional bilinear Diffie-Hellman assump-
tion in Γ and the collision resistance of the hash function family Σ, the above
scheme is IND-SCCA2 secure (with respect to SDec oracle defined in Figure 3).

Although our equivalence theorems imply that this scheme admits a black-box
assisted simulator, it does not contradict Fischlin’s impossibility results on black-
box simulation [13]. First note that Fischlin’s impossibility result is in the plain
model whereas our scheme has a setup procedure. Furthermore, our definitions
do not require the opening of message/randomness pairs, whereas Fischlin re-
quires this to derive his impossibility result for assisted simulators. We can indeed
construct a non-assisted simulator for our scheme through a direct proof, but this
requires modifying the common parameters in an essential way to simulate the
strong decryption oracle. Hence this result does not hold for general relations, but
only for those which ignore the I presented at their inputs (consistently with [19]
we call these I-lacking relations). Furthermore, using a similar technique, we are
also able to show (through a direct proof) that the zero-knowledge-based con-
struction in [19] is completely non-malleable with respect to black-box simulators
for a class of relations that are I-lacking (I in this case comprises the common
reference string). We note that this is a better result than that obtained in [19],
since there the class of relations must be both I-lacking and PK-lacking (i.e. they
must also ignore the PK at their inputs).
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Abstract. Completely non-malleable encryption schemes resist attacks
which allow an adversary to tamper with both ciphertexts and public
keys. In this paper we introduce two extractor-based properties that
allow us to gain insight into the design of such schemes and to go be-
yond known feasibility results in this area. We formalise strong plaintext
awareness and secret key awareness and prove their suitability in realis-
ing these goals. Strong plaintext awareness imposes that it is infeasible
to construct a ciphertext under any public key without knowing the un-
derlying message. Secret key awareness requires it to be infeasible to
produce a new public key without knowing a corresponding secret key.

Keywords: Secret Key Awareness. Strong Plaintext Awareness. Com-
plete Non-Malleability. Strong Chosen-Ciphertext Attacks.

1 Introduction

Background. Indistinguishability of ciphertexts under chosen-ciphertext at-
tacks (IND-CCA2) is a convenient reformulation of a more intuitive security
notion known as non-malleability. Roughly speaking, an encryption scheme is
non-malleable if, given a challenge ciphertext, it is infeasible to output a new
ciphertext encrypting a plaintext related in a “meaningful” or “interesting” way
to that enclosed in the challenge. The advantages of the indistinguishability for-
mulation become apparent when one considers various subtleties which arise
when defining what a meaningful relation is [22,10]. Recently, Fischlin [18] has
considered the problem of using public key encryption schemes to build non-
malleable commitment schemes. It has been shown that the standard definition
of non-malleability is not sufficient for this application and that a stronger vari-
ant, referred to as complete non-malleability, is required. This security definition
allows the adversary to maul the challenge public key, as well as the ciphertext.
Put differently, the adversary can output a related ciphertext under a new pub-
lic key of its choice. Unlike standard non-malleability, it has been shown in [18]
that completely non-malleable schemes are hard to construct. In particular, such
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schemes do not exist for general relations with respect to black-box simulators
that cannot access a decryption oracle (i.e. non-assisted simulators).

Complete non-malleability has recently been shown to be equivalent to indis-
tinguishability under strong chosen-ciphertext attacks [2,1]. This model enhances
the adversary’s capabilities to forge public keys and ask the decryption oracle to
provide decryptions under the corresponding (possibly unknown) secret keys. It
was also shown that it is possible to construct efficient completely non-malleable
schemes using the strong chosen-ciphertext attack model, which is more con-
venient than performing the proof in the original simulation-based definition.
Unfortunately, the equivalence result connecting strong chosen-ciphertext secu-
rity to complete non-malleability holds only for simulators assisted by a strong
decryption oracle. It therefore remains an open problem to construct efficient
schemes that achieve complete non-malleability in the strongest sense.

The impossibility result from [18] dictates that to construct a scheme that
achieves complete non-malleability with respect to non-assisted simulators, one
must resort to a non-black-box simulator. In this paper we consider extractor-
based properties that allow us to gain insight into the design of completely non-
malleable schemes and provide a technique to go beyond known feasibility results
in this area. We formalise strong plaintext awareness and secret key awareness
and prove their suitability in realising these goals. We show that if such properties
are realisable, and one considers non-black-box simulators, then the impossibility
result established for non-assisted simulators no longer holds. We also look at
how such notions can be realised with and without random oracles.

Strong plaintext awareness. Plaintext awareness formalises the intuition
that one can achieve security under chosen-ciphertext attacks by making it in-
feasible to construct a valid ciphertext without knowing, a priori, the message
hidden inside it. In fact, it has been shown that the combination of plaintext
awareness and semantic security is enough to achieve chosen-ciphertext secu-
rity [5]. We formulate a natural strengthening of plaintext awareness that re-
quires the existence of a strong plaintext extractor that decrypts ciphertexts,
even if they are encrypted under adversarially generated public keys. We prove
a fundamental theorem according to which a strongly plaintext-aware (SPA) and
IND-CPA secure scheme also withstands strong chosen-ciphertext attacks1. This
implies, through the results in [2], that such a scheme is also completely non-
malleable with respect to assisted simulators. We extend this result by showing
that strong plaintext awareness allows us to directly build non-assisted simula-
tors. The resulting simulators depend on the adversary and hence they are not
black-box. This permits going around the impossibility result established by Fis-
chlin [18]. Furthermore, strong plaintext awareness generalises a proof technique
used by Fischlin to demonstrate that (a slightly modified version of) RSA-OAEP
is completely non-malleable for non-assisted simulators2.

1 This result also has applications in certificateless encryption [1].
2 A corollary of this result is that we obtain a new perspective on the standard notion

of plaintext awareness. Indeed, a similar proof strategy can be used to construct
non-assisted simulators for standard non-malleability.
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Secret key awareness. We also propose a new extractor-based security def-
inition that takes a different perspective on how to achieve strong plaintext
awareness and complete non-malleability. Roughly speaking, this notion that we
call secret key awareness (SKA), requires it to be infeasible to generate new
valid public keys without knowing their corresponding secret keys. It therefore
looks at enhancing the security of key-generation mechanisms. We show that an
encryption scheme that is secret key aware and IND-CCA2 is also secure under
strong chosen-ciphertext attacks, and therefore completely non-malleable. We
derive this result via a stronger indistinguishability security notion, where the
adversary has access to a public key inversion oracle3. Furthermore, we prove
that secret key awareness, together with standard plaintext awareness, implies
strong plaintext awareness. Hence, secret key awareness provides all of the bene-
fits of strong plaintext awareness. Additionally, secret key awareness permits the
construction of a complete non-malleability simulator that opens the secret key
associated with the public created by the adversary. This is particularly relevant
when the scheme is used in commitment schemes, where to de-commit one re-
veals a secret key rather a message/randomness pair. Strong plaintext awareness
in not sufficient to open a ciphertext in the sense of de-commitment, as it does
not guarantee knowledge of the randomness used in encryption.

Schemes. We propose a generic transformation that permits transforming any
IND-CCA2 scheme into a secret key aware (and still IND-CCA2) scheme in the
random oracle model. The resulting schemes are therefore completely non-
malleable for non-assisted simulators. We also take first steps towards building
fully secret-key-aware schemes without random oracles. We propose a generic
construction inspired in escrow public-key encryption [12], relying on schemes
whose key-generation routines themselves operate as an encryption scheme. We
are, however, unable to instantiate this scheme and leave it as an interesting open
problem. Next, we move to specific constructions based on knowledge assump-
tions. A natural candidate for building a secret key aware scheme is the Diffie-
Hellman Knowledge assumption [5]. This approach, however, fails once we notice
that secret key awareness allows adaptive attacks on the public keys, whereas
Diffie-Hellman tuples are malleable. We therefore introduce a new knowledge
assumption stating, roughly speaking, that it is impossible to compute integers
of the form P 2Q, where P and Q are prime, without knowing the factors and
even if provided with another integer of this form. This assumption can be used
to demonstrate that variants of RSA satisfy weak forms of secret key awareness.

Organisation. We first review related work. Then, in Section 2 we settle no-
tation and recall the syntax for public-key encryption schemes. We also recall
the definition of strong decryption oracles and IND-SCCA2 security. In the same
section we also introduce invert and chosen-ciphertext attacks, which we will use
later on in the paper. In Section 3 we introduce our extractor-based notions. In
Section 4 we discuss constructions of secret key aware schemes.

3 This type of oracle has been shown to have numerous applications in the context of
adaptive one-way functions [21].
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1.1 Related Work

Plaintext awareness was originally formulated by Bellare and Rogaway [7] in
the random oracle model. Later, Bellare and Palacio [5] gave the first definition
of PA in the standard model. It is well known [5,4] that plaintext awareness
together with IND-CPA imply a level of security that is strictly stronger than
IND-CCA2. The authors in [24] showed that plaintext awareness is an “all-or-
nothing property” in the sense that one-wayness (or even a weaker condition
called non-triviality) together with PA2 plaintext awareness is enough to guar-
antee IND-CCA2 security. Birkett and Dent [11] settled the relations between
notions of plaintext awareness from [16], and showed that schemes with infi-
nite message spaces that are plaintext-aware and one-way do not exist using
techniques from [24].

Non-malleability (as a general notion) was originally introduced in the sem-
inal work of Dolev, Dwork, and Naor [17]. In order to establish relations with
other notions of security, non-malleability for public-key encryption was refor-
mulated by Bellare et al. [4] as a comparison-based security model. Bellare and
Sahai [10,9] later fully established the relation between this comparison-based
definition and the original simulation-based definition of Dolev et al. Pass, Shelat,
and Vaikuntanathan [22] provide a full characterisation of non-malleability, iden-
tifying some shortcomings in previous results and considering their robustness
under a form of composition where the adversary is provided with a polynomial
number of challenge ciphertexts.

Complete non-malleability, was proposed by Fischlin [18]. Here the adversary
is allowed to choose the public key under which the target ciphertext is pro-
duced. The same author presented impossibility results as to the construction of
completely non-malleable schemes with respect to black-box simulators and gen-
eral relations, and showed that a modified version of RSA-OAEP is completely
non-malleable in the random oracle model. Visconti and Ventre [26] proposed
a comparison-based definition of complete non-malleability, studied its relation
with the simulation-based definition of Fischlin, and also gave a generic con-
struction of completely non-malleable schemes based on NIZK-PoK. The authors
in [2] define strong decryption oracles, use this to introduce indistinguishabil-
ity under strong chosen-ciphertext attacks and establish relations with assisted
simulation-based and comparison-based complete non-malleability. A practical
and strongly secure scheme (without random oracles) based on the decisional
bilinear Diffie-Hellman problem is also given.

Adaptive one-way functions [21], where an adversary has access to an inversion
oracle, and extractable one-way functions [13,14], where one requires knowledge
of pre-image, have been recently proposed. Secret key awareness can be seen as
a refinement of these notions for public-key encryption.

2 Preliminaries

Notation. We write x ← y for assigning value y to variable x, and x ←$ X
for sampling x from set X uniformly at random. If X is empty, we set x ←⊥,
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where ⊥/∈ {0, 1}� is a special failure symbol. If A is a probabilistic algorithm we
write x ←$ A(I1, I2, . . .) for the action of running A on inputs I1, I2, . . . with
random coins chosen uniformly at random, and assigning the result to x. When
A is run on specific coins r, we write x ← A(I1, I2, . . . ; r). We denote boolean
values, namely the output of checking whether a relation holds, by T (true) and
F (false). For a space Sp ⊆ {0, 1}�, we identify Sp with its characteristic function.
In other words, Sp(s) = T if and only if s ∈ Sp. The function Sp(·) always exists,
although it may not be computable in polynomial time. We say s is valid with
respect to Sp if and only if Sp(s) = T. When this is clear from the context, we
also use Sp for sampling uniformly from Sp. Unless stated otherwise, the range
of a variable s is assumed to be {0, 1}�. The symbol : is used for appending an
element to a list, and we indicate vectors using bold-faced font. We say f(λ) is
negligible if f(λ) ∈ ∩c∈NO(λ−c).

Games. In this paper we will be using code-based game-playing [8]. Each game
has an Initialize and a Finalize procedure. It also has specifications of pro-
cedures to respond to an adversary’s various oracle queries. A game Game is
run with an adversary A as follows. First Initialize runs and its outputs are
passed to A. Then A runs and its oracle queries are answered by the procedures
of Game. These procedures return ⊥ if queried on ⊥. When A terminates, its
output is passed to Finalize which returns the outcome of the game y. This
interaction is written as GameA ⇒ y. In each game, we restrict attention to
legitimate adversaries. Legitimacy is defined specifically for each game. All algo-
rithms (adversaries, extractors and plaintext/public-key creators) are assumed
to run in probabilistic polynomial time (PPT).

Public-key encryption. We adopt the standard multi-user syntax with the
extra Setup algorithm [3], which we believe is the most natural one for se-
curity models involving multiple public keys. A public-key encryption scheme
Π = (Setup, Gen, MsgSp, Enc, Dec) is specified by five polynomial-time algorithms
(in the length of their inputs) as follows. Setup is the probabilistic setup algo-
rithm which takes as input the security parameter 1λ and returns the common
domain parameter4 I. Gen(I) is the probabilistic key-generation algorithm. On
input global parameters I, this algorithm returns a secret key SK and a matching
public key PK. Algorithm MsgSp(m, PK) is a deterministic message space recog-
nition algorithm. On input m and PK this algorithm returns T or F. Enc(m, PK; r)
is the probabilistic encryption algorithm. On input a message m, a public key
PK, and possibly some random coins r, this algorithm outputs a ciphertext c or a
special failure symbol ⊥. Finally, Dec(c, SK, PK) is the deterministic decryption
algorithm. On input of a ciphertext c and keys SK and PK, this algorithm out-
puts a message m or a special failure symbol ⊥. The correctness of a public-key
encryption scheme requires that for any I ←$ Setup(1λ), any (SK, PK) ←$ Gen()
and all m ∈ MsgSp(PK) we have Pr[Dec(Enc(m, PK), SK, PK) = m] = 1.

4 Although all algorithms are parameterised by I, we often omit I as an explicit input
for readability. Furthermore, we assume that the security parameter is included in I.
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Remark. We note that the multi-user syntax permits capturing in the same
framework schemes that execute in the standard model, in which case the global
parameters are empty; and also schemes which execute in the Common Reference
String (CRS) model. All the relations that we establish between the different
models apply to both cases.

Validity checking algorithms. The following spaces (and associated func-
tions) will be used throughout the paper. All of these spaces are parameterised
by I and are subsets of {0, 1}�.

MsgSp(PK) := {m : MsgSp(m, PK)}
KeySp := {(SK, PK) : ∃r (SK, PK) = Gen(r)}

We assume throughout the paper that the encryption and decryption algorithms
check if m ∈ MsgSp(PK) and return ⊥ if it does not hold. Often the algorithm
MsgSp does not depend on PK in the sense that for any two valid public keys
PK and PK′ and any m ∈ {0, 1}� we have MsgSp(m, PK) = MsgSp(m, PK′).
For general schemes, one can consider the infinite message space MsgSp(PK) =
{0, 1}� case. However, given that in this paper we will often consider the set of
all valid messages and sample from it, we restrict our attention to schemes with
finite message spaces. As pointed out by Pass et al. [22], this means that to avoid
degenerate cases we must also restrict our attention to schemes for which all the
elements in the range of decryption can be efficiently encrypted5, including the
special failure symbol ⊥. We also assume that the key-pair validity algorithm
KeySp is polynomial-time and require that decryption returns ⊥ if this check
fails on the key-pair passed to it. We also assume various algorithms check for
structural properties such as correct encoding, membership in a group, etc.

2.1 Strong Chosen-Ciphertext Security

The idea behind a strong chosen-ciphertext attack is to give the adversary access
to an oracle that decrypts ciphertexts of the adversary’s choice with respect to
arbitrary public keys.

We follow [2] and adopt a generic definition of strong decryption as shown in
Figure 1. The oracle proceeds in three steps. The first step models the general

proc. SDecU,V(c, PK, R):
WitSp ← {(m, r) : V(c, PK, m, r, st[V])}
(m, r) ←$ {(m, r) ∈ WitSp : R(m)}
st[V] ← U(c, PK, R, m, r, st[V])
Return m

Fig. 1. Generic definition of a strong decryption oracle

5 This can be easily achieved for schemes used in practice.
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procedure of constructing a set of candidate (valid) decryption results6.
The second step consists of choosing one of these candidate solutions to return
to the adversary. The final step updates the state of the oracle, if it keeps one7.
As discussed in [2] the motivation for having such a general definition is that the
notion of the message encapsulated by the ciphertext can be defined in a number of
ways, depending on the witnesses that are taken to assess the validity of the pub-
lic key/ciphertext pair. For example, one can define validity via the encryption
operation, in which case a message/randomness pair is the witness

V(c, PK, m, r) := c
?= Enc(m, PK; r), (1)

or via the decryption algorithm, where a message/secret key pair is the witness

V′(c, PK, m, r) := (SK, PK) ?= Gen(r) ∧m
?= Dec(c, SK, PK). (2)

Note that neither criterion guarantees that, if a message is found to be a valid
decryption result, then it will be unique. This justifies the need for the second
step in the definition we propose: there could be many valid decryption results
to choose from, and it is left to the adversary to control how this is done by
providing a relation R on messages as input to the oracle. For a well-defined and
broad class of schemes [2], this general definition collapses into a much simpler
one. However, we follow this approach for the sake of generality.

We now present the definition of ciphertext indistinguishability under strong
chosen-ciphertext attacks, introduced in [2] as the natural extension of the stan-
dard notion of security for public-key encryption schemes. The IND-SCCAx ad-
vantage of an adversary A for x = 0, 1, 2 against Π is defined by

Advind-sccax
Π,A (λ) := 2 · Pr

[
IND-SCCAxAΠ (λ) ⇒ T

]
− 1,

where game IND-SCCAx is shown in Figure 2. Implicit in this definition are the
descriptions of the U and V algorithms, which are fixed when analysing a scheme
in the resulting IND-SCCAx model. We say a scheme is IND-SCCAx secure if the
advantage of any PPT adversary is negligible.

2.2 Security under Invert and Chosen-Ciphertext Attacks

We introduce a new security model for encryption that helps us clarify the
relations among notions we establish later on. In this model, the adversary has
access to an oracle that, given a public key generated by the adversary, provides it
with the corresponding secret key. Figure 4 presents the general form of the Inv
procedure, which is analogous to the SDec procedure presented in the previous
section. When many secret keys satisfy the validity criterion, the adversary is
6 Search for messages is over sufficiently long bit strings together with the special sym-

bol ⊥. Search for random coins is over sufficiently long bit strings.
7 The state is initialized to some value st0. A natural use of the state is to make sure

that decryption is consistent in different calls.
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proc. Initialize(λ):
b ←$ {0, 1}; I ←$ Setup(1λ)
(SK�, PK�) ←$ Gen()
List ← []; st[V] ← st0
Return (I, PK�)

proc. LoR(m0, m1):
c ←$ Enc(mb, PK�)
List ← (c, PK�) : List
Return c

proc. SDec(c, PK, R):
Return SDecU,V(c, PK, R)

Game IND-SCCAxΠ(λ)

proc. Finalize(b′):
Return (b′ = b)

Fig. 2. Game defining indistinguishability under strong chosen-ciphertext attacks. An
adversary A is legitimate if: 1) It calls LoR only once with m0, m1 ∈ MsgSp(PK) such
that |m0| = |m1|; and 2) R is polynomial-time and, if x = 0 it does not call SDec, if
x = 1 it does not call SDec after calling LoR, and if x = 2 it does not call SDec with
a tuple (c, PK) in List.

proc. Initialize(λ):
b ←$ {0, 1}; I ←$ Setup(1λ)
(SK�, PK�) ←$ Gen()
List ← []; st[V] ← st0
Return (I, PK�)

proc. LoR(m0, m1):
c ←$ Enc(mb, PK�)
List ← (c, PK�) : List
Return c

proc. Dec(c):
Return Dec(c, SK�, PK�)

Game IND-ICAxΠ(λ)

proc. Inv(PK, R):
Return InvU,V(PK, R)

proc. Finalize(b′):
Return (b′ = b)

Fig. 3. Game defining indistinguishability under invert and chosen-ciphertext attacks.
An adversary A is legitimate if: 1) It calls LoR only once with m0, m1 ∈ MsgSp(PK)
such that |m0| = |m1|; 2) R is polynomial-time and, if x = 0 it does not call Dec or
Inv, if x = 1 it does not call Dec or Inv after calling LoR, and if x = 2 it does not
call Dec with a c in List; and 3) It does not call Inv on PK�.

proc. InvU,V(PK, R):
WitSp ← {(SK, r) : V(PK, SK, r, st[V])}
(SK, r) ←$ {(SK, r) ∈ WitSp : R(SK)}
st[V] ← U(PK, R, SK, r, st[V])
Return SK

Fig. 4. Generic definition of an invert oracle

also allowed to restrict the set of “interesting” secret keys from which the answer
is sampled by providing a relation R on secret keys as input to the oracle. A
natural validity criteria for this oracle is

V(PK, SK, r) := (SK, PK) ?= Gen(r)

accepting all key-pairs that may be output by the key-generation algorithm8.
8 Another validity criteria, corresponding to a natural stateful invert oracle, will ensure

that repeat queries will be answered consistently.
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algorithm V′(c, PK, m, r, st[V′]):
(st[V], (SK∗, PK∗)) ← st[V′]
If PK = PK�

If m = Dec(c, SK�, PK�)
Return T Else Return F

(SK, r′) ← r
If V(PK, SK, r′, st[V]) ∧ m = Dec(c, SK, PK)

Return T Else Return F

algorithm U′(c, PK, R, m, r, st[V′]):
(st[V], (SK∗, PK∗)) ← st[V′]
(SK, r′) ← r
R′(SK) := R(Dec(c, SK, PK))
st[V] ← U(PK, R′, SK, r′, st[V])
Return (st[V], (SK∗, PK∗))

Fig. 5. U′ and V′ for SDecU′,V′ corresponding to InvU,V with st0 = (SK�, PK�)

We define the IND-ICAx advantage of an adversary A for x = 0, 1, 2 against
encryption scheme Π is defined by

Advind-icax
Π,A (λ) := 2 · Pr

[
IND-ICAxAΠ (λ) ⇒ T

]
− 1,

where Game IND-ICAx is shown in Figure 3. We say a scheme is IND-ICAx se-
cure if the advantage of any PPT adversary is negligible. This new model can
be related to IND-SCCAx as follows. For a given InvU,V procedure, define the
associated SDecU′,V′ procedure through the algorithms shown in Figure 5. The
following theorem shows that security under each possible definition of an invert
oracle implies IND-SCCAx security under a well-defined version of the strong
decryption oracle.

Theorem 1 (IND-ICAx ⇒ IND-SCCAx). Let A be an IND-SCCAx adversary
against encryption scheme Π with respect to SDecU′,V′ associated to InvU,V as
defined in Figure 5. Then there exists an IND-ICAx adversary A1 against Π with
at least the same advantage as that of A.

The reduction is constructed by simulating the strong decryption oracle using
both the standard decryption oracle (for queries under the challenge public key)
and the invert oracle (for adversarially chosen-keys) available in the IND-ICAx
game. The details are given in the full version of the paper. The interesting part of
the proof is an argument showing that this simulation fits into the generic struc-
ture of SDec given in Figure 1 and, in particular, that the effect of the relation
R passed to the strong decryption oracle can be emulated through a relation
R′ passed to the invert oracle. The intuition here is that the strong decryption
oracle associated with a particular invert oracle maps the relation R that allows
the adversary to restrict the set of interesting messages onto a relation R′ that
selects the set of secret keys that decrypt the queried ciphertext into the same set
of interesting messages. Technically, the relation R′

c,PK(SK) := R(Dec(c, SK, PK))
allows us to simulate the oracle in Figure 5 with the correct distribution.

3 Extractor-Based Properties

The strong chosen-ciphertext security model that was recalled in Section 2 sug-
gests that any secure scheme under this definition must ensure, by construction,
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that strong decryption queries are of no help to the adversary even when the
associated public keys are chosen adaptively. Plaintext awareness [5] formalises
this intuition when a standard decryption oracle is used (and a public key is
fixed). We therefore propose strong plaintext awareness as a natural extension
for strong security models. This notion, however, is not the only way to render
strong decryption oracles ineffective. An alternative approach is to require that
any adversary which outputs a new valid public key must know a valid secret
key for it. We refer to this property as secret key awareness. In the next two sub-
sections we formalise these extractor-based notions precisely and demonstrate
their adequacy for the security analysis of completely non-malleable schemes.

3.1 Strong Plaintext Awareness

We follow the approach adapted in [5] to define strong plaintext awareness in the
standard model. We run an adversary in two possible environments and require
that its behaviour does not change in any significant way. In the first world, the
adversary has access to a real strong decryption oracle while in the second the or-
acle executes a polynomial-time extractor. Furthermore, in these environments,
the adversary may obtain ciphertexts on “unknown-but-controlled” plaintexts
though an encryption oracle, fed with messages produced by a plaintext creator.
More formally, the SPAx advantage of an adversary, for x = 1, 2, against en-
cryption scheme Π with respect to plaintext creator P (mapping bit strings to
messages), strong plaintext extractor K, and distinguisher D, is defined by

Advspax
Π,P,D,K,A(λ) := Pr

[
Dec-SPAxAΠ,P,D(λ)⇒T

]
− Pr

[
Ext-SPAxAΠ,P,D,K(λ)⇒T

]
where games Dec-SPAx and Ext-SPAx are shown in Figure 6. We say a scheme
is SPAx if, for every PPT adversary A, there exists an efficient strong plaintext
extractor K such that, for all distinguishers9 and plaintext creators, advantage
is negligible.

The next theorem, which is proved in the full version of the paper, shows
that the above formulation of strong plaintext-awareness, together with semantic
security is enough to achieve strong chosen-ciphertext security.

Theorem 2 (SPAx ∧ IND-CPA ⇒ IND-SCCAx). Fix a definition of SDecU,V

and let A be an IND-SCCAx adversary against Π in the resulting model. Then
there exist an SPAx ciphertext creator A1, an IND-CPA adversary A2, plaintext
creators P0, P1, and distinguishers D0, D1 such that

Advind-sccax
Π,A (λ) ≤ Advspax

Π,P0,D0,K,A1
(λ) + Advspax

Π,P1,D1,K,A1
(λ) + Advind-cpa

Π,A2
(λ),

where K is the plaintext extractor for A1 implied by the SPAx property of Π.

As we mentioned in the introduction, the equivalence between indistinguishabil-
ity under strong chosen-ciphertext security and simulation-based complete non-
malleability is established for assisted simulators [2]. The next theorem shows
9 If unbounded distinguishers are allowed, we get statistical strong plaintext awareness.
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proc. Initialize(λ):
I ←$ Setup(1λ)
(SK�, PK�) ←$ Gen()
Choose coins Rnd[A] for A
st[P ] ← ε; List ← []; st[V] ← st0
Return (I, PK�, Rnd[A])

proc. SDec(c, PK, R):
Return SDecU,V(c, PK, R)

Game Dec-SPAxΠ,P,D(λ)

proc. Enc(Q):
(m, st[P ]) ←$ P(Q, st[P ])
c ←$ Enc(m, PK�)
List ← (c, PK�) : List
Return c

proc. Finalize(x):
Return D(x)

proc. Initialize(λ):
I ←$ Setup(1λ)
(SK�, PK�) ←$ Gen()
Choose coins Rnd[A] for A; List ← []
st[P ] ← ε; st[K] ← (I, PK�, Rnd[A])
Return (I, PK�, Rnd[A])

proc. SDec(c, PK, R):
(m, st[K]) ←$ K(c, PK, R, List, st[K])
Return m

Game Ext-SPAxΠ,P,D,K(λ)

proc. Enc(Q):
(m, st[P ]) ←$ P(Q, st[P ])
c ←$ Enc(m, PK�)
List ← (c, PK�) : List
Return c

proc. Finalize(x):
Return D(x)

Fig. 6. The Dec-SPAx and Ext-SPAx games for defining the strong plaintext-awareness
of encryption scheme Π. An adversary A is legitimate if: 1) R is polynomial-time and
if x = 1 it never calls Enc; and 2) It never calls SDec with a tuple (c, PK) in List.

that using strong plaintext awareness one can strengthen this result to non-
assisted simulators10.

Theorem 3 (SPAx ∧ SNM-CPA ⇒ Non-Assisted SNM-SCCAx). Fix a defi-
nition of SDecU,V and let A be a Real-SNM-SCCAx adversary against Π. Then
there exist an SPAx ciphertext creator A1, a Real-SNM-CPA adversary A2, a
plaintext creator P, a distinguisher D, and a (non-assisted) simulator S such
that for all R

Advsnm-sccax
Π,R,S,A (λ) ≤ Advspax

Π,P,D,K,A1
(λ) + Advsnm-cpa

Π,R,S2,A2
(λ),

where K is the strong plaintext extractor for A1 implied by the SPAx property of
Π and S2 = S is the simulator for A2 implied by the SNM-CPA security of Π.

The proof of this theorem, included in the full version of the paper, proceeds in
a different way than that in [10] for standard security models. There, a new key-
pair is generated to enable the simulator to answer decryption queries, whereas
in our proof this is not necessary. As pointed out by Pass et al. [22], the proof
in [10] relies on the existence of an algorithm for efficiently encrypting all possible
outputs of decryption, including special symbol⊥. Plaintext awareness in general
does not imply that this must be the case, and so our results extend the results
10 Due to space constraints, we refer the interested reader to [2] for the SNM definitions.
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in [22]: schemes that do not have the property identified in [22] may still be
plaintext aware, and therefore achieve simulation-based non-malleability for non-
assisted simulators. However, as shown in [11, Theorem 2], if an encryption
scheme is PA2 and has an infinite message space, then it is not OW-CPA. This
also applies to strong plaintext awareness, and hence no scheme with an infinite
message space will be captured by the above theorem.

Remark. In the above theorem we do not need to restrict the class of relations,
in particular to those which are independent of the challenge public key (called
lacking relations in [26]). This means that through strong plaintext awareness
one can improve on the results in [26], where this security level can only be
achieved at the cost of relation being independent of the common parameters.

Remark. Using the techniques introduced by Dent [16], the scheme in [2] might
satisfy strong plaintext awareness under an appropriate (bilinear) Diffie-Hellman
knowledge assumptions. We leave this and constructing a strongly plaintext-
aware scheme in the standard model as an open problem.

3.2 Secret Key Awareness

We now formalise secret key awareness as an alternative route to achieve strong
security guarantees. We take a similar approach to plaintext awareness and give
an adversary access to an oracle which is either a real inversion oracle (as defined
in Section 2) or one which uses a polynomial-time secret key extractor. Once
again, our requirement is that the behaviour of the adversary is computationally
indistinguishable in the two environments. We also provide the adversary with
a decryption and a controlled encryption oracle which model the extra auxiliary
information that might be useful in producing a new public key. Formally, the
SKAx advantage of an adversary A against encryption scheme Π with respect to
secret key extractor K, plaintext creator P , and distinguisher D is defined by

Advskax
Π,P,D,K,A(λ) := Pr

[
Inv-SKAxAΠ,P,D(λ)⇒T

]
− Pr

[
Ext-SKAxAΠ,P,D,K(λ)⇒T

]
where games Inv-SKA and Ext-SKA are shown in Figure 7. We say a scheme is
SKAx secure if, for every PPT adversary A, there exists an efficient secret key
extractor K such that, for all distinguishers11 and plaintext creators, advantage
is negligible.

We are now ready to state the main theorem of this section, which permits
concluding that secret key awareness combined with IND-CCA2 is strong enough
to guarantee IND-SCCA2 security. The proof is analogous to that of Theorem 2
and is included in the full version of the paper.

Theorem 4 (SKAx ∧ IND-CCAx ⇒ IND-ICAx). Fix a definition of InvU,V and
let A be an IND-ICAx adversary against Π. Then, there exist an SKAx public key
creator A1, an IND-CCAx adversary A2, plaintext creators P0, P1, and distin-
guishers D0, D1 such that
11 If unbounded distinguishers are allowed, we get statistical secret key awareness.
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Initialize(λ)
I ←$ Setup(1λ)
(SK�, PK�) ←$ Gen()

Rnd[A] A
st[P ] ← ε st[V] ← st0
List ← []

(I, PK�, Rnd[A])

Dec(c)
m ← Dec(c, SK�, PK�)

m

Enc(Q)
(m, st[P ]) ←$ P(Q, st[P ])
c ←$ Enc(m, PK�)
List ← (c, PK�) : List

c

Inv(PK, R)
InvU,V(PK, R)

Finalize(x)
D(x)

Inv SKAxΠ,P,D(λ)

Initialize(λ)
I ←$ Setup(1λ)
(SK�, PK�) ←$ Gen()

Rnd[A] A
st[K] ← (I, PK�, Rnd[A])
st[P ] ← ε List ← [] List′ ← []

(I, PK�, Rnd[A])

Dec(c)
m ← Dec(c, SK�, PK�)
List′ ← m : List′

m

Enc(Q)
(m, st[P ]) ←$ P(Q, st[P ])
c ←$ Enc(m, PK�)
List ← (c, PK�) : List

c

Inv(PK, R)
(SK, st[K]) ←$ K(PK, R, List, List′, st[K])

SK

Finalize(x)
D(x)

Ext SKAxΠ,P,D,K(λ)

Fig. 7. The Inv-SKAx and Ext-SKAx games for defining secret key awareness. An ad-
versary A is legitimate if: 1) R is polynomial-time and, if x = 0 it never calls Dec or
Enc and if x = 1 it never calls Enc; 2) It never queries PK� to Inv; and 3) It never
calls Dec with a ciphertext c such that (c, PK�) ∈ List.

Advind-icax
Π,A (λ) ≤ Advskax

Π,P0,D0,K,A1
(λ) + Advskax

Π,P1,D1,K,A1
(λ) + Advind-ccax

Π,A2
(λ),

where K is the secret key extractor for A1 implied by the SKAx property of Π.

To further justify the definition of secret key awareness, we show that it can
be used to achieve strong plaintext awareness. The next theorem, proved in in
the full version of the paper, states that secret key awareness combined with
standard plaintext awareness gives rise to strong plaintext awareness.

Theorem 5 (SKAx ∧ PAx ⇒ SPAx). Fix a definition of InvU,V and let A be
an SPAx ciphertext creator against Π, with respect to the SDecU′,V′ procedure
associated to InvU,V as defined in Figure 5. Then there exists an SKAx public
key creator A1, a PAx ciphertext creator A2, and an SPAx plaintext extractor K
such that for any plaintext creator P, and any distinguisher D we have

Advspax
Π,P,D,K,A(λ) ≤ Advskax

Π,P,D,K1A1
(λ) + Advpax

Π,P,D,K2,A2
(λ),

where K1 is the a secret key extractor for A1 implied by the SKAx property of Π,
and K2 is the plaintext extractor for A2 implied by the PAx property of Π.
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The intuition behind this theorem is the following. Secret key awareness ensures
that a strong plaintext awareness adversary cannot come up with a ciphertext
under a new public key, for which it does not know the underlying message (as
it must know the decryption key). However, no such guarantee is provided for
the challenge public key, and this justifies the plaintext awareness requirement.

Remark. An extra feature that comes with secret key awareness is the ability
to open ciphertexts via the secret key12. In other words, one can convert a non-
malleability simulator that only returns (PK�, c�) to another one13 which also
outputs the corresponding opening (SK�,m�). This means that the output of
the simulator can indeed be seen as a de-commitment. The same observation
does not apply to strong plaintext awareness, as this notion does not guarantee
the knowledge of the randomness used in encryption.

4 Secret Key Aware Schemes

4.1 Generic Construction with a Random Oracle

We have defined strong plaintext and secret key awareness in the standard model,
but the definitions can be adapted to the random oracle model [6] in the natural
way14. Interestingly, in the random oracle model, there is a simple transformation
that turns any encryption scheme into one which is secret key aware without
any loss in security: one just changes the key-generation algorithm by attaching
the hash of the key-pair to the public key. More formally, the transformed set-
up algorithm Setup′ is identical to Setup except that it also specifies a new
independent hash function H (i.e. one which is not used by the scheme), which
will be modelled as a random oracle in the security analysis. The remaining
algorithms are shown in Figure 8.

proc. Gen′(I):
(SK, PK) ←$ Gen()
PK′ ← (PK, H(SK, PK))
Return (SK, PK′)

proc. Enc′(m, PK′):
(PK, h) ← PK′

c ←$ Enc(m,PK)
Return c

proc. Dec′(c, SK′, PK′):
(PK, h) ← PK′; SK ← SK′

If h �= H(SK, PK) Return ⊥
Return Dec(c, SK, PK)

Fig. 8. Generic transformation to a secret-key-aware scheme Π′ in the ROM

It can be easily shown that the scheme obtained through the above transfor-
mation is secret key aware, as long as the range of H is large enough to ensure
12 Although not considered in this paper, the secret key awareness property can also

be used in composition theorems where direct access to secret keys is required. This
could be useful, for example, in signcryption.

13 This new simulator must be given the secret key for the challenge public key, which
is consistent with the notion of a non-malleable commitment.

14 Furthermore, the standard stronger definition requiring the existence of a universal
extractor may also be easily formulated [4].
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that the transformed scheme has only one valid secret key for each valid public
key with overwhelming probability. The idea behind the proof is that adversari-
ally created public keys will be invalid with high probability, unless the random
oracle has already been queried on the corresponding secret key. In this case
the (unique) secret key can be recovered using the extractability property of the
random oracle. Note that simply attaching H(SK) is not enough, as extraction
will fail in case the challenge public key is malleable. See the details in the full
version of the paper. From this result, together with Theorems 1 and 4, we can
deduce that if Π is IND-CCAx-secure then Π′ is IND-SCCAx-secure.

Remark. The previous generic construction can be applied to RSA-OAEP. In
the random oracle model, this new version of RSA-OAEP is SKA2 because of the
modified keys, and it preserves the original PA2 and IND-CPA security of RSA-
OAEP. It follows that this scheme is completely non-malleable with respect to
non-assisted simulators. Note that we do not need to restrict the adversary to
querying only valid public keys, as is the case in [18], since the secret key ex-
tractor implied by the SKA2 property will permit detecting such invalid queries.

4.2 Towards Secret-Key-Aware Schemes without Random Oracles

We present two approaches to constructing secret key aware schemes without
random oracles. Both are intended as stepping stones towards achieving the
strongest forms of secret key awareness. We first introduce a new knowledge-
based assumption and use it to construct a concrete scheme, which is “weakly”
secret key aware. Then we propose a generic construction inspired by techniques
used in encryption schemes with key escrow [12]. We leave it as an interesting
open problem to instantiate this generic construction or show its unrealisability.

The knowledge of factor assumption. We take advantage of the fact that
k-bit integers of the form N = P 2Q have a negligible density in the set of all
k-bit integers (note that this is not the case for the integers of the form PQ),
and we postulate that the only way to generate such integers is to start with
the two prime factors and calculate N . This assumption is similar to Diffie-
Hellman knowledge type assumptions [5] where one exploits the sparse image
of the r �→ (gr, (ga)r) map. Our assumption, however, has the extra property
of being “non-malleable” in the sense that there does not seem to be any way
to use the knowledge of one (or in fact many) integers of this form to find
an alternative way to construct new ones. Diffie-Hellman tuples on the other
hand are malleable. For concreteness, we now present a formal definition of our
knowledge of factorisation assumptions.

Take Ge to be the algorithm that, for a given value of the security parameter,
generates numbers of the form P 2Q, with P and Q random primes of the ap-
propriate size such that15 gcd(e,ϕ(P �2Q�))=1. Figure 9 depicts the KFAx game
for x = 0, 1, 2, where an adversary is required to construct a new integer of the
same form without knowing the factorization. We define the KFAx advantage of
an adversary against Ge, with respect to knowledge extractor K as:
15 We use ϕ to denote Euler’s totient function.
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proc. Initialize(λ):
(P �, Q�) ←$ Ge(1λ); N� ← P �2Q�

d ← 1/e (mod ϕ(N�)); List← []
Choose Rnd[A] for A; Flag←F
st[K] ← (N�, Rnd[A])
Return (N�, Rnd[A])

proc. Root(y):
t ← yd (mod N∗); (x, x′) ← t
List ← (x, y) : List
Return x

Game KFAxGe,K,�(λ)

proc. Fact(N):
((P, Q), st[K]) ←$ K(N, List, st[K])
If P 2Q = N ∧ P �= 1 Return (P, Q)
If ∃P ′, Q′ s.t. P ′2Q′ = N

Set Flag ← T
Return (⊥,⊥)

proc. Finalize():
Return Flag

Fig. 9. Game defining the knowledge of factor assumption. An adversary A is legitimate
if: 1) If x = 0 it queries Fact once, and if x = 0, 1 it does not query Root; and 2) It
never queries Fact on N�. Root returns the first � bits of t, i.e. |x| = �.

Advkfax
Ge,K,�,A(λ) := Pr[KFAxAGe,K,�(λ) ⇒ T].

The KFAx assumption states that, for every PPT adversary, there exists an
efficient knowledge extractor such that advantage is negligible.

RSA-based secret-key-aware schemes. The KFA1 assumption immediately
implies that an RSA-based scheme with P 2Q modulus [23] is SKA1. Random
padding before encryption allows one to construct an IND-CPA secure scheme.
In order to extend this to IND-CCA1 security, a non-adaptive Root oracle is
added to the RSA problem. As a result, we arrive at an IND-SCCA1 secure
encryption scheme without random oracles and with no setup assumptions. We
refer the reader to the full version of the paper for the details on this concrete
scheme and a proof of the secret key awareness property.

The only factorisation/RSA-based IND-CCA2 secure encryption scheme in the
standard model is a recent scheme of Hofheinz and Kiltz [19]. This scheme, with
appropriately modified public keys is a candidate for achieving IND-SCCA2 secu-
rity under the KFAx assumptions through secret key awareness. Such a construc-
tion would also admit a (non-black-box) non-assisted complete non-malleability
simulator with no set-up assumptions. This would solve the open problem [18]
of constructing an encryption scheme that is suitable for the implementation of
non-malleable commitment schemes in the plain model.

Remark. The KFAx assumptions lead to a construction of extractable one-way
functions analogous to that obtained using the knowledge-of-exponent assump-
tions [13,14]. However, we can use even the weakest form KFA0 to go beyond.
Indeed, this assumption states that one cannot come up with an N of the correct
form, even if given another integer of this form as auxiliary information. Under
this assumption the function f(P, Q) = P 2Q, where P and Q are k-bit primes,
is an extractable one-way function with dependent auxiliary information.

Remark. We note that knowledge assumptions seem necessary to establish
plaintext and secret key awareness. It remains an open problem to construct
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plaintext-aware schemes without relying on extractor-based assumptions such
as Diffie-Hellman Knowledge. NIZK techniques do not provide an answer to this
problem, as extractors should work with the provided common reference string.

A generic technique based on schemes with key escrow. Consider a
public-key encryption scheme Π where the key-generation procedure first gen-
erates a secret key in the appropriate range, and then encrypts it under an
auxiliary encryption scheme16 ΠPK. Then, the plaintext awareness property of
ΠPK naturally maps to (a weak form of) secret key awareness for Π. The caveat to
this design technique is that plaintext awareness is an all-or-nothing notion [24],
which could render this construction unrealisable. Indeed, full plaintext aware-
ness in key-generation would imply a form of indistinguishability for secret keys
that is contradicted by the correctness of the scheme17. However, by restricting
the plaintext awareness property of ΠPK to the class of plaintext creators that
return a random message from the message space, we can show that Π achieves
SKA0 if the auxiliary scheme ΠPK is PA2.
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2007-216646) and FCT project PTDC/EIA/71362/2006. The second author was
also funded by FCT grant BPD-47924-2008.
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Abstract. Gennaro introduced the notion of multi-trapdoor commit-
ments which is a stronger form of trapdoor commitment schemes at
CRYPTO 2004. Multi-trapdoor commitments have several cryptographic
applications. For example, Gennaro proposed a conversion that makes
a non-interactive multi-trapdoor commitment scheme into a non-
interactive and reusable non-malleable commitment scheme and a
compiler that transforms any proof of knowledge into concurrently non-
malleable one. Gennaro gave constructions of multi-trapdoor commit-
ments, but they rely on stronger assumptions, such as the strong RSA
assumption, the q-strong Diffie-Hellman assumption.

In this paper, we propose a non-interactive multi-trapdoor commit-
ment scheme from the standard RSA assumption. Thus, as a corollary of
our result, we obtain a non-interactive and reusable non-malleable com-
mitment scheme from the standard RSA assumption. Our scheme is based
on the Hohenberger-Waters signature scheme proposed at CRYPTO 2009.
Several non-interactive and reusable non-malleable commitment schemes
(in the common reference string model) have been proposed, but all of
them rely on stronger assumptions (e.g., strong RSA).

Keywords: non-interactive commitment, multi-trapdoor commitment,
non-malleability, reusability, RSA assumption.

1 Introduction

Commitment is the digital analogue of sealed envelopes. It consists of two phases.
In the first phase (the commitment phase), a sender provides a receiver with a
sealed envelope that contains a message (the sender sends a commitment). The
receiver cannot learn anything about the message from the commitment. This
secrecy property is called hiding in commitment schemes. In the second phase
(the decommitment, or opening, phase), the sender opens the sealed envelope
and the receiver can obtain the message (the sender sends a decommitment).
However, the sender cannot change the message in the sealed envelope. This
property is called binding in commitment schemes.
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Commitment is one of the most fundamental cryptographic primitives
like public-key encryption (PKE) and digital signature since it is an essential
building block in many cryptographic protocols, such as zero-knowledge (ZK)
protocols [19].

Commitment schemes can be used for bid auction on the Internet as a direct
application. In a scenario of bid auction, parties who want to bid for an item
make commitments to their bids in the bidding period. After the period, all bids
are revealed by sending the decommitments. If a commitment scheme has the
hiding and binding properties, we can bid even in a situation that synchronicity
is not guaranteed.

1.1 Background

Non-Malleable Commitments. Hiding and binding are basic security re-
quirements for secure commitment schemes in the stand-alone setting [27]. These
basic security notions were in the past thought to be sufficient.

However, when a party send a commitment to message m in the bidding
scenario, we want to avoid the situation that a malicious party can generate a
valid commitment to m + 1 after he saw the commitment to m from another
party without knowing m. He may be able to open his bid to m+1 after seeing a
decommitment of the original commitment to m. This situation is not considered
in the stand-alone setting.

Dolev, Dwork, and Naor proposed a stronger security notion, non-malleability
[12] to prevent the above situation. Informally speaking, a commitment scheme
is non-malleable if any adversary cannot make a commitment to a message that
has some relation to the original message m in the man-in-the-middle setting,
where an adversary is allowed to tap into the communication between a sender
and a receiver and may change the content of the communication.

There are two definitions of non-malleable commitment. A commitment scheme
is called non-malleable with respect to decommitment (or with respect to opening)
[9], if the adversary cannot make a commitment from an honest sender’s commit-
ment, such that the adversary can correctly open his commitment to a related
message after he saw the decommitment of the honest sender’s commitment. A
commitment scheme is called non-malleable with respect to commitment [12], if
the adversary cannot make a commitment to a related message (he does not need
to open it later). Non-malleable commitment with respect to decommitment (we
abbreviate this to NMd) schemes are suffice for most cryptographic applications
and bid auction since parties are often required to open their commitments. NMd
schemes are used as building blocks of many cryptographic protocols, such as uni-
versally composable (UC) commitment schemes [8], UCZK protocols [16]. Thus, it
is useful to construct efficient NMd schemes and we does not treat non-malleability
with respect to commitment in this paper.

Multi-Trapdoor Commitments. Gennaro introduced the notion of multi-
trapdoor commitments [17]. We explain multi-trapdoor commitments very in-
formally. If we can make a fake commitment that will be opened to an arbitrary
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value later by using trapdoors, a commitment scheme is called equivocal (this
is also known as a trapdoor commitment scheme). A multi-trapdoor scheme
consists of a family of trapdoor commitments. Each scheme in the family is sta-
tistically hiding. There exists a master trapdoor whose knowledge allows the
owner to open any commitment in the family in any way. For each commitment
scheme in the family, there exists its own specific trapdoor, which allows to
equivocate that specific scheme but does not allow to obtain trapdoors of other
schemes. It is required that we cannot open commitments in two different ways
without knowing the trapdoors.

It is useful to construct efficient multi-trapdoor commitment schemes because
there are cryptographic applications of them. The main applications are non-
malleable commitments and concurrently non-malleable proofs of knowledge.
Gennaro proposed a conversion that makes a non-interactive multi-trapdoor
commitment scheme into a non-interactive and reusable non-malleable commit-
ment scheme and a compiler that transforms any proof of knowledge [3] into
concurrently non-malleable one. Such a proof of knowledge yields concurrently
secure identification schemes.

Proofs of Knowledge and Identification Schemes. A proof of knowl-
edge is a cryptographic protocol, which allows a prover to convince a verifier that
he knows some secret information without revealing any information about the
secret. Proofs of knowledge are used to construct secure identification schemes
[13], which enable a prover to identify himself to a verifier. We can consider
non-malleable proofs of knowledge as in the case of non-malleable commitments.
Loosely speaking, a proof of knowledge is non-malleable if any man-in-the-middle
adversary cannot convince an honest verifier that he has some information which
relates to the secret information of an honest prover without knowing it. In this
setting, the adversary interacts with only one prover. We can consider a stronger
security, concurrent non-malleability. In this setting, a man-in-the-middle ad-
versary can interact many different (honest) prover clones and honest verifiers
concurrently. All clones have the same secret information but use independent
random coins. A proof of knowledge is concurrent non-malleable if any adversary
cannot convince an honest verifier in the above setting.

Set-up Assumptions. When we design a cryptographic protocol, we some-
times use some set-up assumptions. Many non-interactive NMd schemes are con-
structed in the common reference string model (CRS), where it is assumed that
all parties have access to a public string that is guaranteed to be selected with a
prescribed distribution since it is difficult to design non-interactive NM protocols
without non-standard assumptions in the plain model. The plain model means
that we use no set-up assumptions like the CRS model. In the CRS model, it is
desirable that one CRS can be reused polynomially many times. This property
is called reusability.

We consider only the CRS model in this paper since the definition of multi-
trapdoor commitments by Gennaro is considered in the CRS model and there is
no non-interactive NMd scheme without non-standard assumptions in the plain
model so far [1,2,8,9,10,12,14,17,25,26,28,29].
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1.2 Our Contributions and Constructions

We construct a non-interactivemulti-trapdoor commitment scheme from the stan-
dard RSA assumption. As a corollary, we obtain a non-interactive and reusable
NMd scheme fromthe standardRSAassumption since Gennaroproposeda conver-
sion that makes a non-interactive multi-trapdoor commitment scheme into a non-
interactive reusable NMd scheme by using a one-time signature scheme. Previous
non-interactive and reusable NMd schemes are constructed from stronger assump-
tions, such as the strong RSA assumption, the q-strong Diffie-Hellman (DH) as-
sumption. This is the first construction of a non-interactive reusable NMd scheme
from the RSA assumption (i.e., standard assumption).

Our Techniques. Here is an outline of our techniques.
We explain the security notions of multi-trapdoor commitments informally.

For any commitment in the family, commitments are statistically hiding and it
is impossible to open a commitment in two different ways even if the adversary
is given trapdoors of selected schemes. The adversary must select the schemes
before seeing the definition of the whole family. Of course, the trapdoor of the
target scheme is not given to the adversary. We call this binding property strongly
secure binding in this paper.

We consider a trapdoor commitment scheme whose trapdoors consist of sig-
natures for some public strings. If breaking the binding property of this commit-
ment scheme is equivalent to obtaining a valid signature (i.e., its trapdoor), the
security game of strongly secure binding is very similar to the security game of
signature.

In the strongly secure binding game of multi-trapdoor commitments, the ad-
versary selects public strings which specify schemes, then he is given a master
public key that defines the whole family and trapdoors for the selected public
strings. At this point, he outputs a commitment, two distinct messages, and their
decommitments. If a master public key, a master trapdoor, public strings, spe-
cific trapdoors for public strings, and an oracle that give the adversary trapdoors
of a multi-trapdoor commitment scheme correspond to a public verification key,
a private signing key, messages, signatures for messages, and a signing oracle of a
signature scheme, respectively, then the above game corresponds to the security
game of existential unforgeability against weak chosen message attacks. Loosely
speaking, the adversary must query before he is given a verification key in the
weak chosen message attack game.

In the strongly secure binding game, the adversary must query public strings
before given a master public key, so the security against weak chosen message
attacks is sufficient for our purpose (we do not need the security against adaptive
chosen message attacks).

Thus, intuitively, we may be able to construct multi-trapdoor commitment
schemes from signature schemes secure against weak chosen message attacks.
We use the Hohenberger-Waters signature scheme proposed at CRYPTO’09 [21]
to construct multi-trapdoor schemes since their schemes are secure against weak
chosen message attacks under standard assumptions. Our commitment scheme
comes from the Guillou-Quisquater (GQ) identification scheme [4,20].
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From the above observation, we find that the identity-based trapdoor com-
mitment scheme by Dodis, Shoup, and Walfish [11] can be seen as a multi-
trapdoor commitment scheme based on Waters’ signature [31], so we obtain
a multi-trapdoor commitment scheme from the computational Diffie-Hellman
(CDH) assumption (in bilinear groups). It immediately yields a non-interactive
reusable NMd scheme from the CDH assumption (in bilinear groups).

1.3 Related Works and Comparisons

Several NMd schemes in the CRS model have been proposed, Di Crescenzo,
Ishai, and Ostrovsky, Fischlin and Fischlin, and Di Crescenzo, Katz, Ostro-
vsky, and Smith constructed NMd schemes from standard assumption, such as
the RSA or the discrete logarithm (DL) assumption, but they does not have
reusability [9,10,14,15]. Damg̊ard and Groth, MacKenzie and Yang, and Gennaro
constructed non-interactive and reusable NMd schemes, but they used stronger
assumptions, such as the strong RSA or the q-strong DH assumption [8,17,26].

A comparison of our results and previous results for NMd schemes is shown in
Table 1. Reusability indicates whether a CRS can be reused polynomially many
times or not. The DSA assumption in the table means that Digital Signature
Algorithm (DSA) [23] is secure.

Table 1. Previous and our schemes in the CRS model

Reference Interaction Reusability Assumptions
DIO [9] non-interactive No One-Way Functions

FF [14,15] interactive No DL, RSA, or Factoring
DKOS [10] non-interactive No DL or RSA

DG [8] non-interactive Yes strong RSA
MY [26] non-interactive Yes strong RSA or DSA

Gennaro [17] non-interactive Yes strong RSA or q-strong DH
Ours non-interactive Yes RSA

2 Preliminaries

2.1 Notations and Conventions

For any n ∈ N, let [n] be the set {1, . . . , n}. We describe probabilistic algo-
rithms using standard notations and conventions. For probabilistic polynomial-
time (PPT) algorithm A, A(x1, x2, ...; r) denotes the random variable of A’s
output on inputs x1, x2, ... and random coins r. We let y

R← A(x1, x2, ...) denote
that y is randomly selected from A(x1, x2, ...; r) according to its distribution. If
S is a finite set, then x

U← S denotes that x is uniformly selected from S. If α
is neither an algorithm nor a set, x := α indicates that α is assigned to x. We
say that function f : N → R is negligible in security parameter λ ∈ N if for
every constant c ∈ N there exists kc ∈ N such that f(λ) < λ−c for any λ > kc.
Hereafter, we use f < negl(λ) (or f < negl) to mean that f is negligible in λ.
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2.2 Indistinguishability

The statistical distance between two random variables X and Y over a countable
set S is defined as Δ(X, Y ) := 1

2

∑
α∈S |Pr[X = α] − Pr[X = α]|. Let X =

{Xλ}λ∈I and Y = {Yλ}λ∈I denote two ensembles of random variables indexed
by λ (where I is a countable set).

Definition 1. We say that X and Y are statistically indistinguishable if the
statistical distance between these variables is negligible, that is, Δ(Xλ, Yλ) < negl.

Definition 2. We say that X and Y are computationally indistinguishable if for
every non-uniform PPT algorithm D, there exists negligible function negl such
that for every λ ∈ I,

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| < negl.

We write X ≈c Y (resp., X ≈s Y) to denote that X and Y are computationally
(resp., statistically) indistinguishable.

2.3 Complexity Assumptions

We recall standard complexity assumptions and related basic facts.

The RSA Assumption. Let λ be the security parameter. Let GenRSA(1λ) be
a PPT algorithm that outputs modulus N = pq where p and q are two λ bit,
distinct odd primes, randomly chosen integer e > 0 with gcd(e, φ(N)) = 1 and
less than φ(N) = (p− 1)(q − 1), and integer d satisfying ed = 1 mod φ(N). The
RSA problem is as follows: Given (N, e) and random y

U← Z∗
N , computing x such

that xe = y mod N . The advantage is

AdvRSA
A (λ):=Pr[xe=y mod N |(N, e, d) R← GenRSA(1λ); y U← Z∗

N ; x R← A(N, y, e)].

Definition 3 (RSA assumption). We say that the RSA assumption holds if
the RSA problem is hard, that is, for any PPT A, AdvRSA

A (λ) is negligible.

Lemma 1 (Shamir [30]). Given x, y ∈ ZN and a, b ∈ Z such that xa = yb and
gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ ZN such that
za = y.

The Computational Diffie-Hellman (CDH) Assumption. We consider a
cyclic group G and GT of prime order p. A bilinear map is an efficient mapping
e : G×G → GT satifying the following properties:

bilinearity: for all g ∈ G and a, b
U← Zp, e(ga, gb) = e(g, g)ab.

non-degeneracy: If g generates G, then e(g, g) �= 1.
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Let g generate a group G. Let BG be a standard bilinear group generator that
takes as input the security parameter λ and outputs (G, GT , p, g, e). The CDH
problem in bilinear groups is as follows: Given (G, GT , p, g, e, ga, gb), computing
gab. The advantage is

AdvCDH
A (λ) := Pr[z = gab|(G, GT , p, g, e) U← BG(1λ); a, b

U← Zp; z
R← A(g, ga, gb)].

Definition 4 (CDH assumption in bilinear groups). We say that the CDH
assumption holds in bilinear groups if the CDH problem in bilinear groups is hard,
that is, for any PPT A, AdvCDH

A (λ) is negligible.

2.4 Signature Schemes

Signature scheme Sig consists of three PPT algorithms Sig=Sig.{Gen, Sign, Vrfy}
satisfying the following properties.

– Key generation algorithm Sig.Gen takes as input security parameter 1λ and
outputs a pair of keys, that is, (vk, sk) R← Sig.Gen(1λ). They are called the
(public) verification key and the (private) signing key, respectively.

– Signing algorithm Sig.Sign takes as input a signing key and a message and
outputs signature σ. That is, σ

R← Sig.Signsk(m), where m ∈M and M is a
message space.

– Verification algorithm Sig.Vrfy is deterministic and takes as input a verifi-
cation key, a message, and a signature and outputs bit b. If b = 1 then the
signature is valid. Else, it is invalid. That is, b = Sig.Vrfyvk(m, σ).

It is required that for any λ, (vk, sk) R← Sig.Gen(1λ), and m ∈ M, it holds that
Sig.Vrfyvk(m, Sig.Signsk(m)) = 1.

Weak Chosen Message Attacks. We consider a weaker definition called
existential unforgeability against weak chosen message attacks. Signature scheme
Sig = Sig.{Gen, Sign, Vrfy} is said to be unforgeable under weak chosen message
attacks (EUF-wCMA) if the advantage of the following game is negligible.

Queries: The adversary firstly sends the challenger list Q of messages
M1, . . . , Mq ∈M.

Response: The challenger obtains (vk, sk) R← Sig.Gen(1λ) and signs each queried
message, that is, generates σi

R← Sig.Signsk(Mi) for i = 1 to n. The challenger
sends (vk, σ1, . . . , σn) to the adversary.

Output: The adversary outputs (M∗, σ∗). If M∗ /∈ Q and Sig.Vrfyvk(M∗, σ∗) =
1, it is said to win the game.

We define AdvEUF-weak
A (λ) to be the probability that adversary A wins in the

game.

Definition 5 (Unforgeability against Weak Chosen Message Attacks).
Signature scheme Sig is existentially unforgeable against weak chosen message
attacks if for all PPT A, AdvEUF-weak

A is negligible.
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We briefly review two signature schemes by Hohenberger and Waters [21,31].

The Hohenberger-Waters Signature Scheme [21].

Key Generation. On input security parameter λ, generates an RSA modulus
N , such that 2� < φ(N) < 2�+2, where � depends on 1λ and chooses random
h

U← Z∗
N , random key K for pseudo-random function (PRF, see [18,22] for

the definition) F : {0, 1}∗ → {0, 1}�, and random c ∈ {0, 1}�. It defines
function H : {0, 1}∗ → {0, 1}� as follows

HK,c(z) := FK(i, z)⊕ c,

where value i is the smallest i ≥ 1 such that FK(i, z)⊕ c is odd and prime.
Value i is called resolving index. It outputs verification key vk = (N, h, c, K)
and signing key sk = (p, q, vk).

Signing. Let M (i) denote the first i bits of M , that is, the length i of prefix
M . For i = 1 to n, it computes ei = HK,c(M (i)) and then outputs signature
σ = h

∏n
i=1 e−1

i mod N .
Verification. On input vk, M , signature σ, ei = HK,c(M (i)), outputs 1 if and

only if
σ
∏n

i=1 ei ≡ h (mod N).

Theorem 1 ([21]). If the RSA assumption holds, the above signature scheme
is existentially unforgeable against weak chosen message attacks.

The Waters Signature Scheme [21,31].

Key Generation. On input security parameter λ, selects a bilinear group G

of prime order p > 2λ and chooses random a
U← Zp and group elements

g, v0, v1, . . . , vn ∈ G. It outputs verification key vk=(g, v0, v1, . . . , vn, e(g, g)a)
and signing key sk = a.

Signing. Let Mi denote the i-th bit of M . It chooses random r
U← Zp and

computes

σ1 = ga

(
v0

n∏
i=1

vMi

i

)r

, σ2 = gr.

Signature is σ = (σ1, σ2).
Verification. On input vk, M , signature σ, outputs 1 if and only if

e(σ1, g) = e(g, g)a · e(v0

n∏
i=1

vMi

i , σ2).

Theorem 2 ([21,31]). If the CDH assumption holds, the above signature scheme
is existentially unforgeable against weak chosen message attacks.
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2.5 Σ-Protocol for Waters Signature [11]

A Σ-protocol for a polynomial-time relation R = {(x, w)} is a 3-move protocol
for prover P and verifier V [7]. Statement x is the common input and P has w
as private input (called witness). Transcripts in the protocol have form (a, c, z)
where c is a random challenge sent by V.

1. P chooses random coin ra, computes a := Σ1(x, w; ra), and sends it to V.
2. V sends random challenge c

R← Σ2(x, a) to P.
3. Finally, P responds with z := Σ3(x, w, ra, c). V computes and returns bit

b = ΣVrfy(x, a, c, z).

Σ-protocols satisfy the following properties:

Completeness. If (x, w) ∈ R, then V outputs b = 1 with probability 1.
Special Soundness. If one has two valid transcripts (a, c, z) and (a, c′, z′)

where c �= c′, one can efficiently compute witness w such that (x, w) ∈ R.
Honest Verifier Zero-Knowledge. There exists PPT simulator S such that

for all PPT distinguisher D, and for all challenge c, for any (x, w) ∈ R,∣∣∣Pr[D(trans) = 1|ra
U← CP; a := Σ1(x, w; ra); z := Σ3(x, w, ra, c)]−

Pr[D(trans) = 1|(a, z) R← S(x, c)]
∣∣∣ < negl ,

where trans = (x, w, a, c, z) and CP is the set of random coins of the honest
prover.

Dodis, Shoup, and Walfish proposed a Σ-protocol for proving knowledge of the
Waters signature (σ1, σ2) ∈ G×G on a message M ∈ {0, 1}∗. The protocol is as
follows:

1. The prover chooses r̄1, r̄2
U← Zp and computes σ̄1 := σ

1/r̄1
1 , σ̄2 := σ

1/r̄2
2 . Let

γ1 := e(σ̄1, g), γ2 := e(σ̄2, v
−1
M ), γ := e(g, g)a. Note that γ r̄1

1 γ r̄2
2 = γ due to

the verification condition of Waters signature. Next, chooses r̂1, r̂2
U← Zp and

computes γ̂ := γ r̂1
1 γ r̂2

2 . The prover sends (σ̄1, σ̄2, γ̂) to the verifier.
2. The verifier chooses challenge c

U← Zp and sends it to the prover.
3. The prover computes r̃1 ← r̂1 − c · r̄1 mod p, r̃2 ← r̂2 − c · r̄2 mod p. and

sends (r̃1, r̃2) to the verifier.
4. The verifier checks that γ r̃1

1 γ r̃2
2 γc = γ̂.

2.6 Commitment Scheme

There are several types of commitment. We review their definitions.

Definition 6 (Trapdoor Commitment). A trapdoor commitment scheme
consists of the following algorithms:
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Key Generation. On input security parameter λ, outputs a public key and a
trapdoor, (pk, td) R← KGen(1λ).

Commitment. On input pk, message m, and randomness r, it computes (C, D)
= Com(pk, m; r). Value C is the commitment and value D is the decommit-
ment.

Verification. On input pk, message m and C, D, it output bit b = Vrfy(pk, m, C,
D).

Equivocation. On input pk, td, C, D, and message m̃ �= m, outputs fake de-
commitment information D̃ = Equiv(pk, td, C, D, m̃) such that (C, D̃) =
Com(pk, m̃; r̃) for some r̃, with the same distribution as if r̃ has been chosen
at random.

Definition 7 (Multi-Trapdoor Commitment [17]). A (non-interactive)
multi-trapdoor commitment scheme consists of six algorithms (KGen, Sel, TGen,
Com, Vrfy, Equiv).

Master Key Generation Algorithm KGen. On input the security parame-
ter, outputs master public key associated with the family of commitment
schemes PK and master trapdoor TK, (PK, TK) R← KGen(1λ).

Selection Algorithm Sel. Sel selects a commitment in the family. On input
PK, outputs specific public key pk that identifies one of the schemes.

Trapdoor Generation Algorithm TGen. On input PK, pk, and TK, out-
puts specific trapdoor td = TGen(PK, pk, TK) relative to pk.

Commitment Algorithm Com. On input PK, pk, and message m, computes
(C, D) = Com(PK, pk, m; r) where r are random coins. Output C is the
commitment string, while value D is the decommitment of C and secret in-
formation.

Verification Algorithm Vrfy. On input PK, pk, message m, and two values
C, D, outputs bit b = Vrfy(PK, pk, m, C, D).

Equivocation Algorithm Equiv. We can open a commitment to any value
given the trapdoor. Equiv takes as input keys PK, pk, commitment C, its
decommitment D, message m̃ �= m and string T . If T = TK or T = td (for
pk) then outputs D̃ such that (C, D̃) = Com(PK, pk, m̃; r̃) for some r̃, with
the same distribution as if r̃ has been chosen at random.

A multi-trapdoor commitment schemes satisfy the following three properties.

Correctness. For all message m, if (C, D) = Com(PK, pk, m; r), then it holds
that Vrfy(PK, pk, m, C, D) = 1.

Information Theoretic Secrecy. For every m, m′, it holds that C ≈s C′,
where (C, D) = Com(PK, pk, m; r) and (C′, D′) = Com(PK, pk, m′; r′).
That is, the commitment is statistically hiding.

Secure Binding. We define secure binding game SBndA(λ) as follows. First,
adversary A selects k strings (pk1, . . . , pkk). It is then given master public
key PK for a multi-trapdoor commitment family generated with the same
distribution as the ones generated by KGen(1λ). Adversary A has access to
equivocation oracle EQ. When it queries (C, D, m, r, pk, m′) where (C, D) =
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Com(PK, pk, m, r) and m′ �= m, if pk = pki for some i, and is a valid pub-
lic key, then EQ answers with decommitment D′ = Equiv(PK, pk, C, D, td)
(td = TGen(PK, pk, TK)) such that (C, D′) = Com(PK, pk, m′, r′), other-
wise it outputs ⊥. The game output 1 if and only if A outputs (C, m, D, m̃, D̃,

pk) such that Vrfy(PK, pk, m, C, D) = Vrfy(PK, pk, m̃, C, D̃) = 1 such that
m �= m̃ and pk �= pki for all i. We require that for all PPT A,

Pr[SBndA(λ) = 1] < negl(λ).

Strongly Secure Binding. Gennaro considered a stronger version of the Se-
cure Binding property by requiring that adversary A receives trapdoors tdi’s
matching public keys pki’s, instead of accessing equivocation oracle EQ. In this
case, we call strongly secure binding. It is easily seen that the secure bind-
ing property is implied by strongly secure binding property. We consider only
strongly secure binding in this paper.

Theorem 3 ([17]). If there exist multi-trapdoor commitment schemes and one-
time signature schemes, we can construct reusable non-malleable trapdoor com-
mitment schemes.

2.7 Description of a Commitment Scheme from the CDH
Assumption

The construction below is essentially same as the identity-based trapdoor com-
mitment scheme based on the Waters signature introduced by Dodis, Shoup, and
Walfish [11]. We find that their identity-based trapdoor commitment scheme can
be seen as a multi-trapdoor commitment scheme. The proof is in the appendix.

Let WSig denote the Waters signature scheme from the CDH assumption.
The master public key is the verification key of WSig, the master trapdoor is the
signing key of WSig, and trapdoors are signatures of WSig. We describe a multi-
trapdoor commitment scheme from the CDH assumption, named CDHCom.

Master Key Generation. On input security parameter λ, selects a bilinear
group G of prime order p > 2λ, chooses a

U← Zp and random group elements
g, v0, v1, . . . , vn ∈ G, and outputs master trapdoor a and master public key
PK = (g, v0, v1, . . . , vn, e(g, g)a).

Selection. Outputs public key pk. This is an arbitrary n-bit string ID ∈
{0, 1}n.

Trapdoor Generation. Chooses random ω
U← Zp and outputs td = (σ1, σ2),

where

σ1 = ga

(
v0

n∏
i=1

vIDi

i

)ω

, σ2 = gω.

Let IDi denote the i-th bit of ID. Let vID := v0
∏n

i=1 vIDi

i for notational
convention.
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Commitment. On input PK, pk = ID, chooses σ̄1, σ̄2
U← G and let γ1 :=

e(σ̄1, g), γ2 := e(σ̄2, v
−1
ID), γ := e(g, g)a. In order to commit m ∈ Zp, chooses

r1, r2
U← Zp and computes

(C, D) = Com(PK, ID, m; r) = ((σ̄1, σ̄2, γ
r1
1 γr2

2 γm), (m, r1, r2)).

Verification. On input PK, pk = ID, commitment C, decommitment D =
(r1, r2, m), outputs 1 if and only if

C = (σ̄1, σ̄2, γ
r1
1 γr2

2 γm).

Equivocation. In order to make a fake commitment, the same procedure as
ordinary commitment is executed except that using trapdoor (σ1, σ2). On
input PK, pk = ID, C = (σ̄1, σ̄2, γ

r̂1
1 γ r̂2

2 γm), D = (r̂1, r̂2), and td = (σ1, σ2),
to open to m̃ �= m, let r̃1 := r̂1 − (m̃ −m) · r̄1 mod p, r̃2 := r̂2 − (m̃ −m) ·
r̄2 mod p and output D̃ = Equiv(PK, pk, C, D, td) = (m̃, r̃1, r̃2).

3 The Construction from the RSA Assumption

We present our multi-trapdoor commitment scheme. Let HWSig denote the
Hohenberger-Waters signature scheme from the RSA assumption. The master
public key is the verification key of HWSig, the master trapdoor is the signing
key of HWSig, public keys are arbitrary strings (corresponding to messages of
signature), and trapdoors are signatures of HWSig [21].

3.1 Description of a Commitment Scheme from the RSA
Assumption

We describe our multi-trapdoor commitment scheme from the RSA assumption,
named RSACom.

Master Key Generation. On input security parameter λ, outputs an RSA
modulus N , such that 2� < φ(N) < 2�+2, where � depends on 1λ, and chooses
random h

U← Z∗
N , random key K for PRF function F : {0, 1}∗ → {0, 1}� and

random c ∈ {0, 1}�. Function H : {0, 1}∗ → {0, 1}� is defined as follows:

HK,c(z) := FK(i, z)⊕ c,

where value i is the smallest i ≥ 1 such that FK(i, z) ⊕ c is odd and
prime. Value i is called resolving index. Outputs master public key PK =
(N, h, c, K) and master trapdoor TK = (p, q, PK).

Selection. Outputs public key pk. It is an arbitrary n-bit string ID ∈ {0, 1}n.
Trapdoor Generation. Let ID(i) denote the first i bits of ID, that is, the

length i of prefix ID. For i = 1 to n, computes ei = HK,c(ID(i)) and
outputs trapdoor td = h

∏n
i=1 e−1

i mod N .
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Commitment. On input PK, pk = ID, for i = 1 to n, computes ei =
HK,c(ID(i)). Let emin denote the smallest value among (e1, . . . , en). The
message space is Zemin . This restriction is important for the security proof.
In order to commit m ∈ Zemin , computes

(C, D) = Com(PK, ID, m; r) = (hmr
∏n

i=1 ei mod N, (m, r)).

Verification. On input PK, pk = ID, commitment C, decommitment D =
(m, r), ei = HK,c(ID(i)), outputs 1 if and only if

C = hmr
∏n

i=1 ei .

Equivocation. In order to make a fake commitment, the same procedure as
ordinary commitment is executed. In order to open to m̃ �= m, using trapdoor
td = h

∏n
i=1 e−1

i for pk = ID where ei = HK,c(ID(i)), set r̃ = tdm−m̃ · r. That
is, D̃ = Equiv(PK, pk, C, D, td) = (m̃, r̃). Then, it holds that

hm̃ · r̃
∏n

i=1 ei = hm̃ · td(m−m̃)
∏n

i=1 ei · r
∏n

i=1 ei

= hm̃ · (h
∏n

i=1 e−1
i )

∏n
i=1 ei(m−m̃) · r

∏n
i=1 ei

= hm̃ · hm−m̃ · r
∏n

i=1 ei

= hm · r
∏n

i=1 ei .

Remark. We restrict the message space to Zemin because if the message space
is Z∏

n
i=1 ei

then an adversary can achieve equivocation by receiving trapdoors
in the strongly secure binding game. If the adversary query ID and obtain its
trapdoor td = h

∏n
i=1 e−1

i where ei = HK,c(ID(i)) for i = 1 to n, he makes
commitment C = hmr

∏n
i=1 e∗

i to m under public key ID∗ and later open it
to m̃ = m − k · E∗/E by setting r̃ = r · tdk = r · hk/E where E =

∏n
i=1 ei,

E∗ =
∏n

i=1 e∗i , e∗i = HK,c(ID∗(i)), and k is some integer. It holds that hm̃r̃E∗
=

hm−k·E∗/E · rE∗ · hk·E∗/E = hmrE∗
= C.

On the Message Space. If we restrict the message space to Zemin , the message
space is determined after a specific public key is determined. If we want to
determine the message space in advance, we can use � − 1 bits integer as a
message. In this case, value m is smaller than emin since ei is � bits prime.

3.2 Security Proof of RSACom

In this section, we show that RSACom is a multi-trapdoor commitment scheme.

Theorem 4. If the RSA assumption holds, then RSACom is a multi-trapdoor
commitment scheme.

Proof. We prove the theorem by proving that RSACom is statistically hiding,
computationally binding, and strongly secure binding.
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Lemma 2. RSACom is statistically hiding.

Proof of lemma: Given value C = hm · r
∏n

i=1 ei mod N , for each
value m′ �= m there exists unique value r′ such that C = hm′ ·(r′)

∏n
i=1 ei ,

because ei is relatively prime to φ(N) for all i and taking elements to
the

∏n
i=1 ei-th power is a permutation on Z∗

N . Thus, C is a uniformly
distributed element in Z∗

N and reveal nothing about the message. �

Lemma 3. If the RSA assumption holds, RSACom is strongly secure binding.

Proof of lemma: We show that if HWSig is existentially unforge-
able against weak chosen message attacks, RSACom is strongly secure
binding. It implies that RSACom is strongly secure binding if the RSA
assumption holds since Hohenberger and Waters showed that HWSig is
existentially unforgeable against weak chosen message attacks under the
RSA assumption [21].

Assume that RSACom is not strongly secure binding, that is, there ex-
ists adversary A such that outputs (C=hm · r

∏n
i=1 ei , m, D=(m, r), m̃, D̃,

pk) where Vrfy(PK, pk, m, C, D) = Vrfy(PK, pk, m̃, C, D̃) = 1, m �= m̃,
and pk �= pki for all i. We construct forger F for scheme HWSig in the
weak chosen message attack game by using A in a black-box manner.

Adversary A in the strongly secure binding game firstly sends k
strings (pk1, . . . , pkk). Forger F sends the challenger list Q of messages
(M1, . . . , Mk) := (pk1, . . . , pkk) as queries. Then, the challenger runs
Sig.Gen(1λ) to generate verification key vk = (N, h, c, K) and signing key
sk = (p, q, vk) and signs each queried message as σi

R← Sig.Signsk(Mi)
for i = 1 to n. The challenger sends (vk, σ1, . . . , σn) to F .

F sets PK = vk and tdi = σi and sends PK and tdi for i = 1 to n
(these are trapdoors matching public keys pki selected first) to adversary
A in the strongly secure binding game. This is a perfect simulation.
At this point, A outputs (C = hm · r

∏n
i=1 ei , m, D = (m, r), m̃, D̃ =

(m̃, r̃), pk) such that Vrfy(PK, pk, m, C, D) = Vrfy(PK, pk, m̃, D̃) = 1,
m �= m̃, and pk �= pki for all i. By the definition, it holds that ei =
HK,c(pk(i)) and

C = hm · r
∏n

i=1 ei = hm̃ · r̃
∏n

i=1 ei .

Let E =
∏n

i=1 ei and δ = m − m̃ for notational convention. From the
above equation, we can rewrite hδ = (r̃/r)E . It holds that gcd(δ, E) = 1
since m−m̃ < emin (recall that the message space is restricted to Zemin).
By using Lemma 1, we can compute hE−1

as follows: We can find integers
α and β such that α · δ + β · E = 1, so h = hαδ+βE = (hδ)α · hβE =
(r̃/r)αE · hβE, that is,

hE−1
= h

∏n
i=1 e−1

i =
(

r̃

r

)α

· hβ .
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This is a valid forgery of HWSig for message pk �= pki for all i. Thus,
we succeed constructing forger F by using adversary A in the strongly
secure binding game of multi-trapdoor commitment. This contradicts
the security of HWSig. �

Lemma 4. If the RSA assumption holds, RSACom is computationally binding.

Proof of lemma: This lemma is implied by Lemma 3, so we omit the
proof. �

From the three lemmas, the theorem follows. �	

Corollary 1. We can construct a non-interactive and reusable non-malleable
commitment with respect to decommitment scheme from the RSA assumption in
the CRS model.

4 Conclusion

We presented two non-interactive multi-trapdoor commitment schemes. One
is constructed from the RSA assumption, and the other is obtained from the
identity-based trapdoor commitment scheme (from the CDH assumption) by
Dodis, Shoup, and Walfish. Thus, we can obtain non-interactive and reusable
non-malleable commitment with respect to decommitment schemes from above
two standard assumptions by applying the Gennaro’s conversion to the multi-
trapdoor commitment schemes. One-time signature schemes can be constructed
efficiently from one-way functions [5,6,24].
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A Multi-Trapdoor Commitment Scheme from the CDH
Assumption

A.1 Security Proof of CDHCom

In this section, we show that CDHCom is a multi-trapdoor commitment scheme.
First, we show that we can achieve equivocation if we use trapdoor td =

(σ1, σ2), where

σ1 = ga

(
v0

n∏
i=1

vIDi

i

)ω

, σ2 = gω.

Let commitment value γ r̂1
1 γ r̂2

2 γm where r̄1, r̄2
U← Zp, σ̄1 := σ

1/r̄1
1 , σ̄2 := σ

1/r̄2
2 ,

γ1 := e(σ̄1, g), γ2 := e(σ̄2, v
−1
ID), γ = e(g, g)a.

In order to open arbitrary m̃ �= m, let r̃1 := r̂1 − (m̃ −m) · r̄1 mod p, r̃2 :=
r̂2 − (m̃−m) · r̄2 mod p. Then

γ r̃1
1 γ r̃2

2 γm̃ = γ
r̂1−(m̃−m)·r̄1
1 γ

r̂2−(m̃−m)·r̄2
2 γm̃

= γ r̂1
1 γ r̂2

2 γm̃ · γ(m−m̃)r̄1
1 · γ(m−m̃)r̄2

2

= γ r̂1
1 γ r̂2

2 γm̃ · e(σ̄1, g)(m−m̃)r̄1 · e(σ̄2, v
−1
ID)(m−m̃)r̄2

= γ r̂1
1 γ r̂2

2 γm̃ · e(σ1, g)m−m̃ · e(σ2, v
−1
ID)m−m̃

= γ r̂1
1 γ r̂2

2 (γ · e(σ1, g)−1 · e(σ2, v
−1
ID)−1)m̃ · (e(σ1, g) · e(σ2, v

−1
ID))m

= γ r̂1
1 γ r̂2

2 γm

The last equation holds since equation γ · e(σ1, g)−1 · e(σ2, v
−1
ID)−1 = 1 holds by

the verification condition of Waters signature.

Theorem 5. If the CDH assumption holds, then CDHCom is a multi-trapdoor
commitment scheme.
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Proof. We prove the theorem by proving that CDHCom is statistically hiding,
computationally binding, and strongly secure binding.

Lemma 5. CDHCom is statistically hiding.

Proof of lemma: For generator gT ∈ GT , we can rewrite γr1
1 γr2

2 γm =
gr1x+r2y+mz

T for some x, y, z ∈ Zp, so it is easily seen that the commit-
ment does not reveal any information about m. �

Lemma 6. If the CDH assumption holds, CDHCom is strongly secure binding.

Proof of lemma: We show that if WSig is existentially unforge-
able against weak chosen message attacks, CDHCom is strongly secure
binding. It implies that CDHCom is strongly secure binding under CDH
assumption since Hohenberger and Waters showed that WSig is exis-
tentially unforgeable against weak chosen message attacks under RSA
assumption [21].

Assume that CDHCom is not strongly secure binding, that is, there
exists adversary A such that outputs (C = γr1

1 γr2
2 γm, m, D = (m, r), m̃,

D̃, pk) where Vrfy(PK, pk, m, C, D) = Vrfy(PK, pk, m̃, D̃) = 1 such that
m �= m̃ and pk �= pki for all i. We construct forger F for scheme WSig
in the weak chosen message attack game that outputs a valid forgery by
using A in a black-box manner.

AdversaryA in the strongly secure binding game firstly sends k strings
(pk1, . . . , pkk). F sends the challenger list Q of messages
(M1, . . . , Mk) = (pk1, . . . , pkk) as queries. Then, the challenger runs
Sig.Gen(1λ) to generate verification key vk = (g, v0, v1, . . . , vn, e(g, g)a)
and signing key sk = a and signs each queried message as σi

R← Sig.Signsk

(Mi) for i = 1 to n. The challenger sends (vk, σ1, . . . , σn) to F .
F sets PK = vk and tki = σi and sends PK and tdi for i = 1 to n

(these are trapdoors matching public keys pki selected first) to adversary
A in the strongly secure binding game. At this point,A outputs (C = γ̄ =
γr1
1 γr2

2 γm, m, D = (m, r1, r2), m̃, C, D̃, pk) where Vrfy(PK, pk, m, C, D)=
Vrfy(PK, pk, m̃, D̃) = 1 such thatm �= m̃ and pk �= pki for all i. By the def-
inition, these can be seen as two accepted conversation with the same first
message of Σ-protocol for proving knowledge of Waters signature (Here,
m and m̃ can be seen as distinct challenges).

Therefore,by the special soundness property ofΣ-protocols, we canob-
tain witness w1, w2 ∈ Zp such that e(σ̄1, 4g)w1 · e(σ̄2, v

−1
pk )w2 = e(g, g)a,

that is, we can obtain Waters signature (σ1, σ2) = (σ̄w1
1 , σ̄w2

2 ). This is a
valid forgery of WSig for message pk �= pki for all i. Thus, we succeed con-
structing forgerF byusing adversaryA in the strongly securebinding game
of multi-trapdoor commitment. This contradicts the security of WSig. �

Lemma 7. If the CDH assumption holds, CDHCom is computationally binding.

Proof of lemma: This is implied by the above lemma. �
From the three lemmas, the theorem follows. �	
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Abstract. The notion of chameleon hash function without key expo-
sure plays an important role in designing chameleon signatures. How-
ever, all of the existing key-exposure free chameleon hash schemes are
presented in the setting of certificate-based systems. In 2004, Ateniese
and de Medeiros questioned whether there is an efficient construction for
identity-based chameleon hashing without key exposure.

In this paper, we propose the first identity-based chameleon hash
scheme without key exposure based on the three-trapdoor mechanism,
which provides an affirmative answer to the open problem.

Keywords: Chameleon hashing, Identity-based system, Key exposure.

1 Introduction

Chameleon signatures, introduced by Krawczyk and Rabin [28], are based on
well established hash-and-sign paradigm, where a chameleon hash function is
used to compute the cryptographic message digest. A chameleon hash func-
tion is a trapdoor one-way hash function, which prevents everyone except the
holder of the trapdoor information from computing the collisions for a randomly
given input. Chameleon signatures simultaneously provide the properties of non-
repudiation and non-transferability for the signed message as undeniable signa-
tures [3,10,11,12,14,16,21,22,23,25,26,27,33] do, but the former allows for simpler
and more efficient realization than the latter. In particular, chameleon signatures
are non-interactive and less complicated. More precisely, the signer can generate
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the chameleon signature without interacting with the designated recipient, and
the recipient will be able to verify the signature without the collaboration of the
signer. On the other hand, if presented with a forged signature, the signer can
deny its validity by only revealing certain values. That is, the forged-signature
denial protocol is also non-interactive. Besides, since the chameleon signatures
are based on well established hash-and-sign paradigm, it provides more generic
and flexible constructions.

One limitation of the original chameleon signature scheme is that signature
forgery (i.e., collision computation) results in the signer recovering the recipient’s
trapdoor information, i.e., the private key. This is named as the key exposure
problem of chameleon hashing, firstly addressed by Ateniese and de Medeiros
[1] in 2004. If the signer knows the recipient’s trapdoor information, he then
can use it to deny other signatures given to the recipient. In the worst case,
the signer could collaborate with other individuals to invalidate any signatures
which were designated to be verified by the same public key. This will create
a strong disincentive for the recipient to compute the hash collisions and thus
weakens the property of non-transferability.

The original two constructions of chameleon hashing [28] both suffer from the
key exposure problem. Ateniese and de Medeiros [1] first introduced the idea
of identity-based chameleon hashing to solve this problem. Due to the distin-
guishing property of identity-based system [37], the signer can sign a message to
an intended recipient, without having to first retrieve the recipient’s certificate.
Moreover, the signer uses a different public key (corresponding to a different
private key) for each transaction with a recipient, so that signature forgery only
results in the signer recovering the trapdoor information associated to a sin-
gle transaction. Therefore, the signer will not be capable of denying signatures
on any message in other transactions. However, this kind of transaction-specific
chameleon hash scheme still suffers from the key exposure problem unless an
identity is never reused in the different chameleon signatures, which requires
that the public/secret key pair of the recipient must be changed for each trans-
action. We argue that this idea only provides a partial solution for the key
exposure problem of chameleon hashing.1

Chen et al. [17] proposed the first full construction of a key-exposure free
chameleon hash function in the gap Diffie-Hellman (GDH) groups with bilinear
pairings. Ateniese and de Medeiros [2] then presented three key-exposure free
chameleon hash functions, two based on the RSA assumption, as well as a new
construction based on bilinear pairings. Gao et al. [19] proposed a factoring-
based chameleon hash scheme without key exposure. Recently, Gao et al. [20]
claimed to present a key-exposure free chameleon hash scheme based on the
Schnorr signature. However, it requires an interactive protocol between the
signer and the recipient and thus violates the basic definition of chameleon hash-
ing and signatures. Chen et al. [18] propose the first discrete logarithm based

1 A trivial solution for the key exposure problem is that the signer changes his key
pair frequently in the chameleon signature scheme. However, it is only meaningful
in theoretical sense because the key distribution problem arises simultaneously.
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key-exposure free chameleon hash scheme without using the GDH groups. How-
ever, all of the above constructions are presented in the setting of certificate-
based systems where the public key infrastructure (PKI) is required.Zhang et al.
[38] presented two identity-based chameleon hash schemes from bilinear pair-
ings, but neither of them is key-exposure free. As pointed out by Ateniese and
de Medeiros, the single-trapdoor commitment schemes are not sufficient for the
construction of key-exposure free chameleon hashing and the double-trapdoor
mechanism [24] can be used to construct either an identity-based chameleon
hash scheme or a key-exposure free one, but not both. Therefore, an interest-
ing open problem is whether there is an efficient construction for identity-based
chameleon hashing without key exposure [2].

Our Contribution. In this paper, we propose the first identity-based chameleon
hash scheme without key exposure, which provides an affirmative answer to the
open problem introduced by Ateniese and de Medeiros in 2004. Moreover, the
proposed chameleon hash scheme is proved to achieve all the desired security
notions in the random oracle model.

Organization. The rest of the paper is organized as follows: Some preliminaries
are given in Section 2. The definitions associated with identity-based chameleon
hashing are introduced in Section 3. The proposed identity-based key-exposure
free chameleon hash scheme and its security analysis are given in Section 4.
Finally, conclusions will be made in Section 5.

2 Preliminaries

In this section,we first introduce the basic definition andproperties of bilinear pair-
ings and some well-known number-theoretic problems in the gap Diffie-Hellman
groups. We then present some proof systems for knowledge of discrete logarithms.

2.1 Bilinear Pairings and Number-Theoretic Problems

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. Let a and b be
elements of Z∗

q . A bilinear pairing is a map e : G1×G1 → G2 with the following
properties:

1. Bilinear: e(aR, bQ) = e(R, Q)ab for all R, Q ∈ G1 and a, b ∈ Z∗
q .

2. Non-degenerate: There exists R and Q ∈ G1 such that e(R, Q) �= 1.
3. Computable: There is an efficient algorithm to compute e(R, Q) for all R, Q ∈

G1.

In the following we introduce some problems in G1.

– Discrete Logarithm Problem (DLP): Given two elements P and Q, to find
an integer n ∈ Z∗

q , such that Q = nP whenever such an integer exists.
– Computation Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈

Z∗
q , to compute abP.
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– Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈
Z∗

q , to decide whether c ≡ ab mod q.

It is proved that the CDHP and DDHP are not equivalent in the group G1
and thus called a gap Diffie-Hellman (GDH) group. More precisely, we call G

a GDH group if the DDHP can be solved in polynomial time but there is no
polynomial time algorithm to solve the CDHP with non-negligible probability.
The examples of such a group can be found in supersingular elliptic curves or
hyperelliptic curves over finite fields. For more details, see [4,5,6,9,29,30,32,35].
Moreover, we call < P, aP, bP, cP > a valid Diffie-Hellman tuple if c ≡ ab mod q.

Since the DDHP in the group G1 is easy, it cannot be used to design cryp-
tosystems in G1. Boneh and Franklin [6] introduced a new problem in (G1, G2, e)
named Bilinear Diffie-Hellman Problem:

– Bilinear Diffie-Hellman Problem (BDHP): Given P, aP, bP, cP for a, b, c ∈
Z∗

q , to compute e(P, P )abc ∈ G2.

Trivially, the BDHP in (G1, G2, e) is no harder than the CDHP in G1 or G2.
However, the converse is still an open problem. On the other hand, currently
it seems that there is no polynomial time algorithm to solve the BDHP in
(G1, G2, e) with non-negligible probability. The security of our proposed identity-
based chameleon hash scheme without key exposure is also based on the hardness
of the BDHP in (G1, G2, e).

2.2 Proofs of Knowledge

A prover with possession a secret number x ∈ Zq wants to show a verifier that
x = logg y without exposing x. This is named the proof of knowledge of a discrete
logarithm.

This proof of knowledge is basically a Schnorr signature [36] on message
(g, y): The prover chooses a random number r ∈R Zq, and then computes
c = H(g, y, gr), and s = r − cx mod q, where H : {0, 1}∗ → {0, 1}k is a
collision-resistant hash function. The verifier accepts the proof if and only if
c = H(g, y, gsyc).

Definition 1. A pair (c, s) ∈ {0, 1}k × Zq satisfying the equation

c = H(g, y, gsyc)

is a proof of knowledge of a discrete logarithm of the element y to the base g.

Similarly, we can define the proof of knowledge for the equality of two discrete
logarithms: A prover with possession a secret number x ∈ Zq wants to show that
x = logg u = logh v without exposing x.

Chaum and Pedersen [15] firstly proposed the proof as follows: The prover
chooses a random number r ∈R Zq, and then computes c = H(g, h, u, v, gr, hr),
and s = r − cx mod q, where H : {0, 1}∗ → {0, 1}k is a collision-resistant hash
function. The verifier accepts the proof if and only if c = H(g, h, u, v, gsuc, hsvc).
Trivially, the verifier can efficiently decide whether < g, u, h, v > is a valid Diffie-
Hellman tuple with the pair (c, s).
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Definition 2. A pair (c, s) ∈ {0, 1}k × Zq satisfying the equation

c = H(g, h, u, v, gsuc, hsvc)

is a proof of knowledge for the equality of two discrete logarithms of elements
u, v with respect to the base g, h.

The identity-based proof of knowledge for the equality of two discrete loga-
rithms, first introduced by Baek and Zheng [8] from bilinear pairings. Define
g = e(P, P ), u = e(P, SID), h = e(Q, P ) and v = e(Q, SID), where P and Q are
independent elements of G1. The following non-interactive protocol presents a
proof of knowledge that logg u = logh v: The prover chooses a random number
r ∈R Zq, and then computes c = H(g, h, u, v, gr, hr), and S = rP − cSID, where
H : {0, 1}∗ → {0, 1}k is a collision-resistant hash function. The verifier accepts
the proof if and only if c = H(g, h, u, v, e(P, S)uc, e(Q, S)vc).

Definition 3. A pair (c, S) ∈ {0, 1}k × G1 satisfying the equation

c = H(g, h, u, v, e(P, S)uc, e(Q, S)vc)

is an identity-based proof of knowledge for the equality of two discrete logarithms
of elements u, v with respect to the base g, h.

3 Definitions

In this section, we introduce the formal definitions and security requirements of
identity-based chameleon hashing [1,2].

3.1 Identity-Based Chameleon Hashing

A chameleon hash function is a trapdoor collision-resistant hash function, which
is associated with a trapdoor/hash key pair (TK, HK). Anyone who knows the
public key HK can efficiently compute the hash value for each input. However,
there exists no efficient algorithm for anyone except the holder of the secret
key TK, to find collisions for every given input. In the identity-based chameleon
hash scheme, the hash key HK is just the identity information ID of the user. A
trusted third party called Private Key Generator (PKG) computes the trapdoor
key TK associated with HK for the user.

Definition 4. An identity-based chameleon hash scheme consists of four effi-
ciently computable algorithms:

– Setup: PKG runs this probabilistic polynomial-time algorithm to generate
a pair of keys (SK, PK) defining the scheme. PKG publishes the system
parameters SP including PK, and keeps the master key SK secret. The
input to this algorithm is a security parameter k.
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– Extract: A deterministic polynomial-time algorithm that, on input the mas-
ter key SK and an identity string ID, outputs the trapdoor key TK associ-
ated to the hash key ID.

– Hash: A probabilistic polynomial-time algorithm that, on input the master
public key PK, an identity string ID, a customized identity L,2 a message m,
and a random string r,3 outputs the hash value h = Hash(PK, ID, L, m, r).
Note that h does not depend on TK and we denote h = Hash(ID, L, m, r)
for simplicity throughout this paper.

– Forge: A deterministic polynomial-time algorithm F that, on input the trap-
door key TK associated to the identity string ID, a customized identity L,
a hash value h of a message m, a random string r, and another message
m′ �= m, outputs a string r′ that satisfies

h = Hash(ID, L, m, r) = Hash(ID, L, m′, r′).

More precisely,
r′ = F(TK, ID, L, h, m, r, m′).

Moreover, if r is uniformly distributed in a finite space R, then the distribu-
tion of r′ is computationally indistinguishable from uniform in R.

3.2 Security Requirements

The most dangerous attack on the identity-based chameleon hashing is the re-
covery of either the master key SK or the trapdoor key TK. In this case, the
chameleon hash scheme would be totally broken. A weaker attack is that an
active adversary computes a collision of the chameleon hashing without the
knowledge of the trapdoor TK. In this security model, the adversary is allowed
to compromise various users and obtain their secrets, and makes queries to the
algorithm Extract on the adaptively chosen identity strings except the tar-
get one. Therefore, the first essential requirement for identity-based chameleon
hashing is the collision resistance against active attackers.

Definition 5. (Collision resistance against active attackers): Let ID be a target
identity string and m be a target message. Let k be the security parameter. The
chameleon hash scheme is collision resistance against active attackers if, for all
non-constant polynomials f1() and f2(), there exists no efficient algorithm A
that, on input a customized identity L, outputs a message m′ �= m, and two
random strings r and r′ such that Hash(ID, L, m′, r′) = Hash(ID, L, m, r), with
non-negligible probability. Suppose that A runs in time less than f1(k), and makes
at most f2(k) queries to the Extract oracle on the adaptively chosen identity
strings other than ID.
2 A customized identity is actually a label for each transaction. For example, we can let

L = IDS ||IDR||IDT , where IDS, IDR, and IDT denote the identity of the signer,
recipient, and transaction, respectively [1].

3 Note that r can be either a randomly chosen element in a finite space R, or a bijective
function of a random variant which is uniformly distributed in a domain D.
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The second requirement for identity-based chameleon hashing is the semantic se-
curity, i.e., the chameleon hash value does not reveal anything about the possible
message that was hashed.

Definition 6. (Semantic security): Let H [X ] denote the entropy of a random
variable X, and H [X |Y ] the entropy of the variable X given the value of a
random function Y of X. Semantic security is the statement that the conditional
entropy H [m|h] of the message given its chameleon hash value h equals the total
entropy H [m] of the message space.

The identity-based chameleon hashing must also be key-exposure free. It was
pointed out that all key-exposure free chameleon hash schemes must have (at
least) double trapdoors: a master trapdoor, and an ephemeral trapdoor asso-
ciated with a customized identity [2]. Loosely speaking, key exposure freeness
means that even if the adversary A has obtained polynomially many ephemeral
trapdoors associated with the corresponding customized identities, there is no
efficient algorithm for A to compute a new ephemeral trapdoor. Formally, we
have the following definition.

Definition 7. (Key exposure freeness): If a recipient with identity ID has never
computed a collision under a customized identity L, then there is no efficient
algorithm for an adversary A to find a collision for a given chameleon hash value
Hash(ID, L, m, r). This must remain true even if the adversary A has oracle
access to F and is allowed polynomially many queries on triples (Lj , mj , rj) of
his choice, except that Lj is not allowed to equal the challenge L.

4 Identity-Based Key-Exposure Free Chameleon Hashing

All of the existing identity-based chameleon hash schemes [1,38] are based on
the double-trapdoor mechanism and suffer from the key exposure problem. In
more detail, there are two trapdoors in these chameleon hash schemes: One is the
master key x of PKG, and the other is the secret key SID of the user with identity
information ID (In identity-based systems, SID is actually a signature of PKG
on message ID with the secret key x). Given a collision of the chameleon hash
function, the trapdoor key SID will be revealed. Ateniese and de Medeiros [2]
thus concluded that the double-trapdoor mechanism cannot be used to construct
an efficient chameleon hash scheme that is simultaneously identity-based and
key-exposure free, but the multiple-trapdoor (more than two, and consecutive
trapdoors) mechanism perhaps could provide such a construction.

In this section, we first propose an identity-based key-exposure free chameleon
hash scheme based on bilinear pairings. There are three consecutive trapdoors
in our chameleon hash scheme: The first one is the master key x of PKG, the
second one is the secret key SID = xH(ID) of the user with identity informa-
tion ID, and the third one is the ephemeral trapdoor e(H(L), SID) for each
transaction with the customized identity L. Given a collision of the chameleon
hash function, only the ephemeral trapdoor e(H(L), SID) is revealed, but the
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permanent trapdoors x and SID still remain secret. Actually, even given poly-
nomially many ephemeral trapdoors e(H(Li), SID) associated with the label Li,
it is infeasible to compute a new ephemeral trapdoor e(H(L), SID) associated
with the label L �= Li. Trivially, it is more difficult to compute the trapdoor x or
SID. Therefore, the identity information ID and the corresponding secret key
SID can be used repeatedly for different transactions.

4.1 The Proposed Identity-Based Chameleon Hash Scheme

– Setup: Let k be a security parameter. Let G1 be a GDH group generated
by P , whose order is a prime q, and G2 be a cyclic multiplicative group
of the same order q. A bilinear pairing is a map e : G1 × G1 → G2. Let
H : {0, 1}∗ → G1 be a full-domain collision-resistant hash function [7,13,34].
PKG picks a random integer x ∈R Z∗

q and computes Ppub = xP . The system
parameters are SP = {G1, G2, q, e, P, Ppub, H, k}.

– Extract: Given an identity string ID, computes the trapdoor key SID =
xH(ID) = xQID.

– Hash: On input the hash key ID, a customized identity L, a message m,
chooses a random integer a ∈R Z∗

q , and computes r = (aP, e(aPpub, QID)).
Our proposed chameleon hash function is defined as

H = Hash(ID, L, m, r) = aP + mH(L).

Note that H does not depend on the trapdoor key SID. Besides, if a is a
uniformly random integer in Z∗

q , then the string r = (aP, e(aPpub, QID)) can
be viewed as a random input of the chameleon hash function H. We argue
that a is not an input of H.

– Forge: For any valid hash value H, the algorithm F can be used to compute
a string r′ with the trapdoor key SID as follows:

r′ = F(SID, ID, L,H, m, aP, e(aPpub, QID), m′) = (a′P, e(a′Ppub, QID)),

where
a′P = aP + (m−m′)H(L),

e(a′Ppub, QID) = e(aPpub, QID)e(H(L), SID)m−m′
.

Note that

Hash(ID, L, m′, a′P, e(a′Ppub, QID)) = Hash(ID, L, m, aP, e(aPpub, QID))

and

e(a′Ppub, QID) = e(a′P, SID)
= e(aP + (m−m′)H(L), SID)

= e(aP, SID)e(H(L), SID)m−m′

= e(aPpub, QID)e(H(L), SID)m−m′
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Therefore, the forgery is successful. Moreover, if (aP, e(aPpub, QID)) is uniformly
distributed, then the distribution of (a′P, e(a′Ppub, QID)) is computationally in-
distinguishable from uniform.

Remark 1. Given a string r = (aP, e(aPpub, QID)), a necessary condition is the
equality of two discrete logarithms of elements aP and e(aPpub, QID) with re-
spect to the base P and e(Ppub, QID), i.e., logP aP=loge(Ppub,QID) e(aPpub, QID).
Obviously, the holder R of the trapdoor key SID can be convinced of the fact if
the equation e(aP, SID) = e(aPpub, QID) holds: If e(aP, SID) = e(aPpub, QID)
holds, then we have logP aP =loge(P,SID) e(aP, SID) = loge(P,SID) e(aPpub, QID)
= loge(Ppub,QID) e(aPpub, QID).

In the chameleon signatures, it is also essential for any third party without
knowing SID (e.g., a Judge) to verify the validity of r. Due to the identity-
based proof of knowledge for the equality of two discrete logarithms in section
2.2, R can prove that < e(P, P ), e(Ppub, QID), e(aP, P ), e(aPpub, QID) > is a
valid Diffie-Hellman tuple. If < e(P, P ), e(Ppub, QID), e(aP, P ), e(aPpub, QID) >
is a valid Diffie-Hellman tuple, then < e(P, P ), e(aP, P ), e(Ppub, QID),
e(aPpub, QID) > is also a valid Diffie-Hellman tuple. So, we have logP aP =
loge(P,P ) e(aP, P ) = loge(Ppub,QID) e(aPpub, QID). Moreover, it also holds for any
other string r′ = (a′P, e(a′Ppub, QID)). That is to say, for any given string r′,
R can prove that < e(P, P ), e(Ppub, QID), e(a′P, P ), e(a′Ppub, QID) > is a valid
Diffie-Hellman tuple in a computationally indistinguishable way. For more de-
tails, please refer to Appendix A.

4.2 Security Analysis

Theorem 1. In the random oracle model, the proposed identity-based chameleon
hash scheme is collision resistance against active attackers under the assumption
that the BDHP in (G1, G2, e) is intractable.

Proof. Given a random instance < P, xP, yP, zP > of BDHP, the aim of algo-
rithm B is to compute e(P, P )xyz. B runs the Setup algorithm of the proposed
identity-based chameleon hash scheme and sets Ppub = xP . The resulting sys-
tem parameters {G1, G2, q, e, P, H, k, Ppub} are given to the adversary A. The
security analysis will view H as a random oracle.

Let ID be the target identity string and m be the target message. Suppose
that A makes at most f1(k) queries to the Extract oracle, where f1(k) is a
non-constant polynomial. B randomly chooses bi ∈ Z∗

q for i ∈ {1, 2, · · · , f1(k)},
and responds to the H query and Extract query of A as follows:

H(L) = yP

H(IDi) =
{

biP, if IDi �= ID
zP, Otherwise

SIDi =
{

biPpub, if IDi �= ID
“Fail”, Otherwise
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if A can output a message m′ �= m, and two strings r = (aP, e(aPpub, QID)) and
r′ = (a′P, e(a′Ppub, QID)) such that Hash(ID, L, m′, r′) = Hash(ID, L, m, r) in
time T with a non-negligible probability ε, then B can compute

e(H(L), SID) = (e(a′Ppub, QID)/e(aPpub, QID))(m−m′)−1

in time T as the solution of the BDHP. The success of probability of B is also ε.

Theorem 2. The proposed identity-based chameleon hash scheme is semanti-
cally secure.

Proof. Given an identity ID and a customized identity L, there is a one-to-one
correspondence between the hash valueH = Hash(ID, L, m, r) and the string r =
(aP, e(aPpub, QID)) for each message m. Therefore, the conditional probability
μ(m|H) = μ(m|r). Note that m and r are independent variables, the equation
μ(m|H) = μ(m) holds. Then, we can prove that the conditional entropy H [m|H]
equals the entropy H [m] as follows:

H [m|H] = −
∑
m

∑
H

μ(m,H) log(μ(m|H)) = −
∑
m

∑
H

μ(m,H) log(μ(m))

= −
∑
m

μ(m) log(μ(m)) = H [m].

Theorem 3. In the random oracle model, the proposed identity-based chameleon
hash scheme is key-exposure free under the assumption that the BDHP in
(G1, G2, e) is intractable.

Proof. Loosely speaking, the ephemeral trapdoor e(H(L), SID) can be viewed
as the partial signature on message L in the Libert and Quisquater’s identity-
based undeniable signature scheme [31]. Also, in the random oracle model, their
undeniable signature scheme is proved secure against existential forgery on adap-
tively chosen message and ID attacks under the assumption that the BDHP in
(G1, G2, e) is intractable. That is, even if the adversary has obtained polynomi-
ally many signatures e(H(Lj), SID) on message Lj, he cannot forge a signature
e(H(L), SID) on message L �= Lj. So, our chameleon hash scheme satisfies the
property of key exposure freeness.

Now we give the formal proof of our chameleon hash scheme in details. Given
a random instance < P, xP, yP, zP > of BDHP, the aim of algorithm B is to
compute e(P, P )xyz using the adversary A. B firstly provides A the system pa-
rameters {G1, G2, q, e, P, H, k, Ppub} such that Ppub = xP . The security analysis
will view H as a random oracle.

Note that in our chameleon hash scheme, the ephemeral trapdoor e(H(L),
SID) can be used to compute a collision (m′, r′) of the given chameleon hash
value H in any desired way. On the other hand, any collision (m′, r′) will result
in the recovery of the ephemeral trapdoor e(H(L), SID). For the ease of expla-
nation, in the following we let the output of the algorithm F be the ephemeral
trapdoor e(H(L), SID) instead of a collision (m′, r′), i.e., F(·) = e(H(L), SID).
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Let IDt and Lt be the target identity and customized identity, respectively.
We stress that Lt is a label only related to the target identity IDt. That is,
(IDi, Lt) cannot be the input of the query to oracle F for any other identity
IDi �= IDt. Suppose that A makes at most f(k) queries to the Extract or-
acle, where f(k) is a non-constant polynomial. For each i ∈ {1, 2, · · · , f(k)},
assume that A makes at most gi(k) queries to the F oracle on four-triples
(Lij , mij , aij P, e(aij Ppub, QIDi)) of his choice, where gi(k) are non-constant poly-
nomials and j ∈ {1, 2, · · · , gi(k)}. That is, A could obtain gi(k) ephemeral trap-
doors e(H(Lij ), SIDi) for each i ∈ {1, 2, · · · , f(k)}. At the end of the game,
the output of A is a collision of the hash value H = Hash(IDt, Lt, m, aP,
e(aPpub, QIDt)) where Lt �= Ltj and j ∈ {1, 2, · · · , gt(k)}, i.e., a new ephemeral
trapdoor e(H(Lt), SIDt) for H(Lt) �= H(Ltj ).
B randomly chooses bi ∈ Z∗

q and cij ∈ Z∗
q for i ∈ {1, 2, · · · , f(k)}, j ∈

{1, 2, · · · , gi(k)}, and then responds to the H query, Extract query, and F
query of A as follows:

H(Lij ) =
{

cij P, if Lij �= Lt

yP, Otherwise

H(IDi) =
{

biP, if IDi �= IDt

zP, Otherwise

SIDi =
{

biPpub, if IDi �= IDt

“Fail”, Otherwise

F(·) =

⎧⎨⎩
e(cij P, biPpub), if IDi �= IDt

e(ctj Ppub, zP ), if IDi = IDt and Lij �= Lt

“Fail”, if IDi = IDt and Lij = Lt

We sayA wins the game ifA outputs a new valid trapdoor e(H(Lt), SIDt) in time
T with a non-negligible probability ε. Note that e(H(Lt), SIDt) = e(P, P )xyz, so
B can solve the BDHP in time T with the same probability ε.

5 Conclusions

Chameleon signatures simultaneously provide the properties of non-repudiation
and non-transferability for the signed message, thus can be used to solve the
conflict between authenticity and privacy in the digital signatures. However,
the original constructions suffer from the so-called key exposure problem of
chameleon hashing. Recently, some constructions of key-exposure free chameleon
hash schemes [2,17] are presented using the idea of “Customized Identities” while
in the setting of certificate-based systems. Besides, all of the existing identity-
based chameleon hash schemes suffer from the key exposure problem. To the best
of our knowledge, there seems no research work on the identity-based chameleon
hash scheme without key exposure.

In this paper, we propose the first identity-based chameleon hash scheme
without key exposure, which gives an affirmative answer for the open problem
introduced by Ateniese and de Medeiros in 2004.
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Appendix A: The Resulting Chameleon Signature Scheme

Since chameleon signatures are based on well established hash-and-sign paradigm,
we can construct an identity-based chameleon signature scheme by incorporating
the proposed identity-based chameleon hash scheme Hash and any secure identity-
based signature scheme SIGN.

There are two users, a signer S and a recipient R, in the proposed identity-
based chameleon signature scheme. When dispute occurs, a judge J is involved
in the scheme. Our signature scheme consists of four efficient algorithms Setup,
Extract, Sign, Verify, and a specific protocol Deny. The algorithms of Setup
and Extract are the same as in section 4.1. Let (SIDS , IDS) be the sign-
ing/verification key pair of S, and (SIDR , IDR) be the trapdoor/hash key pair
of R.

Given a message m and a customized identity L, S randomly chooses an
integer a ∈R Z∗

q , and computes r = (aP, e(aPpub, QIDR)). The signature σ for
message m is σ = (m, r, L, SIGNSIDS

(H)), where H = Hash(IDR, L, m, r).
Given a signature σ, R first uses his trapdoor key SIDR to verify whether the

equation e(aP, SIDR) = e(aPpub, QIDR) holds. If the verification fails, he rejects
the signature; else, he computes the chameleon hash valueH=Hash(IDR, L, m, r)
and verifies the validity of SIGNSIDS

(H) with the verification key IDS.
When dispute occurs, R provides J a signature σ=(m′, r′, L, SIGNSIDS

(H))
and a non-interactive identity-based proof of knowledge Π ′ for the equality of two
discrete logarithms that loge(P,P ) e(Ppub, QIDR) = loge(a′P,P ) e(a′Ppub, QIDR). If
either SIGNSIDS

(H) or Π ′ is invalid, J rejects it. Otherwise, J summons S to
accept/deny the claim. If S wants to accept the signature, he just confirms to
J this fact. Otherwise, he provides a collision of the chameleon hash function as
follows:

– If S wants to achieve the property of “message recovery”, i.e., he wants to
prove which message was the one originally signed. In this case, S pro-
vides J the tuple (m, r, Π) as a collision, where Π is a non-interactive
proof of knowledge for the equality of two discrete logarithms that a =
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loge(P,P ) e(aP, P ) = loge(Ppub,QIDR
) e(aPpub, QIDR). If and only if m �= m′,

H = Hash(IDR, L, m, r), and Π is valid, then J can be convinced that R
forged the signature on message m′ and S only generated a valid signature
on message m.

– If S wants to achieve the property of “message hiding”, i.e., he wants to pro-
tect the confidentiality of the original message even against the judge. In this
case, S provides J the tuple (m′′, r′′) such that H = Hash(IDR, L, m′′, r′′)
as a collision. Note that given two pairs (m, r) and (m′, r′) such that H =
Hash(IDR, L, m′, r′) = Hash(IDR, L, m, r), S can compute the ephemeral
trapdoor e(H(L), SIDR)=(e(a′Ppub, QIDR)/e(aPpub, QIDR))(m−m′)−1

. Then,
for a randomly chosen message m′′, the string r′′ = (a′′P, e(a′′Ppub, QIDR))
can be computed as follows: a′′P = aP +(m−m′′)H(L), e(a′′Ppub, QIDR) =
e(aPpub, QIDR)e(H(L), SIDR)m−m′′

. If R accepts the collision (m′′, r′′), J
can be convinced that R forged the signature on message m′ and the orig-
inal message m is never revealed. Otherwise, R provides a non-interactive
knowledge proof that r′′ is not valid: Let r′′ = (U, V ), R provide a value W �=
V and a non-interactive knowledge proof that loge(P,P ) e(Ppub, QIDR) =
loge(U,P ) W , then J can be convinced that S generated a valid signature
on message m′.4

Remark 2. Note that if (g, ga, gb, gab) is a valid Diffie-Hellman tuple, then
(g, gb, ga, gab) is also a valid Diffie-Hellman tuple, vice versa. That is, there are
two different ways (based on the knowledge a or b, respectively) to prove that
(g, ga, gb, gab) is a valid Diffie-Hellman tuple when using the proof of knowl-
edge for the equality of two discrete logarithms: logg ga = loggb gab or logg gb =
logga gab. This is the main trick of the Deny protocol in our signature scheme.
We explain it in more details.

For any random string r′ = (a′P, e(a′Ppub, QIDR)), R cannot provide a proof
that logP a′P = loge(Ppub,QIDR

) e(a′Ppub, QIDR). However, R (with the knowl-
edge of SIDR) could provide a proof that

loge(P,P ) e(Ppub, QIDR) = loge(a′P,P ) e(a′Ppub, QIDR).

That is, loge(P,P ) e(a′P, P ) = loge(Ppub,QIDR
) e(a′Ppub, QIDR). So, we can easily

deduce that logP a′P = loge(P,P ) e(a′P, P ) = loge(Ppub,QIDR
) e(a′Ppub, QIDR).

In particular, it is also holds even when r′ = r. That is, the original input r
is totally indistinguishable with any collision r′. Moreover, we stress that it is
NOT required for R to know the value a′ or a in the knowledge proof that
loge(P,P ) e(Ppub, QIDR) = loge(a′P,P ) e(a′Ppub, QIDR).

4 We must consider the case that R provides the original collision (m′, r′) (that is, m′

is the original message to be signed) while S provides an invalid collision (m′′, r′′)
to cheat J . Note that if loge(P,P ) e(Ppub, QIDR) = loge(U,P ) W , then we have W =
e(U,SIDR) = e(a′′P, SIDR). Trivially, V �= e(a′′Ppub, QIDR). This means that the
tuple (m′′, r′′) provide by S is not a valid collision.
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On the other hand, note that only S knows the knowledge a and no one knows
the knowledge a′ �= a. Therefore, only S can provide a proof of knowledge that
a = loge(P,P ) e(aP, P ) = loge(Ppub,QIDR

) e(aPpub, QIDR), and no one can provide
a proof of knowledge that a′=loge(P,P ) e(a′P, P )=loge(Ppub,QIDR

) e(a′Ppub, QIDR)
when a′ �= a. This ensures that S can efficiently prove which message was the
original one if he desires.

Remark 3. We can also give a new solution to achieve the property of “message
hiding” in the resulting identity-based chameleon signature scheme. S chooses
a random integer θ ∈R Z∗

q and computes m′′ = θm and a′′ = θa. Let H′′ =
a′′P + m′′H(L), S then provides J the tuple (m′′, r′′, Σ, Π) as a collision,
where r′′ = (a′′P, e(a′′Ppub, QIDR)), Σ is a non-interactive proof of knowledge
of a discrete logarithm that θ = logHH′′, and Π is a non-interactive proof of
knowledge for the equality of two discrete logarithms that a′′ = logP a′′P =
loge(Ppub,QIDR

) e(a′′Ppub, QIDR). If and only if m′H′′ �= m′′H, and Σ and Π are
both valid, then J can be convinced that R forged the signature on message
m′ and the original message m is still confidential. The reason is as follows: if
H′′ = θH, then the pair (m, a) = (θ−1m′′, θ−1a′′) is the original tuple of S due to
the hardness of discrete logarithm assumption. Otherwise, we could compute the
discrete logarithm logP H(L) while H(L) can be viewed a random element in G1.
Obviously, (m, r) = (m, (aP, e(aPpub, QIDR))) is the original input of chameleon
hashing. Besides, m′H′′ �= m′′H implies m �= m′. This means that S is capable
of providing a new collision different from (m′, r′). Due to the randomness of θ,
the original message m is kept secret in the sense of semantic security. The more
detailed proof will be presented in the full version of this paper.

Remark 4. Compared with the confirm protocol of the identity-based undeni-
able signature scheme [31], the Verify algorithm in our proposed identity-based
chameleon signature scheme is non-interactive, i.e., the recipient can verify the
signature without the collaboration of the signer. The Deny protocol is also non-
interactive in our signature scheme.Moreover, our signature scheme is based on the
well established hash-and-sign paradigm and thus can provide more flexible con-
structions. Another distinguishing advantage of our scheme is that the property of
“message hiding” or “message recovery” can be achieved freely by the signer.

Compared with the existing identity-based chameleon signature schemes [1,38],
our proposed scheme is as efficient as them in the Sign and Verify algorithms.
While in the Deny protocol, it requires a (very) little more computation and com-
munication cost for the non-interactive proofs of knowledge. However, none of the
schemes [1,38] is key-exposure free. Currently, it seems that our proposed scheme
is the unique choice for the efficient and secure identity-based chameleon signature
scheme in the real applications.
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Abstract. In proxy re-signature (PRS), a semi-trusted proxy, with some
additional information (a.k.a., re-signature key), can transform Alice’s
(delegatee) signature into Bob’s (delegator) signature on the same mes-
sage, but cannot produce an arbitrary signature on behalf of either the
delegatee or the delegator. In this paper, we investigate the security
model of proxy re-signature, and find that the previous security model
proposed by Ateniese and Honhenberger at ACM CCS 2005 (referred to
as the AH model) is not complete since it does not cover all possible at-
tacks. In particular, the attack on the unidirectional proxy re-signature
with private re-signature key. To show this, we artificially design such a
proxy re-signature scheme, which is proven secure in the AH model but
suffers from a specific attack. Furthermore, we propose a new security
model to solve the problem of the AH model. Interestingly, the previous
two private re-signature key, unidirectional proxy re-signature schemes
(one is proposed by Ateniese and Honhenberger at ACM CCS 2005, and
the other is proposed by Libert and Vergnaud at ACM CCS 2008), which
are proven secure in the AH model, can still be proven secure in our se-
curity model.

Keywords: Security model, Unidirectional PRS, Private re-signature
key, AH model.

1 Introduction

1.1 What Is Proxy Re-Signature?

Proxy re-signature (PRS), introduced by Blaze, Bleumer, and Strauss [7], and
formalized by Ateniese and Hohenberger [5], allows a semi-trusted proxy to trans-
form a delegatee’s (Alice) signature into a delegator’s (Bob) signature on the
same message by using some additional information (a.k.a., re-signature key).
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The proxy, however, cannot generate arbitrary signatures on behalf of either the
delegatee or the delegator.

Eight desired properties of proxy re-signatures are given in [5].

1. Unidirectional: In a unidirectional scheme, a re-signature key allows the
proxy to transform A’s signature to B’s but not vice versa. In a bidirectional
scheme, on the other hand, the re-signature key allows the proxy to transform
A’s signature to B’s as well as B’s signature to A’s.

2. Multi-use: In a multi-use scheme, a transformed signature can be re-
transformed again by the proxy. In a single-use scheme, the proxy can trans-
form only the signatures that have not been transformed.

3. Private re-signature key: The proxy can keep the re-signature key as a
secret in a private re-signature key scheme, but anyone can recompute the
re-signature key by observing the proxy passively in a public re-signature key
scheme.

4. Transparent: In a transparent scheme, users may not even know that a
proxy exists.

5. Key-optimal: In a key-optimal scheme, a user is required to protect and
store only a small constant amount of secrets no matter how many signature
delegations the user gives or accepts.

6. Non-interactive: The delegatee is not required to participate in delegation
process.

7. Non-transitive: A re-signing right cannot be re-delegated by the proxy
alone.

8. Temporary: A re-signing right is temporary. This can be done by either
revoking the right as in [5] or expiring the right.

1.2 Applications of PRS

One interesting application of PRS is the interoperable architecture of ditigal
rights management (DRM). A DRM system is designed to prevent illegal redis-
tribution of digital content. With DRM systems, the digital content can only
be played in a specified device (regime). For example, a song playable in de-
vice (regime) A cannot be played in device (regime) B. However, it is reported
that 86% consumers prefer paying twice price for a song that runs on any de-
vice rather than runs on only one device [2]. Most of current interoperability
architectures require to change the existing DRM systems a lot [11]; this modi-
fication cannot be adopted due to business reasons. Based on proxy re-signature
and proxy re-encryption [3,4], Taban et al. [14] proposed a new interoperability
architecture, which does not change the existing DRM systems a lot but keep
the DRM systems’ security. In their architecture, only a new module called Do-
main Interoperability Manager (DIM) is introduced. PRS allows the DIM to
transform licenses (signatures) in regime A into another in regime B, while DIM
cannot generate valid licenses (signatures) either in regime A or in regime B.

PRS can also be used in other applications according to its properties: Space-
efficient proof that a path was taken (by using the multi-usability and private
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re-signature key properties) [5], management of group signatures (by using the
unidirection and private re-signature key properties) [5]. We refer the reader to
[1] for more applications.

1.3 History of Proxy Re-Signatures

Proxy re-signature has a rather short history. This primitive was introduced at
Eurocrypt 1998 by Blaze, Bleumer and Strauss [7]. Their scheme, referred to as
the BBS scheme, is a multi-use, public re-signature key and bidirectional scheme.
However, from the re-signature key (which is public), the delegator can easily
obtain the delegatee’s signing key or vice versa. As a result, the BBS scheme is
not suitable for many practical applications described in [7].

After the first proxy re-signature scheme appeared in 1998, there was no
follow-ups until the work by Ateniese and Hohenberger published at ACM CCS
2005 [5]. One of the reasons for such a long quiet time is, as stated in [5], that the
definition of proxy re-signatures given in [7] is informal and can be easily confused
with other signature variations. In [5], Ateniese and Hohenberger first formalized
the definition of security for a proxy re-signature, referred to as the AH model
in this paper, and then proposed three proxy re-signature schemes with proven
security. The first one is multi-use, private re-signature key and bidirectional, the
second one is single-use, public re-signature key and unidirectional, and the third
one is single-use, private re-signature key and unidirectional. Later, Shao et al.
[13] proposed a multi-use, private re-signature key and bidirectional proxy re-
signature scheme based on Waters’ identity based signature [15], and Libert and
Vergnaud [12] proposed a multi-use, private re-signature key and unidirectional
scheme based on the �-FlexDH assumption. All the proxy re-signature schemes
in [5,13,12] are proven secure in the AH model.

1.4 This Paper’s Contributions

The AH model covers two types of forgeries for bidirectional proxy re-signature:
(1) an outsider who is neither the proxy nor one of the delegation parties aims
to produce signatures on behalf of either delegation party; (2) the proxy aims
to produce signatures on behalf of either delegation party. For unidirectional
proxy re-signature, in addition to these two types of forgeries, the AH model
covers another two types of forgeries: (3) the delegator colludes with the proxy
to produce signatures on behalf of the delegatee; (4) the delegatee colludes with
the proxy to produce the first-level signatures1.

The AH model covers almost all types of forgeries for unidirectional proxy
re-signatures, but it omits one type of forgeries that the delegatee may aim to
produce signatures on behalf of the delegator without colluding with the proxy.
For example, for the transformation path: Alice → Proxy → Bob. Alice may
attempt to produce a second-level signature on a message on behalf of Bob
without the transformation of Proxy. This situation is not allowed in the proxy

1 See Remark 1 in Section 2.
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re-signature schemes with private re-signature key, since Bob has delegated his
signing rights via Proxy but not to Alice directly. The schemes suffering from
this attack cannot be used in most of the applications of PRS listed in [1].

To show the deficiency of the AH model, we artificially design in Section 3.3 a
scheme, denoted as Sus, which suffers from the above attack but is proven secure
in the AH model.

On one hand, one of the possible reasons for the deficiency of the AH model
is that the AH model tried to model all types of attacks on all types of proxy
re-signatures. Hence, it is more complex than security models of other types of
signatures, which makes the AH model hard to be verified. It would be better if
one security model is associated to only one type of proxy re-signatures.

On the other hand, as shown in [1], the unidirectional proxy re-signature with
private re-signature key is more useful than other types of proxy re-signatures.
Hence, it is desired to propose a security model to instruct people to design the
unidirectional proxy re-signature with private re-signature key.

As a result, in this paper, we only focus on the security model of the uni-
directional proxy re-signature with private re-signature key. The proposed se-
curity model is clearer and simpler than the AH model (one security game vs.
four security games). For the simple expression, we refer to this type of proxy
re-signatures as UPRS-prk in the rest of this paper. Fortunately, the previous
UPRS-prk2 schemes [5,12], which are proven secure in the AH model, can still
be proven secure in our model.

1.5 Paper Organization

The remaining paper is organized as follows. In Section 2, the definitions of
UPRS-prk are introduced and the AH model is described. In Section 3, we present
a scheme which is proven secure in the AH model but insecure. In Section 4, we
present our security model of UPRS-prk and point out that the previous UPRS-prk
schemes are still secure in our model. We conclude the paper in Section 5.

2 Definitions

2.1 Unidirectional Proxy Re-Signature with Private Re-Signature
Key

The following definitions are from [5].

Definition 1 (UPRS-prk). A UPRS-prk scheme PRS consists of the following
five probabilistic algorithms: KeyGen, ReKey, Sign, ReSign, and Verify where:

KeyGen: It takes as input the security parameter 1k, and returns a verifica-
tion key pk and a signing key sk. This algorithm is denoted as (pk, sk) ←
KeyGen(1k).

2 All existing UPRS-prk schemes are non-interactive. Hence, we only focus on non-
interactive UPRS-prk in this paper.
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ReKey: It takes as input delegatee Alice’s verification key pkA, and delegator
Bob’s key pair (pkB, skB), and returns a re-signature key rkA→B for the
proxy. This algorithm is denoted as rkA→B ← ReKey(pkA, pkB, skB).

Sign: It takes as input a signing key sk, a positive integer � and a message
m, and returns a signature σ at level �. This algorithm is denoted as σ ←
Sign(sk, m, �).

ReSign: It takes as input a re-signature key rkA→B , a signature σA on a message
m under pkA at level �, and returns the signature σB on the same message
m under pkB at level � + 1 if Verify(pkA, m, σA, �) = 1, or ⊥ otherwise.
This algorithm is denoted as σB ← ReSign(rkA→B , pkA, m, σA, �).

Verify: It takes as input a verification key pk, a message m, a signature σ and
a positive integer �, and returns 1 if σ is a valid signature under pk at level �,
or 0 otherwise. This algorithm is denoted as (1 or 0) ← Verify(pk, m, σ, �).

Correctness. The following property must be satisfied for the correctness of
a UPRS-prk scheme: For any message m in the message space and any two
key pairs (pkA, skA) and (pkB, skB), let rkA→B ← Rekey(pkA, pkB, skB), the
following two equations must hold:

Verify(pkA, m, σA, �) = 1,

where σA is a signature on message m under pkA at level � from Sign. If the
UPRS-prk scheme is single-use, then � ∈ {1, 2}; � ≥ 1 otherwise.

Verify(pkB, m, ReSign(rkA→B , pkA, m, σ′
A, �− 1), �) = 1.

If the UPRS-prk scheme is single-use, σ′
A is a signature on message m under pkA

from Sign, and � = 2; if the proxy re-signature scheme is multi-use, σ′
A could

also be a signature on message m under pkA from ReSign, and � ≥ 2.

Remark 1 (Two Types of Signatures.). In all existing unidirectional proxy re-
signature schemes, a signature manifests in two types: the owner-type (i.e., the
first-level defined in [5], � = 1) and the non-owner-type (i.e., the second-level
signatures in [5], � > 1). An owner-type signature can be computed only by the
owner of the signing key, while a non-owner-type signature can be computed
not only by the owner of the signing key, but also by collaboration between his
proxy and delegatee.

2.2 The AH Model

In this subsection, we review the AH model for UPRS-prk. It contains two aspects
(four security games): the external security and the internal security. The details
are as follows.

External Security: This security deals with adversaries other than the proxy
and any delegation parties. A UPRS-prk scheme has external security if and



The Security Model of Unidirectional Proxy Re-Signature 221

only if for security parameter k, any non-zero n ∈ poly(k), and all probabilistic
polynomial time (p.p.t.) algorithms A, the following probability is negligible:

Pr[
{
(pki, ski) ← KeyGen(1k)

}
i∈[1,n]

, (t, m∗, σ∗, �∗) ← AOs(·),Ors(·)({pki}i∈[1,n]) :
Verify(pkt, m

∗, σ∗, �∗) = 1 ∧ (t, m∗) �∈ Q],

where oracle Os takes as input a verification key pki and a message m ∈ M,
and produces an output Sign(ski, m, 1); oracle Ors takes as input two distinct
verification keys pki and pkj , a message m, a signature σ and a positive integer �,
and produces an output ReSign(ReKey(pki, pkj , skj), pki, m, σ, �); and Q denotes
the set of (index, message) pairs (i, m) that A obtains a signature on a message
m under the verification key pki by querying Os on (pki, m) or querying Ors on
(·, pki, m, ·, ·). Note that if the treated PRS scheme is single-use, then �∗ ∈ {1, 2}
and � = 1; otherwise, �∗ ≥ 1 and � ≥ 1.

Internal Security: This security protects a user from inside adversaries who
can be any parties, i.e., the proxy, the delegatee, and the delegator, in a proxy
re-signature scheme. It can be classified into the following three types.

Limited Proxy: In this case that only the proxy is a potential adversary A.
We must guarantee that the proxy cannot produce signatures on behalf of either
the delegator or the delegatee except the signatures produced by the delegatee
and delegated to the proxy to re-sign. Internal security in this case is very similar
to external security described above except that A queries a rekey oracle Ork

instead of a re-signature oracle Ors. A UPRS-prk scheme is said to have limited
proxy security if and only if for security parameter k, any non-zero n ∈ poly(k),
and all p.p.t. algorithms A, the following probability is negligible:

Pr[
{
(pki, ski)←KeyGen(1k)

}
i∈[1,n] , (t, m

∗, σ∗, �∗) ← AOs(·),Ork(·)({pki}i∈[1,n]) :
Verify(pkt, m

∗, σ∗, �∗)=1 ∧ (t, m∗) �∈ Q],

where Os and �∗ are the same as that in external security, oracle Ork takes as
input two distinct verification keys pki, pkj, and returns the output of ReKey(pki,
pkj , skj); and Q denotes the set of (index, message) tuples (i, m) that A ob-
tained a signature on m under verification key pki or one of its delegatees’ keys
by querying Os.

Delegatee Security: In this case that the proxy and delegator may collude
with each other. This security guarantees that their collusion cannot produce any
signatures on behalf of the delegatee. We associate the index 0 to the delegatee.
A UPRS-prk scheme is said to have delegatee security if and only if for security
parameter k, any non-zero n ∈ poly(k), and all p.p.t. algorithms A, the following
probability is negligible:

Pr[
{
(pki, ski) ← KeyGen(1k)

}
i∈[0,n]

, (m∗, σ∗, �∗) ← AOs(·)(pk0, {pki, ski}i∈[1,n]) :
Verify(pk0, m

∗, σ∗, �∗)=1 ∧ (0, m∗) �∈ Q],

whereOs and �∗ are the same as that in external security, Q is the set of pairs
(0, m) that A obtains a signature by querying oracle Os on (pk0, m). Note that
Ork is useless in this case, since the adversary is able to compute re-signature
keys rk0→i himself by using ski.
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Delegator Security: In this case that the proxy and delegatee may collude
with each other. This security guarantees that their collusion cannot produce
any owner-type signatures on behalf of the delegator. We associate the index 0
to the delegator. A UPRS-prk scheme is said to have delegator security if and only
if for security parameter k, any non-zero n ∈ poly(k), and all p.p.t. algorithms
A, the following probability is negligible:

Pr[
{
(pki, ski)←KeyGen(1k)

}
i∈[0,n]

, (m∗, σ∗, 1) ← AOs(·),Ork(·)(pk0, {pki, ski}i∈[1,n]) :
Verify(pk0, m

∗, σ∗, 1) = 1 ∧ (0, m∗) �∈ Q],

where Os is the same as that in external security, Ork is the same as that in
limited proxy security, Q is the set of pairs (0, m) for which A obtains an
owner-type signature by querying oracle Os on (pk0, m).

Remark 2. According the definition in [5] (page 313), we say a unidirectional
proxy re-signature scheme is public re-signature key if it does not hold the exter-
nal security, like scheme Suni in [5]; otherwise, the scheme is private re-signature
key, like scheme S∗

uni in [5] and the schemes in [12].

3 On the AH Model

Before proposing scheme Sus, we first introduce some basic knowledge related
to scheme Sus.

3.1 Bilinear Groups

Bilinear maps and bilinear map groups are briefly reviewed in this subsection.
Details can be found in [8,9].

1. G and GT are two (multiplicative) cyclic groups of prime order q;
2. g is a generator of G;
3. e is a bilinear map, e : G×G → GT .

Let G and GT be two groups as above. An admissible bilinear map is a map
e : G×G → GT with the following properties:

1. Bilinearity: For all P, Q, R ∈ G, e(P ·Q, R) = e(P, R) · e(Q, R) and e(P, Q ·
R) = e(P, Q) · e(P, R).

2. Non-degeneracy: If e(P, Q) = 1 for all Q ∈ G, then P = O, where O is a
point at infinity.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exist a group GT and an efficiently computable bilinear
map as above. We use BSetup to denote an algorithm that, on input the security
parameter 1k, outputs the parameters for a bilinear map as (q, g, G, GT , e), where
q ∈ Θ(2k).
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3.2 Complexity Assumption

The security of scheme Sus can be proved based on the extended Computational
Diffie-Hellman (eCDH) assumption in the AH model.

Definition 2 (Extended Computational Diffie-Hellman Assumption).
Let (q, g, G, GT , e) ← BSetup(1k). The extended computational Diffie-Hellman
problem (eCDH) in (G, GT ) is defined as follows: given 4-tuple (g, gu, gv, g1/v) ∈
G5 as input, output guv or gu/v. An algorithm A has advantage ε in solving the
eCDH problem in (G, GT ) if

Pr[A(g, gu, gv, g1/v) = guv or gu/v] ≥ ε,

where the probability is taken over the random choices of u, v ∈ Z∗
q and the

random bits of A.
We say that the (t, ε)-extended computational Diffie-Hellman (eCDH) as-

sumption holds in (G, GT ) if no t-time algorithm has advantage ε at least in
solving the eCDH problem in (G, GT ).

In this paper, we drop the t and ε and refer to the eCDH assumption rather
than the (ε, t)-eCDH assumption.

3.3 The Scheme Sus

In this subsection, we propose a UPRS-prk scheme, named Sus, which is proven
secure in the AH model, but it cannot provide all the required security properties.
This fact shows that the AH model is not complete. The public parameters
of scheme Sus are (q, g, G, GT , e), where (q, g, G, GT , e) ←BSetup(1k), H is a
cryptographic hash function: {0, 1}∗ → G.

KeyGen: On input the security parameter 1k, it selects a random number a ∈ Z∗
q ,

and outputs the key pair pk = ga and sk = a.
ReKey: On input the delegatee’s verification key pkA = ga and the delegator’s

signing key skB = b, it outputs the re-signature key

rkA→B = (rk(1)
A→B , rk

(2)
A→B , rk

(3)
A→B) = (r′, (pkA)r′

, H(ga·r′ ||2)1/b),

where r′ is a random number in Z∗
q determined by Bob.

Sign: On input a signing key sk = a, a message m ∈ M and an integer � ∈
{1, 2},
– if � = 1, it outputs an owner-type signature

σ = (A, B, C) = (H(m||0)r, gr, H(gr||1)a),

– if � = 2, it outputs a non-owner-type signature

σ = (A, B, C, D, E) = (H(m||0)r1 , gr1 , H(gr1 ||1)r2 , gr2 , H(gr2 ||2)1/a).
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ReSign: Given an owner-type signature σ at level 1, a re-signature key rkA→B =
(rk(1)

A→B , rk
(2)
A→B , rk

(3)
A→B), a verification key pkA, and a message m, this al-

gorithm first checks Verify(pkA, m, σ, 1) ?= 1. If it does not hold, outputs
⊥; otherwise, outputs

σ′ = (A′, B′, C′, D′, E′)
= (A, B, Crk

(1)
A→B , rk

(2)
A→B , rk

(3)
A→B)

= (H(m||0)r, gr, H(gr||1)ar′
, (pkA)r′

, H((pkA)r′ ||2)1/b)
= (H(m||0)r1 , gr1 , H(gr1 ||1)r2 , gr2 , H(gr2 ||2)1/b)

Note that we set r1 = r mod q and r2 = ar′ mod q.
Verify: On input a verification key pk, a message m at level � ∈ {1, 2}, and a

signature σ,
– if σ is an owner-type signature σ = (A, B, C) (i.e., � = 1), it checks

e(pk, H(B||1)) ?= e(g, C),
e(B, H(m||0)) ?= e(g, A).

If the two equations both hold, it outputs 1; otherwise, outputs 0.
– if σ is a non-owner-type signature σ = (A, B, C, D, E) (i.e., � = 2), it

checks
e(g, H(D||2)) ?= e(pk, E),
e(D, H(B||1)) ?= e(g, C),
e(B, H(m||0)) ?= e(g, A).

If all the equations hold, it outputs 1; otherwise, outputs 0.

3.4 Correctness

Scheme Sus has the correctness due to the following equations.

– owner-type signature:

e(pk, H(B||1)) = e(ga, H(B||1)) = e(g, H(B||1)a) = e(g, C),
e(B, H(m||0)) = e(gr, H(m||0)) = e(g, H(m||0)r) = e(g, A),

– non-owner-type signatures:

e(pk, E) = e(gb, H(D||2)1/b) = e(g, H(D||2)),
e(D, H(B||1)) = e(gr2 , H(B||1)) = e(g, H(B||1)r2) = e(g, C),
e(B, H(m||0)) = e(gr1 , H(m||0)) = e(g, H(m||0)r1) = e(g, A).

3.5 Security Analysis

Theorem 1. Scheme Sus is secure in the AH model if the eCDH problem is
hard, and hash function H is treated as a random oracle.
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Proof. We prove the security in the AH model in two parts, similar to that in [5].
We show that if adversary A can break scheme Sus in the AH model, then

we can build another algorithm B that can solve the eCDH problem. Given
(q, g, G, GT , e, gu, gv, g1/v), B aims to output guv or gu/v. The proxy re-signature
security game is as follows.

External Security.
– Random oracleOh: On input string R,B first checkswhether (R, Rh, rh, ∗)

exists inTableTh. Ifyes,B returnsRh and terminates; otherwise,B chooses
a random number rh ∈ Z∗

q , and the next performance of B has three
situations.

• The input string R satisfies the format m||0, where m ∈M. B guesses
whether m is the target message m∗. If yes, B outputs Rh = (gu)rh ;
otherwise, B outputs Rh = grh .

• The input string R satisfies the format m||1 or m||2, where m ∈ G.
B outputs Rh = (gu)rh .

• The input string R does not satisfy any of the above formats. B
outputs Rh = grh .

At last, B records (R, Rh, rh,⊥) in Table Th.
– Verification keys oracle Opk: As the adversary requests the creation of

system users, B first chooses a random number xi ∈ Z∗
q , and guesses

whether it is pkt. For pki �= pkt, it sets pki = gxi ; for pki = pkt, it sets
pki = (gv)xi . At last, B records (pki, xi) in Table Tpk.

– Signature oracle Os: On input (pki, mi).
• If mi = m∗, then pki �= pkt, B chooses a random number r ∈ Z∗

q ,
and outputs

σ = (A, B, C) = (H(m∗||0)r, gr, H(gr||1)xi).

• If mi �= m∗, then B chooses a random number r ∈ Z∗
q , and checks

whether ((gv)r||1, ∗, ∗, ∗) exists in Table Th. If it exists, B reports
“failure” and aborts; otherwise B chooses a random number r1 ∈
Z∗

q , and records ((gv)r||1, gr1 , r1, r) in Table Th. And then B checks
whether (mi||0, �1, �2,⊥) exists in Table Th. If it exists, then B sets
r2 = �2; otherwise, B chooses a random number r2 ∈ Z∗

q and records
(mi||0, gr2 , r2,⊥) in Table Th. At last, B outputs

σ=(A, B, C)=((gv)rr2 , (gv)r, pkr1
i )=(H(mi||0)vr, gvr, H(gvr||1)vxi).

– Re-signature oracle Ors: On input (pki, pkj , m, σ, 1), where σ=(A, B, C).
If Verify(pki, m, σ, 1) = 1, then B does the following performances;
otherwise, outputs ⊥.
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• If pkj �= pkt, B uses xj , associated to pkj in Table Tpk, to run ReKey
and ReSign, and gets the required re-signature.

• If pkj = pkt, then m �= m∗, and B chooses a random number r ∈
Z∗

q , and checks whether ((gv)xir||2, ∗, ∗, ∗) exists in Table Th. If it
exists, B reports “failure” and aborts; B chooses a random number
r1 ∈ Z∗

q , and records ((gv)xir||2, gr1 , r1, xir) in Table Th. B searches
(B||1, �1, �2, �3) in Table Th, and outputs

σ′ = ( A′, B′, C′, D′, E′)
= ( A, B, (gv)xi�2r, (gv)xir, (g1/v)r1/xt)
= ( A, B, H(B||1)xivr, gxivr, H(gxivr||2)1/(vxt)),

– Forgery: At some point, the adversarymust output a forgery (pkt, m
∗, σ∗).

Now, we show how B gets the eCDH solution from the forgery.
– If σ∗ is an owner-type signature, such as σ∗ = (A∗, B∗, C∗), then we

have the following analysis.
• If (∗, B∗, C∗) did not appear in one owner-type signature of pkt from
Os, then B finds (B∗||1, �′1, �′2, �′3) in Table Th, and gets the solution
of the eCDH problem:

(C∗)1/(xt�
′
2) = (H(B∗||1)vxt)1/(xt�

′
2) = (gu�′

2vxt)1/(xt�
′
2) = guv.

Note that pkt = (gv)xt .
• If (∗, B∗, C∗) appeared in one owner-type signature of pkt from Os,

then B finds (m∗||0, �1, �2, �3) and (B∗||1, �′1, �
′
2, �

′
3) in Table Th, and

gets the solution of the eCDH problem:

(A∗)1/(�2�′
3) = (H(m∗||0)v�′

3)1/(�2�′
3) = (guv�2�′

3)1/(�2�′
3) = guv.

Note that B∗ = (gv)�′
3 .

– If σ∗ is a non-owner-type signature, such as σ∗ = (A∗, B∗, C∗, D∗, E∗),
then we have the following analysis.
• If (∗, ∗, ∗, D∗, E∗) did not appear in any one signature of pkt from
Ors, then B finds (D∗||2, �′′1 , �′′2 , �′′3) in Table Th, and gets the solution
of the eCDH problem:

(E∗)xt/�′′
2 = (H(D∗||2)1/(vxt))xt/�′′

2 = (gu�′′
2 /(vxt))xt/�′′

2 = gu/v.

Note that pkt = (gv)xt .
• If (∗, ∗, ∗, D∗, E∗) appeared in one signature of pkt, but

(∗, B∗, C∗, D∗, E∗) did not appear in any one signature of pkt from
Ors, then B finds (D∗||2, �′′1 , �′′2 , �′′3) and (B∗||1, �′1, �

′
2, �

′
3) in Table

Th, and gets the solution of the eCDH problem:

(C∗)1/(�′′
3 �′

2) = (H(B∗||1)v�′′
3 )1/(�′′

3 �′
2) = (gu�′

2v�′′
3 )1/(�′′

3 �′
2) = guv.

Note that D∗ = (gv)�′′
3 .
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• If (∗, B∗, C∗, D∗, E∗) appeared in one owner-type signature of pkt

from Ors, then B finds (m∗||0, �1, �2, �3) and (B||1, �′1, �
′
2, �

′
3) in Ta-

ble Th, and gets the solution of the eCDH problem:

(A∗)1/(�2�′
3) = (H(m∗||0)v�′

3)1/(�2�′
3) = (guv�2�′

3)1/(�2�′
3) = guv.

Note that B∗ = (gv)�′
3 .

Note that B guessed the right target verification key with the probability
1/n at least, and B reports “failure” and aborts in Os and Ors with the
probabilities (qh + qs)/q and (qh + qrs)/q at most, respectively. Here, qh,
qs, and qrs are the maximum numbers that A can query to random oracle
Oh, signature oracle Os, re-signature oracle Ors respectively. As a result, B
solves the eCDH problem with a non-negligible probability.

Internal Security: Internal security includes three parts: Limited Proxy Secu-
rity, Delegatee Security, Delegator Security.
Limited Proxy Security:

– Random oracle Oh: Identical to that in the external security.
– Verification keys oracle Opk: As the adversary requests the creation

of system users, B first chooses a random number xi ∈ Z∗
q , and then

outputs pki = (gv)xi . At last, B records (pki, xi) in Table Tpk.
– Signature oracle Os: On input (pki, mi).

• If m = m∗, then pki �= pkt, and B chooses a random number r,
and checks whether (gr||1, ∗, ∗, ∗) exists in Table Th. If it exists,
then B reports “failure” and aborts; otherwise, B chooses a ran-
dom number r1, and records (gr||1, gr1 , r1,⊥) into Table Th. At
last, B outputs (H(m∗||0)r, gr, pkr1

i ).
• If m �= m∗, then B performs the same as that in the external

security.
– Re-signature key generation oracleOrk: On input (pki, pkj),B chooses

a random number r ∈ Z∗
q , and checks whether ((gv)xir||2, ∗, ∗, ∗) ex-

ists in Table Th. If it exists, B reports “failure” and aborts; otherwise,
B chooses a random number r1 ∈ Z∗

q , records ((gv)xir||2, gr1, r1, xir)
in Table Th, and outputs (r, (gv)xir, (g1/v)r1/xj ).
Note that pki = (gv)xi and pkj = (gv)xj .

With the similar analysis in the external security, B solves the eCDH
problem with a non-negligible probability.

Delegatee Security: Compared to the limited proxy, B needs to change
verification keys oracle Opk, signature oracle Os, and re-signature key
generation oracle Ork as follows.
– Verification keys oracle Opk: For the delegatee, set the verification

key as (gv)x0 , and for all other users gxi , where xi’s (i = 0, · · · , n)
are random numbers from Z∗

q .
– Signature oracle Os: On input (pk0, mi), B performs as the same as

that in Os with input in (pkt, mi) in the external security, where pk0
is treated as pkt.
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– Re-signature key generation oracle Ork: On input (pki, pkj), where
pkj �= pk0, B performs as the same as that in the real execution since
it knows xj such that pkj = gxj .

With the similar analysis in the external security, B solves the eCDH
problem with a non-negligible probability.

Delegator Security: Compared to the limited proxy, B needs to change
verification keys oracle Opk, signature oracle Os, re-signature key gener-
ation oracle Oreky as follows.
– Verification keys oracle Opk: For the delegator, set the verification

key as (gv)x0 , and for all other users gxi , where xi’s (i = 0, · · · , n)
are random numbers from Z∗

q .
– Signature oracle Os: On input (pk0, mi), B performs as the same as

that in Os with input in (pkt, mi) in the external security, where pk0
is treated as pkt.

– Re-signature key generation oracle Ork: On input (pki, pkj),
• if pkj �= pk0, then B gets xj from Table Tpk, and uses xj to run
Rekey(pki, pkj). At last, B outputs the result from ReKey.

• if pkj = pk0, then B chooses a random number r ∈ Z∗
q , and

checks whether (pkr
i ||2, ∗, ∗, ∗) exists in Table Th. If it exists,

B reports “failure” and aborts; otherwise, B chooses a random
number r1 ∈ Z∗

q , records (pkr
i ||2, gr1, r1,⊥) in Table Th, and

outputs (r, pkr
i , (g1/v)r1/x0).

With the similar analysis in the external security, B solves the eCDH
problem with a non-negligible probability. Note that in this case, the
forgery σ∗ is an owner-type signature.

Hence, we get this theorem. �	

3.6 An Attack on Scheme Sus

Now, we consider the following case: Alice → Proxy → Bob. First, Alice can
produce an owner-type signature on m: σa = (H(m||0)r, gr, H(gr||1)a), where
she knows the value of r. Then Proxy can transform σa into Bob’s signature σb =
(H(m||0)r, gr, (H(gr||1)a)rk

(1)
a→b , rk

(2)
a→b, rk

(3)
a→b). In this case, Alice can generate

signatures on any message, simply by changing m to m′, since she knows the
value of r. This shows that scheme Sus is insecure. Hence, the AH model is not
suitable for UPRS-prk. Note that most of the existing unidirectional proxy re-
signature schemes are UPRS-prk schemes; hence, it is desired to propose a new
security model to solve this problem.

Remark 3. The scheme Sus cannot be considered as a unidirectional PRS scheme
with public re-signature key, since it holds external security which classifies the
unidirectional PRS schemes with private re-signature key or not [5,12].

Remark 4. The main reason why scheme Sus is insecure is that the re-sign al-
gorithm does not affect the value containing the message m in the owner-type
signature. However, the schemes in [5,12] do not have this flaw.
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4 The Proposed Security Model for UPRS-prk

In this section, we propose a new security model for UPRS-prk, which covers the
attack in Section 3.6. Due to its simplicity, it is easy to verify its completeness.

Before giving our security model, we would first define several terms.

1. If user A delegates his signing rights to user B via a proxy P , then both user
A and user B are said to be in a delegation chain, denoted as (B,A). User B
is called user A’s delegation predecessor. The combination of the proxy and
a user, either the delegatee B or the delegator A, is called a delegation pair.
Therefore user A and proxy P is a delegation pair. So is user B and proxy P .

2. If one of parties in a delegation pair is corrupted, then the delegation pair is
corrupted ; otherwise, it is uncorrupted.

3. A user can be treated as the smallest delegation chain.
4. If two users A and B are in a delegation chain and B is A’s delegation

predecessor, then B’s signature can be transformed by a proxy or proxies
into A’s signature.

5. A delegation chain is its own subchain.
6. (Only for multi-use UPRS-prk.) If user A delegates his signing rights to user

B via a proxy P , and user B delegates his signing rights to user C via a proxy
P ′, then user A and user C are said to be in a delegation chain too. User C
is also called user A’s delegation predecessor. In this case, users A, B, C are
in a delegation chain (C,B,A). The delegation chains (B,A) and (C,B) are
delegation subchains of the delegation chain (C,B,A). The delegation chain
(C,B,A) can be extended if C delegates his signing rights to another user
via another proxy.

Existential Unforgeability for UPRS-prk. The existential unforgeability for
UPRS-prk is defined by the following adaptively chosen-message attack game
played between a challenger C and an adversary A. Note that we work in a
static mode, that is, before the game starts, the adversary should decide which
users and proxies are corrupted, and all the verification keys in the security
model are generated by the challenger.

Queries: The adversary adaptively makes a number of different queries to the
challenger. Each query can be one of the following.
– Verification Key query Opk. On input an index i ∈ {1, · · · , n} by the

adversary3, the challenger responds by running KeyGen(1k) to get a key
pair (pki, ski), and forwards the verification key pki to the adversary. At
last, the challenger records (pki, ski) in the list TK .

– Signing Key query Osk. On input a verification key pki by the adversary,
the challenger responds ski which is the associated value with pki in the
list TK , if pki is corrupted; otherwise, the challenger responds with ⊥.

3 We assume that the adversary never inputs number twice. If so, the challenger simply
returns the previous value.
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– Re-signature Key query Ork. On input two verification keys (pki, pkj)
(pki�=pkj) by the adversary, the challenger responds with ReKey(pki, pkj ,
skj), where ski is the signing key of pki.

– Signature query Os. On input a verification key pki, and a message mi

by the adversary, the challenger responds with Sign(ski, m, 1), where ski

is the signing key of pki.
– Re-Signature query Ors. On input two verification keys pki, pkj (pki �=

pkj), a message mi, and a signature σi at level � by the adversary,
the challenger responds with ReSign(ReKey(pki, pkj , skj), pki, mi, σi, �),
where ski is the signing key of pki.

Forgery: The adversary output a message m∗, a verification key pk∗, and a
signature σ∗ at level �∗. The adversary wins if the following hold true:
1. Verify(pk∗, m∗, σ∗, �∗) = 1.
2. pk∗ is uncorrupted.
3. The adversary has not made a signature query on (pk∗, m∗).
4. The adversary has not made a signature query on (pk′, m∗), where pk′

is uncorrupted, and there exists such a delegation subchain from pk′ to
pk∗ that does not contain any uncorrupted delegation pair;

5. The adversary has not made a re-signature key query on (pki, pkj), which
satisfies all the following conditions:
– pki is corrupted,
– pkj is uncorrupted,
– there exists such a delegation subchain from pkj to pk∗ that does

not contain any uncorrupted delegation pair.
6. The adversary has not made a re-signature query on (pki, pkj , m

∗, σi, ∗),
where pkj is uncorrupted, and there exists such a delegation subchain
from pk′ to pk∗ that does not contain any uncorrupted delegation pair.

We define AdvA to be the probability that adversary A wins in the above game.

Definition 3. A UPRS-prk scheme is existentially unforgeable with respect to
adaptive chosen message attacks if for all p.p.t. adversaries A, AdvA is negli-
gible in k.

Remark 5 (Winning Requirements). The first requirement guarantees that (pk∗,
m∗, σ∗, �∗) is a valid signature. The second requirement guarantees that the
adversary cannot trivially obtained a valid owner-type signature by obtaining the
signing key. The third requirement guarantees that the adversary cannot trivially
obtained a valid owner-type signature by the signature oracle. The fourth and
fifth requirements guarantee that the adversary cannot trivially obtained a valid
non-owner-type signature by the re-signature key oracle and re-signature oracle,
respectively.

Remark 6 (Chosen Key Model). Following the spirit in [12], we can easily extend
our security model into the chosen key model [6], where the central authority
does not need to verify that the owner of one verification key indeed knows the
corresponding signing key. In particular, the challenger is no longer responsible
for replying the query that needs the signing key of the corrupted verification
key to answer.
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Remark 7 (Relationship between the AH Model and the Proposed Model). It is
clear to see that scheme Sus cannot be proven secure in the proposed model due
to the attack in Section 3. Hence, the proposed model is not weaker than the
AH model if the treated PRS scheme is a UPRS-prk scheme. However, these two
models are incomparable if the treated PRS scheme is not a UPRS-prk scheme,
since our proposed model only deals with UPRS-prk.

Remark 8 (Existential Unforgeability for Existing UPRS-prk Schemes). It is in-
teresting that the private re-signature key, unidirectional proxy re-signature
schemes in [5,12], which are proven secure in the AH model, are still proven
secure in our security model. The main reason is that unlike scheme Sus, the re-
sign algorithms of these schemes affect the value including m in the owner-type
signature. Due to the limited space, we will give these proofs in the full version.

5 Conclusions

In this paper, we pointed out that the AH model proposed in [5] cannot guarantee
all desired security requirements for all kinds of unidirectional proxy re-signatures.
To show this, we artificially constructed a single-use, private re-signature key, uni-
directional proxy re-signature scheme Sus which is insecure but proven secure in
the AH model. We then proposed a new security model to address the deficiency
of the AH model. Fortunately, the private re-signature key, unidirectional proxy
re-signature schemes in [5,12] proven secure in the AH model are still proven se-
cure in the new model. Hence, we can still use them in the applications where it
demands private re-signature key, unidirectional proxy re-signature.
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Abstract. We describe implementations for solving the discrete loga-
rithm problem in the class group of an imaginary quadratic field and
in the infrastructure of a real quadratic field. The algorithms used in-
corporate improvements over previously-used algorithms, and extensive
numerical results are presented demonstrating their efficiency. This data
is used as the basis for extrapolations, used to provide recommendations
for parameter sizes providing approximately the same level of security
as block ciphers with 80, 112, 128, 192, and 256-bit symmetric keys.

1 Introduction

Quadratic fields were proposed as a setting for public-key cryptosystems in the
late 1980s by Buchmann and Williams [7,8]. There are two types of quadratic
fields, imaginary and real. In the imaginary case, cryptosystems are based on
arithmetic in the ideal class group (a finite abelian group), and the discrete
logarithm problem is the computational problem on which the security is based.
In the real case, the so-called infrastructure is used instead, and the security
is based on the analogue of the discrete logarithm problem in this structure,
namely the principal ideal problem.

Although neither of these problems is resistant to quantum computers, cryptog-
raphy in quadratic fields is nevertheless an interesting alternative to more widely-
used settings. Both discrete logarithm problems can be solved in subexponential
time using index calculus algorithms, but with asymptotically slower complexity
than the state-of-the art algorithms for integer factorization and computing dis-
crete logarithms in finite fields. In addition, the only known relationship to the
quadratic field discrete logarithm problems from other computational problems
used in cryptography is that integer factorization reduces to both of the quadratic
field problems. Thus, both of these are at least as hard as factoring, and the lack
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of known relationships to other computational problems implies that the break-
ing of other cryptosystems, such as those based on elliptic or hyperelliptic curves,
will not necessarily break those set in quadratic fields. Examining the security of
quadratic field based cryptosystems is therefore of interest.

The fastest algorithms for solving discrete logarithm problem in quadratic
fields are based on an improved version of Buchmann’s index-calculus algorithm
due to Jacobson [17]. The algorithms include a number of practical enhancements
to the original algorithm of Buchmann [5], including the use of self-initialized
sieving to generate relations, a single large prime variant, and practice-oriented
algorithms for the required linear algebra. These algorithms enabled the compu-
tation of a discrete logarithm in the class group of an imaginary quadratic field
with 90 decimal digit discriminant [15], and the solution of the principal ideal
problem for a real quadratic field with 65 decimal digit discriminant [18].

Since this work, a number of further improvements have been proposed. Bi-
asse [3] presented practical improvements to the corresponding algorithm for
imaginary quadratic fields, including a double large prime variant and improved
algorithms for the required linear algebra. The resulting algorithm was indeed
faster then the previous state-of-the-art and enabled the computation of the ideal
class group of an imaginary quadratic field with 110 decimal digit discriminant.
These improvements were adapted to the case of real quadratic fields by Biasse
and Jacobson [4], along with the incorporation of a batch smoothness test of
Bernstein [2], resulting in similar speed-ups in that case.

In this paper, we adapt the improvements of Biasse and Jacobson to the
computation of discrete logarithms in the class group of an imaginary quadratic
field and the principal ideal problem in the infrastructure of a real quadratic field.
We use versions of the algorithms that rely on easier linear algebra problems than
those described in [17]. In the imaginary case, this idea is due to Vollmer [26]; our
work represents the first implementation of his method. Our data obtained shows
that our algorithms are indeed faster than previous methods. We use our data
to estimate parameter sizes for quadratic field cryptosystems that offer security
equivalent to NIST’s five recommended security levels [25]. In the imaginary case,
these recommendations update previous results of Hamdy and Möller [14], and
in the real case this is the first time such recommendations have been provided.

The paper is organized as follows. In the next section, we briefly recall the
required background of ideal arithmetic in quadratic fields, and give an overview
of the index-calculus algorithms for solving the two discrete logarithms in Sec-
tion 3. Our numerical results are described in Section 4, followed by the security
parameter estimates in Section 5.

2 Arithmetic in Quadratic Fields

We begin with a brief overview of arithmetic in quadratic fields. For more details
on the theory, algorithms, and cryptographic applications of quadratic fields,
see [20].

Let K = Q(
√

Δ) be the quadratic field of discriminant Δ, where Δ is a non-
zero integer congruent to 0 or 1 modulo 4 with Δ or Δ/4 square-free. The integral
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closure of Z in K, called the maximal order, is denoted by OΔ. The ideals of
OΔ are the main objects of interest in terms of cryptographic applications. An
ideal can be represented by the two dimensional Z-module

a = s

[
aZ +

b +
√

Δ

2
Z

]
,

where a, b, s ∈ Z and 4a | b2 − Δ. The integers a and s are unique, and b is
defined modulo 2a. The ideal a is said to be primitive if s = 1. The norm of a is
given by N (a) = as2.

Ideals can be multiplied using Gauss’ composition formulas for integral binary
quadratic forms. Ideal norm respects this operation. The prime ideals of OΔ have
the form pZ+(bp +

√
Δ)/2Z where p is a prime that is split or ramified in K, i.e.,

the Kronecker symbol (Δ/p) �= −1. As OΔ is a Dedekind domain, every ideal
can be factored uniquely as a product of prime ideals. To factor a, it suffices
to factor N (a) and, for each prime p dividing the norm, determine whether the
prime ideal p or p−1 divides a according to whether b is congruent to bp or −bp

modulo 2p.
Two ideals a, b are said to be equivalent, denoted by a ∼ b, if there exist

α, β ∈ OΔ such that (α)a = (β)b, where (α) denotes the principal ideal generated
by α. This is in fact an equivalence relation, and the set of equivalence classes
forms a finite abelian group called the class group, denoted by ClΔ. Its order is
called the class number, and is denoted by hΔ.

Arithmetic in the class group is performed on reduced ideal representatives
of the equivalence classes. An ideal a is reduced if it is primitive and N (a) is
a minimum in a. Reduced ideals have the property that a, b <

√
|Δ|, yielding

reasonably small representatives of each group element. The group operation
then consists of multiplying two reduced ideals and computing a reduced ideal
equivalent to the product. This operation is efficient and can be performed in
O(log2 |Δ|) bit operations.

In the case of imaginary quadratic fields, we have hΔ ≈
√
|Δ|, and that

every element in ClΔ contains exactly one reduced ideal. Thus, the ideal class
group can be used as the basis of most public-key cryptosystems that require
arithmetic in a finite abelian group. The only wrinkle is that computing the class
number hΔ seems to be as hard as solving the discrete logarithm problem, so
only cryptosystems for which the group order is not known can be used.

In real quadratic fields, the class group tends to be small; in fact, a conjecture
of Gauss predicts that hΔ = 1 infinitely often, and the Cohen-Lenstra heuristics
[11] predict that this happens about 75% of the time for prime discriminants.
Thus, the discrete logarithm problem in the class group is not in general suitable
for cryptographic use.

Another consequence of small class groups in the real case is that there are no
longer unique reduced ideal representatives in each equivalence class. Instead,
we have that hΔRΔ ≈

√
Δ, where the regulator RΔ roughly approximates how

many reduced ideals are in each equivalence class. Thus, since hΔ is frequently
small, there are roughly

√
Δ equivalent reduced ideals in each equivalence class.
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The infrastructure, namely the set of reduced principal ideals, is used for cryp-
tographic purposes instead of the class group. Although this structure is not a
finite abelian group, the analogue of exponentiation (computing a reduced prin-
cipal ideal (α) with log α as close to a given number as possible) is efficient and
can be used as a one-way problem suitable for public-key cryptography. The
inverse of this problem, computing an approximation of the unknown log α from
a reduced principal ideal given in Z-basis representation, is called the principal
ideal problem or infrastructure discrete logarithm problem, and is believed to be
of similar difficulty to the discrete logarithm problem in the class group of an
imaginary quadratic field.

3 Solving the Discrete Logarithm Problems

The fastest algorithms in practice for computing discrete logarithms in the class
group and infrastructure use the index-calculus framework. Like other index-
calculus algorithms, these algorithms rely on finding certain smooth quantities,
those whose prime divisors are all small in some sense. In the case of quadratic
fields, one searches for smooth principal ideals for which all prime ideal divisors
have norm less than a given bound B. The set of prime ideals p1, . . . , pn with
N (pi) ≤ B is called the factor base, denoted by B.

A principal ideal (α) = pe1
1 · · · pen

n with α ∈ K that factors completely over
the factor base yields the relation (e1, . . . , en, log |α|). In the imaginary case, the
log |α| coefficients are not required and are ignored. The key to the index-calculus
approach is the fact, proved by Buchmann [5], that the set of all relations forms
a sublattice Λ ⊂ Zn × R of determinant hΔRΔ as long as the prime ideals in
the factor base generate ClΔ. This follows, in part, due to the fact that L, the
integer component of Λ, is the kernel of the homomorphism φ : Zn �→ ClΔ given
by pe1

1 · · · pen
n for (e1, . . . , en) ∈ Zn. The homomorphism theorem then implies

that Zn/L ∼= ClΔ. In the imaginary case, where the log |α| terms are omitted, the
relation lattice consists only of the integer part, and the corresponding results
were proved by Hafner and McCurley [12].

The main idea behind the algorithms described in [17] for solving the class
group and infrastructure discrete logarithm problems is to find random relations
until they generate the entire relation lattice Λ. Suppose A is a matrix whose
rows contain the integer coordinates of the relations, and v is a vector containing
the real parts. To check whether the relations generate Λ, we begin by computing
the Hermite normal form of A and then calculating its determinant, giving us a
multiple h of the class number hΔ. We also compute a multiple of the regulator
RΔ. Using the analytic class number formula and Bach’s L(1, χ)-approximation
method [1], we construct bounds such that hΔRΔ itself is the only integer mul-
tiple of the product of the class number and regulator satisfying h∗ < hΔ < 2h∗;
if hR satisfies these bounds, then h and R are the correct class number and
regulator and the set of relations given in A generates Λ.

A multiple R of the regulator RΔ can be computed either from a basis of the
kernel of the row-space of A (as in [17]) or by randomly sampling from the kernel
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as described by Vollmer [27]. Every kernel vector x corresponds to a multiple of
the regulator via x ·v = mRΔ. Given v and a set of kernel vectors, an algorithm
of Maurer [24, Sec 12.1] is used to compute the “real GCD” of the regulator
multiples with guaranteed numerical accuracy, where the real GCD of m1RΔ

and m2RΔ is defined to be gcd(m1, m2)RΔ.
To solve the discrete logarithm problem in ClΔ, we compute the structure

of ClΔ, i.e., integers m1, . . . , mk with mi+1 | mi for i = 1, . . . , k − 1 such that
ClΔ ∼= Z/m1Z×· · ·×Z/mkZ, and an explicit isomorphism from Zn to Z/m1Z×
· · · × Z/mk. Then, to compute x such that gx ∼ a, we find ideals equivalent
to g and a that factor over the factor base and maps these vectors in Zn to
Z/m1Z×· · ·×Z/mk, where the discrete logarithm problem can be solved easily.

To solve the infrastructure discrete logarithm problem for a, we find an ideal
equivalent to a that factors over the factor base. Suppose the factorization is
given by v ∈ Zn. Then, since L is the kernel of φ, if a is principal, v must be
a linear combination of the elements of L. This can be determined by solving
xA = v, where as before the rows of A are the vectors in L. Furthermore, we
have log α = x · v (mod RΔ) is a solution to the infrastructure discrete loga-
rithm problem. The approximation of log α is computed to guaranteed numerical
accuracy using another algorithm of Maurer [24, Sec 5.5].

If it is necessary to verify the solvability of the problem instance, then one must
verify that the relations generate all of Λ, for example, as described above. The
best methods for this certification are conditional on the Generalized Riemann
Hypothesis, both for their expected running time and their correctness. How-
ever, in a cryptographic application, it can safely be assumed that the problem
instance does have a solution (for example, if it comes from the Diffie-Hellman
key exchange protocol), and simplifications are possible. In particular, the cor-
rectness of the computed solution can be determined without certifying that the
relations generate Λ, for example, by verifying that gx = a. As a result, the rel-
atively expensive linear algebra required (computing Hermite normal form and
kernel of the row space) can be replaced by linear system solving.

In the imaginary case, if the discrete logarithm is known to exist, one can use
an algorithm due to Vollmer [26,28]. Instead of computing the structure of ClΔ,
one finds ideals equivalent to g and a that factor over the factor base. Then,
combining these factorizations with the rest of the relations and solving a linear
system yields a solution of the discrete logarithm problem. If the linear system
cannot be solved, then the relations do not generate Λ, and the process is simply
repeated after generating some additional relations. The expected asymptotic
complexity of this method, under reasonable assumptions about the generation
of relations, is O(L|Δ|[1/2, 3

√
2/4 + o(1)]) [28,6], where

LN [e, c] = exp
(
c (log N)e(log log N)1−e

)
for e, c constants and 0 ≤ e ≤ 1. In practice, all the improvements to relation gen-
eration and simplifying the relation matrix described in [3] can be applied. When
using practical versions for generating relations, such as sieving as described in
[17], it is conjectured that the algorithm has complexity O(L|Δ|[1/2, 1 + o(1)]).
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In the real case, we also do not need to compute the Hermite normal form, as
only a multiple of RΔ suffices. The consequence of not certifying that we have
the true regulator is that the solutions obtained for the infrastructure discrete
logarithm problem may not be minimal. However, for cryptographic purposes
this is sufficient, as these values can still be used to break the corresponding
protocols in the same way that a non-minimal solution to the discrete loga-
rithm problem suffices to break group-based protocols. Thus, we use Vollmer’s
approach [27] based on randomly sampling from the kernel of A. This method
computes a multiple that is with high probability equal to the regulator in time
O(L|Δ|[1/2, 3

√
2/4+ o(1)]) by computing the multiple corresponding to random

elements in the kernel of the row space of A. These random elements can also be
found by linear system solving. The resulting algorithm has the same complexity
as that in the imaginary case. In practice, all the improvements described in [4]
can be applied. When these are used, including sieving as described in [17], we
also conjecture that the algorithm has complexity O(L|Δ|[1/2, 1 + o(1)]).

4 Implementation and Numerical Results

Our implementation takes advantage of the latest practical improvements in
ideal class group computation and regulator computation for quadratic number
fields, described in detail in [3,4]. In the following, we give a brief outline of the
methods we used for the experiments described in this paper.

To speed up the relation collection phase, we combined the double large prime
variation with the self-initialized quadratic sieve strategy of [17], as descried in
[3]. This results in a considerable speed-up in the time required for finding a
relation, at the cost of a growth of the dimensions of the relation matrix. We
also used Bernstein’s batch smoothness test [2] to enhance the relation collection
phase as described in [4], by simultaneously testing residues produced by the
sieve for smoothness.

The algorithms involved in the linear algebra phase are highly sensitive to the
dimensions of the relation matrix. As the double large prime variation induces
significant growth in the dimensions of the relation matrix, one needs to perform
Gaussian elimination to reduce the number of columns in order to make the
linear algebra phase feasible. We used a graph-based elimination strategy first
described by Cavallar [9] for factorization, and then adapted by Biasse [3] to the
context of quadratic fields. At the end of the process, we test if the resulting
matrix Ared has full rank by reducing it modulo a word-sized prime. If not, we
collect more relation and repeat the algorithm.

For solving the discrete logarithm problem in the imaginary case, we imple-
mented the algorithm due to Vollmer [26,28] . Given two ideals a and g such
that gx ∼ a for some integer x, we find two extra relations (e1, . . . , en, 1, 0) and
(f1, . . . , fn, 0, 1) such that pe1

1 · · · pen
n g ∼ (1) and pf1

1 · · · pfn
n a−1 ∼ (1) over the

extended factor base B ∪
{
g, a−1

}
. The extra relations are obtained by multi-

plying a−1 and g by random power products of primes in B and sieving with
the resulting ideal to find an equivalent ideal that is smooth over B. Once these
relations have been found, we construct the matrix



Security Estimates for Quadratic Field Based Cryptosystems 239

and solve the system xA′ = (0, . . . , 0, 1). The last coordinate of x necessar-
ily equals the discrete logarithm x. We used certSolveRedLong from the IML
library [10] to solve these linear systems.

As the impact of Vollmer’s and Bernstein’s algorithms on the overall time
for class group and discrete logarithm computation in the imaginary case had
not been studied, we provide numerical data in Table 1 for discriminants of size
between 140 and 220 bits. The timings, given in seconds, are averages of three
different random prime discriminants, obtained with 2.4 GHz Opterons with
8GB or memory. We denote by “DL” the discrete logarithm computation using
Vollmer’s method and by “CL” the class group computation. “CL Batch” and
“DL Batch” denote the times obtained when also using Bernstein’s algorithm.
We list the optimal factor base size for each algorithm and discriminant size
(obtained via additional numerical experiments), the time for each of the main
parts of the algorithm, and the total time. In all cases we allowed two large primes
and took enough relations to ensure that Ared have full rank. Our results show
that enhancing relation generation with Bernstein’s algorithm is beneficial in all
cases. In addition, using Vollmer’s algorithm for computing discrete logarithms
is faster than the approach of [17] that also requires the class group.

To solve the infrastructure discrete logarithm problem, we first need to com-
pute an approximation of the regulator. For this purpose, we used an improved
version of Vollmer’s system solving based algorithm [27] described by Biasse
and Jacobson [4]. In order to find elements of the kernel, the algorithm creates
extra relations ri, 0 ≤ i ≤ k for some small integer k (in our experiments, we
always have k ≤ 10). Then, we solve the k linear systems XiA = ri using the
function certSolveRedLong from the IML library [10]. We augment the matrix
A by adding the ri as extra rows, and augment the vectors Xi with k − 1 zero
coefficients and a −1 coefficient at index n + i, yielding

The X ′
i are kernel vectors of A′, which can be used along with the vector v

containing the real parts of the relations, to compute a multiple of the regulator
with Maurer’s algorithm [24, Sec 12.1]. As shown in Vollmer [27], this multiple is
equal to the regulator with high probability. In [4], it is shown that this method
is faster than the one requiring a kernel basis because it only requires the solution
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Table 1. Comparison between class group computation and Vollmer Algorithm

Size Strategy |B| Sieving Elimination Linear algebra Total

140

CL 200 2.66 0.63 1.79 5.08
CL Batch 200 1.93 0.65 1.78 4.36

DL 200 2.57 0.44 0.8 3.81
DL batch 200 1.92 0.41 0.76 3.09

160

CL 300 11.77 1.04 8.20 21.01
CL Batch 300 9.91 0.87 8.19 18.97

DL 350 10.17 0.73 2.75 13.65
DL batch 400 6.80 0.96 3.05 10.81

180

CL 400 17.47 0.98 12.83 31.28
CL Batch 400 14.56 0.97 12.9 28.43

DL 500 15.00 1.40 4.93 21.33
DL batch 500 11.35 1.34 4.46 17.15

200

CL 800 158.27 7.82 81.84 247.93
CL Batch 800 133.78 7.82 81.58 223.18

DL 1000 126.61 9.9 21.45 157.96
DL batch 1100 85.00 11.21 26.85 123.06

220

CL 1500 619.99 20.99 457.45 1098.43
CL Batch 1500 529.59 19.56 447.29 996.44

DL 1700 567.56 27.77 86.38 681.71
DL batch 1600 540.37 24.23 73.76 638.36

to a few linear systems, and it can be adapted in such a way that the linear
system involves Ared.

Our algorithm to solve the infrastructure discrete logarithm problem also
makes use of the system solving algorithm. The input ideal a is first decomposed
over the factor base, as in the imaginary case, yielding the factorization a =
(γ)p1

e1 · · · pn
en . Then, we solve the system xA = (e1, . . . , en) and compute a

numerical approximation to guaranteed precision of log |α| modulo our regulator
multiple using Maurer’s algorithm [24, Sec 5.5] from γ, the coefficients of x, and
the real parts of the relation stored in v.

The results of our experiments for the imaginary case are given in Table 2,
and for the real case in Table 3. They were obtained on 2.4 GHz Xeon with
2GB of memory. For each bit length of Δ, denoted by “size(Δ),” we list the
average time in seconds required to solve an instance of the appropriate discrete
logarithm problem (tΔ) and standard deviation (std). In the imaginary case, for
each discriminant size less than 220 bits, 14 instances of the discrete logarithm
problem were solved. For size 230 and 256 we solved 10, and for size 280 and 300
we solved 5 examples. In the real case, 10 instances were solved for each size up
to 256, 6 for size 280, and 4 for size 300.
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Table 2. Average run times for the discrete logarithm problem in ClΔ, Δ < 0

size(Δ) tΔ (sec) std L|Δ|[1/2,
√

2]/tΔ L|Δ|[1/2, 1]/tΔ

140 7.89 2.33 6.44 × 108 1.79 × 108

142 8.80 1.90 7.01 × 108 1.93 × 108

144 9.91 3.13 7.55 × 108 2.06 × 108

146 10.23 1.69 8.86 × 108 2.39 × 108

148 11.80 3.45 9.29 × 108 2.48 × 108

150 12.88 2.66 10.28 × 108 2.71 × 108

152 14.42 3.38 11.09 × 108 2.89 × 108

154 17.64 5.61 10.93 × 108 2.82 × 108

156 22.06 5.57 10.53 × 108 2.69 × 108

158 28.74 12.11 9.73 × 108 2.46 × 108

160 27.12 8.77 12.39 × 108 3.10 × 108

162 32.72 15.49 12.34 × 108 3.05 × 108

164 31.08 6.85 15.58 × 108 3.82 × 108

166 41.93 14.65 13.85 × 108 3.36 × 108

168 51.92 16.51 13.39 × 108 3.21 × 108

170 59.77 15.42 13.92 × 108 3.30 × 108

172 68.39 17.79 14.54 × 108 3.42 × 108

174 99.20 62.61 11.97 × 108 2.78 × 108

176 124.86 80.29 11.35 × 108 2.61 × 108

178 140.50 55.41 12.03 × 108 2.74 × 108

180 202.42 145.98 9.94 × 108 2.24 × 108

182 166.33 63.91 14.40 × 108 3.22 × 108

184 150.76 58.37 18.90 × 108 4.18 × 108

186 198.72 63.23 17.04 × 108 3.73 × 108

188 225.90 94.94 17.79 × 108 3.86 × 108

190 277.67 234.93 17.17 × 108 3.69 × 108

192 348.88 134.36 16.20 × 108 3.45 × 108

194 395.54 192.26 16.93 × 108 3.57 × 108

196 547.33 272.83 14.48 × 108 3.02 × 108

198 525.94 153.63 17.83 × 108 3.68 × 108

200 565.43 182.75 1.96 × 109 4.01 × 108

202 561.36 202.80 2.33 × 109 4.73 × 108

204 535.29 205.68 2.89 × 109 5.80 × 108

206 776.64 243.35 2.35 × 109 4.67 × 108

208 677.43 200.08 3.17 × 109 6.25 × 108

210 1050.64 501.31 2.41 × 109 4.70 × 108

212 1189.71 410.98 2.50 × 109 4.84 × 108

214 1104.83 308.57 3.17 × 109 6.07 × 108

216 1417.64 352.27 2.90 × 109 5.51 × 108

218 2185.80 798.95 2.21 × 109 4.16 × 108

220 2559.79 1255.94 2.22 × 109 4.13 × 108

230 3424.40 1255.94 3.66 × 109 6.52 × 108

256 22992.70 13062.14 4.00 × 109 6.36 × 108

280 88031.08 34148.54 6.09 × 109 8.76 × 108

300 702142.20 334566.51 3.16 × 109 4.19 × 108
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Table 3. Average run times for the infrastructure discrete logarithm problem

size(Δ) tΔ (sec) std L|Δ|[1/2,
√

2]/tΔ L|Δ|[1/2, 1]/tΔ

140 11.95 3.13 4.25 × 108 1.18 × 108

142 12.47 2.06 4.95 × 108 1.36 × 108

144 15.95 5.79 4.69 × 108 1.28 × 108

146 14.61 2.94 6.20 × 108 1.67 × 108

148 17.05 3.46 6.43 × 108 1.71 × 108

150 21.65 4.55 6.12 × 108 1.61 × 108

152 25.65 7.15 6.23 × 108 1.63 × 108

154 29.01 6.97 6.65 × 108 1.72 × 108

156 27.52 4.79 8.44 × 108 2.16 × 108

158 33.59 8.80 8.32 × 108 2.10 × 108

160 36.27 12.28 9.27 × 108 2.32 × 108

162 43.55 10.73 9.27 × 108 2.29 × 108

164 49.37 11.76 9.81 × 108 2.40 × 108

166 59.73 17.18 9.72 × 108 2.36 × 108

168 73.66 18.56 9.44 × 108 2.26 × 108

170 75.50 19.80 1.10 × 109 2.62 × 108

172 101.00 20.84 9.85 × 108 2.31 × 108

174 94.80 38.87 1.25 × 109 2.91 × 108

176 106.30 23.77 1.33 × 109 3.07 × 108

178 149.70 44.04 1.13 × 109 2.57 × 108

180 132.70 30.25 1.52 × 109 3.42 × 108

182 178.80 25.67 1.34 × 109 2.99 × 108

184 211.40 52.14 1.35 × 109 2.98 × 108

186 258.20 110.95 1.31 × 109 2.87 × 108

188 352.70 94.50 1.14 × 109 2.47 × 108

190 290.90 46.57 1.64 × 109 3.52 × 108

192 316.80 51.75 1.78 × 109 3.80 × 108

194 412.90 71.90 1.62 × 109 3.42 × 108

196 395.40 94.71 2.00 × 109 4.18 × 108

198 492.30 156.69 1.90 × 109 3.94 × 108

200 598.90 187.19 1.85 × 109 3.79 × 108

202 791.40 285.74 1.65 × 109 3.35 × 108

204 888.10 396.85 1.74 × 109 3.49 × 108

206 928.40 311.37 1.96 × 109 3.90 × 108

208 1036.10 260.82 2.07 × 109 4.08 × 108

210 1262.30 415.32 2.00 × 109 3.91 × 108

212 1582.30 377.22 1.88 × 109 3.64 × 108

214 1545.10 432.42 2.27 × 109 4.34 × 108

216 1450.80 453.85 2.84 × 109 5.39 × 108

218 2105.00 650.64 2.30 × 109 4.32 × 108

220 2435.70 802.57 2.33 × 109 4.34 × 108

230 5680.90 1379.94 2.21 × 109 3.93 × 108

256 29394.01 7824.15 3.13 × 109 4.98 × 108

280 80962.80 27721.01 6.62 × 109 9.52 × 108

300 442409.00 237989.12 5.01 × 109 6.64 × 108
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For the extrapolations in the next section, we need to have a good estimate
of the asymptotic running time of the algorithm. As described in the previous
section, the best proven run time is O(L|Δ|[1/2, 3

√
2/4 + o(1)], but as we use

sieving to generate relations, this can likely be reduced to O(L|Δ|[1/2, 1+o(1)]).
To test which running time is most likely to hold for the algorithm we imple-
mented, we list L|Δ|[1/2, 3

√
2/4]/tΔ and L|Δ|[1/2, 1]/tΔ in Table 2 and Table 3.

In both cases, our data supports the hypothesis that the run time of our al-
gorithm is indeed closer to O(L|Δ|[1/2, 1 + o(1)]), with the exception of a few
outliers corresponding to instances where only a few instances of the discrete
logarithm were computed for that size.

5 Security Estimates

General purpose recommendations for securely choosing discriminants for use in
quadratic field cryptography can be found in [14] for the imaginary case and [18]
for the real case. In both cases, it usually suffices to use prime discriminants,
as this forces the class number hΔ to be odd. In the imaginary case, one then
relies on the Cohen-Lenstra heuristics [11] to guarantee that the class number is
not smooth with high probability. In the real case, one uses the Cohen-Lenstra
heuristics to guarantee that the class number is very small (and that the infras-
tructure is therefore large) with high probability.

Our goal is to estimate what bit lengths of appropriately-chosen discriminants,
in both the imaginary and real cases, are required to provide approximately the
same level of security as the RSA moduli recommended by NIST [25]. The five
security levels recommended by NIST correspond to using secure block ciphers
with keys of 80, 112, 128, 192, and 256 bits. The estimates used by NIST indicate
that RSA moduli of size 1024, 2048, 3072, 7680, and 15360 should be used.

To estimate the required sizes of discriminants, we follow the approach of
Hamdy and Möller [14], who provided such estimates for the imaginary case. Our
results update these in the sense that our estimates are based on our improved
algorithms for solving the discrete logarithms in quadratic fields, as well as the
latest data available for factoring large RSA moduli. Our estimates for real
quadratic fields are the first such estimates produced.

Following, Hamdy and Möller, suppose that an algorithm with asymptotic
running time LN [e, c] runs in time t1 on input N1. Then, the running time t2 of
the algorithm on input N2 can be estimated using the equation

LN1 [e, c]
LN2 [e, c]

=
t1
t2

. (1)

We can also use the equation to estimate an input N2 that will cause the algo-
rithm to have running time t2, again given the time t1 for input N1.

The first step is to estimate the time required to factor the RSA numbers of
the sizes recommended by NIST. The best algorithm for factoring large inte-
gers is the generalized number field sieve [22], whose asymptotic running time
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Table 4. Security Parameter Estimates

RSA Δ (imaginary, old) Δ (imaginary) Δ (real) Est. run time (MIPS-years)
768 540 640 634 8.80 × 106

1024 687 798 792 1.07 × 1010

2048 1208 1348 1341 1.25 × 1019

3072 1665 1827 1818 4.74 × 1025

7680 0 3598 3586 1.06 × 1045

15360 0 5971 5957 1.01 × 1065

is heuristically LN [1/3, 3
√

64/9 + o(1)]. To date, the largest RSA number fac-
tored is RSA-768, a 768 bit integer [21]. It is estimated in [21] that the total
computation required 2000 2.2 GHz AMD Opteron years. As our computations
were performed on a different architecture, we follow Hamdy and Möller and use
the MIPS-year measurement to provide an architecture-neutral measurement.
In this case, assuming that a 2.2 GHz AMD Opteron runs at 4400 MIPS, we
estimate that this computation took 8.8× 106 MIPS-years. Using this estimate
in conjunction with (1) yields the estimated running times to factor RSA moduli
of the sizes recommended by NIST given in Table 4. When using this method,
we use N1 = 2768 and N2 = 2b, where b is the bit length of the RSA moduli for
which we compute a run time estimate.

The second step is to estimate the discriminant sizes for which the discrete
logarithm problems require approximately the same running time. The results
in Table 2 and Table 3 suggest that LN [1/2, 1 + o(1)] is a good estimate of the
asymptotic running time for both algorithms. Thus, we use LN [1/2, 1] in (1), as
ignoring the o(1) results in a conservative under-estimate of the actual running
time. For N1 and t1, we take the largest discriminant size in each table for
which at least 10 instances of the discrete logarithm problem were run and the
corresponding running time (in MIPS-years); thus we used 256 in the imaginary
case and 230 in the real case. We take for t2 the target running time in MIPS-
years. To convert the times in seconds from Table 2 and Table 3 to MIPS-years,
we assume that the 2.4 GHz Intel Xeon machine runs at 4800 MIPS. To find the
corresponding discriminant size, we simply find the smallest integer b for which
L2b [1/2, 1] > LN1[1/2, 1]t2/t1.

Our results are listed in Table 4. We list the size in bits of RSA moduli (de-
noted by “RSA”), discriminants of imaginary quadratic fields (denoted by “Δ
(imaginary)”), and real quadratic fields (denoted by “Δ (real”) for which fac-
toring and the quadratic field discrete logarithm problems all have the same
estimated running time. For comparison purposes, we also list the discriminant
sizes recommended in [14], denoted by “Δ (imaginary, old).” Note that these
estimates were based on different equivalent MIPS-years running times, as the
largest factoring effort at the time was RSA-512. In addition, they are based on
an implementation of the imaginary quadratic field discrete logarithm algorithm
from [17], which is slower than the improved version from this paper. Conse-
quently, our security parameter estimates are slightly larger than those from [14].



Security Estimates for Quadratic Field Based Cryptosystems 245

We note also that the recommended discriminant sizes are slightly smaller in the
real case, as the infrastructure discrete logarithm problem requires more time to
solve on average than the discrete logarithm in the imaginary case.

6 Conclusions

It is possible to produce more accurate security parameter estimates by taking
more factors into account as is done, for example, by Lenstra and Verheul [23], as
well as using a more accurate performance measure than MIPS-year. However,
our results nevertheless provide a good rough guideline on the required discrim-
inant sizes that is likely sufficiently accurate in the inexact science of predicting
security levels.

It would also be of interest to conduct a new comparison of the efficiency of
RSA as compared to the cryptosystems based on quadratic fields. Due to the dif-
ferences in the asymptotic complexities of integer factorization and the discrete
logarithm problems in quadratic fields, it is clear that there is a point where
the cryptosystems based on quadratic fields will be faster than RSA. However,
ideal arithmetic is somewhat more complicated than the simple integer arith-
metic required for RSA, and in fact Hamdy’s conclusion [13] was that even with
smaller parameters, cryptography using quadratic fields was not competitive at
the security levels of interest. There have been a number of recent advances in
ideal arithmetic in both the imaginary and real cases (see, for example, [16] and
[19]) that warrant revisiting this issue.
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Abstract. We introduce a “generalized small inverse problem (GSIP)”
and present an algorithm for solving this problem. GSIP is formulated
as finding small solutions of f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C =
0(mod M) for an n-variate polynomial h, non-zero integers C and M .
Our algorithm is based on lattice-based Coppersmith technique. We pro-
vide a strategy for construction of a lattice basis for solving f = 0, which
are systematically transformed from a lattice basis for solving h = 0.
Then, we derive an upper bound such that the target problem can be
solved in polynomial time in log M in an explicit form. Since GSIPs in-
clude some RSA-related problems, our algorithm is applicable to them.
For example, the small key attacks by Boneh and Durfee are re-found
automatically.

Keywords: LLL algorithm, small inverse problem, RSA. lattice-based
cryptanalysis.

1 Introduction

Since the seminal work of Coppersmith [3,4,5], many cryptanalysis have been
proposed by using his technique which is based on LLL algorithm. The first typ-
ical application is a small secret exponent attack on RSA proposed by Boneh and
Durfee [2]. The second is a proof of deterministic polynomial time equivalence
between computing the RSA secret key and factoring [6,16].

In RSA [18], the small secret exponent d is commonly used to speed up the de-
cryption or signature generation. In 1990, Wiener showed that when d ≤ 1

3N1/4,
the RSA moduli N can be factored in polynomial time [20]. Then, in 1999, Boneh
and Durfee [2] improved the Wiener’s bound to d ≤ N0.284. Furthermore, they
proved that N can be factored in polynomial time when d ≤ N0.292. In their at-
tack, lattice reduction algorithms such as LLL algorithm [14] play an important
role. Let us briefly describe their attack. First, they reduce small secret exponent
attack to solving a bivariate modular equation:

x(A + y) = 1 (mod e),

where A is a given integer and the solution (x, y) = (x̄, ȳ) satisfies |x̄| < eδ and
|ȳ| < e1/2. They referred this problem as “small inverse problem.” Then, they
proposed a polynomial time algorithm for solving this problem. They obtained
the condition on δ such that the algorithm outputs the solution. This leads to the

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 248–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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weaker bound: d ≤ N0.284 and the stronger bound: d ≤ N0.292. By extending
their (weaker) algorithm, Durfee and Nguyen showed cryptanalysis on some
variants of RSA with short secret exponent [7]. They proposed an algorithm for
solving trivariate modular equation f(x, y, z) = x(A + y + z) + 1 = 0 (mod e)
with constraint yz = N in their analysis. It is crucial in their algorithm how
to handle the constraint yz = N . To do so, they introduced so-called “Durfee-
Nguyen technique.”

May (and Coron-May) proved that if the RSA secret key d is revealed, the
RSA moduli N can be factored in deterministic polynomial time [6,16]. We
will focus on the Coron-May’s proof [6] rather than May’s original proof [16].
Consider a univariate modular equation: h(y) ≡ A + y = 0 (mod S), where S
is an unknown divisor of a known positive integer U and A is a known positive
integer. They showed a deterministic polynomial time algorithm which solves
the equation for S ≤ U1/2 to prove that (balanced) RSA moduli N can be
factored deterministically when d is revealed. They extended their result to the
unbalanced RSA case [6]. They showed the condition that the bivariate modular
equation: h(y, z) ≡ A + y + z = 0 (mod S) with constraint yz = N , where S
and U are in the same setting as the balanced RSA.

1.1 Our Contribution

In this paper, we introduce “generalized small inverse problem (GSIP)” for an
n + 1-variate equation. Let f be an n + 1-variate polynomial by

f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C

for an n-variate polynomial h and a non-zero integer C. Let M be a posi-
tive integer whose prime factors are unknown. Suppose that the solution of
f = 0 (mod M) satisfies |x̄0| < X0, |x̄1| < X1, . . . , |x̄n| < Xn for fixed positive
integers X0, X1, . . . , Xn. Then, one wants to find the solution: (x0, x1, . . . , xn) =
(x̄0, x̄1, . . . , x̄n). Some cases may have constraints between variables x1, . . . , xn.
When C = 1, the problem can be viewed as follows: given a function
h(x1, x2, . . . , xn), find small elements (x̄1, . . . , x̄n) such that the inverse of
−h(x̄1, x̄2, . . . , x̄n) modulo M is “small”. So, we call this problem as general-
ized small inverse problem. Classical “small inverse problem” [2] corresponds to
n = 1, h(x1) = A + x1 and C = 1, where A is a given integer. GSIP is not
only a natural extension of classical small inverse problem, but also is applicable
to many RSA-related cryptanalysis. In our paper, we are concerned with only
modular equations not integer equations.

Second, we propose a polynomial time algorithm for solving this problem. Our
algorithm is based on Coppersmith’s approach [3] and has the following property
in the lattice basis construction:

1. First, construct a lattice basis for solving h(x1, . . . , xn) = 0 (mod p), where
p is an unknown divisor of known integer N .

2. Then, construct a lattice basis for f(x0, . . . , xn) = 0 ( mod M) by employing
a lattice basis for h.
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We introduce 4 restrictions for a lattice in solving h = 0. Since many methods in
the literature hold these restrictions, they are not too strong restrictions. Then,
we propose a simple but effective compiler which transforms a lattice basis for
h = 0 to that for f = x0h + C = 0 (Compiler). Our compiler works if a lattice
for h = 0 holds the 4 restrictions. It gives a good insight in construction of a
lattice basis for f .

Our compiler is applicable to many kinds of cryptanalysis. For example, we
can re-find Boneh-Durfee’s small secret exponent attack on RSA [2] by using
our compiler and the lattice employed in the proof for deterministic polynomial
time equivalence [6]. That is, our compiler builds a bridge between these two
works. It is the first time to point out this kind of connection as far as we
know. Our compiler is especially effective when one needs to construct a special
type of lattice. Suppose that some variables have constraint, ex. yz = N . In
this case, it is well known that Durfee-Nguyen technique is effective [7]. If one
can construct a good lattice for n-variate equation: h = 0 built Durfee-Nguyen
technique into, one has also a good lattice for n + 1-variate equation: f built
Durfee-Nguyen technique into. In general, the more variables are involved, the
harder the construction of a good lattice is. If one uses our compiler, one just
constructs a lattice basis for h not for f . Hence, one can more easily construct
a good lattice basis for f .

Next, we obtain the upper bound of the solution such that the equation:
f(x0, x1, . . . , xn) = 0 (mod M) is solvable in polynomial time in log M (but not
in n) (Lemma 5 and Theorem 2). That means, letting the solution be (x̄0, . . . , x̄n)
and positive integers X0, . . . , Xn, when |x̄i| < Xi for each i, one can solve the
problem in polynomial time. In deriving Xi, one needs not tedious computation.
In particular, when X1, . . . , Xn are fixed, one can easily obtain the upper bound
of solution X0.

In Boneh-Durfee’s [2] and Durfee-Nguyen’s analyses [7], tedious computations
are needed. Furthermore, their computations are not applicable to the other
kind of attacks. We generalize this kind of calculation to obtain the evaluation
formula, which is easy to use and covers many kind of cryptanalysis including
Boneh-Durfee’s. Hence, we provide another type of “toolkit” for (especially RSA-
related) cryptanalysis from that of Blömer-May [1].

Our Strategies vs. General Strategies for Construction of Lattice
Basis. It is well known that the shape of Newton polytope of a polynomial to
be solved is important. This is suggested by Coppersmith [4] and fully explained
by Blömer and May in the case of bivariate integer equation [1]. For general
polynomials, Jochemsz and May proposed general methods for construction of
optimal lattice basis [11]. Although their method is general and effective, it can-
not handle constrained variables case. Actually, when Durfee-Nguyen technique
is involved, their method could not generate a good lattice. Using our compiler,
Durfee-Nguyen technique is automatically involved in constructing the lattice
for f if it is involved in the lattice for h. Our compiler is especially effective
for specific type of equations and is applicable to many kinds of RSA-related
cryptanalysis.
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1.2 Organization

Section 2 gives preliminaries. In Section 3, we show how to solve the “general-
ized small inverse problems.” First, we introduce 4 restrictions for a lattice in
solving h = 0. Then, we give a compiler which transforms a lattice basis for
h(x1, . . . , xn) = 0 into that for f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C = 0. In
Section 4, we evaluate the volume of lattice for f and derive the condition among
upper bounds of solutions. In Section 5, we argue application of our compiler
to GSIP and give details of an application: the small secret exponent attack
to RSA, which shows the effectiveness of our compiler. Section 6 concludes the
paper. Some of proofs are given in Appendix A. Some examples are given in full
version [13].

2 Preliminaries

2.1 Small Secret Exponent Attack on RSA [2]

Let (N, e) be a public key in RSA cryptosystem, where N = pq is the product
of two distinct primes. For simplicity, we assume that gcd(p − 1, q − 1) = 2. A
secret key d satisfies that ed = 1 mod (p − 1)(q − 1)/2. Hence, there exists an
integer k such that ed + k((N + 1)/2− (p + q)/2) = 1. Writing s = −(p + q)/2
and A = (N + 1)/2, we have k(A + s) = 1 (mod e).

We set f(x, y) = x(A + y) + 1. If one can solve a bivariate modular equation:
f(x, y) = x(A + y) + 1 = 0 (mod e), one has k and s and knows the prime
factors p and q of N . Suppose that the secret key satisfies d ≤ N δ. Further
assume that e ≈ N . To summarize, the secret key will be recovered by finding
the solution (x, y) = (x̄, ȳ) of the equation: x(A + y) = 1 (mod e), where x ≤ eδ

and |y| ≤ e1/2. They referred this as the small inverse problem.
Boneh and Durfee gave an algorithm for solving this problem and obtained the

condition on δ so that the algorithm works in polynomial time. Concretely, they
showed that if d ≤ N0.284, N can be factored in polynomial time. Furthermore,
they improved the bound to d ≤ N0.292.

2.2 LLL Algorithm and Howgrave-Graham’s Lemma

For a vector b, ||b|| denotes the Euclidean norm of b. For a n-variate polyno-
mial h(x1, . . . , xn) =

∑
hj1,...,jnxj1

1 · · ·xjn
n , define the norm of a polynomial as

||h(x1, . . . , xn)|| =
√∑

h2
j1,...,jn

. That is, ||h(x1, . . . , xn)|| denotes the Euclidean
norm of the vector which consists of coefficients of h(x1, . . . , xn).

Let B = {aij} be a w × w′ matrix of integers. The rows of B generate a
lattice L, a collection of vectors closed under addition and subtraction; in fact
the rows forms a basis of L. The lattice L is also represented as follows. Letting
ai = (ai1, ai2, . . . , aiw′), the lattice L spanned by 〈a1, . . . , aw〉 consists of all
integral linear combinations of a1, . . . , aw, that is: L = {

∑w
i=1 niai|ni ∈ ZZ}.

The volume of lattice is defined by vol (L) =
√

det(BtB), where tB is a transposed
matrix of B. In particular, vol (L) = | det(B)| if B is full-rank.

LLL algorithm outputs short vectors in the lattice L.
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Proposition 1 (LLL). Let B = {aij} be a non-singular w×w′ matrix of inte-
gers. The rows of B generates a lattice L. Given B, the LLL algorithm outputs
a reduced basis {b1, . . . , bw} with

||bi|| ≤ 2w(w−1)/(4(w+1−i))(vol (L))1/(w+1−i)

in time polynomial in (w, max log2 |aij |).

The following lemma is used when a modular equation is reduced into integer
equation.

Lemma 1 (Howgrave-Graham [8]). Let ĥ(x1, . . . , xn) ∈ ZZ[x1, . . . , xn] be a
polynomial, which is a sum of at most w′ monomials. Let m and φ be positive
integers and X1, . . . , Xn be some positive integers. Suppose that

1. ĥ(x̄1, . . . , x̄n) = 0 mod φm, where |x̄1| < X1, . . . |x̄n| < Xn and
2. ||ĥ(x1X1, . . . , xnXn)|| < φm/

√
w′.

Then ĥ(x̄1, . . . , x̄n) = 0 holds over integers.

3 How to Solve Generalized Small Inverse Problem

For a polynomial h(x1, . . . , xn), consider the following two problems: (I) Given
N(= pq), find a small solution of h(x1, . . . , xn) = 0(mod p). (II) Given M , find
a small solution of x0h(x1, . . . , xn) + C = 0(mod M). Problem (II) corresponds
to a generalized small inverse problem. We will show a compiler which transforms
a lattice basis for (I) to that for (II).

3.1 Lattice-Based Algorithm for (I)

The problem (I) can be solved by combining the LLL algorithm and Lemma 1
as follows. Let X1, . . . , Xn be positive integers of Lemma 1. Define a polynomial
as h[j1,...,jn,k](x1, . . . , xn) := xj1

1 · · ·xjn
n h(x1, . . . , xn)k for non-negative integers

j1, . . . , jn, k. Let u be a non-negative integer. Using h[j1,...,jn,k], we define a shift-
polynomial

h
(u)
[j1,...,jn,k](x1, . . . , xn) := h[j1,...,jn,k](x1, . . . , xn)Nu−k. (1)

Let a solution of h = 0 (mod p) be (x1, . . . , xn) = (x̄1, . . . , x̄n). It is easy to see
that

h
(u)
[j1,...,jn,k](x̄1, . . . , x̄n) = 0 (mod pu)

for any (j1, . . . , jn, k).
Fix a set H(u) of [j1, . . . , jn, k] for each u. We construct a lattice L

(u)
h spanned

by a set of the coefficient vector of h
(u)
[j1,...,jn,k](x1X1, . . . , xnXn) for [j1, . . . , jn, k]

∈ H(u). Then, we apply the LLL algorithm to this lattice. The LLL algorithm
yields small vectors of this lattice. Finally, we can obtain polynomial ĥ satisfying
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the condition of Lemma 1 from this small vector. How to choose H(u) for each
u depends on h(x1, . . . , xn).

First, we define the set M(h[j1,...,jn,k]) of monomials

M(h[j1,...,jn,k])≡{xi1
1 · · ·xin

n |xi1
1 · · ·xin

n is a monomial of h[j1,...,jn,k](x1, . . . , xn)}.

Next, we define the set M(H(u)) of monomials

M(H(u)) ≡
⋃

[j1,...,jn,k]∈H(u)

M(h[j1,...,jn,k]).

We will introduce 4 restrictions for a lattice in solving h = 0 and consider
only a set H(u) of [j1, . . . , jn, k] for each u which holds 4 restrictions.

Restriction 1. For any positive integer u, there exist two sets A =
{[j1i, . . . , jni]}1≤i≤#A and B = {[j∗1i, . . . , j

∗
ni]}1≤i≤#B such that A ⊆ B and

H(u) is given by

H(u) =
u−1⋃
k=0

{[j1i, . . . , jni, k]}1≤i≤#A ∪ {[j∗1i, . . . , j
∗
ni, u]}1≤i≤#B. (2)

We call (A,B) a generator.
Restriction 2. For any u, L

(u)
h is full rank.

Restriction 3. A generator B is parametrized by some optimizing parameters
t = (t1, . . . , tk). If needed, we use notation: B(t).

Restriction 4. The volume of L
(u)
h does not depend on coefficients of h. That

is, it is given by
vol L

(u)
h = NγU Xγ1

1 Xγ2
2 · · ·Xγn

n . (3)

Let w be the dimension of the lattice. Here, γU , γ1, . . . , γn and w are functions
of u and t. Moreover, each total degree of γU , γ1, . . . , γn and uw is 2. If
needed, we use vol L

(u;t)
h , γU (u; t), γi(u; t) for 1 ≤ i ≤ n.

Lattices derived in many previous methods [6,9,12,17] hold Restrictions 1–4 as
described in Table 1.

Restriction 1 implies that if [j1, . . . , jn, k] ∈ H(u) and k ≥ 1, then
[j1, . . . , jn, k − 1] ∈ H(u−1), which is crucial for our compiler. For convenience,
we use the following notation: for a set A and k ∈ ZZ≥0, a set [A, k] is de-
fined by {[j1, . . . , jn, k]|[j1, . . . , jn] ∈ A}. If this notation is used, we can rewrite
Eq. (2) as

H(u) =
u−1⋃
k=0

[A, k] ∪ [B, u].

Restriction 2 implies that #H(u) = #M(H(u)). The polynomial order of H(u)

and monomial order of M(H(u)) should be adequately defined so as to be linearly
ordered. Let B

(u)
h (A,B) denote a #H(u)×#H(u) square matrix, where each row

of B
(u)
h (A,B) is the coefficient vector of h

(u)
[j1,...,jn,k](x1X1, . . . , xnXn) when (A,B)

is used as a generator. If A and B are clear from the context, we often omit A,B
and simply write B

(u)
h . Since L

(u)
h is full-rank, vol L

(u)
h = | detB

(u)
h |.
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3.2 How to Solve (II)

We show how to solve the problem (II). First, we overview our algorithm and
then focus on Step 1-2.

Input: n+1-variate equation f(x0, x1, . . . , xn) = x0h(x1, . . . , xn)+C = 0 ( mod
M) with small roots

Output: All small roots (x̄0, . . . , x̄n) of f(x0, x1, . . . , xn) = 0 (mod M)
Step1: Construct a lattice for f .

Step1-1: Construct a lattice L
(u)
h for h or choose a generator A and B for

h.
Step1-2: Construct a lattice Lf for f by employing the lattice for L

(u)
h or

A and B.
Step2: Run LLL algorithm for input Lf to obtain n + 1 polynomials

r1, r2, . . . , rn+1 ∈ ZZ[x0, x1, . . . , xn] over the integers, where they are non-
zero integer combination of f[i,j1,...,jn,k](x0X0, x1X1, . . . , xnXn) with small
coefficients.

Step3: Compute a resultant for ri to obtain a univariate integer equation. Then,
solve the equation by using standard technique.

We point out some remarks. Our algorithm cannot always guarantee to output
correct solutions. So, our algorithm is heuristic. We assume the following as same
as [11].

Assumption 1. The resultant computations for polynomials ri yield non-zero
polynomials.

Experiments are needed for specific cases to justify the assumption.
We move on to the discussion of Step 1-2. Letting m be a positive integer, we

define shift-polynomials for f(x0, x1, . . . , xn) as

f[i,j1,...,jn,k](x0, x1, . . . , xn) := xi
0x

j1
1 · · ·xjn

n f(x0, x1, . . . , xn)kMm−k.

Let a solution of f = 0 (mod M) be (x0, . . . , xn) = (x̄0, . . . , x̄n). It is easy to
see that

f[i,j1,...,jn,k](x̄0, . . . , x̄n) = 0 (mod Mm)

for any (i, j1, . . . , jn, k).
Let F be a set of indexes [i, j1, . . . , jn, k]. We construct the lattice Lf spanned

by the coefficient vectors of f[i,j1,...,jn,k](x0X0, . . . , xnXn) with [i, j1, . . . , jn, k] ∈
F . How does one choose a set of indexes F? This is a difficult problem. The choice
of F determines the performance of the algorithm. Indeed, the volume of the
lattice derived by F should be small. Moreover, one must calculate or estimate
the volume of lattice. If F is badly chosen, it might be difficult to calculate (or
even though estimate) its volume. So, one must choose in a clever way the set
F . We overcome this problem by employing a lattice basis for solving h = 0. We
propose the following compiler, which transforms a set of shift-polynomial for
h = 0 into that for f = 0. In explanation, we use a notation: a set [k1,A, k2] is
defined by [k1,A, k2] = {[k1, j1, . . . , jn, k2]|[j1, . . . , jn] ∈ A}.
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Compiler. Fix a positive integer m. By using generators A and B for h = 0,
we construct a set F of shift-polynomials as follows. First, we set

F (u) ≡
u−1⋃
k=0

[u− k,A, k] ∪ [0,B, u].

Then, we set

F ≡
m⋃

u=0

F (u) =
m⋃

u=0

{
u−1⋃
k=0

[u− k,A, k] ∪ [0,B, u]

}
.

F is explicitly given by

F =
m⋃

u=0

{
u−1⋃
k=0

{[u− k, j1i, . . . , jni, k]}1≤i≤#A ∪ {[0, j∗1i, . . . , j
∗
ni, u]}1≤i≤#B

}
.

Obviously, #F (u) = #H(u). If we define polynomial and monomial orders as
follows, the polynomial set F and the monomial order are linearly ordered.

monomial order: We define ≺ as xu
0xj1

1 · · ·xjn
n ≺ xu′

0 x
j′1
1 · · ·xj′n

n

if

{
u < u′ or
u = u′ and xj1

1 · · ·xjn
n ≺ x

j′1
1 · · ·xj′n

n in M(H(u)).

polynomial order: We define ≺ as [i, j1, . . . , jn, k] ≺ [i′, j′1, . . . , j
′
n, k′]

if
{

i + k < i′ + k′ or
i + k = i′ + k′ and [j1, . . . , jn, k] ≺ [j′1, . . . , j

′
n, k′] in H(i+k)

Informally, letting f ′ ∈ F (u′) and f ′′ ∈ F (u′′), f ′ ≺ f ′′ if u′ < u′′.

Theorem 1. Suppose that F is set by our Compiler and H(u) holding 4 re-
strictions. Let B be a matrix, where each row of B is the coefficient vectors of
f[u−k,j1,...,jn,k](x0X0, . . . , xnXn) according to the order of F . Then, the matrix
B is square and blocked lower triangular.

For Theorem 1, B is written as

B =

⎛⎜⎜⎜⎝
B0 0B1
...

. . .

* · · · Bm

⎞⎟⎟⎟⎠ ,

where each Bu is a #H(u) ×#H(u) matrix for 0 ≤ u ≤ m. Note that Bu corre-
sponds to #H(u) polynomials {f[i,j1,...,jn,k]|[i, j1, . . . , jn, k] ∈ F (u)} and #H(u)

monomials which are divisible by xu
0 . The determinant of B is simply given by

detB = detB0 detB1 · · · detBm.
The application to small secret exponent attack will be given in Section 5.

Other examples are given in Section 5 and a full version [13].
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3.3 Proof of Theorem 1

We define the set of monomials as M(f[u−k,j1,...,jn,k])
≡ {xi0

0 xi1
1 · · ·xin

n |xi0
0 xi1

1 · · ·xin
n is a monomial of f[u−k,j1,...,jn,k]} and

M(F (u)) ≡
⋃

J∈F(u)

M(fJ).

We use the notation: xi0
0 M ≡ {xi0

0 xi1
1 · · ·xin

n |xi1
1 · · ·xin

n ∈ M} for M =
{xi1

1 · · ·xin
n }.

First, we show the following two lemmas.

Lemma 2. If [u− k, j1, . . . , jn, k] ∈ F for k ≥ 1,it holds that

M(f[u−k,j1,...,jn,k−1]) ⊂ M(f[u−k,j1,...,jn,k]).

Furthermore, it holds that for k ≥ 1, M(f[u−k,j1,...,jn,k]) \M(f[u−k,j1,...,jn,k−1])
= xu

0{xi1
1 · · ·xin

n |xi1
1 · · ·xin

n is a monomial of h[j1,...,jn,k]}.

Lemma 3. It holds that M(F (0)) ⊂ M(F (1)) ⊂ · · · ⊂ M(F (m)). Furthermore,
it holds that M(F (u)) \M(F (u−1)) = xu

0M(H(u)).

Proof (of Lemma 2). For k ≥ 1, if [u − k, j1, . . . , jn, k] ∈ F (u) , then [u −
k, j1, . . . , jn, k − 1] ∈ F (u−1). The expansion of f[u−k,j1,...,jn,k](x0, x1, . . . , xn) is
given by

f[u−k,j1,...,jn,k](x0, x1, . . . , xn) = xu−k
0 xj1

1 · · ·xjn
n (x0h + C)kMm−k

= xu
0h[j1,...,jn,k]M

m−k +
k∑

i=1

(
k

i

)
CiMm−kxu−i

0 h[j1,...,jn,k−i].

The expansion of f[u−k,j1,...,jn,k−1](x0, x1, . . . , xn) is given by

f[u−k,j1,...,jn,k−1](x0, x1, . . . , xn) = xu−k+1
0 xj1

1 · · ·xjn
n (x0h + C)k−1Mm−k+1

=
k∑

i=1

(
k − 1
i− 1

)
Ci−1Mm−k+1xu−i

0 h[j1,...,jn,k−i].

Then, we have the lemma. �	

For Lemma 3, the number of monomials firstly appearing in F (u) is #(M(F (u))\
M(F (u−1))) = #M(H(u)). For the construction of our Compiler, the number of
polynomials in F (u) is #F (u) = #H(u). Restriction 2 implies that #H(u) =
#M(H(u)). Then, #(M(F (u)) \ M(F (u−1))) = #F (u). This implies that B is
blocked lower triangular. �	
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3.4 Small Example of Our Compiler

We show a small example which shows how our Compiler works. Let h(y) be a
univariate monic polynomial with degree 1: h(y) = A + y. In this case, a target
equation is f(x, y) = xh(y) + C = x(A + y) + C = 0 (mod M).

Let h
(u)
[j,k](y) :=yjh(y)kNu−k. Suppose that we use a generatorA={[0]} and B=

{[0], [1], [2]}. Then, H(0)={[0, 0], [1, 0], [2, 0]} and H(1)={[0, 0], [0, 1], [1, 1], [2, 1]}.
Corresponding matrixes B

(0)
h and B

(1)
h are given as follows.

B
(0)
h =

1 y y2

h
(0)
[0,0](= 1) 1 0 0

h
(0)
[1,0](= Y y) 0 Y 0

h
(0)

[2,0]
(= Y 2y2) 0 0 Y 2

, B
(1)
h =

1 y y2 y3

h
(1)
[0,0](= N) N 0 0 0

h
(1)
[0,1](= A + Y y) A Y 0 0

h
(1)
[1,1](= AY y + Y 2y2) 0 AY Y 2 0

h
(1)

[2,1]
(= AY 2y2 + Y 3y3) 0 0 AY 2 Y 3

For example, M(h[1,1]) = {y, y2} and M(H(1)) = {1, y, y2, y3}.
For a positive integer m, let f[i,j,k](x, y) := xiyjf(x, y)kMm−k. In the

example, we fix m = 1. Applying our compiler, we obtain F of f[i,j,k]
for solving f(x, y) = xh(y) + C = 0 (mod M) as follows: F =
{[0, 0, 0], [0, 1, 0], [0, 2, 0], [1, 0, 0], [0, 0, 1], [0, 1, 1], [0, 2, 1]}. A matrix B generated
by F is given as follows.

B =

1 y y2 x xy xy2 xy3

f[0,0,0](= M) M 0 0 0 0 0 0
f[0,1,0](= Y My) 0 Y M 0 0 0 0 0
f[0,2,0](= Y 2My2) 0 0 Y 2M 0 0 0 0
f[1,0,0](= XMx) 0 0 0 XM 0 0 0
f[0,0,1](= C + AXx + XY xy) C 0 0 AX XY 0 0
f[0,1,1](= CY y + AXY xy + XY 2xy2) 0 CY 0 0 AXY XY 2 0
f[0,2,1](= CY 2y2 + AXY 2xy2 + XY 3xy3) 0 0 CY 2 0 0 AXY 2 XY 3

Columns and rows are ordered by polynomial and monomial orders in F . The
determinant of B is given by the product of diagonal elements. So, det B =
M4X4Y 9.

4 Deriving a Condition for Solving GSIP

In the previous section, we show how to choose a set F . The next thing to do is
evaluation of a volume of the lattice Lf or the determinant of the correspond-
ing matrix B. Then, we will derive the condition for solving the problem by
combining the value of determinant and Lemma 1.

First, we derive a determinant of matrix B (or a volume of Lf) obtained by
our compiler.
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Lemma 4. Let B
(u;t)
h be the corresponding matrix for h and w(u; t) be the di-

mension of the lattice. Then, the determinant of B derived by our Compiler is
given by

detB = MmW

(
X0

M

)∑m
u=0 uw(u;t) m∏

u=0

detB
(u;t)
h (M), (4)

where W (=
∑m

u=0 w(u; t)) is the rank of B.

Next, we derive a condition that we can find all solutions of f = 0 (mod M).

Lemma 5. Suppose that the determinant of B
(u;t)
h is given as the same as

Lemma 4. Under Assumption 1, we can find all solutions of the equation
f = 0 (mod M) with |x0| < X0, |x1| < X1, . . . , |xn| < Xn if

m∏
u=0

detB
(u;t)
h (M) <

(
M

X0

)∑
uw(u;t)

=
m∏

u=0

(
M

X0

)uw(u;t)

. (5)

The time complexity is polynomial in log M and 2n.

In case of Maximizing X0. In many cryptanalysis, all the task is to
maximize X0 for fixed X1, X2, . . . , Xn. Hereafter, we focus on this situation.
We introduce an operator: I : mk → 1

k+1mk+1. Obviously, the operator
I is homomorphic. Hence, we can write

∑m
u=0 uw(u; t) = I(mw(m; t)) and∑m

u=0 γi(u; t) = I(γi(m; t)). We rewrite Eq. (5) by using the operator I as:
(X0/M)I(mw(m;t)) < M−I(γU (m;t))X

−I(γ1(m;t)
1 · · ·X−I(γn(m;t))

n . Hence, we have

X0 < M/(M I(γU (m;t))X
I(γ1(m;t)
1 · · ·XI(γn(m;t))

n )1/I(mw(m;t)).

Let Ai be a fixed positive number such that Xi = MAi for 1 ≤ i ≤ n. We can
simplify the above as X0 < M/M (I(γU (m;t))+

∑n
i=1 AiI(γi(m;t)))/I(mw(m;t)). Setting

l(m; t) ≡ I(γU (m; t)) +
∑n

i=1 AiI(γi(m; t))
I(mw(m; t))

=
I(γU (m; t) +

∑n
i=1 Aiγi(m; t))

I(mw(m; t))
,

(6)
we have X0 < M1−l(m;t). The next thing to do is to obtain t minimizing l(m; t)
for fixed m. The values t minimizing l(m; t) is given by solving simultaneous
equations:

∂l(m; t)
∂t1

=
∂l(m; t)

∂t2
= · · · = ∂l(m; t)

∂tk
= 0.

Let t′ be the solution of the above equations if it exists. If we ignore small
terms1, each I(γU (m; t)), I(γ1(m; t)), . . . I(γn(m; t)), I(mw(m; t))) consists of
one term with the same total degree 3. Hence, each element t′i of t′ is represented

1 If we don’t ignore the small term, we can obtain the optimal value of m. But, we
need tedious computation in general. For small secret exponent attack case, Boneh
and Durfee gave the details analysis [2].
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by t′i = τ ′
im for positive integers τi’s. Letting τ ′ = (τ ′

1, . . . , τ
′
n), we have the

condition for X0:

X0 ≤ max
t

M1−l(m;t) = M1−mint l(m;t) = M1−l(m;mτ ′), (7)

which does not depend on m.
Next, we will analyze the most simple case, that is, B is parametrized by one

parameter. In this case, we have an explicit formula of the upper bound of X0.

Theorem 2. Suppose that a lattice for h = 0 holds Restrictions 1–4 holds and
B is parametrized by one parameter t. For given positive integers A1, . . . , An, we
set a2m

2 + a1mt + a0t
2 ≡ γU (m; t) +

∑n
i=1 Aiγi(m; t) and w(m; t) = b2m + b1t.

Suppose that a1b2 < a2b1. Under Assumption 1, we can find all solutions of
equation: f = 0 (mod M) with |x0| < X0, |x1| < MA1 , . . . , |xn| < MAn if X0 <

M1− 4a0
b1

c′− a1
b1 , where c′ = (

√
4a2

0b
2
2 − 3a0a1b1b2 + 3a0a2b2

1 − 2a0b2)/(3a0b1). In
particular, if b1 = b2, we simply have the condition as

X0 < M1− 4
√

4a2
0−3a0a1+3a0a2−8a0+3a1

3b1 . (8)

Time complexity is in polynomial in log M and 2n.

5 Application of Our Compiler to RSA-Related
Cryptanalysis

We show several examples of GSIP and argue applications of our compiler to
them. Table 1 summarizes some example of GSIP in the literature. “Constraint”
shows what kind of constraint variables have in both of solving f = 0 and h = 0.
“A” and “B” show what kind of generators we use in both of solving f = 0 and
h = 0. We give more explanation for each cases and give details of Case 1. For
other cases, see the full version [13].

Table 1. Examples of GSIP

Case 1 Case 1’ Case 2 Case 3
Boneh-Durfee [2] May [15] Durfee-Nguyen [7] Itoh et al. [10]

f = xh + C x(A + y) + 1 x(y − N) + N x(A + y + z) + 1 x(y − 1)(z − 1) + 1
Constraint - - yz = N yrz = N

Howgrave-Graham [9] Coron-May [6] Kunihiro-Kurosawa [12]
h y + A y − N A + y + z (y − 1)(z − 1)
A {[0]} {[0, 0], [1, 0]} {[0, 0], [1, 0]} ∪⋃r−1

i=1 {[i, 1]}
B ∪t

i=0{[i]} ∪t1
i=0{[i, 0]} ∪

⋃t2
j=1{[0, j]} ∪t1

i=0{[i, 0]} ∪
⋃r−1

k=0

⋃t2
j=1{[k, j]}

Case 1: Consider the small secret exponent attack on RSA by Boneh and Dur-
fee [2]. In their attack, they handled f(x, y) = x(y + A) + 1 = 0 (mod e).
Hence, this problem corresponds to h(y) = y + A and C = 1. By using our
compiler, the lattice basis for f(x) = 0 is automatically obtained. Then, one
can easily obtain the bound: d ≤ N0.284. We’ll discuss the details later.
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Case 1’: Consider the small CRT exponent attack on unbalanced RSA by
May [15]. In his attack, he handled f(x, y) = x(y − N) + N = 0 (mod e).
Hence, this problem corresponds to h(y) = y − N and C = N . By using
our compiler, the lattice basis for f(x) = 0 is automatically obtained. Fur-
thermore, one can easily obtain the bound dp ≤ e1−2(

√
β2+3β+β)/3, where

q < eβ.
Case 2: Consider cryptanalysis on some variants of RSA with small secret ex-

ponent by Durfee-Nguyen [7]. In their attack, they handled the trivariate
modular equation: f(x, y, z) = x(A + y + z) + 1 = 0 (mod e) with con-
straint yz = N . Hence, this problem corresponds to h(y, z) = A + y + z and
C = 1. By using our compiler, the lattice basis for Durfee-Nguyen’s attack
is automatically obtained.

Case 3: Consider the small secret exponent attacks on Takagi’s variant of
RSA [19] by Itoh et al. [10]. This attack can be obtained by our compiler
and a lattice basis used in proving a deterministic polynomial equivalence
between factoring and computing the secret exponent in that scheme [12].
Note that since Durfee-Nguyen technique is adequately involved in a lattice
basis for h, we can easily obtain that for f . One can easily obtain the bound:
d ≤ N (7−2

√
7)/3(r+1).

Case 1: Transforming Howgrave-Graham’s Lattice Basis to Boneh-
Durfee’s Lattice Basis. Next, we move on to an actual cryptanalysis. We
show that our compiler builds a bridge between a lattice basis in [9] and that in
[2]. We simply write x, y, X, Y instead of x0, x1, X0 and X1.

Howgrave-Graham [9] provided an algorithm2 for solving h(y) = A + y =
0 (mod S) for integers A and S, which is an unknown divisor of an known
integer U . Set shift-polynomials as h

(u)
[j,k](y) := h[j,k]N

u−k = yjh(y)kNu−k.
In his paper, he chose the set of the indexes of shift-polynomials as H(u) =⋃u−1

k=0{[0, k]} ∪
⋃t

i=0{[i, u]}. We set a polynomial order by this. Note that a
generator is given by A = {[0]} and B = ∪t

i=0{[i]}. Hence, H(u) holds Restric-
tions 1–3.

Let f(x, y) = x(A + y) + 1. We argue a lattice basis construction for f . Since
f(x, y) = xh(y) + 1, we can employ our Compiler to construct a lattice basis for
f . For a positive integer m, we define shift-polynomials for f as f[i,j,k](x, y) :=
xiyjf(x, y)kMm−k. By our Compiler and Howgrave-Graham’s lattice basis, we
have a set F as

F =
m⋃

u=0

{
u−1⋃
k=0

{[u − k, 0, k]} ∪
t⋃

i=0

{[0, i, u]}
}

for fixed t. We have explicitly

F = {[0, 0, 0], [0, 1, 0], . . . , [0, t, 0], [1, 0, 0], [0, 0, 1], [0, 1, 1], . . . , [0, t, 1],
[m, 0, 0], [m− 1, 0, 1], . . . , [0, 0, m], [0, 1, m], [0, 2, m], . . . , [0, t, m]}.

2 By employing his algorithm, Coron and May gave the deterministic polynomial time
algorithm for factoring the RSA modulus when the secret key d is given [6].
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As you can easily verify, Boneh-Durfee’s set of shift-polynomials [2] and ours are
completely the same as a set (but, a polynomial order is different). Then, they are
the same as a lattice basis. So, we obtain the same lattice with Boneh-Durfee’s
by using our compiler and Howgrave-Graham’s lattice basis [9].

Next, according to the discussion in Section 4, we will re-derive the bound
of the secret key d. In [6], γU and γY are given as γU (u; t) = u(u +
1)/2 and γY (u; t) = (u + t)(u + t + 1)/2. And, the dimension is given by
w(u; t) = u + t + 1 and AY = loge Y = 1/2. In this case, we can obtain the same
bound very easily. Since deg(γU (u; t)) = deg(γY (u; t)) = 2 and deg(w(u; t)) = 1,
Restriction 4 holds. Then, we can use Theorem 2. By ignoring small terms, we
have a0 = 1/4, a1 = 1/2, a2 = 3/4, b1 = b2 = 1. By plugging these values into
Eq. (8), one can easily obtain the bound

X < e1− 4
√

4·1−3·1·2+3·1·3−8·1+3·2
3·4 = e(7−2

√
7)/6 ≈ N0.284,

which is exactly same as the Boneh-Durfee’s weaker bound.

Remark 1. By using the same lattice basis as Case1, we re-derive the small CRT-
exponent attack [15]. By just replacing AY = β, we can derive the condition:
dp < e1−2(

√
β2+3β+β)/3, where q < eβ .

6 Concluding Remarks and Open Problems

We note that our conversion is not enough. As shown in Sec. 5, our approach
just achieves the Boneh-Durfee’s weaker bound. We need more analysis to achieve
the stronger bound: d ≤ N0.292. Actually, Boneh and Durfee [2] deleted some
bad lattice bases and introduced the concept Geometrically Progressive Matrix
to evaluate the upper bound of the determinant of the lattice. By these efforts,
they achieved the stronger bound d ≤ N0.292. We need to develop a general
theory including such an improvement.
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A Proofs

A.1 Proof of Lemma 4

The determinant of the submatrix Bu is given by

detBu = M (m−u)wXuw
0 det B

(u)
h (M) = Mmw

(
X0

M

)uw

detB
(u)
h (M).

Since the determinant detB for f is given by detB =
∏m

u=0 detBu, we have the
lemma. �	

A.2 Proof of Lemma 5

For Lemma 1, if the norm of bn+1 is less than Mm/
√

w, we can reduce the mod-
ular equations into integer equations. Combining Proposition 1, this condition
can be transformed into

detB < MmW /γ, (9)

where γ is a constant. Since this term is negligible compared to MmW , we can
ignore this term. By substituting Eq. (4) into Eq. (9), we have

(X0/M)
∑

uw(u) <

m∏
u=0

(detB
(u)
h (M))−1. (10)

It is important that MmW in both hand sides are canceled. By transforming this
inequality, we have the above condition. �	

A.3 Proof of Theorem 2

The function l(m; t) is given by

l(m; t) =
a0mt2 + a1m

2t/2 + a2m
3/3

b1m2t/2 + b2m3/3
. (11)

By replacing x = t/m, we have l(x) ≡ l(m; mx) = 6a0x2+3a1x+2a2
3b1x+2b2

. The value x

minimizing l(x) satisfies 3a0b1x
2 +4a0b2x+(a1b2−a2b1) = 0. If a1b2−a2b1 < 0,

this equation has a positive solution. By solving the above equation, we have

x =
√

4a2
0b22−3a0a1b1b2+3a0a2b21−2a0b2

3a0b1
. Letting this value c′ and plugging c′ into

Eq. (7), we have the following condition for X0:

logM X0 < 1− 4a0

b1
c′ − a1

b1
.

In particular, if b1 = b2, we have simply c′ =
√

4a2
0−3a0a1+3a0a2

3a0
− 2

3 .
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Abstract. To reduce the damage of phishing and spyware attacks, banks,
governments, and other security-sensitive industries are deploying one-
time password systems, where users have many passwords and use each
password only once. If a single password is compromised, it can be only be
used to impersonate the user once, limiting the damage caused. However,
existing practical approaches to one-time passwords have been susceptible
to sophisticated phishing attacks.

We give a formal security treatment of this important practical
problem. We consider the use of one-time passwords in the context
of password-authenticated key exchange (PAKE), which allows for
mutual authentication, session key agreement, and resistance to phish-
ing attacks. We describe a security model for the use of one-time
passwords, explicitly considering the compromise of past (and future)
one-time passwords, and show a general technique for building a
secure one-time-PAKE protocol from any secure PAKE protocol. Our
techniques also allow for the secure use of pseudorandomly generated
and time-dependent passwords.

Keywords: one-time passwords, key exchange, protocols, cryptography.

1 Introduction

Many security attacks on the Internet today, such as phishing and spyware, aim
to compromise a user’s password. As a result, some businesses and government
agencies are deploying one-time password systems. In these systems, users carry a
sheet of paper listing passwords or an electronic device that generates passwords,
and use a different password each time they log in. Ideally, without obtaining this
physical list of passwords (or the device generating them), an attacker should be
unable to impersonate the user.

It is unfortunately too easy these days for passwords to be compromised.
For example, users at an Internet café cannot trust that the café operator has
not installed a key logger, yet they may still have an urgent need to login to
a particular website. Many home users unknowingly have malware installed on
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their computer. One-time password systems can help reduce the damage from
such compromises: although we cannot prevent the password from being stolen,
it can only be used once, and reveals no information about future passwords. As
a result, one-time password systems are being deployed by banks, governments,
and corporate virtual private networks (VPNs).

However, most deployments of one-time passwords have not used them in the
strongest way possible. In a typical usage, Alice visits a bank’s website in her
browser, views a challenge on the website indicating which one-time password
to use, and enters that one-time password into her browser, which transmits the
one-time password to the website. This type of usage remains susceptible to the
same phishing attacks that threaten regular passwords today: if Alice did not
really have an encrypted link with her actual bank, then an attacker may be able
to learn the one-time password and impersonate Alice. Unfortunately, average
users are not very good at telling if a SSL/TLS connection is really encrypted
and authenticated.

More advanced cryptographic protocols, such as password-authenticated key
exchange (PAKE), can allow us to use passwords in a secure way that reveals
no useful information about the password to a phishing or man-in-the-middle
attacker. These protocols can provide strong mutual authentication as well: not
only does the bank learn whether Alice knows her password, but Alice learns
whether the bank knows her password.

To date, one-time password schemes have not been formally studied using
techniques from provable security. One existing work [1] presents a PAKE pro-
tocol that uses pseudorandom passwords, but does not consider how the security
properties of one-time passwords or pseudorandom passwords differ from nor-
mal long-term passwords. The goal of this work is to describe and formalize
security properties for one-time password systems, especially in the context of
authenticated key exchange protocols.

We emphasize that one-time password schemes are practical, as numerous de-
ployments [25,20,21,10,7] have shown. Businesses that have already deployed one-
time passwords in the form of token cards or sheets of paper could benefit from
the greater security offered by our techniques by upgrading their back end systems
without needing to deploy new password data to users; however, clients would
need to upgrade their browsers or VPN clients to support these new protocols.

Contributions. In this work, we aim to answer three questions on the security of
one-time password schemes:
1. How should we model the security of one-time password schemes?
2. How should we build secure one-time password schemes?
3. Are existing one-time password schemes secure?

To answer the first question, we describe in Sect. 2 an extension to the Bellare-
Pointcheval-Rogaway [3] PAKE security model that adds one-time passwords
and handles the compromise of other past or future one-time passwords.

For the second question, we give a general construction in Sect. 3 for building
a one-time-PAKE protocol from any PAKE protocol and show that this trans-
formation preserves security. The transformation itself is straightforward and
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efficient, and allows for extensions to the basic functionality of one-time pass-
words: the secure use of pseudorandomly generated passwords (Sect. 4), time-
dependent passwords (Sect. 5), and verifier-based one-time passwords, in which
the server stores a one-way transformation of the passwords, not the passwords
themselves (Sect. 2.2).

Existing uses of one-time passwords over TLS connections can be troublesome
as they require a public key infrastructure and users often have difficulty validat-
ing public keys. To our knowledge, the only existing consideration of one-time
passwords in PAKE is the OPKeyX protocol [1], which requires the one-time
passwords be of a particular form (namely, a hash chain), and that future pass-
words not be revealed. We discuss the security of OPKeyX in Sect. 6, noting that
our model is stronger and allows for arbitrary passwords to be revealed.

Outline. The rest of this paper is organized as follows. In Sect. 1.1, we describe
related work. Section 2 deals with the security of one-time password protocols:
it introduces the general properties we seek, and then presents a security model
encompassing those properties. In Sect. 3, we give our central theoretical result
that secure one-time-password-authenticated key exchange protocols can be built
out of secure password-authenticated key exchange protocols. We then discuss
the use of pseudorandom (Sect. 4) and time-dependent (Sect. 5) passwords.
We conclude with a brief discussion of how this work relates to the existing
OPKeyX protocol in Sect. 6 and some general conclusions in Sect. 7. Security
proofs, details of verifier-based security definitions, and an example construction
appear in the full version [22].

1.1 Related Work

Many businesses, especially banks, have adopted one-time passwords in their
authentication procedures. One-time passwords can be efficiently deployed using
electronic tokens [25], using a chip-and-pin card in combination with a reader
device as some British banks are doing [20], or on sheets of paper as some
European banks do [21]; interestingly, there have subsequently been phishing
attacks specifically targeting these sheets of one-time passwords [10]. One-time
passwords are also being used for stronger authentication in virtual economies
such as World of Warcraft [7]. The Internet Engineering Task Force (IETF)
has standardized various mechanisms for deriving [14,15] and using [16,23,17]
one-time passwords. While all of these systems may generate and deploy one-
time passwords securely, none of them proceed to use one-time passwords in
cryptographically secure way.

Password-authenticated key exchange was first introduced by Bellovin and
Merritt in 1992 [5] as a protocol in which the client and server share a plaintext
password and exchange encrypted information to allow them to derive a shared
session key. A later variant [6], often called verifier-based, removed the require-
ment that the server have the plaintext password, instead having a one-way
transformation of the password.
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The most extensively used model for the security of PAKE protocols is the
Bellare-Pointcheval-Rogaway (BPR) model [3] and its extension [12] for verifier-
based protocols. This model is the starting point of our model for the security
of one-time-PAKE protocols. One particular such protocol is the PAK protocol
[8,18], which is the basis of our construction in the full version of this paper.

Various authors have noted the value of using one-time passwords in authen-
ticated key exchange protocols [1,11,27]. Abdalla et al. [1] (see also [9]) describe
the OPKeyX protocol, a verifier-based one-time-PAKE protocol. It uses a hash
chain to derive subsequent one-time passwords from a seed such that the server
can verify but not compute the next password. We will discuss OPKeyX in greater
detail in Sect. 6.

2 Security of One-Time-Password Protocols

The main security property that protocols employing one-time passwords should
achieve is: strong mutual authentication based on knowledge of one-time pass-
words. Our work will address one-time passwords in the context of PAKE pro-
tocols, which provide an additional property: secure key exchange.

The motivation for using one-time passwords is that the compromise of one
password should not affect the security of sessions involving another password.
The one-time password serves to mutually authenticate the client and the server;
there are no other long-term values like public keys or certificates. Authentication
is based on knowledge of the shared password. Informally, a protocol will provide
secure mutual authentication if no honest party Â accepts a session as being
with party B̂ unless B̂ participated in the protocol, and vice versa. We want a
one-time-password protocol to give secure mutual authentication for the current
session even if other one-time passwords have been revealed. Such passwords
could be revealed accidentally by the user or obtained by an adversary who has
installed malware on the user’s computer, for example.

In addition to mutually authenticating two parties to each other, we want a
protocol that will also output a session key that can be used to encrypt and
protect the integrity of future communications between those two parties. This
is a common feature required of many secure communication protocols.

The traditional use of one-time passwords – sending the password over a
TLS connection – is not compatible with our approach. Using TLS to establish
an authentic channel requires that the user can obtain and properly use an
authentic public key for the server. In other words, it requires a public key
infrastructure, whereas one-time-PAKE only needs shared passwords. We need
not remove the TLS infrastructure, however: one-time password-authenticated
key exchange could be provided as a new TLS cipher suite.

2.1 Security Model

In the most widely adopted security model for PAKE, that of Bellare, Pointcheval,
and Rogaway [3], when the adversary corrupts a party it learns all of the party’s
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authentication secrets at once. In the one-time password setting, we want to model
the situation where users have multiple passwords and the attacker can learn the
passwords one by one. This more closely models the functionality, design goals,
and capabilities of the adversary in many one-time password scenarios.

Participants. An instance of the protocol takes place between two interacting
parties, each of which is a member of the set Parties; each party is identified by
a unique fixed length string. Each pair of distinct parties {Â, B̂} shares a set
of one-time passwords {pwÂ,B̂,ch} indexed by ch ∈ Indices, the set Indices being
publicly known (we use the notation ch to suggest that the one-time password
may be selected in response to a challenge, although the model does not assume
that need be the case). We note that pwÂ,B̂,ch = pwB̂,Â,ch (this is the symmetric
setting; in Sect. 2.2, we discuss how to model verifier-based one-time passwords).
The size of the set Indices determines the maximum number of passwords shared
between each pair of parties. Each one-time password is chosen uniformly at
random from the set Passwords.1

Protocol execution. The protocol is a message-driven protocol. During execution,
a party Û may have multiple instances of the protocol running; each instance
is modelled as an oracle and is denoted by Π Û

(Û ′,ch)
: it is indexed by the values

(Û ′, ch) ∈ Parties× Indices, where Û ′ is its purported partner and ch is the one-
time password index for that instance. A party Û must be activated to act as
an initiator or a responder with Û ′ for a particular instance by having oracle
Π Û

(Û ′,ch)
be sent a message of the form “initiator” or “responder”, respectively.

An instance for a particular partner-index pair can only be activated once. This
restriction can be achieved by having each party maintain a record of used one-
time passwords. In practice, this is easy to achieve: for example, a user could
cross out a one-time password on a piece of paper once it has been used, or
increment a counter if pseudorandomly generated passwords are used.

There are distinguished instances Π Û
(Û ′,⊥)

which can be sent messages of the

form “initiator” or “responder”; Û then picks an unused one-time password index
ch and activates the corresponding instance Π Û

(Û ′,ch)
with the given role.

There is a sequence of messages, or flows, specified by the protocol, start-
ing with a flow from the initiator to the responder, then from the responder to
the initiator, and so on. After some number of flows, an instance may accept, at
which point it holds a session key sk, partner id pid, and session id sid, and, pos-
sibly after some additional flows, terminate. Alternatively, at any point in time,
an instance may reject (note that instances that reject have not terminated; ac-
cepting is a precondition for terminating). Two instances ΠÂ

(pid,ch) and ΠB̂
(pid′,ch′)

are said to be partnered if they both accept, hold (pid, sid, sk) and (pid′, sid′, sk′),

1 One common complaint about models for PAKE protocols is the typical assumption
that passwords are uniformly distributed. In practice, human-selected passwords are
rarely uniformly distributed. By contrast, one-time passwords are more likely in
practice to be uniformly distributed since they are often generated by a computer.
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respectively, with pid = B̂, pid′ = Â, sid = sid′, sk = sk′, and ch = ch′, and no
other instance accepts with session id equal to sid. It is likely that the session
identifier will include the one-time password index ch.

Definition 1 (Correctness). A protocol is said to be correct if, for all dis-
tinct Â, B̂ ∈ Parties and all ch ∈ Indices, whenever messages are faithfully re-
layed between ΠÂ

B̂,ch
and ΠB̂

Â,ch
, both instances are partnered and terminate with

probability 1.

Queries allowed. The protocol is determined by how participants respond to
inputs from the environment, and the environment is considered to be controlled
by the adversary, which is a probabilistic algorithm that issues queries to parties’
oracle instances and receives responses. For a protocol P , the queries that the
adversary can issue are as follows (where clear by the setting, we may omit the
subscript P ). The first two queries model normal operation of the protocol:

– ExecuteP (Â, B̂, ch): This query activates initiator instance ΠÂ
(B̂,ch)

and re-

sponder instance ΠB̂
(Â,ch)

with one-time password indexed by ch, causes them
to faithfully execute protocol P , and returns the resulting transcript.

– SendP (Û , (Û ′, ch), M): Send message M to user instance Π Û
(Û ′,ch)

, which per-
forms the appropriate portion of protocol P based on its current state and
the message M , updates its state, and returns any resulting messages.

The next two queries model the compromise of information by the adversary:

– RevealSessionKeyP (Û , Û ′, ch): If instance Π Û
(Û ′,ch)

has accepted, then it re-

turns the session key sk held by Π Û
(Û ′,ch)

.

– RevealPWP (Û , Û ′, ch): Returns the one-time password pwÛ,Û ′,ch.

The RevealPW query models the adversary learning the authentication secrets,
which corresponds to weak corruption in the Bellare-Pointcheval-Rogawaymodel.
The adversary cannot modify stored authentication secrets (also called strong cor-
ruption). We note that the RevealPW(Û , Û ′, ch) query allows the adversary to re-
veal any password, regardless of whether it has been used in a session.

The final query is used to define the task that the adversary has to achieve
in order for the session key security of the protocol to be considered broken. To
define security, the adversary will interact with a challenger who, simulating the
parties, answers all the queries above, as well as this one:

– TestP (Û , Û ′, ch): If instance Π Û
(Û ′,ch)

has accepted, then the following hap-
pens: the challenger chooses b ∈R {0, 1}; if b = 1, then it returns the session
key held by ΠU

(Û ′,ch)
, otherwise it returns a random string of the same length

as the session key. This query may only be asked once.
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Freshness. We adapt the notion of freshness in the Bellare-Pointcheval-Rogaway
model to allow the adversary to compromise one-time passwords from any session
except the target session.

Definition 2 (Freshness). In a one-time-PAKE protocol, an instance Π Û
(Û ′,ch)

is fresh (with forward-secrecy) if and only if none of the following events occur:

1. a RevealSessionKey(Û , Û ′, ch) query occurs;
2. a RevealSessionKey(Û ′, Û , ch) query occurs;
3. either of the following queries occur before the Test query:

(a) RevealPW(Û , Û ′, ch) or (b) RevealPW(Û ′, Û , ch);
and Send(Û , (Û ′, ch), M) occurs for some string M .

We note that this definition of freshness allows the adversary considerable
power in terms of revealed passwords. In particular, the adversary could reveal
every one-time password – past and future – except the single password for the
target session.

Adversary’s goals. The adversary’s goals are to break either the confidentiality
of the session key or the security of the mutual authentication.

For confidentiality, the goal of an adversary is to guess the bit b used in the
Test query of a fresh session: this corresponds to the ability of an adversary
to distinguish the session key from a random string of the same length. Let
Succ1×ake

P (A) be the event that the adversary A makes a single Test query to
some fresh instance Π Û

(Û ′,ch)
that has accepted and A eventually outputs a bit

b′, where b′ = b and b is the randomly selected bit in the Test query. The 1×ake-
advantage of A attacking P is defined to be

Adv1×ake
P (A) =

∣∣∣2 Pr
(
Succ1×ake

P (A)
)
− 1

∣∣∣ . (1)

We can define a similar notion for mutual authentication. Let Succ1×ma
P (A) be

the event that the adversaryA causes a participant instance Π Û
(Û ′,ch)

with partner

id Û ′ and one-time password index ch to terminate without a partnered instance,
before either of the RevealPW queries in part 3 of Definition 2. The 1×ma-
advantage of A attacking P is defined to be Adv1×ma

P (A) = Pr
(
Succ1×ma

P (A)
)
.

Definition 3 (Security). Let λ be a security parameter. A protocol P is a
secure one-time-password-authenticated key agreement protocol if, for all ad-
versaries A running in time polynomial in λ and making at most qse SendP

queries, there exists a constant δ and a negligible ε(λ) such that

Adv1×ake
P (A) ≤ δqse

|Passwords| + ε(λ) , (2)

and a similar bound applies for Adv1×ma
P (A).
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This notion of security says that no polynomially bounded adversary can do
negligibly better than randomly guessing an unknown password in each online
attempt and can gain no advantage by doing an offline dictionary attack.

This bound is of the same form as bounds for the security of PAKE. One might
expect that we could do better in the one-time password setting, since passwords
are not reused. However, the adversary always has a password guessing strategy
each time it participates in the protocol, leading to the qse/|Passwords| factor.
Hence, this bound is effectively the best possible, up to making δ or ε(λ) smaller.
The advantage of one-time password systems comes from their robustness in the
face of richer models of compromise.

Remark. This security definition protects users from authentication and confiden-
tiality failures. It offers no protection against denial of service attacks, especially
attacks in which an attacker aims to exhaust a user’s supply of one-time pass-
words. An adversary could keep a client and server “out of sync” on which pass-
word to use, preventing a connection from being established. Unless there is some
additional form of server-to-client authentication – for example, the challenge be-
ing signed by a server certificate, which is outside the scope of this work since it
would require a public key infrastructure – this appears to be unavoidable.

2.2 Verifier-Based One-Time Passwords

In the verifier-based model, the server stores a verifier, which is a one-way trans-
formation of the client’s password that cannot be used to impersonate the user.
This offers increased security against server database compromise. The secu-
rity of verifier-based PAKE protocols is defined by the extension of the BPR
model given by Gentry et al. [12]. The main difference is that an instance can
remain fresh even if either the password or the verifier (but not both) is com-
promised. This necessitates the introduction of a new query for revealing the
verifier. Additionally, it allows for the separate definitions of client-to-server and
server-to-client authentication.

The model we described in Sect. 2.1 can be extended in the natural way to use
verifier-based one-time passwords by introducing a RevealV query to reveal one-
time verifiers and adjusting the freshness definition appropriately; the details
appear in the full version [22].

3 A Generic Construction for One-Time Password
Protocols

We now describe a technique for building a one-time-PAKE protocol, 1(P ), out
of any PAKE protocol P , and then show that the one-time-password protocol
is at least as secure as the password protocol out of which it is built. The basic
idea is that a PAKE protocol in which passwords are used only once is also a
good one-time-PAKE protocol.
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3.1 Construction of 1(P ) from P

The construction proceeds as follows. For each client-server-index combination
(Ĉ, Ŝ, ch) in the one-time-password protocol, we will construct a new pair of
users with compound names (Ĉ, Ŝ, ch) and (Ŝ, Ĉ, ch) in the password proto-
col, and pass the queries against the session in the one-time-password protocol
down to the new pair of users in the underlying password protocol. Since every
PAKE protocol should be secure even if each pair of users is used only once, this
constructed one-time-PAKE protocol should also be secure.

We now specify in detail the technique to construct a one-time-PAKE protocol
1(P ) from a PAKE protocol P . There are two phases: the registration phase, in
which pairs of clients and servers establish passwords, and the login phase, in
which pairs of clients and servers attempt to establish a secure session.

Registration phase. The registration phase of the 1(P ) protocol is specified in
Fig. 1 below. For every client-server pair (Ĉ, Ŝ) ∈ Parties × Parties, and for
each one-time-password index ch ∈ Indices, initiate the registration phase of P
with the users (Ĉ, Ŝ, ch) and (Ŝ, Ĉ, ch), and set pwĈ,Ŝ,ch in 1(P ) equal to the
corresponding password in P .

Although one might be concerned about the time that it takes to complete
the registration phase if Indices is large, the registration phase of any one-time
password protocol can not, in general, be completed in less time asymptotically
if truly one-time passwords are used. In other words, this is effectively the same
complexity as password establishment in currently deployed one-time password
schemes, and hence is quite practical. Moreover, the registration for each chal-
lenge can be run in parallel to reduce the number of communication rounds.

Protocol 1(P ) – Registration Phase

Client Ĉ Server Ŝ

for each ch ∈ Indices:

1. run registration phase of protocol P with users (Ĉ, Ŝ, ch) and (Ŝ, Ĉ, ch)

2. pwĈ,Ŝ,ch in 1(P ) ← pw(Ĉ,Ŝ,ch),(Ŝ,Ĉ,ch) in P

3. usedĈ(Ŝ, ch) ← false usedŜ(Ĉ, ch) ← false
end for each

Fig. 1. Protocol 1(P ) – Registration Phase; must use a private, authenticated channel

Login phase. The login phase of the 1(P ) protocol is specified in Figure 2 below.
Each party Û maintains a set of tables usedÛ (Û ′, ch), where each entry in the
table is either true or false and indicates whether the one-time-password indexed
by ch has been used by Û with Û ′.

To initiate the protocol, instance ΠĈ
(Ŝ,⊥)

of user Ĉ sends a message (“hello”, Ĉ)

to instance Π Ŝ
(Ĉ,⊥)

of party Ŝ. When a party Ŝ receives a message (“hello”, Ĉ), it

picks a one-time-password index ch from Indices such that usedŜ(Ĉ, ch) = false.



One-Time-Password-Authenticated Key Exchange 273

Then it sets usedŜ(Ĉ, ch) ← true and activates Π Ŝ
(Ĉ,ch)

. Finally, it sends “hello”

to instance ΠĈ
(Ŝ,ch)

of party Ĉ. It then waits to engage in a single instance of

protocol P acting as user (Ŝ, Ĉ, ch) interacting with party (Ĉ, Ŝ, ch). When the
corresponding instantiation of protocol P accepts, the instance in 1(P ) sets its
session key to the session key in P and then accepts. When it rejects in P , it
rejects in 1(P ); when it terminates in P , it terminates in 1(P ) as well.

When instance ΠĈ
(Ŝ,ch)

of party Ĉ receives a message (“hello”), it checks to see

if usedĈ(Ŝ, ch) = true; if so, then it rejects; if not, then it sets usedĈ(Ŝ, ch) ←
true. It then initiates the login phase of protocol P acting as user (Ĉ, Ŝ, ch)
interacting with party (Ŝ, Ĉ, ch). It follows protocol P until it accepts or rejects.
When the corresponding instantiation of protocol P accepts, the instance in 1(P )
sets its session key to the session key in P and then accepts. When it rejects in
P , it rejects in 1(P ); when it terminates in P , it terminates in 1(P ) as well.

It follows easily from inspection that, if P is correct, 1(P ) is also correct.

Protocol 1(P ) – Login Phase

Client Ĉ Server Ŝ

1.
“hello”,Ĉ−−−−−−→

2. pick ch ∈ Indices s.t.

usedŜ(Ĉ, ch) = false

3. usedŜ(Ĉ, ch) ← true

4. ΠĈ
(Ŝ,ch)

“hello”←−−−−−−
5. if (usedĈ(Ŝ, ch) = true) then reject

6. usedĈ(Ŝ, ch) ← true

7. run protocol P with users (Ĉ, Ŝ, ch) and (Ŝ, Ĉ, ch) and password pw
(Ĉ,Ŝ,ch),(Ŝ,Ĉ,ch)

8. if P accepts then if P accepts then

8.a) sid1(P ) ← sidP ; pid ← Ŝ sid1(P ) ← sidP ; pid ← Ĉ
8.b) sk1(P ) ← skP sk1(P ) ← skP
8.c) accept in 1(P ) accept in 1(P )
9. if P terminates then terminate if P termiantes then terminate
10. if P rejects then reject if P rejects then reject

Fig. 2. Protocol 1(P ) – Login Phase; can use a public, unauthenticated channel

3.2 Security of 1(P )

Theorem 1. Let P be a secure password-authenticated key exchange protocol.
Then 1(P ) is a secure one-time-password-authenticated key exchange protocol.

Due to length restrictions, the security argument appears in the full version [22].
The basic idea of the argument is as follows. We will show that attacks against
1(P ) correspond to attacks against P . We construct a 1(P ) simulator in which
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the adversary’s queries to 1(P ) are translated into queries on a P challenger as
follows:

– Execute1(P )(Â, B̂, ch): Return the result of ExecuteP ((Â, B̂, ch), 1,

(B̂, Â, ch), 1).
– Send1(P )(Û , (Û ′, ch), M): If message M is for one of the two flows added by

the 1(P ) construction, then respond as indicated in Figure 2. If message M is
for one of the flows from P , then return the result of SendP ((Û , Û ′, ch), 1, M).

– RevealSessionKey1(P )(Û , Û ′, ch): Return RevealSessionKeyP ((Û , Û ′, ch), 1).
– RevealPW1(P )(Â, B̂, ch): Return RevealPWP ((Â, B̂, ch), (B̂, Â, ch)).
– Test1(P )(Û , Û ′, ch): Return TestP ((Û , Û ′, ch), 1).

Using this simulation, if an adversary could break 1(P ), it could break P just as
efficiently. But since P is a secure PAKE protocol, no adversary should be able to
attack P , and hence no adversary should be able to attack 1(P ). The argument
is a straightforward simulation involving creating separate user instances in P
for each instance of 1(P ) by constructing users in P with identities that are the
concatenation of the user name and one-time password index from 1(P ), and
assuring that fresh instances in 1(P ) correspond to fresh instances in P . We
note that the security reduction is tight.

Example instantiation. Suppose we were to construct a one-time-password-
authenticated key exchange protocol using the 1(P ) construction where the
underlying password-authenticated key exchange protocol is the (symmetric,
non-verifier-based) protocol PAK [8]. The 1(PAK) protocol is particularly in-
teresting because, with an appropriate reordering of messages, it can be made to
fit inside the message flow of the TLS handshake protocol. This makes it suitable
for use as a new cipher suite in TLS. A full presentation of the 1(PAK) protocol
is given in the full version [22].

In our example, we wish for an adversary to be able to break the one-time-
password protocol with probability at most 2−20, where the adversary runs in
time at most 260, and can only make a limited number (210) of Send queries.
Assuming the hardness of solving the elliptic curve computational Diffie-Hellman
problem (using estimates in [2]), we can achieve this security level using 10-
digit numerical passwords (Passwords = {0, . . . , 9}10) and a 348-bit elliptic curve
group. (See the full version [22] for the full analysis.)

3.3 Efficiency and Practicality of 1(P )

Login phase and computational efficiency. During the login phase, the 1(P ) con-
struction provides no loss of efficiency in terms of the number of expensive oper-
ations (such as group exponentiations) or security level of P , since the reduction
is tight. 1(P ) does add two additional message flows to the length of the pro-
tocol, but depending on the message flow of protocol P it may be possible to
combine some flows without affecting security.
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One might think that designing a one-time-password protocol from scratch
may lead to greater efficiency, since some of the effort in designing PAKE proto-
cols goes to preventing the transcript of one session leaking information about
the password and in a one-time-password protocol we may not have to worry as
much about leaking information about passwords during a protocol run. How-
ever, many PAKE protocols are already highly efficient in terms of number of
operations. For example, the Diffie-Hellman-based PAK [18] protocol can be run
with just 2 group exponentiations on each side (plus a group inversion on the
client side, which is inexpensive in many groups like elliptic curve groups), which
is very close to the operation count of the basic, unauthenticated Diffie-Hellman
protocol (2 group exponentiations for both parties). The main efficiency to be
gained, then, would be in improving the tightness in the security reduction to
the underlying Diffie-Hellman problem so as to allow smaller group sizes.

Registration phase. The registration phase of 1(P ) obviously requires establishing
many more passwords than a single instance of P , but any one-time password
scheme requires establishing many more passwords than a long-term password
scheme. The 1(P ) registration phase calls the registration phase of P many
times. Depending on the PAKE protocol P , the registration phase can be quite
efficient: for example, in the PAK protocol [18], the registration phase can be
optimized to consist of just one hash function evaluation.

Password storage. In practice it is important to consider how clients will store a
list of one-time passwords, especially if they wish to log in to a site while away
from their normal computer. One method is to provide a piece of paper with a
list of one-time passwords; for example, the Swedish bank Nordea provides its
customers with a “scratch sheet” of 120 one-time passwords [21]. Alternatively,
one-time passwords could be delivered through an out-of-band channel such as
an SMS message to the user’s mobile phone (for example, [19]). Passwords can
also be stored on or generated by an electronic token device, for example the
RSA SecurID [25], or even in a smart card built into credit cards [24].

We can further reduce the complexity of the registration phase and password
storage by using pseudorandom or time-based one-time passwords, which we
describe in the following sections.

4 Using Pseudorandom Passwords

To improve the efficiency of password registration and storage, it may be desir-
able to pseudorandomly generate passwords instead of truly random ones. For
example, users may be given a hardware token [25,7] with a preprogrammed
private seed which iteratively generates one-time passwords, or the device may
accept a challenge as an input and then output a response from a pseudorandom
function based on the seed and that challenge. We show that pseudorandomly
generated passwords can be safely used in one-time-PAKE protocols.

Suppose P is secure one-time-PAKE protocol. We construct a new protocol
P̃ based on P that uses pseudorandomly generated passwords as follows.
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We modify the registration phase of P̃ as follows. For each (unordered) pair of
users {Â, B̂} ∈ Parties×Parties, choose a random seed seedÂ,B̂ ∈R {0, 1}λ, where
λ is a security parameter. Let F = {Fk} be a family of pseudorandom functions
[13]. For each one-time-password index ch ∈ Indices, set pwÂ,B̂,ch = FseedÂ,B̂

(ch).
The login phase of P̃ is exactly as in P , except that the passwords chosen in

the modified registration phase above are used. For the purposes of the security
model in Sect. 2.1, the RevealPW queries work exactly as before and only reveal
an individual password pwÂ,B̂,ch. No query reveals seedÂ,B̂.2

The only difference between P̃ and P is that pseudorandom passwords are
being used instead of random passwords. It is then easy to see that any efficient
adversary A that can defeat session key security or mutual authentication in P̃
can be used to build either an adversary A1 that breaks session key security or
mutual authentication in P , or an algorithm A2 that acts as a polynomial-time
distinguisher for the pseudorandom function family F . Thus P̃ is secure if P
is, and we see that pseudorandomly generated one-time passwords can be safely
used in any secure one-time-PAKE protocol.

5 Using Time-Dependent Pseudorandom Passwords

A further refinement to the use of pseudorandomly generated passwords is to use
passwords that also depend on the current time. This allows the client and server
to agree upon a challenge – the current time – without any communication, while
easily enforcing the one-time use of passwords.

For example, consider a hardware token for party Â interacting with party
B̂ which has a pseudorandom function FseedÂ,B̂

∈ F and an onboard clock. It
generates one-time passwords as follows. Let t be the hardware token’s current
time. Treat t as the one-time password index ch, and then compute

pwÂ,B̂,t = FseedÂ,B̂
(t) . (3)

User Â then participates in the one-time-PAKE protocol using pwÂ,B̂,t.
Whenever clocks are used by two parties, one must consider the issue of clock

skew, in which the two clocks may not be perfectly synchronized. For example,
ordinary quartz clocks drift at a rate of approximately 10−6 seconds per second,
or about 1 second every 12 days.

One solution is to have a common network time server that both parties use
for synchronization. This is problematic for two reasons: (1) the network time
server must be trusted (or at least dealt with in the security model); (2) all of

2 We could add a further query, say RevealPWSeed(Â, B̂), that does reveal the value
seedÂ,B̂ and then add an additional constraint to the definitions of freshness and au-
thentication so that an instance is not considered fresh if the relevant RevealPWSeed
query is called before the Test query. This enhanced model would make it clear that
corruption of one pair of users’ pseudorandom seed should not affect the security of
another pair of users. It is not hard to see that this construction would satisfy this
enhanced security model, assuming independent random seeds.
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the parties participating must have a way of synchronizing with the clock server;
an inexpensive, credit-card-sized hardware token may not be connected to the
network, making synchronization difficult or impossible.

Another method for dealing with clock skew is to have the server accept
multiple passwords from a small window around the server’s current time (say,
plus or minus 60 seconds). However, this is a problem for PAKE protocols, as the
server never receives the client’s password directly. Rather, each party uses what
it believes to be the password in the protocol, and at the end the two parties
know that the same password was used if and only if they arrive at the same
session key. This prevents the server from accepting multiple passwords as valid.
(Traditional one-time password systems often avoid this problem by having the
client send the password itself to the server over an existing encrypted but not
mutually authenticated channel.)

A simpler alternative mechanism for dealing with clock skew is for one party
(the initiator) to just tell the other party (the responder) what time t it used
in the protocol. If the time used by the initiator is acceptable to the respon-
der (say within plus or minus 60 seconds of the responder’s clock) then the
responder continues the protocol using the specified time. This provides a sim-
ple mechanism for ensuring both sides use the same time-dependent password
while accommodating clock skew.

Adjusting the model. In order to accommodate this alternate mechanism in the
security model described in Sect. 2.1, the definition of freshness would need to
be adapted (in part 3.(a) and 3.(b) of Definition 2) so that a responder instance
Π Û

(Û ′,t)
is fresh provided that no RevealPW(Û , Û ′, t) or RevealPW(Û ′, Û , t) query

was issued. This captures the notion that the authentication should be secure
as long as the currently valid password has not been revealed.

With this modified security definition, and assuming F is a secure family
of pseudorandom functions, one-time time-based passwords generated in equa-
tion (3) can be safely used in a secure one-time-PAKE protocol as a result of
the discussion about pseudorandom passwords in Sect. 4.

6 Analysis of the OPKeyX Protocol

The OPKeyX protocol [1] is a PAKE protocol that uses a sequence of passwords
derived via a hash chain from a single seed. The protocol is a verifier-based
protocol, meaning that the compromise of the value stored on the server should
not allow someone to impersonate the client. We note that [1] omits a complete
analysis of OPKeyX: it gives a proof for a non-verifier-based PAKE protocol in
the BPR model but no proof that OPKeyX, a verifier-based hash-chain variant
of the protocol, is also secure.

The sequence of passwords in OPKeyX is as follows. Each client Ĉ picks, for
each server Ŝ, a seed password pw. Let Nmax be the maximum number of login
sessions for the seed pw. During the registration phase, the client gives the server
its verifier VNmax ← fNmax+1(pw), where f is a random oracle [4] and f i denotes
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the i-fold application of f . The parties each maintain internal counters n of the
current login phase, starting from n = Nmax and decreasing to 1. During login
phase with internal counter equal to n, the client and server do an encrypted key
exchange where the Diffie-Hellman ephemeral public keys are encrypted using a
value derived from the verifier Vn = fn+1(pw). Then, the client encrypts fn(pw)
under a value s derived from the shared Diffie-Hellman key (but distinct from
the session key sk) and sends it to the client. The server decrypts to obtain V ′,
verifies Vn = f(V ′), and sets Vn−1 ← V ′ and n ← n− 1.

OPKeyX relies on the correct sequence of passwords being used. In the security
model for verifier-based one-time-PAKE in Section 2.2, we allow the adversary to
reveal one-time passwords in any order. As a result, OPKeyX cannot be a secure
verifier-based one-time-PAKE protocol in that sense. For example, an adversary
could reveal the password for session with counter i, which is f i+1(pw), and then
be able to derive the password for the earlier session with counter i+1 (recalling
that counters decrease as time passes), which is f i+2(pw) = f(f i+1(pw)). To
describe the security of OPKeyX, we would need to further restrict our model
so that a session is not fresh if the password or verifier of a subsequent session
has been revealed which, although weaker from a theoretical perspective, still
models a plausible practical scenario. The situation is even more complicated
if RevealSessionKey is deemed to reveal the value s (which encrypted the next
verifier V ′ and is in some sense a “session key”) in addition to sk, in which
case no earlier s value for the target users can have been revealed before the
Test query.

7 Conclusions

One-time password systems are already being widely deployed by banks, govern-
ments, and corporate virtual private networks (VPNs) to reduce the effects of
password compromise. Bank customers today are using sheets of paper with lists
of one-time passwords. Online shoppers and gamers today are using hardware
one-time password generators. The money being spent on deploying one-time
passwords is wasted if these passwords are not being used safely and securely.

By using one-time passwords in one-time-PAKE protocols, as we have pro-
posed in this paper, we can be assured that one-time passwords are being used
in a more secure way. We have presented a model for the secure use of one-time
passwords in PAKE protocols, taking into account the idea that such protocols
should be secure even if previous or future one-time passwords have been com-
promised. We have given a generic technique for constructing secure one-time
password protocols. Our construction can be used with pseudorandomly gener-
ated one-time passwords or time-based one-time passwords, providing greater
efficiency in one-time password distribution.

An important open problem based on this work is the task of determining
whether it is possible to construct one-time password protocols that are more
efficient than regular password protocols, as discussed in Sect. 3.3.

As with all cryptographic protocols, an essential precondition to security is
getting users to use the protocol. If an adversary can trick a user into entering
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their password in a non-secure manner so that the secure protocol is never used –
a so-called chosen protocol attack – then the cryptographic countermeasures are
bypassed. For any PAKE protocol to succeed, user training and user interface
design will be very important.

Spyware remains a significant threat to password security. In the face of pas-
sive spyware, such as a keystroke logger which collects information and occasion-
ally relays it back to the attacker, both traditional one-time password schemes
and one-time-PAKE are useful since used one-time passwords are useless to an
attacker. If the spyware is active – it captures a one-time password, terminates
the user’s connection, and immediately sends the password to the attacker – the
captured password may still be useful to an attacker, and it seems that neither
traditional one-time password schemes nor one-time-PAKE can do much unless
time-dependent passwords are used with careful expiration procedures.

An additional challenge is widespread deployment of such secure protocols.
Passwords, as they are used in HTTP and TLS on the Internet today, remain
susceptible to phishing attacks. The huge installed base of web browsers and
web servers has significantly slowed efforts to deploy PAKE. Our techniques,
like PAKE, require some changes to TLS implementations. It may be possible to
implement a large portion of a new security protocol as a browser add-on (like
a Firefox extension), making deployment easier.

Our approach may see more immediate application in corporate virtual private
network (VPN) software. Many corporate VPNs use one-time passwords now,
albeit in a less secure way than we have proposed. Moreover, both endpoints
– the user’s computer and the VPN server – are often under control of the
same organization and using software from the same vendor, making it easier to
deploy enhancements. An interesting avenue of future research is the integration
of secure PAKE and one-time-PAKE protocols into IPsec for use in corporate
VPNs. Indeed, IKEv2 (one of the key exchange protocols for IPsec) notes the
need for password authentication: after showing how to derive a shared key for
authenticated Diffie-Hellman key exchange in IKEv2, the RFC goes on to say:

“... deriving the shared secret from a password is not secure. This con-
struction is used because it is anticipated that people will do it anyway”
[16, p. 30].

One-time-password-authenticated key exchange is one way in which one-time
passwords can be used more securely.
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Abstract. We provide the first description of and security model for
authenticated key exchange protocols with predicate-based authentica-
tion. In addition to the standard goal of session key security, our security
model also provides for credential privacy: a participating party learns
nothing more about the other party’s credentials than whether they sat-
isfy the given predicate. Our model also encompasses attribute-based key
exchange since it is a special case of predicate-based key exchange.

We demonstrate how to realize a secure predicate-based key exchange
protocol by combining any secure predicate-based signature scheme with
the basic Diffie-Hellman key exchange protocol, providing an efficient and
simple solution.

Keywords: predicate-based, attribute-based, key exchange, protocols,
security models, cryptography.

1 Introduction

Two of the fundamental goals of key exchange are authentication and confiden-
tiality. Entity authentication inherently depends on some pre-established piece of
trusted information; the most common examples include a shared key, a shared
password, or a certified public key. Recently, cryptographers have developed ways
of providing more fine-grained access control in cryptographic operations.

Identity-based encryption allows a sender to encrypt a message for a recipient
based solely on the recipient’s identity (and public parameters for the system); in
other words, without requiring a recipient-dependent public key. The identities
used in identity-based cryptography may be simple usernames, but they could
contain more structured information as well, for example by appending an expiry
date or security level. The utility of this idea is limited by the fact that identities
must be encoded as strings, and a trusted key generation centre must generate
decryption keys for each resulting string.

In attribute-based encryption, a message can be encrypted so that it can
only be decrypted by keys whose attributes satisfy a certain policy. Attributes
are boolean variables, such as “student=false”, “CS department=false”, and
“Math department=true”, and policies are boolean functions. Decryption keys
are constructed based on the user’s attributes, and decryption only succeeds if

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 282–299, 2010.
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the user’s attributes satisfy the policy encoded in the ciphertext.1 Research in
attribute-based cryptography has focused on encryption and signatures.

The subject of this paper, predicate-based cryptography, is a generalization of
identity- and attribute-based cryptography. Like attribute-based cryptography,
it allows for fine-grained access control based on whether the given credentials
satisfy a certain policy. However, credentials and access policies can be more
general than in the attribute-based case. Credentials can consist of name-value
pairs, where the values can be from arbitrary sets, not just boolean values.
Access policies are expressed as predicates over the set of credentials, and can
for example involve equality, comparison, subset, AND, and OR gates. Existing
work in predicate-based cryptography has focused on encryption, particularly
on expanding the expressiveness of predicates.

Our goal in this work is to consider the use of predicate-based cryptography in
a multi-user interactive network setting, specifically examining the cryptographic
task of predicate-based authenticated key exchange.

1.1 Contributions

Predicate-based key exchange security model. We give the first security model for
authenticated key exchange using predicate-based authentication. Our security
model has two security experiments:

1. Session key security: The session key should be indistinguishable to an adver-
sary. Unlike attribute-based encryption, attribute-based group key exchange,
and predicate-based encryption, the session key should be secret even from
other parties satisfying the same predicates as either of the two original
parties in the key exchange.

2. Credential privacy: In a key exchange, it should not be possible for anyone
– including the legitimate peer – to learn anything more about a user’s
credentials other than whether they satisfy the chosen predicate. We argue
that this is an essential property for predicate-based key exchange: without
it, we might as well return to identity- or public-key-based key exchange
with certified lists of credentials.

When restricted to the special case of attribute-based credentials, our security
model for predicate-based key exchange also serves as the first full security model
for attribute-based key exchange.

A generic predicate-based key exchange protocol. We present a protocol for
predicate-based key exchange that satisfies the two security properties above, ses-
sion key security and attribute privacy. The protocol is a signed-Diffie-Hellman
construction that can be used with any secure predicate-based signature scheme.
Although our definition of predicate-based signature scheme is new, attribute-
based signature schemes are a special case of predicate-based signatures, so
attribute-based signatures can be employed in our protocol construction.
1 We have described ciphertext-policy attribute-based encryption, in which keys have

attributes and ciphertexts have policies. These can be switched to obtain key-policy
attribute-based encryption.
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Outline. The remainder of this paper is organized as follows. We begin in Sect. 2
with a motivating example. We review existing work in Sect. 3 and introduce
notation in Sect. 4. In Sect. 5, we present our security model for predicate-based
key exchange protocols – including session key security and attribute privacy
– and comment on implementation issues. We define predicate-based signature
schemes in Sect. 6, and show in Sect. 7 how to build a secure predicate-based
key exchange protocol using predicate-based signatures and a Diffie-Hellman
construction. We conclude in Sect. 8.

2 Motivation

When one party wishes to establish a shared secret key with another party, it
may not be as simple as Alice saying that she wants to talk to Bob. Alice may
in fact wish to talk a customer service supervisor in the international trading
group of the Bank of Bob. In other words, Alice has an policy against which she
checks the credentials of the other party. Predicate-based cryptography allows
parties to specify fine-grained access control policies and has been used in the
context of encryption. It is natural to consider the problem in the context of key
exchange, which allow two parties to authentically establish a secure channel.

We begin with a motivating example, drawn from the health care industry.
Imagine a patient who wishes to communicate with a psychologist about a men-
tal illness issue. What are some security goals for each party? The goals of the
patient are to ensure that she is communicating with a qualified registered psy-
chologist, to use a confidential channel so that no one can eavesdrop, and to
maintain her anonymity so her disclosures about her mental illness cannot be
used prejudicially against her in another context. The goals of the psychologist
are to verify that the patient has valid insurance coverage from an insurer and
to ensure that no one else can eavesdrop on the conversation so as to maintain
patient-doctor confidentiality.

There are four types of security goals seen in the example above. The first
goal is policy-based authentication, where one party can be confident the other
party’s credentials satisfy some security policy, and moreover that multiple par-
ties cannot collude to combine their credentials to satisfy a policy that none of
them individually satisfies. The second goal is confidentiality, where the parties
are ensured that no one except the other authenticated party is able to read
their communications; this means only the party with whom we started commu-
nicating, not just any partner who satisfies the authentication policy, for we do
not want all patients to be able to read messages sent to one patient. The third
and fourth goals are interrelated: we seek anonymity, so an adversary cannot
distinguish between two parties who have credentials satisfying the same pol-
icy, and credential privacy, meaning that no information is leaked about which
precise combination of credentials were used to satisfy the policy.

We aim to achieve these security goals using predicate-based key exchange.
The credentials held by a party can be expressed using name-value pairs as-
signed by one or more credential authorities. For example, a patient with medical
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insurance may have a private key with the credentials “Employer = Acme Wid-
gets”, “Coverage = Gold”, “Expires = 2011/06/30”, and “Insurer = Red Cross”.

The policy used by party to evaluate credentials will be expressed as a predi-
cate over credentials; the predicate may be composed of a variety of operations,
such as equality and subset tests, AND, OR, and threshold gates, and compar-
isons. A natural example of a predicate is a threshold access tree. Leaves of a
threshold access tree consist of boolean-valued functions such as equality tests
and comparisons. Interior nodes of a threshold access tree indicate how many of
the children nodes must be satisfied; for example, a node with threshold 1 having
4 children corresponds to an OR gate, while a node with threshold n having n
children corresponds to an AND gate. An example threshold access tree for the
case of a psychologist checking medical insurance is given in Fig. 1.

Threshold = 3 (AND)

Coverage = Gold Threshold = 1 (OR)

Insurer = Blue Cross Insurer = Red Cross

Expires ≥ 2010/07/05

Fig. 1. A threshold access tree for checking medical insurance coverage

3 Related Work

Identity-, attribute-, and predicate-based encryption. Identity-based encryption,
in which individual parties need not have public keys but only identity strings,
was first proposed by Shamir [25] and has recently been the subject of much
research. It was extended by Sahai and Waters [23] to fuzzy identity-based en-
cryption in which parties must match at least a certain number – a threshold –
of attributes. An attribute, usually labeled by a string, is a boolean variable: it
is either present or absent. Goyal et al. [11] extended fuzzy identity-based en-
cryption to attribute-based encryption supporting boolean threshold access tree
predicates, which consist of boolean combinations of attributes using AND, OR,
and threshold gates.

Boneh and Waters [5] extended credentials from boolean variable attributes to
arbitrary values and supported encryption using predicates consisting of equality
conjunctions, comparison conjunctions, and subset conjunctions; the support of
arbitrary, not just boolean, values is what distinguishes predicate-based cryptog-
raphy from attribute-based cryptography. Katz et al. [13] developed a technique
for disjunctive predicates and inner products and Shen et al. [26] introduced
the notion of predicate privacy for symmetric encryption. The improvement of
predicate expressivity continues to be an active area of research.
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Key exchange. The first protocol for identity-based key exchange was presented
by Günther in 1989 [12] but it was not until 2003 that the first formal secu-
rity model for identity-based key exchange protocols was proposed by Chen and
Kudla [8]; their model was an extension of the public key authenticated key
exchange security model of Blake-Wilson et al. [3] (itself based on the Bellare-
Rogaway model [2]). Kudla and Paterson [18] subsequently created a generic key
exchange security model to allow for modular security proofs which is also suit-
able for identity-based key exchange. A more refined security model for identity-
based key exchange was proposed by Chen, Cheng, and Smart [7]. A common
approach to designing secure key exchange protocols is using a signed-Diffie-
Hellman construction (for example, [6]).

Wang, Xu, and Ban [27] and Wang, Xu, and Fu [28,29] have protocols for
what they call attribute-based key agreement protocols (in the random oracle
and standard models, respectively). The security proofs treat attributes as iden-
tification strings and then revert to the security model of Chen et al. [7] for
identity-based authenticated key exchange. These two papers provide no mech-
anism for evaluating policy predicates and do not consider attribute privacy at
all. As such, we consider these schemes to be merely identity-based. Ateniese et
al. [1] provide a protocol for secret handshakes – key exchange where participat-
ing parties do not learn either the credentials or the predicate of the other party
unless the protocol succeeds – using fuzzy attribute matching. Their protocol is
secure in the fuzzy selective ID model for encryption [23].

Gorantla et al. [10] present a protocol for attribute-based group key exchange,
which differs from our work in that all members of the group satisfying the
predicate can compute the session key. In contrast, we allow each user to specify
a predicate which the peer must satisfy, and these predicates need not be the
same; moreover, in our approach the session key can only be computed by the
two participants in the key-exchange protocol, not all parties that satisfy the
predicate; this is related to the notion of forward-security.

Signature schemes. Attribute-based signatures were first introduced by Maji et
al. [22], who provided a scheme that supported predicates containing threshold
access trees, with a proof in the generic group model. Additional schemes sup-
porting single threshold gates, in either the standard or random oracle models,
have been proposed by Shahandashti and Safavi-Naini [24] and Li et al. [20], and
a scheme with threshold access trees was given by Khader [16]. These schemes
all achieve the goal of attribute privacy, in which the attributes used to satisfy
a predicate are unknown the verifier. An attribute-based authentication scheme
was proposed by Khader et al. [17] with some additional properties beyond sig-
nature schemes such as traceability by an authorized entity.

There are also a number of attribute-based group or ring signature schemes
that provide lesser privacy guarantees, namely that the signer is anonymous
among all signers possessing the same attributes [15,14,21].
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4 Notation

We will use different typefaces to refer to variables, algorithms and oracles, and
constants. The notation a ← B(c) indicates that algorithm B is run on input
c and the output is assigned to a, and a

R← X denotes a value x being chosen
uniformly at random from the set X . We use the notation B(c) → a and B(c) R→ a
when defining deterministic and probabilistic algorithms, respectively, with input
c and output a. We let λ ∈ Z+ denote a security parameter. We typically use A
to denote the adversary; AB(·) denotes A run with oracle access to B. Suppose
A is a finite set of size n and A ∈ A; IA denotes the binary indicator vector of
length n for the set A (assuming a canonical ordering). ⊥ denotes a null value.
We use G to denote a finite cyclic group, typically of order q and generated by
g. A function f is negligible if, for sufficiently large x, |f(x)| is smaller than the
inverse of any polynomial in x.

Credentials and predicates. Let C be a finite set; we will call C the set of creden-
tials. A predicate is a function Φ : C → {true, false}. We say that a credential
C ∈ C satisfies a predicate Φ if Φ(C) = true. Let P ⊆ {true, false}C denote a
set of predicates.

5 Predicate-Based Key Exchange

In this section, we define the functionality and security of a predicate-based key
exchange protocol.

Definition 1 (Predicate-based key exchange protocol). Let λ be a se-
curity parameter. A predicate-based key exchange protocol Π consists of the
following algorithms:

– Setup(1λ) R→ (MPK, MSK): Returns public parameters MPK and a master
secret MSK. The public parameters must uniquely define the key space K,
the set C of credentials used in the system and a set P of predicates over C;
we implicitly assume MPK is an input to all subsequent algorithms.

– KeyGen(MSK, C ∈ C) R→ sk: The credential issuing authority generates a
secret key sk corresponding to the credentials C ∈ C

– Initiate(sk, role ∈ {init, resp}, Φ ∈ P) R→ state: The user initiates a new
session with the given role and predicate Φ.

– Action(sk, m, state) R→ (m′, state, status, k): This is the core of the protocol:
it takes a secret key, an incoming message (or the empty string if no messages
have yet been exchanged) and the corresponding session state as input and
returns the next message in the the protocol, an updated session state, the
status of the session (either Incomplete, Established, or Failed), and a
session key k ∈ K, which should be set to ⊥ until the session is Established.

We have defined predicate-based key exchange in terms of non-interactive algo-
rithms so that it is independent of any networking layer for message delivery. In
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particular, we deliberately do not specify how the user determines what predi-
cates to use or to which session an incoming message belongs. For example, when
using TCP over the Internet, messages may be directed to an IP address (spec-
ifying the user) and a port number (specifying the session), but a key-exchange
protocol should be substrate-neutral: whether messages are delivered by car-
rier pigeon or pneumatic tube, the protocol actions are the same. In the case
of predicate-based key exchange, these implementation issues have important
implications for the security properties we desire, and any application making
use of predicate-based key exchange must take them into consideration. We will
discuss problems that arise from these networking details further in Sect. 5.3.

5.1 Correctness

A predicate-based key exchange is correct if, whenever two users who each satisfy
their peer’s predicate run the protocol over a benign network which faithfully
delivers their messages unaltered, both parties complete the session in state
Established and they agree on a key.

Let role(j) = R if j is even and role(j) = I if j is odd. Let Correct(MSK, CI ,
CR, ΦI , ΦR) be as follows: Set skI ← KeyGen(MSK, CI) and skR ← KeyGen(
MSK, CR). Let stateI ← Initiate(skI , init, ΦI), and stateR ← Initiate(skR, resp,
ΦR). Set (m1, stateI , statusI , k) ← Action(skI ,⊥, stateI). For j = 1, . . . , r − 1,
set (mj+1, staterole(j+1), statusrole(j+1), krole(j+1)) ← Action(skrole(j), mj ,
staterole(j)). If statusI = Established = statusR and kI = kR, then return
true, otherwise return false.

Definition 2 (Correctness). A predicate-based key-exchange protocol is said
to be correct if, for (MPK, MSK) ← Setup(1k), for all ΦI , ΦR ∈ P and for all
CI , CR ∈ C such that ΦR(CI) = true = ΦI(CR),

Pr(Correct(MSK, CI , CR, ΦI , ΦR) = true) = 1 .

5.2 Security Model

We require a predicate-based key exchange protocol to satisfy two security prop-
erties: session-key security and credential privacy. Our security model combines
aspects of the Bellare-Rogaway [2] model for key exchange, the Maji et al. model
for attribute-based signature schemes [22], and aspects of predicate-based en-
cryption from Boneh and Waters [5]. We define these properties using two secu-
rity experiments, each played by an adversary against a challenger.

In both security experiments, the challenger maintains a list of users U1, . . . ,
UN , which is not fixed, but is under the control of the adversary. Each user Uu

has credentials Cu and a secret key sku, and the challenger maintains a numbered
list of sessions, su,1, . . . , su,nu , with the following associated variables:

– mu,�,1, . . . , mu,�,i: The protocol messages exchanged in session su,�.
– stateu,�: The private session state information.
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– statusu,� ∈ {Established, Incomplete,Failed}: The status of the session.
– ku,� ∈ K: The session key.
– Φu,� ∈ P: The predicate which the peer of the session must satisfy.
– Φ′

u,� ∈ P: The predicate which the owner of the session must satisfy; in
our example construction, this value is sent to the peer as part of the first
protocol message, but it could in principle be specified by some other means.

– roleu,� ∈ {init, resp}: The role (initiator or responder) played by the user
Uu in session �.

We now present the queries available to the adversary in both games:

– Create(C ∈ C): The challenger increments N , the number of users, sets
CN ← C, computes skN ← KeyGen(MSK, CN ) and returns N .

– Activate(u, role, Φ ∈ P): The challenger increments nu, sets stateu,nu ←
Initiate(sku, role, Φ), and returns nu.

– Send(u, �, mu,�,i): The challenger sets (mu,�,i+1, stateu,�, statusu,�, ku,�) ←
Action(sku, mu,�, stateu,�) and returns (mu,�,i+1, statusu,�). If roleu,� = init
and i = 0, then mu,�,i must be ⊥.

– SKReveal(u, l): Returns ku,�.
– Corrupt(u): Returns sku.

Session Key Security. The definition of session key security is based on the
idea that an adversary should not be able to distinguish the session key of a
sufficiently uncompromised session from a random string, except with negligi-
ble probability. First, we adapt the Bellare-Rogaway definition of a matching
conversation [2] to our setting as follows.

Definition 3 (Matching session). A session su′,�′ is a matching session of a
session su,� if Φu,� = Φ′

u′,�′ , Φ′
u,� = Φu′,�′ , and any of the following rules hold.

– For protocols where r, the number of rounds, is odd:
• roleu,� = init, roleu′,�′ = resp, and (mu,�,1, . . . , mu,�,r−1) =

(mu′,�′,1, . . . , mu′,�′,r−1);
• roleu,� = resp, roleu′,�′ = init, and (mu,�,1, . . . , mu,�,r) =

(mu′,�′,1, . . . , mu′,�′,r).
– For protocols where r is even:

• roleu,� = init, roleu′,�′ = resp, and (mu,�,1, . . . , mu,�,r) =
(mu′,�′,1, . . . , mu′,�′,r);

• roleu,� = resp, roleu′,�′ = init, and (mu,�,1, . . . , mu,�,r−1) =
(mu′,�′,1, . . . , mu′,�′,r−1).

This captures the idea that the owner and the peer in the matching session
must satisfy each other’s predicates and agree on all of the messages exchanged,
except perhaps if the owner of the session su,� sent the final message. In this
case the owner of the session completes the protocol without knowing if the final
message was delivered, or if a different message was delivered instead, so we do
not require that the final messages are equal in this case. Note that the relation
“is a matching session of” is not symmetric!
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Definition 4 (Session key security). Let λ be a security parameter and let
A be a polynomial-time (in λ) probabilistic algorithm. A predicate-based key ex-
change protocol Π is session-key-secure if

AdvPB-SK
Π,A (λ) :=

∣∣∣∣Pr
(
ExptPB-SK

Π,A (λ) = true
)
− 1

2

∣∣∣∣
is negligible, where ExptPB-SK

Π,A (λ) is the following algorithm:

1. Set (MPK, MSK) ← Setup(1λ).
2. Let Test(u, �) be the following algorithm. Choose a bit b

R← {0, 1} at random.
If b = 0, then return ku,�, otherwise return k

R← K.
3. Set b′ ← A(MPK), where A has oracle access to Create, Activate, Send,

SKReveal, Corrupt, and Test. A is restricted as follows:
– A may make a single query to the Test oracle; let u, � be the arguments

to that query.
– A must not have made any query of the form Corrupt(u′) for any u′ such

that Φu,�(Cu′ ) = true prior to the Test query.
– When the Test query is made, it must be that statusu,� = Established.
– A may not query SKReveal(u, �) or SKReveal(u′, �′) for any (u′, �′) such

that su′,�′ is a matching session of su,�, even after the Test query is made.
4. If b′ = b, then return true, otherwise return false.

Collusion resistance. This definition of session key security also implies collusion
resistance, since the adversary may perform Corrupt queries for multiple users
with credentials that collectively, but not individually, satisfy the predicate.

Credential Privacy. For the credential privacy experiment, the adversary
should not be able to distinguish between two users whose credentials satisfy
the same predicate, even if they have different credentials.

Definition 5 (Credential privacy). Let λ be a security parameter and let A be
a polynomial-time (in λ) probabilistic algorithm. A predicate-based key exchange
protocol Π is credential-private if

AdvPB-Priv
Π,A (λ) :=

∣∣∣∣Pr
(
ExptPB-Priv

Π,A (λ) = true
)
− 1

2

∣∣∣∣
is negligible, where ExptPB-Priv

Π,A (λ) is the following algorithm:

1. Set (MPK, MSK) ← Setup(1λ).
2. Let TestActivate(u0, u1, role, Φ ∈ P) be the following algorithm. Choose a bit

b
R← {0, 1} at random. Set state∗ ← Initiate(skub

, role, Φ) and return ⊥.
3. Let Send∗(m∗

i ) be the following algorithm. Set (m∗
i+1, state∗, status∗, k∗) ←

Action(skub
, m∗

i , state∗) and return m∗
i+1.

4. Set b′ ← A(MPK), where A has oracle access to Create, Activate, Send,
Send∗, SKReveal, Corrupt, and TestActivate. A is restricted as follows:



Predicate-Based Key Exchange 291

– A may make a single query to the TestActivate oracle.
– The predicate Φ′∗ which Cub

has to satisfy (which is determined by the
Send∗(·) queries made by the adversary) must be chosen so that Φ′∗(Cu0)
= Φ′∗(Cu1 ). (If this were not the case then the adversary could trivially
distinguish Uu0 from Uu1 .)

5. If b′ = b, then return true, otherwise return false.

Credential privacy captures the notion of anonymity: the adversary cannot dis-
tinguish between two users satisfying the same predicate. It also ensures that the
adversary cannot tell whether two sessions with the same predicate are owned by
the same user; we call this property unlinkability. To see why this holds, suppose
that an adversary executes a session with Uu0 , and the test session with Uub

using the same predicate. If the adversary could tell whether those two sessions
are owned by the same user, then it can discover the identity of Uub

and win the
credential privacy experiment.

5.3 Implementation Issues

Credential privacy is an essential feature of any predicate-based key exchange
protocol. If an application does not need credential privacy, then standard public
key or identity-based systems may be used in combination with a credential-
issuing authority which simply issues a certificate on the users public key declar-
ing that they hold a given credential. This shows that there is simply no need
for predicate-based key exchange unless credential-privacy is desired.

Our definition of credential privacy ensures that the contents of the protocol
messages exchanged reveal no information about either party’s credentials, ex-
cept whether they satisfy their peer’s chosen predicate. Unlike predicate-based
encryption or signatures, predicate-based key exchange faces an additional chal-
lenge: users need to be identified by some means in order to deliver messages.
It seems unavoidable that this should leak some information about a user’s cre-
dentials, but we will discuss some approaches that may be fruitful.

Suppose that a predicate-based key exchange protocol is used on an IP net-
work, with each user having a fixed IP address. An adversary may initiate multi-
ple sessions with the same user using different predicates to exhaustively search
the credential space. A user initiating a session may mitigate this problem if
she is able to obtain a new IP address for each session, for example by using
tunnelling, or an anonymising service such as Tor [9]. Unfortunately, a user act-
ing as a responder cannot use this solution, since the initiator must know an
address to initiate a session. Depending on the application, it may be that only
the initiator needs credential privacy. In the example from Sect. 2, the patient
desires to remain anonymous when discussing their mental-health problems, but
it seems unlikely that the psychologist has the same requirement. However, a
society of secretive psychologists acting together could preserve some degree of
anonymity by operating a trusted proxy which knows their individual creden-
tials, and could choose a psychologist who satisfies a given predicate at random
from among the society.
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6 Predicate-Based Signature Schemes

Our definition of predicate-based signature schemes is a natural extension from
the definition of attribute-based signature schemes [22].

Definition 6 (Predicate-based signature scheme). Let λ be a security pa-
rameter. A predicate-based signature scheme S is a tuple consisting of the fol-
lowing polynomial-time (in λ) algorithms:

– Setup(1λ) R→ (mpk, msk): The credential authority obtains a master private
key msk and public parameters mpk. The public parameters must uniquely
define the set C of credentials and a set P of predicates over C; we assume
mpk is an implicit input to all subsequent algorithms.

– KeyGen(msk, C ∈ C) R→ sk: The authority generates a signing key sk for
credentials C.

– Sign(sk, m, Φ ∈ P) R→ σ: The signer generates a signature σ for a message m
and predicate Φ, provided sk was generated with C such that Φ(C) = true.

– Verify(m, Φ ∈ P, σ) → {true, false}: The verifier checks if σ is a valid sig-
nature on m for predicate Φ.

Definition 7 (Correctness). A predicate-based signature scheme S is correct
if, for (mpk, msk) ← Setup(1λ), all messages m, all credentials C ∈ C, all
signing keys sk ← KeyGen(msk, C), and all predicates Φ ∈ P such that Φ(C) =
true, we have Pr (Verify (m, Φ, Sign (sk, m, Φ)) = true) = 1.

Definition 8 (Perfect privacy). A predicate-based signature scheme S is per-
fectly private if, for (mpk, msk) ← Setup(1λ), all messages m, all credentials
C1, C2 ∈ C, all signing keys sk1 ← KeyGen(msk, C1), sk2 ← KeyGen(msk, C2),
and all predicates Φ ∈ P such that Φ(C1) = Φ(C2) = true, the distributions
Sign(sk1, m, Φ) and Sign(sk2, m, Φ) are equal.

A perfectly private predicate-based signature scheme does not leak any informa-
tion about which credentials or secret keys were used in signing.

Definition 9 (Unforgeability). Let λ be a security parameter and let A be a
polynomial-time (in λ) probabilistic algorithm. A perfectly private predicate-based
signature scheme S is unforgeable if

AdvPB-Forge
S,A (λ) := Pr

(
ExptPB-Forge

S,A (λ) = true
)

is negligible, where ExptPB-Forge
S,A (λ) is the following algorithm:

1. Set (mpk, msk) ← Setup(1λ).
2. Let AltSign(msk, m, C ∈ C, Φ ∈ P) be an algorithm that, provided Φ(C) =

true, sets sk ← KeyGen(msk, C), and returns Sign(sk, m, Φ).
3. Set (m, Φ, σ) ← AKeyGen(msk,·),AltSign(msk,·,·)(mpk).
4. If Verify(m, Φ, σ) = true, B never queried AltSign(m, ·, Φ), and B never

queried KeyGen(C) for any C ∈ C such that Φ(C) = true, then return
true, otherwise return false.
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The security experiment for unforgeability is slightly different than is typical for
signature schemes, because the signing oracle generates a new key for each signa-
ture rather than using an existing key. However, for a predicate-based signature
scheme with perfect privacy, the signature depends on the predicate used, but
not the specific credentials (or secret key), so the definition is appropriate.

An example instantiation. Attribute-based signature schemes are a special case
of predicate-based signature schemes. We can rewrite the notation of attribute-
based signature schemes in terms of the more expressive notation of predicate-
based schemes, as indicated in Fig. 2. Thus, all attribute-based schemes are
predicate-based schemes, but in general predicate-based schemes are more ex-
pressive than attribute-based schemes. It follows that existing secure attribute-
based schemes [22,24,17] are also secure predicate-based signature schemes.

Attribute-based [22] Predicate-based (Sect. 4)

Credential universe A, |A| = n C = {0, 1}|A|

Credentials A ⊆ A C ∈ C, C = IA

Predicate Υ : {0, 1}n → {true, false} Φ : C → {true, false}
A satisfies Υ iff Υ (IA) = true C satisfies Φ iff Φ(C) = true

Fig. 2. Representation of attribute-based notation in predicate-based notation

7 A Signed Diffie-Hellman Construction

We present a simple signed-Diffie-Hellman protocol using a secure predicate-
based signature scheme and a group in which the Decisional Diffie-Hellman
(DDH) problem is hard.

Definition 10 (Decisional Diffie-Hellman problem [4]). Let (Gλ)λ∈N be a
family of multiplicatively written cyclic groups of prime order qλ, indexed by a
security parameter λ. Fix a security parameter λ; let g be a generator of Gλ and
let x, y, z

R← Zqλ
. For any probabilistic polynomial-time algorithm A, we define

AdvDDH
Gλ,A(λ) = |Pr (A(g, gx, gy, gz) = 1)− Pr (A(g, gx, gy, gxy) = 1)| .

The DDH problem is hard if, for any probabilistic polynomial-time algorithm A,
AdvDDH

Gλ,A(λ) is negligible.

7.1 Protocol Definition

Let S = (SetupS , KeyGenS , Sign, Verify) be a predicate-based signature scheme.
We define the protocol ΠS,G as the following tuple of algorithms:

– Setup(1λ): Set (mpk, msk) ← SetupS(1λ); recall that mpk defines a set C

of credentials and a set P of predicates over C. Let G = Gλ be a finite
cyclic group of order q = qλ generated by g. Set MPK ← (mpk, G, g, q) and
MSK ← msk. Return (MPK, MSK).
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– KeyGen(MSK, C ∈ C): Return KeyGenS(msk, C).
– Initiate(sk, init, ΦI): Return state ← ΦI .
– Initiate(sk, resp, ΦR): Return state ← ΦR.
– Action(sk, m, state): For clarity, we write the protocol action as four separate

algorithms which may be combined in the natural way. We also present the
protocol diagrammatically in Fig. 3.
• InitiatorAction1(sk,⊥, ΦI): Set x

R← Zq and X ← gx. Set m′ ← (X, ΦI)
and state′ ← (ΦI , x). Return (m′, state′, Incomplete,⊥).

• ResponderAction1(sk, (X, ΦI), ΦR): If ΦI(CR) = false, then return
(⊥,⊥,Failed,⊥). Otherwise, set y

R← Zq and Y ← gy. Set σR ←
Sign(sk, (resp, X, ΦI , Y, ΦR), ΦI). Set m′ ← (Y, ΦR, σR) and state′ ←
(X, ΦI , Y, y, ΦR, σR). Return (m′, state′, Incomplete,⊥).

• InitiatorAction2(sk, (Y, ΦR, σR), (ΦI , x)): If Verify((resp, X, ΦI , Y, ΦR),
ΦI , σR) = false or ΦR(CI) = false, then return (⊥,⊥,Failed,⊥). Set
σI ← Sign(sk, (init, X, ΦI , Y, ΦR, σR), ΦR). Set k ← Y x. Return (σI ,⊥,
Established, k).

• ResponderAction2(sk, σI , (X, ΦI , Y, y, ΦR, σR)): If Verify((init, X, ΦI , Y,
ΦR, σR), ΦR, σI) �= true, then return (⊥,⊥,Failed,⊥). Set k ← Xy.
Return (⊥,⊥,Established, k).

It is easy to see that the ΠS,G is correct when the signature scheme is correct.

7.2 Credential Privacy

Theorem 1. If S is a perfectly-credential-private signature scheme, then ΠS,G

is credential-private.

Proof (sketch). Consider the test session in the credential privacy experiment
for the predicate-based key exchange protocol. If ub does not satisfy the chosen
predicate Φ′∗, specified by the adversary – that is, if Φ′∗(Cub

) = false – then the
session terminates with status Failed, by definition of the protocol. However,
the choice of Φ′∗ is restricted so that Φ′∗(Cu0) = Φ′∗(Cu1), so in this case the
responses of the challenger are independent of the bit b. Similarly, if Φ′∗(Cub

) =
true, the distribution of the signature returned to the adversary does not depend
on the bit b by the perfect privacy of S. Since the bit b is not used in answering
any other queries, we now see that the responses to the adversary’s queries are
all independent of b, so Pr(b′ = b) = 1

2 and AdvPB-Priv
ΠS,G,A (λ) = 0. �

7.3 Session Key Security

Theorem 2. If S is an unforgeable signature scheme and the DDH problem is
hard in G, then ΠS,G is session-key secure.

Proof. Let A be an adversary against the session key security of ΠS,G and con-
sider the experiment ExptPB-SK

ΠS,G
(λ). Let u∗, �∗ be the test session. Define M to

be the event that a matching session su′,�′ of su∗,�∗ exists.
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ΠS,G – Protocol flow
Initiator Responder
secret key skI secret key skR

responder predicate ΦI initiator predicate ΦR

InitiatorAction1
x

R← Zq, X ← gx X,ΦI−−−−−−→ ResponderAction1
y

R← Zq, Y ← gy

σR ← Sign(skR, (resp, X,

InitiatorAction2 Y,ΦR,σR←−−−−−− ΦI , Y, ΦR), ΦI)
If ¬Verify((resp, X, ΦI , Y,

ΦR), ΦI , σR) then
status ← Failed
Abort

σI ← Sign(skI , (init, X, ΦI , Y,
ΦR, σR), ΦR)

k ← Y x

status ← Established
σI−−−−−−→ ResponderAction2

If ¬Verify((init, X, ΦI , Y,
ΦR, σR), ΦR, σI) then

status ← Failed
Abort

k ← Xy

status ← Established

Fig. 3. Protocol flow of ΠS,G

Case 1: No session matching su∗,�∗ exists (event ¬M). We construct an adver-
sary B against the unforgability of S as follows. B runs A(mpk) and simulates
the challenger’s responses according to the definition of the ExptPB-SK

ΠS,G,λ, with the
following modifications: whenever the challenger would compute Sign(sku, m, Φ)
(while responding to a Send query), B instead queries the AltSign oracle on input
(msk, m, Cu, Φ). Whenever A makes a Corrupt(u) query, B responds by querying
KeyGenS(Cu) and returning the result.

Now consider the test session su∗,�∗ . By the definition of ΠS,G, mu∗,�∗,1 =
(X, Φu∗,�∗) for some X ∈ G, mu∗,�∗,2 = (Y, Φ′

u∗,�∗ , σR) for some Y ∈ G, and
mu∗,�∗,3 = σI . When A terminates, if roleu∗,�∗ = init, then B chooses m∗ ←
(resp, X, Φu∗,�∗ , Y, Φ′

u∗,�∗) as the message to forge a signature on and returns
(m∗, Φu∗,�∗ , σR) as the forgery. If roleu∗,�∗ = resp, B chooses m∗ ← (init, X,
Φ′

u∗,�∗ , Y, Φu∗,�∗ , σR) and returns (m∗, Φu∗,�∗ , σI) as the forgery.
We must now show that if the test session has no matching session, then B

satisfies the requirements of Definition 9, namely that Verify(m, Φ, σ) = true,
B never queried AltSign(msk, m, ·, Φ) and B never queried KeyGenS(C) for any
credential C such that Φ(C) = true.

Since the test session must be an Established session, it follows that Verify(
m, Φu∗,�∗ , σR) = true. Because of the constraints on A concerning the test ses-
sion, it follows that A never queried Corrupt(u) for any u satisfying Φu∗,�∗(Cu) =
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true, which implies that B never queried KeyGenS(C) for any credential C such
that Φu∗,�∗(C) = true.

Finally, suppose A made a query of the form Send(u′, �′, mu′,�′,i) which caused
B to query AltSign(m∗, C, Φu∗,�∗), where m∗ is the forged message defined above.

If roleu∗,�∗ = init, then m∗ = (resp, X, Φu∗,�∗ , Y, Φ′
u∗,�∗), and the only cir-

cumstances where B could query AltSign(msk, m∗, C, Φu∗,�∗) are if Φu′,�′ =
Φ′

u∗,�∗ , Φ′
u′,�′ = Φu∗,�∗ , mu′,�′,1 = (X, Φ′

u′,�′), and mu′,�′,2 = (Y, Φu′,�′ , σR): in
other words, when su′,�′ is a matching session of su∗,�∗ , contradicting our original
assumption. Conversely, if roleu∗,�∗ = resp, then m∗ = (init, X, Φ′

u∗,�∗ , Y, Φu∗,�∗ ,
σR), and if B queried AltSign(m∗, C, Φu∗,�∗) then Φu′,�′ = Φ′

u∗,�∗ , Φ′
u′,�′ = Φu∗,�∗ ,

mu′,�′,1 = (X, Φu′,�′), mu′,�′,2 = (Y, Φ′
u′,�′ , σR) and mu′,�′,3 = σI . Once again

this implies that su′,�′ is a matching session of su∗,�∗ contradicting our original
assumption.

Therefore B wins the forgery game whenever A selects a test session with no
matching session, so Pr(¬M) = AdvPB-Forge

S,B (λ), which is negligible.

Case 2: There is a session su′,�′ which matches su∗,�∗ (event M). Since su∗,�∗

is required to be Established, and su′,�′ matches su∗,�∗ by assumption, we see
that mu∗,�∗,1 = (X, Φu∗,�∗) = (X, Φ′

u′,�′) = mu′,�′,1, mu∗,�∗,2 = (Y, Φu′,�′ , σR) =
(Y, Φ′

u∗,�∗ , σR) = mu′,�′,2.
In particular, this shows that both X and Y were chosen by the challenger

in response to the corresponding Send queries. This allows us to construct a
DDH adversary C as follows. Let qActivate(λ) be an upper bound on the num-
ber of Activate queries that an adversary in the PB-SK experiment makes. The
adversary C takes a DDH tuple (g, X∗, Y ∗, Z∗) as input and chooses i, j

R←
{1, . . . , qActivate(λ)}. It then generates a key pair (mpk, msk) ← KeyGenS(1λ)
and runs A(msk). C responds to all of A’s queries according to the rules of
ExptPB-SK

ΠS,G,A(λ), except that it inserts the Diffie-Hellman values X∗ and Y ∗ into
the ith and jth sessions instead of generating a random group element. We re-
fer to these session as si and sj . If A queries SKReveal(si) or SKReveal(sj), C
aborts. When A queries Test(su∗,�∗), C aborts unless su∗,�∗ = si and su′,�′ = sj .
Assuming it does not abort, C sets k ← Z∗. When A terminates and returns a
guess b′, C returns b′ as its guess for the DDH problem.

Since the test session su∗,�∗ and its matching session su′,�′ are chosen by the
adversary A independently of the choice of i and j, Pr(C does not abort) ≥

1
q2

Activate
. Whenever it does not abort, C wins the DDH game if and only if A wins

the PB-SK experiment.
Combining results from Case 1 and Case 2, we see that

AdvPB-SK
ΠS,G,A(λ) = Pr(b′ = b) = Pr(b′ = b|M) Pr(M) + Pr(b′ = b|¬M) Pr(¬M)

≤ 1
q2
Activate(λ)

AdvDDH
G,C (λ) Pr(M) + Pr(b′ = b|¬M)AdvPB-Forge

S,B (λ)

≤ 1
q2
Activate(λ)

AdvDDH
G,C (λ) + AdvPB-Forge

S,B (λ)

which is negligible as required. �
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8 Conclusions

We have introduced the notion of predicate-based key exchange, given a secu-
rity model, and presented a secure protocol satisfying the security definitions.
Our security model for predicate-based key exchange can also be specialized to
attribute-based key exchange, a cryptographic task for which there was previ-
ously no rigourous security definition.

Our security model incorporates two notions of security: session key security
and credential privacy. We have argued that credential privacy is an essential
property of predicate-based key exchange; without it, we might as well use certifi-
cates to link public keys and a list of credentials. However, achieving credential
privacy requires careful consideration of the networking layer over which the
protocol runs, as the addressing information of messages – the packet headers –
may leak information. In practice, then, a secure deployment of predicate-based
key exchange may rely on an anonymising network such as Tor.

The protocol we have presented is a generic protocol that combines any secure
predicate-based signature scheme with a Diffie-Hellman construction, providing
efficiency and simplicity.

Future work. The major security models for public-key-based authenticated key
exchange have an additional query to allow revealing some of the session vari-
ables: either a SessionStateReveal query [6], which reveals the session state vari-
ables stored during the protocol, or an EphemeralKeyReveal query [19] which
reveals all randomness used during the run of a protocol. Adding either of
these queries to our security model would be a natural way to improve its se-
curity guarantees. Our generic protocol construction may still be secure with
a SessionStateReveal query, but cannot be secure with an EphemeralKeyReveal
query unless the underlying signature scheme is secure against revealing the
randomness used in signing. No existing schemes have been shown to have this
property, at least in the case of attribute-based or predicate-based signatures.

Our definition of credential privacy for predicate-based key exchange is com-
putational in nature, but our proof for the generic construction relies on the
perfect privacy of the underlying signature scheme, as defined by Maji et al.
[22]. However, it seems plausible that a suitably defined computational notion
of credential privacy would suffice. It may also be possible to give alternative
constructions based on ciphertext-policy predicate-based encryption schemes,
though as yet only ciphertext-policy attribute-based encryption schemes exist.

Finally, predicate-based key exchange could be extended to support multiple,
independent, mutually distrusting, potentially corrupt, credential authorities, as
in multiple attribute authorities for attribute-based signature schemes [22, §4].
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Abstract. We introduce the concept of attribute-based authenticated
key exchange (AB-AKE) within the framework of ciphertext-policy
attribute-based systems. A notion of AKE-security for AB-AKE is
presented based on the security models for group key exchange protocols
and also taking into account the security requirements generally consid-
ered in the ciphertext-policy attribute-based setting. We also introduce
a new primitive called encapsulation policy attribute-based key encap-
sulation mechanism (EP-AB-KEM) and then define a notion of chosen
ciphertext security for EP-AB-KEMs. A generic one-round AB-AKE
protocol that satisfies our AKE-security notion is then presented. The
protocol is generically constructed from any EP-AB-KEM that achieves
chosen ciphertext security. Finally, we propose an EP-AB-KEM from
an existing attribute-based encryption scheme and show that it achieves
chosen ciphertext security in the generic group and random oracle
models. Instantiating our AB-AKE protocol with this EP-AB-KEM
will result in a concrete one-round AB-AKE protocol also secure in the
generic group and random oracle models.

Keywords: Attribute-based Key Exchange, Attribute-based KEM,
Group Key Exchange.

1 Introduction

In a distributed collaborative system, it is often convenient for the members to
communicate with the others in the system using attributes that describe their
roles or responsibilities. These attributes are highly desirable if the members
join/leave the system dynamically. Consider an Internet forum where the mem-
bers are organized into user groups based on the members’ skills or privileges.
It is a natural requirement that the members of a user group should be able to
establish secure communication with the other members belonging to particular
user groups. The communication in these forums is generally carried out through
initiating a thread or by posting messages within an existing thread. To enable
authentic and confidential communication, the forum administrator may spec-
ify an access policy with the user groups being attributes. Obviously, only the
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members of the forum whose attributes (e.g. membership to user groups) satisfy
the policy should be able to have read and/or write access to the thread.

In the above scenario, the members do not necessarily have to know the iden-
tity of the other members with whom they want to communicate. In fact, the
administrator may be requested not to disclose the identity of a member to the
others for privacy reasons. Any member whose attributes satisfy the policy spec-
ified by the administrator should be able to participate in the communication.
Note that the communication can naturally be among a group of more than
two members, since the defined policy may be satisfied by attributes of more
than two members. Hence, an authenticated group key exchange protocol that
facilitates attributes usage can be employed in this setting. We call such a pro-
tocol, an attribute-based authenticated key exchange (AB-AKE) protocol. Once
a session key among the willing participants has been established via the key
exchange protocol, it can be used for establishing secure communication among
the participants.

We can further envisage applications for AB-AKE in interactive chat rooms
and also in organizations with strict hierarchy like the military. In interactive
chat rooms, each room may be associated with a policy defined with a set of
interests being the attributes. Any member whose interests satisfy the policy of a
chat room can have read and/or write access to it. Similarly, a policy over ranks
(e.g., Sergeant, Lieutenant, Major, Colonel etc.) as attributes can be specified
for the units in the military by another unit at a higher level in the hierarchy. All
the units whose attributes satisfy the policy can establish secure communication
among themselves through an AB-AKE protocol.

Attribute-based Encryption. Sahai and Waters [26] introduced the con-
cept of attribute based encryption (ABE) as an extension to ID-based encryp-
tion [6], in which a set of descriptive attributes is regarded as an identity. Goyal et
al. [19] further extended ABE and introduced two variants: key policy attribute
based encryption (KP-ABE) and ciphertext policy attribute based encryption
(CP-ABE). In a KP-ABE system, the private key of a party is associated with
an access policy defined over a set of attributes while the ciphertext is associ-
ated with a set of attributes. A ciphertext can be decrypted by a party if the
attributes associated with the ciphertext satisfy the policy associated the user’s
private key. A CP-ABE system can be seen as a complementary form to KP-
ABE system, wherein the private key is associated with a set of attributes, while
a policy defined over a set of attributes is attached to the ciphertext. A cipher-
text can be decrypted by a party if the attributes associated with its private key
satisfy the ciphertext’s policy.

1.1 Contributions

In this paper, we introduce the concept of AB-AKE. We assume that each mem-
ber willing to participate in an AB-AKE protocol is issued a private key for a
set of attributes that he/she possesses. Our modelling of AB-AKE follows the
framework of CP-ABE in that the attributes are associated with the private keys.
We assume that the members are given an access policy which their attributes
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have to satisfy for them to participate in the protocol. Alternatively, a common
policy may be negotiated by the group members themselves. The protocol takes
the access policy as input and computes messages for the other parties. Similar
to CP-ABE systems, we may assume that the policy is attached to the protocol
messages in an AB-AKE protocol, although this assumption is not necessary
since each member knows the policy at the outset of the protocol. A member
whose attributes satisfy the given policy can compute the session key from the
incoming messages and (if exists) its own contribution.

While a complementary flavour of AB-AKE can be conceptualized based on
KP-ABE systems, we do not explore this direction in this work. For the type
of applications that we have discussed earlier, AB-AKE protocols based on CP-
ABE systems suit well. AB-AKE can be seen as an extension of group key
exchange (GKE) [9,23,22] with the additional expressiveness provided by the
ciphertext-policy attribute-based systems. We define a notion of authenticated
key exchange security (AKE-security) for AB-AKE by adapting a corresponding
notion for GKE to the attribute-based setting. The property of collusion resis-
tance considered by attribute-based systems [19,3,28] is naturally embedded into
our AKE-security notion.

We then propose a generic one-round AB-AKE protocol that satisfies our
AKE-security notion. The protocol is based on a type of attribute-based key en-
capsulation mechanism (KEM) that we call encapsulation-policy attribute based
KEM (EP-AB-KEM). In an EP-AB-KEM, the attributes are associated to the
private key of a party and access policy is attached to the encapsulation. We
define a notion of chosen ciphertext security for EP-AB-KEM based on a corre-
sponding notion considered for CP-ABE schemes.

Our AB-AKE protocol is generic in the sense that it can be instantiated using
any EP-AB-KEM that satisfies chosen ciphertext security. We propose a chosen-
ciphertext secure EP-AB-KEM based on the CP-ABE scheme of Bethencourt et
al. [3] and using the generic technique of Boneh et al. [7]. While we apply the
technique of Boneh et al. to the chosen plaintext secure EP-AB-KEM implicit in
Bethencourt et al.’s scheme, we also make some non-trivial changes to adapt it
to the attribute-based setting. The proposed EP-AB-KEM is then proven secure
in the generic group and random oracle models. Incidentally, we are the first to
model and construct EP-AB-KEMs, which are of independent interest.

An AB-AKE protocol satisfying our AKE-security provides implicit authen-
tication that is similar to the corresponding notion considered for normal key
exchange protocols. Particularly, our AKE-security notion ensures each protocol
participant that no other party apart from parties who satisfy the given policy
can possibly learn the value of the session key. Note that an EP-AB-KEM cannot
achieve this property since it does not provide any sender authentication. Con-
sequently, the receivers in EP-AB-KEM whose attributes satisfy the policy have
no way of knowing whether the sender actually satisfies the same policy or not.
For example, if we use an EP-AB-KEM in a user group, any one can post a mes-
sage that is encrypted with the symmetric of the EP-AB-KEM. Alternatively, if
the message is encrypted with a session key derived from an AB-AKE protocol
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the readers will get the assurance that only someone with valid attribute set has
posted the message.

Our generic construction of AB-AKE can be seen as an extension of the pro-
tocols of Boyd et al. [8] and Gorantla et al. [17] to the attribute-based setting.
One disadvantage of our protocol is that it cannot provide forward secrecy. How-
ever, for some of the applications that we have discussed forward secrecy may
not be necessary. For example, in an Internet forum the administrator may like
to moderate the content posted in the user groups or in the military a unit at
a higher rank would like to monitor the communication among the units at the
same or a lower rank. In such scenarios, an AB-AKE protocol without forward
secrecy will be useful since any party with the right attribute set will be able to
recover the session key and consequently the messages encrypted with it. Never-
theless, forward secrecy is generally a highly desirable property for key exchange
protocols. Hence, we also sketch constructions of AB-AKE protocols that can
achieve forward secrecy.

1.2 Related Work

The concept of fuzzy secret handshake proposed by Ateniese et al. [1] seems
closely related to our modelling of AB-AKE. However, there are a few important
differences: In AB-AKE, we allow policies specified by the members to be very
expressive consisting of several threshold gates, while fuzzy secret handshake
only considers a single threshold gate. In a (fuzzy) secret handshake protocol,
if a member do not satisfy the attributes specified by another member, the
attributes of none of the members can be learned by the other member. On the
other hand, in an AB-AKE protocol, if a member does not satisfy the policy
specified by the other members, the members do not know anything about the
attributes of the other members except what can be inferred by the policies
attached to the protocol messages. Although both the properties look similar,
we emphasize that an AB-AKE protocol would not hide the affiliation of the
members even if the protocol was not successful [20]. Note that the property
of “affiliation hiding” is the main requirement for (fuzzy) secret handshakes.
Finally, the fuzzy secret handshake protocol of Ateniese et al. considers only two
party setting, while our protocol naturally operates in a group setting.

In independent work, Steinwandt and Corona [27] proposed a two-round
attribute-based group key exchange protocol that achieves forward secrecy. Their
protocol uses the GKE protocol of Bohli et al. [5] as the base protocol and re-
places the public key signature scheme in Bohli et al. with an attribute-based
signcryption scheme to authenticate the protocol messages. Recently, Birkett
and Stebila [4] introduced the concept of predicate-based key exchange which
encompasses key policy attribute-based key exchange. However, their security
model considers key exchange between only two parties.

1.3 Organization

Section 2 presents a security model for EP-AB-KEM and also proposes a chosen
ciphertext secure EP-AB-KEM. We define a security model for AB-AKE in
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Section 3 and present a generic one-round AB-AKE protocol in Section 4. In
Section 5, we outline how to construct AB-AKE protocols with forward secrecy.

2 Encapsulation Policy Attribute-Based KEM

We first give a formal definition of security for EP-AB-KEM. As in the earlier
attribute-based systems [19,3], we review the definition of an access structure
and use it in the security model. Later, we present a concrete EP-AB-KEM
based on the CP-ABE scheme of Bethencourt et al. [3].

Definition 1 (Access Structure [2]). Let {U1, · · · , Un} be a set of parties. A
collection A ⊆ 2{U1,··· ,Un} is monotone if ∀B, C : if B ∈ A and B ⊆ C then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {U1, · · · , Un}, i.e.,
A ⊆ 2{U1,··· ,Un} \ {φ}. The sets in A are called authorized sets, and the sets not
in A are called the unauthorized sets.

In our EP-AB-KEM and later in the protocol, each party is assumed to possess
a set of attributes. A policy over a set of attributes is specified through an
access structure A. Hence, A contains the authorized sets of attributes i.e., A ⊆
2{S1,··· ,Sn} \ {φ} for a given set of attributes {S1, · · · , Sn}. As in the CP-ABE
of Bethencourt et al., we consider only monotonic access structures. In the rest
of the paper, by an access structure we mean a monotonic one.

A EP-AB-KEM consists of five polynomial-time algorithms:

Setup: takes the security parameter k and the attribute universe description
U as inputs. The public parameters PK and the master key MK are the
outputs.

Encapsulation: takes as input the public parameters PK and an access struc-
ture A over the attribute universe U. It outputs an encapsulation C and
a symmetric key K such that only a user with attributes satisfying A can
recover K from C. Similar to the CP-ABE schemes, we assume that the
encapsulation implicitly contains A.

KeyGen: takes as input the master key MK , the public parameters PK and a
set of attributes S of a user that gives a description of the user’s private key.
The output is the user’s private key SK .

Decapsulation: takes as input the public parameters PK , an encapsulation C
and a private key SK corresponding to a set of attributes S. The algorithm
outputs either a symmetric key K or ⊥.

We also define an optional delegation algorithm, which allows a user with
attribute sets S and a corresponding secret key SK to derive a secret key
for another set of attributes S̃ such that S̃ ⊆ S.

Delegate: takes as input the public parameters PK , a secret key SK correspond-
ing to a set of attributes S and a set S̃ ⊆ S. It outputs a secret key ˜SK for
the attribute set S̃.
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For an EP-AB-KEM to be considered valid, it is required that for any key
SK corresponding to an attribute set S, if S satisfies A and if (K, C) ←
Encapsulation(PK , A), then Decapsulation(PK , C,SK ) = K.

2.1 Security Model

Bethencourt et al. [3] defined the notion of indistinguishability under chosen
plaintext attack (IND-CPA) for CP-ABE schemes. In this section, we adapt
their notion and extend it to define a notion of indistinguishability under chosen
ciphertext attacks (IND-CCA) for EP-AB-KEM. The security notion is formally
defined as follows.

Definition 2. An EP-AB-KEM is IND-CCA secure if the advantage of any
probabilistic polynomial time adversary Acca in the following game is negligible
in the security parameter k.

Setup: The challenger runs the Setup algorithm and returns PK to Acca.
Phase 1: Acca issues Extract and Decap queries as follows:

Extract: This query can be issued multiple times with sets of attributes
S1, · · · , Sq1 as input. The challenger returns a private key corresponding
to each input attribute set. We do not require the input attribute sets
to be distinct.

Decap: This query is issued with an encapsulation C and an attribute set S
as inputs. Note that C implicitly contains an access structure A defined
over the attribute universe U. The challenger executes the Decapsulation
algorithm on C using a private key corresponding to S and returns the
output of Decapsulation to Acca.

Challenge: At the end of Phase 1, Acca gives an access structure A∗ defined
over U to the challenger. The challenger first chooses a bit b. It then runs
the Encapsulation algorithm with A∗ as input and generates a symmetric
key–encapsulation pair (K1, C

∗). It then sets K0 to be a random key drawn
from the probability distribution of the symmetric key. The tuple (Kb, C

∗)
is returned to Acca as the challenge. A trivial restriction on the adversary’s
choice of A∗ is that none of the attributes sets S1, · · · , Sq1 passed as input
to Extract queries in Phase 1 should satisfy A∗.

Phase 2: Acca is allowed to execute in the same way as in Phase 1 with the
following restrictions: (1) none of the attribute sets Sq1+1, · · · , Sq passed as
input to Extract queries in Phase 2 satisfy A∗ and (2) a Decap query with
C∗ as input in combination with an attribute set S∗ that satisfies A∗ is not
allowed.

Guess: The goal of Acca is to guess whether the key Kb is encapsulated within
C∗ or not. Acca finally outputs a guess bit b′. It wins the game if b′ = b. The
advantage of Acca is given as AdvAcca = |2 · Pr[b′ = b]− 1|.

Existing security notions for CP-ABE schemes also consider the weaker selective
model where Acca declares the challenge access structure A∗ before the Setup
phase. Similarly, a corresponding model for EP-AB-KEMs can be defined.
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Similar to earlier CP-ABE schemes [3,11,28], we have not explicitly modelled
the delegation mechanism in the security model for EP-AB-KEMs. However, we
require that for a given set of attributes, a secret key output by the Delegate
algorithm will have identical distribution to the one output by the KeyGen algo-
rithm. In particular, the Decapsulation algorithm using a private key SK should
work in the same way irrespective of SK being an output of KeyGen or Delegate.
Our security model for EP-AB-KEMs suffices in the presence of an adversary
who may obtain delegated private keys since such queries can be simulated using
Extract queries.

Remark 1. In Definition 2, Acca is allowed to issue multiple Extract queries with
attribute sets as input such that none of the individual sets Si satisfy the chal-
lenge access structure A∗. Hence, similar to earlier definitions of attribute-based
encryption schemes, our definition also takes care of collusion resistance. An EP-
AB-KEM satisfying the above definition ensures that from the private keys of
Si’s, Acca cannot construct a private key corresponding to another attribute set
S∗ such that S∗ satisfies A∗.

Hybrid CP-ABE. An EP-AB-KEM satisfying the above IND-CCA security
notion can be combined with any IND-CCA secure data encapsulation mecha-
nism to construct an IND-CCA secure CP-ABE scheme [12,13]. We describe the
hybrid construction and prove its security in the full version of this paper [16].

2.2 A Chosen Ciphertext Secure EP-AB-KEM

Bethencourt et al. [3] first proposed a construction of a CP-ABE scheme. Their
scheme was shown IND-CPA secure assuming generic group and random oracle
models. Later, many CP-ABE schemes [18,11,28] have been proposed and shown
IND-CPA secure without assuming generic group or random oracle models, but
analyzed only in the selective model of security. Recently, Lewko et al. [24]
proposed a fully secure CP-ABE scheme in the standard model using composite
order bilinear groups.

We now construct an IND-CCA secure EP-AB-KEM based on the CP-ABE
scheme of Bethencourt et al. The idea is to enhance the security of the IND-CPA
secure EP-AB-KEM that is implicit in Bethencourt et al.’s CP-ABE scheme.
For this purpose, the techniques of Fujisaki and Okamoto [15,14] and Canetti
et al. (CHK) [10] can be applied in the random oracle and standard models
respectively. As remarked by Bethencourt et al., IND-CCA security for CP-
ABE (and correspondingly for EP-AB-KEM) schemes can be achieved by a
straightforward application of the Fujisaki-Okamoto technique.

Bethencourt et al. also suggested that the delegation mechanism of their CP-
ABE scheme can be leveraged to achieve IND-CCA security using the CHK
transform. However, we observe that applying the CHK transform to CP-ABE
schemes (similarly to EP-AB-KEMs) is slightly more involved. Specifically, con-
trary to the approach followed by KP-ABE schemes, IND-CCA security for CP-
ABE schemes cannot be achieved by directly leveraging the delegation mech-
anism. We later discuss why this is so and then present an IND-CCA secure
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EP-AB-KEM by making a few changes to the Setup and Encapsulation algo-
rithms derived from Bethencourt et al.’s CP-ABE scheme. Although the CHK
technique can be used to achieve IND-CCA security in the standard model, our
EP-AB-KEM will only be secure assuming generic groups and random oracles
since the base CP-ABE scheme also assumes the same. Finally, we choose the
scheme of Bethencourt et al. because it is secure in the fully adaptive model (i.e.,
non-selective model). Alternatively, one could derive an EP-AB-KEM secure in
the fully adaptive model from the CP-ABE scheme of Lewko et al. [24]. In the
full version [16], we discuss the necessity of an EP-AB-KEM to be secure in the
adaptive model for constructing AB-AKE protocols.

The IND-CCA secure scheme first generates a one-time key pair (sk , vk) for
a signature scheme with the condition that the verification key is of the same
length as the length of an attribute in the attribute universe U. Let A be the
access structure given as input to the EP-AB-KEM. We now construct a more
restrictive access structure A′ = A AND vk and execute the CPA-secure EP-AB-
KEM under A′. The resulting encapsulation is then signed using the one-time
signing key sk . The encapsulation of the CCA-secure EP-AB-KEM contains
the encapsulation generated by the underlying CPA-secure EP-AB-KEM, the
signature generated on it and the verification key vk . The recipient first checks
the signature using vk and then executes the CPA-secure KEM’s decapsulation
algorithm under A′ to extract the symmetric key.

While the above informal description of our construction directly follows the
CHK technique, the tricky part in the context of EP-AB-KEM (or CP-ABE)
is to empower the recipient with a private key corresponding to the attributes
that satisfy the modified access structure A′. The recipient may already possess
attributes that satisfy A. However, since the verification key vk is one-time and
chosen randomly for each execution of EP-AB-KEM, the recipient cannot be
issued with a private key that can decrypt messages encrypted under A′ =
A AND vk . This problem cannot be addressed by the delegation mechanism in
an EP-AB-KEM (or CP-ABE) scheme since it can be used to derive private
key corresponding to an attribute set S′ from the one corresponding to S only
if S′ ⊆ S. But, we have an additional attribute in the form of vk . Note that
this is not a problem in the KP-ABE system since it naturally allows a party
with a private key corresponding to an access structure A to derive private keys
corresponding to access structures that are more restrictive than A.

To address the above problem, we make modifications to the Setup and Encap-
sulation algorithms derived from the CP-ABE scheme of Bethencourt et al. [3].
Our EP-AB-KEM now enables a recipient with private key for attributes that
satisfy A to decapsulate an encapsulation created under A′, irrespective of the
choice of vk by the sender. As in the CP-ABE scheme of Bethencourt et al., an
access structure A is represented in the form of an access tree T .

Access Tree. Let T be a tree representing an access structure. Each interior
node of T represents a threshold gate, while each leaf node is described by an
attribute. Let numx be the number of children of a node x and let kx be its
threshold value. We have 0 ≤ kx ≤ numx. A threshold gate associated to an
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internal node with threshold value kx outputs true if at least kx of its children
output true. If the threshold gate represented by an interior node is an AND
gate then kx = numx and if the gate is OR, kx = 1. The threshold value for
each leaf node x is defined to be kx = 1. The parent of a node x in the tree
T is denoted by the function parent(x), while the attribute of a leaf node x is
denoted by att(x). The children of each interior node are numbered from 1 to
numx. The function index(x) returns such a number associated with a node x.
We assume that the index values are uniquely assigned in an arbitrary manner
for a given access structure.

Satisfying an access tree. Let r be the root of an access tree T . The subtree
of T rooted at a node x is denoted by T x. If a set of attributes γ satisfy the
access tree T x, it is denoted as Tx(γ) = 1. The function Tx(γ) is computed
recursively as follows: If x is an interior node, for each children x′ of x, Tx′(γ) is
evaluated. Tx(γ) returns 1 if and only if at least kx children of x return 1. If x
is a leaf node, Tx(γ) returns 1 if and only if att(x) ∈ γ.

Let G0 and G1 be two multiplicative groups of prime order p and g be an
arbitrary generator of G0. Let e : G0×G0 → G1 be an admissible bilinear map.
The Lagrange’s coefficient Δi,S for i ∈ Zp and a set S of elements in Zp is defined
as: Δi,S = Πj∈S,j 	=i

x−j
i−j .

Setup(k). It chooses the groups G0, G1 and defines a bilinear map e : G0×G0 →
G1. It also selects α, β1, β2 ∈ Zp such that β1 �= β2, β1 �= 0 and β2 �= 0. The
public key is

PK =
(

G0, G1, e, g, h1 = gβ1 , f1 = g1/β1, h2 = gβ2 , f2 = g1/β2 , e(g, g)α
)

.

The master key MK is (β1, β2, g
α).

Encapsulation(PK , T ). This algorithm generates an encapsulation and a sym-
metric key under the access tree T using the public key PK . It first executes
the KeyGen algorithm of the signature scheme and obtains a one-time key
pair (sk , vk). Let A be the access structure represented by T . The algorithm
now constructs a new access tree T ′ for the access structure (A AND vk) as
follows: Let R be the root node of T . The root node R′ of the new tree T ′

is set as the AND gate with T as its subtree and the verification key vk as
a leaf node attached to R′.

The algorithm now generates a polynomial qx for each node x in the tree
T ′ in a top-down approach as follows: Starting from the root node R′, for
each node x in the tree set the degree dx of the polynomial associated with x
to be kx − 1 i.e., the degree of the polynomial is one less than the threshold
value associated with the node x. The algorithm starts from the root node
and first chooses a random s ∈ Zp. Then it chooses dR′ other points randomly
to define the polynomial q(R′). For any node x other than the root, it sets
qx(0) = qparent(x)(index(x)) and chooses dx other points randomly to define
the polynomial q(x).
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Let Y be the set of leaf nodes in the subtree T rooted at R. The only other
leaf node in the tree T ′ is the one that describes the verification key vk . The
algorithm proceeds as follows:

1. K = e(g, g)αs.
2. C1 = hs

1.
3. ∀y ∈ Y : Cy = gqy(0), C′

y = H(att(y))qy(0).

4. Cvk = h
qvk (0)
2 , C′

vk = H(vk)qvk (0).
5. Let C = (T ′, C1, Cy, C′

y , Cvk , C′
vk ), ∀y ∈ Y . Compute a signature σ =

Sigsk (C).

The final encapsulation C = (C, vk , σ).
KeyGen(MK ,PK ,S). The key generation algorithm takes as input the master

key MK and a set of attributes S and outputs a private key corresponding
to S. It chooses r, rvk ∈ Zp and rj ∈ Zp for each j ∈ S. The private key is
computed as:

SK = (D = g(α+r)/β1, E = gr/β2, ∀j ∈ S : Dj = gr ·H(j)rj , D′
j = grj ).

Delegate(SK ,PK , S̃). It takes as input a secret key SK corresponding to a
set of attributes S and another set S̃ ⊆ S. The key SK is of the form
SK = (D, E, ∀j ∈ S : Dj, D

′
j). The algorithm chooses r̃ and r̃k∀k ∈ S̃. The

new key for S̃ is generated as:

˜SK = (D̃ = Df r̃
1 , Ẽ = Ef r̃

2 , ∀k ∈ S̃ : D̃k = Dkgr̃H(k)r̃k , D̃′
k = D′

kgr̃k).

Decapsulation(SK ,PK , C). Upon receiving an encapsulation C, the decryptor
first parses the access tree T ′. It then extracts the subtree T rooted at R
from T ′. Note that this can be easily done since the node that describes
the verification key as an attribute can be identified with the help of the
verification key vk sent in the encapsulation. The algorithm first verifies the
signature σ on C using the verification key vk . If the verification succeeds,
it proceeds as follows:

Fvk =
e(Cvk , H(vk) · gr/β2)

e(C′
vk , h2)

=
e(Cvk , gr/β2) · e(Cvk , H(vk ))

e(C′
vk , h2)

(1)

=
e(hqvk (0)

2 , gr/β2) · e(hqvk (0)
2 , H(vk))

e(H(vk)qvk (0), h2)

= e(gβ2·qvk (0), gr/β2) = e(g, g)rqvk(0).

A recursive algorithm DecryptNode(C,SK , x) that takes as input C, a private
key SK associated with a set of attributes S and a node x from the subtree
T is then executed as below:

If x is a leaf node, then let i = att(x). If i /∈ S, then DecryptNode(C,SK , x) =
⊥. Otherwise it is defined as follows:
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DecryptNode(C,SK , x) = e(Di,Cx)
e(D′

i,C
′
x) = e(gr ·H(i)ri ,gqx(0))

e(gri ,H(i)qx(0)) = e(g, g)rqx(0).

If x is an interior node then DecryptNode(C,SK , x) proceeds as follows: For
all nodes z that are children of x, the algorithm DecryptNode(C, sk , z) is
called. The output is stored as Fz . Let Sx be an arbitrary kx-sized set of
child nodes z such that Fz �= ⊥. If no such set exists, the function returns
⊥. Otherwise, the decapsulation algorithm proceeds as follows:

Fx =
∏

z∈Sx

F
Δi,S′

x
(0)

z , where i = index(z), S′
x = {index(z) : z ∈ Sx}

=
∏

z∈Sx

(e(g, g)r·qz(0))Δi,S′
x
(0)

=
∏

z∈Sx

(e(g, g)r·qparent(z)(index(z)))Δi,S′
x
(0)

=
∏

z∈Sx

(e(g, g)r·qx(i)·Δi,S′
x
(0)

= (e(g, g)r·qx(0).

Finally, the decapsulation algorithm calls the DecryptNode algorithm on the
node R, which is the root of the subtree T . If T is satisfied by the attribute
set S, then we have FR = DecryptNode(C,SK , R) = e(g, g)r·qR(0). We now
compute FR′ from Fvk and FR using polynomial interpolation as follows:

FR′ =
∏

x∈{R,vk}
F

Δindex(x),{R,vk}
x

= e(g, g)r·qR′(0)

= e(g, g)rs.

Let A = e(g, g)rs. The symmetric key is recovered as

e(C1, D)
A

=
e(hs

1, g
(α+r)β1)

e(g, g)rs
=

e(g, g)s(α+r)

e(g, g)rs
= e(g, g)αs = K. (2)

Note that in Equation 1, we implicitly verify that the one-time verification
key has not been replaced. If vk was replaced the symmetric key computed
in Equation 2 would be ⊥. Alternatively, the verification check can be done
explicitly at the cost of an additional pairing operation. In the full version [16],
we show that the proposed EP-AB-KEM is IND-CCA secure in the generic group
and random oracle models.

3 Attribute-Based Authenticated Key Exchange

An AB-AKE protocol consists of three polynomial-time algorithms: Setup, Key-
Gen and KeyExchange. The Setup and KeyGen algorithms are identical to those
defined for EP-AB-KEM in Section 2. Each party in the AB-AKE protocol
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executes the KeyExchange algorithm which initially takes as input PK , an ac-
cess structure A and a private key for a set of attributes S. If S satisfies A,
KeyExchange proceeds as per specification and may generate outgoing messages
and also accept incoming messages from other parties as inputs. The output of
KeyExchange is either a session key κ or ⊥.

Communication Model. Let U= {U1, · · · , Un} be a set of n users. The pro-
tocol may be executed among any subset Ũ ⊆ U of size ñ ≥ 2. We assume that
each user has a set of descriptive attributes. Let SK i be the private key corre-
sponding to an attribute set Si of user Ui. We assume that an access structure A

is given as input to all the users. Note that this A may be specified by a higher
level protocol. Alternatively, the users can run an interactive protocol to nego-
tiate a common access structure A. We also assume that all the users execute
the protocol honestly. If a user Ui wants to establish a session key with respect
to an access structure A, it first checks whether its attribute set Si satisfies A

or not i.e., checks if Si ∈ A. Ui proceeds with the protocol execution only if Si

satisfies A. Thus, any user Uj with attribute set Sj that satisfies A is a potential
participant in the key exchange protocol. The set of parties whose individual
attributes satisfy A can compute a common session key.

An AB-AKE protocol π executed among ñ ≤ n users is modelled as a collec-
tion of ñ programs running at the ñ parties. Each instance of π within a party
is defined as a session and each party may have multiple such sessions running
concurrently. Let πj

i be the j-th run of the protocol π at party Ui ∈ Ũ . Each
protocol instance at a party is identified by a unique session ID. We assume that
the session ID is derived during the run of the protocol. The session ID of an
instance πj

i is denoted by sidj
i . An instance πj

i enters an accepted state when it
computes a session key sk j

i . Note that an instance may terminate without ever
entering into an accepted state. The information of whether an instance has
terminated with acceptance or without acceptance is assumed to be public.

Note that there may be more than one party whose attributes satisfy A,
hence we consider group setting for AB-AKE. We define partnership in AB-
AKE protocol as follows: A set of ñ instances at ñ different parties Ũ ⊆ U are
called partners if

1. they all have the same session ID; and
2. the attributes of each Ui ∈ Ũ satisfy A.

An AB-AKE protocol is called correct if the instances at the parties in Ũ
are partnered and output identical session keys in the presence of a passive
adversary.

Adversarial Model. The communication network is assumed to be fully con-
trolled by the adversary, which schedules and mediates the sessions among all
the parties. The adversary is allowed to insert, delete or modify the protocol
messages. We also assume that it is the adversary that may select the protocol
participants from the set U . While the adversary may not know the attribute
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set that a user possesses, it can initiate an instance of the AB-AKE protocol
with an access structure of its choice. In addition to controlling the message
transmission, the adversary is allowed to ask the following queries.

– Send(πj
i ,m) sends a message m to the instance πj

i . If the message is A, the
instance πj

i is initiated with the access structure A. Otherwise, the message
is processed as per the protocol specification. The response of πj

i to any Send
query is returned to the adversary.

– RevealKey(πj
i ) If πj

i has accepted, the adversary is given the session key skj
i

established at πj
i .

– Corrupt(Si) This query returns a private key SK i corresponding to the at-
tribute set Si.

– Test(πj
i ) A random bit b is secretly chosen. If b = 1, the adversary is given

skj
i established at πj

i . Otherwise, a random value chosen from the session
key probability distribution is given. Note that a Test query is allowed only
on an accepted instance.

Definition 3 (Freshness). Let A be the access structure for an instance πj
i . πj

i

is called fresh if the following conditions hold: (1) the instance πj
i or any of its

partners has not been asked a RevealKey query and (2) there has not been a
Corrupt query on an input Si such that Si satisfies A.

Definition 4 (AKE-security). An adversary Aake against the AKE-security no-
tion is allowed to make Send, RevealKey and Corrupt queries in Stage 1. Aake

makes a Test query to an instance πj
i at the end of Stage 1 and is given a

challenge key Kb as described above. It can continue asking queries in Stage
2. Finally, Aake outputs a bit b′ and wins the AKE-security game if (1) b′ = b
and (2) the Test instance πj

i remains fresh till the end of Aake’s execution. Let
SuccAake

be the event that Aake wins the AKE-security game. The advantage
of Aake in winning this game is AdvAake

= |2 · Pr[SuccAake
] − 1|. A protocol is

called AKE-secure if AdvAake
is negligible in the security parameter k for any

polynomial time Aake.

Remark 2. By allowing the adversary to reveal the private keys corresponding
to attribute sets which individually do not satisfy the given access structure
A∗ in the test session, our definition naturally considers collusion resistance.
In other words, any number of parties whose individual attribute sets do not
satisfy A∗ may collude among themselves and try to violate the AKE-security
of the protocol. An AB-AKE protocol satisfying our AKE-security notion will
still remain secure against such collusion attacks.

4 A Generic One-Round AB-AKE Protocol

We now present a simple generic AB-AKE protocol based on IND-CCA secure
EP-AB-KEM. Informally, each party executes an EP-AB-KEM in parallel and
combines the symmetric key it has generated with the symmetric keys extracted
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Computation

Each Ui executes an EP-AB-KEM on the input (PK , T ) where PK is the public
parameters and T is the access tree that represents an access structure A. As
a result, a symmetric key and encapsulation pair (Ki, Ci) is obtained.

(Ki, Ci) ← Encapsulation(PK , T ).

Broadcast

Each Ui broadcasts the generated encapsulation Ci.

Ui → ∗ : Ci.

Key Computation

1. Each Ui executes the decapsulation algorithm using its private key SK i on
each of the incoming encapsulations Cj and obtains the symmetric keys Kj ,
for j �= i.

Kj ← Decapsulation(sk i, Cj) for each j �= i.

2. Each Ui then computes the session ID as the concatenation of all the outgoing
and incoming messages exchanged i.e. sid = (C1‖ · · · ‖Cñ), where ñ is the
number of protocol participants.

3. The session key κ is then computed as

κ = fK1(sid) ⊕ fK2(sid) ⊕ · · · ⊕ fKñ(sid)

where f is a pseudorandom function.

Fig. 1. A Generic One-round AB-AKE Protocol

from the incoming messages to establish a common session key. Our construction
is an extension of the one-round protocols of Boyd et al. [8] and Gorantla et
al. [17] to the attribute-based setting. Figure 1 presents our generic one-round
AB-AKE protocol.

At the beginning of the protocol each party is given an access structure A

represented via an access tree T . The protocol uses an EP-AB-KEM scheme
(Setup, Encapsulation, KeyGen, Decapsulation). Each Ui is issued a private key
SK i corresponding to the attributes set Si that it possesses. Each party Ui who
has attribute set Si satisfying the access structure A runs the Encapsulation al-
gorithm and obtains a symmetric key-encapsulation pair (Ki, Ci). The parties
broadcast the encapsulations to the other parties. Upon receiving the encapsula-
tions, each party runs the Decapsulation algorithm using its private key on each
of the incoming encapsulations and extracts the symmetric keys. The number of
protocol participants ñ can be derived based on the number of input messages
received within a prescribed time period. The session key is finally computed by
each party from the symmetric key that it has generated and all the symmetric
keys decapsulated from the incoming encapsulations.
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A pseudorandom function f is applied to derive the session key. We assume
that the output of the Decapsulation algorithm can be directly used as a seed for
f . Otherwise, we will have to extract and then expand the randomness from the
output of the Decapsulation algorithm as done by Boyd et al. [8].

Theorem 1. The AB-AKE protocol in Fig. 1 is AKE-secure as per Definition 4
assuming that the underlying EP-AB-KEM is IND-CCA secure. The advantage
of Aake is

AdvAake
≤ ñ · q2

s

|C| + qs · (ñ · AdvAprf + AdvAcca)

where ñ is the number of parties in the protocol, qs is the number of sessions
Aake is allowed to activate, |C| is the size of the ciphertext space, AdvAcca is the
advantage of a polynomial adversary Acca against the IND-CCA security of the
underlying EP-AB-KEM and AdvAprf is the advantage of a polynomial adversary
Aprf against the pseudorandomness of the pseudorandom function f .

The proof of the above theorem is given in the full version [16].

Concrete Instantiation. From the EP-AB-KEM proposed in Section 2.2, a
concrete AB-AKE protocol can be directly realized. It follows from the security
of the EP-AB-KEM and the generic AB-AKE protocol that the instantiated
protocol is AKE-secure in the generic group and the random oracle models.

5 Extensions

The security model in Section 3 is concerned only about the basic notion of
AKE-security without forward secrecy. Forward secrecy is one of the most im-
portant security attributes for key exchange protocols since it limits the damage
of long-term key exposure. A key exchange protocol with forward secrecy ensures
that even if the long-term key of a party is exposed, all the past session keys
established using that long-term key will remain uncompromised.

Forward secrecy seems to be more important for AB-AKE protocols than in
the case of normal key exchange protocols. To see why, let us assume that the
adversary obtains the private key of a user Ui who possesses a set of attributes
Si. If an AB-AKE protocol does not achieve forward secrecy, then the adversary
can compromise all the protocol sessions which have been established with access
structures that can be satisfied by Si. Note that the party Ui does not even have
to participate in any of these sessions. We now define a notion of freshness that
takes forward secrecy into account.

5.1 AKE-Security with Forward Secrecy

Definition 5 (FS-Freshness). Let A be the access structure for an instance πj
i .

πj
i is called fs-fresh if the following the conditions hold: (1) the instance πj

i or any
its partners has not been asked a RevealKey query and (2) there has not been a
Corrupt query on an input Si before πj

i or its partner instances have terminated,
such that Si satisfies A.
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Definition 5 can be coupled with the AKE-security notion in Definition 4 to
arrive at AKE-security notion with forward secrecy for AB-AKE protocols.

5.2 Constructing AB-AKE Protocols with Forward Secrecy

Our one-round AB-AKE protocol can be modified to achieve AKE-security with
forward secrecy for two-party and three-party settings using known techniques.
For a two-party AB-AKE protocol with forward secrecy, one can use the tech-
nique of Boyd et al. [8] where ephemeral Diffie-Hellman public keys are appended
with the encapsulations. Similarly, for a three-party AB-AKE protocol with for-
ward secrecy, the protocol of Joux [21] can be executed in the same round with
our EP-AB-KEM based protocol. The session keys in both the protocols will in-
clude ephemeral Diffie-Hellman key components, which ensure forward secrecy.
However, the protocols will achieve weak forward secrecy, wherein the adversary
has to remain passive during protocol execution. The security of the resulting
two-party and three-party AB-AKE protocols will depend on the hardness of the
computational Diffie-Hellman and bilinear Diffie-Hellman problems respectively
along with the security of the underlying AB-AKE protocol (the security of the
latter has been proven already).

Constructing AB-AKE protocols in the more general group setting needs more
than one round. The compiler of Katz and Yung (KY) [23] turns an unauthenti-
cated group key exchange protocol into an authenticated one. The compiler uses
a public key based signature as an “authenticator” for this purpose. One may
adapt the KY compiler to the attribute-based setting by replacing the normal
public key based signature with an attribute-based signature [25]. The resulting
compiler can then be applied to the two-round unauthenticated Burmester and
Desmedt (BD) protocol [9] to achieve a three-round AB-AKE protocol with for-
ward secrecy. Since the session key established by the BD protocol is ephemeral
it achieves forward secrecy, where as the attribute-based KY compiler provides
authentication. Although the attribute-based version of the KY compiler can be
constructed with necessary changes to the KY compiler, it may not be straight-
forward. We leave this construction for future work.

6 Conclusion

We have initiated the concept of AB-AKE in the ciphertext-policy attribute-
based system. Our modelling of AB-AKE assumes that each party has a set of
attributes and a corresponding private key. A policy is defined (or negotiated) for
each execution of the protocol and the parties satisfying the policy can establish
a common shared key by executing the protocol. In the security model for AB-
AKE, we have considered only outsider adversaries. Our security model can be
extended by considering insider attackers who try to impersonate other protocol
participants [22].

We have also introduced the concept of EP-AB-KEM. We then proposed a
one-round generic AB-AKE protocol based on IND-CCA secure EP-AB-KEMs.
For concrete instantiation of this protocol, we have presented an EP-AB-KEM
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and shown it secure under the IND-CCA notion in the generic group and random
oracle models. As a consequence, a concrete AB-AKE protocol based on this EP-
AB-KEM would also be secure in the generic group and random oracle models.
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Abstract. We study the security of hash-then-publish time-stamping schemes
and concentrate on the tightness of security reductions from the collision-resis-
tance of the underlying hash functions. While the previous security reductions
create a quadratic loss in the security in terms of time-success ratio of the adver-
sary being protected against, this paper achieves a notably smaller loss of power
1.5. This is significant for two reasons. Firstly, the reduction is asymptotically
optimally tight, as the lower bound of 1.5 on the power was proven recently by
the authors in ACISP 2009 and this is the first application for which optimality
in this sense can be demonstrated. Secondly, the new reduction is the first one
efficient enough to allow meaningful security guarantees to be given for a global-
scale time-stamping service based on 256 bit hash functions, which considerably
increases the efficiency of possible practical solutions.

1 Introduction

Time stamps are proofs that electronic data was created at certain time. Time stamps
support rights protection as well as extending the lifetime of public key digital signa-
tures considering the possible revocation of public-key certificates.

Before 1990, it was believed that the only possible way to achieve secure time-
stamping is to use a trusted third party who adds time-readings to electronic data and
then signs the data by using a public-key digital signature scheme. Although this scheme
has been in use, it does have drawbacks. The assumption of a trusted third party is rather
strong and often not feasible in the global corporate scale as nearly everyone has their
own interests. Even when such a trusted party could be found, it is generally impossi-
ble to guarantee absolute security of the private signature keys. It would therefore be
desirable to use time-stamping schemes that are free of secret keys and do not assume
ultimate trustworthiness of third parties.

The so-called hash-then-publish time-stamping schemes were first introduced in
1990 by Haber and Stornetta [6] in connection with attempts to eliminate secret-based
cryptography and trusted third parties from time-stamping schemes. In such a scheme,
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a collection of N documents is hashed down to a single digest of few dozen bytes that is
then published in a widely available medium such as a newspaper. Using Merkle hash
trees [9] as a hashing scheme provides a possibility of creating compact certificates (of
size O(log N)) for each one of the N documents. To create such a certificate, it is suf-
ficient to store all sibling hash values in the corresponding path in the hash tree from a
document to the root of the tree. The sibling hash values are sufficient to re-compute the
root hash value from the document and as such they can be used as a proof of member-
ship. Based on this idea, Haber and Stornetta then drafted a large-scale time-stamping
scheme [1] where a giant Merkle tree is created co-operatively by numerous servers all
over the world and the root value is published in newspapers as the hash value of this
particular unit of time. In such schemes N is potentially very large.

It might seem obvious that the security of hash-then-publish time-stamping schemes
can be reduced to the collision-resistance of the hash function. However, the first correct
security proof of such a scheme was published as late as 2004 [5]. It then became evi-
dent that the number N of time-stamps explicitly affects the efficiency (security guaran-
tee) of the security proof. In the very first security proof [5] it was shown that if there is
an adversary with running time t that is able to backdate a document with probability δ,
then there is also a collision-finding adversary that works in time t′ ≈ 2t and succeeds
with probability δ′ ≈ δ2

N . When measuring security in terms of time-success ratio intro-
duced by Luby [8] we have to use 2N · t

δ2 -collision resistant hash functions to have a
t
δ -secure time-stamping scheme. This means that the hash function must be roughly 2N

δ
times more secure against collisions than the time-stamping system constructed from
it is against backdating. As N could be very large, the security requirements for the
hash function may grow unreasonably large. Indeed, it is mentioned in [5] that such a
security proof is practical only for hash functions with 400 or more output bits.

In [4], a more efficient security proof was given, where t′
δ′ ≈ 48

√
N · t

δ2 . This was
a considerable improvement because it allowed for much larger values of N . In this
paper, we propose a new security reduction, where t′

δ′ ≈ 14
√

N · t
δ1.5 , i.e. we get a

power 1.5 reduction instead a quadratic one in terms of time-success ratio. This allows
us to use shorter hash functions in practical applications while still maintaining good
security guarantees. Based on a recently proved separation result [2] we also argue why
the exponent 1.5 is the least achievable.

2 Notation

By x ← D we mean that x is chosen randomly according to a distribution D. By E[X ]

we mean the average of a random variable X . If A is a probabilistic function or a Turing
machine, then x ← A(y) means that x is chosen according to the output distribution of
A on an input y. IfD1, . . . ,Dm are distributions and F (x1, . . . , xm) is a predicate, then
Pr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] is the probability that F (x1, . . . , xm)
is true after the ordered assignment of x1, . . . , xm. For functions f, g : N → R, we
write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k) (∀k > k0). We write
f(k) = ω(g(k)) if lim

k→∞
g(k)
f(k) = 0. If f(k) = k−ω(1), then f is negligible. For every

two functions f(k) and g(k), we will write f 	 g iff f(k) ≥ g(k)− k−ω(1). A Turing
machine M is poly-time if it runs in time kO(1), where k is the input size.
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Let F = {Fk}k∈N be a function family such that every h ← Fk is a function
h : {0, 1}�(k) → {0, 1}k, where �(k) = kO(1) and �(k) > k for every k ≥ 0. We
say that F is collision-free if for every poly-time (non-uniform) Turing machine A:

Pr
[
h ← Fk, (x, x′)←A(1k, h) : x �= x′, h(x) = h(x′)

]
= k−ω(1) .

3 Hash-then-Publish Time-Stamping

A time-stamping procedure consists of the following two general steps:

1. Client sends a request x ∈ {0, 1}k to Server.
2. Server binds x with a time value t and sends Client a time-certificate c.

Time-stamping protocols process requests in batches X1, X2, X3 . . . that we call rounds.
The rounds correspond to time periods of fixed duration (one hour, one day, etc.) After
the t-th period, a short commitment rt = Com(Xt) of Xt is published. A request x ∈
Xt precedes another request x′ ∈ Xt′ if t < t′. The requests of the same batch are
considered simultaneous. For this scheme to be efficient there must be an efficient way
to prove inclusions x ∈ Xt, i.e. there is a verification algorithm Ver that on input a
request x, a certificate c and a commitment rt returns true if x ∈ Xt. On the one hand,
it should be easy to create certificates for the members x ∈ Xt, i.e. there has to be an
efficient certificate generation algorithm Cert that outputs a certificate c = Cert(x, Xt).
On the other hand, for security, it must be infeasible to create such proofs for non-
members y �∈ Xt, i.e. it is hard to find a certificate c′ so that Ver(y, c′, rt) = true.

Definition 1. A time-stamping scheme is a triple T = (Com, Cert, Ver) of efficient
algorithms, where:

– Com is a commitment algorithm which, on input a set X of requests, outputs a
commitment r = Com(X).

– Cert is a certificate generation algorithm which, on input a set X and an element
x ∈ X, generates a certificate c = Cert(x, X).

– Ver is a verification algorithm which, on input a request x, a certificate c and a
commitment r, outputs yes or no, depending on whether x is a member of X (the set
that corresponds to the commitment r). It is assumed that for every set X of requests
and every member-request x ∈ X the following correctness condition holds:

Ver(x, Cert(x, X), Com(X)) = yes . (1)

3.1 Security Condition for Time-Stamping Schemes

It was shown in [5] that giving a consistent security definition for hash-then-publish
time-stamping schemes is not an easy task. Intuitively, a time-stamping adversary back-
dates a document that never existed before, but the “existence” itself is not that easy to
capture in formal definitions. In this paper, we use the so-called entropy-based security
condition [3] that models the “fresh” documents by using high-entropy distributions.
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Such approach has been the most common in this line of research. This security condi-
tion is inspired by the following attack-scenario with a malicious Server:

1. Server computes a commitment r and publishes it. Server is potentially malicious,
so there are no guarantees that r is created by applying Com to a set X of requests.

2. Alice creates an invention DA ∈ {0, 1}∗ and protects it by obtaining a time stamp.
3. Some time later, DA is disclosed to the public and Server tries to steal it by showing

that the invention was known to Server long before Alice time-stamped it. He cre-
ates a slightly modified version D′

A of A, i.e. changes the invertor’s name, modifies
the creation time, and possibly rewords the document in a suitable way.

4. Finally, Server back-dates a hash value x of D′
A, by finding a certificate c, so that

Ver(x, c, r) = yes. It is shown in [3] that the hash function that computes x from
D′

A must convert poly-sampleable high entropy input distributions to high entropy
output distributions, and this is in fact also a sufficient condition.

Security definitions for time-stamping are usually based on this scenario. However, to
our knowledge, there have been no academic discussions whether such a scenario is
sufficient for the security level we really expect. One major assumption that has been
made here is that before creating and publishing the commitment r, Server has no infor-
mation about the invention DA. For example, if Alice obtains a time stamp for DA from
malicious Server before r is published (i.e. steps 1 and 2 are exchanged) then during the
computation of r, Server knows the time stamp request x which is partial information
about DA. So, one may imagine that Server tries to extract useful information from
x about DA, create a request x′ for a similar document D′

A that describes the same
invention, and then refuse to issue a time stamp for Alice. If such an attack succeeds,
Server has the earliest time stamp for Alice’s invention. But there are many practical
objections against such an attack:

– Time stamp requests only contain a relatively short hash value of DA which (in
practice) can hardly contain any useful information about the invention.

– It is improbable that all time-stamping servers could be simultaneously corrupted
and Alice is usually free to commit to several of them at the same time. This means
that malicious servers who try to delay the publishing of r in order to have more
time for creating x′ based on x will “lose the race” against honest servers who
create their time stamps earlier.

So, the assumption that server has no information about DA when publishing r is
heuristic but still justified in practice and hence it is reasonable to study the security
of time-stamping schemes under such assumption.

To formalize such an attack, a two-staged adversary A = (A1, A2) is used. The first
stage A1 computes and outputs r and an advice string a, which contains useful infor-
mation for the second stage A2. Note that a may contain all random coins of A1, which
makes all useful information that A1 gathered available to A2. After that, the second
stage A2 finds a new x (which is assumed to be a random variable with a sufficient
amount of entropy) and a certificate c such that Ver(x, c, r) = yes. Note that x must
be unpredictable because otherwise x could have been pre-computed by A1 and there
would be nothing wrong in proving that x existed before r was computed and published.
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Hence, for defining the security of time-stamping schemes, the class of possible ad-
versaries is restricted. Only adversaries that produce unpredictable x are considered [3].
A poly-time adversary (A1, A2) is unpredictable if for every poly-time predictor Π:

Pr
[
(r, a) ← A1(1k), x′ ← Π(r, a), (x, c) ← A2(r, a) : x′ = x

]
= k−ω(1) . (2)

It is reasonable to assume that a contains all internal random coins of A1 (see [3] for
more details). An equivalent definition for the unpredictability of A is that the probabil-
ity Pr [Equ] that A2(r, a) outputs the same x twice is negligible. We can also say that x
should have large (super-logarithmic in k) conditional min entropy H∞(x | A1(1k)).

Definition 2. A time-stamping scheme is secure if for every unpredictable (A1, A2):

Pr
[
(r, a)←A1(1k), (x, c)←A2(r, a) : Ver(x, c, r) = yes

]
= k−ω(1) . (3)

3.2 Hash Tree Time-Stamping Schemes

The commitments rt are computed as the root hash values of Merkle hash trees [9]. To
make the paper more self-contained, we outline the basic facts about hash-chains and
how they are used in time-stamping. We use the notation and definitions introduced in
[3]. By () we mean an empty list.

Definition 3 (Hash-Chain). Let h : {0, 1}2k → {0, 1}k be a twice-compressing hash
function and x, y ∈ {0, 1}k. By an h-link from x to y we mean a pair (s, b), where
s ∈ {0, 1}k and b ∈ {0, 1}, such that either b = 0 and y = h(x‖s), or b = 1
and y = h(s‖x). By an h-chain from x to y we mean a (possibly empty) list c =
((s1, b1), . . . , (s�, b�)) of h-links, such that either c = () and x = y; or (2) there is a
sequence y0, y1, . . . , y� of k-bit strings, such that x = y0, y = y�, and (si, bi) is an
h-link from yi−1 to yi for every i ∈ {1, . . . , �}. We denote by Chainh(x, c) = y the
proposition that c is an h-chain from x to y. Note that Chainh(x, ()) = x for every
x ∈ {0, 1}k. By the shape ρ(c) of c we mean the �-bit string b1b2 . . . b�.

x12 = h(x1‖x2)

x5

r = T h(x1, . . . , x5)

x4x3x2x1 x3 x4

x12

x5

r

Fig. 1. A hash tree for X = {x1, . . . , x5} and the hash chain c = ((x4, 0), (x12, 1), (x5, 0)) with
shape ρ(c) = 010 for x3

Hash-tree time-stamping schemes use Merkle trees to compute the commitments rt

for batches Xt. The commitment Com(Xt) of a batch Xt = {x1, . . . , xN} is rt =
T h(x1, . . . , xN ) ∈ {0, 1}k, where T h is a tree-shaped hashing scheme. A certificate
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for x ∈ Xt is a hash chain c such that Chainh(x, c) = rt. The verification procedure
Ver(x, c, rt) returns yes if Chainh(x, c) = rt. In this work, we denote the hash-tree
time-stamping scheme by Th. An example of a hash-tree scheme is depicted in Fig. 1.

Hash-forest time-stamping schemes are obvious generalizations of hash tree schemes.
Input for these schemes is a sequence of batches X1, X2, . . . , Xm and the commitments
are sequences r = (r1, r2, . . . , rm) of hash values, where every ri = Com(Xi) is
computed by using a hash-tree scheme. A certificate for x ∈ Xt is a pair c = (c′, t)
where c′ is a hash chain such that Chainh(x, c′) = rt. The verification procedure
Ver(x, c, r), having as input a request x, a certificate c = (c′, t), and a commitment
r = (r1, r2, . . . , rm) returns yes whenever there is t ∈ {1, . . . , m} and Chainh(x, c) =
rt. By the shape ρ(c) of c = (c′, t) we mean the pair (ρ(c′), t).

4 Existing Security Proofs

It was shown in [5] that this scheme cannot be proved secure in a traditional black-box
way by assuming only the one-wayness and collision-resistance of h. In [5] they also
define a restricted scheme, with a modified verification procedure that uses a set N of
allowed shapes with size |N | = N and the verification procedure Ver was completed
with an additional check for ρ(c) ∈ N. Note that N can be considered as the total
capacity of the time-stamping system, i.e. the total number of time-stamps that can be
securely issued in the system. All the known security proofs for hash-tree or hash-forest
schemes use the following general collision-extraction property:

Definition 4 (Collision-Extraction Property). If Verh(x1, c1, r) = Verh(x2, c2, r) =
yes, ρ(c1) = ρ(c2), and (x1, c1) �= (x2, c2), then the h-calls of Verh(xi, ci, r) (i = 1, 2)
comprise an h-collision.

Essentially, this means that given two certificates of the same shape, we can always find
a collision. For hash trees or hash forests it is rather easy to see: if two different hash
chains c and c′ have the same shape and the same root value, there must be an index l
such that cl �= c′l but h(cl) = h(c′l) which gives the collision that we need. Note that
this property also implies that the number of different time-stamp requests per round is
limited to N , for otherwise we would have a collision to the hash function we use.

We now proceed to describe the reduction itself. However, in order to give a better
intuition to the results we use an iterative process of proving increasingly more precise
bounds. All security reductions we illustrate use the following general schema. Having
an adversary A = (A1, A2) for a time-stamping scheme Th with success

δ(k) = Pr
[
h←Fk, (r, a)←A1(1k, h), (x, c)←A2(r, a) : Verh(x, c, r) = yes

]
. (4)

and running time t = t(k), we construct a collision finder CFh,A,T
k (m) (Fig. 2) with

approximate running time t′ ≈ m · t, where m is a reduction-specific parameter and
then analyze the success δ′ of the collision finder. Although the running time t and the
success δ of A depend on the security parameter k, we will use the shorthand nota-
tions t and δ instead of t(k) and δ(k). Let Equ denote the event that xi = xj for some
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1. Compute (r, a) ← A1(1k, h).
2. Generate m independent samples: (x1, c1) ← A2(r, a), . . . , (xm, cm) ← A2(r, a).
3. Find xi �= xj such that Verh(xi, ci, r) = Verh(xj, cj , r) = yes and ρ(ci) = ρ(cj).
4. If such a pair was found, use it to extract a collision and output it. Otherwise, output ⊥.

Fig. 2. Generic collision finder CFh,A,T
k (m)

i �= j and Equ denote the opposite event, i.e. that all the xi-s are different. Consider-
ing the collision-extraction property, it would be good if all the successfully back-dated
bit-strings were different because then it would be sufficient to find two back-dating cer-
tificates of the same shape. Let Coll denote the event that CFh,A,T

k (m) finds a collision
for h. A general estimate for the success of the collision finder CFh,A,T

k (m) is:

Pr [Coll] ≥ Pr
[
Coll ∩ Equ

]
= Pr

[
Coll | Equ

]
· (1 − Pr [Equ]) 	 Pr

[
Coll | Equ

]
,

because Pr [Equ] = k−ω(1) due to the unpredictability of (A1, A2). We can therefore
neglect the event Equ in the analysis on the security reductions, i.e. we can just assume
that all x1, . . . , xm are different, and use the fact that the success probability of the
collision-finder is δ′ 	 Pr

[
Coll | Equ

]
. Let

Pr [h, r, a] = Pr
[
H ← Fk, (R, A) ← A1(1k) : H = h, R = r, A = a

]
,

δ
(n)
h,r,a = Pr

[
(x, c) ← A2(r, a) : Verh(x, c, r) = yes, ρ(c) = n

]
,

δ(n) = E
h,r,a

[
δ
(n)
h,r,a

]
, and (5)

δh,r,a = δ
(1)
h,r,a + . . . + δ

(N)
h,r,a .

We have δ =
∑

h,r,a Pr [h, r, a] · δh,r,a = E
h,r,a

[δh,r,a]and δ = δ(1) + . . . + δ(N). The

success probability of the collision finder is:

δ′ 	
∑
h,r,a

Pr [h, r, a] · f(m; δ(1)
h,r,a, . . . , δ

(N)
h,r,a) = E

h,r,a

[
f(m; δ(1)

h,r,a, . . . , δ
(N)
h,r,a)

]
,

where f(m; δ1, . . . , δN ) is a function that computes the probability that CFh,A,T
k (m)

made at least two successive A2-calls (among the total m) with the same certificate
shape (Tab. 1). For example, if N = 1 (we have only one shape) and m = 2 then

f(m, δ) = δ2 and by the Jensen inequality δ′ 	 E
h,r,a

[
δ2
h,r,a

]
≥
(

E
h,r,a

[δh,r,a]
)2

= δ2.

4.1 Tightness Measure for Security Reductions

In order to compare the efficiency of adversaries with different running time and success
probability, Luby [8] introduced time-success ratio t

δ , where t is the running time and δ
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Table 1. The success function f(m; δ1, . . . , δN ) and its special cases

N = 1 Arbitrary N

m = 2 f(2; δ) = δ2 f(2; δ1, . . . , δN ) = δ2
1 + . . . + δ2

N

Arbitrary m
f(m; δ) =

1 − mδ(1 − δ)m−1 − (1 − δ)m

f(m; δ1, . . . , δN) =

1 −∑m
j=0

(
m
j

)
j!σj(δ1, . . . , δN )(1 − δ)m−j

is the success of the adversary. A cryptographic primitive is said to be S-secure if every
adversary has time-success ratio t

δ ≥ S. In terms of exact security, this means that the
primitive is (t, δ)-secure for every t and δ with t

δ ≥ S. Time-success ratio provides
a general measure for the tightness of cryptographic reductions. If the time-success
ratio t′

δ′ of the constructed adversary (i.e. CFh,A,T
k (m)) is represented as a function

t′
δ′ = F (t, 1

δ ), where t and δ are the running time and the success of the assumed
adversary (i.e. (A1, A2)), then the reduction is tight if F grows slowly and loose if the
growth is faster. The reduction is said to be linear if F (a, b) = O(a) · O(b), quadratic
if F (a, b) = O(a2) · O(b2), and polynomial if F (a, b) = aO(1) · bO(1). The equation
t′
δ′ = F (t, 1

δ ) is also called as the security loss (formula) of the reduction.

4.2 Reduction with Quadratic Security Loss

To get a security reduction with quadratic security loss, we take m = 2 and use the
estimate 1 f(2; δ1, . . . , δN ) ≥ N ·f(2; δ1+...+δN

N ), and hence by using Jensen inequality

δ′	 E
h,r,a

[
f(2; δ(1)

h,r,a, . . . ,δ
(N)
h,r,a)

]
≥ E

h,r,a

[
N ·f

(
2;

δh,r,a

N

)]
= N · E

h,r,a

[(
δh,r,a

N

)2
]
≥ δ2

N
.

Such a reduction has the security loss formula t′
δ′ ≈ 2N · t

δ2 and was given in [5].

4.3 Reducing the Power of N

Buldas and Laur [4] used the birthday bound to improve the efficiency of the reduction.
Their main idea was to use the collision-finder CFh,A,T

k (m) with m =
√

N
δ instead of

CFh,A,T
k (2). After generating the samples (x1, c1), . . . , (xm, cm) and verifying them

with Verk, the collision finder CFh,A,T
k (m) has on average δm =

√
N successfully

back-dated bit-strings on average. The birthday bound implies that with a probability of
roughly 1

2 we then have two successfully back-dated bit strings with the same shape n.

1 This holds because δ2
1+...+δ2

N
N

≥
(

δ1+...+δN
N

)2

due to the convexity of the square function.
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These can then be used to extract a collision. This idea was made precise in [4] and
resulted in a reduction with security loss 2 t′

δ′ ≈ 48
√

N · t
δ2 . Their reduction was the

best known for this problem so far.

5 New Reduction

We now establish a power 1.5 reduction by first showing an inefficient reduction and
then using combinatorial counting arguments to make it considerably more efficient.
Finally, we obtain a reduction with security loss t′

δ′ = 14
√

N · t
δ1.5 . For this, we use

CFh,A,T
k (m) with m = Θ

(√
N
δ

)
. We start from the case N = 1 when all certificates

have the same shape and we only need two successful A2 calls to get a collision. If the
success of A2 is δ, the success of CFh,A,T

k (m) is:

f(m, δ) = 1−mδ(1− δ)m−1 − (1− δ)m , (6)

where the first negative term is the probability that only one call is successful and the
second negative term is the probability that no call was successful. To explain the theo-
retical obstacles we will meet when going from power 2.0 to power 1.5 reductions, we
first show why it is not trivial to construct a linear reduction even for the case N = 1.

5.1 Problems with Establishing a Linear Reduction

It might seem that when N = 1, it is nearly trivial to construct a linear reduction with
security loss t′

δ′ = c · t
δ . One could just take m = max

{
2, $ 1

δ %
}

, where δ is the success
of the back-dating adversary (A1, A2), and the success δ′ of C will be:

δ′ ≈ f

(
1
δ
, δ

)
=
{

1− (1− δ)
1−δ

δ − (1− δ)
1
δ if δ < 1

2
1− 2δ(1− δ)− (1 − δ)2 = δ2 if δ ≥ 1

2
.

It is easy to see that limδ→0 f
( 1

δ , δ
)

= 1 − 2e−1 ≈ 0.26424 ≥ 1
4 and if the running

time of A2 is t, we seemingly have that the time success ratio of C is t′
δ′ ≈ 4 · t

δ .
However, this approach overlooks the fact that h is randomly chosen and therefore

the probability δ in (6) depends on particular choices of h and also on the output (r, a) of
A1. This means that the success of C is the mathematical expectation E

h,r,a
[f(m, δh,r,a)].

As f turns out not to be convex, Jensen’s inequality cannot be used and the averaging
becomes a nontrivial task in which the power of δ necessarily has to increase.

5.2 Tightness Bounds for Security Reductions

It is easy to see that any hash function used in hash-then-publish time-stamping schemes3

must be division-resistant [2], i.e. any poly-time adversary A = (A1, A2) has success:

Pr
[
h←Fk, (y,a)←A1(h),x1←{0,1}k, x2←A2(y,a,x1) : h(x1‖x2) = y

]
=k−ω(1) .

2 The larger constant is due to technical reasons and could probably be reduced somewhat.
3 More precisely, in schemes where the set N of allowed shapes contains at least one shape that

begins with a 0-bit. In all schemes that are used in practice, this is indeed the case. If for some
reasons, all allowed shapes begin with a 1-bit, then we can show in a similar way that h must
satisfy a dual condition with success predicate h(x2‖x1) = y instead of h(x1‖x2) = y.
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Indeed, if there is A = (A1, A2), such that ADVk(A) = δ, then we construct (A′
1, A

′
2)

so that A′
1 first calls (r, a) ← A1, creates an h-chain c′ = ((s1, b1), . . . , (s�, b�))

such that 0b1 . . . b� ∈ N, and with output Chainr(c′, =)r′, and outputs (r′, a′) where
a′ = (a, r, c′). The second stage A2(r′, a′) first generates a random x ←{0,1}k, then
executes x2 ← A2(r, a, x) and outputs (x, c), where c = ((x2, 0), (s1, b1), . . . (s�, b�)).
It is easy to see that the modified adversary is unpredictable (because x1 is chosen inde-
pendent of y and uniformly at random) and breaks the h-based time-stamping scheme
in terms of (3) with success δ.

By using oracle separation techniques it has been proved [2] that every black-box
security reduction that derives division-resistance from the collision-resistance of the
same function is at least a power-1.5 reduction. Hence, power-1.5 black-box reductions
are also the best we can get when proving entropy-based security of a hash-then-publish
time-stamping scheme from the collision-resistance of the underlying hash function.

5.3 New Reduction: The Case N = 1

If m = max{ 1√
δ
, 2}, the success of the generic collision-finder CFh,A,T

k (m) is:

δ′ 	 E
h,r,a

[f(m, δh,r,a)] =
∑
h,r,a

Pr [h, r, a] · f(m, δh,r,a) . (7)

Note that, in general, δ′ �	 f(m, E
h,r,a

[δh,r,a]) = f(m, δ) because f is not convex

and we cannot apply the Jensen inequality directly. However, f(m, δ) is convex in the

interval
[
0 . . . 1

m−1

]
(Lemma 2 in Appendix A) and lower bounded by the identity

function in the interval
[

1
m−1 . . . 1

]
(Lemma 4 in Appendix A). Defining

p =
∑
h,r,a

δh,r,a≥ 1
m−1

Pr [h, r, a] · δh,r,a ,

we estimate the success δ′ of the collision-finder as follows:

δ′	
∑
h,r,a

δh,r,a<
1

m−1

Pr [h, r, a]·f(m, δh,r,a) +
∑
h,r,a

δh,r,a≥ 1
m−1

Pr [h, r, a] · f(m, δh,r,a) ≥ f(m,δ−p)+p ,

where the first sum is lower-bounded by using Lemma 3 of Appendix A. From the
observation that p ≥ δ

6 or δ− p ≥ 5δ
6 , and that f

(
m, 5δ

6

)
≥ δ

6 (Appendix B), it follows

that δ′ 	 δ
6 . The security loss of the reduction is t′

δ′ ≈ 6 · t
δ1.5 .

5.4 New Reduction: General Case

We simply use the fact that from δ = δ(1) + . . . + δ(N) it follows that there is n ∈ N

such that δ(n) ≥ δ
N . We now take m = max{ 1√

δ(n)
, 2} and modify the adversary A2

so that it only outputs (x, c) if ρ(c) = n. The success of A is δ(n) by the defining
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equation (5). Hence, we reduced the general case to the case N = 1 and the success

of the collision finder CFh,A,T
k (m) is δ′ 	 δ(n)

6 ≥ δ
6N and the security loss of the

reduction is t′
δ′ ≈ 6 ·N1.5 · t

δ1.5 . In the next section, we show that N1.5 can actually be
reduced to

√
N which makes our reduction strictly better than the one given in [4].

5.5 New Reduction: Reducing the Power of N

The adversary previously considered only used collisions for the most probable certifi-
cate shape. We can get significantly better bounds if we try to take advantage of all
possible collisions. We again use CFh,A,T

k (m) as our adversary construction. However,
we try to bound the success probability δ′ of the collision-finder tighter than before. It
is clear that the adversary can fail to find a collision only when all the certificates re-
turned by the time-stamping adversary are of different shapes or when two certificates
coincide completely. The readers who are not interested in mathematical details of the
proof may skip this subsection.

We analyze what happens if the advice a, the hash function h, and the root hash value
r for A1 have been fixed already. Then the probability of all the successfully back-dated
certificates having different shapes after m tries is

m∑
k=0

(
m

k

)
k!σk(δ(1) . . . δ(N))(1−δ)m−k =

m∑
k=0

(
m

k

)(
N

k

)
k!Sk(δ(1) . . . δ(N))(1−δ)m−k

≤
m∑

k=0

(
m

k

)(
N

k

)
k!S1(δ(1) . . . δ(N))k(1−δ)m−k =

m∑
k=0

(
m

k

)
Nk

Nk
δk(1− δ)m−k , (8)

where σk is the k-th elementary symmetric polynomial, Sk = σk/
(
N
k

)
and Nk =

N ·(N−1) · . . . ·(N−k+1) is the falling factorial power. The MacLaurin’s inequality
says that k

√
Sk ≤ l

√
Sl whenever k ≥ l and δi ≥ 0. Now note that

δk(1− δ)m−k =
m−k∑
i=0

(−1)i

(
m− k

i

)
δi+k =

m∑
j=k

(−1)j−k

(
m− k

j − k

)
δj .

We plug this into (8), change the order of summation and use
(
m
k

)(
m−k
j−k

)
=
(
m
j

)(
j
k

)
to get

S =
m∑

k=0

(
m

k

)
Nk

Nk

⎛⎝m∑
j=k

(−1)j−k

(
m−k

j−k

)
δj

⎞⎠=
m∑

k=0

m∑
j=k

(−1)j+k Nk

Nk

(
m

k

)(
m− k

j − k

)
δj =

=
m∑

j=0

m∑
k=j

(−1)j+k Nk

Nk

(
m

j

)(
j

k

)
δj =

m∑
j=0

(−1)j

(
m

j

)(
j∑

k=0

(−1)k Nk

Nk

(
j

k

))
δj .

Computing the first few terms we get 1 − 1
N

(
m
2

)
δ2 + 2

N2

(
m
3

)
δ3 + 3N−6

N3

(
m
4

)
δ4 + . . ..

Denote φn =
∑n

k=0(−1)k Nk

Nk

(
n
k

)
and ψn =

(
m
n

)
|φn|δn. It turns out that φn satisfy the

recurrence4 φk+1 = k
N (φk − φk−1). Assuming c1

√
N
δ + 1 ≤ m ≤ c2

√
N
δ , we get

4 This recurrence was found using Zeilberger’s algorithm [10]. See Appendix C for a proof.
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ψk+1 =
(

m

k + 1

)
k

N
|φk−1 − φk| δk+1 ≤

(
m

k + 1

)
2k

N
max(|φk−1|, |φk|)δk+1

= max
(

2(m− k)(m− k − 1)
(k + 1)N

(
m

k − 1

)
|φk−1|,

2(m− k)k
(k + 1)N

(
m

k

)
|φk|

)
δk+1

≤ max

(
c2
2N

Nδ
ψk−1δ

2,
2c2

√
N

N
√

δ
ψkδ

)
= c2

√
δ max

(
2√
N

ψk, c2
√

δψk−1

)
.

To simplify further analysis we assume that N ≥ 4. By noting that ψ1 = 0, we get that
ψ3 ≤ c2

√
δψ2, ψ4 ≤ c2

2δψ2 and in general, ψk ≤ (c2
√

δ)k−2ψ2 for all k ≥ 2 which
can be easily verified by induction. Using this, we get a simple bound on the sum of the
remaining elements if we assume c2

√
δ < 1:∣∣∣∣∣

m∑
k=3

(−1)k

(
m

k

)
φkδk

∣∣∣∣∣ ≤
m∑

k=3

ψk ≤
m−2∑
k=1

(c2
√

δ)kψ2 ≤
c2
√

δψ2

1− c2
√

δ
.

We thus know that the success of the adversary for fixed h, r and a is at least

f(N, δ) ≥
(
1− c2

√
δ

1−c2
√

δ

)
1
N

(
m

2

)
δ2 ≥ 1−2c2

√
δ

N(1−c2
√

δ)
c2
1N

2δ
δ2 =

c2
1(1−2c2

√
δ)

2(1−c2
√

δ)
δ .

We analyze the lower bound described for convexity. Assuming c1
c2

= const. we can

substitute c2
√

δ = x and disregard a constant multiplier to get x2 1−2x
1−x which is easily

seen to be convex whenever x < 1− 1
3√2

≈ 0.2. In order to guarantee the convexity of

the approximation for f we need to have c2
√

δ ≤ 1 − 1
3√2

for all possible δ. As δ ≤ 1,

this can easily be achieved by taking c2 ≤ 1− 1
3√2

.

Let δh,r,a denote the success when h, r and a are fixed and let δ = E
h,r,a

[δh,r,a]be the

average success. Since f is convex for δ when we fix c2 as described, we can use the

Jensen inequality to get f̄(N, δ) = E
h,r,a

[f(N, δh,r,a)]≥ f

(
N, E

h,r,a
[δh,r,a]

)
. Thus,

t′

δ′
≈ mt

f̄(N, δ)
≤

c1

√
N
δ t

c2
1(1−2c2

√
δ)

2(1−c2
√

δ)
δ

=
2(1− c2

√
δ)
√

Nt

c1(1 − 2c2
√

δ)δ1.5
.

We want to make the bound. Again, assuming c1
c2

= const. and also that δ = N =

const. we can see that the problem we are facing is equivalent to maximizing 1−x
√

δ
x(1−2x

√
δ)

.

The derivative of that function is positive whenever (
√

δx)2 − 2
√

δx + 0.5 > 0. Since√
δ ≤ 1 and x = c2 ≤ 1− 1

3√2
and both are also greater than 0, the derivative is always

positive and as such the maximum is achieved when we take c2 = 1− 1
3√2

.
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We now upper bound 1−c2
√

δ

(1−2c2
√

δ)
. As the function is strictly increasing for c2 fixed

to 1 − 1
3√2

and
√

δ ≤ 1, the upper bound is achieved when δ = 1 when the result is
1

2− 3√2
< 1.4. Taking c1 = 0.2 then gives t′

δ′ ≈ 14
√

Nt
δ1.5 .

6 Practical Implications

In order to show the practical consequences of the new reduction we will compare
three reductions: the reduction given by Buldas and Saarepera in Asiacrypt 2004 [5],
the reduction by Buldas and Laur in PKC 2007 [4], and the new reduction given in
this article. We study a hypothetic global scale time-stamping system capable of is-
suing 67 million (about 226) time stamps per second and with lifetime at least 34
years (about 230 seconds), i.e. we need to take N = 256. Systems of that scale are
indeed in practical use. Our security proof is the first practical statement about the se-
curity of such systems if a 256 bit hash function (such as SHA2-256) is used. This
is because we want the system to be secure against back-dating adversaries with time-
success ratio t/δ = 264. We study adversaries with three different time-success profiles:
(t, δ) ∈ {(1, 2−64), (232, 2−32), (264, 1)}. For each profile and reduction we compute
the necessary output length of the hash function that is used in the time-stamping sys-
tem considering that the hash function’s security is near the birthday barrier, i.e. hash
functions of output size k are 2k/2-secure. The results are presented in Table 2.

Table 2. Efficiency of reductions. The numbers denote hash function’s output size in bits.

Reduction Formula t = 1, δ = 2−64 t = 232, δ = 2−32 t = 264, δ = 1

Asiacrypt 2004 t′
δ′ ≈ 2N t

δ2 370 306 242

PKC 2007 t′
δ′ ≈ 48

√
N t

δ2 324 260 196

This paper t′
δ′ ≈ 14

√
N t

δ1.5 256 224 190

We see that a 256-bit hash function is indeed sufficient for such a time-stamping
scheme though the previously proposed reductions were incapable of showing this.

It is also interesting to analyze how the hash-function output size k depends on the
capacity N and the required security of the time-stamping system against back-dating.
We study two levels of security: against 264-adversaries and against 280-adversaries.
The results are summarized in Table 3. For example, in order to construct a 264-secure

Table 3. Efficiency of reductions. How hash function output size k depends on the capacity N .

Reduction Formula 264-security 280-security

Asiacrypt 2004 t′
δ′ ≈ 2N t

δ2 k = 2 log2 N + 258 k = 2 log2 N + 322
PKC 2007 t′

δ′ ≈ 48
√

N t
δ2 k = log2 N + 268 k = log2 N + 332

This paper t′
δ′ ≈ 14

√
N t

δ1.5 k = log2 N + 200 k = log2 N + 248
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time-stamping system with total capacity N = 256, we need a 256-bit hash func-
tion. Unfortunately, for achieving 280-security with a 256-bit hash function the capacity
should be N ≤ 28 = 256, which is clearly insufficient for a global scale time-stamping
system. As the reduction we have is asymptotically tight, we have almost no hope of
improving the efficiency of the reduction. Hence, in order to draw practical security
conclusions about the large time-stamping systems that use a 256-bit hash function,
we are forced to use security assumptions stronger than collision-freeness, even if the
function is assumed to be collision-free to the birthday barrier.
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A Properties of the Success Function f

We prove some useful properties of f(m, x) = 1−mx(1 − x)m−1 − (1− x)m.

Lemma 1. If m≥2, then the function f(m, x) is increasing in [0 . . . 1].

Proof. This follows from the observation that d
dxf(m, x) = m(m− 1)x(1− x)m−2 is

always positive in x ∈ [0 . . . 1]. �	
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Lemma 2. If m ≥ 2, then the function f(m, x) is convex in
[
0 . . . 1

m−1

]
and concave

in
[

1
m−1 . . . 1

]
.

Proof. We use zeroes of the second derivative of f(m, x). The equation

d2

dx2 f(m, x) = −m(m− 1)(1− x)m−3[(m− 1)x− 1] = 0

implies that x ∈
{

1
m−1 , 1

}
. It is easy to see by using direct computations that the

second derivative is positive if 0 ≤ x ≤ 1
m−1 and negative if 1

m−1 ≤ x ≤ 1. �	

Lemma 3. For every m ≥ 2, for every collection of points x1, . . . , xn ∈
[
0 . . . 1

m−1

]
and coefficients p1, . . . , pn so that

∑
i pi ≤ 1 we have

n∑
i=1

pi · f(m, xi) ≥ f

(
m,

n∑
i=1

pi · xi

)
.

Proof. We use the fact that f(m, 0) = 0, add an artificial term to the sum, and use the
convexity of f(m, x) and apply the Jensen’s inequality. Let p0 = 1−

∑
i pi and x0 = 0.

Then we have:

n∑
i=1

pi ·f(m, xi) = p0 · f(m, x0)+
n∑

i=1

pi · f(m, xi)≥f

(
m, p0 · x0 +

n∑
i=1

pi · xi

)

= f

(
m,

n∑
i=1

pi · xi

)
,

which proves the claim. �	

Lemma 4. For every m ≥ 2 and x ≥ 1
m−1 we have f(m, x) ≥ x.

Proof. It is sufficient to prove that f
(
m, 1

m−1

)
≥ 1

m−1 for every m ≥ 2 and then use the

fact that f(m, x) is concave in
[

1
m−1 . . . 1

]
. Indeed, f

(
2, 1

1

)
= 1

1 , f
(
3, 1

2

)
= 1

2 , and

f
(
4, 1

3

)
= 11

27 ≥
1
3 . If m ≥ 5 then

f

(
m,

1
m− 1

)
= 1− m

m− 1
·
(

1− 1
m− 1

)m−1

−
(

1− 1
m− 1

)m

= 1−
(

m+1
m−1

−1
)
·
(
1− 1

m−1

)m−1

≥1−2 ·
(
1− 1

m−1

)m−1

= 1− 2e−1 ≥ 1
4
≥ 1

m− 1
.

As f(m,1)=1 and f is concave in
[

1
m−1 . . .1

]
, we have f(m,x)≥x, ∀x∈

[
1

m−1 . . .1
]
. �	
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B Lower Bound for f(max
{
2, 1√

δ

}
, 5δ

6
)

Theorem 1. For every 0 ≤ δ ≤ 1
4 we have f(max

{
2, 1√

δ

}
, 5δ

6 ) ≥ δ
6 .

Lemma 5. If 0 ≤ x ≤ 1
m−1 , then f(m, x) ≥ m(m−1)

2 x2 − m(m−1)(m−2)
3 x3.

Proof. First, we expand f(m, x) as follows:

f(m, x) =1−mx(1−x)m−1−(1−x)m =1−mx

m−1∑
i=0

(−1)i

(
m−1

i

)
xi−

m∑
i=0

(−1)i

(
m

i

)
xi

=1+
m−1∑
i=0

(−1)i+1m

(
m−1

i

)
xi+1−

m∑
i=0

(−1)i

(
m

i

)
xi

=1+
m∑

i=1

(−1)im

(
m−1
i−1

)
xi−

m∑
i=0

(−1)i

(
m

i

)
xi =

m∑
i=1

(−1)i

[
m

(
m−1
i−1

)
−
(
m

i

)]
xi

=
m∑

i=1

(−1)im

(
1− 1

i

)(
m− 1
i− 1

)
xi =

m∑
i=2

(−1)im

(
1− 1

i

)(
m− 1
i− 1

)
xi

Obviously, ai = m
(
1− 1

i

) (
m−1
i−1

)
> 0 and if x < 1

m−1 and 2 ≤ i < m then

aix
i

ai+1xi+1 =
1
x

(
1− 1

i

) (
m−1
i−1

)(
1− 1

i+1

) (
m−1

i

) =
1
x

i−1
i

(
m−1
i−1

)
i

i+1

(
m−1

i

) =
1
x

i2 − 1
i2

(
m−1
i−1

)(
m−1

i

)
=

1
x

i2 − 1
i2

(m−1)!
(i−1)!(m−i)!

(m−1)!
i!(m−i−1)!

=
1
x

i2 − 1
i2

i!(m− i− 1)!
(i− 1)!(m− i)!

=
1
x

i2 − 1
i2

i

m− i

=
1
x

i2 − 1
i(m− i)

=
1
x
·
(

1 +
1
i

)
i− 1
m− i

≥ m− 1
m− i

· (i− 1) > 1 .

Therefore, the expansion of f(m, x) when x ≤ 1
m−1 is an alternating sum of decreasing

terms. This means that

f(m, x) ≥ p(m, x) = m

(
1− 1

2

)(
m− 1

1

)
x2 −m

(
1− 1

3

)(
m− 1

2

)
x3

=
m(m− 1)

2
x2 − m(m− 1)(m− 2)

3
x3 .

�	

Lemma 6. If m = 1√
δ

and 0 < δ < 1 then 5δ
6 ≤ 1

m−1 .

Proof. 1
m−1 = 1

1√
δ
−1 =

√
δ

1−√
δ

= δ√
δ−δ

≥ δ
1 ≥

5δ
6 . �	

Lemma 7. The polynomial h(δ) = 1
δ · p( 1√

δ
, 5δ

6 ) is decreasing in [0 . . . 1].
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Proof. As h(δ) = 25
72 −

175
324

√
δ + 125

216δ − 125
324δ3/2 and the equation d

dxh(x) = 0 has
no real solutions and limx→∞ h(x) = −∞ we conclude that h(x) is decreasing in
[0 . . .∞) and h(δ) is decreasing in [0 . . . 1]. �	
Therefore, the global minimum of h(δ) in [0 . . . 1/4] is h(1/4) = 25

144 > 1
6 . The func-

tion 1
δ ·f(max

{
2, 1√

δ

}
, 5δ

6 ) is increasing in [1/4 . . . 1] because then max
{
2, 1√

δ

}
= 2

and 1
δ · f(2, δ) = δ is increasing. Hence, f(max

{
2, 1√

δ

}
, 5δ

6 ) is lower-bounded by δ
6 .

C Proof of the Recurrence Relation

Lemma 8. Stirling numbers of first kind s(n, m) satisfy the following identity (∀m, n):

n+1∑
k=0

(−1)ks(k, m + k − n− 1)
(

n + 1
k

)
=

n∑
k=0

(−1)kk · s(k, m + k − n)
(

n

k

)
. (9)

Proof. We use the recurrence relation s(a, b−1)−s(a+1, b) = a·s(a, b) and transform
the left hand side sum � of (9) as follows:

� =
n+1∑
k=0

(−1)ks(k, m + k − n− 1)
(

n + 1
k

)

= s(0, m− n− 1)
(

n + 1
0

)
+

n∑
k=1

(−1)ks(k, m + k − n− 1)
(

n + 1
k

)
+

+(−1)n+1s(n + 1, m)
(

n + 1
n + 1

)
= s(0, m− n− 1)

(
n

0

)
+

n∑
k=1

(−1)ks(k, m + k − n− 1)
[(

n

k

)
+
(

n

k − 1

)]
+

+(−1)n+1s(n + 1, m)
(

n

n

)
= s(0, m− n− 1)

(
n

0

)
+

n∑
k=1

(−1)ks(k, m + k − n− 1)
(

n

k

)
+

+
n∑

k=1

(−1)ks(k, m + k − 1− n)
(

n

k − 1

)
+ (−1)n+1s(n + 1, m)

(
n

n

)

=
n∑

k=0

(−1)ks(k, m + k − n− 1)
(

n

k

)
+

n∑
k=0

(−1)k+1s(k + 1, m + k − n)
(

n

k

)

=
n∑

k=0

(−1)k [s(k, m + k − n− 1)− s(k + 1, m + k − n)]
(

n

k

)

=
n∑

k=0

(−1)kk · s(k, m + k − n)
(

n

k

)
,

which is equal to the right hand side of (9). �	
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Theorem 2. The sequence φn =
∑n

k=0(−1)k Nk

Nk

(
n
k

)
satisfies the recurrence relation:

φn+1 =
n

N
(φn − φn−1) .

Proof. It is sufficient to show that A(N) = Nn+1φn+1 and B(N) = nNn(φn−φn−1)
are identical as polynomials with variable N , i.e. all their coefficients coincide. We use
the formula Nm =

∑m
j=0 s(m, j) ·N j , where s(m, j) are Stirling numbers of the first

kind. So, we have:

A(N)=
n+1∑
k=0

(−1)kNkNn+1−k

(
n + 1

k

)
=

n+1∑
k=0

k∑
j=0

(−1)ks(k, j)
(
n + 1

k

)
Nn+1+j−k ,

from which it follows that the coefficient coefm(A) of Nm is:

coefm(A) =
n+1∑
k=0

(−1)ks(k, m + k − n− 1)
(

n + 1
k

)
,

which is equal to the left hand side of identity (9). Similarly, for B(N) we obtain:

B(N) = nNn(φn − φn−1)

=
n∑

k=0

(−1)kNkNn−kn

(
n

k

)
−

n−1∑
k=0

(−1)kNkNn−kn

(
n− 1

k

)

=
n−1∑
k=0

(−1)kNkNn−kn

[(
n

k

)
−
(

n− 1
k

)]
+ (−1)nNnN0n

(
n

n

)

=
n−1∑
k=0

(−1)kNkNn−kn

(
n− 1
k − 1

)
+ (−1)nNnN0n

(
n

n

)

=
n−1∑
k=0

(−1)kNkNn−kk

(
n

k

)
+ (−1)nNnN0n

(
n

n

)

=
n∑

k=0

(−1)kNkNn−kk

(
n

k

)
=

n∑
k=0

k∑
j=0

(−1)kk · s(k, j)
(

n

k

)
·Nn−k+j

and

coefm(B) =
n∑

k=0

(−1)kk · s(k, m + k − n)
(

n

k

)
,

which coincides with the right hand side of (9). Hence, coefm(A) = coefm(B) for
every m > 0, and by Lemma 8 the statement follows. �	
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Abstract. We show how to express an arbitrary integer interval
I = [0, H ] as a sumset I =

∑�
i=1 Gi ∗ [0, u − 1] + [0, H ′] of smaller

integer intervals for some small values 	, u, and H ′ < u − 1, where
b∗A = {ba : a ∈ A} and A+B = {a+b : a ∈ A∧b ∈ B}. We show how to
derive such expression of I as a sumset for any value of 1 < u < H , and
in particular, how the coefficients Gi can be found by using a nontrivial
but efficient algorithm. This result may be interesting by itself in the
context of additive combinatorics. Given the sumset-representation of
I, we show how to decrease both the communication complexity and
the computational complexity of the recent pairing-based range proof of
Camenisch, Chaabouni and shelat from ASIACRYPT 2008 by a factor
of 2. Our results are important in applications like e-voting where a
voting server has to verify thousands of proofs of e-vote correctness per
hour. Therefore, our new result in additive combinatorics has direct
relevance in practice.

Keywords: Additive combinatorics, cryptographic range proof, sumset,
zero knowledge.

1 Introduction

In a cryptographic range proof, the prover proves in zero knowledge that for
given C and H , C is a commitment of some element σ ∈ [0, H ]. (Modifying it
to general ranges [L, H ] is trivial when one uses a homomorphic commitment
scheme.) Range proofs are needed in various applications like e-voting [10,11]
(where usually H + 1 is the number of candidates, that is, relatively small —
though in the case of certain elections, there may be thousands of candidates),
e-auctions [16] (where H + 1 is the number of number of possible bids, that is,
relatively large), e-cash, etc. Range proofs with communication complexity O(1)
were introduced in [4,15].

However, such proofs work under very specific security assumptions, and thus
there is still interest in protocols that are based on the discrete logarithm sce-
nario. There exists a well-known folklore cryptographic range proof, see for ex-
ample [11], in the special case when H = u�−1 for some integers u, � > 0. In this

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 336–351, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Additive Combinatorics and Discrete Logarithm Based Range Protocols 337

protocol, the prover writes σ as σ =
∑

σju
j , commits—by using a homomorphic

commitment scheme—to all values σj , and then proves in zero-knowledge (using
say a Σ-protocol) that σj ∈ [0, u− 1] for all j. The asymptotic communication
complexity of this folklore range proof is Θ(log H) times the complexity of the
range proof of smaller interval [0, u− 1].

Recently, Camenisch, Chaabouni and shelat [5] presented a new range proof
that works in the non-binary case. Assuming again H = u� − 1, the verifier
in their range proof first publishes signatures on all integers in [0, u − 1]. The
prover gives a proof of knowledge on signatures of � committed elements σj .
Analogously to the folklore protocol, this shows that the prover knows elements
σj ∈ [0, u − 1] such that σ =

∑
σju

j (the latter part is trivial with a public
homomorphic commitment to σ).

However, if H �= u� − 1 then both the folklore protocol and the protocol
of [5] get more complicated, and require up to 2 times more communication. In a
nutshell, this is because they show that σ ∈ [0, H ] by using an AND composition
of two range proofs, σ′ ∈ [0, u� − 1] and σ′ ∈ [H − (u� − 1), H ]. While such an
AND composition is standard [9], it requires roughly two times more resources
than the non-composed protocol for the case H = u� − 1.

In the special case u = 2, an efficient modification of the folklore proto-
col for general ranges was proposed (though its correctness was not proven)
in [16]. There it was noted that for any H ≥ 1, σ ∈ [0, H ] if and only if
σ =

∑�log2 H�
j=0 Gjσj , where σj ∈ {0, 1} and Gj :=

⌊
(H + 2j)/2j+1

⌋
. For ex-

ample, σ ∈ [0, 11] iff σ = 6σ0 + 3σ1 + σ2 + σ3 for σj ∈ {0, 1}. Thus the folklore
protocol can be extended to arbitrary values of H with virtually no efficiency
loss. In particular, there is no need for the AND composition. No improvement
upon the folklore protocol in the general case u > 2 and H �= u� − 1 is known.

New Result in Additive Combinatorics. The principal contribution of this
paper is to show that for any integer interval I = [0, H ] and for any 1 < u < H ,
there is a sumset-representation

I =
�−1∑
j=0

Gj ∗ [0, u− 1] + [0, H ′] (1)

for some � ≤ $logu(H + 1)% and H ′ ∈ [0, u − 2], where b ∗ A = {ba : a ∈ A}
and A + B = {a + b : a ∈ A ∧ b ∈ B}. We first derive a recursive formula for
computing Gj for any u > 1. As an interesting technical contribution, we then
show a semi-closed form for Gj , that is, we show how to compute Gj given
only H , j and u. This algorithm is efficient and only requires simple arithmetic.
More precisely, we show that Gj is equal to the sum of

⌊
H/uj+1

⌋
and a simple

(but nontrivial) function of the j + 1 lowest u-ary digits of H . We think that
the presented algorithm may be interesting by itself say in the general context
of additive combinatorics [17]: decompositions of sets as sumsets are common in
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additive combinatorics, but our concrete result differs significantly from existing
results in that field.1

Note that in the language of additive combinatorics, the result of [16] says
that

[0, H ] =
�log2 H�∑

j=0

⌊
(H + 2j)/2j+1⌋ ∗ [0, 1] . (2)

Eq. (2) does not straightforwardly generalize to the case where we are interested
in a larger range [0, u− 1]. In fact, [16] did not even present a proof that Eq. (2)
holds. As a straightforward corollary of our sumset-representation of [0, H ], we
obtain a proof that the presentation of Eq. (2) is correct.

Application of the Sumset-Representation in Range Proofs. We show
how to use the sumset-representation Eq. (1) to modify the pairing-based range
proof of [5] so that it will become at least 50% more communication-efficient
in practice (and so that it is always more efficient than the folklore proto-
col). For this we use a simple corollary of our general sumset-representation
that [0, H ] =

∑�−1
j=0 Gj ∗ [0, u − 1] whenever (u − 1) | H . Moreover, if we set

u = O(log H/ log log H), then the total communication of the range proof is
Θ(log H/ log log H). We also point out some mistakes in [5], namely, that the so
called OR composition proposed there does not work in most of the cases, and
thus their protocols are somewhat less efficient than claimed. In addition, the
new protocol is also about 2 times more computation-efficient than the protocol
from [5]. A factor of 2 times improvement in communication and computation is
extremely relevant to practical applications like e-voting where a voting server
may have to verify thousands of proofs of e-vote correctness per hour.2 Moreover,
the used sumset-representation is optimal, so the achieved speedup is optimal for
this kind of range proofs. (Note that in applications like e-voting, one requires
non-interactive zero-knowledge proofs. The latter can be efficiently constructed
from Σ-protocols using the well-known Fiat-Shamir heuristic [13].)

Finally, we hope there will be more applications of the new sumset-
representation in cryptography.

2 Preliminaries

We summarize and copy some of the notation and definitions from [5] for con-
sistency and to make it easier for the reader to follow.
1 Recall that typical questions of additive combinatorics are of type how large or small

can sumsets of type A ± A be, and how is the cardinality of this set related to the
cardinalities of Ai. Note that our question can be reworded as follows: we are asking
for the maximal cardinality of I =

∑
Gj ∗ [0, u− 1] + [0, H ′] for fixed u and H ′ but

variable Gj .
2 Such e-voting servers are currently running at least in Estonia,
http://www.vvk.ee/index.php?id=11178, and will hopefully be more widespread
in the near future. For example, in the last e-voting in Estonia, 4 500 votes were
cast during the peak hour.

http://www.vvk.ee/index.php?id=11178
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Notation. PPT means probabilistic polynomial-time. k is the security param-
eter. In all protocols, prover and verifier send elements from G1, GT and Zp. We
denote the length of representation (which may differ from the logarithm of the
cardinality of the groups) of such elements by rlen(G1), rlen(GT ) and rlen(Zp)
respectively.

Additive Combinatorics. For any two integers L ≤ H , let

[L, H ] := {x ∈ Z : L ≤ x ≤ H} .

We use the usual “set-theoretic” arithmetic notation. For example, if A and B
are sets then A + B = {a + b : a ∈ A ∧ b ∈ B}. Moreover, for an integer b and
A ⊂ Z, b ∗A = {ba : a ∈ A}, this is also called the b-dilate of A [17].

Commitment Schemes. A (string) commitment scheme is a triple of algo-
rithms C = (Gen, Com, Open) representing the generation, the commit and the
open algorithm. The Gen algorithm generates parameters p for a scheme. The
Com algorithm runs on input (p, m, r) where m is a string, and r is a random
tape, and produces a pair of values (c, o) representing respectively the committed
string and an opening string. The Open algorithm runs on input (c, m, o) and
outputs 0 or 1. The scheme should have a ”hiding” property and a ”binding”
property which informally require it to be difficult (or impossible) for the adver-
sary to determine the message m from c or to open the value of a commitment
c to two different messages m1, m2.

Zero-Knowledge Proofs and Σ-Protocols. We use definitions from [1,8]. A
pair of interacting algorithms (P, V) is a proof of knowledge (PK) for a relation
R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for
all (α, β) ∈ R, V(α) accepts a conversation with P(β) with probability 1; and
(2) there exists an expected polynomial-time algorithm E, called the knowledge
extractor, such that if a cheating prover P∗ has probability ε of convincing V
to accept α, then E, when given rewindable black-box access to P∗, outputs a
witness β for α with probability ε− κ.

A proof system (P, V) is computational honest-verifier zero-knowledge if there
exists a PPT algorithm Sim, called the simulator, such that for any (α, β) ∈ R,
the outputs of V (α) after interacting with P(β) and that of Sim(α) are com-
putationally indistinguishable. When we will talk about honest-verifier zero-
knowledge we will assume the computational case.

Note that standard techniques can be used to transform an honest-verifier
zero-knowledge proof system into a general zero-knowledge one [8]. This is espe-
cially true of special Σ-protocols that will be presented later in the paper. Thus,
for the remainder of the paper, our proofs will be honest-verifier zero-knowledge.
(This also allows us to make more accurate comparisons with the other proof
techniques since they are usually also presented as honest-verifier protocols.)

A Σ-protocol for language L is a proof system (P, V) where the conversa-
tion is of the form (a, c, z), where a and z are computed by P, and c is a
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challenge randomly chosen by V. The verifier accepts if φ(α, a, c, z) = 1 for
some efficiently computable predicate φ. A Σ-protocol must satisfy three secu-
rity requirements: correctness, special soundness and special honest-verifier zero
knowledge (SHVZK). A Σ-protocol is correct when a honest prover convinces
honest verifier with probability 1− k−ω(1). A Σ-protocol has the special sound-
ness property when from two accepting views (a, c, z) and (a, c′, z′), where c �= c′,
one can efficiently recover a witness w such that w ⇒ x ∈ L. A Σ-protocol has
the SHVZK property if there exists a PPT simulator Sim that can first ran-
domly pick c∗, z∗ (from some fixed sets) and then compute an a∗ such that the
view (a∗, c∗, z∗) is accepting and the distribution (a∗, c∗, z∗) is computationally
indistinguishable from the distribution of accepting views between honest prover
and honest verifier.

We use the notation introduced by Camenisch and Stadler [6] for various
zero-knowledge proofs of knowledge of discrete logarithms and proofs of the
validity of statements about discrete logarithms. For instance, PK{(α, β, γ) :
y = gαhβ ∧ y = gαhγ ∧ (u ≤ α ≤ v)} denotes a “zero-knowledge Proof of
Knowledge of integers α, β, and γ such that y = gαhβ and y = gαhγ holds, where
u ≤ α ≤ v,” where y, g, h, y, g, and h are elements of some groups G = 〈g〉 = 〈h〉
and G = 〈g〉 = 〈h〉. The convention is that Greek letters denote quantities the
knowledge of which is being proved, while all other parameters are known to the
verifier. Using this notation, a proof-protocol can be described by just pointing
out its aim while hiding all details. We note that all of the protocols we present
in this notation can be easily instantiated as Σ-protocols.

Definition 1 (Proof of Set Membership [5]). Let C = (Gen, Com, Open)
be the generation, the commit and the open algorithm of a string commitment
scheme. For an instance c, a proof of set membership with respect to commit-
ment scheme C and set Φ is a proof of knowledge for the following statement:
PK{(σ, ρ) : c ← Com(σ; ρ) ∧ σ ∈ Φ}.
Definition 2 (Range Proof [5]). A range proof with respect to a commitment
scheme C is a special case of a proof of set membership in which the set Φ is a
continuous sequence of integers Φ = [a, b] for a, b ∈ N.

As discussed in the introduction, some efficient range proofs were proposed
in [4,16,15,5]. We will give a precise description of the proof from [5] in Sect. 4.

Any secure Σ-protocol can be efficiently transferred into a non-interactive
zero-knowledge proof (in the random oracle model) by using the Fiat-Shamir
heuristic [13]. In many applications, the Σ-protocol needs to have nontransfer-
ability properties. In all such cases (like e-voting), one uses the corresponding
non-interactive zero-knowledge proof. Since the Fiat-Shamir heuristic is well-
known and its use is standard in say e-voting literature [10,11], we will omit any
explicit mention of it in what follows.

3 Sumset-Representation of Integer Intervals

The goal of this section is to derive a sumset-representation [0, H ] =
∑�−1

i=0 Gi ∗
[0, u − 1] + [0, H ′], where 1 < H ′ < u  H , of an arbitrary integral interval
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Fig. 1. Illustration of the first recursive step of Thm. 1. Here H = H0 = 17, and
u ∈ {3, 4, 5}. For example, in the top graph, u = 3, G0 = �(17 + 1)/3� = 6, and
H1 = 17 − 2 · 6 = 5.

[0, H ]. (Integral means that all involved parameters H , H ′, u and Gi are positive
integers.) Moreover, we aim to find minimal � for any fixed value of u.

First we give an intuitive derivation of our result. (See also Fig. 1.) Fix H
and u. Let H0 = H . Then clearly [0, H0] = G0 ∗ [0, u − 1] + [0, H1], where
G0 := '(H0 + 1)/u( and H1 = H0 − (u− 1) ·G0. This can be derived as follows:
we want to divide [0, H0] into u smaller (possibly overlapping) intervals of equal
size H1 such that H1 is minimal. The sub-intervals should start at periodic
positions jG0, for some G0. Because all elements from [0, H0] must belong to
at least one of those subareas, it must be the case that H1 ≥ G0 − 1 and
(u − 1)G0 + H1 ≥ H0. Thus, in the optimal case when H1 = G0 − 1, we get
uG0 − 1 = H0 or G0 = (H0 + 1)/u. Since G0 has to be an integer, we set
G0 = '(H0 + 1)/u(. Finally, H1 = H0 − (u− 1)G0 as stated.

These formulas reduce the case [0, H0] to a smaller case [0, H1] that can be
solved similarly. Recursively, [0, H ] = [0, u− 1] ·

∑
j Gj + [0, H ′], where

Gj :=
⌊

Hj + 1
u

⌋
. (3)

and Hj+1 := Hj − (u− 1) ·Gj = Hj − (u− 1) ·
⌊

Hj+1
u

⌋
.

This process stops when the interval [0, Hj+1] is small enough so that it cannot
be covered by u different non-empty intervals, that is, if Hj+1 ≤ u − 1. Then
we define �(u, H) := j + 1 to be the number of steps in this recursive process.
Clearly, after we are done with the recursive process,

H ′ := Hj+1 = H −
⌊

H

u− 1

⌋
· (u− 1) .

This means in particular that if (u− 1) | H then H ′ = 0.

Example 1. For example, with H = 57 and u = 4, one can verify that [0, 57] =
14 ∗ [0, 3] + 4 ∗ [0, 3] + [0, 3]. As another example, [0, 160] = 40 ∗ [0, 3] + [0, 40] =
40 ∗ [0, 3] + 10 ∗ [0, 3] + [0, 10] = 40 ∗ [0, 3] + 10 ∗ [0, 3] + 2 ∗ [0, 3] + [0, 4] =
40 ∗ [0, 3] + 10 ∗ [0, 3] + 2 ∗ [0, 3] + 1 ∗ [0, 3] + [0, 1]. Now we are done since
1 < u− 1 = 3.
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(Another, though non-recursive, example with H = 17 was already depicted by
Fig. 1.)

Finally, the sequence (. . . , Gj , . . . ) clearly decreases the slowest when for all
j, u | (Hj+1 +1), since then the floor operation is not applied. But u | (Hj+1 +1)
iff u | (Hj − (u − 1)Gj + 1) iff u | (Hj + Gj + 1) iff (because also u | (Hj + 1))
u | Gj . Thus, the sequence is slowest to decrease if H + 1 = u� for some �. This
means, that the process is guaranteed to stop in �(u, H) ≤ logu(H + 1) steps.

This leads us to the following theorem.

Theorem 1. Let u ≥ 2, H ≥ u. Let Gj , Hj and H ′ be defined as before. Denote
� = �(u, H) ≤ $logu(H+1)% as above. Then [0, H ] =

∑�−1
j=0 Gj ∗[0, u−1]+[0, H ′].

If (u− 1) | H then H ′ = 0.

Proof. Clear from above. �	

Semi-Closed Form for Gj. While the presented recursive formulas for Gj and
Hj+1 are efficient, it is desirable to have a closed form for Gj . In the following
we construct a semi-closed form, that is, a formula for Gj that only depends on
u, j and H .

Assume that H =
∑

hju
j with hj ∈ {0, . . . , u− 1}. For any j, write hj+ :=⌊

H/uj
⌋
, that is, H = ujhj+ +

∑j−1
i=0 uihi. In particular, hj+ = uh(j+1)+ + hj .

Define [[x]] := x (mod u − 1). Our proof is built up on the initial observation
that:
G0 = h1+ +

⌊
h0+1

u

⌋
, and H1 = h1+ + h0 − (u − 1)

⌊1+h0
u

⌋
= h1+ + [[h0]].

The latter equation is obvious: if h0 < u−1 then h0−(u−1)
⌊1+h0

u

⌋
= h0 = [[h0]]

and if h0 = u− 1 then h0− (u− 1)
⌊1+h0

u

⌋
= u− 1− (u− 1) = 0 = [[h0]]. We can

now prove that

Theorem 2. Gj = h(j+1)+ +
⌊

hj+[[∑ j−1
i=0 hi]]+1
u

⌋
.

Proof. By induction. We prove that Hj = hj+ +
[[∑j−1

i=0 hi

]]
, from this the claim

for Gj is obvious. Induction basis (j = 0) is obvious since H0 = h0+.

Induction step (j > 0). Assume that Hj = hj+ +
[[∑j−1

i=0 hi

]]
= uh(j+1)+ +

hj +
[[∑j−1

i=0 hi

]]
and Gj = h(j+1)+ +

⌊
hj+[[∑ j−1

i=0 hi]]+1
u

⌋
. Then

Hj+1 = Hj − (u−1)Gj = h(j+1)+ +hj +

[[
j−1∑
i=0

hi

]]
− (u−1) ·

⎢⎢⎢⎣hj +
[[∑j−1

i=0 hi

]]
+ 1

u

⎥⎥⎥⎦ .

Thus to finish the proof we only have to show that

hj +

[[
j−1∑
i=0

hi

]]
− (u− 1) ·

⎢⎢⎢⎣hj +
[[∑j−1

i=0 hi

]]
+ 1

u

⎥⎥⎥⎦ =

[[
j∑

i=0

hi

]]
(4)

for any hi ∈ {0, . . . , u− 1}. We consider the next cases.
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Case 1,
[[∑j−1

i=0 hi

]]
= 0. Then the left hand side of Eq. (4) is hj − (u − 1) ·

'(1 + hj)/u( = [[hj ]] and the right hand side is equal to the same value.

Case 2,
[[∑j−1

i=0 hi

]]
�= 0 and hj +

[[∑j−1
i=0 hi

]]
+ 1 < u. Then the left hand

side of Eq. (4) is hj +
[[∑j−1

i=0 hi

]]
and the right hand side is

[[∑j−1
i=0 hi + hj

]]
=[[∑j−1

i=0 hi

]]
+ hj .

Case 3,
[[∑j−1

i=0 hi

]]
�= 0 and hj+

[[∑j−1
i=0 hi

]]
+1 ≥ u. Then the left hand side of

Eq. (4) is hj +
[[∑j−1

i=0 hi

]]
− (u−1) and the right hand side is

[[∑j−1
i=0 hi + hj

]]
=[[∑j−1

i=0 hi

]]
+ hj − (u− 1). �	

In the binary case u = 2, a formula like this was already given in [16]. However,
while [16] stated the closed form, they did not prove it. Fortunately, their formula
follows straightforwardly from the general result.

Corollary 1 (Binary case, [16]). If u = 2 then Gj = h(j+1)+ +
⌊

hj+1
u

⌋
=⌊

H+2j

2j+1

⌋
.

Proof. Straightforward corollary.

4 Preliminaries: CCS Range Proof

Computational Assumptions. The following protocols require bilinear
groups and associated hardness assumptions. These assumptions are summa-
rized from [5].

Let PG be a pairing group generator that on input 1k outputs descriptions
of multiplicative groups G1 and GT of prime order p where |p| = k. Let G∗

1 =
G1 \ {1} and let g ∈ G∗

1. The generated groups are such that there exists an
admissible bilinear map e : G1 × G1 → GT, meaning that (1) for all a, b ∈ Zp

it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) �= 1; and (3) the bilinear map is
efficiently computable.

Definition 3 (Strong Diffie-Hellman Assumption [3]). We say that the
q-SDH assumption associated to a pairing generator PG holds if for all PPT
adversaries A, the probability that A(g, gx, . . . , gxq

) where (G1, GT) ← PG(1k),
g ← G∗

1 and x ← Zp, outputs a pair (c, g1/(x+c)) where c ∈ Zp is negligible in k.

As noted by [5], Cheon’s [7] attack against this type of assumption is not relevant
if q ≤ 50 as it is in this protocol.

Boneh-Boyen Signatures. Our scheme relies on the elegant Boneh-Boyen
short signature scheme [3] which we briefly summarize. The signer’s secret key is
x ← Zp, the corresponding public key is y = gx. The signature on a message m
is σ ← g1/(x+m); verification is done by checking that e(σ, y · gm) = e(g, g). This
scheme is similar to the Dodis and Yampolskiy verifiable random function [12].
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Security under �-weak chosen-message attack is defined through the following
game. The adversary begins by outputting � messages m1, . . . , m�. The challenger
generates a fresh key pair and gives the public key to the adversary, together
with signatures σ1, . . . , σ� on m1, . . . , m�. The adversary wins if it succeeds in
outputting a valid signature σ on a message m �∈ {m1, . . . , m�}. The scheme
is said to be unforgeable under an �-weak chosen-message attack if no PPT
adversary A has non-negligible probability of winning this game. Our scheme
relies on the following property of the Boneh-Boyen short signature [3] which we
paraphrase below:

Lemma 1 ([3]). Suppose the q-Strong Diffie Hellman assumption holds in
(G1, GT). Then the basic Boneh-Boyen signature scheme is secure against an
existential forgery under a q-weak chosen message attack.

The Camenisch-Chaabouni-shelat range proof in the case when H = u� − 1 is
depicted by Protocol 1. In particular, e : G1×G1 → GT is an admissible bilinear
map for some multiplicative groups G1, GT , and g is a generator of G1 with
h ∈ 〈g〉.

Communication of CCS Range Proof for “Nice” H. The CCS range proof
for nice H requires the prover to compute 3� exponentiations and 2� pairings
(in [5], this was summed up as 5� exponentiations). It requires non-interactive
(static) communication of

NIComccs(u, �) := (1 + u) · rlen(G1) bits

(signatures and public keys that can be shared between different protocol runs),
and interactive communication (which is unique for every protocol run) of

IComccs(u, �) := (1 + �) · rlen(G1) + � · rlen(GT ) + (2 + 2�) · rlen(Zp) bits.

Communication of CCS for Arbitrary Range [L, H]. As noted in [5], to
prove that σ ∈ [L, H ] for arbitrary L and H , one can use an AND composition.
More precisely, suppose that u�−1 < H < u�. Then to show that σ ∈ [L, H ], it
suffices to show that σ ∈ [L, L + u�) and σ ∈ [H − u�, H). Equivalently, one has
to show that σ − L ∈ [0, u�) and σ −H + u� ∈ [0, u�).

For this, one uses the standard AND composition of Protocol 1 with itself.
Recall that an AND composition of two Σ-protocols A1 and A2 is a Σ protocol
where the first message is a composition of the first messages of A1 and A2, the
second message is a single challenge c, and the third message is a composition of
the third messages of A1 and A2 that correspond to the first messages and the
single challenge c. Moreover, static information (the public key y and all signa-
tures) and also the values Vj are only sent once. Thus, in the AND composition
of the CCS protocol, there are two versions of aj , D, z

(σ)
j , z

(v)
j and z(m), which

makes the (static) communication of the AND composition of Protocol 1 with
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Assume σ =
∑�logu(H+1)�

j=0
σju

j .
Common input: g, h, u, �, and a commitment C.
Prover’s input: σ, r such that C = gσhr and σ ∈ [0, H].

1. The verifier does: generate a random x ← Zp, and set y ← gx. For i ∈ [0, u− 1],
set Ai ← g1/(x+i) ∈ G1. She sends (y,A0, . . . , Au−1) to the prover.

2. The prover does: For all j ∈ [0, �−1], generate random vj ← Zp, set Vj ← A
vj
σj ∈

G1. He sends (V0, . . . , V�−1) to the verifier.
3. The prover uses the following Σ-protocol to prove to the verifier that C = hr ·

g
∑

σju
j

, and Vj = gvj/(x+σj) for all j:

(a) The prover picks sj , tj ,mj ← Zp for j ∈ [0, � − 1]. He sets aj ←
e(Vj , g)

−sj e(g, g)tj ∈ GT , for j ∈ [0, � − 1], and D ← g
∑

j ujsj · h
∑

j mj ∈ G1.
He sends (a0, . . . , a�−1, D) to the verifier.

(b) The verifier sends a random challenge c ← Zp to the prover.

(c) The prover sets z
(σ)

j ← sj − σjc mod p, z
(v)
j ← tj − vjc mod p, for j ∈

[0, � − 1]. He sets z(m) ← m − rc mod p, where m =
∑�−1

j=0
mj . He sends

(z
(σ)

0
, . . . , z

(σ)

�−1
, z

(v)
0

, . . . , z
(v)
�−1

, z(m)) to the verifier.

(d) The verifier checks that D = Cchz(m)

g
∑

j uj ·z(σ)
j and aj = e(Vj , y)

c ·
e(Vj , g)

−z
(σ)
j · e(g, g)z(v)

j for every j ∈ [0, �− 1].

Protocol 1. The CCS cryptographic range proof for range [0, u� − 1]

itself equal to NIComccsand(u, �) = NIComccs(u, �) = (1 + u) · rlen(G1), and the
dynamic communication is equal to

IComccsand(u, �)
=IComccs(u, �) + � · rlen(GT ) + rlen(G1) + (2� + 1) · rlen(Zp)
=(� + 2) · rlen(G1) + 2� · rlen(GT ) + (4� + 3) · rlen(Zp) .

Remark on OR Composition. [5] also considered the OR composition. The
communication of an OR composition is twice the communication of the single
protocol, but with � − 1 instead of �, and thus the OR composition has the
potential to be more efficient than the AND composition. In our case, for the OR
composition to work, we have to assume that u is such that u�−1 < H ≤ 2 ·u�−1.
In this case, σ ∈ [0, H ] iff σ ∈ [0, u�−1] or σ ∈ [H −u�−1, H ]. This differs slightly
from the misstated requirement of [5], where it was said that one just needs that
u�−1 < H . In particular, this means that the OR composition does not work for
values, considered in Sect. 4.4 of [5], and thus the communication-efficiency of
their range proof is (in most of the cases) slightly worse than claimed in [5].

Communication Analysis. Let us assume that rlen(GT ) ≈ 12 · rlen(G1) ≈
12 · rlen(Zp) [14]. Following [5] and plugging in parameters in terms of the
rlen(G1), the communication can then be minimized by solving the following
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system min (6 + u + 29�) s.t. u� ≥ H . Setting u = log H
log log H then we get a total

asymptotic communication complexity of

Com(u, �) = O

(
log H

log log H − log log log H

)
which is asymptotically smaller than O(log H). For concrete parameters, we
substitute the constraint that u� ≈ H into the equation u + � above, set the
derivative with respect to u to 0 and attempt to solve the equation:

1− 29 logH

u log2 u
= 0

which simplifies to

u log2 u = 29 logH . (5)

This equation cannot be solved analytically. However, given H , we can use nu-
merical methods to find a good u as described in [2].

5 Modified Range Proof: New

The idea of the next proof follows from Thm. 1. We can assume that u > 1.
Clearly, σ ∈ [0, H ] iff (u− 1)σ ∈ [0, (u− 1)H ] iff, because of Thm. 1,

(u− 1)σ =
�(u,(u−1)H)−1∑

j=0

σjGj

for some σj ∈ [0, u− 1], and Gj are defined as in Thm. 1 with H0 = (u− 1)H .
Thus, we can propose a new range proof where we prove that Cu−1 commits

a value in (0, (u− 1)H ] by using the CCS protocol for “nice” H , see Protocol 2.
Note that changing 0 to any meaningful L, 1 ≤ L < (u − 1)H , is trivial. In the
description of the protocol, see Protocol 2, new parts (compared to the CCS
protocol) have been bolded for easy parsing.

Rationale for multiplying by u− 1. If (u− 1) divides H , then it is not necessary
to multiply the commitment by (u− 1). Recall that if u− 1 does not divide H ,
then H ′ < u (the leftover value) defines some small range [0, H ′]. In this case,
one could (instead of multiplying by u− 1) add an extra step to the range proof
that shows that some new committed element belongs to the range [0, H ′]. Doing
this would require an extra H ′ + 1 elements from rlen(G1), one extra element
from rlen(GT ), and one extra element from rlen(Zp) to be transmitted. Thus, it
will always be more expensive to add this extra step. Another idea might be to
use a simple OR-proof to handle the last [0, H ′] elements. This would require
extra communication of H ′ · rlen(G1)+ (1+H ′) · rlen(Zp) bits. Since one element
of rlen(GT ) is roughly 12 times larger than the size of one element from either
G1 or Zp, this approach is favorable when H ′ < 6.
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Assume (u− 1)·σ =
∑�−1

j=0
σj ·Gj for � = �(u, (u− 1)H) ≤�logu((u− 1) ·H + 1)�.

Common input: g, h, u, �, and a commitment C.
Prover’s input: σ, r such that C = gσhr and σ ∈ [0, H].

1. The verifier does: she generates a random x ← Zp, and sets y ← gx. For
i ∈ [0, u − 1], she sets Ai ← g1/(x+i) ∈ G1. She sends (y,A0, . . . , Au−1) to the
prover.

2. The prover does: For all j ∈ [0, �−1], generate random vj ← Zp, set Vj ← A
vj
σj ∈

G1. He sends (V1, . . . , V�−1) to the verifier.
3. The prover uses the following Σ-protocol to prove to the verifier that Cu−1 =

h(u−1)·r · g
∑

σjGj , and Vj = gvj/(x+σj) for all j ∈ [0, �− 1]:

(a) The prover picks sj , tj ,mj ← Zp for j ∈ [0, � − 1]. He sets aj ←
e(Vj , g)

−sj e(g, g)tj ∈ GT , for j ∈ [0, �−1], and D ← g
∑

j sj ·Gj ·h(u−1)·∑j mj ∈
G1. He sends (a0, . . . , a�−1, D) to the verifier.

(b) The verifier sends a random challenge c ← Zp to the prover.

(c) The prover sets z
(σ)

j ← sj − σjc, z
(v)
j ← tj − vjc for j ∈ [0, � − 1] and

z(m) ← m − rc for m =
∑

j mj . He sends (z
(σ)

0
, . . . , z

(σ)

�−1
, z

(v)
0

, z
(v)
�−1

, z(m)) to
the verifier.

(d) The verifier checks that D = Cc(u−1) · h(u−1)·z(m) · g
∑

j z
(σ)
j ·Gj and aj =

e(Vj , y)
c · e(Vj , g)

−z
(σ)
j · e(g, g)z(v)

j for every j ∈ [0, �− 1].

Protocol 2. New, generalization of CCS protocol for arbitrary range [0, H ]

Theorem 3. Assuming the q-SDH assumption, Protocol 2 is correct and has
the property of special soundness and SHVZK.

Proof (Sketch.). The proof is a straightforward extension of the security proof
from [5]. �	

Concrete Efficiency of New. Clearly, both the static and dynamic communi-
cation of New is related to communication of the CCS protocol in the following
simple way:

NIComNew(u, �) := NIComccs(u, �(u, (u− 1)(H + 1))) and
IComNew(u, �) := IComccs(u, �(u, (u− 1)(H + 1))).

This is easily seen to be a factor of 2 more efficient than having to use two proofs
to handle an arbitrary range H .

Efficiency of New. Asymptotically, the total communication of NIComNew +
IComNew remains the same:

u + �(u, (u− 1)(H + 1)) ≤ u + logu((u − 1)(H + 1))
= u + logu(u− 1) + logu(H + 1)

≤ u + 1 + logu(H) +
1
H
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As before, this value is (approximately) minimized when we set u ← log2 H
log2 log2 H .

Concretely, there is a factor of two difference. The communication can be mini-
mized by solving

min(4 + u + 15�) such that � > logu((u − 1)(H + 1))

As mentioned before, in some cases when u − 1 already divides H , it is not
necessary to multiply by u − 1; even when (u − 1) does not evenly divide H , a
standard OR-proof can sometimes be used to handle H ′. We take this fact in
account when computing the protocol’s efficiency for a given range below. In the
graph below, we show how the complexity of our new protocol compares with
that of [5] for ranges [0, H ] where H varies from 1000 to 2 · 108.
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Fig. 2. Relative Efficiency of the New Protocol vs. [5]. The number of group elements
are computed under the assumption that rlen(GT ) ≈ 12 · rlen(G1) ≈ 12 · rlen(Zp). The
complexity of our new protocol depends more sensitively on the exact value of H ;
therefore the shaded area represents the convex hull of the values for our new protocol.
The vertical gaps in the curve for [5] are a result of the ratio 12 used above.

5.1 Comparison of Case Analysis

As a second way to compare the new protocol with protocol from [5] and other
previous work, we use the same numbers as in Sect. 4 of [5]. In particular we
assume that the size of G1 is 256 bits, the size of GT is 3072 bits and the
size of Zp is upper-bounded by 256 bits. We also use the range R = [L, H) =
[347184000, 599644800) as in [5]. Also, clearly, the new protocol (as in the CCS
protocol) for R is exactly as efficient as protocol for range [0, H ′], where H ′ =
H − L− 1. That is, H ′ = 252460799.

The values of NIComccsand, IComccsand, NIComNew and IComNew for a few differ-
ent choices of u and � are shown in the following two tables. Note that the optimal
choice of u depends on how many times the range proof is going to be reused:
the larger is the number w of reuses, the larger should be u, and for w reuses,
one should choose a value of u for which NIComNew(u, �) + (w− 1)IComNew(u, �)
is minimal.
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The values of NIComccsand and IComccsand for some chosen values of u, � are
given below. (Here we only use the AND composition. As mentioned above, the
OR composition is sometimes more efficient but only under certain restrictions.)
The numbers in Tbl. 1 show that the CCS protocol is less efficient than claimed
but still more efficient than the previous range proofs.

Table 1. Communication of the CCS protocol with some chosen values of u (and
implicitly chosen optimal 	)

u 	 NIComccsand IComccsand Comments
48 5 12 544 38 400 Minimal NIComccsand + IComccsand ∗ [1, 2]
57 5 14 848 38 400 Same parameters as in [5]

633 3 162 304 23 552 Minimal NIComccsand + 10000 · IComccsand, IComccsand

Communication of New for some concrete choices of u and � is given in Tbl. 2.
Recall that we need to show that (u − 1)(σ + 1) − 1 ∈ [0, (u − 1)(H ′ + 1)] =
[0, 252460800 · (u − 1)]. We have calculated � according to the point where the
recursions of Thm. 1 end, and we note that sometimes its value differs from the
predicted value 'logu((u − 1)(H + 1))(.

Table 2. Communication of New with some chosen values of u (and implicitly chosen
optimal 	)

u 	 NIComNew(u, 	) IComNew(u, 	) Comments
25 6 6 656 27 648 Minimal NIComNew + IComNew

48 5 12 544 23 808 Minimal NIComNew + IComNew

57 5 14 848 23 808 Same parameters as in [5]
632 4 162 048 16 128 Minimal NIComNew + 10000 · IComNew, IComNew

6 Conclusions

We showed that for any H and 1 < u < H , the interval [0, H ] is equal to a sum∑
Gi ∗ [0, u − 1] + [0, H ′], where 0 ≤ H ′ < H , and both u and � are “small”

in terms of H . We gave efficient (closed form) algorithms for computing the
coefficients Gi. This result may be interesting by itself in the context of additive
combinatorics.

We then used this decomposition to show how to derive efficient range proofs
for arbitrary intervals [0, H ]. Compared to the previous work [5], we thus avoided
the use of AND composition of Σ-protocols. In addition, (1) we showed also
that an earlier result from [16] (that only considered the case u = 2) is correct,
though it was left unproven in [16], and (2) we pointed out that the range proof
from [5] is (in most of the cases) less efficient than claimed there. In addition, the
new protocol is also about 2 times more computation-efficient than the protocol
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from [5]. While 2 times is not much, it is important in practical applications like
e-voting where a voting server may have to verify thousands of proofs of e-vote
correctness per hour.

Finally, we hope that our techiques can be extended to construct other efficient
cryptographic protocols that use results from additive combinatorics.
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Abstract. We present a zero-knowledge argument system of representation of
a committed value. Specifically, for commitments C = Commit1(y), D =
Commit2(x), of value y and a tuple x = (x1, . . . , xL), respectively, our argu-
ment system allows one to demonstrate the knowledge of (x, y) such that x is a
representation of y to bases h1, . . . , hL. That is, y = hx1

1 · · ·hxL
L . Our argument

system is zero-knowledge and hence, it does not reveal anything such as x or y.
We note that applications of our argument system are enormous. In particular,
we show how round-optimal cryptography systems, where privacy is of a great
concern, can be achieved. We select three interesting applications with the aim to
demonstrate the significance our argument system. First, we present a concrete
instantiation of two-move concurrently-secure blind signature without interac-
tive assumptions. Second, we present the first compact e-cash with concurrently-
secure withdrawal protocol. Finally, we construct two-move traceable signature
with concurrently-secure join. On the side note, we present a framing attack
against the original traceable signature scheme within the original model.

1 Introduction

The notion of zero-knowledge proof protocol was put forth by Goldwasser, Micali and
Rackoff in [34]. In a zero-knowledge proof protocol, a prover convinces a verifier that a
statement is true, while the verifier learns nothing except the validity of the assertion. A
proof-of-knowledge [7] is a protocol such that the verifier is convinced that the prover
knows a certain quantity w satisfying some kinds of relation R with respect to a com-
monly known string x. That is, the prover convinces the verifier that he knows some w
such that (w, x) ∈ R. If it can be done in such a way that the verifier learns nothing
besides the validity of the statement, this protocol is called a zero-knowledge proof-
of-knowledge (ZKPoK) protocol. Various efficient ZKPoK protocols about knowledge
of discrete logarithms and their relations have been proposed in the literature. For in-
stance, knowledge of discrete logarithm [46], polynomial relations of discrete loga-
rithms [15,27], inequality of discrete logarithms [18], range of discrete logarithms [13]
and double discrete logarithm [19].

ZKPoK protocols have been used extensively as building blocks of many cryptosys-
tems. In this paper, we present a ZKPoK protocol for the knowledge of representation

R. Steinfeld and P. Hawkes (Eds.): ACISP 2010, LNCS 6168, pp. 352–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of a committed value. We demonstrate that our protocol can be used to construct round-
optimal cryptosystems, including blind signatures, traceable signatures and compact
e-cash.

1.1 Related Work

ZKPoK of Double-Discrete Logarithm. Our protocol generalizes the ZKPoK proto-
col of double discrete logarithm ,introduced by Stadler [47], when it is used to construct
a verifiable secret sharing scheme. Roughly speaking, a double discrete logarithm of an
element y to base g and h is an element x such that y = ghx

. Stadler introduces a
ZKPoK protocol to demonstrate the knowledge of such x with respect to y. This proto-
col was employed in the construction of group signatures [19,2] and a divisible e-cash
scheme [20]. Looking ahead, our zero-knowledge protocol further extends Stadler’s
protocol in which it allows the prover to demonstrate the knowledge of a set of values
(x1, . . . , xL, r) such that y = gh

x1
1 ···hxL

L gr
0. We would like to stress that there is a subtle

difference between Stadler’s protocol and ours when L = 1. Specifically, with the in-
troduction of the variable r, no information about x is leaked to the verifier. This turns
out to be very useful when the prover wishes to demonstrate the same x, without being
linked, to different verifiers.

Blind signatures. Introduced by Chaum [23], blind signature schemes allow a user to
obtain interactively a signature on message m from a signer in such a way that the signer
learns nothing about m (blindness) while at the same time, the user cannot output more
signatures than the ones produced from the interaction with the signer (unforgeability).
The formal definition of blind signatures was first proposed in [45], with the require-
ment that any user executing the protocol � times with the signer cannot output � + 1
valid signatures on � + 1 distinct messages. One important feature of security offered
by any blind signature construction is whether the execution of the signing protocol
can be performed concurrently, that is, in an arbitrarily-interleaved manner. As pointed
out in [31], a notable exception to the problems of constructing schemes secure against
interleaving executions are those with an optimal two-move signing protocol, of which
the problem of concurrency is solved immediately.

Table 1 summarizes existing schemes that are secure under concurrent execution.
Note that [36], [31] and [35] provide generic construction only. [31] relies on generic
NIZK while [35] utilizes ZAP. On the other hand, as pointed out in [35], [36] makes
use of generic concurrently-secure 2-party computation and constructing such a pro-
tocol without random oracle or trusted setup is currently an open problem. Lindell’s
result [40] states that it is impossible to construct concurrently-secure blind signatures
in the plain model if simulation-based definitions are used. Hazay et al. [35] overcome
this limitation by employing a game-based definition. A construction achieving all prop-
erties is proposed in [32] recently.

Traceable Signatures. Introduced by Chaum and van Heyst [24], group signatures
allow a group member to sign anonymously on behalf of the group. Whenever required,
the identity of the signature’s originator can be revealed only by the designated party.
Traceable signatures, introduced in [37], are group signatures with added functionality
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Table 1. Summary of Existing Blind Signatures Secure under Concurrent Signature Generation

Schemes Round-Optimal? W/o RO? Non-Interactive Assumption? Instantiation?

[35] × 
 
 ?
[36] × 
 
 ×
[31] 
 
 
 ?
[8] 
 × × 

[10] 
 × × 

[42] × 
 
 

[32] 
 
 
 

Our Scheme 
 × 
 


in which a designated party could output some tracing information on a certain user that
allows the bearer to trace all signatures generated by that user. Subsequently, another
traceable signature is propose in [25]. We discover a flaw in the security proof of [37]
and are able to develop a concrete attack against their scheme under their model. Table 2
summarizes existing traceable signatures. Note that none of the existing schemes is
secure when the join protocol is executed concurrently. In contrast, group signature
scheme with concurrent join has been proposed in [39] and can also be constructed
based on group encryption [22].

Table 2. Summary of Existing Traceable Signatures

Schemes Round-Optimal? W/o RO? Support Concurrent-Join? Secure?

[37] × × × ×
[25] × × × 

Our Scheme 
 × 
 


Compact E-Cash Invented by Chaum [23], electronic cash (E-Cash) is the digital
counterpart of paper cash. In an e-cash scheme, a user withdraws an electronic coin
from the bank and the user can spend it to any merchant, who will deposit the coin
back to the bank. Compact e-cash, introduced in [16], aims at improving bandwidth
efficiency. In compact e-cash, users can withdraw efficiently a wallet containing K
coins. These coins, however, must be spent one by one. Other constructions of compact
e-cash include [5,3,21]. Table 3 summarizes existing compact e-cash. Note that none of
the existing schemes is secure when the withdrawal protocol is executed concurrently.

Table 3. Summary of Existing Compact E-Cash Systems

Schemes Round-Optimal? W/o RO? Support Concurrent-Withdrawal?

[16] × × ×
[5] × × ×
[3] × × ×
[21] × × ×
Our Scheme 
 × 
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1.2 Overview of Our Approach

As discussed in [39], the most efficient and conceptually simple joining procedure for a
group signature is for the user to choose a one way function f and compute x = f(x′)
for some user secret x′. Next, the user sends x to the group manager (GM) and obtains
a signature σ on x. A group signature from the user will then consist of a probabilistic
encryption of x into ψ under the GM’s public key, and a signature-of-knowledge of (1)
the correctness of ψ as an encryption of some value x, (2) knowledge of x′, a pre-image
of x, and (3) knowledge of σ which is a valid signature on x. This approach is suggested
by Camenisch and Stadler [19], and is given the name “single-message and signature-
response paradigm” in [39]. Nonetheless, it turns out that a concrete instantiation of
this approach is not as simple as it looks, since it is hard to choose a suitable signature
scheme and function f so that efficient and secure proof is possible.

It turns out that our argument system together with the Boneh-Boyen signature [11]
fits in perfectly with the above paradigm. In our construction, f is chosen to be a per-
fectly hiding malleable commitment scheme which allows the commitment of a block
of values. This expands the flexibility of the paradigm and allows the construction of
traceable signatures, compact e-cash as well as blind signature. Taking traceable signa-
ture as an example, a user first computes a commitment f(x) of a secret value x. Due
to the malleability of the commitment scheme, the group manager changes it to a com-
mitment of a block of values f(x, t) and issues a signature σ on this commitment. To
generate a traceable signature, the user computes a probabilistic encryption of f(x, t)
into ψ1, a random base g̃ = gr and a tracing tag T = g̃t. Next, the user generates a
signature-of-knowledge of (1) the correctness of ψ, g̃ and T with respect to x and t,
(2) knowledge of x, t, a pre-image of f(x, t), and (3) knowledge of σ which is a valid
signature on f(x, t). To trace the user, the GM simply outputs t and everyone can test
whether the tracing tag T and the random base g̃ associated with each group signature
satisfies T = g̃t.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we review preliminaries that
will be used throughout this paper. We then present our argument system, its security
and efficiency analysis in Section 3. Then, we apply our argument system in construct-
ing blind signatures, traceable signatures and compact e-cash. Those constructions are
presented in Section 4, 5 and 6, respectively. Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Notations

We employ the following notation throughout this paper. Let G1 be a cyclic group of
prime order p. Let Gq ⊂ Z∗

p be a cyclic group of prime order q. This can be generated

1 In fact, this is for revealing signer’s identity and encryption of either f(x), x or σ also serves
the purpose.
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by setting p to be a prime of the form p = γq + 1 for some integer γ and set Gq to be
the group generated by an element of order q in Z∗

p.
Let g, g0, g1, g2 ∈R G1 be random elements of G1 and h, h0, h1, . . . , hL ∈R Gq

be random elements of Gq (with the requirement that none of them being the identity
element of their respective group). Since G1 and Gq are of prime order, those elements
are generators of their respective groups.

We say that a function negl(λ) is a negligible function [6], if for all polynomials
f(λ), for all sufficiently large λ, negl(λ) < 1/f(λ).

2.2 Bilinear Map

A pairing is a bilinear mapping from a pair of group elements to a group element.
Specifically, let GT be cyclic group of prime order p. A function ê : G1×G1 → GT is
said to be a pairing if it satisfies the following properties:

– (Bilinearity.) ê(ux, vy) = ê(u, v)xy for all u, v ∈ G1 and x, y ∈ Zp.
– (Non-Degeneracy.) ê(g, g) �= 1GT , where 1GT is the identity element in GT .
– (Efficient Computability.) ê(u, v) is efficiently computable for all u, v ∈ G1.
– (Unique Representation.) All elements in G1, GT have unique binary representa-

tion.

Looking ahead, while we are assuming G1 is equipped with a bilinear map, it is not
necessary for our zero-knowledge proof of knowledge of representation of committed
value. Its presence is mainly for the many applications associated with our protocol.

2.3 Number-Theoretic Assumptions

We present below the number-theoretic problems related to the schemes presented in
this paper. The respective assumptions state that no PPT algorithm has non-negligible
advantage in security parameter in solving the corresponding problems. Let G = 〈g〉 =
〈g1〉 = · · · = 〈gk〉 be a cyclic group.

– The Discrete Logarithm Problem (DLP) in G is to output x such that Y = gx on
input Y ∈ G.

– The Representation Problem (RP) [14] in G is to compute a k-tuple (x1, . . ., xk)
such that Y = gx1

1 · · · gxk

k on input Y . RP is as hard as DLP if the relative discrete
logarithm of any of the gi’s are not known.

– The Decisional Diffie-Hellman Problem (DDHP) ∈ G is to decide if z = xy on
input a tuple (gx, gy, gz).

– The Decisional Linear Diffie-Hellman Problem (DLDH problem) [12] in G is to
decide if z = x + y on input a tuple (gx

1 , gy
2 , gz

3). The DLDH problem is strictly
harder than the DDH problem.

– The q-Strong Diffie-Hellman Problem (q-SDH problem) [11] in G is to compute a
pair (A, e) such that Ax+e = g on input (gx, gx2

, . . . , gxq

).
– The y-Decisional Diffie-Hellman Inversion Problem (y-DDHI problem) [29,16] in

G is to decide if z = 1/x on input (gx, gx2
, . . ., gxy

, gz).
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2.4 Cryptographic Tools

Commitment Schemes. A commitment scheme is a protocol between two parties,
namely, committer Alice and receiver Bob. It consists of two stages: the Commit stage
and the Reveal stage. In the Commit stage, Alice receives a value x as input, which
is revealed to Bob at the Reveal stage. Informally speaking, a commitment scheme is
secure if at the end of the Commit stage, Bob cannot learn anything about the committed
value (a.k.a. hiding) while at the Reveal stage, Alice can only reveal one value, that is
x (a.k.a. binding). Formally, we review the security notion from [33].

Definition 1. A commitment scheme (Gen, Commit)2 is secure if holding the following
two properties:

1. (Perfect Hiding.) For all algorithm A (even computationally unbounded one), we
require that

Pr

⎡⎣param ← Gen(1λ); (x0, x1) ← A(param);
b ∈R {0, 1}; r ∈R {0, 1}λ;
C = Commit(param, xb; r); b′ ← A(C);

: b′ = b

⎤⎦ ≤ 1
2

+ negl(λ).

2. (Binding.) No PPT adversary A can open a commitment in two different ways.
Specifically,

Pr

⎡⎣param ← Gen(1λ); (x0, x1, r0, r1) ← A(param) :
x0 �= x1 ∧
Commit(param, x0; r0) = Commit(param, x1; r1)

⎤⎦ = negl(λ).

In this paper, we restrict ourselves to a well-known non-interactive commitment
scheme, the Pedersen Commitment [43], which is reviewed very briefly here. On in-
put a value x ∈ Zp, the committer randomly chooses r ∈ Zp, computes and outputs
commitment C = gx

0gr as the commitment of value x. To reveal commitment C, the
committer outputs (x, r). Everyone can test if C = gx

0gr. Sometimes (x, r) is referred
to as an opening of the commitment C.

Recall that Pedersen Commitment is perfect hiding and computationally binding pro-
vided that the g0 and g are randomly and independently generated and that relative dis-
crete logarithm of g0 to base g is unknown. One can easily extend the scheme to allow
commitment of a block of values, say, x = (x0, x1, . . . , xk) by setting the commitment
C = gx0

0 gx1
1 · · · gxk

k gr with additional random generators g1, . . . , gk of G1.

Boneh-Boyen Short Signature. Boneh and Boyen introduced a short signature scheme
in [11], which, is used extensively in the applications of our argument system. Hereafter,
we shall refer to this scheme as BB-signature.

KeyGen. Let α, β ∈R Z∗
p and u = gα and v = gβ . The secret key sk is (α, β) while

the public key pk is (ê, G1, GT , p, g, u, v).
Sign. Given message m ∈ Z∗

p, pick a random e ∈R Zp and compute A = g
1

α+m+βe .
The term α + m + βe is computed modulo p. In case it is zero, choose another e.
The signature σ on m is (A, e).

2 With Gen being the parameter generation function.
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Verify. Given a message m and signature σ = (A, r), verify that

ê(A, ugmve) = ê(g, g)

If the equality holds, output valid. Otherwise, output invalid.

Σ-Protocol. We restrict ourselves to a special class of ZKPoK protocol called Σ-
protocol which is defined below. Informally speaking, Σ-protocols only guarantee zero-
knowledgeness when the verifier is honest. We are interested in Σ-protocol since they
can be transformed to 4-move perfect zero-knowledge ZKPoK protocol [26]. They can
also be transformed to 3-move concurrent zero-knowledge protocol in the auxiliary
string model using trapdoor commitment schemes [28].

Definition 2. A Σ-protocol for a binary relation R is a 3-round ZKPoK protocol be-
tween two parties, namely, a prover P and a verifier V . For every input (w, x) ∈ R to
P and x to V , the first round of the protocol consists of P sending a commitment t to
V . V then replies with a challenge c in the second round and P concludes by sending a
response z in the last round. At the end of the protocol, V outputs accept or reject. We
say a protocol transcript (t, c, z) is valid if the output of an honest verifier V is accept.
A Σ-protocol has to satisfy the following two properties:

– (Special Soundness.) A cheating prover can at most answer one of the many pos-
sible challenges. Specifically, there exists an efficient algorithm KE, called knowl-
edge extractor, that on input x, a pair of valid transcripts (t, c, z) and (t, c′, z′) with
c �= c′, outputs w such that (w, x) ∈ R.

– (Special Honest-Verifier Zero-Knowledgeness(HVZK).) There exists an efficient al-
gorithm KS, called zero-knowledge simulator, that on input x and a challenge c,
outputs a pair (t, z) such that (t, c, z) is a valid transcript having the same distri-
bution as a real protocol transcript resulted from the interaction between P with
input (w, x) ∈ R and an honest V .

Signature of Knowledge. Any Σ-protocol can be turned into non-interactive form,
called signature of knowledge [19], by setting the challenge to the hash value of the
commitment together with the message to be signed [30]. Pointcheval and Stern [44]
showed that any signature scheme obtained this way is secure in the random oracle
model [9].

3 A Zero-Knowledge Proof-of-Knowledge Protocol for RCV

We present the main result of this paper, namely, a zero-knowledge proof-of-knowledge
protocol of Representation of Committed Value, RCV. Specifically, let C = gx

0gr
1 ∈ G1

be a commitment of x with randomness r. Let D = hm1
1 · · ·hmL

L hs ∈ Gq be the
commitment of x’s representation (to bases h1, . . . , hL, denoted as m) with randomness
s ∈R Zq. We construct a ZKPoK protocol of (x, m), denoted as PKRCV. Technically
speaking, our protocol is an argument system rather than a proof system in the sense
that soundness in our system only holds against a PPT cheating prover. This is sufficient
for all our purposes when adversaries in the applications of our PKRCV are modeled as
PPT algorithms. PKRCV for C, D can be abstracted as follows.
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PKRCV

{
(x, r, s, m1, . . . , mL) :

C = gx
0 gr ∧ D = hm1

1 · · · hmL

L hs ∧ x = hm1
1 · · · hmL

L

}
The construction of PKRCV consists of two parts. Note that while we describe them
separately, they can be executed in parallel in its actual implementation.

3.1 The Actual Protocol

We construct a Σ-Protocol of PKRCV. Let λk be a security parameter. In practice, we
suggest λk should be at least 80. The first part of PKRCV is a zero-knowledge proof-of-
knowledge of representation of an element, and we adapt the protocol from [41].

(Commitment.) The prover randomly generates ρx, ρr ∈R Zp, computes and sends
T = gρx

0 gρr to the verifier.
(Challenge.) The verifier returns a random challenge c ∈R {0, 1}λk .
(Response.) The prover, treating c as an element in Zp

3, computes zx = ρx−cx ∈ Zp,
zr = ρr − cr ∈ Zp and returns (zx, zr) to the verifier.

(Verify.) Verifier accepts if and only if T = Ccgzx
0 gzr .

The second part is more involved and can be thought of as the extension of the
ZKPoK of double-discrete logarithm in combination with ZKPoK of equality of dis-
crete logarithm.

(Commitment.) For i = 1 to λk, the prover randomly generates ρm1,i, . . .,
ρmL,i, ρs,i ∈R Zq and ρr,i ∈R Zp. Then the prover computes T1,i =

g
h

ρm1,i
1 ···hρmL,i

L
0 gρr,i ∈ G1 and T2,i =hρm1,i

1 · · · hρmL,i

L hρs,i ∈ Gq. After that,
the prover sends (T1,i, T2,i)λk

i=1 to the verifier.
(Challenge.) The verifier returns a random challenge c ∈R {0, 1}λk .
(Response.) Denote c[i] as the i-th bit of c. That is, c[i] ∈ {0, 1}. For i = 1 to λk, the

prover computes zm1,i = ρm1,i−c[i]m1 ∈ Zq, . . ., zmL,i = ρmL,i−c[i]mL ∈ Zq,
zs,i = ρs,i − c[i]s ∈ Zq and zr,i = ρr,i − c[i]hzm1,i

1 · · · hzmL,i

L r ∈ Zp. The prover

sends
(
zm1,i, . . . , zmL,i, zs,i, zr,i

)λk

i=1 to the verifier.
(Verify.) The verifier accepts if the following equations hold for i = 1 to λk.

T2,i
?= Dc[i]hzm1,i

1 · · · hzmL,i

L hzs,i

T1,i
?= g

h
zm1,i
1 ···hzmL,i

L
0 gzr,i if c[i] = 0

T1,i
?= Ch

zm1,i
1 ···hzmL,i

L gzr,i if c[i] = 1

The two parts should be executed in parallel using the same challenge. Regarding
the security of PKRCV, we have the following theorem whose proof can be found in the
full version of the paper [4].

Theorem 1. PKRCV is a Σ-Protocol.

3 Consequently, the bit-length of p should be longer than λk.



360 M.H. Au, W. Susilo, and Y. Mu

3.2 Efficiency Analysis of PKRCV

Table 4 summarizes the time and space complexities of PKRCV. We breakdown the time
complexity of the protocol into the number of multi-exponentiations (multi-EXPs)4 in
various groups. Note that with pre-processing, prover’s online computation is minimal
and does not involve any exponentiations. As for the bandwidth requirement, the non-
interactive version is more space-efficient since the prover does not need to include the
commitment using the technique of [1].

In practice, we can take λk = 80 and p (resp. q) to be a 1024-bit (resp. 160-bit)
prime. Thus, Zp, Zq and G1 will take 1024, 160 and roughly 1024 bit, respectively. The
non-interactive form (of which our applications employ) takes up around (12+1.5L)kB.
Looking ahead, L is 1, 3 and 3 in our construction of blind signature, traceable signature
and compact e-cash, respectively. The most dominant operation in our applications is
the Multi-EXPs in group G1 since we are using the elliptic curve group equipped with
pairing. As a preliminary analysis, we find out that one multi-EXP in G1 takes about
25ms. The timing is obtained on a Dell GX620 with an Intel Pentium 4 3.0 GHz CPU
and 2GB RAM running Windows XP Professional SP2 as the host. We used Sun xVM
VirtualBox 2.0.0 to emulate a guest machine of 1GB RAM running Ubuntu 7.04. Our
implementation is written in C and relies on the Pairing-Based Cryptography (PBC)
library (version 0.4.18). G1 is taken to be an elliptic curve group equipped with type
A1 pairing and the prime p is 1048 bits. In a nutshell, the verifier takes around 2 seconds
in verifying the proof PKRCV.

Table 4. Time and Space Complexities of PKRCV

Time Complexities
Prover

Verifier
w/o Preproc. w/ Preproc.

G1 multi-EXP λk + 1 0 λk + 1
Gq multi-EXP λk(�L/3� + 1) + 1 0 λk(�L/3� + 2)

Bandwidth Requirement
Interactive Form Non-Interactive Form

G1 2λk + 1 0
Zp λk + 2 λk + 2
Zq λk(L + 1) λk(L + 1)

4 Application to Round-Optimal Concurrently-Secure Blind
Signature without Interactive Assumptions

4.1 Syntax

We review the definition of blind signature from Hazay et al. [35].
4 A multi-EXP computes the product of exponentiations faster than performing the exponentia-

tions separately. Normally, a multi-based exponentiation takes only 10% more time compared
with a single-based exponentiation. We assume that one multi-EXP operation multiplies up to
3 exponentiations.
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Definition 3. A blind signature scheme is a tuple of PPT algorithms BGen, BVer and
an interactive protocol BSign between a user and a signer such that:

– BGen: On input security parameter 1λ, this algorithm outputs a key pair (pk, sk).
– BSign: Signer, with private input sk interacts with a user having input pk and a

message m in the protocol. At the end of the execution, user obtains a signature σm

on the message m, assuming neither party abort.
– BVer: On input pk, m, σm, outputs valid or invalid.

As usual, correctness requires that for all (pk, sk) output by BGen(1λ), and for all
σm which is the output of the user upon successful completion of the protocol run of
BSign with appropriate inputs ((pk, m) and sk for user and signer respectively) to
both parties, BVer with input pk, m, σm outputs valid.

Definition 4. Blind signature scheme (BGen, BSign, BVer) is unforgeable if the win-
ning probability for any PPT adversary A in the following game is negligible:

– BGen outputs (pk, sk) and pk is given to A.
– A interact concurrently with � signer clones with input sk in BSign protocol.
– A outputs � + 1 signatures σi on � + 1 distinct messages mi.

A wins the game if all mi are distinct and BVer(pk, mi, σi) = 1 for all i = 1 to � + 1.

Definition 5. Blind signature scheme (BGen, BSign, BVer) satisfies blindness if the
advantage for any PPT adversary A in the following game is negligible:

– A outputs an arbitrary public key pk and two equal-length messages m0, m1.
– A random bit b ∈R {0, 1} is chosen, and A interacts concurrently with two user

clones, say U0 and U1, with input (pk, mb) and (pk, m1−b) respectively. Upon
completion of both protocols, define σ0 and σ1 as follows:
• If either of the U0 or U1 aborts, set (σ0, σ1) = (⊥,⊥).
• Otherwise, define σi be the output of Ui for i = 0 and 1.

(σ0, σ1) are given to A.
– A outputs a guess bit b′ ∈ {0, 1}.

A wins the game if all b′ = b. The advantage of A is defined as |Pr[b′ = b]− 1/2|.

4.2 Construction

BGen. Let α, β ∈R Zp and u = gα and v = gβ . Let H : {0, 1}∗ → Zq be a collision-
resistant hash function. The signer’s secret key sk is (α, β) while its public key pk is
(G1, GT , ê, Gq, p, q, g, u, v, h, h0, h1, H).

BSign. On input message m ∈ Zq, the user computes x = hm
0 hs for some randomly

generated s ∈R Zq. The user sends x to the signer. The signer selects e ∈R Zp and

computes A = g
1

α+x+βe . The signer returns (A, e) to the user.
The user computes Πm as an non-interactive zero-knowledge proof-of-knowledge

of a BB signature (A, e) on a hidden value x, and that x is a commitment of m and
output Πm as the signature of m.
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Specifically, denote y = hs. The user computes A1 = Agr1
2 , A2 = gr1

1 gr2
2 , A3 =

gy
1gr3

2 for some randomly generated r1, r2, r3 ∈R Zp and A4 = hs
0h

t for some ran-
domly generated t ∈R Zq. Parse M = A1||A2||A3||A4. The user computes the fol-
lowing non-interactive zero-knowledge proof-of-knowledge Πm comprising two parts,
namely, SPK1 and SPK2. SPK1 can be computed using standard techniques, while
SPK2 is computed using our newly constructed PKRCV. Finally, parse Πm as (A1, A2,
A3, A4, SPK1, SPK2).

Πm :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SPK1

{
(r1, r2, r3, y, e, β1, β2, β3, β4) :

A2 = gr1
1 gr2

2 ∧ 1 = A−e
2 gβ1

1 gβ2
2 ∧

1 = A−y
2 gβ3

1 gβ4
2 ∧ A3 = gy

1gr3
2 ∧ ê(A1,u)

ê(g,g) =

ê(g2, u)r1 ê(A1, v)−eê(g2, v)β1 ê(A1, g
hm
0 )−yê(g2, g

hm
0 )β3

}
(M)

SPK2

{
(r3, y, s, t) : A3 = gy

1gr3
2 ∧A4 = hs

0h
t ∧ y = hs

0

}
(M)

BVer. On input message m and its signature Πm, parse Πm as (A1, A2, A3, A4, SPK1,
SPK2) and verify that SPK1 and SPK2 are valid.

Regarding the security of our construction, we have the following theorems whose
proofs can be found in the full version of the paper [4].

Theorem 2. Our blind signature is unforgeable under the q-SDH assumption in G1
and DL assumption in Gq in the random oracle model.

Theorem 3. Our blind signature satisfies blindness unconditionally in the random or-
acle model.

5 Application to Traceable Signatures with Concurrent Join

We describe the construction of our traceable signatures. Since traceable signatures
are group signatures with added functionalities, it is easy to modify our scheme into a
‘regular’ group signature. An attack to the traceable signature due to [37] is given in
Appendix A.

5.1 Syntax

We review briefly the definition of traceable signature from Choi et al. [25] which is an
adaptation of the definition of traceable identification from Kiayias et al. [37]. Note that
Traceable identifications can be turned into traceable signatures using the Fiat-Shamir
Heuristics [30].

Definition 6. A traceable signature scheme is a tuple of nine PPT algorithms / pro-
tocols (GGen, Join, GSign, GVer, Open, Trace, Claim, ClaimVer) between three
entities, namely group manager (GM), users and tracing agents:

– GGen: On input security parameter 1λ, this algorithm outputs a key pair (pk, sk)
for the group manager.
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– Join: This is a protocol between a user and GM. Upon successful completion of the
protocol, user Ui obtains a membership certificate certi. The GM stores the whole
protocol transcript Jtransi.

– GSign: User Ui with membership certificate certi signs a message m and produces
a group signature σm.

– GVer: On input pk, m, σm, outputs valid or invalid.
– Open: On input m, σm, the group manager outputs the identity of the signer.
– Reveal: On input Jtransi, the group manager outputs tracing information tri,

which is the tracing trapdoor that allows party to identity signatures generated
by user Ui.

– Trace: On input a signature σ and a tracing information tri, output 0/1 indicating
the signature is generated by user Ui or not.

– Claim: On input a signature σ and a membership certificate certi, user Ui produces
a proof τ to prove that he is the originator of the signature.

– ClaimVer” On input a signature σ, a proof τ , output 0/1 indicating the signature
is generated by claimer or not.

Security Requirements. We informally review the security notion of a traceable sig-
nature. Due to page limitation, please refer to [37,25] for formal definition. A traceable
signature should be secure against three types of attack.

(Misidentification.) The adversary is allowed to observe the operation of the system
while users are engaged with GM during the joining protocol. It is also allowed
to obtain a signature from existing users on any messages of its choice. They are
also allowed to introduce users into the system. The adversary’s goal is to produce a
valid signature on new message that is not open to users controlled by the adversary.

(Anonymity.) The adversary is allowed to observe the operation of the system while
users are engaged with GM during the joining protocol. It is also allowed to obtain
signature from existing users on any messages of its choice. They are also allowed
to introduce users into the system. Finally, the adversary chooses a message and
two target users he does not control, and then receives a signature of the message
he returned from one of these two target users. The adversary’s goal is to guess
which of the two target users produced the signature.

(Framing.) The adversary plays the role of a malicious GM. It is considered success-
ful with the following scenarios. Firstly, the adversary may construct a signature
that opens to an honest user. Secondly, it may construct a signature, output some
tracing information and that when traced, this maliciously-constructed signature
will be traced to be from an honest user. Thirdly, it may claim a signature that was
generated by an honest user as its own.

5.2 Construction

GGen. Let α, β ∈R Z∗
p and u = gα and v = gβ . H : {0, 1}∗ → Zq be a collision-

resistant hash function. Further, randomly generate γ1, γ2 ∈R Zp, w3 ∈R G1 and

compute w1 = w
1

γ1
3 and w2 = w

1
γ2
3 . GM’s secret key sk is (α, β, γ1, γ2) while its

public key pk is (ê, G1, GT , Gq, p, q, g, u, v, w1, w2, w3, h, h0, h1, . . ., h4, H).
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Join. A user Ui randomly selects s, x ∈R Zq and sends C′ = hs
0h

x
1 ∈ Gq to GM.

GM computes t = H(C′) ∈ Zq. It then computes C = C′ht
2 and selects e ∈R Zp.

Next, it computes A = g
1

α+C+βe . The GM returns (A, e, t) to the user. User checks
if ê(A, uveghs

0h
x
1ht

2) = ê(g, g) and t = H(C′). He then stores (A, e, s, t, x) as his
membership certificate certi. GM records t as the tracing information tri for this user.
GM also stores the whole communication transcript.

GSign. Let the user membership certificate be (A ,e, s, t, x). The user computes S =
hk

3 , U = hk′
3 for some randomly generated k, k′, k′′ ∈R Zq and T1 = St, T2 = Sk′′

,
T3 = hs

0h
x
1T k′′

1 , V = Ux. Denote y = hs
0h

x
1ht

2. The user then randomly generates
r1, r2, r3 ∈R Zp, computes A1 = Awr1+r2

3 , A2 = wr1
1 , A3 = wr2

2 , A4 = gy
1gr3

2
and A5 = hrhs

0h
x
1ht

2 for some randomly generated r ∈R Zq. To generate a traceable
signature for message m, parse M = m||S||U ||T1||T2||T3||V ||A1||A2||A3||A4||A5.

The user computes the following non-interactive zero-knowledge proof-of-knowledge
Πgrp comprising two parts, namely, SPK3 and SPK4. SPK3 can be computed using stan-
dard techniques, while SPK4 is computed using PKRCV. Finally, parse Πgrp as (A1, A2,
A3, A4, A5, SPK3, SPK4) and the signature σm as (Πgrp, S, T1, T2, T3, U, V ).

Πgrp :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SPK3

{
(r1, r2, r3, y, e, β1, β2, β3, β4, r, s, t, x, k, k′, k′′) :

A2 = wr1
1 ∧ 1 = A−e

2 wβ1
1 ∧ 1 = A−y

2 wβ2
1 ∧

A3 = wr2
2 ∧ 1 = A−e

3 wβ3
1 ∧ 1 = A−y

3 wβ4
1 ∧

A4 = gy
1gr3

2 ∧ A5 = hrhs
0hx

1ht
2 ∧

S = hk
3 ∧ T1 = St ∧ T2 = Sk′′ ∧ T3 = hs

0hx
1T k′′

1 ∧
U = hk′

3 ∧ V = Ux ∧ ê(A1,u)
ê(g,g) =

ê(w3, u)r1+r2 ê(A1, v)−eê(w2, v)β1+β3 ê(A1, g)−yê(w3, g)β2+β4

}
(M)

SPK4

{
(r3, y, r, s, t, x) :

A4 = gy
1gr3

2 ∧A5 = hrhs
0h

x
1ht

2 ∧ y = hs
0h

x
1ht

2

}
(M)

Basically, A1, A2 and A3 is the linear encryption of A (part of the membership
certificate), T1, T2, T3 is the El-Gamal encryption of hs

0hx
1 (under the public key St),

while the rest of the proof is to assure the verifier that the encryptions are properly done
and that values U , V , S are correctly formed with respective to values s, t, x, r.

Open. On input a signature σm, GM computes A := A1
A

γ1
2 A

γ2
3

. From A, GM looks up

its list of join transcripts and identify the underlying user.

Reveal. To allow tracing of user Ui, the GM outputs tracing information tri.

Trace. Given a valid signature σm = (Πgrp, S, T1, T2, T3, U, V ) and tracing informa-

tion tri, everyone can test if the signature is from user Ui by testing T1
?= S tri and

tri
?= H( T3

T
tri
2

).

Claim. On input a message σm = (Πgrp, S, T1, T2, T3, U, V ), the originator can pro-
duce an non-interactive proof τ as

τ : SPKτ{(x) : V = Ux}(σm)

ClaimVer. Given a signature σm and τ , everyone can verify τ .
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Regarding the security of traceable signature, we have the following theorem whose
proof can be found in the full version of the paper [4].

Theorem 4. Our traceable signature is secure under the q-SDH assumption, the DLDH
assumption in G1 and DL assumption in Gq in the random oracle model.

6 Compact E-Cash with Concurrent Withdrawal

Our technique can also be applied to construct compact e-cash systems with
concurrently-secure withdrawal protocol. Due to page limitation, only high-level de-
scription is given here. Its detail, together with definitions shall be found in the full
version of the paper [4]. Roughly speaking, there are three entities, namely, the bank,
users and merchants, in a compact e-cash system. To withdraw a wallet of K coins, user
obtains a BB signature cert on commitment of values (s, t, x), in a similar manner as
user obtains a membership certificate in our construction of traceable signatures. Note
that the major difference being in this case, none of the values are known to the bank
(with s being a random number jointly generated by the bank and user).

To spend a electronic coin to a merchant, user computes a serial number S = h
1

s+J+1
3 ,

a tracing tag T = hs
0h

t
1h

x
2h

R
t+J+1
3 , where J is the counter of the number of times the user

has spent his wallet and R is a random challenge issued by the merchant. User sends
the pair (S, T ) to the merchant, along with a signature of knowledge Π$, stating that
S and T are correctly formed. Specifically, the proof assures the merchant that (1)user
is in possession of a valid BB signature from the bank on values (s, t, x); (2)counter
0 ≤ J < K; (3)S and T are correctly formed with respect to (s, t, x).

In the deposit protocol, merchant sends the coin (Π$, S, T, R) to the bank. Since
counter J runs from 0 to K − 1, user can at most spend his wallet for K times. If
the user uses the counter for a second time, the serial number S of the double-spent
coins will be the same and will thus be identified. Next, the bank can compute a value

C := (T R′

T ′R )1/(R′−R), the commitment of (s, t, x) which allows the bank to identify the
underlying double-spender.

7 Conclusion

We constructed a new zero-knowledge argument system and illustrated its significance
with applications to blind signatures, traceable signatures and compact e-cash systems.
We believe this system is useful in other cryptographic applications.
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A A Framing Attack on KTY Traceable Signatures

In this section, we present a high level description of the traceable signatures from [37]
(KTY) and a concrete attack within their security model.

Overview of the KTY Traceable Signature

GGen: The group manager chooses a signature scheme. The signature scheme in KTY
is in fact a variant of the CL signature [17].

Join: User chooses a random number x′ and obtains a CL signature (denoted as cert)
from the GM on values x′, x using the signature generation protocol of CL signa-
ture. In particular, x′ is unknown to GM while x is known. The value x is stored as
the tracing information tr of the user. User stores cert as his membership certificate.

GSign: To sign a message m, user with membership certificate cert on values x′, x
first computes:
1. a tuple (T1, T2, T3), which is the El-Gamal encryption of part of cert.
2. a tuple (T4, T5) such that T5 = gk and T4 = T x

5 for some random number k.
3. a tuple (T6, T7) such that T7 = gk′

and T6 = T x′
7 for some random number k′.

The traceable signature is a signature of knowledge σm such that (T1, . . . , T7) are
correctly formed.

GVer: The verifier simply verifies the signature-of-knowledge σm.
Open: On input m, σm, the group manager outputs the identity of the signer by de-

crypting T1, T2, T3 and obtains cert of the user.
Reveal: On input Jtransi, the group manager outputs tracing information tr = x.

Trace: On input a signature σm and a tracing information tr, test whether T4
?= T x

5 .
Claim/ClaimVer: To claim a signature, the signer produces a non-interactive proof-

of-knowledge of discrete logarithm of T6 to base T7 (which is x′).

The Framing Attack. The framing attack is considered successful if the attacker can
generate a signature that traces to an honest user. Specifically, the adversary is consid-
ered successful if it can output a signature σ∗

m such that Trace(Reveal(Jtransi), σ∗
m) =

1 and that user Ui is an honest user who has not generated σ∗
m himself. The attack is

based on the fact that σ∗
m does not need to open to Ui, and the attacker knows the cor-

responding tracing information, that is, x, of an honest user. To frame an honest user,
the adversary generates another membership certificate cert∗ on values x∗, x and uses
it to produce a signature σ∗

m. Obviously, this signature will trace to the honest user.
The attack is possible due to a flaw in the security proof [38] (full version of [37] ,

Section 9.3), in which it is stated that “Then if the adversary outputs an identification
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transcript that either opens to user j traces to the user j, it is clear that we can rewind
the adversary and obtain a witness for that transcript that will reveal the logarithm of C
base b, and thus solving the discrete-logarithm problem.” The argument is true when the
identification transcript opens to user j in which it helps solving the discrete logarithm
of C to base b (which is x′, the user secret). However the same argument is not applica-
ble to the case of tracing because the tracing information x for user j is in fact known
to the adversary. The adversary is not required to use the same x′ with the honest user
in producing the signature for framing to be successful.

The Proposed Fix. It turns out that the same attack is not applicable to the pairing-
based traceable signatures [25] (CPY). The reason is that the tracing information tr is of
the form gx and, although tr is known to GM, the value x is unknown and correctness
of tr is implicitly checked in a signature of knowledge of x. The same idea, however,
is not applicable to the original KTY scheme because the tracing mechanism in CPY
requires the use of a bilinear map5 which is not known to exists in the group of which
KTY is built on. Thus, we propose another fix. That is, the tracing information tr is
no longer randomly chosen. Instead, it is set to be H(Ci), where Ci = bx′

i is known
to GM during the join protocol in KTY, for some collision-resistant hash function H .
The group signature will be modified so that the user will encrypt Ci under the public
key gtr (using El-Gamal Encryption), together with a proof-of-correctness, including
the knowledge of Ci to base bi. The corresponding Trace algorithm is also modified to

include a test that tr ?= H(Ci) when tr is given. Indeed, this idea is employed in our
construction of traceable signatures.

5 Specifically, for each signature, user produces values T4, T5 such that the tracing agent test

if ê(tr, T4)
?= T5. The user also includes a proof-of-knowledge of discrete logarithm (that is,

knowledge of x) of T5 to base ê(g, T5) in the signature.
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Abstract. Packing is the most common obfuscation method used by malware
writers to hinder malware detection and analysis. There has been a dramatic
increase in the number of new packers and variants of existing ones combined
with packers employing increasingly sophisticated anti-unpacker tricks and ob-
fuscation methods. This makes it difficult, costly and time-consuming for anti-
virus (AV) researchers to carry out the traditional static packer identification and
classification methods which are mainly based on the packer’s byte signature.

In this paper1, we present a simple, yet fast and effective packer classifi-
cation framework that applies pattern recognition techniques on automatically
extracted randomness profiles of packers. This system can be run without AV
researcher’s manual input. We test various statistical classification algorithms,
including k−Nearest Neighbor, Best-first Decision Tree, Sequential Minimal Op-
timization and Naive Bayes. We test these algorithms on a large data set that
consists of clean packed files and 17,336 real malware samples. Experimental
results demonstrate that our packer classification system achieves extremely high
effectiveness (> 99%). The experiments also confirm that the randomness profile
used in the system is a very strong feature for packer classification. It can be
applied with high accuracy on real malware samples.

1 Introduction

The Internet has become an essential part of human life in the modern information
society. While the Internet brings enormous convenience to users, Mallicious software
(Malware) which includes computer viruses, worms, Trojan horses, other malicious
or unwanted software, produce a tremendous impact on users’ security, reliability and
privacy. This is a serious threat to the security of computer networks. In recent years,
the number of malware infections has risen sharply.

Many efforts have been made to combat malware. For every malware binary, anti-
virus (AV) researchers need to reverse the malware and update the AV scanner to detect

1 This work was supported by CA Labs and an ARC linkage grant. Ms. Sun is currently a Ph.D.
candidate sponsored by CA Labs.
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and counter it. Unfortunately, malware authors are aware of this. Most new malware
implement various obfuscation techniques in order to disguise themselves, therefore
preventing successful analysis and thwarting the detection by AV scanners.

Packing is a favorite obfuscation technology used by malware. It has been reported
that the majority of malware in the Wildlist, (the list of current in-the-wild viruses [1]),
is runtime packed [2,3,4]. The packing technique which is informally discussed in this
section will be formally defned later on in this paper.

Packing malware has several benefits for the attacker. Firstly, it usually reduces its
file size, thus allowing easy transfer on the net. Secondly, it increases the AV scanner’s
scanning time as runtime packers require additional work from the scanner, such as
checking the file format and the code, unpacking, etc. Thirdly, it is more resistant to
AV scanners due to the compression and encryption it employs. Lastly, the packer’s
complexity can be enhanced almost without limit by applying various new armoring
techniques as described in Section 2.2. The quick analysis and identification of a com-
plex packer is a very challenging task to the AV researchers.

Packer classification is an important step in malware analysis, if it can be designed
so that it gives a reliable approach to detect packed files. The objective of packer
classification is to quickly detect and identify the packer, allowing AV researchers to
easily and correctly unpack the file and retrieve original payload for further malware
detection and analysis. An efficient and effective packer classification system can yield
benefits to both back-end AV researchers and real time anti-malware engines, running
live on the client machine.

However, in recent years, the traditional packer identification technique based on sig-
nature scanning has been confounded by counter-counter attacks by packer and malware
developers. An increasing number of anti-unpacking tricks and obfuscation methods are
now being applied to packers. The targets include both existing common packers and
the newly emerging ones, with the aim of providing a hard shell for malware.

As the number of new packers keeps growing, a reliable computer-based packer
classification scheme would facilitate the identification and characterizing process and
reduce cost significantly. In this paper, an automatically generated randomness profile
based scheme is proposed as a replacement for the inefficient manually created signa-
tures, which is the current approach, to the packer classification problem.

The main contributions of this paper are

– We develop a complete packer classification system that runs automatically, without
the need to manually reverse engineer every packer variation. To the best of our
knowledge, this is the first published system that achieves high accuracy on real
malware.

– We refine Ebringer et al. [5]’s sliding window randomness test algorithm to produce
randomness feature set of the packer and conduct experiments to give guidance for
optimal parameter settings.

– We evaluate the effectiveness of four pattern recognition algorithms for classifying
packers using the randomness profile information.

– We carry out large scale testing on real malware. The tests cover various packers
with different levels of sophistication.
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The remainder of the paper is organized as follows. Section 2 provides research back-
ground on packers, existing classification methods and pattern recognition techniques. It
also discusses related work. Section 3 gives the implementation of our system. Section 4
describes experimental setting and reports evaluation results of different classification
algorithms. Section 5 discusses future directions and concludes the paper.

2 Background

2.1 Packing

A packer is an executable program that takes an executable file or dynamic link library
(DLL), compresses and/or encrypts its contents and then packs it into a new executable
file. The packed files discussed in this paper are in Portable Executable (PE) format [6].

Assuming the original executable file contains already known malicious code, the
signature based AV scanner should be able to detect it. However, the appearance of the
malicious code is changed after packing due to the compression and/or encryption. There-
fore, the packed file will thwart malware detection as no signature match will be found.
The analysis and detection of malware can only be undertaken after the file is unpacked,
i.e. the compressed/encrypted original file has been decompressed/decrypted completely.

A packed file contains two basic components. The first part is a number of data blocks
which form the compressed and/or encrypted original executable file. The second part
is an unpacking stub which can dynamically recover the original executable file on the
fly. When the packed file is running, the unpacking stub is executed firstly to unpack the
original executable code and then transfers the control to the original file. The execution
of the original file is mostly unchanged and starts from its original entry point (OEP)
with no runtime performance penalties (after the unpacking has been completed.)

2.2 Packer Evolution

As the variety of packing programs grows, their level of sophistication also increases.
This is because that anti-unpacker tricks continually evolve and are implemented quickly
by malware writers in a range of packers, from long-existing packers to modern new
packers, with the goal of protecting malware. The main types of anti-unpacker tricks
are listed below and most tricks have been described in Ferrie’s papers [7, 8, 9, 10, 11].
Basically the harder/more the tricks that the packer employ, the higher the level of so-
phistication of the packer.

– Anti-dumping mainly alters the process memory of the running process to hinder
further analysis on the dumped memory. The alteration is mainly applied on some
useful information, such as PE header, imports, entry point codes, etc.

– Anti-debugging prevents AV researchers from using a debugger easily. The debug-
ger is the most common tool used to trace the execution of malware in action.

– Anti-emulating attacks the software-based environment such as an emulator or a
virtual machine, e.g., VMware [12]. Such an environment is essential to safely
execute/monitor malicious behavior.

– Anti-intercepting thwarts page-level interception which stops the packer execution
of newly written pages.
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A lot of existing packers can be easily modified as their source codes are freely
available. Moreover, most newly emerging packers can be customized. For example, as
shown in Figure 1, Themida, one of most well-known sophisticated packers, provides
various protection options and the user is allowed to configure the protection level of
the packer. Consequently, the number and the complexity of new packer strains and
variants are dramatically increased.

Fig. 1. Sample packer protection options of Themida

2.3 Traditional Signature Based Packer Classification

The traditional packer classification approach is mainly based on matching the packer’s
byte signature. Byte-signature based packer scanners, such as PEiD [13] and pefile [14],
use a signature database to determine if a binary contains packed-code. A packer signa-
ture is typically a distinctive set of bytes which occurs at the entry point or in sections
in a PE file. In this approach, the incoming packer is checked against the database of
the signatures for known packers. If there is an exact match, the packer is considered
being used and the name of the packer is also identified.

The byte-signature based packer classification method is effective at detecting known
packers, however, the large diversity of packers, and the number of different variants of
each packer, severely undermines the effectiveness of classical signature-based detec-
tion. Besides, this approach is expensive as the signature detection and updating need
to be performed accurately by AV experts.
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2.4 Pattern Recognition

Pattern recognition techniques have recently been used in anti-malware community,
mainly for the purpose of identifying new or unknown malware [15, 16, 17, 18, 19, 20,
21,22,23]. Pattern recognition aims to recognize a particular class from a measurement
vector. Different pattern classes with different measurement vectors correspond to dif-
ferent points in measurement space and patterns with similar appearance tend to cluster
together. Therefore, a mapping relationship can be established from the measurement
space into the decision space. There are two essential technologies involved in a pattern
recognition system, namely feature extraction and classification.

Feature extraction retrieves the common features (patterns) among a set of objects.
A feature is the measurement of a property of an object. A feature set describes the
essential properties of an object using a greatly reduced number of parameters. How-
ever, only the features that properly represent the original object can lead to a satisfying
pattern recognition result. In other words, the extracted features of objects in each class
should be represented in a distinctive way. This permits a set of objects to be classified
into different classes.

Classification is the process that first analyzes the training set, develops a classifica-
tion model for each class and then applies the model to classify the testing set based
on their features. A training set is a collection of records for which the class label
have been provided by a trusted source. A testing set is used to verify the accuracy
of the model and consists of records with class labels that you want to predict. A
classification model (also called a classifier) can be built as follows: given a set of N
training data in which each record consists of a pair: a feature vector of n features
x = x1, x2, . . . , xn and the associated “truth” class yj , produce a relationship f :
x → yj that maps any feature vector x ∈ X to its true class yj ∈ y. Four classifiers
used in this paper are detailed described in Appendix A. They are Naive Bayes (NB),
Sequential Minimal Optimization (SMO), k−Nearest Neighbor (kNN) and Best-first
Decision Tree (BFTree).

2.5 Related Work

The closest work to this research was conducted by Perdisci et al. [24]. They ap-
plied various pattern recognition techniques to classify executables into two categories,
packed and non-packed. Nine features are combined together for classification, namely
number of standard and non-standard sections, number of executable sections, number
of readable/writable/executable sections, number of entries in the PE file’s Import Ad-
dress Table (IAT), PE header entropy, code section entropy, data section entropy and file
entropy. The system achieved very high accuracy (above 95%) using NB, J48 decision
tree, bagged, kNN or Multi Layer Perceptron (MLP) classifiers. However, this approach
is not able to detect what family of packers a packed file belongs to.

Other than packer classification, there have been a few recent attempts to use pattern
recognition techniques for automated malware detection [15, 16, 17, 18, 19]. Most of
them only classified files between malicious and benign, but not by family of malware.
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In early attempts, Tesauro et al. [15,16] developed a neural network for virus detection.
The system is specially designed for the detection of boot sector viruses using feature
trigrams. The trigrams are three byte strings. They are selected in the feature set if
they appear frequently in viral boot sectors but infrequently in uninfected software and
definitely do not appear in legitimate ones. In the experiments, 200 viral boot sectors
and 100 legitimate boot sectors were used as the data set in which half of them were the
training set and the other half were the test set. Using a classification threshold of 0.5,
performance on the test set was typically 80-85% for the viral boot sectors and 100%
for the legitimate boot sectors. The classifier has also been incorporated into the IBM
anti-virus product and has caught approximately 75% of new boot sector viruses.

Schultz et al. [19] used data mining methods to detect malware. They used three
types of features, binary profiles of DLLs, strings and sequences of n adjacent bytes
(also called n-grams), and paired each feature with a single learning algorithm. That is,
a rule-base classifier was applied to the binary profiling; string data was used to fit a
naive Bayes; and an ensemble of multi- NB classifiers is used on the n-grams data. In
the latter, the n-grams data were partitioned into six parts firstly, then each classifier was
trained on each partition of the data. The experiments were carried on a data set which
contained 3301 malicious programs and 1001 clean programs. Among them, 38 of the
malicious programs and 206 of the benign programs were in the Windows Portable
Executable (PE) format. The results showed that naive Bayes with strings achieved the
best accuracy than others. However, their experiments did not provide a fair comparison
among the classifiers as different features were used for different classifiers. Moreover,
different training sets were used to training different classifiers.

Using the same ideas, MECS [18] extracted byte sequences from the executables,
converted these into n-grams, and constructed several classifiers: kNN, NB, support
vector machines, decision trees J48, boosted NB, boosted J48 and boosted SVM.
Muazzam tried other features [17]. Instead of using fixed length instructions or n-
gram features, the author used Vector Space Model [25, 26, 27] to extract variable
length instruction sequence as the primary classification feature and applied an array
of classification models, including logistic regression, neural network, decision tree,
SVM, Bagging and random forest.

Several researchers addressed the issue of email classification with the aid of ma-
chine learning techniques [20, 21, 22, 23]. Cohen [20] used a rule-based algorithm
to classify email into folders based on the text of messages. Sahami et al. [21] em-
ployed a naive Bayes technique to the problem of junk E-mail filtering. Androutsopou-
los et al. [22, 23] also used this approach to classify spam emails and legitimate ones.
They compared two classifiers, naive Bayes and k-nearest neighbor. Both algorithms
achieved very high classification accuracy but k-nearest neighbor with k = 2 slightly
outperformed others.

3 Methodology

In this section, we present our approach to the packer classification problem by analysing
the performance of various statistical classifiers, as a replacement for signature match-
ing approaches. Firstly, it extracts a unique feature set, randomness profile, from each
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packed file. Then it maps the randomness feature vectors into an n−dimensional vector
space in which various learning algorithms can be applied.

3.1 Feature Extraction

Feature extraction retrieves the ‘characteristic’ of the packer which represents the packer
in a distinctive way. This permits the packed file to be compared with the candidate
packers.

Ebringer et al. developed a randomness test [5] that preserves local detail of the
packer. The randomness test measures the amount of “randomness” in different parts of
a sample executable program. It was noted by authors that the randomness distribution
of each packer family exhibits a distinctive pattern which suggests a kind of signal of
each packer. In this paper, we investigate whether packer’s randomness profile contains
sufficient information to classify packers with high accuracy.

In order to extract the best features from packed files, we employ a refined version
of the sliding window randomness test with trunk pruning method [5]. Compare with
the original sliding window randomness test (see Appendix B), the window size and
skip size used in this research are set to the same value. That is, there is no overlapping
windows. Therefore, no repeat information is used in the feature set. All parameters are
determined empirically (see Appendix C and D). Both window size and skip size are
set to 32 and the pruning size is 50.

3.2 Classification

Classification refers to the way the packed file is examined and assigned to a predefined
class. In this research, we first evaluate Ebringer et al.’s randomness signature scanning
technique [5] on a large malware data set and then apply pattern recognition techniques
to classify packers.

In a randomness signature based packer classification system, a packer signature is
simply calculated as the average value of a set of randomness profiles of training files
pre-classified as this packer. During the identification process, the distance between the
test file and each packer signature is measured. The shorter the distance, the more likely
the file is packed with this packer.

Instead of manual identification of signatures, a randomness signature can be auto-
matically created from packed files. However, as stated in [5], although the preliminary
packer classification results on a small clean data set are good, the results on real
malware samples were of insufficient accuracy. This might be due to the fact that they
used a small data set in the experiments. Besides, each tested packer contains only one
version of this specific packer. They suggested that using larger data set might improve
the performance.

Therefore, we firstly repeated their experiment using a large malware data set de-
scribed in Table 4. As shown in Table 1 and Table 2, the performance of the system
using large data set is still unsatisfactory. the average true positive rate in three tests
(n = 30, 40 and 50) are all below 90%, while in the n = 50 test, NSPACK and
PETITE only achieve 40.63% and 65.13% respectively.
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Table 1. Performance of the sliding window
algorithm using malware sample data set,
where the window size w = 32 and the skip
size is 32, the distance measure is Cosine
measure and the pruning method is Trunk.
The pruning size are in the range 30 − 50.

Pruning size Total files TP rate
30 17336 85.68%
40 17336 85.27%
50 17336 85.17%

Table 2. Detailed performance of the slid-
ing window algorithm using malware sam-
ple data set, where the window size w = 32
and the skip size is 32, the distance measure
is Cosine measure and the pruning method
is Trunk. The pruning size is 50.

Packer Total files TP rate
FSG 5105 99.53%
NSPACK 256 40.63%
PECOMPACT 1058 75.80%
PETITE 152 65.13%
UPACK 834 98.68%
UPX 9931 79.12%

The low accuracy in the results obtained by the randomness signature approach
motivated us to investigate the pattern recognition techniques described in Section 2.4
for packer classification using the extracted randomness profile. In the remainder of this
paper, we evaluate four statistical classifiers, namely Naive Bayes, Sequential Minimal
Optimization, k−Nearest Neighbor and Best-first Decision Tree. These classifiers are
selected since they are relatively fast. This is very important for a client-side AV scanner
which needs to scan millions of files in a short user-tolerable time frame.

4 Experiments and Results

4.1 Data Sets

Experiments have been carried out on a large set of real malware samples. There are two
types of data sets, namely a malware sample data set and a mixed data set. The malware
sample data set only contains real malware samples which have reliable predefined
class. The mixed data set has both packed clean files and real malware samples. The
packers used in this data set are mixed with low complex packers and sophisticated
packers. Below are the detailed descriptions of these two data sets.

Malware Samples Preparation. All malware samples have been prepared by an in-
dependent third party, Computer Associates (CA) Threat Management Team in Mel-
bourne, Australia. To construct the data set, real malware downloaded over January
and February 2009 by CA are collected. Each file is scanned by three AV scanners,
Microsoft, Kaspersky and CA, for packer labeling. In addition, CA’s VET engine
and anti-virus Arclib Archive Library are used to determine whether the file can be
unpacked. Files that reported by Microsoft, Kaspersky or CA, or that can be unpacked
by either the VET engine or Arclib are identified as packed file. As a result of this
method, we got a total of 103,392 packed files. The top five packers detected are UPX,
ASPACK, FSG, UPACK and NSIS installer. They comprise a total of 91.35% of
packed files.
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For the collection of 103,392 packed files, each file is assigned as having been
packed by one packer. This is done by combining the packer scanning results of all
three scanners. The packer name is set if it is identified by any scanner and is 100%
confirmed if it is identified by all three scanners. If there is conflicting information,
the result taken is the one given by the two scanners which agree. If all three scanners
disagree, PEiD is further applied to identify packer. PEiD is a byte-signature based
packer scanner [13] which is supported by a large number of packer signatures. How-
ever, it is so popular that many packers start to use fake signatures to hide from PEiD
detection. Therefore, PEiD’s scanning results are not reliable and are only used by us
for confirming information.

All scanners contain a different packer signature schema. For some packers, some
scanners might only provide the packer family name without the version information.
When collecting the version information, if any scanner obtains the version detail, this
information is used. If there is no version information, PEiD is used to retrieve the
version detail.

Table 3 lists four packer detection results extracted from our database. The first file
is detected as Aspack by all three scanners. PEiD also confirms the packer. Therefore,
it belongs to the Aspack family. Though Kaspersky doesn’t provide the version in-
formation, all other scanners indicate it is Aspack 2.12. The second file is detected as
Aspack by CA and Kaspersky, and CA provides its version number,namely version
2.0, while Kaspersky doesn’t. So PEiD is further used to confirm that it is Aspack 2.0.
CA identifies the third file as PC Shrinker while the other two do not have any scanning
result. In this case, PEiD is used. It not only confirms the packer family, but also gives
out the version 0.71. In the last example, there is information conflict between the
scanning results. CA says Petite 2.1 and Microsoft gives Petite 2.3. Again, PEiD is
used. Its result is Petite 2.1 or 2.2. All results are adjusted and Petite 2.1 is finally
assigned to this file.

Table 3. Determination of packer name for malware samples

No CA Microsoft Kaspersky PEiD Family Detail
1 ASPack 2.12 ASPack v2.12 ASPack ASPack v2.12 ASPack ASPack 2.12
2 ASPack 2.0 NULL ASPack ASPack

v2.001
ASPack ASPack 2.0

3 PC Shrinker NULL NULL PC Shrinker
v0.71

PC Shrinker PC Shrinker
0.71

4 Petite 2.1 Petite 2.3 NULL Petite v2.1 (2) Petite Petite 2.1

Malware Sample Data Set. As discussed in the previous section, the packer names
assigned to the samples are not 100% precise, especially when there is conflicting
information between the scanning results from different scanners. In order to get a
reliable training data set for the packer classification experiment, two criteria are used
to select the packers and files in the malware sample set. These two constraints are:



Pattern Recognition Techniques for the Classification of Malware Packers 379

– Only confirmed cases are used. In other words, the file’s packer name has been
identified as same by all three scanners, i.e., the first file in Table 3.

– Only packers with a sufficient number of confirmed cases are chosen. In this paper,
each packer should have more than 100 confirmed packed files to be chosen.

According to the selection conditions above, 6 packers of 17,336 files, for file sizes
ranging from 2 − 6880 KB are chosen from the sample collection described in Sec-
tion 4.1. The details of the set is presented in Table 4. As the top packer in the collection,
UPX has 39,799 confirmed packed files. However, to balance the distribution of the
sample set, only 9,931 randomly selected samples from these files are used. Note that
each packer contains samples with different versions. For example, packer NsPack has
cross versions of 2.x, 2.9, 3.4, 3.5, 3.6 and 3.7.

Table 4. Data set one: malware sample set

Packer Versions Total Number
FSG 1.33 and 2.0 5,105
NSPACK 2.x, 2.9, 3.4, 3.5, 3.6 and 3.7 256
PECOMPACT 2.xx 1,058
PETITE 2.1 and 2.2 152
UPACK 0.2x-0.3x 834
UPX UPX, UPX(LZMA), UPX(Delphi), 2.90, 2.92(LZMA), 2.93

and 3.00
9,931

17,336

Mixed Sample Data Set. The above malware sample data set consists of six popular
packers. Though each packer contains cross version samples, these packer’s complexity
is relatively low. In order to assess the robustness of our classification system, the
system capability of classifying a wide range of packers that have not only different
variants but also different levels of sophistication, we also create the mixed sample data
set.

One problem is that our sample collection does not have a sufficient number of
reliable samples of the sophisticated packers. To address this problem, the selection
conditions used for malware sample data set are relaxed. The new selection criteria are:

– The file’s packer name is identified by two scanners, or is identified by one scanner
and confirmed by PEiD.

– Packers with a sufficient number of classified cases (more than 100) are chosen.

466 files of two packers, Asprotect and Mew, that match the above criteria have
been added into the data set. In addition, a popular and sophisticated packer, Themida,
is chosen for this data set. As most samples of Themida in the database contain con-
flicting packer information, Themida packed clean files are used instead. 117 clean
files in the UnxUtils binaries [28] are packed with Themida v1.8.0.0 demo version.
Figure 1 shows that Themida provides various protection options and the user is al-
lowed to configure the protection level of the packer. Consequently, the number and the



380 L. Sun et al.

complexity of Themida variants are dramatically increased. In this paper, six different
combinations of packing options are evenly applied on these files.

The details of the set is presented in Table 5. Though this data set is not as reliable
as the previous malware sample set, the experimental results on this data set will still
provide an overall score of the system effectiveness.

Table 5. Data set two: mixed sample set

Packer Versions Total Number
ASPROTECT unknown, 1.2 and 1.23 205
FSG 1.33 and 2.0 5,105
MEW 11 and 11 SE 1.2 261
NSPACK 2.x, 2.9, 3.4, 3.5, 3.6 and 3.7 256
PECOMPACT 2.xx 1,058
PETITE 2.1 and 2.2 152
THEMIDA v1.8.0.0 with 6 option sets 117
UPACK 0.2x-0.3x 834
UPX UPX, UPX(LZMA), UPX(Delphi), 2.90, 2.92(LZMA), 2.93

and 3.00
9,931

17,919

4.2 Evaluation Metrics

When comparing the performance of different classification techniques, it is important
to assess how well a classification model is able to correctly predict records to the actual
classes. Several metrics are conventionally in use to numerically quantify classification
effectiveness performance.

To introduce the metrics, let us define that for a class yj , a record is positive if it is
predicted to belong this specific class and is negative if it is predicted to belong other
classes. Suppose that for a test set with n records, the set of positive records and negative
records for the class are known (for example, as the result of human judgment), and P
and N are the number of positive records and negative records respectively, n = P +N .
Using four important counts defined below, P = TP + FN and N = FP + TN .

– TP represents the true positives which is the number of positive records correctly
identified as specific class.

– FP represents the false positives, the number of negative records which do not
belong to the class but were incorrectly identified as it.

– TN represents the true negatives which refers the number of negative records cor-
rectly identified as other classes.

– FN represents the false negatives, that is the number of positive records which
belong to the class but were incorrectly identified as other classes.

The accuracy is the percentage of test set records that are correctly identified by the
classifier. That is,

Accuracy =
TP + TN

n
=

TP + TN

P + N
(1)
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Accuracy provides an overall performance of the effectiveness. However, this measure
has one limitation. Suppose that a test set contains a large number of negative records
and very small number of positive records, and we use a classifier which labels every
class as negative (no matter what the input data). That is, TN is very high and TP is very
low. Despite the classifier being very primitive, it will achieve a very high classification
accuracy on this data set.

The true positive rate (TPrate) and false positive rate (FPrate) are introduced to
measure the proportion of the positive records that are correctly identified and the
proportion of the negative records that are incorrectly identified, respectively. For each
class, they are calculated as

TPrate =
TP

P
=

TP

TP + FN
and FPrate =

FP

N
=

FP

FP + TN
. (2)

Two other fundamental ways to measure classification effectiveness are precision
and recall. Precision is the proportion of records classified as positive which are clas-
sified correctly, and recall is the proportion of positive records that have been correctly
identified. So, for each class, the precision is defined as

Precision =
TP

TP + FP
(3)

and the recall is

Recall =
TP

TP + FN
(4)

4.3 Pattern Recognition Results

As described before, in the feature extraction process, each packed file is passed to
the sliding window randomness test with a window size 32 bytes (256 bits). There
is no overlap between windows, i.e., the skip size a is 32. Then the feature vector is
constructed by extracting low randomness values in the range of 30 to 50 from the
output using the Trunk pruning method.

Classification was carried out using the Weka 3.6.0 (Waikato Environment for Knowl-
edge Analysis) machine learning package, developed by University of Waikato [29,
30, 31]. All selected statistical classifiers, NB, SMO, kNN (called IBk in WEKA) and
BFTree are implemented in Weka. In the experiments, all classifiers used the default
settings defined by Weka.

In the tests, 10-fold cross validation [32] is used. For each data set, the whole set is
randomly partitioned into ten equal-size subsets. There are a total of 10 runs. During
each run, one subset is used for testing and the other nine subsets are used for training.
Therefore, each vector is used as a test sample exactly once.

Results of the Malware Sample Data Set. Experiments were firstly carried on the
malware sample data set with feature vector size (pruning size) 50. The performance,
in terms of effectiveness and efficiency, of various statistical classifiers are listed in
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Table 6. All these classifiers work very well with high positive rate (> 93%) and low
false positive rate. This provides very strong evidence that the randomness profile plays
a significant role in a packer classification system.

Among all classifiers, the kNN classifier achieves the best overall performance. Its
TP rate is 99.6% and FP rate is only 0.1%. Moreover, it takes least time to build a model
on training data (Model building time in Table 6).

Table 6. Comparison of statistical classifiers. The feature vector contains 50 points.

Classifier TP rate FP rate Model building time (s)
Bayes.NaiveBayes 93.9% 1.1% 0.91
Functions.SMO 98.9% 0.8% 72.11
Lazy.kNN(k=1) 99.6% 0.1% 0.02
Trees.BFTree 99.3% 0.5% 16.45

Two other sets of experiments are used to determine the k values used in the kNN
classifier and the size of the extracted feature vector. Table 7 shows that k = 1 outper-
forms other two k values, 3 and 5. Table 8 shows feature vectors of 30-50 points all
achieve high effectiveness (TP > 99%) while feature vector of 50 points yields the best
result.

Table 7. Comparison of kNN with different
k values. The feature vector contains 50
points.

k TP rate FP rate Model building time (s)
1 99.6% 0.1% 0.02
3 99.5% 0.2% 0.02
5 99.4% 0.3% 0.02

Table 8. Comparison of kNN (k = 1) with
different feature vector size

Vector size TP rate FP rate Precision Recall
30 99.4% 0.3% 99.4% 99.4%
40 99.6% 0.1% 99.6% 99.6%
50 99.6% 0.1% 99.8% 99.7%

Results of the Mixed Sample Data Set. The above results of malware sample data
set shows that our packer classification system can achieve extremely effective perfor-
mance using the pattern recognition techniques. Through the experiments, it is proved
that this novel packer classification technique works well with different packer variants.
However, it was unknown whether the conclusions drawn in previous sections can be
applied to packers with different level of sophistication. To address this, an experiment
was run on the mixed sample data set. This data set contains not only packed clean files
and malware samples, but also lowly complex packers and highly complex packers.

50 randomness values are extracted from the file to construct the feature vector. In
the classification process, the kNN (k=1) classifier is used. The results in Table 9 show
that sophisticated packers, such as Asprotect and Themida, can also be effectively
classified by applying the pattern recognition techniques on packer’s randomness pro-
file. As shown, the average TP rate is 99.4%. Among 9 packers, the TP rates of Upack
and FSG obtain nearly perfect while all other packers achieve more than 90%.
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Table 9. Detailed accuracy by class using the mixed sample data set. The classifier is kNN with
k = 1 and the feature vector contains 50 points.

Packer TP rate FP rate Precision Recall
ASPROTECT 92.7% 0.1% 95.5% 92.7%
FSG 99.9% 0.0% 99.9% 99.9%
MEW 99.6% 0.0% 100.% 99.6%
NSPACK 91.0% 0.1% 90.7% 91.0%
PECOMPACT 98.5% 0.1% 98.2% 98.5%
PETITE 98.0% 0.0% 98.7% 98.0%
THEMIDA 92.3% 0.1% 86.4% 92.3%
UPACK 100.% 0.0% 99.4% 100.%
UPX 99.7% 0.3% 99.8% 99.7%
Weighted Avg 99.4% 0.2% 99.5% 99.4%

5 Conclusions and Future Work

This paper has discussed packers and presented a fast yet effective packer classification
system which applies pattern recognition techniques. In this approach, the low random-
ness profile of the packer is extracted and then passed to a statistical classifier.

Our work demonstrates that the randomness profile combined with strong pattern
recognition algorithms can be used to produce a highly accurate packer classification
system on real life data. Such a system identifies the packer automatically and therefore
is essential to keeping up with the accelerating growth in packer varieties.

The system has been tested on a large data set, including clean packed files and
more than 17, 000 malware samples from the wild. The data set has a wide coverage
of packers since that files are packed by not only different versions of packers, but also
packers of different complexity. We evaluated four popular fast statistical classifiers,
namely Naive Bayes, Sequential Minimal Optimization, k−Nearest Neighbor and Best-
first Tree. All four classifiers were extremely effective, three of the four algorithms
achieved an average true positive rate of around 99% or above, Naive Bayes was the
lowest, with a true positive rate of around 94%. The k−Nearest Neighbor classifier
with k = 1 obtains the best overall performance. Its true positive rate is 99.6% while
false positive rate is 0.1%. Moreover, it is the fastest classifier.

The system also reveals that the low randomness profile of the packed file, normally
produced by the PE header and unpacking stub, contains important packer’s informa-
tion. Thus it is very useful in distinguishing between families of packers.

Following the very encouraging preliminary results described here, there are several
other promising steps which can be undertaken. Our future work will focus on the
exploration of different statistical classifiers’ performance as the main tool in a packer
classification system. Several other classifiers can be added to the list, such as Random
Forest, other Bayesian methods, Bagging, etc. Furthermore, we can apply various multi-
classifier algorithms [33] or rank the output of different classifiers instead of choosing
the best one among them.
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It is still unknown whether there are a set of attributes more important than others in
the extracted profile. We need to make enhancements to the feature extraction algorithm
to select most important features from the randomness profile. Useful packer features
other than the randomness profile, such as PE header information, string information,
can also be explored and incorporated into the feature vector to improve the system’s
effectiveness. Moreover,new pruning methods that consider not only low randomness
values but also certain sections can be developed. For example, we can only retain the
lowest values in the code section.
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A Pattern Recognition Algorithms

A.1 The Naive Bayes (NB) Algorithm

The NB classifier [34] uses a statistical approach to the problem of pattern recognition.
The Bayes rule is the fundamental idea behind a NB classifier. For a feature vector x
with n attributes x = x1, x2, . . . , xn and a class variable yj , let P (x|yj) be the class-
conditional probability for the feature vector x whose distribution depends on the class
yj . Then P (yj |x), the posteriori probability that feature vector x belongs to class yj

can be computed from P (x|yj) by Bayes rule:

P (yj |x) =
P (x|yj)× P (yj)

P (x)
(5)

The NB algorithm applies “naive” conditional independence assumptions which
states that all n features x1, x2, . . . , xn of the feature vector x are all conditionally
independent of one another, given yj . The value of this assumption is that it dramatically
simplifies the representation of P (x|yj), and the problem of estimating it from the
training data. In this case,

P (x|yj) = P (x1 . . .xn|yj)

=
n∏

i=1

P (xi|yj)
(6)

and equation (5) becomes

P (yj|x) =
P (yj)

∏n

i=1
P (xi|yj)

P (x)
(7)

In a classification system, the feature vector x belongs to the class yj with the highest
probability P (yj|x). Since P (x) is always constant for every class yj , it is sufficient to

choose the class that maximizes the numerator in (7), P (yj)
∏n

i=1
P (xi|yj). In other

words,

ymax = argmax
ym

P (yj)
n∏

i=1

P (xi|yj) (8)

The NB classifier is easy to implement and can be trained very efficiently in a super-
vised learning setting, computation time varies approximately linearly with the number
of training samples. Despite the apparent over-simplified assumptions of independence,
the NB classifier often competes well with more sophisticated classifiers [35].

A.2 The k−Nearest Neighbor (kNN) Algorithm

k-Nearest Neighbor [36] is amongst the simplest of all machine learning algorithms.
The idea behind it is quite straightforward. To classify the test packed file, the system
firstly finds the k training files which are the most similar to the attributes of the test file.
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These training files are called Nearest Neighbors as they have the shortest distance to the
test file. Then the test file is categorized based on the category of its nearest neighbors.
In the case where neighbors belong to more than one class, the test is assigned to the
majority class of its nearest neighbors.

As shown in Figure 2, the test file (green cross) can be classified as the first class of
the red plus sign or the second class of the blue minus sign. If set k to 1, the test file will
be classified as the class of red plus sign since it is inside the inner circle. Similarly, if
set k to 3, the test file will be classified as the class of the blue minus sign as there are
two blue minus signs but only one red plus sign inside the outer circle.

Fig. 2. Examples of kNN algorithm

A.3 The Sequential Minimal Optimization (SMO) Algorithm

SMO is a fast implementation of Support Vector Machines (SVM) [37]. Given data of
two classes as two sets of feature vectors in an n−dimensional space, a SVM constructs
an optimal hyperplane that separates a set of one class instances from a set of other class
instances and maximizes the margin between the two data sets. That is to say if two paral-
lel hyperplanes are constructed, one on each side of the hyperplane and passing through
the nearest data point in each data class, the distance between the parallel hyperplanes
needs to be as far apart as possible while still separating the data into two classes.

Training a SVM is slow due to solving a very large quadratic programming (QP)
optimization problem. SMO [38] decomposes the large QP problem of SVM into
QP sub-problems, which can be solved analytically and thus avoids using an entire
numerical QP as an inner loop. In addition, SMO requires no extra matrix storage at all
therefore the amount of memory required is linear in training set size. It allows SMO
to handle very large training sets.

A.4 The Best-First Decision Tree (BFTree) Algorithm

The BFTree algorithm is a decision tree [39] that maps from attributes of an item to con-
clusions about its target class. In a tree that describes a set of packed files, each internal
node represents a test on a file feature, each branch from a node corresponds to a possible
outcome of the test, and each terminal node contains a packer class prediction. In each
step of tree expansion, the best-first top-down strategy is applied [40]. i.e. the “best”
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node which maximally reduces the impurity (e.g. information [41] and Gini index [42])
among all nodes available for splitting, is added to the tree first. This partitioning of the
feature space is recursively executed until all nodes are non-overlapping or a specific
number of expansions is reached. For the latter, pruning methods are used to decrease
the noise and variability in the data and therefore to achieve better performance.

B Sliding Window Randomness Test

As described in [5], there are four steps involved in a sliding window version of local
randomness test (see Algorithm 1). Firstly, for each file, all bytes are counted and a byte-
frequency histogram is built. Secondly, using the global bytes information, the Huffman
tree is constructed for the entire file by inserting bytes into the tree in the order of
increasing frequency. Thirdly, a “length-encoding” array eB0 , . . . , eB255 is constructed
where Bi is the corresponding byte. The entries of the array give the distance to the root
of the tree for each element. Thus eB0 gives the distance to the root for the byte B0, eB1

gives the distance to the root of the byte B1, and so on. This distance is also the number
of bits needed to encode this byte, in the prefix-free Huffman code. At the end, we set
a window size w and a skip size a, so that there are a total $n−w

a % windows (indexed
by 1, 2, . . . , $n−w

a %) for the whole file. The randomness value ri in each window is

calculated as
∑a(i−1)+w+1

j=a(i−1)+1 ebj , i.e., as the total code length of the corresponding data.
At the end, the ri are scaled so that the minimum value is zero and the maximum value
is one.

Data : The packed file in the form of bytes b1, . . . , bj , . . . , bn where bj ∈
{B0, B1, . . . , B255}, a window size w and a skip size a

Result : An array of �n−w
a

� samples of the randomness, ranging from 0.0 to 1.0
begin

1. Build a byte-frequency histogram for all bytes B0, B1, . . . , B255 in the entire file ;
2. Construct the Huffman tree by inserting bytes into the tree in the order of their

frequency ;
3. Construct an array eB0 , . . . , eB255 containing the encoding length for each of the

input bytes.

for i from 1 to �n − w

a
� do

Set the randomness value ri ←−
a(i−1)+w+1∑
j=a(i−1)+1

ebj ;

endfor
4. for i from 1 to s do

Rescale ri between 0.0 and 1.0, where min(ri) = 0.0 and max(ri) = 1.0 ;

endfor
end

Algorithm 1. The sliding window algorithm: generate randomness measurements for a file,
output proportional to file length. This is a revised version of Algorithm 2 in [5].
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C Determination of Window Size w and Skip Size a

Two sets of experiments have been initially carried out to determine the window size
w and the skip size a for the sliding window algorithm. The data set used in the
experiments comprises of a total of 708 packed clean files of six packers. For each
packer, each file in the UnxUtils binaries [28] is packed with this packer. The selected
collection contains 118 executable files whose file size ranged from 3 to 1058 KB,
though most files (116 out of 118) are in the range 3 − 191KB. Six packers used are
FSG 2.0, Mew 11, Morphine 2.7, RLPack 1.19, Upack 0.399 and UPX 2.03w.

As shown in [5], the Cosine measure combined with Trunk pruning gives the best
performance. We therefore use this combination in the following experiments to find the
best parameter settings. Five files are removed from the data set as they produce more
than n same smallest randomness values, which are all rescaled to 0. As the result, there
are total 703 files in each experiment.

In each set of experiments, the total number of original bytes used for the feature
vector remains roughly the same. In other words, similar features of the file are used for
packer classification. For example, when test the window size w, the skip size is set to w

2
and the pruning size n will vary as w changes. Consider a run with w = 32, a = 16 and
n = 100, the number of bytes from the file used is are around 100×16+32 = 1632. As
another example, if w is set to 16, then a = 8 and n will be set to 200 (200× 8 + 16 =
1616).

The results are illustrated in Table 10 and 11. For w, the true positive rate of window
size of 8 and 16 are slightly higher than 32. However, windows of small size carries
less flexible information than big size does. Besides, feature extraction efficiency is
also a factor when selecting the window size. The smaller the window size, the more
randomness outputs are generated and the more time it takes. Therefore, 32 is a suitable
window size used in the algorithm for packer classification purposes. If the experimental
results are examined with respect to the skip size a, it is noted that when using a similar
amount of information for comparison, the performance of different systems are close.
In Table 11, if windows do not overlap, that is, a = w = 32, the system achieves slightly
high TP rate than others. In this case, the total number of outputs of the randomness
test and the extracted feature vector size are the smallest, so the system performs most
efficiently as both of the feature extraction process, including the scaling and pruning,
and the classification process is fast.

Table 10. Determination of the window size w, where the skip size a = w/2, the distance
measure is cosine measure and the pruning method is Trunk. The pruning size varies with different
window size so that that the extracted features used for comparison are roughly same.

Window size Skip size Pruning size Total files TP rate
8 4 400 703 98.29%
16 8 200 703 98.29%
32 16 100 703 98.15%
64 32 50 703 97.29%
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Table 11. Determination of the skip size a, where the window size w = 32, the distance measure
is cosine measure and the pruning method is Trunk. The pruning size varies with different skip
size so that the extracted features used for comparison are roughly same.

Skip size Pruning size Total files TP rate
2 800 703 98.00%
4 400 703 98.15%
8 200 703 98.15%
12 134 703 98.15%
16 100 703 98.15%
20 80 703 98.00%
32 50 703 98.29%

D Determination of Pruning Size n

This set of experiments is used to determine how detailed the information used for
classification should be. This depends on the feature vector size (pruning size n). If
n is small, the classification takes less time building the model and classifying the file.
However if n is too small, there may not be sufficient information to distinguish between
packers. If n is too large, the classification process is slow and also information noise
generated by compressed/encrypted data will effect system performance. Therefore,
experiments are run with various pruning size n in the range of 30 − 70 and other
settings given in Table 12. Thus, the information used are around 1 − 2 KB. Table 12
suggests that n should be set between 30− 50.

Table 12. Determination of the pruning size n, where the window size w = 32, the skip size
a = 32, the distance measure is cosine measure and the pruning method is Trunk

Pruning size Total files TP rate
30 703 98.57%
40 703 98.57%
50 703 98.29%
60 703 95.87%
70 703 96.01%
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Abstract. We consider ad hoc wireless networks and adversaries that
try to gain control over the network by Sybil attacks, that is by emulating
more physical nodes that are really under his control. We present the first
defense method that works for the case when the adversary controls more
than one device and these devices have some prior agreement on strategy
executed and share preloaded secrets.

1 Introduction

One of the most difficult problems for ad hoc networks are Sybil-type attacks [6]:
a selfish adversary controlling some of the devices may change the identities of
these devices and/or create and emulate virtual devices with new identities,
and thereby disproportionately large influence on a network. Indeed, it would
help the adversary to gain a higher share of the communication channel and
to perform more tasks in the network if the distinguished nodes are chosen at
random.

Preventing such attacks might be difficult, especially if the devices are com-
municating in a wireless way only and the network is dynamic. In this case, there
is no direct physical control over the devices and the adversary can launch an
attack without risking of being caught. Moreover, at present it seems unrealistic
to build a global system registering all identities and authorization mechanisms
(like a PKI system) for small devices. Apart from necessity to keep the devices
as simple as possible, this is due to the fact that the main purpose of an ad
hoc network is to work without consulting any central system and to survive
even in the hardest circumstances. So it does not help much, if the identities are
assigned to the devices under strict control - the adversary may clone them and
use the same identity at different locations.

Problem statement. We assume that an ad hoc network has to initialize itself,
in the sense that a common list of identities is generated so that:

– the number of identities on the list does not exceed the number of physical
devices in the network,

– each honest device gets its ID on the list.
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The network consists of N honest devices and M devices under control of an
adversary. However, there is no prior knowledge about the network and its par-
ticipants. In particular, N and M are unknown, it is also unknown which de-
vices are under control of the adversary. We only know that Nmin ≤ N and
M + N ≤ Nmax, where Nmin, Nmax are known parameters.

If the procedure succeeds, then it prevents the adversary from registering
more identities than M . We are interested in a solution for an ad hoc system.
All mechanisms deployed must not break the principle that the network must
work on its own and cannot depend on any external help (such as external
verification of identities claimed).

Network model. An ad hoc network consists of physical devices communi-
cating via a radio channel. Time is divided into discrete slots and devices are
synchronized enough to cooperate in time slots. Each device has its own iden-
tity, however, nothing prevents a dishonest device to change its identity (Sybil
attack) or to emulate many physical stations with different identities.

The devices have no prior knowledge about other devices in the network and
can learn about their presence only by exchanging messages.

Devices are in the signal range of each other, i.e. a message sent by one
station can be received by any other station, provided that is not jammed by
other messages sent at the same time. If two or more stations are transmitting
at the same time each listening station receives a noise and no message can
be recognized. However, noise can be distinguished from silence observed when
no station transmits. Hence, we consider the single-hop model with collision
detection, which models a wide class of real systems and is intensively studied
in the literature.

In a single slot a device can either transmit or listen; simultaneous transmit-
ting and listening is impossible (as it is the case for standard small size devices
with a single antenna - see for instance 802.11 standard [1]). In particular, a
device does not know, if its message was correctly transmitted or jammed.

Even if we focus on weak devices, we assume that devices are capable of
computing a value of a one-way hash function and have an access to stochastically
independent pseudo-random number generators. Computational limitations of
each device is described by parameter a defined as follows. Parameter a is such a
number that if we assume that some device is given value y such that H(x) = y,
and such part of value x – that a bits of x are unknown, provided that for each
missing bit bi we have 0.5

Nmin
Nmax ≤ Pr[bi = 1] ≤ 0.5, then probability that device

will find exact value of x during one verification procedure execution is less than
1

n2 . Parameter a depends on station computational power and influences length
of verification message.

Adversary model. A malicious adversary can gain control over some number
of devices in the network and access all data stored in these devices. He can
coordinate the actions of these devices by means of a preloaded strategy or shared
secrets. However, during protocol execution the adversarial devices have exactly
the same capabilities and limitations as honest devices. In particular, they can
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communicate only via the radio channel shared with the honest devices. This
scenario describes, among others, the case wherein the adversary infects some
devices with malcode.

The adversary attempts to emulate more devices than he really has at his
disposal. In this way the adversary attempts to improve his chances to gain
access to the shared radio channel or to be elected to play some role in the
network. This works, since most algorithms perform a kind of random choice
from the set of all participating devices.

In the considered scenario, the adversary does not try to block the network
communication, but he tries to gain advantage in an unfair way. We do not
consider energy complexity thus we have to assume that adversary can always
block the network e.g. transmitting continuously.

Previous and related work. The problem of Sybil attacks, described in the
seminal paper [6], is not limited to ad hoc networks. Similar attacks were consid-
ered in various settings, mainly for P2P systems based on DHT paradigm. Some
ideas for other distributed systems can be found for example in [5, 14]. Var-
ious countermeasures has been proposed including certification, auditing and
resource testing. Many of these solutions are surveyed in [3]. Most of proposed
countermeasures cannot be applied to protect systems considered in our paper
due to their peculiarities– their ad hoc nature (i.e no possibility of auditing, no
secrets established a priori) and limited resources resulting in lack of public key
cryptography.

The paper [13] suggests a method of protecting a sensor network from the
Sybil attack based on the assumption that a single device is not able to broad-
cast on two different frequencies. Presented approach is very innovative, however
it cannot be applied to the model discussed in our paper. In particular it requires
several channels and a different adversary model. Moreover, the model investi-
gated in [13] does not assume collisions, what is essential in networks considered
in our paper. Generally speaking our model and assumptions seems to be more
suitable for systems of small and extremely weak devices.

Other papers considering Sybil attack in the context of ad hoc networks
are [4, 14]. However, none of proposed solutions seems to be applicable to our
problem statement. For example, the first paper is focused on mobile devices
with multi-hop graph of connections. Also methods from the second paper based
on pre distributing secrets require some pre deployment phase not assumed in
considered model.

Our paper is motivated by the solution presented in [7], where fairness of a
leader election protocols were investigated. Apart from some negative results,
the paper presents a protocol that provides fair leader election (i.e. each device
has the same probability of becoming a leader) for the network model considered
in this paper. However, this solution works only if the adversary controls exactly
one station. If the adversary is controlling even two stations, then the defense
method fails completely.
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General model of the network and communication between nodes assumed
in our paper appears in different contexts in vast body of works. Some notable
examples include [2, 8, 10, 11, 12, 15].

Our contribution. We propose a probabilistic algorithm that solves the stated
problem of initialization of an ad hoc network. Thereby, we solve the fundamental
problem that exist for the solution from [7] – namely, our protocol works even
against adversary with multiple devices.

As in the papers [7, 13], we make advantage of particular properties of com-
munication model in wireless systems and combine them with some lightweight
cryptographic tools. To the best of our knowledge this is the first solution to
such stated problem.

2 Algorithm Description

Our algorithm consists of two phases:

1. each device declares its identity (we admit that a cheating device declares
more than one identity),

2. it is checked that each identity corresponds to a different physical device; if
cheaters are detected, they are eliminated from the further procedure and
Phase 2 is restarted.

In more detail, the algorithm has the following structure (each subprocedure is
described in the following subsections):

Algorithm 1. High level description
registering identities
repeat

commitment to random seeds for PRNG
verification procedure
revealing seeds of PRNG and removing cheaters

until no cheater detected

Registering identities. Many techniques can be applied here. For the sake
of completeness we sketch one of them. During the first phase we use 2Nmax

time slots. A device D willing to register chooses 1 ≤ j ≤ Nmax uniformly at
random, transmits its identity in slot j and listens during the remaining slots
1 ≤ i ≤ Nmax. So D knows all devices that succeeded to transmit their iden-
tities except itself. Then D forms a vector of length Nmax, which contains a 1
on position i, iff D has heard an identifier in slot i, and a zero otherwise. D
transmits this vector in slot Nmax + j. D can check if it has transmitted in
slot j without collision by inspecting any of such vectors transmitted by the de-
vices that it heard during the first Nmax slots. Assuming that at least two devices
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succeeded (which occurs with high probability since at least Nmin > 2 devices
participate in the protocol) each station learns if it has succeeded to broadcast
its identifier.

If any collision has been detected, then there are stations that are not regis-
tered yet. In this case the next similar phase is started. However, now only one
device transmits the vector indicating in which slots successful transmission has
occurred. Namely, this is the device with the smallest identifier from those that
came through in the first phase. The phases are repeated until no unregistered
device is left. Let us assume that finally there are n identities registered, and the
ith identity is IDi.

One of the key properties of the above procedure is that eventually all de-
vices get registered and the adversary cannot prohibit any honest device from
registering. However, a dishonest party may register more than one identity.

Commitment subprocedure. The goal of this subprocedure is to commit to
pseudo-random choices made during verification subprocedure. Without this an
adversarial device could adapt its behavior to the events observed and transmit
information to other adversarial devices by appropriate choice of transmitting
pattern jeopardizing verification.

Let H be a secure hash function. First, for i such that 0 ≤ i ≤ n − 1,
device controlling IDi generates at random a secret ri, computes ci = H(ri)
and broadcasts ci in the ith time slot. Within the next n slots the devices
broadcast the values ci, 0 ≤ i ≤ n − 1. Afterward, each device computes x =
H(c0 ⊕ . . . ⊕ cn−1). Finally, IDi computes si := H(ri||x) as the seed for the
pseudo-random number generator for the verification subprocedure.

Verification subprocedure. This subprocedure consists of 2n−1 consecutive
trials Tt where t ∈ {0, . . . , 2n − 2}. Each trial is dedicated to one identity, namely
trial t has to examine identity IDt mod n. So each identity (except for IDn−1) has
two dedicated trials: for IDi, (0 ≤ i ≤ n − 1) these are Ti and Tn+i (see Fig. 1).
This way each identity’s last trial takes place after at least one trial dedicated
to each other identity. This way it will be possible to verify each identity against
all others (see Fig. 2).

for ID0︷ ︸︸ ︷ for ID1︷ ︸︸ ︷ for IDn−1︷ ︸︸ ︷ for ID0︷ ︸︸ ︷ for ID1︷ ︸︸ ︷ for IDn−2︷ ︸︸ ︷
v01 v02 ... v0k v11 v12 ... v1k ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... vn−2 k︸ ︷︷ ︸

T0

︸ ︷︷ ︸
T1

︸ ︷︷ ︸
Tn−1

︸ ︷︷ ︸
Tn

︸ ︷︷ ︸
Tn+1

︸ ︷︷ ︸
T2n−2

Fig. 1. Trials assignment

Trial. Each trial consists of k transmission slots. In each slot of trial Tt, de-
vice IDt mod n transmits a verification message in a form described below. The
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other devices may cause transmission collisions in these slots in a pseudo-random
way with transmitting probability 1 − n−1

√
0.5. IDi determines in which slots to

transmit using a PRNG with seed si.
Since there are n devices registered, the final probability that there is no

collision in a given slot equals 0.5. The outcome of trial Tt is described by a
k-bit jamming pattern Pt. It contains a 1 on position j, iff there is a collision in
slot j of Tt.

The collisions discussed above is the main mechanism preventing emulation of
more ID’s than physical devices. Namely, observe that for a given identity some
device has to transmit in all k slots and is unaware of the jamming pattern. Every
other device should know exactly the jamming pattern: if it does not transmit
in slot j, it can listen and detect a collision, if it transmits, then it knows for
sure that there is a collision. So, if a device sends verification messages on behalf
of another ID, it is unable to gain knowledge of the jamming pattern of this
trial. Since a verification message depends on all preceding jamming patterns,
lack of knowledge will be eventually detected (for details see the discussion in
the subsequent sections).

Verification message vts. For constructing verification messages we use a
function F : (0, 1)k ×N ×N �→ N having certain properties of a hash function (e.g
SHA-256 can be used). Namely, given y, t and s it is infeasible to calculate x
such that F (x, t, s) = y, even if all but a bits of x are known. Moreover, for given
t, s and y = F (x, t, s), and all but a bits of x, it must be infeasible to calculate
y′ such that y′ = F (x, t′, s′) for some t′ �= t or s′ �= s.

Let Fts(Pi) stand for F (Pi, t, s). We define vts as a concatenation of values of
F for all preceding jamming patterns, except the jamming pattern Pt−n of the
same device for t ≥ n:

vts =

⎧⎨⎩
0 if t = 0,
Fts(P0)|| . . . ||Fts(Pt−1) if t < n,
Fts(P0)|| . . . ||Fts(Pt−n−1)||Fts(Pt−n+1)|| . . . ||Fts(Pt−1) if t ≥ n.

(1)

Referring to all verification messages in a trial we will use notation vt.
Each device should know all the jamming patterns for all those trials which

were not dedicated to its identity. Thus each IDu can deconcatenate vts and
verify Fts(Pj) values for all j �= u calculating them itself. So in fact each device
should be able to verify correctness of the verification message except for the
part dedicated to its own pattern.

Adversarial devices which emulate more than one identity will be unable to
calculate correct verification messages.

To see it we consider a simple example depicted on Fig. 2.
We assume that ID1 and ID3 are simulated by the same device. This example

does not reflect all possible strategies of the adversary, but shows the general
idea of the verification.
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Trial 1: ID0 −→ transmits v0 OK
Trial 2: ID1 −→ transmits v1 OK
Trial 3: ID2 −→ transmits v2 OK
Trial 4: ID3 −→ unable to calculate v3 WRONG

...
Trial n: IDn−1 −→ transmits vn−1 OK
Trial n+1: ID0 −→ transmits vn OK
Trial n+2: ID1 −→ unable to calculate vn+1 WRONG
Trial n+3: ID2 −→ transmits vn+2 OK
Trial n+4: ID3 −→ unable to calculate vn+3 WRONG

...
Trial 2n-1: IDn−2 −→ transmits v2n−2 OK

Fig. 2. Exemplary verification subprocedure. We assume that ID1 and ID3 are sim-
ulated by the same physical device. Notice that “device ID1” can compose correct
verification message at trial T1. “Device ID3” does not know P1 so it cannot broadcast
correct verification messages and is immediately recognized as a fake device. However,
after “device ID3” has transmitted, “device ID1” is also in trouble: it lacks information
about jamming pattern P3 it was supposed to have and is no more able to calculate
the verification message. So “device ID1” fails in trial Tn+1.

Pseudocode. We can now summarize the verification subprocedure in the form
of the following pseudocode:

Algorithm 2. Verification subprocedure
for t=0 to 2n-2 do

All stations calculate vts according to Eqn. 1
for s=1 to k do

if IDi such that (i = t mod n) then
calculate and send vts

else
Jam slot with probability 1 − n

√
0.5

Update information about current jamming pattern Pt[s]
check vts transmitted by IDt mod n

end if
end for
if there are any mistakes then

each station mark IDt mod n as cheater.
end if

end for

Revealing seeds. Finally, the seeds ri are revealed. Then each device checks if
the observed jamming patterns agree with the patterns that are computed from
seeds si. If it is detected that IDi was supposed to jam at a given slot, but the
verification message came through, then IDi is declared as a cheater.
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If any cheater has been detected during this and the previous subprocedure,
we restart without the cheaters at commitment subprocedure.

3 Algorithm Analysis

In this section we show that even sophisticated strategies of the adversary do
not help him to avoid detection of cheating.

First let us observe that before verification subprocedure starts, the pattern
of jamming by each ID is fixed and committed to by strings si. So in particular,
the devices (may be virtual ones) registered by the adversary must behave in
a predefined way and cannot transmit any knowledge about observed jamming
patterns to other adversarial devices.

Also, if there is at least one honest device, no device can determine x and
therefore influence its broadcasting schedule in advance. Since the numbers ri

are not revealed at first, it is also impossible to determine at the end of com-
mitment subprocedure the future behavior of the honest devices. On the other
hand, adversarial devices can choose their strings ri in some way agreed in ad-
vance, so we have to assume that they know each other transmission patterns.
Consequently, they can share their duties and this is not true that each adver-
sarial ID must be implemented by a single adversarial device. This complicates
considerably the analysis below.

3.1 Effectiveness of Cheater Detection

No honest device can be eliminated. First let us observe that honest de-
vices cannot be declared as cheaters. Indeed, an identity can be eliminated only
for being caught on being silent in a slot in its dedicated trial, transmitting
wrong verification message, not jamming at some moments (i.e. when no other
is suppose to jam) or cheating with randomness seed. All those factors depend
only on given device behavior and cannot be influenced in any way by the ad-
versary. So a device acting according to the protocol cannot be found guilty of
cheating.

Eliminating cheaters. As no honest ID can be declared as cheater, the main
issue is to show that in case of cheating it becomes detected with a high proba-
bility. Procedure is then executed anew without the detected cheaters.

Theorem 1 (Non-detection probability). If there are more ID’s declared than
the number of physical devices, then with probability at least 1− 1

n2 at least one
cheater is detected.

Proof. To prove this theorem we show that adversarial devices are unable to
calculate correctly all verification messages within the first n − 1 trials of the
verification subprocedure. The only case when the adversary looses some in-
formation is when an adversarial device sends a verification message and no
adversarial device jams it (according to the committed schedule) - the status
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of this slot remains hidden for the adversarial device sending the verification
message. First we have to show that there are many such slots.

Lemma 1. Assume that among n registered identities m identities have been
declared by adversarial devices.

Let p = 1− q denote the probability that an identity jams in a single slot of a
trial. Let L > 0 be an arbitrary constant. Then for

k >

√
log(n4)(4L + log(n4)) + 2L + log(n4)

2qm
(2)

probability that less than L slots out of k slots of a trial have not been jammed
by the adversarial identities is less than 1

n2 .

Proof. Probability that a given slot is not jammed by any of the adversarial
identities is qm. Since jamming different slots can be modeled as events inde-
pendent stochastically, the number of slots in the trial not being jammed by the
adversary is a random variable with binomial distribution Bin(k, qm). We use
use the following inequality:

Fact 1. If X ∼ Bin(n, p), then for every t > 0

Pr[X ≤ np− t] ≤ exp
(
− t2

2np

)
.

This is a variant of a Chernoff bound adjusted to binomial distribution case
(see for example [9]). Note that in our case n · p is substituted by qm · k. If we
substitute t =

√
qm · k log (n4) and then solve inequality qmk > L + t, we get

Pr[X ≤ F ] ≤ exp
(
− log(n2)

)
=

1
n2

for F < L as demanded. �

By Lemma 1, for

k >

√
log(n4)(4Ma + log(n4)) + 2Ma + log(n4)

2( n
√

0.5)m

in each trial there are L > M ·a slots not jammed by the adversary. The state of
the channel in each of these slots is unknown to adversarial device that transmits
the verification message in them. We focus our attention on these slots. For each
trial we select adversarial devices that transmitted in more than a of those slots
and call them owners of the identity assigned to this trial. Since there are M
adversarial devices, we can see that for each trial we can assign at least one
owner. We will use notation Dj

t� IDi to state that device Dj is the owner of
identity IDi in trial Tt. We can state the following fact:
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Fact 2 (Owners problems). Assume that Dj
i� IDi mod n. Then the proba-

bility that Dj can calculate vts for (t > i and t �= i mod n) is smaller than 1
n2 .

This fact results from the assumption that the probability of guessing missing a
bits of information is smaller than 1

n2 and construction of verification message
vts which contains Hts(Pi) for all t > i, t �= i mod n.

We can see that in the first M +1 trials dedicated to the adversarial identities
there must be at least one adversarial device Dj such that Dj

i1� IDi1 and

Dj
i2� IDi2 for some i1 �= i2. From the Fact 2 we can see that chance that Dj

will succeed to correct verification messages is smaller than 1
n2 , which completes

the proof of Theorem 1. �

3.2 Adversary’s Optimal Strategy

Adversary’s goal is to go through verification algorithm with as many ID’s as
possible. In the previous subsection we have seen that in a single verification
some cheaters are detected with a high probability. However, in principle if this
procedure is repeated many times, then may be it can succeed with some cheated
identities. We argue that after the first loop execution the expected number
of adversarial identities is even less than the number of devices held by the
adversary.

We will look closer at the issue of assigning owners to identities. Note that each
identity can have multiple owners. Also in both of its dedicated trials an identity
may have different owners. Assume now that there are M adversarial devices
that have registered m identities IDa1 , . . . , IDam . A good measure of adversary’s
efficiency is the expected value of number of his identities which successfully go
through verification procedure E[X] =

∑am
i=a1

p̄(i) where p̄(i) is probability that
IDi will successfully go through the verification procedure. Using Fact 2, we can
estimate p̄(i) from above by p(i) defined as follows:

Definition 1

p(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if (¬∃ Dj : Dj

i� IDi) ∨ (¬∃ Dj : Dj
i+n� IDi)

1
n2 if ∃Dj , i

′, t, t′ : (i′ �= i) ∧ (t′ < t) ∧ (Dj
t� IDi) ∧ (Dj

t′� IDi′)

1 if ∀t∀Dj : [t = i mod n & Dj
t� IDi] ⇒

⇒ ¬∃t′ : (t′ < t) ∧ (t′ �= i mod n) ∧ Dj
t′� IDt′ mod n

It is obvious that if adversary acts according to protocol (so in particular has
only one identity per device), then for each IDai we have p(ai) = 1 and thus
E[X ] = M . We will show that otherwise E[X ] < M − 1 + 1

n . This means that
acting according to the protocol is the optimal strategy for the adversary.

Theorem 2 (Optimal adversary behavior). If any adversarial device decides
to become owner of more than one identity, then E[X] < (M − 1) + 1

n
.
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Proof. Let us define Ψ1 as the set of those adversarial identities IDi for which
p(i) = 1. Since m

n2 < 1
n

it is obvious that if |Ψ1| < M , then E[X] < M − 1 + 1
n
. So

it remains to show that if any of adversarial devices decides to become owner of
more than one identity, then |Ψ1| < M .

We can divide each verification procedure into two phases: P1 =
{Ti : 0 ≤ i ≤ n − 1} and P2 = {Ti : n − 1 ≤ i ≤ 2n − 2} each containing exactly
one trial dedicated to each identity. P1 and P2 overlap – both contain Tn−1.

Definition 2. Let us define

A ={Tt : Tt is assigned to adversarial identity}

A1 =
{

Tt : Tt ∈ P1 ∩ A ∧ ∀Dj (Dj
t� IDt) ⇒

(
¬∃t′ : (0 ≤ t′ < t) ∧ Dj

t′� IDt′

)}
A2 =

{
Tt : Tt ∈ P2 ∩ A ∧ ∀Dj (Dj

t� IDt mod n) ⇒

⇒
(
¬∃t′ : (0 ≤ t′ < t) ∧ (t′ �= t mod n) ∧ Dj

t′� IDt′ mod n

)}
We can state the following facts:

Fact 3 (Ψ1 size bound). |Ψ1| ≤ |A1| and |Ψ1| ≤ |A2|.

The above fact is a direct consequence of Definition 1 and observation that:

IDi ∈ Ψ1 ⇔ (∃t : (t = i mod n) ∧ Tt ∈ A1) ∧ (∃t : (t = i mod n) ∧ Tt ∈ A2) (3)

Fact 4 (A1 and A2 size bounds). For i ∈ {1, 2}, the size of Ai does not exceed
the number of devices that are able to calculate verification message in trial
Tt ∈ Pi ∩A.

Now it is enough to notice that if the adversary is trying to emulate more identi-
ties than devices under its control, then there is at least one adversarial device Dα

that became an owner of some IDi1 and IDi2 such that Ti1 ∈ P1 and Ti2 ∈ P1.
According to Definition 2, we can see that Dα �∈ A2 and thus |A2| ≤ M − 1,
which finishes the proof. �

4 Final Remarks

We propose an algorithm significantly limiting Sybil-type attacks in a classical
model of ad hoc sensor networks of devices. Our solution can be added as a
additional subprocedure constituting an additional security layer in the network.
The price we have to pay is a communication overhead. This can be partially
avoided, if there is another limitation in the system, e.g. the devices have strict
limits on internal memory that they can use for the sake of initialization.
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