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Preface

The AMDO 2010 conference took place at the Hotel Mon Port, Port d’Andratx
(Mallorca), during July 7–9, 2010, institutionally sponsored by MICINN (Minis-
terio de Ciencia e Innovación, Spanish Government), the Conselleria d’Economia,
Hisenda i Innovació (Balearic Islands Government), the Consell de Mallorca,
the AERFAI (Spanish Association in Pattern Recognition and Artificial Intelli-
gence), the EG (Eurographics Association) and the Mathematics and Computer
Science Department of the UIB. In addition important commercial sponsors
collaborated with practical demonstrations, and the main contributors were:
VICOM Tech, ANDROME Iberica, Robot S.A, DAT S.L, Aquateknica S.L.

The subject of the conference is the ongoing research in articulated motion
on a sequence of images and sophisticated models for deformable objects. The
goals of these areas are the understanding and interpretation of the motion of
complex objects that can be found in sequences of images in the real world.
The main topics considered as priority are: geometric and physical deformable
models, motion analysis, articulated models and animation, modelling and vi-
sualization of deformable models, deformable model applications, motion anal-
ysis applications, single or multiple human motion analysis and synthesis, face
modelling, tracking, recovering and recognition models, virtual and augmented
reality, haptics devices, and biometrics techniques. The conference topics were
grouped into these tracks: Track 1: Computer Graphics (Human Modelling and
Animation), Track 2: Human Motion (Analysis, Tracking, 3D Reconstruction
and Recognition), Track 3: Multimodal User Interaction (VR and AR, Speech,
Biometrics) and Track 4: Affective Interfaces (recognition and interpretation of
emotions, ECAs - Embodied Conversational Agents in HCI).

The AMDO 2010 conference was the natural evolution of previous editions
and has been consolided as an European reference for symposiums in the topics
mentioned above. The new goal of this conference was to promote interaction
and collaboration among researchers working directly in the areas covered by
the main tracks. New perceptual user interfaces and the emerging technologies
increase the relation between areas involved with human–computer interaction.
The new perspective of the AMDO 2010 conference was the strengthening of the
relationship between the areas that share as key point the study of the human
body using computer technologies as the main tool. The response to the Call for
Papers for this conference was very satisfactory. From 45 full papers submitted,
29 were accepted for oral presentation. The review process was carried out by the
Program Committee, each paper being assessed by at least two reviewers. The
conference included several sessions of orally presented papers and two tutorials.
Also, the conference benefited from the collaboration of the invited speakers
treating various aspects of the main topics.
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These invited speakers were:
Elisabeth André, Lehrstuhl für Multimedia-Konzepte und Anwendungen,

Institut für Informatik Universität Augsburg, Germany.
Taku Komura, Institute for Perception, Action and Behaviour School of

Informatics University of Edinburgh, UK.
Enrique Vidal, Multimodal Interaction: Approaches and Applications

PRHLT/ITIUPV, Spain.

July 2010 F.J. Perales
R. Fisher
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Compatible Particles for Part-Based Tracking

Brais Martinez1, Marc Vivet2, and Xavier Binefa1

1 Information and Communication Technologies Department
Universitat Pompeu Fabra, Barcelona

brais.martinez@upf.edu
2 Computer Science Department

Universitat Autonoma de Barcelona

Abstract. Particle Filter methods are one of the dominant tracking
paradigms due to its ability to handle non-gaussian processes, multi-
modality and temporal consistency. Traditionally, the exponential growth
on the number of particles required (and therefore in the computational
cost) with respect to the increase of the state space dimensionality means
one of the major drawbacks for these methods. The problem of part
based tracking, central nowadays, is hardly tractable within this frame-
work. Several efforts have been made in order to solve this problem, as
the appearance of hierarchical models or the extension of graph theory
by means of the Nonparametric Belief Propagation. Our approach re-
lies instead on the use of Auxiliary Particle Filters, models the relations
between parts dynamically (without training) and introduces a compat-
ibility factor to efficiently reduce the growth of the computational cost.
We did run the experiments presented without using a priori information.

Keywords: Particle Filters, Part-based Tracking, Spatial Relations,
Density Estimation, Auxiliary Particle Filter.

1 Introduction

The problem of part-based tracking is of great importance as a first step for
higher level processes (e.g. facial expression recognition) and is complementary
to classification algorithms based on object parts (bag of words, constellation
model,. . . ). The problem of part-based tracking is naturally posed in a high
dimensional space. Each part requires parameters controlling variables such as its
aspect, angle of rotation or scale. The challenge is to estimate these parameters
efficiently preserving a consistent spatial arrangement of the different parts of
the object, given the previous spatial arrangements and the nature of the tracked
object. The presence of rotations out of the image plane and flexible movements
hinders the applicability of spatial relations, by changing them almost arbitrarily.
Furthermore, the computational cost of a probabilistic search in high dimensional
spaces becomes intractable since the cost of sampling grows exponentially respect
to the dimensionality of the state space. Our paper refers to this two problems,
modeling the spatial relations and how to introduce them, while keeping the
method computationally efficient.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2010, LNCS 6169, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Some of the problems, like facial component or facial feature tracking, enable
the introduction of the spatial priors extracted from a training set, coding for
example the anthropomorphic structure of the face [6]. In this last work, the
joint probability is factorized (the part trackings are performed independently)
and a reweighting scheme for compensating the difference between the joint
probability and the factorized probability is introduced. In [8] the tracking of
facial features is, as well, divided into the tracking of several subsets. The spatial
coherence between the parts is set in a second step by using a Belief Propagation
algorithm. A training of the possible relative positions of the parts is needed.
[1] analyzes the high dimensional feature space in terms of its covariance and
partitions the feature space so the difference between the factorized probability
and the joint probability are minimum. [4] defines a hierarchy which lowers the
dimensionality of the search space and therefore the computational cost.

One of the most important articles regarding the problem of coding the spatial
relations is the Nonparametric Belief Propagation, presented in [9]. In here, the
different parts are considered as nodes of a graph. The relations between the
nodes are modeled accordingly to a dataset used for training purposes. Each
part is described using a set of variables coding its position and its aspect (using
PCA coefficients for coding the aspect of each part). Each of the variables of the
description vector is coupled with the same variables of the description vector
of a part joined by an edge, and modeled using a Gaussian Mixture Model
(GMM). The Belief Propagation framework, used for minimizing a Network
with discrete states, is extended in here to Networks with continuous states,
as those modeled as GMMs. The drawbacks of such a method are important.
First, the computational cost is huge since each step requires a costly sampling
and a refitting step for each state using GMMs. The reported computing time
required for each frame in a 5 part model is of several minutes. Some works,
as [5], alleviate this problem by formulating more efficient algorithms. Another
problem comes from the modeling of the relations between parts. The modeling
using GMM produce an important bias towards the mean values, and perfectly
plausible but less frequent situations are heavily penalized. It is also important
to note that the training stage requires strong a priori knowledge, in general
only applicable to face and body tracking.

We use a graph representation of the tracked parts since it guarantees a good
approximation of the underlying relations and it still provides a tractable prob-
abilistic framework. We merge it with the Particle Filter framework, due to its
probabilistic nature and its ability to model dynamics. The main contributions
of our work are, first, to model the spatial relations using the dynamics during
the sequence. In this way, the need of a priori knowledge is prevented and the
applicability of the algorithm is guaranteed. This constitutes a more consistent
approach with respect to the tracking problem philosophy, which consists in
modeling the possible states of a target provided the previous states, in contrast
to the problem of object classification, which models the whole set of possibilities
for a certain class. In second place, the relations between the different parts are
described using a non-parametric modeling, based on kernel density estimation
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[2]. Lastly, instead of performing an individual sampling for each part and apply-
ing the spatial relations in a second separate step, we use the Auxiliary Particle
Filter framework [7] for sampling proportionally to the a posteriori distribution,
which already includes the spatial relations in the sampling process.

2 Particle Filters and Auxiliary Particle Filter

Particle filters (PF) are a class of Bayesian filters for approximating, for each
time step t, the a posteriori distribution of the state of the target, x̂t. The state
is a vector that may include the position, scale or any variable related to the
target aspect. For the case of part-based tracking, these variables are required
for each of the parts, leading to high dimensional spaces. In the PF framework,
the a posteriori probability distribution of the target state is computed as the
product of what can be expected at time t − 1 provided the previous target
states (the a priori distribution), and the observation evidences obtained at time
t (the likelihood probability distribution). Both distributions are computed over
a discrete set of points (called particles) that represent them efficiently, but the
selection of these points differs between different PF methods.

Provided the particles (hypothesis) {xi
t} and weights (likelihood of the hy-

pothesis) {πi
t}, the a priori distribution can be approximated as:

p(xt+1|xt) =
N∑

i=1

p(xt+1|xi
t)π

i
t (1)

In here, p(xt+1|xi
t) is defined by the transition model, which is in general com-

posed by a deterministic part containing the position dynamics and a random
gaussian noise factor, leading to an equation such as xt+1 = f(xt) + N(0, Σ).

The likelihood distribution, p(yt+1|xt+1), requires that it can be evaluated at
any given point, while its computation is only required at the discrete point set
given by the sampling of the a priori distribution.

By using Bayes’ theorem, the posterior distribution is (proportional to) the
result of multiplying the a priori distribution and the likelihood distribution.
Taking the approximation of the a priori given by eq. 1, the a posteriori approx-
imation in its continuous form comes to:

p(xt+1|yt+1) ∝ p(yt+1|xt+1)
M∑

j=1

p(xt+1|xj
t )π

j
t (2)

Therefore, the estimation of the a posteriori is summarized as sampling from
the a priori distribution (eq. 1) and then evaluating the likelihood over these
samples. The empirical estimation of the a posteriori is given by:

p(xt+1|yt+1) =
∑

i

πi
t+1δ(xt+1 − xi

t+1) (3)

where δ is the Kronecker delta function and the set xi
t+1 is a particular realization

(a sampling) of the a priori distribution. The update of the weights πi
t+1 and the

sampling strategy vary between different particle filter methods.
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For each time step t, the final estimation of the target state x̂t is calculated
from the particles and their weights, for example as the weighted mean of all the
particles.

One of the problems of this method is that the particles ideally should be sam-
pled with a probability proportional to the a posteriori distribution, although
they are in general extracted according to the a priori distribution. In cases of
disparity between the a priori and the a posteriori distribution, the sampling is
not efficient. The Auxiliary Particle Filter (APF) [7,10] tackles this problem. In
the first step of the APF, the particles are sampled from the a priori distribu-
tion and propagated to μk

t = f(xk
t )1 and its likelihood λk

t+1 is computed. This
likelihood is used as a measure of how good the a posteriori will be if a certain
particle k is propagated. In the second step, the sampling is done accordingly
to the weights λk

t+1, constituting a sampling where the likelihood of a particle
is proportional to its a posteriori probability. The pseudocode of the APF is
summarized in table 1.

Table 1. The Auxiliary Particle Filter pseudocode

For n = 1 . . . N

Compute μk
t+1

Compute λk
t+1 = πn

t p(zt+1|μk
t+1)

For each particle k
Choose index i with probability λi

t+1

Draw a sample xk
t+1 from p(xt+1|xi

t)

Assign weight πk
t+1 =

p(zt+1|xk
t+1)

p(zt+1|μk
t+1)

Normalize weights,
∑

k πk
t+1 = 1

3 Compatible Particle Filter

The ideal sampling procedure should take into account the spatial relations in
order to achieve an optimal efficiency. However, some articles modify the weight-
ing process of particle filter algorithms to add, in a second step, the information
of the spatial relations. In here we derive a particle filtering with a sampling
strategy taking into account the spatial relations. The only assumption is the
graph structure of the parts and the Markov assumption.

3.1 Spatial Coherence Using Auxiliary Particle Filters

Our approach can be considered as a factorization where each part corresponds
to a factor. Each of the parts interact actively with the others during both the
sampling and weighting process. We add a superindex noting the part we are
referring to. To prevent confusions, from now on we note as xn

t the state variable

1 In fact, μk
t just need to be a meaningful value of the propagated distribution gener-

ated by particle k, but the mean is the most simple and effective election



Compatible Particles for Part-Based Tracking 5

of part n whereas xi,n
t is a particular realization (the ith) of the variable xn

t . A
set of state variables will be noted with capital letter, XS

t = {xm
t /m ∈ S}. We

assume a network structure on the variables. We therefore also note N(n) to the
neighbors of (or parts related to) part n.

An important modification of the APF algorithm comes from the introduction
of a new dependency on the a posteriori probability formula, modifying therefore
equation 2. The derivation produces a new factor, called the compatibility factor,
coding the information coming from the rest of the parts:

p(xn
t+1|yn

t+1, X
N(n)
t+1 ) ∝ p(yn

t+1|xn
t+1)·

p(xn
t+1|X

N(n)
t+1 )

M∑
j=1

p(xn
t+1|x

n,j
t )πn,j

t (4)

In here, p(yn
t+1|xn

t+1, X
N(n)
t+1 ) = p(yn

t+1|xn
t+1) and the equation is derived by using

Bayes’ rule.
By assuming a graph structure, the compatibility factor, p(xn

t+1|X
N(n)
t+1 ), is

decomposed in factors depending on its parts:

p(xn
t+1|X

N(n)
t+1 ) =

∏
m∈N(n)

p(xn
t+1|xm

t+1) (5)

At this point it is possible to make use of the discretization of the state of each
part provided by the particles, computing it as:

p(xn
t+1|xm

t+1) =
∑

i

p(xn
t+1|x

i,m
t+1)π

i,m
t+1 (6)

In here, the compatibility model, p(xn
t+1|x

i,m
t+1), must be previously defined, as

in the case of the transition model or the observation model. We will define an
adequate compatibility model in the next section.

The a posteriori is now computed as in eq. 3, but modifying the weights:

πk,n
t+1 =

p(yt+1|xk,n
t+1)p(xk,n

t+1|X
N(n)
t+1 )

p(yt+1|μk,n
t+1)p(μk,n

t+1|X
N(n)
t+1 )

(7)

because the sampling of the a priori was made proportional to p(yt+1|μk,n
t+1)p(μk,n

t+1|
X

N(n)
t+1 ). The denominator is the probability used for extracting the samples

and is a term required when the sampling is not proportional to the a priori
distribution [7].

The pseudocode is summarized in table 2.

3.2 Compatibility Computation Using Density Estimation

In this section we describe how we define p(xn
t+1|xm

t+1). The spatial relation
between part n and part m at time t−1 is defined as Dn,m

t−1 = x̂m
t−1− x̂n

t−1. Since
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Table 2. The Compatibility Particle Filter pseudocode

For each part n and each particle k

Compute μk,n
t+1

Compute λk,n
t+1 = πk,n

t p(yt+1|μk,n
t+1)

For each part n and each particle k

Compute ck,n
t+1

Compute the posterior as λk,n
t+1 = πk,n

t+1c
k,n
t+1

For each part n and each particle k

Choose index i with probability proportional to λi,n
t+1

Draw a sample xk,n
t+1 from p(xn

t+1|xi,n
t )

Assign weight πk,n
t+1 =

p(yt+1|xk,n
t+1)p(x

k,n
t+1|X

N(n)
t+1 )

p(yt+1|μk,n
t+1)p(μ

k,n
t+1|X

N(n)
t+1 )

Normalize weights,
∑N

k=1 πk,n
t+1 = 1

there is no a priori information of the spatial relations between parts, the spatial
relations at time t can be considered a dynamic system and be estimated (ideally
we should model p(Dn,m

t |Dn,m
t−1:1)). The simplest election is D̂n,m

t = Dn,m
t−1 . A

common definition would be to set D̂n,m
t as a weighted mean of the last spatial

relations.
We define the compatibility of xn

t+1 respect to xm
t+1 as the evaluation over the

a posteriori distribution of part m on the points xi,n
t+1 + D̂n,m

t . Since it is only
necessary to evaluate each factor in equation 5 in xi,n

t+1, we define:

p(xi,n
t+1|xm

t+1) = p({xi,n
t+1 + Dm,n

t+1 |xm
t+1)} (8)

The problem is that the likelihood at part m is computed at the discrete set of
points {xi,m

t+1} and it is needed to compute it over {xi,n
t+1 + Dm,n

t+1 }, which are not
the same points. Instead of performing an exponential number of evaluations of
the a posteriori, we use a kernel density estimation [2] to calculate these values.

In order to get some flexibility we use a modification of a Normal distribution
with mean 0 and variance σ.

p(xn
t+1, x

m
t+1) = N0,σ

(
max(0, ‖xn

t+1 + D̂m,n
t+1 − xm

t+1‖ − r)
)

(9)

where r is a parameter that controls the tightness of the spatial restrictions.
σ can be computed depending as the weighted variance of {Dn,m

t:t−Δt} and r
depending on it. In the experiments shown in this article, r was set to 1 for both
simplicity and for preventing complex parametrizations. In equation 9, if the
relation between the two variables xn

t+1 and xm
t+1 varies respect to the estimated

value D̂n,m
t less than r, there is no penalization. For a bigger displacement the

penalization grows at a speed controlled by σ. The final estimation, joining eq.
8 and 9 comes to:

p(xn
t+1|xm

t+1) =
∑

j

N0,σ

(
max(0, ‖xn

t+1 + D̂m,n
t+1 − xj,m

t+1‖ − r)
)

πj,m
t+1 (10)
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This is therefore a nonparametric method for the estimation of the spatial co-
herence and it is important to note that no a priori knowledge is required.

4 Experimental Results

The experiments shown in this section are focused on showing both the effective
maintenance of the geometric coherence along a tracked sequence and the good
performance achieved respect to flexible movements. It is important to note that
no a priori knowledge has been used. In the case of facial component tracking, the
vast amount of information available would certainly provide important benefits,
since it is possible to train the aspect of each component in a robust way. The
performance of our tracking algorithm for the case of a rigid object quickly
rotating out of image plane is also shown.

The sequence shown in figure 1 illustrates how the spatial relations are kept
throughout a sequence in case of a partial occlusion. The tracking overcomes two
partial occlusions (from frame 312 to 334 and from 421 to 439). This tracking has
been performed using 60 particles per part. In contrast, the sequence presented
in figure 2 shows the failure of particle filter trackings for the case of considering
the full joint probability with 300 particles and the case of dividing the tracking
into independent trackings of the parts, which does not contain spatial relation-
ships. For the first case, the higher dimensionality of the state space causes that
even sampling with much more particles (300 against 60) does not provide a
reliable insight of the a posteriori distribution. As expected, for the case of the
individual trackings the tracking get lost when one part is occluded. In figure 3
an insight on a frame iteration is shown. In this case, since the eye is occluded,
the likelihood misleads the tracker. The spatial restrictions keep the tracker well
placed while the a posteriori distribution is still correct and the final state is cor-
rectly found. This figure also shows the pdf of the spatial restrictions imposed
by the left eye onto the right eye. The probability p(xreye

t+1 |xleye
t+1 ) is shown for two

different values of r (see eq. 9) and it shows also how the tightness of the restric-
tion can be modulated through this variable. In figure 4, the performance over
flexible movements is shown. The process of the smile is fully tracked without a
priori information. The movement is very fast (from neutral to apex in 5 frames)

Fig. 1. Frames 68, 315, 340 and 389 of a video sequence. 60 particles are used per part.
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Fig. 2. Upper row: On the left, initialization of both trackers. The central and right
image shows frames 78 and 234 for the case of the joint state space (12 dimensions).
Lower row: Each part is tracked individually. The green stars show the estimated
position. The left image shows how the right eye tracking is totally lost (draught by
the hand) after the partial occlusion.

Fig. 3. The upper row, left to right: The likelihood, the compatibility and the a pos-
teriori. Blue spots for the final state and green triangles for the spatial relations. The
lower row, left to right: the particles and weights of the distribution over the left eye,
the density imposed over the right eye with r = 1 and with r = 6. The tightness of the
spatial relations is increased as r decreases.

Fig. 4. Frames 1, 14 and 37 showing a fast flexible movement over a sequence. The
estimated position is not shown with squares for providing a better visualization.
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Fig. 5. Sequence showing frames 1, 89 and 123 where a rotation out of the image plane
is present

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

number of parts

co
m

pu
ta

tio
na

l c
os

t

Fig. 6. The y-axis show the time cost respect to tracking with 2 parts

and therefore challenging to track while keeping the spatial restrictions. Figure 5
shows the robustness of the method to out of plane rotations. These kind of rota-
tions can only be modeled parametrically by a projective transformation, which
is complex to be estimated. Therefore, the case is similar to that of the flexible
movements, where a parametrization of the movement is unfeasible. Again, the
displacement is fast and the aspect change is large. The sequence is composed by
125 frames. Regarding the computational cost, the number of particles required
for a precise estimation of the a posteriori distribution is stable and, therefore,
the cost grows linearly in the number of parts. On the other hand, the inclusion
of the compatibility is quadratic in the number of parts, while it constitutes a
minor factor for not very high number of parts. Since many times the spatial
information is redundant, for further lowering the computational costs, some
options are possible, as to define a hierarchy or apply an algorithm to automat-
ically eliminate relations (edges in the graph), as the one presented in [3]. The
increase of the computational cost depending on the number of parts is shown
in figure 6.

5 Conclusions

We have presented a modification of the APF algorithm capable of performing
part-based tracking with a low increase of the computational cost. It is both
capable of maintaining the spatial coherence and dealing with flexible movements
without the need of a priori information. Furthermore, the spatial coherence is
considered as another dynamic system as the position estimation. The relations
between the different parts are defined using a nonparametric method.
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Combining Edge Detection and Region Segmentation  
for Lip Contour Extraction 
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Abstract. The automatic detection of the lip contour is relatively a difficult 
problem in computer vision due to the variation amongst humans and environ-
mental conditions. In this paper we improve upon the classical methods by  
introducing fusion. Two separate methods are first applied, one based on edge 
detection and the other on region segmentation to detect the outer lip contour, 
the results from them are then combined. Empirical evaluation of the detection 
process is also presented on an image subset of the Valid database, which con-
tains lighting, pose and speech variation with promising results. 

Keywords: Image Processing, Lip Detection. 

1   Introduction 

Lip detection is still an active topic of research; the significant interest in this topic 
originates from the numerous applications where lip detection either serves as a pre-
processing step or directly provides visual information to improve performance. It has 
been applied successfully to Audio-Video Speech and Speaker recognition, where it 
has considerably improved recognition results, especially in the presence of noise. 
Another domain of application is gesture recognition for closely related fields of hu-
man computer interaction, affective computing. It has also been used in the analysis 
and synthesis of lips for talking head in video conferencing applications. 

In this paper we propose a lip contour detection algorithm based on fusion of two 
independent methods, edge based and region based. The basic idea is that both tech-
niques have different characteristics and thus exhibit distinct strengths and weak-
nesses. We also present empirical results on a dataset of considerable size with  
illumination and speech variation. The rest of the paper is divided as follows. In Sec-
tion 2 we give the state of the art and in Section 3 we elaborate the proposed method, 
after that we report and comment our results in section 4 and finally we conclude this 
paper with remarks and future works in section 5. 

2   State of the Art 

Lip detection literature can be loosely classified in three categories. The first category 
of techniques directly uses image information, the second tries to build models and 
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the third is a hybrid approach that combines the image and model based techniques to 
increase robustness. 

2.1   Image Based Techniques 

Image based techniques use the pixel information directly, the advantage is that they 
are computationally less expensive but are adversely affected by variation such as 
illumination. 

Color Based Techniques. Several algorithms base the detection of lips directly on 
color difference between the lip and skin, but lack of contrast and illumination 
variation adversely affects these techniques. Some have also suggested color 
transforms that increase the contrast between skin and lip regions. [1] have reported 
that difference between red and green is greater for lips than skin and proposed a 
pseudo hue as a ratio of RGB values. [2] have also proposed a RGB value ratio based 
on the observation that blue color plays a subordinate role so suppressing it improves 
segmentation. 

Color clustering has also been suggested by some, based on the assumption that 
there are only two classes i.e. skin and lips, this may not be completely true if facial 
hair or teeth are visible. Fuzzy clustering was applied for lip detection in [3] by com-
bining color information and spatial distance between pixels in an elliptical shape 
function. [4] have used expectation maximization algorithm for unsupervised cluster-
ing of chromatic features for lip detection in normalized RGB color space. Markov 
random fields also been proposed to add spatial continuity to segmentation based on 
color, thus making segmentation more robust in [5].  

Subspace Based Techniques. [6] have proposed a lip detector based on PCA, firstly 
outer lip contours are manually labelled on training data, PCA is then applied to 
extract the principal modes of contour shape variation, called eigencontour, finally 
linear regression was applied for detection. LDA has been employed in [7] to separate 
lip and skin pixels. [8] have proposed a method in which a Discrete Hartley 
Transform (DHT) is first applied to enhance contrast between lip and skin, then a 
multi scale wavelet edge detection is applied on the C3 component of DHT. 

2.2   Model Based Techniques 

Model based techniques are based on prior knowledge of the lip shape and can be 
quite robust. They are however computationally expensive as compared to image 
based techniques as they usually involve minimization of a cost function.   

[9] have proposed a real time tracker that models the dynamic contours of lips us-
ing quadratic B-Splines learned from training data using maximum likelihood estima-
tion algorithm. Tracking is then carried out using Kalman filtering for both frontal 
and profile view of the lips. [10] have proposed a model consisting of two parabolas 
for the upper lip and one for lower lip. 

Snakes have been commonly used for lip segmentation [11] and achieve reason-
able results but need to be properly initialized. Another problem faced by snakes is 
there inability to detect lip corners as they are located in low gradient regions. [12] 
have proposed a jumping snake that removes the limitations present in classical snake. 
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It can be initialized far from the lip edge and the parameter adjustment is easy and 
intuitive. 

[13] have proposed Active Shape Models (ASM) and Active Appearance Models 
(AAM), which learn the shape and appearance of lips from training data that has been 
manually annotated. Next PCA is applied to reduce the dimensionality and using cost 
functions, models are iteratively fitted to test images for lip detection. Deformable 
templates initially proposed by [14] has been extended and modified by several oth-
ers. [15] have proposed a lip detection method based on Point Distribution Model 
(PDM) of the face.  

2.3   Hybrid Techniques 

These methods combine image based and model based techniques for lip detection. 
Image based techniques are considered computationally less expensive but not so 
robust to illumination and other types of variation. Model based techniques on the 
other hand are robust and accurate but are much more computationally complex. Thus 
majority of the hybrid techniques proposed in the literature use color based techniques 
for a quick and rough estimation of the candidate lip regions and then apply a model 
based approach to extract accurate lip contours.  

[16] have proposed a hybrid technique that first applies a color transform to reduce 
the effect of lighting. Then horizontal and vertical projections of the lip are analyzed 
to detect the corner points and finally a geometric lip model is applied. [17] have 
combined a fuzzy clustering algorithm in CIELAB color space for rough estimation 
and then an ASM for accurate detection of lip contours. [18] have proposed a hybrid 
system that models the lip area by expectation maximization algorithm after a color 
transform in RGB space has been applied. Then a snake is initialized, which is fitted 
on the upper and lower contours of the mouth by a multi level gradient flow maximi-
zation. [19] have proposed a lip tracking by combining lip shape, color and motion 
information. The shape has been modeled using two parabolas, lip and skin color is 
modeled by Gaussian distribution and motion by modified Lucas-Kanade tracking. 

3   Proposed Lip Detection 

In this section we present a lip detection method to extract the outer lip contour that 
combines edge based and region based algorithms. The results from the two methods 
are then combined by AND/OR fusion. The novelty lies in the fusion of two methods, 
which have different characteristics and thus exhibit different type of strengths and 
weaknesses. The other significance of this study lies in the extensive testing and 
evaluation of the detection algorithm on a realistic database. Most previous studies 
either never carried out empirical comparisons to the ground truth at all or sufficed by 
using a limited dataset. Even if empirical testing was done by some studies [24], [8] 
they were limited to high resolution images with constant lighting conditions.  

Figure 1 gives an overview of the lip detection algorithm. Given an image, it is as-
sumed that a human face is present and already detected; the first step is to select the 
mouth Region of Interest (ROI) using the lower one third of the detected face. The 
next step involves the outer lip contour detection where the same mouth ROI is pro-
vided to the edge and region based methods. Finally the results from the two methods 
are fused to obtain the final outer lip contour. 
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Fig. 1. Overview of the proposed lip detection method 

3.1   Edge Based Detection 

The first algorithm is based on a well accepted edge detection method. It consists of 
two steps, the first one is a lip enhancing color transform and the second one is edge 
detection based on active contours. Several color transforms have already been pro-
posed for either enhancing the lip region independently or with respect to the skin. 
Here, after evaluating several transforms we have selected the color transform pro-
posed by [2]. It is based on the principle that blue component has reduced role in lip / 
skin color discrimination and is defined in eq. 1. 

.
4

5.02 BRG
I

−−=  (1)

Where R,G,B are the Red, Green and Blue components of the mouth ROI. The next 
step is the extraction of the outer lip contour, for this we have used active contours 
[20]. Active contours are an edge detection method based on the minimization of an 
energy associated to the contour. This energy is the sum of internal and external ener-
gies; the aim of the internal energy is to maintain the shape as regular and smooth as 
possible. The most straightforward approach grants high energy to elongated contours 
(elastic force) and to high curvature contours (rigid force). The external energy mod-
els the edge of the object and is supposed to be minimal when the active contours 
(snake) is at the object boundary. The simplest approach consists in using regularized 
gradient as the external energy. In our study the contour was initialized as an oval half 
the size of the ROI with node separation of four pixels. 

Mouth ROI 

Segmentation 
Based Detection 

Facial Image 

Edge Based  
Detection 

Outer Lip Contour 
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Since we are have applied active contours which have the possibility of detecting 
multiple objects, on a ROI which may include other features such as the nose tip, an 
additional cleanup step needs to be carried out. This consists of selecting the largest 
detected object approximately in the middle of the image as the lip and discarding the 
rest of the detected objects. 

 

 

a)                                               b)                                                  c) 

Fig. 2. a) Mouth ROI, b) Color Transform, c) Edge Detection 

3.2   Region Based Detection 

In contrast to the edge based technique the second approach is region based after a 
color transform in the YIQ domain. As in the first approach we experimented with 
several color transform presented in the literature to find the one that is most appro-
priate for lip segmentation. [21] have presented that skin/lip discrimination can be 
achieved successfully in the YIQ domain, which firstly de-couples the luminance and 
chrominance information. They have also suggested that the I channel is most  
discriminant for skin detection and the Q channel for lip enhancement. Thus we trans-
formed the mouth ROI form RGB to YIQ color space using the equation 2 and re-
tained the Q channel for further processing. 
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 (2)

In classical active contours the external energy is modeled as an edge detector using 
the gradient of the image, to stop the evolution of the curve on the boundary of the 
desired object while maintaining smoothness in the curve. This is a major limitation 
of the active contours as they can only detect objects with reasonably defined edges. 
Thus for the second method we selected a technique called “active contours without 
edges” [25], which models the intensities in different region of the image and uses it 
as the stopping term in active contours. More precisely this model [25] is based on 
Mumford–Shah functional and level sets. In the level set formulation, the problem 
becomes a mean-curvature flow evolving the active contour, which will stop on the 
desired boundary. However, the stopping term does not depend on the gradient of the 
image, as in the classical active contour models, but is instead based on Mumford–
Shah functional for segmentation. 
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a)                                             b)                                                  c) 

Fig. 3. a) Mouth ROI, b) Color Transform, c) Region Detection 

3.3   Fusion 

Lip detection being an intricate problem is prone to errors, especially the lower lip as 
reported by [22]. We faced two types of errors and propose appropriate error detec-
tion and correction techniques. The first type of error, which was commonly observed 
in the edge based method, was caused when the lip was missed altogether and some 
other feature was selected. This error can easily be detected by applying feature value 
and locality constraints such as the lip cannot be connected to the ROI’s boundary and 
cannot have an area value less than one-third of the average area value in the entire 
video sequence. If this error was observed, the detection results were discarded. 

The second type occurs when the lip is not detected in its entirety, e.g. missing the 
lower lip, such errors are difficult to detect thus we proposed to use fusion as a correc-
tive measure, under the assumption that both the detection techniques will not fail 
simultaneously.   

The detected outer lip contours from the above described methods are then used to 
create binary masks which describe the interior and the exterior of the outer lip con-
tour. These masks are then fused using AND and OR logical operators.  

4   Experiments and Results 

In this section we elaborate the experimental setup and discuss the results obtained. 
Tests were carried out on a subset of the Valid Database [23], which consists of 106 
subjects. The database contains five sessions for each subject where one session has 
been recorded in studio conditions while the others are in uncontrolled environments 
such as the office or corridors. In each session the subjects repeat the same sentence, 
“Joe took father's green shoe bench out”. One image was extracted from each of the 
five videos to create a database of 530 facial images. The reason for selecting one 
image per video was that the database did not contain any ground truth for lip detec-
tion, so ground truth had to be created manually, which is a time consuming task. The 
images contained both illumination and shape variation; illumination from the fact 
that they were extracted from all five videos, and shape as they were extracted from 
random frames of speaker videos. 

As already described above the database did not contain any ground truth with re-
spect to the outer lip contour. Thus the ground truth was established manually by a 
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single operator using Adobe Photoshop. The outer lip contour was marked using the 
magnetic lasso tool which separated the interior and exterior of the outer lip contour 
by setting the exterior to zero and the interior to one.  

To evaluate the lip detection algorithm we used the following two measures pro-
posed by [8], the first measure determines the percentage of overlap (OL) between the 
segmented lip region A and the ground truth AG. It is defined by eq. 3. 

.100*
)(2

G

G

AA

AA
OL

+
=

Ι
 (3)

Using this measure, total agreement will have an overlap of 100%. The second meas-
ure is the segmentation error (SE) defined by eq. 4. 

.100*
*2 TL

ILEOLE
SE

+=  (4)

OLE (outer lip error) is the number of non-lip pixels being classified as lip pixels and 
ILE (inner lip error) is the number of lip-pixels classified as non-lip ones. TL denotes 
the number of lip-pixels in the ground truth. Total agreement will have an SE of 0%. 

    

Fig. 4. Histograms for Segmentation Errors 

Initially we calculated the overlap and segmentation errors for edge and region 
based methods individually, and it was visually observed that edges based method 
was more accurate but not robust and on several occasions missed almost half of the 
lip. This can also be observed in the histogram of segmentation errors; although the 
majority of lips are detected with 10% or less error but a large number of lip images 
exhibit approximately 50% of segmentation error. On the other hand region based 
method was less accurate as majority of lips detected are with 20% error but was quite 
robust and always succeeded in detecting the lip. 
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Table 1. Lip detection Results 

Lip Detection Method Mean Segmentation Error 
(SE) % 

Mean Overlap 
(OL) % 

Segmentation Based 17.8225 83.6419 
Edge Based 22.3665 65.6430 
OR Fusion 15.6524 83.9321 
AND Fusion 18.4067 84.2452 
OR Fusion on 1st Video 13.9964 87.1492 

 
Table 1 describes the results obtained, the best results were observed for OR fusion 

with 15.65% mean segmentation error. “OR Fusion on 1st Video” are the results that 
were obtained when OR fusion was applied to only the images from the first video, 
which are recorded in studio conditions. 

 

       

Fig. 5. Example of Images with approximately 15 % Segmentation Error 

The minimum segmentation error obtained was 15.65%, which might seem quite 
large, but on visual inspection of Figure 5, it is evident that missing the lip corners or 
including a bit of the skin region can lead to this level of error. Another aspect of the 
experiment that must be kept in mind is the ground truth, although every effort was 
made to establish an ideal ground truth but due to limited time and resources some 
compromises had to be made.  

5   Conclusions 

In this paper we have presented a novel lip detection method based on the fusion of 
edge based and region based methods, along with empirical results on a dataset of 
considerable size with illumination and speech variation. We observed that the edge 
based technique is comparatively more accurate, but is not so robust and fails if light-
ing conditions are not favorable, thus it ends up selecting some other facial feature. 
On the other hand the region based method is robust to lighting but is not as accurate 
as the edge based method. Thus by fusing the results from the two techniques we 
achieve comparatively better results than using only one method. The proposed meth-
ods were tested on a real world database with adequate results. 

Although the results achieved are quite promising, there is still some room for im-
provements. Currently we compensate for errors by fusion, we would like to auto-
matically evaluate the results from the independent methods and detect failure, then 
propose an appropriate fusion approach. We have only tested two fusion approaches; 
it would be interesting to study others such as a post-classifier. 
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Retrieving Articulated 3D Objects Using
Normalized Distance Function
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Abstract. In this paper we propose a skeletonization approach that en-
codes a 3D object into a skeletal Reeb graph using a normalized mixture
distance function. Then, we introduce a novel graph matching algorithm
by comparing the relative shortest paths between the skeleton endpoints.
Experimental results demonstrate the feasibility of the proposed topo-
logical Reeb graph as a shape signature for 3D object retrieval using a
benchmark of articulated shapes.

Keywords: 3D retrieval, articulated objects, skeletal graph.

1 Introduction

With the increasing use of scanners to create 3D models, shape recognition of 3D
objects has become an active research field with the recent developments in solid
modeling and visualization [1]. Nowadays, vast amounts of 3D models are being
developed and are distributed freely or commercially on the Internet. 3D objects
consist of geometric and topological information, and their compact represen-
tation is an important step towards a variety of computer vision applications,
particularly matching and retrieval in a database of 3D models. The first step in
3D object matching usually involves finding a reliable shape descriptor or skele-
tal graph which will encode efficiently the 3D shape information. Most 3D shape
representation techniques proposed in the literature of computer graphics and
computer vision are based on geometric and topological representations which
represent the features of an object [4,2,3,5]. An alternative to feature-based rep-
resentations is global methods, which represent a 3D object by a global measure
or shape distribution defined on the surface of the object [6,7,8, 9].

In this paper, we propose an invariant skeletal graph for 3D object represen-
tation using a normalized mixture distance function. The key idea is to identify
and encode regions of topological interest of a 3D object in the Morse-theoretic
framework [10]. The main motivation behind using the distance function is it
rotational invariance, which makes it more adapted to object recognition than
the Morse height function. Using this skeletal graph as a shape signature, we
also introduce a novel 3D graph matching and retrieval approach by comparing
the relative shortest paths between the skeleton endpoints.

The rest of this paper is organized as follows. Section 2 briefly describes the
basic concepts of Morse theory for 3D topological modeling. In Section 3, we
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propose a normalized mixture distance function-based approach to construct in-
variant skeletal graphs of 3D objects. Section 4 introduces a new graph matching
algorithm. In Section 5, we demonstrate the feasibility of the proposed skeletal
graph as a shape signature for robust retrieval of articulated 3D objects. And
finally we conclude in Section 6.

2 Morse Theory for Topological Modeling

In computer graphics and geometric-aided design, 3D objects are usually repre-
sented as polygonal or triangle meshes. A triangle mesh M is usually denoted by
M = (V , T ), where V = {p1, . . . , pm} is the set of vertices and T = {t1, . . . , tn}
is the set of triangles.

Morse theory explains the presence and the stability of singular points in
terms of the topology of the underlying smooth manifold. The basic principle is
that the topology of a manifold is very closely related to the singular points of
a smooth function defined on that manifold [10]. A smooth function f : M →
R on a smooth manifold M is a Morse function if all its singular points are
nondegenerate, i.e. the Hessian matrix is nonsingular at every singular point.

An interesting concept related to Morse theory and very useful to analyze a
surface topology is the Reeb graph. The latter is defined as a quotient space
M/∼ with the equivalence relation given by p ∼ q if and only if f(p) = f(q)
and p, q belong to the same connected component of f−1(f(p)). An equivalence
class is defined as [p] = {q ∈ M : p ∼ q}.

3 Proposed Reeb Graph Approach

Denote by V = (p1 p2 . . . pm)T the m × 3 mesh vertex matrix having as rows
the coordinates of the mesh vertices, where pi = (xi, yi, zi)T ∈ V .

Let c = (x̄, ȳ, z̄)T be the centroid of the triangle mesh, that is c is the center
of the minimal enclosing sphere of the mesh vertices V . We define the m × 3
centered vertex matrix as

Vc = (p1 − c p2 − c . . . pm − c)T =

⎛⎜⎜⎜⎝
x1 − x̄ y1 − ȳ z1 − z̄
x2 − x̄ y2 − ȳ z2 − z̄
...

...
...

xm − x̄ ym − ȳ zm − z̄

⎞⎟⎟⎟⎠ . (1)

The Euclidean distance function of M to c is defined as

deuc
c : M → R such that deuc

c (p) = ‖p− c‖2, (2)

and it can be easily shown that it is rotation and translation invariant.

Let A = m(V T
c Vc)−1, we define the affine distance function as follows

daff
c : M → R such that daff

c (p) = ‖p − c‖2
A = (p − c)T A(p − c), (3)

and it can be shown that it is invariant to affine transformations [11].
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3.1 Mixture Distance Function

We define the mixture distance function as a convex combination of the Eu-
clidean and the affine distance functions:

dc : M → R such that dc(p) = λ‖p − c‖2 + (1 − λ)‖p − c‖2
A, (4)

where λ ∈ (0, 1) is a mixture parameter that needs to be estimated or chosen
a priori. From the invariance properties of the Euclidean and affine distance
functions, it is easy to verify that the mixture distance function is invariant
to orthogonal and translation transformations. To make dc scale invariant, we
define the normalized mixture distance function as

d̃c(p) =
dc(p) − dmin

dmax − dmin
, ∀p ∈ V , (5)

where dmin = min dc(p) and dmax = max dc(p).

3.2 Proposed Skeletonization Algorithm

The main algorithmic steps of the mixture distance-based Reeb graph are de-
scribed in Algorithm 1. Fig. 1 shows the skeletal Reeb graph of a 3D cow model.

Algorithm 1. Proposed skeletonization approach
1: Find the centroid of c of the 3D mesh M = (V, T )
2: Find the maximum distance dmax = max dc(p), ∀p ∈ V
3: for (k = 1 to R)
4: d(k) = k ∗ dmax/R; ⇐ R is the resolution parameter
5: VerticesSetp[0,1] = setIntersect(M,1); ⇐ Find vertices subset of M from c to d(1)
6: NodeSetp = centroid(VerticesSetp[0,1](n)); ⇐ Assign a node to each connected com-

ponent at its centroid.
7: Connect c and NodeSetp

8: for k = 2 to R do
9: VerticesSetc[k − 1, k] = setIntersect(M, k − 1, k);⇐ Find intersection of M from

distance d(k − 1) to d(k)
10: for each component VerticesSetc [k − 1, k](n) do
11: NodeSetc = centroid(VerticesSetc [k − 1, k](n))
12: for each connected portion do
13: Connect NodeSetc and NodeSetp

14: end for
15: end for
16: NodeSetp = NodeSetc

17: VerticesSetp = VerticesSetc

18: end for
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4 Reeb Graph Matching

In this section, we introduce a novel method for 3D shape matching. The pro-
posed skeleton graph matching is based on the dissimilarity of the shortest paths
between the endpoints of the skeletal Reeb graph. A skeleton endpoint refers to
the skeleton node that is connected by only one edge as shown in Fig. 1. It is
worth pointing out that endpoints are the salient points of the skeleton and can
be seen as visual parts of the original 3D shape [12]. Considering only the short-
est skeletal paths between endpoints would help avoid the instability problem of
the skeleton junction points (i.e. points having three or more adjacent points)
and also to make our proposed method more robust to shape deformation. The
shortest path between each endpoint and all other endpoints of the skeleton pro-
vides an important endpoint feature that will be incorporated into our matching
dissimilarity measure.

Fig. 1. The cow’s Reeb graph and its skeleton endpoints

After generating the 3D shape skeleton, our next step is to develop a robust
approach for skeletal graph matching. To this end, we match any two Reeb
graphs by establishing a correspondence of their endpoints. Then, we apply a
pruning algorithm [13] to remove non-salient nodes from the skeleton graph. The
proposed matching method consists of two main steps. The first step, which we
refer to as indexing, reduces the number of skeletons to be compared with. In
the second step, we match the Reeb graphs by applying a dissimilarity measure
to retrieve the closest 3D model. These two steps are explained in more details
in the following subsections.

4.1 Indexing

A linear search through a database of 3D models is inefficient for large databases,
as it requires comparing the query object to each model in the database and se-
lecting the closest one [5]. Using our skeletonization algorithm, we may formulate
the indexing problem as finding skeletons whose topological structures are sim-
ilar to the query skeleton. It is important to note that similar shapes will have



Retrieving Articulated 3D Objects Using Normalized Distance Function 25

the same skeleton even if they are subject to some deformation or transforma-
tion. Moreover, these skeletons will have the same number of endpoints. Thus,
in our indexing mechanism we use the number of skeleton endpoints as the base
for indexing, with an error rate of 2 or 3 nodes, meaning that for two skeletons
to be in the same index group they should have the same number of endpoints.
However, due to noise there might be a difference of 1 or 2 nodes at most, as a
result of the pruning process.

4.2 Endpoints Correspondence

We assign to each endpoint in the Reeb graph (query or model) some features
that may help identify the closet endpoint in the other skeletal graph. Thus,
our skeleton graph matching problem may be reduced to finding the best corre-
spondence between the endpoints in the query and the endpoints in the model.
This can be achieved by minimum weight matching of the two sets of endpoints.
A dissimilarity measure between the set of endpoints in both query and model
skeletons is used. Therefore, the matching problem aims at finding the best cor-
respondence between the query skeleton endpoints and the database skeletons
endpoints. Two endpoints are said to be in close correspondence if the dissim-
ilarity measure between their endpoints has a smaller value. In other words,
the matching problem is now reduced to finding the maximum correspondence,
minimum weight matching of the two sets of endpoints. The endpoints corre-
spondence process is shown in Algorithm 2.

Algorithm 2. Endpoints correspondence
Let E = (vi)i=1,..,n1 and Ẽ = (ṽj)j=1,..,n2 be two sets of endpoints.
For each endpoint vi ∈ E:
1: Compute a dissimilarity measure between vi and all the nodes in Ẽ
2: Find the node ṽj with the minimum dissimilarity and assign its correspondence to

vi

3: Delete vi and ṽj from the list of nodes in E and Ẽ, respectively
Repeat steps 1-3 for all nodes in E until one of the node sets E or Ẽ is empty

4.3 Matching Endpoints Using Skeleton Paths

Endpoint Features. When generating the skeletal Reeb graph of a 3D shape
we assign three features to each endpoint of the skeleton. The first feature is
the relative node area, which is equal to the area of the neighboring triangles of
the endpoint divided by the total area of the 3D model. This feature provides
important information about the endpoint as sometimes the skeletons of two
models may look similar, albeit their shapes are completely different. Thus,
adding this feature to an endpoint will help discriminate between endpoints
based on the original 3D shape and not just its skeleton. The reason behind
using the relative area is due to its invariance to scaling. The second feature
assigned to an endpoint is the relative node path, which is equal to the sum of
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(a)

(b)

Fig. 2. (a) Camel’s Reeb graph. (b) Shortest paths between pairs of endpoints on the
skeleton.

shortest path distances from each endpoint to all other endpoints of the skeleton
(see Fig. 2(b)) divided by the sum of the shorted paths from the mesh centroid
(root node) to each endpoint. And the third feature is the relative centroid path,
which is the shortest path distance from the mesh centroid to each endpoint (see
Fig. 3), divided by the sum of the shortest paths from the mesh centroid to all
endpoints.

Endpoints dissimilarity. Let M and M̃ be two 3D objects with skeletal
Reeb graphs G and G̃, respectively. And denote by E = (vi)i=1,..,n1 and Ẽ =
(ṽj)j=1,..,n2 the skeleton endpoints sets of G and G̃, respectively. We define the
dissimilarity measure between two endpoints vi and ṽj as follows:

Φ(vi, ṽj) = [(ai − ãj)2 + (dvi − dṽj)2 + (dci − dc̃j)2]1/2, (6)

where

– ai and ãj are the relative node areas of vi and ṽj

– dvi =
∑n1

k=1 dist(vi, vk)/
∑n1

k=1 dist(c, vk) and
dṽj =

∑n2
k=1 dist(ṽj, ṽk)/

∑n2
k=1 dist(c̃, ṽk) are the relative node paths of vi

and ṽj

– dci = dist(c, vi)/
∑n1

k=1 dist(c, vk) and dc̃j = dist(c̃, ṽj)/
∑n2

k=1 dist(c̃, ṽk)
are the relative centroid paths of vi and ṽj
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Fig. 3. Shortest paths between the mesh centroid and an endpoint on the skeleton

– c and c̃ are the centroids of M and M̃, respectively
– dist(·, ·) denotes the Dijkstra’s shortest path distance.

Thus, the dissimilarity between two skeletal Reeb graphs may be defined as:

D(G, G̃) =
n1∑
i=1

n2∑
j=1

Φ(vi, ṽj). (7)

The main algorithmic steps of the proposed graph matching approach are de-
scribed in more details in Algorithm 3.

Algorithm 3. Proposed graph matching approach
Given two 3D objects M and M̃

1: Generate the skeletal Reeb graphs G and G̃ of M and M̃, respectively
2: Apply graph pruning to remove non-salient nodes
3: Find the skeleton endpoints sets E = (vi)i=1,..,n1 and Ẽ = (ṽj)j=1,..,n2 of G and

G̃, respectively
4: for all endpoints (vi) and (ṽj) do
5: Compute the relative node areas ai and ãj of vi and ṽj , respectively
6: Compute the relative node paths dvi and dṽj

7: Compute the relative centroid paths dci and dc̃j

8: end for
9: Apply Algorithm 2 to find the correspondence between G and G̃

10: Compute the dissimilarity D(G, G̃) given by Eq. (7).

5 Experimental Results

We tested the performance of the proposed retrieval algorithm using the McGill
Shape Benchmark [14]. This publicly available benchmark database provides a
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Query

Retrieved Objects
RGPD SH RGPD SH RGPD SH

Fig. 4. Retrieval results using the McGill Shape Benchmark. The query shapes are
shown in the second row. The top ten retrieved objects (top-to-bottom) using spherical
harmonics (SH) and our proposed Reeb graph path dissimilarity (RGPD) are shown
in rows 5 to 14.

3D shape repository, which includes a considerable number of articulated ob-
jects. The database objects are represented by voxel grids as well as by triangle
meshes. In all the experimental results, we used a data-dependent mixture dis-
tance parameter λ given by:

λ = max(‖pi‖2/(‖pi‖2 + ‖pi‖2
A)).

In other words, the value of λ is computed automatically from all the vertices of
the 3D shape. Also, The resolution parameter R was set to R = 22.
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Fig. 5. Precision vs. Recall curves for spherical harmonics, medial surfaces and pro-
posed approach using the McGill Shape Benchmark [14]

We compared our approach with spherical harmonics (SH) [9] and medial
surfaces (MS) [5]. The results show that our method achieve better retrieval
results than the spherical harmonic approach as shown in Fig. 4, where the top
ten retrieved 3D objects are displayed (top-to-bottom). As can be seen in Fig. 4,
the proposed approach returns correct results whereas the spherical harmonics
method yields poor retrieval results (columns 2, 4, and 6).

To carry out comparison experiments on the entire benchmark of articulated
3D objects, we evaluated the retrieval performance of the proposed approach
using the standard information retrieval evaluation measure of precision versus
recall curve. A precision-recall curve that is shifted upwards and to the right
indicates superior performance. It is evident from Fig. 5 that our method signif-
icantly outperforms spherical harmonics and medial surfaces.

The complexity of the proposed skeletonization algorithm can be determined
as follows. Computing the centroid and the normalized mixture distance function
for a 3D triangle mesh with m vertices takes O(m) time. Constructing the nodes
and edges of the skeletal graph requires calculating the connected component of
triangles and hence also takes O(m) time. The overall complexity is, therefore,
O(m), which shows an improvement over geodesic function based Reeb graphs
with complexity O(m log m) [3].

6 Conclusions

In this paper, we introduced a normalized mixture distance function-based ap-
proach to topological modeling of 3D objects in the Morse-theoretic framework.
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The proposed algorithm preserves well the topology of 3D shapes, and it is
robust, accurate, and has a low computational complexity. The experimental
results on McGill articulated shape benchmark database indicate the feasibility
of the proposed approach and a much better performance compared to spherical
harmonics and medial surfaces.
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Abstract. This paper proposes a method of rate-distortion optimisation
of an algorithm for compressing dynamic 3D triangle meshes. Although
many articles regarding compression methods for this kind of data have
been published in the last decade, the problem of rate-distortion opti-
misation has only been addressed by a very few of them. An exhaustive
search method, where a grid of parameter configurations is used in the
compressor and only the configurations producing good results are se-
lected, is still widely used even though it requires a number of tries
exponential to the number of parameters. Our proposed method can
find better solutions (i.e. closer to an optimum) in expected linear to
quadratic time.

Keywords: Rate-Distortion Optimisation; Dynamic Mesh; Compres-
sion; Principle of Equal Slopes.

1 Introduction

3D graphics has gained much popularity in the recent decades and became a
crucial part of many disciplines such as medicine, entertainment or advertis-
ing. With the increasing precision of 3D data acquisition and growing hardware
capabilities, the complexity of the datasets and, consequently, the amount of
information stored are growing fast. Thus, efficient compression techniques are
required to store the sets in a reasonable storage space, transmit them over a
network or broadcast them in a 3DTV system.

In this article, we will be dealing with compression of a dynamic 3D triangle
meshes sharing the same topology. These can be viewed as animations consisting
of frames with each frame being a triangle mesh. All the frame meshes in an
animation have the same number of vertices and contain edges between the
same vertices.

There are many algorithms for compressing such data. Most of them started
out with a small number of compression parameters. Though, as the algorithms
evolve to offer higher compression ratios, the number of parameters usually grows
along to allow better adaptation to different input and output conditions. Find-
ing the optimal parameter configuration for a certain case using brute-force
search may then become very difficult or almost impossible, as the number of
tries needed increases exponentially with the number of parameters. Moreover,
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brute-force approaches strongly trade off accuracy for computation time result-
ing in considerably inaccurate parameter configurations. We will show a solution,
which can find near-optimal configuration in expected linear to quadratic time
with respect to the number of input parameters.

This article is organised as follows. First, an overview of published works
related to this topic will be given in section 2. A brief description of the com-
pression algorithm we have been using in the optimisation process will follow in
section 3. Next, we will describe our proposed method of rate-distortion optimi-
sation of dynamic mesh compression in section 4 and show some results of the
proposed method in 5. A conclusion will be drawn in 6 and some possibilities
for future work will be suggested in 7.

1.1 Used Notation

F . . . . . . . . . . . number of frames in the mesh animation
V . . . . . . . . . . . number of vertices in each mesh of the animation
N . . . . . . . . . . . truncated basis size
ξ . . . . . . . . . . . . decoded value of ξ
pred(ξ) . . . . . . prediction of ξ
n . . . . . . . . . . . . number of input parameters of the compression algorithm
P . . . . . . . . . . . set of input parameters, pi is the i-th parameter
r . . . . . . . . . . . . bitrate, in the dynamic mesh case in bits per frame and vertex
d . . . . . . . . . . . . distortion of the compressed version from the original
H . . . . . . . . . . . rate-distortion curve, h = (r, d) is a point on this curve
O . . . . . . . . . . . rate-distortion curve containing the optimal values
C . . . . . . . . . . . compression projection from the space of parameter configura-

tions to the rate-distortion space.

2 Related Work

The area of dynamic mesh compression has been thoroughly explored in the last
decade and many compression techniques have been proposed. Some of them
are mentioned below. First approach was published by Lengyel [1] and used a
clustering of the animated mesh with movement of each cluster described by
a single transformation matrix. Alexa and Müller [2] proposed using Principal
Component Analysis to represent each frame as a combination of eigenframes.
Mamou et al. [3] have proposed another approach called Frame-based Animated
Mesh Coding (FAMC), which has been included in the second amendment to
MPEG4 part 16 [4] as the MPEG standard for dynamic mesh compression.
Váša and Skala [5] have published their Coddyac algorithm based on Rossignac’s
EdgeBreaker [6] and PCA in the space of trajectories.

So far, only a few papers have addressed the problem of rate-distortion op-
timisation in dynamic mesh compression. Payan and Antonini have proposed a
bit allocation method for their wavelet-based compression algorithm in [7]. They
are determining the optimal quantisation for different wavelet levels to minimise



Finding Optimal Parameter Configuration 33

the distortion. Their work was extended to spatio-temporal wavelet coding in [8].
The same method was also used in [9] to optimise the FAMC algorithm [3,4].
Unfortunately, this approach is not applicable generally as there is no depen-
dency between the coefficients in different wavelet levels and the problem is thus
very simplified. It also exploits statistical properties of the wavelet coefficients,
which makes this approach further unusable for our case.

Müller et al. [10] proposed a rate-distortion optimised version of their octree-
based D3DMC algorithm [11]. In their approach, the octree is first subdivided to
a given maximum level and the neighbouring cells are then merged back together,
if the error introduced by the merge stays below a specified threshold. Moreover,
each cell is encoded using the best fitting one of three possible methods. Again,
this is an algorithm-specific brute-force approach that cannot be generalised to
other compression methods.

3 Compression Algorithm

Although we would like to develop a general rate-distortion optimisation method
for dynamic mesh compression algorithms, our initial goal is an optimiser for the
Coddyac algorithm [5], as it is the only one, for which we have the complete im-
plementation at the moment. We will now describe this approach in more detail.

The algorithm is based on representing dynamic meshes as a set of vertex
trajectories of individual vertices. Trajectory of the i-th vertex is described by a
vector Ti of length 3F , consisting of XYZ coordinates of the given vertex in all
the frames. Notice that for dense meshes, it is very likely that trajectory vectors
of neighboring vertices will be similar. In other words, the trajectory vectors are
not distributed evenly in the space of dimension 3F , instead they are roughly
located in a subspace of much lower dimension. This observation yields the first
step of the Coddyac algorithm: finding the subspace and expressing the vertices
in this subspace.

A straightforward way to find a subspace of a set of samples is using the
PCA tool of linear algebra. The original animation is represented by a matrix
B of size 3F × V , where the i-th column is the trajectory vector associated
with the i-th vertex. First, an average trajectory vector A is computed and sub-
tracted from each column of B, obtaining a matrix of samples S. Subsequently,
the autocorrelation matrix Q = S ·ST of size 3F × 3F is computed. Finally, the
eigenvalue decomposition of the autocorrelation matrix Q gives a set of eigenvec-
tors Ei, i = 1 . . . 3F , and their corresponding eigenvalues. Of these eigenvectors,
N most important ones are selected (according to their respective eigenvalues),
N being a user-specified parameter. The selected eigenvectors form a basis of
the subspace, and each trajectory vector can be expressed as:

Ti = A +
N∑

j=1

cj
iEj (1)

Since the basis is orthonormal it is possible to compute the matrix of combination
coefficients cj

i by matrix multiplication C = ST · E, where E is a matrix of size
3F × N in which the i-th column is the i-th eigenvector Ei.
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In order to transmit the mesh, the selected subset of eigenvectors (matrix E
of size 3F × N) has to be transmitted along with the combination coefficients
(matrix C of size V × N) and the vector A representing the average trajectory.
Details on how to efficiently encode the matrix of eigenvectors can be found
in [12].

The other key observation of the Coddyac algorithm is that the PCA step can
be interpreted as a simple change of basis, and therefore it should not have any
influence on results of linear operators. This feature is employed for prediction of
the values cj

i at the decoder. In static mesh encoding, a very common prediction
method is based on the parallelogram rule [13]. The idea is that the mesh is
traversed progressively by growing an area of processed vertices by adding one
adjacent triangle (with one adjacent vertex) at a time. The XYZ coordinates of
the new vertex vnew are predicted to lie at the top of a projected parallelogram
formed by the three known vertices vleft, vright and vbase (see figure 1). The
coordinate prediction is then defined as

pred(vX
new) = vX

left + vX
right − vX

base

pred(vY
new) = vY

left + vY
right − vY

base (2)

pred(vZ
new) = vZ

left + vZ
right − vZ

base

In dynamic mesh compression, these formulae may be applied on each element
of the trajectory vectors. However, since the feature vectors are in fact linearly
transformed trajectory vectors, it is possible to use the same formula also for
the elements of feature vectors:

pred(cj
vnew

) = cj
vleft + cj

vright − cj
vbase , j = 1 . . .N (3)

The Coddyac algorithm traverses the mesh, adding one triangle at the time,
performs the prediction according to equation (3) and transmits the prediction
residuals.

t1

t2

v    right

v    left

v    base

v    new

pred(v    )                         new

Fig. 1. Prediction of vertex vnew from the parallelogram created from vertices vleft,
vright and vbase

4 Proposed Approach

In the Coddyac compression algorithm (as well as in many others) the compres-
sion is divided to several stages, each with one or more input parameters. Here,
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we can simplify the compression algorithm into three basic stages. The first stage
calculates and trims the PCA basis. This is controlled by one parameter – the
number of the basis vectors N . During the second stage, the basis is encoded
(and then decoded), which has an input parameter of the number of bits the
basis vectors are quantised to. In the third stage, the feature vectors are cal-
culated using the decoded basis, parallelogram prediction is performed and the
prediction residual values are quantised to a certain number of bits, which is a
third parameter.

Each one of the stages is controlled by at least one input parameter and, in
most cases, depends on the result of the previous stages. If we, for example, de-
crease the number of basis vectors, the length of the residual vectors will decrease
accordingly. In other words, a change of an input parameter not only influences
the related compression stage, but also the subsequent ones. That is different e.g.
from the wavelet coefficients quantisation where a complete wavelet transform
is performed and the resulting values are then independently quantised. Our
approach has proven so far to handle both dependent as well as independent
parameters.

4.1 Principle of Equal Slopes

This is a common rate-distortion optimisation technique. If we run a (lossy)
compressor on a given data with a fixed set P of n input parameters P =
p1 . . . pn, it will produce compressed data of a certain size with a certain error
compared to the original data. These two values – size (bitrate, r) and error
(distortion, d) – can be plotted on a rate-distortion (RD) chart H (figure 3). For
a single input dataset, different parameter configurations will produce different
points h = (r, d) in this chart. In other words, the compression can be seen as a
projection C; C(P ) → H . Assuming the parameters are continuous, there is an
infinite number of such points. However, a lower bound can be found for each
bitrate forming an envelope curve O of the chart:

O = {o = (ro, do) : ∀x = (ro, d) ∈ H, d ≥ do} (4)

This curve contains the parameter configurations that result in the lowest dis-
tortion for a given bitrate, which is exactly what we are looking for.

Now, let us choose an optimal configuration P j ; C(P j) ∈ O and change the
value of a single parameter pi while keeping the other parameters fixed. We will
obtain an RD curve Hj

i . This way, we can construct curves for all the parameters.
We will now exploit the fact that all these curves, as well as the envelope curve,
are decreasing and convex.1 As these curves are subsets of H , they lie above O
– except for a single point, where they touch O and also one another. This point
is the result point C(P j). Should any two of the curves intersect in that point,
they would also intersect O meaning that a part of each of them would lie below
O contradicting its definition, thus the configuration cannot be optimal.
1 Rare exceptions can be found, e.g. for compression methods switching between sev-

eral different algorithms during the compression.
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The idea can be explained better using slopes. For each point hj
i of a curve

Hj
i we can calculate the slope value sj

i of a tangent of the curve in that point.
Two curves with a common point either have different slope values at that point
(they are intersecting), or they have equal slopes in the common point (they are
touching each other). We have already defined that in an optimal configuration
all the curves are touching one another, and a configuration, in which the curves
are intersecting, is not optimal. Hence we can say that a parameter configuration
P j is optimal if and only if the slopes sj

i of all rate-distortion curves Hj
i in the

result point C(P j) are equal. An example of such situation is shown in figure 2.
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Fig. 2. RD curves of all three parameters of the compressor touching the optimal
envelope in a single point

4.2 Iterative Rate-Distortion Optimisation

Based on the Principle of Equal Slopes, we can iteratively refine a parameter
configuration until it gets close enough to an optimum.

In each iteration, the pair of r and d is evaluated in the current configuration,
and two additional pairs of values for each parameter pi: rleft

i , dleft
i a small step

to the left and rright
i , dright

i to the right. From these values, we can calculate
left and right slope sleft

i , sright
i and a relative change of slope (dsi), bitrate (dri)

and distortion (ddi). These relative differences locally describe the behaviour of
slope, bitrate and distortion in relation to a change in the parameter pi. We can
summarise it in this set of equations:

(r, d) = C(p1, . . . , pn)
(rleft

i , dleft
i ) = C(p1, . . . , pi − Δpi, . . . , pn) (5)

(rright
i , dright

i ) = C(p1, . . . , pi + Δpi, . . . , pn)

sleft
i ≈ r − rleft

i

d − dleft
i

sright
i ≈ rright

i − r

dright
i − d

(6)

dsi ≈
sright

i − sleft
i

Δpi
dri ≈

rright
i − rleft

i

2Δpi
ddi ≈

dright
i − dleft

i

2Δpi
(7)
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Finally, a new configuration can be determined using these values. This con-
figuration is then used as an input of the next iteration and so on, until a
stop-condition is met. We have experimented with two different methods of de-
termining the next configuration:

• Changing All Parameters at Once
It is based on an idea that if we increase the value of a parameter by a certain
amount and decrease the value of another one appropriately, we can keep
the bitrate or the distortion value constant. The amounts of change can be
approximately calculated using a system of linear equations. This method
can be very fast, as it optimises all the parameters in each step, but does not
adapt very well to curve changes. When one of the parameters is changed,
the curves of the other parameters may also change, especially if there are
dependencies between them and the changed parameter. This method calcu-
lates the next configuration from the knowledge of the local curve behaviour
in all the parameters, i.e. expects the curves to stay invariant. That can lead
to actually less optimal configurations and, subsequently, divergence, if the
curves change too much.

• Optimising One Parameter at a Time
This method yields a better, but also slower, solution. A parameter pk with
the most deviating slope is selected and its next value is determined using a
linear function of the relative differences dsk, drk or ddk to match a target
slope, bitrate or distortion depending on the current optimisation criterion.
By changing only one parameter, we can reach more stable progress with a
very high probability of convergence. Thus, this method has been selected
to be used in our algorithm.

To perform one step in each of the n parameters, n iterations are needed
here, hence the expected complexity of the optimisation might be seen as
O(αn), where α is a constant depending on the required precision and the
starting configuration. In the case, where a change of one parameter causes
changing of the curves of the other ones, experiments show that α is not con-
stant anymore, but depends linearly on n making the complexity quadratic.

4.3 Optimisation Criteria

The optimisation process needs to be constrained to get a concrete result. There-
fore, a certain criterion needs to be applied. This criterion also determines the
stop-condition for the iterative configuration refinement. There are four criteria
we have considered and implemented:

• Fixed Slope
This criterion allows us to specify a target slope value s∗ the final slopes
should be equal to. The value of the most deviating parameter pi in the j-th
iteration is calculated using the following formula:

pj
i = pj−1

i +
s∗ − sj

i

dsj
i

(8)



38 O. Petř́ık and L. Váša

The optimisation ends when the maximum of the distances between the
specified slope and each parameter slope falls under a specified maximum
deviation. This method is not very useful most times, since we usually do not
know the magnitude of the bitrate and the distortion, and thus we cannot
exactly determine the desired slope.

• Fixed Bitrate
With this criterion applied, the algorithm tries to find an optimal configura-
tion which results in the specified bitrate. It can be quite effectively used if
we want to compare the compression algorithm with another one for which
we know exact RD values. In this case, the calculation of the next value is
more complex, as we need to reach the specified bitrate together with slope
equality. Two potential parameter values are calculated:

bitrate : pj
i = pj−1

i +
r∗ − rj

drj
i

(9)

slopes : pj
i = pj−1

i +
sj
avg(i) − sj

i

dsi
(10)

where r∗ is the target bitrate and sj
avg(i) is the average slope not including the

slope of parameter pi. The final parameter value for the next iteration is then
determined as a weighted average of these two values. If the current bitrate
is close to the target bitrate, more weight is given on the slope prediction
and vice versa.

The stop-condition also depends on both bitrate and slope differences.
The process is stopped when the overall deviation ej gets smaller than a
specified maximum deviation. The deviation ej is evaluated using the maxi-
mum slope distance ej

s (as in the fixed slope case) and the absolute deviation
from the target bitrate ej

r:

ej =

√(
ej

s

)2
+
(
ej

r

)2
(11)

ej
s = max

i=1...n

[(
1
n

n∑
k=1

sj
k

)
− si

]
ej

r = r∗ − rj (12)

• Fixed Distortion
The idea here is the same as in the previous case, only the output config-
uration is bound to have a given distortion instead of bitrate, so the next
value calculation and the stop-condition contain the deviation of the current
distortion from the target distortion.

• Fixed Parameter
This criterion drives the optimisation with respect to a given value of a spec-
ified parameter. It is a very useful method for constructing RD (envelope)
curves, since we usually know the possible value range of the parameters,
while we might not know the resulting bitrates, distortions and slopes. In
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each iteration, the slope of the fixed parameter is evaluated and the rest of
the parameters is then optimised the same way as in the fixed slope case with
the target slope being the current evaluated slope of the fixed parameter.
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Fig. 3. The results of our method compared to the configurations evaluated during the
brute-force search on the Cow animation (left: Coddyac, right: D3DMC)

5 Experimental Results

Key input of the algorithm is the degree of suboptimality we allow in the result-
ing parameter configuration. This value is specified by the maximum deviation
parameter used in the stop-conditions of the optimisation criteria. The smaller
allowed deviation we set, the closer the configuration will be to an optimum, but
the more iterations the algorithm is likely to perform to reach such precision.

So far, we have not defined, what metric is used to measure the distortion of
the compressed animation. Generally, the algorithm can work with any distortion
metric, as long as it produces convex RD curves, which is the case of all the
commonly used methods. For the following results, we have used the Karni–
Gotsman (KG) distortion measure [14], which has been used by most authors in
the dynamic mesh compression.

We compared our algorithm to the commonly used brute-force approach on
many different mesh animations with very similar results. In the following part,
we show the results of finding the optimal envelope curve on the Cow animation
using Coddyac and D3DMC compression algorithms. For Coddyac, the fixed
parameter criterion was used in our method with 15 different numbers of basis
vectors. The same 15 values were set in the brute-force search together with
15 basis quantisation and 20 residual quantisation settings producing a total of
4500 configurations. With D3DMC, the optimiser was run the same way with
19 octree split threshold values, and 51 motion quantisation settings for the
brute-force search (969 configurations in total).
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The resulting rate-distortion charts are shown in figure 3 and the results are
summarised in table 1. For the Coddyac compressor with three input parameters,
the proposed algorithm is significantly faster than the exhaustive search, while
for D3DMC with only two parameters, the performance is roughly equal. This
shows a decrease in complexity related to the number of parameters compared
to the brute-force approach. With more than three optimised parameters, our
method would probably be even more efficient. Note that most configurations
evaluated during the brute-force search produce higher than optimal bitrates
resulting in longer encoding times. Thus, the run-time difference between the
algorithms is greater than the difference in the number of compressor runs.

Table 1. Construction of a curve of (nearly) optimal configurations for the Cow ani-
mation using 15 different numbers of basis vectors for Coddyac and 19 different split
thresholds for D3DMC

Coddyac D3DMC
compressor runs run time compressor runs run time

brute-force 4500 36:06:35.4 969 9:44:33.5
our method 612 1:19:03.7 859 8:02:42.6

speedup 7.4 27.4 1.1 1.2

6 Conclusion

We have proposed a rate-distortion optimisation method for a dynamic 3D trian-
gle mesh compressor based on the Principle of Equal Slopes. Our main contribu-
tion is showing that using this principle, we can decrease the time needed to find
the optimal configuration compared to the currently commonly used brute-force
approach.

The key aspect of the algorithm will become apparent, if only a single config-
uration is needed. A single run of the optimiser is enough to find it, in contrast
to the exhaustive search, where the same large number of configurations needs
to be evaluated, no matter whether a single configuration or the whole curve is
needed. Moreover, we show that even when constructing the optimal curve, our
algorithm performs better, not only reaching shorter run times, but also finding
more precise results. The search can also be constrained in four different ways,
thus better fitting the current needs.

The implementation was carried out in the modular system MVE-2 which
makes it possible to connect the optimiser to different compression modules and
distortion evaluators in a straightforward way. Although we have developed the
algorithm to be used with the Coddyac compression method, its nature should
make it applicable to other methods as well with minimal additional effort. We
have successfully run the algorithm with a D3DMC compression module.
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7 Future Work

Currently, we are using a linear approximation of the slope values to calculate
the parameter steps. We have recently found out that a rational function in the
form of f(x) = a · bx describes very well the dependency of slope on the related
parameter value and thus could be used to improve the convergence probability
and speed.

If run in a sequence, the current implementation has an option to use the pre-
vious result as the starting configuration. This option is useful when evaluating
sequences of related configurations (e.g. with linear range of desired bitrates).
We would like to further improve this idea by using a reduction approach, i.e.
first evaluating configurations for only a few evenly distributed values in the se-
quence and then running the optimisation for the values in between while using
an interpolation of the surrounding results as a starting configuration.
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Abstract. In this paper, we present a novel, fast, resolution-independent
silhouette area-based matching approach. We approximate the silhouette
area by a small set of axis-aligned rectangles. This yields a very memory
efficient representation of templates. In addition, utilizing the integral
image, we can thus compare a silhouette with an input image at an
arbitrary position in constant time.

Furthermore, we present a new method to build a template hierar-
chy optimized for our rectangular representation of template silhouettes.
With the template hierarchy, the complexity of our matching method for
n templates is O(log n). For example, we can match a hierarchy consist-
ing of 1000 templates in 1.5ms. Overall, our contribution constitutes an
important piece in the initialization stage of any tracker of (articulated)
objects.

Keywords: Pose estimation, tracking, template matching, rectangle
packing problem.

1 Introduction

Most template-based object tracking systems compare a segmented input image
with a set of templates at numerous positions in the input image, especially
at initialization. The main focus of this paper is to present a novel, very fast
algorithm for this stage of a complete tracking system. In a complete tracking
system, this initial match would then be used by the next stage to estimate
position, orientation and pose.

Usually, when a model of an articulated object is available, there is a large
number of templates that must be compared with the input image. Since the
template matching stage does very little besides the comparisons, it is crucial
that each comparison can be performed extremely fast.

In this paper, we propose a novel method for very fast approximate area
silhouette comparison between model templates and the segmented input image.
For one template comparison, Stenger el al. [1] achieved a computation time
proportional to the contour length of the template silhouette. We propose a
new method, which reduces the computation time to be constant in the contour
length and image resolution. To achieve this, we first approximate all template
silhouettes by axis-aligned rectangles, which is done in a preprocessing step. In

F.J. Perales and R.B. Fisher (Eds.): AMDO 2010, LNCS 6169, pp. 43–54, 2010.
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the online phase, we compute the integral image [2,3] of the segmented image.
With this, the joint probability of a rectangle to match to an image region
can be computed by four lookups in the integral image. Moreover, we present an
algorithm to build a template hierarchy that can compare a large set of templates
in sublinear time. The main contributions are:

An algorithm that approximates arbitrary shapes by a minimal set of axis-
aligned rectangles. This results in a resolution-independent, very memory effi-
cient silhouette area representation.

An algorithm to compare an object silhouette in O(1). In contrast the algo-
rithm proposed by [1] needs O(contour length).

We propose an algorithm to cluster templates hierarchically guided by their
mutually overlapping areas. Our method builds on the recently developed batch
neural gas clustering algorithm, which yields better results than more classi-
cal algorithms. This hierarchy further reduces the matching complexity for n
templates from O(n) to O(log n).
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Fig. 1. Overview of our approach using rectangle sets to approximate a silhouette.
This speeds up the matching by a factor 5–30 compared to the approach proposed by
Stenger et al. [1].

Our approach only requires that binary silhouettes of the model in an arbi-
trary pose can be generated and that the input image can be segmented. The
segmentation result does not necessarily need to be binarized. The approach can
handle scalar segmentations as well.

It should be obvious that our proposed methods are suitable for any kind
of template based matching of silhouettes. For sake of clarity, though, we will
describe our novel methods in the following by the example of the human hand,
since human hand tracking is our long-term target application. This includes
the full 26 DOFs of the hand, not only a few poses or only the 2D position. To
achieve this challenging task, we mainly use two different features for matching:
edge gradients and skin color. In this paper, we focus on the skin color feature.
We use a skin segmentation algorithm that computes for each image pixel the
probability to represent skin or background, resp. We generate our templates by
an artificial 3D hand model. This model can be rendered in any desired state,
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and it can be easily projected onto 2D and binarized to get the hand silhouette.
Given an input image, the goal then is to find the best matching hand silhouette.

We use the joint probability as proposed by Stenger et al. [1] to compare
the silhouettes with the segmentation result. A simple area overlap, of course,
could be used, too. The only difference is that the sum instead of the product
of probabilities would have be computed. For details, see Sec. 3.

2 Related Work

A lot of object tracking approaches based on silhouette comparison have been
proposed. The approaches can be divided into two classes. The first class needs
a binary silhouette of both, the model and the query image. The second class
compare binary model silhouette area with the likelihood map of the query
image.

A simple method belonging to the first class is used in [4,5]. The difference
between the model silhouette and segmented foreground area in the query im-
age is computed. The exponential of the negative squared difference is used as
silhouette matching probability. A slightly different measure is used by Kato et
al. [6]. First, they define the model silhouette area AM , the segmented area AI

and the intersecting area AO = AI ∩AM . The differences AI −AO, AM −AO and
AI−AM are integrated in the same way, as described above, into the overall mea-
sure. In [7], the non-overlapping area of the model and the segmented silhouettes
are integrated into classical optimization methods, e.g. Levenberg-Marquardt or
downhill simplex. Nirei et al. [8] first compute the distance transform of both
the input and model silhouette. Regarding the distance transformed images as
vectors, they compute the normalized scalar product of these vectors. Addition-
ally, the model is divided into meaningful parts. Next, for each part, the area
overlap between the part and the segmented input image is computed. Then,
a weighted sum of the quotient between this overlap and the area of the corre-
sponding model part is computed. The final similarity is the sum of the scalar
product and the weighted sum. In [9,10] a compact description of the hand model
is generated. Vectors from the gravity center to sample points on the silhouette
boundary, normalized by the square root of the silhouette area, are used as hand
representation. During tracking, the same transformations are performed to the
binary input image and the vector is compared to the database. A completely
different approach is proposed by Zhou and Huang [11]. Although they extract
the silhouette from the input image, they use only local features extracted from
the silhouette boundary. Their features are inspired by the SIFT descriptor [12].
Each silhouette is described by a set of feature points. The chamfer distance
between the feature points is used as similarity measure.

All the aforementioned approaches have the same drawback: to ensure that
the algorithms work, a binary segmentation of the input image of high quality
is necessary. The thresholds, needed for the binarization, are often not easy to
determine.

To our knowledge, there are much less approaches working directly on the
color likelihood map of a segmentation. In [13] the skin-color likelihood is used.
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For further matching, new features, called likelihood edges, are generated by
applying an edge operator to the likelihood ratio image. But, in many cases, this
leads to a very noisy edge image. In [1,14,15], the skin-color likelihood map is
directly compared with hand silhouettes. The product of all skin probabilities
at the silhouette foreground is multiplied with the product of all background
probabilities in the template background. Stenger et al. [14] proposed a method
for the efficient computation of this joint probability. The row-wise prefix sum in
the log-likelihood image is computed. The original product along all pixels in a
row reduces to three lookups in the prefix sum. Thus, the complexity to compute
the joint probability is linear in the number of pixels along the template border.

Nevertheless, the above mentioned approach has some disadvantages. First of
all, the template representation is resolution dependent. Typically, the distance
of the object from the camera is not constant, and thus different sizes of the
templates need to be considered. Consequently, for each scale, an extra set of
the templates has to be kept in memory. Also, the higher the resolution of the
images, the higher is the matching cost.

Our approach does not have all these disadvantages.

3 Silhouette Representation

The key issue of our fast matching approach is the representation of the template
silhouettes. Figure 1 shows an overview of our approach.

To avoid the issues mentioned in the previous section, we propose a novel
resolution-independent representation of template silhouettes. With such a rep-
resentation, one can perform silhouette matching at arbitrary resolutions in con-
stant time with respect to the template size. We propose to approximate a
silhouette by a set of axis-aligned mutually disjoint rectangles. In the remainder
of this paper, we denote the integral image of a gray scale image I by II:

II(x, y) =
∑

0≤i≤x
0≤j≤y

I(i, j) (1)

Let R be an axis-aligned rectangle with upper left corner u and lower right
corner v, both inside I. The sum of the area R of all pixels in I is given by∑

R

I(i, j) = II(vx, vy) + II(ux − 1, uy − 1) − II(vx, uy − 1) − I(ux − 1, vy) (2)

Let TS with TS(x, y) ∈ {0, 1} be a binary image representing a template T .
Let S and S̄ denote the set of foreground and background pixels in TS , resp.
We compute a set of n mutually non-overlapping rectangles R = {Ri}i=1···n
that cover S. The number of rectangles n depends on the silhouette shape and
thus varies slightly from silhouette to silhouette. Figure 2 shows some example
silhouettes with their approximating rectangles.



Silhouette Area Based Similarity Measure 47

Fig. 2. Example silhouettes approximated by a set of rectangles (at 32×32 squares).
The left column shows rectangles approximating the foreground, the middle one the
rectangles approximating the background. The right one shows the template hierarchy
generated by our approach in Sec. 3.3. For the sake of clarity, only the rectangles
approximating the foreground are shown.

3.1 Rectangle Covering Computation

In the following, we denote a set of rectangles approximating S with RS . To
obtain a good approximation, one has to minimize the non-overlapping area A
of S and RS ,

A = min
RS

∣∣∣(S ∪
⋃

Ri∈RS

Ri) \ (S ∩
⋃

Ri∈RS

Ri)
∣∣∣ (3)

Obviously, there is a trade-off between A and RS . The smaller the number of
rectangles, the faster the matching is, but also the more inaccurate.

A lot of work solving similar problems exists. One has to differentiate between
rectangle covering [16,17,18] and partitioning [19,20] problems. Covering allows
an arbitrary overlap between the rectangles in RS , partitioning does not. Most
covering and partitioning algorithms compute solutions under the constraint
that the rectangles lie completely inside the polygon to be covered. Our problem
is similar to standard partitioning in that we do not allow overlaps between the
rectangles RS , but it differs from partitioning because we do not need rectan-
gles to lie completely in the silhouette S. In fact, we even encourage a solution
where some rectangles lie slightly outside. The reason is that S never perfectly
matches the observed real hand. Therefore, we can allow A > 0, which usually
leads to solutions with much smaller numbers of rectangles RS . In the follow-
ing, we present a simple algorithm to obtain a solution with A < δ, where δ is
application-dependent.

First, the model ( here, the human hand) is rendered at a given state and
rasterized at a high resolution. We obtain the resulting template T and, after
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thresholding, the binary image TS . For simplification, we normalize the image
dimensions to be in [0, 1]. Next, we subdivide the image into r×s uniform boxes.
The rectangles to cover S are oriented at the raster defined by these boxes.
Basically, we compute the covering of an r×s image, which we denote by Srs.

In the first step of our dynamic programming approach, we perform the follow-
ing initialization: we define a benefit value gi =g(Ri) for each feasible rectangle
Ri in Srs, which indicates the benefit of a rectangle when included in the final
set of covering rectangles RS . This value is computed as:

g(Ri) = −θ +
∑

(x,y)∈Ri

(TS(x, y) − τ) (4)

The parameter τ ∈ [0, 1] controls the penalty for covering a background box by
a rectangle and the gain for covering a foreground box. For a value close to 0,
the algorithm covers more background boxes in order to cover more foreground
boxes as well. If τ is close to 1, the rectangles tend to cover no background
rectangles and, thus, are nearly completely inside the silhouette. For now, we
assume that τ = 0.5. In Sections 3.2 and 3.3 we will need other values for τ .

The parameter θ adds a penalty to each rectangle Ri in the covering set R.
The parameter controls the aforementioned trade-off between the covering error
A and the number of rectangles in R. Because θ is a local control parameter, we
cannot directly control the global error A. Instead, we set θ to an initial value,
compute the covering, evaluate the error A and, if it is to high, we decrease θ
and run the algorithm again.

We compute the optimal covering as follows. Let R∗ denote the optimal cov-
ering for silhouette S. Let Ru

v =R
ux,uy
vx,vy denote a rectangle with upper left corner

u and lower right corner v. Assume Ru
v or a subset is part of the optimal cover-

ing, and let D(Ru
v) denote the ”benefit” value of this sub-covering. Then either

Ru
v ∈ R∗ or Ru

v contains a number of non-overlapping rectangles that are in
R∗. Thus, the covering problem exhibits the optimal substructure property and
dynamic programming can be applied. Therefore, we can compute

D(Ru
v) = max

{
g(Ru

v), max
ux<x<vx

{
D(Rux,uy

x,vy
) + D(Rx,uy

vx,vy
)
}
,

max
vx<y<vy

{
D(Rux,uy

vx,y ) + D(Rux,y
vx,vy

)
} } (5)

Obviously, the optimal solution is obtained through D(R0,0
r,s ) and the base case

is D(Rx,y
x+1,y+1) = g(Rx,y

x+1,y+1).
In our implementation, we try a number of different solutions r× s = 2 ×

2, · · · , 32×32. As soon as the covering accuracy criterion is fulfilled, we terminate
the computation.

3.2 Matching Silhouettes

In the previous section, we have developed an algorithm to compute for each
template silhouette a resolution-independent compact representation consisting



Silhouette Area Based Similarity Measure 49

of axis-aligned rectangles. In the following, this representation will be used for
fast silhouette area based template matching.

Our goal is to compare a silhouette S with an input image I at a given
position p using the joint probability (see Stenger et al. [14]). The first step is
the foreground/background segmentation. Due to its higher robustness compared
to binary segmentation, we want to use the color likelihood. In the following, the
color likelihood image of an input image I is denoted with L̃ with L̃(x, y) ∈ [0, 1].
To convert the product in the joint probability into sums, we take the pixel-wise
logarithm: L(x, y) = log L̃(x, y).

Utilizing Eq. 2, we can compute the joint probability at position p by:

PS(p) =
∑

Ri∈RS

(IL(
(

vi
x

vi
y

)
+p)+IL(

(
ui

x

ui
y

)
+p)−IL(

(
vi

x

ui
y

)
+p)−IL(

(
ui

x

vi
y

)
+p)) (6)

The rectangle set RS approximates only the silhouette foreground. To get the
appropriate match probability for a template, one has to take into account the
background distribution, too.

Fortunately, the set of background pixels S̄ of a silhouette image, obviously,
can be approximated by a set of rectangles with the same algorithm described
in the last section. Having computed RS̄ , we can compute PS̄ .

PS and PS̄ are resolution-dependent and need to be normalized. In the fol-
lowing, we explain the normalization for PS . PS̄ can be normalized analogously.
A naive approach is to normalize PS . However, this fails in cases where the
template is partially outside the input image. Therefore, we propose a “smart”
normalization as follows.

For each pixel not covered by any rectangle, including all pixels of the template
image that are outside the image borders, we assume a likelihood value of 0.5.
The value is motivated by the assumption that at a pixel not yet observed, the
probability to be foreground or background is equal. Lets denote the number of
pixels of rectangle Ri inside the input image at position p in an input image by
Np

Ri
. Then we normalize PS as follows:

PN
S (p) =

1
|S| (PS(p) · log(0.5)(|S| − Np

R)) , with Np
R =

∑
Ri∈RS

Np
Ri

(7)

To ensure, that |S| −Np
R is positive, we set the parameter τ from Eq. 4 to 0.95.

The final joint probability is

PN = exp(
1
2
(PN

S + PN
S̄ )) (8)

where PN
S̄

is the normalized background joint probability. Treating the joint
probabilities for the foreground and background equally takes care of the fact
that different silhouette shapes have different area relative to their bounding box
used in the template: in a silhouette with fewer foreground pixels, the matching
of the background pixels should not have a bigger weight then the foreground
pixels and vice versa.
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Fig. 3. Each plot shows the average computation time for all three approaches: LBM
[1], RBM (our approach), HRBM (our approach incl. hierarchy). Clearly, our ap-
proaches are significantly faster and, even more important, resolution independent.

Using the same template at different sizes, i.e. when the distance from an
object to the camera changes, is straight forward: simply scale the rectangles ac-
cordingly. No additional representation has to be stored. Comparability between
the same template at different sizes is ensured by the normalization.

3.3 The Template Hierarchy

In the previous section, we have described a novel method to match an arbitrary
template T to an input image I. In a typical tracking application, especially
when dealing with articulated objects, a huge number of templates must be
matched. A suitable approach to reduce the complexity from O(#templates)
to O(log #templates) is to use a template hierarchy. However, building a well
working one is still a challenging task.

We propose an approach to build a hierarchy that naturally fits with our rep-
resentation of the silhouettes by rectangles. In addition, it even further reduces
the computational effort per template matching. We build the tree structure by
utilizing a hierarchical clustering algorithm. Vectors, describing the similarity
between templates, are computed and used as input for the clustering algorithm
[21]. The output are k disjoint clusters, where k defines the number of chil-
dren per tree node. At each node in the template tree, rectangles covering the
intersection of all template silhouette of all children are pre-stored.

For matching n templates, we traverse the hierarchy. The rectangles from the
root to one leaf constitutes a covering of that template, which is thus being
matched incrementally during traversal. At the same time, we prune large parts
of the hierarchy (i.e. large numbers of templates), because we descend only into
those subtrees with largest probability. Figure 2 illustrates the basic idea of
our template hierarchy. Due to space limitations, we can not provide a detailed
description of the template tree generation and traversal.

4 Results

For all our experiments, we have chosen to set the silhouette image discretization
to r = s = 32 boxes. The parameters in Eq. 4 were set initially to τ = 0.95 and
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θ =(1−τ) ∗ 10−4. In order to achieve a small enough global error A < δ, θ was
halved successively. In our experience, 5 iterations were sufficient.

4.1 Rectangle Approximation

First, we evaluated the quality of our approach approximating silhouettes by
axis-aligned rectangles. The two important criteria are the area of the covered
silhouette and the number of rectangles needed. Let us denote the benefit value
for the perfect covering (i.e. all foreground and no background pixels are covered)
by DP and its solution by RP . For an accuracy measure we use:

Q =
D(R0,0

r,s ) + θ|R∗|
DP + θ|RP |

(9)

In our experiments, where we have tried to cover a representative set of postures
and orientations, we have observed that on average, we need about 20 rectangles
to obtain a covering accuracy of Q = 0.7. In practice, we have observed that
this value is appropriate for the similarity measure. Covering only a part of the
silhouette can even increase the matching quality because we obtain a higher
tolerance to slightly varying shapes in the input image.

4.2 Matching Quality

We compare our approach with a state-of-the-art approach proposed by Stenger
et al. [1], because our approach was inspired by theirs and the application (hand
tracking) is the same.

In the following, we will denote the algorithm from [1] as line-based match-
ing (LBM), ours as rectangle-based matching (RBM), and ours including the
hierarchy with hierarchical matching (HRBM). It is not quite fair to compare
a hierarchical approach to non-hierarchical ones. The reason for this is that,
during the traversal, the decision which child nodes are visited is based only on
the information of the children itself, not on the whole subtree. Thus, there is
no guarantee that the subtree containing the best matching template is visited
at all. Nevertheless, mostly HRBM provides a result very similar to the best
matching template and, therefore, we add the results of the hierarchical match
to our plots to analyze the potential of the hierarchy.

In the following, we will evaluate the difference between the methods with
regard to resolution-independence, computation time, and accuracy. We gener-
ated templates with an artificial 3D hand model. We used the templates also as
input images. There are two reasons to use such synthetic input datasets. First,
we have the ground truth and second, we can eliminate negative influences like
differences between hand model and real hand, image noise, bad illumination,
and so on.

We generated three datasets for evaluation. Dataset 1, consisting of 1536
templates, is an open hand at different rotation angles. Dataset 2 is a pointing
hand rendered at the same rotation angles as dataset 1. In dataset 3, consisting
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of 1080 templates, we used an open hand with moving fingers. Additionally, for
each position of the fingers, we rendered the model at different rotations.

First, we examined the dependence between the resolution and computation
time. We used input images at 5 different resolutions. We averaged the time to
compute the joint probability for all frames at 49 positions. The result is shown
in Figure 3. Clearly, LBM’s computation time depends linearly on the resolution,
while our approaches exhibit constant time.

Second, we compared the matching quality of the three approaches. We expect
LBM to work best on the artificial datasets because, for each template, there is
an exactly matching input image. Supposing the LBM templates are available at
the same resolution than the hand found in the input image, there is a pixelwise
identically template for each input image. For evaluation we used an input image
resolution of 256×256 and compared the template at 5 different scalings (from
70×70 up to 200×200). The scalings are chosen such that one of the five scales
matches to the hand in the input image with an accuracy of ±1 pixel. All three
approaches always found the correct location of the hand in the input image.
Thus, for evaluation, we recorded at this position the 10 best matching templates
(rank 0–9). Please see Fig 4 for the results. In the open-hand and pointing-hand
datasets, LBM and RBM work nearly equally well. Apparently, all approaches
have some difficulties to find the correct template in the moving-fingers dataset.
The reason for that is that, in this set, there are many templates with nearly
identical silhouette: they differ only by one finger flexed by a few degrees. Due
to the difference in scale by one pixel, even the LBM can fail to find the best
matching template.
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Fig. 4. The histograms show the matching accuracy for all three approaches: LBM [1],
RBM (our approach) and HRBM (our approach incl. hierarchy). Rank k means that
the correct template is found to be the k−th best match. Lower ranks are better.

5 Conclusions

In this paper, we have developed a silhouette area based similarity measure for
template matching with constant time complexity. We get a significant increase
in template matching speed and reduction of storage space by accepting a slight
decrease of matching accuracy. We have also proposed a novel method to com-
pute such a rectangle covering based on dynamic programming. Additionally,
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we have presented a template hierarchy, which exploits our representation of
the silhouettes. This hierarchy reduces the computational complexity for a set
of templates from linear to logarithmic time. Please remember that our con-
tributions constitute just one of the many pieces of a complete hand tracking
system.

Overall, we need about 0.7 ms on average to compare one template silhouette
to one position in an input image at an arbitrary resolution. This is about a
factor 25 faster than the state-of-the-art approach from [1] at a resolution of
1024×1024. Furthermore, the template representation is very memory efficient.
For example, for 1500 templates, the complete hierarchy consumes less then 1
MByte storage space.

In the future, we plan to implement our approach in a massively parallel
programming paradigm. Furthermore, we will extend our hierarchical approach
to a random forest approach, which we expect to improve the template matching
quality significantly. To get different classifiers at each node, one can choose a
random subset instead of all covering templates to cluster a tree node for further
subdivision. We also plan to build a hierarchy for our templates based on edge
features and combine it with the one proposed in this paper.
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Abstract. The growth of computational power of contemporary hard-
ware causes technologies working with 3D-data to expand. Examples of
the use of this kind of data can be found in geography or gaming industry.
3D-data may not be only static, but also dynamic.

One way of animated 3D-data representation is expressing them by
”dynamic triangle mesh”. This kind of data representation is usually vo-
luminous and needs to be compressed for efficient storage and transmis-
sion. In this paper, we are dealing with the influence of vertex clustering
on dynamic mesh compression. The mesh is divided into vertex clus-
ters based on the vertex movement similarity and compressed per-partes
to achieve higher compression performance. We use Coddyac as a basic
compression algorithm and extend it by adding well known clustering al-
gorithms to demonstrate the efficiency of this approach. We also addres
the choice of optimal clustering strategy for the Coddyac algorithm.

Keywords: 3D dynamic meshes, Data compression, Computer anima-
tion, Coddyac, Clustering.

1 Introduction

Data accuracy and quantity requirements are continually growing and similarly
grows the volume of data structures which contain them. Because storage capac-
ities and transmission speeds are limited we need to use compression algorithms
to reduce data volume and reduce hardware requirements for storage and distri-
bution of such data.

Unfortunately this kind of data includes a lot of complex information. There-
fore it is very voluminous and needs to be compressed for efficient storage and
transmission. ZIP and RAR are popular compression algorithms but they are
not primarily intended for dynamic mesh compression. Specialised lossy com-
pression algorithms can achieve better compression rates. One of the algorithms
specialised for dynamic mesh compression is the Coddyac [1] algorithm. Unlike
the ZIP compression Coddyac compression is a lossy compression algorithm but
this may not be an obstacle due to the kind of data. Usual video compression
algorithms are also lossy.

The more complex the movements of an animated model are, the less move-
ment can be considered negligible and thus the length of the vectors of coef-
ficients will have to be higher (decreasing compression ratio). Therefore, one
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possible way to improve the compression ratio is to reduce the movement com-
plexity, which could be achieved by clustering the mesh vertices by similarity of
their trajectories.

1.1 Related Work

Many algorithms have been proposed for dynamic mesh compression. There
are also known various algorithms of mesh division into smaller parts (clusters)
depending on the topology or geometry criteria, or division into logical parts.
Similarly, as in the cases mentioned below, our method combines the compression
algorithm and division of the mesh to increase compression ratio.

One such method is described by Amjoun and Straßer in [9]. This method
extends the PCA based approach by Alexa [14] by introducing local principal
component analysis (LPCA). It analyses the set of vertices for each frame and
transforms their world coordinates into local coordinates of clusters. Local coor-
dinate system of each cluster depends on the plane of it’s seed triangle and the
mesh is dividend into clusters using the motion of vertices in this system. Each
cluster is finally encoded using PCA and compressed by arithmetic coding.

Similarly Sattler, Sarlette and Klein presented in [10] a compression method
using clustering, but it is based on clustered principal component analysis (CPCA)
analysing trajectories of all vertices throughout the animation time. Clustering of
vertices here depends on similarity of their trajectories, which usually leads to
meaningful clusters. Finally, clusters are separately encoded by PCA.

Frame-based Animated Mesh Compression (FAMC) method described in [5]
by Mamou, Zaharia and Prêteux is also segmenting the mesh with respect to
motion. Each segment is described by a single 3D affine transformation matrix.
This algorithm is based on a hierarchical decimation strategy depending on
topological simplifications: two neighbouring vertices are merged into single one
(collapsed) if their affine motion is similar. Modification of this kind of clustering
is described in section 4.3.

Our compression method uses similar procedures as the methods mentioned
above, but achieves better compression ratios. Unlike the above-mentioned pa-
pers, we are dealing with deeper statement than how significant improvements in
compression can be achieved through clustering. We will also show how cluster-
ing affects the Coddyac algorithm and what clustering is the most appropriate
for this algorithm. We also examine what the optimal number of clusters is, and
what impact their number has on the compressed data.

1.2 Notation

In this paper we use following notation:

F - number of frames of animation
V - number of vertices
B - matrix of original animation, size 3F × V
A - average trajectory vector
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S - matrix of samples, contains substraction of A from each column of B
C - autocorrelation matrix
Ei - i-th eigenvector, made by eigenvalue decomposition of C
N - number of most important eigenvectors (components of PCA)
E - basis of the PCA subspace, size 3F × N

The rest of this paper is organised as follows: Section 2 gives an overview of the
Coddyac algorithm; in Section 3 we present clustering modification of Coddyac
and correction of possible problems; Section 4 contains brief description of the
tested clustering algorithms; experimental results are presented in Section 5 and
the paper is concluded in Section 6.

2 Coddyac Algorithm Overview

In this paper we examine the influence of vertex clustering on the Coddyac
algorithm, which we will now describe in more detail. The algorithm is based on
representing dynamic meshes as a set of vertex trajectories of individual vertices.
Trajectory of the i-th vertex is described by a vector Ti of length 3F , consisting
of XY Z coordinates of the given vertex in all the frames. Notice that for dense
meshes, it is very likely that trajectory vectors of neighbouring vertices will be
similar. In other words, the trajectory vectors are not distributed evenly in the
space of dimension 3F , instead they are roughly located in a subspace of much
lower dimension. This observation yields the first step of the Coddyac algorithm:
finding the subspace and expressing the vertices in this subspace.

A straightforward way to find a subspace of a set of samples is using the PCA
tool of linear algebra. We represent the original animation by a matrix B of size
3F × V , where the i-th column is the trajectory vector associated with the i-th
vertex. First, we compute an average trajectory vector A, and subtract it from
each column of B, obtaining a matrix of samples S. Subsequently, we compute
the autocorrelation matrix C = S · ST of size 3F × 3F . Finally, the eigenvalue
decomposition of the autocorrelation matrix C gives us a set of eigenvectors
Ei, i = 1..3F , and their corresponding eigenvalues. Of these eigenvectors we
select N most important ones (according to their respective eigenvalues), N
being a user-specified parameter. The selected eigenvectors form a basis of the
subspace, and each trajectory vector can be expressed as:

Ti = A +
N∑

j=1

cj
iEj (1)

Since the basis is orthonormal it is possible to compute the matrix of combination
coefficients cj

i by matrix multiplication C = ST E, where E is a matrix of size
3F ×N in which the i-th column is the i-th eigenvector Ei. In order to transmit
the mesh we have to transmit the selected subset of eigenvectors (matrix E of
size 3F × N), the combination coefficients (matrix C of size V × N) and the
vector A representing the average trajectory. Details on how to efficiently encode
the matrix of eigenvectors can be found in [8].
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The other key observation of the Coddyac algorithm is that the PCA step can
be interpreted as a simple change of basis, and therefore it should not have any
influence on results of linear operators. This feature is employed for prediction of
the values cj

i at the decoder. In static mesh encoding, a very common prediction
method is based on the parallelogram rule [11]. The idea is that the mesh is
traversed progressively by growing an area of processed vertices by adding one
adjacent triangle (with one adjacent vertex) at a time. The XY Z coordinates of
the new vertex are predicted to lie at the top of a projected parallelogram formed
by the three known vertices vleft, vright and vbase. The coordinate prediction
is then expressed as:

vX
predicted = vX

left + vX
right − vX

base

vY
predicted = vY

left + vY
right − vY

base (2)

vZ
predicted = vZ

left + vZ
right − vZ

base

In dynamic mesh compression, these formulae may be applied on each element
of the trajectory vectors. However, since the feature vectors are in fact linearly
transformed trajectory vectors, we can use the same formula also for the elements
of feature vectors:

cj
predicted = cj

left + cj
right − cj

base (3)

The Coddyac algorithm traverses the mesh, adding one triangle at the time,
performs the prediction according to equation (3) and transmits the prediction
residuals.

2.1 Number of Basis Vectors

When considering clustering as a means to improve efficiency of Coddyac com-
pression, we have to change the approach to setting the number of basis vectors.
Originally, the user has specified a single integer N which has influenced the
quality of the output: higher value of N leads to higher data rates and lower
errors, and vice versa.

The aim of clustering is to isolate parts of the mesh where the vertices move
similarly, and therefore their movement can be expressed by lower number of
basis vectors. However, the simplicity of motion might vary significantly between
clusters, and therefore we should select a different number of basis vectors for
each cluster.

In our solution the user specifies a scalar value of acceptable PCA-introduced
error, and the algorithm selects the appropriate number of basis vectors auto-
matically. We can express the average amount of PCA-introduced error using N
basis vectors as:


N
PCA =

1
V

V∑
j=1

1
3F

3F∑
i=1

|T i
j − T̄ i

j |
l

(4)

where l is the average edge length of the animation, T i
j is the i-th component of

the j-th original trajectory and T̄ i
j is the i-th component of the j-th trajectory
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reconstructed using N basis vectors. In order to select the number of basis vectors
for a specific cluster, we select the smallest possible N for which this average
PCA-introduced error falls below a user-specified value.

3 Clustering in Coddyac

The efficiency of the Coddyac compression algorithm directly depends on move-
ments of the animated model. If different parts of the model move in a relatively
orderly manner, but differently, the global movement of the model will be dis-
orderly. Therefore, after application of PCA, all trajectories are described by
vectors longer than necessary.

To restrict the length of the vectors (of coefficients after applying PCA),
we must select those vertices of the mesh, whose trajectories are similar and
include them in a common group - cluster. This way the movement complexity
in individual clusters is reduced and so is the necessary length of PCA vectors.

After applying a clustering algorithm on the vertices and PCA on the input
data we obtain an index for each vertex of the triangle mesh that determines
to which cluster the vertex belongs. For reasons of topology compression, as
indicated in [3] , it is necessary that the clusters are topologically compact.
It means each cluster have to consists of triangles which are touching their
neighbours by edges to enable Edgebreaker traverse the cluster topology by
crossing edges of neighbouring triangles.

It is actually a projection from an n-dimensional space, in which the algorithm
performs the clustering of the vertices of the model, on to the 2-dimensional
space of the surface of an animated model. Unfortunately, after such projection
individual clusters may overlap (fig. 1). It is therefore necessary to correct the
clusters on the surface of the animated model.

It is also important to select number of clusters. The smaller clusters we
choose to cover the surface of the model, the better complexity reduction can be

overlapped area

Fig. 1. Clusters separated in for exam-
ple 3D space (xyz) can overlap after
projection onto 2D surface(xz). This
situation can be hard to solve for Edge-
breaker compression.

a) b)

c) d)

Fig. 2. Topology of full mesh (a) is
clustered (b) and stored. Triangles be-
tween clusters (c) are removed, and the
mesh is divided into components (d).
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achieved. However each cluster requires initialisation data (basis), which nega-
tively affect the final compression ratio. Therefore, we try to find the optimal
number of clusters, enough to ensure that movements of vertices included in
them is as ordered as possible.

In our scheme, the full mesh (Fig. 2a) topology is compressed first and it
is stored in a file together with the indices of clusters (Fig. 2b) for each ver-
tex. As the number of clusters is relatively small (small variance of values), and
their indices are often repeated, the set of indices can be efficiently compressed
for example by an Arithmetic encoding. Before the next phase we remove those
triangles, whose vertices belong to more than one cluster (Fig. 2c), and so the dy-
namic mesh is topologically and geometrically divided into smaller components
(Fig. 2d).

The second phase is used only for compression of geometry, not topology.
Geometry of the components is compressed by PCA separately by the Coddyac
algorithm. Therefore each component has its set of PCA coefficients, basis and
means vector, which PCA needs to decompress the original data. Therefore, with
the increasing number of clusters decrease the volume of data for the PCA coef-
ficients decreases, but the volume of data for basis and means vectors increases.

3.1 Cluster Correction

Due to the topology compression scheme it is necessary to achieve such shape
of clusters, that the vertices of one n-dimensional cluster are in the common
cluster on the 2-dimensional surface of the animated model. These clusters must
not overlap.

There are two ways to resolve the situation. The first option is to connect
remote cluster parts by ”bridge”, the second option is ”drown” the remote cluster
part. Both of these options lead to a situation when some vertices of a cluster are
reassigned to a different cluster. This creates an error in the original assignment
of vertices into clusters and leads to a reduction in the efficiency of compression
algorithms.

If there is a separate part of a cluster on the surface of the model and it is
sufficiently small, it is possible ”drown” it. This means that all vertices of the
small separate part of the cluster are connected to the cluster, which is adjacent
or surrounding it. The greater the drowned part of this cluster is, the greater
the error of its ”drowning” arises. If the cluster is large enough, it is better to
build a ”bridge” between the two specific parts of the cluster by reassigning
vertices between them. The farther away these parts are, the larger number
of vertices have to be reassigned in building a ”bridge”, and the greater error
occurs. Building a ”bridge” raises a number of inconveniences and situations
which are difficult to solve. One such situation is presented in figure 3.

To avoid these problems, we have chosen a possibility to build a ”virtual”
bridge. Such a bridge no longer consists of the triangles of the animated mesh.
Such a bridge only carries information about the triangle from one part of cluster
in which it starts and the second triangle, where it should end, and what is
the relative position of these triangles. With this design we not only avoid the
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a) b) c)

BLUE

RED

BLUE BLUE

RED RED

BRIDGE

BRID
G

E

Fig. 3. Bridges. a) creation of blue bridge splits red cluster into two parts, b) creation
of red bridge splits blue cluster into two parts and we need both bridges to solve this
situation correctly. c) red virtual bridge over the blue cluster.

difficulties in the construction of ”bridge”, but also prevent the emergence of
any errors that may occur by design.

4 Tested Clustering Algorithms

We have tested several methods of vertex clustering, whose functions and mod-
ifications are described below.

4.1 K-Means

K-means [4] is one of the distributive algorithms. The algorithm divides the given
set of data into clusters. The clusters are iteratively refined according to the
specified distribution criteria. Each k-means cluster is represented by its centre
and the data points are usually assigned to clusters based on their distance to
the centres of clusters.

To run the K-means algorithm we need to know in advance how many classes
(clusters) will be used, i.e. the value k. The value varies according to the case
of using k-means algorithm and may vary (as in this case) in dependence on the
input data. We have modified the calculation of distance of trajectory vectors
in clustering algorithms and in addition to Euclidean distance (L2 norm) we
have experimented with calculation of the distance using any norm Lp by the
following formula:

Lp = (
∑

i

|xi|p)
1
p (5)

4.2 Facility Location

Facility location [6] algorithm is similar to the algorithm mentioned above. The
main difference is that the centres of clusters (called facilities) are always chosen
from the set of input data. The algorithm tries to find a placement and number of
facilities, to which it connects the other elements of initial set. Algorithm selects
such locations of facilities to make the price of the connection of all elements
minimal. Additionally, each facility needs to pay a constant opening price, which
is one of the inputs of the algorithm and reduces the number of facilities.
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The aim of the algorithm is to find a balance between the number of clusters
and their sizes. Number of created clusters is thus dependent only on the specified
facility cost and the input data-set. Like the k-means algorithm, Facility location
is also iterative. Clusters are created and removed while there is a better overall
price for the allocation of clusters.

In our case there is not big difference between k-means and facility location.
If we use facility location algorithm with some facility cost and use the number
of clusters as input k in k-means, then the location and size of clusters should
be the same or very similar for both algorithms.

4.3 FAMC - Like Clustering

Unlike previous methods, this method is also influenced by the connectivity of
the animated mesh. The clustering algorithm uses a priority queue, from which
edges of the model are selected that have the best evaluation. Lowest cost edge
is picked from the queue and collapsed into one vertex. Edges adjacent to this
point are re-evaluated. The final number of clusters corresponds to the number of
vertices resulting from collapsing the edges. Exact description of this algorithm
can be found in [5].

This algorithm was also tested in combination with modified PCA coefficients
vectors. The similarity of trajectories is no longer assessed on the basis of Eu-
clidean distance of vectors, but by the number of important components of the
vectors, which they have in common. The components which are zero after quan-
tisation may be neglected by the compression algorithm. Therefore the similarity
of trajectories is assessed by the number of zeros in specific common components.
Now we do not want to cluster trajectories which are as similar as possible but
those that allow us to maximise what can be neglected, see fig. 4. Trajectories
were modified as follows:

0-trajectories: A threshold is given. Values in vectors, which are smaller than
the threshold are rewritten to 0, the others are rewritten to 1. Parts of vectors
with 0 are those parts which we want to discard. These vectors, that has the
most of common 0, are therefore jointed to the common cluster.

!0-trajectories: Like the previous, except the common clusters are made of vec-
tors, which have the most common non-zero components. Clusters should there-
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Fig. 4. Non-zero components of vectors are black, zero components are white. Mod-
ified vectors (left) are clustered by their common zero-components (middle). Zero-
components common for all cluster (white between grey dotted lines) are moved to
the end of the vectors. Sequences of zeros on the end of these vectors common for one
cluster can be neglected (hatched area).



Analysing the Influence of Vertex Clustering 63

fore be designed so that it can be neglected as much of the vectors as possible,
achieving a reduction of the resulting data stream.

5 Experimental Results

The algorithms mentioned above and their modifications have been implemented
and subsequently we have measured the impact of vertex clustering on the se-
lected dynamic meshes. The figure 5 shows the RD curves of clustering methods
tested on Dance animation. The model was dividend into 8 clusters (provides
the best results).
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Fig. 5. Influence of tested clustering methods on Dance animation (left) and data size
comparison of whole compressed file and including PCA-stream (mean vectors, basis
and quantisation) of Humanoid animation (right)

To compare errors resulting from compression of 3D animated meshes we used
KG-error [7] measure:

e = 100 · ‖B − B̃‖
‖B − R(B)‖ (6)

Where B̃ is matrix containing the animation after the compression and decom-
pression steps and R(B) is average matrix which contains average spatial value
for each frame of animation. We have used Frobenius norm denoted by ‖x‖.

The figure 5 shows that each method has brought some improvement of com-
pression ratio. In the figure 5, comparing different methods of clustering, we can
see that the largest improvement was brought by the FAMC-like method with
original cost function, which is described in [5]. Unlike the original version, the
algorithm improved by clustering can achieve significantly lower bitrate while
maintaining the same error.

6 Conclusions and Future Work

In this paper we have examined the influence of clustering on the Coddyac al-
gorithm. The improvement lies in the suitable division of compressed mesh into
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3 0.8 13, 20, 9 13.9
0.4 14, 21, 9 14.5
0.1 17, 23, 11 16.7

8 0.8 7, 11, 3, 4, 13, 6, 8, 6 7.3
0.4 8, 13, 3, 5, 16, 7, 8, 6 8.1
0.1 8, 15, 7, 5, 18, 14, 11, 8 10.6

50 0.8 3, 3, 3, 3, 3, 5, 5, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3,.. 3.3
0.4 3, 3, 3, 3, 3, 5, 7, 4, 5, 6, 3, 3, 3, 3, 3, 7, 6, 3, 4, 6, 6, 5, 3, 3, 3,.. 4.3
0.1 3, 3, 3, 3, 3, 5, 7, 5, 5, 8, 3, 3, 3, 3, 3, 9, 7, 3, 5, 6, 6, 5, 3, 3, 4,.. 4.7

Humanoid
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KG-error

Total Average

1 0.8 34 34.0
0.4 47 47.0
0.1 81 81.0

3 0.8 36, 3, 3 21.3
0.4 50, 3, 3 29.0
0.1 90, 3, 3 51.1

6 0.8 17, 3, 3, 19, 3, 15 10.8
0.4 26, 3, 3, 26, 3, 19 14.5
0.1 46, 3, 3, 48, 35 25.2
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Number of 
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Fig. 6. Influence of clustering on Humanoid and Cloth animation

smaller parts, which are then compressed separately. Purpose of this decompo-
sition is to reduce the complexity of movement in animation which leads to a
better compression ratio. The selection of the appropriate number of clusters
depends on many aspects hence we use ”try and error” method. But as can bee
seen in figure 6, by the descent method we can quickly find a minimum of depen-
dence of compressed animation size on the number of clusters and next find the
best configuration in the meaning of RD curves. This optimal number of clusters
is not dependent on the structure of animated model neither the complexity of
vertex trajectories, but especially on the differences between trajectories of indi-
vidual vertices, and for most tested meshes we have found that values of 8 − 12
clusters provide good results.

We have tested several methods for clustering of dynamic meshes. Of these
methods the best results are provided using FAMC-like with the original cost
function. It should be noted that the improvement compared to the L1-norm k-
means is negligible (� 5%), but the time complexity is several times larger. The
figure 6 shows that the use of clustering in the original compression algorithm is
able to improve the performance of the algorithm in terms of errors and data rate
reduction. The bitrate can be reduced by 37%− 46% compared to the Coddyac
output while maintaining the same KG-error.

Theoretically including clustering algorithm can improve the compression ra-
tio without substantial increase in time complexity, because clustering algorithms
are usually not too time-consuming. But since most of the clustering algorithms
work with a trajectories processed by PCA for example to analyse movement of
3D-mesh, the resulting time required for compression can rise to twice the original
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time complexity of the Coddyac. However, the use of clustering has almost no ef-
fect on the decompression time, which is for a practical application of the algo-
rithm more important.

In the future we would like to explore the possibility of avoiding the use
of PCA in the stage of clustering, automatise the selection of the number of
clusters and find more efficient clustering algorithms. Now is our work focused
on clustering, where each vertex belongs to only one cluster so we also would like
to try soften the transitions between clusters as for example in [13] to enhance the
impression of animations compressed with lower quantizations. Another possible
future improvement is clustering by using the time-line, i.e. not only examining
the changes in position of vertices in time, but also the changes of movement
complexity of individual trajectories depending on time. This could lead to more
clusters but shorter vectors of PCA coefficients.
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Abstract. In this paper an approach is described to estimate 3D pose
using a part based stochastic method. A proposed representation of the
human body is explored defined over joints that employs full conditional
models learnt between connected joints. This representation is compared
against a popular alternative defined over parts using approximated limb
conditionals. It is shown that using full limb conditionals results in a
model that is far more representative of the original training data. Fur-
thermore, it is demonstrated that Expectation Maximization is suitable
for estimating 3D pose and better convergence is achieved when using full
limb conditionals. To demonstrate the efficacy of the proposed method it
is applied to the domain of 3D pose estimation using a single monocular
image. Quantitative results are provided using the HumanEva dataset
which confirm that the proposed method outperforms that of the com-
peting part based model. In this work just a single model is learnt to
represent all actions contained in the dataset which is applied to all sub-
jects viewed from differing angles.

Keywords: 3D Pose Estimation, Expectation Maximization, Stochastic
Search, Rigid Joint, Loose Limbed.

1 Introduction

There is currently much interest in being able to extract the pose of a human
from a single or sequence of images. A popular technique used to achieve this is to
represent the human body as a probabilistic graphical model, where the nodes
of the graph represent anatomical parts of the body and the edges represent
the relationships between these parts [1,2,3,4,12,13,14]. However, a limitation
with current part based methods is the use of the Loose Limbed model, which
approximates the joint between two connected parts using a soft connection.
This representation does not enforce the connecting joint between neighboring
parts to coincide and is employed as the likelihood of two neighboring parts being
detected independently, with their connecting joints exactly aligned, is very low.
In this work a method is presented that uses ancestral sampling to generate a
set of hypothesis locations where the connecting joint between neighboring parts
is constrained to coincide.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2010, LNCS 6169, pp. 67–77, 2010.
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Forcing joints between connected parts to coincide will address one of the
key limitations with the current Loose Limbed approach and will result in a
model that is better constrained and is a more intuitive representation of the
human body constructed of rigid parts with fixed joint locations. To achieve
this, rather than defining a model over parts/limbs as is usual in current Loose
Limbed approaches [1,2,3,4,12,14], we define a model where the hidden nodes of
the graph represent joint locations. This proposed representation is referred to
as a Fixed Joint model.

A further limitation with current Loose Limbed approaches is that typically
the conditional probability distribution used to represent the relationship be-
tween neighboring parts, referred to as a limb conditional in this work for brevity,
is approximated by learning a distribution over the relative state between con-
nected limbs [1,2,3,14]. This is motivated by our knowledge of the human body;
a given joint has a fixed and known range over which it can move. However,
in order to learn approximate limb conditionals the original training data must
be converted into a relative form. This process eliminates much of the original
data’s structure, therefore any model learnt using this will fail to capture its
full complexity. In this work it is shown that learning a full conditional model
between connected parts provides a richer and much more accurate description
of the training set and therefore the object being modeled.

The principal reason that human pose estimation is difficult is the large num-
ber of degrees of freedom that the human body contains. Attempts to efficiently
search this space using a graphical part based representation of the human body
include Dynamic Programming [1] and Belief Propagation [4,13] for 2D pose es-
timation and stochastic methods such as the Pampas algorithm [6], Variational
MAP [7] and Partitioned Sampling [8] for 3D pose estimation. These methods are
iterative and require that a model must first be defined to propagate the particle
set between iterations of the algorithm; how this model is defined is not intuitive
and often the covariance of this model is simply initially overestimated and then
shrunk at each iteration to force convergence [7,9]. A motivation for using full
limb conditionals is that pose can then be efficiently estimated using Expecta-
tion Maximization (EM) and importance sampling. At each iteration samples
are drawn from the prior which are then weighted to approximate the posterior
distribution given the current observations, using this sample set the prior is
then reestimated. In the following iteration a new set of samples are drawn from
the reestimated prior and over a number of iterations the prior converges to a
solution; empirically this solution appears to be global. Using this method sam-
ples are always drawn from the prior and an extra model to propagate samples
between iterations is not necessary. A further advantage of this approach is that
it results in a compact parametric description of the posterior distribution. This
parametric representation is particularly advantageous in applications such as
tracking where drift between frames could be added deterministically by scaling
the resultant covariances.

In this work three principal claims are made: Firstly, compared to the Loose
Limbed representation the proposed Fixed Joint model results in a prior that is
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far more representative of the original training set. Secondly, that the proposed
Fixed Joint model results in faster convergence of the EM algorithm compared
to the Loose Limbed model. Thirdly, that the Fixed Joint model outperforms
that of the Loose Limbed model at estimating pose. These claims are supported
by both quantitative and qualitative results using the HumanEva data set [5].
Whilst the presented approach is general enough that it could readily be applied
to scenes captured from multiple views or employed in a tracking framework,
here it is applied to single images and it is assumed that the position of the root
node is fixed and known a priori. We employ this constrained scenario as the
focus of this paper is on highlighting the limitations of existing representations
and demonstrating the advantages of the proposed method through detailed
analysis and comparison of performances. This is best achieved by constraining
any experiments so that observed differences in performance can only be a direct
result of the methodology used. However, the presented approach is adequately
efficient such that uncertainty in the root node could be accommodated by sam-
pling the root position multiple times, however, this is currently left for future
work.

2 Pose Estimation

The problem of estimating pose of an articulated object can be defined over a
probabilistic graph where the set of n hidden nodes vi ∈ V represent the set
of parts used to represent the object and {vi, vj} ∈ E represent the edges that
connect the nodes of the graph. Given a set of proposal values for each node
X = {xi, ..,xn} and a set of observations for each node Z = {zi, .., zn} the
posterior can then be calculated as

p(X |Z, θ) =
∏

{i,j}∈E
p(xi|xj , θij)

∏
i∈V

p(zi|xi) (1)

where xi is assumed to be the child of xj , p(xi|xj , θij) are limb conditionals
which represent the model prior and θij is a connection parameter, and p(zi|xi)
are observational likelihoods. Pose can then be estimated by finding the config-
uration X∗ that maximizes this equation. It is assumed that the graph used to
represent the articulated object is a tree and therefore contains no loops.

The focus of this paper is on the comparison between using a Loose Limbed
model defined over parts and a proposed Rigid Joint model defined over joint
positions. As discussed in the proceeding section, whilst the Loose Limbed model
approximates the limb conditional p(xi|xj , θij) from Equation 1 with a model
learnt over xi in the frame of reference of xj denoted by p(xij |θij), the Rigid
Joint model uses full limb conditionals p(xi|xj , θij) which we show to be both far
more representative of the original training set and result in faster convergence
of the EM algorithm. In the following Sections we describe the limb conditionals
learnt for each model, how samples can be generated from these models and how
Equation 1 is maximized using EM.
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2.1 Model Representation

Loose Limbed Model. The Loose Limbed model is based on that presented
in [2] which we briefly describe. The model is defined over parts and each part
has 6 degrees of freedom xi = (ri,Θi), where ri ∈ R3 and Θi ∈ SO(3) which
represent the global position of the proximal joint of the ith part and its rotation
respectively, each part has a fixed length. The rotations are represented by unit
quaternions, therefore xi ∈ R7. Rather than learning a conditional distribution
over xi and xj directly a distribution is instead learnt over xij , where xij is the
position and orientation of the ith part described in the local frame of reference
of the jth part. Given a set of training data the distribution p(xij |θij) can be
learnt directly for each part using a GMM. Following [2] each limb conditional
is represented using three components.

Rigid Joint Model. The proposed Rigid Joint model is defined over joint
positions, where the distance between neighboring joints is fixed. Conditional
models p(xi|xj , θij) are learnt where xi is the orientation of the ith joint defined
in a global frame of reference (i.e. that of the root node). These models are also
learnt using a GMM.

To create a conditional model a joint distribution p(xi,xj |θij) is first learnt
from which the conditional distribution can be calculated during run time as
described in Section 2.2. A prior distribution over the position of each joint is
learnt over spherical coordinates (ρ, θ, φ), where ρ represents the length between
the joint and the joint to which it is connected, θ ∈ [0, 2π] represents a rotation
around the xy-plane and φ ∈ [0, π] represents the elevation measured relative to
the z-axis. Since the length is fixed ρ is constant for each joint and we have only
two free parameters θ and φ, which describe the orientation of each joint mea-
sured in the global frame of reference (i.e. that of the root node). We represent
these two angles using polar coordinates (r, ω), where the rotation ω = θ and
the radius r = φ, where r ∈ [0, π].

The limitation with this representation is that a discontinuity occurs at r = π.
To overcome this we also create a duplicate polar coordinate system where
r = π − φ so that at the origin φ = π. Each coordinate system is referred to
using the suffixes 0 and π respectively as this indicates the value φ at the ori-
gin. Each position in the coordinate system also has a weight associated with
it such that those nearer the origin are weighted higher that those near the
outer edges (i.e. near the discontinuity) these weights are defined as w0 = r

π
and as wπ = 1 − w0. Hence, a measurement represented in 3D spherical co-
ordinates x = (ρ, θ, φ) is thus represented as a set of 2D vectors and weights
x = {x0, w0,xπ , wπ}, where x0 = (r0, ω0). Using this representation a GMM
could be learnt for each coordinate system independently and weighted propor-
tional to the total weight of the training data used. These weights then describe
whether the data was distributed near to the origin of the coordinate system,
where it is better represented, or near the edge, where the discontinuity occurs
and it is poorly represented.
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Given training data for two connected joints i and j, Xi = {[xi]1 , .., [xi]l}
and Xj = {[xj ]1 , .., [xj ]l}, where xi = {xi

0, w
i
0,x

i
π , wi

π} and l is the number of
samples in the training set, a joint distribution is learnt by first concatenating
the two sets of training data together so that Xij = {[xij ]1 , .., [xij ]l} where
xij = (xi,xj). Using this data the joint probability distribution p(xi,xj |θij)
can be estimated, however, as each training point is represented by a set of two
vectors and two weights, xi = {xi

0, w
i
0,x

i
π , wi

π} and xj = {xj
0, w

j
0,x

j
π, wj

π}, when
concatenating the data we must do so for each possible combination of the order-
ing of φ, i.e. xij = {xij

00,x
ij
0π,xij

π0,x
ij
ππ} where for example xij

0π = {(xi
0,x

j
π), wij

0π}
and the corresponding scalar weights are simply multiplied together so that
wij

0π = wi
0w

j
π . The consequence of this is that for each pair of connected joints

we have four sets of training data, a GMM is learnt for each independently. Each
GMM is assigned a weight proportional to the total weight of the training set
(e.g. W ij

0π =
∑l

k=1

[
wij

0π

]
k
) so that GMM’s with more data clustered near the

origin have a higher weight since these will better represent the data. The prior
of each individual GMM component is then scaled by this weight.

The number of components used to represent each distribution in the model
is set to reflect the increasing complexity in the distribution at nodes located at
a further depth from the root node. To represent this we employ the following
scheme: Joints connected directly to the root node are given three components
and at every subsequent increase in depth a further two components are added.
Under our model the maximum number of components is assigned to the wrists
with nine components. Whilst this may immediately seem advantageous since
the Rigid Joint model is afforded a maximum of nine components compared to
the Loose Limbed’s three, it should be noted that the rigid model’s distribution
must represent a far larger space; it is likely the three component distribution of
the Loose Limbed model is far more representative of the training data once it
has been converted into a relative form. Our argument is that in the process of
converting the original training set so that a Loose Limbed model can be learnt
a large amount of information is being discarded from it.

2.2 Sampling

As the graphical model used to represent the articulated object is a tree and
the root node is assumed to be fixed, samples can be generated using ancestral
sampling [10]. Samples are drawn hierarchically starting from those nodes clos-
est to the root node, then at each step down the tree, moving away from the
root node, a further set of samples can be drawn conditioned on those samples
generated for the parent node. To efficiently search the pose space the num-
ber of particles are exponentially grown moving out from the root node. This
ensures that the location of less constrained joints are searched using more sam-
ples. For each sample xm

j , N child samples are drawn from the limb conditional
[xn

i ]Nn=1 ∼ p(xi|xm
j , θij), N is referred to as the growth rate. As very few par-

ticles are needed to describe the prior distribution for nodes near the root this
exponential growth is not problematic, for example setting N = 8 will result in
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4096 samples being generated for each of the wrists. For efficiency all covariances
used to represent limb conditionals are assumed to be diagonal.

Loose Limbed Model. As the Loose Limbed model only uses an approximated
limb conditional a sample xn

i can be generated from a parent sample xm
j simply

by drawing a sample xn
ij ∼ p(xij |θij), which can then be transformed into the

global frame of reference through M(xn
i ) = M(xn

ij)M(xm
j ), where M(xn

i ) repre-
sents the 3D object-to-world transform. To draw a sample from this distribution
a GMM component k∗ is sampled from the marginal distribution p(mk

ij) = λk
ij ,

where the connection parameters mk
ij = {μk

ij , Σ
k
ij , λ

k
ij} define the mean, covari-

ance and weighting of the kth component of the GMM respectively, following
which a sample for xn

ij can be drawn from xn
ij ∼ N (μk∗

ij , Σk∗
ij ).

Rigid Joint Model. Given a sample for the jth node xm
j , a sample can be

drawn conditioned on this by first calculating the marginal likelihood of ob-
serving this for each component in the GMM. Given that all covariance matri-
ces are diagonal, i.e. Σk

ij = diag(Λk
ii, Λ

k
jj), the marginal likelihood is given by

p(xm
j |mk

ij) = λk
ijN (xm

j ; μk
j , Λk

jj). Once this has been calculated for all compo-
nents the resultant distribution is normalized to give the conditional distribu-
tion p(mk

ij |xm
j ). A GMM component can then be sampled from this distribution

k∗ ∼ p(mk
ij |xm

j ), from which a sample xn
i can be drawn from the selected com-

ponent xn
i ∼ N (μk∗

i , Λk∗
ii ). Notice that in the case of the Loose Limbed model

p(mk
ij |xm

j ) = p(mk
ij) i.e. is independent of xm

j .

2.3 Rigid Joint Model: Observing a Joint

The problem in defining a model over joints as apposed to parts is that there does
not exist one-to-one correspondences between joints and observations; we can not
directly observe a joint only the parts to which it is connected. To accommodate
this we define a set of m observable parts pi ∈ P , where m �= n and n represents
the number of joints in the model. We further define vj ∈ pi as being the set
of joints defining the ith part and conversely pj ∈ vi as being the set of parts
of which the ith joint is a member. The set of observations made for the parts
are defined by Z = {zi, .., zm}. The observational likelihood for the ith part can
be written as p(zi|{xj∈pi}), where this distribution is dependent on a number
of joint positions. Intuitively, this represents that for example the appearance
of the forearm must be dependent on the location of both the wrist and elbow.
To estimate p(zi|xj) from p(zi|{xj ,xk∈pi|j}) the nodes xk∈pi|j can be treated
as nuisance parameters and marginalized over. In practice this is cumbersome
to calculate and instead the following approximations are used: If the xk∈pi|j
are child nodes to xj we calculate p(zi|xj) using the expectation of the set of
particles drawn from xj as xk∈pi|j. If they are parent nodes we use the sample
of xk∈pi|j from which xj was drawn. For the torso we use the expectation of
the shoulder and hips since these joints are not directly connected and do not
share child/parent relationships. This method then allows an approximation of
the term p(zi|xj) to be calculated.
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We further need to account for that a joint may be a member of several parts,
for example the elbow defines both the upper arm and forearm. To accommodate
this the likelihood terms p(zi|xj) are combined for all parts to which that joint
is a member pi ∈ vj . This can be calculated as

p(zi∈vj |xj) =
∏
i∈vj

p(zi|xj). (2)

This suggests that to infer the position of a joint all parts to which it is connected
must be observed. Whilst in this section we have described how the observation
likelihood is calculated for a joint we will write p(zi∈vj |xj) as p(zj |xj) so that
the same notation can be used when describing optimization of both the Loose
Limbed and Rigid Joint model in the following section.

2.4 Maximization

Maximizing the posterior is achieved using EM where a new prior is estimated at
each iteration given the posterior calculated using the old prior (M-step), a new
set of particles is then generated from the prior and the posterior re-estimated
(E-step). Given a set of M particles for the jth joint

[
xm

j

]M
m=1

each is assigned a
weight proportional to the marginal likelihood p(xm

j |zj). This can efficiently be
calculated for each node using a simplified form of the Sum-Product algorithm.
The outwards messages from the root node are represented by the generated set
of samples and as such only backwards messages must be computed. Due to the
ancestral sampling method used this can be efficiently calculated, the marginal
for sample xm

j is computed as

p(xm
j |zj) = p(zj |xm

j )
∏

i∈Cj

N∑
n=1

p(xn
i |zi) (3)

where i ∈ Cj is the set of nodes that are the children of the jth node and the
summation is performed over the set of N samples that were drawn conditioned
on the sample xm

j under the ancestral sampling method.
At each iteration simulated annealing is used to ensure the distribution con-

verges so that wm
j = p(xm

j |zj)β , where β is calculated at each iteration so approx-
imately 60% of the particles would be discarded if resampling were performed
[9]. Given the set of weighted samples the prior can then be reestimated.

2.5 Limb Likelihoods

A part is represented by a rectangular patch and defined by the joints that it
is composed from (Rigid Joint) or the proximal/distal joint of the part (Loose
Limbed). We use two image cues, edges and color. Edge cues are exploited using
a set of M overlapping HOG features [11] placed along the edges of the part.
Each feature is represented as a single normalized histogram of the local image
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gradients and are combined such that p(zj |xj)edge = 1
M

∏M
m=1 H(θ⊥), where

H(θ⊥) returns the value in the histogram bin that is perpendicular to the edge
of the proposed part.

Color is exploited by placing a bounding box at the location of the root node
and then learning a foreground model using the pixel values within the box
and a model for the background using pixels outside the box. The models are
learnt using a GMM. This creates a very crude and noisy foreground probability
map, the likelihood is then calculated as the average foreground probability
value encompassed by the part. The individual likelihoods for each cue are then
combined as p(zj |xj) = p(zj |xj)edgep(zj |xj)col.

3 Experiments

Both a Rigid Joint and Loose Limbed model were learnt using the Train partition
of the HumanEva dataset using ≈ 4500 frames of data taken across all subjects
and actions. Samples drawn from the prior of each model can be seen in Fig. 1
along with the training data from which the models were learnt. It is clear in this
figure that the samples drawn from the Rigid Joint model much more closely
resemble that of the training data, the samples from the Loose Limbed model
are much more broad and shows less clear structure, this is particularly clear on
the feet.

(a) (b) (c)  (d) (e) (f)

Fig. 1. Comparing samples of the left foot (green) and right wrist (blue) generated by
each model representation and the training data. Side View: (a) Loose Limbed model
(b) Rigid Joint model (c) Training data. Frontal view: (d) Loose Limbed model (e)
Rigid Joint Model (f) Training data.

To compare the performance of both models a test set was created from
the Validation partition of the HumanEva dataset. This was composed of 100
randomly selected frames from each action category (Box, Gesture, ThrowCatch,
Walk, Jog) selected across all color views and all subjects, so that 500 frames were
used in total. The root node and orientation was set using the pelvis marker data
from the groundtruth provided and the scale was set as the maximum distance
between the head and the feet. This scale is often inaccurate (e.g. if the subject
was squatting) however, is used so all experiments are easily reproducible.

Both methods used the same settings so that the only difference in each exper-
iment was the model used. Quantitative results can be see in Fig. 2 where it can
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be seen that the Rigid Joint representation outperforms the Loose Limbed model.
We also experimented between updating the model by calculating marginals us-
ing Equation 3 or simply using local image evidence (i.e. setting p(xm

j |zj) =
p(zj |xm

j )). As shown the use of marginals improves the error, this is because
these allow information about observations being made at the extremities of the
tree to influence the convergence of those parts nearer the root node.
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Fig. 2. Pose estimation errors as a function of growth rate (N) for 2D (a) and 3D
(b) pose estimation after ten iterations of the algorithm. Dashed lines represent Loose
Limbed model and solid lines Rigid Joint model. The green and purple line show the
error using full marginals and the blue and red line shows the error using only local
image evidence.

In Fig. 3 the expected pose and samples drawn from the prior are presented
after each iteration for the example shown, as can be seen the Rigid Joint model
converges much faster than the Loose Limbed model. Notice also the slip between
the parts of the lower left leg in Fig. 3 (a) (v) this is as joint positions are not
constrained to coincide in the Loose-Limbed representation.

(a)

(i) (ii) (iii) (iv) (v) (vi) (vii)

(b)

Fig. 3. Example of convergence for Loose Limbed model (a) and Rigid Joint model (b).
(i) to (iv) shows iterations 1, 3, 5, 10 respectively. Samples for the left (red) and right
(green) wrist drawn from each prior are also shown as is the expected pose. (v) shows
the final expected pose. (vi) and (vii) show the final 3D reconstruction with samples
that have been drawn from the final model.
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To illustrate why a conditional model converges more efficiently than an ap-
proximated conditional model consider Fig. 4, which shows a hypothetical mul-
timodal distribution. Whilst the full limb conditional model can converge, the
relative limb conditional can not until its parent’s limb conditional has converged
to a single mode. In Fig. 5 an example is shown using a growth rate N = 2, this
uses just a maximum of 16 samples for the wrists. However, as can be seen the
presented method still finds the correct solution, it is the performance using very
few samples that is particularly impressive and makes this approach of value.

(a) (c) (d)(b)

Fig. 4. Hypothetical two part example highlighting the difference in convergence be-
tween a relative limb conditional (a) and (b) and a full limb conditional (c) and (d). (a)
and (c) show the prior model and (b) and (d) the model after a number of iterations.
Both limb conditionals are represented by a two component GMM where each com-
ponent is represented by different colors. Whilst the conditional model can represent
each observational mode by a single Gaussian (d), the relative model can not and as
such ‘phantom modes’ appear in the prior (b) slowing convergence.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Example of convergence and 3D pose estimation using a growth rate N = 2.
(a) - (d) Iteration 1, 2, 4 and 10 respectively. (e) Expected pose as shown in (d). (f)
and (g) final 3D expected pose.

4 Conclusions

A method has been presented to estimate 3D pose from single images using a
stochastic search and Expectation Maximization. A novel part based represen-
tation has been defined over joint positions and compared against an existing
method, it has been shown quantitatively that the presented method outper-
forms that of the Loose Limbed model. Furthermore, we have demonstrated
qualitatively that using full limb conditionals results in a model that is more
representative of the original training set and efficiently converges under the EM
algorithm. Whilst in this paper it has been assumed the root node is fixed the
approach can be generalized to account for uncertainty in this value by sampling
multiple root node positions and will be the focus of future work.
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Abstract. There are a number of solutions to automate the monotonous
task of looking at a monitor to find suspicious behaviors in video surveil-
lance scenarios. Detecting strange objects and intruders, or tracking
people and objects, is essential for surveillance and safety in crowded
environments. The present work deals with the idea of jointly modeling
simple and complex behaviors to report local and global human activities
in natural scenes. In order to validate our proposal we have performed
some tests with some CAVIAR test cases. In this paper we show some rel-
evant results for some study cases related to visual surveillance, namely
“speed detection”, “position and direction analysis”, and “possible cash-
point holdup detection”.

Keywords: Human activities, simple behaviors, complex behaviors.

1 Introduction

Detecting strange objects and intruders, or tracking people and objects, is essen-
tial for surveillance and safety in crowded environments [21], [9]. Much research
has been dedicated to understanding human activities in the last decade (e.g.
[10], [4]). Advanced visual surveillance systems not only need to track moving
objects but also interpret their patterns of behavior [5]. Generally, these systems
can detect a few simple concepts in video streams. The task of activity recog-
nition is to bridge the gap between numerical pixel level data and a high-level
abstract activity description. Activities analysis consists of feature extraction,
basic activity description and complex activity description. Complex activities
are composed of many single activities with their temporal relations. According
to the features used for analysis, the activity analysis methods can be classified
into three kinds, spatial based (such as shape), motion based (such as trajec-
tory), and spatial-temporal based methods. Many techniques and methods have
been used so far in human activity recognition and understanding. According
to [12], shape features and spatial-temporal features are often used for single
person activity analysis, and motion features can be used for interactive person
activity.
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Bayesian networks have been used to recognize static postures or simple
events. In [13] an activity recognition approach is proposed in which an activity
is decomposed into multiple interactive stochastic processes, each corresponding
to one scale of motion details. In [16] abnormal activities involving two persons
using Recurrent Bayesian networks (RBNs) are detected. Recently, in [29] a novel
unsupervised learning framework to model activities and interactions in crowded
and complicated scenes is proposed. Inspired by the applications in speech recog-
nition, the hidden Markov model (HMM) formalism has been extensively applied
to activity recognition (e.g. [8]). In [2] an automatic technique is proposed for
detection of abnormal events in crowds where the motion models are HMMs to
cope with the variable number of motion samples that might be present in each
observation window. In [25] a Bayesian computer vision system for modeling and
recognizing human interactions using CHMMs and HMMs is described. Another
approach [11] models scenario events from shape and trajectory features using
a hierarchical activity representation, where events are organized into several
layers of abstraction, providing flexibility and modularity in modeling scheme.
In [1] a real-time system to detect context-independent events in video shots is
proposed. In [15], recent approaches of video event understanding are presented.
The importance of the two main component of the event understanding process –
abstraction and event modeling– is also pointed out. Abstraction corresponds to
the process of molding the data into informative units to be used as input to the
event model [26,14,27,22] while event modeling is devoted to describing events
of interest formally and enabling recognition of these events as they occur in the
video sequence [28]. Our approach is closely related to the works of Ivanov and
Bobick [13] and Hongeng et al. [11] in the sense that the external knowledge
about the problem domain is incorporated into the expected structure of the
activity model. Motion-based image features are linked explicitly to a symbolic
notion of hierarchical activity through several layers of more abstract activity
descriptions. Atomic actions are detected at a low level and fed to hand-crafted
grammars to detect activity patterns of interest. Our inspiration also is close to
the paper by [1], as we work with shape and trajectory to indicate the events
related to moving objects.

2 Description of Local and Global Activities

Analyzing a video scene entails two large phases. On the one hand, we have
the first phase in object detection [19], namely segmentation (e.g. [6], [20], [18])
and tracking o (e.g. [7], [17]). This phase consists of capturing images, analyzing
them for shape interpretation and afterwards, recognizing them throughout the
scene. On the other hand, we have the part this work focuses on, namely, scene
interpretation (context recognition), made up of basic actions interpretation,
global behavior interpretation and finally, interpretation of the scene on a global
scale. In our proposal, the purpose of activity description is to reasonably choose
a group of motion words or shout expressions to report activities of moving
objects or humans in natural scenes.
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2.1 Objects of Interest

From the ETISEO (see http://www-sop.inria.fr/orion/ETISEO/index.htm)
classification, four categories are established for dynamic objects and two for
static objects. As for the first, we distinguish between a person, a group of people
(made up of two or more people), a portable object (such as a brief case) and
other dynamic objects (able to move on its own), classified as moving object.
As for static objects, we will distinguish between areas and pieces of equipment.
The latter can be labeled as a portable object if a dynamic object, people or
group, interacts with it and it starts moving.

2.2 Description of Local Activities

In order to generalize the detection process we start with small functionalities
which detect simple actions of the active objects in the scene. Using these func-
tions, we build behavior patterns much more complex and suited for the aims
of each video surveillance system. These small actions are defined by action
indicative queries about the actions performed by an active object (see Table 1).

Table 1. Local activities

Action Origin vertex Destination vertex
Object-like Object speed Makes it possible to define if an object is still, walking, running,

going at great speeds, etc.
Object trajectory Apart from speed, we can obtain the direction and moving direc-

tion of an object.
Environment
interaction

Direction The system must determine if a person is approaching a specific
area of the scenario. By taking the object’s speed and trajectory
as reference, the object’s ultimate goal is inferred.

Position By knowing the important areas of the scenario, the system is
capable of determining the relative position of dynamic objects.
This way, it can detect if a person is standing in one of the areas.

Object inter-
action

Proximity The system must detect the distance between objects.

Orientation The system determines whether an object is approaching another
or whether they are both approaching each other.

Grouping The system uses the parameters generated in the two previous
points to detect object grouping (by taking into account its prox-
imity and direction).

2.3 Description of Global Activities

Interpreting a visual scene is a task which, in general, resorts to a large body
of prior knowledge and experience of the viewer [23]. Through the actions or
queries described in the previous section, we can find out basic patterns (an
object speed or direction) and more complex patterns (e.g. the theft of a purse).
It is essential to define the desired behavior pattern in each situation, by using
the basic actions or queries from the previous section. For each specific scene, a
state diagram and a set of rules are designed to indicate the patterns.

The proposed video surveillance system will be able to detect simple actions
or queries and adapt to a great deal of situations. Also, it will be configured to
detect the behavior patterns necessary in each case and associate an alarm level
to each one which will enable them to be filtered and have a priority associated.
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3 Image Preprocessing

Input image segmentation is not enough to detect the activities in the scene,
other data which are not included (speed and direction) are necessary. Thus, the
system takes the initial segmentation data and infers the new necessary param-
eters. For it, the preprocessing techniques described in Table 2 are necessary.

Table 2. Preprocessing techniques

Preprocessing Details
Speed Hypothesis The average speed for each object is calculated by dividing the displacement

(Δx) by the time that has elapsed (Δt) in each frame.
Direction and Mov-
ing Direction Hy-
pothesis

To find out the direction of objects, we calculate the angle of the straight
line that passes through the positions of the previous and current instants
in each object.

Image Rectification Perspective distortion occurs because the distance between the furthest
points from the camera is less than the distance between the closest points.
The real position is measured through the weighted distance measure of the
four manually placed points closest to the position we wish to interpolate.

Data Smoothing The data taken at two time instants will be separated with enough time
to avoid small distortions but this distance will be small enough to enable
accurate results. We will call this distance between both consecutive time
instants, interval analysis. At each interval analysis, the value of the hy-
potheses is updated, but the old value is not automatically substituted for
the new one. To calculate the value at that instant, we calculate the means
for both values.

4 Specification of Behaviors

4.1 Specification of Simple Behaviors

The system should be able to respond to a series of queries intended to find out
behavior patterns of objects in the scene (see Table 3). These queries are defined
as functions and return a logical value, which will be true if they are fulfilled for
a specific object. They are represented in the following format:

query (parameter1, parameter2, ..., parametern)

4.2 Specification of Complex Behaviors

Patterns at a global level are used to analyze the scene from a general point of
view without focusing on any specific object (detect patterns where more than
one object intervenes).

Local Complex Behaviors. Objects in the scene are associated to a state
machine that indicates the state they are in (what they are doing at that time
instant). This state machine can be seen as a directed graph where the vertices
are the possible states of the object and the edges are the basic functions or
queries previously discussed. An edge has at least one associated outcome of the
assessment (true or false) of a query, indicating an action of object, query qi.
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Table 3. Simple Queries

Type Query Description
Movement-
based

hasSpeedBetween (min, max) It is fulfilled if the object moves at a speed within
the range [min, max].

hasSpeedGreaterThan (speed) It is fulfilled if the object moves at a speed greater
than that indicated in the parameter speed.

Orientation-
based Di-
rection

hasDirection (staticObject) It is fulfilled if the object is headed towards
staticObject, being staticObject a static object
in the scene.

isFollowing () It is true if a dynamic object is following a non-
dynamic object. We use the displacement angle.

Location-
based

isInsideZone (staticObject) It is true if a dynamic object is on the static ob-
ject staticObject.

isCloseTo (distance, staticObject) It is fulfilled if the object is closer than distance
from the static object staticObject.

enterInScene () It is fulfilled when the object appears in the scene
for the first time.

Therefore, an edge can have more than one query associated to it. For an edge
with several actions to be fulfilled, all the associated queries have to be fulfilled.
If a more complex rule is needed, where disjunctions also appear so that an
object changes states, the rule must be divided into two edges.

Global Complex Behaviors. To detect global behavior patterns, more than
just the local state machine from the previous section is needed since only the
state of each object in that machine is reflected separately. These patterns are
represented through state machines which vertices represent a possible state in
the scene. Just like in the local state machine, the edges are made up of a series
of queries that must be fulfilled at a certain time for the scene to change states.

5 Data and Results

In order to validate our proposal we have opted for working with the test cases
that CAVIAR (coming from the EC Funded CAVIAR project/IST 2001 37540,
found at URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/) makes avail-
able for researchers. In fact, the test cases offer ground truth data; this enables
bypassing the segmentation phase and only focusing on the problem of human
activities identification. Of course, due to the limitation in pages of the cur-
rent article, only a very limited set of examples may be provided. Concretely, in
this paper we show some relevant results for the following study cases: “speed
detection”, “position and direction analysis”, and “possible cashpoint holdup
detection”. This is a usual approach (e.g. [3], where the detection and classifi-
cation of fighting and pre and post fighting events when viewed from a video
camera is investigated).

5.1 Image Preprocessing

We select the first frame in any scene as backdrop image to make the placement
of control points and fixed objects easier. Control points are used to compensate
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Fig. 1. Test environment for CAVIAR. (a) Position point maps. (b) Fixed objects in
the scene. (c) Labeling of a static object in the scene. (d) Labeling of a dynamic object
in the scene.

image distortion caused by the perspective and camera lens. Control points are
interpolated using the four reference positions provided by CAVIAR (see Fig
1a). After creating the point map, we point out the fixed objects in the scene
that will interact with the dynamic objects (as shown in Fig. 1b). In Fig. 1c
and 1d, you may find examples of the labeling of a static object and a dynamic
object, respectively, in the scene.

5.2 Speed Detection

In this case, we detect if the person starts running or moves slowly. To do this,
we use the queries “hasSpeedBetween” and “hasSpeedGreaterThan” with their
associated local state diagram (see Fig. 2a). When adjusting the alarm level to I
and analyzing scene Browse2 (series Browsing, case Person browsing and reading
for a while), we get the output shown in Table 4. If the alarm level is adjusted to
II and scene Fight_RunAway1 (series Two people fighting, test case Two people
meet, fight and run away) is analyzed, we get Table 5 as output. As shown, the
application has detected the time when the two people started running.

5.3 Position and Direction Analysis

A configuration was designed for the purpose not only to analyze the position
of people in a scene, but also to predict if someone is headed towards a specific
position. Queries “isInsideZone” and “isCloseTo” are used to detect position
and query “hasDirection” in order to generate a direction hypothesis. Fig. 2b
shows the automaton that detects if someone is headed towards or is at the
wastebasket, the leaflets, the seats or the cashpoint. Tests on three different
scenes have been run. Table 6 shows the results from the analysis of scenes
Rest_InChair, Browse2, and Browse3.
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a) b)

Fig. 2. Local diagrams. (a) Speed detection. (b) Position and direction analysis.

There are false positives in the last two tests. They are in the 14th second of
test case Browse2 and in the 15th second of test case Browse3. Indeed, object
3 was not going to the wastebasket but the direction of the object at that time
made it seem like it could be going there. To avoid this, we could add another rule
to edge direction to avoid predicting a possible target if the object is too far away.
We could add an “isCloseTo” query to act along with queries “hasDirection” and
“hasSpeedGreaterThan”.

Table 4. Results of speed detection in scene “Browse2”

Time Object State Alarm Time Object State Alarm
0:00:00 0 Stopped I 0:00:12 3 Walking I

1 Stopped 3 Wandering
1 Wandering 0:00:13 3 Walking I

0:00:01 1 Walking I 0:00:14 3 Wandering I
0:00:04 1 Wandering I 0:00:15 3 Walking I
0:00:05 1 Stopped I 0:00:21 3 Wandering I

1 Wandering 0:00:22 3 Stopped I
0:00:06 1 Walking I 0:00:30 3 Wandering I
0:00:07 2 Walking I 3 Walking

2 Wandering 0:00:33 3 Wandering I
2 Stopped 3 Stopped

0:00:09 1 Wandering I
2 Wandering

5.4 Possible Cashpoint Holdup Detection

It is also possible to design configurations able to detect suspicious behaviors.
Here is an example pertaining to a situation related to a cashpoint. First, a local
state diagram is created to detect the different ways of getting to the cashpoint.
With this graph, we will be able to know if someone is going to the cashpoint,
how fast he/she is going and if he/she is already next to the cashpoint. In the
local state diagram shown in Fig. 3a, we see how a person can go into three states
from the initial state: going towards the cashpoint slowly, walking or running.
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Table 5. Results of speed detection in scene “Fight RunAway1”

Time Object State Alarm
0:00:15 7 Running II
0:00:16 6 Running II

Table 6. Results of position and direction analysis in scenes “Rest InChair”,
“Browse2” and “Browse3”

Scene Time Object State Alarm
Rest InChair 0:00:13 1 GoingTowards (seats) II

0:00:16 1 InsideZone (seats) III
Browse 2 0:00:14 3 GoingTowards (wastebasket) II

0:00:16 3 GoingTowards (cashpoint) II
0:00:21 3 CloseTo (cashpoint) III

Browse 3 0:00:15 3 GoingTowards (cashpoint) II
0:00:20 3 GoingTowards (leaflets) II
0:00:20 3 CloseTo (leaflets) III

a) b)

Fig. 3. Holdup at a cashpoint. (a) Local diagram. (b) Global diagram.

Thus two parameters are controlled, a person’s speed and whether or not a
person is going to the cashpoint.

Once the local state diagram has been created, we go on to behavior pattern
specification at global level in the scene. Fig. 3b shows how the automaton is able
to detect the suspicious behaviors described. Indeed, the diagram of Fig. 3b can
detect suspicious behaviors, such as when there is someone at the cashpoint and
someone else approaches him/her slowly. It can also detect if there is someone
at the cashpoint and one or more people run towards him/her. Lastly, it can
detect possible vandalism at the cashpoint. It will detect if one or more people
run to the cashpoint and there is no one using it.

6 Conclusions

In this paper, an approach to human activities detection in complex scenarios
has been presented. The approach describes two levels in which activities should
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be considered: local activities are necessary to generalize the detection process;
and global activities are used to detect behavior patterns that involve not only
a single object, but also groups of objects (or even the whole set of objects) in
the scene. Some parameters must be inferred from the objects in the scene, such
as speed or direction. The system takes the initial segmentation to calculate
these parameters. Next, a set of queries are proposed in order to specify simple
behaviors (to detect movement, orientation and location of the objects), and
complex behaviors (where one or several objects intervenes).

In comparison to other approaches, such as Bayesian Networks or HMMs [24],
our proposal is not able to model uncertainty in video events; but it is presented
as a useful tool in video event understanding because of its simplicity, its ability
to model temporal sequence and its ability to easily incorporate new actions. The
results obtained so far are promising and we are currently engaged in performing
test with real segmented data taken from different scenarios.
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Abstract. In this paper we present a method for automatic body model
adjustment and motion tracking in multicamera environments. We intro-
duce a set of shape deformation parameters based on linear blend skin-
ning, that allow a deformation related to the scaling of the distinct bones
of the body model skeleton, and a deformation in the radial direction of
a bone. The adjustment of a generic body model to a specific subject
is achieved by the estimation of those shape deformation parameters.
This estimation combines a local optimization method and hierarchical
particle filtering, and uses an efficient cost function based on foreground
silhouettes using GPU. This estimation takes into account anthropomet-
ric constraints by using a rejection sampling method of propagation of
particles. We propose a hierarchical particle filtering method for motion
tracking using the adjusted model. We show accurate model adjustment
and tracking for distinct subjects in a 5 cameras set up.

1 Introduction

The capture and analysis of the motion of a human body is applied in a variety of
fields such as bio-mechanical analysis, human computer interaction, ergonomics
or character animation in films or video games. Markerless human motion cap-
ture has been an active research area for the last decade due to an increasing
interest for non intrusive methods, those not requiring markers or sensors, that
may spread the use of motion analysis outside laboratory environments [1].

Markerless motion capture (MMC) systems use models composed by the body
shape representation and an articulated skeleton. These models should fulfill the
anthropometric profile (AP) of the specific subject tracked in order to achieve
an accurate pose estimation.

On one side, some authors use models based on separate rigid shapes, as
cylinders [2], ellipsoids [3], that depend on a few parameters. Then, these geo-
metric primitives are adjusted to the specific subject AP. Mikić in [3] proposes
a method of adjustment of the model using Bayesian networks to model body
part proportions.

On the other side, surface-based models employ a single surface for the en-
tire body. Triangular meshes are an efficient representation of surfaces and can
describe the body shape with fidelity, making them a common choice for body
representation in MMC systems [4],[5]. The surface mesh of the tracked subject
may be acquired by either a laser scan [4] or a multiview reconstruction algorithm
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[5], and then a skeleton is attached to it, using an automatic rigging algorithm
[6]. An alternative, more suitable for certain applications or environments, is to
adjust a generic anthropomorphic mesh and skeleton to the specific subject, de-
forming the mesh according to a set of parameters related to distinct body parts.
Anguelov et al. [7] propose the SCAPE method to model deformable surfaces,
which is based on models of pose and body shape variation that are learned from
a database of 3D scans. The SCAPE model is used for human motion analysis
in [8], where it is also automatically adjusted to the specific subject. Bandouch
et al. [9] use the RAMSIS model, whose design has been guided by ergonomic
considerations, and it is adjusted manually to the specific subject.

Several approaches use silhouettes of the active people in the scene as image
descriptors to define the matching functions [2], [4], [10]. Silhouettes are insensi-
tive to variations in the surface such as color, and encode significant information
to recover 3D poses. Other methods use matching functions that account for the
intersection between the model and the visual hull of the individual [5], [8], [3],
or measurements based on optical flow [4].

Regarding the estimation method, we can distinguish estimation based on a
single hypothesis, focusing on the efficiency of a local search, or methods main-
taining multiple hypothesis in order to add robustness to errors. Within single
hypothesis (or local optimization) methods, a common approach is to define an
objective function in a least-squares framework [4], and then minimize the func-
tion using a gradient descent approach. Multiple hypothesis based methods, are
generally inspired by particle filtering. In a particle filtering scheme, each parti-
cle or hypothesis has an associated weight, that is updated according to the cost
function. The particles are propagated in time according to certain dynamics and
including a noise component. In the case of human motion, the high dimension-
ality requires the use of many particles to sample with sufficient density the pose
space. A solution to deal with the high dimensionality is to spread the particles
efficiently where a local minimum is more likely. For example, Deutscher et al.
[2] use simulated annealing to focus the particles on the global maxima of the
posterior. Another solution to the problem of the dimensionality is to partition
the space into a number of lower-dimensional spaces [11], [12], [9], considering
the underlying hierarchical structure of the kinematic tree.

In this paper, we propose a method to automatically adjust a surface-based
human body model to a specific subject and then track, using image data cap-
tured by a low number of cameras. The proposal consists in:

– Estimation of the anthropometric profile. We adopt an analysis-by-synthesis
approach, as in motion tracking techniques, but in our case we estimate the
AP of the person together with the pose, which is also determined. To obtain
distinct shape configurations, we propose a mesh deformation technique that
is guided by parameters related to the skeleton bones. Parameter estimation
is achieved by using a local optimization method together with a hierarchical
sampling strategy where anthropometric constraints are taken into account.

– Motion tracking. We present a method for motion tracking using the adjusted
model with a hierarchical particle filtering algorithm.
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For both tasks, model adjustment and tracking, we use an observation model
based on foreground silhouettes, as they provide good information about the
body shape and the cost can be efficiently computed using GPU.

In section 2 we explain the technique used to deform the polygonal mesh ac-
cording to the pose parameters and the shape parameters related to the skeleton
bones. Next, in section 3 we describe the model adjustment and tracking method
proposed. Finally, in sections 4 and 5, we present some results and conclusions.

2 Skeleton Based Deformation Framework

In our work, we adjust a generic body model to a specific subject using multi-
camera information. The body model comprises two components: an articulated
skeleton that describes the kinematic properties and a triangular mesh that de-
scribes the shape. Any mesh of human shape can be used to form the model
surface. Then, the skeleton will be embedded into the mesh using the method
presented in [6]. In this section we propose a method to deform the body model.
Later we use this method to adjust the model to the subject anthropometry.

The body skeleton can be described by the kinematic tree concept, that has
been recently formulated in the context of motion capture in [4]. A kinematic
tree is a set of D reference systems organized in a tree structure, and it represents
the connectivity of the joints and bones of the skeleton. A kinematic chain is an
ordered subset of joints such that all joints are father and son of each other. We
call Λj the kinematic chain that ends at joint j.

The rigid motions associated to each joint can be represented by twists ξj . The
homogeneous matrix M ∈ SE(3), which represents the transformation from the
model reference system to the joint reference system, may be constructed from
a given twist by computing the exponential map as M = exp(θξ̂), where θξ̂ is
the matrix representation of a twist ξ [13].

The rigid body motion associated to a joint can be obtained as the product
of the exponential maps along the corresponding kinematic chain,

Mj =
nj∏
i=1

exp(θΛj(i)ξ̂Λj(i)) (1)

where nj is the number of joints involved in the kinematic chain Λj and Λj(i)
is a mapping that represents the order in the kinematic chain. The parameters
of ξ̂j are known, as the location of the rotation axes for each joint is part of the
model. Thus, the state of the kinematic tree, i.e the pose of the body, is defined
by the joint angles state vector Θ := (θ1, . . . , θD) and the 6 parameters of the
twist ξ0 associated to the model reference system.

We model the skin with a 3D triangular mesh whose vertices can move in space
according to weights assigned to each vertex. The mesh deformation is achieved
with the linear blend skinning (LBS) technique [14]. If vi is the position of the
vertex i, Mj is the transformation of the bone j, and wi,j is the weight of the
bone j for vertex i, the position of the transformed vertex is given according to
LBS as
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v′
i =

D∑
j=1

wi,j(Mjvi) (2)

The skinning weights wi,j are generated with the automatic rigging software
Pinocchio [6]. The weights are proportional to the distance from the vertex to
the bone, and vary smoothly along the surface. These weights are normalized
such that

∑D
j=1 wi,j = 1.

2.1 Shape Deformation

In order to obtain different configurations of the shape and pose of the model,
the LBS technique for deformation of the skin mesh is applied for three types of
transformations M (see Figure 1) related to the bones of the skeleton:

– Pose deformation: The mesh is deformed to achieve a specific pose rep-
resented by the state vector Θ, where the bone transformations Mj are
obtained by the product of maps described in equation 1. Then the final
position for each vertex can be computed using equation 2.

– Scale deformation: In this case, the mesh is deformed according to the scaling
of a bone of the skeleton. Consider a bone j with length L that is scaled such
that its final length is L′ = (1 + αj)L. Then, the transformation associated
to a bone Mj corresponds to a translation along the direction of the bone,
by an amount of translation L′ − L. Note that scaling a bone implies that
the resulting translation must be applied also to the child joints along the
corresponding kinematic chain. Once the translation matrices for each bone
are already defined, the new position for the vertices of the mesh can be
computed again as in equation 2.

– Deformation in radial direction: The mesh also can be deformed along the
radial direction of the bone. In this case, we compute a translation direction
ti,j for each vertex of the mesh i and bone j, defined as the direction from
the vertex position vi to the closest point on the considered bone j. For
each vertex and bone we obtain Mi,j , as the transformation equivalent to
the translation βjti,j . The parameter βj is the radial scale associated to the
bone j. In this case, the vertex positions are obtained in the same way than
for LBS described in equation 2 but, in this case the transformation matrix
Mi,j is specific for each vertex and bone.

This type of deformation is slightly modified to account for radial defor-
mations predominant along a certain direction. This is useful for example
for the torso, where we can apply deformations along x or y independently,
to describe torso width or depth. To obtain this type of deformation, the
translation ti,j is weighted by its scalar product with the main direction of
the deformation.
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(a) (b) (c)
(d)

Fig. 1. Shape deformations associated with left upper arm bone (in red, edges whose
vertices have wi,j > 0.1) (a) Model at default configuration. (b) Pose deformation. (c)
Scale deformation. (d) Deformation in radial direction.

3 Motion Capture Method

We propose a method for markerless motion capture with automatic model ad-
justment to the AP of the specific subject tracked. The model adjustment fo-
cuses on the estimation of the shape parameters for a single initialization frame,
assuming that the pose is approximately known. Once the model is adjusted,
the motion tracking is performed using this model. Both tasks, adjustment and
tracking, have to deal with the high dimensionality of parameters to estimate
and a multimodal observation model. Another important consideration is that
the system has to deal with noisy measurements and ambiguities in the observa-
tion of the distinct body parts due to occlusions or misses of detection. For this
reason, although we use a local optimization method for initialization, the esti-
mation of the parameters is mainly performed with stochastic methods. Thus,
formulated in probabilistic terms, the goal is to determine the posterior proba-
bility distribution over human poses and shape parameters, conditioned to the
image measurements.

Several variations of particle filters have been demonstrated to cope well with
the inference of the posterior distribution. A main drawback in particle filtering
methods is that the amount of particles needed to achieve successful results grows
exponentially with the number of dimensions, which make them computationally
unfeasible. The hierarchical particle filter (HPF) [9], [12], also introduced as
partitioned sampling [11], is based on a hierarchical decomposition of the pose
space, so that different subparts are estimated independently. This approach
aims to solve the mentioned problem of the dimensionality, and has been applied
successfully for full body motion tracking. We propose hierarchical sampling
strategies both for the model adjustment and for motion tracking. The same
observation model is used for both tasks, modeled with the silhouette XOR cost
function, described in following section.

3.1 Silhouette XOR Cost Function

The silhouette XOR cost function measures how close a given pose/shape hy-
pothesis for the body is to the input foreground silhouettes. The number of
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Table 1. Anthropometric entities size parameters (mean Mk and variance σ2
k) used

to model the probability of acceptance of a particle

Anthropometric Entity Mk σ2
k

shoulder height 140.0 17.0
head 25.0 5.0

clavicles 35.0 7.0
arms 55.5 10.0

Anthropometric Entity Mk σ2
k

upperarms 25.5 4.0
lowerarms 30.5 10.0

legs 90.5 17.0
torso 52.0 8.0

evaluations of the cost function is very high, thus an efficient implementation
of the cost function is decisive for system performance. The function we imple-
ment performs a pixel-wise XOR between the input image silhouettes and the
rendered model silhouettes. This function is implemented in graphics hardware
as proposed in [10].

First, the silhouettes of the input images are obtained by a background sub-
straction technique. We use the Running Gaussian Average technique [15] to
substract the background. Then, shadows and highlights are removed with the
method proposed by Xu et al. [16]. Once foreground is detected, for each of
the cameras we perform an XOR between the foreground silhouette from this
camera and the model rendered on that view. The sum of all non-zero pixels
resulting from this operation is the cost associated for this camera. We use the
OpenGL stencil buffer and its associated operations to perform the XOR, so we
can exploit the parallel processing of the GPU. Using an 8-bit stencil buffer we
can perform the XOR operation for up to 8 cameras, obtaining the result with
a single read of the stencil buffer. In this way, we can reduce the amount of
memory transferred from the GPU to the CPU.

3.2 Model Adjustment

For the model adjustment we can use any generic mesh model of anthropo-
morphic shape with an attached skeleton previously rigged [6]. The number of
parameters that conform the shape of the body is high, as they consist in the
shape deformation parameters αj , βj for each bone, that we described in sec-
tion 2.1. There is also a dependence of these parameters with the pose, in the
way that the pose should be refined in order to obtain the optimal bone scale
parameters. To tackle this estimation problem we combine a local optimization
method with a hierarchical sampling strategy.

At the initial phase we perform a sequence of optimization steps using Pow-
ell’s method [17] to adjust the pose and global scale of the model, assuming a
known initial pose. In this case, we split the variables of each limb in separate
optimization steps, which helps avoiding local minima, as proposed in [10].

Next, a hierarchical particle filter estimates the scale and radial deformation
parameters (αj , βj) for each bone, starting with the skeleton and shape obtained
by the local optimization explained above. The pose variables are also considered
in the estimation, as a pose refinement is needed while estimating the scale of
bones. The partition of the search space is designed such that the scaling of the
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bones does not affect hierarchically preceding scale parameters. Also the vari-
ables are grouped to conform meaningful anthropometric entities and to respect
symmetry (see Table 1). For example, a meaningful anthropometric entity com-
monly considered in anthropometric studies is the shoulders height. To estimate
the shoulders height all bones of the torso and legs are scaled together with
the same parameter. In a similar manner, for example, variables are defined for
clavicles, arms, legs and head scale. We denote by Φ the anthropometric entities
configuration vector, which consists of mappings to the variables αj and βj .

The hierarchical sampling method proposed is implemented as presented in
previous works [9], [11], performing the propagation, evaluation and resampling
steps for each of the levels of the hierarchy.

A particularity in our method is the propagation model we propose, which
is based on the rejection sampling concept, and it is configured according to an
anthropometric measurements database. The rejection sampling process oper-
ates as follows. Let us denote by {(s, π)i}h the set of N particles at the layer h,
where s is an instance of the model configuration that consists of anthropometric
entities and pose variables, s ∈ {Φ ∪ Θ}, and π is the particle weight.

At level h, candidate particles s̆i are created from each particle si adding Gaus-
sian noise as s̆i = si + N, where N is a multi-variate Gaussian random variable
with mean 0 and diagonal covariance matrix Σ = diag{αhσ0, α

h−1σ1, . . . , σh}.
We denote by σh the variances associated to the variables considered at each
level h, and α is a variance decay rate (α < 1).

The probability of acceptance for a candidate particle is defined depending
on the size of distinct anthropometric entities. The size of each anthropometric
entity k is modeled with a Gaussian distribution N (Mk, σ2

k) (see Table 1). For
a given candidate particle s̆i we calculate the actual sizes Lk for all the anthro-
pometric entities k ∈ {0, . . . , M − 1}, and we compute a candidate probability,

P (̆si) =
k=M−1∏

k=0

e
−( (Lk−Mk)2

2σ2
k

)
(3)

Then, a candidate particle is accepted if

P (̆si) > τP (si) (4)

where τ is the acceptance rate (experimentally, we set τ = 0.7 ). We continue
generating candidates until they fulfill the condition in equation 4, or we exceed
a number of trials.

3.3 Motion Tracking

In order to track motion using the adjusted model, we implement the hierarchi-
cal particle filter, as already described above, but in this case only considering
the pose space. We consider a partition of the pose space in 7 levels. The first
layer estimates the global translation and rotation of the body. Next two lay-
ers estimate upper and lower leg joints. The rest four layers are dedicated to
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Model adjustment. (a) Model set at the initial configuration. (b) Model after
global scale and pose estimation using Powell method. (c) Model after shape and pose
parameters estimation ({Φ ∪ Θ}) using the hierarchical particle filter. (d,e,f) Model
adjustment for distinct subjects.

the arms estimation, where we split the variables between upper and lower arm
joints, and for the left and right arm independently. The propagation is modelled
adding Gaussian noise as for model adjustment, but in this case we do not apply
the rejection sampling approach, so all propagated particles are accepted.

4 Experimental Results

The method presented has been evaluated in a smart room environment with 5
cameras capturing at 25 fps. Ground truth data is not available, thus we cannot
measure the model fitting quality or pose tracking errors, and we rely on visual
inspection.

For the model adjustment, the subject is expected to adopt a pose with the
hands up, the legs slightly open, looking at a predefined direction. The initial po-
sition is computed from the visual hull centroid (generated with the available sil-
houettes), and the model is scaled to fit the visual hull height. In figure 2.a we show
the model set at the initial position and scale. Note that, as the initial pose is not
exactly the subject pose, placing the model at the visual hull centroid is not ac-
curate. After the optimization of the pose and global scale using Powell’s method
(Figure 2.b) the model is better adjusted, but for example, arms length and head
size does not correspond with subject anthropometry. After the estimation of the
shape parameters using the HPF (Figure 2.c) the model accurately fits the subject.
Note that the model does not consider wrist joints and hands, thus those parts are
less accurate. Figure 2(d,e,f) shows the adjusted model for different subjects.

With respect to the motion tracking, we tested the adjusted model for several
subjects performing different activities in the smart room, as walking around,
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Fig. 3. Motion tracking using the HPF with 500 particles and 7 layers

raising hands, jumping, crouching or sitting. We obtain successful results and the
method performs accurately, except for fast movements, as in jumping actions,
or when crouching, that several body parts appear self-occluded. The method is
robust, recovers well from errors and the track is not lost in our tests for more
than 3000 frames. In figure 3, we show several screenshots while performing some
of those actions (each row shows a different subject)1. The processing time is
∼ 25 sec. for a single frame, when using 500 particles.

5 Conclusion

We have introduced a mesh deformation framework that allows to adjust an an-
thropomorphic mesh to a specific subject shape. We have presented a method to
automatically obtain the shape deformation parameters using foreground silhou-
ettes. The hierarchical particle filtering method introduced allows to overcome
the problem of the high dimensionality of the search space. Also, the anthropo-
metric constraints introduced in the propagation of the particles allow to obtain
feasible human shapes in case of ambiguities in the observation model, caused
by self-occlusion or foreground detection misses. We have shown accurate model
adjustment for several different subjects. These adjusted models allow for robust
tracking using also HPF.

Future work involves testing the adjustment method with more subjects and
different initial poses. The benefits can be twofold. On one side, more tests can
provide information to reduce the set of parameters to estimate, by analysing the
principal components over a population of AP’s. On the other side, the study of
1 Video available at http://gps-tsc.upc.es/imatge/_Marcel/adjustment.html

http://gps-tsc.upc.es/imatge/_Marcel/adjustment.html
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the adjustment with different initial poses will be useful to extend the presented
method to perform the AP acquisition during motion sequences.
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Abstract. We describe a posture estimation system based on Organic
Computing concepts, which learns a generic body model from video input
in a self-governed manner. We show experimentally that the constructed
model generalizes well to different attire and persons.

1 Introduction

Analyzing human body poses by mere observation is a topic of growing inter-
est in computer vision — with application potential ranging from surveillance
over man-machine communication to motion picture animation. Yet, the artifi-
cial pose estimation (PE) approaches developed over the last two decades are
nowhere close to matching human visual skills. This may be due to different
working principles of artificial and biological vision systems. In the following,
we aim at levelling these differences by Organic Computing (OC) concepts, in
short, the attempt to make artificial systems more self-organized in their be-
havior [1]. In particular, we propose a PE system that acquires knowledge in
a completely unsupervised manner directly from video input; this knowledge is
then generalized to novel situations, mimicking human skills in ‘non-trivial’ and
continuous learning [2]. We build on work done by [3,4] to assemble autonomously
acquired visual data into a higher-level meta model for the acquired knowledge.
After training on videos of a moving human’s upper body the resulting model
is shown to generalize well to different movements, attire, and individuals.

2 Method

In the following, we assume a segmentation method that reliably extracts non-
rigid upper human body parts in a completely autonomous manner from simple,
fronto-parallel, monocular input streams. The method is further presumed to
extract connections between the single limbs (the upper body skeleton) coevally
and to learn the distribution of relative body joint angles. We ignore the neck
joint here, as rotational motion orthogonal to the image plane is hard to cap-
ture in a monocular setting and significant in-plane motion of the head relative
to the torso is rare. Such a system has been proposed by [3] and [4]; other ap-
proaches (e. g. [5]) could, with modifications, also be employed for non-rigid limb
segmentation and skeleton construction.
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Let Mq = {Lq,Jq,Dq} describe an upper body model extracted from input
sequence q, where Lq =

{
Ll

q

}
with l = 0 . . .NL − 1 represents the NL body

part appearance templates acquired from sequence q. Information concerning
the kinematic skeleton structure of Mq (relative joint locations, connectivity)
is stored in Jq. Eventually, the distribution of relative joint angles for each
skeleton joint (learned from all frames of sequence q) is stored in Dq. Appearance
models are retrieved from all input frames between an initial frame fB and a
stop frame fE. Then each Ll

q holds a separate appearance representation of limb

l for each valid frame f of video stream q, such that Ll
q =

{
llq,f

}
, f ∈ [fB, fE ].

Moreover, pl
q,f contains the pose (x, y, orientation, scale) of limb l in sequence q

for frame f ; stored in world coordinates. By letting llq,f =
{
sl
q,f , cl

q,f

}
, we point

out separation of limb appearance templates into a shape map sl
q,f and an RGB

color map cl
q,f defined for each valid input frame of sequence q. The shape map

with values in [0,1] measures the relevance of each pixel to the limb’s shape.
Assume that limb segmentation is applied to NQ input video sequences, result-

ing in a data set M = {M0, . . . ,MNM−1} of NM = NQ separate upper body
models, which differ significantly w.r.t. clothing, motion patterns and slightly
w.r.t. illumination. Self-occlusion of the limbs and variation of the depicted sub-
ject are not allowed in this segmentation stage of the learning algorithm.

In the following, we consolidate the models in data set M into a single meta
model, that represents the upper human body on a more abstract level while
preserving pertinent features that characterize human appearance. Such a meta
model is predestined to show good generalization during matching: it focuses
on salient features typical for human beings (mean limb outline, persistent color
patches on head and hands), while generalizing well across meaningless details
like cloth color and deformation, illumination, and motion patterns.

Meta model generation is based on two subprocesses: intra-sequence limb pro-
totype generation and inter-sequence limb prototype construction ; borrowing
from the biological paradigm [6], formulation of these prototypes is based on the
evaluation of shape and color features in the input streams. Note that prototyp-
ing techniques are not unchallenged when it comes to body model construction
and matching; [7] proposes, for instance, an interesting exemplar-based approach
to detect animal or human body models in given image data. Furthermore, it is
still discussed if human concept building capabilities foot on mental prototypes,
exemplars or some different information management paradigm [8]. We decided
in favor of the prototype approach here, as it principally allows to handle unlim-
ited amounts of input data while keeping the memory footprint well-arranged
and information retrieval times rather small.

2.1 Intra-sequence Limb Prototypes

Intra-sequence limb prototypes are rather straightforward to construct; for a
dedicated limb l̂ in input sequence q̂, they unify the content of shape and color
information memories ll̂q̂,f from all valid frames f = [fB . . . fE].
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Shape prototypes. Formulating a shape prototype for a structure that deforms
as vividly as a dressed limb is not trivial. Landmark-based methods, which are
quite standard to derive mean shapes and deformation modes from deformable
objects (e. g. point distribution models [9]) are not applicable in the current
context, as landmark finding would have to rely on human intervention, thereby
spoiling any previous attempts to maximize system autonomy. Further, auto-
matic landmark finding procedures are, due to significant deformation of the
body parts, not reliable enough to replace manual annotation. For these rea-
sons, we choose a different approach to arrive at a fuzzy ‘mean’ shape of the
observed limb templates; our method is based on Gaussian voting and remotely
inspired by the approach presented in [10]; inherently capitalizing on knowledge
of limb poses in each valid input frame.

For the following discussion, focus, without loss of generality, on a single limb
l̂ in a given sequence q̂; it is quite natural to treat pl̂

q̂,fB
as the reference pose

of the processed limb. With that, set up two different operators: first, let G (·)
define a Gaussian blur operator with standard deviation σB = 5.0. Applying
this operator to an arbitrary shape map sl̂

q̂,f dilutes the formerly crisp body
part outline. Additionally, install a registration operator R (·) that projects limb
shape map sl̂

q̂,f from any valid frame f back to frame fB.

Given this foundation, setting up the intra-sequence shape prototype s∗ l̂
q̂ for

limb l̂ in sequence q̂ can be formulated as a ‘Gaussianized voting’ procedure:

s∗l̂
q̂ = G

(
sl̂
q̂,fB

)
+

fE∑
f=fB+1

G
(
R
(
sl̂
q̂,f

))
. (1)

While the ‘voting’ terminology had been lent from [10], the ‘Gaussian’ tag em-
phasizes our method of blurring the limb shapes prior to summation. This pro-
cedure to some degree compensates for the vivid cloth deformation behavior and
results in smooth, naturally looking prototypical intra-sequence shapes. Eventu-
ally, the shape prototype is normalized (i.e., rescaled, such that the maximum
summed voting value becomes 1.0), then the 25% weakest votes are removed to
exclude spurious shape elements from further consideration. The resulting final
intra-sequence shape prototype is re-normalized.

Color prototypes. To arrive at the intra-sequence color prototypes, a different
strategy is employed: first, given the reference pose pl̂

q̂,fB
, reuse registration

operator R (·) to project a limb color map cl̂
q̂,f from any valid frame f back to

frame fB. Let the intra-sequence color prototype be

c∗ l̂
q̂ =

1
(fE − fB + 1)

⎡⎣cl̂
q̂,fB

+
fE∑

f=fB+1

R
(
cl̂

q̂,f

)⎤⎦ . (2)

i.e., the intra-sequence color prototype for limb l̂ is the mean of all sampled
color observations for this body part. Note that this procedure necessarily blurs
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the prototype, due to slight tissue and more significant cloth deformation. Yet,
this blur does not severely distort the fundamental color distribution of the
prototypical limb and is tolerated henceforth.

Given the intra-sequence limb prototypes, we combine these relatively spe-
cialized descriptors into more abstract inter-sequence body part prototypes that
show better generalization capabilities.

2.2 Inter-sequence Limb Prototypes

We now return to the meta model announced above: the limbs of this generic
body description essentially represent the sought-after inter-sequence prototypes.
To avoid notational confusion, let these limbs henceforth be termed meta limbs,
whereas the joints of the meta model are termed meta joints from here on.

Initially, the meta limbs are instantiated with the shape/color prototypes of
the primary model M0; also the meta joint structure (i.e., the skeleton of the
meta model) is copied from the primary model. With that, define a procedure
that aligns every subsequent model Mn, n = 1 . . .NM −1 with the current meta
model Mmeta. For simplicity, we focus on a single subsequent model Mm̂ in the
following. The alignment procedure first performs simple model matching (based
on routines described in [4] and section 2.4) to identify limb correspondences
between the meta limbs and the body part prototypes in Mm̂. Using these
results, the limbs of Mm̂ are eventually aligned with the meta limbs; further,
the skeleton structure of the subsequent model is rearranged to coincide with
the skeleton structure of the meta model. Note that during these processes, limb
and joint characteristics (i.e., limb orientations, relative joint angles) of Mm̂ are
appropriately adopted. With both models completely aligned, information from
Mm̂ can be used to update the current meta limbs and the skeleton structure
of Mmeta.

Shape prototypes. To transfer limb appearance information from Mm̂ to
the meta limbs, the approximate alignment established above is not sufficient;
it, however, constitutes a good basis for further registration refinement: define
an operator ICP (·) that applies the well-established 2D iterative closest point
methods of [11] (accelerated according to [12]) to fine-register the limb shape
prototypes of Mm̂ to their corresponding meta limbs. To keep computational ef-
fort at bay, we here perform shape registration on a thinned shape representation
(thinning algorithm after [13]). With that, the inter-sequence shape prototype
s∗ l̂

meta for a certain meta limb l̂ can be constructed from NQ input sequences as
follows

s∗l̂
meta = s∗ l̂

0 +
NQ−1∑

i=1

ICP
(
s∗ l̂

i

)
, (3)

i.e., the meta limbs fuse shape information from the single models by plain
superposition of the previously learned, registered intra-sequence prototypes.
Normalization (s. above) and removal of the 25% weakest votes yields the final
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Fig. 1. Effect of limb flipping: the right image shows significantly better matching
performance, as the left forearm is flipped orthogonally to the image plane

meta limb shape. Obviously, this procedure favors stable shape parts (which
persist throughout all input sequences), whereas cloth induced deformations are
largely suppressed.

Color prototypes. Deriving persistent color information from the captured
models is somewhat more involved. First, assume that the above ICP operator
results can be reused to register the color representation c∗ l̂

q̂ to its corresponding
meta limb which had been learned from all sequences 0 . . . q̂−1. Derive a binary
persistent color mask P l̂

q̂(x) that takes on values of 1 where color features within
the current meta limb and the registered intra-sequence prototype coincide. We
construct this mask by performing a windowed (15×15 pixels window size), color
histogram-based correlation, setting mask pixels x to zero whenever correlation
scores drop below 0.25. The resulting mask is then slightly eroded to prevent
learning from border sites. Note that the histogram correlation presumes the
limb color maps to be given in HSV color space. Choice of this color space
allows to exclude the value (V) component from further consideration, rendering
histogram-based processing more robust w. r. t. illumination variations [14].

Using P l̂
q̂(x), a color prototype accumulator cl̂

acc is iteratively constructed from
all models in M:

1. Primary model initialization:

cl̂
acc ← c∗ l̂

0 .

2. For each subsequent model Mi ∈ M : (i = 1 . . .NM − 1)

cl̂
acc(x) =

{
cl̂
acc(x) + ICP

(
c∗ l̂

i

)
(x) if P l̂

i (x) > 0

0 else
. (4)
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Fig. 2. Results of JSEG (center) and EDISON (right) edge segmenters on the image
on the left; parameters are chosen according to [18] and [19], respectively

At each iteration i, prototypical color information c∗ l̂
meta for meta limb l̂ can

trivially be instantiated

c∗ l̂
meta =

cl̂
acc

i + 1
(5)

and used for determining P l̂
i+1(x). Note that the above correlation threshold

is quite generous, allowing for a significant number of ‘false positive’ persistent
color regions to evolve during each model update cycle. However, by learning
from multiple limb instances displaying vividly varying cloth colors, the true
persistent color patches (e. g. hands and head) will eventually pop out.

2.3 Meta Skeleton Retrieval

Compared to the prototyping approaches used for shape and color features,
skeleton prototyping is straightforward. Whereas the overall meta skeleton is
necessarily identical to the primary model’s skeleton w.r.t. connectivity, relative
locations of the meta joints are found by averaging the relative joint locations
from all Ji, with i = 0 . . .NM − 1. Similarly, the distribution of relative meta
joint angles is learned by aggregating Di for i = 0 . . .NM − 1.

2.4 Meta Model Matching

To match the fully evolved meta model to novel input images, we employ a
pictorial structure (PS) matching scheme similar to the one proposed by [15].
Due to the tree-like structure of the learned models, this dynamic programming
approach allows to speed up model matching significantly while guaranteeing
to yield globally optimal results. [4] gives an overview of the employed baseline
scheme; here we enhance their approach in several aspects: first, we allow the
matching algorithm to not only find the location (shift, rotation, scale) of each
meta limb, but also to infer if a body part is flipped or not. This enables the
system to cope with kinematic flips (terminology chosen in allusion to [16]). Such
flips occur due to the 3D nature of the captured scenario and have to be taken
into account to allow analysis of a broader range of body postures. It is assumed
that each body part can only be flipped orthogonal to the image plane (around
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Fig. 3. Final color cue map produced by the left meta forearm for the input image on
the right

the limbs’ major principal axis); the limits and angular statistics of each joint
attached to the flipped body part are updated automatically. Fig. 1 clarifies the
importance of flipping capabilities in our system.

Second, matching reliability is increased by refining the matching cost func-
tion constructed in [4]: shape matching cost is now computed using the oriented
Chamfer distance (cf. [17]) between the meta limb shapes and a line segmen-
tation of the given query image. The stand-alone JSEG [18] algorithm utilized
in [4] to generate this line segmentation has been replaced by the EDISON [19]
image segmentation scheme that is fully integrated into our system. Quality of
line images generated by EDISON perceptually compares to or even outperforms
the JSEG output (cf. fig. 2). Note that we outsource oriented Chamfer calcula-
tions to the GPU (using a CUDA-based implementation), to compensate for the
increased computational effort inherent to this more powerful approach. To save
computation time, the above fuzzy meta shapes are thinned (as above, thinning
algorithm from [13]) prior to being used for oriented Chamfer matching.

Adding up to the above, it is straightforward to exploit the persistent color
feature stored in each meta limb for derivation of a per-limb color cue map:
for that, we first transform the RGB representation of the query image to HSV
color space. Let then W(x) define a window (7×7 pixels) centered at position
x in the HSV representation of the query image. Assume that an HS-histogram
can be derived (during a batch-processing step not described here due to the
page limit) from the meta limb’s persistent color regions. A similar histogram is
deemed available for the window patch. We again drop the V-component during
histogram construction for better invariance to illumination variation. The map
value at x is then calculated as the correlation of the two HS-histograms. To get
rid of spurious elements, we apply a threshold of 0.1, and a Gaussian with σ = 5.0
is centered at each surviving map entry, to account for possible wrong negative
color detections. Loosely following [20], the final color cue map is used (after in-
version and re-scaling) to define an additional color matching cost that backs up
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the shape cue described above and renders overall matching behavior more ro-
bust. An exemplary color map is shown in fig. 3.

3 Experimental Results and Discussion

After learning from different sequences of one person, we matched the model
into still images of different persons under different lighting conditions and with
different backgrounds. The results in figure 4 demonstrate the generalization ca-
pabilities of the model. The system is able to produce good inference of body
posture even in situations it had never been intended for and shows good gener-
alization capabilities in the presence of significant background clutter, regardless
of subject identity. So far, we have demonstrated the successful analysis of still
images. A quantitative analysis on the basis of hand-annotated images is cur-
rently under way.

Several 2D approaches for human posture identification have been employed.
In [21] a cue combination similar to ours is used to achieve robust limb match-
ing from a manually trained model. [22] and also [23] present learning-based
approaches for posture estimation based on pictorial structures with model ini-
tialization as well as body predetection based on human hand-crafting and do-
main knowledge. Further, spatio-temporal constraints are exploited to make pos-
ture recognition more reliable, which prevents their systems from analyzing still
images. [24] strive to solve the pose estimation problem on single, 2D input
images; their technique shows impressive capabilities, yet also relies on higher
level domain knowledge provided by human supervisors. In contrast, our sys-
tem autonomously achieves acquisition of similar knowledge (e.g., color cues or
kinematic constraints). [5] learns body models (of humans and animals) with
occlusions in a fully autonomous way from video input. Their approach could
serve for limb segmentation in our framework, but does not extract an explicit
skeleton, and the tuning of a significant number of parameters appears tedious.
In [25], a pictorial structure model is learned from input data, while the input
is already hand-labeled (contradicting OC ideas) and the learned PS model’s
rectangular shapes inevitably display less detail than our meta limbs.

The system proposed in this work complies with Organic Computing direc-
tives in that all required model information is generated autonomously; achieved
generalization performance is good, as demonstrated experimentally. These en-
couraging results notwithstanding several improvements are required. Creation
of the meta model depends on the order of video presentation, an effect that
needs to be quantified and eliminated by appropriate modifications to the learn-
ing scheme. Blandly using the thinned meta shapes for oriented Chamfer match-
ing may be problematic – at least a weighting scheme projecting circumjacent
values from the fuzzy meta shape maps to the thinned limb boundary representa-
tion is required. We also plan to replace thinning by weighted spline techniques.
Eventually, to veer away from pure theory, we will use our system to render a
humanoid robotic device capable of understanding and mimicking human upper
body motion.
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Fig. 4. Experimental results showing the range of applicability of the learned model
(clockwise from upper left): Matching to the same person as in the model but wearing
different shirts and with a variety of backgrounds and lighting conditions; different
persons with different shirts and varying backgrounds; and finally, a side view, which
was not seen at all during training.
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Abstract. This paper presents the research steps that have been necessaries for 
creating a mixed reality prototype called PUPPET. The prototype provides a 3D 
virtual presenter that is embedded in a real TV scenario and is driven by an ac-
tor in real time. In this way it can interact with real presenters and/or public. 
The key modules of this prototype improve the state-of-the-art in such systems 
in four different aspects: real time management of high-realistic 3D characters, 
animations generated automatically from actor’s speech, less equipment needs, 
and flexibility in the real/virtual integration. The paper describes the architec-
ture and main modules of the prototype. 

Keywords: 3D virtual presenters, mixed reality, real time animation. 

1   Introduction 

Television is a world where technologies with some level of maturity are sooner or 
later applied. And 3D computer graphics are not an exception. In fact, 3D virtual 
images have been appearing together with real ones during the last years. For exam-
ple, they are very common in some weather reports.  

In 2006, an Australian TV channel (Channel Ten) went a step forward and broad-
casted a talk-show called ‘David Tench Tonight show’, which was conducted by a 3D 
virtual character. This character performed interviews to real people, in a mixed real-
ity system shown on live [1]. 

Its conceptual way of working was very simple. A real actor drove the virtual pre-
senter in real time. His voice caused a synchronized animation of the virtual  
presenter’s lips and he drove the corporal animations by means of a motion capture 
system. The system was developed by Animal Logic. 

Although the show was cancelled some months later, it was initially successful, be-
ing one of the 10 most watched programs in Australia1. 

Nowadays, the interest on this kind of mixed reality applications for TV is still 
alive. For example, companies like Nazooka have created 3D characters that have 
                                                           
1 Statistics from eBroadcast:  
  http://www.ebroadcast.com.au/enews/ 
 Third_Time_Lucky_for_Seven_180806.html 
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been broadcasted in different TV programs via mixed reality and focus its business 
model in this kind of technology [2]. 

However, the applicability of 3D real-time virtual presenters to the TV environ-
ment presents some lacks yet. Although most of these lacks are not appreciated by the 
audience, they imply costs that could be reduced, and interfaces that are not very 
comfortable for the actors. Concretely, some of the main lacks are: 

─ Character flexibility. Companies provide the whole system, including the char-
acter modeling. Costs would be considerably reduced if TV producers could 
(re)use characters not created exclusively for the mixed reality system. 

─ Actor’s comfort. Some of current applications require the actor wear a motion 
capture system or s/he needs to memorize and launch in real time a lot of facial 
and corporal animations via joysticks or keyboards. 

─ Equipment needs. Apart from the possible motion capture system need, some 
applications require a chroma system for creating the mixed reality. It implies 
space, high cost equipment and time for setting up the TV program. 

─ Mixed reality flexibility. Real cameras are usually fixed when the 3D virtual 
presenter appears. Cameramen cannot make zoom or change cameras while vir-
tual character is on-screen. Being able to play with camera parameters would in-
crease the mixed reality illusion. 

This work presents a research project, called PUPPET. Its main requisites are on the 
whole to improve current state-of-the-art on these applications. The initial prototype 
developed solves the lacks explained above and so, it provides a low-cost and very 
flexible solution.  

Sections below explain the TV virtual presenter prototype in detail, going into de-
velopment related research lines in depth. Section 2 present the state-of-the-art about 
systems related with this prototype and section 3 explains briefly our system architec-
ture. Sections 4, 5 and 6 explain the main modules that solve the lacks mentioned 
above: section 4, the animation engine that provides character flexibility; section 5, 
the speech analyzer that improves the actor’s comfort and section 6 the mixing mod-
ule that reduces the equipment needs and improves the real/virtual flexibility. Finally, 
section 7 explains the resulting prototype tests and section 8 presents the conclusions 
and future work. 

2   State of the Art 

The prototype that is presented in this article involves several research fields like 
mixed reality, real time animation, speech technologies, etc.  

Probably the applications that mix these fields in the most related way to this pro-
totype are the works of Nazooka [2] and the David Tench Tonight show, developed 
by Animal Logic [1]. 

Nazooka presents some nice developments, however they present limitations re-
garding the change of camera parameters. That is, the camera remains fixed while the 
virtual presenter is visible. 

On the other hand, David Tench Tonight was initially a successful TV program 
both from technological and audience level points of view. However, the actor had to 
use a motion capture system for reproducing all his/her movements in real time. It 
implied a complex setup and high hardware costs. 
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There is not many companies and prototypes for creating the mixed reality on TV, 
however, mixed reality applications are used in several fields such as marketing [3], 
leisure [4], medicine [5], education [6], etc. 

In this way, techniques for obtaining realistic mixing between virtual and real 
world has been widely studied: 

─ Lighting, for achieving the shadows of virtual objects over the real world and 
vice versa.  Methods like shadow mapping [7] or shadow volumes [8] are used 
frequently. 

─ Occlusions, for calculating virtual world elements occluding real ones and vice 
versa. Different models like a 3D representation of the real world [8], stereo vi-
sion-based depth maps [9] or multi-camera 3D reconstruction [10] are used. 
Each of them has their advantages and disadvantages.  

Regarding speech driven animations, most of the previous works are related to the lip 
synchronization and coarticulation. Phoneme analysis has to transform the speech into 
phonetic sounds [11] and map them to visemes (the visual representation of each 
phoneme). However, most of them concerns English [12, 13]. On the other hand, 
some approaches have been presented for the generation of non-verbal facial expres-
sions from speech. For example, works in [14, 15] generate head movements from 
fundamental frequency and real time speech driven facial animation is addressed in 
[16]. However, obtaining a coherent and realistic animation is a state-of-the-art field 
of research yet. 

3   System Overview 

The PUPPET prototype system architecture is designed for achieving independence 
among concrete input devices and the animation and mixed reality modules. In Fig. 1, 
the conceptual schema of the architecture is presented. 

Basically, the input devices are on the one hand the microphone, command devices 
like keyboards, joysticks, data gloves… and, on the other hand, the cameras of the TV 
studio. 

Microphone input, that is, the voice signal, is managed by the Speech Analyzer 
module. Command devices inputs are retrieved by the Command Manager. It is an 
abstraction layer that avoids device-related dependences in the Animation Engine. 

The Animation Engine creates the 3D virtual scene that is sent to the Positioning 
and Mixing Module. This module creates the visually correct mixing between the 
virtual scene and the real image, taking into account real camera changes. Sections 
below detail the technical aspects about the modules that improve the current sys-
tems’ lacks. They are:  

─ The Speech Analyzer, which provides not only the analysis for synchronizing 
the real speech with the virtual presenter lips, but facial animations and expres-
sions too. 

─ The Animation Engine, which is able to load characters created by means of 
commercial tools like Maya or Poser and animate them through standard BVH 
files. 

─ The Positioning and Mixing Module, which receives the virtual scene and the 
real camera parameters in real time and creates a coherent real/virtual mixing. 
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Fig. 1. Simplified architecture schema 

4   Speech Analyzer 

The Speech Analyzer provides the synchronization between the actor’s voice and the 
avatar lips as well as some facial expressions and animations. 

The analyzer captures the speech signal from the input using a microphone and 
identifies the appropriate phonemes. As phonemes are recognized, they are mapped to 
their corresponding visemes. In a parallel process, the speech signal is processed by a 
pitch and energy tracking algorithm, in order to analyze its behavior and decide non-
verbal facial movements. The virtual character is then animated in real time and syn-
chronized with the speaker’s voice. Therefore, the speech analyzer developed in this 
paper is composed of four main sub-modules: 

─ The phoneme recognition system (described in the 4.1 subsection). 
─ The non-verbal facial animations sub-module (described in the 4.2 subsection). 
─ The sub-module that sends the input audio to the recognition system and to the 

pitch/energy tracking algorithm in real-time. To develop this interface we used 
the ATK API [17]. 

─ The communication interface between the speech application and the animation 
platform that was developed with sockets, based on the TCP/IP communication 
protocol. Through this module we fed the animation module with the recognized 
unit and facial movements for realistic animation. 



112 D. Oyarzun et al. 

 

Using this module the actor has not to get worried about the facial animation of the 
virtual presenter. All the aspects including lips synchronization and facial expressions 
will be automatically and coherently launched by the prototype when s/he speaks. 

4.1   Real-Time Phoneme Recognition System  

The main goal of this sub-module is to obtain the suitable data to animate the lips of 
the virtual character in real time. To obtain these data, we trained a triphoneme model 
using HTK Toolkit [18]. The corpus used for training and testing was Albayzin [19], a 
phonetic database for the development and evaluation of speech recognition and proc-
essing systems. It consists of 6800 sentences and 204 speakers. We divided this corpus 
in two data sets, training (4800 recordings) and test (2000 recordings). All of them are 
in WAV format (16 kHz/ 16bits/ mono). The feature extraction was performed over 25 
ms segments every 10 ms. The parametrization of the speech signal was based on 
MFCCs, delta and delta-delta coefficients. The Spanish version of SAMPA was used 
as phoneme set for the recognizer. This set contains 29 phonemes plus the silence and 
short pause ones. Thiphoneme models were created, which consisted of non-emitting 
start and end states and three emitting states (except from the short pause model) using 
Gaussian density functions. Their number of components of these functions was in-
creased until no further recognition improvements were observed. The states are con-
nected left-to-right with no skips. The models were trained iteratively using the em-
bedded Baum-Welch re-estimation and the Viterbi alignment, while the resulting was 
tested using a Viterbi decoder. Algorithm results are resumed in Table 1.  

Table 1. Experimental results (phoneme recognition rate) 

Training Testing 
Correctly Words Word Accuracy Correctly Words Word Accuracy 

90.41 % 84.20 % 81.18 % 71.23 % 

4.2   Non-verbal Facial Animations Sub-module 

The recognized phonemes are mapped in real-time to their corresponding visemes in 
order to make the lip-synchronization process. This is the first step for the facial anima-
tion, which has been enriched using prosodic information of speech. A statistical model 
adapted to current speaker is created during the first steps of the recognition, based on 
the fundamental frequency (pitch) and energy of the speech signal, in addition to some 
related statistics. According to the values given in real-time by both pitch and energy 
trackers, some facial animations are shot, mainly related to the head and eyebrows up 
and down movement, and eyes and mouth more or less expressively movements. 

 

Fig. 2. Several facial expressions automatically generated from the actor’s voice 
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5   Animation Engine 

The animation engine has been designed in order to obtain high-quality real time 
animations and at the same time be able to load and animate characters not exclu-
sively created for the PUPPET system. 

The animation engine is divided in two main modules, the facial animation engine 
and the body animation engine. 

─ The facial animation engine uses advanced morphing techniques [20] for gener-
ating a high quality animation in real time. This technique is quite extended and 
it creates the resulting animation by means of the linear interpolation among a 
set of predefined key faces. The animation engine includes a technique to avoid 
tests among vertices that are equal to get a lower computational cost. 

─ The body animation engine implements a set of techniques that aim a realistic 
movements with a low computational cost. For obtaining realistic movements 
the engine supports the loading of animations created by professional animators. 
They are loaded in the system by means of BVH files [21], a semi-standard 
format to which almost all commercial modeling applications are able to export. 
Moreover, it includes a set of optimizations that achieve their execution in real 
time in a standard desktop computer. 

The animation is based on smooth skinning techniques. That is, the vertices 
of the geometry (or geometries) that conforms the virtual presenter are affected 
by a virtual skeleton. Transformations over this skeleton influence each vertex 
taking into account weights assigned to this vertex. These weights provide a 
way for avoiding cracks in the geometry and achieving smooth deformations.  

The conceptual equation for the animation is: 

vr = v + wi * Mr * vi 

Where vr is the resulting vertex, v is the vertex with the previous transformations 
in the hierarchy, wi is the assigned weight, Mr is the rotation matrix correspond-
ing to current node and vi is the vertex in its initial position. 

So as not to depend on specific modeling formats a separation has been established 
between the geometrical and the smooth skinning information. 

─ Geometrical information. The 3D character can be loaded in any common geo-
metrical format (3ds, obj, vrml, etc.) 

─ Smooth skinning information. A new file format, called SHF (Simple Hierarchi-
cal Format), has been designed for storing the skeleton and weighting informa-
tion (Fig. 3). A plug-in to connect Maya [22] to SHF has been developed. It  
allows designers to obtain this information from any Maya modeled character.   

The animation engine relates both files in execution time and applies the BVH and 
morphing animations to them. This way, smooth deformations and high-realistic an-
imations are obtained in real time over any virtual character designed with a standard 
modeling tool.  
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Fig. 3. SHF format file description 

6   Positioning and Mixing Module 

The Positioning and Mixing Module is designed for creating the mixed reality in a 
coherent way, without need of physical chroma systems or similar. It works in the 
opposite way than chroma systems. The virtual presenter background is one uniform 
color and the real scene replaces directly that color.  

Moreover, since our application will be used in television, it would be useful to al-
low the cameras to translate and zoom. Then, the cameras will be able to follow either 
the real presenters or the virtual characters and get a more detailed view of them, 
without losing synchronization between real world and virtual worlds. 

The camera is motorized and can be handled remotely. With a remote control three 
parameters of the camera can be changed: pan, rotation with respect to the vertical 
axis; tilt, rotation that makes the camera look up and down and zoom.  

 

Fig. 4. Playing with the real camera parameters: changes in translation and zoom (chroma 
system is not necessary; it is just for having a clean background. Virtual character’s chair is 
real, non virtual).  
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The robot that moves the camera is connected with the computer through a serial 
port and transmits the values of the parameters to the computer in real-time. The ani-
mation engine receives those values and with simple linear transformations parame-
ters’ values in degrees are calculated and transferred to the virtual camera. 

In conclusion, the real camera is controlled remotely, but the virtual objects change 
their position in the screen coherently because of the information traffic between  
the real and the virtual camera. Fig. 4 shows some screenshots changing the camera 
parameters. 

7   PUPPET Prototype Tests 

Modules described before conforms the PUPPET prototype. It has been tested by 
professional actors and staff from a Basque TV production company called Pau-
soka[23]. They all agreed that the system is easy to use and avoids limitations and 
lacks found in the state-of-the-art. 

The system has been tested in a standard desktop PC and using virtual characters 
from different sources. Concretely, along this paper, Fig. 2 shows some screenshots 
detailing the speech-based facial animation. The virtual character has been obtained 
from the Poser commercial tool [24]. 

Fig 4. showed changes in the parameters of the real camera, concretely translations 
and zooms, and the coherence between the virtual and real images. In this case, the 
virtual presenter, that is a caricature of Barack Obama, had been designed by a pro-
fessional modeling company. 

8   Conclusions and Future Work 

This paper presents a prototype that provides a 3D virtual presenter that is immersed 
in a real TV scenario. It can be driven by an actor in real time and interact with real 
presenters and/or public. 

The prototype solves some lacks existing in state-of-the-art similar developments. 
Concretely: 

─ Character flexibility. There is no need to model animations or virtual characters 
specifically for their use in the mixed reality platform. The platform supports 
standard file formats for animating the character and a new file format that sup-
ports the smooth skinning data store has been designed. 

─ Actor’s comfort. The platform does not need motion capture systems. It can  
be handled just with a microphone and usual devices like keyboards or joy-
sticks. Speech signal automates not only the lip animation but also some facial 
animations. 

─ Equipment needs. There is no need to use chroma systems or similar. The com-
puter creates the real/virtual mix directly. 
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─ Mixed reality flexibility. Almost all current platforms that do not use chroma 
systems need to fix the camera, without moving. The platform of this work al-
lows the cameraman to change the camera parameters (zoom, movements…) in 
real time. 

Next steps are to include lighting and occlusion techniques that improve the realism 
and possibilities of the virtual presenter. 
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Abstract. This paper presents a Time-of-Flight (ToF) camera based
system for hand motion and gesture tracking. A 27 degree of freedom
(DOF) hand model is constructed and fleshed out by ellipsoids. This
allows the synthesis of range images of the model through projective
geometry. The hand pose is then tracked with a particle filter by sta-
tistically measuring the hypothetical pose against the ToF input image;
where the inside/outside alignment of the hand pixels and the depth dif-
ferences serve as classifying metrics. The high DOF tracking problem for
the particle filter is addressed by reducing the high dimensionality of the
joint angle space to a low dimensional space via Principal Component
Analysis (PCA). The basis vectors are learned from a few basic model
configurations and the transformations between these poses. This results
in a system capable of practical hand tracking in a restricted gesture
configuration space.

1 Introduction

Recovering the complex motions and poses of a human hand from camera ob-
servations is one of the more challenging problems in computer vision. A hand
gesture tracker has many uses in the modern computer applications, to name a
few: Sign language recognition, gaming interfaces where the hand gestures are
used as input, navigation by pointing and special computer interfaces where no
physical touching is required such as for medical applications [1].

Numerous computer vision researchers have addressed the hand tracking prob-
lem. A good review is given in Erol et al. [2]. There approaches can be roughly di-
vided into two categories appearance-based vs. model-based. Appearance-based
methods strive at mapping image features to hand poses using e.g., clustering and
fast search methods [3]. Model-based approaches use a deformable model, where
the model’s configuration space is searched for parameters that maximize the simi-
larity between groups of features in the input image and the model. Particle Filters
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(PF) have been thoroughly applied to model-based hand and human body anal-
ysis due to their abilities in non-linear estimation. In particular, PF variants that
deal with high degree of freedom (DOF) of the model configuration space, are of
high interest. Methods such as annealed particle filtering [4], hierarchical meth-
ods [5] and manifold methods where lower dimensional pose spaces are learned
from training pose data [6].

Most of the research mentioned in [2] is based on input from a single CCD
camera approaches using features such as color, edges etc. Others use multiple
cameras and include depth features into the tracking.

Time-of-Flight (ToF) sensors are camera like depth measuring devises built
on an active illumination modulation principle [7]. ToF cameras offer real-time
simultaneous amplitude images and range images (depth measurement in each
pixel).

The Swissranger SR3000 [8] used in this paper is designed to be a cost-efficient
and eye-safe range imaging solution. Basically, it is an amplitude modulated near
infra-red light source and a specialized 176 × 144 two dimensional sensor built
in a miniaturized package. ToF cameras have been found increasingly useful for
solving various computer vision applications as is reviewed in [7].

Using ToF sensors for tracking purposes has many interesting benefits. They
are free from some of the problems that are present in standard intensity images
such as lighting changes with shadows and reflections, color similarity and clut-
ter. Depth is a more natural foreground / background separator than intensity
and color. On the other hand the current ToF cameras’ main disadvantages is the
low spatial resolution, the low quality intensity image and the depth accuracy,
that may have systematic errors and errors that depend on the scene. Human
body tracking using ToF cameras has been studied in a few papers(cf. [7]) and
one where an articulated model of the upper body is fitted to the data [9]. Hand
gestures have also been studied in [10,11,1], the first attempts to fit an static
computer graphics model to the ToF data and the latter two strive at recognizing
static hand gestures by analyzing the segmented hands in the ToF images.

Here, a novel approach to hand gesture tracking is presented using a model-
based particle filter tracker with ToF-data. By representing the models pose as
range images a simple and straight forward comparison to the ToF images can be
made leading to robust tracking results. We will show that the search space can
be limited to chosen poses by generating instances of poses of interest and reduc-
ing the dimensionality of the joint angle space to only a few dimensional pose
space via Principle Component Analysis (PCA), yielding a fast and practical
hand gesture tracker.

2 The System

Fig. 1 shows an overview of the proposed system. The grey arrow path, inside
the particle filter blue box, shows the path of the particles and the black arrows
that come into the box are the input data and parameters, and finally the arrow
out of the box is the output: the hand pose estimation for frame t. The input
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ToF frame t is preprocessed and sent to the PF. In PF the posterior probability
distribution is approximated by a weighted particle set, where the particles are
instances of the state space. In our case, the state vector describes instances
of a hand model, i.e. vector descriptions of the position in space (translation
and rotation) and the joint angles of the hand (the pose). Additionally, each
particle bears a weight that is updated according to how well the particle matches
the input. These weights are then used to make the weighted average of the
particles generating the estimate. In the remainder of this section the input and
preprocessing are described, then the hand model, followed by the particle filter
and pose estimation.

Fig. 1. Overview of the system pipeline.

2.1 Input and Preprocessing

ToF cameras have systematic depth errors that can be resolved to an extent by
depth calibration [12]. Here we use the multi-camera ToF-CCD rig calibration
method and tool described by Schiller et al. [12]. The tool finds an optimal higher
order polynomial to compensate for the depth error and also provides the camera
calibration parameters needed later for the ToF camera’s projection matrix.
After undistorting the input frame the hand is segmented by thresholding. Here
we simply find the closest pixel, assume that it belongs to the hand and throw
everything that is farther than 20 cm away from this closest pixel. This works
in this ”man in front of a camera scenario”, but can easily be replaced by, e.g., a
fast foreground segmentation algorithm [13] or hand detection algorithm [1] for
different scenarios.

2.2 The Hand Model

The hand is modelled as a kinematic chain skeleton model similar to many other
studies in hand and human body analysis [2]. The hand position and pose is
described by a 27 dimensional vector where 6 dimensions are the global position
(translations and rotations along and around the X , Y and Z axes) and then
5 dimensions for the thumb and 4 dimensions for the joint angles of the other
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Fig. 2. The Hand model. Left: The kinematic chain model. Red signifies 6 DOF move-
ment, blue 2 DOF angle movement and white 1 DOF. Right: A synthesized range image
of a hand model instance fleshed out with ellipsoids. Darker pixels are closer to the
camera.

fingers. Fig. 2 illustrates the joint DOF. Each joint 3D position in a kinematic
chain is found by exponential maps and twists, i.e., simple multiplications of
rotational matrices and translations as has been described in various robotics
and human analysis literature, cf. [14,15].

Synthesizing Range Images of the Model Poses. A quadric is a 4 × 4
matrix Q which describes a surface in 3D so that all points X on this surface
fulfill:

XT QX = 0. (1)

The points inside the normalized quadric give a negative result and positive on
the outside. A conic is a 3 × 3 matrix C that has the same properties in the
plane as quadrics have in 3D. A projective camera or pinhole camera model is
P = K[I|0], where K is the calibration matrix of the camera. P maps a 3D
point X = [X, Y, Z, 1]T to the pixel positions x = [x, y, 1]T in the image plane
by x = PX.

The projective camera furthermore maps quadrics to conics in the image
plane. This can be shown using the duality property of quadrics in projective
geometry [16]. If the dual quadric of Q is mapped to Q∗ and the dual conic of
C is mapped to C∗, then: C∗ = PQ∗PT .
The mapping of the dual conic to the conic is straight forward.

Here the skeletal hand model is fleshed out by ellipsoids which are quadrics
that are thus mapped to ellipses on the ToF cameras image plane. The ellipsoids
are constructed so that the axes of the ellipsoid is seen as a covariance matrix
V with the main axis length l1 and thickness l2 and l3 on the other axes, the
covariance matrix is thus:

V =

⎡⎣ l21 0 0
0 l22 0
0 0 l23

⎤⎦ . (2)

The kinematic model provides the 3D endpoint positions of the ellipsoid which
give the center-point position and the 3D rotation of the ellipsoid. The quadric
is thus rotated by a 3 × 3 rotation matrix R and translated from the origin by
the 4 × 4 translation matrix M. The ellipsoid is constructed as:
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Q = MT

[(
RT VR

)−1
0

0 1

]
M. (3)

For a range image representation of the hand model configuration, the depth
from the camera for each of the pixels inside the ellipses C need to be found.
This is done by stepping along the ray towards the pixel x. Solving the projection
equation for X and Y for each Z along the ray:⎡⎣X

Y
Z

⎤⎦ = K−1(

⎡⎣x
y
1

⎤⎦ · Z). (4)

These points X for each step on the ray are tested with the quadric equation (1)
thus finding the zero crossing which is at the desired surface depth Z.

An initial point on the ray is found by using the ellipsoids center-point and
main axis-length so that the surface depth is found in only few steps. Occlusion
(overlapping ellipsoids) is simply handled by saving the smallest Z.

2.3 The Particle Filter

Particle filters, or often called CONDENSATION in visual tracking [17], are se-
quential Monte Carlo methods based on particle representations of probability
densities. They are powerful in solving estimation and tracking problems where
the variables are non-linear and non-Gaussian. In this paper the Sample Impor-
tance Resampling (SIR) approach is followed as, e.g., is described in [18]. The
PF can be summarized into 3 steps: 1. Resampling of particles, 2. Observation
of particles (weighting function) and 3. Diffusion of particles (propagation in
search space).

The resampling step is done to avoid degeneracy of the particles and here the
standard procedure is followed as described in, e.g. [18]. The observation and
diffusion steps are described in the following sections.

Observation: The purpose of the observation step is to find the observation
likelihood of the particles: p(X |Zk), i.e., the probability of the observation X
given the kth particle Zk. In our case X is the depth image after preprocessing.
The observation step is usually the most expensive in the PF. A full Bayesian
solution is often difficult to model so that all the aspects of the data are taken into
account. Often the likelihood is replaced by more intuitive weighting function
w(X, Zk). Here, the function is modelled by general statistical metrics: correct,
false, missed pixel detections and an F-measure (cf. [19]). The pixels obtained
with the projection of the hand model with the parameters corresponding to a
given particle Zk are here referred to as Zk pixels.

Correct pixels: The number of Zk pixels for which e−γ|dX−dZk
| > α, where dX

and dZk
are the pixel depth values for input X and particle Zk. The threshold α
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and γ are chosen so that the pixel is classified correct if the distance is smaller
than 2 cm.

False pixels: The number of Zk pixels for which e−γ|dX−dZk
| ≤ α.

Missed pixels: The number of input image pixels that are in a neighbourhood
region of Zk pixels. The neighbourhood region, as shown in Fig. 3, is defined by
the binary distance transform of Zk; DT (Zk). The size of the region is controlled
so that it is in proportion to the fingers length. The arm does not fall into the
neighbourhood region as it is removed from the region by projecting an ellipsoid
onto the wrist in DT (Zk), the wrist position is given by the kinematic model.

Fig. 3 illustrates the measurement principle and the three classes for one
particle instance.

Fig. 3. The measurement of one particle hypothesis. Left to right: The preprocessed
input X, The particle Zk range image, Zk’s neighbourhood region in grey and classified
image with correct, false and missed pixels indicated with red, green and blue.

The particles performance is measured for precision and recall. The precision
is given by: wprec(X, Zk) = correct

correct+missed , and measures the exactness of the

fit, while the recall; wrec(X, Zk) = correct
correct+false , measures the completeness.

The final weight is then the F-measure:

w(X, Zk) =
(1 + β2) · wprec(X, Zk) · wrec(X, Zk)

β2 · wprec(X, Zk) + wrec(X, Zk)
. (5)

Here β controls the balance between wprec and wrec, and is chosen ad-hoc to be
1.5 thus giving the recall more weight. It was seen in most typical scenes, that
the missed detections were usually much fewer than the false ones and therefore
needed extra penalization.

Diffusion in Subspace: It has been shown in [20] that the required number of
particles for standard PF probability density estimation increases exponentially
with the variable dimensionality. Standard PF can thus not handle 27 DOF hand
tracking effectively. Here a reduction of dimensionality approach is followed,
where a low dimensional pose space is learned from pose data. In a ”proof of
concept”-experiment, synthetic data is used: The model joint angle dimensions
are set to three basic poses: flat palm (or ”high 5”), fist, and pointing index
finger (or ”gun”), also the basic transformations between these poses with some
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Fig. 4. Left: The 2 first PCs of the learning data. The 3 first PC describe 97.4% of
the variance and the 6th PC added 0.1% but captured some important thumb motions.
Middle and right: Extreme boundary poses using the maximum (middle) and minimum
(right) value in all PCA basis directions. These are unlikely poses but show in a way
that the poses within the subspace boundaries are not that far off.

additional thumb configurations; in total 79 poses. A PCA model was trained
on these 79 points in the 21 dimensional joint angle space. Fig. 4 shows the first
2 PCs of the training data. Here, 4 PC basis vectors were used describing 97.5%
of the covariance in the data.

The maximum and minimum values of the training points in each of the
four dimensions, bound the pose space. Within these boundaries the particles
propagate randomly according to a Gaussian density. The points, that are far
off the path the training points lie on, can generate unnatural hand poses. Fig. 4
shows two of the extreme corners of the 4 dimensional hypercube. One of these
poses is an unlikely pose (index finger bending backwards) but not that far from
possible poses or from the poses that were used for the training.

After the propagation in the low dimensional space the particles are expanded
via the 4 PC basis vectors to the full 21 dimensions where they are synthesized
for the observation step.

3 Hand Tracking Results

Experiments were performed where the hand was tracked through poses in the
predefined pose space. The initialization is done by a rough ”manual”positioning,
and 300 particles were used in all experiments.

The results in Fig. 5 show that the tracker does a good job at catching the
pose changes and out of image plane rotations, although the estimation lags
somewhat. Also note that the index finger is slightly bent when it should be
straight: This might be caused by the fact that this position is close to the
boundary and thus the diffusion of the particles is truncated, which gives this
tendency to move slightly from the boundary. Furthermore, Fig. 5 illustrates how
the tracker recovers from self occlusion in large motion situations. The thumb is
occluded and then it reappears and the PF detects it in the next frame. In the
end of the sequence; part of the hand goes out of the frame, here the PF recovers
correctly.
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Fig. 5. 10 frames of tracking a ”high 5” gesture transformed to ”gun” with rotation,
translation, self- and object-occlusion. Top and 3rd row: ToF amplitude images with
superimposed skeleton estimation. 2ndand bottom row: Corresponding range image of
the estimated model. The transformation is successful although the model estimation
is slightly lagging, i.e., the fingers should be more bent in the 2nd and 3rd frame . In
the 8th frame the PF has not recovered the thumb, but it reappears in the next frame.
Here the PF had no problems when the hand partially exited the cameras field of view.

Fig. 6 shows that out of pose space gestures give of course false estimations.
The weight measurement however gives a strong indication of a poor match so
these cases can be classified as lost or out of limits. A recovering system can
then be triggered where the PF is helped back on track by a larger number of
particles and wider diffusion variance. More video examples are available on this
projects homepage1.

Fig. 6. Out of pose space gestures are incorrectly estimated. Left: ToF amplitude image
with superimposed skeleton estimation. Right: Corresponding range image.

Currently the system runs at about 2 seconds per frame on a standard laptop
PC (Core Duo 1.66 GHz, 1 Gb RAM). The implementation is done by using C++
1 http://www.hi.is/~sag15/handtracking.html

http://www.hi.is/~sag15/handtracking.html
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libraries and has not been optimized for higher performance. We are confident
that the performance can be enhanced greatly with, e.g., faster implementations
of the range image construction and particle weighting. Then, the real-time goal
should be achievable on newer hardware.

4 Conclusion

This paper presented a novel hand tracking system that is capable of accurately
capturing the hand pose in a restricted pose space. A ToF real-time range imag-
ing device was used so that the surface of the hand and a kinematic model were
matched using 3D features in a quick and simple manner.

The main obstacle of hand pose tracking is the high DOF problem. The pro-
posed PCA approach is simple but restricted by design. Not surprisingly the low
dimensional PCA model nearly perfectly described the simple synthesized pose
data used here. However, unrestricted hand motion is extremely complex, and
the proposed method with manually synthesized hand pose configurations with
linear transformations is not prone for success. Several researchers have used
data-gloves for hand-motion capture and trained models on this data. Some
have used PCA on such data ([21]), while others ([3]) have shown how natural
hand motions lie on low dimensional non-linear manifolds. Then, a methodology
similar to what is proposed in [22], might be used: First, learn the manifold using
Locally Linear Embedding, or other manifold learning method, and then map
back to the original dimensionality using, e.g. a kernel method. Such a method
can be incorporated directly into the framework described here; replacing the
PC basis with the kernel basis.

On the other hand, for many applications non-restricted hand motion is not re-
quired. E.g., applications like human computer interfaces, navigation, and games;
where the simplicity of this system can be an asset. The results presented here
show that this tracker is robust to difficult scenarios, self occlusion and com-
plex global motions, and can therefore suit perfectly for such an application.
In the near future our research will include expanding this approach to a more
multi-pose gesture tracking for practical interfacing purposes.
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Abstract. Palmprint based Identification is gaining popularity due to
its traits like user acceptance, reliability and ease of acquisition. The
paper presents a recognition method which extorts textural information
obtainable from the palmprint, utilizing different filters of wavelet trans-
form. Palmprint center has been computed using the chessboard metric
of Distance Transform whereas the strictures of best fitting ellipse help
resolve the alignment of the palmprint. Region Of Interest of 256×256
pixels is clipped around the center. Next, normalized directional energy
components of the decomposed subband outputs are computed for each
block. Biorthogonal, Symlet, Discrete Meyer, Coiflet, Daubechies and
Mexican hat wavelets are investigated on 500 palmprints acquired from
50 users with 10 samples each for their individual and concatenated
combined features vectors. The performance has been analyzed using
Euclidean classifier. An Equal Error Rate (EER) of 0.0217 and Genuine
Acceptance Rate (GAR) of 97.12% with combined feature vector formed
by Bior3.9, Sym8 and Dmeyer wavelets depict better performance over
individual wavelet transforms and combination of coiflet, Daubechies and
Mexican hat wavelets.

1 Introduction

Biometrics is identification of individual on the basis of unique physiological
and behavioral patterns. It is fast replacing other means of authentication like
passwords and keys due to the inherent drawbacks in them and increased ef-
fectiveness and reliability of the biometric modalities. The passwords can be
forgotten or hacked, while keys can be lost or compromised. The individual’s
unique physiological or behavioral characteristics, on the other hand are hard
to forged or lost. Fingerprint and face are the common biometrics being used
nowadays, but they have inherent problems. The illumination variations affect
the performance of face recognition algorithms, while fingerprint, along with
technological challenges, has less user acceptability due to the historical use in
crime investigations. In future, a considerable number of consumer electronics
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devices will be personalized. We already see fingerprint identification replacing
passwords in personal computers and laptops. This requirement driven usage is
predicted to increase manifold in coming years. Biometrics using physiological
features is a prime candidate for use in such applications.

1.1 Significance/Research Challenges

Palmprint’s information content includes wrinkles, creases, delta points, minu-
tiae and principal lines. Palmprint has also been used in conjunction with hand
shape biometric so as to form a more reliable biometric based individual iden-
tification system. This type of identification has become an increasingly active
research topic. Formally, palmprint analysis is divided into four main specialized
categories [1], [2]. A brief description of these categories is given as under:-

1. Ridgeology analyzes friction ridges found on palmprint, and also weighs up
point features and minutiae which is quite similar to fingerprint minutiae.

2. Edgeoscopy examines characteristics of ridge edges and take stock of ridges,
ridge endings, bifurcation and dots.

3. Palmer flexion crease identification assesses creases on palm formed by
flexing the hand. It also involves analysis of line feature, principal lines and
wrinkles.

4. Geometric features, like the width, length and area of the palm.

Palm images have been analyzed for discriminating features like principal lines
[3], [4], appearance based [5], [6], [7], [8], [9] and texture based [10], [11], [12],
[13], [14], [15] and [16]. This paper investigates and enhance our previous work
on different filters of wavelet transform and their combination for palmprint
identification [17].

1.2 Algorithm Development

The development stages of palmprint identification algorithm consist of develop-
ment of image acquisition platform, image registration, drawing out the Region
of Interest (ROI), extraction of distinctive feature from the ROI and categoriza-
tion or classification.

2 Development of Image Acquisition Platform

Scanners and pegged systems are currently in vogue as palmprint acquisition
setups, [13], [18]. Scanners are hygienically susceptible, while systems with pegs
are not very user friendly since they have pegs fixed at certain locations and
cause inconvenience to user as they are required to clamp their hands inside
the pegs. We, therefore, developed a peg free system that is more acceptable to
users as it is non invasive and user friendly, Fig. 1. It is an enclosed black box,
simple in construction and draws on ring shaped lighting tube to ensure uniform
illumination. The image acquisition setup is provided with two flat plates. The
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camera and the light source are fixed on the upper plate while the bottom plate
is used to place the hand for image acquisition. To shun any mismatch due to
scale invariance the distance between these two plates is kept constant. After
empirical testing the distance between the plates is kept at 14 inches. 10 images
from 50 male individuals have been collected making a total of 500 images as
the experimental dataset. The age distribution of individuals is between 22 to
56 years, with high percentage between 22 to 25 years. SONY DSC W-35 cyber
shot camera has been utilized for imaging the palmprint.

(a) (b)

Fig. 1. (a) Image Acquisition Platform (b) Dimensions of Image Acquisition Platform

3 Image Registration

We utilised the approach proposed by [11] in which the captured palmprint im-
ages were color images having RGB as the parameters. These parameters were
changed to HSI parameters. The palmprint has been analyzed for its texture
by means of its gray level or intensity values (I) available in the HSI parame-
ters. The obtained gray level images are normalized and then hysteresis thresh-
olding is used to obtain a binarized image. In order to cater for inadvertent
rotations rotational alignment has been incorporated using the second order
moments. Second order statistical moments have been utilized to obtain the pa-
rameters of best fitting ellipse in which the major axis of the ellipse corresponds
to the longest line in the image and was assumed to be passing through the
middle finger. Ratios between eigen values help examine the shape of an object
whereas direction of elongation is evaluated using the direction of the eigenvector
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(a) (b)

Fig. 2. (a) Calculation of alignment of Palm by finding θ (b) Distance Transformed
Palmprint

corresponding to highest eigen value. Subsequently, the offset θ between the nor-
mal axis and the major axis of the ellipse is calculated, Fig. 2(a). The following
equation has been used for the computation of theta:

θ = [
1
2

arctan[
2c

a − b
]] (1)

where a, b and c are the second order normalized moments of the pixels and are
calculated using the following equations:

a =

∑
(x,y)εP

(y − v)2.P (x, y)∑
(x,y)εP

P (x, y)
(2)

b =

∑
(x,y)εP

(x − u)2.P (x, y)∑
(x,y)εP

P (x, y)
(3)

c =

∑
(x,y)εP

(x − u).(y − v).P (x, y)∑
(x,y)εP

P (x, y)
(4)

In above equations, P(x,y) are the pixels in the image, while u and v are
locations of centeroids. The palmprint is then vertically aligned using Affine
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transformation after which morphological operations are employed to remove
noise in the binary image. The image is further complemented and distance
transform is applied in conjunction with the chessboard metric to evaluate the
center of palmprint, Fig. 2(b). Distance transform valuates the pixels having a
gray level value of zero from their nearest non-zero neighbours and the maximum
value obtained from the transform is estimated to be the center of palmprint.
Further, taking coordinates of the center of palmprint a fixed square region is
cropped which is of the size of 256×256.

4 Feature Extraction and Classification

Wavelets have been used as a tool so as to extract the textural information of
palmprint images, we calculated the horizontal, vertical and diagonal normalized
energy values from each level and concatenated these values to form a feature
vector for classification between intra and inter class images. Five images out of
a total dataset of 10 images from each user are utilized for training while the rest
five are used for validation. Textural analysis has been carried out on extracted
Region of interest, ROI using different wavelet families namely Biorthogonal 3.9,
Symmlet 8, Demeyer 5, Coiflet, Daubechies and Mexican hat. ROI has been de-
composed into three scales using each wavelet type. Using this procedure ten
directional details are obtained for each wavelet. We further calculated the di-
rectional energy in each level and normalized it so as to reduce variation in the
gray levels of palmprint images due to illumination variance. Normalized energy
minimizes feature variance due to non-uniform illumination, as it brings the
extreme values down by calculating the average and thus help lower intensity
variations due to illumination [19].

As for the extraction of distinctive features we adopted two different ap-
proaches, these two approaches are explained below:-

Approach-1: The energy estimated from each block for the three wavelet types
(Biorthogonal 3.9, Symmlet 8, Demeyer 5) is concatenated to form a characteris-
tic vector comprising 27 values for an individual palmprint. The lowpass version
of the decomposition is excluded from the feature vector. The same principle
applied for other three types of wavelet families (Coiflet, Daubechies, Mexican
hat).

Ekθ , defined as the Energy value in directional sub-band Sk,θ at kth resolution
level is given by:

Ekθ =
∑
Sk,θ

|Fk,θ(x, y) − F k,θ| (5)

where F k,θ is the mean of pixel values of Fk,θ(x, y) in the sub-band Sk,θ. Fk,θ(x, y)
is the contourlet coefficient value at position (x,y). Additionally, the directional
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sub-bands vary from 0 to 2n − 1. The normalized energy value Êkθ of subband
θ at kth resolution level is defined as:

Êkθ =
Ekθ

2n−1∑
θ=0

Ekθ

(6)

where ‘n’ presents the total number of blocks present in the image. Matching is
performed by calculating the Euclidean distance between the energy features of
registered palm image and the test palm image. Euclidean distance between two
point p(a,b) and q(x,y) is defined as:

Eu Dist = [(a − x)2 + (b − y)2]
1
2 (7)

It was revealed that rotating an image causes a considerable blur in it due to
interpolation which is not affordable in case of textural analysis of palmprint.
Thus instead of rotating palmprint image for vertical alignment we have rotated
the axis of region instead of the palm. A reverse transformation is computed
from the Affine transform, as following:

X(new) = X cos(θ) − Y sin(θ) (8)

Y (new) = X sin(θ) + Y cos(θ) (9)

Using the above equations, a rotation invariant region of interest is obtained. Al-
though the approximation or interpolation error still exists since the coordinates
obtained would still be rounded off but the results show improved performance
and accuracy.

Approach-2: In this approach, we opted to analyze the individual performance
of the individual wavelet by calculating the block level energies and constructing
a feature vector of the same length 27. The individual wavelets were used for
9 decomposition levels and normalized energies were found for each individual
block. The individual results for Bior 3.9, Symlet, Demeyer, Coiflet, Daubechies
and Mexican hat wavelet kernels are shown in Fig. 3(a), 3(b), 4(a), 4(b), 5(a)
and 5(b) respectively. Fig. 6(a) gives the Genuine and impostor distribution
for the combined approach for Bior 3.9, Symlet and Demeyer wavelet families
whereas Fig. 6(b) gives combined approach for Coiflet, Daubechies and Mexican
hat wavelet kernels. Fig. 7(a) gives Threshold Vs FMR and FNMR graph for
the first three filters and their Combined approach, while 7(b) is of next three
kernels. Fig. 8(a) gives Receiver Operating Curve for first three filters and their
Combined approach, while Fig. 8(b) for the next three.

Table-1 summarizes the Equal Error Rate, EER, Decidability Index and Gen-
uine Acceptance Rate, GAR, for the different wavelets for their individual and
combined performance. The wavelets combination (Bior 3.9, Symlet, Demeyer)
gives GAR of 97.12% and EER of 0.0217, better than individual wavelets.
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Fig. 3. (a) Genuine and Imposter Distribution Curve for Bior 3.9 (b) Genuine and
Imposter Distribution Curve for Symlet 8
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Fig. 4. (a) Genuine and Imposter Distribution Curve for Demyer (b) Genuine and
Imposter Distribution Curve for Coiflet
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Fig. 5. (a) Genuine and Imposter Distribution Curve for Daubechies (b) Genuine and
Imposter Distribution Curve for Mexican hat



An Evaluation of Wavelet Kernels for Palmprint Based Recognition 135

0 20 40 60 80 100
0

200

400

600

800

1000

1200
Genuine and Impostor Distributions

Matching Score

O
cc

ur
an

ce

Genuine
Imposter

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180
Genuine and Impostor Distributions

Matching Score

O
cc

ur
an

ce

Genuine
Imposter

(a) (b)

Fig. 6. (a) Genuine and Imposter Distribution Curve for Combined Approach of Bior
3.9, Symlet, Demeyer Kernels (b) Genuine and Imposter Distribution Curve for Com-
bined Approach of Coiflet, Daubechies and Mexican hat kernels
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Fig. 7. (a) Threshold Vs FMR and FNMR for Bior 3.9, Symlet, Demeyer filters and
their Combined Response(b) Threshold Vs FMR and FNMR for Coiflet, Daubechies,
Mexican hat filters and their Combined Response

Table 1. Performance Characteristics of Different Wavelets

Wavelet EER Decid-
ability
Index

GAR (%)

Bior3.9 0.0322 2.6411 76.23
Sym8 0.0821 2.6987 84.45

Dmeyer 0.3833 2.5677 71.1
Coiflet 2.0643 2.1320 65

Daubechies 0.7082 2.3413 70
Mexican hat 0.2296 2.4559 73

Combination of wavelets
(Bior3.9 + Sym8 + Dmeyer) 0.0217 3.1275 97.12

Combination of wavelets
(Coiflet + Daubechies + Mexican hat) 0.2255 2.7834 80
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Fig. 8. (a) Receiver Operating Curve for Bior 3.9, Symlet, Demeyer filters and their
Combined Response(b) Receiver Operating Curve for Coiflet, Daubechies, Mexican hat
filters and their Combined Response

5 Conclusion

This paper presents individual and combination of multiple wavelets at feature
level for palmprint based authentication system using the developed peg-free
image acquisition platform. Six different wavelet kernels and their combination
are investigated for palmprint identification application. Various quantitative
measures like Equal Error Rate, Decidability Index and Genuine Acceptance
Rate are calculated. Among the three individual wavelet kernels, Bior3.9 gives
the best Equal Error Rate while combined wavelets approach outperforms the
individual wavelet feature for the palmprint identification.

References

1. Roberts, C.: Biometric-Palm and Hand. Centre for Critical Infrastructure Protec-
tion (May 2006),
http://www.ccip.govt.nz/newsroom/information-notes/2006/

biometrics-technologies-palmhand.pdf

2. Shu, W., Zhang, D.: Palmprint Verification: An implementation of Biometric Tech-
nology. In: International Conference on Pattern Recognition, ICPR, vol. I, pp.
219–221 (1998)

3. Wu, X., Zhang, D., Wang, K.: Palm Line Extraction and Matching for Personal
authentication. IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and
Humans 36(5), 978–987 (2006)

4. Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal Verification using
Palmprint and Hand Geometry Biometric. In: Kittler, J., Nixon, M.S. (eds.)
AVBPA 2003. LNCS, vol. 2688. Springer, Heidelberg (2003)

5. Ekinci, M., Aykut, M.: Palmprint Recognition by Applying Wavelet Subband Rep-
resentation and Kernel PCA. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI),
vol. 4571, pp. 628–642. Springer, Heidelberg (2007)

http://www.ccip.govt.nz/newsroom/information-notes/2006/biometrics-technologies-palmhand.pdf
http://www.ccip.govt.nz/newsroom/information-notes/2006/biometrics-technologies-palmhand.pdf


An Evaluation of Wavelet Kernels for Palmprint Based Recognition 137

6. Tao, J., Jiang, W., Gao, Z., Chen, S., Wang, C.: Palmprint Recognition Based
on Improved 2DPCA. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS
(LNAI), vol. 4088, pp. 455–462. Springer, Heidelberg (2006)

7. Shang, L., Huang, D.-S., Du, J.-X., Huang, Z.-K.: Palmprint Recognition Using
ICA Based on Winner-Take-All Network and Radial Basis Probabilistic Neural
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Abstract. Motion transitioning is a common task in real-time applications such 
as games.  While most character motions can be created a priori using motion 
capture or hand animation, transitions between these motions must be created 
by an animation system at runtime.  Because of this requirement, it is often dif-
ficult to create a transition that preserves the feel that the actor or animator has 
put into the motion.  In addition, transitions must be created in real-time.  This 
paper describes a method of creating motion transitions that is computationally 
feasible for interactive speeds and preserves the feel of the original motions.  
We do this by using both a procedural motion and a motion segment taken from 
the motions being transitioned between. 

Keywords: Computer animation, articulated objects, motion transition. 

1   Introduction 

Realistic character motion is a necessity for computer graphics applications such as 
movies and games.  Three main methods exist to create motion for a virtual character- 
motion capture, hand animation, and simulation.  Motion capture is the process of 
recording the motion of a human actor.  Hand animation refers to the use of a soft-
ware package to manipulate a 3D model of a character to achieve an animation.  In 
simulation, the motion of the character is computed using a physical model. 

Simulation methods are generally thought to be too unrealistic for games.  In addi-
tion, since an interactive application, such as a game, must generate animation on the 
fly, and both motion capture and hand animation produce pre-made motion, these 
methods can only be used if further processing is done. 

The method most commonly used in games is to create several base motion seg-
ments (i.e., walking, running, jumping, etc.) using motion capture or hand animation, 
and transition between these motions on the fly [1, 2]. 

The goal of this research is to find a method to create plausible transitions for in-
teractive applications.  Since the point of transition is not known ahead of time, these 
transitions must be created dynamically.  This puts more severe constraints on the 
transitioning method than would be needed for an offline method.  

Ideally, the method of creating the transition should have the following properties, 
in order of decreasing necessity: 1) Computing the transition should be efficient 
enough to run in real time, 2) Transitioning should be responsive, 3) The transitioning 
method should not require excessive space resources (disk space, memory, etc.),  
4) The motion created should be continuous and believable.  
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These are the basic criteria for any algorithm that creates a transition.  The first 
three are hard constraints for real-time applications.  The fourth is a softer constraint 
and is somewhat subjective.  At the very least, the algorithm should produce a motion 
for which C1 continuity is preserved for the position and rotation of the joints. 

2   Related Work 

Currently, the most widely used method of creating transitions involves linearly inter-
polating between two motions.  A pre-determined number of frames at the end of the 
first motion are overlapped with the first frames of the second motion, and the values 
of each are linearly interpolated, creating a smooth transition between the motions.  
Unfortunately, this transition may not be realistic, especially in the case of extremely 
dissimilar motions.  Even when the motions are similar, the problem of synchronizing 
motions is not addressed using this method alone.  Transitioning between two walking 
motions that are at different points in their cycle will give an unrealistic transition, 
even though the motions are similar. 

This problem is addressed by using dynamic timewarping [3, 4].  Dynamic time-
warping creates a function that synchronizes both motions to be at similar poses at 
any given time by first determining the similarity of each pair of frames for both mo-
tions.  The synchronization function is determined by finding the best path through 
these similarity values.  While timewarping alleviates the problem of unsynchronized 
motions, it doesn’t address the problem of two dissimilar motions. 

Park et al. [5] use dynamic timewarping to align clips of motion before interpolat-
ing between them.  In addition, the motion clips are parameterized to provide a 
method for controlling the synthesized motion.  Their approach allows for specifica-
tion of locomotion over a range of directions and speeds.  Unfortunately, this method 
is geared toward generating motion from a set of similar motions, and not between 
two arbitrary (possibly different) motions. 

Physically-based motion synthesis is another method of synthesizing motion [6, 7].  
In these methods, motion is generated from a dynamic simulation of the character.  
However, it is difficult to produce realistic motion using physically-based approaches.  
Additionally, these approaches fail to capture the small nuances of human motion. 

Another approach that has been taken is to construct a mathematical model from a 
set of motion capture data.  Hidden markov models [8] and switched linear dynamic 
systems [9] are among the most popular approaches.  These methods can produce 
arbitrary motion that resembles the pre-existing cache of motion capture data, but at 
the cost of low control and high processing requirements.   

Arikan and Forsyth [10] apply a randomized algorithm to search for motions from 
a hierarchy of transition graphs.  In later work, Arikan et al. [11] create motion by 
using a similar graph structure but satisfy user-specified annotations in the creation of 
the resulting motion.  When the number of example motions becomes too large, it 
becomes prohibitively time-consuming to search through these graph structures for a 
suitable motion.  Follow-on work by Arikan et. al. [12] uses physical models with 
motion to create transitions between motions. 

Ikemoto et. al. [13] create a cache of transitions by searching through motion clips 
and saving clips that give good transitions for each frame of motion.  This cache is 
then accessed to retrieve the best transition clips for a given motion. 
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Pullen and Bregler [14] use motion capture to assist an artist in creating an anima-
tion.  In their method, the artist creates a rough animation using conventional key-
framing, and motion capture data is used to enhance the animation in order to make it 
look more lifelike. 

Rose et al. [15], use spacetime constraints to create transitions.  In their method, a 
combination of dynamic and kinematic constraints is placed on the skeleton, and a 
transition is generated using these constraints.  This method gives realistic motion for 
short transitions but is not computationally efficient enough for real-time applications. 

Kovar, et al. [16] use a method they call a Motion Graph, which is a way of arrang-
ing motion data into a graph.  Each node of the graph corresponds to a common pose, 
such as standing.  Traversing an edge corresponds to playing a short motion segment 
between two poses.  However, motion graphs are not suitable for interactive applica-
tions because of the computation time needed to find a traversal of the graph.   

Snap-together motion [1] processes a corpus of motion into a graph similar to a 
motion graph.  Instead of computing an entire traversal through the graph, each edge 
traversal is determined at run-time from the user’s input.  The downfall of this method 
is that once an edge is taken, no further input can be given until the motion reaches 
the next node.  While this is sufficient for some real-time applications, more interac-
tivity is required.  In follow-on work, Heck and Gleischer [17] apply example based 
motion synthesis in which motion graphs are used to generate motion transitions by 
blending together example motions from the space. 

Peng et. al. [18] also use an example based motion synthesis technique.  Similar 
animations are clustered together and then bundled into a motion graph.  Transitions 
are generated by traversing the graph. 

Wang and Bodenheimer [19, 20] study the appropriate length of time for transi-
tions between motions.  Their studies discuss how much time should be devoted  
to transitions, and the point at which the transition time becomes distracting to the 
animation. 

This paper proposes a method feasible for real-time applications that gives more 
believable motion than a simple linear transition.  Specifically, the motion for the 
transition is adapted from a segment of motion from one of the two motions being 
transitioned between, and can be chosen to resemble any specific motion.  This ability 
is leveraged to choose a segment that resembles the desired transition. The segment 
chosen is then warped to match this transition even more closely.  In this way the 
method enables the synthesis of a transition that preserves the same “feel” of the 
original motion while producing a motion that is feasible as a continuous transition.  

3   Real-Time Motion Transition by Example 

In order to produce a method of creating transitions that meet the four proposed goals, 
we propose a new method that is both feasible for real-time applications and produces 
more believable motion than a simple linear transition.  The “feel” of the motion is 
preserved by adapting pre-existing motion from the two motions being transitioned 
between. 

This approach at producing real-time motion transitions is encapsulated in a 4-step 
process: 1) Find transition points, 2) Align motions, 3) Search for an example, and 4) 
Motion modification. 
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In the following discussion, M0 is the motion that is being transitioned from, M1 is 
the motion that is being transitioned to, T is the transition, and t is the length of the 
transition (in frames).     

3.1   Finding Transition Points 

First, since the start of the transition is a frame from M0, and the end of the transition 
is a frame from M1, transition points are found for M0 and M1.  The transition point 
for M0 is the frame at which the transition is initiated.  For example, if the character is 
on frame 10 of a walking animation when the user initiates the transition, the transi-
tion point for M0 is frame 10.  The transition point of M1 is either set manually, or 
found using a method similar to dynamic timewarping.  Motions that should be played 
from start to finish (jumping, kicking, punching, etc.) have their “transition to” frame 
set manually to the first frame, while the transition point for two similar motions 
(walking to running) is computed using dynamic timewarping.  These transition 
points are kept in a lookup table for use at runtime. 

Keeping a lookup table of the matching frames requires storage space to hold the 
frame of each motion that could be transitioned to, for each frame in each motion.  
Therefore, if there are n motions, and each motion has m frames, the space required to 
store these values is n*m*n.  Typically a character will have up to 50 motions, at 
about 200 frames per motion.  Since each value of a table is a frame index, these val-
ues can be stored in 1 byte, which requires 500,000 bytes (479 kB) to store all of the 
tables, which is not an excessive space requirement.  Since we want the transition to 
look natural, we find the transition point in M1 which matches what the frame from 
M0 would have been had there been no transition.  For example, if a 30 frame transi-
tion is initiated on a walk cycle when the left foot is forward, and at the end of 30 
frames, the character would have had its right foot forward, we want to transition to a 
frame in M1 that is similar to the right foot forward pose.  Specifically, given frame i 
in M0, to find the correct “transition to” frame j in M1 (after a transition of length t), 
just read the lookup table value for M0(i+t), instead of simply M0(i). 

3.1.1   Dynamic Timewarping 
To determine a timewarp, we use the same distance metric as in [16].  Specifically, to 
compute the distance between two frames Fi and Fj, two point clouds representing 
each frame are compared.  The point clouds are created from the joint positions of the 
skeleton.  In order to take into account derivative information, a small neighborhood 
of frames about Fi and Fj are used to create the point clouds.  Finally, the optimal sum 
of squared distances is computed between the two point clouds, allowing for rigid 2D 
transformations.  The distance metric is defined as: 
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where pi,k is the kth point in the cloud generated from frame i and Tθ,x0,z0 is a linear 
transformation consisting of a rotation of θ degrees about the vertical axis followed by 
a translation of (x0, z0).  wk are weights that sum to one and give more importance to 
Fi and Fj, and less importance to the frames at the edges of the neighborhoods.   
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This has the following closed form solution: 
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where ∑=
i ii xwx   and the other barred terms are similar. 

This distance metric is calculated for each pair of frames, which produces a dis-
tance array.  Figure 1 shows an example distance array for the weak kick and strong 
kick actions. 

Matching frames are calculated from this array.  The idea is to create a minimum 
cost connecting path through the array, and use this path to determine which frames 
best match.  This path is determined by stepping through the array one frame at a 
time, choosing one of the neighbors of the current position as the next step in the path.  
The neighbor chosen is the neighbor with the least cost value.  The path is also re-
stricted to be continuous, causal (i.e., to always move forward), and to have a slope 
limit (i.e., a limit to the number of consecutive horizontal or vertical steps).  The slope 
limit is somewhat arbitrary, but in practice a slope limit of 3 steps works well.  

This path is calculated for every possible starting point, and the path that yields the 
minimum average cost is saved.  From this path, the matching frames are determined. 

 

 

Fig. 1. The distance array for two similar motions. The white line represents the minimum cost 
path connecting frame 0 and frame n of the weak kicking motion. 

3.2   Aligning Motions 

After the transition points for the motions are determined, M1 is aligned to M0.  The 
starting position of M1 is found from the Newtonian motion formula:   

p1 = p0 + v*t + ½ a*t2 (3)
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where p1 is the starting position of M1, p0 is the position of the final frame of M0, v is 
the velocity of the final frame of M0, t  is the time length of the transition, and a is the 
constant acceleration needed to achieve the velocity of the starting frame of M1 in the 
time of the transition.  The rotations of the root joint of M1 are found in a similar way. 

3.3   Searching for an Example 

At this point the endpoints for the desired transition are known, and hence we are 
ready to create the transition.  In order to preserve the “feel” of the motion, a segment 
of either M0 or M1 is used to build the transition.  The third step of creating the transi-
tion is to find this segment.  Both M0 and M1 are searched to find the motion segment 
that most closely matches the desired transition according to a “closeness” metric.  
The metric we use is a measure of change in value from the start of the transition to 
the end of the transition, and the velocity at both endpoints.  Specifically, 

C = (m0 – m0TARGET)
 2 + (m1 – m1TARGET)

 2 + (ds – dsTARGET)
2  (4)

where m0 is the slope of the start of the motion segment, m1 is the slope at the end of 
the motion segment, ds is the change in value of the motion segment, and m0TARGET, 

m1TARGET, and dsTARGET are the values of the desired transition.  The number of frames 
between m0 and m1 equals the number of frames between m0TARGET and m1TARGET.  In 
other words, time scaling is disallowed.   

For each degree of freedom, the motion segment that produces the minimum value 
for C is used as the example segment in creating the final transition.  This process is 
repeated for each degree of freedom. 

3.4   Motion Modification 

The final step is to modify the motion to resemble the desired transition. The previous 
step yielded a motion segment that roughly matches what the transition should be at 
the endpoints.  This is necessary for the transition to be continuous with the original 
two motions, but so far no constraint has been made for the motion between the end-
points.  What is really desired is a motion that behaves relatively well but looks like 
what the character would have done if it had chosen the transition.  In other words, we 
want to control the general motion yet have it resemble the pre-existing motions.  In 
order to accomplish this, we construct the motion from both a smooth transition and 
the example motion.  High frequency information, which gives the motion its charac-
ter, is taken from the example motion, while low frequency information is taken from 
the smooth transition.  The signal is reconstructed from this frequency information 
into the final signal.   

In order to accomplish this, we use a Laplacian pyramid decomposition, first intro-
duced to motion signal processing in [3].  Each level of the Laplacian pyramid can be 
thought of as containing frequency information for the signal, where L1 contains the 
highest frequencies.  

Now, for each degree of freedom of each joint in the transition, the new motion 
segments are decomposed using a Laplacian pyramid, and the lowest level is replaced 
by a 3rd degree Bezier curve that is C1 continuous with both M0 and M1.  The signal is 
then reconstructed from the Laplacian pyramid to give a function which transitions 
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with C1 continuity from the end of M0 to the beginning of M1 while having the same 
“feel” as M0 and M1. 

The level to which the signal is decomposed before substitution and reconstruction 
can vary.  Substitution at the first level is equivalent to using none of the sample sig-
nal, while substitution at higher levels introduces more and more of the sampled sig-
nal.  Practice has shown that substitution at about the third level usually produces the 
best results. 

4   Experiments and Results 

The method has been tested on a set of seven motions, some similar, others dissimilar.  
These motions include walking, running, jumping, skipping, weak kicking, strong 
kicking, and punching.  Computing transition points between pairs of motions typi-
cally takes about 20 seconds of pre-runtime computation. 

Actual motion transitions are created at runtime in response to user input.  Calcu-
lating the transitions is virtually instantaneous and causes no noticeable delay in 
frame rate.  Figures 2-5 show the results of the method in creating a few different 
transitions. 

5   Discussion and Further Work 

The goal of this research was to provide a method for creating a motion transition in 
real time that is both believable and consistent with the motions being transitioned 
between.  Previous methods for creating transitions are either too compute intensive 
for real time, or lack the nuances that make the motion appealing.  Our method at-
tempts to meet these goals by modifying motion from a pre-existing source, using 
computationally simple transformations. 

We will now attempt to evaluate the strengths and weaknesses of this technique 
based on the criteria established at the beginning of the paper.  

First, the transition is efficient enough to run in real time. The timewarps are com-
puted as a pre-processing step, and the transitions are created in real time. 

 

Fig. 2. Walking to kicking 
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Second, transitioning is responsive.  The transitions happen instantaneously when 
the user presses a button. 

Third, this algorithm doesn’t require excessive space resources.  The lookup table 
for the transition points of the test set of seven motions took 40 kB in ASCII text for-
mat. The space required to store this table is O(mn2), where m is the number of frames 
in each motion, and n is the number of motions.  Since there were 7 motions, of ap-
proximately 200 frames each, and each entry in the table took approximately 4 bytes, 
the expected table size is 200*7*7*4 = 38.2 kB.   For a motion set containing 50 mo-
tions, this table would take 200*50*50*4 = 1.9MB.  This space could be further re-
duced by using a binary representation, reducing the size required for the set contain-
ing 50 motions down to 200*50*50*1 = 479 kB. 

 

Fig. 3. Walking to jumping 

 

Fig. 4. Jumping to skipping 

Fourth, the motion created is arguably continuous and believable.  For transitions 
between similar motions, the effect is at least as good, and for transitions between 
dissimilar motions, the method produces motion superior to linear transitioning, 
though it is not always perfect.   
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Fig. 5. Kicking to jumping 

There are some limitations to the algorithm. Since this method deals only with 
forward kinematics, it is inherently susceptible to foot-skate and other artifacts. An 
inverse kinematic solution should fit well within this framework, and the addition of 
IK would alleviate foot-skate and other problems. 

6   Summary and Conclusions 

This paper has presented a method of creating motion transitions that are both realistic 
and computable in real time.  Previous methods either were too compute-intensive to 
run in real time, or sacrificed motion quality to be feasible for real time.   

The method presented in this paper accomplishes both goals of motion quality and 
ease of computation.  By using a pre-existing motion segment to construct the motion 
transition, the quality of the motion is preserved.  At the same time, no extraordinary 
computation is required, making this method feasible for real-time.  The transitioning 
mechanism has low latency and is therefore quite responsive.  Additionally, the 
method requires only a modest amount of space resources. 
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Abstract. Silhouette and laser based techniques have been widely used for 3D 
reconstruction of objects. We propose a Multiple Axis Object Centered Cylin-
drical Coordinate System (MAOCCCS) for the representation of 3D models re-
constructed by silhouette based technique. A single axis cylindrical coordinate 
system is insufficient for representing objects with multiple auxiliary compo-
nents because it leads to unequal distribution of points over the object. We also 
propose a camera calibration method using meshgrid patterns for laser based 
technique. Using this method we are able to achieve sub-millimeter accuracy in 
the reconstructed 3D models. It is difficult to qualitatively ascertain the accu-
racy of any reconstruction method by measuring the various dimensions of the 
object and comparing them with that of the reconstructed model as this is a very 
tedious process. A novel technique for the error evaluation of a reconstruction 
method, which is closely related to the conventional concept of visual hull, has 
been introduced in this paper.  

Keywords: 3D reconstruction, silhouette, visual hull, laser profile, threshold-
ing, pixelisation. 

1   Introduction 

3D reconstruction is a process of obtaining 3D geometrical and texture information of 
a real-world object. 3D object reconstruction from multiple 2D images is a well 
known problem in computer vision. It has got applications in 3D animations, virtual 
reality, visual metrology, 3D scanner, 3D fax, terrain reconstruction. In [1] volume 
segment models are constructed using orthographic projections of silhouettes of an 
object. These volume segment models approximate the visual hull of the target object. 
This method is well known as volume intersection in computer vision literature. In [2] 
an octree based representation of an object is generated using its three standard ortho-
graphic projections. [3] gives a theoretical foundation for the geometric concept of 
visual hull. Most of the laser based reconstruction methods use a camera, a laser ray 
or plane, and a motion platform which is usually a linear slide or a turn-table. An 
automated scanning system based on orthogonal cross-sections is presented in [4]. 
This system utilizes an intermediate data model that consists of three orthogonal 
cross-sections and is built from the triangulated scan data. The resultant model is 
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easily visualized, which facilitates further interactive operation on the data. In [5] two 
laser sources aligned to project the same plane are used along with a camera and a 
turn-table. Usage of two laser sources eliminates some light occlusions but not camera 
occlusions. 

A hybrid surface reconstruction method that fuses geometrical information ac-
quired from silhouette images and optical triangulation is presented in [6]. Silhouette 
based reconstruction is unable to reconstruct the concavities on the object surface. 
Optical triangulation can detect concavities, but has several shortcomings due to occlu-
sion and laser reflectance properties of the object surface, that often lead to holes and 
inaccuracies on the recovered surface. So, when both the methods are combined they 
tend to compensate for the errors produced by the other. A similar fusion of shape 
from silhouette and shape from laser methods is presented in [7]. In [7] an octree 
based model is used to represent objects. A calibration technique proposed by Roger 
Y. Tsai is used in [7]. In [8], a two-stage camera calibration technique is introduced 
for computing the camera external position and orientation, relative to object refer-
ence coordinate system, by using off-the-shelf TV cameras and lenses. An automatic 
distortion calibration method is presented in [9], which makes use of only images of 
scenes containing 3D segments, like interior scenes or city scenes. 

In this paper the two techniques, silhouette and laser based, are discussed inde-
pendently and a comparison is presented at the end. In silhouette based technique we 
use a multiple axis object centered cylindrical coordinate system for representing 
objects with multiple auxiliary components. A camera calibration method using mesh-
grid patterns is introduced for the laser based technique which can provide an accurate 
reconstruction. Apart from the silhouette and the laser based techniques, a method for 
the qualitative analysis based on the accuracy associated with both the reconstruction 
methods is introduced. Error in reconstructing an object using any of the two methods 
can be calculated by this new error evaluation technique. 

The remaining paper is organized as follows. In Section 2 the setup used for object 
reconstruction is described. Section 3 discusses the silhouette based reconstruction. 
Section 4 describes laser based reconstruction using mesh-grid pattern for camera 
calibration. Section 5 introduces the method for calculating the error in reconstruction 
of 3D objects. Finally conclusion is given in Section 6. 

2   Setup 

The acquisition system is a compact setup in which both the reconstruction techniques 
can be carried out. In some 3D reconstruction techniques hand-held scanners are used 
[11, 12]. We have used a hands free setup which is completely automatic. The setup 
consists of a wooden platform with a rotating platform placed at the center, on which 
the object to be reconstructed is placed. The rotating platform is driven by a stepper 
motor with a minimum angular rotation of 1.8 °. In front of the rotating platform, a 
camera and a laser source are mounted on a raised platform. The laser source is a 
simple arrangement of a key-chain laser (point laser source) and a cylindrical lens. 
This laser source emits a laser plane. The camera and the laser source are fixed and 
they are not moved throughout the experiment. 
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Fig. 1. An image of the setup 

Behind the rotating platform a source of uniform background light is kept, so that 
when viewed from the position of the camera, silhouettes of the object will be seen. 
The centre of rotation, the camera optical center and the laser source form a triangle. 
The angle between the laser plane and the camera optical axis is fixed to be 22 °. The 
camera used in the setup is a 640x480 resolution Enter webcam. The rotation of the 
platform and the capturing of images are controlled by a computer. Thus the entire 
setup is automatic. The reconstructed 3D model is displayed in the computer using 
OpenGL toolkit. Fig.1 shows the image of the setup that is used.  

3   Silhouette Based Reconstruction  

For the silhouette based reconstruction the object is placed on the rotating platform 
and the source of uniform background light is turned on. The object is rotated and 
images of the silhouettes are captured simultaneously. The silhouette images of the 
object will contain different views of the object. It is same as viewing the object from 
different viewpoints, relatively speaking.  

 
Fig. 2. The figure in the left is the image of an object. The figure in the right is its cross-section 
at a certain height. 

The silhouette images are next subjected to cropping, contrast enhancement and 
thresholding to generate images with white background and sharp edged black fore-
ground. The resultant images are subjected to edge detection. Considering the edges 
of only one side, for example right hand-side, they are sampled along the vertical 
height at regular intervals. Thus we have the locations of the edge points at all heights 
and at all angular views of the object. Using this data set, horizontal cross-sections at 
all heights are generated using a space carving algorithm.  
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Fig.2 shows the image of an object and its horizontal cross-section at a certain 
height, generated by employing the space carving algorithm. Here the silhouette im-
ages are strictly assumed to be orthographic images. Now to represent any object in a 
cylindrical coordinate system, there are two important requirements at all heights, 
firstly a suitable center for the axis (origin) and secondly the set of 3-d coordinates of 
the points on the surface of the object measured at fixed intervals of angle. 

 

Fig. 3. The image in the left depicts a single axis representation. The image in the right depicts 
a multi axis representation. 

Since a general object, possibly having auxiliary components is being dealt with 
here, it will have cross-sections with multiple disconnected segments, such as in the 
example shown in Fig.3. So, single axis cylindrical coordinate system is used, as 
shown in the left hand-side image of Fig.3, the number of sample points obtained on 
the distant object is very sparse as compared to the sample points obtained on the 
object component closer to the centre. But when a multiple axis object centered cylin-
drical coordinate system is used, as shown in the right hand-side image of Fig.3, sam-
ple points are obtained which are more equally distributed over the object’s surface. 
In this approach, connected component labeling of the cross-section image is carried 
out to determine the number of disjoint segments present in the image. In connected 
component labeling, subsets of connected components in the image are uniquely  
labeled. This algorithm traverses the image, labeling the pixels based on the connec-
tivity and relative values of its neighbors. Then for every segment its centroid is cal-
culated and centroid is considered as the center for the cylindrical coordinate system 
for that particular component of the object. Among the group of segments, the one 
that is nearest to the center of rotation is chosen to be the primary object component, 
the rest are the secondary object components. The cylindrical coordinate system of the 
primary object component is fixed to be the global coordinate system. After evaluat-
ing centers for all the object components, individual component is sampled using its 
own local cylindrical coordinate system. This approach is carried out on the cross-
section images of all the heights. The positions of the centers of a particular object  

 

 

Fig. 4. The set of two images in the left-hand side shows the first object in the extreme left and 
its reconstructed model in the right. Similarly the second object and its reconstructed model are 
shown in the set of two images in the right hand-side.  
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component at different heights may vary. Using the set of coordinates of the surface 
points calculated w.r.t the global coordinate system, the wireframe model of the ob-
ject is displayed using OpenGL toolkit. Some results are shown in Fig.4.  

4   Laser Based Reconstruction  

The laser source used for this technique is a simple arrangement of a key-chain laser 
and a cylindrical lens, as mentioned before. The key-chain laser by itself is a point 
source laser which emits a laser beam. The cylindrical lens kept in front of it diverges 
the laser beam into a plane of laser in the direction perpendicular to the axis of the 
cylindrical lens. This plane is referred to as laser plane. This laser falls on the target 
object forming a curve that lies in this laser plane. The image of this curve captured 
by a camera from a certain viewpoint is known as a laser profile image. So laser 
profile can be better defined as the intersection of the laser plane and the target ob-
ject, captured by a camera. Fig.5 shows a target object and its laser profile image 
from a certain viewpoint. In our setup the angle between the laser plane and the cam-
era optical axis is fixed to be 22 °, as mentioned before. 

 

  

Fig. 5. The image in the left is the target 
object. The image in the right is its laser 
profile w.r.t a particular viewpoint. 

Fig. 6. Camera calibration using meshgrid pat-
terns. In the left horizontal meshgrid is shown, 
whereas in right meshgrid is shown. 

 
The procedure for the laser based reconstruction of an object is described as follows: 

 
Steps taken for Camera Calibration. In the beginning, two patterns of meshgrid are 
placed in the laser plane one at a time, and images are captured. One pattern consists 
of horizontal lines, which are 1cm apart from each other. Whereas, the second pattern 
is a set of vertical lines which are 1 cm apart from each other. This is illustrated in 
Fig.6. Due to the short range, the depth of the field of the camera is small. Therefore 
the meshgrid images are not focused and the images are blurred out. To obtain single 
pixel thick meshgrid patterns, these blurred images are subjected to thresholding and 
pixelisation. 

The horizontal meshgrid measures height above the plane containing the rotating 
platform while the vertical meshgrid measures the distance away from the central axis 
of rotation. A significant positive of our method is that this approach of empirical 
meshgrid formation automatically accounts for all the optical distortional aberrations in 
the system. The two pixelised meshgrid patterns are superimposed to locate the corner-
points. The resultant image is the complete meshgrid pattern. The corner-points are the 
points of intersection of the horizontal and vertical lines. These corner-points and their 
coordinates (p, q), w.r.t the image plane are grouped as a set T. Following this, the 
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number of horizontal gridlines are increased by a factor of 50, by inserting 50 more 
virtual lines in between each consecutive pair of captured lines. 

It is important to note that the captured lines may not be straight, due to optical sys-
tem defects during capture; we therefore take care to further resolve the vertical  
measurements by ensuring the new virtual gridlines follow the contours of the visually 
captured coarse gridlines. With this, now the lines are 0.2 mm apart from each other in 
real-world coordinates. This is depicted in Fig.7. Thus the improved horizontal mesh-
grid pattern has a vertical resolution of 0.2 mm and it helps to obtain the vertical meas-
urements with good accuracy. 

 

  

Fig. 7. In the left an image of the improved 
horizontal meshgrid is shown. The image in 
the right shows its zoomed view in which the 
new lines constructed are 0.2 mm apart. 

Fig. 8. Mapping of ABCD to A'B'C'D'. Poly-
gon ABCD is in image plane and A’B’C’D’ is 
in laser plane. Point E is  mapped to point E’ 
using DLT algorithm. 

 
Capturing laser profile images of the object. The object is placed on the rotating 
platform of the setup and the source of uniform background light is turned off and the 
laser source is turned on. The object is rotated and the images are captured at periodic 
intervals of the object rotation. Each captured image depicts a laser profile of the 
object, viewed from a different viewpoint.  
 
Mapping of laser profile from the image plane to the laser plane. The laser profile 
images undergo thresholding and pixelisation. The pixelised laser profile is superim-
posed over the improved horizontal meshgrid pattern. This results in sampling of the 
laser profile images at heights of 0.2 mm in real-world coordinates. This assures the 
capturing of minute surface details, in the vertical direction, present on the object 
which are of the order of sub-millimeter. The height h of each sampled point can be 
measured using the improved horizontal meshgrid pattern. In the following discussion, 
the points on the image plane are denoted by alphabets, for example P, and the points 
on the laser plane are denoted by alphabets followed by an apostrophe, for example P’. 
Let a point E (p, q) be one of the sampled points on the laser profile, where (p, q) are 
the coordinates of the point E w.r.t the image plane. Firstly, the four closest corner-
points A (p1, q1), B (p2, q2), C (p3, q3) and D (p4, q4) of point E are found, that forms 
a polygon ABCD. The points A, B, C and D (and their respective coordinates) are ob-
tained from the set of corner-points T which was formed during the camera calibration. 
Point E is either completely inside or on one of the sides of ABCD. Each side AB, BC, 
CD and AD is 1 cm wide in the laser plane. Therefore the polygon ABCD is mapped to 
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a 100 units sided regular square A’B’ C’ D’ with vertices A’ (0,100), B’ (100, 100), C’ 
(100, 0) and D’ (0, 0). This is illustrated in Fig.8. If point E maps to point E’= (p’, q’) 
on the regular square then, the actual distance of the point in the laser plane can be 
determined using Direct Linear Transformation (DLT) [10]. 

Suppose homogeneous vectors Pi for 1 ≤ i≤ 4 represent four corner points of poly-
gon ABCD in the image plane and homogeneous vectors P’i for 1 ≤ i≤ 4 represent four 
corner points of  regular square A’B’C’D’ in the laser plane. Then, if H is the homo-
graphy matrix which converts Pi to P’i, then 

0' =× ii HPP  (1)

Once H is computed by Direct Linear Transformation [10], the coordinates of the 
point E’(p’, q’) is calculated as, 

HPP ='  (2)

where P’= (p’, q’, 1), P=(p, q, 1) (point E) and H is the computed homography ma-
trix. The coordinates (p’,q’) of the point E’ are local w.r.t the polygon A’B’C’D’. The 
global coordinates (r’,s’) w.r.t the laser plane are calculated using the location of the 
polygon A’B’C’D’ in the laser plane. Thus using DLT method the 2-d coordinates of 
all sample points of all laser profile images have been mapped from the image plane 
to the laser plane. The r’-coordinate calculated signifies the distance of the sampled 
point from the central axis of rotation in the laser plane, whereas the s’-coordinate 
calculated signifies the height of the sampled point in the laser plane. 
 
Transforming from 2-d coordinates to 3-d coordinates. Each laser profile is cap-
tured after rotating the object by an angle θ. So, for each pair of adjacent laser pro-
files, their corresponding planes which contain them are separated in space by an 
angle θ.  Now the 2-d coordinates (r’, s’) corresponding to each laser profile can be 
converted into 3-d coordinates (x, y, z). In the 3-d coordinate system, the x-axis is  
the camera optical axis, the y-axis is the line perpendicular to x-axis in the plane con-
taining the rotating platform, the z-axis is the central axis of rotation and the origin is 
the centre of rotation of the platform. The new 3-d coordinates can be calculated as 
follows: 

)(ncos' θ×= rx  (3)

)(nsin' θ×= ry  (4)

s'  z =  (5)

In the above equations, θ represents the smallest angle by which the object is rotated 
in the anti-clockwise direction to get a particular laser profile image. n represents the 
number of times the object has to be rotated by steps of the angle θ to get a particular 
laser profile image. After this, z-coordinate is replaced by the height h of point E 
measured using the improved horizontal meshgrid pattern. Using the set of 3-d coor-
dinates of all the sampled surface points, the wireframe model of the object is dis-
played using OpenGL toolkit. A resultant wireframe model is shown in Fig.9 (b). 

The object used for reconstruction in Fig.9 (a), is a clay object on which the thread 
(grooves) of a screw with a pitch length of 1 mm as shown in Fig.9 (c). The Fig.10 
shows the profile of the reconstructed model with measurements at the top and it 
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shows the zoomed profile in the bottom. The 1 mm pitch is visible along with  
the depth of the groove which is found out to be 0.4 mm. This is clearly shown in  
the Fig.10. The detailed reconstruction of the grooves of the screw confirm that the 
sub-millimeter accuracy is achieved using improved meshgrid patterns. This method 
of camera calibration could be very valuable for visual metrology where the meas-
urements of objects require high precision.  
 

  

Fig. 9. The image in (a) is a clay object. The 
image in (b) is the reconstructed model. The 
image in (c) shows the lead screw used for 
imprinting on the clay model. 

Fig. 10. The profile of the reconstructed model 
using a graph is shown in the image in the top. 
A zoomed view of the same profile is shown in 
the image in the bottom. 

5   Error Evaluation of 3D Reconstruction 

It is difficult to establish whether a reconstructed model is an exact replica of its target 
object, qualitatively. Comparing the measurements of various dimensions of both 
becomes a tedious process. An optimum method in terms of time and memory is pre-
sented here. 

5.1   Error Evaluation for Silhouette Based Technique 

The method for the error evaluation for 3D reconstruction, is derived from the con-
cept of visual hull, as explained in [3]. Let R be the set of points from where the ob-
ject is being viewed. But in case of our setup the camera is fixed and the object is 
being rotated. But relative to the object it can be said that the viewing points of the 
camera is changing. So, these pseudo viewing points make up the set R in our case. 
Let S be the object to be reconstructed. And V is any viewpoint such that V∈R. In [3] 
a simple geometric definition for visual hull is given, which is as follows: 

The visual hull VH(S, R)of an object S relative to viewing region R is a region of E3
 

such that for each point P∈VH(S, R) and each viewpoint V∈R, the half-line starting 
at V and passing through P contains at least one point of S. 



156 S.R.Varier, A. Vaidya, and K.S.Venkatesh 

 

The following propositions are made in [3]: 

Proposition 1: VH(S, R) is the maximal object silhouette equivalent to S with respect 
to R. (i.e., that gives the same silhouette as S when observed from any V∈R). 

Proposition 2: VH(S, R) is the closest approximation of S that can be obtained using 
volume intersection techniques with viewpoints V∈R. 

From the above discussion it can be inferred that the silhouette generated by the vis-
ual hull VH(S, R) with respect to a viewpoint V∈R should be same as the silhouette 
generated by the object S with respect to the same viewpoint V and this must hold true 
for each V∈R. Using this idea, firstly the visual hull of the object is reconstructed. 
Then the silhouettes of the visual hull are generated by computation. The silhouettes 
of the visual hull are compared with the original silhouettes of the object. The com-
parison of the two silhouette images is done by counting the erroneous pixels. The 
erroneous pixels can be classified into two categories: 

• Type A: The pixels that are present in the object silhouette, but not in the visual 
 hull silhouette. 
• Type B: The pixels that are present in the visual hull silhouette, but not in the 

object silhouette. 

The ratio of the count of erroneous pixels, of both the types (A & B), with the total 
number of pixels present in the object silhouette gives the percentage of error with 
respect to one viewpoint. This comparison is carried out for the silhouettes with re-
spect to all the viewpoints. The percentage of error for all viewpoints is averaged out. 
The percentage of error w.r.t one viewpoint V, (P.E(V)) would be given as: 

silhouetteobjecttheinpresentpixelsofNumber

pixelsdeviatingofNumber
VEP

100
)(.

×
=  (6)

The total percentage of error in reconstruction of the object is given as: 

||

)(.

(%)
R

VEP

Error RV
∑

∈=  (7)

where |R| represents the total number of viewpoints. Here error evaluation is carried 
out on 7 test objects. Their images are shown in the Fig.11. The silhouette based re-
construction of the test object is done first and the silhouettes of their respective vis-
ual hulls is generated. 

 

Fig. 11. The objects are denoted by O1-O7 from left to right 

Some differences between the two silhouette images, as shown in the Fig.12, are 
visually evident like the visual hull silhouette looks a little thinner than the object  
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Fig. 12. Object (O2) Silhouette in the left and Visual Hull Silhouette in the right 

Table 1. Error in Reconstruction for Objects O1-7 

Test Object % Type A error in 
reconstruction 

% Type B error in 
reconstruction 

O1 2.166059 1.796690 
O2 1.635022 2.654316 
O3 4.87001 1.065532 
O4 3.557686 3.155562 
O5 2.363172 5.307045 
O6 3.885849 3.908471 
O7 22.397410 11.021011 

 
silhouette. After the generation of visual hull silhouette images, error evaluation is 
performed. The total error (%) in reconstruction for each test object is given in Table 1. 

The error in reconstruction in silhouette based method appears essentially because 
of the assumption that the silhouettes are orthographic projections. By assuming or-
thographic projections, the space carving technique that is employed, generates incor-
rect cross-sections. Thus the reconstructed model slightly deviates from the original 
object. If perspective projection is assumed instead, which is the actual case, then true 
convex cross-sections will be generated.  

 

Fig. 13. Difference between volume intersection methods. Perspective projection is considered 
in the cross-section of figure (b), whereas orthographic projection is considered in figure (c). 
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In Fig.13 it is shown through an example that performing volume intersection con-
sidering orthographic projections carves out too much space (shaded in grey), which, 
on the other hand, actually remains intact when perspective projection is assumed. 
The grey region may have a cross-section segment which is being lost when ortho-
graphic projection is assumed. In figure (b) considering perspective projection and by 
knowing the position of camera optical center and the focal length, the true cross-
section after space carving w.r.t two viewpoints is obtained. The cross-section gener-
ated (that is to say, by perspective, rather than orthographic carving) is a polygon. As 
even more viewpoints are used for carving, correspondingly more matter is carved 
out. But in case of orthographic projections that is shown in figure (c) the cross-
section obtained is a square, which is incorrect. True orthographic projections of the 
object silhouette can be obtained using telecentric lenses. Then the horizontal cross-
section obtained by volume intersection method, considering orthographic projec-
tions, will indeed be the correct cross-section. Consequently, the reconstructed visual 
hull will be exactly same as the original object. Thus there will be no error in recon-
struction. But this error evaluation still notifies the error in reconstruction due to other 
causes such as incorrect knowledge of the center of rotation, uneven sampling, etc. 

It is seen that the reconstruction error for the silhouette method never exceeds 6% 
except for O7, which suffers due to the presence of the auxiliary components. This 
suggests that the orthographic assumption, though invalid, is approximately upheld 
when the camera optical center is sufficiently distant from the object. 

5.2   Error Evaluation for Laser Based Technique 

The error evaluation for the laser based technique is similar to that of the silhouette 
based technique. After constructing the 3D model of the object, it should produce the 
same laser profile images as the original object for the respective view point, theoreti-
cally speaking, but in practice there could be some deviations. So, in this method the 
3D model of the object is constructed first. Then the laser profile images of the 3D 
model are generated by computation and then they are compared with the laser profile 
images of the original object. Comparison is done by counting the erroneous pixels. 
As explained in Section 5.1 there are two types of errors A and B: 

• Type A: The pixels that are present in the object laser profile, but not in the 3D 
model laser profile. 

• Type B: The pixels that are present in the 3D model laser profile, but not in the 
object laser profile. 

The ratio of the count of erroneous pixels, of both types (A & B), with the total num-
ber of pixels present in the object laser profile gives the percentage of error with  
respect to one viewpoint. This comparison is carried out for the laser profiles with 
respect to all the viewpoints. The percentage of error for all viewpoints is averaged 
out. The percentage of error w.r.t one viewpoint V, (P.E(V)) would be given as: 

profilelaserobjecttheinpresentpixelsofNumber

pixelsdeviatingofNumber
VEP

100
)(.

×=  (8)

The total percentage of error in reconstruction of the object is given by equation (7). 
Error evaluation is carried out for the test objects shown in the Fig.14. Not many 
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differences are visible in Fig.15, except for the gap that is present in the object laser 
profile and the interpolation in the 3D model laser profile. The total error (%) in re-
construction for each test object is given in Table 2.  

 

  

Fig. 14. The test objects are denoted as P1 - P4 
from left to right. The test objects consist of  
chess pieces and clay objects. 

Fig. 15. Laser profile of the original object 
P2 in the left and laser profile of its 3D 
model in the right. 

 
The error in reconstruction is appearing at the stage of calculating the 3-d world 

coordinates of the sampled surface points. By finding the projections on x- and y-axis 
the floating point numbers are getting rounded up. In spite of this, the error is consis-
tently less than 3 %. 

Table 2. Error in reconstruction for object P1-P4 

Test Object % Type A error in 
reconstruction 

% Type B error in 
reconstruction 

P1 1.222864 2.847844 
P2 1.390640 2.699499 
P3 1.341192 1.146823 
P4 1.568747 1.568747 

5.3   Comparison of Both Techniques 

For comparison we have chosen the common objects used for the error in reconstruc-
tion for both the techniques. So object O3 & P4, O5 & P3 and O6 & P2 are same. The 
percentage error calculated for both the techniques for the common objects is pre-
sented in the Table 3. 

Table 3. A comparison of silhouette and laser based reconstruction techniques 

% Error in Silhouette 
techniques 

% Error in Laser 
techniques 

Test Object 

Type A Type B Type A Type B 

O3 or P4 4.87001 1.065532 1.568747 1.568747 
O5 or P3 2.363172 5.307045 1.341192 1.146823 
O6 or P2 3.885849 3.908471 1.390640 2.699499 

 
From the table it is evident that laser based reconstruction is more accurate as com-

pared to the silhouette based reconstruction. Laser based technique can also reconstruct 
certain kinds of concavities. But it cannot reconstruct an object with multiple auxiliary 
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components using a single set of camera and laser source, which the Silhouette based 
technique can. Laser based technique is also faster, considering that the silhouette 
based technique carries out cross-section generation. 

6   Conclusions 

The multiple axis object centered cylindrical coordinate system representation is 
found to be better than single axis representation of objects in terms of uniformity in 
the distribution of points on the surface of the object. It is very useful for reconstruct-
ing objects with multiple auxiliary components. However the object registration  
requires a lot of time. Using mesh-grid patterns gives a new technique for camera 
calibration. The camera calibration has to be done only once. The laser based recon-
struction is faster as compared to silhouette based reconstruction and sub-millimeter 
accuracy is achieved using enhanced mesh-grid patterns. Better accuracy can still be 
achieved if, a camera with better resolution and a laser-source which diverges less, are 
used. The error evaluation method turns out to be a good way of finding the error in 
reconstructing an object. This gives a technique to analyze how close is the recon-
structed model to the original object. Using this performance analysis, we could  
establish that the laser based reconstruction is superior to silhouette based reconstruc-
tion when the target object does not contain concavities. 
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Abstract. Intra-shape deformations complicate 3D object recognition
and retrieval and need therefore proper modeling. A method for inelas-
tic deformation invariant object recognition is proposed, representing
3D objects by diffusion distance tensors (DDT), i.e. third order tensors
containing the average diffusion distance for different diffusion times be-
tween each pair of points on the surface. In addition to the DDT, also
geodesic distance matrices (GDM) are used to represent the objects in-
dependent of the reference frame. Transforming these distance tensors
into modal representations provides a sampling order invariant shape
descriptor. Different dissimilarity measures can be used for comparing
these shape descriptors. The final object pair dissimilarity is the sum or
product of the dissimilarities obtained by modal representations of the
GDM and DDT. The method is validated on the TOSCA non-rigid world
database and the SHREC 2010 dataset of non-rigid 3D models indicating
that our method combining these two representations provides a more
noise robust but still inter-subject shape variation sensitive method for
the identification and the verification scenario in object retrieval.

Keywords: Intra-subject deformation, 3D object recognition, geodesic
distance, diffusion distance.

1 Introduction

During the last decades, developments in 3D modeling and 3D capturing tech-
niques caused an increased interest in the use of 3D objects for a number of
applications, such as CAD/CAM, architecture, computer games, archaeology,
medical applications and biometrics. In many of these fields, an important re-
search problem is 3D shape retrieval, in which an object needs to be recognized
or classified from a large database of objects. The success of the yearly SHape
REtrieval Contest (SHREC) [1], organized with the objective to evaluate the
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effectiveness of 3D shape retrieval algorithms, proves the increasing interest in
shape retrieval.

The challenge of 3D shape recognition and retrieval becomes even harder
when intra-shape deformations are present in the database, as is often the case
for articulating objects. Figure 1(a), for example, shows some shape deformations
in the TOSCA database [2], due to articulated motion. Since articulating objects
deform mostly in an inelastic way, we will focus on 3D object recognition in the
presence of inelastic deformations.

(a)

(b)

Fig. 1. Intra-shape deformations occur in the TOSCA database [2] (a) and in the
McGill database [3] (b)

In this paper, an inelastic deformation invariant object recognition method
is presented, not requiring explicit point correspondences for shape comparison.
First, the object is represented by a geodesic distance matrix (GDM) and, for
the first time, by a diffusion distance tensor (DDT), both invariant for inelas-
tic deformation. The GDM is more sensitive to small shape variations, while
the DDT is more robust to small topological variations that can occur in the
database. Both the GDM and DDT are transformed into modal representations,
which are invariant to the sampling order. As such, object recognition reduces
to direct comparison of the modal representations without the need to establish
explicit point correspondences.

After the discussion of the related work in section 1.1, the method is described
in more detail in sections 2 and 3 and validated, leading to the results shown in
section 4. At the end, we draw some conclusions and make some suggestions for
future work.
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1.1 Related Work

In literature, geodesic distance matrices have already been used to tackle 3D recog-
nition problems involving non-rigid objects. Probably the best known of these con-
tributions is the algorithm of Elad and Kimmel [4]. Here, the GDM is computed
using the fast marching on triangulated domains (FMTD) method. Subsequently,
the GDM is processed using a multidimensional scaling (MDS) approach, convert-
ing non-rigid objects into their rigid, isometric deformation-invariant signature
surfaces. These can be compared using standard algorithms for rigid matching.
This method has also been used in expression-invariant 3D face recognition by
Bronstein et al. [5]. An extension of the method is the partial embedding of one sur-
face into another surface using generalized MDS (GMDS) [6,7]. GMDS maps the
probe image on the model by minimizing the generalized stress, i.e. the weighted
sum of differences between corresponding geodesic distances. The three-point
geodesic distance approximation is developed for calculating the geodesic distance
between points originally not on the model surface. Shape comparison is using
the generalized stress as dissimilarity measure. The GMDS framework is also vali-
dated and extended with diffusion distances in [8] for reasons of robustness against
topological changes. However, the generalized stress is computed using only one,
experimentally determined, diffusion time to compute the diffusion distances. We,
on the other hand, propose an approach using distances computed for several dif-
fusion times allowing multi-scale recognition.

The Geodesic Object Representation of Hamza and Krim [9] is another 3D ob-
ject recognition method relying on geodesic distance matrices. In [9], GDMs are
used to determine global geodesic shape functions. This global shape descriptor
is defined in each point of the surface and measures the normalized accumulated
squared geodesic distances to each other point on the surface. Using kernel den-
sity estimation (KDE), the global geodesic shape functions of a particular object
are transformed into a geodesic shape distribution. For the actual recognition,
these KDEs are compared using the Jensen-Shannon divergence.

In [10], the modal representation approach is already applied on geodesic dis-
tance matrices for isometric deformation invariant object recognition. It was
proved that decomposing the GDM using singular value decomposition provides
a sampling order invariant shape descriptor. In this paper, the isometric defor-
mation invariant method without need for correspondences is further extended
with diffusion distances and to tensor representations (instead of matrix repre-
sentations) allowing a multi-scale recognition approach and a higher robustness
against noise.

2 Inelastic Deformation Invariant Representations

Since many intra-shape deformations, e.g. the deformations in Fig. 1, are approx-
imately inelastic, the non-rigid object recognition method should be invariant
for those deformations. We present the combination of two inelastic deformation
invariant object representations: the geodesic distance matrix and the diffusion
distance tensor.
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2.1 Geodesic Distance Matrix

The geodesic distance matrix (GDM) contains the geodesic distance between
each pair of points on the surface. An example is shown in Fig. 2. The geodesic
distance is the length of the shortest path on the object surface between two
points on the object. It is calculated by solving the Eikonal equation,

|∇T (P)| = V, (1)

on the surface, with T the traveling time on the surface to P starting from P0

and V the velocity. Choosing V = 1, the travel time is equal to the distance of
the shortest path between P and P0.

(a) (b)

Fig. 2. 3D mesh of an object (a) and its geodesic distance matrix representation (b)

The computation can be achieved with a fast marching algorithm for trian-
gulated meshes [11,12]. Isometric deformations, and thus also inelastic defor-
mations, leave these geodesic distances unchanged. Therefore, the GDM is an
appropriate representation for isometrically deformed objects.

2.2 Diffusion Distance Tensor

The diffusion distance tensor (DDT) is a third order tensor containing the av-
erage diffusion distance between each pair of points on the surface for different
diffusion times. An example is shown in Fig. 3. The average diffusion distance
is related to the probability that a particle, started in one point, arrives at the
other point after a diffusion process ran for a certain time tD (random walk).
This distance is calculated by solving the heat equation i.e. diffusion equation
with constant diffusion coefficient α,

∂u

∂t
= αΔXu, (2)

obtaining the distribution of temperature (density of the diffusing material) u on
the surface. ΔX denotes the Laplace-Beltrami operator, a generalization of the
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(a) (b)

Fig. 3. 3D mesh of an object (a) and its diffusion distance tensor representation (b)

Fig. 4. The average diffusion distance for the tip of the nose to all other points is shown
for different diffusion times

Laplace operator for non-Euclidean domains [8]. The average diffusion distance
for all points is shown for different diffusion times in Fig. 4 when diffusion started
at the nose tip.

Practically, the average diffusion distance computation can be achieved by
solving the generalized eigendecomposition problem of the discretized Laplace-
Beltrami operator L [13],

LΦ = λAΦ, (3)

with A a diagonal matrix containing numbers ai proportional to the sum of
the areas of the triangles sharing the vertex i (with proportionality constant: 5/
average triangle area). Different discretizations of the Laplace-Beltrami operator
are found in literature (see [8]). We used the cotangent weighting scheme in which
L = diag(

∑
l �=i wil) − wij and wij = cot αij + cot βij (αij and βij are the two

angles opposite to the edge between vertices i and j in the two triangles with
shared edge between i and j). The discrete average diffusion distance between
points i and j is then approximated by
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dX,tD (i, j) ≈

√√√√ k∑
l=1

e−2λltD (Φl;i − Φl;j)2. (4)

Since the average diffusion distance is the average length of paths connecting two
points on the shape, also this distance is intrinsic and thus invariant to inelastic
deformations. Because of the implicit averaging, the (average) diffusion distance
is expected to be less sensitive to noise and more robust against small topological
changes than the geodesic distance. On the other hand, this robustness implies
a lower sensitivity for small inter-subject shape variations.

3 A Modal Representation

The GDMs and DDTs are uniquely defined up to a random simultaneous per-
mutation of the first and second mode vectors due to the arbitrary sampling
order of the surface points, mathematically expressed as

D′ = D ×1 P ×2 P, (5)

with D the distance matrix or tensor and P an arbitrary permutation matrix.
Provided that two instances of the same object are represented by surface

meshes containing an equal number of sufficiently dense sampled surface points,
an approximate one-to-one correspondence map can be assumed to exist between
both surface representations. Hence, point correspondences are mathematically
characterized by a permutation matrix and the distance tensors of these surface
meshes are approximately related by eq. (5). Hence, shape comparison reduces
to verifying the extent to which eq. (5) holds. However, in practice the point
correspondences between the objects compared are generally not known.

Since establishing explicit point correspondences between surfaces is far from
trivial, this work proposes the use of a modal representation of the distance
tensors which is invariant for simultaneous permutation of their first and second
mode vectors. The singular value decomposition (SVD) of the distance tensors
transforms them into permutation-variant matrices of singular vectors and a
permutation-invariant core tensor (2D for DDM and 3D for DDT). For the 3D
case, the higher order SVD [14], also known as Tucker decomposition [15], of
tensors D and D′ coming from the same object, can be written as

D = Σ ×1 U (1) ×2 U (2) ×3 U (3), (6)
D′ = D ×1 P ×2 P = Σ ×1 PU (1) ×2 PU (2) ×3 U (3). (7)

When the core tensor is ordered according to a decreasing Frobenius norm,
it is uniquely determined by the decomposed tensor (cfr. decreasing singular
values in 2D case) [14]. The latter is therefore an excellent shape descriptor.
For computational reasons, dimension reduction is performed meaning that only
the largest singular values are computed in 2D and a core tensor that is much
smaller than the original tensor in 3D.
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As such, shape comparison comes down to comparing the modal representa-
tions, reshaped as vectors, using an appropriate dissimilarity measure. For this
purpose, the mean normalized Manhattan distance

D1 =
M∑
i=1

2|Sk
i − Sl

i|
Sk

i + Sl
i

(8)

and the normalized Euclidean distance

D2 =

√√√√ M∑
i=1

(Sk
i − Sl

i)2

σ2
i

(9)

are used, with Sk and Sl the shape descriptors of the two objects to compare
and M the number of used singular values or elements in the core tensor.

4 Experimental Results

The proposed method is validated using standard recognition experiments, i.e. the
verification and the identification scenario. The performance of those scenarios
is measured with the receiving operating characteristic (ROC) curve and the
cumulative matching curve (CMC), respectively. The former is a curve plotting
the false rejection rate (FRR) against the false acceptance rate (FAR), while the
latter gives the recognition rate for several ranks. Characteristic points on these
curves are the equal error rate (EER) and the rank 1 recognition rate (R1RR).
The percentage of correct nearest neighbor (NN) in the all-to-all experiment
(verification), is a frequently used statistic in shape retrieval.

For the validation of the proposed approach, we use the TOSCA non-rigid
world database [2] as well as the dataset of “SHREC 2010 - Shape Retrieval
Contest of Non-rigid 3D Models” [16], which is a subset of the McGill 3D Shape
Benchmark [3].

4.1 The TOSCA Non-rigid World Database

The TOSCA non-rigid world database consists of various 3D non-rigid shapes in
a variety of poses and is intended for non-rigid shape similarity and correspon-
dence experiments. We use 112 objects, including 9 cats, 6 centaurs, 11 dogs,
3 wolves, 6 seahorses, 17 horses, 1 shark, 24 female figures, and two different
male figures, containing 15 and 20 poses. Each object contains approximately
3000 vertices. Therefore and because the objects have already the same scale,
no surface preprocessing is needed before GDM and DDT computation. The
(higher order) SVD provides shape descriptors which are compared using the
mean normalized Manhattan distance and fused using the sum rule.

The results are tabulated in Tab. 1, showing a high performance of the pro-
posed method, in particular for the GDM representation. This can be explained



Inelastic Deformation Invariant Modal Representation 169

by the good quality of the meshes which permits the more shape sensitive GDM
approach to be more distinguishing. The lower noise sensitivity and the higher
robustness against topological changes of the DDT approach are not needed for
this database.

Table 1. Results of the inelastic deformation invariant recognition method on the
TOSCA non-rigid world dataset

representation R1RR EER NN
GDM 100.0% 1.87% 100.0%
DDT 100.0% 9.77% 100.0%
GDM + DDT 100.0% 2.67% 100.0%

Compared to results found in literature and validated on the same database
–although we use another subset– [8] we see that the results presented here
are slightly better than those of the diffusion distance based method using the
Gromov-Hausdorff framework, obtaining an EER of 2.22% and 2.02% for dif-
ferent subsets. The authors compare with the same method but using geodesic
distances, obtaining an EER of 4.95% and 15.49% respectively.

4.2 SHREC Non-rigid 3D Models

The dataset of “SHREC 2010 - Shape Retrieval Contest of Non-rigid 3D Models”
contains 200 non-rigid objects, including 20 ants, crabs, hands, humans, octo-
puses, pliers, snakes, spectacles, spiders and teddies each. The objective of this
3D Shape Retrieval Contest is to evaluate the effectiveness of 3D-shape retrieval
algorithms for non-rigidly deformed 3D objects. Unlike the object instances of
TOSCA non-rigid world database, the different instances of the same object
do have some small intrinsic shape and scale variations in the SHREC dataset.
Therefore, all meshes are resampled keeping 2500 points. After computation of
the GDM and the DDT, these tensors are normalized by dividing each element
by the sum of all distances of one slice in the tensor, compensating the mean-
ingless scale variations. For the DDT, 5 different diffusion times are combined
in one tensor, namely tD = 100, 200, 400, 800, 1500. The (higher order) SVD
results in modal representations which are compared using the normalized Eu-
clidean distance and fused using the product rule. For the GDM approach, the
19 largest singular values are kept, while for the DDT core tensor is 20× 20× 5.

The results of the validation are shown in Fig. 5 and the main characteristic
points are listed in Tab. 2. We see a lower performance compared to the TOSCA
database, which can be explained by the small intrinsic shape variations that
occur in this dataset. Unlike for the TOSCA database, there is a clear improve-
ment by combining the GDM approach with the DDT approach. This can be
explained by the need for noise robustness and robustness against topological
changes for the more imperfect data together with the need for a shape sensitive
representation.
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(a) (b)

Fig. 5. Validation of the proposed method for the SHREC 2010 dataset, with the CMC
(a) and the ROC (b)

Table 2. Results of the inelastic deformation invariant recognition method on the
SHREC Non-rigid 3D Models dataset

representation R1RR EER NN
GDM 84.21% 8.86% 99.5%
DDT 84.74% 14.22% 97.5%
GDM × DDT 93.68% 7.96% 100%

When these results are compared with other methods on the same dataset
[16], also here we see a better performance for the described method based on
the nearest neighbor (NN) criterion.

5 Conclusion and Future Work

As a conclusion, we can state that the fusion of two inelastic deformation in-
variant recognition approaches provides a noise robust and a inter-subject shape
sensitive object recognition method, leading to excellent results for the “TOSCA
non-rigid world” database and especially for the “SHREC 2010 Non-rigid 3D
Models” dataset. The first approach is based on the geodesic distance matrix
as object representation, the second is built upon the diffusion distance tensor.
Because of the implicit averaging of distances on the surface, the (average) dif-
fusion distance is more robust for noise and topological changes. On the other
hand, geodesic distance is more sensitive for small inter-subject variations.

Depending on the dataset and its noise content, the fusion of both approaches
could be done in a smarter way by giving one approach a higher weight than the
other. As future work, we want to evaluate this weighting.
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Abstract. This paper presents a gesture recognition method for detect-
ing and classifying both cyclic and non-cyclic human motion patterns in
real-time applications. The semantic segmentation of a constantly cap-
tured human motion data stream is a key research topic, especially if
both cyclic and non-cyclic gestures are considered during the human-
computer interaction. The system measures the temporal coherence of
the movements being captured according to its knowledge database, and
once it has a sufficient level of certainty on its observation semantics
the motion pattern is labeled automatically. In this way, our recogni-
tion method is also capable of handling time-varying dynamic gestures.
The effectiveness of the proposed method is demonstrated via recogni-
tion experiments with a triple-axis accelerometer and a 3D tracker used
by various performers.

Keywords: Human-Computer Interaction, Gesture Spotting, Gesture
Recognition, Motion Pattern, Motion Capture.

1 Introduction

The semantic interpretation of human motion [1] is a key research topic in
various fields, such as human-computer interaction, video-surveillance, robotics,
biomechanics, biometric systems, or multimedia content analysis, amongst oth-
ers. Thus, gesture recognition allows us to communicate with computers at a
higher level of abstraction, adding more intelligence to motion capture and com-
puter vision systems. Moreover, combining such semantic motion information
with other communication channels such as voice or touch, i.e. multimodal in-
terfaces, would lead to a more natural interaction [2]. To achieve the goal of
recognizing motion patterns, three steps must be carried out: (1) the selection
of meaningful motion-features, (2) potential gesture spotting and (3) gesture
classification.

The first step consists of deciding which features derived from the data being
tracked will be used for a semantic interpretation. Depending on the motion
capture or computer vision system, these data could be obtained directly from
sensors or images, but also from the reconstruction of the user’s kinematic body

F.J. Perales and R.B. Fisher (Eds.): AMDO 2010, LNCS 6169, pp. 172–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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structure (e.g, temporal joint positions, angles, velocities, etc). These are usu-
ally chosen beforehand, but there are also some sophisticated approaches that
can make this selection (semi)automatically [3,4]. Then, motor actions are rep-
resented by templates [5,6,7] or state-space models [8,9,10,11,12] using these se-
lected data. The former are static shape patterns containing motion information,
while the latter define the considered instantaneous motion-features as a state,
and therefore a sequence is considered as a tour going through various states.

The second step consists of segmenting the continuous data stream into tem-
poral regions that might possibly be gestures with a meaning. As stated in
[1], the main difficulties come from the segmentation ambiguity and the spatio-
temporal variability involved. Additionally, gesture spotting is more challenging
when both cyclic and non-cyclic gestures are considered during the interaction,
because cyclic gestures may be performed with a different starting direction and
number of cycles keeping the same meaning (e.g., waving). Hence, there are
methods explicitly designed for non-cyclic gestures which require start and end
pauses [11] and others for cyclic [13] which focus on motion periods.

Finally, the third step consists of labeling the segmented motion with one of
the categories of the knowledge database, or as an unknown motion pattern. The
typical classification procedures found in the literature for motor action recogni-
tion are hidden Markov models (HMMs) [8], dynamic time warping [17], nearest
neighbors [5], dynamic Bayesian networks [10], neural networks [14] and ker-
nel methods such as support vector machines (SVMs) [15] and relevance vector
machines [16].

In this is work we propose a method for gesture spotting and classification that
can cope with both cyclic and non-cyclic time-varying human motion patterns in
real-time applications. Both objectives are achieved with a semantic observation
of the performance’s temporal advance, as once the computer knows that the user
is making a certain gesture it can segment the dataflow accordingly. Unlike other
approaches (especially those based on HMMs), our method does not transform
motion into symbols, and allows a measure of the proximity of new performances
to those in the database. This can be useful for motion style learning tasks, which
can lead to motor skills transfer through imitation.

2 Cyclic and Non-cyclic Gesture Spotting

A system designed for coping with both cyclic and non-cyclic gestures should
label the observed motion patterns after each period of cyclic gestures, and af-
ter each non-cyclic gesture has been performed, even if the user keeps moving,
ignoring other transition movements. Ramanan and Forsyth [15] use joint tra-
jectories per second as motion-features, in order to obtain a continuous stream
of descriptive annotations (one per frame). Their experiments reveal that in this
way choppy annotation streams are produced. Therefore, they need to apply a
smoothing technique, once the observed bit strings are known, obtaining auto-
matic action descriptions quite close to real (no quantitative results are provided
for comparison). Kang et al. [17], whose work is focused on videogame control,
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segment potential gestures by detecting abnormal velocities, frames classified as
static gestures, or frames in which the tracked trajectories have severe curva-
tures, attaining a reliability of 93.36%. However, in this method those gestures
that may include one of these events during its performance cannot be consid-
ered. Stiefmeier and Rogen [18] transform the data stream and gestures into
strings encoding motion vectors and apply an approximate string matching pro-
cedure for the spotting and classification task. They achieved a correct spotting
rate of 82.7% with users performing bicycle maintenance tasks including cyclic
and non-cyclic gestures.

These approaches transform movements into symbol sequences before spotting
and classification tasks. Symbols are obtained by clustering neighboring positions
and trajectories in order to define a finite set of possibilities with which motions
can be modeled. This grid allows a higher generality in order to label different
performances of the same gesture in the same way, however at the same time it
may prevent the system from measuring the proximity of different performance
styles.

On the contrary, we propose to measure the spatio-temporal consistency of
the data stream with respect to each of the known gestures, and once a ”clear”
semantic match is obtained, label the period in which this observation has been
made with the corresponding meaning. Thus, the core of our approach relies
on the concept Temporal Advance Counting Algorithm presented by Mena et al.
[12], but goes beyond it by analyzing the advance through a dynamic time buffer
which is increased until the decision is taken, instead of observing a constant
number of recent frames for labeling the most recent one at each time instant.
In this paper we focus on the recognition of gestures performed by a single
”rigid” body (e.g., one hand, the head, etc). The combination of semantic body
part motion descriptions in a multibody structure (i.e., a full human body) is
beyond this scope.

The motion of a body part is defined as a temporally ordered sequence of
motion-features, i.e. vectors containing relevant information for further gesture
classification (e.g., velocities, accelerations, angular variations, etc). Therefore,
the knowledge database is constituted by a set of labeled motion patterns repre-
sented as connected states. The number of states will be the same for all of them
in order to make a balanced computation of the temporal advance in all gesture
candidates. Hence, even though this normalization is obtained through a post-
processing step (concretely adjusting a cubic-spline), the number of states of the
original gestures should not be too different from each other, so that they do
not get too distorted. This may appear to be a major restriction on the kind of
actions that can be modeled together (even after the cubic spline fitting), but the
complexity of these can be higher than those presented in previous approaches
in the field [15,17,18]. However, there is a restriction that must be accomplished
and it is that gestures must be independent one of each other, i.e. there must
not be gestures whose complete shape is similar to the part of another.

Algorithm 1 shows how the temporal advance is computed for a motion se-
quence of size p with respect to a gesture candidate C. This advance takes into
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consideration the proximity of the recent dataflow states with respect to those
of the gesture. Hence, we call it a weighted temporal advance, where the weight
comes from the inverse of the mean distance of advancing states with respect
to their corresponding nearest ones in the gesture. A higher weighted temporal
advance count means a more accurate approximation to the gesture candidate,
and thus can be used as a quantitative measure for motor skills transfer through
imitation. However, it must be taken into account that in order to avoid a divi-
sion by zero this proximity must be limited to a certain minimal value. Note that
multiple states in the observed motion sequence can get matched to the same
state in gesture model, which would mean that there would not be advance in
that case, but this feature is precisely the one that allows to handle time warping
in performed gestures.

Algorithm 1. Weighted Temporal Advance Algorithm
1: procedure WeightedTemporalAdvance(sequence,gestureC)
2: nV otesC ⇐ 0
3: nearestStateIndexC ⇐ −1
4: previousIndexC ⇐ −1
5: sumDistancesC ⇐ 1
6: nearestStateDistanceC ⇐ 0
7: for i = 1 to p do
8: nearestStateIndexC ⇐getNearestStateIndex(sequence[i])
9: nearestStateDistanceC ⇐getNearestStateDistance(sequence[i])

10: if nearestStateIndexC > previousIndexC then
11: nV otesC ⇐ nV otesC + 1
12: sumDistancesC ⇐ sumDistancesC + nearestStateDistanceC

13: end if
14: previousIndexC ⇐ nearestPoseIndexC

15: end for
16: return nV otesC/(sumDistancesC/nV otesC) = nV otes2

C/sumDistancesC ,
where sumDistancesC > 0

17: end procedure

3 Semantic Observation of Temporal Advance

The weighted temporal advance will allow to compute the level of confidence
in the continuous data stream for a semantic gesture spotting. Firstly, we spot
when occurs a variation in the state sequence higher than a certain threshold,
and start the observation from the instant in which that variation was zero. To
do so we apply the algorithm used in [11] for the starting point determination.
Having this threshold allows us to filter small state variations due to noise. Then,
we can start the semantic observation from that point until the system takes a
decision, which could be a gesture detection or doing a reset. Therefore, the
observed segment, i.e. the buffer, increases its size dynamically as new motion-
features are being obtained from the motion capture system. Hence, gesture
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spotting and classification are solved in parallel. There are six conditions that
the observation must accomplish so that a data stream segment is labeled with
a gesture candidate:

(a) It has the highest weighted temporal advance.
(b) The weighted temporal advance is over a threshold.
(c) The number of temporal advances without the distance weight is at least a

certain portion of the number of gesture states.
(d) The observed data stream has at least a certain number of states.
(e) The dataflow has not been still for at least a certain time.
(f) The number of frames in the buffer is not excessive.

If all these conditions are met, apart from labeling the segment, the system also
resets the weighted temporal advance counting and forgets the previous data,
which means that in case a cyclic gesture is being done, when the system tries
to detect again the starting point of the new cycle, the lastest instant that it
may take into consideration will be the latest of the previous segment. On the
contrary, if the system accomplishes conditions (c) and (d), but not (b), or it does
not satisfy conditions (e) or (f), the counting is reset, but no answer is delivered,
because there was not enough confidence on the best candidate. Meanwhile, while
these situations are not met algorithm 1 is applied to the increasing buffer. The
matching procedure is not sensitive to the starting location, which is of special
interest especially for cyclic actions, which can start at any state, because the
weighted temporal advance will be increased independently of it.

This algorithm is fast enough for human-computer interaction with off-the-
shelf equipment, but in case it would be necessary, it may also be possible to
alleviate the computational cost by applying the counting every N frames while
the buffer is increasing and not every frame. Alternatively, taking advantage of
current GPU and multi-core CPU platforms, it is also possible to parallelize the
measurements with respect to gesture candidates, to attain faster framerates, or
otherwise for increasing the database size with a higher number of candidates.

4 Experimental Results

In order to evaluate the presented gesture spotting and classification method,
a set of continuous dataflow captures containing a series of hand gestures per-
formed several times is used. The number of correct spotting and classifications
are computed, but also the number of deletions, insertions and substitutions.
Deletions occur when a gesture has not been spotted, insertions when the sys-
tem has spotted a gesture when it should not, and substitutions when it has
spotted a gesture correctly but it has not classified it with the right label. We
build the continuous data streams by concatenating previously segmented ges-
tures so that the obtained results can be visualized in an easier way (otherwise
the continuous dataflows should be segmented manually afterwards). In this way
we exactly know when start and end real gestures and which they are. There
may appear unnatural discontinuities at the boundaries of actions, especially for
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non-cyclic actions, but these are not relevant for this test because, as stated in
Section 3, the weighted temporal advance will be increased independently of the
gesture starting point.

Fig. 1. The dynamic gestures to be performed

Both a triple-axis accelerometer (Wiimote: http://www.nintendo.com/wii)
and a 3D tracker (Flock of Birds: http://www.ascension-tech.com) are used
for the experiment with the same gestures in order to compare results with dif-
ferent motion-features. The motion-features used in the triple-axis accelerometer
are directly the data coming from the sensor, while in the case of the 3D tracker
the velocity vectors derived from captured 3D positions are used. Fig. 1 shows
the gesture classes to be performed in the experiment. For each device, four users
perform 20 times these four gestures and therefore there are 20×4×4 = 320 sam-
ples in total (80 repetitions per gesture). The two confusion matrices obtained
from the leave-one-out training validation method [19] with all these samples are
shown in table 1. It can be seen that gesture classification using the weighted
temporal advance algorithm obtains very high rates: 98.75% using the triple-axis
accelerometer and 100% with the 3D tracker.

Table 1. Confusion matrices of the labeled gestures captured with the triple-axis
accelerometer and the 3D tracker respectively, using leave-one-out

Assigned Real Class (3-Axis Accel.)
Class Rew FF Play Stop

Rew 80 0 2 0
FF 0 80 0 0

Play 0 0 78 2

Stop 0 0 0 78

Assigned Real Class (3D Tracker)
Class Rew FF Play Stop

Rew 80 0 0 0
FF 0 80 0 0

Play 0 0 80 0

Stop 0 0 0 80

For the dataflow automatic segmentation, for each device, a part of the recorded
samples is used to build the knowledge database and the rest to build the contin-
uous data streams to be evaluated, one for each performer. During the database
training it is possible to obtain the most suitable parameter values for gesture
spotting according to it. These parameters are: (a) normalized number of states
per gesture in the database (NNS), (b) weighted temporal advance threshold
(WTAT) and (c) temporal advance number with respect to the number of states

http://www.nintendo.com/wii
http://www.ascension-tech.com
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(TANS). In order to obtain the optimal parameter values, a continuous dataflow
with the database gestures (without resampling) is evaluated with different pa-
rameters combinations until the one with the highest recognition rate is obtained.
In our experiments we obtain, with slight variations from case to case, NNS=12,
WTAT=10 and TANS=70% for the triple-axis accelerometer and NNS=19,
WTAT=5 and TANS=70% for the 3D tracker. On the other hand, the threshold of
sequence variation for determining the observation starting point is set manually
for each device through experimentation, so that slight movements are filtered.
In this experiment we test two different alternatives for evaluating the system:
(1) using only one database of 80 samples (5 performances per gesture and user)
to evaluate the continuous dataflows of all users with the same gesture spotting
parameter values and (2) using 4 databases of 20 samples (one per user, 5 per-
formances per gesture) to evaluate the continuous dataflows of the corresponding
users that trained the system.

Table 2. Spotting and classification results with the triple-axis accelerometer for dif-
ferent subjects using (1) an overall auto-generated configuration and (2) their own
databases and auto-generated configurations respectively

Case 1 Correct Deleted Inserted Substituted Ground Truth

Subject 1 58 (96.67%) 1 (1.67%) 3 (5%) 1 (1.67%) 60
Subject 2 57 (95%) 3 (5%) 6 (10%) 0 (0%) 60
Subject 3 53 (88.33%) 3 (5%) 13 (21.67%) 4 (6.67%) 60
Subject 4 51 (85%) 3 (5%) 16 (26.67%) 6 (10%) 60

Total 219 (91.25%) 10 (4.16%) 38 (15.83%) 11 (4.58%) 240

Case 2 Correct Deleted Inserted Substituted Ground Truth

Subject 1 60 (100%) 0 (0%) 6 (6.67%) 0 (0%) 60
Subject 2 56 (93.33%) 3 (5%) 12 (20%) 1 (1.67%) 60
Subject 3 56 (93.33%) 2 (3.33%) 6 (10%) 2 (3.33%) 60
Subject 4 50 (83.33%) 8 (13.33%) 13 (21.67%) 2 (3.33%) 60

Total 222 (92.25%) 13 (5.41%) 35 (14.58%) 5 (2.08%) 240

Table 2 shows the obtained spotting and recognition results of this test using
the triple-axis accelerometer. It can be seen that in both cases remarkable recog-
nition rates are obtained (above 91%), and also that using the overall database
of 80 samples a slightly lower rate (91.25%) than using smaller (20 samples)
but more user oriented ones (92.25%) is achieved. Table 3 shows the obtained
results with the 3D tracker and the user oriented databases (we omit the over-
all database results because similar conclusions to those with the tripe axis
accelerometer are deduced). In this case the obtained results are even better
(94.58%). This improvement is also related to the employed motion-features. In
this case, these have a more direct relation with the performed movements, while
in the case of the triple-axis accelerometer the captured data are influenced by
gravity apart from the movements themselves. Regarding the computation time,
the heaviest system, i.e. the one using the 80 sample database, runs at 82-98 Hz
which is above real-time performance even if the implementation has not been
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parallelized. The system was implemented using C++, and tested on a 2.00 GHz
Intel Celeron 1 GB RAM.

Finally, Fig. 2 shows close-ups of how the semantic observation of the temporal
advance segments the data stream with respect to the true start and end points of
gestures being performed one after the other for both motion capture devices. It
can be seen how both the temporal advance and the weighted temporal advance
increase their values while the gestures are being recognized and how the system
resets to zero once it has met the necessary conditions to take a decision. It can
also be observed how the decision is taken a few frames before the real transition
from gesture to gesture (marked with vertical dashed lines). It occurs this way
because it has been determined during the training that the answer should be
given when the number of temporal advances without the weight is a bit less
than the total number of states per gesture in the database, in order to obtain
better recognition rates.

Table 3. Spotting and classification results with the 3D tracker for different subjects
using their own databases and auto-generated configurations

Correct Deleted Inserted Substituted Ground Truth

Subject 1 58 (96.67%) 2 (3.33%) 5 (8.33%) 0 (0%) 60
Subject 2 58 (96.67%) 2 (3.33%) 9 (15%) 0 (0%) 60
Subject 3 56 (93.33%) 3 (5%) 5 (8.33%) 1 (1.67%) 60
Subject 4 55 (91.67%) 4 (6.67%) 4 (6.67%) 1 (1.67%) 60

Total 227 (94.58%) 11 (4.58%) 23 (9.58%) 2 (0.83%) 240
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Fig. 2. Close-up of the semantic gesture spotting and classification using the triple-axis
accelerometer and the 3D tracker respectively
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5 Conclusions and Further Work

In this is work we have presented a method for gesture spotting and classifica-
tion that can cope with both cyclic and non-cyclic time-varying human motion
patterns in real-time applications. The spatio-temporal consistency of the data
stream with respect to each of the known gestures is measured with a weighted
temporal advance counting, where the weight comes from the inverse of the mean
distance of advancing states with respect to their corresponding nearest ones in
the gesture. A higher weighted temporal advance count means a more accurate
approximation to the gesture candidate, and thus can be used as a quantitative
measure for motor skills transfer through imitation. This weighted temporal ad-
vance allows to compute the level of confidence in the continuous data stream
for a semantic gesture spotting.

The semantic observation starts from the instant when a variation in the
state sequence higher than a certain threshold occurs until the system takes
a decision, which could be a gesture detection or doing a reset, depending on
certain conditions related with the temporal advance, the segment size and the
state sequence variation. Hence, gesture spotting and classification are solved in
parallel. Experimental results with gestures performed by various users with a
triple-axis accelerometer and a 3D tracker show the potential of this approach
for human-computer interaction.

Future work will focus on automatizing the selection of the optimal motion-
features for the spotting and recognition of gestures involving different body
parts. Additionally, it will also be explored the combination of semantic body
part motion descriptions in a multibody structure, extending the work done in
this subject in previous approaches such as [15,20].

References

1. Mitra, S., Acharya, T.: Gesture Recognition: A Survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(3), 311–324
(2007)

2. Jaimes, A., Sebe, N.: Multimodal Human Computer Interaction: A Survey. Com-
puter Vision and Image Understanding 108(1-2), 116–134 (2007)
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Abstract. Motion segmentation is one of the key techniques in the con-
text of motion analysis and generation. The basic idea is to split motion
capture data into continuous segments that can be used to generate
new motion sequences. For most applications, this segmentation is done
manually leading to inaccurate and inconsistent results. This makes it
difficult to conceive general methods for subsequent reassembly.

This paper proposes an automatic segmentation of motion capture
data that results in deterministic segmentation points. The method can
be considered as an advanced zero crossing segmentation technique. As
zero crossing performs poorly on weak motion, a threshold is defined
detecting phases of week motion. We distinguish two states: One for the
resting phase and one for phases of movement. Splitting this second phase
again, the presented approach leads to a symbolic level allowing later
steps to be carried out without the need of considering spatio-temporal
dependencies.

1 Introduction

The idea of motion capturing has been in the focus of research for a long time.
The interest in human and animal motion goes back very far in human history
[14]. Today most of the human motion capture data is used in the field of enter-
tainment as well as in the film industry. Computer animation is most popular.
But, with the integration of humanoid robots in society, another challenging aim
is the design of human-like motion for service robots. The development of a ser-
vice robot within the scope of the special research area 588 has the objective of
generating motion for a machine that closely cooperates with humans.

Using motion capture (mocap) data is common for motion analysis, e.g. body
tracking [6], segmentation [16] or activity recognition [10]. In humanoid robotics
and film industries the data is used also for transferring motion to the actors.
Usually mocap data is directly mapped to the robot or film characters, so it is just
the replay of predefined motions or live motions from an human actor. With the
assignment of the robot to new tasks or in new situations it would be desirable
and necessary to be able to act and cooperate in a complex environment.

In this paper, we are focusing on a method to autonomously extract motion
segments from mocap data to provide a basis for the synthesis of new motion.

F.J. Perales and R.B. Fisher (Eds.): AMDO 2010, LNCS 6169, pp. 182–191, 2010.
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Achieving good results in human motion recognition does not necessarily mean
that the underlying segmentation is automatically sufficient to provide a basis
for the synthesis of human motion. For both, analysis and synthesis of human
movements, it is necessary to split motion sequences into meaningful time periods
in order to associate them to partial actions. The same segmentation approach
can be applied to get motion primitives for analysis, learning and generation of
human movement [19] [18]. But segmenting mocap data for motion synthesis can
be different compared to the conventional methods of segmenting the captured
data for analysis [4]. So the aim will be to develop a suitable segmentation
approach and to adapt it to the needs of the motion synthesis. A comparison
of the present literature on hand shows that only in a minority of cases a new
segmentation approach is used for motion generation.

The segmentation presented in this work can be used for learning systems and
the synthesis of generalized motion. For motion synthesis, we present a suitable
procedure that also handles motion without a-priori knowledge and allows to
generate motion according to modular design principles, that can be customized
or modified to the application’s needs.

2 Related Work

This work focus mainly on trajectory based methods using representations of a
human action as a collection of significant trajectories. Trajectory based methods
are primarily used for movement imitation and learning from observation [2] [1].

Imitation of human motion can be divided into movement reproduction and
imitation learning. Imitation learning comprises deriving a set of primitives di-
rectly from the mocap data and representing the human motion. Movement
reproduction transfers human motion to an actor and gets by without motion
primitives. A transformation fits the joint angle configuration of a human move-
ment to the less complex kinematic structure of e.g. a humanoid robot and
retains thereby the human characteristics. An example of an application is given
in [7].

Instead of using mapped motion data or offline trajectory planning, imitation
learning is based on observing human motion. A pre-requisite for this is a similar
structure between human and actor. Imitation learning uses motion primitives
constituted by motion segmentations as a key requirement.

In Kulic et al. [16] the existing segmentation algorithms are classified based
on whether previous knowledge of the motion primitives to be segmented is
required. In the first class of approaches, motion primitives are preset, e.g. via
short HMMs, by an expert a-priori. The algorithms are based on the comparison
between the known motions and the data to be segmented. The second class of
approaches conducts segmentation without prior information about the motion
primitives. The first class of approaches belongs to the class of top-down strate-
gies. They are usually not able to handle new motions patterns and generalization
of motion. Because of this limitations we consider only the second class, that is
based on velocity information of the joint angles. The second class of approaches
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can be subdivided further using velocity properties for segmentation with and
without considering individual degrees of freedom. Kulic et al. [15] and Koenig
and Mataric [22] created segmentations without considering an individual degree
of freedom.

Other approaches, which deliver key decisive factors for our own approach,
usually consider individual degrees of freedom and typically work only on an
subset of the human body, e.g. the arm or the torso. The first to mention are
Pomplum and Mataric [21]. They use the root square value of the joint velocities.
A threshold of that root square value determines if a new segment is recognized.
The approaches of Fod et al. [8] and Ilg et al. [23] are based on zero velocity cross-
ing. A boundary of a segment (segmentation point) represents a change in the
direction of movement. It is set when there are zero point crossings in a sufficient
number of dimensions. The human action language (HAL) [11] as representation
of human motion also makes use of velocity and, in addition, of acceleration. To
segment human movement it considers each angle joint independently and splits
the motion depending on these values.

In summary it can be stated that we need an autonomous segmentation, whose
motion primitives must not been specified manually and that works without a-
priori knowledge and uses trajectory based data providing a fine granular basis
for the generation of all new motion data.

3 Segmentation Strategy

3.1 Theoretical Approach

In this section, we describe a method for automatically deriving segmentation
points from continues mocap data that can be considered as an advanced zero
crossing segmentation technique. Zero crossing segmentation is performed by
analyzing the zero-crossing of the second derivatives. The zero-crossing method
is simple to implement and fast, however, it performs poorly in the presence of
noise. To avoid such failures, we define a threshold ε instead of a simple zero-
crossing. The threshold parameter ε characterizes a range where subjectively
no movement is detectable but in fact the human subject moves slightly. So no
motion is detected until the threshold value exceeds the parameter. We thus
create two states: One for the resting phase, nearly zero velocity within the
threshold and for the phases of movement lying outside that range. Finally,
we split the second state again. This leads to five classes which can be use to
generate combinations of these classes, so called state sequences.

The representation of mocap data as state sequences makes joint-angle trajec-
tories comparable to each other. The superior temporal aspects are eliminated.
Similar motions result in the same motion state sequences. One single state rep-
resents the most granular motion primitive in our approach. We call it micro
motion. So we are dealing with a bottom-up strategy. In our case the execution
speed or characteristic of the motion has no influence on the state sequences.



Automatic Motion Segmentation for Human Motion Synthesis 185

3.2 Segmentation Algorithm

In the following section, the baseline procedure of our segmentation approach is
introduced. The aim of our algorithm is to analyze the complex motion sequences
and divide them into subsequences. The proposed system consists of four major
components. For automatically deriving segmentation points and representing
them in state sequences, the consecutive execution of four steps is needed, as
depicted in 1.

The four processing steps are: (1) adaptation; (2) filtering; (3) segmentation;
(4) clustering. Each box of the diagram can be assigned to one step of the
algorithm.

Fig. 1. The four stages of the algorithm

The first and the second step can be considered as preprocessing, the third as
the core issue of this approach and the last one as knowledge builder. Further
details about every step are described in the following paragraphs.

Adaption to reference model. Human models are the basis of every motion
capture, reconstruction or analysis system. We use a static rigid upper body
model of the human skeleton based on the mean proportions of the human body
representing the kinematics of the human anatomy with up to 108 DOFs. In the
adaption process, the marker positions captured by a Vicon infra-red camera sys-
tem are translated to corresponding joint angles of the model. For the adaption
of the model structures to the individual kinematics we are using marker-based
optimization and motion-based estimation of joint rotation centers [20].

Filtering. The zero crossing approaches are sensitive to noise. Hence, it is nec-
essary to filter the reconstructed kinematic data. We correct the data using
established filter methods. A Gaussian filter (σ = 15 n = 5) already outper-
formed the original baseline on the noisy data. As can be seen in Figure 2, the
noise is eliminated almost completely.

Segmentation. The now following segmentation converts the original motion
data into a sequence of states by using a five-state machine to split the filtered
joint angle data. This can be seen as a method for representing the joint angles
of human motion very compactly. In comparison to plain segmentation, our
representation in states allows a comparison of time series of various lengths. All
spatio-temporal aspects are compensated and in all future steps of processing
we use the new representation of sequences by states. As a result the state
transitions settle the temporal boundaries for a sub-motion.
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(a) unfiltered data (b) filtered data

Fig. 2. Example of joint angle series

In the following this characteristic is explained in more detail. For the extrac-
tion of primitives we take advantage of the first and second derivatives, using

position,
x(t) (1)

velocity,

ẋ(t) = v(t) =
dx

dt
(2)

and acceleration
ẍ(t) = a(t) =

dv

dt
. (3)

In accordance to the structure proposed by Guerra e. t. al. [11] , we use four
states to model positive and negative velocity and acceleration. We extended
this approach by a fifth state, in case the mean velocity falls below a certain
value (ε). The following function f(t) specifies the segmentation for the different
cases:

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 : if v(t) > ε and a(t) > 0
1 : if v(t) > ε and a(t) < 0
0 : if v(t) < ε

−1 : if v(t) < −ε and a(t) > 0
−2 : if v(t) < −ε and a(t) < 0

(4)

The combination of these states can be use to generate so called state sequences.
The idea was that certain movements lead to characteristic sequences, even in
motion in various directions.

According to the idea of bottom-up approaches a very high degree of gran-
ularity is desirable. However, the already filtered motion data still sets clear
limits. By using the fundamental theorem of calculus, we can rewrite the above
equations to

v(t) =
∫ T2

T1

v(t) dt = x(T2) − x(T1) (5)
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Fig. 3. Example of joint angle and its states

a(t) =
∫ T2

T1

a(t) dt = v(T2) − v(T1) (6)

We can choose the accuracy of the calculation model by choosing the
displacement

x(T2) − x(T1) (7)

To ensure that the joint-angle time series were converted to a continuous gapless
function, the method is completed by applying a median filter.

Clustering. In order to create a uniform characterization which facilitates
transparency and allows comparisons to be made, the extracted motion states
are represented in sequences. These allow further processing without observ-
ing the spatial-temporal dependencies at a symbolic level. Joint-angles will be
compared in just considering its state sequence. Certain movement leads to a
characteristic of a particular joint-angle. The importance of certain joint-angles
correspond to the relative frequency density of a particular state sequence and
could be put into adaptive training methods.

4 Evaluation

In this section, we evaluated our approach by comparing the results of our al-
gorithm with manual segmentation. We tested the accuracy of the boundaries
and the influence of ε as well. In order to evaluate the accuracy of the automatic
partition algorithm, the boundaries were compared to each other by capturing
ground truth data with manual annotations of video footage. Altogether we
evaluated the data sets of nine people with twenty motion sequences per person.
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4.1 Data Acquisition

We investigated different motion sequences consisting of motion units e. g. point-
ing gestures. For the data acquisition a test person performs the motion sequence
while standing at a fixed position in a kitchen. At the beginning and after the
motion sequences the subject takes a neutral position with both hands resting
on fix positions. For the tracking of the human motions reflecting markers were
attached to the person’s body. Ten Vicon infra-red cameras were used to track
the marker positions in space.

First, the motion sequences are divided manually into submotions by an ex-
pert. Here, only sections of zero velocity can be recognized by an human expert.
Additional, boundaries for sections of positive or negative velocity and accelera-
tion will mostly become too imprecise to be used as the ground truth. The devia-
tion between the manually segmented and automatically determined boundaries
is calculated as a sum of mean square errors.

4.2 Segmentation Units

The rotation of the arm has turned out to be a good feature, as the most relevant
joint angle of a pointing gesture. So we will look at the outcome of our algorithm
for this joint angle. The following sequence of segmentation states can be seen
as an example of this outcome: (0) (-2) (-1) (0) (2) (1) (0). An example for the
sequences with ε = 0.01 is given in table 1. The human expert detected three
phases of zero velocity and four associated state transitions. So this sequence can
be transferred to a annotation such as the one of the expert and can be clustered
in (0) (-2 -1) (0) (2 1) (0). The importance of a state sequence can be measured
by its occurrence divided by the total number of observations. This corresponds
to the relative frequency density. Important features reach a relative frequency
density with hn(A) ≥ 0.8.

Table 1. Example sequences

Trial 1 0 2 1 0 -2 -1 0 Trial 11 0 2 1 0
Trial 2 0 -2 -1 0 2 1 0 Trial 12 0 2 1 0 -2 -1 0
Trial 3 0 -2 -1 0 2 1 0 Trial 13 0 2 1 0 -2 -1 0
Trial 4 0 2 1 0 -2 -1 0 -2 Trial 14 0 2 1 0 -2 -1 0
Trial 5 0 -2 -1 0 2 1 0 Trial 15 0 2 1 0
Trial 6 0 -2 -1 0 2 1 2 1 0 Trial 16 0 -2 -1 0 2 1 0
Trial 7 0 2 1 0 -2 -1 0 Trial 17 0 -2 -1 0 2 1 0
Trial 8 0 1 2 1 0 -2 -1 0 Trial 18 0 2 1 0
Trial 9 0 -1 -2 -1 0 2 1 0 Trial 19 0 2 1 0 -2 -1 0 2 1 0
Trial 10 0 2 1 0 -2 -1 0 Trial 20 0 2 1 0 -2 -1 0
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4.3 Comparison with Manual Segmentation

The same joint angle is used to evaluate our approach by comparing the manual
segmentation μ and the algorithm results xi with the parameters ε = 0.003. and

ε = 0.01. using the mean squared error σ =
√

1
N

∑N
i=1(xi − μ)2,

We can see that the result for the boundaries gets imprecise if the value for ε
increases. This is due to the fact that the resting phases (phases of zero velocity)
between two states are extended by a greater value of ε. Small values for ε lead
to a miss of the resting phases.

Table 2. The accuracy of the segmentation

actor σε=0.003 σε=0.01

Person 1 9,47 28,45
Person 2 5,56 13,26
Person 3 9,19 26,53
Person 4 9,21 22,19
Person 5 10,24 110,57
Person 6 5,01 22,42
Person 7 6,76 22,32
Person 8 9,64 51
Person 9 8,1
1
n

∑n
i=1(σi) 8,13 37,07

5 Conclusion

We introduced a method for segmenting joint-angle trajectories and applied it to
articulated human motion. The trajectories were segmented in state sequences,
leading to a symbolic representation of motion units. This allows concatenation
of motion segments to complex motions, as well as their comparability. All this
post-processing steps can be carried out without the need of considering spatio-
temporal dependencies. First results are shown in our experiments on pointing
gestures. We segmented joint angles in sequences of unconstrained human motion
showing a relative frequency of 80 percent for a certain task on the same joint-
angle. Further work will focus on the application on the proposed method onto
larger motion databases. We think that the proposed method can provide a basis
for consecutive methods for the generation and recognition of motion sequences.
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Abstract. We propose a method for human full-body pose tracking
from measurements of wearable inertial sensors. Since the data provided
by such sensors is sparse, noisy and often ambiguous, we use a compound
prior model of feasible human poses to constrain the tracking problem.
Our model consists of several low-dimensional, activity-specific motion
models and an efficient, sampling-based activity switching mechanism.
We restrict the search space for pose tracking by means of manifold learn-
ing. Together with the portability of wearable sensors, our method al-
lows us to track human full-body motion in unconstrained environments.
In fact, we are able to simultaneously classify the activity a person is
performing and estimate the full-body pose. Experiments on movement
sequences containing different activities show that our method can seam-
lessly detect activity switches and precisely reconstruct full-body pose
from the data of only six wearable inertial sensors.

Keywords: Human pose tracking, manifold learning, wearable sensors.

1 Introduction

Approaches for human full-body pose tracking have mostly been studied in the
field of computer vision, where observations are typically image features, such as
human silhouettes [1,2,3,4]. Vision-based methods depend on illumination, view-
point and line of sight between the tracked person and one or more cameras. In
applications where long-term tracking is addressed or when everyday-life activ-
ities need to be studied, such constraints are not practicable. Typical cases are
motion analysis for ergonomic studies of factory workers or for medical diagnosis
of diseases involving motion-disorders, e.g. Multiple Sclerosis [5]. These applica-
tions require the recovery of full-body motion for a set of activities of interest,
while subjects move freely. We take an alternative to using vision-based obser-
vations for full-body pose estimation and rely on measurements from wearable
inertial sensors. Our proposed method allows us to capture full-body motion
data in situations where visual tracking systems cannot be used.

Tracking human motion using inertial sensors is challenging, since the mea-
surements provided by such sensors are sparse, noisy and often ambiguous. Prior
models of human motion are therefore a prerequisite for achieving satisfactory
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Compound Motion Model
Output:

Full-body Pose
and Classification

Input:
Sensor

Observation 0.2

0.1

0.9

0.6

„golf“

Likelihood

Fig. 1. The proposed compound motion model is comprised of several activity-specific
models. Each of these consists of a manifold embedding of feasible poses, pose likelihood
priors and learned mappings to sensor space (fx→s) and full-body pose space (fx→y).
We use a particle filter in embedding space to track multiple pose hypotheses xi and
select the hypothesis that best matches the true sensor observation st.

tracking results. We rely on identifying the low-dimensional manifold of feasible
human poses inside the high-dimensional space of pose parameters [2]. In partic-
ular, we use Laplacian Eigenmaps [6], a manifold learning technique, to create a
prior motion model from full-body pose training data. Manifold learning meth-
ods are known to produce meaningful embeddings that efficiently parameterize
human poses for single activities, e.g. walking [7,2]. Unfortunately, the general-
ization to multiple activities, as required by the above-mentioned applications,
is not straightforward [8]. In fact, a global embedding including all activities
will be dominated by inter-activity differences and characteristics of individual
activities will be represented inadequately. We propose to address the multiple-
activity tracking problem by means of a compound motion model comprised of
several activity-specific models and an efficient activity switching mechanism.

The activity-specific motion models consist of separate low-dimensional ma-
nifold embeddings generated from full-body pose training data. Together, the
embeddings provide a compact representation of likely poses for multiple activ-
ities and allow us to significantly restrict search space during tracking. Addi-
tionally, we learn kernel regression mappings for each activity, which relate the
low-dimensional embeddings both to observation space and to full-body space
(Figure 1). We formulate the tracking problem within the Bayesian framework
and use a particle filter for efficient inference. This way, we are able to track
multiple pose hypotheses and select the one that best explains the sensor obser-
vations. Since a pose hypothesis in our case consists of both, a pose in embedding
space and an activity index identifying the most likely motion model, we can
simultaneously estimate full-body pose and classify performed activities.

Our tracking method is at the same time general, in that motions correspond-
ing to multiple activities can be tracked, and specific, since our compound model
provides specialized motion models for each activity of interest. The cost of a
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one-time training phase is compensated by the ability to faithfully track full-
body pose from simple and limited wearable sensor observations.

1.1 Related Work

Generative full-body pose tracking methods are based on modelling the mapping
from poses to observations and searching for the most likely pose, given new
observations. The major difficulty is the high dimensionality of full-body pose
space. Several authors have addressed this issue by sampling pose space using a
particle filter [3,9]. Computation cost can also be reduced by restricting search
space using learned low-dimensional human motion models [1,7,10]. For instance,
Gaussian Process Latent Variable Models (GP-LVM) can provide a compact
representation of human motion from training data [1,11].

With a similar purpose, our method uses a spectral embedding technique
[6] for obtaining prior motion models. Spectral embeddings are low-dimensional
and, as opposed to GP-LVMs, reflect local structural properties of the high-
dimensional training data. Approaches using spectral embedding methods for
human tracking commonly rely on a single motion model [12,7] and the gen-
eralization to various activities is not straightforward. We propose to employ
a compound model built from separate, activity-specific manifold embeddings,
making it possible to track various types of motions.

Mechanisms for using multiple specialized motion models for tracking can be
found in several domains. The classical particle filter algorithm was extended
in [13] to handle multiple, discrete dynamics models. An efficient approach for
full-body tracking using multiple low-dimensional motion models is proposed
in [10]. The authors demonstrate a switching mechanism for the two actions
of running and walking. Unfortunately, the computational cost of their method
grows significantly with the number of considered activities. In contrast, our
method can be trained on a potentially arbitrary number of activities.

Most of the methods estimate pose from visual cues. Since our final goal is
long-term motion analysis, where visual features are hard to obtain, we focus
on mobile inertial sensors. However, sensor data is typically less informative
and suffers from issues, such as drift. Existing approaches for full-body tracking
using inertial sensors [14,15] recover the pose directly from the measurements.
To the authors’ knowledge, learning prior constraints for tracking full-body pose
from sensor data is new. In [16], accelerometer measurements are compared to a
database of poses and motion sequences matching the measurements are replayed
in an approximation of the true motion. The method proposed in [15] is able to
track full-body pose using ultrasonic sensors and accelerometers. However, their
approach is computationally expensive. Our method uses a low-dimensional,
efficient parameterization of human poses for reducing search space.

2 Full-Body Tracking Method

We address the problem of human full-body tracking from measurements of
inertial orientation sensors. Given a set of M activities of interest, we start by
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building a compound motion model from training data containing both full-body
poses y ∈ R

dy and sensor readings s ∈ R
ds . Then, during testing, we estimate

the full-body pose ŷt at each time step t only from sensor observations st.
Our compound motion model contains multiple activity-specific motion mod-

els, each of which consists of (1) a low-dimensional manifold embedding of the
full-body pose training data, (2) predictive mappings from the embedding to
full-body pose space and to observation space, (3) a pose likelihood prior in
embedding space and (4) an activity switching prior. We formulate the tracking
problem in the Bayesian framework and estimate the system state at each time
step t. The system state is given by an activity index α ∈ {1, . . . , M} and a pose
x ∈ R

dx in low-dimensional embedding space (dx � dy). Applying a particle
filter allows us to seamlessly evaluate multiple pose hypotheses and to select the
most appropriate motion model for each new sensor observation. The learning
tasks are described in section 2.1, the tracking approach in sections 2.2 and 2.3.

2.1 Learning Multiple Low-Dimensional Motion Models

In a training phase, we learn activity-specific motion models from full-body pose
data and corresponding sensor measurements. Each motion model consists of the
following components (see Figure 2 for an illustration):

Manifold Embedding. Let the set of Nα full-body training poses for acti-
vity α be denoted by Yα = [yα

1 . . .yα
Nα

]. We obtain a corresponding set of
dimensionality-reduced points Xα = [xα

1 . . .xα
Nα

] by applying Laplacian Eigen-
maps, a spectral embedding technique [6]. The low-dimensional points xα

i effi-
ciently represent the manifold of feasible poses for activity α. Using this repre-
sentation for tracking, we are able to restrict search space to likely poses, instead
of exhaustively searching the high-dimensional full-body pose space.

Predictive Mappings. In order to relate poses in low-dimensional embed-
ding space to sensor measurements and to full-body poses, we learn predictive
mappings from training data. We follow the approach in [12,7] and use non-
linear kernel regression, with the difference that we learn separate mappings
from each of the activity-specific manifold embeddings. The mapping fα

x→y(x)
for prediction of full-body poses is learned from corresponding training pairs of
embedding points xα

i and full-body poses yα
i for an activity α. Similarly, the

mapping fα
x→s(x) is learned from training pairs of embedding points and sensor

measurements sα
i and allows predicting sensor values.

Pose Likelihood Prior. Using the training data for each activity, we can de-
rive the likelihood for arbitrary poses in low-dimensional embedding space. Intu-
itively, poses x that are close to the embedding points xα

i learned from training
data should have the highest likelihood. The pose likelihood prior for activity α is
obtained using a kernel density estimate [12,7] as pα

pose(x) = 1
Nα

∑Nα

i=1 k(x,xα
i ),

where k(·, ·) is a Gaussian kernel function.
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clap golf walk pick upknee bend wave

a)

b)

c)

bind laces jumping jack

Fig. 2. Learned motion models for 8 different activities. a) Two-dimensional manifold
embeddings obtained using Laplacian Eigenmaps on full-body pose training data. Each
point on the manifolds corresponds to a valid full-body pose, a few examples are shown
above. b) Static pose priors in latent space. c) Activity switching priors in latent space.

Activity Switching Prior. We also define a prior distribution pα
switch(x) for

every motion model that describes how likely a switch of activity is, given a pose
x in embedding space. To ensure generality, we allow activity switching from any
pose with constant minimum probability pk. However, we let the probability of
switching increase for poses that typically occur between subsequent activities.
In our experiments, the upright standing pose was used as an intermediate pose
that encourages activity switching. We model the switching prior with a normal
distribution pα

switch(x) = N (fα
x→y(x);y0,Σα

y ) + pk, where y0 represents the in-
termediate pose in full-body space, fα

x→y(x) is a predicted full-body pose and
Σα

y is the diagonal covariance matrix of the training data Yα.

2.2 Bayesian Tracking Using Multiple Motion Models

The testing phase of our method consists of tracking pose in low-dimensional
embedding space. In a standard Bayesian tracking formulation, we wish to find
the optimum of the posterior p(xt|st) = p(st|xt)p(xt|st−1), with p(xt|st−1) =∫

p(xt|xt−1)p(xt−1|st−1)dxt−1. In other words, we seek the most likely pose xt

in embedding space at time t, given the observations up to st. The dynamics
model p(xt|xt−1) determines how pose estimates are updated from one time
step to the next and the observation model p(st|xt) links poses in embedding
space to observations. Since we are using multiple motion models for tracking,
we need to include the discrete activity index αt ∈ {1, . . . , M}, leading to the
posterior

p(xt, αt|st)︸ ︷︷ ︸
posterior

= p(st|xt, αt)︸ ︷︷ ︸
observation model

p(xt, αt|st−1)︸ ︷︷ ︸
prior

. (1)
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Following [13], we also augment the dynamics model p(xt|xt−1) with an activity
index, yielding the factored model

p(xt, αt|xt−1, αt−1)︸ ︷︷ ︸
dynamics model

= p(xt|xt−1, αt, αt−1)︸ ︷︷ ︸
pose dynamics

p(αt|xt−1, αt−1)︸ ︷︷ ︸
activity dynamics

. (2)

The pose dynamics model governs the evolution of poses in embedding space
and the activity dynamics model describes the activity switching process.

Pose Dynamics Model. We define the new pose dynamics model as follows:

p(xt|xt−1, αt, αt−1) =
{

p(xt|xt−1) if αt = αt−1,
pαt
pose(xt) else. (3)

When there is no switch of activity (αt = αt−1), dynamics are governed by a
random walk, modeled as a normal distribution centered at the previous pose
in embedding space, p(xt|xt−1) = N (xt;xt−1,Σαt

x ). Here, Σαt
x is the diagonal

covariance matrix of the low-dimensional training data Xαt . In the case of acti-
vity switching (αt �= αt−1), the dynamics model follows the pose likelihood prior
pαt
pose(x) of activity αt (section 2.1). In other words, the most likely poses after

switching to activity αt are those learned from the training data.

Activity Dynamics Model. We assume that all sequences of consecutive ac-
tivities are equally likely, i.e. p(αt = j|xt−1, αt−1 = i) is equal for all activity
indices j �= i. The probability of switching from a given activity αt−1 to any
other activity then only depends on the previous pose xt−1 in embedding space.
Thus, we state our activity dynamics model using the activity switching prior
defined in section 2.1 as p(αt|xt−1, αt−1) = p

αt−1
switch(xt−1).

Observation Model. Our observation model p(st|xt, αt) relates observations
to the learned embedding space. We define it as a product of three terms:

p(st|xt, αt) = N (st; fαt
x→s(xt),Σαt

s )︸ ︷︷ ︸
prediction term

N (yt−1; fαt
x→y(xt),Σαt

y )︸ ︷︷ ︸
full pose smoothness term

pαt
pose(xt)︸ ︷︷ ︸

prior

. (4)

The prediction term uses the learned mapping fα
x→s(x) to predict sensor ob-

servations from a pose xt. The likelihood of xt based on this term is maximal
if the prediction perfectly matches the true observation st. In order to reduce
the influence of outlier observations, the smoothness term penalizes embedding
locations if their predicted full-body pose differs strongly form the previous pose
yt−1. The pose likelihood prior encourages poses that are likely with respect
to the training data. Σαt

s and Σαt
y are the diagonal covariance matrices of the

training observations Sαt and full-body poses Yαt belonging to activity αt.

2.3 Particle Filtering and Full-Body Pose Inference

We employ a particle filter [17,13] to sample the posterior density in Eq. 1. The
particle filter, adapted to use our compound motion model, allows simultaneously
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evaluating pose hypotheses of different motion models and selecting the most
appropriate model. Particle filtering is computationally efficient in our setting,
since it is applied in the low-dimensional space of manifold embeddings.

We initialize n particles (xi
0, α

i
0), i ∈ {1 . . .n}, with locations across all mani-

fold embeddings of our compound model. At each time step t, we first resample
the particles according to their weights wi

t−1. Each particle is then updated by
sampling from the dynamics model p(xt, αt|xt−1 = xi

t−1, αt−1 = αi
t−1). This

implies switching the i-th particle to a randomly chosen other activity with
probability pα′

switch(xi
t−1), where α′ = αi

t−1. The weights are re-computed using
the observation model, wi

t = p(st|xt = xi
t, αt = αi

t). We then determine the
estimated activity α̂t as the most frequent activity among the highest-weight
particles. The pose estimate x̂t in low-dimensional space is computed as a con-
vex combination of the positions of the highest-weight particles with activity α̂t.
The full-body pose at time t is finally obtained as ŷt = f α̂t

x→y(x̂t).

3 Experiments and Results

We acquired a synchronized dataset of full-body poses Yα and sensor values
Sα, α ∈ {1 . . .M}, using a motion capture system and six wearable inertial
orientation sensors. A full-body pose is given by a vector of dy = 35 dimensions
representing the joint angles of our skeleton body model. An observation vector
has ds = 12 dimensions, representing pitch and roll for each of the sensors. The
yaw values were omitted for independence of magnetic north. We placed sensors
on the wrists, upper arms and shinbones of each person. In the training phase,
we learned a manifold embedding Xα of dx = 2 dimensions for each activity.

We considered M = 10 activities: clapping, golfing, hurrah (arms up), jumping
jack, knee bends, binding laces, picking something up, scratching head, walking
and waving. Each of the movements was recorded 6 times with 9 actors. Every
movement recording has a length of ∼ 600 frames. The testing data consists of 5
sequences per actor containing all activities (∼ 2000 frames each). See Figure 3
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Fig. 3. Top: Inertial sensor data for a sequence of 10 activities in a row. Bottom:
Pictures of the person at the time instants marked above with vertical lines. The
person is equipped with motion capture markers and six wearable inertial sensors.
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for an illustration. For tracking, only the inertial sensor values were used, the
motion capture data served as ground truth. All experiments were performed in
a cross-validation scheme, i.e. each testing sequence was generated from one of
the recordings per activity and actor, using the remaining five for training.

Full-body Pose Tracking. Noting that the appropriate number of particles
grows linearly with the number of considered activities, we used n = 400 parti-
cles. Figure 4 illustrates how particles sample the activity-specific manifold em-
beddings (only two are shown for clarity) for a testing sequence switching from
waving to golfing. Initially, the person is waving and most particles are concen-
trated around a pose on the waving embedding. A small number of particles also
samples all other manifolds. As the person leans forward for golfing, particles
quickly accumulate on the golfing manifold, since the sensor predictions of these
particles increasingly match the real observations. Subsequent resampling steps
cause the majority of particles to follow.
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Fig. 4. The particle filter-based activity switching mechanism on a sample sequence.
Two of the ten activity manifold embeddings (waving and golfing) are displayed for
several frames. Particles are shown as red crosses. The particles used for predicting
full-body pose are circled in dark color. Green crosses indicate the trace of previous
frames. Shown below are the corresponding predicted and ground-truth body poses.

Activity Classification. The number of particles per activity manifold is an
indicator of activity class membership. Figure 5.(a) shows classification results
for the testing sequence in Figure 3. The particle count over time for four of the
manifold embeddings is displayed, along with predicted and true activity classi-
fications. Misclassifications mainly occur at the beginning and end of activities.
In fact, these frames can be classified as any activity, since the person is standing
idle. The confusion matrix in Figure 5.(b) gives the classification rates for all ac-
tivities over all testing sequences. On average, we achieved a correct classification
rate of 89% for all non-idle frames. The matrix is mostly diagonal, significant
confusion only occurs between waving and scratching head, which both consist
of raising the right arm close to the head. Misclassification in this case therefore
does not necessarily affect the precision of full-body pose estimation.
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Fig. 5. (a) Activity classification results for the sequence shown in Fig. 3. Top: Number
of particles per frame sampling four of the activity manifolds. Bottom: Ground truth
classification and predicted activities for each frame of the sequence. (b) Confusion
matrix computed from the classification results for all testing sequences.

Pose Estimation Accuracy. We measured how precisely the poses estimated
by our method match the ground truth using two metrics. The angular error eang
gives the deviation from the ground truth in terms of joint angles. The distance
error edist is the difference in 3D space between predicted joint locations and
the ground truth. Averaged over all frames of the testing sequences, we achieved
ēang = 6.23◦ per joint and ēdist = 45.2mm. As shown in Table 1, the deviation
from the ground truth only increases for fast movements with a large variability,
such as jumping jack or walking. Our results are comparable to other state-of-
the-art methods that use visual observations [4,15].

Table 1. Pose estimation accuracy for all considered activities. Deviations from ground
truth poses are provided as joint angles (eang in degrees per joint) and as distances
(edist in millimeters per joint), averaged over all experiments.

clap golf hurrah jack knee laces pickup scratch walk wave
eang 4.95 6.10 6.79 8.80 4.87 5.90 5.90 4.43 9.65 4.93
edist 37.8 51.2 40.4 58.1 45.6 60.5 51.4 27.7 50.7 28.5

4 Discussion and Conclusion

The learned compound model of feasible poses provides a reliable framework
for multiple-activity tracking from limited, low-dimensional observations. Apart
from wearable sensor data, other observations can also be used, such as sparse
visual features. A requirement of our method is that the motion model is ini-
tially trained on a set of activities. While the model allows stylistic variation
between instances of the same motion, completely unseen movements will not
be reconstructed precisely. However, our method will still provide a pose estimate
that matches the new observations as close as possible. The multiple-hypothesis
tracker will furthermore quickly recover the correct pose, as soon as a known
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movement is performed. We also do not require pose initialization, since when
tracking begins, particles are distributed to sample all learned feasible poses.

Since inertial sensors only measure relative movement, we do not track the
global position of a person. However, integrating global tracking can be easily
achieved using conventional positioning systems. We particularly target scenar-
ios where the focus lies on the movement itself, not the person’s location. An
application of interest to us is medical motion analysis for Multiple Sclerosis pa-
tients [5]. Currently, physicians evaluate the disease state by analyzing patient
motion in a short protocol including movements such as walking and jumping.
Training our method on the movements of the protocol would allow acquiring
motion data over longer periods of time in the patient’s everyday environment.
We currently investigate how to extend the method for being able to detect
anomalies (i.e. unknown activities) in such scenarios.

In conclusion, we have presented a method for tracking human full-body pose
given only limited observations from wearable inertial sensors. For dealing with
the sparse and often ambiguous sensor data, we learn a compound model of
human motion from full-body pose training data. The method is efficient, since
we track poses in a low-dimensional space of manifold embeddings and use sparse
non-linear regression to relate the embedding space to observations and to full-
body poses. Our experiments showed that we can reliably recognize motions of
multiple activities and precisely track human full-body pose.
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Abstract. A system for parallel face detection, tracking and recognition
in real-time video sequences is being developed. The particle filtering is
utilized for the purpose of combined and effective detection, tracking and
recognition. Temporal information contained in videos is utilized. Fast,
skin color-based face extraction and normalization technique is applied.
Consequently, real-time processing is achieved.

Implementation of face recognition mechanisms within the tracking
framework is used not only for the purpose of identity recognition, but
also to improve the tracking robustness in case of multi-person tracking
scenarios. In such scenarios, face-to-track assignment conflicts can often
be resolved with the use of motion modeling. However, in case of close
trajectories, motion-based conflict resolution can be erroneous. Identity
clue can be used to improve tracking quality in such cases.

This paper describes the concept of face tracking corrections with
the use of identity recognition mechanism, implemented within a com-
pact particle filtering-based framework for face detection, tracking and
recognition.

Keywords: Face tracking, particle-filtering, face recognition, biometrics.

1 Introduction

The automatic detection, tracking, and analysis of faces offer new application
possibilities in a wide range of automated systems, including security solutions
(e.g. biometric authentication, abnormal activity detection), entertainment in-
dustry (e.g. analysis of face expressions with the use of a webcam) or tools sup-
porting marketing policy analysis (e.g. customer behavior analysis, visitor track
analysis). The issues of face detection and tracking have been addressed for a
long time now [7, 18, 4, 9, 16, 17]. However, a generic solution, applicable for all
real-world scenarios, still does not exist. In particular, changing environmental
conditions, such as illumination, or head posing and non-rigid face motions, can
seriously deteriorate the quality of face detection, face tracking and face analysis
methods [1, 10, 15, 14]. Many sophisticated methods are also not able to process
input images in real-time. Additionally, most of the existing face recognition
solutions require the images to be frontal and of good quality, with controlled
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illumination. However, images of such quality cannot usually be acquired with
the use of the existing surveillance infrastructure, such as closed-circuit televi-
sion (CCTV), and without a high level of cooperation from a human user. On
the other hand, existing infrastructure can usually easily provide video sequences
instead of single still images. Video sequences may then be processed with the
use of video-oriented face analysis systems [8].

To address these specific needs we are developing a framework for parallel
face detection, tracking and recognition in real-time video sequences. The mo-
tivation is to build a system capable of recognizing people from low-resolution
videos and with the use of popular, easily available hardware (such as PC and
webcam), i.e. the system having low computational requirements. The subjects’
behavior should not be constrained in any way: they are allowed to behave nat-
urally. Multiple persons in the scene are allowed. By utilizing video sequences,
these requirements can be met, even if single frame analysis would result in poor
performance (due to poor quality of single frames, large face image deviations in
single frames, and/or simplified and thus fast per-frame analysis). By means of
score cumulation over a sequence of video frames, weak per-frame classification
decisions are cumulated to obtain strong classification decision over a sequence.
All stages in the proposed framework, i.e. face detection, tracking and recog-
nition, are based on the particle filtering approach. As a result, computational
requirements are minimized.

Face-based identity recognition from videos is the main aim of the proposed
framework. The face tracking module of the framework provides normalized face
images for the recognition module. However, since identity relevant information
is processed and available, a feedback from the recognition module can addi-
tionally support the tracking module in order to resolve some specific face-to-
track assignment conflicts. In this paper, we present a conceptual extension of
the previously presented face tracking approach [12]. The extension is achieved
by utilizing identity relevant information for the purpose of improving tracking
robustness.

2 Particle Filtering-Based Face Detect-Track-Recognize
Framework

2.1 Structure of the Framework

Face detection is a task typical for still image input data, whereas face tracking is
often applied to sequences of images (videos), where some temporal information
can be utilized. Face tracking usually consumes the results of face detection to
initialize the tracker or to improve its accuracy by correcting locations of tracked
faces. However, some tracking mechanisms can also be applied for the purpose
of detection. We proposed [13] a particle filtering-based [5] framework, which
utilizes local face features for the purpose of face detection, tracking and recog-
nition from videos. In particular, we defined a process of detection by tracking.
Steps of the process can be summarized as follows:
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1. Randomly spread particles over a region (or regions) of interest.
2. Relocate and re-weight particles by means of diffusion (as in the Conden-

sation framework [5]). Particles are expected to converge to face areas over
a few video frames.

3. Automatically cluster the particles after some given number of frames.
4. Evaluate particle clusters as face candidates.
5. Assign faces to existing tracks or launch new tracks.

The resulting detection by tracking is a process that extends over a few video
frames, as opposed to classical detection approaches, which operate on a single
frame. For the purpose of initializing the face detector, regions of interest can
be pre-defined accordingly to a specific application. They could be defined, e.g.
adjacently to entrance areas of a building etc. In particular, regions of interest
may cover the whole video frame. Particle spread (initialization) can be triggered
off by an external event, e.g. with the use of a door-open sensor or cyclically, e.g.
every 5 seconds. For the purpose of automatic clustering, we applied a modified
X-Means algorithm. For the purpose of face image normalization, we proposed
a fast dust filtering procedure. More details on the processes of face detection
and face tracking within the proposed framework can be found in [12, 13]. The
process of face recognition was mainly described in [13].

The detected and track-assigned faces are tracked over a sequence. The prob-
lem of initial face-to-track assignment will be discussed later. The tracking
process is realized within the Condensation framework [5] and with the use of
motion modeling. Particles assigned to a given cluster, i.e. particles tracking a
single given face, share a motion model. The primary role of the tracker is to
provide normalized face regions to the recognition module and provide track con-
sistency, i.e. ensure that faces extracted from successive frames are linked to each
other as belonging to the same individual moving in the video. Providing track
consistency in case of single person in the scene is straightforward. However,
when multiple persons are considered and track crossing and mutual occlusions
occur, the tracks are likely to skip between the individuals. Such problems should
be automatically resolved, as described further. The tracker can be initialized
by means of the detection by tracking or by any external face detector.

Within the proposed framework, the tracked faces are subject to a face recog-
nition procedure that utilizes particle-related local face features previously ex-
tracted for the purpose of tracking. The recognition procedure is applied in a
closed-set identification scenario, i.e. it is assumed that all individuals present
in the input video are registered users of the system. The recognition procedure
outputs a ranking of identities for each tracked face. Identities are sorted by the
level of similarity to the tracked faces on a per-frame as well as multiple-frame
basis. These rankings can then be used as a supporting clue for tracking correc-
tions, as presented in the following sections of this paper. The general structure
of the detect-track-recognize framework is depicted in Fig. 1.

The proposed framework achieved the maximal speed of 31 ms per frame
when one individual in an identity verification scenario was considered. Tracking
and recognition in a 10-user closed set experiment required 85 ms per frame.
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Fig. 1. Structure of the particle filtering-based face detect-track-recognize framework.
Particle related information is utilized throughout the sequence: from the detection
phase, through the tracking and normalization phases, to the recognition phase. The
feedback from recognition can be used to improve tracking quality.

The minimum speed of 5 fps is regarded as sufficient for handling normal head
motions [7]. The given processing times were achieved with input frames of size
320×240 pixels on a PC Intel Core 2 Duo E6750, 2.67 GHz with 2.00 GB RAM.
Further optimizations, particularly by means of parallelization, are possible.

2.2 Motion Modeling

In the simple case of one face in the scene, the initialized particle filtering-based
tracker is able to track a face without a deterministic motion model and random
diffusion suffices. However, in order to provide tracking consistency in more
demanding situations, the tracker should utilize a motion model. Tracking of
face candidate regions within our framework is based on a tracking history and
predictions of the candidate locations in successive video frames. Predictions are
derived from the motion model with the use of the tracking history, which stores
face regions previously normalized with the use of the dust filtering procedure,
namely

R̂(0) = R̂(−1) + (R̂(−1) − R̂(−2)) + ε(0), (1)

where ε(t) is an i.i.d. zero-mean noise, and new location of a candidate region
R̂(0) is based on past locations of the respective (dust filtering-normalized) face
region R̂(t), where t < 0 denotes previous frames. This simple prediction proce-
dure is sufficient to overcome the problem of face-to-track assignment in many
cases of crossing tracks. It has been shown [6], that using e.g. high order autore-
gressive models may lead to over-fitting, which deteriorates tracking quality.

2.3 Face-to-Track Assignment and Track Management

Multi-face scenarios result in additional difficulty of assigning detected faces
to tracks. It must be decided whether the detected faces are re-detections of
already tracked faces or they are new faces for which new tracks should be
created (initialized). To solve the face-to-track assignment problem optimally, all
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detected faces must be compared to all existing tracks. We applied the auction
algorithm by Bertsekas [2] to solve this task. It has been found that the auction
algorithm is the most efficient method so far to reach the optimal or sub-optimal
solution without any practical difference [3]. However, in our application, where
the number of new faces detected over a sequence is low, and thus assignment
conflicts appear rarely, simple cross-comparison between faces and tracks is on
average as computationally expensive as the auction algorithm.

For the purpose of assignment, a match score between a face and a track
must be defined. We utilize rectangle bounding box as a representation of a face
area and define the face-to-track match score as the normalized overlap area
between normalized detected face area (where the face is observed to be) and
the predicted position of the face (where the face is expected to be). The match
scores determine a ranking of face-to-track assignments. If the match score is
above a pre-defined threshold, the detected face is considered a re-detection and
used to refine a respective track. If the match score falls below the threshold, the
face is considered a new face appearing in the scene and a new track is created.

As a result of such procedure, some false tracks, i.e. duplicated tracks for
already tracked faces, may be created. This may particularly happen when the
tracker prediction or the face detection is inaccurate (e.g. due to a rapid motion
change). In such cases, the track duplications should shortly get merged with
the correct tracks, since successive measurements (in particular, the dust filtering
normalization procedure) will operate on the same image regions for both the
correct tracks and the duplicated tracks. Track merging is constantly monitored
over a sequence and if the merge lasts long enough, one of the tracks – the track
with a shorter history – is erased.

In ideal conditions, faces detected in a video sequence are observed in every
successive video frame until they leave the scene. However, due to tracking errors
and/or other scene interference such as occlusions, faces can become temporarily
unobservable. This leads to disruptions of the tracks, i.e. situations, when the
actual face location cannot be retrieved (measured) from the frame and thus only
the predicted location can be used. Each track must be sustained over the dis-
ruptions, so that, after the face reappears in the video, it can be correctly tracked
without loosing all its track history. How long may the track exist before erasing –
without actual feedback measured from the video – is a track property, which
we simply call time-to-live (TTL). The maximal TTL value is an application
dependent parameter. We propose a simple policy of TTL management: a new
track (at its creation) is given a TTL equal to some allowed period of disruption
of a track. When new frames are available, each track is getting older and thus
its TTL is, by default, decreased by 1. Only when a valid face region is found by
the tracker, i.e. the dust filtering procedure returns a valid normalized face area,
the track is revitalized by increasing TTL by 2 as long as the maximal TTL value
is not reached. If TTL falls to 0, the track is erased (killed) and its descriptor
may be used in the future without any reference to the historical descriptor (i.e.
reusing the descriptor does not mean that the same individual is tracked). The
initial TTL value is not the maximal TTL value. This realizes the idea that the
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more track measurements are available, the more disruption-resistant the track
should be. If the track creation is based only on a single measurement it is not
likely to be persistent, unless confirmed by new measurements. Consequently,
falsely created tracks that are not duplications of actual tracks (e.g. tracks cre-
ated as a result of false face detection) are sustained only for a short period of
time, since their initial TTL quickly falls to 0. Cycle of life used for the track
management by means of TTL is depicted in Fig. 2.

TTL 

   new track started,
initial TTL value given

  no face assigned,
decrease TTL value

   face assigned,
increase TTL value

max TTL

   min TTL reached,
       kill the track

Fig. 2. The track life cycle driven by TTL parameter

3 Tracking Corrections by Means of Identity Recognition

3.1 Considered Scenario

The following target scenario of the proposed system is considered: a camera is
installed over a security gate and observes persons approaching the gate-secured
zone. The approaching persons are automatically tracked and their identities
are recognized. If the recognition is successful and an individual is recognized as
permitted to cross the gate, the gate opens automatically for the individual. If
the recognition fails, the individual must use another authentication method to
open the gate, e.g. use his/her chip card, enter a PIN or be subject to a precise
biometric recognition (including face recognition from a still image). Groups of
individuals are allowed. Individuals can behave naturally and should only not
be intentionally uncooperative, e.g. by turning their heads away or by obscuring
the face [8].

3.2 Tracking Corrections Mechanism

The tracking module is responsible for providing consistent tracks of individuals,
which are then subjected to the recognition process [13]. Track consistency is
provided by means of motion modeling and face-to-track assignments. However,
there exist possible face-to-track assignment conflicts which cannot be correctly
resolved by means of motion analysis only. Such conflicts may occur when dif-
ferent tracks cross each other resulting in occlusions and, particularly, when the
motion pattern of the occluded individual changes rapidly during the occlusion.
The output of the recognition module can then be used to support the tracking
module in order to restore correct tracking after the occlusion.
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The described type of conflicts may appear frequently in the considered sce-
nario of a group of individuals moving toward a camera and along the camera’s
view axis. When the occluded subject reappears in the camera view, but does not
actually cross the track of another individual (motion pattern change), motion-
based prediction is likely to swap tracks. Note that in some applications, tracking
is employed as an effective way to detect subjects, e.g. to detect whether an in-
dividual entered a restricted zone. In such cases, frame track swapping may not
pose a problem. However, when the track history is to be kept, e.g. for analyzing
visitor/customer motion patterns or to cumulate identity-relevant data for the
purpose of strong identification from video, track swapping may lead to false
conclusions.

Here we propose an identity-based support mechanism to resolve face-to-track
assignment conflicts. The mechanism can be applied within the previously pro-
posed face detect-track-recognize framework [13]. As it was described above,
face-to-track assignment is based on the ranking of face-to-track match scores,
which are a result of utilizing a motion model. When face-to-track assignment
is not obvious, i.e. multiple faces compete for a given track (typical for new face
appearing or reappearing in the scene) or multiple tracks compete for a given face
(typical for occlusion), then several face-track pairs take close positions in the
ranking. If the scores of successive face-track pairs in the ranking are too close to
each other a reliable assignment cannot be done. In such cases, the supporting
mechanism of identity-based conflict resolution can be launched, namely

for any i, j (i �= j):
M(track∗, facei) − M(track∗, facej) < thM

⇓
assign track∗ with the use of identity clue,

where track∗ is the track to be assigned, facei and facej are (competing) face
candidates to be assigned to the track, M(track∗, facei) is the match score for
the given track-face pair, and thM is the threshold for launching identity-based
assignment resolution mechanism. The analogous rule is applied for the case of
multiple tracks competing for one face.

Identity-based assignment consists in building a subranking of faces (face
identities) per given track. Subranking positions are determined by a distance
between the currently extracted face (to be assigned to a track) and the template
corresponding to the last validly assigned face for the given track, namely

face position in subranking for track ∝ D(face, tracklast), (2)

where D(f1, f2) is a distance between two face representations f1 and f2, face
is the currently extracted face, which is to be assigned to a track, and tracklast
denotes the stored template corresponding to the last validly assigned face for
the given track. Unassigned faces are used to initialize new tracks.

As a result of applying identity-based correction, the average tracking qual-
ity (tracking consistency) is improved. Cost of the improvement is extension of
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processing time whenever conflicts occur – identity-based resolution is launched
only when motion-based assignment cannot be done reliably. In the case of con-
flict, identity-based face-to-track assignment precedes identity score cumulation
for the purpose of identity recognition over a video sequence. The idea of the
identity-based face-to-track assignment mechanism applied to a sample video is
depicted in Fig. 3.

(a) Three individuals approach
camera. Subject A is going to
hide behind subject B.

(b) Tracks A and B compete
for face in the frame. By mo-
tion analysis two subjects are
almost equally probable at this
position. Identity-clue results
in assigning track B.

(c) Subject A reappears
from behind subject B. By
identity-based assignment
tracks A and B are correctly
restored/continued.

(d) All subjects are further
tracked with the use of motion
modeling only.

Fig. 3. Identity recognition-supported tracking. With the use of identity clue, faces
can be correctly assigned to their tracks even when motion-based assignment may fail.
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4 Conclusions

The conceptual extension of the previously presented [13] face detect-track-
recognize framework is proposed. The particle filtering-based framework pro-
vides mechanisms of face detection, tracking and building identity rankings in
closed set scenario for every face in every video frame. The extension proposed
in this paper utilizes results of face recognition for the purpose of improving
tracking quality in case of multiple persons in the scene. This is opposed to clas-
sical approaches, where the recognition module consumes output of the tracking
module, but not conversely. As a result, the tracking module and the recognition
module operate in a feedback loop.

Future research on the proposed approach includes the statistical evaluation
of tracking corrections by means of identity recognition and the possibilities of
implementing the method within other track-recognize frameworks. Other frame-
works would particularly mean non particle filtering-based solutions and classical
face recognition approaches, such as e.g. principal component analysis [11, 15],
which are known to provide good recognition results [7], but, on the other hand,
require well aligned input data and are more computationally demanding than
the proposed framework. The use of last validly assigned faces extracted directly
from the processed video, instead of using the corresponding stored templates,
should also be considered. Such approach imposes additional difficulties about
providing good face image quality, but can result in straightforward extension
of the solution beyond the closed-set scenario, namely tracked individuals would
not have to be registered users of the system and a self-similarity based approach
could be employed to improve tracking quality.
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Abstract. A method to deform non-planar parametric surfaces based
on B-splines is presented. To develop this method, an energy functional
and its variational formulation are introduced. The deformation of the
non-planar surface is made moving the control points of the surface. In
order to do that, the space will be discretized and a ordinary differential
equation has to be solved. To do it, an analytical solution will be used
taking into account the features of B-splines as a finite elements. Our
method will be fast because only a reduced number of control points will
be moved instead of all the surface points. So, our method can be used
to make simulations.

Keywords: Computer graphics, surface deformation, finite elements,
B-splines.

1 Introduction

The deformation models include a large number of applications, and they have
been used in fields as edge detection, computer animation, geometric modelling,
and so on.

This work can be viewed as a continuation of the work [5] where the deforma-
tion of a planar surfaces, using an analytical solution of the associated ststem
of differential equations, is introduced and developed. So, the same deformation
model of the work [5] is used in this work. The main difference between the two
works is the type of deformed surfaces we perform. In this previous work, a pla-
nar surfaces are deformed but in this work, we will deform non-planar surfaces
as a half sphere.

First of all, a deformation model will be introduced that uses B-splines as
finite elements. The model includes deformation equation, its analytical solution,
examples of deformations and computational cost.

Höllig was the first that introduces the use of B-splines and their properties as
finite elements. Our deformation model is similar to the model introduced in [1].
In that work, the deformation model is solved using classical finite elements
(triangles and squares). In our work, we use B-splines finite elements instead.
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Classical finite elements are commonly used to solve models that involves
partial differential equations but it implies big data structures. On the other
hand, the use of B-splines as finite elements reduces the data structure of the
model. Moreover, our model has the advantage that we can solve it analitically.

2 B-Splines

The B-splines are piecewise polynomial functions with a good local aproxima-
tions for smooth function and local support [11]. Uniform B-splines are intro-
duced in [3], [4], [11] and [9]. The chosen definition is given in [9]:

Definition 1. An uniform B-spline of degree n, bn, is defined by the following
recurrence formula:

bn(x) =
∫ x

x−1
bn−1(t)dt

starting with b0(x) =

{
1, x ∈ [0, 1),
0, otherwise.

[9]

To evaluate the B-splines in a simple form and fast computationally, we use the
following recurrence equation (De Boor [3] and Cox [2]).

bn(x) =
x

n
bn−1(x) +

(n + 1 − x)
n

bn−1(x − 1) (1)

The finite element base of B-splines is defined upon a grid hZZ = {...,−2h, h, 0,
h, 2h, ...}, where h is the scaled step:

Definition 2. The transformation for h > 0 and k ∈ ZZ is bn
k,h(x) = bn(x

h − k).
The support of this function is [k, k + n + 1)h

The generalization to more dimensions can be performed in the following way:
The N -variate B-spline of degree n = (n1, ..., nN ), of index k = (k1, ..., kN )
and the space discretization h = (h1, ..., hN ) is defined as

Bn
k,h(x) =

N∏
i=1

bni

ki,hi
(xi). (2)

The support of this function is
∏N

i=1[ki, ki + ni + 1)hi.
The derivatives of B-splines can be computed easily as it is shown in [5].
A B-spline parametric surface is a linear combination function of the B-spline

functions base: S : Ω ⊂ IR2 → IR3 where

S(x) =
∑

k∈ZZ2

PkBn
k,h(x). (3)

(see [6] and [7] ) where Pk are the so called the control points and they are the
elements that determine the B-spline surface.
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3 Proposed Model

Let E the following energy functional: E : Φ(S) → IR, S �→ E(S),

E(S) =
∫

Ω

(
ω10

∣∣∣∣∂S

∂u

∣∣∣∣2 + ω01

∣∣∣∣∂S

∂v

∣∣∣∣2 + ω11

∣∣∣∣ ∂S

∂u∂v

∣∣∣∣2
+ω20

∣∣∣∣∂2S

∂u2

∣∣∣∣2 + ω02

∣∣∣∣∂2S

∂v2

∣∣∣∣2 + P(S(u, v))

)
dudv,

where Φ(S) is the set of all B-spline parametric surfaces, Ω is the domain of the
surface S and P is a potential of the forces that works on the surface. ([12], [1],
[10])

Our goal is to achieve the minimum of the previous functional using an evolu-
tion model. This minimum depends on the initial surface and the used evolution
model.

Using the equations of Euler-Lagrange, it can be proved [1] that an energy
local minimum must satisfy:

−ω10
∂2S

∂u2 − ω01
∂2S

∂v2 + 2ω11
∂4S

∂u2∂v2 + ω20
∂4S

∂u4 (4)

+ ω02
∂4S

∂v4 = −∇P(S(u, v)) + boundary conditions

The surface domain is Ω = [0, 1]2. Let S0 be the initial surface or the surface
to be deformed. There are four boundary conditions that corresponds to the
four “fixed” edges of our surface domain: S(u, 0) = S0(u, 0), S(u, 1) = S0(u, 1),
S(0, v) = S0(0, v) and S(1, v) = S0(1, v). For example, if S0 is a plane, the
previous boundary conditions will be: S(u, 0) = (u, 0, 0), S(u, 1) = (u, 1, 0),
S(0, v) = (0, v, 0), S(1, v) = (1, v, 0).

The next step is to develop the variational formulation of our problem and to
discretize the equation to solve (see [5] for details).

At the end, the following differential equation has to be solved:

M
d2Pi

dt2
+ C

dPi

dt
+ APi = Li, i = 1, 2, 3. (5)

which corresponds to our dynamic evolution model. The matrix M is the mass
matrix, C is the damping matrix, A is the stiffness matrix and Li is the applied
force on the surface.

The mass matrix M and the damping matrix C are diagonal and constant
during all the time evolution.

The previous differential equation (5) can be solved analitically with a com-
putational cost of order O(N2), where N × N are the dimensions of matrix A.
(see [5] for details).
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4 Computation of the Control Points of the Initial
Surface

In this section, we are going to find the control points associated to a initial
surface F . That is, if the spatial components of F are F (x) = (X(x), Y (x), Z(x)),
where x ∈ Ω = [0, 1]2, we want to find control points Pk such that:

S0(x) =
∑

k∈ZZ2

PkBn
k,h(x), (6)

and the difference between F (x) and S0(x) has to be as small as possible.
The set of the previous sumation indexes is M = {−nx, . . . , M1} × {−ny,

. . . , M2}. This set gives us the B-splines bases we use in order to find the control
points.

These control points are found solving the linear system of equations S0(xj) =
F (xj), where the points xj are chosen in Ω, j = 1, 2, . . . , (M1 + nx + 1) · (M2 +
ny + 1) and the unknowns are the control points. The previous linear system of
equations takes the form A ·P = b, where A = (Bn

i,j(xj))i,j∈M, P is the vector of
control points and b is the vector of independent terms. For every component of
the control points, we have a linear system of equation as the previous one where
the matrix A is the same for all the components and the vector b is: b = (X(xj)),

a) b)

c) d)

Fig. 1. General appearance of the application showing the Coin3D/OpenInventor win-
dow with different options enabled. The initial menu is also shown.
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for the first component, b = (Y (xj)), for the second component and b = (Z(xj)),
for the third component.

5 Surface and Deformations Representation

In order to simplify the user interaction, the surface representation and the
application of a deformation, we need some graphic representation system. For
this purpose a WYSIWYG environment has been developed.

The most extended API used to develop 2D and 3D graphics applications is
OpenGL. With this environment, it is possible to implement interactive graphi-
cal applications in an easy way and it is developed strictly for graphics [8], being
this a good reason to choose it. OpenInventor is an OpenGL based API, with
it the representation of complex scenes and the development of complex visual-
ization applications becomes more simple than using only OpenGL. In fact, it
is the standard de facto 3D Computer Graphics API for complex visualization

Fig. 2. Five iterations of a deformation of a half cylinder are shown. The figure on the
upper left is the initial surface. The deformation was made using a constant force in
the direction (1, 4, 1) with all boundaries fixed.
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Fig. 3. Five iterations of a deformation of a half cylinder are shown. The figure on the
upper left is the initial surface. The deformation was made using a constant sinusoidal
force with all boundaries fixed.

applications [13], [14], unfortunately, the evolution of OpenInventor has been
different from the evolution of OpenGL. The only way to have it available was
under proprietary licensing from TGS (Template Graphics Software), but finally
Silicon Graphics has released an open source specification.

In this work, we have used Coin3D an open source OpenInventor derived
API, fully compatible with the original specification. Moreover, Coin3D brings
the possibility to integrate a great powerful scene representation engine with
a platform-independent interface which can be integrated in a broad range of
windows environments (Windows, XWindow System, Aqua, and more).

In figure 1 several views of the developed application can be seen. The surface
to be deformed and the force that defines the deformation to apply to it are
chosen in the initial menu. This menu has four parts (see Fig. 1.a)), from left to
right and from to top to bottom one can choose the initial surface, the force to
apply, the number of control points of the surface and the B-splines degree. The
default number of control points is 7 and the default degree of B-splines is 3.
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Once the options are chosen, a window opens. This is the Coin3D examinator
viewer. There are three keyboard buttons: the button s that enables or disables
the display of the surface, the button p that enables or disables the display
of the control points and, finally the button n that performs one step in the
evolution model of the deformation. The three states that can be obtained with
the buttons s and p in surface visualization can be seen in the figure 1. Our
application allows to save the obtained images in such a way that a video of the
deformation can be performed.

The data needed to implement the model involves the B-spline shape to be
deformed but also requires the data describing the way in which the deformation
has to be done. This can be supplied in two ways: requesting the information
directly to the user via the graphical interface and accessing to files describing
the data. There are two kinds of data files, one describing the B-Spline shape
(the control points, the degree, and so on), and the other one describing the data

Fig. 4. Five iterations of a deformation of a half sphere are shown. The figure on the
upper left is the initial surface. The deformation was made using a constant force in
the direction (1, 4, 1) with all boundaries fixed.
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related with the deformation, that is the forces to be applied to the shape in
order to deform it, the boundary conditions and the parameters ωij , i, j = 0÷2.

6 Numerical Examples

In this section, we show several examples of deformations using the model pre-
sented in the previous section. The applied forces are constant along time, be-
cause this condition is necessary for the analytical solution. If this is not the case
we should use the numerical solution that can be found in previous work [7]. We
have applied our model to three well-known surfaces: a tile, a half cylinder and
a half sphere, all these surfaces parametrized on the square [0, 1]2. Moreover we
have considered different types of boundary conditions. On one hand we have
considered all the boundaries fixed, and secondly, only a part of the boundary is

Fig. 5. Five iterations of a deformation of a half sphere are shown. The figure on the
upper left is the initial surface. The deformation was made using a constant sinusoidal
force with all boundaries fixed.



Analytical Simulation of Non-planar B-Spline Surfaces Deformation 221

fixed. In previous works, in order to validate the proposed method, the deformed
surface was a plane defined on the [0, 1]2 domain with all the boundaries fixed.

The first step of our algorithm is to compute the control point of the considered
surface as it is explained in section 4. Next, we have to set the energy functional
parameters of our deformation. These are ω10 = ω01 = 0.1 and ω11 = ω20 =
ω02 = 0.01.

Fig. 6. Five iterations of a deformation of a plane are shown. The figure on the upper
left is the initial surface. The deformation was made using the following sinusoidal force
(sin(4πx), cos(10πx) cos(10πy), 2 sin(10πy)) and only one part of boundary is fixed.
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In the experiments of figures 2, 4, 3 and 5, N1 × N2 = 49 control points are
considered and bicubic B-splines are used.

In figures 2 and 4, the deformation of a half cylinder and a half sphere can be
seen using a constant force in direction (1, 4, 1) and module 42.42 and all fixed
boundaries.

In figures 3 and 5, the deformation of the same kind of surfaces can also be
seen using the following sinusoidal force (sin(4πx), sin(4πy), cos(4πx) cos(4πy)),
x = (x, y) ∈ [0, 1]2 and all fixed boundaries.

Last experiment presented in this work is based on the change of the bound-
ary conditions. Now, the plane has got free part of its boundary. The plane
has N1 × N2 = 108 control points that can be evolved. The applied force is
(sin(4πx), cos(10πx) cos(10πy), 2 sin(10πy)), x = (x, y) ∈ Ω.

7 Conclusions and Future Work

A model which allows deformations of B-splines parametric surfaces are intro-
duced. This model includes the variational formulation, the analytical solution
of the corresponding differential equation and the computational cost.

To check the model, different kind of surfaces have been tested with differ-
ent kind of applied forces and different boundary conditions. The experimental
results show that the model is efficient and gives good deformations. All the
examples has been made using C++ and Coin3D libraries.

For the time being, a non constant forces in time are studied. Moreover, we
are working on another kind of surfaces, as parabolloids, ellipsoids and closed
surfaces in general. Also, more boundary conditions will be considered.
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6. González-Hidalgo, M., Mir, A., Nicolau, G.: An evolution model of parametric
surface deformation using finite elements based on B -splines. In: Proceedings of
CompImage 2006 Conference, Computational Modelling of Objects Represented in
Images: Fundamentals, Methods and Applications, Coimbra, Portugal (2006)
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Abstract. This paper addresses the issue of 3D head pose estimation and track-
ing. Existing approaches generally need huge database, training procedure, man-
ual initialization or use face feature extraction manually extracted.

We propose a framework for estimating the 3D head pose in its fine level
and tracking it continuously across multiple Degrees of Freedom (DOF) based
on ICP and particle filtering. We propose to approach the problem, using 3D
computational techniques, by aligning a face model to the 3D dense estimation
computed by a stereo vision method, and propose a particle filter algorithm to
refine and track the posteriori estimate of the position of the face.

This work comes with two contributions: the first concerns the alignment part
where we propose an extended ICP algorithm using an anisotropic scale transfor-
mation. The second contribution concerns the tracking part. We propose the use
of the particle filtering algorithm and propose to constrain the search space using
ICP algorithm in the propagation step.

The results show that the system is able to fit and track the head properly,
and keeps accurate the results on new individuals without a manual adaptation or
training.

1 Introduction

Estimating and tracking the pose of the head accurately for a wide range of motion
is an ongoing research concern. Thus, extensive research has been carried out in or-
der to tackle this issue [1, 2, 3, 4]. However, existing approaches generally need a huge
database, training procedure, manual initialization or use face feature extraction manu-
ally extracted. A global and generic approach is, hence, not in the picture yet.

The growth of computational capabilities together with the emergence of stereo-
scopic vision have opened new opportunities for the development of new approaches
based on 3D computational techniques.
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In this paper, we are presenting our approach to tackle the head pose estimation in
its fine level (i.e., granular) and track the pose continuously across multiple Degrees
of Freedom (DOF). We propose to approach the problem by aligning a Candide face
model to the 3D dense estimation computed by a stereo vision method. We propose,
then, a particle filter algorithm to refine the posteriori estimate of the position of the
face.

Two main contributions are presented in this work:

– (1) The first contribution concerns the alignment part. To align two point sets in a
same scale, Iterative Closest Point (ICP) algorithm is an accurate and fast approach;
however, the transformation is usually isotropic and hence, does not handle the face
variability between persons. We propose to extend the ICP algorithm and apply an
anisotropic scale transformation by using a scale matrix. More over, we introduce a
weighting Gaussian function to enhance the convergence by focusing more on the
nose region, thereby avoiding local minima convergence.

– (2) The second contribution concerns the tracking part. Over the last few years,
particle filters have proved to be powerful tools for object tracking. In our approach,
we propose to constrain the search space using ICP algorithm in the propagation
step to produce the potential set of particles. The weightening of the particles is
computed relying on the alignment error.

The paper is organized into three sections. Section 2 reviews previous works related to
3D face pose estimation as well as a small comparative analysis. The overview of our
approach is detailed in section 3. The two contributions are then detailed respectively
in section 4 and 5 along with the main results.

2 Related Works

In the literature, many researches have focused on head pose estimation. Murphy-
Chutorian and Trivedi [17] present a comprehensive survey comparing the different

Table 1. Properties of different head pose estimation methods

Approach References Tps1 Acc2 Dim.3 Cont.4 Lear.5 Res6

Statistical methods [5, 18, 19] + + - 2D C Yes H/L
Models methods [2, 3, 4, 6, 9, 8] - + + 3D/2D F Yes H/L
Geometrical methods [7] + + - - 2D F No H
Depth based methods [10, 11, 12, 13, 14, 15, 16] + + + 3D F Yes/No H/L

(1). Computation speed : (++) very fast, (- -) very slow ;
(2). Accuracy : (++) accurate, (- -) inaccurate ;
(3). Dimensions : (3D) able to estimate the 3D pose, (2D) 2D estimation only;
(4). Continuity : (C) coarse estimation, (F) fine estimation ;
(5). Learning : Need of a learning procedure (Yes/No) ;
(6). image resolution : (H) High image quality needed, (H/L) can be used with high and low
image quality;
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approaches by focusing on their ability to estimate coarse and fine head pose. The sur-
vey highlights also the approaches that are well suited for unconstrained environments.

The different works can be regrouped into 3 classes regarding their approach : (1)
using statistical/classification methods, (2) using geometrical methods, (3) using depth
information.

Statistical methods use generally a similarity operator to compute the resemblance
between an image of the head and a set of templates in different poses. The problem is
viewed as a pattern classification problem. Many statistical tools have been used such
as non-linear regression [1], Support Vector Regressors [18], neuronous networks [19],
etc. Although the classification techniques are interesting, they are not generic enough
because of the very large variability between different users (skin color, luminosity, and
facial expressions).

Geometrical methods use geometric information like the configuration of facial
landmarks. [7] uses geometrical constraints provided by the location of a certain key
points to determine the pose of human faces. The pose of the face can be deduced using
symmetry of the face and geometric relations between these points. Manifold Embed-
ded Methods [2, 3, 4] and Flexible Methods [6] have also been extensively applied for
head pose estimation.

This kind of approach requires the ability to extract reliably the characteristic data
point which can be hard or not feasible in low resolution, high variations (profile view)
or with occlusions.

The exploitation of the depth information brings new perspectives to tackle the
problem of accurate head pose estimation (in its granular scale). Many works were
proposed in this context. They generally use specific head model [13, 14, 15] or de-
duce the pose from the nose pose [10, 11]. These methods are very accurate and very
fast(In [10], the mean rotation error is 2 to 2.5o while the mean translation error is 1 to
2 mm, the computing time is 18 ms). However, their approach requires a pre-processing
step to design the model and depends highly on the quality and the speed of the disparity
computation.

Table 1 gives a brief summary of the literature review. Using the depth information
seems an interesting approach to address the problem of head pose estimation without
requiring a database or a learning procedure. The following of this paper presents our
approach.

3 Proposed Approach

The overall framework of our head pose estimation system is described in figure 1. In
our development, we assume the head being a globally rigid 3D object whose pose is de-
scribed by a total of six parameters R(Rx, Ry, Rz) and T (Tx, Ty, Tz). The framework
can be break down into two parts: The first part consists in estimating the 3D points
set using stereoscopic acquisition and the second one deals with aligning a simplified
Candide-1 model with the 3D points set. Under alignement, the transformation matrix
of the Candide model corresponds to the head pose parameters. We propose finally to
track this alignment using particle filtering.
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Fig. 1. Overview of the approach

The dense disparity map estimation is computed based on belief propagation infer-
ence algorithm. Previous work [20] shows good results regarding both accuracy and
computational cost.

This paper details the second part of the framework. Let M ∈ R
3×n be the matrix

containing the n point coordinates of the Candide model and F ∈ R
3×n′

; n′ > n the
matrix containing the n′ 3D head point set, where n′ is usually bigger than n because of
the 3d dense estimation. Estimating the head pose consists in finding the transformation
f that aligns M to a subset of F . In the following, we will present and discuss:

– the initial pose estimation which consists in aligning at the initial step the 3D point
set with the Candide model;

– the tracking of the pose initally estimated by adapting the particle filtering algo-
rithm to our issue.

4 Initial Pose Estimation Using ICP

The initial pose estimation is computed by point-to-point mapping from the Candide
model onto the 3D dense estimation of the face, where each point from the mask gets a
correspondent point in the face.

The ICP (Iterative Closest Point) algorithm has widely been used for this issue. The
mapping (or registration) is computed iteratively where in each step a new transforma-
tion is computed from a selection of the closest points as correspondences. ICP proved
to be very effective as hence was used in many applications and many variants of ICP
have been proposed [21, 22, 23, 24]. Usually, the modifications affect all phases of the
algorithm from the selection and matching of points to the minimization strategy.
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4.1 Classical Approach Using an Isotropic Transformation

Using ICP algorithm, the optimal transformation f that aligns M to a subset of F is
iteratively estimated. Usually, to be scale independent, alignment approaches introduce
a scale factor c and the transformation f is defined as in equation 1.

f : R
3 → R

3

p ∈ M �→ f(p) ∈ Fwhere
f(p) = c × R × p + T

(1)

Correspondence search: Algorithm 1 details the steps involved in ICP algorithm. The
major steps in terms of complexity and performances are the correspondences search
and error minimization.

In the literature, two criteria are generally used to determine the correspondences
between points in two sets. The first criterion uses the euclidean distance as measure to
map the closest points. The second criterion involves the surface particularities where
each point is associated to the points whose tangent is the closest to the first one. We use
the first criterion within a Kd-tree structure [25, 26] for an efficient computation cost.

Algorithm 1. Iterative Closest Point
Require: M ∈ RN∗3, F ∈ RN ′∗3 : two clouds to align;

Rinit, Tinit, cinit : Initial transformation (by default no initial transformation);
Ensure: Rglobal, Tglobal, cglobal representing the global transformation;

1: Rglobal ← Rinit , Tglobal ← Tinit, cglobal ← cinit

2: Build Kd-tree of the 3D points F : Ftree ← Tree3D(F, 1)
3: while Error > threshold do
4: Closest point search : F 0 ← Closest Point(M, Ftree)
5: Error minimization : (R, T, c) ← argmin 1

N

∑N
i=1 ||F 0

i − (c×R×Mi + T )||2

6: Error computation : Error ← min 1
N

∑N
i=1 ||F0i − (c × R × Mi + T )||2

7: Update of the points set M : M ← c × R × M + T
8: Rglobal ← R × Rglobal

9: Tglobal ← c × R × Tglobal + T
10: cglobal ← c × cglobal

11: end while
12: RETURN (Rglobal, Tglobal, cglobal)

Minimization procedure: In each iteration, the transformation is the error minimiza-
tion argument. This minimization can be calculated using SVD [27], quaternions method
[28,29] or orthonormal matrices [30]. [31] shows that these algorithms have similar per-
formance and stability in presence of noise and outliers.

For isotropic transformation, the minimisation based on SVD decomposition works
well [32]. The optimal transformation is obtained by equation 2.⎧⎪⎨⎪⎩

R = U × S × V T

c = Trace(D×S)
σ2

M

T = μF − c × R × μM

(2)
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where

– μM and μF denote respectively the mean Vector of the model points in M and F ;

– σ2
M and σ2

F denote respectively the model points and face points variance;

– ΣMF the covariance between model points and face points;

– U and V are the Singular Value Decomposition (SVD) of the covariance matrix
ΣMF = U × D × V T .

The results of this approach are shown in figure 3. We run this algorithm on synthetic
data and a random transformation applied to a VRML head model that has been man-
ually designed (figure 2(a)). The final transformation is then applied to the Candide
mask (figure 2(b)). We obtained a mean alignment error of about 3.4 mm. We can con-
clude that while the algorithm globally converges, the alignment is not perfect in all
directions. This is mainly due to the fact that a generic mask was used and the scale
adaptation is done uniformly in all directions using the scale factor c. For instance,
one can notice that the result is accurate in the horizontal direction but very bad in the
vertical (forehead and chin zones) (figure 3(b)).

Here comes our first contribution in this work. We propose to extend the ICP algo-
rithm and apply an anisotropic scale transformation. More over, we propose to introduce
a weight matrix in the error computation step that enforces the contribution of the points
in the nose region who detain more information about the head pose.

(a) Synthetic model
representing the face.

(b) Generic Mask.

Fig. 2. Generic mask and synthetic model used in tests

(a) Initial alignment between the
model and the mask.

(b) Final alignment using ICP
algorithm.

Fig. 3. Result of the ICP algorithm using synthetic data
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4.2 Extended ICP Algorithm Using Anisotropic Transformation and Weighted
Error Function

Obviously, when using a scalar for the scale adaptation as in equation 1, the scale trans-
formation can only register two isotropic point sets. However, head shapes is highly
variable and the scale transformation should be anisotropic to be generic. Our approach
introduces a scale matrix C into the alignment problem to fit the head shape and thereby
working on new individuals without a manual adaptation or training. The global trans-
formation is given in equation 3.

f(p) = R × C × p + T (3)

A similar approach was introduced in [33] but the mathematical developments shown
here are easier and this approach will be included then in the tracking phase to construct
a complete framework.

4.3 Mathematical Development

When introducing a scale matrix C, the solution provided earlier using SVD decom-
position can not be used anymore. In this paper, we present one way to solve this opti-
mization problem.

As mentionned before, the aim is to look for the optimal transformation minimizing
the quadratic error function between the transformed 3D point of the Candide model
and the 3D point set of the face (estimated by stereoscopic computation) ||f(p) −
r||2, r ∈ F .

Equation 3 can be written as:

F̃ = X ∗ M̃ + e (4)

where e is a measure error and F̃ and M̃ defined as follow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =

⎛⎜⎜⎝
⎛⎝Bxx Bxy Bxz

Byx Byy Byz
Bzx Bzy Bzz

⎞⎠ ⎛⎝Tx
Ty
Tz

⎞⎠(
0 0 0

)
1

⎞⎟⎟⎠ ; B = R × C

F̃ =

⎛⎜⎜⎝
F1x F2x . . . FNx

F1y F2y . . . FNy

F1z F2z . . . FNz

1 1 . . . 1

⎞⎟⎟⎠

M̃ =

⎛⎜⎜⎝
M1x M2x . . . MNx

M1y M2y . . . MNy

M1z M2z . . . MNz

1 1 . . . 1

⎞⎟⎟⎠

(5)

The optimal estimator using the mean square error criterion of the problem 4 is:

X̂ = F̃ × M̃T × (M̃ × M̃T )−1 (6)
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The estimator of X gives then the estimator B̂ as well as T̂ . Using then the orthogonality
constraints of R and the symetry of C, we can deduce the estimators of the matrix C
and the Rotation R since:

BT × B = (R × C)T × (R × C) = CT × RT × R × C = C2 (7)

Then:
R̂ = B̂ × Ĉ−1 (8)

Notice: The solution to equation 7 is not unique. Since R is a rotatin matrix then it
satisfies det(R) = 1. This condition, injected in equation 7 implies that det(C) and
det(B) have the same sign. The matrix C is computed, then, using the spectral decom-
position of the matrix BT × B. Since BT × B is a symmetric positive matrix, then,
it exists an orthogonal matrix U and a diagonal matrix D verifying: The diagonal ele-
ments of D are the eigenvalues values of BT × B; they are positive. We order them in
decreasing order λ1 ≥ λ2 ≥ λ3. Taking into account the condition of same determinant
sign, The estimator of C is deduced by the following formula:

Ĉ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ∗

⎛⎝√
λ1 √

λ2 √
λ3

⎞⎠ ∗ UT if det(B) > 0

U ∗

⎛⎝√
λ1 √

λ2

−
√

λ3

⎞⎠ ∗ UT if det(B) < 0

(9)

To avoid local minima convergence, we have introduced a weightening function to
emphasize the points that contain more information on the face orientation.

The weight matrix promotes pair points with high certitudes. For the case of the face,
the nose region is the most distinguishable in depth computing. We used a Gaussian
function centered on the nose as shown in figure 4.

Fig. 4. Gaussian filter superposed to the generic mask

4.4 Results

Figure 5 shows the obtained results using this extended algorithm. We can notice that
the alignment is more accurate in the different directions. The results of the weight-
ening function are represented on figure 6. We tested this approach on real data using
stereoscopic frames. The obtained results on different persons with different poses are
shown on figure 7.
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Fig. 5. Mask and model alignment using Extended ICP algorithm

(a) Alignment without
weight

(b) Alignment with
weight

Fig. 6. Impact of the weights matrix on alignment results

Fig. 7. Alignment result using real data
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5 Head Pose Tracking Using Particle Filtering

This part deals with the particle filtering algorithm. Once the initial pose estimation is
computed, the aim is to track the face position in its fine level. In the literature, many
approaches have been used but the most adapted for head pose are the probabilistic
approaches based on Kalman filtering and Particle filtering. The Kalman filter is known
by its efficiency in variant domains for dynamic systems tracking. It was demonstrated
in [34] that it is the optimal tracker when the system verifies the Kalman hypothesis.
In the case of vision tracking, these hypothesis are not verified because of the noise
of registration. Thus, Kalman filter is not suitable. A new approach appeared which is
Particle filtering [35, 36]. It is based on numerical simulations of the system evolution.

In tracking algorithms, the system is defined by two equations representing the dy-
namic evolution of the system state and the relation between the state and the observa-
tion. The following notations will be used in this paper:

– k the time step ;
– Xk;k=1..N the system state (the unknown vector) ;
– Zk;k=1..N the observation vector (used to control the system by correcting the ini-

tial estimation).

Using these notations, the system can be defined using the Dynamic Evolution state and
the Observation Equation as following:

– Dynamic Evolution state

Xk+1 = fk(Xk, uk, Wk) (10)

fk is a function that describes the dynamic model evolution (linear or non linear).
uk is a control term and Wk is a noise representing the errors of this model.

– Observation Equation
Zk = gk(Xk, Vk) (11)

gk is the observation equation between state and measures. Vk is the measurements
error.

The particle filtering approach consists in a stochastic simulation of the system evolu-
tion based on Monte Carlo simulations. It operates using three consecutive steps : (1)
Propagation (2) Weighting (3) Re-sampling.

The propagation step consists in generating the particles that will represent the sys-
tem’s state based on equation 10. We propose in our approach to constrain the search
space using ICP algorithm. Potential set of particles are then generated using ICP. This
makes us avoiding random propagation and improve the overall alignment’s precision.
The total number of particles is also reduced making the system faster.

Regarding the weighting step of the particle filtering algorithm, the alignment error
is used directly to estimate the weight. The weight represents the similarity of each
particle to the real state of the system (which is inversely proportional to the alignment
error). The state estimator can be then computed using a weighted sum of the particles
or simply by affecting the particle which has the maximal weight (X =

∑N
i=1 ω(i) ∗Xi

or X = Xi0/ω(i0) = maxi(ω(i))).
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5.1 Results

Figure 8 shows the testing results on synthetic data. We applied a simulated transfor-
mation on the 3D point set and added numerical noise to these position to simulated the
real conditions. We can notice that the system tracks the pose in the 3D transformations
with an error which does not exceed 2o for rotations and 10 mm for translations. To en-
sure the validity of our approach, we tested our system on real data. Using stereoscopic
acquisition, we track the position of the face; the results are shown in figure 9 at specific
frames. These results show the effectiveness of our algorithm even using real noisy data.
The 3D movements of the head were tracked accurately. Despite the errors that may exist
in some frames, the system was able to adjust and catch up in the following frames.

Fig. 8. Relative error between real and estimated transformation using Particle Filtering

Fig. 9. Results of head pose tracking using stereoscopic frames
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6 Conclusion

Head pose estimation is a main research issue due to its important applications. Many
limitations occur in the existent works such as the lack of genericity, the need of initial-
ization and the dependence on training samples. In this paper, we propose an algorithm
which estimates and tracks the head pose in 3D without pre-training or initialization.

The head pose estimation algorithm that we developed is based on aligning a generic
Candide mask to the 3D point set reconstructed from stereoscopy computation. There
are two main steps: In the first we proposed an extended version of the ICP algorithm
to determine the initial pose. In the second, the particle filtering approach is adapted to
track the head motion.

The principal contributions of our approach are the adaptation of the ICP Algorithm
to use an anisotropic transformation by introducing a transformation matrix instead of
a scalar scale adaptation. This generalization permits the use of the same generic mask
with different faces and thereby fitting on new individuals without a manual adaptation
or training.

The second contribution consists in including of the ICP algorithm in the Particle
filtering, specifically, in the ”Propagation” step to produce the potential set of particles.
This approach leads to more efficient particles generation than the random propagation
which permits the reduction of the number of particles.

We validated our approach using synthetic data as well as on real data. The obtained
results show the performances of our algorithms: robustness to large variations, gener-
icity regarding variability of persons and accuracy of alignment.
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Abstract. In this paper we argue for the concept of fake dynamics to al-
low animators to interactively create visually pleasing animations of cloth
models while keeping him/her in full control of the animation process.
Existing animation and simulation techniques depend on real dynamics
simulation and are often prohibitive in terms of computational cost and
user control. Our approach allows the user to interactively model and
animate cloth models over time using intuitive deformation tools and
keyframe animation techniques. During modelling, the cloth’s surface is
first approximated by means of 3D catenaries between constraint points.
An iterative relaxation process is then performed to arrive at the natural
rest shape. Concerning the animation phase, the animator has disposal
of many interactive fake dynamics control tools to perform gross modifi-
cations or wave-shaped deformations. Multiple instances of deformations
can be layered allowing to create realistic as well as exaggerated types
of animations. We believe our system is effective in terms of ease-of-use,
visual appeal and dynamic behaviour, and offers a new fresh perspective
on cloth animation for animated films.

Keywords: Fake Dynamics, Cloth Animation, Cloth Simulation, Com-
puter Animation, Computer Assisted Animation.

1 Introduction

Motivation. Simulating and animating cloths is much in demand for many
purposes ranging from the entertainment industry (movies and games) to the
professional clothing industry (fashion and textile).

Existing cloth simulation and animation [1,2] involves a very expensive process
in terms of computational cost due to the flexible nature of the cloth objects.
However, when targeted for animated movies it also implicates a very expensive
process in terms of user control. This is because animators particularly focus on
movement and not necessarily on realism. They do not always desire realism,
instead they demand for fake, yet very impressive or dramatic animation effects
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such as squash and stretch, anticipation and surreal exaggerations, which are
impracticable when depending on ‘real’ dynamics simulation [3,4].

High-end feature animation films nevertheless can achieve these subtle anima-
tion effects as their production counts with enough resources to enable dedicated
programmers and animators working closely together in an elaborate process of
trial and error [5].

In this article, however, we look for solutions to be used in smaller-scale
productions where animators have to find their way more independently. More
specifically, it is our objective to allow the user to interactively create visually
pleasing animations of cloth models while keeping him/her in full control of the
animation process.

Contribution. In this paper we present the concept of fake dynamics for cloth
animation in animated films, in which a cloth is hanging from arbitrary con-
straint points. Our system allows the user to interactively create and control
the animation by adjusting the shape of models over time using intuitive defor-
mation tools and keyframe animation techniques. Primarily it features following
characteristics:

– interactive modelling of a polygonal cloth mesh which can be suspended at
arbitrary constraint points;

– the cloth’s physical properties are directly configured by the animator (e.g.,
dimensions, elasticity, constraint points);

– real-time manipulation of the shape using fake dynamics (e.g., waving, sway-
ing and bending deformations);

– multiple instances of all deformations can be used together (i.e. combining
multiple waves, swaying etc.) allowing to create realistic as well as exagger-
ated types of animations;

– immediate and direct control over the animation using a keyframe animation
system.

As the goal of this paper is on keeping the animator in full control of the anima-
tion process we do not explicitly consider collisions and interactions. However,
the most common techniques should easily be integrated because of the under-
lying polygonal mesh.

(a) (b) (c) (d)

Fig. 1. Snapshots of animated cloths using fake dynamics. a) Table cloth being pulled
up near the back. b) Undulating flag. c) Swinging with exaggerated elasticity. d) Magic
carpet in action.
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The pictures in the inset (Figure 1) show some snapshots of interactively
animated cloths using fake dynamics. We emphasise that all animation results
were obtained by a completely novice user and that at no time any common
cloth modelling techniques nor dynamics simulation were employed to support
the modelling and animation processes.

Approach. Technically the challenge is to achieve a stable and controllable
cloth model that easily can be animated in a key framed manner. Whilst just
turning to cutting edge simulation techniques [1,2] would seem obvious, this is
often prohibitive in terms of user control. Especially for animation movies realis-
tic behaviour is not always desired. Many dramatic animation effects (including
squash and stretch, anticipation and surreal exaggerations) are almost unfeasible
when the simulation is subject to real dynamics.

To tackle this challenge, we distinguish between a modelling phase and a
separate animation phase. In the modelling phase a cloth is conceived starting
from a rectangular grid structure on which arbitrary constraint points have to
been chosen indicating the points from which the cloth will hang. Then the
shape of the cloth, which is defined by the surface interior to the constraint
points, is approximated by means of 3D catenaries. Next, a relaxation process
is performed on all points on the surface to arrive at the natural rest shape.
The result is a three dimensional cloth object which is hanging and supported
by the constraint points. Concerning the animation phase, animators directly
create motion by placing keyframes in time and indicating how to generate the
in-betweens. Key frames are easily created by building new rest shapes through
adding, removing or moving constraint points, or manipulating the relaxation
process (e.g., making the cloth’s fabric more or less stiff). Furthermore, the user
has disposal of many interactive fake dynamics controls (e.g., to perform gross
modification or wave-shaped deformation of the natural rest shapes).

This way animators interactively create and control visually pleasing anima-
tion of cloth models while staying in full control of the animation process.

Paper Organisation. This paper is structured as follows. Section 2 surveys
work we consider related to our goals. Section 3 describes the important factors of
our approach, starting from the cloth representation and the use of fake dynamics
to the animation process. Section 4 elaborates on a system use case example.
Finally, Section 5 is our concluding section in which we also set the context for
future work.

2 Related Work

One of the first attempts to restrain from real dynamics for cloth animation
was made in the 1992 Disney feature animation movie Aladdin [6] for creating
the Magic Carpet. Initially, a CGI model was about to be employed to ease the
animators’ work, in particular for applying the detailed Persian texture. How-
ever, although texturally very pleasing, the cloth dynamics worked out bad for
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the animation itself as it looked too computerish [5]. As a solution, a hybrid
(2D and 3D) approach was followed. That is, the magic carpet animation was
entirely drawn on paper by a traditional animator after which a 3D model artist
carefully laid out a computer model over the drawn carpet, frame after frame.
Then, for each frame a texture map (depicting the Persian texture) was applied
to the surface of the carpet model. Finally, the corner tassels were manually
drawn on top of the textured carpet. Through this approach, a realistic appear-
ance is achieved while preserving the artist’s animation style but at the (labour
intensive) cost of manually creating each frame twice.

Barzel’s work on fake dynamics describes a simple method for modelling 1D
flexible linear bodies such as ropes and springs without using dynamic simulation
[7]. His approach has been used successfully in the Toy Story movies. The idea
is to provide a default natural rest shape and provide controls that perform
gross modification and wave-shaped deformation of the rest shape. Animators
then create motion by adjusting the shape of models over time using traditional
keyframe methods. Unfortunately, this approach is limited to the 1D case only
and the author states that it is not trivially suited for modelling 2D bodies
including cloth and clothing.

Other works on flexible objects in computer graphics include hair animation
[8] and rope simulation [9], but their connection to cloth simulation is tenuous
due to their relatively simple geometry.

3 Approach

In this section we describe the steps involved in modelling and animating cloths.
The system we envisage is inspired by Barzel’s idea of faking dynamics by ad-
justing the shape of models over time using intuitive deformation tools and
keyframe animation. Figure 2 depicts a schematic overview of the main parts
involved when modelling and animating a piece of cloth.

Starting from a grid structure the user first specifies some constraint points
from which the cloth will hang, as well as some textile parameters such as the
fabric’s elasticity. An approximation of the cloth’s surface is then made within
the convex hull of the constraint points by tracing 3D catenaries between pairs of
constraint points. After this, the user still can reshape the cloth by repositioning
the constraint points. The next step involves an iterative relaxation process on
all points on the surface to come to a final rest shape. The entire process can be
repeated more than once where each rest shape can act as a key frame for the final
animation. Dynamic motions can be superimposed by interactive controls that
perform gross modifications or wave-shaped deformations of the cloth’s surface.
Convincing cloth animation is then achieved by layering these deformations (i.e.
combining multiple dynamic motions together) and varying all parameters over
time.

Parts of the approximation and relaxation step in the modelling phase are
based on Weil’s work on physically simulating the threads in a cloth [10]. We,
however, diverged from it in the approximation step as we were not satisfied
with the resulting shape. The following subsections describe all steps in detail.
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Fig. 2. Schematic overview of the main parts of the modelling and animation steps

3.1 Cloth Modelling

This section discusses how to represent and create a cloth model.

Representation. For reasons of simplicity the cloth’s surface will be modelled
using as a quadrilateral mesh. To this end, the cloth is initially represented
by a 2D grid consisting of 3D coordinates (see Figure 3(a)). The density and
dimensions of the grid are user specified, as well as the corner points and inner
constraint points from which the cloth will hang (depicted by the red dots).

Surface Approximation. For determining the shape of the cloth only the
interior and constraint points will be taken into account as the remaining exterior
points do not contribute to the cloth model.

As at this point only the positions of the constraint points are known, the
following logical step is to determine the internal points between each pair. This
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Cloth modelling. a) Grid representation with constraint points (red dots). b-c)
Conflicting catenaries (conflicting points in green). Before and after. d) Approximated
cloth model. e-f) Cloth model after relaxation.

narrows down to calculating a catenary between each pair of constraint points
taking into account the grid distance and the elasticity (Equation 1).

y = a cosh(
x

a
) (1)

Notice that when looking at the grid catenaries can cross each other (Figure 3(b))
at an internal point. This causes the internal point to be positioned differently in
3D depending on which catenary to use. We know by definition that catenaries
are built as low as they naturally can fall. Thus, during the relaxation step they
only can be lifted but never will fall any further. This means that we can remove
the lowest catenary passing through a conflicting point. Once we have processed
only the points for the highest located catenaries, we end up with a triangular
structure as depicted in Figure 3(c).

At this point Weil suggests subdividing each triangle in two subtriangles using
the highest of the three catenaries passing from the vertices through the trian-
gle’s centroid. This should be repeated recursively until all interior points have
been positioned in 3D. Unfortunately, as Equation 1 only outputs the height co-
ordinate y, the x en z coordinates have to be approximated using interpolation.
We noticed, however, that due to the recursive process the approximation errors
add up when calculating new catenaries and this is noticeable when positioning
the remaining interior points.

To overcome this issue, our system also takes into account each point’s position
in the grid when positioning in 3D. So, after deriving the first triangular structure
(Figure 3(c)) we immediately show the corresponding catenaries (Figure 3(d)).
At this point the user still can reposition the constraint points (and, hence, the
catenaries) in order to adjust the cloth’s shape to his desire. Then, we process
all remaining interior points at once, hence skipping the subdivision steps. For
each point p we first lookup the triangle T it belongs to. Next, we draw straight
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Fig. 4.

lines between the vertices of T and p; the intersections of these lines with the
triangle’s edges are called vT

i1, vT
i2 and vT

i3 (see Figure 4). We compute the 3D
positions for each vT

i as follows: the x and z coordinates are derived directly by
interpolating between the edge’s end points (which are constraint points), for
the y coordinate a catenary is constructed between the edge’s end points after
which an arc length function is employed to find its value. Lastly, we construct
catenaries between the vertices of T and vT

i1, vT
i2 and vT

i3. The coordinates px and
pz are then calculated by interpolation while for py the highest located catenary
is employed.

In the end, our method advances Weil’s algorithm as all internal points are
correctly positioned relying on the initial constraint points.

Relaxation. The relaxation process is intended for fine-tuning the cloth’s sur-
face. This is an iterative process and involves displacing the grid points until
some constraints are obeyed. As we aim for visually compelling and controllable
results, real physical constraints are not essential. So, in our case the following
constraints suffice [10]: for each point, (i) its placement is at a certain distance d
from its neighbours (d is influenced by the point’s position on the catenary and
the elasticity parameter), and (ii) the angle formed with consecutive neighbours
is related to the stiffness parameter. The final result is depicted in Figure 3(e)
and Figure 3(f).

3.2 Cloth Dynamics

In this section we elaborate on how to superimpose dynamic motion in a key
framed manner. We show this by means of two cases: swaying and waving.

Sway Deformation. Cloths typically can swing back and forth or to and fro
when an external force (e.g., the wind) is exerted on the entire model. To simu-
late a swaying deformation we calculate a displacement vector for each point p
according to following equation:

−−−→
dp

sway =
dp

cp

dmax
× m ×−→

dir × v (2)



Faking Dynamics of Cloth Animation for Animated Films 245

In this equation, dp
cp stands for the distance between p and its closest constraint

point, dmax is the maximal distance found between an internal point and a
constraint point, while m, −→dir and v are adjustable parameters indicating the
magnitude, direction and speed of swaying. This way the displacement of a
point is in proportion to its distance to the closest constraint point. Now, if we
choose to variate, for example, m over time in the interval [−dmax, +dmax] we
get a smooth swinging animation. Figure 5 shows some snapshots of a carpet
swinging from side to side.

Fig. 5. Snapshots depicting a sway from left to right

Wave Deformation. A typical wave deformation is defined by the parameters
magnitude, frequency, phase and azimuth. For our cloth animation, however, we
leave out the azimuth as it will twist the cloth making it look less realistic. To
create an undulating surface Equation 3 is employed in which the magnitude,
frequency and startphase are denoted by m, freq and startphase respectively.
We also added a time (t) and speed (v) parameter to shift, and thus animate, the
waves in time. In addition we multiply the whole by an attenuation coefficient
a which causes a larger waving effect in the centre of the cloth and a fall off
near the constraint points; dp

cp stands for the distance between p and its closest
constraint point while dmax is the maximal distance found between an internal
point and a constraint point. Figure 6 illustrates the effect of the magnitude and
frequency parameters for an undulating motion.

y = m × sin (x × freq + startphase + t × v) × a (3)

a =
dp

cp

dmax
(4)

(a) (b) (c)

Fig. 6. Undulating flag. a) Default magnitude and frequency. b) Increased magnitude.
c) Increased frequency.
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3.3 Cloth Animation

For creating animations, a keyframe animation system is employed as it is es-
sential in allowing animators to easily adjust and edit pose and timing with
per-frame accuracy [3,4,7].

Key frames are easily created by building rest shapes as described in Section
3.1. That is, the user specifies the elasticity and the constraint points from which
the cloth will hang, adjusts the rough shape of the cloth, and after relaxation
use the rest shape as a key frame. The entire process can be repeated more than
once and so different key frames can consist of different and a different number
of constraint points. This is illustrated in Figure 7.

Fig. 7. Different rest shapes of the same cloth model

Dynamic motions as discussed in Section 3.2 are then incorporated in the
timeline easily by superimposing them on the key and in-between frames. More-
over, multiple instances of all deformations can be used together. It is this lay-
ered approach and varying all parameters over time which leads to convincing
animations.

Fig. 8. Thumbnail storyboard for the magic carpet animation shown in Figure 9
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Fig. 9. Snapshots of an animated magic carpet illustrating subtle animation effects
(including a squash and stretch bend and an undulating motion) achieved by fake
dynamics



248 F. Di Fiore, B. Gerits, and F. Van Reeth

4 Results

In this section we elaborate on a system use case example which was carried out
to capture the system’s effectiveness in terms of ease-of-use, visual appeal and
dynamic behaviour. To this end an external animator was involved who was not
acquainted with our system at all.

Figure 8 shows the animator’s thumbnail storyboard which led to the magic
carpet animation shown in Figure 9. The animation is guided by 5 key frames and
several interpolation algorithms (including ease-in/ease-out and speed up/down)
were used to generate the in-betweens. For the key frames four different rest
shapes were created and in particular the elasticity coefficient was used to estab-
lish the bending effect. Dynamic motion was added by superimposing animated
deformations. For example, the transition between the bending and moving car-
pet is established by slowly increasing the magnitude of the wave deformation.
This cloth animation (not counting drawing the background and the character)
took our animator less than 30 minutes to model all rest shapes and to establish
the dynamics, clearly illustrating the effectiveness of our system.

All other results (shown in the figures throughout this article) were created
by novice users, i.e. the authors, illustrating all the more the ease of use of our
approach.

All examples run at an interactive frame rate on a commodity personal com-
puter (Pentium Dual-Core 2.67 GHz, onboard graphics card).

5 Conclusion and Future Work

In this paper we presented the concept of fake dynamics for cloth animation in
animated films, in which a cloth is hanging from arbitrary constraint points.

Existing animation and simulation techniques are often prohibitive in terms
of user control. Especially for animation movies realistic behaviour is not always
desired, instead they demand for fake, yet very impressive or dramatic animation
effects (including squash and stretch, anticipation and surreal exaggerations)
which are impracticable when real dynamics are involved.

Our system allows the user to interactively model and animate cloth models
over time using intuitive deformation tools and keyframe animation techniques.
We believe our system is effective in terms of ease-of-use, visual appeal and
dynamic behaviour, and offers solutions to be used in smaller-scale productions
where animators have to find their way more independently.

Future Work. In this paper, we did not explicitly consider collisions and in-
teractions. However, we believe most common approaches should easily be inte-
grated because of the underlying polygon mesh of the cloth objects.

Furthermore, it is possible that during relaxation displacements of grid points
cause the cloth surface to intersect itself. Imposing extra constraints (i.e. pre-
dicting intersections before displacing grid points) can prevent this, although we
did not experiment any problems in the cases we tested.
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Abstract. In this paper, we present a novel constraint-based method
that is able to adapt captured gait motions to new paths while preserving
the original gait style. Foot-plant constraints are ensured automatically
and no post-processing for foot-skate removal is necessary. The main
contribution of the paper is an analytical algorithm that is able to move
the avatar without violating foot-plant constraints. The algorithm works
with few dependencies, which allows other motion controllers to be easily
integrated to fulfill other tasks.

Keywords: Locomotion Synthesis, Motion Editing, Motion Path.

1 Introduction

A convincing gait motion is one of the most essential factors in human mo-
tion synthesis. Motion capture techniques are able to create the most realistic
gait motions with regard to physical correctness and natural motion patterns.
Among active research on reusing the captured gait motions, adapting a gait mo-
tion to new paths is prominent. To avoid foot-skate artifacts introduced during
path adaption, most of the proposed approaches work in the adapt-then-repair
manner: The gait motion will be adapted to the new path and the foot-plant
constraints are re-established in the post-processing [7][15][8]. In addition, a time
window is often necessary for smoothing the resulting poses.

In this paper, we present a novel analytical method to modify captured gait
motions such that the avatar can follow an interactively controllable path. Unlike
most of the other approaches, foot-plant constraints are automatically ensured
and thus no post-processing for foot-skate removal is necessary. Since no filtering
or blending is involved in the adaption phase, the algorithm works fast and on-
line. The contributions of our work are twofold: A closed-form expression for
constraint-based root translation according to two adjacent poses, and a simple
method to modify the avatar’s walking direction while retaining much of the gait
characteristics.

The remainder of this paper is organized as follows: After an overview of
related work, the gait style is discussed in section 3. Then, the algorithm of
the gait motion generation is provided in detail in section 4. In section 5, the
experiment results are presented and we conclude the paper with an overview of
future work in section 6.
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Fig. 1. A synthesized gait motion that follows a user defined target path

2 Related Work

In order to reuse motion capture data, many research groups have been focused
on the modification of low-level data such as joint angles with kinematics and
dynamics tools [5][6][10], or with the techniques from the signal processing do-
main [3][16]. Notice has also been given to the approaches that generate new
motions by re-arranging motion capture data. Captured motions can either be
preprocessed into short clips, which can be concatenated interactively [2][1], or,
more generally, be preprocessed into motion graphs [9], which allow synthesis of
higher variety.

The data-driven gait motion synthesis involves many above research efforts.
Gleicher [7] adapted existing locomotion motions to new paths by aligning the
root positions and orientations to the new path. Foot-plant constraints are re-
established in the post-process with kinematics-based techniques proposed in
[10]. Park et al. [15] employed motion blending to morph locomotion paths. To
avoid foot-skating introduced by the blending, the foot currently touching the
ground is fixed during the blending and relevant joints are modified accordingly.
Kim et al. considered motion paths as a serie of general spatial constraints [8].
The foot-plants are reconstructed with general Inverse Kinematics solvers after
these path constraints are satisfied.

In the above approaches the foot-plant constraints have a lower priority than
the constraints given in the new gait path. Furthermore, motion blending is
necessary to avoid the discontinuity introduced when geometrically re-enforcing
the foot-plants. Such an approach implies an off-line method, which is not eligible
for highly interactive situations such as games.

In this paper, we give a closed-form analysis for positioning the avatar based on
foot-plants. From there, we present an on-line method for gait motion synthesis
that can follow new paths. Foot-plant constraints are satisfied automatically and
no blending during the synthesis is needed. The is a real-time method due to
the absence of numerical solvers. Our method can be well deployed to generate
gait motions with interactively changing paths. Since the input poses themselves
are not constrained, motion retargeting and blending can be easily integrated
without introducing foot-skates.
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3 Gait Style

We distinguish the gait style in two levels: the high-level style embedded in the
path variation and the low-level style described by the actual joint configurations
(vector of joint orientations) and the root orientation in the moving frame. The
moving frame at a point on the path is {x, y, z}, where x is the tangent at that
point, y is the up-vector and z = x × y.

A gait path is the trajectory of the avatar’s root (at pelvis) in a motion
sequence. With some loss of generality, only the gait motions on a planar terrain
are considered, because such motions are better accessible and this simplification
does not affect the core idea of our algorithm. Since the root’s height is adjusted
automatically based on the foot-plant (Sect. 4.3), a gait path can be represented
by a 2D trajectory.

The path variation is the difference between the target gait path, which is the
path the avatar should follow, and the actual gait path, which is the path the
avatar actually travels. This variation exists, since the target path is normally a
low-frequent curve for simplifying the user input, and in reality the actual gait
path always has high-frequent noise. In comparison to the path variation, the
joint configurations and the root orientation in the moving frame define the gait
personality in a more obvious way. In the synthesis, both levels of the gait style
embedded in the captured sequences are preserved as much as possible.

4 Gait Motion Generation

In this section, we firstly introduce the simple motion graph with existing motion
sequences which models the human gait cycle. Then, the pose decomposition and
a closed-form expression describing the relation between root translations and
support positions are given in detail. Based on that, we present a method to
modify the avatar’s walking direction such that it can follow a new path without
much loss of the original path variation.

4.1 Motion Sequences

Human biped gait is a cyclic movement that can be separated by foot strikes
and take-offs [13]. Accordingly, we organize motion sequences representing each
phase in the cycle as a simple motion graph with clustered nodes and prede-
termined edges [2](Fig. 2). The gait motion is then synthesized by interactively
concatenating appropriate motion sequences. The advantages of such approaches
are threefold: First, one is able to utilize the good pose coherence within the se-
quences. Second, the path variation can only be described with motion sequences.
Third, the sequences can be directly segmented from a single motion clip with
a full gait cycle to yield smooth sequence transitions.

4.2 Pose Decomposition

A pose consists of components that define the root position and orientation of
the avatar as well as the joint configurations. With the knowledge, how each
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Fig. 2. Gait cycle and motion sequences. Left: A simple motion graph according to the
gait cycle. Right: Motion sequences corresponding to the phases in the gait cycle.

component affects a pose, one is able to control the avatar by just modifying the
desirable component without disturbing the other ones. Thereby, the character-
istics of the original motion capture data can be preserved as much as possible
while one still has the desired control over the avatar.

In a motion sequence, the i-th pose πi describes the root transformation Mi

together with the joint configurations θi defined in the root space. We call θi

the local pose. Transformation Mi can be defined by a rotation Ri followed by
a translation Ti in the global space. Applying Ri is equivalent to applying two
unit rotations, Rn,i and Rf,i successively, where Rf,i is a rotation around the axis
perpendicular to the floor plane (y-axis). Hence, the pose πi can be uniquely
determined by four components Ti, Rf,i, Rn,i and θi.

According to these components, the pose πi affects the avatar in a 4-step-
process: First, the local pose θi is applied and the joint configurations are mod-
ified. In the second and third step, Rn,i and Rf,i are applied successively and
the local pose θi is also rotated. We denote the resulted pose with θr,i and also
name the transformed space with the rotated root space. The last step is the
application of translation Ti, after which the root is moved to its final position
in the global space. If Lj,i transforms the coordinates from the local space of the
j-th joint to the root space, then there is:

Gj,i = Ti × Rf,i × Rn,i × Lj,i , (1)

where G, T, Rf , Rn and L are transformation matrices. Matrix Gj,i transforms
the coordinates from the local space of the j-th joint to the global space. The local
space of the joint j is where the foot-ground collision is detected. Moreover, Lj,i

is fully embedded in θi and is calculated by tracing from the joint j backwards
to the root.

4.3 Support Position

In this paper, we only consider the poses with at least one foot on the ground.
This is always the case for relatively slow locomotion. In case when both feet are
not on the ground (in a short ”flying” phase), the avatar is actually controlled by
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the laws of dynamics instead of the foot-plant constraints. Since dynamics-based
controllers can also work in an on-line manner, we consider the dynamics as a
plug-in which can be integrated in our method later.

The matrices in (1) are functions of index i. The motion is then a series of
applications of these matrices on the avatar. Every two neighboring poses share
the same support position (the contact point between the feet and the ground),
since their application must not violate the foot-plant constraint.

Let sploc,i be the support position of πi in the local joint space, then this
support position in the global space is spg,i = Gj,i×sploc,i . The support position
in the rotated root space is spr,i = Rf,i × Rn,i × Lj,i × sploc,i .

4.4 Translating the Root

Given two poses πi and πi+1 with the same single support situation (i.e. the
support feet in both poses are the same) and their support positions in the
global space is denoted as spg,i and spg,i+1, respectively, then there must be
spg,i = spg,i+1 due to the foot-plant. The global root positions of πi and πi+1 are
denoted as qi and qi+1, respectively, then the translation vector vi+1 = qi+1−qi

describes the root translation caused by applying the pose πi+1 (Fig. 3).
Since the difference between the global space and the rotated root space of

πi is the translation Ti, the difference between the rotated root spaces of πi and
πi+1 is exactly vi+1. Hence, there is

vi+1 = spr,i − spr,i+1 . (2)

Equation (2) describes the relation between the root translation and the support
positions in the rotated root spaces (Fig. 3). Upon applying πi+1, the compo-
nents of πi including spr,i are already determined and cannot be changed. The
translation vi+1 only depends on spr,i+1, which is in turn determined by the
quadruple (Rf,i+1, Rn,i+1, Lj,i+1, sploc,i+1) (see Sect. 4.3). Among all the com-
ponents of πi+1, we only modify Rf,i+1 in order to control the walking direction.

Considering that the rotation matrix Rf,i+1 can be denoted with a rotation
angle ϕi+1 around the y-axis, the root translation vi+1 is a function of ϕi+1, or
vi+1 = F (ϕi+1) . If we modify Rf,i+1 by rotating the avatar around the y-axis
by an incremental angle Δϕ, then we have a new root translation v′

i+1 with

v′
i+1 = F (ϕi+1 + Δϕ) . (3)

The new root position after applying πi+1 is then p′
i+1 = pi + v′

i+1, where pi is
root position afater applying πi. This means that one can translate the root to a
new position by overwriting the avatar’s root orientation ϕi+1 with ϕi+1 + Δϕ,
as illustrated in Fig. 3.

4.5 Path Adaption

For a sequence with n poses, the root trajectory Ca is a polyline obtained by
connecting the projected root positions of each pose pi(i ∈ [0, n)) successively.
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Fig. 3. Derive root translation from two support positions. Left: The situation upon
applying πi+1 is shown in the global space. Middle: the same situation in the rotated
root space. Right: The root translation is a function of a rotation angle Δϕ. The circle
indicates the possible positions of sp′

r,i+1 when Δϕ changes.

This is the actual gait path if no change is applied. The tangents u0 and un−1
at the start and end points of Ca are estimated with finite differences. We addi-
tionally define � = Len (H (p0, u0, pn−1, un−1)) , where Function H (s, us, e, ue)
interpolates a curve between s and e (with tangents us and ue, respectively)
using Hermite Interpolation and function Len (x) calculates the arc length of
curve x. We call � the effective length of this sequence, as this Hermite curve is a
low-frequent approximation of the actual gait path, and � estimates the distance
the avatar effectively travels when this sequence is applied.

Since Ca is a polyline, we can morph it discretely by rotating each segment
of Ca by an angle γ. The moving frame at each point pi on Ca is therefore also
rotated by the same angle. In addition, since the avatar is bound to the moving
frame for retaining the root local orientation in the moving frame (see Sect. 3),
the avatar is also rotated by γ at each frame. The new root position can then
be obtained through (3).

The original gait path polyline Ca defines n − 1 vectors pipi+1. The n − 2
angles Δαi = arccos (〈pi−1pi, pipi+1〉) describe the relative rotations between
two adjacent vectors. Let Ct be the target path. Given a start position s on
Ct, we can find a point e on Ct upon a sequence transition, such that the arc
length between s and e is the effective length of the sequence that is going to be
applied. Let ws and we be the tangents at s and e and we denote us, ue, ws,
we with their angles between the horizontal axis with αs, αe, βs, βe, respectively
(Fig. 4).

The change of the walking direction after the avatar has walked over the
effective length of Ca is αe − αs (which is an approximation of the curvature of
Ca). Since a curve piece on Ct with the same effective length has been found,
there should be αe −αs = βe − βs in order to adapt Ca to Ct . We firstly rotate
Ca around s such that us = ws, and then morph the curve Ca by replacing
Δαi with Δβi = Δαi + γ, where

γ = (βe − βs) − (αe − αs) / (n − 2) . (4)
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Since the difference between βe − βs and αe − αs is evenly distributed to all
Δαi, the change for each Δαi is minimal, and hence the path variation which is
embedded in Δαi is retained as much as possible. After the morphing of Ca for
the current sequence, the end point e becomes the new start point s upon next
sequence transition. This process repeats until s the end point of Ct arrives and
the avatar stops following the target path.

Fig. 4. Gait path adaption. Left: An Hermite curve is created for estimating the effec-
tive length of the original path. Right: A piece of target path with the same effective
length is found. Each segment on the original path is rotated by the same angle. Note
that the end point of the original path is not necessarily on the target path.

5 Results

The calculation of the effective length and the path morphing can be done in
O(n) with n poses. In a single threaded implementation on a computer with
Q8800 and 4 GB RAM, it took less than 200 milliseconds for precessing the
motion with about 10000 frames. The path following works in real-time: For 10
user-defined control points, the target path is interpolated within 10 milliseconds.
Pose decomposition is done in 7 milliseconds.

To evaluate the algorithm that calculates the root translation, we took as the
ground truth the root positions in an original locomotion with about 8000 frames.
We applied our algorithm on the same motion and compared the calculated root
positions to the ground truth at each frame. The result is shown in Fig. 5. The
foot size (22 cm) of the avatar (height 158 cm) is shown for a more intuitive
evaluation. The variation on the floor plane VarXZ =

√
ΔX2 + ΔZ2 are mainly

less than the foot size. However, the error accumulation is still to be noticed (Fig.
5 left). This originates from the error when calculating the support position using
a simplified feet model which is inconsistent with the one used during producing
the motion capture data.

To evaluate the path following ability, we compared the target path with the
actual path that is yielded with our path adaption method. As shown in (Fig. 5
right), the avatar followed the target path well, although the avatar took more
shortcuts with increasing path curvatures. This is due to the approximation of
the path curvature and the effetive length of the original path during the path
adaption.
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Fig. 5. Evaluation of the root translation and path adaption methods. Left: Variation
at each frame. Middle: The ground truth (top) and the calculated trajectory.(bottom).
Right: Target path (dashed) and actual path.

Fig. 6. Integration with motion retargeting and motion blending. Two original motions:
in-place locomotion M1 and normal walking M2 (left column). Blended motions with
different blending weights (middle column). Motion M2 is retargeted to an avatar with
dynamically varying size (right column).

Our method does not constrain the poses, as long as the input poses are well
connected and the support positions can be calculated. This feature allows us
to apply our method on blended or retargeted poses, so that one can utilize
the power of motion blending and retargeting without concerning foot-skates.
For experiment, we applied our method after retargeting a motion to avatars of
different sizes (but with the same skeleton structure). We morphed the avatar by
scaling the bone lengths dynamically during a gait motion and used our method
to calculate the root position. As shown in Fig. 6, our method is able to generate
a gait motion with strict foot-plants despite a varying stride length. The root
height is also adjusted automatically, since the foot-plants are constrained in the
3D space.

We further used our method on blended motions. We interpolated an in-place
locomotion and a normal gait motion with w·M1+(1−w)·M2, where M1 and M2
are the original motions and w is a blending weight between 0 and 1. The avatar
was driven by the blended poses and the root positions were calculated with our
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method. As shown in Fig. 6, new motions that inherit both original gait styles
are generated while the foot-plants are ensured without any post-processing.

6 Conclusion and Future Work

In this paper, we introduced a novel data-driven approach for gait motion syn-
thesis that can follow new paths in real-time. Original motion sequences were
organized in a simple motion graph according to the gait cycle. We then ex-
pressed the root translation as a closed-form function of a unit root rotation.
Based on that, we derived an algorithm that is able to position the avatar without
violating the foot-plant constraints. With a path adaption method, the avatar
is able to follow new paths on-line.

The gait style of the original motion is preserved at two levels of details: The
gait details are fully preserved based on the pose decomposition. and the gait
path variation is largely retained with the path adaption method. Since the root
translation only depends on the support positions of adjacent poses, our method
can be applied to any motion in which support positions can be determined.
Other motion controllers can be integrated to accomplish other tasks. We showed
this possibility by synthesizing gait motions with retargeted and blended poses.

There are several limitations in our method. First, the synthesis is based
on the gait motions captured on planar terrains and no joint configuration is
modified in our method. It is not possible to synthesize gait motions on uneven
terrains without altering the joint configurations. Second, we considered the foot-
constraints only as point constraints. The orientation of the supporting foot is
not constrained. Third, dynamic factors are not considered. Synthesizing highly
dynamic locomotion using our method may produce unrealistic results. For im-
provement, the proposed method is to be extended in order to synthesize gait
motions on uneven terrains. The authors are also working on the integration of
dynamics-based controllers and minimizing the error during the path adaption.
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Abstract. This paper presents a fully automatic approach to fitting a
generic facial model to detailed range scans of human faces to recon-
struct 3D facial models and textures with no manual intervention (such
as specifying landmarks). A Scaling Iterative Closest Points (SICP) algo-
rithm is introduced to compute the optimal rigid registrations between
the generic model and the range scans with different sizes. And then a
new template-fitting method, formulated in an optmization framework of
minimizing the physically based elastic energy derived from thin shells,
faithfully reconstructs the surfaces and the textures from the range scans
and yields dense point correspondences across the reconstructed facial
models. Finally, we demonstrate a facial expression transfer method to
clone facial expressions from the generic model onto the reconstructed
facial models by using the deformation transfer technique.

Keywords: Surface reconstruction, texture reconstruction, range scans,
scaling iterative closest points (SICP) algorithm, template fitting, expres-
sion transfer.

1 Introduction

Modeling and animating realistic facial models is a substantial challenge in com-
puter graphics, especially for facial expressions, because we are so familiar with
human faces and very sensitive to “unnatural” subtle changes in faces. Such
a challenge has drawn intensive academic and industrial interest in this area
[8,14]. However, creating a convincing synthetic character requires a tremendous
amount of artistry and manual work. There is a clear need for more automatic
techniques to reduce the painstaking work of artists and to make reuse of existing
data.

One avenue for creating realistic facial models is 3D scanning technology.
However, starting from a range scan, substantial effort is needed to process the
noisy and incomplete surface into a model suitable for analysis and animation.
Template-fitting methods are widely used for this purpose to fill holes, reduce
the noise level, and capture characteristic features of range scans [1,21,22]. In
addition, dense point correspondences, which are fundamental requirements in
many applications such as morphing and shape analysis, can be also established
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across various models. Generally, template-fitting methods require users to pro-
vide a small set of manually specified landmarks to initially align or warp a
template with targets [1,21,22]. The process of positioning landmarks seems to
be tedious and error-prone.

Besides Modeling facial expressions directly from range scans of human faces,
it would be better to reuse existing facial expressions to generate new ones
on desired targets instead of creating them from scratch, which is the idea of
expression cloning [12]. One key problem for expression cloning is to build good
dense correspondences between models.

In this paper, we present a fully automatic approach to reconstructing 3D fa-
cial models and textures from range scans without requiring manual intervention.
This paper makes several specific technical contributions. First, we introduce a
Scaling Iterative Closest Points (SICP) algorithm to compute the optimal rigid
registrations between a generic template facial model and range scans with dif-
ferent sizes. Second, we propose a unified optimization framework to reconstruct
facial surfaces and textures from the range scans. We also present a method to
automatically generate new facial expressions on the reconstructed facial mod-
els from expressions on the generic model by using the deformation transfer
technique.

In the following section, we review some topics related to our work. In Sec-
tion 3, we present the details of SICP to rigidly register a template facial model
to range scans with different scales and show an optimization framework to re-
construct facial models and textures from range scans. Results and conclusions
are presented in Sections 5 and 6, respectively.

2 Related Work

Modeling and synthesizing faces is an active research field in computer graphics
and computer vision. Here we review three topics most related to our current
work: ICP-based registration, template fitting, and expression transfer. Other
related work is discussed throughout the paper, as appropriate.

ICP-based Registration. Since the first paper of ICP [2], ICP has been
widely used for geometric alignment of 3D models and many variants of ICP
have been proposed [16]. Generally, the original ICP can only deal with models
with the same scale. To account for the scale problem, Du et al. proposed an
extension of the ICP algorithm, called the Iterative Closest Points with Bounded
Scale (ICPBS) algorithm, which integrated a scale parameter with boundaries
into the original one [6], but it’s unclear how to determine the upper and lower
boundaries of scales that contain the optimal scale.

Template Fitting. Due to its great challenge in many research fields, numer-
ous research efforts are devoted to establishing correspondences between different
meshes [9]. The template-fitting method [1,17] deforms a template to a target
object to minimize the combining errors of smoothness and fitness between them.
Recently, template fitting has become particular popular due to its simplicity
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and robustness to noisy range data [11,21]. Our reconstruction method shares
the similar idea, but it is derived from physically based elastic deformations of
thin shells by variational methods [4].

Expression Transfer. Noh and Neumann first proposed the concept of ex-
pression cloning that facial expressions of one 3D facial model were copied onto
other facial models [12]. The dense point correspondences were established by
volume morphing with Radial Basis Functions (RBFs) through dozens of initial
corresponding points. Sumner et. al. [5,17] generalized the idea to transfer arbi-
trary nonlinear deformation exhibited by a source triangle mesh onto different
target triangle meshes. To build triangle correspondences, they manually speci-
fied a small set of initial corresponding feature points and then fitted the source
meshes to the target using the template-fitting method. Vlasic et al. proposed
a method, which used multilinear models for mapping video-recorded perfor-
mance of one individual to facial animations of another [20]. An example-based
approach [15] proposed by Pyun at al. clones facial expressions of a source model
to a target model while reflecting the characteristic feature of the target model.

3 Automatic Facial Model and Texture Reconstruction

In this paper, we assumed that the range scans to reconstruct were upright front
faces, in which some other unwanted parts (such as hair, neck, shoulder) might
also present. Given such a range scan, our goal is to build a new facial model
with texture to reflect the shape and texture of the range scan from a template
facial model. The missing data in the facial region of the range scan should be
filled and the noise level should be reduced as well.

Our reconstruction method consists of two steps: the first step is to compute
the initial rigid registration between a template and a range scan; the second
step is to iteratively deform the template model toward the range scan to capture
the shape of the range scan and the texture is obtained in the same way.

We prefer triangle meshes for the representation of our models and range scans
for efficiency and simplicity. Before elaborating our method, let us introduce
some notations used in this paper. A triangle mesh M consists of a geometrical
and a topological component, i.e., M = (P ,K), where the latter can be repre-
sented by a simplicial complex with a set of vertices V = {vi, 1 ≤ i ≤ |V|}1, edges
E = {ei ∈ V × V , 1 ≤ i ≤ |E|} and triangles F = {fi ∈ V × V × V , 1 ≤ i ≤ |F|}.
The geometric embedding of a triangle mesh into IR3 is specified by associating
a 3D position pi for each vertex vi ∈ V : P = {pi := p(vi) ∈ IR3, 1 ≤ i ≤ |V|}.

3.1 SICP Registration

In order to reconstruct the surface of a range scan using a template, we need
first roughly place the template close to the range scan. Traditionally, this is

1 | · | denotes the number of elements in the set.



Automatic 3D Facial Model and Texture Reconstruction 263

done by manually specifying a small set of landmarks [1,17,21,22]. Our method
deals with this problem with no manual intervention.

[?] Since the template facial model and the range scans of human faces have
much similarity in shape, it is intuitive to use the ICP algorithm to compute the
initial rigid registrations between them. However, there is a challenge dealing
with the scale problem, because the size of the facial region in the range scans is
not known a priori and the range scans may also include some unwanted parts
(see Figure 4).

To deal with the scale problem, we employed an extension version of the ICP
algorithm, called the Scaling Iterative Closest Points (SICP) algorithm [7], which
integrates a scale parameter s to the original ICP equation and iteratively refines
the scale from an estimated initial scale until convergence.

Given a template mesh Mtemplate and a range scan mesh Mscan, the goal of
SICP is to find the transformation (scale s, rotation R ∈ IR3×3 and translation
t ∈ IR3) so that the distance between the registered template mesh M′

template
and Mscan is as close as possible. Obviously, we should avoid degenerate cases
such as s = 0 by providing a good initial value for s.

As the original ICP algorithm, SICP is an iterative algorithm, which iter-
atively refines the registration based on previous registrations until it satisfies
a certain termination condition. Let us denote a sequence of registrations by
T = {Tk = (sk,Rk, tk), 0 ≤ k ≤ |T |}. Then the registration process can be
formulated mathematically as follows,

Ck+1 = {arg minc∈Mscan
d(skRkpi + tk, c)} , (1)

(sk+1,Rk+1, tk+1) = arg mins,R,t

|Ptemplate|∑
i=1

‖sRpi + t − ci‖2, ci ∈ Ck , (2)

where pi ∈ Mtemplate, d(·) is a distance function. Equation 1 is to find the
corresponding closest points on Mscan for the points of Mtemplate and Equation 2
is the absolute orientation problem [10].

As mentioned above, the initial registration state, s0,R0, t0, is important for
the local convergence of SICP. In our examples, we set the initial values as
following,

s0 =
∑N

i=0 |qi − q̄|/N∑M
i=0 |pi − p̄|/M

, R0 = I, t0 = q̄ − s0R0p̄ , (3)

where p̄ and q̄ are the centroids of the template and the scan meshes, M and
N the number of points of the two meshes, and I the 3 × 3 identity matrix.
Although SICP has many degenerate cases and does not guarantee the global
convergence, our tests show its capability to register the template to different
range scans (see Figures 1 and 4).

3.2 Deformable Model

Due to the shape diversities between the template facial model and range scans,
we need further deform the template after the initial rigid registration. There are
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two criteria that should be considered during the deformation process. One is the
regularity that penalizes dramatic changes in mesh. Another criterion is the fit-
ting error, which can be formulated as the total distance between corresponding
points.

Since the template mesh is a two-manifold surface, the change of the sur-
face can be measured by the change of the first and the second fundamental
forms and therefore yields a measure of stretching and bending [18]. Given a
two-manifold surface S, after deformation, it becomes S′, we can represent the
deformed surface S′ by p′ = p + d, where p ∈ S, p′ ∈ S′, and d is the dis-
placement. The minimization of the physically based elastic energies yields the
so-called Euler-Lagrange partial differential equation (PDE) [4]:

− ksΔd + kbΔ
2d = 0 , (4)

where ks and kb are coefficients, Δ and Δ2 represent the Laplacian and the
bi-Laplacian operator, respectively. The Laplacian operator can be extended to
triangle meshes to obtain the discrete form of the Laplace-Beltrami operator
ΔM (refer to [4]). Thus, we can formulate our deformable model as follows,

min
di

M∑
i=1

‖−ksΔMtemplatedi +kbΔ
2
Mtemplate

di‖2 +kc

M∑
i=1

wi‖di − (ci −pi)‖2, (5)

where pi ∈ Ptemplate, ci ∈ Mscan is the corresponding closest point of pi, di is
the unknown displacement, and ks, kb, kc represent the contribution of stretching,
bending and fitting in the total energy, respectively. wi = 1 if the corresponding
closest point satisfies a certain compatible conditions, otherwise 0. We employed
the similar compatible conditions as [17,19] to reject pseudo point matching, such
as, requiring the angle between two corresponding normals should be greater
than 60 degrees, rejecting boundary vertices. The minimization problem can be
reformulated as a sparse linear system in terms of least squares [4].

An annealing-like deformation scheme is employed in our experiments. At the
initial stage, ks and kb are set to relatively large values compared to kc (In our
tests, ks, kb and kc are initially set to 50, 20, 2, respectively). Because at the
initial stage we cannot estimate good correspondences between the template and
the range scan by the closest points due to the shape diversity and large values of
ks and kb do not allow dramatic change of the mesh. Then we relax the stiffness
of the template facial model by gradually decreasing the values of ks and kb

toward 1.

3.3 Texture Reconstruction

Texture can improve the reality of facial models. Thus it is desirable to make
the textures available for the reconstructed facial models. However, the original
range scans usually have holes (missing data). We cannot find all the texture
coordinates for the reconstructed facial models.
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We solve the texture reconstruction problem in the similar way proposed in
the previous section, but here we consider the texture coordinates ui ∈ IR2 as
the unknown variables and the equation becomes

min
ui

M∑
i=1

‖ − ksΔMtemplateui + kuΔ2
Mtemplate

ui‖2 + kc

M∑
i=1

wi‖ui − u′
i‖2, (6)

where u′
i is the texture coordinates of the corresponding closest point on the

range scan for the point pi.
When reformulating Equations 5 and 6 in matrix form, we can see that the

two equations have the same sparse matrix and only differ in the right hand
side. Thus the texture reconstruction can be efficiently solved because the sparse
matrix is only factorized once.

4 Facial Expression Transfer

After the facial model and texture reconstruction, all the reconstructed facial
models have the same topology as the template one, i.e., the dense point corre-
spondences are automatically established across models. These dense correspon-
dences have numerous applications in many areas such as shape space analysis
[1], linear facial model [3], morphing. In this paper, to demonstrate the recon-
structed facial models, textures and the correspondences, we show the facial
expression transfer from the generic facial model onto various reconstructed fa-
cial models by using the deformation transfer technique [17]. The results are
shown in Figure 5.

5 Results

We reconstructed 3D facial models from six 3d range scans, which are from the
Face Recognition Grand Challenge (FRGC ver2.0) data set [13]. The statistics
for the results are shown in Table 1. All computations were performed on a
2.4 GHz Intel Core2 CPU machine with 3 GB RAM. Timings are measured
in seconds and exclude I/O operations. The order of the IDs of range scans in

Table 1. Statistics for the results shown in Figure 4

ID #Points #Triangles Registration Time Reconstruction Time Total Time

template 1880 3580 - - -
02463d550 104425 205176 38 51 89
04485d284 112154 221296 49 68 117
04202d438 60544 118766 28 48 76
04201d368 103061 202160 43 54 79
04213d280 120792 234534 34 53 87
04279d283 112497 219790 38 52 90
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Initial Iteration 15 Iteration 30 Iteration 45

Fig. 1. The RMS error of SICP registration. The inset figures show the overlap between
the template model and the range scan (02463d550) during the registration.

Initial Iteration 1 Iteration 5 Iteration 10

0

1

2

3

Fig. 2. Deformation process of the deformable model. The colour mapping shows the
distances between the template and the range scan (02463d550).

Table 1, which are the unique numbers in FRGC, is the same as that in Figure 4
(a) and (b).

Figure 1 shows the curve of the root-mean-squared (RMS) error during the
SICP registration of the template to the range scan (02463d550). The curve
definitely indicates the convergence of SICP, which is also shown by the inset
figures.

Figure 2 shows the deformation process during reconstruction of the range
scan (02463d550). The distances from the template to the range scan are encoded

Fig. 3. The results of texture reconstruction
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(a) (b)

Fig. 4. The results of automatic 3D facial model and texture reconstruction. The six
range scans, shown in shaded and texture-mapped renderings in the first and second
columns, are from the Face Recognition Grand Challenge (FRGC ver2.0) data set
[13]. The third (fourth) column in (a) and (b) shows the overlap between the range
scans (gray) and the rigid (non-rigid) registered template model (blue). The final recon-
structed facial models are shown in the last two columns in shaded and texture-mapped
renderings. All these reconstructed models have the same mesh structures.

Anger Laughing Pleased Rage SadNeutral

Fig. 5. The results of expression transfer. Five facial expressions (anger, laughing,
pleased, rage, sad) of the template facial model, shown in the first row, are transferred
onto three reconstructed facial models from range scans by the deformation transfer
technique.
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into colours. As we can show from the figure, the reconstruction error rapidly
decreases across the face during the first several iterations.

To demonstrate the results of texture reconstruction, we rendered the range
scans and reconstructed template facial model with a checkerboard texture and
the original texture respectively as shown in Figure 3. We can see that the facial
features are faithfully matched between the template and the range scan. The
reconstructed facial model along with the reconstructed texture (the rightmost
in Figure 3) is more realistic than the original range scan as the holes are filled
and the noise level is reduced.

We performed the facial expression transfer experiments of cloning five ex-
pressions from the template facial model onto three reconstructed facial models.
The results are presented in Figure 5.

6 Conclusions and Future Work

We have presented a robust algorithm for 3D facial model and texture reconstruc-
tion from range scans of human faces. One of the main benefits of our method is
fully automatic. Our method requires no manual intervention and we do not re-
quire a small set of corresponding feature landmarks. Our system demonstrates
that high quality results can be obtained for a variety of range scans, with a re-
alistic reconstruction of shape and texture. Key to the success of our algorithm
is the robust rigid registration based on Scaling Iterative Closest Points (SICP)
algorithm and the template fitting based on an elastic deformable model. As
future work, we plan to extend our method to 4D range scans. We want to track
a temporal sequence of range scans, faithfully reproduce the motion sequences
in reconstructed facial models, and then transfer the motion sequences onto any
other facial models.
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Abstract. This paper presents a reusable model for rapid animation of the walk-
cycle of virtual biped characters, with implicit retargeting of motion capture to 
any character, regardless of dimensions. Despite modern software continuously 
improving the quality of automatic assistance, the process of animating a biped 
character still requires substantial manual intervention. Our research contributes 
to this field by creating a theoretical model for emotional character walking, de-
fining a series of proportional variables which can be changed to create differ-
ent emotional walk cycles. We used motion capture data to assign real-world 
values to these variables, which are then used to procedurally create ‘emotional’ 
walk cycles. Due to the fact that we avoid fixed values and work solely with 
proportions, the system implicitly retargets the data to any biped body shape, 
regardless of the size and structure of the skeleton.  

Keywords: Animation, retargeting, virtual characters. 

1   Introduction 

Since the idea of technological convergence arose in the early 1990s, the media indus-
try has consistently looked at systems that share resources and interact with each 
other, cooperating in order to create content in a more efficient and cost-effective 
manner. This search for more efficient systems is caused, in part, by the nature of 
digital media production, which remains a very labour intensive, high-risk and high-
cost industry. One of the reasons for this is that productions are crafted, almost with-
out exception, at very low levels, in order to better satisfy artistic needs. Indeed, in 
many applications, the existence of more sophisticated digital tools has actually 
pushed up costs, as more time is spent on complex off-line processes in the quest for 
quality.  

An excellent example of this can be seen in the design and animation of virtual 
characters or avatars. These are used in many fields of the audiovisual industry, such 
as television, video games, internet, and mobile phones. Believable animation (both 
for bodies and facial expressions) is crucial so that such characters can properly ex-
press emotions, improving their ability to communicate. While this issue has been 
solved in the film industry and, increasingly, in the high-end video games industry, 
the same techniques cannot be applied to lower-budget productions, due to strong 
time and hardware resources constraints. Typically, time consumption could be due to 
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the difficulties in creating a good animation rig for preparing handcrafted deforma-
tions that express a character’s current emotional state. Those difficulties directly af-
fect the hardware resources as complex animation rigs or a high number of different 
deformations make real-time animations hard to be replayed while maintaining the 
desired frame rate. In that sense there is the need for an animation methodology that 
can rapidly (and in real-time) animate a character by using fewer hardware resources 
and being sufficiently straightforward for animators to setup.  

This paper presents one aspect of our research towards this goal, focusing particu-
larly on the typical human walk-cycle animation. Our approach has been to view the 
problem from the traditional animator’s point of view, attempting to apply well-
established philosophies of hand-drawn animation within a modern computing 
framework. Thus, by studying the relationship between a character’s apparent centre 
of gravity and the curvature of it’s spine, we present a new model for walk-cycle ani-
mation which classifies the possible walk-cycles into one of four separate gaits.  

By studying this model, we define a series of proportional variables of body 
movement (e.g length of stride in proportion to length of leg). Motion capture data 
was used to provide real values for the defined variables. As the all the data is stored 
as proportions, this leads to the creation of an algorithm that allows the implicit retar-
geting of ‘emotional’ walk-cycle data to any biped with the correct skeletal structure. 
The result is real-time modification of a basic walk-cycle animation to allow the char-
acter to express a wide variety of emotions while walking. Crucially, our system 
modifies the walk-cycle while maintains the underlying animation, thus if a character 
is limping, the limp is maintained even though the system may tweak aspects of the 
animation to change the characters expressed emotion. 

We demonstrate the system working both as a plugin for Autodesk 3DS Max (for 
use by animators) and as a self-contained C++ API, for use in custom real-time graph-
ics engines. 

2   Related Work 

Early efforts to control the animation of walk cycles were made by both Badler et  
al.[1] and Hodgins et al.[2], who use similar parameter and goal based techniques that 
are solved by the animation system. This idea of scripting character animation was 
extended by Perlin and Goldberg[3], who parameterized human ‘actions’ and blend 
the motion data to achieve combinations of movement based on different classes (ges-
tures, stances etc.). A logic system prevents clashes between classes such that a char-
acter will not sit and stand at the same time. 

The major achievement of these studies was to introduce the idea of abstract de-
scriptions of motions, yet they made little effort to generate those motions (either via 
motion data or manually created animation). This problem was tackled from a more 
mathematical point of view by several studies[4][5] that attempted to generate move-
ment based on interpreting the movement curves of the joints of the body. These  
concepts were further extended by the use of multiresolution filters to modify the 
‘signals’ of the movement curves[6]. 

Grunvogel et al.[7] introduced the concept of Dynamic Motion Models, where the 
combination of abstraction of movement and procedural generation allows complex 
animations sequences to be rapidly created. A more general version of this is used by 
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Abadia et al. [8] who use a dynamic timeline to cue animation clips, and provide the 
framework for automatic creation of such clips based on an overall emotional theme. 

The issue of retargeting of motion captured data was tackled by Meredith and 
Maddock[9], who use weighted inverse kinematics to adapt motion capture data. This 
results in individual walk-cycle animation for each character, and enables rapid appli-
cation of unique characteristics, such as a limp. 

Research into procedural walk-cycle animation has differed notably from equiva-
lent work into facial animation, in the sense that it has focused less on the use of emo-
tions. In the facial animation field, perhaps the most cited work is that of Ekman[10], 
who specified the six basic emotions that can be deduced from facial expressions, 
independent from cultural background. Densley[11] et al did introduce emotion to the 
characters appearance, by constraining joint angles based on the emotional state of the 
character.  

In a sense, of all the previous research in this field, it is the work of both Densley 
et al[11] and Meredith and Maddock[9] that bears the most similarity to the work in 
this paper. In a sense, our approach combines their philosophies but underpins it with 
a more formal and focused theoretical background. 

As mentioned above, our approach has been to tackle this issue using traditional 
character animation techniques, applied within a modern computing and mathematical 
framework. For an introduction to animation techniques and their evolution over the 
years, both Williams[12], and Johnston and Thomas[13] present the subject in detail. 

3   Overview of Approach 

Figure 1 is intended as an overview of our approach. A Conceptual Model (introduced 
in Section 4), based on traditional theory of animation, was used to guide and direct 
motion capture sessions involving male and female actors (see Section 5). The motion 
data from these sessions was processed (as described in Section 6) and used as an 
input for our novel retargeting algorithm. We have created two implementations of 
this algorithm, one as a plugin for the popular modeling and animation software, 
Autodesk 3D Studio Max, and the other as separate C++ API than can be used to re-
target animation in custom 3D animation or games engine. 

 

Fig. 1. Diagrammatical overview of the system architecture 
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4   Conceptual Model 

In this section we present our conceptual model that describes how a character’s walk 
cycle may express the character’s emotion. Extending some of the principals of the 
basic walk cycle animation Williams[12], our model is focused on modeling how a 
character’s general posture changes according to the current emotional state. The 
typical distribution of body mass situates the character’s centre of gravity in the lower 
abdomen. Yet we base our model on the characters apparent centre of gravity – the 
area of the body that, in effect, guides the remainder of the body according to the 
principals of ‘follow-through’ animation and ‘overlapping action’ that are described 
by Johnston[13]. We use the phrase ‘apparent’ centre of gravity because we are not 
physically modeling any changes in the character’s actual centre of gravity. In con-
trast, we are following the traditional animation route of abstracting the concept to a 
different level in order to allow the animation to better convey the required message. 

 
Fig. 2. The four poses of our model. The circle represents the apparent centre of gravity – the 
area of the body that is leading the character while walking. The associated curve shows how 
the spine is curved in each pose. 

Table 1. The four poses of the model, and examples of associated emotions 

Pose Characteristics Associated emotions 
A Apparent COG is head or 

neck. 
Spine curved into a ‘C’ shape.

Sadness, Depression 
Concentration/Worry 
Anger, Hurry 
Fear 

B Apparent COG at chest height 
Spine opposite to Pose A 

Happiness, Joy, 
Pride 

C Apparent COG at abdomen 
Spine curved as B 

Satisfaction 
Relaxation, Serenity 

D Apparent COG dropped to 
Pelvis 
Spine curved back further 
than C# 

Sensuality, Arrogance 
Fear 
Hurry 
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Figure 2 shows the four basic poses (or gaits) that we define in our model, based 
on the location of the characters centre of gravity (COG). Each of these poses associ-
ates a particular curve of the spine with a centre of gravity position, which accord-
ingly represents a different manner of walking. The model structures the poses to 
show the apparent COG dropping in height, from its highest point in the head, to its 
lowest point in the hips. 

So that we could use this model practically in a computer animation system, we 
translated it into a series of equations that describe the movement of the body at each 
key-frame of the walk cycle[12]. Crucially, all the parameters of these equations are 
expressed as proportions relating joint position and rotation to the individual dimen-
sions of each skeleton. The list of equations is as follows: 

 
Wrist relative position: 

wrist.x = wt.x – (ht.x+hw/2)/sw 
wrist.y = (wt.y-ht.y)/al 
wrist.z = (wt.z-ht.z)/ll 
 

Ankle relative position: 
ankle.x = (at.x-(ht.x +hw/2))/hw 
ankle.y = at.y/al 
ankle.z = (at.z-ht.z)/ll 
 

Hip relative position: 
hip.x = ht.x/hw 
hip.y = ht.y/ll 
hip.z = ht.z 
 

where wrist, ankle and hip are location vectors; 
wt = wrist translation vector; at = ankle translation vector; ht = hip translation vector;  
sw = Shoulder width (Euclidean distance between left and right shoulder);  
hw = Hip width (Euclidean distance between left and right joints); 
ll = Leg length (Euclidean distance between leg hip joint and ankle); 
al = Arm length (Euclidean distance between the shoulder and the wrist). 

 
For joint rotations, wrist, spine, pelvis and neck are taken into account. Neck and 
spine rotations are considered as a concatenation of local rotations. 

These equations then form the core of the model, as by assigning different values 
to the parameters of the equations we can procedurally generate a variety of different 
animated walk-cycles.  

5   Focused Motion Capture and Extraction of Data 

While it is possible to fill the equations of Section 4 with randomly selected values, in 
order to generate meaningful procedural animation, it is necessary to base the values 
on some form of real data. To achieve this, we carried out a series of motion capture 
sessions, where male and female professional actors were carefully directed to walk 
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in a manner that expressed the emotions identified from the different poses of the 
model (see Table 1). However, the motion capture director was careful not to actually 
instruct the actors the change their performance based on the model. At the time of 
recording the motion data, the actors were completely unaware of the model, and 
were merely told to attempt to express the requested emotion through their gait alone.  
Figure 3 shows example of the emotions recorded during the capture sessions.  

 

Fig. 3. Still images of real motion capture data, grouped by emotion. Of the two shaded charac-
ters in each cell of the table, the one on the right is representing data from the female actor, the 
character on the left is the male actor. In the upper left corner of each cell is the equivalent pose 
from the conceptual model (see Figure 2). 
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6   Implicit Retargeting of Data 

Following the motion capture sessions, the recorded data was analysed and the values 
for the proportional variables for the different emotions were extracted for the five 
key-frame poses of the typical walk-cycle animation, identified by Williams[12] 
(“Contact”, “Down”, “Pass”, “Up”, “Second Contact”), using the set of equations 
presented in Section 4. 

This resulted in a matrix of proportional values that enable us to mathematically 
describe the emotions expressed by the actor during the motion capture i.e. a set of 
values for each emotion. By blending these proportional values into an existing vir-
tual character walk-animation, we are able to transfer the aspects that make the mo-
tion captured data “emotional” to the virtual character. It is possible to proportionally 
blend the data, such that a character can be made to be “a little bit” sad, by blending 
in only a small percentage of the Sad emotion variable set.  

Furthermore, there are two very important aspects that separate our system from 
anything that has been previously produced: 
 
1. The existing underlying animation of the character is maintained. The system 

does not create the walk-cycle animation, but modifies the existing animation. This 
ensures that characters maintain their personality, and any individual quirks added  
by the animator are not removed. 

2. The dimensions of the character are unimportant. Because the system is based 
on the relationship between the proportions of the body, it works on a wide variety 
of body shapes, so long as the basic skeletal structure is that of a biped. 

 
The equations presented in Section 4 allow values to be extracted from the motion 
capture data.  To take those values and apply them to another character (thus carrying 
out the retargeting) we merely need to inverse the equations to calculate the offsets to 
the existing animation. As our system only directly controls ankles, hips and wrists, 
standard inverse kinematics are used to ensure the remainder of the bones of the 
skeleton move in a believable manner. The side-advantage of this (other than conven-
ience) is that retargeting is independent of joint-chain length.  

Finally, the system implements time stretching to ensure that the resulting anima-
tion matches the average speed of the target emotions (i.e. a sad character should walk 
slower than a happy one).  

6.1   3D Studio Max Plugin 

We have created two software implementations for the system, a plugin for 3D Studio 
Max, and an independent C+ API. Screenshots of our plugin for 3D Studio Max are 
shown in Figure 4. The plugin allows an animator to easily incorporate the system 
into an existing walk cycle, using a slider-based GUI to proportionally add or remove 
aspects of each of the emotions. 10 emotions are explicitly mapped to sliders (those in 
Figure 3, derived from studying the conceptual model and from studying the litera-
ture[10][11][12][13]), by combining the sliders in different proportions, the animator 
can experiment until the walk-cycle is modified to their satisfaction.  
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Fig. 4. Screenshots of the results of the plugin developed for Autodesk 3D Studio Max. (a), (b) 
and (b) show a standard walk animation applied to characters of different dimensions. (d), (e) 
and (f) show the same characters with the ‘Sad’ emotion blended in. In (c) and (f), the charac-
ters hip joint has been scaled artificially to three times the width, yet the retargeting still works 
perfectly. 

6.2   Independent API 

We have also extended the plugin into an independent C++ API that can be used to 
modify walk-cycles in real time. The API is designed to be used to be used with a 
variety of graphics and game engines, and we have tested it successfully with two 
such engines[8][14]. The API gives the developer the option to build in real-time 
changes to a character’s walk-cycle, thus allowing the character to respond directly to 
actions occurring within the specific application (be they from user input, or from 
internal factors that may affect the character). 

Both the 3D Studio Max plugin and the C++ API are currently being used by our 
industrial partners in the creation of real-time animated productions. 

7   Discussion and Future Work 

The contributions of this paper are twofold. First, we present a conceptual model that 
has enabled us to define a series of proportional variables that describe the biped 
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walk-cycle. Motion capture data was used to creating a matrix of these values for a 
series of different emotions.  

Second, this matrix enabled us to programmatically retarget the emotion-based 
capture data to any suitable biped walk-cycle, irrespective of character size or shape, 
and maintaining the underlying animation. 

This approach of this system is different to those taken by previous authors. We are 
not attempting to adapt motion capture mathematically, such as Meredith and Mad-
dick[9]. Neither are we attempting to create a global dynamic motion model such as 
Grünvogel et al.[7] Rather, we have approached the problem from the practical posi-
tion of the traditional animator/artist, created a conceptual model, and then used ap-
plied modern mathematical and programming solutions to create the final system. 
This said, the manner in which it has been developed means that it could be easily 
combined with the weighted inverse kinematic approach of Meredith and Maddock, 
given that both approaches produce results that extend (or tweak) the existing anima-
tion, rather than completely replace it. 

There are two typical applications of the work, reflected in the two implementa-
tions that we have developed. The first is in computer animation for film or television, 
where our system allows the animator to rapidly add, remove or combine specific 
emotions to a character, while maintaining the personality that they have created for 
the that character. 

The second, and possibly more powerful, application is for real time situations 
such as in video games, or ‘serious’ games for developed for training or educational 
purposes. Currently in such applications, character emotional state is frequently heav-
ily pre-scripted. Our system opens the door for dynamic linking of emotional walk-
cycle animation to non-scripted factors that may affect the ‘emotional state’ of the 
character. This enables the character to behave in a more believable way, and reduces 
the amount of scripted animation work required for the application. 

Our future work lies in integrating the system into with other methods in which a 
character can express emotion, such as static posture, gestures, and facial animation. 
While systems for both static postures and gestures can be generated using a very 
similar system that has been presented in this paper, facial animation requires a dif-
ferent approach, and this is the focus of current research. 
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Abstract. Cage-based deformation techniques are widely used to con-
trol the deformation of an enclosed fine-detail mesh. Achieving deforma-
tion based on vertex constraints has been extensively studied for the case
of pure meshes, but few works specifically examine how such vertex con-
straints can be used to efficiently deform the template and estimate the
corresponding cage pose. In this paper, we show that this can be achieved
very efficiently with two contributions: (1) we provide a linear estima-
tion framework for cage vertex coordinates; (2) the regularization of the
deformation is expressed on the cage vertices rather than the enclosed
mesh, yielding a computationally efficient solution which fully benefits
from cage-based parameterizations. We demonstrate the practical use of
this scheme for two applications: animation edition from sparse screen-
space user-specified constraints, and automatic cage extraction from a
sequence of meshes, for animation re-edition.

1 Introduction

Nowadays, mesh editing and animation techniques play an important role in
Computer Graphics. This research domain has been intensively studied over
the years. Nevertheless, the relentless increase in demand of industry has in-
spired researchers to exhibit new coordinate systems as well as new optimization
frameworks. Building simple pipelines able to provide more flexible output for
animation re-use is a challenging issue. Deformation techniques can be seen as
an energy minimization process (defined locally or globally) that measures how
much the object has been deformed from its initial pose given a support domain
(for instance surface or volume). Approximating the global shape characteristics
of the surface aims to produce specific surface resistance properties (like rigid-
ity, flexibility or elasticity). One major challenge is to find a fast framework to
achieve plausible boneless inverse kinematics that produce pleasing deformations
and preserve the global appearance of the surface.

In this paper, we combine surface and volume deformation techniques. We
focus on the estimation of desired enclosed models in a linear framework, which
will allows artists to drag sparse surfel displacement constraints over the en-
closed mesh surface itself or to fit a given cage across a mesh sequence. We
explore a new approach, using a least-square cage as an intermediate and trans-
parent tool, not directly edited by the user for the minimization process. The
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model is embedded in an adapted volumetric bounding cage using generalized
barycentric coordinates having local properties. We take advantage of optimal
reduced parameters offered by the given coarse cage surrounding the surface. To
avoid artefacts induced by the large number of degrees of freedom, the cage layer
is enhanced with laplacian regularization. The laplacian cage maintains a volu-
metric deformation of mesh vertices coordinates, more powerfully than applying
separately surface-based or cage-based techniques.

The rest of the paper is organized as follows. After briefly reviewing some
relevant works concerning surface and volume deformation and discussing in
section 2, we give an overview of our system in section 3 and we present the
key components of our method in section 4. Section 5 incorporates our novel
deformation technique into our novel minimization framework to achieve cage
estimation and extraction. We show the effectiveness of our method by both
efficient applications in section 6. This paper is concluded and limitations are
discussed in section 7.

2 Previous Work

In this section, we briefly overview the large body of relevant work on current
techniques addressing the problem of interactive mesh deformation in recent
years.

Intrinsic Surface Deformation. Many efforts have been expanded on surface-
based deformation. There are several types of approaches exploiting a differential
descriptor of the edited surface in terms of laplacian and differential coordinates
for mesh editing [1,2]. Differential information as local intrinsic feature descrip-
tors has been massively used for mesh editing in various frameworks over the
decade. For instance, the proposed method in [3] allows the reconstruction of
the edited surface by solving a linear system that satisfies the reconstruction of
the local details in a least-squares sense.

Fig. 1. Laplacian-based Deformation

Early approaches such as [4] motivated the use of Dual Laplacian system to re-
duce distortion in parametrization and geometry. Another mesh editing method
working in the dual domain for regions of interest can be found in [5]. Dual
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laplacian are a class of approach where the laplacian is not directly expressed
on mesh vertices. Unfortunately, laplacians cannot satisfy all natural properties
and the differential coordinates are not invariant under rotation. Observing the
local behavior of the surface has been proposed recently in [6], where as-rigid-
as-possible surface modeling is performed by the minimization of the deformed
surface under local rigidity transformation constraints.

Volumetric Space Deformation. There has been a great deal of work done
in the past on developing techniques for deforming a mesh with generalized
barycentric coordinates. Inspired from the pioneering work presented in [7],
caged-based methods are ideal for coherently deforming a surface by improving
space deformation techniques. The cage parametrization allows model vertices
to be expressed as a combinaition of cage vertices to generate realistic defor-
mation. This family of methods has important properties: quasi-conformal map-
pings, shape preservation and smoothness. To animate the model, cage vertices
are displaced and the vertices of the model move accordingly through a linear
weighted combination of cage geometry parameters. An approach to generalize
mean value coordinates is introduced in [8]. The problem of designing and con-
trolling volume deformations used to articulated characters are treated in [9],
where the introduction of harmonic coordinates significantly improves the de-
formation stability thanks to a volumetric heat diffusion process respecting the
connectivity of mesh volume. This work has been extended in [10,11] to realize
spatial deformation transfer. A non linear coordinates system proposed in [12]
called Green Coordinates leads space deformations with a shape-preserving prop-
erty. However such approaches require to obtain automatically a fairly coarse
control mesh approximating enough a given surface [13,14].

Fig. 2. Cage-Based Deformation

Boneless Inverse Kinematics. Furthermore, there has been a great deal of work
made feasible thanks to the work presented in [15,16,17], where the authors
use an analogy to the traditional use of skeleton-based inverse kinematics. A
volumetric laplacian approach to preserve the volumetric properties for large
deformations has been studied in [18]. Volume preservation is addressed in [19]
with a non-linear framework that projected the deformation energy onto the
control mesh vertices.
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3 Overview

The idea of combining space deformation techniques with surface based tech-
niques proposed in [20] and the lack of reusable surface parameterization for
non-rigid surface invited us to abandon the idea of requiring an underlying skele-
ton and to propose a novel approach called Indirect Cage-Based Dual-Laplacian
Deformation. We aim to estimate a sequence of cage parameters expressing the
mesh at each animation frame. To realize this cage-based inverse kinematics
process we cast the problem as a minimization problem for cage retrieval. The
main challenge is to deal with the high number of degree of freedom provided
by the coarse cage. We express constraints directly over the enclosed surface
and we transfer them to cage using its indirection. In our system, we employ
laplacian on the cage to perform a volume deformation surfacically that allows
us to obtain a coherent cage estimation.

Even if our work shares similarites with [21] on the idea of producing an
hybrid mesh deformation and with [22,10] on the idea of integrating the cage
into a minimization framework, our work is novel for the presented optimization
problem. However, the key contribution is to solve a sparse linear system to
estimate the best cage parameters reproducing the desired deformation of the
enclosed model. Besides, such constraints are expressed on the enclosed model
and transfered to the subspace domain using the indirection of the bounding
cage.

4 Energy Formulation

This section presents the laplacian-based regularization applied on the cage
structure only instead of the traditional used on the enclosed mesh. We in-
troduce the association of harmonic subspace deformation with cage-based dual
laplacian. In the rest of the paper, we use the following terminology. The coarse
bounding mesh C and the enclosed mesh M are respectively called the cage
and the model. We assume that both entities are 2-manifold triangular mesh
fully-connected. The set of n cage vertices is denoted with VC = {c1, · · · , cn}
where ci is the location of ith cage vertex, and the set of m model vertices with
VM = {v1, · · · , vm} where vi is the location of ith model vertex. Vertex location
are represented using absolute three dimensional cartesian coordinates.

4.1 Harmonic Subspace Deformation

A cage is a coarse closed bounding polyhedral volume. This flexible low polygon-
count polytope, topologically similar to the enclosed object, can efficiently
control the deformation of enclosed object and produce realistic looking defor-
mations. Model vertices are expressed as a linear combination of cage vertices.
The weights are given by a set of generalized barycentric coordinates stored in
a m×n deformation weights matrix denoted by H. We also denote by gk (l) the
normalized blend weights representing the deforming influence of the kth cage
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vertex on the lth model vertex. Furthermore it is also possible to deform an ar-
bitrary point on the enclosed mesh written as a linear combination of the coarse
mesh vertex position via a constant weight deformation. The forward kinematic
a-like function is:

v′i =
n∑

k=1

gk (i) · c′k (1)

where v′i is the deformed cartesian coordinates according to a vector of cage ge-
ometry {c′1, · · · , c′n}. In order to produce as-local-as possible topological changes
on the enclosed surface, the model is rigged to the cage using harmonic coordi-
nates. The harmonic rigging is the pre-computed solution of Laplace’s equation
with Dirichlet boundary condition obtained by a volumetric heat diffusion in
the cage interior. The resulting matrix corresponds to the matrix H. A more
efficient technique is to compute harmonic coordinates in a closed-form manner
using the BEM formulation, proposed in [23].

4.2 Cage-Based Dual Laplacian

Given the fact that a fairly coarse cage preserves the mesh model structure, we
prefer to define the Laplacian on the cage instead of the model to improve the
computation process and to keep model detail properties good enough. There-
fore expressing the Laplacian on the cage can be seen as expressing a model dual
laplacian. Thus, this Dual Laplacian provides an external parameterization of
the enclosed mesh ensuring its internal global characteristic thanks to an over
determined linear system of equation. Let’s denote the Dual Laplacian operator
defined at each cage vertex domain by LC (·) by the weighted sum of the differ-
ence vectors between the vertex and its adjacent neighbors. We also denote the
differential coordinates of the cage by δ̂. Encoding each control vertex relatively
to its neighborhood preserves the local geometry using differential coordinates.
Differential coordinates are obtained by computing the original difference be-
tween its absolute cartesian coordinates and the center of mass of its immediate
neighbors in the mesh. We determine the internal energy functional Eint (c′)
that measure how smooth the cage is and how similar the deformed cage c′ is to
the original shape in term of local detail as follows:

Eint (c′) =
∥∥∥LC (c′) − δ̂′

∥∥∥2

2
(2)

This functional guarantees smoothness on large deformation in order to pre-
serve the subspace boundary intrisinc properties without rigidity assumption.
Ensuring such a property leads to guarantee global characteristic of the model
linearly.

4.3 Surface Constraints

Contrary to existing frameworks where positional constraints enforce vertices
to move to a specific target 3D position, we prefer to enforce surface features
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that are not limited to the set of enclosed mesh vertices. In other to deform the
bounding cage, positional constraints are defined on the model using barycentric
anchor points. A barycentric anchor a on a piecewise linear surface can be eval-
uated and described using a linear combination of the barycentric coordinates
{γ1, γ2, γ3} associated to three vertices {v1, v2, v3} of the surrounding triangle T
that contains this anchor point as follows:

a =
∑
vi∈T

γi · vi (3)

In the scenario where the user directly specifies source and target positions
over the enclosed mesh surface in screen space, dragged-and-dropped barycen-
tric anchors always offer suitable and precise sparse positionnal deformation
constraints. To estimate the target point in world space coordinates, we com-
pute the intersection point between the ray passing through the target screen
point and the parallel plane to the screen plane defined by the source point.
Barycentric informations are collected in a map computed on GPU.

Mixing Equation 2 with Equation 3 leads to a new formulation expression
of the cartesian coordinates of a point qα over the model in term of the cage
parameters only:

qα =
∑

vi∈T α

n∑
k=1

γi · ck · gk (i) (4)

We denote by q′α the cartesian coordinates position of the target point associ-
ated to qα to form a positional constraint. The last equation is key component of
the proposed method for the handling interaction. The transfer of surfacic con-
traints into the volumetric domain exploiting the cage indirection is expressed
by this function. In other words, the last formulation permits to express surface
constraints directly in terms of cage parameters linearly using a inverse quasi-
conformal harmonic mapping, motivating the idea of boneless inverse kinematics.

We determine the external energy functional Eext (c′) that measure how smooth
the cage enforces l positional constraints as follows:

Eext (c′) =
l∑

j=1

∥∥q′j − qj

∥∥2
2
. (5)

5 Indirect Dual-Laplacian Cage-Based Fitting

After having presented the key component of our method, we propose to develop
in this section the core of our approach including the linear minimization process.

During the minimization process the cage is seen as a connectivity mesh
and feature constraints are seen as external deformation. The surface-and-space
based deformation technique preserves the mesh spatial coherence. The geom-
etry of the cage can be reconstructed efficiently from their harmonic indirect
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coordinates and relative coordinates by solving a system of linear equations.
We cast the problem of deformation as least-square laplacian cage reconstruc-
tion process using a consistent minimization approach of an objective function
requiring linear constraints such as the positional edited constraints. Following
the idea presented in [24], the cage parameters recover the sparse pose feature
by minimizing an objective function in a least square sense in order to fit a
continuous volume. Then the geometry of the desired model is simply obtained
by generating its position vertex according to the reconstructed cage parameters
obtained on the concept of Least-Square Cage.

Given the differential coordinates and laplacian operator of the default cage,
and the harmonic weights gk (i) according the cage and the model at the de-
fault pose, and a several 2D sparse surface constraints the absolute coordinates
of the model geometry can be reconstructed by estimating the absolute coordi-
nates of the cage geometry. The combination of the differential coordinates and
harmonic coordinates allows the reconstruction the edited surface by solving a
linear system that satisfies the reconstruction of the local detail in least squares
sense.

Since no exact solution generally exist, our linear least square system recon-
structs the geometry of the coarse mesh that allows us to reconstruct the enclosed
mesh using a linear caged-based deformation process. The key component of our
inverse deformation algorithm is a least-squares minimization. We can formu-
late overall energy to lead an overdetermined linear system to extract the cage
parameters as follows:

min
c′i

⎛⎝α

n∑
i=1

∥∥∥LC (c′i) − δ̂′i
∥∥∥2

2
+ β

l∑
j=1

∥∥q′j − qj

∥∥2
2

⎞⎠ (6)

This least-squares minimization problem can be expressed exclusively in term of
cage geometry from Equation 6 as follows:

min
c′k

⎛⎜⎝α

n∑
k=1

∥∥∥LC (c′k) − δ̂′k
∥∥∥2

2
+ β

l∑
j=1

∥∥∥∥∥∥q′j −
∑

vi∈T j

n∑
k=1

γi · c′k · gk (i)

∥∥∥∥∥∥
2

2

⎞⎟⎠
Note that the first term of the energy preserves the global detail of the cage
and ensure a pleasant deformation under sparse constraints. The second term of
the energy enforces the position of vertices to fit the desired model defined by
positional constraints. The system can be weighted by α and β to penalize or ad-
vantage both objectives. To our best knowledge, the simple global optimization
component of our framework with such formulated constraints to minimize, do
not already exist in the litterature. Overall energy performed by our technique
reproduce harmonic space deformation recovery under indirected dual laplacian
mesh editing. After the cage retrieval process, the geometry of the desired en-
closed model is reconstructed in linear combination fonction of cage geometry
parameters related to the new estimation, preserving the fix connectivity of the
cage using Equation 1.
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6 Results

This section describes our experiments using this system. Our framework pro-
poses a robust mechanism to extract a cage for various applications. We demon-
strate the feasibility and validity in practice with two experimental applications.

Cage-based Modeling. For the user-driven approach, we apply our algorithm
by specifing sparse screen-space positional constraints over the enclosed surface.
We have developed an intuitive user interface that allows the user to modelize
specific constraints by sketching them. The indirect cage estimation improves the
computation of the modeling because of the small system size envolving the cage
indirection. The example shown in Figure 3 was generated in 78 microseconds.

Fig. 3. surface-regularized volume-based deformation under sparse constraints

Cage Recovery. Our framework can also extracts a sequence of cages from a
sequence of meshes. For the data-driven approach, we give a sequence of meshes
sharing the same connectivity and a default cage. As a result, the system retrieves
the corresponding sequence of cage expressing the given animation as output.
The system generated automatically the positional constraints using a dense
per-vertex mesh displacement mapping from one frame to another to ensure
the volume preservation itself. We have processed more than 2000 frames with

Fig. 4. Cage extraction from mesh sequence
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success. The RMS error is shown in green and the volume change in blue in
Figure 4. Outputs are reusable to reedit the animation and to re-skin the model.

7 Conclusion

In this paper, we have presented a unified deformation framework based on a
new hybrid surfacially-constrained volume deformation system. A mix of gener-
alized barycentric coordinates and laplacian coordinates are used inside a linear
minimization framework, to reconstruct an enclosed mesh. This indirect dual-
laplacian caged-based mesh editing technique allows users to produce visually
pleasing deformations. The linearity of the underlying objective functional makes
the processing very efficient and improves the effectiveness of deformable sur-
face computation. Our method offers the possibility to encode global topological
changes of the shape with respect of local influence and allows animators to
re-use the estimation paraterization. Our framework is not restricted to har-
monic coordinates as far as the cage-based coordinate system is linear and local
preserving.

A limitation is the cage design, because it is very tedious to define a default
cage able to express every animation pose correctly according to a binding pro-
cess. Last but not least, because of the reduction of parameter induced by the
cage, the estimation of cage is sensitive to local variation of surface. The main
benefit of our method is that the minimization framework is fully independent
of the model resolution. We also observe that the connectivity and positional
information of the default cage encode non-trivial soft kinemantic constraints
as well as motion signal. We believe this novel approach will offer promising
new directions because of the strong interest in hybrid deformation and boneless
inverse kinematics.
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Abstract. This article describes a novel approach to the modeling of
human actions in 3D. The method we propose is based on a “bag of
poses” model that represents human actions as histograms of key-pose
occurrences over the course of a video sequence. Actions are first repre-
sented as 3D poses using a sequence of 36 direction cosines corresponding
to the angles 12 joints form with the world coordinate frame in an articu-
lated human body model. These pose representations are then projected
to three-dimensional, action-specific principal eigenspaces which we refer
to as aSpaces. We introduce a method for key-pose selection based on a
local-motion energy optimization criterion and we show that this method
is more stable and more resistant to noisy data than other key-poses se-
lection criteria for action recognition.

Keywords: Human action recognition, direction cosine, key poses, bag
of words.

1 Introduction

Human action recognition is an important problem in computer vision. Applica-
tions include video surveillance, automatic video indexing and human computer
interaction. In surveillance systems installed in places requiring high security,
such as banks, human action recognition can be applied to detect abnormal
human actions and potentially dangerous situations before they become truly
dangerous. Human action characterization is also making inroads in the area
of security and safety monitoring. Behavior analysis systems are being built to
monitor the safety of children and the elderly, and in such scenarios, abnormal
action detection can be used to detect dangerous situations like falling down.
Automatic video indexing for video and image libraries can be enhanced using
human action recognition and by allowing semantics-based access to multimedia
content. Human action recognition can also be applied in human computer in-
teraction, where recognition results can be used to understand human behaviors
so computers can react accordingly.

Despite increased interest in recent years, human action recognition remains
a challenging problem. The flexibility of the human body and the variability of
human actions produce high-dimensional motion data. How to represent these

F.J. Perales and R.B. Fisher (Eds.): AMDO 2010, LNCS 6169, pp. 290–299, 2010.
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data in a compact and effective way is the first challenge. Also, as a classifica-
tion problem, the extreme variability of pose and body articulation occurring
in instances of the same action type make class characterization very difficult.
Conversely, similarities of pose and cadence across different action types, for
example running and jogging, make identifiable action classes difficult to dis-
criminate. How to model human actions to be generic enough for one action and
specific enough to distinguish different actions is another challenge.

Some researchers utilize 3D motion data in the original dimensional space,
for example [7], [8] and [12], while others explore polar angles [3] or direction
cosines [14]. Our representation to human action recognition is as follows. We
use a 3D stick figure of twelve limbs to model the human body. The orienta-
tion of each limb is represented by three direction cosines of the angles made by
the limb and the world coordinate system. Direction cosines posses a number of
useful invariants, and in particular by using them we eliminate the influence of
different limb lengths. Another advantage of using direction cosines compared
to Euler angles is that they do not lead to discontinuities in motion sequences.
Also, compared to quaternion, they have a direct geometric interpretation [17].
Motion sequences are then represented as a sequence of static human postures,
each represented as a vector of direction cosines. Since the natural constraints of
the human body motion lead to highly correlated data in the original space [16],
we derive a compact, non-redundant representation of human pose by apply-
ing Principle Component Analysis (PCA) to these pose sequences. This space
(aSpace) then becomes the basis for vocabulary selection. Considering the im-
pressive performance of recent applications of bag of words architecture in clas-
sification [6,5,2], we introduce this architecture to solve the action recognition
problem. In the bag of words model, the target is represented as an unordered
collection of representative features (vocabulary). In our approach, we modify
the bag of words architecture by computing the vocabulary as the most repre-
sentative poses, or key poses, resulting in a bag of poses model for human action
recognition.

The main contributions of this work are:

– We calculate the most representative poses, or key poses, as the vocabulary.
By doing this, we pick the most representative features and the vocabulary
is very concise.

– We extend the human walking model in [14] to include ‘jump’, ‘box’ and,
‘run’ actions. And we utilize all these action models as priors in action
recognition.

– We compare our method of extracting key poses with other methods: poses
corresponding to randomly spaced frames [1], equally spaced frames [10],
local maximum distances [3] and centers of clusters calculated using k-means
clustering. Our method has a comparatively stable performance and is more
resistant to noisy data.

In the next section we introduce our representation of human posture and human
motion. Section 3 explains our classification method, and we give experimental
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(a) (b)

Fig. 1. (a) The 3D stick figure model used for representing human pose. Ten principal
joints corresponding to the markers used in motion capture are used [15]. (b) Angles
(θx

l , θy
l , θz

l ) between the limb l and the axes [14].

results in Section 4. We conclude in section 5 with a discussion of our results
and future work.

2 Human Posture and Human Motion Models

We use the same representations for human posture and human motion as in [14].
In this section, we give a brief introduction to how we represent a static human
posture using direction cosines derived from a human body model. Then, we
explain our extensions to the human motion models of [14].

2.1 Representing Human Posture and Motion

In our method, a human body is modeled as twelve rigid body parts: hip, torso,
shoulder, neck, two thighs, two legs, two arms and two forearms. These parts are
connected by a total of ten inner joints, as shown in figure 1(a). Body segments
are structured in a hierarchical manner, constituting a kinematic tree rooted at
the hip, which determines the global rotation of the whole body.

A static human posture is represented as a vector of limb orientations. Limb
orientation is modeled using three parameters, without modeling self rotation
of limbs around its axes, as shown in figure 1(b). The posture of the subject in
each frame is represented using a vector of direction cosines measured on twelve
limbs. This results in a 36-dimensional representation:

ψ = [cos(θx
1 ), cos(θy

1), cos(θz
1), . . . , cos(θx

12), cos(θy
12), cos(θz

12)], (1)
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where θx
l , θy

l and θz
l are the angles between the limb l and the axes as shown in

figure 1(b).
After representing static human postures using direction cosines, we represent

a motion sequence of one performer as a sequence of static postures:

Ψ = [ψ1, ψ2, . . . , ψn], (2)

where n is number of postures (frames) in this motion performance.

2.2 The Projected Parameter Space: aSpace

Using the representations mentioned above, a human motion sequence with n
postures will have a 36 × n dimensional representation. Since the natural con-
straints of the human body motion lead to highly correlated data in the original
space [16], we apply PCA to decrease dimensions of the representation (refer
to [14] for more details). Figure 2 are visualizations of variations in aSpaces
re-projected to the original parameter space. From figure 2, we can see what
pose variations each eigenvector accounts for in the eigenspace decomposition.
For example, we can see that the most significant eigenvectors in the walking
and running spaces correspond to their characteristic, vigorous, and simultane-
ous motion of the arms and legs. The most significant eigenvector for ’box’, on
the other hand, accounts for the boxer’s characteristic footwork and torso rota-
tion. And the first three eigenvectors represent most of the energies from all the
actions.

2.3 Human Motion Model

The authors of [14] propose a method of modeling human walking. First, they
synchronize the data (the same method as in [13]) to find corresponding postures
from different motion performances with different frame numbers and map all
performances to the same length. Second, they calculate mean performance from
synchronized data and model human walking using this mean performance, the
standard deviation, the mean direction of motion and the covariance matrix of
the error. This model achieved high performance in tracking walking humans.
Considering the capability of extracting common characteristics of walking ac-
tion, we introduce this model into action recognition problem.

We consider four actions: ‘walk’, ‘run’, ‘box’ and ‘jump’. Figure 3 shows the
mean performances for all actions in their respective aSpaces. We observe that
mean performances from different actions are distinguishable enough and based
on these models, we propose “bag of poses” architecture for action recognition.

3 Bag of Poses

The bag of words architecture (sometimes called bag of features) was first pro-
posed for text document analysis and further adopted for computer vision ap-
plications. The main steps in the bag of words model are as follows: compute
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(a) The three variations for aWalk.
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(b) The three variations for aRun.
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(c) The three variations for aBox.
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(d) The three variations for aJump.

Fig. 2. Visualizations of variations in aSpaces re-projected to the original parameter
space. Figures in the first, second and third columns correspond to eigenvectors with
the largest, the second largest and the third largest eigenvalues separately. Figures
in different rows are from different actions. Variations of postures in one figure are
re-projections of −3 to 3 times its corresponding eigenvector in aSpaces.
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Fig. 3. Mean performances for (a) ‘walk’, (b) ‘run’, (c) ‘box’ and (d) ‘Jump’

descriptors for input data; compute representative words using k-means cluster-
ing over feature descriptors to form vocabulary; quantize descriptors into words
and represent input data as histograms over the vocabulary, of a bag of words.
We modify the architecture by calculating the vocabulary using energy opti-
mization over human motion sequences instead of k-means clustering. Since we
represent motion sequences as occurrences of poses, we name our model the “bag
of poses”.

3.1 Vocabulary

In bag of words architecture, k-means is the most frequently used method for
vocabulary computation. Instead of k-means, we calculate words as poses with
local maximum and local minimum energy differences. Given the mean perfor-
mance of an action, the motion energy at the i-th frame is defined as [9]:

Ei = |ψi

ak
− ψ

i−1
ak

|2, (3)

where |.| denotes Euclidean distance. We calculate frame numbers with local
maximum and local minimum motion energies.

After obtaining the frame numbers with local maximum and local minimum
energies in aSpace, we reconstruct them to get human poses in the original space:

ψ
′
= Ebψ̃ + ψ, (4)

where Eb is the matrix of principal eigenvectors constituting basis for this par-
ticular aSpace. This step is important, as each aSpace represents an independent
and action-specific sub-manifold of the original space, and as such two aSpace
representations from different actions are not directly comparable. Re-projecting
to the original space, however, makes this comparison possible.

Using the above method, we calculate key poses for each action separately
and then concatenate them to compose the vocabulary. Figure 4 shows key poses
extracted for all actions. These key poses are now the vocabulary of poses used
in our model. For each human motion sequence, each human pose is assigned to
a single key pose by computing the Euclidean distance between it and each key
pose in the vocabulary. The result is a the histogram of occurrence of these key
poses for each motion sequence.
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(a) (b)

(c) (d)

Fig. 4. Key poses extracted using energy measurement for (a) ‘walk’, (b) ‘run’, (c)
‘box’, and (d) ‘jump’

3.2 Classification

A support vector machine is trained using training motion sequences. We use a
linear kernel in all experiments. We tried voting for classification: given a test
motion sequence, we calculate the nearest key poses for all postures and label
them with the action type of the nearest key poses, finally the test sequence
is labeled as the action type with the maximum occurrences. The performance
of voting is not as good as histogram and support vector machine, due to the
fact that for action recognition, the occurrences of key poses are also important
characteristics. We will show classification results in the next section.

4 Experimental Results

We test our method on CMU Graphics Lab Motion Capture Database1. This
database includes 23 motion categories (run, walk, jump, varied and so on). The
data are joint positions in world coordinates captured using a marker set. In our
experiments, we consider four actions: ‘walk’, ‘run’, ‘box’ and ‘jump’. We split
1 http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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Table 1. The composition of the dataset for all experiments. Each action type consists
of a number of performances, which in turn contain a number of cycles of that action
and finally the postures comprising these cycles.

Action Performances # Motion Cycles # Body Postures #

Walk 67 126 16,891
Run 23 23 2,032
Box 1 37 6,865

Jump 18 24 3,504
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Fig. 5. Classification accuracy of different methods with different scale of noises

the motion cycles for each recorded motion sequence and then synchronize the
motion cycles using methods in [13]. Thus, a motion cycle becomes the basic
unit of classification in our experiments. The composition of the data is shown
in Table 1.

We add zero-mean Gaussian noise to the performance data with covariance
equals κ · σ, where σ is the covariance between the mean performance Ψ and
all the training performance in an action, and κ is a scale factor controlling
the noisy degree. Noise from reconstructions of human poses from videos or
images are not necessarily the same distribution as those from capturing motion
data. We choose to add noise of the same distribution instead of adding some
random unknown noise to check the trend of performances and the stability of
the methods. After adding noise to the test data, we perform leave-one-out cross
validation over the entire dataset.

To compare with our method, we implemented four additional methods for
computing the vocabulary of key poses:

1. Poses corresponding to randomly spaced frames: Ψr = {ψ1, ψ2, ..., ψk}, where
each ψj is randomly selected.

2. Poses corresponding to equally spaced frames [10]: Ψe = {ψ1, ψ2, ..., ψk},
where each ψj and ψj+1 are equally spaced in time.



298 W. Gong et al.

3. Poses with local maximum Mahalanobis distances [3]: Key poses are defined
from a probabilistic point of view where characteristic postures are the least
likely body postures of each mean performance.

4. The center poses of the clusters: Ψr = {ψ1, ψ2, ..., ψk}, where ψj is the center
of the cluster Cj calculated using the k-means methods.

We test the four methods with step size as 5 and noise κ ranging from 0 to 50.
N equals 210, the number of all the performances. We set the number of key
poses in the first and the second methods 26, the same as the vocabulary size in
our method. Also, we set the number of the clusters in the fourth method as 26.

The experiment results are shown in figure 5. The horizontal axis represents
the added noises, the vertical axis represents the classification accuracy and we
compare our method with other three methods. From the figure, we can see
that methods based on ‘randomly spaced key poses’, ‘equally spaced key poses’
and ‘key poses from energy optimization’ outperform method based on ‘k-means
clustering’. Method based on ‘distance’ is not shown in the figure, since the rest
four methods outperform this one. The reason that method based on ‘distance’
does not give good performance might be different ways of comparison with
the vocabulary: in our architecture, we compute the distance using Euclidean
distance while in method based on ‘distance’, they use Mahalanobis distance.
Methods based on ‘equally spaced key poses’ and ‘randomly spaced key pose’
outperform our ‘energy optimization’ method with small noises, but their per-
formances sometimes increase while increasing noise scales. We conclude that
our selected key poses are more representative, so our method is more stable
than the others and more resistant to noisy data.

5 Conclusions and Future Work

We propose a “bag of poses” model for action recognition and report on exper-
iments with the CMU Graphics Lab Motion Capture Database. We show that
our method is effective and more stable than other implemented methods. By
using a statistical method to model human actions, we extend the work of [14] to
include more actions. Our resulting model is able to represent all actions using
a very compact representation consisting of histograms of key pose occurrences.
Experiments show that our approach is also robust over a wide range of noise
intensities in the underlying pose representation.

We should note that there is a body of work in computer graphics on action
characterization in 3D motion capture databases [4,11]. Although the goals of
these approaches are different from us, and they focus mostly on retrieval, an
eventual comparison with these techniques in the future could be fruitful.
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Abstract. In the animation process of a human-like 3D model, a skele-
ton must be specified to define the model’s surface deformation of its
limbs. Nowadays the skeleton specification is hand made and very time
consuming task. In this paper we propose a novel semi-automatic method
for rigging a 3D model in an arbitrary pose using a skeleton defined in
an animation datafile with no specific initial pose. First a skeleton is
extracted from the voxelizated model, this skeleton is refined and trans-
formed into a tree-data structure. Because the 3D model can be in an
arbitrary pose, user interaction is required to select the five limbs cor-
respondence (head, hands and feet), and finally a skeleton taken from
an animation data file or a external source is adjusted to the geometric
skeleton.

Keywords: Skeleton driven animation, rig adjustment, skeletonization,
thinning, voxelization,skinning,animation.

1 Introduction

In skeleton driven animation one of the most time consuming tasks is the rig
process. The rig process places a set of controls (joints) that interconnected by
artificial bones (links) specify which parts of the 3D model must be rotated and
translated to produce the desired motion (skeleton binding). Nowadays, the rig
process is done manually, and it is created by placing the joints in the character’s
medial axis where an articulation should be. The number of joints that a skeleton
will have depends directly on the animator and the chosen animation technique.
If it concerns to a hand-made animation the number of joints used in a skeleton
will be defined entirely by the animator. If the technique used is motion capture
the number of joints used in a skeleton will depend on the number of captured
joints.

The rigging process is tedious and time consuming, to reduce this time we
have developed a human assisted method that allows an easy reuse of predefined
skeletons that can be taken from motion captured files or previous character
animations and adjust it to an arbitrary 3D model. Our method extracts a
skeleton using a thinning process over a previously voxelizated 3D model. In this
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paper we define a geometric skeleton as the obtained skeleton after finishing
the thinning process, and a logic skeleton as the one created by an animator
or taken from a motion capture file. A logic skeleton could be used in different
3D models if joints parameters were properly adjusted, this adjustment can be
done manually or automatically. In this paper we present a method to adjust a
logic skeleton to a geometric skeleton. While other approaches are constrained
to an initial pose (T-pose or anthropometric pose), which makes the adjustment
easier, our method is not pose constrained and we deal with models without
a specific initial pose. Nowadays, these kind of models are becoming popular
because they can be obtained from scanners or vision systems.

1.1 Related Work

Our work is initially based on the skeleton extraction, in 2D this problem was
solved using hexagonal sampling [11] as an alternative to the classic square
sampling.

In the 3D case we can find several thinning algorithms ([2],[1],[8],[7]) based on
removing voxels from the surface of the voxelizated model until only a skeleton
remains. In [10] the Euclidean distance and the Discrete medial surface is used
to extract a 3D skeleton. A penalized algorithm [9] based in a modified dijkstra
method is used for skeleton extraction, and a hybrid method [3] use a modified
version of the thinning algorithm mixed with force fields to refine the process.
For the automatic rigging [4] and [12] propose two different approaches. In [4] a
predefined skeleton is embedded into the model’s medial surface. A new method
to extract the skeleton is proposed in [12], where using two 3D silhouettes and
the mid points of the internal edges of a Delaunay triangulation, a skeleton is
estimated.

1.2 Method Overview

The main idea of our method is to use an existing logic skeleton, and adjust
it to an arbitrary human-like model. The geometric skeleton creation process is
based on the method described in [5]. A geometric skeleton is the mapping to a
tree data structure of the skeleton obtained after the thinning process is applied
over the voxelizated closed mesh.

There are two main advantages of representing a geometric skeleton as a tree
data structure:

1. Fast and easy traversal over all the skeleton: When the thinning pro-
cedure has been applied to the model, we define a node for each obtained
voxel. All the operations (coordinate transforms, neighborhood and classifi-
cation of the nodes) done over the voxelizated space are applied and stored
in a data structure.

2. Allow us to perform operations over nodes: Modify or delete a node
or an entire set of nodes (loops).

The chosen data structure to represent our geometric skeleton is a n-ary tree.
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2 Creation Process

To create a geometrical skeleton we use a modification of the traversal algorithm
described in [5]. Basically we create a node of the tree each time the algorithm
is traversing a new voxel. As starting point we choose a random voxel from the
thinned model.

Node classification. In [5] the voxels or points of the skeleton where classified
by their neighborhood, in this paper we are going to use this classification for
the nodes of the geometric skeleton. The nodes are classified as:

– Flow nodes: Nodes with two neighbors, these nodes represent tubular seg-
ments of the skeleton, usually limbs (legs, arms, neck, etc.). In our tree data
structure this kind of nodes will have one child and one parent.

– Connection nodes: These nodes will have a number of neighbors greater
than two. They usually represent a solid-rigid part of the model, like the hips
or the chest. In our tree data structure this can be a node with or without
parent and more than one child.

– End nodes: Nodes with only one neighbor. These nodes will represent the
final section of a limb, like the hands, feet, or the head. In our data structure
this will be a node with only one neighbor, its parent.

2.1 Geometric Skeleton Post-processing

Once the geometric skeleton is created, we apply a post-process to refine it. This
post-process will have the following steps:

1. Deletion of loops and redundant nodes: The result of the thinning
process over a voxelizated model is a set of voxels that represents a skeleton.
Usually, this set has voxels which could be noisy or redundant nodes (voxels
which can not be removed because of their topology condition [2]). We must
have in mind that the size of the voxel in our space can change the number
of details and noise in the geometric skeleton. If the voxel size is small, the
thinning algorithm tends to introduce more voxels as end nodes, this will
generate more branches in the geometric skeleton (fig. 1) .

2. Root node adjust: Because we use a random voxel as starting point in
the creation of a geometric skeleton, the root node must be adjusted. Only
connection nodes can be root nodes. The main reason for this is that in
practically all the animation formats, the hips are taken as the center of
mass for translations and rotations, and it can be considered as a solid-rigid.
If the root node in the geometric skeleton is not a connection node, the
nearest connection node is assigned as the root, and the geometric skeleton
tree is balanced to the new root node.The assigned connection node is the
first approximation to the model’s hip, the appropriate assignment will be
done in a posterior step.
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(a) Voxel size at 1%
of height.

(b) Voxel size at
0.65% of height.

(c) Voxel size at
0.4% of height.

Fig. 1. Extracted skeleton at different voxel sizes

3. Skeleton smoothing: A smoothing step is mandatory because in a vox-
elizated space, changes of position between nodes of the skeleton in the
same neighborhood are mainly produced in the edges of the voxel. This lead
to undesirable artifacts if this data is used to calculate direction changes
between two voxels. By changing the position of the voxels from edge to
face neighborhood a smooth transition is granted. We use a window based
method as our smoothing process.

3 Segments

Segments are the core elements in the adjustment of a logic skeleton (rig) to a
geometric skeleton. We define a segment as:

Segment: A set of nodes traversing the skeleton from a connection node to an
end node.(fig.2. b.).

Using our definition of segment, a skeleton(geometric or logic) can be defined as:

Skeleton: A set of segments with the same connection node as starting point
(fig.2. a).

In full body animation only five end nodes are needed (head,hands and feet) [4],
furthermore the great majority of full body motion capture data is produced with
five end nodes [13]. Therefore we have restricted our method to logic skeletons
with five end nodes.

4 Node Selection and Root Assignment

The main problem of adjusting a logic skeleton to a geometric skeleton is finding
the correspondence between their body segments (head,hands and feet). Logic
skeleton’s limbs are specified by a tag, this tag can be obtained from a file, a user
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(a) Extracted skeleton. (b) Isolated segments.

Fig. 2. Extracted skeletons and its segments, the third segment (root to nose) will be
deleted

interface or if the model was in a specific pose it could be tagged automatically
by its segments positions in the space.

4.1 End Node Selection

Geometric skeleton’s limbs are not specified. The used 3D models are in an
arbitrary pose, therefore there is no simple method capable of automatically
tagging the limbs of a 3D model. Moreover, there are models with human like
forms but with an extra limb (for instance the tail of an armadillo model).
Limbs detection is a very challenging task and its out of the scope of this paper,
to solve this problem we have implemented an interface that allows the user to
select which are the end nodes that correspond to their appropriate limbs.

In our interface the end nodes are marked with a sphere and the flow nodes
are represented by cubes. The user must decide which end node corresponds to
its logic limb selecting the appropriate sphere (fig. 1 b and c).

4.2 Root Assignment

Once the limbs are assigned, we delete all the nodes that are not part of an
assigned segment.(fig.2 b.).

When the segments are assigned, the number of connection nodes will de-
crease, and only connection nodes that represents non-articulated parts of the
model(hips and chest) will be preserved.

It is customary to set the hip as the root node. In our case the hip will be one
of the connection nodes but depending on the number of connection nodes the
next situations can arise:
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(a) Skeleton with two connec-
tion nodes.

(b) Skeleton with three con-
nection nodes.

Fig. 3. Root assignment cases

– Two connection nodes: In this case the difference between the chest and
the hip comes from the fact that the chest will have three segments without
connection nodes(the hands and the head, fig. 3 a.) and the hip will have
two (the feet). To apply this rule we are going to build two sets of segments
(one per connection node), each set of segments will have its starting node in
one of the connection nodes. Finally we assign the set with the least number
of segments as the hip (root) of our skeleton.

– Three connection nodes: In this case we calculate the summation of the
euclidian distances between flow nodes from one connection node to the
other. The two nearer connection nodes will represent the chest and the other
one the hip. Therefore to find the hip we create three set of segments, one
per connection node. For each set we select the segment with the minimum
number of flow nodes between the segment’s starting node and its nearest
connection node, an from these three segments we choose the one with the
maximum number of flow nodes. The starting node of the selected segment
will be assigned as the hip (root) of the skeleton.

5 Skeleton Adjustment

A logic skeleton can also be viewed as set of segments, if we have followed the
previous steps correctly, we must have the same number of segments in the geo-
metric and logic skeletons but in the logic skeleton we will have additional tagged
nodes (elbow,neck,ankle...) that are not tagged in the geometrical one. Adjust-
ing a logic skeleton to a geometric one is reduced to find the correspondence
between logic tagged nodes and geometric untagged nodes.
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5.1 Scaling Segments

As is mentioned in the section 3, our skeletons will be represented by a set of
five segments. Because a segment in the logic skeleton has its equivalent in the
geometric skeleton we can define a normalized distance in our skeletons segments,
being zero the starting node position and one the end node position, with this
distance we can find the position of the logic skeleton tagged nodes and map it
to our geometric skeleton untagged nodes.

The distance of the logic skeleton segments its defined as the sum of the
distance between two neighbor nodes(joints) in a segment from the root node to
the end node. We have defined the distance of the geometrical skeleton segment
as the sum of the distances between the center of two neighbors nodes(voxels)
in a segment from the root node to the end node. Basically adjusting a logic
skeleton to a geometric skeleton is finding a partition of the node graph formed
by the logic skeleton segment, and map its internal nodes to its correspondent arc
curve formed by the geometric skeleton segment. The union of all this mapped
nodes(with its hierarchy implicit) will be the adjusted skeleton.

(a) Logic skeleton segment. (b) Geo. skel. seg-
ment.

(c) Logic segment
adjusted to a geo.
skel. segment.

Fig. 4. Segment adjustment

6 Results

We have implemented our method as an Autodesk Maya plug-in with a 2.1 GHz
Intel Core 2 Duo with 4 Gb RAM memory and Windows Xp 64 O.S. In the fig.5
we show the results obtained aplying our method to arbitrary models in different
positions.The voxelization and skeletization time will depend on the model’s pose
and its number of triangles, the chosen voxel size is 0.65% of the model’s height
with processing times in the range of 2 and 3 seconds.The geometric skeleton
creation and the logic segment adjustment processing time will be increased if
more connection nodes and segments are obtained, our times are in the range of
2 to 3 seconds for models with a density of 20K and 28K triangles. (see table 1)
The skin attachment of the skeleton has been done with Maya’s mesh binding,
the mesh deformation method used by Maya is SSD but we have modified these
weights with a mesh segmentation algorithm(fig.5 last column).
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Table 1. Processing times

Model Triangles Voxelizat.+Thin.(sec.) Assign+adjust.(sec.)

Woman. 28820 1.9543 1.0874
Man jumping. 20000 3.0031 3.1689
Man marching. 20000 2.5508 2.4632
Man hand standing. 20000 2.0604 1.4756

Fig. 5. Columns:Skeleton from an animation file, arbitrary model, geometric skeleton,
adjusted logic skeleton, binded model
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7 Conclusions and Future Work

Our method can be used as part of any animation pipeline to improve or saving
time in the development of an animation rig, because it can be applied to any
human-like model in any pose. Our method can be combined with any SSD tech-
nique, but due to animations files are usually in an initial pose, a transformation
between the animation file’s initial pose and our adjusted rig pose must be done.
This transformation can be easily implemented with any matrix or quaternion
library.

We have proposed an easy and practical way to adjust logic skeletons to
human-like models (or at least to skeletons with five or more end points) in an
arbitrary pose.

The main contribution of our method is that instead of creating a new logic
skeleton [12] or taking a predefined skeleton [4] we adjust an arbitrary skele-
ton(and its hierarchy) with its related motion data to an extracted skeleton,
which is a new approach to the existing automatic skeleton rig methods. The
logic skeleton can be taken from any motion data base [13], produced by a mo-
tion simulation software or a motion capture file, the only restriction is that the
logic skeleton must have five end nodes. Our method is human like models ori-
ented, but is not restricted to them. It can be used to adjust the rig of a human
to a any model with at least five end nodes in its geometric skeleton.

The main limitation of our method is that it can not deal with any pose
automatically, to produce the adjusted skeleton the user must select the limbs
(end nodes).

As future work we want to use a skinning procedure different than SSD, we
believe that our method can be used with a cage based deformation technique
such as [6]. The cage base deformation needs an effective mesh segmentation
based in the links of a rig, we are currently working in an algorithm to achieve
this goal.
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Álvarez, Aitor 108
Arrieta, Aitor 108

Bagdanov, Andrew D. 290
Baklouti, Malek 224
Ben Ghorbel, Mahdi 224
Ben Hamza, A. 21
Binefa, Xavier 1
Blat, Josep 270
Bonequi, Julian 270
Brunnett, Guido 250

Casas, Josep Ramon 88
Castillo, José Carlos 78
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