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Preface

The International Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems, IPMU, is organized every two years with
the aim of bringing together scientists working on methods for the management
of uncertainty and aggregation of information in intelligent systems. Since 1986,
this conference has been providing a forum for the exchange of ideas between
theoreticians and practitioners working in these areas and related fields. The 13th

IPMU conference took place in Dortmund, Germany, June 28–July 2, 2010.
This volume contains 79 papers selected through a rigorous reviewing process.

The contributions reflect the richness of research on topics within the scope of the
conference and represent several important developments, specifically focused on
theoretical foundations and methods for information processing and management
of uncertainty in knowledge-based systems.

We were delighted that Melanie Mitchell (Portland State University, USA),
Nihkil R. Pal (Indian Statistical Institute), Bernhard Schölkopf (Max Planck Ins-
titute for Biological Cybernetics, Tübingen, Germany) and Wolfgang Wahlster
(German Research Center for Artificial Intelligence, Saarbrücken) accepted our
invitations to present keynote lectures. Jim Bezdek received the Kampé de Fériet
Award, granted every two years on the occasion of the IPMU conference, in view
of his eminent research contributions to the handling of uncertainty in clustering,
data analysis and pattern recognition.

Organizing a conference like this one is not possible without the assistance
and continuous support of many people and institutions. We are particularly
grateful to the organizers of sessions on dedicated topics that took place during
the conference—these ‘special sessions’ have always been a characteristic ele-
ment of the IPMU conference. Frank Klawonn and Thomas Runkler helped a
lot to evaluate and select special session proposals. The special session organizers
themselves rendered important assistance in the reviewing process, that was fur-
thermore supported by the Area Chairs and regular members of the Programme
Committee. Thomas Fober was the backbone on several organizational and elec-
tronic issues, and also helped with the preparation of the proceedings. In this
regard, we would also like to thank Alfred Hofmann and Springer for providing
continuous assistance and ready advice whenever needed.

Finally, we gratefully acknowledge the support of several organizations and
institutions, notably the German Informatics Society (Gesellschaft für Infor-
matik, GI), the German Research Foundation (DFG), the European Society
for Fuzzy Logic and Technology (EUSFLAT), the International Fuzzy Systems
Association (IFSA), the North American Fuzzy Information Processing Society
(NAFIPS) and the IEEE Computational Intelligence Society.

April 2010 Eyke Hüllermeier
Rudolf Kruse

Frank Hoffmann
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Constructing Multiple Frames of Discernment for Multiple
Subproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Johan Schubert

Conflict Interpretation in a Belief Interval Based Framework . . . . . . . . . . . 199
Clément Solau, Anne-Marie Jolly, Laurent Delahoche,
Bruno Marhic, and David Menga



Table of Contents – Part I XIII

Evidential Data Association Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Ahmed Dallil, Mourad Oussalah, and Abdelaziz Ouldali

Maintaining Evidential Frequent Itemsets in Case of Data Deletion . . . . . 218
Mohamed Anis Bach Tobji and Boutheina Ben Yaghlane

TS-Models from Evidential Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Rui Jorge Almeida and Uzay Kaymak

Measuring Impact of Diversity of Classifiers on the Accuracy of
Evidential Ensemble Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Yaxin Bi and Shengli Wu

Multiplication of Multinomial Subjective Opinions . . . . . . . . . . . . . . . . . . . 248
Audun Jøsang and Stephen O’Hara

Evaluation of Information Reported: A Model in the Theory of
Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Laurence Cholvy

Rough Sets

Gradual Evaluation of Granules of a Fuzzy Relation: R-related Sets . . . . 268
Slavka Bodjanova and Martin Kalina

Combined Bayesian Networks and Rough-Granular Approaches for
Discovery of Process Models Based on Vehicular Traffic Simulation . . . . . 278

Mateusz Adamczyk, Pawe�l Betliński, and Pawe�l Gora
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Properties of Interval-Valued Fuzzy Relations, Atanassov’s Operators
and Decomposable Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Barbara Pȩkala
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Evolutionary Agorithms

Application of Evolutionary Algorithms to the Optimization of the
Flame Position in Coal-Fired Utility Steam Generators . . . . . . . . . . . . . . . 722
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A.J. Yuste, and S. Bruque

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

II



Table of Contents – Part II

Data Analysis Applications

Data-Driven Design of Takagi-Sugeno Fuzzy Systems for Predicting
NOx Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Edwin Lughofer, Vicente Macián, Carlos Guardiola, and
Erich Peter Klement

Coping with Uncertainty in Temporal Gene Expressions Using Symbolic
Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Silvana Badaloni and Marco Falda

Olive Trees Detection in Very High Resolution Images . . . . . . . . . . . . . . . . 21
Juan Moreno-Garcia, Luis Jimenez Linares,
Luis Rodriguez-Benitez, and Cayetano J. Solana-Cipres

A Fast Recursive Approach to Autonomous Detection, Identification
and Tracking of Multiple Objects in Video Streams under
Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Pouria Sadeghi-Tehran, Plamen Angelov, and Ramin Ramezani

Soft Concept Hierarchies to Summarise Data Streams and Highlight
Anomalous Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Trevor Martin, Yun Shen, and Andrei Majidian

Using Enriched Ontology Structure for Improving Statistical Models of
Gene Annotation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Frank Rügheimer
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Tom Matthé and Guy De Tré

Describing Fuzzy DB Schemas as Ontologies: A System Architecture
View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Carmen Mart́ınez-Cruz, Ignacio J. Blanco, and M. Amparo Vila

Using Textual Dimensions in Data Warehousing Processes . . . . . . . . . . . . 158
M.J. Mart́ın-Bautista, C. Molina, E. Tejeda, and M. Amparo Vila

Information Fusion

Uncertainty Estimation in the Fusion of Text-Based Information for
Situation Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Kellyn Rein, Ulrich Schade, and Silverius Kawaletz

Aggregation of Partly Inconsistent Preference Information . . . . . . . . . . . . . 178
Rudolf Felix

Risk Neutral Valuations Based on Partial Probabilistic Information . . . . 188
Andrea Capotorti, Giuliana Regoli, and Francesca Vattari

A New Contextual Discounting Rule for Lower Probabilities . . . . . . . . . . . 198
Sebastien Destercke

The Power Average Operator for Information Fusion . . . . . . . . . . . . . . . . . 208
Ronald R. Yager

Performance Comparison of Fusion Operators in Bimodal Remote
Sensing Snow Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Aureli Soria-Frisch, Antonio Repucci, Laura Moreno, and
Marco Caparrini



Table of Contents – Part II XXI

Color Recognition Enhancement by Fuzzy Merging . . . . . . . . . . . . . . . . . . . 231
Vincent Bombardier, Emmanuel Schmitt, and Patrick Charpentier

Towards a New Generation of Indicators for Consensus Reaching
Support Using Type-2 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Witold Pedrycz, Janusz Kacprzyk, and S�lawomir Zadrożny
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Luis J. Rodŕıguez-Muñiz and Miguel López-Dı́az
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Abstract. We provide a necessary and sufficient condition for the ex-
istence of a perfect map representing an independence model and we
give an algorithm for checking this condition and drawing a perfect map,
when it exists.

Keywords: Conditional independence models, Inferential rules, Acyclic
directed graphs, Perfect map.

1 Introduction

Graphical models [11,12,14,15,16,20] play a fundamental role in probability and
multivariate statistics and they have been deeply developed as a tool for rep-
resenting conditional independence models. The usefulness of graphical models
is not limited to the probabilistic setting, in fact they have been extended to
other frameworks (see, e.g. [6,7,8,13,17]). Among graphical structures, we con-
sider graphoids that are induced, for example, by a strictly positive probability
under the classical notion of independence [9].

A relevant problem is to represent a set J of conditional independence rela-
tions, provided by an expert, by a directed acyclic graph (DAG), where inde-
pendencies are encoded by d–separation. Such a graph is called perfect map for
J (see [14]). A DAG gives a very compact and human–readable representation,
unfortunately it is known that there exist sets of independencies which admit no
perfect maps. The problem of the existence of a perfect map has been studied by
many authors (see for instance [14]) by providing only partial answers in terms
of necessary or sufficient conditions.

In [2] we have introduced a sufficient condition for the existence of a perfect
map in terms of existence of a certain ordering among the random variables,
and we describe BN–draw procedure in order to build the corresponding inde-
pendence map given an ordering. The sufficient condition, as well as BN–draw,
uses the “fast” closure J∗ of J [1]. From J∗ it is possible to solve the implication
problem for J and to extract independence maps with fast algorithms. The set
J∗ can be computed in a reasonable amount of time, as shown in [1,3] and it
is extremely smaller than the complete closure J̄ of J with respect to graphoid
properties, even if it gathers the same information of J̄ .

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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A similar construction has been given in [15], essentially for the semi–graphoids,
and used in [10] to describe a necessary condition for the existence of a perfect map
for semi–graphoid structures.

In this paper we provide a necessary and sufficient condition for the exis-
tence of a perfect map for graphoid structures. This condition relies on some
constraints among the triples of the set J∗ and their components. Moreover, we
give an algorithm to check the existence of a perfect map based on the provided
condition1. In the positive case, the algorithm returns a relevant perfect map.

2 Graphoid

Let S̃ = {Y1, . . . , Yn} be a finite not empty set of variables and S = {1, . . . , n}
the set of indices associated to S̃. Furthermore, S(3) is the set of all (ordered)
triples (A, B, C) of disjoint subsets of S, such that A and B are not empty.

A conditional independence model I is a suitable subset of S(3). We refer to
graphoid structure (S, I), with I ternary relation on the set S, satisfying the
following properties (where A, B, C, D are pairwise disjoint subsets of S):

G1 if (A, B, C) ∈ I, then (B, A, C) ∈ I (Symmetry);
G2 if (A, B ∪ C, D) ∈ I, then (A, B, D) ∈ I (Decomposition);
G3 if (A, B ∪ C, D) ∈ I, then (A, B, C ∪D) ∈ I (Weak Union);
G4 if (A, B, C∪D) ∈ I and (A, C, D) ∈ I, then (A, B∪C, D) ∈ I (Contraction);
G5 if (A, B, C ∪D) ∈ I and (A, C, B ∪D) ∈ I, then (A, B ∪ C, D) ∈ I (Inter-

section).

Given a triple θ = (A, B, C) we denote with θT (B, A, C) the transpose triple
obtained by applying G1 to θ.

Given a set J of conditional independence statements, a relevant problem
about graphoids is to find efficiently the closure of J with respect to G1–G5

J̄ = {θ ∈ S(3) : θ is obtained from J by G1−G5} .

A related problem, called implication, concerns to establish whether a triple
θ ∈ S(3) can be derived from J .

This implication problem can be easily solved once the closure has been com-
puted. But, the computation of the closure is infeasible because its size is expo-
nentially larger than the size of J . In [1] we have described how it is possible to
compute a smaller set of triples having the same information as the closure.

Now we recall some definitions and properties introduced and studied in [1],
which are used in the rest of the paper.

Given a pair of triples θ1, θ2 ∈ S(3), we say that θ1 is generalized–included in
θ2 (briefly g–included), in symbol θ1 � θ2, if θ1 can be obtained from θ2 by a
finite number of applications of G1, G2 and G3.

1 An implementation of the proposed algorithms is available at
http://www.dmi.unipg.it/baioletti/graphoids
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Proposition 1. Given θ1 = (A1, B1, C1) and θ2 = (A2, B2, C2), then θ1 � θ2 if
and only if the following conditions hold

(i) C2 ⊆ C1 ⊆ A2 ∪B2 ∪ C2;
(ii) either A1 ⊆ A2 and B1 ⊆ B2 or A1 ⊆ B2 and B1 ⊆ A2.

Generalized inclusion is strictly related to the concept of dominance [15].
In [1] we introduce a particular subset J∗ of J̄ (called “fast closure”), which

can be computed from J̄ by discarding the not “maximal” triples τ ∈ J̄ , i.e.
those g–included in some other triple of J . Moreover, in [1], we describe and
compare two different algorithms to compute J∗, called FC2 and FC1. In par-
ticular, FC2 iteratively uses two inferential rules G4∗ and G5∗, related to G4
and G5, introduced always in [1], and discards not maximal triples, until the
set of independence relations is closed. FC1 has a similar structure, but uses a
single inference rule U, which corresponds to compute at once the fast closure
of a couple of triples.

For some considerations and experimental results (see also [3]) FC1 appears
to be faster than FC2.

3 Graphs

In the following, we refer to the usual graph definitions (see [14]): we denote by
G = (U , E) a graph with set U of nodes and oriented arcs E (ordered pairs of
nodes). In particular, we consider directed graphs having no cycles, i.e. acyclic
directed graphs (DAG). As usual, we denote by pa(u), for any u ∈ U , the parent
set of u.

Definition 1. If A, B and C are three disjoint subsets of nodes in a DAG G,
then C is said to d–separate A from B, denoted (A, B, C)G, if for each non–
directed path between a node in A and a node in B, there exists a node x in the
path which satisfies one of these two conditions

1. x is a collider (i.e. both edges point to x), x �∈ C and no descendant of x is
in C;

2. x is not a collider and belongs to C.

In order to study the representation of a conditional independence model, we
need to distinguish between dependence map and independence map, since there
are conditional independence models that cannot be completely represented by
a DAG (see e.g. [12,14]).

In the following we denote with J (analogously for J̄ , J∗) both a set of triples
and a set of conditional independence relations, obviously, the triples are defined
on the set S and the independence relations on S̃.

Definition 2. Let J be a set of conditional independence relations on a set S.
A DAG G = (S, E) is a dependence map (briefly a D–map) if for all triples
(A, B, C) ∈ S(3)

(A, B, C) ∈ J̄ ⇒ (A, B, C)G.
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Moreover, G = (S, E) is an independence map (briefly an I–map) if for all
triples (A, B, C) ∈ S(3)

(A, B, C)G ⇒ (A, B, C) ∈ J̄ .

G is a minimal I–map of J if deleting any arc, G is no more an I-map.
G is said to be a perfect map (briefly a p–map) if it is both a I–map and a

D–map.

The next definition and theorem [14] provide a tool to build a DAG given an
independence model J̄ .

Definition 3. Let J̄ be an independence model defined on S and let π =<
π1, . . . , πn > be an ordering of the elements of S. The boundary strata of J̄ , rela-
tive to π, is an ordered set of subsets < B(1), B(2), . . . , B(m) > of S (with m ≤ n),
such that each B(i) is a minimal set satisfying B(i) ⊆ S(i) = {π1, . . . , πi−1} and
γi = ({πi}, S(i)\B(i), B(i)) ∈ J̄ . The DAG obtained by setting each B(i) as parent
set of the node πi is called boundary DAG of J , relative to π.

The introduced triple γi is known as basic triple.
The next theorem is an extension of Verma’s Theorem [18] stated for condi-

tional independence relations (see [14]).

Theorem 1. Let J be a independence model closed with respect to the semi–
graphoid properties. If G is a boundary DAG of J , relative to any ordering π,
then G is a minimal I–map of J .

Theorem 1 helps to build a DAG for an independence model J̄ (induced by a
probability P ) given an ordering π on indices of S. It is well known (see [14])
that the boundary DAG of J relative to π is a minimal I–map. In the following,
given an ordering π on S, Gπ is the corresponding I–map of J̄ .

4 Perfect Map

In [2] we have introduced some sufficient conditions for the existence of a perfect
map, given the fast closure J∗, and described the algorithm Backtrack which
checks these conditions and, in the affirmative case, builds a perfect map. Since
these conditions are only sufficient, this algorithm can fail also in the cases where
a perfect map exists.

In [4] we have improved the previous result by introducing conditions which,
under a suitable hypothesis, are necessary and sufficient for the existence of a
perfect map. This partial characterization relies on some constraints among the
triples of the set J∗ and their components.

In this paper we provide a necessary and sufficient condition valid also in
the case where the previously cited hypothesis fails (for the proof see [5]). These
condition fully characterizes the ordering from which a perfect map can be built.
An algorithm able to check this condition and, in the positive case, to find a
perfect map will be described in the next section.
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In the following, we review the procedure BN–draw introduced in [2], which
builds the minimal I–map Gπ of J̄ (see Definition 2) given the fast closure J∗ of
J and an ordering π on S. This procedure is used by the algorithms described
in [2] and in this paper.

Note that, given the fast closure set J∗, it is not possible to apply the standard
procedure (see [11,14]), described in Definition 3, to draw an I–map. In fact, the
basic triples, related to an arbitrary ordering π, might not be elements of J∗,
but they could be just g–included in some triples of J∗ (see Example in [2]).

However, in [2] we have shown that it is easy to find the basic triples in the
fast closure by using the following result, where, as in the rest of the paper,
S(x) denotes the set of elements of S preceding x ∈ S, with respect to a given
ordering π.

Proposition 2. Let J be a set of independence relations on S, J∗ its fast closure
and π an ordering on S. For each x ∈ S, the set

Bx = {({x}, B, C) ∈ S(3) : B ∪C = S(x), ∃ θ ∈ J∗ with ({x}, B, C) � θ}

is not empty if and only if the basic triple γx = ({x}, S(x) \ B(x), B(x)) exists,
and coincides with the unique maximal triple γ̄x of Bx.

In this paper, we describe a new version of BN–draw which uses the following
operation. For each θ = (A, B, C) ∈ S(3), let X = (A∪B∪C) and for any x ∈ S
and P ⊆ S, define

Π(θ, P, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P ∩ (A ∪ C) if C ⊆ P ⊆ X and x ∈ A

P ∩ (B ∪C) if C ⊆ P ⊆ X and x ∈ B

P otherwise.

Algorithm 1. The set of parents of x

function PARENTS(x, P , K)
pa← P
for all θ ∈ K do

p ← Π(θ, P, x)
if |p| < |pa| then pa ← p

end for
return pa

end function

The procedure BN–draw calls for each πi the function PARENTS and uses
its results as parent set of πi.

Given π, BN–draw builds the minimal I–map Gπ in linear time with respect
to the cardinality m of J∗ and the number of variables n. In fact, it is based on
the function PARENTS which computes the set of parents of a given variable
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Algorithm 2. DAG from J∗ given an ordering π of S

function BN–draw(n, π, J∗)
P ← ∅
G← a graph with S as vertex set and no edges
for i ← 2 to n do

P ← P ∪ {πi−1}
pa ← PARENTS(πi, P, J∗)
draw an arc in G from each index in pa to πi

end for
return G

end function

in O(m) steps. In each step, some set operations must be executed and this can
be efficiently performed by using a compact representations for sets (e.g., as bit
vectors). The space needed in memory by BN–draw is almost exclusively used
to store the fast closure (see [4]).

The introduction of the function Π is important also for the definition of the
necessary and sufficient condition for the existence of a p–map.

Theorem 2. A set J∗ is representable with a p–map if and only if there exists
an ordering π such that for each θ = (A, B, C) ∈ J∗, let X = A ∪B ∪ C,

C1 for each c ∈ C such that S(c) ∩A �= ∅ and S(c) ∩B �= ∅, there exists a triple
θc ∈ J∗ such that Π(θc, S(c), c) ∩A = ∅ or Π(θc, S(c), c) ∩B = ∅;

C2 for each a ∈ A such that S(a) ∩ B �= ∅ or S(a) ∩ (S \X) �= ∅ there exists a
triple θa ∈ J∗ such that Π(θa, S(a), a) ∩ [B ∪ (S \X)] = ∅;

C3 for each b ∈ B such that S(b) ∩ A �= ∅ or S(b) ∩ (S \X) �= ∅ there exists a
triple θb ∈ J∗ such that Π(θb, S(b), b) ∩ [A ∪ (S \X)] = ∅;

C4 for each c ∈ C such that S(c)∩ (S \X) �= ∅, there exists a triple θ′c ∈ J∗ such
that Π(θ′c, S(c), c) ∩ (S \X) = ∅.

Proof. We give a sketch of the proof, for a complete proof see [5].
(⇒) Suppose that Gπ is a p–map for J∗, we need to prove that π satisfies the

condition C1 (the other conditions follow similarly). Let θ = (A, B, C) be in J∗, if
C1 were not satisfied, then there would exists an element c ∈ C, such that S(c)∩
A �= ∅ and S(c) ∩B �= ∅. However, for any θ′ ∈ J∗ ones has Π(θ′, S(c), c)∩A �= ∅
and Π(θ′, S(c), c) ∩B �= ∅. Hence, there exists α ∈ pa(c) ∩A and β ∈ pa(c) ∩B,
so the path α → c ← β would not be blocked by C. This is absurd since A is
d–separated from B by C.

(⇐) Conditions C1–C4 imply that for each x ∈ X , pa(x) ⊆ X . Let ρ =
(u1, . . . , ul) be a path and consider j = max{i : ui ∈ A} and l = min{i : ui ∈ B}.
Then, j + 1 ≤ l− 1, otherwise there would be an element of A having parents in
B or vice versa. If uj+1 ∈ pa(uj), then uj+1 ∈ C and, since it is not a collider,
it blocks ρ. Similarly, if ul−1 ∈ pa(ul). Now, suppose that uj+1 ∈ ch(uj) and
ul−1 ∈ ch(ul), let r be such that any ui (i = j, . . . , l) precedes (according to π)
ur. Thus, ur is a collider. If ur ∈ C, then j + 1 = r = l− 1 cannot be, otherwise
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ur would have parents both in A and in B. So, ur−1 or ur+1 is a parent of ur,
belongs to C and blocks ρ. Otherwise, no descendent of ur belongs to C, so ur

blocks ρ. ��

The conditions C1–C4 are not so easy to check from the computational point of
view, because they require for each triple in J∗ and for x ∈ X to verify some
constraints and, when some of them do not hold, a suitable triple in J∗ needs to
be found. In the worst case, this process requires O(m2) steps, for each possible
ordering. In the next section we will describe a more efficient way of achieving
the same result.

5 The Algorithm

In this section we show how to use Theorem 2 to check whether J∗ is repre-
sentable by a graph, and in the affirmative case to find a perfect map.

Algorithm 3. Main function for representability
function REPRESENT(J∗)

PREPROCESS(J∗)
return SEARCH([ ], 1, S, J∗)

end function

The main procedure is REPRESENT where [ ] denotes an empty sequence
of integers. The function PREPROCESS will be described in the following.

The recursive function SEARCH incrementally tries to build an ordering π
satisfying conditions C1–C4 of Theorem 2. It returns the element ⊥ if it fails
into finding such an ordering. At the i–th recursive call it attempts to fix the
i–th element in π, by selecting each of the remaining variables. For each possible
variable x, the procedure CHECK–CONDS checks whether the conditions C1–
C4 are not violated by setting πi as x. In the positive case, it calls itself until a
complete ordering is obtained. If no variable can be set at the i–th place of π,
then the recursive call fails and a revision of the previously chosen variables is
performed (backtracking).

To check whether the choice of πi as x is correct we must verify whether
the conditions C1–C4 are satisfied for all the triples in which x appears. Note
that we know all the variables preceding x, in fact S(x) is exactly the set
{π1, π2, . . . , πi−1}. Hence, it is possible to compute the set of parents Q of x
in the graph candidate to be a perfect map.

Let θ = (A, B, C) be a triple containing x. If x appears in C, then only
conditions C1 and C4 must be checked. Let us see how to handle condition C1.
It basically requires that if P intersects both A and B, there must exist a triple
τ ∈ K such that Π(τ, S(x), x) does not intersect both A and B.

But, since we know that the set Q, the parents of x, is the smallest set among
the sets Π(τ, S(x), x), for τ ∈ K, then it is sufficient to check if Q does not
intersect A and B at the same time. For conditions C2, C3, and C4 the situation
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Algorithm 4. Backtracking procedure
function SEARCH(π, i, V, K)

if V = ∅ then
return BN–draw(π,K)

else
for all x ∈ V do

πi ← x
if CHECK–CONDS(π, i, K) then

G ← SEARCH(π, i + 1, V \ {x}, K)
if G �= ⊥ then return G

end if
end for
return ⊥

end if
end function

is much easier. In fact, before starting the search process, we can compute, first
of all, for each x ∈ S the set NP (x) of non–parents, i.e. those elements of S
which cannot be parents of x, otherwise one of the conditions C2, C3, or C4
would be violated, by means of the function PREPROCESS. Hence, to check
the above mentioned conditions it is sufficient to verify whether Q does not
intersect NP (x). Unfortunately, this preprocessing cannot work for condition
C1.

Algorithm 5. Preprocessing for conditions C2–C4
function PREPROCESS(K)

for all x ∈ S : NP (x)← ∅
for all θ = (A, B, C) ∈ K do

X ← A ∪ B ∪ C
R ← S \X
for all x ∈ A : NP (x)← NP (x) ∪B ∪R
for all x ∈ B : NP (x)← NP (x) ∪A ∪R
for all x ∈ C : NP (x)← NP (x) ∪ R

end for
end function

The cost of the entire procedure can be estimated as follows. Let us recall
that n is the number of the variables and m is the cardinality of J∗.

The function CHECK–CONDS requires at most O(m) steps. The number of
the steps of SEARCH is in the worst case exponential in n, but backtracking can
hopefully perform an early pruning on not promising orderings, so to avoid many
useless computation steps. A great impact, as in other backtracking procedures,
is given by the order in which the variable are chosen in the instruction for all
x ∈ V . We will discuss this point in the conclusion. Finally, note that SEARCH
can avoid at all to call BN–draw by storing, for each x ∈ S, the sets Q computed
in the function CHECK–CONDS.
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Algorithm 6. Checking conditions C1–C4
function CHECK–CONDS(π, i, K)

P ← π[1, . . . , i− 1]
x ← πi

Q ← PARENTS(x,P, K)
if NP (x) ∩Q �= ∅ then

return FALSE
end if
for all θ = (A, B, C) ∈ K do

if (x ∈ C) ∧ (Q ∩ A �= ∅) ∧ (Q ∩B �= ∅) then return FALSE
end for
return TRUE

end function

6 Conclusions

We provide a necessary and sufficient condition for the existence of a perfect
map representing a set of conditional independence relations and we provide an
algorithm which finds a perfect map when it exists.

This algorithm can be improved in many ways. First of all, by using suitable
data structures we can reduce the time for searching variables occurring in set
of triples, for instance representing J∗ as a bipartite graph, where each variable
is linked to the triples in which appears and each triple is linked to the variables
which contains.

Second, we will investigate the use of some heuristic rules that help the pro-
cedure SEARCH. For instance, the well known CSP techniques, like fail–first or
min–conflicts, could be used to order the variables and to reduce the number of
attempts. A simple way to have a sort of the fail–first heuristic is to choose the
variables in decreasing order with respect to their corresponding |NP (x)|. Other
useful CSP technique could be a non–chronological backtracking, in which the
cause of the failure is detected and all the choices, which led to the failure, are
undone. Moreover, another technique is learning, in which the forbidden ordering
constraints are learned from the failures.

Third, we could introduce a further preprocessing phase, in which it would
be possible to deduce, from the triple of the fast closure, a list of impossible
ordering constraints among variables.

Another aspect that will be worth to be investigated is when a set J∗ is not
representable by a p–map, how to determine a subset J ′ of J , hopefully as large
as possible, such that J ′

∗ is representable.
Finally, another possible way of enhancing this result is to find a new

characterization for the existence of a p–map, which can generate a faster
algorithm.
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Abstract. The use of the noisy-OR model is advocated throughout the
literature as an approach to lightening the task of obtaining all probabili-
ties required for a Bayesian network. Little evidence is available, however,
as to the effects of using the model on a network’s performance. In this
paper, we construct a noisy-OR version of a real-life hand-built Bayesian
network of moderate size, and compare the performance of the original
network with that of the constructed noisy-OR version. Empirical results
from using the two networks on real-life data show that the performance
of the original network does not degrade by using the noisy-OR model.

1 Introduction

When building a Bayesian network, the task of obtaining all probabilities re-
quired is generally acknowledged to be the most daunting among the engineering
tasks involved [1]. A Bayesian network of realistic size easily requires hundreds
and sometimes even thousands of probabilities for its conditional probability
tables. While for some application domains these probabilities are readily avail-
able or can be estimated from data, for other domains they need to be provided
by domain experts. Over the last decades, researchers have taken two different
approaches to lightening this quantification task. On the one hand, researchers
have focused on methods and tools to support the elicitation of many probabil-
ities from domain experts in little time [2]. On the other hand, researchers have
designed causal independency models to support the quantification [3,4].

A causal independency model is a parameterised specification of a conditional
probability table for a Bayesian network. It requires the assessment of just a small
number of conditional probabilities for a table under construction; these proba-
bilities are the model’s parameters. The other probabilities required to arrive at
a fully specified table then are computed from the model’s parameters through
simple mathematical functions. Well-known examples of causal independency
models are the noisy-OR model which was originally devised by J. Pearl [5], and
its generalisation, the noisy-MAX model [6].

To provide for parameterisation, causal independency models assume a spe-
cific type of interaction of the causes of a common effect. Before using such a
model for a network under construction, therefore, a network engineer has to
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verify whether the assumed interaction actually holds in reality. Yet, the as-
sumption’s validity is not always easily checked; engineers, moreover, may not
always be acquainted with the full details of the interaction assumption un-
derlying the model. As a consequence, causal independency models are used in
practice where they may not be entirely appropriate. Little is known about the
effects of simply using these models on the performance of a Bayesian network
in a real-life setting, however. Some researchers studied how using noisy-MAX
approximations influence posterior probabilities computed from three different
Bayesian networks [7]. Using randomly generated evidence, they found that the
posterior probabilities computed from the noisy-MAX versions quite closely ap-
proximated the ones computed from the original networks. In another study, the
noisy-OR model was used upon learning conditional probability tables from data
[8]. The researchers found that the performance of the original network was im-
proved upon by using noisy-OR approximations instead of uniform distributions
for the tables for which sufficient data were lacking.

In this paper, we present the results from an empirical study of the effects of
applying the noisy-OR model without verification of its underlying assumption.
For the study, we used our CSF network for the early detection of Classical Swine
Fever (CSF) in pigs, which was constructed and quantified in close collaboration
with two domain experts. This network includes 32 stochastic variables, for which
over 1100 conditional probabilities are specified; 470 of these probabilities were
estimated directly by one of the experts. The basic idea of the study was to
substitute new probability tables for the expert-provided ones, where these new
tables were obtained from applying the leaky noisy-OR model, and to compare
the performance of the original network with that of its leaky noisy-OR version.
More specifically, the conditional probability tables of 11 of the 32 variables
in total were replaced by noisy-OR approximations, which resulted in 122 of
the 470 directly estimated probabilities being replaced by computed ones. Since
the performance of a Bayesian network for diagnostic reasoning in biomedical
applications is commonly expressed in terms of its sensitivity and specificity,
we studied the performances of the two versions of the CSF network in terms
of these characteristics, using real data collected from veterinary practice and
from experimental infections. We found that use of the noisy-OR model had
little effect on the network’s performance, even though some of the substituted
probability tables differed substantially from the original expert-provided ones.

Even though little is known about the effects of their inadvertent application,
the use of causal independency models, and of the noisy-OR and noisy-MAX
models more specifically, is advocated throughout the literature as an approach
to substantially lighten the task of obtaining all probabilities required for a
Bayesian network. Although more fundamental research is required to corrob-
orate our findings, the results from our empirical study warrant the cautious
conclusion that the noisy-OR model can indeed be applied without extensive
knowledge elicitation efforts for Bayesian networks for diagnostic applications.

The paper is organised as follows. In Section 2, we briefly describe our CSF
network. Section 3 illustrates the noisy-OR model and its use in Bayesian networks
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Fig. 1. The graphical structure of the CSF network for the early detection of Classical
Swine Fever in individual pigs

in general. In Section 4, we describe the construction of a leaky noisy-OR version of
the CSF network. The performances of the two networks are compared in Section
5. The paper ends in Section 6 with our concluding observations.

2 A Bayesian Network for Classical Swine Fever

A Bayesian network describes a joint probability distribution over a collection
of stochastic variables. The variables and the qualitative (in)dependency re-
lationships between them are modelled by nodes and arcs respectively, in a
graphical structure. The strengths of the dependencies between the variables
are expressed through probabilities. More specifically, for each variable X in the
graphical structure, a conditional probability table is specified which describes
the probability distributions Pr(X | pa(X)) over the values of X for each possi-
ble combination of values for the parents pa(X) of X in the structure; note that a
conditional probability table thus specifies an exponential number of probability
distributions, that is, exponential in the number of parents involved.

As an example, Figure 1 depicts the graphical structure of our CSF network
for the early detection of Classical Swine Fever in pigs. Classical Swine Fever is
a highly infectious viral disease of pigs which has a tendency to spread rapidly,
both within a herd and between herds, and which can develop quite aggres-
sively with large proportions of affected animals dying. Because of the major
socio-economical consequences that an outbreak may have, reducing the time
between first infection of a herd and first detection is of major importance. In
close collaboration with experts from the Central Veterinary Institute in the
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Table 1. The conditional probability table of the variable Appetite in the CSF network;
the boldfaced probabilities were provided directly by our domain expert

Body temperature Malaise Appetite
reduced normal

elevated yes 0.9000 0.1000
no 0.2500 0.7500

normal yes 0.8500 0.1500
no 0.0050 0.9950

Netherlands, we developed the depicted network to support veterinarians in the
early detection of the disease. The network takes for its input the clinical signs
observed in an individual pig and returns the posterior probability of these signs
being caused by a CSF infection.

The CSF network currently includes 32 stochastic variables. To describe the
strengths of the dependencies among these variables, the network’s graphical
structure is supplemented with over 1100 probabilities, organised in conditional
probability tables. As an example, Table 1 shows the conditional probability ta-
ble for the variable Appetite, which models whether or not a pig has a reduced
appetite. Since the probabilities from a single distribution sum to 1, only some of
the probabilities from the table were estimated explicitly by our domain expert;
these probabilities are shown in boldface. All in all, 470 of the network’s more
than 1100 probabilities were estimated directly by one of the experts. We would
like to note that some of the network’s dependency relationships are determinis-
tic, which accounts for the observation that fewer than half of the probabilities
were expert provided. We further note that we will specify the probabilities in all
tables throughout the paper with a precision of four decimals, since the domain
expert provided his probability assessments up to this high precision.

3 The Noisy-OR Model

For a Bayesian network of realistic size, hundreds or even thousands of condi-
tional probabilities are required. One of the approaches to lightening the task
of obtaining all these probabilities is the use of causal independency models.
A causal independency model is a parameterised specification of a conditional
probability table. The model requires the assessment of just a small number
of conditional probabilities to arrive at a fully specified probability table; these
probabilities are the model’s parameters. The other probabilities for the table are
computed from these parameters through simple functions. Several researchers
have studied different types of causal independency model along with their prop-
erties, and by now an entire family of models have been described [3,4].

The best-known causal independency model is the noisy-OR model for binary
variables [5]. This model pertains to a causal mechanism composed of an effect
variable E and parent variables Ci, i = 1, . . . , n, n ≥ 2, which model possible
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Table 2. The conditional probability tables that result from application of the noisy-
OR model (left) and the leaky noisy-OR model (right), respectively, for the variable
Appetite in the CSF network; the parameters for the models are shown in boldface

Body Malaise Appetite
temp. reduced normal

elevated yes 0.8875 0.1125
no 0.2500 0.7500

normal yes 0.8500 0.1500
no 0.000 1.000

Body Malaise Appetite
temp. reduced normal

elevated yes 0.8881 0.1119
no 0.2500 0.7500

normal yes 0.8500 0.1500
no 0.0050 0.9950

causes of the effect. The effect variable has values e for the effect being present
and ē for the effect being absent; each cause variable Ci has the values ci and
c̄i for the presence and absence of the cause, respectively. The variable Appetite
in the CSF network constitutes an example of such a causal mechanism, along
with its parent variables Body temperature, which models an elevated body tem-
perature as a possible cause for a reduced appetite, and Malaise, modelling a
sense of malaise as another cause for such a finding.

The noisy-OR model now provides a parameterised probability table for the ef-
fect variable E given its parent variables in the causal mechanism. The parameters
of the model are the probabilities Pr(e | c̄1, . . . , c̄j−1, cj , c̄j+1, . . . , c̄n) of the effect
occurring in the presence of a single cause cj . Note that the model thus has n pa-
rameters, that is, the number of parameters to be assessed explicitly is linear in the
number of possible causes of the modelled effect. The probability Pr(e | c̄1, . . . , c̄n)
of the effect occurring spontaneously in the absence of all causes, is taken to be
zero by the noisy-OR model. To arrive at a fully specified probability table for the
variable E, the conditional probabilities of the effect e occurring given all possible
combinations of values c involving multiple causes are taken to be

Pr(e | c) = 1−
∏
j∈J

(1− Pr(e | c̄1, . . . , c̄j−1, cj , c̄j+1, . . . , c̄n))

where J is the set of indices of the cause variables Cj which have the value cj in
the combination of values c under consideration. As an example, Table 2 shows,
on the left, the conditional probability table that would result from application
of the noisy-OR model for the variable Appetite in the CSF network.

The noisy-OR model assumes a disjunctive interaction of the causes of a
common effect, which implies that the properties of exception independence and
accountability are assumed to hold. The property of exception independence
states that the presence of any single cause essentially suffices to produce the
effect and that the hidden processes that may inhibit the occurrence of the effect
are mutually independent. The property of accountability states that the effect
of the causal mechanism is absent if none of the possible causes is present.

For many causal mechanisms in practice, the assumption of accountability
underlying the noisy-OR model is not met: the effect of these mechanisms can
occur even if all modelled causes are absent, that is, Pr(e | c̄1, . . . , c̄n) �= 0. If the
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property of exception independence does hold for such a mechanism, the leaky
noisy-OR model can be employed for constructing a conditional probability table
for the effect variable. This model is closely related to the noisy-OR model yet
includes the probability Pr(e | c̄1, . . . , c̄n) as a leak probability. In the literature,
two different views of the leaky noisy-OR model have been described, resulting
in two variants of the model. The first view assumes that all estimated parameter
probabilities, given each cause separately, implicitly include the leak probability
[9,10]. The second view assumes that the leak probability needs to be explicitly
assessed and incorporated into all other parameter probabilities [6]. It has been
argued that the first view applies to probabilities derived from data and that
the second view is more appropriate for probabilities provided by experts [3].
Since the CSF network used in our current study was constructed by hand and
all probabilities were provided by an expert, we focus here on the second view.
With this view, the leaky noisy-OR model has n+1 parameters; these are the n
conditional probabilities Pr(e | c̄1, . . . , c̄j−1, cj , c̄j+1, . . . , c̄n) from the noisy-OR
model and the leak probability Pr(e | c̄1, . . . , c̄n). To arrive at a fully specified
probability table for the effect variable E, the conditional probabilities of e for
all combinations of values c involving multiple causes are taken to be

Pr(e |c) = 1− (1−Pr(e | c̄1, . . . , c̄n)) ·
∏
j∈J

(1−Pr(e | c̄1, . . . , c̄j−1, cj , c̄j+1, . . . , c̄n))

where J again denotes the set of indices of the cause variables Cj which have
the value cj in the combination of values c under consideration.

The noisy-OR model being specified for binary variables only, researchers have
introduced the noisy-MAX model as a generalisation to multiple-valued variables
[6,9]. A general introduction to this model is beyond the scope of the present pa-
per. In the sequel, however, we exploit the property that for a causal mechanism
involving a binary effect variable and multiple-valued cause variables, the com-
putation rule of the (leaky) noisy-MAX model is a simple generalisation of the
function of the (leaky) noisy-OR model. As an example from the CSF network,
we consider the causal mechanism involving the effect variable Body temperature
(B), modelling whether or not a pig has an increased body temperature, and
the cause variables Primary other infection (P ), modelling the presence of an
infection other than a CSF infection, and CSF Phase 1 (C), modelling whether
or not a pig has entered the first phase of an infection with the CSF virus. The
variables Body temperature and CSF Phase 1 are binary; the variable Primary
other infection has the four values none (p̄), respiratory infection (p1), intestinal
infection (p2), and respiratory+intestinal infection (p3). The leaky noisy-MAX
model for this mechanism has for its parameters the conditional probabilities
Pr(b | p̄c), Pr(b | pic̄), i = 1, 2, 3, and the leak probability Pr(b | p̄c̄). The proba-
bility Pr(b | p1c) of an increased body temperature given both a respiratory and
a first-phase CSF infection now is computed to be

Pr(b | p1c) = 1− (1− Pr(b | p̄c̄)) · (1− Pr(a | p1c̄)) · (1− Pr(a | p̄c))

In our empirical study of the effects of using the leaky noisy-OR model in the CSF
network, we exploited this simple function for multiple-valued cause variables.
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4 Constructing a Leaky Noisy-OR Version

As described above, the leaky noisy-OR model assumes the property of exception
independence to hold in an application domain, which may be hard to verify in
practice. In this paper, we empirically study the effect of simply applying the
leaky noisy-OR model, without proper verification of its underlying assumption,
on a network’s performance. For this purpose, we constructed a leaky noisy-OR
version of the CSF network and compared the performances of the two networks.

From the original network, we selected all variables that could be consid-
ered effect variables in a causal mechanism. With this criterion, a total of 11
variables were selected, which are listed in Table 3. For the selected variables,
we substituted new conditional probability tables which were constructed using
the leaky noisy-OR model, for the original ones. For the model’s parameters,
we used the probabilities as originally assessed by our expert; we thus did not
construct best-fitting approximations of the original tables. While for most of
the selected variables very small Kullback-Leibler distances were found between
the originally specified probability distributions and the leaky noisy-OR tables,
for some of the variables these distances proved to be of considerable size; the
fourth column of Table 3 records the maximum Kullback-Leibler distance found
for each of the selected variables. The second and third columns of the table
specify, for each variable separately, the numbers of probabilities which have to
be assessed directly for the full probability table and for the leaky noisy-OR
table, respectively. Table 3 shows that by using the leaky noisy-OR model, the
number of probabilities to be specified explicitly by the domain expert, would be
reduced from 220 to 98. Since for the entire network a total of 470 parameters

Table 3. The numbers of parameters of the original conditional probability tables
(CPT) and their leaky noisy-OR versions, and the maximum Kullback-Leibler distance
found between the original and noisy-OR distributions for selected variables of the
network

Variable Number of CPT Number of noisy-OR max. KL
parameters needed parameters needed distance

Lung infection 64 8 0.0168
Wasting 40 25 0.0006
Skin haemorrhages 32 17 0.0009
Huddling 20 15 0.0050
Malaise 16 6 0.0019
Mucositis 16 6 0.2206
Body temperature 8 5 0.0052
Cyanosis 8 5 0.0000
Late intra-uterine inf. 8 5 0.0005
Appetite 4 3 0.0007
Activity 4 3 0.0138

Total 220 98
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had to be estimated, this number is reduced by more than 25% by exploiting
the leaky noisy-OR model for one-third of the variables.

5 Comparing the Performances of the CSF Networks

The performance of a Bayesian network for diagnostic reasoning in biomedical
applications is commonly expressed in terms of its sensitivity and specificity
characteristics. The network’s specificity then is the percentage of cases without
the disease under study whom the network identifies as not having the disease;
its sensitivity is the percentage of cases with the disease whom the network
singles out as having the disease. Since the CSF network chosen for our empirical
study was designed for diagnostic reasoning, we use these two characteristics for
comparing the performances of the original network and its noisy-OR version.

For establishing the specificity of the two networks, field data from 375 pigs
without Classical Swine Fever were used. For each of these pigs, the posterior
probability of the observed clinical signs being caused by a CSF infection was
computed from both networks. The computed probabilities were subsequently
compared against a threshold probability α. If a computed probability exceeded
this threshold probability, a suspicion of CSF was issued. Based upon the num-
bers of generated suspicions, the specificities of both networks could be readily
established. Table 4 records these specificities for various realistic values of α.

The sensitivities of the two networks were estimated using experimental data.
These data were collected from small groups of pigs in which some individuals
had been inoculated with the CSF virus. A total of 91 animals were followed over
a period of up to 35 days. Data were recorded at least every two or three days;
the recording days were expressed in terms of the number of days after infection
of the inoculated animals. For each recording day, for each pig, the posterior
probability of the observed clinical signs being caused by a CSF infection was
computed from both CSF networks and compared against a threshold probability
α as before. Figure 2 shows, as an example, the cumulative number of animals
for which a CSF suspicion was issued by the original network as a function of the
number of days post infection, using α = 0.001; with the leaky noisy-OR version
of the network, the exact same results were found. With the threshold values of
0.0005, 0.005, and 0.01, we also found no differences in sensitivity between the

Table 4. The specificities of the CSF network and its leaky noisy-OR version, respec-
tively, for different values of the threshold probability α for issuing a CSF suspicion

threshold specificity specificity
α CSF network noisy-OR version

0.05 99% 99%
0.01 98% 98%
0.005 96% 96%
0.001 89% 88%
0.0005 84% 84%
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Fig. 2. The cumulative number of CSF suspicions issued by the original CSF network
for 91 pigs, using α = 0.001, as a function of the number of days post infection (DPI)
of the inoculated animals

two networks. With α = 0.05, the original network issued a CSF suspicion for
one more animal than did the leaky noisy-OR version of the network.

From the sensitivities and specificities reviewed above, we may conclude that
the overall performance of the original CSF network does not degrade when the
conditional probability tables of one-third of the variables are replaced by leaky
noisy-OR tables. These characteristics, however, might hide differences in perfor-
mance of the two networks for individual cases, which could indicate a fundamen-
tal problem of the leaky noisy-OR version. We therefore also studied, using the
same threshold values, the networks’ performance on all pig cases individually.
With α = 0.005, the leaky noisy-OR version of the network issued a false suspi-
cion for one of the pigs which did not receive such a suspicion from the original
network; it further did not issue a suspicion for one of the pigs which did receive
a false suspicion from the original network. Using probability thresholds of 0.001
and 0.005, the leaky noisy-OR version of the CSF network issued an additional
false suspicion on the one hand, yet also resulted in three fewer false suspicions on
the other hand. With respect to the networks’ sensitivities, we found that, with
α = 0.05, the leaky noisy-OR version failed to detect one of the cases that was de-
tected by the original network. No further differences in performance were found.
From these observations, we conclude that also in view of the 466 individual pig
cases, the performance of the original CSF network is hardly affected by substitut-
ing leaky noisy-OR tables for its expert-provided conditional probability tables.

6 Concluding Observations

The use of causal independency models, and of the noisy-OR and noisy-MAX
models more specifically, is advocated throughout the literature as an approach
to substantially lightening the task of obtaining all probabilities required for a
Bayesian network. Since these models assume a disjunctive interaction of the
causes of a common effect, a network engineer has to verify, before using such a
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model, that the assumed interaction actually holds in reality. In practice, how-
ever, the assumption is hard to verify. Thus far, little evidence had been gathered
about the effects of simply using these models without elaborate verification ef-
forts, on the performance of a real-life network in practice. In this paper, we
presented the results from an empirical study of these effects on a Bayesian net-
work for the early detection of Classical Swine Fever in pigs. In this network,
we substituted leaky noisy-OR tables for the expert-provided conditional prob-
ability tables for one-third of the variables. The performances of the original
network and its leaky noisy-OR version on real-life data were investigated in
terms of their sensitivity and specificity characteristics. The results of our study
showed that using the leaky noisy-OR model had little effect on the performance
of our CSF network. Although more research is required to corroborate our find-
ings, a cautious conclusion from our study is that the (leaky) noisy-OR model
can indeed be applied, without extensive knowledge elicitation efforts, to lighten
the quantification task for Bayesian networks for diagnostic applications.
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lands Organisation for Scientific Research.
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Abstract. We overview three kinds of possibilistic graphical models
(based on directed acyclic graphs) and present, how they can be ex-
pressed by means of non-graphical approach to multidimensional mod-
els, so-called compositional models. We show that any of these graphical
models can be transformed into a compositional model, but not vice
versa. The only exception are directed possibilistic graphs, which are as
general as so-called prefect sequences of low-dimensional distributions.

Keywords: Possibility distributions, graphicalmodels, triangularnorms.

1 Introduction

High dimensionality of problems usually solved in the field of artificial intelli-
gence led in late 1980’s to the emergence of new kind of models, usually called
graphical Markov models. These models, sometimes characterized as a “mar-
riage between probability and graph theories”, utilize different types of graphs
to express (in)dependences among variables.

Nevertheless, uncertainty can be modeled also by other calculi; among them
we concentrated to possibility theory, which has in common with probability
theory the advantage, that possibility measure can be expressed by means of
possibility distribution. In this contribution we overview three kinds of possi-
bilistic graphical models (based on directed acyclic graphs) and present, how
they can be expressed by means of non-graphical approach to multidimensional
possibilistic models, so-called compositional models — introduced already in [7]
and further developed e.g. in [8,11].

The paper is organized as follows. After an overview of necessary notions
form possibility theory in Section 2, in Section 3 we will present the most impor-
tant results on compositional models. Section 4 will be devoted to the graphical
models and their relationship to compositional models.

2 Basic Notions

The purpose of this section is to give, as briefly as possible, an overview of basic
notions of De Cooman’s measure-theoretical approach to possibility theory [3],
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necessary for understanding the paper. Special attention will be paid to condi-
tioning, independence and conditional independence [9]. We will start with the
notion of a triangular norm, since most notions in this paper are parameterized
by it.

2.1 Triangular Norms

A triangular norm (or a t-norm) T is a nondecreasing, associative and com-
mutative binary operator on [0, 1] satisfying the boundary condition: for any
a ∈ [0, 1]

T (1, a) = a.

A t-norm T is called continuous if T is a continuous function. Within this paper,
we will only deal with continuous t-norms.

Let x, y ∈ [0, 1] and T be a t-norm. We will call an element z ∈ [0, 1] T -inverse
of x w.r.t. y if

T (z, x) = T (x, z) = y. (1)

It is obvious that if x ≤ y then the equation (1) admits no solution, i.e. there
are no T -inverses of x w.r.t. y. On the other hand, if a T -inverse exists, it need
not be unique. Nevertheless, we can obtain a unique representative (which is
even maximal) using the notion of T -residual y�T x of y by x defined for any
x, y ∈ [0, 1] as

y�T x = sup{z ∈ [0, 1] : T (z, x) ≤ y}.

From the viewpoint of this paper the following lemma proven in [5] is impor-
tant, as it gives a hint, how to compute with residuals.

Lemma 1. If c ≥ b, then T (a, b)�T c = T (a, b�T c).

2.2 Possibility Measures and Distributions

Let X be a finite set called universe of discourse which is supposed to contain
at least two elements. A possibility measure Π is a mapping from the power set
P(X) of X to the real unit interval [0, 1] satisfying the following two require-
ments:

(i) Π(∅) = 0;
(ii) for any family {Aj, j ∈ J} of elements of P(X)

Π(
⋃
j∈J

Aj) = max
j∈J

Π(Aj)1.

Within this paper we will always assume that Π is normal, i.e. Π(X) = 1.
For any Π there exists a mapping π : X → [0, 1], called a distribution of

Π , such that for any A ∈ P(X), Π(A) = maxx∈A π(x). This function is a

1 Max must be substituted by sup if X is not finite.



Possibilistic Graphical Models and Compositional Models 23

possibilistic counterpart of a density function in probability theory. It is evident
that (in the finite case) Π is normal iff there exists at least one x ∈ X such that
π(x) = 1. Throughout this paper we will use possibility distributions instead of
possibility measures.

Let X1 and X2 denote two finite universes of discourse provided by possibility
measures Π1 and Π2, respectively. The possibility measure Π on X1 × X2 is
called T -product possibility measure of Π1 and Π2 (denoted Π1×T Π2) if for the
corresponding possibility distributions for any (x1, x2) ∈ X1 ×X2

π(x1, x2) = T (π1(x1), π2(x2)). (2)

Now, let us consider an arbitrary possibility distribution π defined on a product
universe of discourse X1 ×X2. The marginal possibility distribution π↓1 on X1
is defined by the expression

π↓1(x1) = max
x2∈X2

π(x1, x2) (3)

for any x1 ∈ X1.

2.3 Conditioning, Independence and Conditional Independence

Let T be a continuous t-norm on [0, 1]. The conditional possibility distribution
πX|

T
Y is defined (in accordance with [3]) as any solution of the equation

πXY (x, y) = T (πY (y), πX|
T

Y (x|
T
y)) (4)

for any (x, y) ∈ X × Y. Continuity of a t-norm T guarantees the existence of
a solution of this equation. This solution is not unique (in general), but the
ambiguity vanishes when almost-everywhere equality is considered (for more de-
tails see [3]). As mentioned in [3,9], this way of conditioning brings a unifying
view on several conditioning rules and it also plays an important role in the
definition of (conditional) independence, therefore its importance from the theo-
retical viewpoint is obvious. On the other hand, from the practical point of view,
its expression by residual πXY (x, ·)�T πY (·), i.e. the least specific (or maximal)
solution of (4), is very useful (for more details see [11]).

Two variables X and Y (taking their values in X and Y, respectively) are
possibilistically T -independent2 [3] if for any x ∈ X and y ∈ Y

πXY (x, y) = T (πX(x), πY (y)). (5)

In light of these facts, we defined the conditional possibilistic independence in
the following way in [8]: Given a possibility measure Π on X × Y × Z with
the respective distribution π(x, y, z), variables X and Y are possibilistically

2 Let us note that the definition presented in [3] is different and (5) is its equiva-
lent characterization. Nevertheless, from the viewpoint of this paper (5) is more
convenient.
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conditionally T -independent3 given Z (in symbols IT (X, Y |Z)) if, for any pair
(x, y) ∈ X×Y,

πXY Z(x, y, z) = T (T (πX|
T

Z(x|
T
z), πY |

T
Z(y|

T
z)), πZ(z)). (6)

In [9] we proved its formal properties and studied its relationship with other def-
initions of conditional possibilistic independence, among others those introduced
in [2].

3 Compositional Models

From now on, we will deal with joint possibility distributions π on Cartesian
product of universes of discourse

XN = X1 ×X2 × . . .×Xn,

and their marginals π↓K on its subspaces

XK =×i∈KXi.

3.1 Operators of Composition

Operators of composition of possibility distributions introduced in [7] are, in a
way, a generalization of T -product possibility distributions defined by (2). Con-
sidering a continuous t-norm T , two subsets K1, K2 of {1, . . . , n} (not necessarily
disjoint) and two normal possibility distributions π1(xK1 ) and π2(xK2) we de-
fine the operator of right composition of these possibilistic distributions by the
expression

π1 (xK1) 
T π2 (xK2) = T
(
π1 (xK1) , π2 (xK2)�T π↓K1∩K2

2 (xK1∩K2)
)

,

and analogously the operator of left composition by the expression

π1 (xK1) �T π2 (xK2) = T
(
π1 (xK1)�T π↓K1∩K2

1 (xK1∩K2) , π2 (xK2)
)

.

It is evident that both π1 
T π2 and π1 �T π2 are (generally different) possibility
distributions of variables {Xi}i∈K1∪K2 .

Now, we will present two lemmata proven in [7], expressing basic properties
of these operators.

Lemma 2. Let T be a continuous t-norm and π1(xK1) and π2(xK2) be two
distributions. Then

(π1 
T π2)↓K1(xK1) = π1(xK1)

and
(π1 �T π2)↓K2(xK2) = π2(xK2).

3 Let us note that a similar definition of conditional independence can be found in [4].
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Lemma 3. Consider two distributions π1(xK1) and π2(xK2). Then

(π1 
T π2)(xK1∪K2) = (π1 �T π2)(xK1∪K2)

for any continuous t-norm T iff π1 and π2 are projective, i.e.

π↓K1∩K2
1 (xK1∩K2) = π↓K1∩K2

2 (xK2∩K1).

The following theorem proven in [8] reveals the relationship between conditional
T -independence and operators of composition.

Theorem 1. Let T be a continuous t-norm and π be a possibility distribution
of XK1∪K2 with marginals π1 and π2 of XK1 and XK2 , respectively. Then

π(xK1∪K2) = (π1 
T π2)(xK1∪K2) (7)
= (π1 �T π2)(xK1∪K2),

if and only if XK1\K2 and XK2\K1 are conditionally independent, given XK1∩K2 .

3.2 Generating Sequences

In this section we will show how to apply the operators iteratively. Consider
a sequence of possibility distributions π1(xK1), π2(xK2), . . . , πm(xKm) and the
expression

π1 
T π2 
T . . . 
T πm.

Before beginning a discussion of its properties, we have to explain how to inter-
pret it. Though we did not mention it explicitly, the operator 
T (as well as �T )
is neither commutative nor associative.4 Therefore, generally

(π1 
T π2) 
T π3 �= π1 
T (π2 
T π3).

Nevertheless, under specific conditions this equality is satisfied. One of these
situations, important from the viewpoint of this paper, is described by the fol-
lowing lemma.

Lemma 4. Let T be a continuous t-norm and π1, π2 and π3 be defined on
XK1 ,XK2 and XK3 , respectively, such that K1 and K3 are disjoint. Then

(π1 
T π2) 
T π3 = π1 
T (π2 
T π3). (8)

Proof. Let x ∈ XK1∪K2∪K3 then the right-hand side of (8) is by definition

π1 
T (π2 
T π3)(x)
= T (π1(xK1), (π2 
T π3)(xK2∪K3)�T (π2 
T π3)(x(K2∪K3)∩K1))
= T (π1(xK1), T (π2(xK2), π3(xK3)�T π3(xK3∩K2))�T π2(xK2∩K1))
= T (π1(xK1), T (π2(xK2)�T π2(xK2∩K1), π3(xK3)�T π3(xK3∩K2)))
= T (T (π1(xK1), π2(xK2)�T π2(xK2∩K1)), π3(xK3)�T π3(xK3∩K2))
= (π1 
T π2) 
T π3(x),

4 Counterexamples can be found in [7].
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where we used the fact that K1 ∩K2 = ∅, Lemma 2, Lemma 1 and associativity
of a t-norm. �

For the above reason, let us note that in the part that follows, we always apply
the operators from left to right, i. e.

π1 
T π2 
T π3 
T . . . 
T πm = (. . . ((π1 
T π2) 
T π3) 
T . . . 
T πm). (9)

This expression defines a multidimensional distribution of XK1∪...∪Km . There-
fore, for any permutation i1, i2, . . . , im of indices 1, . . . , m the expression

πi1 
T πi2 
 . . . 
T πim

determines a distribution of the same family of variables, however, for different
permutations these distributions can differ from one another. In the following
paragraph we will deal with special generating sequences (or their special per-
mutations), which seem to possess the most advantageous properties.

3.3 T -Perfect Sequences

An ordered sequence of possibility distributions π1, π2, . . . , πm is said to be
T -perfect if

π1 
T π2 = π1 �T π2,

π1 
T π2 
T π3 = π1 �T π2 �T π3,

...
π1 
T · · · 
T πm = π1 �T · · · �T πm.

The notion of T -perfectness suggests that a sequence perfect with respect to
one t-norm need not be perfect with respect to another t-norm, analogous to
(conditional) T -independence. The following lemma, proven in [7], suggests that
perfectness is a stronger property than pairwise projectivity (cf. Lemma 3).

Lemma 5. Let T be a continuous t-norm. The sequence π1, π2, . . . , πm is
T -perfect, if and only if the pairs of distributions (π1 
T · · · 
T πk−1) and πk

are projective for all k = 2, 3, . . . , m.

Although T -perfect sequences may be defined for any continuous t-norm T ,
their semantics substantially differ from each other. For more details the reader
is referred to [10].

The following characterization theorem proven in [11] expresses one of the
most important results concerning T -perfect sequences. It says they compose
into multidimensional distributions that are extensions of all the distributions
from which the joint distribution is composed.

Theorem 2. The sequence π1, π2, . . . , πm is T -perfect iff all the distributions
π1, π2, . . . , πm are marginal to distribution π1 
T π2 
T . . . 
 πm.
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If we translate this theorem to the language of artificial intelligence, its mean-
ing is that the global knowledge expressed by the multidimensional distribution
keeps all the local knowledge contained in the low-dimensional distributions, i.e.
nothing was lost or changed.

4 Graphical Models

Probabilistic graphical models (well-known thanks e.g. to [6]) served as the in-
spiration for various authors e.g. [1,2] to introduce analogous models also in the
framework of possibility theory.

4.1 Possibilistic Trees

Possibilistic trees suggested by de Campos and Huete in [2] for specific condi-
tional independence concepts are based on the following simple idea. If
IT (X, Y |Z), then the joint distribution π(x, y, z) of X, Y, Z can be obtained
from its marginals π(x, z) and π(y, z).

This idea can easily be generalized to n-dimensional case. Let us assume
variables X1, . . . , Xn such that IT ({Xj}j<i{Xj}j>i|i), then the joint possibility
distribution of these variables can be obtained form the marginals π(x1, . . . , xi)
and π(xi, . . . , xn). This idea can be recursively applied to both subsets of vari-
ables. Therefore to obtain the joint possibility distribution, it is enough to store
low-dimensional distributions obtained by this process.

Resulting possibilistic tree T consists of two kinds of nodes — leaf nodes (which
store marginal possibility distributions) and internal nodes (storing conditional
independence statements).

De Campos and Huete presented two propositions concerning possibilistic
trees (induced, in fact, by conditional independence concepts based on Gödel’s
and product t-norms), which can be generalized as suggested below.

Any possibilistic tree T can easily be transformed into a generating sequence
of its leaves πL1 , . . . πLm . The joint possibiility distribution is then obtained in
the following way: any fork of T is substituted by a composition operator con-
necting marginal distributions of corresponding branches. Let us note, that this
transformation keeps according to Theorem 1 all the conditional independences
expressed by the possibilistic tree.

Let us also note, that because of rather complicated system of brackets, the
resulting model is not generally formed by a T -perfect sequence of possibility
distributions. Nevertheless, it must exist, as the following lemma suggests.

Lemma 6. Any possibilistic tree T defines a perfect sequence.

Proof. It follows directly from Theorem 2, as distributions at leaves are marginals
of the joint possibility distribution. �
Now, let us preset an example, which is a generalization of examples from [2].
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IT ((Xi)i=1,2,3,4, (Xi)i=6,7,8,9,10|X5)

IT (X1, (Xi)i=3,4,5|X2) IT ((Xi)i=5,6,7, (Xi)i=9,10|X8)

IT (X2, (Xi)i=4,5|X3) IT (X5, (Xi)i=7,8|X6)

π(x3, x4, x5)π(x2, x3)

π(x8, x9, x10)π(x1, x2)

IT (X6, X8|X7)π(x5, x6)

π(x6, x7) π(x7, x8)

Fig. 1. Possibilistic tree from Example 1

Example 1 Let π be a joint possibility distribution of Xi, i = 1, . . . , 10 with
conditional independences (based on continuous t-norm T ) expressed by possi-
bilistic tree in Figure 1.

The generating sequence π(x1, x2), π(x2, x3), π(x3, x4, x5), π(x5, x6), π(x6,
x7), π(x7, x8), π(x8, x9, x10) forms a joint distribution

(π(x1, x2) 
T (π(x2, x3) 
T π(x3, x4, x5))) (10)

T ((π(x5, x6) 
T (π(x6, x7) 
T π(x7, x8))) 
T π(x8, x9, x10)).

Although it is not obvious at the first sight it is also perfect as (10) can be
transformed into

π(x1, x2) 
T π(x2, x3) 
T π(x3, x4, x5)

T π(x5, x6) 
T π(x6, x7) 
T π(x7, x8) 
T π(x8, x9, x10).

due to Lemma 4 and convention (9). Therefore π(x1, x2), π(x2, x3), π(x3, x4, x5),
π(x5, x6), π(x6, x7), π(x7, x8), π(x8, x9, x10) is a perfect sequence.

Let us note, that another ordering of the marginal possibility distributions, e.g.
π(x1, x2), π(x3, x4, x5), π(x2, x3), π(x5, x6), π(x6, x7), π(x7, x8), π(x8, x9, x10),
may lead to a different model than that expressed by a possibilistic tree T ,
as the resulting model does not keep π(x2, x3) unless π(x2, x3) = π(x2) · π(x3).

Let us also note that not every perfect sequence can be transformed into a
possibilistic tree, e.g. if one variable appears in three (or more) marginals.

4.2 Dependence Trees

In dependence trees [2] nodes represent variables (or groups of variables) and
edges represent direct dependence relationship among variables (or groups). Con-
ditional independence statements can be obtained from the graph in an analo-
gous way to Bayesian networks.
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In [2] a simple algorithm for the construction of dependence tree of a possi-
bility distribution in question is presented. In that paper it is also shown (by
examples) how to a transform dependence tree to a possibilistic tree and vice
versa. It is also mentioned that possibilistic tree is a more general structure than
dependence tree. As we have shown that any possibilistic tree can be transformed
to perfect sequence, it is obvious, that the same holds for dependence trees.

Nevertheless, we present a direct procedure of the transformation of depen-
dence tree to a perfect sequence, which is extremely simple.

For each dependence tree one can construct a perfect sequence π1, . . . , πm of
distributions of variables XK1 , XK2 , . . . , XKm , respectively. These distributions
are such that each {Xi}i∈Kk

equals some cl(Xj) = {Xj}∪pa(Xj) and π1
. . .
πm

equals the distribution represented by the dependence tree.
This approach can be applied also to more general directed possibilistic graphs

[1], which will be in the center of our attention in the next part.

4.3 Directed Possibilistic Graphs

Directed possibilistic graph (or possibilistic belief network) is a possibilistic coun-
terpart of Bayesian network (and a generalization of dependence trees) and can
be defined in the following way:

Relationships among variables in directed possibilistic graph are determined
in two ways. Structural information describing the existence of a “direct” depen-
dence of variables is given by a graph, while the quantitative information is given
by a system of conditional possibility distributions. Thus, a possibilistic belief
network is a couple: an acyclic directed graph and a system of conditional prob-
ability distributions . In this system there are as many distributions as variables,
i.e. nodes of the graph (in contrary to dependence trees). For each variable there
is a conditional distribution given all parent variables in the condition. Some of
nodes (at least one because of acyclicity) are parentless and their distributions
are in fact unconditional.

To transform a possibilistic belief network into a a perfect sequence the pro-
cedure described in the preceding section can be used. Here we present a reverse
procedure for transformation of a perfect sequence into a possibilistic belief net-
work.

Having a perfect sequence π1, π2, . . . , πm (πk being the distribution of XKk
),

we first order (in an arbitrary way) all the variables for which at least one of the
distributions πk is defined, i.e.

{X1, X2, X3, . . . , Xn} = {Xi}i∈K1∪...∪Km .

Then we get a graph of the constructed possibilistic belief network in the follow-
ing way:

1. the nodes are all the variables X1, X2, X3, . . . , Xn;
2. there is an edge (Xi → Xj) if there exists a distribution πk such that both

i, j ∈ Kk, j �∈ K1 ∪ . . . ∪Kk−1 and either i ∈ K1 ∪ . . . ∪Kk−1 or i < j.
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5 Conclusions

We overviewed the non-graphical approach to multidimensional possibilistic
models based on operators of composition — so-called compositional models. We
presented three types of graphical models and showed, how these models can be
expressed by means of compositional models. Furthermore, we showed that any
of these three models can be expressed by a perfect sequence of low-dimensional
distributions. Finally, we presented a procedure by which any perfect sequence
of low-dimensional distributions can be transformed into directed possibilistic
graph (or possibilistic belief network).

Acknowledgments. The work of the author was supported by the grant GA
ČR 201/09/1891, by the grant GA AV ČR A100750603 and by the grant MŠMT
2C06019.
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Abstract. In this article, the evidential network is combined with a
temporal credal filter in order to incorporate the time information and
describe the information propagation from a node to another one. Then
we describe an application in convoy detection and propose a complex
simulated scenario. The results are compared with those of our previous
approach with Bayesian networks.

Keywords: Bayesian networks, Evidential networks, Convoy detection.

1 Introduction

Graphical models, first formalized by Pearl [1], are commonly used for many
applications like medical diagnosis, situation assessment [2] or biological appli-
cations [3]. Also called Bayesian networks, they are the merging of graph theory
with probabilistic theory. They have a powerful formalism for reasoning under
uncertainty because they compute the variable trends of a system, which is intu-
itively represented by a directed acyclic graph. This graph is composed of nodes
and edges. The nodes correspond to the set of random variables representing the
system evolution, and edges represent the dependencies between random vari-
ables, quantified by a set of conditional probability distributions. The dominant
relevance is to limit the computational complexity by using the fundamental
following formula:

p(x1, . . . , xn) =
n∑

i=1

p (xi|Pa(xi)) (1)

where Pa(xi) represents the parent node set of node xi.
This kind of graphical model is specially effective when a very complete sta-

tistical knowledge description of the modeled system is available. If not, the use
of a priori can strongly influence the final results.

Evidential networks, which are graphical models in an evidential context,
are less known, but have similar applications in system analysis [4] or threat
assessment [5]. They were for the first time formalized by Xu and Smets [6,7] by
using a generalization of Bayes’ theorem where all conditional probabilities are

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 31–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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replaced by conditional belief functions. They limit the use of a priori and are
consequently more flexible to model the knowledge.

On the same principle, evidential networks are the merging of graph theory
with evidential theory, also called Dempster-Shafer theory. The main idea, in
evidential theory, is to consider a larger frame of discernment as in probability,
called power set. Indeed, instead of strictly considering probability distributions
on Ω = {ω1, . . . , ωn}, where wi represents a hypothesis by itself, the belief are
also computed on the subset of Ω. In this paper, we adopt the Transferable
Belief Model (TBM) representation which proposes to manage uncertainty in
two levels: the credal level where beliefs are addressed and the pignistic level
where beliefs are used to make decisions. The main difference between Dempster-
Shafer theory and TBM representation is that with the latter, belief functions
are unnormalized and the mass on conflict m(∅) can be non empty. In this case,
it asks the question of the origin of this conflict (unreliable sources, missing
hypothesis, open world. . . ) [8].

In this paper, we first review transferable belief model formalism. In the second
part, we describe the theoretical implementation of evidential networks, before
we describe our specific application of convoy detection in the third part. Finally,
we give some simulation results by using a complex simulated scenario.

2 The Transferable Belief Model (TBM) Framework

2.1 Background

The main idea with the Transferable Belief Model is to attribute a belief distri-
bution on a variable to a larger state space as with probability. The power set
of Ω, denoted 2Ω, is a set composed of hypotheses and joined hypotheses and is
of size 2|Ω|. The basic belief assignment mΩ (bba) is defined such that:

mΩ : 2Ω → [0, 1]
B → mΩ(B) (2)

∑
B∈2Ω

m(B) = 1 (3)

The belief, given to a hypothesis or to a junction between hypotheses can be also
expressed according to some other elementary functions called the plausibility
function pl, the commonality function q and the the implicability function b,
where ∀A ⊆ 2Ω:

belΩ(A) =
∑

B⊆A,B 
=φ

mΩ(B) (4)

plΩ(A) =
∑

A∩B 
=φ

mΩ(B) (5)

bΩ(A) = belΩ(A) + mΩ(∅) (6)

qΩ(A) =
∑
B⊇A

mΩ(B) (7)

These elementary functions bel, pl, q, b are in one-to-one correspondence with
m. If bel and pl can be easily understood as the minimal and maximal likelihood
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admitted to a proposition A ∈ 2Ω, q and b are less intuitive, but their formalisms
are convenient for the propagation mechanism, as we will see in the next parts.

2.2 The Combination Rules

The Conjunctive Rule of Combination (CRC). It is an associative and commu-
tative operation that combines belief functions coming from reliable and inde-
pendent sources:

mΩ
1 ∪© 2(A) =

(
mΩ

1 ∪©mΩ
2
)
(A) =

∑
B∪C=A

mΩ
1 (B) .mΩ

2 (C) (8)

The same equation can be more conveniently expressed with the commonality:

bΩ
1 ∪© 2(A) =

(
bΩ
1 ∪© bΩ

2
)
(A) = bΩ

1 (A) .bΩ
2 (A) (9)

The Disjuntive Rule of Combination (DRC). The DRC is defined as the com-
bination rule for unreliable sources. It can also be seen as a combination rule
which can deal with conflict:

mΩ
1 ∩© 2(A) =

(
mΩ

1 ∩©mΩ
2
)
(A) =

∑
B∩C=A

mΩ
1 (B) .mΩ

2 (C) (10)

The same equation can be more conveniently expressed with the implicability:

qΩ
1 ∩© 2(A) =

(
qΩ
1 ∩© qΩ

2
)
(A) = qΩ

1 (A) .qΩ
2 (A) (11)

2.3 Generalized Bayes Theorem (GBT)

The GBT performs the same task as the Bayesian theorem, but within the TBM
conflict. Given the set of conditional basic belief assignments mΩ[θi],
∀θi ∈ Θ,∀ω ∈ Ω, if θ ⊂ Θ:

plΘ[ω](θ) = 1−
∏
θi∈θ

(
1− plΩ[θi](ω)

)
(12)

2.4 Temporal Belief Filter

A temporal belief filter is proposed as in [9,10] in order to ensure a temporal
consistency: the presence of objects of interest can be based on a long term
detection. The predicted belief on Xi at time k can be written as:

m̂Ωi(Xk
i ) = FΩi .mΩi(Xk−1

i ) (13)

where mΩi(Xk−1) at time k− 1 is the belief function at time k− 1, m̂Ωi(Xk) is
the predicted belief function at time k and FΩi is the temporal evolution model.
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Assuming that each node Xi is a binary node (Ωi = {Xi, X̄i}), the following
vector notation for the belief distribution is used:

mΩi = [mΩi(∅) mΩi(Xi) mΩi(X̄i) mΩi(Ωi)]T (14)

Finally, the temporal evolution model FΩi of size 2|Ωi| × 2|Ωi| is written as:

FΩi = [FΩi(∅) FΩi(Xi) FΩi(X̄i) FΩi(Ωi)] (15)

with FΩi(∅) = [1 0 0 0]T and FΩi(Ωi) = [0 0 0 1]T because all con-
flict/doubt is transferred on itself. FΩi(Xi) (resp. FΩi(X̄i)) represents the model
evolution of the node Xi if its value is true (resp. false). In this case, the belief
on Xi (resp. X̄i) is partly transferred on Xi (resp. X̄i) according to a certain
confidence αT (resp. αF) as:

FΩi(Xi) = [0 αT 0 1− αT ]T FΩi(X̄i) = [0 0 αF 1− αF ]T (16)

Finally, the obtained belief at time k is combined with the measured belief distri-
bution. This combination is made according to a CRC (cf. 2.2) which highlights
conflict between the prediction m̃Ω(Xk) and the measurement m̂Ω(Xk) and is
written as:

mΩ(Xk) = m̃Ω(Xk) ∩© m̂Ω(Xk) (17)

2.5 Discounting a Belief Function

The discounting process is used to reduce the influence of a source of information.
The new basic belief assignment αmΩ is computed from mΩ using the parameter
α ∈ [0, 1]:

αmΩ(A) = (1− α)mΩ(A) ∀A ⊂ Ω
αmΩ(Ω) = (1− α)mΩ(Ω) + α

(18)

3 Dynamic Evidential Networks

A basic dynamic network illustrated in Figure 1, where X1 and X2 are par-
ent nodes and the belief distribution on X3 is computed at each iteration k
illustrates Dynamic Evidential Network principle. But, before describing the in-
ference mechanism, it is necessary to develop the two initialization steps:

X1 X2

X3

X1 X2

X3

k − 1 k

Fig. 1. A very simple example of evidential network
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1. Prior mass belief establishment: With Bayesian approach, the first step
would be to establish p(X3|X1, X2) of size 2× 2, but whose size can quickly
increase depending on the number of feasible states for X1 and X2 and
more generally on the number of parent nodes. With evidential network, the
conditional beliefs mΩ3 [Xi] are established for each parent node i, ∀i ∈ {1, 2}
and independently of the others according to the knowledge on the system.
However only conditional belief functions on X3 knowing that Xi is in the
state Xi or X̄i can be established. The belief knowing that the node Xi is
in the state Ωi cannot be intuitively established but is computed ∀i ∈ {1, 2}
by using the DRC as in equation (11):

bΩ3 [Ωi](X3) = bΩ3 [Xi](X3).bΩ3 [X̄i](X3) (19)

2. Discounting coefficient establishment: When a node depends on many
other nodes, it is possible to modify the importance of each node by using
discounting coefficients. Another point of view could be that the parent nodes
can be seen as independent sources which are strongly or weakly weighted,
depending on their reliability.

The inference mechanism is now decomposed in simple operations for the basic
dynamic network illustrated in Figure 1.

1. Data transformation: Data are transforming into belief distribution m̃Ωi

for root nodes Xi. This transformation can be made by using fuzzy sets or
Rayleigh distributions as done in [11].

2. Propagation: The information from parent nodes Xi are propagated to
the node X3. The obtained belief distributions are denoted mΩ

i→3. These are
computed by using plausibility with the GBT equation (12) as, ∀X3 ⊆ Ω3:

plΩ3
i→3(X3) =

∑
X3⊆Ω3

plΩ3 [Xi](X3).m̃Ωi(Xi) (20)

3. Discounting: If discounting coefficients are αi for each node Xi, the formula
(18) is applied on propagated belief distributions mΩ

i→3 to obtain αimΩ
i→3.

4. Combination: Discounted propagated belief distributions are finally com-
bined by using the CRC with implicabilities as in equation (9):

qΩ3(X3) =αi qΩ3
1→3(X3).αiqΩ3

2→3(X3) (21)

5. Time propagation: Assuming that the node X3 evolves according to a
model FΩ

3 , it is possible to predict the belief m̂Ω3(X3) and to combine it
with the measured belief function m̃Ω3(X3) according to the equation (17).

It is accepted that this propagation algorithms can only be applied on naive
networks. With more complex networks, inference algorithms must be applied
as in [12].



36 E. Pollard, M. Rombaut, and B. Pannetier

4 Application to the Convoy Detection

4.1 Application Description

The human expert describes a convoy as a vehicle set evolving approximately
with the same dynamics over a long time. These vehicles are moving on the
road at a limited velocity (<80m/s). They must stay within sight of each other
with almost constant distances between them (mostly 100m). In some previous
work, we developed a robust multitarget tracking algorithm in order to detect
vehicle aggregates with precision in term of cardinality and state estimation [13]
for battlefield surveillance with Ground Moving Target Indicator (GMTI) sensor
[11]. Other information comes from Synthetic Aperture Radar (SAR) or video
sensor in order to detect aggregates. In this application, the goal is to classify
vehicle aggregates as convoys or not.

The criteria describing a convoy are manifold and of different nature, moreover
the variables are discrete. That is why graphs represent an interesting formalism
for this application. Figure 2 shows the convoy model represented by a graph.
Gray nodes represent states depending on their previous state. For example,
random variable X5 is time dependent, because this type of information is pro-
vided infrequently from SAR or video sensor, unlike the other root node like
X1, or X2 which are computed at the shorter GMTI intervals. Consequently, if
the random variable X5 is filled in at any moment, this information must be
propagated for some time. Concerning the random variable X9, it is time depen-
dent because convoys are evolving as convoy for a long time by regarding GMTI
sensor scanning time.

X1 X2

X3 X4 X5 X8

X6 X7

X9

k − 1 k

X1 X2

X3 X4 X5 X8

X6 X7

X9

X1: Velocity < 80km/h {yes, no}
X2: Constant velocity {yes, no}
X3: Velocity criteria {yes, no}
X4: On the road {yes, no}
Xk

5 : Military vehicles {yes, no}
X6: Constant distance between vehicles {yes, no}
X7: Constant convoy length over time {yes, no}
X8: Distance criteria {yes, no}
Xk

9 : Convoy {yes, no}

Fig. 2. Dynamic Evidential Network for convoy detection

4.2 Evidential Implementation

First of all, as described in part 3, prior belief functions and discounting coeffi-
cients must be established. For the first, they are determined by using logic model
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like : ”If the aggregate velocity is higher than 80km/h, then the aggregate is not
a convoy ; but if the aggregate velocity is lower than 80km/h, it can be a convoy
or not.” Concerning discounting coefficient, we use, as previously with Bayesian
networks, heuristic rules to represent relationships between variables as:

α3 = 0.3 α4 = 0.2 α5 = 0.2 α8 = 0.3 (22)

This rule means that the criteria on distance and velocity are more important
than criteria ”on road” or ”vehicle type”.

Numerical values describing tracks are converted into belief functions con-
cerning temporal velocity constancy or temporal length convoy constancy. In
this way, a belief distribution is generated for node X1, X2, X4, X6 and X7 at
each GMTI scanning time. The node Xk

5 is filled in when the type information
is available. If not, the entire mass is attributed to the doubt. The goal is to
process a belief distribution on node Xk

9 at each time k.

5 Simulation Results

5.1 Scenario Description

The GMTI sensor has a linear trajectory, its velocity is 30m/s and its altitude is
4000m. The typical measurement error is 20m in range and 0.008rad in azimuth.
The sensor scan time is T = 10s. Scenario time is limited to 500s. The false
alarm density is βFA = 8.92.10−9 and the detection probability is PD = 0.9.
In the scenario, one 6 target convoy (Target 1-6) is moving on the main road
with a constant velocity of 10m/s from South to North. An independent target
(Target 7) is moving on the same road in the same direction but with a constant
velocity of 15m/s and overtakes the convoy between time t=160s and t=360s
approximately. A 8th target is moving on another road completely independently
to the others.

5.2 Results

The performances of tracking algorithms have been compared for 100 indepen-
dent Monte Carlo runs. Figure 3 shows the combined belief functions mΩ9(X9)
over the time by considering different assumptions on the number of targets
belonging to the convoy. This figure can be compared to the Figure 5 which
represents the probability to have a convoy p(X9) computed with Bayesian net-
works as described in previous work [11]. As expected, both curves have similar
shapes, with decreasing values during the maneuver time (at time t = 160s et
t = 360s which correspond to the entry and the output of the over-passing tar-
get). Belief of having a 5 or 6 target convoy are higher than the belief of having
a 7 target convoy. Indeed, at these moments the 7 target convoy does not follow
the convoy model specially because of the distance criteria shown on Figure 4.
Finally, Figure 6 is the conflict belief on the combined belief functions mΩ9(Xk

9 ).
We observe two conflict pics corresponding to the convoy maneuvers.
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Fig. 6. Estimated belief function on
mΩ8(X8)

Results obtained with evidential networks are coherent with previous results
obtained with Bayesian networks. But the main advantage of using evidential
theory is to add information on doubt and conflict. When the belief suddenly
decreases, these information can be used to characterize the situation and the
conflict mass indicates maneuvers. In future works, we can imagine to use doubt
and conflict to characterize convoy maneuvers and to classify it.

6 Conclusion

From the study of evidential networks, a new dynamic approach is proposed
based on the classical tools of the TBM framework. Then a simulated scenario of
convoy detection is proposed to compare results with classical Bayesian networks,
in order to demonstrate the relevance of using doubt and conflict.
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Abstract. It is well known that among all probabilistic graphical
Markov models the class of decomposable models is the most advan-
tageous in the sense that the respective distributions can be expressed
with the help of their marginals and that the most efficient computa-
tional procedures are designed for their processing (for example profes-
sional software does not perform computations with Bayesian networks
but with decomposable models into which the original Bayesian network
is transformed). This paper introduces a definition of the counterpart of
these models within Dempster-Shafer theory of evidence, makes a survey
of their most important properties and illustrates their efficiency on the
problem of approximation of a “sample distribution” for a data file with
missing values.

1 Introduction

For data analysis, data preprocessing and management of missing values form
an important step substantially influencing the expected results. This concerns
in particular the analysis performed with the help of “classical” statistical pro-
cedures based on probability. The situation is changing fundamentally when one
starts considering models within Dempster-Shafer theory of evidence [13]. In
this theory (and it is the main difference with probability theory) one can eas-
ily model ignorance and therefore missing data may remain missing - unknown.
Unfortunately, nothing is free and this advantage is paid by an increase of com-
putational complexity. This is due to the fact that a basic assignment, in contrast
to a probability distribution, cannot be represented by a point function. There-
fore any idea decreasing computational complexity of the necessary procedures
is desirable.

The goal of this paper is to show that within the framework of Dempster-
Shafer theory one can construct decomposable models and that their repre-
sentation is much less space-demanding than general Dempster-Shafer models.
Moreover, by an example of data approximation with the help of a decomposable
model we show that we gain not only an efficient representation of basic assign-
ments but also possibility to design efficient (“local”) computational procedures.
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After introducing the necessary notation we will define an operator of com-
position, which plays a leading role in the definition of decomposable models.
When introducing these models in Section 3 we will also deal with the concepts
of independence and bring reasons in favor of a (relatively) new definition of
conditional independence in Dempster-Shafer theory.

2 Basic Notion

2.1 Set Notation

In the whole paper we shall deal with a finite number of variables X1, X2, . . . , Xn

each of which is specified by a finite set Xi of its values. So, we will consider
multidimensional space of discernment

XN = X1 ×X2 × . . .×Xn,

and its subspaces . For K ⊂ N = {1, 2, . . . , n}, XK denotes a Cartesian product
of those Xi, for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e. for
K = {i1, i2, . . . , i�}

x↓K = (xi1 , xi2 , . . . , xi�
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will denote a projection of A
into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when K = ∅. In this case
A↓∅ = ∅.

Set A ⊆ XN is said to be a point-cylinder if it can be expressed as a Cartesian
product of a singleton and a subspace XL. More precisely: a point-cylinder is a
set A ⊆ XN for which there exists an index set (possibly empty) L ⊆ N such
that |C↓L| ≤ 1 and

C = C↓L ×XN\L.

Let us stress that if L = ∅ then C = XN (it is the only situation when |C↓L| < 1),
and when L = N then |C| = 1, C is a singleton.

In addition to the projection, in this text we will also need the opposite
operation which is called a join. By a join of two sets A ⊆ XK and B ⊆ XL we
understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint then the join of the corresponding sets is
just their Cartesian product A ⊗ B = A × B. For K = L, A ⊗ B = A ∩ B. If
K ∩ L �= ∅ and A↓K∩L ∩B↓K∩L = ∅ then also A⊗B = ∅.



42 R. Jiroušek

In view of this paper it is important to realize that if x ∈ C ⊆ XK∪L, then
x↓K ∈ C↓K and x↓L ∈ C↓L, which means that always

C ⊆ C↓K ⊗ C↓L.

However, it does not mean that C = C↓K ⊗ C↓L.

2.2 Assignment Notation

The role of a probability distribution from a probability theory is in Dempster-
Shafer theory played by any of the set functions: belief function, plausibility
function or basic (probability or belief ) assignment. Knowing one of them, one
can deduce the two remaining. In this paper we shall use exclusively basic as-
signments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],

for which ∑
∅
=A⊆XK

m(A) = 1.

For the sake of this paper it is reasonable to consider only normalized basic
assignments, for which m(∅) equals always 0. If m(A) > 0, then A is said to be
a focal element of m.

Having a basic assignment m on XK one can consider its marginal assignment
on XL (for L ⊆ K), which is defined (for each ∅ �= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Basic assignment m is said to be Bayesian if all its focal elements are singletons
(i.e. m(A) > 0 =⇒ |A| = 1). Basic assignment m is said to be cylindrical if all
its focal elements are point-cylinders. Since each singleton is a point-cylinder, it
is obvious that a Bayesian basic assignments is also cylindrical. An advantage
of Bayesian and cylindrical basic assignments is that the number of possible
focal elements does not grow up superexponentially (as it is for general basic
assignments) with the number of dimensions but only exponentially.

2.3 Operator of Composition

Definition 1. For two arbitrary basic assignments m1 on XK and m2 on XL

(K �= ∅ �= L) a composition m1 � m2 is defined for each C ⊆ XK∪L by one of
the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 � m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;
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[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 � m2)(C) = m1(C↓K);

[c] in all other cases (m1 � m2)(C) = 0.

First of all we want to stress that the operator of composition is something
else than the famous Dempster’s rule of combination [4]. For example it is (in
contrary to Dempster’s rule) neither commutative nor associative. In [9,8] we
proved a number of properties concerning the operator of composition. In view
of the forthcoming text the following ones are the most important(m1 and m2
are basic assignments defined on XK ,XL, respectively):

(i) m1 � m2 is a basic assignment on XK∪L;
(ii) (m1 � m2)↓K = m1;
(iii) m1 � m2 = m2 � m1 ⇐⇒ m↓K∩L

1 = m↓K∩L
2 ;

(iv) If A ⊆ XK∪L is a focal element of m1 � m2 then A = A↓K ⊗A↓L;
(v) If m1 and m2 are cylindrical then m1 � m2 is also cylindrical.

3 Decomposable Models

3.1 Conditional Independence

First, let us present a generally accepted notion of unconditional independence1

([1,14,16]).

Definition 2. Let m be a basic assignment on XN and K, L ⊂ N be nonempty
disjoint. We say that groups of variables XK and XL are independent2 with
respect to basic assignment m (in notation K ⊥⊥ L [m]) if for all A ⊆ XK∪L

m↓K∪L(A) = (m↓K ∩©m↓L)(A↓K∪L).

Symbol ∩© denotes the famous conjunctive combination rule (non-normalized
Dempster’s rule of combination). It was proved in [8] that Definition 2 is equiv-
alent to the following Definition 2a.

Definition 2a. Let m be a basic assignment on XN and K, L ⊂ N be nonempty
disjoint. We say that groups of variables XK and XL are independent with
respect to basic assignment m if for all A ⊆ XK∪L

m↓K∪L(A) =

{
m↓K(A↓K) ·m↓L(A↓L) if A = A↓K ×A↓L,

0 otherwise.

1 Some authors call it marginal independence.
2 Couso et al. [3] call this independence independence in random sets, Klir [11] (non-

interactivity)).
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Though it it not obvious these definitions are equivalent to each other. However,
when considering a generalization of these definitions to the conditional case we
can get different notions. Most of the authors use the generalization based on
Definition 2 (see for example papers [2,3,11,14,15,16]). In this text we will use a
simple and straightforward generalization of Definition 2a, which was introduced
in [6] and [8], and which can hardly be expressed with the help Dempster’s
rule of combination (or with the help of its non-normalized version: conjunctive
combination rule). The resulting notion differs from the notion of conditional
independence used, for example, by Shenoy [14] and Studený [16] (their notion
of conditional independence is the same as the conditional non-interactivity used
by Ben Yaghlane et al. in [2]).

Definition 3. Let m be a basic assignment on XN and K, L, M ⊂ N be disjoint,
K �= ∅ �= L. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
for any A ⊆ XK∪L∪M such that A = A↓K∪M ⊗A↓L∪M the equality

m↓K∪L∪M(A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds true, and m↓K∪L∪M(A) = 0 for all the remaining A ⊆ XK∪L∪M , for which
A �= A↓K∪M ⊗A↓L∪M .

Our definition (in the same way as the definition used in [2,14,16]) meets the
following important properties:

• for M = ∅ the concept coincides with Definition 2;
• the notion meets all the properties required from the notion of conditional

independence, so-called semigraphoid properties ([12,16,17]):

(A1) K ⊥⊥ L |M [m] =⇒ L ⊥⊥ K |M [m];

(A2) K ⊥⊥ L ∪M | J [m] =⇒ K ⊥⊥M | J [m];

(A3) K ⊥⊥ L ∪M | J [m] =⇒ K ⊥⊥ L |M ∪ J [m];

(A4) (K ⊥⊥ L |M ∪ J [m]) & (K ⊥⊥M | J [m]) =⇒ K ⊥⊥ L ∪M | J [m].

The main differences between our definition and that used in [2,14,16]) are the
following

• our definition does not suffer from the inconsistency with marginalization3 ;
• for our notion, the Dempster-Shafer counterpart to the probabilistic factor-

ization lemma has been proved in [7].

3 As it was showed by Studený, when the definition used in [2,14,16] is accepted, then
it can happen that for two consistent overlapping basic assignments there does not
exist their common extension with the required conditional independence property
(for the Studený’s example see [2,8]).
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3.2 Decomposition

Consider a sequence K1, K2, . . . , Kr meeting the running intersection property
(RIP), i.e. the sequence for which for all i = 2, . . . , r there exists j, 1 ≤ j < i,
such that

Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj .

Without a loss of generality we will assume that K1 ∪ . . . ∪Kr = N .

Definition 4. We say that a basic assignment m is decomposable (with respect
to a sequence K1, K2, . . . , Kr meeting RIP) if

m = (. . . ((m1 � m2) � m3) � . . . � mr−1) � mr.

In [7] we showed that, analogously to probabilistic decomposable models, also
Dempster-Shafer decomposable models possess special independence structures
described in the following assertion.

Theorem 1. If a basic assignment m is decomposable with respect to a sequence
K1, K2, . . . , Kr (meeting RIP) then for all i = 2, . . . , r

(Ki \ (K1∪ . . .∪Ki−1)) ⊥⊥ ((K1∪ . . .∪Ki−1)\Ki) | (Ki∩ (K1∪ . . .∪Ki−1)) [m].

As showed in the following example, the dependence structure of decomposable
models allows for their very efficient representation.

Example 1. Consider a 4-dimensional basic assignment on X{1,2,3,4} = X1 ×
X2 ×X3 ×X4, where |Xi| = 2 for all i = 1, 2, 3, 4. Since there are

2(24) − 1 = 216 − 1 = 65 535

nonempty subsets of the considered frame of discernment, this number expresses
also the maximum number of focal elements of a general basic assignment. How-
ever, the situation drastically simplifies when one considers a basic assignment
decomposable with respect (let us say) {1, 2}, {2, 3}, {3, 4} (it is obvious that
this sequence meets RIP). The simplification follows immediately from the fact
that, due to Theorem 1, there is a system of conditional independence relations
valid for basic assignment m. From this one can deduce that for all the focal
elements A of m

A = A↓{1,2} ⊗A↓{2,3} ⊗A↓{3,4}

holds true. This equality holds only for 657 out of 65 535 nonempty subsets of
X{1,2,3,4}. Nevertheless, thanks to the fact that

m = m↓{1,2} � m↓{2,3} � m↓{3,4},

we do not need to store basic assignment m but only its three marginals m↓{1,2},
m↓{2,3} and m↓{3,4}. Each of them has at most 15 focal elements and therefore
one needs only 45 numbers to represent this 4-dimensional decomposable basic
assignment.
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4 Approximation of a Primitive Sample Assignment

In this section we will show that application of decomposable models may result
not only in possibility to store multidimensional4 basic assignments but also in
possibility to compute with them using “local” computational procedures. Let
us illustrate this possibility by the way of example of approximation of a data
file with the help of a decomposable basic assignment. The reader is asked to
keep in mind that it is just an illustration. We do not propose to realize the
following primitive procedure for practical applications. Because of lack of space
we cannot present here any more sophisticated process based on more complex
ideas like the procedures studied in [5].

Having a data file with missing values one can quite naturally assign to each
data record a point-cylinder C = C↓L × XN\L from XN expressing that the
record contains |L| specific data values corresponding to C↓L and |N \L| missing
values. By a primitive sample assignment we will understand a basic assignment
m, where value m(C) is computed as a relative frequency (within the data file)
of records assigned with point cylinder C. It means that any primitive sample
assignment is cylindrical.

The approximation task is to find a decomposable basic assignment m, which
is in a sense best approximation of the primitive sample assignment for a given
data file. For this one has to specify a criterion according to which a “goodness”
of the approximation is evaluated. To do so one can consider a number of possible
divergences proposed in literature (for a nice survey see [10]). However, not all
of them are such that they make the “local” computations possible. As the
simplest example of a suitable distance let us consider a “relative entropy” type
of divergence defined

Div(m; m̄) =
∑

A⊆F(m)

m(A) log
m(A)
m̄(A)

,

where m is the primitive basic assignment to be approximated, m̄ is an ap-
proximating decomposable basic assignment and F(m) ⊂ XN is the set of focal
elements of m. It is well known that this divergence is always nonnegative, equals
0 if and only if m = m̄ and if

m(A) > 0 =⇒ m̄(A) > 0 (1)

then it is also finite.
Consider a sequence K1, K2, . . . , Kr meeting RIP such that K1∪. . .∪Kr = N ,

and an arbitrary basic assignment ¯̄m decomposable with respect to K1, . . . , Kr.
Further define a decomposable basic assignment constructed from the marginals
of m

m̄ = (. . . ((m↓K1 � m↓K2) � m↓K3) � . . . � m↓Kr−1) � m↓Kr . (2)

4 When speaking about multidimensionality in connection with Dempster-Shafer the-
ory we have in mind several tens rather than hundreds of dimensions.
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It is not difficult to show that for m̄ defined by formula (2) implication (1) is
valid (this is because we assume that m is cylindrical and for a cylinder A,
A = A↓K ⊗ A↓L always holds true) and so we get that Div(m; m̄) is finite.
Moreover

Div(m; m̄) ≤ Div(m; ¯̄m).

This is why it is enough to look for an approximation of m in the form of a
compositional model (2)5.

Let us now show that the search for the best approximation of a basic assign-
ment m (i.e. for the most advantageous sequence K1, K2, . . . , Kr meeting RIP)
can be based on “local” computations only, i.e. that the procedure stores only
and computes with marginal basic assignments m↓Ki .

To make our consideration more lucid, consider first r = 2. For this

Div(m; m̄) =
∑

A⊆F(m)

m(A) log
m(A)

(m↓K1 � m↓K2)(A)
.

The following modifications are correct because for A ⊆ F(m)

m↓K1∩K2(A↓K1∩K2) > 0

and therefore value of (m↓K1 � m↓K2)(A) is positive and computed according to
case [a] of Definition 1.

Div(m; m̄) =
∑

A⊆F(m)

m(A) log
m(A)

(m↓K1 � m↓K2)(A)

=
∑

A⊆F(m)

m(A) log
m(A) ·m↓K1∩K2(A↓K1∩K2)
m↓K1(A↓K1) ·m↓K2(A↓K2)

=
∑

A⊆F(m)

m(A) log m(A) +
∑

A⊆F(m)

m(A) log m↓K1∩K2(A↓K1∩K2)

−
∑

A⊆F(m)

m(A) log m↓K1(A↓K1)−
∑

A⊆F(m)

m(A) log m↓K2(A↓K2).

The second term of the last expression can be simplified in the following way∑
A⊆F(m)

m(A) log m↓K1(A↓K1) =
∑

B⊆F(m↓K1)

∑
A ⊆ F(m)
A↓K1 = B

m(A) log m↓K1(A↓K1)

=
∑

B⊆F(m↓K1)

log m↓K1(B)
∑

A ⊆ F(m)
A↓K1 = B

m(A)

=
∑

B⊆F(m↓K1)

m↓K1(B) log m↓K1(B).

5 Notice that in spite of the fact that the described approximation does not decrease
the number of focal elements, it can be very efficiently represented.
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Denoting
H(m↓K1) = −

∑
B⊆F(m↓K1)

m↓K1(B) log m↓K1(B),

and using analogous symbols also for the other marginals of m we get

Div(m; m̄) = H(m↓K1) + H(m↓K2)− H(m↓K1∩K2)− H(m).

Repeating the above computations for a general r one gets

Div(m; m̄) = H(m↓K1) +

(
r∑

i=2

H(m↓Ki)− H(m↓Ki∩(K1∪...∪Ki−1))

)
− H(m).

This formula shows that when searching for a suitable sequence K1, K2, . . . , Kr

meeting RIP one can omit the term H(m) because it appears in all compared
expressions. Moreover, when modifying the sequence K1, K2, . . . , Kr only slightly
one usually does not need to recompute all the terms(

H(m↓Ki)− H(m↓Ki∩(K1∪...∪Ki−1))
)

but only some of them. These properties indicate that a quite efficient method
searching for a suboptimal approximation can easily be designed.

5 Conclusions

In the paper we supported a relatively new notion of conditional independence
for Dempster-Shafer theory of evidence. This notion was first introduced in [6]
(in that paper under the name of conditional irrelevance, though) and later
also in [8] and [7], where its theoretical properties were studied. It appears
that our notion (in comparison with the notion usually used by other authors
[2,3,11,14,15,17,16]) possesses more properties of the probabilistic notion of con-
ditional independence: here we have in mind especially that it does not suffer
from the inconsistency with marginalization [2] and that it enables us to prove
the factorization lemma. And it is these very properties that enables us to define
decomposable models within Dempster-Shafer theory. Perhaps we do not need
to stress that we believe that the introduced decomposable models, just as the
probabilistic decomposable models, will allow us to design efficient computa-
tional procedures for computation in Dempster-Shafer theory.
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A Gambler’s Gain Prospects with Coherent
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Abstract. We explore some little investigated aspects of the well known
betting scheme defining coherent lower or upper previsions in terms of
admissible gains. A limiting situation (lose-or-draw) where the supremum
of some gain is zero is discussed, deriving a gambler’s gain evaluations
and comparing the differences between the imprecise and precise previ-
sion cases. Then, the correspondence of the betting scheme for imprecise
previsions with real-world situations is analysed, showing how the gam-
bler’s profit objectives may compel him to select certain types of bets.

Keywords: Imprecise previsions, coherence, betting schemes, arbitrage.

1 Introduction

Imprecise (lower or upper) previsions are very general uncertainty measures for
random variables, or for (indicators of) events, in which case we preferably speak
of imprecise probabilities. Their most significant consistency criterion, discussed
in [6], is that of coherence.

In this paper, some little explored facets of the notion of coherence are in-
vestigated. The key issue to introduce them is the well known betting scheme
interpretation of the definitions of coherent lower or upper prevision (cf. Defi-
nitions 2, 3): for each bounded random variable or, following [6], gamble X , a
gambler’s lower prevision P (X) for X is his supremum buying price for X , while
the upper prevision P (X) is his infimum selling price for X . Coherence considers
the gambler’s gain, G or G respectively, resulting from his exchanging (buying
or selling) a finite number of gambles, with the rules of Definitions 2, 3. Each ex-
change of a single gamble is called a bet, and different gains G or G are obtained
by varying the number and amount of the bets. Coherence for lower previsions
(for upper previsions) requires that the supremum of every G (of every G) is
non-negative. Given this, we focus on the following issues:

(a) in extreme situations like sup G = 0 or sup G = 0 (lose-or-draw case), what
are the gambler’s beliefs about his gain prospects?

(b) A gambler will obviously try to avoid, whenever possible, case (a). How
should he then select his bets, in order to increase his gain outlooks?

After supplying some preliminary material in Sect. 2, we tackle item (a) in Sect.
3, discussing it first in the special case of a de Finetti coherent, or briefly, dF-
coherent precise prevision. In fact, the betting schemes for coherent imprecise

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 50–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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previsions modify the earlier de Finetti’s scheme for precise previsions (or prob-
abilities), which also asks for non-negativity of the supremum of every gain G
(Definition 1). Thus the situations in (a) concern dF-coherence too, and it is
interesting to compare the different implications on the gambler’s gain outlooks
when previsions are either precise or imprecise. It is known [1] that when a dF-
coherent probability P is such that maxG = 0 for some gain G, then necessarily
the probability that just the gain G is negative is zero, P (G < 0) = 0. We ex-
tend this result to gains for dF-coherent previsions regarding simple gambles, i.e.
gambles with finitely many distinct possible values (Proposition 3 (b)), while in
the general case that sup G = 0 we show that necessarily P (G ≤ −ε) = 0, ∀ε > 0
(Proposition 3 (a)). Similar, but weaker results hold for coherent lower or upper
previsions: only lower zero probabilities are induced on the corresponding gain
evaluations (Propositions 4, 5). For instance, max G = 0 implies P (G < 0) = 0
with simple gambles, while P (G < 0) might even be 1. See Example 1 for a jus-
tification of this fact, and the discussion concluding Sect. 3 for some comments
on the relationship between coherence and arbitrage.

In real situations, a gambler clearly tries to avoid the lose-or-draw case, select-
ing rather those bets he believes to gain money from. While dF-coherent previ-
sions do not fit well with this attitude, corresponding to a fair game (P (G) = 0
whatever is G), coherent upper/lower previsions may ensure prospects of pos-
itive gains. We study this problem in Sect. 4, showing that the gambler’s bets
should be one-sided: when assigning upper (lower) previsions, he should act only
as a vendor (only as a buyer). This in fact happens in many practical situa-
tions: a bookie’s prices are an instance of upper probabilities for “selling” events
which he would certainly not buy at the same prices. Even among one-sided
bets, some are better than others: betting on atomic events in a partition, say
on ω1 and separately on ω2 (two bets), may be more profitable than allowing a
single bet on ω1 ∨ω2. Measuring the minimum expected gain from such policies
may be operationally difficult. This is done in Example 2 in the case of plau-
sibility functions, while relationships with desirability concepts are outlined in
the subsequent comments. Sect. 5 contains concluding remarks.

2 Preliminaries

Notation. Denote with D an arbitrary set of gambles.

Definition 1. [2] Given P : D→R, P is a dF-coherent prevision on D if and
only if ∀ n ∈ N+, ∀ s1, . . . , sn ∈ R, ∀ X1, . . . , Xn ∈ D, defining G=

∑n
i=1 si(Xi−

P (Xi)), it holds that sup G ≥ 0.

Here si(Xi−P (Xi)) is the elementary gain from betting on Xi, with stake si. By
introducing sign constraints on the stakes, we come to the definition of coherent
lower prevision ([6], Sect. 2.5.4 (a)):

Definition 2. Given P : D→R, P is a coherent lower prevision on D if and
only if ∀ n ∈ N, ∀ s0, . . . , sn ≥ 0, ∀ X0, . . . , Xn ∈ D, defining G =

∑n
i=1 si(Xi−

P (Xi))− s0(X0 − P (X0)), it holds that sup G ≥ 0.
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As already recalled, P (X) is interpreted as a supremum buying price for X . The
gain G is made up of n ≥ 0 elementary gains g1, . . . , gn where gi = si(Xi−P (Xi))
arises from buying siXi at the price siP (Xi), and of the term g0 = −s0(X0 −
P (X0)) = s0P (X0) − s0X0, which may be viewed as the gambler’s elementary
gain for selling s0X0 at the price s0P (X0). This term, forcing the gambler to sell
X0 at his supremum buying price for it, ensures that coherent lower previsions
have appropriate consistency properties not guaranteed by weaker consistency
concepts, like that of previsions avoiding sure loss (ASL) which is in fact obtained
from Definition 2 by putting s0 = 0 ([6], Sect. 2.4.4 (a)). For instance, if D =
{X}, P (X) < inf X avoids sure loss but is incoherent, since G = −s0(X−P (X))
is such that sup G < 0 for s0 > 0. On the contrary, P (X) = inf X is a coherent
assessment on X .

More generally, the vacuous lower prevision P (X) = inf X, ∀X ∈ D is coher-
ent, and may express total lack of information about the gambles in D.

Whenever both upper and lower previsions are assessed, they are customarily
conjugate: P (X) = −P (−X).

Conjugacy allows us to refer to lower or alternatively upper previsions only;
results about one kind of imprecise prevision are easily reworded for the other
one. The definition of coherent upper prevision is:

Definition 3. Given P : D→R, P is a coherent upper prevision on D if
and only if ∀ n ∈ N, ∀ s0, . . . , sn ≥ 0, ∀ X0, . . . , Xn ∈ D, defining G =∑n

i=1 si(P (Xi)−Xi)− s0(P (X0)−X0), it holds that sup G ≥ 0.

Here the gambler acts as a vendor of siXi at the price siP (Xi), but may be
obliged to buy s0X0 at his selling price for it, s0P (X0). The vacuous upper
prevision P (X) = sup X, ∀X ∈ D is coherent.

Properties of coherent imprecise previsions are extensively discussed in [6].
We gather some of them, needed in the sequel, in the next proposition.

Proposition 1. Let P (P ) be a coherent lower (upper) prevision on D. It holds
that (for properties (b) to (d), whenever the previsions are defined):

(a) Whatever is D′ ⊃ D, there exists a coherent lower (upper) prevision which
extends P (P ) on D′. Such an extension is generally not unique, but there
always exists a least-committal one, the natural extension E (E), i.e. E = P
on D, and E ≤ P ∗ on D′, if P ∗ is any coherent extension of P (E = P on
D, and E ≥ P

∗
on D′, if P

∗
is a coherent extension of P )

(b) P (X + Y ) ≥ P (X) + P (Y ), P (X + Y ) ≤ P (X) + P (Y )
(c) P (aX + b) = aP (X) + b, P (aX + b) = aP (X) + b, ∀a > 0, b ∈ R
(d) inf X ≤ P (X) ≤ P (X) ≤ sup X.

Coherent imprecise previsions include several uncertainty models as special cases,
for instance dF-coherent precise previsions. A dF-coherent prevision is simulta-
neously both a lower and an upper coherent prevision. Further,

Proposition 2. If P is a dF-coherent prevision on D, then: (a) there exists a
dF-coherent extension of P on any D′ ⊃ D; (b) P (aX + bY ) = aP (X)+ bP (Y ).
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When all gambles in D are (indicators of) events, previsions narrow down to
probabilities, and the conjugacy relation between upper and lower probabilities
is written as P (A) = 1− P (Ac), where Ac is the negation of event A.

The symbol IA will denote the indicator of event A.

3 The Lose-or-Draw Case

Let us consider first a dF-coherent prevision P on D. We prove that

Proposition 3. Given a dF-coherent prevision P on D, suppose that for some
n ∈ N+, s1, . . . , sn ∈ R, X1, . . . , Xn ∈ D it holds for G =

∑n
i=1 si(Xi − P (Xi))

that sup G = 0. Then (the dF-coherent extension of) P is uniquely determined
on certain events concerning G, and precisely:

(a) P (G ≤ −ε) = 0, ∀ε > 0
(b) If in addition X1, . . . , Xn are all simple, we also have that P (G < 0) = 0.1

Proof. Proof of (a). Suppose inf G < 0 (if inf G = 0, the proof is trivial). The
thesis claims that if a dF-coherent P is assessed on D and there is a gain G such
that sup G = 0, then for any given ε > 0 the dF-coherent extension of P on
D′ = D ∪ {G ≤ −ε} (there exists one by Proposition 2 (a)) is unique and such
that P (G ≤ −ε) = 0. Thus, it is sufficient to show by contradiction that when
P (G ≤ −ε) > 0 there is some gain G′ on D′ such that max G′ < 0.

Given ε > 0, assume then P (G ≤ −ε) > 0 and consider the atoms of a
partition Pc describing all jointly possible values of X1, . . . , Xn and hence of G.
These are of two types: atoms of type ω+, if G(ω+) > −ε; atoms of type ω−, if
G(ω−) ≤ −ε.

Define G′ = G + s(IG≤−ε − P (G ≤ −ε)) and choose k such that 0 < k <
εP (G ≤ −ε).

At ω+, G′(ω+) = G(ω+)−sP (G ≤ −ε) ≤ −k iff s ≥ G(ω+)+k
P (G≤−ε) . Hence G′ ≤ −k

for all atoms of this type if

s > sup
ω+

{
G(ω+) + k

P (G ≤ −ε)

}
=

k

P (G ≤ −ε)
> 0 . (1)

At ω−, G′(ω−) = G(ω−) + s(1−P (G ≤ −ε)). Since −G(ω−) ≥ ε, ∀ω−, we have
that G′ ≤ −k for all atoms of this type if

s(1− P (G ≤ −ε)) < −k + ε . (2)

Note that −k + ε > 0, because k < εP (G ≤ −ε). If P (G ≤ −ε) = 1, then (2)
trivially holds, while (1) can be satisfied by choosing s sufficiently large. This
establishes (a).

1 The dF-coherent extension of P is mentioned explicitly because (the indicators of)
the events (G ≤ −ε) and (G < 0) need not belong to D. We shall omit similar
specifications in the analogous Propositions 4 and 5.
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On the other hand, if P (G ≤ −ε) < 1, then supω− G′(ω−) ≤ −k if s <
−k+ε

1−P (G≤−ε) ; hence, using also (1), sup G′ ≤ −k if 0 < k
P (G≤−ε) < s < −k+ε

1−P (G≤−ε) .
It is immediate to check that k

P (G≤−ε) < −k+ε
1−P (G≤−ε) iff k < εP (G ≤ −ε), as

already assumed. Hence also in this case (a) is established.
Proof of (b). Follows from (a), noting that when X1, . . . , Xn are all simple G

takes on finitely many values, hence there exists ε > 0 such that (G < 0) and
(G ≤ −ε) are equal. ��

When the supremum of some gain, let it be G∗, is 0 for a dF-coherent prevision
P , then inf G = 0 for G = −G∗. Also G is an admissible gain, by Definition
1, for the same prevision P , and realises the opposite win-or-draw case for the
gambler. However, the gambler is rather skeptical about his winning chances:

Corollary 1. If for some dF-coherent P there is some gain G in Definition 1
such that inf G = 0, then necessarily P (G ≥ ε) = 0, ∀ε > 0.

Proof. Since inf G = 0 iff sup(−G) = 0, we may apply Proposition 3 (a) to the
admissible gain −G, getting P (−G ≤ −ε) = P (G ≥ ε) = 0. ��

We turn now to coherent imprecise previsions. The next proposition is the version
for coherent lower previsions of Proposition 3.

Proposition 4. Given a coherent lower prevision P on D, suppose that for some
n ∈ N, s0, . . . , sn ≥ 0, X0, . . . , Xn ∈ D, the gain G =

∑n
i=1 si(Xi − P (Xi)) −

s0(X0 − P (X0)) is such that sup G = 0. This implies that

(a) P (G ≤ −ε) = 0, ∀ε > 0.
(b) If X0, . . . , Xn are all simple, P (G < 0) = 0.

Proof. The proof replicates that of Proposition 3, after replacing P, G, G′ with
P , G, G′, X1, . . . , Xn with X0, . . . , Xn, and the terms “dF-coherent”, “Proposi-
tion 2 (a)” with “coherent”, “Proposition 1 (a)”.

Note that G′ is an admissible gain by Definition 2, since it adds to G a term,
s(IG≤−ε − P (G ≤ −ε)), whose stake s is positive. ��

One might wonder whether stronger implications than those in Proposition 4
hold, in particular whether P (G < 0) = 0 in case (b) (or P (G ≤ −ε) = 0 in case
(a)). The answer is no, as shown by the next example.

Example 1. Let D = {X}, where X is a simple gamble, P (X) = min X . If n =
0, s0 > 0 in Definition 2, the gain G = −s0(X −min X) is such that maxG = 0.
It is coherent to assess P (G < 0) = 1 − P (G ≥ 0) = 1 − P (G = 0) = 1. In fact
this is equivalent to extending P on D′ = {X} ∪ {G = 0} letting P (G = 0) = 0,
and the extension is coherent, being the vacuous lower prevision on D′.

Putting P (G < 0) = 1 in this example is also intuitively sound: the assignment
P (X) = min X is vacuous, hence the gambler has no significant information on
X . Quite reasonably then, his opinion about the gain G may be vacuous too.
A dF-coherent assessment P (X) = min X would be radically different, meaning
that the gambler is almost sure that X is equal to its minimum. ��
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A result similar to Proposition 4 holds for upper previsions:

Proposition 5. Given a coherent upper prevision P on D, suppose there exist
n ∈ N, s0, . . . , sn ≥ 0, X0, . . . , Xn ∈ D, such that for the corresponding gain
G =

∑n
i=1 si(P (Xi)−Xi)− s0(P (X0)−X0) it is sup G = 0. Then

(a) P (G ≤ −ε) = 0, ∀ε > 0.
(b) If X0, . . . , Xn are all simple, P (G < 0) = 0.

Proof. Use conjugacy to write G as a gain concerning the conjugate P of P ,
which is a lower prevision coherent on D− = {−X : X ∈ D}: G =

∑n
i=1 si(−Xi−

P (−Xi))− s0(−X0 − P (−X0)). Then apply Proposition 4. ��

Also P (G < 0) may be 1 when maxG = 0. We can see this in a modified version
of Example 1, where again D = {X} and X is a simple gamble, but we assess
now P (X) = max X . Then max G = 0 for G = −s0(max X − X), s0 > 0, but
P (G < 0) = 1 is a coherent extension of P on D′ = D ∪ {G < 0}, being the
vacuous upper prevision on D′.

Finally, note that Propositions 3, 4 and 5 imply, respectively, that the lower
distribution functions FG(x) = P (G ≤ x), FG(x) = P (G ≤ x) and the distribu-
tion function FG(x) = P (X ≤ x) are all piecewise constant and equal to 0 for
x < 0, to 1 for x ≥ 0, thus being left-discontinuous at 0.

Discussion. It is well known from the least general coherence concept, dF-
coherence for precise probabilities, that replacing condition maxG ≥ 0 with
maxG > 0 would rule out lose-or-draw bets while introducing other significant
constraints (every event A �= ∅, A �= Ω should be given probability strictly be-
tween 0 and 1, cf. [1], Sect. 9.3.4). More general coherence concepts are obviously
concerned with similar problems. The existence of gains whose supremum is 0 is
therefore something to cope with, in the coherence framework.

Those of such gains whose infimum is negative correspond to an arbitrage op-
portunity for the gambler’s competitor, since his gain (the opposite of gambler’s
gain) is non-negative, and positive in some cases. More restrictive concepts of
arbitrage may leave out some, but not all, of these instances, cf. [4]. Thus, while
incoherence implies the existence of an arbitrage opportunity, coherence does not
always exclude it. We saw that the gambler’s fears of suffering from an arbitrage
are however rather limited. A basic difference between precise and imprecise
previsions is that these beliefs are expressed in terms of zero probabilities in the
former case, of zero lower probabilities only in the latter.

There is another important difference: the dF-coherence condition sup G ≥ 0
is equivalent to inf G · sup G ≤ 0, hence inf G cannot be greater than 0, and even
when it is 0, Corollary 1 shows that the gambler does not really expect to gain
much. The equivalence depends on the fact that when G is an admissible gain for
dF-coherence, so is also −G. In particular, when sup G = 0, then inf(−G) = 0.

With imprecise previsions, there exist gains from coherent evaluations whose
infimum is positive. Take the vacuous upper probability on a finite partition P =
{ω1, . . . , ωn}, i.e. P (ωi) = 1, i = 1, . . . , n. The admissible gain G =

∑n
i=1(1−Iωi)
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is constant and equal to n− 1. These facts are possible because condition sup G
≥ 0 is not equivalent to inf G · sup G ≤ 0: what precludes the equivalence is that
if G is an admissible gain for P , −G is generally not.

Thus, while dF-coherence treats symmetrically the lose-or-draw and win-or-
draw cases, coherence does not, accepting even the “win only” case.

4 Bet Selection and Win Prospects

In the ideal schemes of Definitions 1, 2, 3, a gambler should accept all bets guar-
anteeing gains whose supremum is non-negative. In real-world, the organizer of a
game, let us call him House, usually sells each gamble X to a counterpart, Bettor,
at a price P (X) fixed by himself. We shall mainly focus on House’s viewpoint,
since Bettor is often the weaker party, having individually no power to change the
rules or prices in the game, but being merely allowed to decide whether to play or
not. Real situations, such as those where House is the organizer of some lottery,
a bookie or an insurer, are rather close to this pattern. In such instances, House’s
prices can not be modelled by dF-coherent previsions: the gain G in Definition 1
is expected to be 0, i.e. P (G) = 0, as follows easily using Proposition 2 (b), while
House aims at a positive (expected) gain. Coherent upper previsions, interpreted
as House’s selling prices, appear an adequate model. The counterpart, Bettor,
should use his coherent lower previsions as buying prices.

The problem we tackle in this section is item (b) in the Introduction, i.e.
how should House and Bettor select their bets? In House’s eyes (the viewpoint
for Bettor is specular), gains where sup G = 0 should be avoided. Those bets
ensuring inf G > 0 are the ideal ones, but they might of course be hard to place.

In the generic case that G (G) can be both positive and negative, it is conve-
nient for House (Bettor) not to accept bets with s0 �= 0, thus acting exclusively
as a sellor (buyer). This ensues from the following simple results.

Proposition 6. Let P be a coherent lower prevision on D and P its conjugate.
Consider a gain concerning P .

(a) For a gain G0 = −s0(X0−P (X0)), it is necessary for coherence on D∪{G0}
that: P (G0) = s0(P (X0)− P (X0)) (≤ 0), P (G0) = 0;

(b) For a gain G =
∑n

i=1 si(Xi−P (Xi))−s0(X0−P (X0)), the following bounds
hold: P (G) ≥ s0(P (X0)− P (X0)), P (G) ≤

∑n
i=1 si(P (Xi)− P (Xi)).

Let P be a coherent upper prevision on D and P its conjugate. Consider a gain
concerning P .

(c) For a gain G0 = −s0(P (X0)−X0), it is necessary for coherence on D∪{G0}
that: P (G0) = s0(P (X0)− P (X0)) (≤ 0), P (G0) = 0;

(d) For a gain G =
∑n

i=1 si(P (Xi)−Xi)−s0(P (X0)−X0), the following bounds
hold: P (G) ≥ s0(P (X0)− P (X0)), P (G) ≤

∑n
i=1 si(P (Xi)− P (Xi)).

Proof. Proof of (a). Using Proposition 1 (c) and conjugacy, P (G0) =
s0P (P (X0)−X0) = s0(P (X0)+P (−X0)) = s0(P (X0)−P (X0)) (≤ 0 by Propo-
sition 1 (d)), and P (G0) = s0P (P (X0)−X0) = s0(P (X0) + P (−X0)) = 0.
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Proof of (b). Use Proposition 1 (b), (c), and (a) above: P (G) ≥
∑n

i=1 siP (Xi−
P (Xi)) + P (−s0(X0 − P (X0))) = P (G0) = s0(P (X0) − P (X0)), while P (G) ≤∑n

i=1 siP (Xi − P (Xi)) + P (−s0(X0 − P (X0))) =
∑n

i=1 si(P (Xi)− P (Xi)).
The proof of (c), (d) is obtained easily from (a), (b), using conjugacy. ��

Proposition 7. Let P be a coherent lower prevision on D, and consider a gain
G = GASL +G0,

2 where GASL =
∑n

i=1 si(Xi−P (Xi)), G0 = −s0(X0−P (X0)).
Then, for any coherent extension of P on D∪{G, GASL, G0}, and of its conjugate
P , it holds that P (GASL) ≥ P (G), P (GASL) ≥ P (G).

For a coherent upper prevision P on D, it holds (using corresponding defini-
tions) that

P (GASL) ≥ P (G), P (GASL) ≥ P (G) . (3)

Proof. We prove the inequalities in (3) (the proof of those for GASL is analogue),
using Proposition 1 (b), conjugacy and Proposition 6 (c):

P (GASL) = P (G−G0) ≥ P (G) + P (−G0) = P (G)− P (G0) = P (G).
P (G) = P (GASL + G0) ≤ P (GASL) + P (G0) = P (GASL). ��

Propositions 6 and 7 have important implications in the bet selection strategy
of House and Bettor. Considering House, he should not accept any one-bet gain
G0 where he buys s0X0 at his selling price s0P (X0). In fact, from Proposition 6
(c) a negative or at best null gain is expected in this case.

More generally, House should not engage in any game G including a bet where
he buys s0X0 for s0P (X0), that is, he should buy nothing at his selling prices. In
fact, House’s upper and lower previsions P (GASL), P (GASL) for the gain GASL

obtained from G by cancelling the bet on s0X0 are not smaller than those for the
gain G from G, by (3), and at any rate P (GASL) ≥ 0, from the first inequality
in Proposition 6 (d) with s0 = 0.

Although House expects the gain GASL to be at least non-negative, it is
possible that P (GASL) = 0, for instance when House makes a single bet (n = 1):
P (s1(P (X1)−X1)) = 0.

The lowest coherent value for P (GASL), i.e. the natural extension E(GASL),
may also be strictly positive, even when inf GASL < 0, cf. Example 2.

Given that House will take up one-sided bets only, how can he try to maximise
his expected gain? Clearly, restricting the subadditivity property in Proposition
1 (b), P (X +Y ) ≤ P (X)+P (Y ): the strict inequality corresponds to a discount
to Bettor when he makes a single bet on X + Y (with stake s) rather than two
bets (both with the same stake s), on X, Y respectively.

An interesting possibility for House is to employ coherent upper previsions
which are 2-alternating, because this ensures that they are additive for comono-
tonic gambles [3].

In the case that the potential bets regard events in the powerset A(P) of a
finite partition P = {ω1, . . . , ωn}, House has the further option of restricting to

2 We write GASL as this is the generic gain in the consistency condition of avoiding
sure loss ([6], Sect. 2.4.4 (a)).
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the atomic events in P. This obliges a counterpart, willing to bet on A ∈ A(P)
with stake s, to bet separately on some or all ωi ∈ P, ωi ⇒ A. If he bets on
all such ωi with the same stake s, his total expense s

∑
ωi⇒A P (ωi) will be not

smaller than sP (A), which means that House allows for no discount at all. The
option is sometimes applied in practice: a bookie offering bets on “A wins against
B”, “A and B draw”, “B wins”, does not always offer a bet also on, say, “B does
not lose”. In the next example we consider the consequences of this strategy on
House’s gain outlooks when his upper probabilities are plausibility functions.

Example 2. Suppose House assigns a plausibility function P on A(P), P (A) =∑
B:B∧A 
=∅ m(B), ∀A ∈ A(P), where m is a mass function, i.e. m : A(P)→[0, 1],

m(∅) = 0 and
∑

B∈A(P) m(B) = 1. This is equivalent to assigning the conjugate
belief function P on A(P) using the same m, P (A) =

∑
B⇒A m(B). Even though

they were introduced independently [5], belief functions are notable instances
of coherent lower probabilities [7], and the natural extension E(X) of a belief
function P on any gamble X defined on P is known ([6], Note 2 to Sect. 3.2) to
be E(X) =

∑
B∈A(P) m(B) minωi⇒B{X(ωi)}.

If House bets on some or all atomic events in P = {ω1, . . . , ωn} only,
G =

∑n
i=1 si(P (ωi) − Iωi), with si = 0 if House does not bet on ωi. Applying

the natural extension formula above to G, the property
∑

B∈A(P) m(B) = 1,
writing maxB{si} and

∑
B si to mean that the maximum, respectively the

summation is made over all si such that ωi ⇒ B, and noting (at the fourth
equality) that {B : B ∧ ωi �= ∅} = {B : ωi ⇒ B},

E(G) =
∑

B∈A(P) m(B) ·minωi⇒B{
∑n

i=1 si(P (ωi)− Iωi)}
=
∑n

i=1 siP (ωi)−
∑

B∈A(P) m(B) ·maxωi⇒B {
∑n

i=1 siIωi}
=
∑n

i=1 si

∑
B:B∧ωi 
=∅ m(B)−

∑
B∈A(P) m(B) ·maxB {si}

=
∑

B∈A(P) m(B)
∑

B si −
∑

B∈A(P) m(B) ·maxB {si}
=
∑

B∈A(P)−P
m(B) · (

∑
B si −maxB{si}) ≥ 0.

In accordance to previously pointed out facts, E(G) = 0 when m(B) = 0, ∀B ∈
A(P) − P (in which case the plausibility reduces to a precise probability), or
when House bets on just one ωi ∈ P. Otherwise, if House bets on r ≥ 2 atomic
events, say for notational ease on ω1, . . . , ωr, E(G) > 0 if and only if at least
one non-atomic event B ∈ A(P)− P, such that B ∧ (ω1 ∨ . . . ∨ ωr) �= 0, is given
positive mass, m(B) > 0. In other words, House expects a positive gain if and
only if his uncertainty evaluations on the non-atomic events compatible with
ω1 ∨ . . . ∨ ωr are imprecise for at least one of them. ��

Comments. It seems reasonable to assume that in real-world situations House
is inclined to propose those and only those bets guaranteeing a strictly positive
expected gain G, which may be (prudentially) evaluated by the natural extension
E(G) of House’s assessments. This criterion clearly enforces the following two of
the three axioms for strictly desirable (SD, in short) gambles in [6], Sect. 3.7.8:
avoiding partial loss (if G ≤ 0, G is not SD), openness (if G is SD, then either
G ≥ 0 or G− δ is SD for some δ > 0), while it is slightly stronger than the third
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axiom (accepting partial gains: G ≥ 0 and G �= 0 imply that G is SD). Thus the
bet selection criterion based on E(G) may be also viewed as an operational way
of requiring strict desirability for G.

Note further that when sup G = 0, as in Section 3, G is not SD. However, G
might possibly be almost desirable ([6], Sect. 3.7.3).

5 Conclusions

The investigation in this paper confirms the distinction between the theoretical
and practical significance of the coherence definition. A game organizer (House)
does not necessarily take up a bet just because it is allowed in the coherence
theoretical framework, and precisely coherence arguments show how his aim
for profit makes him restrict the range of accepted bets to (a subset of) those
admissible with the weaker condition of avoiding sure loss. On the other hand,
House could not propose selling prices that avoid sure loss only, as they might
be inconsistent or simply unrealistic (for instance, P (X) might be higher than
sup X). In this sense, the bets in the coherence framework not operated by House,
like that corresponding to −s0(P (X0) − X0) or those ensuring only sup G =
0, have an also practical valiance, forcing House to apply coherent (and more
acceptable) prices. Partial results not reported here show that many of these
conclusions apply to other concepts of consistency, for instance to coherence for
precise or imprecise conditional previsions.
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Abstract. Sets of desirable gambles constitute a quite general type of
uncertainty model with an interesting geometrical interpretation. We
study infinite exchangeability assessments for them, and give a coun-
terpart of de Finetti’s infinite representation theorem. We show how the
infinite representation in terms of frequency vectors is tied up with multi-
variate Bernstein (basis) polynomials. We also lay bare the relationships
between the representations of updated exchangeable models, and dis-
cuss conservative inference (natural extension) under exchangeability.
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herence, exchangeability, representation, natural extension, updating.

1 Introduction

In this paper, we bring together desirability,1 an interesting approach to mod-
elling uncertainty, with infinite exchangeability, a structural assessment for un-
certainty models that is important for inference purposes.

Desirability, or the theory of (coherent) sets of desirable gambles, represents
the uncertainty of a subject with a set of gambles2 that she finds desirable. This
theory is more expressive than the theory of (coherent) lower previsions [11],
which itself is a generalization of the theory of linear previsions [5]. A complete
model for a rational subject’s uncertainty is a coherent set of desirable gambles,
or mathematically, a cone satisfying some constraints. This geometric aspect is
one of the points that make desirability appealing. Another is its generality [12].
We introduce the necessary desirability-related concepts in Sec. 2.

Here we study infinite exchangeability1 for sets of desirable gambles. An ex-
changeability assessment expresses that the order of the samples in a sequence
of them is irrelevant for inference purposes. This study builds on earlier work on
exchangeability for coherent lower previsions [2] and finite exchangeability for
1 For a brief historical overview, see some of our earlier work [1, Sec. 1].
2 Gambles are also called bets or random rewards.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 60–69, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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sets of desirable gambles [1]. We need to recall the definition and representation
results for finite exchangeability of sets of desirable gambles (Sec. 3). After that,
we can give our definition and representation result of infinite exchangeability
for sets of desirable gambles and give some results about updating and natural
extension under exchangeability (Sec. 4).

We end with some conclusions (Sec. 5).

2 Desirability

Consider an experiment with a non-empty set Ω describing its mutually exclusive
possible outcomes, and a subject who is uncertain about its outcome.

Sets of desirable gambles. A gamble f is a bounded real-valued map on Ω,
and it is interpreted as an uncertain reward. When the actual outcome of the
experiment is ω, then the corresponding (possibly negative) reward is f(ω). The
set of all gambles is G(Ω).

We say that a non-zero gamble f is desirable to a subject if she accepts
to engage in the following transaction, where: (i) the actual outcome ω of the
experiment is determined, and (ii) she receives the reward f(ω). The zero gamble
is not considered to be desirable.3

We try to model the subject’s beliefs about the outcome of the experiment
by considering which gambles are desirable for her. We suppose the subject has
some set R ⊆ G(Ω) of desirable gambles.

Coherence. Not every such set should be considered as a reasonable model,
and in what follows, we give an abstract and fairly general treatment of ways to
impose ‘rationality’ constraints on sets of desirable gambles.

The set G(Ω) of all gambles on Ω is a linear space with respect to the (point-
wise) addition of gambles, and the (point-wise) scalar multiplication of gambles
with real numbers. The positive hull operator posi generates the set of finite
strictly positive linear combinations of elements of its argument set. A subset C
of G(Ω) is a convex cone if posi(C) = C.

Consider a linear subspace K of the linear space G(Ω). With any convex cone
C ⊂ K such that 0 ∈ C we can always associate a vector ordering � on K, defined
by f � g ⇔ f − g ∈ C ⇔ f − g � 0. The partial ordering � turns K into an
ordered linear space [10, Section 11.44]. We also write f � g if f � g and f �= g.
Finally, we let K�0 := {f ∈ K : f 	 0} = −C and K�0 := {f ∈ K : f � 0} = C0.4

Definition 1 (Avoiding non-positivity and coherence). Let K be a linear
subspace of G(Ω) and let C ⊂ K be a convex cone containing the zero gamble 0.

A set of desirable gambles R ⊆ K avoids non-positivity relative to (K, C) if
f �	 0 for all gambles f in posi(R), or in other words if K�0 ∩ posi(R) = ∅.

A set of desirable gambles R ⊆ K is coherent relative to (K, C) if it satisfies
the following requirements, for all gambles f , f1, and f2 in K and all real λ > 0:
3 For clarification on the confusing nomenclature in the literature, see [1, footnote 2].
4 Subscripting a set of gambles with zero removes the zero gamble, if present.
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D1. if f = 0 then f /∈ R;
D2. if f � 0 then f ∈ R, or equivalently K�0 ⊆ R;
D3. if f ∈ R then λf ∈ R [scaling];
D4. if f1, f2 ∈ R then f1 + f2 ∈ R [combination].
We denote by D(K,C)(Ω) the set of sets of desirable gambles that are coherent
relative to (K, C).
These requirements make R a cone that excludes K�0:
D5. if f 	 0 then f /∈ R, or equivalently K�0 ∩R = ∅.
We see that K is never, and K�0 is always coherent relative to (K, C).
Natural extension. If we consider an arbitrary non-empty family of sets of
desirable gambles that are coherent relative to (K, C), then so is their intersection.
If a subject gives us an assessment, a set A ⊆ K of gambles on Ω that she finds
desirable, then the following theorem tells us exactly when this assessment can
be extended to a coherent set, and how to construct the smallest such set.

Theorem 1 (Natural extension). Let K be a linear subspace of G(Ω) and
let C ⊂ K be a convex cone containing the zero gamble 0.

Consider an assessment A ⊆ K, and define its (K, C)-natural extension:
E(K,C)(A) :=

⋂{R ∈ D(K,C)(Ω) : A ⊆ R}, with
⋂ ∅ = K. Then the following

statements are equivalent:
(i) A avoids non-positivity relative to (K, C);
(ii) A is included in some set of desirable gambles that is coherent relative

to (K, C);
(iii) E(K,C)(A) �= K;
(iv) the set of desirable gambles E(K,C)(A) is coherent relative to (K, C);
(v) E(K,C)(A) is the smallest set of desirable gambles that is coherent relative

to (K, C) and includes A.
When any of these equivalent statements holds, then E(K,C)(A) = posi

(K�0∪A
)
.

Point-wise comparison coherence. We now turn to the important special
case, commonly considered in the literature [12], where K := G(Ω) and the par-
tial order � is the point-wise ordering ≥.5 This partial order is associated to
C := G+

0 (Ω) := G(Ω)>0, the cone of all non-negative gambles.
If R avoids non-positivity relative to

(G(Ω),G+
0 (Ω)

)
, we simply say that R

avoids non-positivity: G−(Ω)∩posi(R) = ∅, where G−(Ω) :=G(Ω)≤0 is the set of
all non-positive gambles. Similarly, ifR is coherent relative to

(G(Ω),G+
0 (Ω)

)
, we

simply say that R is coherent, and we denote the set of coherent sets of desirable
gambles by D(Ω). In this case, the coherence conditions D1–D5 are to be seen
as rationality criteria. The

(G(Ω),G+
0 (Ω)

)
-natural extension of an assessment

A ⊆ G(Ω) is simply denoted by E(A), and is called the natural extension of A.

Weakly desirable gambles. We now define weak desirability, a concept that
lies at the basis of our definition of exchangeability.
5 f ≥ g iff f(ω) ≥ g(ω) for all ω in Ω; f > g iff f ≥ g and f �= g.
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Definition 2 (Weak desirability). Consider a coherent set R of desirable
gambles. Then a gamble f is called weakly desirable if f + f ′ is desirable for all
desirable f ′, i.e., if f + f ′ ∈ R for all f ′ in R. So the set of weakly desirable
gambles is DR := {f ∈ G(Ω) : f +R ⊆ R}.

Every desirable gamble is also weakly desirable, so R ⊆ DR. Moreover, DR also
satisfies the scaling and combination requirements D3–D4, so it is a cone as well.

Updating sets of desirable gambles. Consider a set of desirable gambles R
on Ω. With a non-empty subset B of Ω, we associate an updated set of desirable
gambles R�B := {fB : f = IBf ∈ R} ⊆ G(B),6 where fB is the restriction of f
to B and IB is the indicator function of B, i.e., 1 on B and 0 elsewhere. R�B is
our subject’s set of desirable gambles contingent on observing the event B.

Proposition 1. If R is a coherent set of desirable gambles on Ω, then R�B is
a coherent set of desirable gambles on B.

3 Finite Exchangeable Sequences

Now that we have familiarised ourselves with sets of desirable gambles, we turn
to exchangeability. In this section, we recall the basic definitions and results
about finite exchangeable sequences from our earlier work [1], and add some
new material related to frequency vector representations.

Consider random variables X1, . . . , XN taking values in a non-empty finite
set X , where N ∈ N0, i.e., a positive integer. The possibility space is Ω = XN .

Let x = (x1, . . . , xN ) be an arbitrary element of XN . PN is the set of all
permutations of the index set {1, . . . , N}. With any such permutation π, we
associate a permutation of XN , also denoted by π, and defined by (πx)k = xπ(k).
Similarly, we lift π to a permutation πt of G(XN ) by letting πtf = f ◦ π.

The counting map TN maps a sequence x to its count vector, an X -tuple
with a z-component TNz (x) := |{k ∈ {1, . . . , N} : xk = z}| for all z in X . The set
of possible count vectors is given by NN :=

{
m ∈ NX :

∑
x∈X mx = N

}
. The

permutation invariant atoms [x] := {πx : π ∈ PN} are the smallest permutation
invariant subsets of XN . If m = TN(x), then [x] =

{
y ∈ XN : TN(y) = m

}
,

so the atom [x] is completely determined by the count vector m of all its the
elements, and is therefore also denoted by [m].

Defining exchangeability. If a subject assesses that X1, . . . , XN are ex-
changeable, this means that for any gamble f and any permutation π, she
finds exchanging πtf for f weakly desirable, because she is indifferent between
them [11, Section 4.1.1]. Taking into account that DR is a cone, we introduce
the linear7 space DUN := posi

{
f − πtf : f ∈ G(XN ) and π ∈ PN

}
. It holds that

R∩DUN = ∅.
6 Our definition is different from, but equivalent to the usual one [12].
7 Due to the negation invariance of posi’s argument.
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Definition 3 (Exchangeability). A coherent set R of desirable gambles on
XN is called exchangeable if one (and hence both) of the following equivalent
conditions is (are) satisfied: (i) all gambles in DUN are weakly desirable: DUN ⊆
DR; and (ii) DUN +R ⊆ R.

Updating exchangeable models. Consider an exchangeable and coherent set
of desirable gambles R on XN . Assume that the subject has observed the values
x̌ = (x̌1, x̌2, . . . , x̌ň) or a count vector m̌ ∈ N ň of the variables X1, . . . , Xň. She
wants to make inferences about the remaining n̂ :=N− ň variables. Consider the
updated models R�{x̌} × X n̂ and R�[m̌]×X n̂, and their restrictions to these n̂
variables, R�x̌ and R�m̌.

Proposition 2. Consider x̌ in X ň, m̌ in N ň, and a coherent and exchange-
able set of desirable gambles R on XN . Then R�x̌ and R�m̌ are coherent and
exchangeable sets of desirable gambles on X n̂. If m̌ = T ň(x̌), then R�x̌ = R�m̌.

Finite representation in terms of count vectors. In earlier work [1], we
have proved that a coherent and exchangeable set of desirable gambles on se-
quences can be represented by a coherent set of desirable gambles on count
vectors. To move between both spaces of gambles, we were led to the linear map
MuHyN that maps a gamble f on XN to the gamble MuHyN(f) := MuHyN(f |·)
onNN . Here, for everym inNN , MuHyN(f |m):=

∑
y∈[m] f(y)/|[m]| is the expec-

tation of f under the multivariate hyper-geometric distribution [7, Section 39.2]
associated with random sampling without replacement from an urn, whose com-
position is characterised by the count vector m. For the other direction, we use
the the linear map TN that maps a gamble g on NN to the permutation invari-
ant gamble TN (g) := g ◦ TN on XN assuming the value g(m) on the invariant
atom [m].

Theorem 2 (Finite Representation). A set of desirable gambles R on XN is
coherent and exchangeable iff there is some coherent set S of desirable gambles
on NN such that R = (MuHyN)−1(S), and in that case this S is uniquely
determined by S =

{
g ∈ G(NN ) : TN (g) ∈ R

}
= MuHyN(R). We call S the

count representation of the exchangeable set R.

Multinomial processes. Next, we turn to a number of important ideas related
to multinomial processes. They are useful for comparisons with the existing liter-
ature [6, for example], and essential for our treatment of countable exchangeable
sequences in Section 4.

Consider the X -simplex ΣX :=
{
θ ∈ RX : θ ≥ 0 and

∑
x∈X θx = 1

}
, and, for

N ∈ N0, the linear map CoMnN from G(NN ) to G(ΣX ) defined by CoMnN(g) =
CoMnN(g|·), where for all θ in ΣX , CoMnN(g|θ):=

∑
m∈NN g(m)Bm(θ) is the ex-

pectation associated with the count multinomial distribution with parametersN
and θ, and where Bm is the multivariate Bernstein (basis) polynomial of degree
N given by Bm(θ) :=

(
N
m

)∏
x∈X θ

mx
x = |[m]|∏x∈X θmxx . We also consider the
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related linear map MnN from G(XN ) to G(ΣX ) defined by MnN(f) = MnN(f |·),
where for all θ in ΣX , MnN(f |θ) :=

∑
m∈NN MuHyN(f |m)Bm(θ) is the expecta-

tion associated with the multinomial distribution with parameters N and θ. We
then have that CoMnN = MnN ◦ TN and MnN = CoMnN ◦MuHyN.

The Bernstein basis polynomials Bm, m ∈ NN form a basis for the linear
space VN (ΣX ) of all polynomials on ΣX of degree up to N [9]. This means that
for each polynomial p whose degree deg(p) does not exceed N , there is a unique
gamble bNp on NN such that p = CoMnN(bNp ). We denote by V (ΣX ) the linear
space of all polynomials on ΣX .

Finite representation in terms of polynomials. We see that the range of
the linear maps CoMnN and MnN is the linear space VN (ΣX ). Moreover, since
for every polynomial p of degree up to N , i.e., for every p in VN (ΣX ), there is
a unique count gamble bNp ∈ G(NN ) such that p = CoMnN(bNp ), CoMnN is a
linear isomorphism between the linear spaces G(NN ) and VN (ΣX ).

In summary, everything that can be expressed using the language of gambles
on NN , can also be expressed using the language of polynomial gambles on ΣX
of degree up to N , and vice versa. The map CoMnN and its inverse are the tools
that take care of the translation between the two languages. This is essentially
what is behind the representation theorem for countable exchangeable sequences
that we will turn to in Section 4. In order to lay the proper foundations for this
work, we now present a version of the finite representation theorem in terms of
polynomial gambles of degree N on ΣX , rather than count gambles on NN .

We first introduce a concept of coherence for Bernstein polynomials:

Definition 4 (Bernstein coherence). We call a set H of polynomials in
VN (ΣX ) Bernstein coherent at degree N if it satisfies the following properties:
for all p, p1, and p2 in VN (ΣX ) and all real λ > 0,
BN1. if p = 0 then p /∈ H;
BN2. if p is such that bNp > 0 then p ∈ H;
BN3. if p ∈ H then λp ∈ H;
BN4. if p1, p2 ∈ H then p1 + p2 ∈ H.

Bernstein coherence at degree N is very closely related to coherence, the only
difference being that we do not consider whether a polynomial p is positive,
but whether its Bernstein expansion bNp is. Interpretation-wise, this means that
models in terms of sequences or count vectors are authoritative over those in
terms of frequency vectors. Bernstein coherence at degree N is a special case of
the general concept of coherence relative to (K, C), discussed in Section 2, where
K := VN (ΣX ) and C :=

{
p ∈ VN (ΣX ) : bNp ≥ 0

}
is the convex cone of all polyno-

mials of degree at most N with a non-negative expansion bNp in the Bernstein
basis of degree N .

Theorem 3 (Finite Representation). A set of desirable gambles R on XN ,
with count representation S :=MuHyN(R), is coherent and exchangeable iff there
is some subset H of VN(ΣX ), Bernstein coherent at degree N , such that R =
(MnN)−1(H) or equivalently S = (CoMnN)−1(H), and in that case this H is
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uniquely determined by H = MnN(R) = CoMnN(S). We call H the frequency
representation of the coherent and exchangeable set of desirable gambles R.

4 Countable Exchangeable Sequences

With the experience gained in investigating finite exchangeable sequences, we are
now ready to address reasoning about countably infinite exchangeable sequences.
The first step is to use finite frequency representation to find a Representation
Theorem for infinite exchangeable sequences. We can then show what updating
and natural extension look like in terms of this frequency representation.

Infinite representation. We consider a countable sequenceX1, . . . , XN , . . . of
random variables assuming values in the same finite set X . We call this sequence
exchangeable if each of its finite subsequences is, or equivalently, if for all n in N0,
the random variables X1, . . . , Xn are exchangeable.

How can we model this? First of all, this means that for each n in N0, there is a
coherent and exchangeable set of desirable gambles Rn on Xn. Equivalently, we
have a coherent set of desirable gambles (count representation) Sn :=MuHyn(Rn)
on Nn, or a set (frequency representation) Hn := Mnn(Rn) = CoMnn(Sn) of
polynomials in Vn(ΣX ), Bernstein coherent at degree n.

In addition, there is a time-consistency constraint. Consider the following
linear projection operators projn1

n2 : Xn2 → Xn1 defined by projn1
n2 (x1, . . . , xn2 ):=

(x1, . . . , xn1 ), where n1 ≤ n2. With each such operator there corresponds a linear
map extn2

n1 between the linear spaces G(Xn1 ) and G(Xn2 ), defined as follows:
extn2
n1(f) = f ◦ projn1

n2 . In other words, extn2
n1 (f) is the cylindrical extension of

the gamble f on Xn1 to a gamble on Xn2 .
Time-consistency now means that if we consider a gamble on Xn2 that re-

ally only depends on the first n1 variables, it should not matter, as far as its
desirability is concerned, whether we consider it to be a gamble on Xn1 or
a gamble on Xn2 . More formally, we require that (∀n1 ≤ n2) extn2

n1 (Rn1 ) =
Rn2 ∩ extn2

n1

(G(Xn1 )
)
.

How can we translate this constraint in terms of the count representations Sn
or the frequency representations Hn? If we introduce the linear extension map
enln2
n1 from the linear space G(Nn1 ) to the linear space G(Nn2 ) by enln2

n1(g) :=∑
m∈Nn1 g(m)|[· −m]||[m]|/|[·]|, then MuHyn2 ◦ extn2

n1 = enln2
n1 ◦MuHyn1, and

time-consistency is equivalent to (∀n1 ≤ n2) enln2
n1(Sn1 ) = Sn2 ∩ enln2

n1

(G(Nn1 )
)
,

which is in turn equivalent to (∀n1 ≤ n2)Hn1 = Hn2 ∩ Vn1(ΣX ). The
time-consistency condition is most elegantly expressed using frequency
representations.

We call the family Rn, n ∈ N0 time-consistent, coherent and exchangeable
when each member Rn is coherent and exchangeable, and when the family Rn,
n ∈ N0 satisfies the time-consistency requirement.

We can generalise the concept of Bernstein coherence given in Definition 4 to
sets of polynomials of arbitrary degree:
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Definition 5 (Bernstein coherence). We call a set H of polynomials in
V (ΣX ) Bernstein coherent if it satisfies the following properties: for all p, p1,
and p2 in V (ΣX ) and all real λ > 0,
B1. if p = 0 then p /∈ H;
B2. if p is such that bnp > 0 for some n ≥ deg(p), then p ∈ H;
B3. if p ∈ H then λp ∈ H;
B4. if p1, p2 ∈ H then p1 + p2 ∈ H.

We can replace B1 by the following requirement, equivalent to it under B2–B4:
B5. If p is such that bnp ≤ 0 for some n ≥ deg(p), then p /∈ H.

This type of Bernstein coherence is again very closely related to coherence,
the only difference being that not all positive polynomials, but rather all polyno-
mials with some positive Bernstein expansion are required to belong to a Bern-
stein coherent set. Bernstein coherence is a special case of the general concept
of coherence relative to (K, C), discussed in Section 2, where K := V (ΣX ) and
C := V+(ΣX ) :=

{
p ∈ V (ΣX ) : (∃n ≥ 0)bnp ≥ 0

}
is the convex cone of all poly-

nomials with some non-negative Bernstein expansion. We also denote the set
D(V (ΣX ),V+(ΣX ))(ΣX ) of all Bernstein coherent subsets of V (ΣX ) by DBe(ΣX ).

We are now ready to formulate our Infinite Representation Theorem, which
is a significant generalisation of de Finetti’s representation result for countable
sequences [3]. A similar result can be proved for coherent lower previsions [2].

Theorem 4 (Infinite Representation). A family Rn, n ∈ N0 of sets of de-
sirable gambles on Xn, with associated count representations Sn := MuHyn(Rn)
and frequency representations Hn :=Mnn(Rn) = CoMnn(Sn), is time-consistent,
coherent and exchangeable iff there is some Bernstein coherent set H of poly-
nomials in V (ΣX ) such that, for all n in N0, both Sn = (CoMnn)−1(H) and
Rn = (Mnn)−1(H), and in that case this H is uniquely given by H =

⋃
n∈N0
Hn.

We call H the frequency representation of the coherent, exchangeable and time-
consistent family of sets of desirable gambles Rn, n ∈ N0.

Updating and infinite representation. Suppose we have a coherent, ex-
changeable and time-consistent family of sets of desirable gambles Rn, n ∈ N0,
with associated count representations Sn :=MuHyn(Rn) and frequency represen-
tation H :=

⋃
n∈N
Hn with Hn := Mnn(Rn). Now suppose we observe the values

x̌ of the first ň variables. It turns out that updating becomes especially easy in
terms of the frequency representation.

Theorem 5. Consider a coherent, exchangeable and time-consistent family of
sets of desirable gambles Rn, n ∈ N0, with associated frequency representation H.
After updating with a sample with count vector m̌ ∈ N ňX , the family Rn̂�m̌,
n̂ ∈ N0 is still coherent, exchangeable and time-consistent, and has frequency
representation H�m̌ := {p ∈ V (ΣX ) : Bm̌p ∈ H} .

Independence: iid sequences. We can use Theorem 5 to find an intriguing
characterisation of a sequence of independent identically distributed (iid) ran-
dom variables X1, . . . , XN , . . . assuming values in a finite set X . This is an



68 G. de Cooman and E. Quaeghebeur

exchangeable sequence where learning the value of any finite number of vari-
ables does not change our subject’s beliefs about the remaining, unobserved
ones. This is the case iff the frequency representation H of the sequence satisfies
(∀ň ∈ N0)(∀m̌ ∈ N ňX )H�m̌ = H. This is equivalent to (∀ň ∈ N0)(∀m̌ ∈ N ňX )(∀p ∈ V (ΣX )

)
(p ∈ H ⇔ Bm̌p ∈ H), and also to H = V+(ΣX )H, which is

shorthand for
(∀p ∈ V (ΣX )

)(∀p+ ∈ V+(ΣX )
)
(p ∈ H ⇔ p+p ∈ H).

Bernstein natural extension. The intersection of an arbitrary non-empty
family of Bernstein coherent sets of polynomials is still Bernstein coherent. This
is the idea behind the following theorem, which is a special instance of Theorem 1
with K := V (ΣX ) and C := V+(ΣX ).

We denote by V+
0 (ΣX ) the set of all polynomials on ΣX with some posi-

tive Bernstein expansion: V+
0 (ΣX ) =

{
p ∈ V (ΣX ) :

(∃n ≥ deg(p)
)
bnp > 0

}
and

by V−(ΣX ) =
{
p ∈ V (ΣX ) :

(∃n ≥ deg(p)
)
bnp ≤ 0

}
the set of all polynomials on

ΣX with some non-positive Bernstein expansion. Moreover, we say that a setA of
polynomials avoids Bernstein non-positivity if no polynomial in its positive hull
posi(A) has any non-positive Bernstein expansion, i.e. posi(A) ∩ V−(ΣX ) = ∅;
clearly, this is the case iff A avoids non-positivity relative to

(V (ΣX ),V+(ΣX )
)
.

We also call the
(V (ΣX ),V+(ΣX )

)
-natural extension E(V (ΣX ),V+(ΣX ))(A) of A

its Bernstein natural extension, and denote it by EBe(A).

Theorem 6 (Bernstein natural extension). Consider A ⊆ V (ΣX ) and its
Bernstein natural extension EBe(A):=

⋂ {H ∈ DBe(ΣX ) : A ⊆ H}. The following
statements are then equivalent:

(i) A avoids Bernstein non-positivity;
(ii) A is included in some Bernstein coherent set of polynomials;
(iii) EBe(A) �= V (ΣX );
(iv) EBe(A) is a Bernstein coherent set of polynomials;
(v) EBe(A) is the smallest Bernstein coherent set of polynomials including A.

When any these equivalent statements holds, then EBe(A) = posi
(V+

0 (ΣX )∪A).

Exchangeable natural extension for infinite sequences. To finish this dis-
cussion of exchangeability for infinite sequences of random variables, we take up
the issue of deductive inference, and introduce exchangeable natural extension.

Suppose we have an assessment consisting of a set An of desirable gam-
bles on Xn for each n in N0. We are looking for the (element-wise) smallest
coherent, exchangeable and time-consistent family Rn, n ∈ N0 that includes
this assessment in the sense that An ⊆ Rn for all n in N0, or equivalently⋃
n∈N0

Mnn(An) ⊆ ⋃n∈N0
Mnn(Rn) =:H, a condition formulated in terms of the

frequency representation H of the family Rn, n ∈ N0.

Theorem 7. Consider an assessment consisting of the sets of desirable gambles
An on Xn for each n in N0, and the corresponding set of ‘desirable’ polynomials
A :=

⋃
n∈N0

Mnn(An). There is a coherent, exchangeable and time-consistent fam-
ilyRn, n ∈ N0 that includes this assessment iffA avoids Bernstein non-positivity.
In that case EBe(A) is the frequency representation of the (element-wise) smallest
coherent, exchangeable and time-consistent family that includes this assessment.
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5 Conclusions

Modelling an infinite exchangeability assessment using sets of desirable gambles
is not only possible, but also quite elegant. Our Infinite Representation Theo-
rem reduces reasoning about infinite exchangeable sequences to reasoning about
(polynomials of) frequency vectors. This automatically guarantees that, next
to the exchangeability of finite subsequences, time-consistency of these subse-
quences is satisfied. The representation for the natural extension and for updated
models can be derived directly from the representation of the original model.
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Abstract. We study ergodicity for upper transition operators: bounded,
sub-additive and non-negatively homogeneous transformations of finite-
dimensional linear spaces. Ergodicity provides a necessary and sufficient
condition for Perron–Frobenius-like convergence behaviour for upper tran-
sition operators. It can also be characterised alternatively using accessi-
bility relations: ergodicity is equivalent with there being a single maximal
communication (or top) class that is moreover regular and absorbing. We
present efficient algorithms for checking these conditions.

Keywords: upper transition operator, ergodicity, imprecise probability.

1 Introduction

Throughout the paper, X denotes a finite non-empty set of elements that we also
refer to as states, and L(X ) is the set of all real-valued maps on X . We provide
the finite-dimensional linear space L(X ) with the supremum norm ‖·‖∞, or with
the topology of uniform convergence, so the result is a Banach space. Uniform
and point-wise convergence coincide on this finite-dimensional space.

Definition 1. An upper transition operator on L(X ) is a transformation T of
L(X ) that has the following properties: for arbitrary f , g in L(X ) and real λ ≥ 0,

T1. min f ≤ Tf ≤ max f T is bounded;
T2. T(f + g) ≤ Tf + Tg T is sub-additive;
T3. T(λf) = λTg T is non-negatively homogeneous.

Where do such upper transition operators come from? We recall finite-state
and discrete-time Markov chains. At any time k, such a Markov chain can
be described by a stochastic transition matrix M (k) whose x-th row M

(k)
x,· is

a probability mass function over the states at time k + 1, conditional on the
chain being in state x at time k. If we now assume that these conditional
mass functions M

(k)
x,· can be picked from a convex closed set Mx depending

on the state x, then any such transition matrix has to belong to the set T :
=
{
M ∈ RX×X : (∀x ∈ X )(Mx,· ∈Mx)

}
. It can be shown [1] that there corre-

sponds exactly one upper transition operator T with T in the following sense: if

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 70–79, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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we start out in state x, the maximum of the possible expectations—the so-called
upper expectation—of a map f ∈ L(X ) after k time steps can be calculated as

max
{

M
(1)
x,· M

(2) . . . M (k)f : M (j) ∈ T
}

= Tkf(x).

As a result, TkIA(x) can be interpreted as the upper probability and 1−TIAc(x)
as the lower probability to go from state x in k steps to a state in the set A; here
IA is the indicator of A, which assumes the value one on A and zero elsewhere,
and Ac is the complement of A. Generally speaking, an upper transition operator
can be seen as summarising robust inference for a set of not necessarily stationary
Markov chains [1,2,7].

Any upper transition operator T automatically also satisfies the following
interesting properties: for arbitrary f , g, fn in L(X ) and real μ,

T4. T(f + μ) = Tf + μ T is constant-additive;
T5. if f ≤ g then Tf ≤ Tg T is order-preserving;
T6. if fn → f then Tfn → Tf T is continuous;
T7. Tf + T(−f) ≥ 0 T is upper–lower consistent.

Clearly, for any n in the set of natural numbers (with zero) N0, Tn is an upper
transition operator as well.

Properties T4 and T5 define a so-called topical map [4]. It is easy to see [4]
that every topical map is also non-expansive under the supremum norm: for
every f and g in L(X ),

T8. ‖Tf − Tg‖∞ ≤ ‖f − g‖∞ T is non-expansive.

A very useful result for non-expansive maps by Sine [6] states that for every
element f of the finite-dimensional domain of a non-expansive transformation
T, there is some natural number p such that the sequence Tnpf converges. More
importantly, Sine proves that we can find a finite ‘period’ p common to all maps
f in the domain L(X ). This means that for any f , the set ωT(f) of limit points of
the set of iterates {Tnf : n ∈ N} has a number of elements |ωT(f)| that divides
this p.1 T is cyclic on ωT(f), with period |ωT(f)| (and therefore also with period
p). Lemmens and Scheutzow [4] managed to prove that an upper bound for the
common periods of all topical functions T: Rn → Rn is

(
n

�n/2�
)
. This upper bound

is tight in the sense that there is always at least one topical function that has
this bound as its smallest common period.

In Sec. 2 we exploit these ideas to introduce ergodicity for upper transition
operators, and to explain its link with Perron–Frobenius conditions. In Sec. 3 we
develop methods for checking ergodicity in practise. We order the state space by
means of an accessibility relation. Using the equivalence classes induced by this
ordering, we show that ergodicity is equivalent to the combination of top class
regularity and top class absorption, and we work out an efficient test for each
condition.
1 |A| denotes the cardinality of a set A and N is the set of natural numbers (without

zero).
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2 Perron–Frobenius Condition

We introduce the notion of ergodicity for upper transition operators. We allow
ourselves to be inspired by corresponding notions for non-stationary Markov
chains [5, p. 136] and Markov set chains [2].

Definition 2 (Ergodicity). An upper transition operator T on L(X ) is called
ergodic if for all f ∈ L(X ), limn→∞ Tnf exists and is a constant function.

Consider any f ∈ L(X ). Ergodicity of an upper transition operator T not only
means that the sequence Tnf converges, so ωT(f) is a singleton {ξf}, but also
that this limit ξf is a constant function. Observe that by T6, ξf is a fixed point
for all Tk: T kξf = ξf and therefore ξT kf = ξf for all k ∈ N. If we denote the
constant value of ξf by ET(f), meaning that ξf = ET(f)IX , then this defines
a real functional ET on L(X ). This functional is an upper expectation: it is
bounded, sub-additive and non-negatively homogeneous [compare with T1–T3].
It is T-invariant in the sense that ET ◦ T = ET, and it is the only such upper
expectation.

Definition 3. We call an upper transition operator T on L(X ) Perron–
Frobenius-like if there is some real functional E∞ on L(X ) such that
limn→∞ E(Tnf) = E∞(f) for all upper expectations E on L(X ) and all
f ∈ L(X ), or in other words, if the sequence of upper expectations E ◦ Tn con-
verges to some limit E∞ that does not depend on the initial value E.

As an immediate result, conditions for ergodicity of upper transition operators
are conditions for a Perron–Frobenius-like theorem to hold.

Theorem 1 (Perron–Frobenius). An upper transition operator T is Perron–
Frobenius-like if and only if it is ergodic, and in that case E∞ = ET.

Proof. Sufficiency. Suppose T is ergodic. Then using the notations established
above, Tnf → ξf and therefore E(Tnf)→ E(ξf ) because any upper expectation
E is continuous [compare with T6]. Observe that, since any upper expectation E
is constant-additive [compare with T4 and T1], E(ξf ) = ET(f). Hence E◦Tn →
ET, and therefore T is Perron–Frobenius-like, with E∞ = ET.

Necessity. Suppose that T is Perron–Frobenius-like, with limit upper expec-
tation E∞. Fix any x ∈ X , and consider the upper expectation Ex defined by
Ex(f) := f(x) for all f ∈ L(X ). Then by assumption T nf(x) = Ex(Tnf) →
E∞(f). Since this holds for all x ∈ X , we see that T is ergodic with ET = E∞.

It follows from the discussion in Sec. 1 that
⋃

f∈L(X ) ωT(f) is the set of all
periodic points of T—a periodic point being an element f ∈ L(X ) for which
there is some n ∈ N for which Tnf = f . By T4, this set contains all constant
maps. We now see that for T to be ergodic, this set cannot contain any other
maps.

Proposition 1. An upper transition operator T is ergodic if and only if all of
its periodic points are constant maps.
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3 Ergodicity in Practise

We now turn to the issue of determining in actual practise whether an upper
transition operator is ergodic. In the case of finite-state, discrete-time Markov
chains, a nice approach to deciding upon ergodicity was given by Kemeny and
Snell [3, Sec. 1.4]. It is based on the notion of an accessibility relation. This is
a binary (weak order) relation on set of states X that captures whether it is
possible to go from one state to another in a finite number of steps. We intend
to show that it is possible to associate an accessibility relation with an upper
transition operator, and that this relation provides an intuitive interpretation of
ergodicity in terms of accessibility. We refer to [1] for a detailed discussion of
accessibility relations and their connections with upper transition operators.

Definition 4. Consider an upper transition operator T on L(X ), and two states
x and y in X . We say that y is accessible from x in n steps (notation: x

n→ y) if
TnI{y}(x) > 0. We say that state y is accessible from state x (notation: x→ y)
if TnI{y}(x) > 0 for some n ∈ N0. We say that x and y communicate (notation:
x↔ y) if both x → y and y → x.

The relation → is a weak order (reflexive and transitive), and consequently
↔ is an equivalence relation. The equivalence classes for this relation are called
communication classes: maximal subsets of X for which every element has access
to any other element. The accessibility relation induces a partial order on these
communication classes.

In the case of finite-state, discrete-time Markov chains, this partial order gives
us clues about the ergodicity of the Markov chain. For such a Markov chain to
be ergodic, it is necessary and sufficient [1] that it should be top class regular,
meaning that: (i) there should be only one maximal or undominated commu-
nication class—elements of a maximal communication class have no access to
states not in that class—, in which case we call this unique maximal class R the
top class ; and (ii) the top class R should be regular, meaning that after some
time k, all elements of this class become accessible to each other in any number
of steps: for all x and y in R and for all n ≥ k, x

n→ y.
For upper transition operators, it turns out that top class regularity is a

necessary condition for ergodicity. However, top class regularity is by itself not
a sufficient condition: we need some guarantee that the top class will eventually
be reached—a requirement that is automatically fulfilled in finite-state discrete-
time Markov chains.

Proposition 2. An upper transition operator T is ergodic if and only if it is
regularly absorbing, meaning that it satisfies the following properties:

(i) it is top class regular:

R :=
{
x ∈ X : (∃n ∈ N)(∀k ≥ n) min TkI{x} > 0

}
�= ∅, (TCR)

(ii) it is top class absorbing: with Rc := X \ R,

(∀y ∈ Rc)(∃n ∈ N)TnIRc(y) < 1. (TCA)
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For a proof that (TCR) is equivalent to R �= ∅, we refer to [1, Prop. 4.3]. (TCA)
means that for every element y not in the top class, there is some finite number
of steps n after which the top class can be reached with a strictly positive lower
probability 1− TnIRc(y).

Proof. (TCR) ∧ (TCA) ⇒ (ER). Consider any periodic point ξ of T with
period p ∈ N. By Prop. 1, we have to show that ξ is constant. Using T1,
T5, T3 and the periodic character of ξ, we infer that min Tkξ = min ξ and
maxTkξ = max ξ for all k ∈ N0. Using T5, T4 and T3 we construct from
Tkξ ≥ min Tkξ + [Tkξ(x) − min Tkξ]I{x} = min ξ + [Tξ(x) − min ξ]I{x} the
following inequality, which holds for all n, k ∈ N0 and all x ∈ X : Tnξ ≥
min ξ +

[
Tkξ(x)−min ξ

]
TnI{x}. Taking the minimum on both sides of this in-

equality, we find that 0 ≥
[
Tkξ(x) −min ξ

]
min TnI{x}. We infer from (TCR)

that by taking n large enough, we can ensure that min TnI{x} > 0 if x ∈ R. So
we already find that Tkξ(x) = min ξ for all k ∈ N0 and x ∈ R.

Using T5, T4 and T3 we construct from ξ ≤ max ξ− [max ξ−maxx∈R ξ(x)]IR
and −IR = IRc − 1 the following inequality, which holds for all k ∈ N:

Tkξ ≤ max ξ +
[
max ξ −max

x∈R
ξ(x)

]
(TkIRc − 1).

By taking the maximum over Rc on both sides of this inequality, we get

max
y∈Rc

Tkξ(y)−max ξ ≤
[

max ξ −max
x∈R

ξ(x)
](

max
y∈Rc

TkIRc(y)− 1
)

. (1)

It follows from (TCA) that for each y ∈ Rc, we can consider some ny ∈ N such
that TnyIRc(y) < 1. Let n := maxy∈Rc ny. Then we see that for every y ∈ Rc:

TnIRc(y) = Tny [(IR + IRc)Tn−ny IRc ](y) = Tny [IRcTn−nyIRc ](y) ≤ TnyIRc(y).

The second equality follows from the fact that IRTn−nyIRc = 0: an element in
the top class R has no access to any element outside it. The inequality follows
from IRc ≤ 1 and T5. We conclude that maxy∈Rc TnIRc(y) − 1 < 0. If Tnξ
reaches its maximum on R, then max ξ = maxTnξ = min ξ. If the maximum of
Tnξ is not reached on R, then max ξ = maxy∈Rc Tnξ(y), and Eq. (1) for k = n
tells us that max ξ = maxx∈R ξ(x) = min ξ. In both cases, ξ is indeed constant.

(ER) ⇒ (TCR) ∧ (TCA). We use contraposition and show first that
¬(TCR) ⇒ ¬(ER). Then we show that ¬(TCA) ∧ (TCR)⇒ ¬(ER).
¬(TCR) ⇒ ¬(ER). Not being top class regular means that R = ∅, which is

equivalent to (∀x ∈ X )(∀n ∈ N)(∃k ≥ n)(∃z ∈ X )TkI{x}(z) = 0. Since we infer
from I{x} ≥ 0 and T1 that TkI{x} ≥ 0, this implies that lim infn→∞ min TnI{x}=
0. But for any n ∈ N, Tn+1I{x} = T(TnI{x}) ≥ min TnI{x} by T1, and therefore
also min Tn+1I{x} ≥ min TnI{x}. This implies that the sequence min TnI{x} is
non-decreasing, and bounded above [by 1], and therefore convergent. This leads
to the conclusion that (∀x ∈ X ) limn→∞ min TnI{x} = 0.

We also infer from T1 and T2 that 1 = TkIX ≤
∑

x∈X TkI{x}. Since the cardi-
nality |X | of the state space is finite, this means that for all z ∈ X and all n ∈ N
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there is some x ∈ X such that TnI{x}(z) ≥ 1/|X |. This tells us that maxTnI{x} ≥
1/|X |. Since we can infer from a similar argument as before that the sequence
maxTnI{x} converges, this tells us that (∀x ∈ X ) limn→∞ maxTnI{x} ≥ 1/|X |.
Combining both limit results tells us that limn→∞(max TnI{x}−min TnI{x}) >
0, so T cannot be ergodic.
¬(TCA)∧ (TCR) ⇒ ¬(ER). Since T is not top class absorbing, we know that

there is some y ∈ Rc such that TnIRc(y) = 1 for all n ∈ N. As the top class R is
non-empty, we know that there is some x ∈ R, and this x has no access to any
state outside the maximal communication class R: TnIRc(x) = 0 for all n ∈ N.
Consequently, limn→∞ (maxTnIRc −min TnIRc) = 1 − 0 > 0, so T cannot be
ergodic.

3.1 Checking for Top Class Regularity

Checking for top class regularity directly using the definition would involve cal-
culating for every state x the maps TI{x}, T2I{x}, . . . , TnI{x} until a first number
n = nx is found for which min TnxI{x} > 0. Unfortunately, it is not clear whether
this procedure is guaranteed to terminate after a certain number of iterations, or
whether we can stop checking after a fixed number of iterations. Here, we want
to take a closer look at this problem.

The next proposition shows that all the information we need in order to check
top class regularity is incorporated in a single application of T to the atoms of X .

Proposition 3. Let T be an upper transition operator on L(X ), n ∈ N and
x, y ∈ X . Then TnI{y}(x) > 0 if and only if there is some sequence x0, x1, x2,
. . . , xn−1, xn in X with x0 = x and xn = y such that TI{xk+1}(xk) > 0 for all
k ∈ {0, 1, . . . , n− 1}.
Proof. Sufficiency. Fix arbitrary k and 	 in N, and u and v in X . Since T�I{y} =∑

z∈X I{z}T�I{y}(z) ≥ I{v}T�I{y}(v), it follows from T5 and T3 that Tk+�I{y} ≥
TkI{v}T�I{y}(v) and therefore Tk+�I{y}(x) ≥ TkI{v}(x)T�I{y}(v). Applying this
inequality repeatedly, we get:

TnI{y}(x) ≥
n−1∏
k=0

TI{xk+1}(xk)

for any sequence x0, x1, x2, . . . , xn−1, xn in X with x0 = x and xn = y. It
follows that the left-hand side is positive as soon as all factors on the right-hand
side are.

Necessity. We infer using T2 and T3 that

TnI{y}(x) = T
( ∑

x1∈X
I{x1}T

n−1I{y}(x1)
)

(x) ≤
∑

x1∈X
Tn−1I{y}(x1)TI{x1}(x),

and repeating the same argument recursively leads to

TnI{y}(x) ≤
∑

x0,x1,...,xn−1,xn∈X
x0=x,xn=y

n−1∏
k=0

TI{xk+1}(xk).



76 F. Hermans and G. de Cooman

Since all the factors (and therefore all the terms) on the right-hand side are non-
negative by T1 and T5, the positivity of the left-hand side implies that there
must be at least one positive term on the right-hand side, all of whose factors
must therefore be positive.

This proposition not only implies that the set
{
TI{x} : x ∈ X

}
completely deter-

mines the accessibility relation →, but also that it determines the ‘accessibility
in n steps’ relation n→. In other words, not only the communication and maximal
classes can be determined from

{
TI{x} : x ∈ X

}
, but also their regularity.

Definition 5. A stochastic matrix M ∈ RX×X represents an upper transition
operator T on L(X ) if Mx,y > 0 ⇔ TI{y}(x) > 0 for all x and y in X .

Clearly, any upper transition operator T has an infinity of representing stochas-
tic matrices. By Prop. 3, accessibility in n steps is completely determined by{
TI{x} : x ∈ X

}
, so we may conclude that the finite-state, discrete-time Markov

chain with transition matrix M on the one hand and the upper transition oper-
ator T on the other hand will invoke exactly the same ‘accessibility in n steps’
relations n→. They will have the same communication classes, the same maximal
classes and the same regular class. This allows us to use the entire machinery of
finite-state, discrete-time Markov chains to decide upon top class regularity for
upper transition operators. We are led to the following immediate conclusion,
see [2, Theorem 1.7] for an explanation of what (ii) means, and the equivalence
between (ii) and (iii).

Proposition 4 (Top class regularity). Consider an upper transition operator
T and any stochastic matrix M that represents it. Then the following statements
are equivalent: (i) T is top class regular; (ii) M is regular; and (iii) M has exactly
one eigenvalue with modulus 1.

Clearly this single eigenvalue must be equal to 1, because M is a stochastic
matrix.

Example 1. Let X := {x, y} and Tf := f(x)I{x}+max{f(x), f(y)}I{y} for all f ∈
L(X ). Then TI{x} = IX and TI{y} = I{y}. This means that the stochastic matrix
M =

( 1 0
1/2 1/2

)
represents T. Since M has eigenvalues 1 and 1/2, we conclude that

T is top class regular.

3.2 Checking for Top Class Absorption

We now present an efficient procedure to check for top class absorption.

Proposition 5 (Top class absorption). Let T be an upper transition operator
with regular top class R. Consider the nested sequence of subsets of Rc defined
by the iterative scheme:

A0 := Rc and An+1 := {a ∈ An : TIAn(a) = 1} , n ≥ 0.

After k ≤ |Rc| iterations, we reach Ak = Ak+1. Then T is top class absorbing if
and only if Ak = ∅.
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Proof. We start by showing inductively that under the given assumptions, the
statement

Hn : IAnTnIRc = IAn ∧ (∀a ∈ Ac
n+1)TIAn(a) < 1 ∧ (∀a ∈ Ac

n)TnIRc(a) < 1

holds for all n ≥ 0. We first prove that the statement Hn holds for n = 0. The
first and third statements of H0 hold trivially. For the second statement, we have
to prove that TIA0(a) < 1 for all a ∈ Ac

1 = Ac
0 ∪A0 \A1. On A0 \A1, the desired

inequality holds by definition. On Ac
0 = R it holds because there TIA0 is zero:

no state in the top class R has access to any state outside it. Next, we prove
that Hn ⇒ Hn+1. First of all,

Tn+1IA0 = T(TnIA0) = T[IAnTnIA0 + IAc
n
TnIA0 ] = T[IAn + IAc

n
TnIA0 ], (2)

where the last equality follows from the induction hypothesis Hn. It follows from
the definition of An+1 that IAn+1TIAn = IAn+1 , and therefore

IAn+1 = IAn+1T[IAn + IAc
n
TnIA0 − IAc

n
TnIA0 ]

≤ IAn+1T[IAn + IAc
n
TnIA0 ] + IAn+1T[−IAc

n
TnIA0 ]

= IAn+1T
n+1IA0 + IAn+1T[−IAc

n
TnIA0 ] ≤ IAn+1T

n+1IA0 ≤ IAn+1 ,

where the first inequality follows from T2, the second from −IAc
n
TnIA0 ≤ 0

and therefore IAn+1T[−IAc
n
TnIA0 ] ≤ 0 [use T1 and T5], and the third from

Tn+1IA0 ≤ 1 [use T5]. The second equality follows from Eq. (2). Hence indeed
IAn+1 = IAn+1T

n+1IA0 . Next, observe that Ac
n+2 = Ac

n+1 ∪ An+1 \ An+2. By
definition, TIAn+1(a) < 1 for all a ∈ An+1 \ An+2. It also follows from the
induction hypothesis Hn that TIAn(a) < 1 for all a ∈ Ac

n+1. But since An+1 ⊆
An, it follows from T5 that TIAn+1 ≤ TIAn , and therefore also TIAn+1(a) < 1
for all a ∈ Ac

n+1. Hence indeed TIAn+1(a) < 1 for all a ∈ Ac
n+2. To finish

the induction proof, let β := maxb∈Ac
n

TnIRc(a), then β < 1 by the induction
hypothesis Hn. We then infer from Eq. (2) that

Tn+1IA0 ≤ T[IAn + βIAc
n
] = T[β + (1− β)IAn ] ≤ β + (1− β)TIAn .

Consider any a ∈ Ac
n+1, then TIAn(a) < 1 by the induction hypothesis Hn, and

therefore Tn+1IA0(a) ≤ β + (1 − β)TIAn(a) < 1 since also β < 1. We conclude
that Hn+1 holds too.

To continue the proof: since the sequence A0, A1, . . . , An, . . . is non-increasing
and A0 is finite, there is some first k ∈ N such that Ak+1 = Ak. Clearly, k ≤ |A0|.
We now prove by induction that the statement Gn : IAk

Tn+kIA0 = IAk
holds

for all n ≥ 0. The statement Gn clearly holds for n = 0: it follows directly from
Hk. We show that Gn ⇒ Gn+1. First of all, as above

Tn+k+1IA0 = T[IAk
Tn+kIA0 + IAc

k
Tn+kIA0 ] = T[IAk

+ IAc
k
Tn+kIA0 ],

where the last equality follows from the induction hypothesis Gn. As above,
it follows from the definition of Ak+1 that IAk+1TIAk

= IAk+1 , and therefore
IAk

TIAk
= IAk

, so

IAk
= IAk

T[IAk
+ IAc

k
Tn+kIA0 − IAc

k
Tn+kIA0 ]
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≤ IAk
T[IAnk + IAc

k
Tn+kIA0 ] + IAk

T[−IAc
k
Tn+kIA0 ]

= IAk
Tn+k+1IA0 + IAk

T[−IAc
k
Tn+kIA0 ] ≤ IAk

Tn+k+1IA0 ≤ IAk
.

The first inequality follows from T2, the second from −IAc
k
Tn+kIA0 ≤ 0

and therefore IAk
T[−IAc

k
Tn+kIA0 ] ≤ 0 [use T1 and T5], and the third from

Tn+k+1IA0 ≤ 1 [use T5]. Hence indeed IAk
= IAk

Tn+k+1IA0 .
There are now two possibilities. The first is that Ak �= ∅. It follows from the

arguments above [namely H1, . . . , Hk and all Gn] that for any element a of Ak,
T�IRc(a) = 1 for all 	 ∈ N, which implies that T cannot be top class absorbing.
The second possibility is that Ak = ∅. It follows from the arguments above
[namely Hk] that TkIRc(a) < 1 for all a ∈ Ac

k = X , which implies that T is top
class absorbing.

Example 2. Define Tf = max {Mf : L ≤ M ≤ U and M stochastic} where L
and U are given by

L =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1/4 1/4 0 0

1/2 1/4 0 0 0
0 0 0 0 0
0 1/2 0 0 1/4

⎞⎟⎟⎟⎟⎠ and U =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0

1/2 3/4 1/2 0 0
3/4 1/2 0 0 0
1 0 0 1 1

1/4 3/4 0 0 1/4

⎞⎟⎟⎟⎟⎠ .

Here, any representing matrix’s non-zero elements correspond to those of U . One
representing matrix is

M =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0

1/3 1/3 1/3 0 0
1/2 1/2 0 0 0
1/3 0 0 1/3 1/3
1/3 1/3 0 0 1/3

⎞⎟⎟⎟⎟⎠ .

with characteristic polynomial χM (s) = (s−1)(s−1/3)2(s−(1+
√

7)/6)(s−(1−
√

7)/6).
So T is top class regular. From the form of M we infer that the ‘first’ state is
absorbing which implies that IR =

(
1 0 0 0 0

)T .
To check for top class absorbtion, we start iterating:

(step 1) TIRc =
(
0 1 1/2 1 1

)T whence IA1 =
(
0 1 0 1 1

)T ,
(step 2) TIA1 =

(
0 3/4 1/2 1 1

)T whence IA2 =
(
0 0 0 1 1

)T ,
(step 3) TIA2 =

(
0 0 0 1 1/4

)T whence IA3 =
(
0 0 0 1 0

)T ,
(step 4) TIA3 =

(
0 0 0 1 0

)T whence IA4 =
(
0 0 0 1 0

)T .

Because A4 = A3 �= ∅ we conclude that T is not top class absorbing and therefore
not ergodic.

4 Conclusion

We have discussed a number of equivalent characterisations of the ergodicity
of an upper transition operator—which corresponds to a set of Markov chains.
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We have shown that ergodicity is completely determined by the eigenvalues and
eigenfunctions of the upper transition operator, as is the case in Markov chains.
This could open the door to a spectral theorem for upper transition operators.
Unfortunately, at this point it is not known how to calculate such eigenvalues,
and for this reason we have developed an alternative test for ergodicity, which
needs at most 2|X | − 1 evaluations of the upper transition operator. The test
consists of two steps: the first checks for top class regularity by building a rep-
resenting stochastic matrix and solving a linear eigenvalue problem; the second
checks for top class absorption.

We have not yet investigated the conditions under which {Tnf} will converge
in general. Extrapolating from the conditions for Perron–Frobenius-like conver-
gence given above, it might be conjectured that there is convergence if and only
if all classes that are not regular are absorbed by some union of regular classes.
Also worth investigating is whether we could find stochastic matrices that rep-
resent the upper transition operator in a more quantitative way than the purely
qualitative one we introduced above. Such representing matrices might then for
instance be used to make inference about the rate or speed of transition from
individual states to an absorbing class.
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Abstract. We are interested in whether or not there exist any advan-
tages of utilizing credal set theory for the discrete state estimation prob-
lem. We present an experiment where we compare in total six different
methods, three based on Bayesian theory and three on credal set the-
ory. The results show that Bayesian updating performed on centroids
of operand credal sets significantly outperforms the other methods. We
analyze the result based on degree of imprecision, position of extreme
points, and second-order distributions.

Keywords: Bayesian theory, credal sets, imprecise probability.

1 Introduction

There exist many theories for reasoning under uncertainty. Two categories of
such theories can be formulated based on the mathematical structure used for
representing ones belief : (1) a single probability function, and (2) a set of prob-
ability functions. One of the most commonly utilized theories, belonging to the
first category, is Bayesian theory [1]. However, one criticism of Bayesian theory
is that its belief structure, i.e., a probability function, seriously limits the types
of belief that one might want to express [2], and that such limitation implies a
risk of drawing erroneous conclusions from the posterior. As an example, the use
of a single probability function prohibits one of expressing a probability interval
as belief, something that seems natural in many situations where limited infor-
mation is available. In order to overcome this deficiency of Bayesian theory, it
has been proposed that a closed convex set of probability functions, also known
as a credal set [3,4], should be utilized as a belief structure. Credal sets are in
fact a part of what is a quite natural extension to Bayesian theory, referred to
as credal set theory1 [4], where one applies Bayes theorem point-wise on a prior
credal set and a closed convex set of likelihood functions.

So far, research concerning empirical evaluation of the performance between
Bayesian and credal set theory has been scarce, leaving the importance to ap-
plications of the latter theory undetermined. Moreover, we argue that existing
such evaluations (e.g., [6,7]) have been implemented with a bias towards credal
set theory, since one most often has, in some way, compared a set of decisions,
1 Also known as “theory of credal sets” [4] and “quasi-Bayesian theory” [5].
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as a result of a credal approach, to a single decision, as a result of a Bayesian
approach. We argue that if such comparison should be regarded as fair then
the decision output from the approaches must be of the same type. This can be
done in two ways: (1) one can construct decision set-output from the Bayesian
approach, or (2) one can force a single decision from the credal approach. In
this paper, we will explore alternative (2) with respect to the discrete estimation
problem, i.e., to determine the true state of a discrete random variable by forcing
such decision based on a credal set.

The paper is organized as follows: in Sect. 2, we will present the foundations
of Bayesian and credal set theory. In Sect. 3, we present an experiment that
compares Bayesian theory with credal set theory with respect to discrete state
estimation. In Sect. 4 and 5 we present and analyze the result of the experiment.
Lastly, in Sect. 6, we give a summary of the paper and the main conclusions.

2 Preliminaries

We elaborate on Bayesian and credal set theory, on their main differences, and
how these theories can be utilized for the discrete state estimation problem.

2.1 Bayesian Theory

Bayesian theory is based on the assumption that belief can be adequately rep-
resented by a single probability function and that Bayes’ theorem is utilized for
updating belief whenever new observations from the environment of interest be-
come available. Let X and Y be random variables with discrete state spaces
ΩX and ΩY , respectively, and let x ∈ ΩX and y ∈ ΩY . The Bayesian update
operator (Bayes’ theorem) can now be defined as [1]:

Definition 1. The Bayesian update operator ΦB is defined as:

ΦB(p(X), p(y|X)) � p(y|X)p(X)∑
x∈ΩX

p(y|x)p(x)
, (1)

where p(X) is the prior probability function and p(y|X) the likelihood function.
The operator is undefined if

∑
x∈ΩX

p(y|x)p(x) = 0.

The Bayesian approach to the discrete state estimation problem is simply to
select a state from the following set:

DB(p(X)) � {xi ∈ ΩX : p(xi) ≥ p(xj), ∀xj ∈ ΩX} , (2)

where DB(p(X)) is an operator that returns the set of all optimal states with
respect to p(X). Although DB(p(X)) can in general be non-singleton, that is not
the common case.
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2.2 Credal Set Theory

As already mentioned in the introduction credal set theory [5,3] is an exten-
sion to Bayesian theory where one allows for closed convex sets of probability
and likelihood functions. Let PX denote a credal set that contains functions
of the form p(X), PX|y functions of the form p(X |y), and let Px|Y denote a
closed convex set of likelihood functions p(x|Y ). By utilizing this notation the
credal update operator, corresponding to a “point-wise” version of the Bayesian
operator in Definition 1, can now be defined as, cf [5,8,9]:

Definition 2. The credal update operator ΦC is defined as:

ΦC
(
PX ,Py|X

)
� CH

{
ΦB(p(X), p(y|X)) : p(X) ∈ PX , p(y|X) ∈ Py|X

}
, (3)

where CH denotes the convex-hull operator, PX is a credal set of prior probability
functions p(X) and Px|Y is a closed convex set of likelihood functions p(x|Y ).
The operator is undefined if there exists a pair (p(X), p(x|Y )) ∈ PX×Px|Y where
ΦB(p(X), p(y|X)) is undefined.

In order to be able to compute the credal update operator one adopts operand
sets in the form of polytopes, i.e., the convex hull of a finite number of points
(here functions), since it enables one to calculate the credal update operator
in an exact way by utilizing the sets’ extreme points [10, Theorem 1]. One key
feature of credal sets is their imprecision, which can loosely be thought of as the
volume of the sets. We will use the following measure for degree of imprecision
[2,10]:

Definition 3. The degree of imprecision for a credal set PX is defined as:

I(PX) � 1
|ΩX |

∑
x∈ΩX

(
max

p(x)∈PX

p(x)− min
p(x)∈PX

p(x)
)

,

where ΩX is a discrete state space for X.

In contrast to Bayesian theory, there is often no straightforward way of deter-
mining a single true state for the discrete state estimation problem based on a
credal set [5]. The reason for this is the caution regarding conclusions induced
by the imprecision. If we generalize the Bayesian way of decision making, taking
into account that there now exists a set of possibilities for a probability function,
we obtain:

DC(PX) �
⋃

p(X)∈PX

DB(p(X)) , (4)

where DB(p(X)) is defined by (2). We see that unless all probability functions
p(X) ∈ PX agrees on some state as being the most probable, additional impre-
cision is likely to be introduced compared to the Bayesian counterpart. In order
to still be able to decide for a single state in such cases, one can select a single
representative probability function p(X) ∈ PX , by using some selector function
Υ (PX), which then can be used in the same way as in the Bayesian approach
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[9,5], i.e., DB(Υ (PX)). Such approach is actually very similar to what has previ-
ously been stipulated in a variant of evidence theory [11], called the transferable
belief model (TBM) [12]. The idea in TBM is that one should maintain as much
representational ability from the belief structure as long as a decision is not
required to be implemented (i.e., for posterior calculations). In this paper, we
focus on three selector functions that often can be found in the literature (see
e.g., [9,5]): (1) the centroid Υc (PX), defined as:

Υc (PX) � Eu(PX )[p(X)] , (5)

where u(PX) denotes the uniform distribution over PX , (2) the maximum en-
tropy function Υe (PX), defined as:

Υe (PX) � arg sup
p(X)∈PX

(
−
∑

x∈ΩX

p(x)ln(p(x))

)
, (6)

and (3) sampling a function from the uniform distribution over the credal set,
denoted Υu (PX):

Υu (PX) ∼ u(PX) . (7)

3 Experiment Design

Let us use a simple state space, i.e., |ΩX | = 2. The reason for choosing such low
dimension is that we then can sample both credal sets and functions without us-
ing a number of approximations methods needed in higher dimensions. Suppose
that we need to formulate a prior and a likelihood function, but where we have
insufficient information in order to do so in a precise way, i.e., we report operand
sets PX and Py|X . Since the posterior is invariant to normalization of likelihoods
we will use a normalized version of Py|X throughout the paper, denoted by P̂y|X
(i.e., P̂y|X is a credal set). Let us assume that the semantics behind the reported
sets is that one is equally willing to perform reasoning based on any function
within the sets, i.e., there implicitly exists a uniform second-order distribution
over each of the sets. Consider utilizing Bayesian theory for this case. Since the
Bayesian update operator dictates single functions as operands, it is necessary
to select representative functions from the sets to utilize for updating. Such se-
lection can be implemented by anyone of the selection functions defined by (5),
(6), and (7), hence let:

pu
B(X |y) � ΦB(Υu(PX), Υu(P̂y|X))

pc
B(X |y) � ΦB(Υc(PX), Υc(P̂y|X))

pe
B(X |y) � ΦB(Υe(PX), Υe(P̂y|X)) .

(8)

Note that since we have assumed a uniform distribution over the operand sets,
pc
B(X |y) represents a method that utilizes the expected values of the operand

sets, i.e., the centroids.
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Now, in contrast to Bayesian theory, updating based on the sets PX and P̂y|X
is straightforward in credal set theory; simply use the ΦC operator. However, here
we are likely to encounter the problem of determining a single state due to the
posterior imprecision (see (4)). Thus, we will here utilize the selector functions
on the posterior credal set instead, i.e.:

pu
C(X |y) � Υu(ΦC(PX , P̂y|X))

pc
C(X |y) � Υc(ΦC(PX , P̂y|X))

pe
C(X |y) � Υe(ΦC(PX , P̂y|X)) .

(9)

Now, let the “true” prior and likelihood functions, i.e., functions formulated
under a condition of a large amount of information, exist in PX and P̂y|X . This
means that the posterior truth, denoted by pt(X |y), must exists in ΦC(PX , P̂y|X).
Furthermore, let us assume that the truth in each operand set is distributed in
the same way as our semantics behind such reported sets, i.e., the true function
is uniformly distributed over each set. We will utilize two score functions that
measure the performance of the methods with respect to pt(X |y). First consider
a score function that measures the accuracy2:

sa(p(X |y), pt(X |y)) �
{

1 if DB(p(X |y)) = DB(pt(X |y))
0 otherwise

, (10)

where p(X |y) is any of the methods in (8) or (9). In order to be able to discrim-
inate the performance of the different methods at a finer level, we also use a loss
function known as the Brier loss [13]:

sl(p(X |y), pt(X |y)) �
∑

x∈ΩX

(p(x|y) − pt(x|y))2 . (11)

Let us sample n true posteriors, denoted {pi
t(X |y)}n

i=1, by sampling from the
uniform second-order distributions over the operand sets, and then applying the
Bayesian update operator, i.e., each posterior sample pi

t(X |y) has been obtained
by the following expression:

pi
t(X |y) � ΦB(Υu(PX), Υu(P̂y|X)) . (12)

By drawing a large number of samples we can obtain an approximation of the
expected score of the methods in (8) and (9):

E[s•(p(X |y), pt(X |y))|PX , P̂y|X ] ≈ 1
n

n∑
i=1

s•(p(X |y), pi
t(X |y)) , (13)

2 Accuracy in this setting can be thought of as an performance measure with respect
to the “best guess”. If pt(X|y) or p(X|y) is uniform, we evaluate sa(p(X|y), pt(X|y))
by sampling.
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where s• denotes any of the function in (10) or (11). Now, for each problem
instance (PX , P̂y|X) we can rank3 each method in (8) and (9) with respect to
the expected scores in (13) (i.e., the best method receives rank 1, the second
best rank two etc.). Let Ra(p(X |y)) and Rl(p(X |y)) denote the rank for any of
the methods in (8) and (9), with respect to (10) and (11), respectively, given a
specific problem instance (PX , P̂y|X). By uniformly sampling a large number of
credal operands4, i.e., {P i

X}m
i=1 and {P̂ i

y|X}m
i=1, we can obtain an approximation

of the expected rank over all problem instances with respect to each of the score
functions, i.e.:

Eu(ΩPX
)[R•(p(X |y))] ≈ 1

m

m∑
i=1

Ri
•(p(X |y)) , (14)

where Ri
•(p(X |y)) denotes the rank, with respect to (10) and (11), for sampled

operand credal sets P i
X and P̂ i

y|X , and where the subscript u(ΩPX ) indicates
that the sampling of credal sets has been performed with respect to the uni-
form distribution over the state space of all credal sets for X , denoted by ΩPX .
However, sampling operand credal sets uniformly from ΩPX might not do the
credal operator justice, since there exists considerably more credal sets with a
low degree of imprecision than high, resulting in a bias to the former. Therefore
we also sample operand credal sets with respect to the uniform distribution over
the degree of imprecision, denoted uI(ΩPX ). The corresponding expected ranks
with respect to this form of sampling is denoted by EuI(ΩPX

)[R•(p(X |y))].

4 Results

The average rank of each method, where m = 106 (see (14)) and n = 102 (see
(13)), can be seen in Table 1. A Friedman test [14] on the 5%-level is passed
for both of the sampling methods and score functions, hence the differences in
ranks are significant. A post-hoc Nemenyi test [14] on the same level is passed

Table 1. Expected rank for the methods defined in (8) and (9)

Expected rank pu
B(X|y) pc

B(X|y) pe
B(X|y) pu

C(X|y) pc
C(X|y) pe

C(X|y)

Eu(ΩPX
)[Ra(·)] 3.489 3.086 3.511 3.715 3.190 4.010

Eu(ΩPX
)[Rl(·)] 3.853 1.449 3.925 4.288 2.574 4.912

EuI(ΩPX
)[Ra(·)] 3.529 2.931 3.555 3.831 3.104 4.050

EuI(ΩPX
)[Rl(·)] 4.239 1.597 3.497 4.573 2.697 4.398

3 The average rank is used in case of draw.
4 Since |ΩX | = 2, uniformly sampling a credal set can be implemented by sampling

from a triangle where the base represents the centroid and the height the imprecision.
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for all comparisons. Therefore we conclude that the Bayesian method utilizing
the centroid of the credal operands, i.e., pc

B(X |y), significantly outperforms the
other methods. Note that the corresponding credal method, i.e., pc

C(X |y), is the
second best method.

5 Analysis of Results

Consider the level plot in Fig. 1 where the degree of imprecision of the operands
are shown on the x and y-axis and where the intensity indicates the expected
rank EuI(ΩPX

)[Rl(·)|I(PX), I(P̂y|X)] for pc
B(X |y) and pc

C(X |y). From the level
plots we see that the performance of pc

B(X |y) and pc
C(X |y) is to a large extent

uniformly distributed with respect to imprecision (the corresponding level plots
for the accuracy has a similar appearance with the exception that the intensity
is lower). A degradation of the performance of pc

C(X |y) can be seen when one
of the operands has a high degree of imprecision. In such cases the extreme
points of one operand credal set has a tremendous effect on the other operand
through the credal update operator, since the points are close to the boundaries
of the probability simplex (the set of probability functions over a given state
space). Consider Fig. 2 where we have plotted the expected Brier loss given the
minimum distance from an operand to the boundary of the probability simplex,
i.e., EuI(ΩPX

)[sl(·, pt(X |y))|γ(PX , P̂y|X)] for pc
B(X |y) and pc

C(X |y), where:

γ(PX , P̂y|X) � min
pi(X)∈ext(PX)∪ext(P̂y|X )

min
pj(X)∈ext(P∗

X)
||pi(X)− pj(X)|| , (15)

(a) pc
B(X|y) (b) pc

C(X|y)

Fig. 1. Level plot with intensity according to expected rank conditional on the
degree of imprecision of the operands where the operand credal sets have been
sampled from the uniform distribution over the degree of of imprecision, i.e.,
EuI(ΩPX

)[Rl(·)|I(PX), I(P̂y|X)] for pc
B(X|y) and pc

C(X|y). The degree of imprecision
on each axis has been discretized into one hundred bins.
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Fig. 2. EuI(ΩPX
)[sl(·, pt(X|y))|γ(PX , P̂y|X)] (y-axis) and γ(PX , P̂y|X) (x-axis) for

pc
B(X|y) (solid line) and pc

C(X|y) (dashed line)

where P∗
X denotes the probability simplex for ΩX (P∗

X � {λ(0, 1)T + (1 −
λ)(1, 0)T : 0 ≤ λ ≤ 1}) and where || · || is the Euclidean distance. From the
figure we see that in cases where there exists an operand with an extreme point
close to the boundary of the simplex, it is clearly beneficial to use the Bayesian
method pc

B(X |y). The reason for this is that pc
B(X |y) suppresses the effect of

such operand on the posterior, since it uses the centroid and such point is closer
to the uniform distribution than the extreme point. The credal update opera-
tor, on the other hand, performs posterior calculations on the operand’s extreme
points which then significantly affects the posterior extreme points and thus also
the posterior’s centroid.

Let us further analyze the result of the experiment by exploring the methods
pc
B(X |y) and pc

C(X |y) for a single problem instance PX and P̂y|X :

PX =
{
λ(0.1, 0.9)T + (1− λ)(0.4, 0.6)T : 0 ≤ λ ≤ 1

}
P̂y|X =

{
λ(0.3, 0.7)T + (1− λ)(0.7, 0.3)T : 0 ≤ λ ≤ 1

}
.

(16)

The operands and the result after updating are seen in Fig. 3 where also an
approximation of the second-order distribution over the truth has been plotted
(remember that we sampled the truth uniformly from the operands). From the
figure, it is evident that the second-order distribution over the posterior credal set
can be considerably skewed. In such cases the centroid is clearly not a good ap-
proximation of the expected value of such distribution, i.e., E[pt(X |y)|PX , P̂y|X ].
We also see that pc

B(X |y) is a better estimate of the expected value of the second-
order distribution over the posterior credal set.

6 Summary and Conclusions

In this paper, we have studied the performance of six different methods with
respect to the discrete state estimation problem; three which are Bayesian and
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Fig. 3. Second-order distribution (approximated with 107 samples discretized into 100
bins) over PX and P̂y|X where the x-axis is the probability simplex P∗

X . The dashed line
shows the expected value (approximated) with respect to the second-order distribution.
The cross shows the selected operand functions and result of pc

B(X|y) and the circle
indicates the result of pc

C(X|y).

three based on credal set theory. We performed an experiment using expected
ranks with respect to accuracy and Brier loss and it was found that Bayesian
updating performed on centroids of operand credal sets significantly outperforms
the other methods. We have analyzed the result based on degree of imprecision,
position of extreme points, and second-order distributions.

In principle, our results suggest that if sources choose to express impreci-
sion for the prior and likelihood and such imprecision can be interpreted as a
uniform distribution over the operands then such information can in general
be sufficiently summarized by centroids of credal operands. At first such result
may appear somewhat provocative, since the credal update operator has been
specifically designed to represent and maintain imprecision. However, the oper-
ator has not been designed to preserve any information about the second-order
distribution.

Even though the credal centroid method is not a good approximation of the
second-order distribution, it can still be an interesting choice for an application
as a cautious decision policy. Our future work therefore concerns to further
explore whether or not using such method can be beneficial with respect to an
application.
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Abstract. A bookmaker is said to be non-reversible if she does not ac-
cept negative stakes on the events. A rational criterion to choose stakes
on a book Γ arranged by a non-reversible bookmaker, avoids bad bets. A
bad bet is a stake δ on an event φ, that gives the bettor a strictly better
payoff independently of the truth values of the events involved. In this
paper we study the computational complexity for the problem of decid-
ing whether a book arranged on many-valued events, admits bad bets, or
it does not. In this short paper we show our problem to be NP-complete.

Keywords: Computational complexity, Non-reversible bookmakers,
Many-valued events, NP-completeness.

1 Introduction

De Finetti’s probability theory relies on two different key concepts. The first one
is the assumption that for each event of interest we can find some betting rate
that we regard as fair, in the sense that we are willing to accept a bet both on
and against the event at that rate. The second one is the coherence criterion of
betting odds: Let φ1, . . . , φn be classical events and let a : {φ1, . . . , φn} → [0, 1]
be an assessment of φ1, . . . , φn. Then a is said to be coherent if and only if there
is no system of reversible bets on the events leading to a win independently
of the truth of φ1, . . . , φn. Formally, a is coherent if and only if, for every b :
{φ1, . . . , φn} → R, there exists a boolean valuation v : {φ1, . . . , φn} → {0, 1}
such that

n∑
i=1

b(φi)(a(φi)− v(φi)) ≥ 0

The celebrated de Finetti’s theorem states that an assessment a is coherent if
and only if it can be extended to a finitely additive measure on the boolean
algebra of formulas. In [13] Paris shows that the problem of checking whether
or not a rational-valued assessment a : {φ1, . . . , φn} → Q ∩ [0, 1] is coherent is
NP-complete.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 90–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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A natural generalization of de Finetti’s coherence criterion is obtained allow-
ing an infinite-valued interpretation of events φ1, . . . , φn, instead of their classical
two-valued interpretation.

MV-algebras has been introduced by Chang in [2] to provide an algebraic se-
mantics to the infinite valued �Lukasiewicz logic, and in [11] Mundici introduces
states on MV-algebras as averaging processes for formulas in �Lukasiewicz logic.
Moreover, states constitute measures on their associated MV-algebras which gen-
eralize the usual probability measures on boolean algebras and they are related
to de Finetti’s coherence criterion as follows:

Theorem 1 (Mundici [12]). Let φ1, . . . , φn formulas of �Lukasiewicz logic and
a : {φ1, . . . , φn} → [0, 1] an assessment. Then the following are equivalent:

(i) The assessment a is coherent in the sense explained above, that is for every
b : {φ1, . . . , φn} → R, there exists a valuation v : {φ1, . . . , φn} → [0, 1] such
that

∑n
i=1 b(φi)(a(φi)− v(φi)) ≥ 0

(ii) There is a state s on the Lindenbaum algebra of �Lukasiewicz logic generated
by the propositional variables occurring in φ1, . . . , φn, such that s([φi]) =
a(φi) for all i = 1, . . . , n, where [φi] denotes the equivalence class of φi.

In [12], Mundici shows that the coherence of rational-valued assessments of for-
mulas of infinite-valued �Lukasiewicz logic is decidable. As regards to the compu-
tational complexity of the problem, in [6] Flaminio and Montagna show that the
problem is in PSPACE and in [1] Bova and Flaminio settle the computational
complexity issue, showing that the problem is NP-complete.

As explained in [4] and [5], if we consider many-valued events under a con-
dition of ignorance both partial and total, the existence of a fair betting rate
for each event seems not reasonable. There are several reasons which suggest
the use of non-reversible games in which it is not possible for the bettor to re-
verse his role with the bookmaker at the same conditions. In this case the non
existence of a winning strategy for the bettor is a necessary but not sufficient
condition for coherence. Whereas a coherence criterion à la de Finetti becomes
the non existence of a bad bet, that is of a bet for which there is an alternative
system of bets ensuring to the bettor a strictly better payoff. More formally a
rational-valued �Lukasiewicz assessment a : {φ1, . . . , φn} → [0, 1] admits a bad
bet if there is a 1 ≤ j ≤ n, and a real number δ ∈ [0, 1] such that for every
valuation v : {φ1, . . . , φn} → [0, 1]

n∑
i=1

b(φi)(a(φi)− v(φi)) > δ(h(φj)− a(φj)).

and the following theorem holds:

Theorem 2 (Fedel, Montagna, Keimel, Roth [4]). Let φ1, . . . , φn formulas
of �Lukasiewicz logic and a : {φ1, . . . , φn} → [0, 1] an assessment. Then the
following are equivalent:

(i) The assessment a : {φ1, . . . , φn} → [0, 1] is admissible that is, it does not
admit a bad bet.
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(ii) There is a t ≤ n, and a set of states {s1, . . . , st} over the Lindenbaum algebra
of �Lukasiewicz logic generated by the propositional variables occurring in
φ1, . . . , φk, such that, for every i = 1, . . . , n,

a(φi) = max{sj([φi]) | j = 1, . . . , t}.

In this paper we will show that the problem of checking whether or not a rational-
valued �Lukasiewicz assessment on a non-reversible betting game is admissible (we
will denote by Luk-Adm the set of admissible �Lukasiewicz assessments) is NP-
complete. In particular the paper is organized as follows: after this short non-
technical introduction, in Section 2 we will present some preliminary notions
and results fundamental in order to understand the rest of this paper. The
essential technical tool is Theorem 5 that is a sharpening of [1, Lemma 2.7].
In Section 3 firstly we will prove that Luk-Adm is in NP using the fact the
feasibility problem of linear systems is decidable in polynomial time, in the size
of the binary encoding of the linear system. Then, since the set of 1-satisfiable
formulas is NP-complete, we will prove that Luk-Adm is NP-hard.

2 Preliminaries

Let MV be the signature (⊕,¬,⊥,") of type (2, 1, 0, 0). The set T of formulas
over MV is the smallest set containing a countable set of variables X1, X2, . . . and
satisfying: ⊥," ∈ T , and ϕ⊕ψ ∈ T , ¬ϕ ∈ T , whenever ϕ, ψ ∈ T . We denote by
Tk the set of formulas defined over the finite set of variables X1, . . . , Xk. Further
binary operation symbols are definable over the signature MV: ϕ→ ψ is ¬ϕ⊕ψ,
ϕ ↔ ψ is (ϕ → ψ) # (ψ → ϕ), ϕ $ ψ is ¬(ϕ → ψ), ϕ ∨ ψ is (ϕ → ψ) → ψ, and
ϕ ∧ ψ is ¬(¬ϕ ∨ ¬ψ). The system

[0, 1]MV = ([0, 1],⊕[0,1],¬[0,1],⊥[0,1],"[0,1]), (1)

where, for every x, y ∈ [0, 1], x⊕[0,1]y = min{1, x+y}, ¬[0,1]x = 1−x, ⊥[0,1] = 0,
and "[0,1] = 1, is called the standard MV-algebra, and the variety MV of MV-
algebra is generated, as a quasivariety, by [0, 1]MV [2].

Let k ≥ 1 be a natural number. For every ϕ ∈ Tk, denote by fϕ the function
from [0, 1]k into [0, 1] so inductively defined: for every x = (x1, . . . , xk) ∈ [0, 1]k,
⊥(x) = 0, "(x) = 1, Xi(x) = xi, (fϕ ⊕ fγ)(x) = fϕ(x) ⊕[0,1] fγ(x), and
(¬fϕ)(x) = 1 − fϕ(x). Let F (k) = {fϕ | ϕ ∈ Tk}. Then the free k-generated
MV-algebra is the algebra

F(k) = (F (k),⊕F ,¬F ,⊥F ,"F ), (2)

where the operations are the operations of [0, 1]MV defined pointwise.
McNaughton theorem (cf. [10], [3, Theorem 9.1.5]) states that a function f ∈
F (k) iff f is continuous, piecewise linear, each piece having integer coefficient.
In other words f ∈ F (k) iff there exist linear polynomial p1, . . . , pl with integer
coefficients, such that, for every x ∈ [0, 1]k, there exists a j ∈ {1, . . . , l} such
that f(x) = pj(x).
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We will henceforth denote by F(ω) the free MV-algebra generated by count-
ably many free generators.

In every MV-algebra A, the order relation ≤ can be defined by the following
stipulation:

x ≤ y iff x→ y = ".

If the order ≤ is linear, then the MV-algebra A is said to be linearly ordered, or
an MV-chain.

2.1 Coherent Books

Let φ1, . . . , φn be formulas in Tk. A �Lukasiewicz assessment is a map a : {φ1, . . . ,
φn} → [0, 1]. A �Lukasiewicz assessment a is said to be:

– Rational-valued if, for all i = 1, . . . , n, a(φi) ∈ Q.
– Coherent for reversible bets if, for every b : {φ1, . . . , φn} → R, there exists a

homomorphism h : F(k)→ [0, 1]MV such that

n∑
i=1

b(φi)(a(φi)− h(φi)) ≥ 0

holds

The notion of state (cf. [11]) is key for the investigation of coherent books.

Definition 1. Let A be an MV-algebra. A state on A is a map s : A → [0, 1]
satisfying:

(s1) s(") = 1 (normality),
(s2) for all x, y ∈ A, whenever x#y = ⊥, then s(x⊕y) = s(x)+s(y) (additivity).

Mundici (cf. [12]), Mundici and Kühr (cf. [9]), and Bova and Flaminio (cf. [1])
provided characterizations of coherent books. We recall the result by Bova and
Flaminio, being a sharpness of [9, Theorem 3.2].

First we introduce the notation we are going to use. We assume a reasonably
compact binary encoding of φ ∈ T , such that the number size(φ) of bits in the
encoding of φ is bounded above by a polynomial e1: N → N of the number c(φ)
of symbols #, → occurring in φ, that is,

size(φ) ≤ e1(c(φ)).

We similarly assume that the length in bits of the encoding of a finite set of
formulas {φ1, . . . , φk} ⊆ T , in symbols size({φ1, . . . , φk}) satisfies

size({φ1, . . . , φk}) ≤ e2(size(φ1) + . . . + size(φk)),

for some polynomial e2: N → N. Also, letting a : {φ1, . . . , φk} → [0, 1] be a
rational-valued assessment such that a(φi) = ki/zi with ki and zi relatively
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prime integers for all i = 1, . . . , n, we assume a binary encoding of a such that
the number of bits in the encoding of a, in symbols, size(a), satisfies

size(a) ≤ e3 (size({φ1, . . . , φn}) + k · log2 max{k1, . . . , zk}) ,

for some polynomial e3: N → N.
Then the characterization theorem reads as follows:

Theorem 3. Let φ1, . . . , φn be formulas in Tk and let a : {φ1, . . . , φn} → Q ∩
[0, 1] be a rational-valued �Lukasiewicz assessment. The following are equivalent:

(i) a is coherent.
(ii) There exists a state s over F(k) such that for all i = 1, . . . , n

s(φi) = a(φi).

(iii) There exists a unary polynomial p : N → N and m ≤ n + 1 homomor-
phisms h1, . . . ,hm from F(k) to [0, 1]MV satisfying the following. For all
i = 1, . . . , m, hi ranges over {0, 1/di, . . . , (di − 1)/di, 1} where

log2 di ≤ p(size(a)),

and for all i = 1, . . . , n, a(φi) is a convex combination of h1, . . . ,hm.

2.2 Rationality Criterion for Non-reversible Books

Let φ1, . . . , φn be formulas in Tk. Consider a �Lukasiewicz assessment a : {φ1, . . . ,
φn} → [0, 1]. We say that a admits a bad bet if there is a 1 ≤ j ≤ n, and a real
number δ ∈ R+ such that there exists a system of bets b : {φ1, . . . , φn} → R+

such that
n∑

i=1

b(φi)(h(φi)− a(φi)) > δ(h(φj)− a(φj)),

independently on the homomorphism h : F(k) → [0, 1]MV .
Similarly we say that a admits a good bet if there is a 1 ≤ j ≤ n, and a real

number δ ∈ R+ such that there exists a system of bets b : {φ1, . . . , φn} → R+

such that
n∑

i=1

b(φi)(h(φi)− a(φi)) < δ(h(φj)− a(φj)),

independently on the homomorphism h : F(k) → [0, 1]MV .
A �Lukasiewicz assessment a is said to be

– admissible iff there is no bad bet based on a.
– appropriate iff there is no good bet based on a.

As explained in [4, Remark 7.1] an assessment a on {φ1, . . . , φn} is admissible in a
game where only positive bets are allowed, then the assessment−a is appropriate
for non reversible bets.

The following result characterizes admissible and appropriate assessments for
non reversible bets, and generalizes [9, Theorem 3.2].
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Theorem 4. Let φ1, . . . , φn ∈ Tk, and let a : {φ1, . . . , φn} → [0, 1] be a �Lukasi-
ewicz assessment. Then:

(i) a is admissible iff there is a t ≤ n, and a set of states {s1, . . . , st} over F(k)
such that, for every i = 1, . . . , n, a(φi) = max{sj([φi]) | j = 1, . . . , t}.

(ii) a is appropriate for non-reversible bets iff there is a t ≤ n, and a set of
states {s1, . . . , st} over F(k) such that, for every i = 1, . . . , n, a(φi) =
min{sj([φi]) | j = 1, . . . , t}.

(iii) a is admissible and appropriate for non-reversible bets iff a is coherent.

Now we are ready to prove an analogous of Theorem 3 for the case of non-
reversible betting games.

Theorem 5. Let φ1, . . . , φn be formulas in Tk and a : {φ1, . . . , φn} → [0, 1] be
a �Lukasiewicz assessment. The following are equivalent:

(i) a is admissible.
(ii) There exists a t ≤ n such that, for every i = 1, . . . , t, there exists a unary

polynomial pi : N → N, a natural number mi, and mi ≤ n + 1 homomor-
phisms hi

1, . . . ,h
i
mi

from F(k) to [0, 1]MV satisfying the following. For all
l = 1, . . . , mi, there are natural numbers ri,l ∈ N such that:

1. range(hi
l) ⊆ {0, 1/ri,l, . . . , (ri,l − 1)/ri,l, 1}

2. log2 ri,l ≤ pi(size(a)),
3. There are positive real numbers λi

1, . . . , λ
i
mi

such that
∑mi

l=1 λi
l = 1, and,

for every j = 1, . . . , n,

a(φj) = max

{
mi∑
l=1

λi
l · hi

l(φj) | i = 1, . . . , t

}
.

Proof. (i) ⇒ (ii). Since a is admissible, Theorem 4 (i) ensures the existence
of t(≤ n) states s1, . . . , st on the free k-generated MV-algebra F(k) such that,
for every i = 1, . . . , n, a(φi) = max{sj([φi]) | j = 1, . . . , t}. For every j =
1, . . . , t, the assessment c : φi %→ sj([φi]) is clearly coherent. Therefore, from
Theorem 3 (i) ⇒ (iii), for every j = 1, . . . , t, there exist a unary polynomial
pj : N → N, mj ≤ n + 1 homomorphisms hj

1, . . . ,h
j
mj

such that each hj
l ranging

on {0, 1/rj,l, . . . , 1}, with rj,l ≤ 2pj(size(a)), and sj is a convex combination of
hj

1, . . . ,h
j
mj

. Therefore our claim follows.

(ii) ⇒ (i). The reader can easily verify that, for every j = 1, . . . , t the map
sj : F(k) → [0, 1] defined by sj([ψ]) =

∑mj

l=1 λj
l · h

j
l ([ψ]) is a state on F(k).

Therefore the claim trivially follows from Theorem 4 (i).

A direct inspection on the above proof, together with the characterization The-
orem 4(ii) shows that an analogous of Theorem 3 can be easily proved even for
the case of assessments that are appropriate for non reversible bets.
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3 Upper and Lower Bound

We denote by Luk-Adm the set of all (the binary encoding of) �Lukasiewicz as-
sessments that are admissible.

In this section we settle the complexity Luk-Adm to be NP-complete. First
of all remind that the feasibility problem of linear systems is decidable in poly-
nomial time, in the size of the binary encoding of the linear system (cf. [14]).
Therefore Theorem 5 provides a clear NP-algorithm deciding if either a �Lukasi-
ewicz assessment a belongs to Luk-Adm or it does not.

Lemma 1. Luk-Adm is in NP.

Proof. Let φ1, . . . , φn ∈ Tk, and let a : {φ1, . . . , φn} → [0, 1] ∩ Q be a rational-
valued �Lukasiewicz assessment. Following Theorem 5:

(1) The algorithm guesses a natural number t ≤ n, and for all i = 1, . . . , t,
it also guesses a natural number mi ≤ n + 1. Clearly n ≤ size(a), whence the
guesses are performed in polynomial time in size(a).

(2) For all i = 1, . . . , t, and for all l = 1, . . . , mi, the algorithm guesses a natu-
ral number ri,l and guesses the values hi

l(X1), . . . ,hi
l(Xk) in {0, 1/ri,l, . . . (ri,l −

1)/ri,l, 1}. Again k ≤ size(a), then these values still are guesses in polyno-
mial time. Then, for all i = 1, . . . , t, and l = 1, . . . , mi, it computes the values
hi

l(φ1), . . . ,hi
l(φn). [8, Lemma 2] ensures this computation to be performed in

polynomial time.
(3) Now the algorithm checks the feasibility of the following linear system in

the unknowns x1
1, . . . , x

1
m1

, x2
1, . . . , x

t
1, . . . , x

t
mt

:

x1
1 + . . . + x1

m1
= 1

...
xt

1 + . . . + xt
mt

= 1

max

{
mi∑
l=1

xi
l · hi

l(φ1) | i = 1, . . . , t

}
= a(φ1)

...

max

{
mi∑
l=1

xi
l · hi

l(φn) | i = 1, . . . , t

}
= a(φn)

As we previously recalled, every guess needed to define the above system can be
performed in polynomial time in size(a). Moreover, checking the system feasibil-
ity requires a polynomial time procedure. Therefore our algorithm is in NP, and
from Theorem 5 it provides a solution to the above system iff the assessment a
is admissible.

Call Luk-Sat the set of all (the binary encodings of) formulas in T that are
satisfied by a valuation in the standard MV-algebra [0, 1]MV . In [7] Luk-Sat is
proved to be NP-complete.

Lemma 2. Luk-Adm is NP-hard.



On the Complexity of Non-reversible Betting Games on Many-Valued Events 97

Proof. We provide a logarithmic space reduction from Luk-Sat to Luk-Adm. As a
matter of fact, let Ψ be a formula in Tk, and define the assessment a : {Ψ} → {1}.
Then Ψ ∈ Luk-Sat iff a ∈ Luk-Adm.

(⇒) Assume that Ψ ∈ Luk-Sat. Then there is a homomorphism h : F(k) →
[0, 1]MV such that h([Ψ ]) = 1. Moreover h is a state, therefore a is extended by
a state, whence is coherent, and therefore admissible.

(⇐) Conversely, assume that Ψ �∈ Luk-Adm. Therefore, for every homomor-
phism h : F(k) → [0, 1]MV , one has h([Ψ ]) < 1. Then there is a bad bet
for a. In fact, letting λ = 0, for every homomorphism h : F(k) → [0, 1]MV ,
λ(h([Ψ ])−a(Ψ)) = 0 > 1 · (h([Ψ ])−a(Ψ)) = h([Ψ ])− 1. Therefore a �∈ Luk-Adm,
and our claim is settled.

Lemma 1 and Lemma 2 give us the main result of this paper:

Theorem 6. Luk-Adm is NP-complete.

References

1. Bova, S., Flaminio, T.: The coherence of �Lukasiewicz assessments is NP-complete.
International Journal of Approximate Reasoning 51, 294–301 (2010)

2. Chang, C.C.: Algebraic Analysis of Many-valued Logics. Trans. Am. Math. Soc. 88,
467–490 (1958)

3. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-
valued Reasoning. Kluwer, Dordrecht (2000)

4. Fedel, M., Keimel, K., Montagna, F., Roth, W.: Imprecise probabilities, bets and
functional analytic methods in �Lukasiewicz logic (submitted)

5. Fedel, M.: Uncertainty, Indeterminacy and Fuzziness: A Probabilistic Approach.
In: Hosni, H., Montagna, F. (eds.) Probability, Uncertainty and Rationality, Pub-
lications of the Scuola Normale Superiore. CRM series. Springer, Heidelberg (In
print)

6. Flaminio, T., Montagna, F.: Models for Many-valued Probabilistic Reasoning.
Journal of Logic and Computation, doi:10.1093/logcom/exp013
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Abstract. We investigate how sequential decision processes can be
solved, under act-state independence. We first identify a reasonable re-
quirement that such solutions ought to satisfy under act-state indepen-
dence, which we call locality. We then identify a simple necessary and
sufficient algebraic condition on choice functions for locality to be sat-
isfied. As an example, we study locality for some choice functions used
in imprecise probability theory, and find that marginal extension plays
a crucial role.

1 Introduction

The traditional approach to decision making is to model uncertainty via prob-
ability, and to model preferences via utility. However, it has been argued that
classical (or precise) probability assessments cannot represent the kind of uncer-
tainty usually involved in complex decision making problems. For this reason,
more general models have been advocated, such as Dempster-Shafer belief func-
tions [2,9], imprecise probability [15,13], game-theoretic probability [10], info-gap
theory [1], and many more. In this paper we simply consider arbitrary choice
functions. Choice functions originate from social choice theory [8], and provide
an elegant and unifying framework to study most existing decision theories.

The aim of this paper is to investigate how sequential decision processes can
be solved, under act-state independence,1 and using arbitrary choice functions.
This builds further on work by Huntley and Troffaes [4] on subtree perfectness
in decision trees. Subtree perfectness roughly says that the restriction of a nor-
mal form solution to a subtree coincides with the normal form solution of that
subtree, and is similar to subgame perfectness [7] introduced in game theory.

We first identify a reasonable requirement that such solutions ought to sat-
isfy under act-state independence, which we call locality, and which essentially
represents a very strong form of subtree perfectness for particular decision prob-
lems: locality means that the global sequential problem can be solved by solving
a local problem at each stage, for each stage taking only into account rewards
incurred locally at that stage, and any events observed from previous stages. An
important special case of a sequential decision problem which ought to satisfy
1 In this paper we have no ambition for solving the complex problem of act-state

dependence under arbitrary choice functions.
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locality is a sequence of unrelated (in the sense of rewards and information) deci-
sion problems. The latter example is philosophically particularly important, be-
cause it means that the intuitively logical answer—solving each decision problem
separately—coincides with the answer where one models the sequential problem
in full and solves them jointly in the normal form. Locality implies this not only
for unrelated decision problems, but also for slightly more general situations
where information and rewards at each stage depend on previous stages.

We identify necessary and sufficient conditions on choice functions for locality
to be satisfied. As an example, we study locality for some choice functions em-
ployed in imprecise probability theory (Γ -maximin, maximality, E-admissibility,
and interval dominance), and find that marginal extension plays a crucial role.

Before we start, consider a classical Markov decision process with discount
rate γ, and transition probabilities pd

st and rewards rd
st (in utiles) for going from

state s to t under decision d. The optimal expected utility of an n + 1-stage
Markov decision process starting in state s can be recursively calculated:

V0(s) = 0, Vn+1(s) = maxd

∑
t pd

st(rd
st + γVn(t)). (1)

This corresponds to the usual value iteration algorithm [11, Sec. 4.4] for finding
optimal policies in infinite horizon Markov decision processes, with precisely one
policy evaluation step and one policy improvement step at each stage.

Under act-state independence, transition probabilities do not depend on the
decisions, and the solution turns out to be extremely simple:

Vn+1(s) =
(
maxd

∑
t pstr

d
st

)
+ γ
∑

t pstVn(t). (2)

In other words, at every stage, the optimal decision d∗ can be obtained by
solving a simple one-stage problem, namely maxd

∑
t pstr

d
st, and the sequential

decision problem reduces to a sequence of static decision problems. In essence,
this property is what we will call locality. Of course, under act-state dependence,
locality is usually violated, since in such case Markov decision processes cannot
be solved just locally, and backward induction techniques are required.

As stated before, we will not be concerned with the act-state dependent case,
however, we will generalise the above result to the case where

– we use arbitrary choice functions (no probabilities or utilities assumed),
– rewards can depend on the full state history,
– state spaces and decision spaces can depend on the stage.

We clarify the concepts presented by solving a toy problem: an agent sequentially
bets on a coin toss, aiming to maximise profit over the full sequence.

Section 2 introduces basic notions. Section 3 provides precise definitions of
sequential decision processes and optimal policies. Section 4 defines locality,
and presents our main result: a simple necessary and sufficient condition for
locality to be satisfied. Section 5 explores four specific choice functions induced
by coherent lower previsions. Section 6 concludes. Proofs are long and omitted.
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2 Choice Functions on Gambles

Let Ω be the possibility space—we only consider finite ones, no probabilities over
Ω are assumed, and subsets of Ω are called events. Let R be a set of rewards—no
utility function over R is assumed. A gamble is a function X : Ω → R, and is
interpreted as an uncertain reward: if ω ∈ Ω is the true state, X(ω) is incurred.

When solving a decision problem, it may not be possible to identify a single
action the subject considers the best. The subject might, however, still identify
some decisions that he would never consider choosing, leaving an optimal subset
he is willing to choose from. Various criteria will be explored in Section 5.

Commonly, optimal decisions are determined by comparison of gambles. We
therefore suppose that the subject has some way of determining an optimal
subset of any set of gambles, conditional upon an event A:

Definition 1. A choice function opt maps, for any event A �= ∅, each non-
empty finite set X of gambles to a non-empty subset of X : ∅ �= opt(X|A) ⊆ X .

3 Sequential Decision Processes

3.1 Definition and Notation

Consider for Ω a Cartesian product of state spaces : Ω = S0×S1×· · ·×Sn, where
S0 is the set of possible states of the system at time 0, and so on. Particular
elements of these spaces are denoted by s0, s1, . . . , sn. We identify any such
element sk also with an event Esk

= {(s′0, . . . , s′n) : s′k = sk}. For brevity, we will
sometimes write sk instead of Esk

when no confusion is possible.
The states are observed sequentially, and after each observation, we can take

a decision from some set, and receive a reward from a set R. With hk =
(s0, . . . , sk), we can describe the process as:

– observe s0 ∈ S0,
– choose d1 ∈ D1, observe s1 ∈ S1, receive r1(s0d1s1) = r1(h0d1s1),
– choose d2 ∈ D2, observe s2 ∈ S2, receive r2(s0s1d2s2) = r2(h1d2s2),
– . . .
– choose dn ∈ Dn, observe sn ∈ Sn, receive rn(hn−1dnsn).

The total reward is again assumed to be in R. More precisely, we assume an
operator + on R which maps every two elements r and r′ of R to another
element r + r′ of R. We assume that + has an identity element 0; no further
properties of + are assumed. To avoid many brackets, we always let + evaluate
from right to left (this simplifies proofs). The total reward is assumed to be:

r1(h0d1s1) + r2(h1d2s2) + · · ·+ rn(hn−1dnsn).

Finally, we assume that the subject has a choice function opt over any finite set
X of gambles on Fk+1 = Sk+1 × · · · × Sn, given any hk = s0 . . . sk.
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This process is a special case of a sequential decision problem, in that:

– chance and decision nodes follow each other consecutively, hence the problem
consists of clearly defined stages,

– a variable is observed regardless of the history (for instance, you cannot
decide to observe a different variable),

– at each stage, a decision incurs a reward, which may depend on the state
history, the current decision, and the next state, but not on anything else,

– the final reward is obtained through combining local rewards.

In our toy example, at each stage, the agent must bet on the outcome—hence,
heads or tails—and he loses one utile if wrong, but gains one utile if right. So,

S1 = S2 = · · · = Sn = {H, T }, D1 = D2 = · · · = Dn = {dH , dT },

rk(hk−1dksk) =

{
1 if dk matches sk,

−1 otherwise.

The initial state s0 is not of relevance in this problem (S0 can be any singleton).
There might be insufficient information to affirm the coin’s fairness. There-

fore, we allow the agent to learn about the possible bias of the coin whilst still
performing optimally given his existing knowledge—we come back to this later.

3.2 Normal Form Solution

Policies. After s0d1s1 . . . dk−1sk−1 has already occurred, a policy specifies:

– dk ∈ Dk,
– dk+1(sk) ∈ Dk+1 for all sk,
– . . .
– dn(sk . . . sn−1) ∈ Dn for all sk . . . sn−1.

A policy is also called a normal form decision. Denote the set of all policies by:

Πn
k = Dk ×DSk

k+1 × · · · ×DSk×···×Sn−1
n .

In our toy example, to mention a few, a policy could be ‘always bet tails’, or
‘bet tails if we had more tails than heads in the past, otherwise bet heads’.

Gambles. Each state history s0 . . . sk−1 = hk−1 in Hk−1 and each policy πn
k in

Πn
k incurs a gamble Xn

k (hk−1, π
n
k ), that is, a mapping from Sk × · · · × Sn to R:

⊕
sk

Esk

⊕
sk+1

Esk+1 . . .
⊕

sn
Esn

(
rk(hk−1dksk)+rk+1

(
hkdk+1(hk)sk+1

)
+. . .

· · ·+ rn

(
hn−1dn(hn−1)sn

)
.
)

We abused notation: d�(h�−1) denotes of course simply d�(sk . . . s�−1).
The gamble Xn

k (hk−1, π
n
k ) describes the reward Xn

k (hk−1, π
n
k )(fk) that we

receive for each possible fk when we follow πn
k after having observed hk−1.
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In our toy example, ‘always bet tails’ would induce the gamble:

Xn
k (hk−1, π

n
k )(fk) = nT − nH ,

where nT is the number of tails in fk, and nH the number of heads in fk. In a
single stage, the policy ‘bet heads’ has gamble:

Xk
k (hk−1, dH)(sk) =

{
1 if sk = H,

−1 if sk = T .
(3)

Optimal Policies. A policy πn
k is optimal for a given state history hk−1 if

Xn
k (hk−1, π

n
k ) ∈ opt(Xn

k (hk−1)|hk−1),

where Xn
k (hk−1) is the set of gambles of all policies starting from hk−1. The set

of all optimal policies, for a given state history hk−1, is:

Πn
k (hk−1) = {πn

k ∈ Πn
k : Xn

k (hk−1, π
n
k ) ∈ opt(Xn

k (hk−1)|hk−1)}.

4 Locality

As seen previously, under act-state independence, we can solve an n-stage Markov
decision process simply by solving n one-stage ones. We now generalise this idea.

Let Πk
k (·) denote all locally optimal decision functions:

Πk
k (·) = {dk(·) ∈ (Dk)Hk−1 : dk(hk−1) ∈ Πk

k (hk−1)}.

(It may be useful at this point to recall that Πk
k = Dk.) More generally,

Πn
k (·) = {(dk(·), dk+1(·), . . . , dn(·)) ∈ (Πn

k )Hk−1 :(
dk(hk−1), dk+1(hk−1·), . . . , dn(hk−1·)

)
∈ Πn

k (hk−1)},

where we used the identity

(Πn
k )Hk−1 =

(
Dk ×DSk

k+1 × · · · ×DSk×···×Sn−1
n

)Hk−1

= D
Hk−1
k ×D

Hk−1×Sk

k+1 × · · · ×DHk−1×Sk×···×Sn−1
n

= D
Hk−1
k ×DHk

k+1 × · · · ×DHn−1
n .

Property 1 (Locality). We say that opt satisfies locality (on S0, . . . , Sn) when-
ever, for each sequential decision process on S0, . . . , Sn and each 1 ≤ k < n,

Πn
k (·) = Πk

k (·)×Πk+1
k+1 (·)× · · · ×Πn

n (·).

With any opt on S0, . . . , Sn, we can associate the following property:
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Property 2 (Sequential Distributivity). For any 1 ≤ k < n, any value hk−1 of
Hk−1, all finite sets of gambles X on Sk, all finite sets of gambles Y(sk) on Fk+1
(one such set for each sk ∈ Sk), and all X ∈ X and Y (sk) ∈ Y(sk):

X +
⊕

sk∈Sk
Esk

Y (sk) ∈ opt
(
X +

⊕
sk∈Sk

Esk
Y(sk)

∣∣hk−1
)

⇐⇒ X ∈ opt(X|hk−1) and Y (sk) ∈ opt(Y(sk)|hk−1sk) for all sk.

Intuitively, locality clearly implies sequential distributivity, once seen that se-
quential distributivity essentially amounts to locality for (a particular set of)
two-stage problems. It is a purely algebraic property of the optimality operator,
and is relatively easy to verify. Our main result (whose proof is omitted due to
lack of space) is that the converse implication holds too:

Theorem 1. opt satisfies locality if & only if it satisfies sequential distributivity.

So, sequential distributivity yields a necessary and sufficient test for locality.

5 Locality for Choice Functions Induced by Coherent
Lower Previsions

Coherent lower previsions generalize the classical theory of probability by bound-
ing probabilities, and are useful when information is scarce or conflicting [13,6].

First, we must suppose that rewards are in utiles, hence R = R, and that +
represents addition. This is merely a practical assumption in order to work with
lower previsions, and will be assumed throughout the remainder.

A full conditional probability [3] yields a probability p(A|B) for every A ⊆ Ω
and ∅ �= B ⊆ Ω,2 and induces for every gamble X and every ∅ �= B ⊆ Ω,

Ep(X |B) =
∑

ω∈B p(ω|B)X(ω).

Ep is coherent in the sense of Williams [15, §1.2.1], or Walley [13, §7.1.4].
A coherent conditional lower (upper) prevision is then simply the lower (up-

per) envelope of some set M of coherent conditional previsions Ep:

P (X |B) = infEp∈M Ep(X |B), P (X |B) = supEp∈M Ep(X |B).

There are different ways of obtaining and interpreting lower previsions [6].
Many properties of coherent conditional lower and upper previsions are well

known [15]; for instance, P completely determines P .
The next property will reoccur frequently in our study.

Definition 2. Let the possibility space be Ω = S0 × · · · × Sn. A coherent lower
prevision P is then said to satisfy marginal extension (with respect to S0, . . . ,
Sn) whenever, for all 1 ≤ k < n, all gambles Z on Fk, and all hk−1 ∈ Hk−1,

P (Z|hk−1) = P (P (Z|hk−1Sk)|hk−1).
2 We cannot simply start from an unconditional probability, and use Kolmogorov’s

approach [5], because zero probability plays an essential role in our results, and
Kolmogorov’s approach excludes conditioning on events of probability zero.
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In the above definition, P (Z|hk−1Sk) : sk %→ P (Z|hk−1sk).
The order of the state spaces is relevant for marginal extension. For condi-

tional previsions Ep, marginal extension corresponds to disintegrability [3, p. 90,
Eq. (3)], and is always satisfied in our case as we consider finite state spaces only.

5.1 Maximality

Suppose we are given P (·|·)—by natural (or regular) extension [13, Sec. 8.1], we
can assume that P (X |A) is defined for all gambles X on Ω and non-empty A ⊆
Ω. Then, a policy πn∗

k ∈ Πn
k is optimal, in the sense of maximality, whenever:

P (Xn
k (hk−1, π

n∗
k )−Xn

k (hk−1, π
n
k )|hk−1) ≥ 0, for all policies πn

k ∈ Πn
k . (4)

Proposition 1. Maximality satisfies locality on S0, . . . , Sn, if and only if

(i) P (Esk
|hk−1) > 0 for all 1 ≤ k < n, hk−1 ∈ Hk−1, and sk ∈ Sk, and

(ii) P satisfies marginal extension with respect to S0, . . . , Sn.

A first observation is that locality provides a behavioural argument for marginal
extension: if you violate marginal extension with respect to some sequence of
states S0, . . . , Sn, then you must violate locality for some act-state independent
sequential decision problems on S0, . . . , Sn. Although marginal extension is a
convenient assumption to make, for instance due to computational reasons [13,
§6.7.5, p. 316], we are not aware of any other behavioural motivation.

Secondly, we note that the condition of strictly positive lower probability can
be relaxed through perturbation. Using results from [12], one can show that,
locally, you do not need to be concerned about zero lower probabilities, if you
are willing to accept an (arbitrarily close) approximate version of maximality.

In our toy example, first, our agent must assess a coherent lower prevision
P (·|·) reflecting his beliefs about the coin. For instance, he could use the imprecise
Dirichlet model [14], which states that, for any gamble X on Sk = {H, T }:

P (X |hk−1) = nHX(H)+nT X(T )+s min{X(H),X(T )}
nH+nT +s , (5)

where nH is the number of heads observed in hk−1, nT is the number of tails in
hk−1, and s is a hyper-parameter, usually taken to be 1 or 2. Eq. (5) is called the
predictive lower prevision. It models a completely vacuous state of knowledge if
nH = nT = 0, and converges to the empirical expectation as nH + nT grows.

The predictive lower previsions yield marginals on gambles on Sk conditional
on hk−1. The most conservative joint lower prevision that is compatible with
these marginals is given by repeatedly applying the marginal extension theorem
[13, p. 314–315, §6.7.2]: for any gamble Z on Sk × · · · × Sn, define

P (Z|hk−1) = P (P (Z|hk−1Sk)|hk−1)

(where P (Z|hk−1Sk) is considered as a gamble on Sk).
Applying maximality to our toy example is now straightforward. By definition

of maximality (Eq. (4)), betting on heads is locally maximal if

P (Xk
k (hk−1, dH)−Xk

k (hk−1, dT )|hk−1) ≥ 0.
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By Xk
k (hk−1, dH) = −Xk

k (hk−1, dT ), and Eqs. (3) and (5), we conclude that, lo-
cally, betting on heads is optimal whenever nH ≥ nT +s, and similarly, betting on
tails is optimal whenever nT ≥ nH +s. By construction, P (·|·) satisfies marginal
extension, so applying Proposition 1, we conclude that this is also the global
solution (after small perturbation to get rid of any zero lower probabilities).

5.2 E-Admissibility

Given a full conditional expectation Q(·|·), let optQ(·|A) be the choice function
corresponding to maximising expected utility conditionally on A, and letM(·|A)
denote the set of full conditional expectations that dominate a given coherent
lower prevision P (·|A). Then E-admissibility with respect to P (·|A) is:

opt(X|A) =
⋃

Q(·|A)∈M(·|A) optQ(X|A).

Proposition 2. E-admissibility satisfies locality on S0, . . . , Sn if and only if
(i) P (Esk

|hk−1) > 0 for all 1 ≤ k < n, hk−1 ∈ Hk−1, and sk ∈ Sk, and
(ii) P satisfies marginal extension with respect to S0, . . . , Sn.

Perhaps surprisingly, the conditions are identical to those for maximality. Re-
garding the example, note that, in general, for binary choice, E-admissibility is
equivalent to maximality. So, in the example, E-admissibility and maximality
coincide locally, and therefore, by Proposition 2, also globally.

5.3 Γ -Maximin

Γ -maximin with respect to a coherent lower prevision P is the choice function

opt(X|A) = arg maxX∈X P (X |A).

Proposition 3. Γ -maximin satisfies locality on S0, . . . , Sn if and only if
(i) P (Esk

|hk−1) > 0 for all 1 ≤ k < n, hk−1 ∈ Hk−1, and sk ∈ Sk,
(ii) P satisfies marginal extension with respect to S0, . . . , Sn, and
(iii) P is locally linear in the sense that, for all 1 ≤ k < n and all gambles X and

Y on Sk, P (X + Y |hk−1) = P (X |hk−1) + P (Y |hk−1).

These conditions imply full linearity on all gambles on S0× · · ·×Sn−1. Interest-
ingly, they do not imply linearity on gambles on Sn. Of course, in cases where
such strong form of linearity is satisfied, usually full linearity will actually be
satisfied. In other words, one cannot really endorse locality for Γ -maximin and
at the same time use imprecise probabilities, except in some unusual cases.

However, a locally Γ -maximin policy is always locally maximal, and so if
marginal extension holds it is also globally maximal, by Proposition 1. So, using
a locally Γ -maximin policy may still be a reasonable choice.

In our example, betting on heads is optimal under local Γ -maximin whenever

P (Xk
k (hk−1, dH)|hk−1) ≥ P (Xk

k (hk−1, dT )|hk−1).

By Eqs. (3) and (5), we obtain nH ≥ nT . So, betting on heads is locally optimal
if nH ≥ nT and similarly on tails when nT ≥ nH . However, P does not satisfy
the linearity condition, so the policy is not necessarily globally Γ -maximin. Still,
the local Γ -maximin policy is an interesting alternative for the reasons above.
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5.4 Interval Dominance

Interval dominance with respect to a coherent lower prevision P is:

opt(X|A) = {X ∈ X : (∀Y ∈ X )(P (X |A) ≥ P (Y |A))}.

Proposition 4. Interval dominance satisfies locality on S0, . . . , Sn if & only if

(i) P (Esk
|hk−1) > 0 for all 1 ≤ k < n, hk−1 ∈ Hk−1, and sk ∈ Sk,

(ii) P satisfies marginal extension with respect to S0, . . . , Sn, and
(iii) P (·|hk−1) is locally linear, in the sense that for all 1 ≤ k ≤ n, hk−1 ∈ Hk−1,

and gambles X on Sk, P (X |hk−1) = P (X |hk−1).

Interval dominance requires even stronger conditions than Γ -maximin. Indeed,
for interval dominance to satisfy locality, P must essentially correspond to a
coherent prevision Ep for some full conditional probability p: you cannot be
imprecise, and at the same time endorse locality for interval dominance.

6 Conclusion

We identified a reasonable and convenient condition that solutions to a par-
ticular class of sequential decision problems ought to satisfy under act-state
independence: locality. Essentially, locality means that, under fairly general cir-
cumstances, solving a sequential decision problem can be reduced to solving a
sequence of static decision problems, each contingent on the state history of
the process. Locality seems quite compelling for both practical and philosoph-
ical reasons. For example, any sequence of unrelated (in the sense of rewards
and information) decision problems clearly ought to be solvable by solving each
problem in the sequence independently of the others.

For those theories that can be modelled via choice functions on gambles (which
includes many), we identified a necessary and sufficient condition for locality
to be satisfied: sequential distributivity. This property provides a test for any
decision criterion whether locality is satisfied or not. We applied it to a number
of well known choice functions induced by coherent lower previsions: maximality,
E-admissibility, Γ -maximin, and interval dominance.

For maximality and E-admissibility, the conditions for locality interestingly
coincide, and amount to (i) having strictly positive lower transition probabilities,
(ii) satisfying marginal extension. The first condition can be relaxed, if we are
willing to adopt an (arbitrarily close) approximate version of maximality. The
second condition, marginal extension, is satisfied if lower previsions are specified
locally at each stage, conditional on the full history at that stage. This is the
natural way of specifying a joint model for a sequential problem, hence, usually,
marginal extension will be satisfied. Interestingly, we can also turn the argu-
ment around, and interpret locality as a behavioural motivation for marginal
extension: you must satisfy marginal extension if you wish to satisfy locality.

For Γ -maximin, locality will usually be violated, unless a precise conditional
prevision is specified, in which case it reduces to maximising expected utility.
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However, local Γ -maximin solutions will still be globally maximal (i.e. undomi-
nated), hence for this reason, Γ -maximin is perhaps still not that unreasonable.

For interval dominance, locality will also usually be violated unless a precise
conditional prevision is specified.
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Abstract. Thanks to the high expressive power and the rule-based na-
ture of declarative languages, their influences are growing in the fields of
AI, knowledge representation, and so on. On the other hand, since the no-
tion of “equality” plays a crucial role on such languages, in this paper we
focus in the design of a flexible (fuzzy) but efficient (lazy) notion of equal-
ity for hybrid declarative languages amalgamating functional-fuzzy-logic
features. Here, we show that, by extending at a very low cost the no-
tion of “strict equality” typically used in lazy functional-logic languages
(Curry, Toy), and by relaxing it to the more flexible one of similar equal-
ity used in fuzzy-logic programming languages (Likelog, Bousi∼Prolog),
similarity relations can be successfully treated while mathematical func-
tions are lazily evaluated in a given program. Our method represents
a very easy, low-cost way, for fuzzifying lazy functional-logic languages
and it can be implemented at a very high abstraction level by simply
performing a static pre-process at compilation time which only manip-
ulates the program at a syntactic level (i.e., the underlying operational
mechanism based on rewriting/narrowing remains untouched).

Keywords: Declarative Programming, Equality, Similarity, Laziness.

1 Introduction

Due to the essential vagueness of human thinking, the logical treatment of un-
certainty has an increasing importance in specification/verification/development
software tasks involving Artificial Intelligence, Soft-Computing, etc. Nowadays,
a considerable number of logical systems focus in the formalization of vague con-
cepts and approximate reasoning in a rule-based way by making use of theoretical
results coming up from the mathematical background of fuzzy logic [18].

As it is well-known, Logic Programming [11] has been widely used for problem
solving and knowledge representation in the past. Nevertheless, traditional logic
programming languages are not able to treat with partial truth. Fuzzy Logic Pro-
gramming is an interesting and still growing research area that agglutinates the
efforts for introducing Fuzzy Logic into Logic Programming, in order to provide
these traditional languages with techniques or constructs to deal with uncer-
tainty. During the last decades, several fuzzy logic programming systems have
been developed, where the classical inference mechanism SLD–Resolution (based
on syntactic unification) is replaced with a fuzzy variant which is able to handle

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 108–117, 2010.
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partial truth [13,19,9]. This is also the case of Likelog [1] and Bousi∼Prolog [7],
two fuzzy extensions of Prolog which cope with similarity/proximity relations.

On the other hand, during the last three decades of investigation in the field
of the integration of declarative programming paradigms (functional, fuzzy and
logic), the scientific community of the area has produced important and ad-
vanced contributions related to both theoretical and practical aspects. However,
whereas the functional and logic programming styles have been successfully in-
tegrated in the past and, as said before, more recently fuzzy logic has also been
introduced into the logic programming paradigm, there is not precedent (apart
from our preliminary approach presented in [16]), for a total integration of all
these frameworks. In this paper, we plan to go a step beyond in this last sense,
by proposing the fusion of the different equality models traditionally supported
by each one of these declarative paradigms. It is important to take into account
that an appropriate notion of equality has a capital importance when designing
the repertoire of expressive resources for a particular declarative language. In
general, when we use the term “equality” in declarative programming, there are
several different meanings depending of the concrete paradigm being considered.
A representative (not exhaustive) list of some cases could be:

– Syntactic equality. It is the simplest equality model used in the context of
classical pure logic programming (Prolog) which refers to syntactic identity.
In this sense, two element are considered “equal” if they have exactly the
same syntax. For instance, f(a) is equal to f(a) but not to g(b).

– Strict equality. When considering lazy languages, both pure functional and
integrated functional-logic languages (Haskell and Curry, respectively), this
new equality notion is the only applicable one mainly due to the possible
presence of non terminating functions. For instance, if the evaluation of f(a)
does not finish then we can not say that f(a) is strictly equal to itself. And,
on the contrary, two terms with different syntax, such as g(b) and h(c), could
be proved equal if they produce the same final value (for example 0) after
being evaluated by rewriting or narrowing.

– Similar equality. This equality model, typically used in fuzzy logic lan-
guages such as Likelog and Bousi∼Prolog, is a direct consequence of several
attempts for fuzzifying the original notion of syntactic equality. In this case,
the idea is to allow the presence of a set of the so called “similarity/proximity
equations” between symbols of a given program. So, if we have a program
with the equations eq(a, b) = 0.5 and eq(f, g) = 0.3 then, it could be proved
that expressions f(a) and g(b) are similar with a concrete truth degree.

In the present work, we are looking for a sophisticated equality model fussing the
two last equality versions above, in order to take into account the intrinsic par-
ticularities that laziness and fuzziness introduce into the maximally integrated
functional-fuzzy-logic paradigm. The clever idea of our method is to simply add
to a given functional-logic program (written in Curry, for instance) a set of
rewriting rules defining the new symbol ≈:≈ which captures similarities and
implements at a very low cost the powerful notion of “strict similar equality”.
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2 Similarity Relations and Fuzzy Logic Programming

In the last two decades, several fuzzy logic programming languages have been
developed where, in essence, the classical SLD resolution principle of Prolog has
been replaced by a fuzzy variant of itself, with the aim of dealing with partial
truth and reasoning with uncertainty. Most of these languages implement the
resolution principle introduced by Lee[9], such as Elf-Prolog [5], Fril [2], F-Prolog
[10], Bousi∼Prolog [7]1, Likelog [1] and the multi-adjoint logic approach of [13].
In this work we are interested in fuzzy languages like Likelog and Bousi∼Prolog,
which are based in the mathematical notions of similarity and proximity re-
spectively, since we think that they can be easily extended with mathematical
functions in a natural way. Moreover, we will show that it is also possible to
incorporate an important computational resource coming from the functional
world, as it is the case of laziness.

A similarity relation is a mathematical notion able to manipulate alternative
instances of a given entity that can be considered equals with concrete truth
degrees. Similarity relations are closely related with equivalence relations (and,
then, to closure operators) [20]. Let us recall that a T-norm ∧ in [0, 1] is a binary
operation ∧ : [0, 1]× [0, 1] → [0, 1] associative, commutative, non-decreasing in
both the variables, and such that x ∧ 1 = 1 ∧ x = x for any x ∈ [0, 1]. Formally,
a similarity relation & on a domain U is a fuzzy subset & : U × U → [0, 1] of
U ×U such that, ∀x, y, z ∈ U , the following properties hold: reflexivity &(x, x) =
1, symmetry &(x, y) = &(y, x) and transitivity &(x, z) ≥ &(x, y) ∧ &(y, z). It
is important to note that this last property is not required when considering
proximity relations. In order to simplify our developments, as in [19], we assume
that x ∧ y is the minimum between the two elements x, y ∈ [0, 1].

A very simple, but effective way, to introduce similarity relations into pure
logic programming, generating one of the most promising ways for the integrated
paradigm of fuzzy logic programming, consists of modeling them by a set of
the so-called similarity equations of the form eq(s1, s2) = α, with the intended
meaning that s1 and s2 are predicate/function symbols of the same arity with
a similarity degree α. As in [16], we assume here that the intended similarity
relation & associated to a given program R, is induced from the (safe) set of
similarity equations of R, verifying that the similarity degree of two symbols s1
and s2 is 1 if s1 = s2 or, otherwise, it is recursively defined as the transitive
closure of the similarity equations.

This approach is followed, for instance, in the fuzzy logic languages Likelog [1]
and Bousi∼Prolog [7], where a set of usual Prolog clauses are accompanied by a
set of similarity equations playing an important role at (fuzzy) unification time.
Instead of classical syntactic unification, we speak now about weak unification
[7]. Of course, the set of similarity equations is assumed to be safe in the sense
that each equation connects two symbols of the same arity and nature (both
predicates or both functions) and the properties of the definition of similarity

1 As it can be seen in http://www.inf-cr.uclm.es/www/pjulian/bousi.html, this
language is being developed in our research group, at the U. of Castilla-La Mancha.
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relation are not violated, as occurs, for instance, with the wrong set {eq(a, b) =
0.5, eq(b, a) = 0.9} which, apart for introducing risks of infinite loops when
treated computationally, in particular, it does not satisfy the symmetric property.

Example 1. Following [1], if we consider a database of books of different kinds
containing the fact “horror(drakula)”, then the goal “?-adventurous(Book)”
would not have classical solution in the case that there were no rule in the
database unifying with atom “adventurous(X)”. Nevertheless, it seems reason-
able that the user considers the constants “adventurous” and “horror” similar
to a certain degree. More precisely, if the user introduces a similarity equation like
“eq(adventurous, horror) = 0.9” into a Likelog/Bousi∼Prolog interpreter,
the system would successfully respond with a computed answer incorporating
the corresponding truth degree “0.9” (i.e, something like the 90 % of credibility)
to substitution “Book %→ drakula”, as obviously expected.

Before finishing this section, it is noteworthy to take in mind the following points:

– Likelog is oriented to manipulate inductive databases, where no function
symbols of arity greater than 0 are allowed. So, only similarities between two
predicates or constants (that is, constructor function symbols with no param-
eters) can be considered. Fortunately, both Bousi∼Prolog and our present
approach drop out this last limitation by also allowing similarity equations
between any pair of constructor function symbols which need not be con-
stants. Moreover, since our current language does not treat with proper
predicate symbols, we use the notion of constraint which is a quite natural
way to model predicates in (pure and/or integrated) functional languages.

– On the other hand, since Likelog and Bousi∼Prolog can be seen as fuzzy logic
languages extending the resolution principle used in pure logic languages
like Prolog, they are “eager” languages, where no lazy computations are
allowed (in contrast with the agile evaluation we will see in Section 5). In
our approach, instead of mirroring these inference systems, we are much more
oriented to the syntax (instead of Horn clauses, we prefer rewrite rules) and
operational principles (rewriting/narrowing) of declarative languages with a
“functional taste” (Haskell, Curry) in order to cope with laziness plus their
combinations with similarity equations.

3 Rewriting, Narrowing and Laziness

The theory of Term Rewriting Systems (TRS) has been largely used in declar-
ative programming to develop pure functional and integrated, functional-logic,
languages, such as Haskell and Curry, respectively. A Haskell or a Curry pro-
gram is no more than a TRS, that is, a set of rewrite rules (instead of a set
of clauses, as occurs with logic languages) that can not be distinguished under
a syntactic point of view: the differences appear only at the operational level,
depending whether rewriting or narrowing is used to execute programs. This
section is devoted to explain such concepts.



112 G. Moreno

We consider a signature Σ partitioned into a set C of constructors and a set F
of defined functions. The set of constructor terms (with variables) is obtained by
using symbols from C (and a set of variables X ). The set of variables occurring
in a term t is denoted by Var(t). A pattern is a term of the form f(d1, . . . , dn)
where f/n ∈ F and d1, . . . , dn are constructor terms (with variables). A term is
linear if it does not contain multiple occurrences of one variable. A position p in
a term t is represented by a sequence of natural numbers (Λ denotes the empty
sequence, i.e., the root position). Positions are ordered by the prefix ordering:
p ≤ q, if ∃w | p.w = q. Moreover, t|p denotes the subterm of t at a given
position p, and t[s]p denotes the result of replacing the subterm t|p by the term
s. We denote by {x1 %→ t1, . . . , xn %→ tn} the substitution σ with σ(xi) = ti for
i ∈ {1, . . . , n} (with xi �= xj if i �= j), and σ(x) = x for all other variables x.
The application of a substitution σ to a term t is denoted by σ(t).

A rewrite rule is an expression of the form l → r such that l �∈ X , and
Var(r) ⊆ Var(l). The terms l and r are called the left-hand side (lhs) and the
right-hand side (rhs) of the rule, respectively. A set of rewrite rules is called
a term rewriting system (TRS). A TRS R is left-linear if l is linear for all
l → r ∈ R. A TRS is constructor–based (CB) if each left-hand side is a pattern.
In the remainder of this paper, a program is a left-linear CB-TRS where the lhs’s
of two different rewrite rules do not unify. A rewrite step is an application of a
rewrite rule to a term, i.e., t→p,R s if there exists a position p in t, a rewrite rule
R = (l → r) and a substitution σ with t|p = σ(l) and s = t[σ(r)]p. Rewriting is
the operational principle of pure functional languages such as Haskell. However,
the operational semantics of modern integrated functional-logic languages, such
as Curry, is usually based on (needed) narrowing, a combination of variable
instantiation and reduction. Formally, s �p,R,σ t is a narrowing step if p is a
non-variable position in s and σ(s) →p,R t.

Despite of the rewriting/narrowing mechanism used to solve goals w.r.t. a
given program, we distinguish between “eager (call-by-value)” and “lazy (call-
by-name)” evaluation models. Intuitively, when we have an expression with sev-
eral nested subterms to be evaluated, any eager strategy only should evaluate
innermost sub-expressions in each computation step, whereas a lazy strategy
should give priority to outermost subterms for being processed. Although a lazy
strategy is always more difficult to implement than an eager one, the benefits
of laziness have been largely reported in the specialized literature. For instance,
in programs defining infinite data structures, computations with guarantees of
termination can be only performed in a lazy way.

In the following section, we focus on another important element strongly re-
lated with the operational semantics of lazy (pure functional and functional
logic) languages, called Strict Equality.

4 Strict Equality versus Similar Equality

As said in the previous sections, it is usual in functional logic programming
to simulate typical (crisp) predicates of pure logic programming by means of
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% Strict Equality “StrEq”
c=:=c → success ∀c/0 ∈ C
c(x1, .., xn)=:=c(y1, .., yn)→ x1=:=y1 & . . . &xn=:=yn ∀c/n ∈ C
success & success→ success

% Strict Similar Equality “StrSimEq”
c≈:≈d → �(c, d) ∀c/0, d/0 ∈ C
c(x1, .., xn)≈:≈d(y1, .., yn) → min(�(c, d), x1≈:≈y1, . . .

. . . xn≈:≈yn) ∀c/n, d/n ∈ C

Fig. 1. Rewrite rules defining =:= (strict equality) and ≈:≈ (strict similar equality)

boolean functions. However, a second much more interesting way to face this
problem is by using constraints. An elementary constraint is an equational con-
straint e1 =:= e2 between two expressions (of base type). Then, e1 =:= e2
is satisfied if both sides are reducible to a same ground data term. This no-
tion of equality, which is the only sensible notion of equality in the presence
of non-terminating functions [17] and also used in (lazy) functional languages,
it is also called strict equality. As a consequence, if one side is undefined (non-
terminating), then the strict equality does not hold (so, it is not reflexive).

Equational constraints should be distinguished from standard boolean func-
tions since constraints are checked for satisfiability. For instance, the equational
constraint X =:= 0 is satisfied if variable X is bound to 0. However, the eval-
uation of X =:= 0 does not deliver a boolean value True or False, since the
latter value would require a binding for X to all values different from 0. This
is sufficient since, similarly to predicates in logic programming, constraints are
only activated in conditions of equations which must be checked for satisfiability.
Operationally, an equational constraint e1 =:= e2 is solved by evaluating e1
and e2 to unifiable data terms. The equational constraint could also be solved
in an incremental way by an interleaved lazy evaluation of the original expres-
sions and binding variables to constructor terms [12]. Constraints can be also
combined into a conjunction (which can be interpreted concurrently), written as
c1&c2. This evaluation mechanism can be implemented at a very high abstrac-
tion level by assuming that each program implicitly incorporates the standard
set of rewrite rules shown in Figure 1, defining the semantics of the primitive
“strict equality” relation symbols “=:=” and “&” [4,17].

On the other hand, since =:= represents a natural way to deal with strict
equality and constraints simulating “crisp predicates”, our next task consists of
introducing a new operator, say ≈:≈, for modeling “fuzzy predicates” by means
of the new notions of similar equality and f-constraints. Given an f-constraint
e1≈:≈e2, the goal now is to reduce both expressions e1 and e2 to ground values,
and then comparing the resulting data terms v1 and v2, having into account
the similarity relation & induced by the set of the similarity equations of the



114 G. Moreno

corresponding program as shown in (see Figure 1). Now, instead of success,
we are looking for a real number in the interval [0, 1] representing the similarity
degree between outputs v1 and v2.

Basically, the set of rewrite rules defining “≈:≈” in Figure 1 proceeds as fol-
lows. The similarity degree between two constructor symbols of arity 0 is the one
returned by the induced similarity relation&. On the other hand, when comparing
two data terms (obtained after reducing the original parameters of a f-constraint)
with arguments, it is necessary to recursively compute the similarity degree be-
tween the corresponding pairs of arguments of the data terms, together with the
similarity relation between the constructor symbols heading each data term.

5 A Running Example

In the following program P , we consider that data terms are built with constants
a, b and c, constructor symbols (of arity 1) r and s, and the typical binary
constructor “:” for modeling lists, whereas f, g and h are function symbols
defined by the the following three rewrite rules (note that we use capital letters
to denote variable symbols) R1 : f(X)→ r(X) : f(X), R2 : g(b)→ s(c), and
R3 : h(X : Y)→ X. Intuitively, function f generates an infinite list of the form
r(X) : r(X) : ... (hence introducing the risk of non-termination in a non-lazy, i.e.
eager, setting), function g produces the data term s(c) when it is invoked with
argument b, and finally, function h returns the (first) element heading a given
list. Assume now that program P also contains the following set of similarity
equations between constructor symbols of the same arity E1 : eq(a, b) = 0.8,
E2 : eq(b, c) = 0.6 and E3 : eq(r, s) = 0.5. In order to generate a similarity
relation based on the previous set of similarity equations, we must firstly apply
the “transitivization” algorithm of [8], in order to obtain the following similarity
relation & induced from E1, E2 and E3:

& =

⎛⎜⎜⎜⎜⎜⎜⎝
a b c r s

a 1 0.8 0.6 0 0
b 0.8 1 0.6 0 0
c 0.6 0.6 1 0 0
r 0 0 0 1 0.5
s 0 0 0 0.5 1

⎞⎟⎟⎟⎟⎟⎟⎠
Inspired by this matrix and following the method explained in the previous
section, we can now construct the following set StrSimEq of “strict similar
equality rewrite rules” shown in Figure 2.

Now, we can safely replace the original set of similarity equations (i.e., E1, E2
and E3) by the previous thirteen rewrite rules (collecting all the information
on similarities among constructor symbols), which are added to the original
program P in order to obtain the extended program P+ = (P −{E1, E2, E3})∪
StrSimEq = {R1, R2, R3}∪{R4, .., R16} = {R1, .., R16}. It is important to note
that, in contrast to P , no similarity equations appear in P+, since it only contains
rewrite rules which can be directly used by rewriting/narrowing to solve goals.
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R4 : a≈:≈a→ 1 R5 : a≈:≈b → 0.8 R6 : a≈:≈c → 0.6
R7 : b≈:≈a→ 0.8 R8 : b≈:≈b → 1 R9 : b≈:≈c → 0.6
R10 : c≈:≈a→ 0.6 R11 : c≈:≈b → 0.6 R12 : c≈:≈c → 1

R13 : r(X)≈:≈r(Y) → min(1, X≈:≈Y)
R14 : r(X)≈:≈s(Y) → min(0.5, X≈:≈Y)
R15 : s(X)≈:≈r(Y) → min(0.5, X≈:≈Y)
R16 : s(X)≈:≈s(Y) → min(1, X≈:≈Y)

Fig. 2. Rewrite rules for “StrSimEq” induced from �

h(f(a)) ≈:≈ g(X) � 1.1, R1 h(r(a) : f(a)) ≈:≈ g(X)

� 1, R3 r(a) ≈:≈ g(X)

� 2, R2
{X�→b} r(a) ≈:≈ s(c)

� Λ, R14 min(0.5, a ≈:≈ c)

� 2, R6 min( 0.5, 0.6)

� 0.5

Fig. 3. Derivation for goal h(f(a))≈:≈g(X) in the extended program P+

Let us explain in detail our method following the derivation of Figure 3:

• Step 1. This is properly a pure functional evaluation step, since it is based
on rewriting. Note that, by using rule R1, it simply exploits the unique redex
of the original goal, that is, the (underlined) subterm located at position 1.1
(observe that f(a) is the first argument of h(f(a)), which, once again, is the first
argument of the whole expression h(f(a))≈:≈g(X)).
• Step 2. This step is also based on rewriting (by using this time rule R3), but
in contrast with the previous one, here we can clearly observe the lazy behaviour
of our operational principle. Since the exploited redex (subterm h(r(a) : f(a))
at position 1), also contains an inner redex (f(a)), an eager strategy would
have (infinitely) exploited such innermost redex, thus producing a non-ending
evaluation sequence with rule R1 (remember that this rewrite rule defines the
generation of an infinite list!). Fortunately, our lazy strategy avoids this risk
of loop in a very easy and clever way: by simply giving priority to outermost
redexes when reducing a term.

• Step 3. It is the first time that we perform a proper narrowing step (which is
not only based on rewriting, but also in variable instantiation) in our example,
thus introducing the logical dimension of the derivation. In fact, before reducing
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subterm g(X) at position 2 of the original goal, narrowing firstly generates the
binding X %→ b, and then, after applying it to that subterm, it is able to reduce
the resulting redex g(b) with rule R2.

• Step 4. If in the previous steps we have evidenced the functional, lazy, and logic
features, respectively, of our approach, in what follows, we focus our attention on
its fuzzy properties. The fourth step, exploits the similarity between constructors
r and s by simply performing a rewriting step on the whole goal (position Λ)
with the synthesized rule R14. Remember that this “strict similar equality rewrite
rule” is not present in the original program P , but only in the extended program
P+. This rule collects the similarity degree 0.5 between r and s expressed in the
original similarity equation E3 of P . Observe also in the resulting expression
the recursive call to ≈:≈ with the actual parameters of subterms r(a) and s(c),
which will be considered in the following step.

• Step 5. Once again, we are describing a new fuzzy step, which exploits now the
similarity degree 0.6 between constants a and c by means of the new rewrite rule
R6 ∈ P+. It is important to note that, although there is no similarity equation
in the original program P directly relating both constants, the corresponding
similarity degree can be obtained by transitivity from E1 and E2 after applying
the method of [8].

• Step 6. The last derivation step simply evaluates the min T-norm (with con-
crete similarity degrees), which can be considered a primitive operator of the
language. So, the computed answer for the original goal can be interpreted as:
“expressions h(f(a)) and g(X) can be reduced to similar output values with de-
gree 0.5 when the input value for X is b”.

6 Conclusions and Further Research

In this paper we have proposed a novel, powerful notion of equality based on sim-
ilarity, which is especially well suited for hybrid declarative languages promoting
a functional-fuzzy-logic programming style. Our approach prefers a compilation
process instead of an interpretation way for managing rules at a very low com-
putational cost and in a complete transparent way for the final user. Moreover,
it captures similarities among constructor symbols of any arity when comparing
data terms obtained as the output of more complex expressions, also enjoying
an efficient execution via lazy evaluation. Moreover, it can be implemented at
a very high abstraction level, without manipulating the semantics and the op-
erational principle of the original language, by simply performing two purely
syntactic pre-processing stages (from similarity equations to a complete similar-
ity relation, and then to a set of rewriting rules defining symbol ≈:≈).

For the near future we plan to combine this refined notion of equality with the
extension of needed narrowing proposed in [16], as well as to adapt to the new
functional-fuzzy-logic language, the implementation, transformation and opti-
mization techniques developed in our research group regarding the fuzzy logic
programming field (see same representative works in [14,6,15,3,7,8]).
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Abstract. In this paper we propose an architecture for deliberative
agents based on progressive reasoning. When an agent receives a query,
it tries to satisfy it by building an answer based on its current knowledge.
Depending on the available time or the urgency of the requirement the
agent can produce answers with different levels of quality. Agents could
build progressively their answers with the information they receive from
perception or during the dialogue with other agents. We assume that in
the real world normally it is better to receive an answer with poor qual-
ity than no answer. The answer can be good enough for the receiver or
the receiver can spend more time to wait for a better answer. Autonomy
implies taking the best decision with the available information, avoiding
blocking situations and no action.

1 Introduction

Dean and Boddy first used the term anytime algorithm in the late 1980’s [2].
The main characteristic of these algorithms is that the quality of its results can
be measured and that it improves gradually as computation time increases. This
kind of algorithms are normally related to real time, where the time granularity
is thinner than the long time needed to calculate a complete solution. They
are able to communicate the best result obtained when interrupted or they can
establish a compromise to deliver it in a given time. In the context of logics
and knowledge-based systems some authors talk about progressive (or anytime)
reasoning or deduction [5,4].

In multiagent systems, agents have particular goals. The conversations among
deliberative agents aim to obtain information in order to produce solutions
to those goals. In [3] we described how these conversational agents could be
modeled.

Consider a rule-based agent. Classical inference mechanisms could take a long
time to generate definitive results, depending on the availability of the external
information provided by other agents. The model of specialization reasoning
that will be described below always can generate—more or less useful—partial
results in a much shorter period of time. It is very important to notice that rules
are weighted with intervals of truth-values and that we can use negation in the
facts and in the conditions and conclusions of rules. Then we can talk about
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different certainty levels and precision. In our language [6] the value of a fact a
is an interval of truth-values [α, β]. Rules concluding a are responsible of α (the
minimum of the interval) and rules concluding ¬a of β (the maximum).

We can introduce quality and precision measures. We will consider values
are provisional when it is possible to improve their precision later using more
information. Otherwise they are definitive. More certain rules produce more
precision for the conclusion. Provisional values for facts are those less precise
that can be used also to produce provisional deduction and so provisional values
for other facts.

Another important issue is time. It may be reasonable to think in different
strategies of specialization using provisional values, i.e. when a concrete timeout
has been reached or when we need a value, we can use a less precise but useful
result. The passing of time gives an opportunity to increase the accuracy, and
then the agent’s goals can persist until it is not possible to obtain more precise
values.

In this paper we will introduce how reasoning based on specialization of rule-
based systems can be the central mechanism to deliberate and also to produce
reasonable dialogues among conversational agents [1,3,7]. Agents are anytime
reasoners and can produce answers with different levels of quality: containing
the best, a provisional or a conditional answer. We assume that in the real world
normally it is better to receive an answer with poor quality than no answer. The
answer can be good enough for the receiver or the receiver can spend more time
waiting for a better answer.

In Section 2 we formally describe the deduction by specialization. Section 3
is devoted to quality measures and the impact of specialization over quality and
precision. We present the description of the agent and its pragmatics in Section 4.
In Section 5 we describe a very simple example of communication among agents.
Finally, some conclusions and future work are developed in Section 6.

2 Deduction

The main component of the mental state of agents [8] is the knowledge base
containing beliefs (facts) and knowledge (rules) for deliberation. In our model,
both facts and rules are weighted with intervals of truth-values.

Specialization [6] can be considered as an anytime algorithm because it allows
to obtain information before the completion of the inference process. It can be
considered also a mechanism for progressive reasoning because it is a technique
that successively refines a solution while making available intermediate solutions.
In the following we introduce briefly a simplified version of the language and
inference mechanism:

Language. L = 〈A, Σ,S〉 is defined by:

– Truth-values A ∈ [0, 1] where 1 and 0 are the booleans True and False.
Int(A) = {[i, j] | i, j ∈ A, 0 ≤ i ≤ j ≤ 1} are intervals of A.

– Σ is a set of propositional variables (atoms or facts).
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– Sentences S composed by: literals (a, V ), (¬a, V ), with a ∈ Σ and V ∈
Int(A) and rules of the form (p1 ∧ p2 ∧ · · · ∧ pn → q, [i, 1]), where i ∈ A, pi

and q are literals, and ∀i, j(pi �= pj , pi �= ¬pj , q �= pj, q �= ¬pj)

Inference Rules. We will use the following inference rules, where T is a T-norm:

– Not-introduction: from (a, [i, j]) infer (¬a, [1− j, 1− i])
– Not-elimination: from (¬a, [i, j]) infer (a, [1− j, 1 − i])
– Parallel composition: from (a, V1) and (a, V2) infer (a, V1 ∩ V2)
– Specialization: from (pi, [i, j]) and (p1 ∧ · · · ∧ pn → q, [k, 1]) infer (p1 ∧ · · · ∧

pi−1 ∧ pi+1 ∧ · · · ∧ pn → q, [T (i, k), 1])

Consider Rq = R+
q ∪R−

q the set of rules deducing the fact q. We can distinguish
between the positive rules R+

q deducing q and the negative rules R−
q deducing

¬q. Positive rules contribute to the minimum of the interval (positive evidences)
and negative ones to the maximum (negative evidences).

The specialization rule above is the core of the progressive reasoning algo-
rithm. When a rule is specialized it produces a new rule with less conditions
and a new updated value. When a rule is totally specialized (there are no more
conditions) it produces a value for the literal of the conclusion.

Given a rule (P → q, [k, 1]) ∈ R+
q , the most precise value for that literal

will be [k, 1] when P is true, because of the specialization rule and the T-norm
property T (1, a) = a. Similarly, given (P → ¬q, [k, 1]) ∈ R−

q , the most precise
value for that literal will be [0, 1− k].

A fact q is initially unknown, that is, its value is the most imprecise interval
[0, 1]. Using the parallel composition rule and the values obtained from totally—
positive and negative—specialized rules we will obtain a more precise inter-
val for q, or a contradiction when the intersection is empty1. Given a set of r
rules R+

q with truth-values {[α1, 1], . . . , [αr, 1]} the most precise interval will be
[maxr

i=1(αi), 1]. Given a set of s rules R−
q with truth-values {[β1, 1], . . . , [βs, 1]}

the most precise interval will be [0, 1−maxs
i=1(βi)]. Finally we can say that the

expected most precise interval for q will be [maxr
i=1(αi), 1 − maxs

i=1(βi)]. We
have to take into account that each specialization step produces a new knowledge
base and then the expected most precise interval will be changed.

The new rules are provisional if they are deduced with provisional informa-
tion, otherwise they are definitive. Facts are definitive if they are deduced with
definitive information and there are no more rules that can improve its value. In
this case rules can be deleted.

3 Quality Measures

Quality measures and their properties are important for anytime algorithms [9].
It has to be (i) Measurable and recognizable: the quality of an approximate

1 A contradiction detected during the deduction of q means that the knowledge base
is not useful to deduce q in that context.
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result has to be determined precisely and easily at run time, (ii) Monotonic:
the quality of the result is a non-decreasing function of time and input quality,
and (iii) Consistent: the quality of the result is correlated with time and input
quality.

Quality is evaluated based on a three-dimensional criterion that measures the
level of certainty, precision and completeness of a given value, an interval of
truth-values. The quality is determined based on the following characteristics:

Certainty: In an approximate reasoning context we want to know the degree
of truth or falsity of propositions. Then, given a set of knowledge deducing
a fact we are interested in using those relations that provides values close
to true or false. We assume a uniform distribution of the certainty in the
interval, the mean is then the expected value of the interval and it can be
representative of its certainty:

C[i, j] =
i + j

2

Precision: Values of facts are intervals. The most precise interval is when the
difference between the maximum and the minimum is 0, and the least precise
is when that difference is 1, that is, the only case [0, 1], or unknown.

P [i, j] = 1− (j − i)

Completeness: To determine the value of a fact we need to know the values of
other related facts contained in the rules that deduce that fact. Given two
facts, with the same level of certainty and precision, we will consider of more
quality that with less number of dependencies that could improve the result.

We have to distinguish between the quality of a certainty value in itself and that
related to the quality given by a concrete KB . For instance it is obvious that a
fact with value 1 is better than 0.8, but if the KB deducing that fact can not
produce in any circumstance a better value than 0.8 then we have to consider
0.8 is the best quality value for that fact.

3.1 Absolute and Relative Quality

Precision and certainty are directly related because good precision is interesting
only when the value of the fact is close to true or false. We can use the expression
f(p, c) = p · |(2c− 1)| to calculate a quality measure between 0 and 1. The first
term p corresponds to the precision of the interval, better when more close to
1. The second term c corresponds to the value represented by the middle point
of the interval, better when more close to 0 or 1, that is, true or false. It is a
symmetric function with respect to the plane i + j = 1. The absolute quality is:

Qa[i, j] = |P ([i, j]) · (2C([i, j])− 1)| =
∣∣i2 − (1− j)2

∣∣
The KB of an agent determines the quality degree and the precision that can
be obtained for a given fact with all the available information. We can consider
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a KB is good deducing a fact f when it can deduce that fact with high precision
and with values close to true or false. This depends on the designer of the KB .
Finally the result for f will be a combination of the KB and also of the values
of facts used to make the deduction.

We have to consider relative measures with respect to the maximum quality
level that is possible to obtain with the current knowledge. In the next Section we
will see how this value change with the time, when new information is known by
the agent. After each execution cycle—to include the new information—quality
of the results can be evaluated. We can know in each moment which is the most
precise value the agent A can obtain for the fact a, PA

m(a). We will use precision
to evaluate the relative quality.

QA
r (a, [α, β]) =

P [α, β]
PA

m(a)

If all the facts used to deduce the goal would have a definitive value then the
completeness will be of 100%. If all those facts would have values—true of false
with the maximum precision—such that the premises of rules are true, then we
will obtain the maximum quality degree.

3.2 Specialization and Quality

The main goal of the inference engine is to find the more precise values for the
facts. The nature of the inference rules in Section 2 always produce more precise
values. This is not so obvious with the quality of facts. For instance, an agent
can produce a provisional value quality Qa[0.4, 1] = 0.16. Consider that a new
information arrives and Qa([0.4, 1] ∩ [0, 0.6]) = Qa[0.4, 0.6] = 0. This kind of
behavior only depends on the design of the KB .

Consider a provisional result [α, β]. The behavior of the specialization with
respect to the quality index produces the following properties:

Positive rules. They produce results in the form [γ, 1], with the middle point
C[γ, 1] ≥ 0.5. We have to consider the following cases:

– When C[α, β] ≥ 0.5, ∀γ, Qa([α, β] ∩ [γ, 1]) ≥ Qa[α, β]
– When C[α, β] ≤ 0.5, and β ≥ 0.5, Qa([α, β] ∩ [γ, 1]) ≥ Qa[α, β] only for√

2(1− β)2 − α2 ≤ γ ≤ β

– Otherwise Qa([α, β] ∩ [γ, 1]) < Qa[α, β]

Negative rules. They produce results in the form [0, δ], with the middle point
C[0, δ] ≤ 0.5. We have to consider the following cases:

– When C[α, β] ≤ 0.5, ∀δ, Qa([α, β] ∩ [0, δ]) ≥ Qa[α, β]
– When C[α, β] ≥ 0.5 and α ≤ 0.5, Qa([α, β] ∩ [0, δ]) ≥ Qa[α, β] only for

α ≤ δ ≤ 1−
√

2α2 − (1 − β)2

– Otherwise Qa([α, β] ∩ [0, δ]) < Qa[α, β]
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These results are obvious in the sense that an interval with a middle point
greater that 0.5 is reinforced by positive rules producing a more precise result
more close to 1. The same occurs with intervals close to false and negative
rules. In the other cases when we combine two intervals with middle points in
opposite parts—greater and less than 0.5—it is necessary to compensate with
the precision the circumstance that the middle point of the resulting value now
is farther from true or false.

At the meta-level we will be interested in exploring the best rules first to
avoid unnecessary communication. It seems reasonable to try first the rules that
can contribute increasing the absolute quality of facts. Notice that the values
of rules change in each specialization step and that it can not be guaranteed a
monotonic behavior of absolute quality.

It is easy to see that precision of facts is a monotonic function with respect
to the time, new information will produce more precise facts by firing rules and
applying parallel composition with old values of facts

P ([α, β] ∩ [γ, δ]) ≥ max{P [α, β], P [γ, δ]}

Taking into account rules we can notice that their precision decreases with new
information because of the specialization rule and the well-known property of
t-norms: T (a, b) ≤ min{a, b}

∀α ≤ k, P ([α, 1]) ≤ P ([k, 1])

We can conclude that new information will produce less or equal precision for
the set of rules and equal or more precision for the set of facts. This implies that
we can use provisional values of facts to deduce more provisional values. Relative
quality is the external quality of an agent that deals with the more important
property of an anytime algorithm, monotonicity.

4 Deliberative Agents

The model of reasoning described above could take a long time to generate
definitive results. This is not a consequence of the complexity of the deductive
process. We consider that specialization time is irrelevant, we have to look at
other things like communication time, availability of agents, collaborative behav-
ior, etc. Agents have a deadline to answer a question. When an agent accepts
a query, if necessary, it starts by asking other agents for information. But it
cannot be waiting forever. When it is not possible to obtain a definitive value
for a query and the deadline has been reached, it answers with less precision.
Answers can be the best one, a provisional one because it can be improved later,
or a conditional answer because the agent ignores some information.

Agents mainly contain facts, rules and goals. These goals can represent com-
mitments with other agents or self-commitments. Agents proactively try to sat-
isfy these goals by asking other agents and making deduction. When an agent
receives a question, it assume a new goal and a new commitment of answering
in a giving time.
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Consider Am = {A1, . . . , Am} a multi-agent system with m agents. A delib-
erative agent Ai = 〈KB i, Gi, Ii, Oi, ti〉 is a tuple where: KB i is the knowledge
base of agent Ai, literals and rules; Gi is the set of goals of agent Ai, a tuple
〈x, Aj , tb〉, where x ∈ Σ, Aj ∈ Am and tb is the remaining time for deadline; Ii

is the input interface of agent Ai, the set of external facts that can be obtained
by querying other agents, tuples 〈x, Aj〉, where x ∈ Σ, Aj ∈ Am and Aj �= Ai;
Oi is the output interface of agent Ai, the set of facts agent Ai can answer to
other agents; and ti is the default deadline for giving an answer.

One of the most important topics in our model is the different variety of
answers agents can express producing complex dialogues. A response is a tuple
R = 〈f, V, S,KB〉 where: f is the fact which is been answered, V is the value
of fact f (an interval of truth-values), S is the state of the fact f value, i.e.
provisional, definitive or pending (a fact that is provisionally unknown), and
KB is a knowledge base useful to improve the value of f . Let’s define now the
kinds of responses the agent can give:

a) Definitive value R = 〈f, V,def, ∅〉: this is the most useful result because it
means that there is no more information that can improve the result, this is the
most precise. After the specialization with definitive values we can substitute a
rule using it by its specialized version.

b) Provisional value R = 〈f, V,prov, ∅〉: this is not a definitive value, it can be
improved later. We can use it to produce only more provisional values. We can
not delete rules that use it because they will be useful in the future to produce
more precise values.

c) Provisional value and a set of knowledge related to it, R = 〈f, V,prov,KBf 〉:
this is similar to the case above but the answer includes all the information
needed for improving the value. We can use this provisional value and start the
mechanism to find more information.

d) The same that the case above but without a provisional value. A set of
rules related to the question R = 〈f, [0, 1],pending,KBf 〉

When an agent’s life begins and receives a simple query, the agent starts a
goal-driven—backward chaining style—work. This task will produce new goals
that have to be solved and it judges the impact of these new goals in the quality
of the original one. Some of them can be internal and others have to be obtained
from other agents. Internal goals are considered a self-commitment and start a
search process in order to find which are the new goals. When new facts are
known, maybe from other agents answers, it is started a data-driven task of
specialization—forward chaining style. The transition from one solution to a
more precise one happens in this specialization step.

In Fig. 1 we can see a summary of the cycle. Agents are continuously checking
the queue of messages and the set of goals or commitments. When a query is
received it generates subgoals if necessary; if the message is an answer from
another agent it integrates and specializes the knowledge base. It checks the
goal base to decide if it is necessary to make requests, insists to obtain better
values, or sends answers because it has obtained the value or the contract is over.
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send queries
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check queue
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Fig. 1. Evaluation cycle

An incomplete answer to a query is generated when there is not enough time
to complete the query processing. Each agent goal could achieve a definitive or
a provisional value. If this value is not enough, further reasoning is required and
new questions are sent to the corresponding agents. Agents can send and receive
facts and rules as conditional answers or knowledge communication. When the
deadline of a goal ends and it has a provisional value, the agent can send rules
as part of the answer.

5 An Example

Is this section we will present a very simple example in order to understand the
general mechanism for running this multiagent system.

Consider a system with four agents. The code in Fig. 2 corresponds to our
implemented syntax for the two more important agents. For the sake of sim-
plicity we use as default t-norm the minimum. The definition of agents contains
the type of logic, in this case a many-valued logic based on numerical inter-
vals (INMV), the predicates, the rules, interfaces and a default deadline for the
agent. Considering that the form a@A means that the fact a belongs to agent
A, it is easy to see that the knowledge bases for agents corresponding to the two
modules above are:

(defAgent AgentA (defAgent AgentD
:Logic (make-instance ’INMV-Logic) :Logic (make-instance ’INMV-Logic)
:Predicates ((fact i1 :name "inputA1") :Predicates ((fact i4 :name "inputD")

(fact i2 :name "inputA2") (fact o2 :name "outputD"))
(fact i3 :name "inputA3") :Rules ((rule R003 (not i4) -> o2 is 0.9))
(fact o1 :name "outputA")) :Inputs ((input i4 :fact o1 :from agentA)

:Rules ((rule R001 (i1 i2) -> o1 is 1) :Outputs ((output o2))
(rule R002 (i3) -> not o1 is 0.8)) :Deadline 100)

:Inputs ((input i1 :fact o2 :from agentB)
(input i2 :fact o3 :from agentC)
(input i3 :fact o4 :from agentC))

:Outputs ((output o1))
:Deadline 30)

Fig. 2. Code of the example
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KBA = {(o2@B ∧ o3@C → o1, [1, 1]), (o4@C → ¬o1, [0.8, 1])}
KBD = {(¬o1@A→ o2, [0.9, 1])}

Consider that an agent makes a question to agent D about the fact o2. D contains
only one rule R003 then it makes a question to A about o1. Now we have to take
into account that agent A has two rules, R001 and R002. We can calculate the
absolute quality provided by these rules and they are 1 and 0.64, respectively.
The best rule is R001 and considering the conditions in the writing order, finally
the agent A makes the question o2 to agent B.

Suppose that the answer of B is a definitive value for the fact:
〈o2, [0.7, 1],def, ∅〉. The knowledge base is specialized deleting the first rule:

KBA = {(o2@B, [0.7, 1]), (o3@C → o1, [0.7, 1]), (o4@C → ¬o1, [0.8, 1])}

Now we have to take into account that the truth-values of the rules has changed.
Then the quality for rules R001 and R002 is now 0.49 and 0.64, respectively.
Then it is reasonable to make the question o4 to C. Suppose the answer of C is
a provisional value: 〈o4, [0.4, 1],prov, ∅〉. We have to maintain all the rules and
we deduce a provisional value for o1. The new knowledge base is:

KBA = {(o2@B, [0.7, 1]), (o4@C, [0.4, 1]), (o1, [0, 0.6]),
(o3@C → o1, [0.7, 1]), (o4@C → ¬o1, [0.8, 1])}

Imagine that the is no more time for obtaining a better value and agent A has
to obligation to answer. The answer of agent A to the initial question of agent
D will be a conditioned answer:

〈o1, [0, 0.6],prov, {(o3@C → o1, [0.7, 1]), (o4@C → ¬o1, [0.8, 1])}〉

The new knowledge base for D after the integration:

KBD = {(o1@A, [0, 0.6]), (o3@C → o1@A, [0.7, 1]),
(o4@C → ¬o1@A, [0.8, 1])}, (¬o1@A→ o2, [0.9, 1]), (o2, [0.4, 1])}

Notice that in this case it is possible to obtain a provisional value for o2 because
the specialization rule produces a value [T (0.4, 1), 1] = [min(0.4, 1), 1] = [0.4, 1].
Now agent D has all the necessary elements to determine the value of o1 by
asking directly to agent C. Suppose that the answers are 〈o3, [0.2, 1],def, ∅〉 and
〈o4, [0.6, 1],def, ∅〉. It is easy to see that the final value for oi is: [0, 0.6]∩ [0.2, 1]∩
[0, 0.4] = [0.2, 0.4] and [0.6, 0.8] ∩ [0.4, 1] = [0.4, 0.8] for o2. The absolute quality
of o2 has decreased from 0.16 to 0.12 but the relative quality has arrived to
100%, that maximum precision for the concrete knowledge base.

6 Conclusions and Future Work

In this paper we have presented an architecture for multiagent systems and an
anytime mechanism for deliberative agents based on a monotonous reasoning
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over intervals of truth values. Both absolute and relative quality measures have
been defined. After the respective analysis, relative measures fit better with
anytime quality measures properties.

Deadline is considered fix for the sake of simplicity, but it could be variable
and be calculated to improve agent’s performance. Criteria like communication
channels cost, confidence and agent’s capacity can be considered for its esti-
mation and effects on performance profiles. We have said that when an agent
receives a provisional value it can be used to produce more provisional values,
but we can think in a timeout or other rational subjective criteria to consider
that a provisional value becomes definitive.

We are also designing a protocol to deal with provisional values and the knowl-
edge received. It is reasonable to think that when a provisional value is received,
agents can insist later in order to improve the value or use their own means to
obtain that information.

Acknowledgements. Authors acknowledge partial support by the Spanish pro-
jects ARINF (TIN2009-14704-C03-03), MULOG2 (TIN2007-68005-C04-01) and
Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010) and
the Government of Catalonia grant 2009-SGR-1434. Mariela Morveli-Espinoza
is supported by the Programme Alβan, the European Union Programme of
High Level Scholarships for Latin America, scholarship No.(E06D101440PE).
We would like to thank the referees for their valuable suggestions and comments.

References

1. Barbuceanu, M., Lo, W.: Conversation oriented programming for agent interaction.
In: Dignum, F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS
(LNAI), vol. 1916, pp. 220–234. Springer, Heidelberg (2000)

2. Dean, T.L., Boddy, M.: An analysis of time-dependent planning. In: Proceedings of
the Seventh National Conference on Artificial Intelligence, AAAI 1988, pp. 49–54
(1988)

3. Morveli-Espinoza, M., Puyol-Gruart, J.: On partial deduction and conversational
agents. In: Alsinet, T., Puyol-Gruart, J., Torras, C. (eds.) Artificial Intelligence
Research and Development. Frontiers in Artificial Intelligence and Applications,
vol. 184, pp. 60–69. IOS Press, Amsterdam (2008)

4. Mouaddib, A.-I.: A study of a dynamic progressive reasoning system. Journal of
Experimental and Theoretical Artificial Intelligence, 101–122 (2000)

5. Mouaddib, A.-I.M., Zilberstein, S.: Knowledge-based anytime computation. In: Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI 1995, pp. 775–783 (1995)

6. Puyol-Gruart, J., Godo, L., Sierra, C.: Specialisation calculus and communication.
International Journal of Approximate Reasoning (IJAR) 18(1/2), 107–130 (1998)

7. Rago, F.: Conversational agent model in intelligent user interface. In: Di Gesú,
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Abstract. Inconsistency in the framework of general residuated logic
programs can be, somehow, decomposed in two notions: incoherence and
instability. In this work, we focus on the measure of instability of normal
residuated programs. Some measures are provided and initial results are
obtained in terms of the amount of information that have to be discarded
in order to recover stability.

1 Introduction

In many fields of automated information processing it becomes crucial to con-
sider together imprecise, uncertain or inconsistent information. Although in-
consistency is an undesirable property, it arises naturally in many real-world
problems (for instance, consider the integration of information coming from dif-
ferent sources). Anyway, the analysis of inconsistent knowledge-bases can lead
us to obtain useful information: for instance, a big number of contradictions in
the statements of a suspect of a crime with respect to the forensic evidences may
lead us to increase our confidence on his/her being the culprit; a sensor which
send data which contradict other sensors may indicate a possible malfunction.
In both cases, a good estimation of the degree of inconsistency of the data can
help us to estimate the truth-degree up to which this new information can be
safely considered.

There are several papers dealing with inconsistency in a classical logic pro-
gramming framework. For instance, [1] uses consistency restoring rules as a
means to recover whenever possible the consistency of a normal logic program;
this approach has been used in [13] to formalize negotiations dealing with incom-
plete information, preferences, and changing goals. The Answer Set Program-
ming (ASP) framework has been used to detect inconsistencies in large biological
networks [2]. Argumentation theory is a suitable framework for inconsistency to
arise. There are several non-classical approaches to ASP argumentation, some
based on possibility theory, some other based on, for instance, fuzzy set the-
ory [12,7].

The problem of measuring the degree of inconsistency contained in a knowl-
edgebase has been already considered in the literature [5, 4, 6]. This approach
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shows that measuring the inconsistency of a knowledgebase is useful to allow
for the comparison of the inconsistency of various knowledgebases. On the other
hand, Lozinskii provided a method [8] for defining the quantity of information
of a knowledgebase in propositional logic. However, that method is not suitable
when the knowledgebase is inconsistent. Furthermore, it is certainly false that
all inconsistent knowledgebases contain the same (null) amount of information,
this is especially relevant when considering fuzzy extensions of the theory.

This work is based on the Fuzzy Answer Set Programming for residuated logic
programs defined in [10, 9], in which we consider a fuzzy answer set attending
to two dimensions: coherence and stability, the former is related to strong nega-
tion, whereas the latter is related to default negation and the GL-reduct [3]. An
inconsistent fuzzy program is a program without fuzzy answer sets, and this can
be due to the lack of stable models (instability) or, perhaps, to the inconsistency
of every stable model (incoherence). This is why we talk about the two dimen-
sions of inconsistency. In [11] some measures of inconsistency were defined in
terms of incoherence; in this work, we aim at providing an initial step towards
the measuring the degree of instability in normal residuated logic programs.

The structure of the paper is described as follows. In Section 2 we recall
the definition of stable model. Section 3 describes the possible causes of the
instability of a residuated logic program and defines the notion of information
measure, which assigns a degree of information to any value in the truth space.
In Section 4 we define the measure of instability which establish how many
information has to be deleted from a set of rules in order to recovering the
stability in the residuated logic program.

2 Preliminaries

Let us start this section recalling the definition of residuated lattice, which fixes
the set of truth values and the relationship between the conjunction and the
implication (the adjoint condition) occurring in our logic programs.

Definition 1. A residuated lattice is a tuple (L,≤, ∗,←) such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
2. (L, ∗, 1) is a commutative monoid with unit element 1.
3. (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

In the rest of the paper we will consider a residuated lattice enriched with a
negation operator, (L, ∗,←,¬). The negation ¬ will model the notion of default
negation often used in logic programming. As usual, a negation operator, over L,
is any decreasing mapping n : L → L satisfying n(0) = 1 and n(1) = 0. In the
examples, we will use the following familiy of negation operators:

nα(x) =
{

1 if x ≤ α
0 if x > α

n(x) = 1− x
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Definition 2. Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal
residuated logic program P is a set of weighted rules of the form

〈p ← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols.

It is usual to denote the rules as 〈p ← B; ϑ〉. The formula B is usually called the
body of the rule whereas p is called its head. A fact is a rule with empty body,
i.e facts are rules with this form 〈p ← ; ϑ〉. The set of propositional symbols
appearing in P is denoted by ΠP.

Definition 3. A fuzzy L-interpretation is a mapping I : ΠP → L; note that the
domain of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈	 ← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(	) or,
equivalently, ϑ ≤ I(	 ← B).

Finally, I is a model of P if it satisfies all rules (and facts) in P.

Note that the order relation in the residuated lattice (L,≤) can be extended over
the set of all L-interpretations as follows: Let I and J be two L-interpretations,
then I ≤ J if and only if I(p) ≤ J(p) for all propositional symbol p ∈ ΠP.

Stable Models

Our aim in this section is to adapt the approach given in [3] to the normal
residuated logic programs just defined in the section above.

Let us consider a normal residuated logic program P together with a fuzzy
L-interpretation I. To begin with, we will construct a new normal program PI

by substituting each rule in P such as

〈p ← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p ← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive , that is, does not contain any nega-
tion; in fact, the construction closely resembles that of a reduct in the classical
case, this is why we introduce the following:

Definition 4. The program PI is called the reduct of P wrt the interpretation I.

As a result of the definition, note that given two fuzzy L-interpretations I and
J , then the reducts PI and PJ have the same rules, and might only differ in the
values of the weights. By the monotonicity properties of ∗ and ¬, we have that
if I ≤ J then the weight of a rule in PI is greater or equal than its weight in PJ .
1 Note the overloaded use of the negation symbol, as a syntactic function in the for-

mulas and as the algebraic negation in the truth-values.
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It is not difficult to prove that every model M of the program P is a model
of the reduct PM .

Recall that a fuzzy interpretation can be interpreted as a L-fuzzy subset. Now,
as usual, the notion of reduct allows for defining a stable set for a program.

Definition 5. Let P be a normal residuated logic program and let I be a fuzzy
L-interpretation; I is said to be a stable set of P iff I is the least model of PI .

Theorem 1. Any stable set of P is a minimal model of P.

Thanks to Theorem 1 we know that every stable set is a model, therefore we
will be able to use the term stable model to refer to a stable set. Obviously, this
approach is a conservative extension of the classical approach. Note, as well, that
a residuated logic program can have infinitely many stable models.

In the following example we use a simple normal logic program with just one
rule in order to clarify the definition of stable set (stable model).

Example 1. Consider the program 〈p ← ¬q ; ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p ; ϑ∗¬I(q)〉 for which
the least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0. As a result, I is a stable
model of P if and only if I(p) = ϑ ∗¬I(q) = ϑ ∗¬(0) = ϑ ∗ 1 = ϑ and I(q) = 0. �

The following example shows that stable models for a normal residuated logic
program need not exist.

Example 2. Consider the the following normal residuated logic program on the
product logic

〈p ← ¬p ; 1〉
defined over the residuated lattice ([0, 1],≤, ∗P ,←P , nα) (for any α ∈ [0, 1)).
This normal residuated logic program does not have stable models. Let I be an
interpretation. The reduct w.r.t. I is either the fact 〈p ← ; 1〉 if I(p) ≤ α or
the fact 〈p ← ; 0〉 if I(p) > α. In any case, if I is a stable model then I(p) is
equal either 1 or 0. However, none of the interpretations is stable model of this
normal residuated logic program. �

The aim of this work is to study normal residuated logic programs without any
stable model by means of measures which determine how much information one
has to add or delete in order to recover at least one stable model. We start by
proposing the following definition:

Definition 6. A normal residuated logic program P is stable if and only if there
is an L-interpretation I that is a stable model of P; i.e I is the least model of PI .
Otherwise, P is called unstable.

3 Causes of Instability: Measures of Information

Instability is an undesirable feature of a logic program. When representing knowl-
edge as a (residuated) logic program it is usual to implement rules according to
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a set of external data (obtained either from sensors or from suggestion of an
expert); this data is subject to mistake and/or imprecisions, and may lead to
the following shortcomings:

– Not to include relevant information. (Missing information)
– Include information which is either false or leading to contradiction. (Excess

of information)

Any of the situations above might lead to instability. Let us further discuss this
by means of an example: the following program tries to simulate a procedure to
deduce which sports are practised by a person give some data.

r1 : 〈Football ← n0.4(Basketball) ∗G LivesInSuburb ∗G AthleticBody ; 0.6〉
r2 : 〈Basketball ← n0.4(Cycling) ∗G Tall ∗G AthleticBody ; 0.6〉

r3 : 〈Cycling ← n0.4(Football) ∗G Slim ∗G AthleticBody ; 0.6〉

The first rule determines that if a person with an athletic body, which lives in a
suburb and we do not know whether he practices regularly basketball, then this
person practices football frequently (the interpretation of the other two rules is
similar). These three rules do not imply any contradiction, in fact, the program
consisting of the three rules has just one stable model2 I⊥. However, if we add
the following facts

r4 : 〈AthleticBody ← ; 0.8〉 r5 : 〈LivesInSuburb← ; 1〉
r6 : 〈Tall ← ; 0.7〉 r7 : 〈Slim← ; 0.8〉

the program turns out to be unstable. What are the reasons for this behaviour?
As we said above, it may be because of excess or lack of information. For the

former, excess of information can reside in any of the seven rules, it might be
that too much information is obtained by default from r1, r2 and r3. Notice that
if the weights are changed to 0.39, therefore reducing the amount of information
provided by those rules, the program would remain stable. Lack of information
is more difficult to handle, in that it is not possible to know which rules are
needed; it might be just a fact (if we include the fact 〈Football ← ; 0.5〉, the
program gets stable again), or a more complex rule or set of rules.

In this work we focus on the treatment of excess of information, and we
propose a framework to measure the instability of a program by means of the
minimum amount of information which we have to delete in order to obtain a
stable program. Our approach to reducing the amount of information provided
by a program is based of the values of the weights, since the smaller they are
the less information is produced. The key point is how to measure the amount
of information which is eliminated.

We propose to fix an operator m : L→ R+ such that:

– m(x) = 0 if and only if x = ⊥
– m is monotonic

2 I⊥ denotes the bottom element of the complete lattice of L-interpretations.
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Such an operator will be called an information measure.
It is not difficult to provide examples of these operators in the unit interval

or in any finite lattice:

Example 3. Any norm || · || on the lattice ([0, 1],≤) is an information measure,
since ||x|| = 0 if and only if x = 0; and if x ≤ y then

||x|| = ||x
y
· y|| = |x

y
| · ||y|| ≤ ||y||

�

Example 4. Let (L,≤) be a finite lattice. An information measure can be defined
as follows:

m(x) = max{n : ⊥ < x1 < · · · < xn = x}

Let us check that, in fact, it is an information measure: if x �= ⊥, then ⊥ < x,
and this implies m(x) ≥ 1. On the other hand, if x < y, then for all chain
⊥ < x1 < · · · < xn = x we have the chain ⊥ < x1 < · · · < xn = x < xn+1 = y
which has a greater length, and this implies m(x) < m(y). �

Information measures will be used to determine the amount of information in-
herently contained in any element of the lattice. From now on, we will consider
that any lattice has an associated information measure.

4 Measuring Instability of Normal Residuated Programs

In this section we define an instability measure based on the amount of informa-
tion deleted from a unsatble program so that it gets stable. Contrariwise to the
classical case, in which the only form to delete information is by deleting rules
completely, in our framework we can just reduce their weights by some amount.
A specific operator will be defined for this task.

For that purpose, we need to fix a t-norm t to handle the values of L (recall
that a t-norm is a commutative and monotonic map L × L → L satisfying
t(⊥, x) = ⊥ and t(", x) = x). Fixed such a t-norm, we can define an operator
to modify the weights of rules.

Given a normal residuated logic program P, a set {〈ri; ϑi〉}i of rules in P
and a set of values {ϕi}i we define a new general residuated logic program
OP({〈ri; ϑi〉}i, {ϕ}i) as follows:

OP({〈ri; ϑi〉}i, {ϕ}i) = (P � {〈ri; ϑi〉}i) ∪ {〈ri; t(ϑi, ϕi)〉}i

In other words, the operator OP substitutes the weight of any rule 〈rj ; ϑj〉 in the
given set by t(ϑj , ϕj).

It is not difficult to note that the resulting program has smaller weights than
the original one. The following example illustrates this fact.
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Example 5. Consider the residuated lattice with negation ([0, 1],≤, ∗P ,←P , n),
and the following residuated program

r1 : 〈p ← q ∗ t ∗ ¬t ; 0.7〉 r2 : 〈p ← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.2〉 r4 : 〈t← s ∗ u ∗ ¬v ; 0.9〉

Assume the product t-norm (t(x, y) = x · y) as the t-norm associated to the
operator OP. Then, the program OP({r1, r4}, {0.5, 0.9}) is shown below:

r1 : 〈p ← q ∗ t ∗ ¬t ; 0.35〉 r2 : 〈p ← t ∗ ¬s ; 0.8〉
r3 : 〈q ← ¬v ; 0.2〉 r4 : 〈t ← s ∗ u ∗ v ; 0.81〉

Notice that the weights of rules r1 and r4 are reduced by a factor 0.5 and 0.9
respectively. �
The instability measure will be defined in terms of the amount of discarded
information needed to get stability, and this will be computed by means of an
information measure, as those introduced in Section 3, and the formula∑

i∈I

(
m(")−m(ϕi)

)
The sum above, in some sense, measures the amount of information discarded

from the program; the lesser the values of ϕi the more information discarded,
and greater the sum. Notice as well that OP does not reduce the weights of the
program if and only if ϕi are " for all i, and the previous sum reduces to 0.

Example 6. Continuing with Example 5, if we consider in [0, 1] the information
measure induced by the Euclidean norm, then the amount of discarded informa-
tion by the use of OP({r1, r4}, {0.5, 0.9}) would be (1− 0.5) + (1− 0.9) = 0.6. �
Now, we can define the following instability measure, given a general residuated
logic program P and a set of rules {〈ri, ϑi〉}i ⊆ P (w.r.t. the respective residuated
logic program) as:

InstabP({〈ri, ϑi〉}i}) = inf{
∑
i∈I

m(")−m(ϕi) : OP({〈ri, ϑi〉}i, {ϕ}i) is stable }

It is important to note that this operator needs not be defined for any set of
rules (the sum could be infinite). This is not a big problem, as that would indicate
that it is not possible to recover stability by not even discarding completely all
the rules in the set.

Example 7. On the residuated lattice with negation ([0, 1],≤,∧P ,←P , n0.4), let
us consider the following unstable logic program:3

r1 : 〈p ← s ∧ ¬q ; 0.8〉
r2 : 〈q ← ¬r ∧ ¬u ; 0.8〉
r3 : 〈r ← ¬p ; 0.5〉
r4 : 〈s ← ; 0.8〉
r5 : 〈t ← ¬p ∧ ¬s ; 0.5〉
r6 : 〈v ← u ∧ ¬r ; 0.7〉

3 To increase readability, the subscripts P have been removed.
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It is not difficult to check that this program does not have stable models. We
will use the product t-norm and the Euclidean norm in the formulas above to
measure the instability of the rules of the program. For the case of r1, one can
see that if its weight would be a value α ≤ 0.5, then the program would have a
stable model; specifically, M ≡ {(p, 0.8 ·α); (q, 0); (r, 0.5); (s, 0.8); (t, 0.4); (v, 0)}.

On the other hand, it is possible to set the weight of r1 to 0.5 using the factor
ϕ = 0.625. Therefore, the least amount of information to be discarded from r1
has to be 1 − 0.625 = 0.375. In other words, InstabP({r1}) = 0.375. Similarly,
we can obtain the instability measures for the rest of rules:

x r1 r2 r3 r4 r5 r6

InstabP({x}) 0.375 0.5 0.2 0.375 � �

The symbol � for rules r5 and r6 denotes that it is impossible to get a stable
program by reducing the weights of these rules. Notice that these results state
that, in recovering stability by modifying just one rule, we need to discard much
more information from r2 than in r3. �

A couple of straightforward results about the instability measure InstabP are
presented below. The first one establishes a relationship between stable programs
and zero measure.

Proposition 1. Let P be a normal residuated logic program:

– If P is stable then InstabP(P) = 0
– If InstabP(P) = 0 then for all ε > 0 there exists a set {ϕi} ⊆ L such that

OP({〈ri; ϑi〉}i, {ϕ}i) is stable and
∑

i∈I

(
m(")−m(ϕi)

)
< ε.

The following proposition states the antitonicity of the measure InstabP:

Proposition 2. Let P be a normal residuated logic program and let {〈ri; ϑi〉} ⊆
{〈ri; ϑi〉} be two sets of rules of P. Then:

InstabP({〈ri; ϑi〉}) ≥ InstabP({〈ri; ϑi〉})

Computing InstabP({〈ri; ϑi〉})

The aim of this section is to show that computing the value of InstabP({〈ri; ϑi〉})
is equivalent to computing the set of stable models of a specific logic program.
To facilitate the presentation, let us assume that [0, 1] is the set of truth values
and the set of rules {〈ri; ϑi〉} is a singleton.

To compute the measure of instability InstabP we have to obtain what values
λ ∈ [0, 1] satisfy that OP(〈ri; ϑi〉, λ) is stable; we recall that OP(〈ri; ϑi〉, λ) coin-
cides with P except in the rule 〈ri; ϑi〉, which is changed by 〈ri; t(ϑi, λ)〉. How
can we introduce the parameter λ in P through propositional symbols? Let α
and β be two propositional symbols not occurring in P. Consider the following
set of rules:
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〈α ← ¬β ; 1〉 (1)

〈β ← ¬α ; 1〉 (2)

where the negation is the standard one n(x) = 1−x. The set of stable models of
this pair of rules is the set {Mλ ≡ (α, λ); (β, 1 − λ)}λ∈[0,1]. Notice that for any
λ ∈ [0, 1] there exists a stable model such that Mλ(α) = λ. We consider now a
new residuated logic program P� by modifying ri as follows4

r�
i : 〈pi ← B ∗ t(ϑ, α) ; 1〉

and including the rules (1) and (2). Then the following proposition holds:

Proposition 3. Let P be a residuated logic program. M is a stable model of P�

if and only if M |ΠP
is a stable model of OP(〈ri; ϑi〉, M(α)).

The above proposition shows that there is a univocal correspondence among
the stable model of P� and the parameters λi such that OP(〈ri; ϑi〉, λ) is stable.
Therefore we can compute InstabP({〈ri; ϑi〉}) by using the stable models of P�:

Corollary 1. Let P be a residuated logic program. Then:

InstabP(〈ri; ϑi〉) = inf{m(")−m(M(α)) : M is a stable model of P�}

5 Conclusions

We have continued our study of fuzzy answer set semantics for residuated logic
programs by focusing on the measure of instability of normal residuated pro-
grams. Some measures have been provided and initial results have been obtained,
in terms of the amount of information that has to be discarded in order to recover
stability.

As future work, we will study the dual situation in which stability can be
recovered by adding information (as in the framework of consistency restoring
rules). In addition, we will extend this methodology to provide explanations for
inconsistencies in the data by determining minimal representations of conflicts.
In practice, this can be used to identify unreliable data or to indicate missing
reactions.
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Abstract. The paper addresses the extension of the removed sets frame-
work to prioritized removed sets fusion (PRSF). It discusses the links
between PRSF and iterated removed sets revision and shows that PRSF
satisfy most of the postulates proposed for prioritized merging. An im-
plementation of this new syntactic prioritized fusion operator is proposed
thanks to answer sets programming.

Keywords: fusion, iterated revision, ASP reasoning under inconsistency.

1 Introduction

In the last decade, multiple sources belief bases merging has been widely dis-
cussed [11,29,3]. Postulates characterizing the rational behavior of merging op-
erations have been proposed [22]. Several merging operations have been pro-
posed that can be divided into two families. The semantic (or model-based)
ones which select interpretations that are the ”closest” to the original belief
bases [22,23,20,12,30,21,10] and the syntactic (or formula-based) ones which se-
lect some formulas from the initial bases [25,33,17,13,5].

In some situations, the belief bases are not flat and the beliefs are stratified
or equipped with priority levels, in other cases the belief bases are flat but the
sources are not equally reliable and there exists a preference relation between
sources. In such cases, prioritized merging consists of combining belief bases
taking into account the stratification of the belief bases or the preference relation
[6]. Prioritized merging has been studied within the framework of propositional
logic [12,33,18] as well as within the possibilistic logic one [7,5,8]. The links
between iterated revision and prioritized merging has been discussed and rational
postulates for prioritized merging have been proposed in [12]. Different iterated
revision operations have been studied and it has been shown that the DMA
approach [9] then the Qi’s approach [27] can be characterized by a lexicographic
strategy.

This paper addresses the extension of the Removed Sets framework to pri-
oritized merging where preferences are expressed between belief bases. A new
syntactic prioritized fusion operation is proposed and can be expressed in terms
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of iterated removed sets revision. This operation satisfies most of the postulates
for prioritized merging. An implementation stemming from the Answer Sets Pro-
gramming is described.

The rest of the paper is organized as follows. Section 1 gives a refresher on
prioritized merging, removed sets revision, removed sets fusion and logic pro-
gramming with answer sets semantics. Section 2 presents the prioritized removed
sets fusion (PRSF). Section 3 discusses the links between PRSF and iterated re-
moved sets revision and shows that PRSF satisfies the proposed postulates for
prioritized merging. Section 4 presents an implementation of PRSF based on
logic programming with answer sets semantics before concluding.

2 Background

2.1 Notations

Throughout the paper we consider a propositional language L over a finite al-
phabet P of atoms. A literal is an atom or the negation of an atom. The usual
propositional connectives are denoted by ¬, ∧, ∨,→,↔ and Cn denotes the log-
ical consequence. A belief base K is a finite set of propositional formulas over L.
Let E = {K1, . . . , Kn} be a multi-set of n consistent belief bases to be merged,
E is called a belief profile. The n belief bases K1, . . . , Kn are not necessarily dif-
ferent and the union of belief bases, taking repetitions into account, is denoted
by � and their conjunction (resp. disjunction) are denoted by

∧
(resp.

∨
).

2.2 Removed Sets Revision

We briefly recall the Removed Sets Revision (RSR) approach. RSR [32] deals
with the revision of a set of propositional formulas by a set of propositional
formulas1. Let K and A be finite sets of clauses. Removed Sets Revision (RSR)
focuses on the minimal subsets of clauses to remove from K, called removed sets,
in order to restore the consistency of K ∪A. More formally: let K and A be two
consistent sets of clauses such that K ∪ A is inconsistent. Let R be a subset of
clauses of K, R is a removed set of K ∪ A iff (i) (K\R) ∪ A is consistent; (ii)
∀R′ ⊆ K, if (K\R′)∪A is consistent then | R |≤| R′ |2. Let denote by R(K ∪A)
the collection of removed sets of K ∪A, RSR is defined as follows: let K and A
be two consistent sets of clauses, K ◦RSR A =def

∨
R∈R(K∪A)(K\R) ∪A.

2.3 Removed Sets Fusion

The Removed Sets Revision approach has been extended to the Removed Sets
Fusion (RSF) for merging belief bases consisting of well-formed formulas. The
key idea of the approach is to remove subsets of well-formed formulas from
1 We consider propositional formulas in their equivalent conjunctive normal form

(CNF).
2 | R | denotes the number of clauses of R.
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the union of the belief bases, according to some strategy P , in order to restore
consistency. Let E = {K1, . . . , Kn} be a belief profile such that K1 � · · · �Kn

is inconsistent and let IC be integrity constraints. Removed Sets Fusion (RSF)
provides, as a result of merging, subsets of formulas of K1 � · · · �Kn which are
consistent with IC.

Definition 1. Let E = {K1, . . . , Kn} be a belief profile and IC the integrity
constraints such that K1 � · · · �Kn � IC is inconsistent, X ⊆ K1 � · · · �Kn is
a potential Removed Set of E iff ((K1 � · · · �Kn)\X) � IC is consistent.

In order to select the most relevant potential Removed Sets according to a strat-
egy P , a total preorder ≤P over the potential Removed Sets is defined (X ≤P Y
means that X is preferred to Y according to the strategy P ). The associated
strict preorder is denoted by <P .

Definition 2. Let E = {K1, . . . , Kn} be a belief profile and IC the integrity
constraints such that K1 � · · · �Kn � IC is inconsistent, X ⊆ K1 � · · · �Kn is a
Removed Set of E according to P iff (i) X is a potential removed set of E; (ii)
there is no Y ⊆ K1 � · · · �Kn such that Y <P X.

We denote by FP,ICR(E) the collection of removed sets of E constrainted by
IC according to P . The definition of Removed Sets Fusion is:

Definition 3. Let E = {K1, . . . , Kn} be a belief profile and IC the integrity
constraints such that K1 � · · · �Kn � IC is inconsistent. The fusion operation
ΔP

IC(E) is defined by: ΔP
IC(E) =

∨
X∈FPR(E){((K1 � · · · �Kn)\X) � IC}.

The usual merging strategies ( Card, Σ, Max, GMax ) are captured within our
framework by encoding the preference relation between potential removed sets
as given in the following table. For the GMax strategy, let X be a potential
removed set and Ki be a belief base, we define pi(X) = |X ∩Ki|. Let LE

X be the
sequence composed with every (pi(X))1≤i≤n in decreasing order. We denote by
≤lex the lexicographic ordering.

P X ≤P Y

Card |X| ≤ |Y |
Σ Σ1≤i≤n | X ∩Ki |≤ Σ1≤i≤n|Y ∩Ki|
Max max1≤i≤n | X ∩Ki |≤ max1≤i≤n | Y ∩Ki|
GMax LE

X ≤lex LE
Y

2.4 Answer Set Programming

In the following, c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are propositional atoms and
the symbol not stands for negation as failure. A normal logic program is a set
of rules of the form c ← a1, . . . , an, not b1, . . . , not bm where Let r be a rule, we
introduce head(r) = c and body(r) = {a1, · · · , an, b1, · · · , bm}. Furthermore, let
body+(r) = {a1, · · · , an} denotes the set of positive body atoms and body−(r) =
{b1, · · · , bm} the set of negative body atoms, it follows body(r) = body+(r) ∪
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body−(r). Moreover, r+ denotes the rule head(r) ← body+(r), obtained from r
by deleting all negative atoms in the body of r.

A set of atoms X is closed under a basic program Π iff for any rule r ∈ Π ,
head(r) ∈ X whenever body(r) ⊆ X . The smallest set of atoms which is closed
under a basic program Π is denoted by CN(Π). The reduct or Gelfond-Lifschitz
transformation [15], ΠX of a program Π relatively to a set X of atoms is defined
by ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}. A set of atoms X is an answer
set of Π iff CN(ΠX) = X .

2.5 ASP Solvers

In the last decade, answer set programming has been considered as a convenient
tool to handle non-monotonic reasoning. Moreover, several efficient systems,
called ASP solvers, have been developed for computing answer sets, Smodels
[26], XSB [28], DLV [14], NoMore [1], ASSAT [24], CMODELS [16], CLASP [2].

In order to extend the expressivity and the efficiency of ASP solvers, logic
programs have been extended with new statements [31]:

– domain definitions allow for compactly encoding the possible values in a
given domain, e.g. the declarations #domain possible(X), possible(1..n).
ensure that every occurrence of the variable X will take a value from 1 to n.

– domain restrictions can be added in some rules. For example, short(X) ←
size(Y ), X < Y is only instantiated for X and Y such that X < Y .

– cardinality optimization make possible to express that at most, respectively
at least, some atoms should appear in the answer sets. For example the rule
h ← k {a1, . . . , an} l expresses that at least k atoms and at most l atoms
among {a1, . . . , an} should appear in the answer sets.

– optimization statements allow for selecting among the possible answer sets,
the ones that satisfy statements like minimize{.} or maximize{.}. For ex-
ample, the statement minimize{a1, · · · , an} allows for selecting the answer
sets with as few of the atoms in {a1, · · · , an} as possible.

3 Prioritized Removed Sets Fusion

We now present a merging operation which respects the preferences expressed
over belief bases. In the context of Removed Sets Fusion, the preferences can
be interpreted as a strategy which removes as few formulas as possible in high-
ranked belief bases in order to restore consistency.

Let B = {B1, . . . , Bm} be a belief profile where Bi, 1 ≤ i ≤ m is a belief
base. B is equipped with a reliability or preference relation (a total pre-order)
denoted by ≤B such that Bi is preferred to Bj iff Bi ≤B Bj . Since several belief
bases may be equally reliable, we rearrange the profile B in order to regroup
the equally reliable belief bases according to a ranking function, denoted by r.
This ranking is such that if Bi <B Bj then r(Bi) < r(Bj) and if Bi =B Bj then
r(Bi) = r(Bj). In the following, we consider the belief profile E = {K1, . . . , Kn},
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where n, n ≤ m is the number of ranks, and ∀i, 1 ≤ i ≤ n, Ki = ∪jBj such
that r(Bj) = i. When dealing with integrity constraint, r(IC) < r(K1).

In order to define a merging strategy which takes into account the ranking
of E, we define the following total preorder to compare the potential Removed
Sets defined in 1.

Definition 4. Let (p1
X , . . . , pn

X) be the sequence where pi
X = |X ∩ Ki| is the

number of formulas removed from Ki by a potential Removed Set X of E. Let X
and X ′ be two potential Removed Sets of E. The ≤lexipref pre-order is defined
by: X ≤lexipref X ′ iff (p1

X , . . . , pn
X) ≤lex (p1

X′ , . . . , pn
X′).

We can now define the Removed Sets of E according to the lexipref strategy:

Definition 5. Let X and X ′ be potential Removed Sets of E, X is a Removed
Set of E according to lexipref iff (i) X is a potential Removed Set of E; (ii)
There does not exist X ′ such that X ′ ⊂ X; (iii) There does not exist X ′ such
that X ′ <lexipref X.

We denote by Flexipref,ICR(E) the set of Removed Sets of E according to
lexipref and the new merging operation, denoted by ΔRSF

lexipref,IC (E), is the
following.

Definition 6. The merging operation of E constrainted by IC according to the
lexipref strategy is such that:

ΔRSF
lexipref,IC(E) =

∨
X∈Flexipref,ICR(E){((K1 � · · · �Kn)\X) � IC}.

Example 1. We consider the belief profile E = {K1, K2, K3} s.t. K1 < K2 < K3
and IC = " with K1 = {a}, K2 = {¬a ∨ b,¬a ∨ c} and K3 = {¬b,¬c}. Table 1
presents some potential Removed Sets of E, among which the minimal ones
according to inclusion, as well as the corresponding (p1

X , . . . , pn
X) sequence.

The potential Removed Set which is minimal according to ≤lexipref is
{¬b,¬c}. It is even preferred to {a} which removes less formulas and would be
preferred according to the Σ strategy. So ΔRSF

lexipref,IC (E) = {a,¬a ∨ b,¬a ∨ c}.

As shown in [12], merging when preferences are expressed can be dealt with as
an iterated revision problem.

Table 1. Potential removed sets of example 1

potential Removed Sets X p1
X p2

X p3
X potential Removed Sets X p1

X p2
X p3

X

{a} 1 0 0 {¬a ∨ b,¬a ∨ c} 0 2 0
{a,¬c} 1 0 1 {¬a ∨ b,¬c} 0 1 1
{a,¬b} 1 0 1 {¬a ∨ c,¬b} 0 1 1
{a,¬b,¬c} 1 0 2 {¬b,¬c} 0 0 2
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4 Prioritized Merging as an Iterated Revision Operation

We now propose two iterated revision operations based on Removed Sets Revi-
sion (RSR) in order to deal with prioritized merging according to two directions.
The first version, denoted by ΔPRSF

α,IC , performs the revision starting from the
least preferred bases to the most preferred ones. The second version, denoted by
ΔPRSF

β,IC , performs in the opposite way, revising the belief bases from the most
preferred to the least preferred.

Definition 7. Let E = {K1, . . . , Kn} be a belief profile and IC the integrity
constraints.

ΔPRSF
α,IC (E) = (((Kn ◦RSR Kn−1) ◦RSR · · · ◦RSR K1) ◦RSR IC);

ΔPRSF
β,IC (E) = (Kn ◦RSR (Kn−1 ◦RSR · · · ◦RSR (K1 ◦RSR IC))).

The behaviour of the ΔPRSF
α,IC (E) operation is not satisfactory as illustrated by

the example 2. On the contrary, the same example shows that the behaviour of
the ΔPRSF

β,IC operation is closer to our excpectations.

Example 2. We come back to the example 1. In this case, we have ΔPRSF
α,IC (E) =

(K3◦K2)◦K1. Since K3◦K2 = K3�K2 , the removed sets are R1 = {¬a∨b,¬a∨
c}, R2 = {¬a ∨ b,¬c}, R3 = {¬a ∨ c,¬b}, R4 = {¬b,¬c}, and (K3 ◦K2) ◦K1 =
{a,¬a ∨ c,¬b} ∨ {a,¬a ∨ b,¬c} ∨ {a,¬a ∨ b,¬a ∨ c} ∨ {a,¬b,¬c}. The result
is not satisfactory because the origin of the formulas as well as the preferences
attached to the bases are lost during the iteration of the revision process. This
operation does not correctly reflect the preferences for prioritized merging.

On the other side, ΔPRSF
β,IC (E) = K3 ◦ (K2 ◦K1). Since K2 ◦K1 = K2 �K1,

the only removed set is R = {¬b,¬c}, and K3 ◦ (K2 ◦K1) = {a,¬a ∨ b,¬a ∨ c}.
This operation gives the same result than the one provided by ΔRSF

lexipref,IC(E).

More generally, the ΔPRSF
β,IC and the ΔRSF

lexipref,IC operations lead to the same
result and the prioritized merging can be expressed in terms of iterated revision.

Proposition 1. ΔPRSF
β,IC (E) = ΔRSF

lexipref,IC(E).

Remark 1. In the context of fusion, considering a belief profile E = {K1, . . . ,
Kn}, the belief bases Ki are supposed to be consistent. However when grouping
the equally reliable belief bases, some belief bases could be inconsistent. This
does not affect the ΔRSF

lexipref,IC operation since for each removed set Xi, |Xi ∩
Kk| �= 0 where Kk is an inconsistent belief base. This does not affect the ΔPRSF

β,IC

operation since the iteration of the revision process starts by the revision by IC.
On contrast for the ΔPRSF

α,IC operation if Kk is an inconsistent belief base then
Kk+1 ◦RSR Kk =def Kk+1 ∪Kk.

We rephrase within our framework the rational postulates for prioritized merging
[12].

(PMon) for i < n, ΔPRSF
β,IC (K1, · · ·Ki+1) � ΔPRSF

β,IC (K1, · · ·Ki).
(Succ) ΔPRSF

β,IC (K1, · · ·Kn) � ΔPRSF
β,IC (K1).

(Cons) ΔPRSF
β,IC (K1, · · ·Kn) is consistent.

(Taut) ΔPRSF
β,IC (K1, · · ·Kn,�) ≡ ΔPRSF

β,IC (K1, · · ·Kn).
(Opt) if

∧
E is consistent then ΔPRSF

β,IC (K1, · · ·Kn) =
∧

E.
(RA) ΔPRSF

β,IC (K1, · · ·Ki) = ΔPRSF
β,IC (ΔPRSF

β,IC (K1, · · ·Ki−1), Ki).
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Proposition 2. ΔRSF
lexipref,IC satisfies the (PMon), (Succ), (Cons), (Taut),

(Opt), (RA) postulates 3.
ΔPRSF

α,IC satisfies the (Succ), (Cons), (Taut), (Opt) postulates.

5 Implementation of Prioritized Removed Sets Fusion

We now propose an implementation of the ΔRSF
lexipref,IC operation stemming from

the translation of the merging problem into a logic program with stable model
semantics.

This implementation builds a logic program ΠE,IC which consists of two parts:
the first one computing the potential Removed Sets, the second one selecting
among them the potential Removed Sets according to the lexipref strategy.

The first part was presented in [19]. The generation of Potential Removed
Set is based on the generation of the interpretations over the atoms of E. It
introduces new atoms called rule atoms. For a formula f , the rule atom rf is
deduced if the formula is not satisfied by the interpretation. The logic program
generating all the interpretations and the corresponding sets of rule atoms is
denoted ΠE,IC .

1. For every atom a ∈ E, the first step introduces the rules: a ← not a′ and
a′ ← not a. These rules build a correspondence between interpretations over
the atoms of E and answer sets of the logic program ΠE,IC .

2. The second step introduces the rule atoms. For every formula f ∈ Ki, the
following rules are introduced according to the syntax of f : (i) If f =def a,
the corresponding rule is ri

f ← not a; (ii) If f =def ¬f1, the corresponding
rule is ri

f ← not ρf1 ; (iii) If f =def f1 ∨ · · · ∨ f j , the corresponding rule is
ri
f ← ρf1 , . . . , ρfj ; (iv) If f =def f1 ∧ · · · ∧ f j , the corresponding rules are

ri
f ← ρf1 , ri

f ← ρf2 to ri
f ← ρfj .

It has been shown in the article cited supra that there is a one-to-one corre-
spondence between stable models of ΠE,IC and the potential Removed Sets of
E constrainted by IC. Based on this result, we can translate the notion of pref-
erence between potential Removed Sets into a preference between stable models.

Definition 8. Let X and X ′ be two stable models of ΠE,IC . The ≤lexipref

total preorder between stable models is defined as follows: X ≤lexipref X ′ iff
(p1

(X∩R+), . . . , p
n
(X∩R+)) ≤lex (p1

(X′∩R+), . . . , p
n
(X′∩R+)).

The potential Removed Sets are compared according to the number of formulas
removed in each belief base. The stable models can be compared according to the
number of rule atoms representing those formulas. This is the usefulness of rule
atoms. It leads to the definition of preferred stable models of ΠE,IC according
to the lexipref strategy.
3 Obviously ΔRSF

lexipref,IC does not satisfy the (IS) postulate since it is a syntactic
prioritized merging operation.
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Definition 9. Let X be a set of atoms of E and X ′ be a stable model of ΠE,IC,
X is a preferred stable model of ΠE,IC according to the lexipref strategy iff the
following conditions hold: (i) X is a stable model of ΠE,IC; (ii) there does not
exist X ′ such that X ′ ⊂ X; (iii) there does not exist X ′such that X ′ <lexipref X.

The problem consisting in determining among the stable models those which are
the preferred ones is solved through a set of logic programming statement. The
predicate size(I, J) 4 represents the fact that J formulas are coming from KI in
the potential Removed Set. size(I, J) is computed by the following rule which
is introduced for every base KI and every possible U from 1 to m which is the
maximum cardinality of a belief base in the profile E.

Π lexipref,size
E =

{
γ1 : size(V, U)← U {fV

1 , . . . , fV
m} U.

}
Therefore the complete program computing the result of ΔRSF

lexipref,IC(E) is the
following: Π lexipref

E,IC = ΠE,IC ∪Π lexipref,size
E ∪minimize[ size(1, 1) = 1× (m +

1)n−1, size(1, 2) = 1 × (m + 1)n−1, . . . , size(i, 1) = 1 × (m + 1)n−i, size(i, 2) =
2 × (m + 1)n−i, . . . , size(n, m) = m ]. The stable models of Π lexipref

E,IC are the
preferred stable models ΠE,IC according to the lexipref strategy. Moreover, it
computes exactly the expected Removed Sets.

Proposition 3. The set of Removed Sets of Π lexipref
E,IC is the set of preferred

stable models of ΠE,IC according to the lexipref strategy.

Example 3. We now present the implementation of example 1.

ΠE,IC =

⎧⎪⎪⎨⎪⎪⎩
a ← not a′. a′ ← not a. b← not b′.
c ← not c′. c′ ← not c. b′ ← not b.
r1

a ← a′. r2
¬a∨b ← a, b′. r2

¬a∨c ← a, c′.
r3
¬b ← b. r3

¬c ← c.

⎫⎪⎪⎬⎪⎪⎭
Π lexipref,size

E =

⎧⎨⎩
size(1, 1) ← 1{r1

a}1. size(2, 1) ← 1{r2
¬a∨b, r

2
¬a∨c}1.

size(2, 1) ← 2{r2
¬a∨b, r

2
¬a∨c}2. size(3, 1)← 1{r3

¬b, r
3
¬c}1.

size(3, 2) ← 2{r3
¬b, r

3
¬c}2.

⎫⎬⎭
minimize[size(1, 1) = 9, size(2, 2) = 6, size(2, 1) = 3, size(3, 2) = 2, size(3, 1) = 1].

which has the following stable models (with their associated weight):

{a′, b′, c′, r1
a, size(1, 1)} (9)

{a′, b′, c, r1
a, r3

¬c, size(1, 1), size(3, 1)} (10)
{a′, b, c′, r1

a, r3
¬b, size(1, 1), size(3, 1)} (10)

{a′, b, c, r1
a, r3

¬b, r
3
¬c, size(1, 1), size(3, 2)} (11)

{a, b′, c′, r2
¬a∨b, r

2
¬a∨c, size(2, 2)} (15)

{a, b′, c, r2
¬a∨b, r

3
¬c, size(2, 1), size(3, 1)} (4)

{a, b, c′, r2
¬a∨c, r

3
¬b, size(2, 1), size(3, 1)} (4)

{a, b, c, r3
¬b, r

3
¬c, size(3, 2)} (2)

The stable model with the minimal weight is {a, b, c, r3
¬b, r

3
¬c, size(3, 2)} which

corresponds to the Removed Set {¬b,¬c} of E according to the lexipref strategy.
4 Variables are represented by words starting by an upper-case letter.
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6 Conclusion

We provide a framework, based on Removed Sets Fusion, for merging belief
bases where preferences are expressed among belief bases. We propose a new
prioritized merging operation, ΔRSF

lexipref,IC , which is equivalent to the iterated
removed sets revision operation ΔPRSF

β,IC and we show that this operation satisfies
most of the postulates proposed for prioritized merging in [12]. We provide an
implemementation of prioritized merging thanks to answer sets programming.
We have now to compare PRSF with the already proposed prioritized merging
operations stemming from lexicographic preorder [4], [18]. Moreover an exper-
imental study has to be conducted in order to evaluate the behaviour of the
ΔRSF

lexipref,IC .
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Abstract. We present a new interactive algorithm allowing to solve the
inconsistencies problem, when the preferences of a decision maker can-
not be representable by a numerical function. This algorithm is based on
technics of linear programming and the type of preferences we use are
cardinal information.

Keywords: Decision making, Preference modeling, Cardinal informa-
tion, Inconsistencies.

1 Introduction

Decision making aims at helping a decision maker (DM) to select one or more
alternatives among several alternatives. During this process, and in many sit-
uations, it is important for the DM to construct a preference relation over the
set of all alternatives X . Many models have been developed to construct this
preference. Some of them, like utility theory, look for a numerical function with
good properties (arithmetic mean, Choquet integral, belief functions, . . . ) which
is able to represent faithfully the preferences of the DM on X . This representa-
tion requires sometimes to ask to the DM an initial preference on X or when X
is very large, a preferential information on a reference subset X ′ ⊆ X .

In this paper, we ask the DM to give, using pairwise comparisons, a cardinal
information (a preferential information given with preference intensity) on X
and then we test if this preferential information is consistent with a numerical
function. If the test leads to inconsistencies, how to help the DM to modify
his preferences in order to represent his cardinal information? To answer this
question it is desirable to have recommendations understandable by any DM.
This is not true with the different theorems [10,11,12,7] on the representation of
cardinal information by a numerical function. Indeed, these characterizations are
based on the notion of cyclones [5,13] (specific cycles) which is very complex to
understand and to detect. Therefore, an alternative to these theorems is to use
methods of dealing with inconsistencies based on technics of linear programming
[2,8,9].
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We propose a new interactive algorithm for inconsistency management with
cardinal information. Our approach is not in the spirit of the determination
of an irreducible inconsistent system (ISS) [3], but to use simple and intuitive
methods of constraints relaxation when a linear program is infeasible. The rec-
ommendations we suggest to the DM are based on the concepts of augmentation
and reduction of a preference able to causing an inconsistency.

The paper is organized as follows: the next section introduces the basic notions
we need, then we present in Section 3 our algorithm and we end by an illustrative
example.

2 Representation of a Cardinal Information

Let X be a finite set of alternatives (or actions, options). We assume that, given
two alternatives x and y the DM is able to judge the difference of attractiveness
between x and y when he strictly prefers x to y. Like in the MACBETH [1,4]
and GRIP [6] methodologies in Muticriteria Decision Analysis, the difference
of attractiveness will be provided under the form of semantic categories ds,
s = 1, . . . , q defined so that, if s < t, any difference of attractiveness in the class
ds is smaller than any difference of attractiveness in the class dt. MACBETH
approach uses the following six semantic categories: d1 = very weak, d2 = weak,
d3 = moderate, d4 = strong, d5 = very strong, d6 = extreme. If there is no
ambiguity, a category ds will be simply designated by s.

Under these hypotheses, the preferences given by the DM is expressed by the
following relations:

• P = {(x, y) ∈ X ×X : the DM strictly prefers x to y}, P is an asymmetric
relation;

• I = {(x, y) ∈ X × X : the DM is indifferent between x and y}, I is an
reflexive and symmetric relation;

• For the semantic categories “ds”, “dt”, s, t ∈ {1, ..., q}, s ≤ t,
Pst = {(x, y) ∈ P such that the DM judges the difference of attractiveness
between x and y as belonging from the class “ds” to the class “dt” }. When
s < t, Pst expresses some hesitation.

Remark 1. In this paper, the relation P ∪ I is not necessarily complete.

Definition 1. The cardinal information on X is the structure {P, I, {Pst}s≤t}.

We will suppose P to be nonempty for any cardinal information {P, I, {Pst}s≤t}
(“non triviality axiom”) and P =

⋃
s,t

Pst. Remark that if the DM wants to say

that x is strictly preferred to y, but he hesitates completely on the category,
then he will write xP1qy.

A cardinal information{P, I, {Pst}s≤t} is said to be representable by a numeri-
cal function f : X → R+ if the following conditions are satisfied: ∀x, y, z, w ∈ X ,
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∀s, t, u, v ∈ {1, . . . , q} such that u ≤ v < s ≤ t,

x I y ⇒ f(x) = f(y), (1)
x P y ⇒ f(x) > f(y), (2)
(x, y) ∈ Pst

(z, w) ∈ Puv

}
⇒ f(x)− f(y) > f(z)− f(w) (3)

De Corte proved in [1] that the previous conditions are equivalent to the existence
of q thresholds σ1, . . . , σq such that:

∀(x, y) ∈ I : f(x) = f(y), (4)
∀s, t ∈ {1, . . . , q}, s ≤ t, ∀(x, y) ∈ Pst : σs < f(x)− f(y), (5)
∀s, t ∈ {1, . . . , q − 1}, s ≤ t, ∀(x, y) ∈ Pst : f(x)− f(y) < σt+1, (6)
0 < σ1 < σ2 < · · · < σq (7)

Note that in this representation, the relation (2) disappears so that relation P
is no more used explicitly. To know if a cardinal information {P, I, {Pst}s≤t} on
X is representable by a function f , we use the following linear program PL1:

PL1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Min f(x0)
s.t. f(x) = f(y), ∀(x, y) ∈ I (c1)

σi + dmin ≤ f(x)− f(y), ∀(x, y) ∈ Pij ,∀i, j ∈ {1, . . . , q}, i ≤ j (c2)
f(x)− f(y) ≤ σj+1 − dmin, ∀(x, y) ∈ Pij ,∀i, j ∈ {1, . . . , q − 1}, i ≤ j (c3)
dmin ≤ σ1 (c4)
σi−1 + dmin ≤ σi, ∀i ∈ {2, . . . , q} (c5)

where x0 is an alternative of X arbitrarily chosen, and dmin an arbitrary strictly
positive constant.

Now, when the cardinal information is inconsistent, i.e. the program PL1 is
infeasible, how to elaborate recommendations for the DM in order to have the
consistent judgements? A natural solution is to provide these recommendations
by using characterization theorems of the representation of a cardinal informa-
tion studied in [7,11,12]. But, all these theorems are based on the more complex
and specific cycle called “cyclone” [5], which would be difficult to grasp for a
DM. Our aim is to propose a new interactive method able to generate recom-
mendations for the DM when PL1 is infeasible.

3 Our Algorithm

3.1 Step 1: Find the Minimal Number of Constraints to Be Relaxed

To make PL1 feasible, we choose to relax some of its constraints which can cause
an inconsistency. To do this, we associate to each constraint l of PL1, a binary
variable βl allowing to know whether if the constraint l has to be relaxed or
not. The options x and y in constraint l are denoted by xl and x′

l. Then we find
the minimal number of constraints which we will relax by solving the following
linear program PL2:
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PL2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∑

l∈N1,c

βl

s.t. f(xl)− f(x′
l) +Mβl ≥ 0, ∀(xl, x

′
l) ∈ I, l ∈ N1,r+ (c1′)1

f(xl)− f(x′
l)−Mβl ≤ 0, ∀(xl, x

′
l) ∈ I, l ∈ N(r++1),r (c1′)2

σi + dmin ≤ f(xl)− f(x′
l) +Mβl, ∀(xl, x

′
l) ∈ Pij , ∀i, j ∈ N1,q, l ∈ N(r+1),(r+p1) (c2

′)
f(xl)− f(x′

l)−Mβl ≤ σj+1 − dmin, ∀(xl, x
′
l) ∈ Pij , ∀i, j ∈ N1,q−1, l ∈ Nr+p1+1,c (c3′)

dmin ≤ σ1 (c4)
σi−1 + dmin ≤ σi, ∀i ∈ N2,q (c5)
βl ∈ {0, 1}, ∀l ∈ N1,c (c6)

where

• each constraint f(x) − f(y) = 0 of PL1 is replaced in PL2 by the following
two constraints:
(i) f(xl)− f(x′

l) + Mβl ≥ 0, 1 ≤ l ≤ r+ (type (c1′)1);
(ii) f(xl′)− f(x′

l′)−Mβl′ ≤ 0, r+ ≤ l′ ≤ r (type (c1′)2);
such that xl = xl′ and x′

l = x′
l′ . It is obvious that these two inequalities are

always satisfied when βl = βl′ = 1.
• M is a positive large number.
• r = r+ + r− with respectively r+ and r− the number of constraints of (c1′)1

and (c1′)2. r+ = r− is the number of constraints of type (c1).
• p1: the number of constraints of type (c2)′ corresponding to the number of

constraints of (c2) in PL1.
• p2: the number of constraints of (c3)′ corresponding to the number of con-

straints of (c3) in PL1.
• c = r + p1 + p2;
• ∀s, t ∈ N, s ≤ t, Ns,t = {s, s + 1, . . . , t}.

3.2 Step 2: Relaxation by Augmentation or Reduction by p
Categories

In this section, we show how to relax each constraint which has its binary variable
βl equals to 1. We suggest two types of relaxation: an increase or decrease of
categories and we justify this by the following:

1. Suppose that a preference (x, y) ∈ Pij causes an inconsistency in PL1. If the
modification of this judgement can restore the consistency, it seems natural
to ask the DM to adopt one of these two recommendations:
• If (x, y) ∈ Pij belongs to the set of constraints of (c3′), increase the

category j by replacing this preference by (x, y) ∈ Pij′ with j < j′;
• If (x, y) ∈ Pij belongs to the set of constraints of (c2′), decrease the

category i by replacing this preference by (x, y) ∈ Pi′j with i′ < i.
2. If an indifférence (xl, x

′
l) causes an inconsistency, then PL2 satisfies either

f(xl)− f(x′
l) < 0 or f(xl)− f(x′

l) > 0 (corresponding to βl = 1). Therefore
if the inequality f(xl)− f(x′

l) > 0 is satisfied in PL2, we recommend to the
DM to change (xl, x

′
l) ∈ I by (xl, x

′
l) ∈ P1p where p will be a category to be

determined.
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We need the following notation in the formal Definition 2 of relaxation by aug-
mentation or reduction by p categories:

• the judgement “(x, y) ∈ Pij” will be represented by the element (x, y, i, j) of
X ×X × N1,q × N1,q;

• the judgement “(x, y) ∈ I” will be represented by the element (x, y, 0, 0) of
X ×X × N× N.

Definition 2.

1. “ A reduction of the judgement (x, y, i, j) with p categories” is the substitu-
tion of this judgement by:
(a) the judgement (x, y, i− p, j) if (1 ≤ p < i);
(b) the judgement (y, x, 1, p) if i = j = 0.

2. “ An augmentation of the judgement (x, y, i, j) of p categories” (1 ≤ p ≤
q − j) is the substitution of this judgement by:
(a) the judgement (x, y, 1, p) if i = j = 0;
(b) the judgement (x, y, i, j + p) otherwise.

Using the previous notions, we distinguish two cases:

(i) The judgement is (xl, x
′
l) ∈ I:

– If the binary variable βl = 1 of PL2 is associated to the constraint
f(xl) − f(x′

l) + Mβl ≥ 0 derived from the preference (xl, x
′
l) ∈ I,

then the corresponding relaxation is a reduction of the judgement by
p categories. We denote by C1−1 the set of all “l” satisfying these
conditions.

– On the other side, if βl = 1 is associated to the constraint f(xl) −
f(x′

l) −Mβl ≤ 0 with (xl, x
′
l) ∈ I, then the proposition of relaxation

will be an augmentation of the judgement by p categories. We denote
by C1−2 the set of all “l” satisfying this type of conditions.

(ii) The judgement is (xl, x
′
l) ∈ Pij :

– If the binary variable βl = 1 of PL2 is associated to the constraint
σi + dmin ≤ f(xl) − f(x′

l) + Mβl, then we apply the reduction of the
judgement. Let us denote by C2 the set of all “l” satisfying this type
of conditions.

– If βl = 1 corresponds to f(xl) − f(x′
l) −Mβl ≤ σj+1 − dmin, then we

recommend an augmentation of judgement. Let C3 the set of all “l”
satisfying these type of conditions.

3.3 Step 3: Determination of the Number of Categories p Used in
the Relaxation

In this section, we suppose the set M of m constraints, which can cause an
inconsistency, have been determined through the linear program PL2. To know
for each element l of M , the number of categories necessary for its relaxation by
augmentation or reduction, we introduce the binary variables εl

k as follows:
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1. If the modification of the preference (xl, x
′
l) ∈ I requires an augmentation of

categories, we replace in PL1 the constraint f(xl)− f(x′
l) = 0 associated to

this judgement by the following constraints:{
f(xl)− f(x′

l) ≥ 0
f(xl)− f(x′

l) ≤ σk − dmin + M εl
k, ∀k ∈ N2,q

(8)

Let h =
∑

k∈N2,q

εl
k.

– If h < q−1, then we recommend to the DM an augmentation of (xl, x
′
l) ∈

I with (h + 1) categories;
– Otherwise, we suggest him to remove the judgement (xl, x

′
l) ∈ I in the

cardinal information.
2. If the judgement (xl, x

′
l) ∈ Pij requires an augmentation of categories, we

replace in PL1 the constraint f(xl)− f(x′
l) ≤ σj+1 − dmin associated to this

preference by the constraints

f(xl)− f(x′
l) ≤ σj+k − dmin + M εl

k, ∀k ∈ N2,q−j (9)

Let h =
∑

k∈N2,q−j

εl
k.

– If h < q− j− 1, we recommend to the DM an augmentation of (xl, x
′
l) ∈

Pij by (h + 1) categories;
– Otherwise, we propose him to remove the judgement (xl, x

′
l) ∈ Pij .

3. If the preference (xl, x
′
l) ∈ I requires a reduction of categories, we replace

in PL1 the corresponding constraint f(xl) − f(x′
l) = 0 by the following

constraint {
f(x′

l)− f(xl) ≥ 0
f(x′

l)− f(xl) ≤ σk − dmin + M εl
k, ∀k ∈ N2,q

(10)

Let h =
∑

k∈N2,q

εl
k.

– If h < q − 1, we suggest to the DM a reduction of (xl, x
′
l) ∈ I by (h + 1)

categories;
– Otherwise, we suggest to remove the preference (xl, x

′
l) ∈ I.

4. If the judgement (xl, x
′
l) ∈ Pij requires a reduction of categories, we re-

place in PL1 the corresponding constraint σi + dmin ≤ f(xl)− f(x′
l) by the

following:

σi−k + dmin ≤ f(xl)− f(x′
l) + M εl

k, ∀k ∈ N1,i−1 (11)

Let h =
∑

k∈N1,i−1

εl
k.

– If h < i− 1, we recommend to the DM a reduction of (xl, x
′
l) ∈ Pij with

(h + 1) categories;
– Otherwise, suggest him to remove (xl, x

′
l) ∈ Pij .
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The binary variables εl
k introduced in equations (8) to (11) are determined by

the following linear program PL3:

PL3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∑

k∈N2,q ,l∈C1−1

εl
k +

∑
k∈N1,q−j ,l∈C2

εl
k +

∑
k∈N2,q ,l∈C1−2

εl
k +

∑
k∈N1,i−1,l∈C3

εl
k

s.t. SRelaxed constraints
SPL1 \ SPL1(m)
εl

k ∈ {0, 1}, ∀k ∈ N2,q, l ∈ C1−1

εl
k ∈ {0, 1}, ∀k ∈ N1,q−j , l ∈ C2

εl
k ∈ {0, 1}, ∀k ∈ N2,q, l ∈ C1−2

εl
k ∈ {0, 1}, ∀k ∈ N1,i−1, l ∈ C3

where

– SPL1 represents all the constraints of PL1.
– SPL1(m) represents a subset of SPL1 formed by the constraints associated to

the constraints of M build by PL2 that cause an inconsistency.
– SRelaxed constraints represents the system formed by all the constraints intro-

duced in (8) to (11).

3.4 Step 4: The Interaction with the DM

We have seen in the previous sections that, if the cardinal information given by
the DM is inconsistent, then the linear program PL3 is solved and its solution is
presented to the DM as recommendations to repair the inconsistencies. There-
fore, for each judgement (xl, x

′
l) ∈ (P ∪ I) causing an inconsistency, we suggest

him an augmentation or reduction of categories to make consistent judgements
representable by a numerical function f . Let R be the set of recommendations
(judgements with augmentation or reduction) proposed to the DM. In our algo-
rithm, the DM can adopt one of these two positions:

1. the DM does not agree with the recommendations proposed.
He builds a subset R′ ⊆ R of judgements for which he decides to conserve his
initial judgement. For each element (xl, x

′
l) of R′, the DM has no intention

to relax the constraint corresponding to (xl, x
′
l) in PL1. Therefore, the linear

program PL2 will be launched again by considering these constraints as
satisfied constraints (by removing their binary variables βl). There are two
possibilities:
(a) PL2 with these constraints has a solution. Then we compute the new

recommendations. We are thus either in situation 1 or 2.
(b) PL2 with these constraints has no solution. This means that the DM

cannot conserve R′ since they are inconsistent. He needs thus to change
R′.

2. the DM agrees with the recommendation proposed.
The linear program PL1 is launched again by taking into account the new
consistent cardinal information given by the DM.

The algorithm is represented by the Figure 1.
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Input: X, {P, I, {Pst}s≤t} Launching of PL1

Output: f PL1 feasible?

Launching of PL2 & PL3

PL2 feasible with R
′? Recommendations R

the DM gives R′ the DM agree with R

no

yes

yes

no

yes

no

Fig. 1. Interactive algorithm of dealing with inconsistencies

4 An Illustrative Example

X = {x1; x2; x3; x4; x5; x6}; q = 6. Suppose that the DM gives the fol-
lowing preferences: I = {(x2, x3); (x1, x6)}; P3 = {(x5, x6)}; P12 = {(x1, x3)};
P24 = {(x1, x5)}; P46 = {(x3, x5)}. The consistency of the cardinal information
{I, P3, P12, P24, P46} is tested through the linear program PL1:

PL1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min f(x1)
s.t.
f(x2)− f(x3) = 0
f(x1)− f(x6) = 0
σ3 + dmin ≤ f(x5)− f(x6)
σ1 + dmin ≤ f(x1)− f(x3)
σ2 + dmin ≤ f(x1)− f(x5)
σ4 + dmin ≤ f(x3)− f(x5)
f(x5)− f(x6) ≤ σ4 − dmin
f(x1)− f(x3) ≤ σ3 − dmin
f(x1)− f(x5) ≤ σ5 − dmin
dmin ≤ σ1, σi + dmin ≤ σi+1, i = 1, . . . , 5

For this test, we set dmin = 0.001 and we get PL1 infeasible. Therefore the algo-
rithm launches the linear program PL2 in order to find the minimal number of
constraints to be relaxed:
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PL2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
11∑

l=1

βl

s.t.
f(x2)− f(x3) + Mβ1 ≥ 0
f(x1)− f(x6) + Mβ2 ≥ 0
f(x2)− f(x3)−Mβ3 ≤ 0
f(x1)− f(x6)−Mβ4 ≤ 0
σ3 + dmin ≤ f(x5)− f(x6) + Mβ5
σ1 + dmin ≤ f(x1)− f(x3) + Mβ6
σ2 + dmin ≤ f(x1)− f(x5) + Mβ7
σ4 + dmin ≤ f(x3)− f(x5) + Mβ8
f(x5)− f(x6)−Mβ9 ≤ σ4 − dmin
f(x1)− f(x3)−Mβ10 ≤ σ3 − dmin
f(x1)− f(x5)−Mβ11 ≤ σ5 − dmin
dmin ≤ σ1, σi + dmin ≤ σi+1, i = 1, . . . , 5
βl ∈ {0, 1}, ∀l ∈ {1, . . . , 11}

The solution gives β4 = 1 and βl = 0 for l �= 4. So the only constraint which
need to be relaxed is f(x1) − f(x6) = 0 and its relation corresponds to an
augmentation of p categories of the judgement (x1, x6) ∈ I. The number p is
given by PL3:

PL3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
6∑

l=2

εl

s.t.
f(x2)− f(x3) = 0
f(x1)− f(x6) ≥ 0
f(x1)− f(x6) ≤ σ2 − dmin −Mε2
f(x1)− f(x6) ≤ σ3 − dmin −Mε3
f(x1)− f(x6) ≤ σ4 − dmin −Mε4
f(x1)− f(x6) ≤ σ5 − dmin −Mε5
f(x1)− f(x6) ≤ σ6 − dmin −Mε6
σ3 + dmin ≤ f(x5)− f(x6)
σ1 + dmin ≤ f(x1)− f(x3)
σ2 + dmin ≤ f(x1)− f(x5)
σ4 + dmin ≤ f(x3)− f(x5)
f(x5)− f(x6) ≤ σ4 − dmin
f(x1)− f(x3) ≤ σ3 − dmin
f(x1)− f(x5) ≤ σ5 − dmin
dmin ≤ σ1, σi + dmin ≤ σi+1, i = 1, . . . , 5
εl ∈ {0, 1}, ∀l ∈ {2, . . . , 6}

A solution of PL3 gives ε2 = ε3 = ε4 = 1 and ε5 = ε6 = 0. Therefore we
suggest to the DM an augmentation of (x1, x6) ∈ I by 4 categories, i.e. replace
(x1, x6) ∈ I by (x1, x6) ∈ P14. The DM accepts this recommendation and the
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new cardinal information I = {(x2, x3)}; P3 = {(x5, x6)}; P12 = {(x1, x3)};
P14 = {(x1, x6)}; P24 = {(x1, x5)}; P46 = {(x3, x5)} becomes consistent.
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Abstract. Classical complete preorders can be characterized in several
ways. However, when we work with complete fuzzy preorders this equiv-
alences do not hold in general. In previous works we have proven some
connections among them when using the minimum and the �Lukasiewicz
t-norms. In this contribution we generalize the study and we work with
two important families (nilpotent and strict t-norms) when defining the
fuzzy counterparts of the characterizations of a crisp complete preorder.

1 Introduction

In preference modeling the comparison of a set of alternatives is usually carried
out by pairs. The opinion of a decision maker over the set of alternatives can be
formalized by a binary relation usually denoted by R and called weak preference
relation. It is understood as follows: the alternative a is considered at least as
good as b if aRb.

Starting from every weak preference relation we can define a preference struc-
ture. It is a set of three binary relations that also cover all the possible answers
of a decision maker: a symmetric relation identified with the indifference, an
asymmetric relation that expresses the strict preference and the dual symmetric
relation that holds when the decision maker cannot compare the alternatives.

This last relation is called incomparability relation and in some cases it is not
allowed, the decision maker is forced to compare every pair of alternatives. In
these cases the weak preference relation is said to be complete, since it connects
every pair of alternatives.

Different properties are defined in order to state that the answers of a decision
maker are coherent. Maybe transitivity is the most important one. A complete
preorder is a complete reflexive relation that is transitive. In this work we focus
on these relations and their characterizations. It is well known that the transi-
tivity of a complete weak preference relation is characterized by the transitivity
of the associated symmetric and asymmetric relations. This is the best known
characterization of a complete preorder, but there are others that we consider
in our research.

In [12] six different characterizations of a crisp complete preorder are shown.
In previous works (see [5] and [7]) we translated those properties to the fuzzy
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sets context and we studied whether those new properties characterize a fuzzy
complete preorder. We also studied how those relations are connected among
them in case they are not related to a fuzzy complete preorder. Those works focus
on the minimum and the �Lukasiewicz t-norm. The definitions and properties
considered for fuzzy relations are based on those two important operators. In
this contribution we largely extend the study to other operators. We consider
two important families of t-norms: nilpotent and strict t-norms and we compare
the six characterizations of a fuzzy complete preorder for those operators.

This communication is organized as follows. In Section 2, we recall the basic
ingredients from crisp interval orders and we translate them to fuzzy interval
orders. Connections among the different possible definitions for that concept are
presented in Section 3. There we present general results for any t-norm, as well as
the particular achievements for idempotent, nilpotent and strict t-norms. In the
concluding section, we focus our attention in the interpretation and consequences
of the obtained results.

2 Basic Concepts

2.1 Crisp Preorders

Every reflexive binary relation R defined on the set A can be seen as a weak
preference relation if we state that aRb if and only if a is preferred or indifferent
to b. Given a binary relation R, we will denote by Rt, Rc and Rd the transpose,
the complement and the dual relation, respectively. Combining them we can
obtain, from any crisp reflexive relation R, three disjoint binary relations: the
strict preference relation P = R ∩ Rd, the indifference relation I = R ∩ Rt and
the incomparability relation J = Rc∩Rd. If we consider the triplet (P, I, J), that
forms a preference structure, we can get back the relation R, because R = P ∪ I.
A relation Q on A is said to be complete if every pair of elements is connected
at least by Q or its transpose, Q ∪Qt = A2. It is well known that the reflexive
relation R is complete if and only if any pair of elements is comparable by means
of the relation R, which is equivalent to say that J = ∅.

Given two relations Q1 and Q2 defined on A, their composition, denoted
Q1 ◦Q2, is defined as follows a(Q1 ◦Q2)c⇔ aQ1b∧ bQ2c for some b ∈ A. Then,
the transitivity of a relation Q is equivalent to Q ◦Q ⊆ Q.

A binary relation Q is said to be negatively transitive if there exists b ∈ A
such that aQc⇒ (aQb ∨ bQc). We can represent every binary relation Q defined
on a set A as a graph (A,Q), where A is the set of nodes and Q is the set of
arcs. So there is an arc from the node a to the node b if and only if aQb and
it is represented by (a, b). A path of length n in such a graph is a set of n arcs
(a0, a1), ..., (an−1, an) in (A,Q). A circuit, sometimes also called a cycle, is a
path for which a0 = an.

It is well known that the transitivity of a complete reflexive relations R can
be characterized in several ways. In particular, the following statements are
equivalent [12]:
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(i) R is transitive,
(ii) P and I are transitive,
(iii) P is transitive and P ◦ I ⊆ P ,
(iv) P is transitive and I ◦ P ⊆ P ,
(v) P is negatively transitive,
(vi) there is no P in circuits of length ≤ 3 in (A,R).

Note that for any reflexive relation R, the relation P is irreflexive and asymmet-
ric, so there is no P in circuits of length 1 or 2 in (A,R). Then, Property (vi)
can be written as “there is no P in circuits of length 3 in (A,R)”.

A complete reflexive relation R is a preorder if it satisfies the transitive prop-
erty. Thus, given a complete reflexive relation, the six conditions above provide
six different ways of expressing a preorder.

2.2 Fuzzy Binary Relations

Human beings do not express their preferences in a rigid way. When comparing
two alternatives, expressions like “a little bit preferred”, “quite preferred” are
common. Fuzzy relations appeared as a way to catch these intermediate answers.
They are A2 → [0, 1] applications and they generalize crisp relations. The image
expresses the strength of the connection between the alternatives. The greatest
the value, the strongest the connection. We will keep the same notation as for
crisp relations for the transpose, complementary and dual of a fuzzy relation R:

Rt(a, b) = R(b, a) Rc(a, b) = 1−R(a, b) Rd(a, b) = 1−R(b, a).
The intersection and union of fuzzy relations are usually defined by t-norms

and t-conorms respectively. We recall that a t-norm is a [0, 1]2 →][0, 1], commu-
tative, associative and non decreasing mapping with neutral element 1. Three
important examples of t-norms are minimum (TM(x, y) = min(x, y)), product
(TP(x, y) = x · y) and �Lukasiewicz (TL(x, t) = max(x + y − 1, 0)). Given two
fuzzy relations, Q1 and Q2, their intersection is defined as Q1 ∩T Q2(a, b) =
T (Q1(a, b), Q2(a, b)).

Analogously, the union of fuzzy relations is defined in general by t-conorms. A
t-conorm S is a commutative, associative, non decreasing, with neutral element
0, mapping from [0, 1]2 into [0, 1]. If we define the dual of a binary operator U by
Ud(x, y) = 1− (U(1−x, 1− y)), then t-norms and t-conorms are dual operators.
It is well known that for any t-norm T , the dual operator T d is a t-conorm. It
is called dual t-conorm of T .

Automorphisms allow to obtain new t-norms from a given one (and new t-
conorms from a given t-conorm). A [0, 1]−automorphism (automorphism, for
short), denoted by ϕ, is a [0, 1] → [0, 1] mapping such that ϕ(0) = 0, ϕ(1) =
1 and ϕ(x) < ϕ(y), ∀x < y. The inverse of the automorphism ϕ is denoted
by ϕ−1 and it is again an automorphism. Given a t-norm T and an automorphism
ϕ, the binary operator Tϕ is called ϕ-transform of T and defined by Tϕ(x, y) =
ϕ−1 (T (ϕ(x), ϕ(y))) and it is a t-norm. The minimum is the only t-norm invariant
by any ϕ-transformation, i. e. for any automorphism ϕ, TMϕ = TM.

A t-norm is continuous if it is continuous in each component. This property is
preserved by ϕ-transformation. What is more, every continuous t-norm can be
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expressed as the right combination of the three most important t-norms TM, TP

and TL and their ϕ-transforms. Next concepts are involved in the classification
of continuous t-norms.

We say that a value x ∈ (0, 1) is a zero-divisor of the t-norm T if there
exists another value y ∈ (0, 1) such that T (x, y) = 0. The value x ∈ [0, 1] is
an idempotent element of T if T (x, x) = x. The values 0 and 1 are idempotent
elements of every t-norm T . Based on these elements we can define classes of t-
norms. Thus, a continuous t-norm T is Archimedean if it satisfies that T (x, x) < x
for all x ∈ (0, 1). A t-norm T is nilpotent if it is continuous and for any x ∈ (0, 1),
x is a zero-divisor of T . A t-norm T is strict if it is continuous and it is strictly
increasing in each component, that is, if T (x, ·) is strictly increasing, for all
x ∈ (0, 1]. A t-norm T is idempotent if for all x ∈ (0, 1), x is an idempotent
element.

The only idempotent t-norm is the minimum t-norm. On the other hand,
continuous Archimedean t-norms can be classified into nilpotent and strict. The
most important example of nilpotent t-norm is the �Lukasiewicz t-norm, while
the most important example of strict t-norm is the product. In fact, every nilpo-
tent and every strict t-norm can be expressed as a ϕ-transformation of the
�Lukasiewicz and the product t-norms, respectively (see e. g. [9]). Thus every
continuous Archimedean t-norm is either a transformation of the �Lukasiewicz
t-norm or a transformation of the product t-norm.

A wide study about t-norms and t-conorms can be found in [11]; all the
previously known results we will comment in this subsection are collected in this
book.

2.3 Fuzzy Preference Structures

In fuzzy set theory, a reflexive fuzzy relation R on A can also be decomposed into
the so-called (additive) fuzzy preference structure, by means of a generator i.
The concept of generator was introduced by De Baets and Fodor in [1] as a
symmetric (commutative) [0, 1]2 → [0, 1] mapping bounded by the �Lukasiewicz
t-norm, TL, and the minimum operator, TM, i.e. TL ≤ i ≤ TM.

Given a reflexive fuzzy relation R and a generator i, the three components
of an additive fuzzy preference structure ([13]), in brief AFPS, are defined as
follows: P (a, b) = R(a, b) − i(R(a, b), R(b, a)), I(a, b) = i(R(a, b), R(b, a)) and
J(a, b) = I(a, b) − (R(a, b) + R(b, a) − 1). They satisfy the additive property:
P (a, b)+I(a, b)+P t(a, b)+J(a, b) = 1 for all a, b ∈ A. The initial weak preference
relation R can be rebuilt as follows: R(a, b) = P (a, b) + I(a, b).

The concept of completeness for fuzzy relations is usually defined by a t-
conorm. The fuzzy relation Q is S-complete if S(Q(a, b), Q(b, a)) ≥ 1 for all
a, b ∈ A. The most usual completeness conditions considered are the strong com-
pleteness, defined by the maximum t-conorm and the weak completeness defined
by the �Lukasiewicz t-conorm. In the fuzzy context, the absence of the associ-
ated incomparability relation is not equivalent to any completeness condition in
general as it can be seen from the following result.
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Proposition 1. [8] Let R be a reflexive fuzzy relation and let J be the incom-
parability relation associated to R by means of any generator i. Then J = ∅ if,
and only if, R is weakly complete and i = TL.

Strong completeness is a more restrictive condition than the absence of incom-
parability relation and this is a stronger property than weak completeness. As
we explained at the beginning of this work we focus on additive fuzzy prefer-
ence structures without incomparability. Therefore, we handle weakly complete
reflexive relations R such that the associated additive fuzzy preference structure
(P, I) is defined by the �Lukasiewicz generator: (P, I) = (Rd, R ∩TL R

t).

2.4 Fuzzy Preorders

Any t-norm leads to a different definition of the compositions of fuzzy relations,
so there is no unique way of defining it. More precisely, for any t-norm T , the T -
composition of two fuzzy relations Q1 and Q2 on A is defined by Q1◦T Q2(a, c) =
sup

b
T (Q(a, b), Q(b, c)). T-norms allow to generalize the definition of transitivity.

Thus, Q is called T -transitive if T (Q(a, b), Q(b, c)) ≤ Q(a, c), ∀a, b, c ∈ A. As for
crisp relations, the T−transitivivy of a fuzzy relation is equivalent to Q◦TQ ⊆ Q.

By using this concept, we are going to recall or establish the fuzzy generaliza-
tion of the six conditions considered in Subsection 2.1. Thus, given a t-conorm
S, the fuzzy relation Q is negatively S-transitive if Q(a, c) ≤ S(Q(a, b), Q(b, c)
∀a, b, c (see for example [9]).

Given a, b and c three alternatives, the absence of strict preference in cycles of
length 3 in a crisp context states that aRb∧bRc∧cRa ⇒ a �Pb∧b �Pc∧c �Pa.

Since the intersection of two fuzzy relations depends on the chosen t-norm, it
is said that a reflexive fuzzy relation R on A has no P in cycles of length 3 if it
holds that T (1− P (a, b), 1− P (b, c), 1− P (c, a)) ≥ T (R(a, b), R(b, c), R(c, a)) .
Considering the dual t-conorm S, the last expression can also be written as
1 − S (P (a, b), P (b, c), P (c, a)) ≥ T (R(a, b), R(b, c), R(c, a)) . In summary, given
a t-norm T and its dual t-conorm S, the six characterizations presented in Sub-
section 2.1 can be written for fuzzy relations as follows:

Number Description Formulation (∀a, b, c ∈ A)
(I) R is T -transitive T (R(a, b), R(b, c)) ≤ R(a, c)

(II)
P is T -transitive
I is T -transitive

T (P (a, b), P (b, c)) ≤ P (a, c)
T (I(a, b), I(b, c)) ≤ I(a, c)

(III) P is T -transitive,
P ◦T I ⊆ P ;

T (P (a, b), P (b, c)) ≤ P (a, c)
T (P (a, b), I(b, c)) ≤ P (a, c)

(IV)
P is T -transitive,
I ◦T P ⊆ P ;

T (P (a, b), P (b, c)) ≤ P (a, c)
T (I(a, b), P (b, c)) ≤ P (a, c)

(V) P is negatively T -transitive P (a, c) ≤ S(P (a, b), P (b, c))

(VI)
every circuit of length 3 in
(A,R) contains no P

1− S(P (a, b), P (b, c), P (c, a))
≥ T (R(a, b), R(b, c), R(c, a))
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3 Fuzzy Preorders for Archimedean t-Norms

3.1 General Results

We would like to study the connections among the previous conditions (I)-(VI).
Let us start with a general result, which is fulfilled for any t-norm T (see, e.g.,
[9,14]).

Proposition 2. Let R be a fuzzy relation and let T be a t-norm. It holds that

R is T -transitive ⇔ Rd is negatively T -transitive.

Furthermore, if we take the �Lukasiewicz t-norm as generator and the relation R is
weakly complete, then P = Rd. Thus, it holds that in absence of incomparability,
for every t-norm properties (I) and (V ) are equivalent (see [5]) .

3.2 The Idempotent t-Norm

In previous works ([5,7]) we have studied in detail the case of the minimum t-norm.
The surviving implications are presented in Figure 1. Any missing implication in
that figure does not hold, as it was proven by appropriate counterexamples.

P ◦TM P ⊆ P
P ◦TM I ⊆ P

}
⇐⇒

{
P ◦TM P ⊆ P
I ◦TM P ⊆ P

=⇒ =⇒

R is transitive ⇐=
{

P ◦TM P ⊆ P
I ◦TM I ⊆ I

⇐
⇒

=⇒

P is negatively TM-transitive =⇒ no P in cycles of length 3

Fig. 1. Relationship among Properties (I)-(VI) for the minimum t-norm

3.3 Nilpotent t-Norms

As we commented in Subsection 2.2, any nilpotent t-norm is a ϕ-transformation
of the �Lukasiewicz t-norm. Thus, we will start our study in particular for this
t-norm and later we will to extend it to any nilpotent t-norm.

We have also studied (see [7]) some of the connections between the different
statements (I)-(VI) using the �Lukasiewicz t-norm. Now we present the results
that complete this study.

Proposition 3. Let (P, I) be an additive fuzzy preference structure without in-
comparability and R its associated weak preference relation. It holds that the
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TL-transitivity of R is not a sufficient condition for the absence of P in cycles
of length 3.

It is obvious that the reciprocal implications neither holds, because in other
case, as the TL-transitivity of R implies that P and I are TL-transitivity, then
the absence of P in cycles of length 3 implies the TL transitivity of P and I.
However, it is known that this is not truth (see [7]).

In the remain cases, the answer is again that the implication cannot be assure
in general, as it proves the following result.

Proposition 4. There exists at least an AFPS without incomparability (P, I)
in each of the following situations:

– P and I are TL-transitive, but neither I ◦TL P ⊆ P .
– P and I are TL-transitive, but neither P ◦TL I ⊆ P .
– P is TL-transitive and P ◦TL I ⊆ P , but I ◦TL P ⊆ P .
– P is TL-transitive and I ◦TL P ⊆ P , but P ◦TL I ⊆ P .
– P is TL-transitive, P ◦TL I ⊆ P and I ◦TL P ⊆ P , but I is not TL-transitive.

We summarize all the results in Figure 2.

R is TL-transitivity ⇐⇒ P is negatively TL-transitive
=⇒ =⇒ =⇒

{
P ◦TL P ⊆ P
I ◦TL I ⊆ I

{
P ◦TL P ⊆ P
P ◦TL I ⊆ P

{
P ◦TL P ⊆ P
I ◦TL P ⊆ P

no P in cycles
of length 3

Fig. 2. Relationship among Properties (I)-(VI) for the �Lukasiewicz t-norm. The missing
implications do not hold.

Now, we will try to extend the known results for the �Lukasiewicz t-norm to
any nilpotent t-norm. The equivalence between (I) and (V) holds trivially. In
light of the previous results, we will focus on the connection between (I) and
(II), (III) and (IV). No other implication can hold for any nilpotent t-norm,
since it does not hold for the �Lukasiewicz t-norm. However, condition (I) does
not guarantee any of the three conditions (II), (III) or (IV) for a whole special
class of nilpotent t-norms.

Remark 1. Let us consider a nilpotent t-norm Tϕ
L such that x + y < 1 and

ϕ(x) + ϕ(y) > 1. The reflexive relation R defined on A = {a, b, c} as follows
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is Tϕ
L -transitive. However, its associated (by the �Lukasiewicz generator) strict

preference relation P is not, since P (a, a) = 0 �≥ Tϕ
L (x, y) = Tϕ

L (P (a, b), P (b, a)).

R a b c
a 1 1− y 1− y
b 1− x 1 1− y
c 1− x 1− x 1

P a b c
a 0 x x
b y 0 x
c y y 0

Let us notice that in the complementary case (�∃(x, y) ∈ [0, 1]2 such that x+y < 1
and ϕ(x)+ϕ(y) > 1), we also could obtain a counterexample for this implication.

3.4 Strict t-Norms

We have completed the study of the connections between (I)-(VI) using TM, TL

and in general for a nilpotent t-norm. Now we are going to complete this study
with any strict t-norm. Finally, we will consider the particular case of the product
t-norm (TP). Once this is done, the connections between the statements for any
continuous Archimedean t-norm will be totally characterized. It is known, by
Proposition 2, that statements (I) and (V) are equivalent for every t-norm, so in
particular for a strict t-norm. Let us complete the others connections. We begin
studying if the T -transitivity of R or the T -transitivity of P and I implies some
of the others statements for any strict t-norm T .

Proposition 5. Let T be a strict t-norm. Then there exists at least an AFPS
without incomparability (P, I) in each of the following situations:

– R is T -transitive, but P is not T -transitive.
– P and I are T -transitive, but R is not T -transitive.
– P and I are T -transitive, but P ◦T I �⊆ P .
– P and I are T -transitive, but I ◦T P �⊆ P .

We have obtained that the T -transitivity of R does not imply neither (II), nor
(III), nor (IV), and furthermore, the T -transitivity of P and I does not imply
neither (I), nor (III), nor (IV).

Let us study the possible connections that the absence of P in cycles of length
3 has with the other statements.

Proposition 6. Let T be a strict t-norm. Then, there exists at least a weakly
complete reflexive relation R in each of the following situations, where (P, I)
denotes its associated AFPS obtained by means of the generator i = TL:

– P and I are T -transitive, but P is in a cycle of length 3 of R.
– R is T -transitive, but P is in a cycle of length 3 of R.
– There is no P in cycles of length 3 of R, but R is not T -transitive.
– There is no P in cycles of length 3 of R, but P is not T -transitive.

It only remains to see if conditions (III) or (IV) imply some of the others. For
this purpose, we need to see firstly the next lemma.
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Lemma 1. Let (P, I) be an additive fuzzy preference structure without incom-
parability. If P is T -transitive, with T a strict t-norm, it holds that

– ∀a, b ∈ A, P (a, b) = 0 or P (b, a) = 0.
– ∀a, b, c ∈ A it holds that min {P (a, b), P (b, c), P (c, a)} = 0.

With this lemma we can prove the following theorem.

Proposition 7. Let (P, I) be an additive fuzzy preference structure without in-
comparability and let R be its associated weak preference structure. If P is T -
transitivity, with T a strict t-norm, and P ◦T I ⊆ P , then R is a crisp relation.

As consequence of this result we have that statement (III) implies everyone else.
Furthermore, if we change the condition P ◦T I ⊆ P for the condition I◦T P ⊆ P ,
the theorem still holds. Then, statements (III) and (IV) are equivalent and they
implies everyone else.

In particular, the previous results hold for the product t-norm. Moreover, no
better results can be obtained in this particular case. In fact, the counterexamples
used to prove the statements included in Propositions 5 and 6 are done with TP.
Thus, the connections that hold in general for TP are exactly the same that hold
for a strict t-norm. In Figure 3 is presented the summary of the obtained results.

R is TP-transitive ⇐⇒ P is negatively TP-transitive

=
⇒

P ◦TP P ⊆ P
P ◦TP I ⊆ P

}
⇐⇒

{
P ◦TP P ⊆ P
I ◦TP P ⊆ P

=⇒ =⇒

P ◦TP P ⊆ P
I ◦TP I ⊆ I

}
No P in cycles of length 3

Fig. 3. Connections among Properties (I)-(VI) for the product t-norm. The missing
implications do not hold.

4 Conclusions

The main contribution of this work is that we have been able to complete to any
idempotent and Archimedean continuous t-norm the previous studies about the
connections among different possible definitions of the concept of fuzzy preorder.
In the cases the implications are not fulfilled, we have found appropriate coun-
terexamples. With theses studies we could choose the best definition of fuzzy
preorder in each situation. As a future work, we will like to be able to study
other operators: general continuous t-norms, conjunctors, etc. and also extend
our studies when other ways of expressing the negation are considered.
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Abstract.  In this paper we consider a complete fuzzy preference structure, de-
fined by means of a constructive approach associated to the necessary learning 
process in a decision making problem. Preference relations are successively  
assigned over a given set of alternatives with the possibility of revision and rec-
tification, subject to a certain set of beliefs which sustain the construction of 
different viewpoints.  Measures of information are then considered in this proc-
ess for a formal identification of uncertainty due to ignorance, a concept that is 
closely related to ambiguity as defined by Fishburn (1993).  Finally, a coher-
ence criterion is proposed in order to study the importance of preferences, in 
such a way that an indirect and comparative analysis between them is needed so 
outcomes may be coherently organized. 

Keywords: fuzzy preferences, rectification, beliefs, viewpoints, uncertainty due 
to ignorance, ambiguity, coherence measures. 

1   Introduction 

Different notions of preference can be established between distinct classes of entities, 
actions, circumstances or propositions, in order to understand how decision makers 
view the world and its inherent uncertainty.  Within this vision, motivated by a sub-
jective vision over classical logic [6], the set of possible worlds is viewed as a subset 
of alternatives, in such a way that preferences are stated on the basis of individual or 
collective beliefs towards a certain subset of alternatives, taking into account positive 
and negative arguments for each comparison.  In particular, the base of beliefs, a set 
of formulas where each formula represents an individual belief, delimits the set of 
possible worlds in such a way that any added belief will impossible worlds be re-
jected.  It is out of question the importance of opening the possibility of revision and 
rectification of these beliefs, since it is a primary learning characteristic of any intelli-
gent system [18].   

In this article the concept of fuzzy environment is supported from a constructive 
approach providing the setting for fuzzy logic and its applications.  In this case, the 
field of application is preference theory, considering the construction of a preference 
order, according to a characteristic viewpoint, under uncertainty due to ignorance or 
ambiguity. The distinction that we follow here is the one that almost a century ago 
(1921) Knight [15] and Keynes [14] presented between measurable uncertainty (prob-
abilities) and unmeasurable uncertainty (weight of evidence), arguing that ambiguity, 
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understood as lack of knowledge [7], [8], has an important role in rational learning 
and decision processes.      

This paper is organized as follows: section 2 discusses the key aspects of uncer-
tainty due to ignorance and reviews ambiguity and coherence as information meas-
ures.  In section 3, a complete preference structure is defined under characteristic 
viewpoints. Finally, section 4 examines the possibility of rectification in a decision 
process with fuzzy preference relations, where information measures have the main 
function of preserving coherence when knowledge is ambiguous. 

2   Uncertainty and Ignorance 

The search for alternative qualitative and symbolic models is extremely relevant for a 
further development of preference theory, in order to complement, explain and gener-
alize the classical body of knowledge founded in the theory of (expected) utility.  Di-
verse studies in social sciences (see [7], [10]) where the problem of decision under 
ignorance is examined according to the approach formulated in [14] and [15], offer 
some experimental evidence supporting that preferences do not depend only on the 
degree of uncertainty over the quality of information, but also over its source.  This 
distinction motivates a careful study of uncertainty, stressing the relationship of the 
concept of ignorance with ambiguity [8] and fuzziness [24], different to probabilistic 
uncertainty. 

To illustrate the idea stated above we recall the classical example of the “two col-
ors” (see [7], [14], [15]).  Consider two boxes containing red and black balls.  The 
first box contains 50 red balls and 50 black balls, while the second box has 100 black 
and red balls without known proportion.  Although most decision makers will assign 
the same probability of reaching for a red ball in any of the boxes (0.5), the weight of 
the argument in favour of this conclusion is greater in the first case than in the second 
one.  The fact that in general people prefer to bet for the box with known proportion, 
suggests that subjective probabilities of reaching for a red or black ball are greater in 
the box where its proportion is known, revealing a behavioural pattern not fully con-
sistent with standard subjective probability and expected utility theory.  

As shown in [7], there is a pronounced difference between the type of uncertainty 
that can be measured by probabilistic functions, which can be referred to as risk, and 
the type that can not be directly measured by such functions.  So, in the presence of 
uncertainty we have the probability of occurrence of an event, and on the other hand, 
a degree of confidence over the different attributes of information. Decisions rest 
upon beliefs about the state of nature in situations where non probabilistic uncertainty 
is present.  In common human decision making, for example, it is clear that probabil-
istic reasoning gets less weight, since quite often we process mixtures of different 
kinds of uncertainties (this is the case, for example, of most statistical polls, as soon 
as they make use of linguistic terms that should bring a specialized non probabilistic 
analysis).   

Restricting ourselves to non probabilistic uncertainty, in particular to a state of 
knowledge of the decision maker that can be referred to as uncertainty due to igno-
rance, we realize that such ambiguity affects decisions in a way that contradicts addi-
tivity of subjective probability.  To clarify this idea we remind below the definition of 
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ambiguity [8] and study its relation with fuzziness [24], in order to represent decision 
situations where the boundary between the set of possible and impossible worlds, 
constructed upon beliefs that support a finite set of viewpoints, is not always crisp. 

Ambiguity, as a primitive concept, has been proposed as a comparative relation 
on a set of elements X where P(X) is the set of all subsets of X.  The set measure 
α:P(X)→[0,1] is called an ambiguity function if it satisfies the following three  
axioms [8]: 

A1. α(∅)=0  

A2. α(A)=α(Ac)  

A3. α(A∪B) + α(A∩B) ≤ α(A) + α(B) 

Minimum ambiguity is assigned to the null set, such that α(∅)=α(X)=0.  The 
complement of A is denoted by Ac, so the central idea of this characterization is 
expressed by (A2), where ambiguity is a measure of a certain attribute of information 
shared by any set A and its complementation.  Let us remind that for probabilities, if p 
stands for a probability function, p(A)+p(Ac)=1, while for ambiguity, α(A)=α(Ac), 
reflecting the original intuition [8] that whatever underlies the ambiguity of a set also 
underlies the ambiguity of its complement. Finally, the third axiom expresses 
submodularity: the idea that the union of two sets A, B may reduce or cancel 
ambiguities associated to each one (considered separately), in such a way that if A and 
B are disjoint, then α(A∪B)≤α(A)+α(B) and if α(A∪B)=X then α(A∩B)≤α(A)+α(B). 

The above idea of ambiguity measures can be translated into fuzzy set theory [25].  
Fuzzy logic focuses on situations where the boundary between the set of possible and 
impossible worlds is not always crisp, and a fuzzy subset R may be naturally de-
scribed by the membership and non-membership degree of each element x in X, de-
noted by R+(x) and R-(x) respectively.  As suggested in [24], fuzziness may rise from 
the lack of an absolute distinction between R+ and R-.  Note that R- does not necessar-
ily correspond to the classical conception of complementation, since (see for example 
[2], [16], [19]) non-membership intensities can be better understood as some kind of 
orthogonal but positively measurable degrees over the elements of X.  A more de-
tailed study on fuzziness and its different interpretations for fuzzy sets ([25], [26]) and 
intuitionistic fuzzy sets [2] can be found in [22]. 

Following [24], where R- is taken as the complement in such a way that R-

(x)=Rc(x)=1-R(x), if we assume that R is a fuzzy subset defined over the finite set X 
with cardinality n, the intersection of R+(x) and R-(x) is defined by the set I(x), 
I=R+∩R- (see [4] in order to stress the relevance of the related concept of overlapping 
when dealing with fuzzy information).  As a result, if the set I(x) is empty, then 
R+ and R- are clearly distinct and no fuzziness occurs (membership intensities are ei-
ther 0 or 1) but when I(x) is positive, the larger it becomes, the greater the fuzziness 
associated with the set R. 

Let us remind the formal characterization of measures of fuzziness, Fuzz(R), for 
any fuzzy subset R (see [24]): 

F1.  Fuzz(R)=0 if and only if R is a crisp subset. 

F2.  Fuzz(R) has its maximal defined as R(x)=0.5 for all x.  
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F3.  For any fuzzy subset R* such that R*(x)≥R(x) if R(x)≥0.5 and R*(x)≤R(x) if 
R(x)≤0.5 then Fuzz(R)≥Fuzz(R*): R* is called a sharpened version of R. 

As shown in [24], a measure of fuzziness can be also an ambiguity measure in the 
sense of Fishburn [8], where R(x)∪S(x)=max(R(x),S(x)), R(x)∩S(x)=min(R(x),S(x)) 
and Rc(x)=1-R(x) for any fuzzy sets R and S.  As a consequence, ambiguity measures 
are also valid for measuring fuzziness. 

Once the concept of uncertainty due to ignorance has been associated to the con-
cept of ambiguity and fuzziness, we can analyze its role in a preference ordering con-
struction process. Usually preference evaluation vía binary relations considers only 
the two alternatives at stake and their principal attributes, paying less attention to sec-
ond order characteristics, which receive greater relevance in situations where ambigu-
ity is present.  For this reason we need to analyze the different states of knowledge 
(from absolute certainty to total ignorance) of a decision maker.   

A comparative analysis should allow us to distinguish between different states of 
knowledge, judging the set of constructed preferences based on expert knowledge or 
maximal certainty.  In consequence, diverse attributes may receive positive and higher 
values of relevance in a comparative evaluation than in an isolated one. In order to 
study the importance of preference relations and their outcomes, it is necessary to 
remind some basic definitions and introduce a preference structure within a fuzzy 
environment.      

3   Complete Preference Structure 

A decision making problem is here understood as the construction of an ordering 
process over a finite set of alternatives A, where fuzzy binary relations are defined 
between alternatives a and b by a degree of truth for the predicate R, “a is at least as 
good as b”, assigned according to a complete and partially ordered valuation set L. 
Following standard approaches (see [9], [17]), each fuzzy preference relation R can be 
understood as a composition of four different relations and its corresponding intensi-
ties. These components are “strict preference of a over b”: P, “strict preference of b 
over a”: P-1, “indifference between a and b”: I, and “incomparability between a and 
b”: J.    

A fuzzy preference binary relation for a set of alternatives A is characterized by a 
complete valuation space L and a function R such that :R A A L× → .  For simplicity, 
we consider the case in which L=[0,1].  Here we consider the three axioms proposed in 
[9] and [17].  The “Independence of Irrelevant Alternatives” axiom states that for every 
pair of alternatives a, b, the values of P(a,b), I(a,b) and J(a,b) depend only on the values 
of x=R(a,b) and y=R(b,a).  The existence of the continuous functions,  

[ ] [ ]2
, , : 0,1 0,1p i j →  

can be stated, in such a way that P(a,b)=p(x,y), I(a,b)=i(x,y) and J(a,b)=j(x,y).  The 
“Positive Association” axiom says that functions p(x,n(y)), i(x,y) and j(n(x),n(y))  
are non-decreasing over both arguments. The “Symmetry” axiom states the symmetry 
of the functions i(x,y) and j(x,y).  The complete preference structure is therefore  
described as: 
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( ) ( ) ( ) ( ) ( ), , , , , , , ,R x y p x y p y x i x y j x y=   (1) 

where R(x,y)≥1. In this way, the aggregated intensity is being decomposed into four 
intensities that should cover the total possible intensity.    

In order to build up the relation R over the available alternatives, a rational process 
is needed to identify viewpoint h H∈ , under which preferences can be valued.  The 
principle of rationality that we follow here is the one of minimum action, where an 
individual searches for the viewpoint with lowest dimension (minimal number of cri-
teria) so a consistent preference ordering can be constructed for a finite subset of al-
ternatives.  For an exploration of different approaches to dimension for some classes 
of orders see for example [12]. 

Each viewpoint h is constructed over the attributes of the available information on 
the elements of the set A, interpreted according to the base of beliefs B, over which 
the set of criteria C can be defined.  Here h represents an independent state of mind 
for undertaking the preference analysis. The following definition is based on [13]: 

Definition. A viewpoint h H∈  for a subset of alternatives hS A⊆  is characterized 

by an outcome space Ωh, a set of criteria Ch where each criterion ch:Sh→ Ωh maps al-
ternatives to their outcomes, and a partial order given by the set of fuzzy preference 
relations R over Ωh.  

The set of criteria Ch is a finite set whose elements can be combined for the con-
struction of any viewpoint h H∈ , where each criterion determines a new dimension 
for the outcome space Ωh.  

Differences between viewpoints ,h v H∈  over the same set of alternatives S, case 

where Sh=Sv, may refer to differences in preferences, in outcome spaces or in criteria 
[3], [13]. If a set of alternatives S is organized by a unique viewpoint h, we say it is 
the characterizing viewpoint of S, denoted by Sh. If more viewpoints are candidates 
for ordering the same set S, then we say that a process of rectification is possible. 
Rectification allows the identification of a new order on the alternatives in S, reveal-
ing a change in the preferences of the decision maker. When an intelligent agent recti-
fies, a new viewpoint is being searched.  This is a task where the decomposition or 
combination of viewpoints may be necessary. Therefore, two viewpoints can be com-
bined or decomposed for constructing a new enlarged or reduced viewpoint, where 
the set of alternatives, preferences, outcome spaces or criteria may change. Still, 
maximum coherence needs to be preserved. 

The complete structure for this preference constructive approach can now be de-
fined as, 

, , ,Z A H R L=  

where H is the set of all possible viewpoints under which the alternatives in A can be 
completely ordered according to the structure given by R and its valuation set L.   
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4   Information Measures and Preference Rectification 

The process of decision making implies a comprehensive identification of the most 
relevant attributes of information, learning how to order the available alternatives and 
classifying them (see [1], [16]) with a maximum degree of coherence.  Stressing the 
importance of a comparative analysis, a decision making process is here called a 
learning process if and only if rectification of preferences is possible.  Rectification is 
then understood as the reconstruction of a preferential order for a finite set of alterna-
tives, where it may be necessary an expansion (composition), or on the contrary, a 
contraction (decomposition) of viewpoints. 

When any pair of alternatives is compared and a preference relation is constructed, 
an order is assigned over S A⊆  according to certain viewpoint h.  Following the 
idea that a viewpoint may have multiple extensions so a preferred outcome may at last 
be found [13], the decision maker has to be able to rectify along the sequential learn-
ing process. Such learning process is here characterized as the elicitation of knowl-
edge from single attributes of information, where these attributes are identified step 
by step.  In this way, the most relevant attributes can change and viewpoints may need 
modification (combined, contracted or enlarged).   

The sequential learning process described above needs to take into account its 
natural ambiguity or degree of ignorance.  Let us take for example two viewpoints h 
and v.  If we compare two alternatives a, b under both viewpoints, and the intensity of 
the predicate “a is at least as good as b under viewpoint h”, Rh(a,b),  is stronger than 
the intensity of Rv(a,b), then we are less certain about the value of R(a,b) when the 
viewpoint v is used than when h is used.  This means that v is more ambiguous than h.   

Following [26], [27], we can measure if there is a possibility that Rv(a,b) is true 
given that we know Rh(a,b).  This possibility measure (see [6], [27]),   

( ) ( )( ) ( )( ), , max ,
h v wR a b R a b R a bρ =  

expresses the degree of intersection between h and v, where w h v= ∧ .  Analo-

gously, we can measure if there is a possibility that ( ),vR a b− , where R-(x)=Rc(x)=1-

R(x), is true given that we know Rh(a,b).  The measure of certainty [27] (also called 
measure of necessity [6])  

( ) ( )( ) ( ) ( )( ), ,, 1 ,
h hv vR a b R a bR a b R a bς ρ −= −  

expresses the degree of inclusion of h in v.  In addition,   

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), , ,, , ,
h h hv v vR a b R a b R a bR a b R a b R a bυ ρ ς= −  

is an ambiguity measure as defined in A1-A3 (see [24]), where the greater that υ  is, 
the more ambiguity or uncertainty due to ignorance exists. In this way, when ambigu-
ity on viewpoint h is large, a greater possibility exists for rectifying over the current 
order given by Rh(a,b).  This measure helps to identify when some preference order 
rests upon a viewpoint with a low degree of confidence.  A new viewpoint that takes 
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into consideration other attributes, second order characteristics, can be necessary for a 
robust decision process to take place. 

Now, if we want to assign a greater value of confidence to the viewpoint with a 
greater degree of truth, we need a measure of confidence, dual of uncertainty (due to 
ignorance), such that a greater value can be assigned to the outcome that uses infor-
mation with a higher intensity of certainty.  The idea is to find a measure that explic-
itly assigns, by a comparative analysis, a greater value if a high level of confidence 
exists.  Such a measure, closely related to ambiguity as it has been examined above, 
will directly distinguish the agent’s states of knowledge, by a confidence scale that 
goes from total ignorance to total certainty, based on expert knowledge or maximal 
certainty.  

We then propose that the confidence measure we are looking for can be analyzed 
as a coherence measure.  Recall that ambiguity [8] and coherence measures [20] are 
explicitly related by extension theorems proven for any strong negation (such that a k-
bijection verifying n(x)=k-1(k(1)-k(x)) exists, see [5], [20], [21]).  These coherence 
measures evaluate how fuzzy and similar are any pair of fuzzy sets, where the degree 
of fuzziness is characterized by F1-F3.  For our purposes, the basic idea can be 
phrased as the nearer a fuzzy preference relation is to the sets ∅  or Ω , the higher 
coherence measure is expected.    

Given the referential set X, with ,j iR R X∈ , representing the set of all fuzzy 

preference relations Qf(X) and given a strong negation n on Qf(X), coherence meas-
ures can be then defined over the set of fuzzy preferences: the function 

[ ]: ( ) ( ) 0,1f fQ X Q Xζ × →  is a coherence measure, if and only if the following 

three axioms are satisfied (see [20], [21]): 

C1. ( ) ( ), ,i j j iR R R Rζ ζ=   

C2. ( )( ) ( )( ), ,i j j iR n R n R Rζ ζ=   

C3. ( , ) 0Xζ ∅ =   

The first condition (C1) states the symmetry of this measure and the third one (C3) 
guarantees minimum coherence. About (C2), analyzing the relation between ambigu-
ity and coherence measures, we can see a complementary approach between A2 and 

C2 in the sense that the coherence between Ri and jR−  is the opposite of the existing 

one between Ri and Rj.  Remind that if we want to assign a greater value of confidence 
to the viewpoint with a greater degree of truth, we need some measure of confidence, 
something like the dual of ambiguity.  Therefore, coherence is here understood as a 
comparative confidence measure for any pair of fuzzy sets, in our case preference 
relations, such that a common link between fuzzy preference relations can be identi-
fied for any viewpoint. 

Let us recall the above ambiguity measure ( )x yυ , taking x=Rh(a,b)  

and y=Rv(a,b).  If ambiguity is represented by the difference between possibility and 
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necessity measures, then confidence should take into account the aggregated weight 
of these two measures.  And examining confidence as here presented, we can pursue a 
coherence measure close to  

( )1

2
x yυ−

.      (2) 

Therefore, if ( ) ( ) ( )x x xy y yυ ρ ς= −  and ( ) ( )max ,x y x yρ =  and 

( ) ( )1 max , c
x y x yς = − , then ( ) ( ) ( )max , max , 1c

x y x y x yυ = + − .  Condi-

tion C1 requires that the measure is symmetric, but it can be seen that for the neces-
sity measure the order of the arguments does matter.  In other words, the degree of 
inclusion of x in y is not the same as the degree of inclusion of y in x: 

( ) ( )1 max , 1 max ,c cx y y x− ≠ − .  For this reason, because coherence is con-

ceived as a relation defined over pairs of fuzzy sets, the max function can be replaced 
by some kind of distance representing how far is each set from any other one.   

If we take for example the Euclidian distance 
1

1
( , )

m

i i
i

d x y x y
m =

= ⋅ −∑ , the 

measure defined by (2), where ( ),d x y  and ( ), cd x y  represent a separation degree 

between x and y and between x and everything not being y, respectively, becomes 

( ) ( )1 , ,
( , )

2

cd x y d x y
x yβ

+ −
= .   (3) 

Coherence of fuzzy preferences, as defined by C1-C3 and (3), has been initially ex-
plored in [11] (the origin of (3) as a coherence measure is founded in [20]), establish-
ing a possible criterion where all outcomes can be evaluated.  This proposal is useful 
for any viewpoint, offering relevant information about the importance of its prefer-
ences, according to the confidence on their truth values.  In order to maintain coher-
ence along the learning process, this coherence criterion allows the decision agent to 
add an extra dimension to the outcome space of a given viewpoint (see example 1 
below), and it can also be used to examine the degree of coherence between different 
viewpoints so the possibility of combining, contracting or enlarging them can be stud-
ied (see example 2 below).   

 
Example 1. Under the state of knowledge of uncertainty because of ignorance, the 
coherence criterion enables the decision agent to assign an ordinal value over the set 
of alternatives, judging the set of constructed preferences against one certain relation 
R*, which stands as an organizing predicate [23] and denotes maximal certainty or 
expert knowledge. Given the existence of such a predicate, there exists an associated 
coherence criterion for any viewpoint, establishing an independent dimension where 
the outcome space can be coherently organized.   
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Consider the set of preference relations Rh under viewpoint h such that a decision 
agent is interested in identifying weak preference with a greater degree of confidence 
(case where it is difficult to differentiate strict preference from indifference). There-
fore, for any preference relation where the components p and i have simultaneously 
high membership intensities, a higher degree of coherence, as defined by C1-C3, will 
be assigned to it.  In order to apply the coherence criterion we use an organizing 
predicate R* such as R*={1,0,1,0}.  As it can be seen, R* represents the most certain 
knowledge for the values defined by (1). 

Now, consider the following fuzzy preference relations: 

Rh(x,y)={0.5,0.5,0.5,0.0}  

Rh(w,z)={0.9,0.8,0.8,0.1}  

Rh(u,z)={0.2,0.2,0.9,0.7}  

This set of preferences reveals some uncertainty due to ignorance and notice that there 
is not a complete order between them. Comparison of preference is missing between 
alternatives (x,z). Through a third element it would be possible now to examine how 
these alternatives relate with each other.  According to the coherence criterion (3), the 
corresponding confidence-ordinal values over these set of fuzzy preferences relations 
under viewpoint h are: 

β(Rh(x,y),R*)=0.625 

β(Rh(w,z),R*)=0.70  

β(Rh(u,z),R*)=0.55  

In this case, the optimal outcome is Rh(w,z), because it has a greater coherence meas-
ure than all the others.  The coherence criterion, which is here presented as a dimen-
sion where preferences may be organized according to the degree of confidence on 
their truth values, identifies the fuzzy preference relation with the strongest intensity 
and certainty. 

Example 2. Let's consider three viewpoints , ,h v w H∈  over the same set of alter-

natives ,a b A∈ , such that both a, b are members of hS , vS  and wS .  Remember 

that we say that a process of rectification is possible when two or more viewpoints are 

candidates for ordering the same set of alternatives.  In this case h v wS S S= = , so if 

an intelligent agent rectifies then his viewpoint changes.  For this reason some deci-
sion aid is necessary for the agent to identify the optimal viewpoint to be used, based 
in his beliefs but also on the confidence (over his state of knowledge) that the set of 
preferences reveal.  The viewpoint may change, but maximum coherence needs to be 
preserved. 

Assume the agent believes viewpoint h is the most important, but when evaluating pref-
erence between a and b under h, confidence in its outcome suffers of some ambiguity.  
This can be caused by many reasons, for example, if h is composed by price-quantity 
criteria, the agent may suffer from lack of perfect knowledge over price stability.  So, if 
the agent is comparing different goods, he can also reveal his preferences under view-
point v, composed by fair-trade attributes, and viewpoint w, which values presentation 
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and marketing.  The agent will then have to decide and the viewpoint he uses will de-
termine the final outcome, which has to be an optimal answer to his necessities.  

Consider the following preferences, 

Rh(a,b)={0.7,0.3,0.5,0.3}  

Rv(a,b)={0.2,0.8,0.2,0.4}  

Rw(a,b)={0.9,0.2,0.9,0.1} 

If the agent wants to choose the most certain viewpoint, such that alternative a is at 
least as good as alternative b with maximum certainty, he can use the same organizing 
predicate R* defined in example 1. Otherwise, a confidence order can be constructed 
between viewpoints h, v and w so the possibility of merging viewpoints, due to their 
relative coherence, can be examined. Using the coherence measure defined in (3): 
 

β(Rh,R*)=0.65 β(h,v)=0.425 

β(Rv,R*)=0.30 β(h,w)=0.65 

β(Rw,R*)=0.875  β(v,w)=0.30 

As a result, the optimal outcome according to R* is given by viewpoint w and the 
agent will find reasons to rectify.  In the other case and complementary to the situa-
tion just described, the decision maker will be also motivated to combine viewpoints 
h and w, in order to find a new enlarged viewpoint where the decision maker can be 
more certain about his/her knowledge and preferences.  

5   Final Comments 

A complete fuzzy preference structure has been considered for decision making, char-
acterized as a learning process, where preference relations need to be successively 
assigned over a set of alternatives, always allowing revision and rectification of be-
liefs. An analytical framework has been set for studying preference construction and 
the identification of an optimal outcome under characterizing viewpoints.  
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Abstract. In this paper, we consider the extraction of speaker identity
(first name and last name) from audio records of broadcast news. Us-
ing an automatic speech recognition system, we present improvements
for a method which allows to extract speaker identities from automatic
transcripts and to assign them to speaker turns. The detected full names
are chosen as potential candidates for these assignments. All this infor-
mation, which is often contradictory, is described and combined in the
Belief Functions formalism, which makes the knowledge representation of
the problem coherent. The Belief Function theory has proven to be very
suitable and adapted for the management of uncertainties concerning
the speaker identity. Experiments are carried out on French broadcast
news records from a French evaluation campaign of automatic speech
recognition.

Keywords: Speaker identification, speaker recognition, information
fusion, belief functions.

1 Introduction

In order to allow later retrieval of recorded information, large collections of
audio documents have to be indexed. The system presented in this paper focuses
on speaker identification by their full name in audio documents. The speaker
identity detection is composed of several steps and is in most cases subject to
uncertainty and confusion. The first step to automatically get audio documents
indexing consists in detecting speakers turns and regrouping those uttered by the
same speaker. It is generally based on a first stage of segmentation that consists
in partitioning the regions of speech into homogeneous audio segments which
contains ideally the voice of only one speaker, followed by a clustering stage that
consists in giving the same label to segments uttered by the same speaker. A
speaker turn starts when a speaker is starting to speak and ends when another
speaker is starting to speak, or a song or advertising is starting. Speaker turns
are regrouped by class of same but anonymous speakers.

The next step is to automatically transcribe the content of speaker turns into
words and is complemented by an annotation for some words as “named entities”
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or categories. Some words are particularly identified as “PERSON”. The more
promising way to identify speakers by their real full name consists in extracting
them from the automatic speech recognition system (ASR) [1,8,4,5]. The general
principle is to determine if a detected named entity as a “PERSON” refers to
a speaker of the document or to a person who does not speak in the document.
This principle assumes that the names are often pronounced, as in broadcast
news.

Our article takes place in this framework. The system we developed in [4,5]
uses uttered full names to assign them to anonymous speakers from identified
speaker turns. The principle is to assign one of these four labels: “current turn”,
“previous turn”, “following turn” or “another person” to each detected full name.
But this approach ignored the potential conflict information on the speakers
within a same speaker turn. In this paper, we propose to improve the consistency
of the system and to better combine the various information on the potential
speakers. The formalism of Belief Functions seemed to be particularly suited to
managing these conflicts and combining this information.

First, we briefly present the automatic transcription system used, before de-
scribing the reference system for speaker named identification. Then, we discuss
the shortcomings of this model and the improvements of our model using be-
lief functions. Finally, we propose metrics for evaluating such systems, and we
comment on the results obtained on the ESTER I evaluation campaign [2].

2 Speaker Identification Based on a Transcription System

2.1 Transcription System

The main hypothesis initially proposed in [1] assumes that a detected full name
in a speaker turn allows to identify the current turn or a directly contiguous turn
(previous or following turn). However, some full names identify farther speaker
turns or persons that are not involved in the document. The used identifica-
tion method is based on previously transcribed and enriched documents. This
transcript needs to cut the document into segments which are then classified in
anonymous speakers. These segments, grouped into speaker turns are transcribed
and the named entities are annotated.

2.2 Semantic Classification Trees

The speaker identification method uses a binary decision tree based on the princi-
ple of semantic classification trees (SCT) [3]. A SCT automatically learns lexical
rules from full names detected in the training corpus, with the left and right
surrounding words. A SCT is used for each occurrence of full names detected in
the transcripts. This tree allows to associate to each occurrence of a full name
the probability to correspond to one of the four envisaged hypotheses:“current
turn”, “previous turn”, “following turn” or “another person”. These probabilities
are determined during the learning of the tree and reflect the observed cases in
the training corpus.
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2.3 Reference Combination Method

The final goal of the system is to assign a full name to each anonymous speaker.
Let us recall here the combination method of information provided by the trees
we proposed in [4]. Let E = {e1, . . . , eI} denotes the closed set of full names
hypotheses to assign to a speaker. These candidates come from an exhaustive list
of possible speakers known by the system. The set O = {o1, . . . , oJ} corresponds
to the successive occurrences of full names detected in the transcripts, T =
{t1, . . . , tK} is the set of the speaker turns in chronological order, and C =
{c1, . . . , cL} is the set of anonymous speakers to be labeled. Thus, the main goal
is to assign a full name of E to a speaker of C. Each speaker cl may involve one
or several times in a broadcast, that corresponds to several speaker turns: cl =
{t ∈ T |cl is the speaker of turn t}. In a same turn, several occurrences of full
names may be detected. For each occurrence of a full name oj (for j = 1, . . . , J)
detected in a given speaker turn tk, let us define by P (oj , tk) the probability that
oj is current speaker. Thus, P (oj , tk−1) and P (oj , tk+1) represents the probability
that oj is respectively the speaker of the previous and the following turn. By
hypothesis, the probability that oj is another speaker is: 1−

∑1
r=−1 P (oj , tk+r).

At this stage, a filter is made by the comparison of genders: if the gender of the
full name ei and the speaker cl are different, the corresponding occurrence is
ignored. Let g(ei) and g(cl) be the respective gender (female, male or unknown)
of ei and cl. The speaker gender is detected by the acoustic segmentation and
classification system with high reliability and the full name gender is determined
by the first name (generally without ambiguity) from a linguistic base of first
names.

In [4], to assign a full name ei to a speaker cl, we have computed a “score”
for each full name ei, denoted as sl(ei). This score is no more a probability, but
is simply a sum of probabilities concerning the speaker turns of cl and taking
gender constraints into account:

sl(ei) =
∑

{(oj ,t)|oj=ei, t∈cl,g(ei)=g(cl)}
P (oj , t) (1)

2.4 Decision Process

The goal is now to assign a full name ei to each speaker cl. Let f : C → E be
the assignment function of full names to speakers. The principle of our solution,
proposed in [4], is actually to find a coherent matching between full names and
speakers. Let D = {cl ∈ C| ∀ei ∈ E , sl(ei) = 0}, be the set of speakers with
no potential candidate. Several strategies may be used to sort the competing
speakers cl for a given full name ei. The more natural way seems to choose the
full name which has the maximum score for a given speaker ei (if there is at
least one non-null score). Let us define the rule R1 by:

∀cl ∈ C \ D, e∗i = arg max
ei∈E

sl(ei)⇒ f(cl) = e∗i

∀cl ∈ D, f(cl) = Anonymous.
(2)
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An issue is that the same full name e∗i may be assigned to several speakers.
We proposed to reorganize the sharing of full names among speakers. Let the
coefficient βil define the relative score of ei among all the possible candidates
for assignment to cl: βil = sl(ei)∑

I
q=1 sl(eq)

if cl /∈ D and βil = 0 if cl ∈ D. A concrete

example is given in Table 1. The full name “Jacques Derrida” has been assigned
to three different speakers from the decision rule in Equation 2. In this example,
c13 has the best score, and “Jacques Derrida” should be assigned to c13 ; but the
score represents only 35% of the total scores among all the possible candidates
for c13, whereas the score for c15 represents 80% of total scores. Then, for the
final decision, we have proposed to use the product of score sl(ei), by coefficient
βil (rule R2):

SCl(ei) = sl(ei)βil. (3)

Finally, in the same example, “Jacques Derrida” is assigned to c15 and the speak-
ers c13 and c14 will be labeled with other full names. The algorithm is iterative:
all the full names are taken a priori into account and sorted according to their
score SCl(ei). First, the full name with the maximum score (denoted e∗i ) is cho-
sen, and if several speakers are associated to the same e∗i , then e∗i is assigned to
the speaker whose score SCl(e∗i ) is maximum. Then, all chosen full names are
deleted from the list of speakers that are not yet assigned in this first iteration.
In a second iteration, remaining full names are examined in the same way for
the remaining speakers and so on, until all speakers are assigned, or their list is
empty. Table 2 shows the result of this algorithm for the preceding example.

Table 1. Example of an initial multiple assignment

Speaker Full name e∗i sl(e∗i ) βil SCl(e∗i )
c13 Jacques Derrida 8.58 35% 3.00
c14 Jacques Derrida 1.67 56% 0.94
c15 Jacques Derrida 4.94 80% 3.95

Table 2. Example of the decision process with two iterations (decision in bold type,
scores in parenthesis)

Speaker e∗i (1st iteration) 2nd iteration
c13 J. Derrida (3.00) N. Demorand (0.25)
c14 J. Derrida (0.94) A. Adler (0.56)
c15 J. Derrida (3.95) -
c16 O. Duhamel (1.15) -

2.5 Drawbacks of the Combination Method

The combination method described above has several serious drawbacks, even
though it has yielded good results [4]. First, the concept of score is difficult to



Identification of Speakers by Name Using Belief Functions 183

interpret, the quantities obtained in Equations 2 and 3 do not represent a degree
of confidence, or a probability that a full name is a given speaker. They lead to
a lack of clarity of the decision. Equation 3 represents a compromise that is
difficult to justify.

But the main drawback concerns the lack of uncertainty management in the
combination method: particularly, conflict information in a given speaker turn is
not taken into account. The available information is not correctly combined as a
whole. No link is made between the different information provided by the classi-
fication tree, particularly when a same speaker pronounces several different full
names and can therefore lead to erroneous results. Table 3 presents an example of
a speaker turn tk where 8 occurrences are detected. The probabilities correspond
to the next speaker turn tk+1, who is a male. A female full name is therefore
eliminated and two full names are rejected because they do not belong to the
list. Some occurrences are redundant, because they correspond to a repeated full
name and only one occurrence has a relative high probability. Two full names
are still competing and they represent a significant incompatibility. These full
names have high scores: Jean-Claude Pajak (1.25) and Jacques Chirac (0.87).
These scores are close to those obtained if we had some information without
ambiguity, for example a turn with only one occurrence with a high probability.
This example highlights the fact that this method does not take into account
the contradictory information provided by some speaker turns. A probabilistic
formalism based on conditional probabilities could be considered for this kind
of situation, but the lack of a priori information makes this type of modeling
difficult. Even though the classification tree outputs are probabilistic, belief the-
ory seemed more appropriate and less restrictive, particularly in the flexibility of
its use.

Table 3. Score contribution in a speaker turn (tk+1 is a male)

Occurrence oj gender belongs to the list P (oj , tk+1) score
Oscar Temaru M No 0.29 −
Hamid Karzäı M No 0.29 −
Jacques Chirac M Yes 0.29 0.87
Jacques Chirac M 0.29
Jacques Chirac M 0.29

Jean-Claude Pajak M Yes 0.29
Jean-Claude Pajak M 0.96 1.25

Véronique Rebeyrotte F Yes 0.29 −

3 Belief Functions for Speaker Recognition

The contribution of this article lies in the combination process of different infor-
mation, especially from the classification tree.
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3.1 Belief Function Theory

In this section, we briefly recall some notions of the belief function theory [6,7].
In this article, we adopt the point of view proposed by Smets: the Transfer-
able Belief Model (TBM) [7]. The aim of this model is to determine the belief
concerning different propositions, from some available information. Let Ω be a
finite set, called frame of discernment of the experience. The representation of
the uncertainty is made by the means of the concept of belief function, defined
as a function m from 2Ω to [0, 1] such as

∑
A⊆Ω m(A) = 1. The quantity m(A)

represents the belief exactly allowed to proposition A. The subsets A of Ω such
as m(A) > 0 are called the focal elements of m. One of most important opera-
tions in the TBM is the procedure for aggregating operator to combine several
belief functions defined in a same frame of discernment [7]. In particular, the
combination of two belief functions m1 and m2 “independently” defined on Ω
using the conjunctive binary operator ∩, denoted as m′ = m1 ∩m2, is defined
as [7]:

∀A ⊆ Ω, m′(A) =
∑

B∩C=A

m1(B)m2(C). (4)

Repeatedly, we may define the combination of n functions m1, . . . ,mn on Ω by:
m = m1∩. . .∩mn. Once a belief function m is defined, it is possible to transform
it into a probability distribution particularly for decision aspects. One of these,
called pignistic probability and denoted by Pm, is defined for all ω ∈ Ω as [7], if
m(∅) �= 1:

Pm({ω}) =
∑
A⊂Ω

m(A)
|A|(1 −m(∅))δA(ω), (5)

where |A| denotes the cardinality of A, δA(ω) = 1 if ω ∈ A and δA(ω) = 0 if
ω /∈ A.

3.2 Definition of Belief Masses

In this article, we propose to improve the system described in [4] by taking into
account the coherence of the whole information provided by contiguous speaker
turns. As we have seen before, in a same turn, several occurrences corresponding
to different full names may be detected.

First, we focus on a turn tk with nk occurrences and owing to speaker cl.
Let nk+r be the number of occurrences for the previous turn (r = −1) and the
following one (r = 1). Let {ok

j,r}, with r = −1, 0, 1 and j = 1, . . . , nk+r, be the
occurrences of the detected full names in these three turns. Each occurrence ok

j,r,
corresponding to a label ei, represents some knowledge concerning the speaker
of the turn tk that can be described by a simple support belief function mjr

tk
on

E , focused on ei and E :{
mjr

tk
({ei}) = αijP (ok

j,r, tk−r) si ok
j,r = ei

mjr
tk

(E) = 1− αijP (ok
j,r, tk−r),

(6)
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Table 4. Mass distribution of the belief function in a speaker turn

Focal elements mtk+1({ei})
Jacques Chirac 0.018

Jean-Claude Pajak 0.348

∅ 0.624

E 0.010

where αil ∈ [0, 1] is a confidence measure of gender compatibility between ei and
cl. If the genders are known with certainty, αil = 0 if g(ei) �= g(cl) and αil = 1
if g(ei) = g(cl). If the first names are ambiguous (like Dominique in French) or
unspecified, or if the speaker gender is uncertain, αil ∈]0, 1[ is estimated from
a database of first names and the training corpus. Table 4 presents the belief
function concerning the speaker of turn tk+1 in the example seen in section 2.5.
The belief mass of “Jean-Claude Pajak” is still high while the one of the other
candidate is very low, and the degree of conflict is important since the mass of
the empty set is high.

3.3 Combination by Speaker

The first combination step consists in aggregating the whole information in a
given speaker turn. The combination of the nk−1 + nk + nk+1 belief functions
focused on the tk and obtained by Equation 6 is made with conjunctive non
normalized Dempster rule (Equation 4), in order to ensure associativity and
commutativity of the combination: we obtain a belief function mtk

that repre-
sents a more synthetic knowledge of speaker identity provided in turn tk, defined
by:

mtk
=

1⋂
r=−1

nk+r⋂
j=1

mjr
tk
. (7)

The second combination step consists in aggregating the results obtained by
each speaker turn for the whole broadcast news. The more relevant and natural
consists in keeping on combining all the belief functions focused on the same
speaker cl with the same conjunctive Dempster rule and therefore combining
all the belief functions corresponding to the speaker turns tk of this speaker.
Thus, we obtain a global belief function Ml which represents the state of belief
concerning speaker cl for the whole broadcast news, and defined by:

Ml =
⋂

tk∈cl

mtk
(8)

3.4 Decision Rule

We use a similar procedure presented in section 2.4, but the decision process is
simplified and unified thanks to the use of belief functions. We transform the
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belief function Ml into the pignistic probability PMl
(Equation 5) and we obtain

the following rule R:

∀cl ∈ C \ D, e∗i = arg max
ei∈E

PMl
(ei)⇒ f(cl) = e∗i

∀cl ∈ D, f(cl) = Anonymous.
(9)

Then, since some full names may initially be assigned to several speakers, we
apply the same decision process developed in 2.4, replacing scores SCl by pig-
nistic probabilities PMl

. If we come back to the proposed example in 2.4, the
full name “Jacques Derrida” is again initially assigned to three speakers c13, c14
and c15 (see Table 5). Finally,“Jacques Derrida” is also assigned to c15, because
this speaker has the most important pignistic probability.

Table 5. Decision with two iterations (decision in bold, belief masses in parentheses)

Speaker e∗i (1st iteration) 2nd iteration
c13 J. Derrida (0.89) N. Demorand (0.11)
c14 J. Derrida (0.71) A. Adler (0.25)
c15 J. Derrida (0.99) -
c16 O. Duhamel (0.88) -

4 Evaluation of the Proposed System

4.1 Data Description

The system evaluation are realized on French broadcast news records from the
French ESTER 1 phase II evaluation campaign [2]. The data were recorded
from 5 French radios and Radio Télévision Marocaine and last from 10 to 60
minutes. They are divided in 3 corpora used for the SCT training, the system
development and the evaluation: the training corpus of 76h (7416 speaker turns,
11292 detected full names), the development corpus of 30h (2931 speaker turns,
4533 full names) and the test corpus of 10h (1082 speaker turns, 1541 full names).
This corpus contains two radios which are not present in the training and the
development corpora. It was also recorded 15 months after the previous data.

4.2 Metrics

The results are evaluated comparing the generated hypothesis and the reference.
This comparison highlights five cases:

– Identity is correct (C1): the identity hypotheses corresponds to the correct
one in the reference.

– Substitution error (S): the identity hypotheses differs from the one found in
the reference.
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– Deletion error (D) : no identity is proposed although the speaker is identified
in the reference.

– Insertion error (I): an identity is proposed although the speaker is not iden-
tified in the reference.

– No identity (C2): no identity is proposed, and there is no identity for this
speaker in the reference.

Among the measures defined in [8,4], the one that seems to best summarize the
results is the global error rate Err computed from these 5 quantities:

Err =
S + I +D

S + I +D + C2 + C1
. (10)

The errors may be computed in terms of duration or in terms of number of
speakers.

4.3 System Evaluation

During experiments, the system is supposed to know all the full names that may
be the speakers. This list is composed 1008 full names (the set E). Compari-
son between the reference system (c.f. [4] and section 2.3), and the proposed
system is made on manual transcripts and segmentations. However, the named
entities detection is automatic and may have some errors. The reference system
is described in section 2.3 with two rules using scores sl(ei) and SCl(ei) (c.f.
Equations 2 and 3) and our model is based on belief functions (Equation 9).

As Table 6 shows, in the new model, the error rate in terms of duration
(ErrDur) is 3 points less than reference system with rule R2 and 7 points less
with rule R1. Not only the use of belief functions is more easily interpretable,
but also it allows to eliminate much errors. Concerning the number of identified
speakers, the result is even more obvious: the new system correctly labels much
more speakers than the base system, and also improves the reference system. In
conclusion, taking account global information on speakers within a speaker turn,
and before the decision, allows to significantly improve results both in terms of
duration and in terms of numbers of speakers.

Table 6. Comparison between the proposed system and the reference system according
to the decision rule on the test corpus of ESTER 1 phase II campaign (1541 detected
full names); ErrDur: error rate in duration; ErrSpk: error rate in number of speakers

System ErrDur ErrSpk

Reference (rule R1) 20.6% 20.2%
Reference (rule R2) 16.6% 19.5%
Proposed (rule R) 13.7% 14.9%
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5 Conclusion

The speaker identification method proposed in this article allows to extract
speaker identities from transcriptions. The identification is realized thanks to
a semantic classification tree which helps to give the full names found in the
transcription to speakers in a recording. In this article, we propose a new system
that consistently combines different information about the potential speakers in
the form of belief functions. Particularly, the system manages possible conflict
of information on the speakers within a speaker turn and takes into account the
uncertainty concerning the gender. Experiments have been realized on a French
broadcast news and the system have very good performances. Future work will
focus on developing solutions to deal with automatic outputs containing errors.
Different kind of uncertainty, dues to segmentation error, classification in speak-
ers or to the bad transcription of full names will be taken into account. We will
also study the realistic case of open systems when the list of possible speakers is
unknown.
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Abstract. In this paper we extend a methodology for constructing a frame
of discernment from belief functions for one problem, into a methodology for
constructing multiple frames of discernment for several different
subproblems. The most appropriate frames of discernment are those that let
our evidence interact in an interesting way without exhibit too much internal
conflict. A function measuring overall frame appropriateness is mapped onto
a Potts spin neural network in order to find the partition of all belief functions
that yields the most appropriate frames.

Keywords: Dempster-Shafer theory, belief function, representation, frame
of discernment, clustering, Potts spin, conflict, simulated annealing

1 Introduction

In this paper we extend a methodology for constructing a frame of discernment for one
problem [1] into a methodology for constructing multiple frames of discernment from
a set of belief functions [2, 3] for several different subproblems. These belief functions
are assumed to concern different subproblems that should be handled separately.
Previously, we have developed methods for clustering belief functions that are mixed-
up [4−8] based on their pairwise conflicts. These methods were developed to manage
simple support and consonant belief functions. The case with nonconsonant belief
functions can be handled by decomposition into simple support functions followed by
clustering of the decomposed parts [9]. If the number of clusters K (in Fig. 4.) is
unknown, it can be estimated by observing the change in the logarithm of a meta frame
appropriateness function (MFA) for different number of clusters [10, p. 90], or inferred
using specification [5] and a priori information [11], or managed by particle filtering
methods [12].

The methodology for constructing a frame of discernment is extended by adopting
a measure of frame appropriateness for a single problem into handling multiple
subproblems. This new function is mapped onto a Potts spin neural network. We reuse
a previously developed methodology for clustering large amounts of belief function in
such a manner as to find the best frames of discernment for these subproblems. When
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the mixed-up belief functions are partitioned into subsets corresponding to the different
subproblems, a frame of discernment is constructed within each subproblem using the
methodology developed for a single problem [1].

In Sec. 2 we study the problem of construction alternative frames of discernment.
In Sec. 3 we extend this methodology to multiple subproblems. In Sec. 4 we review
Potts spin theory. We then put everything together by mapping the multiple frame
construction problem onto Potts spin (in Sec. 5). In Sec. 6 we present an algorithm for
constructing multiple frames. Finally, in Sec. 7 conclusions are drawn.

2 Constructing Alternative Frames of Discernment

Let us assume we have a set of evidence that originates from one problem
with yet undetermined representation. The focal elements of each belief function mi
contain pieces of that representation. Our task is to find the most appropriate frame of
discernment that lets our evidence “interact in an interesting way” without “exhibit too
much internal conflict” in the words of Glenn Shafer [3, p. 280].

This will usually not be the union of all cores of mi as different cores may hold non-
exclusive elements. For example, one belief function may assign support to a focal
element “Red” in relation to the color of a car. Another belief function may assign
support to a focal element “Fast” in relation to speed of that car. Obviously, “Red” and
“Fast” are not both elements of the frame of discernment as they are not exclusive.
However, the “(Red, Fast)” pair might be an element of the frame.

Our task of finding the most appropriate frame of discernment becomes finding the
most appropriate cross product of different unions of cores. Let us begin by introducing
the representation needed to construct a frame of discernment from input data.

For an example of the material in Sec. 2 see [1].

2.1 Representation

Assume we have a set of evidence χ. We observe the core Ci of each available belief
function mi. We assume that the core of each belief function is a subset of exclusive but
not exhaustive elements of a so far unconstructed frame of discernment.

Let be the set of all cores of χ, where Ci is the core of mi, the ith piece
of evidence. We have

(1)

where Aj is a focal element of mi.
Let be the set of all possible set partitions of C (the set of all cores),

where Ωk is the kth possible partition of C. We have

(2)

where the ωl’s are disjoint subset of C, i.e.,  such that

(3)

and  whenever .
Let be the set of all possible cross products relating to Ω, such that Θk

is the cross product of all unions of elements of the partition Ωk, (2). We have

χ mi{ }=

C Ci{ }=

Ci A j mi A j( ) 0>{ }
j

∪=

Ω Ωk{ }=

Ωk ωl{ }=

l∀ . ωl C⊆

ωl
l

∪ Ci{ } C≡=

ωm ωn∩ ∅= m n≠
Θ Θk{ }=
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(4)

where θl is the union of the elements in ωl, , and θl must be an exclusive set of
elements. We have

(5)

such that
(6)

where all θl’s observe two different crucial type conditions:

Type Condition 1. No element of any θp may belong to any other cross product
elements θq, i.e.,

, (7)
whenever .

This will eliminate any frame that obviously distributes elements of the same type over
different cross product elements.

Type Condition 2. Every cross product element θl must be an exclusive set, i.e.,

, (8)
whenever .

2.2 Abridgment

For all possible frames of discernment {Θk}, where |Θk| > 1, we may include further
assumptions that make the frames tighter. This may lead to more interesting interaction
between the belief functions and lead to firmer conclusions provided that the conflict
does not increase in any significant way. Every frame is based on assumptions. The
frame we begin with is based on the assumption that the elements of that frame are all
disjunct possible alternatives, and that no other possibilities exists. Whether a tighter or
looser frame is to be preferred is a matter of appropriateness. Most often this will be a
point of balance where meaningful interaction is weighted against too much conflict.

Let us study one particular frame of discernment Θi from the remaining set of
possible frames Θ that observe both type condition 1 and 2, (7) and (8), respectively.
We have At least one cross product element θl must be abridged to
construct a new abridged frame of Θi. We have a set of all possible abridgments of Θi,

(9)

where  and  is the power set of θl, , and .

2.3 Enlargement

We may make enlargements to any frame of discernment {Θk}. The only enlargement
we can perform is to enlarge a particular cross product element θl with an element of
unstated meaning. Let us denote these elements Λl, one for each θl.

Let us again look at For each cross product element θl there is one
possible enlargement: enlarging θl by Λl. At least one cross product element θl must be
enlarged to construct a new enlarged frame of Θi. The set of all possible enlargements

Θk θl{ }×=

ωl Ωk∈

l∀ . θl ωl∪ Ci Ci ωl∈{ }
i

∪= =

θl
l

∪ ωl∪{ }
l

∪ Ci{ }
i

∪ C∪= = =

θ p θq∩ ∅=
p q≠

em en∩ ∅=
m,n∀ l .∃ em en, θl∈

Θi θl{ }.×=

Θi
′ Θij

′{ } j θlj
′{ }× }{ j= =

θlj
′ 2θl∈ 2θl θlj

′ ∅≠ j∃ . θlj
′ θl≠

Θi θl{ }.×=
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of Θi becomes where and
.

2.4 Appropriate Representation

We evaluate the alternative frames of discernment on the grounds of being appropriate
for yielding interesting interactions among the available belief functions without
exhibiting too much internal conflict. A measure of frame appropriateness was defined
in [1]. This measure gives an equal weight to both conditions were both must be
appropriate simultaneously (see [1]).

Definitio .n 1 Let Θk be a frame of discernment and let {mj} be a set of all available
belief functions defined on Θk. We define a measure of frame appropriateness of Θk,
denoted as FA(Θk), by

, (10)

where Con is the conflict in Dempster’s rule and AU is the functional called the
aggregated uncertainty. We have Con ∈ [0, 1], AU ∈ [0, log2|Θk|] and FA ∈ [0, 1].

The aggregated uncertainty functional AU [13−15] is defined as

, (11)

where {px}x ∈ Θ are all probability distributions such that px ∈ [0, 1] for all x ∈ Θ,

(12)

and
(13)

for all .

2.5 An Algorithm for Computing AU

An algorithm for computing AU was found by Meyerowitz et al. [16]. For the sake of
completeness we cite the algorithm here, in the way it is described by Harmanec et al.
[17], Fig. 1. The computational time complexity of AU is .

Input: a frame of discernment X, a belief function Bel on X.
Output: AU(Bel), {px}x∈X such that AU(Bel) = − ∑x∈X pxlog2 px, pi ≥ 0, ∑x∈X px = 1, and
Bel(A) ≤ ∑x∈X px for all ∅ ≠ A ⊆ X.
Step 1. Find a non-empty set A ⊆ X, such that Bel(A) / |A| is maximal. If there are more than
such sets A than one, take the one with maximal cardinality.
Step 2. For x ∈ A, put px = Bel(A) / |A|.
Step 3. For each B ⊆ X−A, put Bel(B) = Bel(B ∪ A) − Bel(A).
Step 4. Put X = X − A.
Step 5. If X ≠ ∅ and Bel(X) > 0, then go to Step 1.
Step 6. If Bel(X) = 0 and X ≠ ∅, then put px = 0 for all x ∈ X.
Step 7. Calculate AU(Bel) = − ∑x∈X pxlog2 px.

Fig. 1. An algorithm for computing AU(Bel)

Θi
″ Θij

″{ } j θlj
″{ }× }{ j= = θlj

″ θl θl Λl{ }+,{ }∈
j∃ . θlj

″ θl≠

FA Θk m j{ }( ) 1 Con ⊕ m j Θk{ }( )– 1
AU ⊕ m j Θk{ }( )

log2 Θk
----------------------------------------–=

AU Bel( ) max

px{ }
x Θ∈

p x( )log2 p x( )
x Θ∈
∑–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

p x( )
x Θ∈
∑ 1=

Bel A( ) p x( )
x A∈
∑≤

A Θ⊆

O 2 Θ( )
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2.6 An Algorithm for Constructing a Frame of Discernment

Using the results of the preceding sections we develop an algorithm for constructing
and evaluating all possible frames of discernment. This algorithm will first generate the
possible frames using different partitions of the set of all cores. From these possible
frames we generate abridgments and enlargements. The frames are evaluated using FA,
(10), in Fig. 2. The most appropriate frame that maximizes FA is then selected.

Input: a set of belief functions χ.
Output: Possible frames of discernment {Θi}, { }, { }. Frame appropriateness
FA(Θi|χ), FA( |χ), FA( |χ).
Step 1.  generate Ci using (1). Set C = {Ci}.
Step 2.  generate Ωk using (2). Set Ω = {Ωk}.
Step 3.  generate Θk using (4). Set Θ = {Θk}.
Step 4. generate { , } using (9).
Step 5. If  then  generate . Set  = { }j.
Step 6. Compute frame appropriateness FA(Θi|χ), FA( |χ), FA( |χ) using (10).

Fig. 2. An algorithm for generating and evaluating appropriate frames of discernment

Brute force implementation of FA has a computational time complexity of .
Implementing step 2−4 in an iterative way may reduce the term of the time
complexity.

3 Constructing Multiple Frames of Discernment

In this section we extend the methodology from Sec. 2 into a new methodology for
constructing several multiple frames of discernment for different subproblems. This is
done by extending FA (10) to several subsets. Let us define such a function of overall
frame appropriateness.

Definitio .n 2 Let the meta frame appropriateness function,

, (14)

over several subproblems be the product of the frame appropriateness functions FAa
for these subproblems .

In order to find the best frames of discernment for these subproblems we maximize
,

. (15)

For computational reasons the actual maximization of MFA is done in several steps.
First, let us map MFA onto a Potts spin neural network that will cluster all belief

functions into subsets using an approximation of MFA as a distance measure in such a
manner that MFA is maximized. This will partition the belief functions into subsets that
should be handle separately is such a way that it gives us the best overall frames of
discernment for the subproblems.

Secondly, for each subproblem separately, a frame of discernment is constructed
using the algorithm for constructing an appropriate frame of discernment, Fig. 2. With

Θij
′ Θij

″ ij.∀
Θij

′ Θij
″

i.∀
k .∀
k .∀
ij.∀ Θij

′ kl .∀ Con ⊕{m j Θkl
′ }( ) 1< Θkl

′ Θij
′⊃

k .∀ Con ⊕ m j Θk{ }( ) 0> j.∀ Θij
″ Θi

″ Θij
″

ij.∀ Θij
′ Θij

″

O χ χ 2 Θ( )
χ χ

ΔMFA χa{ }
a

( ) FAa
a

∏=

χa
χa

MFA χa{ }
a

( )
max MFA χa{ }

a
( ) max FAa

a
∏=
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these frames of discernment each subproblem can be solved separately by combining
all belief functions in the subset.

4 Potts Spin Theory

The Potts spin problem [18] consists of minimizing an energy function

(16)

by changing the states of the spins Sia’s, where Sia ∈ {0, 1} and Sia = 1 means that belief
function i is in cluster a. This model serves as a clustering method if is used as a
penalty factor when report i and j are in the same cluster.

The minimization is carried out by simulated annealing. In simulated annealing
temperature is an important parameter. The process starts at a high and continues by
gradually lowering the temperature. As the temperature is lowered the spins gradually
become more influenced by the interactions Jij’s so that a minimum of the energy
function (16) is reached. This gives us the best partition of all belief functions into the
clusters with minimal energy function.

For computational reasons we use a mean field model, where spins are
deterministic with , Via ∈ [0, 1]. The Potts mean field equations are
formulated [19] as

(17)

where

. (18)

In order to minimize the energy function, (17) and (18) are iterated until a stationary
equilibrium state has been reached for each temperature. Then, the temperature is
lowered step−by−step by a constant factor until in the stationary
equilibrium state.

The time complexity of Potts spin clustering was shown to be in terms of
the number of belief functions N (= |χ|) and the number of clusters K [7].

5 Mapping a Multiple Frame Construction Problem

onto Potts Spin

In order to map the meta appropriateness function MFA onto a Potts spin network we
need to rewrite MFA as a sum of terms similar to the energy function being minimized
in (16). To find the best set of frames of discernment we maximize . This
can be rewritten as a sum of terms over the subsets χ

a

(19)

⇔

E
1
2
--- J ijSiaS ja

a 1=

q

∑
i j, 1=

N
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J ij

V ia Sia〈 〉=

V ia
e H ia– V[ ] T⁄

e H ib– V[ ] T⁄

b 1=

K

∑
-------------------------------------=

H ia V[ ] J ijV ja
j 1=

N

∑ γ V ia–=

i a,∀ . V ia 0 1,≈

O N 2K 2( )

MFA χa{ }
a

( )

max MFA χa{ }
a

( ) max FAa ,
a

∏=
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(20)

Furthermore, we must also rewrite MFA as a sum of terms over pairwise simple support
functions as all interactions in Potts spin are pairwise.

It was shown in [20] that minimizing a sum of terms is an
approximation correct to leading order, i.e., all second order terms in are
unchanged in this approximation. The first term in the last line of (20) can be rewritten
as

, (21)

while the actual function being minimized in the neural network is

(22)

where X and Y are higher order terms.
The second term in the last line of (20) can be rewritten as

(23)

when , and where W are higher order terms in AU (i.e., ).
When calculating and in (23) each leading

term comes in twice in AU. However, since is summed up for all
pairs in the leading terms come in times in the equation. To
compensate for this multiple counting we must include a factor . This
approximation is correct in its first order terms.

Thus, the function being minimized is

max FAa
a
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(24)

which is identical in its first order terms to (23).
Thus, maximizing the meta frame appropriateness function (15), is

equivalent in its first order terms to minimizing

. (25)

An algorithm for minimizing (25) is shown in Fig. 4. This is an adoption from [7]. Here
the interactions Jkl are identical to (25). All parameters of Fig. 4. are immediate except
for the number of clusters K. Its determination is domain dependent and can be found
in several different ways as discussed in Sec. 1, e.g., using the method of [10, p. 90].

6 An algorithm for constructing multiple frames

Let us describe an algorithm for constructing the best frames of discernment for several
multiple subproblems, χ

a, Fig. 3.

Input: A set χ of simple support functions or consonant belief functions.
Output: Frames of discernment  for all subproblems χ

a.
Step 1. Instantiate all interactions Jij (in Fig. 4.) between all pairs in χ, using (10) in Fig. 1.
Step 2. Partition χ by minimizing MFA (14) using the Potts spin clustering algorithm, Fig. 4.
Step 3. For each subproblem χ

a use the algorithm to construct the most appropriate frame of
discernment , Fig. 2. Return .

Fig. 3. An algorithm for constructing multiple frames of discernment for multiple subproblems

Using this algorithm will construct a set of frames of discernment for several
subproblems χ

a that should be handled separately. This set of frames is best in terms of
minimizing the overall frame appropriateness MFA over all subproblems.

7 Conclusions

We have extended a methodology for constructing a frame of discernment from
incoming belief functions for one problem, into a methodology for constructing
multiple frames of discernment for several different subproblems. This lets our
evidence interact in an interesting way within each subproblem without exhibit too
much internal conflict. This dual task is achieved simultaneously for all subproblems
by maximizing a function of overall frame appropriateness over all subproblems.

1
AU ⊕ mk ml, Θa{ }( )

χa 1–( ) log⋅
2

Θa( )
---------------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

log–
k l,

mk ml, χa∈

∑
a
∑ 1

AU ⊕ mk ml, Θa{ }( )

χa 1–( ) log⋅
2

Θa( )
---------------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

k l,
mk ml, χa∈

∏log–
a
∑=

1
AU ⊕ mk ml, Θa{ }( )

χa 1–( ) log⋅
2

Θa( )
--------------------------------------------------- Z–

k l,
mk ml, χa∈

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–log–
a
∑=

MFA χa{ }
a

( )

min 1 sksl–( )log– 1
AU ⊕ mk ml, Θa{ }( )

χa 1–( ) log⋅
2

Θa( )
---------------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

log–
k l,

Sk Sl, χa∈

∑
a
∑

Θa{ }
a

Θa Θa{ }
a

Θa{ }
a

196 J. Schubert 



Fig. 4. Clustering algorithm

INITIALIZE
K (number of clusters); N (= |χ|) (number of simple support functions);

, where

 and ; s = 0; t = 0; ε = 0.001; τ = 0.9; γ = 0.5;

T0 = Tc (a critical temperature) , where  and

 are the extreme eigenvalues of M, where ;

;

REPEAT−1
• REPEAT−2

∀i Do:

• ;

• ;

• ;

• ;

• ;

UNTIL−2

;

• ;
• ;
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;
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Abstract. This paper combines belief functions in an interval based framework 
with the purpose of comparing two manners of transferring the conflict. We 
made a focus on the classical problem of conflict interpretation in this particular 
context. In connection with this, the normalization introduced by the Dempster’s 
rule is compared with an alternative method. Since conflict is often considered as 
a quantity carrying a signification, it is a relevant reason for analyzing it in a be-
lief interval based framework and explaining why the normalization is always 
used. Results are provided based on a voluntarily simple example. 

Keywords: Belief functions, interval analysis, conflict signification, state  
estimation and constraint satisfaction problem. 

1   Introduction  

We introduce the problem of how to construct a solution space to efficiently regulate the 
energy in the context of smart home. This problem can be reduced to a state estimation 
problem integrating constraints and numerous measures with the property of being 
uncertain. It is equivalent to a CSP (standing for Constraint Satisfaction Problem) where 
two supports will be combined, the first is the interval framework and the second is the 
belief function framework. To sum up, it is equivalent to solving a CSP within a belief 
interval framework first introduced in [5] where the transferable belief model is general-
ized and extended to the case where focal sets are in the form of intervals. The aim of 
this aggregation is to assign non-uniform quantity of knowledge on subintervals. A 
fundamental link between the interval theory and belief function can be the conjunctive 
rule of combination (if the sources are reliable), which have the meaning of respectively 
intersection for the first theory and mass aggregation phase for the second theory. These 
concepts have already been introduced in [6] with the notion of CSP and in [10] where 
focal sets are IVFS. In [6], the authors introduced a combination rule that permits to 
merge mass functions with intervals in a common framework. In our case, to combine 
our data, a very similar manner has been used with few adaptations. The intervals con-
taining the solution set to be approximated are contracted using the forward-backward 



200 C. Solau et al. 

propagation. We have made the choice of an homogeneous masses repartition for the 
combination stage. Finally, we compare two manners of transferring the mass allocated 
to the empty set (i.e. conflict) based on a voluntary simple CSP to interpret the conflict. 
Last, we provide experimental results before concluding. 

2   Brief Outline of Interval Analysis 

A real interval written [ ]x is a subset of R with the attribute that any number that lies 

between two numbers included in the set is also contained in the set. Mathematically, 
it corresponds to [ ]x which is defined so that: [ ] [ ] { }  , xxxRxxxx ≤≤∈==  .Since any real 

or non-empty interval is a set, the set theoretic operations can be extended to inter-
vals. On the one hand, it is thus possible to define the intersection between two non-
empty intervals [ ]x  and [ ]y so that [ ] [ ] [ ] [ ]{ } yz and   ∈∈∈=∩ xzRzyx . On the other hand, it 

is similarly possible to define the union of two non-empty intervals [ ]x  and [ ]y defined 

by [ ] [ ] [ ] [ ]{ } yzor     ∈∈∈=∪ xzRzyx . 

2.1   Interval Arithmetic and Computation 

Similarly to the description mentioned before, the any classical arithmetic operators 
such that { }/,*,,−+∈◊ can also be extended into an interval framework verify-

ing [ ] [ ] [ ] [ ]{ }[ ]yyxxRyxyx ∈∈∈◊=◊  and . A function is a combination of variables 

linked with operators (+,- ,*……). Hence, it is now possible to claim that functions 
can also be widened to interval.  

2.2   Constraint Satisfaction Problems (CSP) 

A Constraint Satisfaction Problem H is a problem involving a vector of variables 
X whose value is drawn from the initial domain D . Mathematically speaking, it con-
sists in computing X  such that ( ) 0=Xf  still holds. Hence, it is thus possible to define 

the solution S  set so that [ ] ( ){ }0  =∈= XfXxS  which is not systematically box-shaped. 

Intervals (or boxes if many dimensions) are almost systematically used for approxi-
mating the solution set S and they will strongly contribute to finding a relevant result. 
Contractors aim at approximating a solution set S by computing in a minimal time the 
smallest box [ ] [ ]XX ⊆' such that [ ]'XS ⊆ . 

2.3   Constraint Propagation Algorithm 

The constraint propagation technique guarantees an enclosure of S with a complexity 
that can be polynomial in time. The domain is reduced by considering the constraints 
in isolation and in turn. Since inclusion functions have already been defined in part 
2.1, it is possible to define an interval counterpart of the previously described decom-
position: this is the propagation phase. The algorithm is stopped when domain cannot 
be reduced any further. Examples can be found in [2].  
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3   Belief Function Theory 

The Dempster-Shafer Theory (sometimes abbreviated to DST) framework is a 
mathematical theory of evidence introduced in [8] and allowing to both model and 
combine evidence. Let Θ be the frame of discernment which contains hypotheses that 
denote the exclusive and exhaustive solutions to the problem. The frame of discern-
ment Θ  can be described as follows: 

- { },...,niH i 1 , ==Θ  where ∅=∩ ji HH  ji ∀∀  , with ji ≠ (i.e. exclusivity)    (1.1) 

      - Θ must also satisfy: Θ=
=
∪

ni
iH

,...1

 (i.e. sufficiency)                                          (1.2) 

Therefore, it is possible to deduce from Θ  the power set Θ2 which contains all the 
subsets resulting from Θ : 

{ } { }Θ∪∅=Θ⊆=Θ ,.....,,,....,,,  2 2121 HHHHHAA n
                                   (2) 

The previously defined power set Θ2 represents the frame of definition on which the 
‘basic belief masses’ (bbm) are defined. Besides, a collection of bbm is called ‘a basic 
belief assignment’ (bba) or ‘a mass function’. A belief function is formally written 
and defined as follows: 

[ ] ∑
Θ∈

Θ =→
2

1)(such that  1,02:
A

Amm                                          (3) 

where the bbm ( )Am represents the part of belief that is exactly allocated to the propo-

sition A. A focal element of m is an element Θ∈2A  that also satisfies 0)( >Am . The 

belief allocated to A is independent from the belief assigned to any sub-hypotheses 
composing A (which models the doubt) in the case where A is a disjunction. How-
ever, the case where several sources of information examine data, several sources of 
evidence appear. Before making any decision, the opinions of the different sources 
must be fused by using operators on all the sources of evidence. The combination 
operators are generally used depending on the framework of the application [4]. In 
this paper we will propose an alternative (see paragraph 4.3) to the Dempster’s rule of 
combination given that intervals will be combined. Specifically the combination is 
computed from the two sets of masses 

1m and 
2m in the following manner: 

            

( ) ( )( ) ( ) ( ) ( ) ( )      where
1

1
21212112 ∑ ∑

∅≠=∩ ∅=∩

=
−

=⊕=
ACB CB

CmBmKCmBm
K

AmmAm
           

(4)
 

K denotes the conflict between the two mass sets (i.e. the mass assigned to the empty 
set). In Dempster’s rules of combination, the conflict is normalised. This means that 
each mass that is allocated to a non-empty set is divided by the normalization factor 
(i.e. 1-K). It has the effect of completely ignoring any mass associated with conflict to 
the empty set. However, the computational complexity can be greater when consider-
ing uncertainty (i.e. greater number of focal sets). A method that permits to decrease 
the number of focal sets exist [7] : this is the summarization. Let m be a mass function 
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on Θ with n focal sets
nHHH ,.....,, 21

 ordered such that ( ) ( ) ( )nHmHmHm ≥≥≥ ......21
. Let 

us define nk ≤≤1  as being the number of focal sets we want to keep into account in 
our focal set reduction problem. Hence a reduced mass function 'm with k focal sets is 
built as it is described below : 

( ) ( ) ( ) ( )∑
=

=−==
n

ki
iii HmHmkiHmHm 0'  and  1,.....,1  with  '                       (5) 

Where 
0H is defined as ∪

n

ki
iH

=

with 
iH an interval.  

4   Belief Functions on Real Numbers 

4.1   Basic Principles 

This part deals with belief function theory applied to real numbers and firstly introduced 
in [5].  Let [ ]βα , be a non-empty interval verifying βα <  and [ ] R⊆βα , . Similarly, let us 

consider [ ]βα ,I  as the set of closed intervals in [ ] R⊆βα ,  and it is defined as follows: 

                                           [ ] [ ]{ } ,  , , βαβα ≤≤≥= yxxyxI                                      (6) 

To make interval analysis compliant with the mass function theory, all the intervals 
will be half-closed and thus disjointed with each others. Similarly to (6), let 

[ [zan JHHH ,21 ,....,, ∈∀ with [ [ [ [{ }zyxaxyxJ za <≤≥= ,  , ,
be the set such that: 

{ } jinjiHH ji ≠∈∅=∩  with  ,,.......,2,1, and                              (7) 

This consideration is illustrated in the following picture: 

 

Fig. 1. Definition of intervals composing Θ  

with [ [ [ [ [ [ [ [zyHdcHcbHbaH n , and , ,, ,, 321 ====  and thus verifying the property that each 

interval is disjoint with each other (1.1). In the sequel, [ [za, will be broken down into 

numerous smaller intervals and the collection of these smaller intervals will be de-
noted by Θ  and defined as follows: [ [{ }niJHH zaii ,.....,2,1 , : , =∈=Θ . Nevertheless, each 

Θ∈ji HH , satisfies (1.1) and 
Θ=

=
∪

n

i
iH

1

 (1.2). Thus, a bba can be built on Θ with Θ being 

the frame of discernment. All the elements of Θ  will be in the form of intervals or at 
least of unions of intervals. Θ2 will be made up of unions of elements belonging to Θ . 
Thus it is possible to build a mass function having intervals as focal elements. Let 

[ ]1,0 2 : →ΘΘm  be a basic belief assignment that satisfies (3) with Θ∈ 2iX . Hence, all 
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the iX associated with ( ) 0>Θ
iXm are the focal elements with 

iX  being an interval. 

Indeed each Θ∈2iX can be decomposed as being a union of intervals belonging to Θ  

(in other words : ∪
j

ji HX = ). The granularity on Θ will strongly affect Θ2 . Indeed in 

an interval such as [0, 1] there is an infinity of existing Θ .  

4.2   Rule of Combination 

Let Θ
1m and Θ

2m  be two belief functions defined on Θ provided by the distinct sources 

of information 1 and 2 and expressing a part of knowledge on closed intervals. Hence, 
Dempster’s rule of combination (4) can be extended to the mass function having in-
tervals as focal sets:  

    
[ ]( ) [ ]( ) [ ]( ) [ ]( )
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12112           where
1

1     (8)  

K is defined as in (4). In this paper, the Dempster’s rule is used and will be compared with 
an alternative manner (see paragraph 4.3) for transferring the conflict (i.e. the K factor).  

4.3   Alternative Method 

This part will explain our alternative which aims at taking into account the conflict 
and assessing its effect on the overall result. For the sake of simplicity this alternative 
will be presented through an example. Let Θ

1m and Θ
2m  be the two belief functions to be 

combined with intervals as focal elements. These mass functions will be combined 
using the following alternative method: 

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )
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[ ]( ) [ ] [ ]
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z
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zhymxmhmymxmzm
,

2
,

1122112      with        where U
 
(9) 

Graphically, it can be interpreted as shown in the following picture: 

 

Fig. 2. Alternative method 
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As can be seen, the mass originally committed to the empty set is now transferred to 
the union of all the focal sets associated with a non-empty mass with respect to (9). 
We desired to introduce this notion in order to take into account the conflict and to 
assess the effect of this alternative by providing results in the sequel. 

4.4   Belief Counterpart of Operators and Functions 

As mentioned in the part 1, the classical computations involving different operators 
(+,-,…) has been generalised to intervals. In connection with this consideration, [9] 
introduced the extension of the classical common operators to mass function in order 
to get a mass counterpart resulting from the calculation. This is expressed as below: 

[ ] [ ]( ) [ ]( )
[ ] [ ] [ ]{ }
∑

=◊

ΘΘΘ =
zyxji

jjii

ji

ymxmzm
,

)(                                 (10) 

where [ ] [ ] [ ] yand, jixz represent closed intervals and ◊ an operator such 

as { },......,/,,*,, ∩∪−+∈◊ . The interval framework already defined the interval counter-

part of function and introduced the notion of inclusion functions. Similarly, it is also 
possible to deduce from (10) the quantity of mass that will be transferred to the focal 
elements (i.e. interval) resulting from a function f . This consideration has been intro-

duced by [6] and is expressed as follows:  
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1

1

1
......                                (11) 

Since [ ]
jix are intervals, [ ]z is also an interval. 

5   Global State Estimation Problem 

5.1   Basic Principles 

This CSP aims at estimating the position of a person moving forward. The movement 
of the pedestrian is assumed to be a one dimension displacement. Along his way, the 
only information that the pedestrian has, is the coordinates of two known points placed 
on the same axis as the one on which the person is walking. These two points also 
measure the distance and send it to the pedestrian which can deduce an approximate of 
its position. Let us consider the one dimensional time discrete system of equations: 
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where the first equation f  relates the current state tx to the previous one 
1−tx  linked 

by a bounded displacement (i.e. including an error factor). The function f   models 

this consideration and is sometimes referred to as being the state transition (or predic-
tion) function. The 

tz1  and 
tz2 variables indicate the observation of the pedestrian 
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deduced from a  distance (i.e.
1Bt xx − ) separating the pedestrian and fixed the points 

whose coordinates are known by the pedestrian (i.e. 
21  and BB xx ). These observations 

are used to correct the estimation. The function ( )tt wxg ,   is referred to as the observa-

tion (or correction) function with 
tw an observation noise.  

5.2   Our Approach 

Let us assume that the initial state is globally bounded as follows: [ [00 xx → . However, 

the repartition of belief is always uniform. This is why we decided to mix it with 
belief functions that can provide relevant information in order to ripen our estimation. 
Indeed, in the interval analysis framework, the probability distribution is uniform, 
meaning that there is no preconception of any part of [ [0x  containing the set of solu-

tion S (which is a point) to be estimated. Therefore, for the sake of precision of the 
state estimation, we choose to sub-divide the interval representing and guaranteeing 
the initial state into smaller intervals verifying (1.1) and (1.2). It is therefore possible 
to associate to each interval [ [ix0

with ni ,....,1= a basic belief assignment. Thus each 

part of the global interval [ [0x is coupled with a basic belief assignment. However, the 

manner used to construct mass functions is not explained in this paper even if it is a 
topic of a great importance that impacts on the algorithms results. Moreover, the dis-
tance measured by the exteroceptive telemetric sensors is also assumed to yield 
bounded measurements [ [t

i z  with { }2,1∈i . The intervals defined by [ [( ) [ [ t
i

Bit
i

t
i wxzzg −+=−1  

with { }2,1∈i  enclose an estimation of the current position of the pedestrian and are 

expressed in the form of intervals (i.e. bounded error). A similar process to the one 
adopted for [ [tx  is undertaken for the subdivision of [ [t

i z and mass are allocated to 

subparts verifying (1.1) and (1.2). The mass function will be denoted zm
1

and zm
2

as-
sumed to be reliable [11]. The distribution is derived from a Gaussian probability 
distribution. Hence at each sample time, this system can be established: 

 

Fig. 3. Overall system 



206 C. Solau et al. 

Therefore, it is possible to deduce an interval counterpart associated with masses of 
the previously defined system of equation (12). This interval counterpart will allow us 
to provide at each iteration t a guaranteed estimate of the state in the form of an inter-
val denoted by [ [tx  with respect to the previous state [ [1−tx . Given that intervals are 

linked with masses, it is also possible to deduce a belief counterpart used for estimat-
ing the state. The computations on both the intervals and mass functions are achieved 
concurrently but the link relies on the fact that focal sets are intervals. Hence, the CSP 
can be solved by a contractor and associated with a belief counterpart. The entire CSP 
will be solved by treating parts of intervals (and thus mass functions) in turn: 

Input: [ [ [ [( ) [ ] 0int  , , , ,,
21111max =Δ −−− nbandxxxxmxt BBttt

  

Output : [ [ [ [)( , tt xmx  

1 : Build the sub-intervals [ [j
tz1 , [ ['2 j

tz  and [ [( )j
tzm 1 , [ [( )'2 j

tzm  ; 

2 : for i=1 to n=nb( [ [1−tx ) do 

3 :  for j=1 to m=nb( [ [tz1 ) do 

4 :   for k=1 to m’=nb( [ [tz2 ) do 

5 :   nbint=nbint+1;  
6 :   [ [ [ [ [ [ [ [ [ ]),,,( 1

'21
1
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−− Δ= t

m
t

m
t

i
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t xzzxx contractor ; 
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1 ** m
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m
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i
t zmzmxm −
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8 :   endfor; endfor; endfor; 
9:  [ [( )txm =Normalisation( [ [( )txm or [ [( )txm =Alternative( [ [( )txm  

10: [ [( )txm =Summarization( [ [( )txm ) 
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t

i
t
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i

i
t

i
t

i
t xCxmCx       //);(*

int

1

interval the of center theWith∑
=

=  

12 : do until maxtt = ; 

Fig. 4. Algorithm 

The computational complexity of the algorithm is cubic which is why summariza-
tion has been added as in [7]. 

6   Experimental Results 

An evolution of the conflict versus the pedestrian position is given : 
This example is based on 300 iterations. Graphically, it is easy to notice that the 

amount of conflict is globally lower when using the alternative method. This is be-
cause the conflict generated at the previous iteration has been transferred to a disjunc-
tion covering all the elements associated with a non-empty mass (10). A comparison 
between the evolutions of errors generated by the two methods is provided: 

The results obtained with the normalization are far better than those provided by 
the alternative method. The average error of the alternative method is more than two 
times greater than the error provided by the normalization. The percentage of the 
highest error (71%) is also more than two times greater than the one obtained when 
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normalizing (29%). Since the results obtained when allocating the conflict to a dis-
junction are far weaker, it is obvious to claim conflict should not have been kept into 
account in our process (because sources are reliable). It means that conflict should 
have been normalized because it does not carry any information when mass functions 
are coupled with intervals. In connection with this, the interval analysis framework 
clearly claims that if a solution exits, it compulsory belongs to the interval resulting 
from the contractor algorithm output (see also part 2.3.). It insinuates that [ [txS ⊆  with 

S the state to be estimated and [ [tx  the enclosing interval resulting from the constraint 

propagation algorithm. To sum up, it is possible to state that we were wrong to put a 
certain quantity of belief on specific parts (i.e. those generating conflict) of intervals. 
According to the figure (3), it was meaningless to allocate mass to the interval [7,10[ 
from which the conflict appears. It still raises the question about how to construct 
relevant mass distributions when applied to intervals. 

 

Fig. 5. Conflict evolution 

 

Fig. 6. Evolution of the error on the estimate versus position 

7   Conclusion 

This paper aimed at comparing two methods with the purpose of interpreting the con-
flict which is a classical problem in the belief function community. The comparison is 
based on a simple CSP in order to demonstrate that the normalisation technique is far 
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better than any other method. The results provided by this method clearly confirm and 
verify our intuition and we tried also to explain theoretically why normalisation is 
always used when working with an interval framework. However, the conflict signifi-
cation in an interval based framework has been given and differs with respect to the 
application [4]. 
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Abstract. The problem of multi-target tracking in clutter environment has been 
shown to be very challenging for both the measurement to track association and 
the targets’ state estimation. Several approaches have been put forward to deal 
with such issue. Especially, the family of joint probabilistic data association and 
its modified versions has been very popular in the field. This paper advocates 
the use of the theory of belief function to tackle the measurement-to-track asso-
ciation as well as the estimation problems. The proposal generates the basic be-
lief mass assignment using a Bayesian approach, while the decision making 
process is based on the extension of the frame of hypotheses. Our method has 
been tested for a nearly constant velocity target and compared to both the near-
est neighbor filter and the joint probabilistic data associations filter in a highly 
ambiguous cases. The results demonstrate the feasibility of the proposal and 
show improved performances compared to the aforementioned alternative 
commonly used methods.  

Keywords: Belief functions, data association, target tracking. 

1   Introduction 

Considerable research has been undertaken in the field of estimation theory in relation 
to the multi-target tracking (MTT) problem. This is of interest in both military and 
civilian applications. The data association is a central problem in MTT since validated 
measurements should be correctly assigned to theirs associated track (s) in order to 
obtain correct measurements for state estimation. More specifically, the data associa-
tion involves the issues of data validation, assigning the correct validated measurement 
to the corresponding target being observed, target initiation, target maintenance and 
confirmation, among others. Especially, the importance of the data association step is 
highlighted by its straightforward incidence to the state estimation problem in the sense 
that any wrongly associated measurement would yield target loss or miss-estimation. 
Nevertheless, the two issues estimation and data association are ultimately linked to 
each other. Indeed, without good estimation, the data association is at risk, and, in turn, 
a wrong data association influences negatively the targets’ state estimation. In the 
literature, several methods have been proposed to deal with this problem [1], [2] and 
[3]. Most of these methods are developed in the frame work of classical probability. 
Among these methods, one shall mention the well known nearest neighbor filter (NNF) 
and the conventional sub optimal joint probabilistic data association filter (JPDAF). 
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The former is based on the idea that we associate the closest measurement to the under-
lying track, while the latter avoids the direct problem of a single measurement-track 
association by incorporating, through a weighted linear combination, all the latest 
measurements into the estimate. The theory of evidence, also called belief functions 
theory or Dempster-Shafer theory has been introduced by Glen Shafer [4], based on the 
seminal work of Dempster [5], as a new approach for representing uncertainty. Nowa-
days this formalism is considered as one of the most interesting and promising ap-
proach for handling uncertainty [6] and [7]. In recent publication [8] and [9], a novel 
approach based on the use of belief theory for data association in MTT was presented. 
It was reported to be suitable for this problem since it allows us to reason with uncer-
tainty and suggests a way of combining imperfect data and expressing ignorance. Fur-
thermore, the conflict between the sources to be combined can be expressed in this 
theory. In our paper, we introduce a new general algorithm for data association in MTT 
in the frame work of belief functions theory. We called this method the evidential data 
association filter (EDAF). The solution adopted for the representation of the informa-
tion in our method is influenced by the algorithm used in [10] where for each target, a 
set of local frame of discernment, constituted of the two propositions –“the target is 
associated to the given measurement” and “the target is not associated to the given 
measurement”-, is defined for each measurement. While a new approach for mass 
generation based on the use of cheap JPDAF [11] and probabilistic reasoning is put 
forward in this paper. The proposal contrasts with distance based approaches investi-
gated in previous evidential-based data association methods [12] and [13]. The feasi-
bility and performances of the proposal have been investigated using nearly constant 
velocity targets in Monte Carlo simulations. Comparisons with NNF and JPDAF have 
been carried out throughout this study. The results demonstrate the feasibility of the 
proposal and provide a comprehensive delimitation of the advantage and limitations of 
the proposal. Section 2 summarizes the main concepts in evidence theory that will be 
throughout this paper. Section 3 of this paper outlines the main features of the sug-
gested evidential data association filter. Section 4 describes the decision-making proc-
ess where the best target matching a given measurement is identified. Section 5 copes 
with the mass function generation used in the EDAF. Simulation results and compari-
son with NNF and JPDAF are carried out in Section 6.  

2   Basics of Belief Theory 

The theory of belief as formalized by Shafer [4] allows the distribution of elementary 
mass known as basic belief mass function or assignment or distribution (bbm), which 
quantifies the amount of support given to some groups of hypothesis of the frame of 
discernment Ω. Assigning a mass m(A) to a subset A of Ω gives some support to ex-
actly the subset A, and not to a more specialized subset. Typically, any mass m is such 
that: ∑ 1⊂Ω                                                 (1) 

This contrasts with discrete probability model where the sum is only over singletons 
of Ω. Also belief theory provides a method for combining the measure of evidence 
from different sources using the conjunctive rule (Dempster’s rule) of combination. 
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This rule combines two independents distributions of evidence defined in the same 
frame of discernment Ω to a new distribution of evidence. More specifically, let ml 
and m2 be two bbm defined in the same frame of discernment Ω. The new distribution 
of evidence noted m12 is given by: 

⊗ ∑
Ω
Ω                        

(2) 

In the case where X and Y are disjoint, it indicates the occurrence of a conflict among 
the information supplied by the sources modelled by the mass m1 and m2 because one 
is strictly supporting a set of hypothesis, and the other one supports a completely dis-
joint set of hypothesis. If we are in an open world (truth can be elsewhere), it sounds 
good to give support to external hypothesis, not in Ω so the mass m1(X) × m2(Y) would 
go to φ  as a measure of conflict between the combined beliefs. In a closed world, to 
verify (1), it is necessary to normalize the mass function with the lost mass correspond-
ing to the amount of the conflict. So, the normalized masse m* becomes: 

                                                 
(3) 

3   Formulation of the Proposed Method 

Let Ω = {P1, P2… PI} be the set of predicted targets and Θ = {A1, A2… AJ} the set of 
validated measurements, at time k. To study the association relation between these 
two sets, a basic idea is to define, for each target Pi, i=1… I, and each observation Aj, 
j=1… J, a basic belief mass distribution on the set Θi = Θ ×{Pi}. This distribution 
gives an initial belief about the association of the observation Aj to the target Pi by 

assigning a mass m(.) to the sets   and   as follows: 

• : The proposition: a target Pi generates obser-
vation Aj (association). 

• : The proposition: a target Pi does not gener-

ate Aj (no association). 

Since we have J measurements, we obtain J initial beliefs for each target Pi, which are 
defined over the same frame of discernment Θi. These initial beliefs will be combined 
to make a decision about the return of target Pi. This is done by using the conjunctive 
rule of combination which produces a single bbm distribution over the power set of 
Θi. The results of mass combination for all measurements Aj and all targets Pi are 
summarized in Table 1, which represents the belief matrix. As may be seen, for each 
target Pi we obtain a new distribution defined only on singletons. Each element Mi,j  

represents the mass value for the proposition “Measurement Aj originated from target 
Pi.”. One may notice from the last row that a mass is being assigned to the empty set 
φ. This reflects partial or total ambiguity in the correlation between considered target 
and measurements. It can be interpreted in part as missed target hypothesis. 
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Table 1. Belief matrix: results of mass combination 

 P1 P2 … PI 

A1 M1,1 M2,1 … MI,1 

A2 M1,2 M2,2 … MI,2 

…. … … … … 

AJ M1,J M2,J … MI,J 

φ M1,φ M2,φ … MI,φ 

An example of generation of the belief matrix for a target PL and two measure-
ments A1 and A2 is presented in Table 2. 

Table 2. Belief matrix for one target PL and two measurements A1 and A2 

 PL 

A1 ML,1=mL1(A1)× mL2(⎯A2) 

A2 ML,2=mL1(⎯A1)× mL2(A2) 

φ ML,φ=mL1(A1)× mL2(A2) + mL1(⎯A1)× mL2(⎯A2) 

By recurrence, we obtain the following generalization for computing masses for I 
predicted targets and J validated measurements:  ,                                                4  

 

, 1                                        5  

4   Decision Making 

Using the results of Table 1, we can make decisions about the association of observa-
tion Aj to target Pi by associating in each column the observation with the highest 
mass value to the related target. But this method leads to a suboptimal solution be-
cause it takes into consideration only local information regardless of other targets. 
Our idea is to take a global decision using all the elements of the belief matrix. Each 
column of the belief matrix is considered as a source of information, which define a 
bbm distribution on the singleton in the frame of discernment Θi. We want to combine 
these I bbm to obtain a single distribution. A direct combination is not possible be-
cause the I bbm are defined on different frames of discernment. For this reason, we 
extend each virtual distribution by applying a cylindrical extension of its focal  
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elements to obtain a single frame of discernment θ = Θ1×…×Θi-1×Θi×Θi+1×…×ΘI 
common to all I distributions. Also, each mass assigned to a subset {(Aj, Pi)} of Θi 
becomes assigned to the subset Θ1×…×Θi-1×{(Aj, Pi)}×Θi+1×…×ΘI of θ. These I dis-
tributions, which are defined on the same frame of discernment, must be combined to 
a new distribution mT(.) on θ to make a global opinion about the association between 
the I targets and the J observations. This is done using the normalized conjunctive 
rule of combination. We obtain: 

, , … , , , … , , ,1 ,                        6   1, … ,                                                                         
where , , … , , , … , ,  Denotes the proposition: “the targets 
P1…Pi…PI generate the observations Ak1… Aki… AkI respectively.” The element of θ 
with the highest mass value is chosen as the solution to the association problem with 
the additional assumption that no two tracks are associated with the same observation. 

5   Mass Function Generation 

The bbm distribution generation is a crucial step in establishing the belief model. We 
start with: 

                                                        (7)  
 1                                                    (8) 

Where βij represent the probability for assigning measurement Aj to target Pi. We 
suggest using an approximation of the value pointed out in the development of subop-
timal JPDAF [14]:    ∑⁄                                                    (9) 
Where Gij is the likelihood function associated to the assignment of observation j to 
track i. If we assume a Gaussian distribution for the innovation vector yij the likelih-
ood function Gij is:   Γ    2 |Γ |                                  (10) 

Γi is the innovation covariance matrix for track I, and M is the dimension of the ob-
servation vector. 

6   Simulation Results 

We want to evaluate the performance of our method trough a comparison with both 
the NNF and the JPDAF in terms of both correct association percent and RMSE (pre-
cision). The simulations are done for three kinematic targets moving in a two dimen-
sional space with a nearly constant velocity. For each target, this amount to: 
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1 10 1 0 00 00 00 0 10 1  0    0   00                        (11) 

The state vector X(k) consists of the position and the velocity components in Cartesian 
coordinates at time k: 

                                              (12) 

T denotes the sampling period, W(k) is the state noise assumed to be Gaussian and 

centered with covariance matrix 0.03  1 00 1 . 

Each target is characterized by its noisy position (range and bearing) Z(k) given by: 

tan                                   (13) 

V(k) is an additive noise, independent from W(k), and with covariance matrix 100 00 0.003 . 

To analyse the performance of the EDAF in ambiguous situation, we consider 
three closest targets (Fig1): 

 

Fig. 1. Clean trajectories of the three targets 
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Fig. 2. Percent of correct association with the EDAF and the NNF 

  

Fig. 3. RMSE position with the EDAF and the JPDAF 
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Fig. 4. RMSE velocity with the EDAF and the JPDAF 

• with initial positions: track1 (500,500), track2 (550,500) and track3 
(600,500) 

• and with initial velocities: track1 (100,100), track2 (100,100) and track3 
(100,100) 

In the present work, an extended Kalman filter is used to generate independently for 
each target, state prediction and estimation. When new measurements are available, the 
predictions are associated with the incoming observations by using our method. The 
results of 500 Monte Carlo simulations are depicted in Fig 2, Fig 3 and Fig 4 As may be 
seen the proposed method is better than NNF in terms of percent of correct association 
(Fig 2). In addition the RMSE of the proposed method is better than the one of JPDAF 
in the global case; this is true for both position (Fig 3) and velocity (Fig 4). 

7   Conclusion 

In the present letter, we propose a new and simple method, for data association in multi 
target tracking, based on the theory of evidence. In our method the representation of the 
information is made using belief functions. The bbm is computed using a practical 
Bayesian approach and decision making is based on the extension of the frame of dis-
cernment. Simulations have been provided to evaluate the performance of our method in 
ambiguous association situation. It is shown that the tracking performance is better for 
the proposed algorithm than for JPDAF and NNF. 

0 50 100
0

2

4

6

8

10

12

14

samples

R
M

S
E

(u
ni

t/
s)

target1

0 50 100
0

5

10

15

samples

R
M

S
E

(u
ni

t/
s)

target2

0 50 100
0

5

10

15

samples

R
M

S
E

(u
ni

t/
s)

target3

EDAF

JPDAF

EDAF

JPDAF
EDAF

JPDAF



 Evidential Data Association Filter 217 

References 

1. Kirubarajan, T., Bar-Shalom, Y.: Probabilistic Data Association Techniques for Target 
Tracking in Clutter. IEEE Proceeding 92(3), 536–557 (2004) 

2. Bar-Shalom, Y. (ed.): Multitarget-Multisensor Tracking: Advanced Applications, vol. I. 
Artech House, Dedham (1990); Reprinted by YBS Publishing (1998) 

3. Pulford, G.W.: Taxonomy of multiple target tracking methods. IEE Proc. Radar Sonar Na-
vig. 152(5), 291–304 (2005) 

4. Shafer, G.: Mathematical theory of evidence. Princeton University Press, Princeton (1976) 
5. Dempster, A.: A generalization of bayesian inference. Journal of Royal Statistical Society 

series B 30, 205–247 (1968) 
6. Smithson, M.: Ignorance and Uncertainty. Springer, Heidelberg (1989) 
7. Dempster, A.P.: The Dempster–Shafer calculus for statisticians. Internat. J. Approx. Rea-

son. 48, 365–377 (2008) 
8. Blasch, E., Westerkamp, J., Hong, L., Layne, J., Garber, J., Shaw, A.: Identifying moving 

HRR signatures with an ATR belief data association filter. In: Proc. SPIE, Orlando FL, 
April 2000, vol. 4053, pp. 479–488 (2000) 

9. Ayoun, A., Smets, P.: Data association in multi-target detection using the transferable be-
lief model. Inter. J. Intell. Systems 16(1), 1167–1182 (2001) 

10. Megherbi, N., Ambellouis, S., Colot, O., Cabestaing, F.: Multimodal data association 
based on the use of belief functions for multiple target tracking. In: 8th International confe-
rence on Information Fusion. Philadelphia (2005) 

11. Fitzgerald, R.J.: Development of Practical PDA Logic for Multitarget Tracking by Micro-
processors. In: Bar-Shalom, Y. (ed.) Multitarget-Multisensor Tracking: Advanced Appli-
cations, ch. 1. Artech House, Norwood (1990) 

12. Gruyer, D., Royere, C., Cherfaoui, C.: Heterogeneous multi-criteria combination with  
partial or full information. In: 6th international conference on information fusion Cairns, 
Australia (2003) 

13. Mourllion, B., Gruyere, D., Royere, C., Theroude, S.: Multi-Hypotheses Tracking Algo-
rithm Based on the Belief Theory. In: 8th international conference on information fusion 
Philadelphia, NJ, USA (2005) 

14. Aoki, E.H., Kienitz, K.H.: Suboptimal JPDA for Tracking in the Presence of Clutter and 
Missed Detections. In: 12th International Conference on Information Fusion Seattle, WA, 
USA (2009) 



Maintaining Evidential Frequent Itemsets in
Case of Data Deletion

Mohamed Anis Bach Tobji1 and Boutheina Ben Yaghlane2

1 LARODEC, ISG, University of Tunis
2 LARODEC, IHEC, University 7 November in Carthage

Abstract. Incremental Maintenance of Frequent Itemsets (IMFI) con-
sists in maintaining a set of extracted patterns when mined data are
updated. This field knew considerable improvement in the last decade.
However, it is not sufficiently tackled when mined data are imperfect,
especially where imperfection is modelled by the evidence theory. In this
work, we maintain incrementally the set of initially extracted itemsets
both in cases of insertion and deletion of evidential data. Experimenta-
tions led on our method show satisfying results.

1 Introduction

Recently, several Frequent Itemset Mining (FIM) techniques that process im-
perfect data emerged. Mined data are probabilistic [10], possibilistic [8], fuzzy [4]
and evidential [9,2].

When a FIM operation is performed, the obtained patterns describe the data
only at the moment of mining. But data are dynamic due to continuous users’
updates. Therefore, the mined patterns become invalid at some point. These
updates could invalidate some already frequent itemsets, and turn some invalid
itemsets to frequent ones. Hence, we are obliged to maintain the set of frequent
itemsets initially mined. There are two approaches to handle this problem; the
classic approach and the incremental one.

The classic approach consists in performing a new FIM operation over the
updated database. The drawback of this method is it ignores the initial set
of frequent itemsets. On the other hand, the incremental approach consists in
computing the new set of frequent itemsets starting from the initial ones, hence
its incremental feature. This method is less costly in term of execution time.

The field of Incremental Maintenance of Frequent Itemsets (IMFI) has at-
tracted attention of several researches. The literature is abundant in this way
[5,13]. However, IMFI in uncertain databases is not sufficiently tackled in spite
of its importance and applicability to interesting fields where data are frequently
updated. In this paper we extend the work of [3] where authors introduced a
new method for maintaining incrementally frequent itemsets when data updates
consists only of data insertion. Our new solution takes into account, besides
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c© Springer-Verlag Berlin Heidelberg 2010
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the data insertion, the data deletion. Consequently, the new method handles
any type of data update whether it is data insertion, data deletion and even
data modification since a modification could be performed via deletion (of the
data to be modified) and then insertion (of the changed data). We recall that
our method handles imperfect data that is modelled via the Dempster-Shafer
theory [6].

The rest of the paper is organized as follows: in section 2, we briefly introduce
the basic concepts of the FIM from evidential data. In section 3, we introduce
the problem of IMFI in evidential data and the solution we propose. The section
4 contains the experimentations led on our algorithm and finally section 5 is the
conclusion of the work.

2 Mining Frequent Itemsets in Evidential Databases

2.1 Evidential Databases

In the literature, several papers have introduced what we call belief databases,
Dempster-Shafer databases, or simply evidential databases [7,9]. This type of
database contains uncertain and/or imprecise data that is represented via the
evidence theory [6].

An evidential database contains n attributes and d lines. Each attribute i
(1 ≤ i ≤ n) has a domain Di of discrete values. Each attribute k among the
n ones could store evidential values. An instance of the attribute k in a line j
is an evidential value Vkj which is a basic belief assignment (bba) defined as
follows:

mkj : 2Dk → [0, 1] with: mkj(∅) = 0 and
∑

x⊆Dk

mkj(x) = 1

Table 1 is an example of evidential database. Note that in such database, we can
store imperfect information that could be modelled via the probability theory
(such in the cell A1) or the possibility theory (such in the cell C1). Eviden-
tial databases derive their robustness from the evidence theory that is able to
represent a large variety of data imperfection types.

Table 1. Evidential database example

id A B C

1 A1(0.6) B1(0.4) C1(0.5)
A2(0.4) {B5, B6, B7}(0.6) {C1, C2}(0.5)
A1(0.2) B1(0.4)

2 A3(0.3) {B2, B3}(0.6) C2

{A2, A3}(0.5)
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2.2 Basic Concepts

The basic concepts of FIM in evidential databases were established in [9] and
then refined in [2]. New definitions of the concepts of item, itemset and support
were adapted to the imperfect nature of the data. The preliminaries of this FIM
model are briefly presented here, we recommend readers to consult the paper [2]
for more explanation:

An evidential item denoted ivk is one focal element in a body of evidence Vkj

which corresponds to the evidential attribute k. Thus, it is defined as a subset
of Dk (ivk ∈ 2Dk). For example, in table 1, C1 is an evidential item, {C1, C2}
too.

An evidential itemset is a set of evidential items that correspond to different
attributes. For example, A1B1{C1, C2} is an evidential itemset. Formally, an
evidential itemset X is defined as: X ∈

∏
1≤i≤n 2Di

The inclusion operator for evidential itemsets is defined as follows: let X and
Y be two evidential itemsets. The ith items of X and Y are respectively denoted
by iX and iY .

X ⊆ Y if and only if: ∀iX ∈ X, iX ⊆ iY
For example, the itemset A1B1{C1, C2} includes the itemset A1B1C1.

The body of evidence of one evidential database EDB is defined on the frame
of discernment Θ =

∏
1≤i≤n 2Di . Its set of focal elements is composed of all

possible evidential itemsets existing in the database, and the mass function
mEDB is defined as follows: Let X be an evidential itemset and d be the size
of EDB:

mDB : Θ → [0, 1] with mDB(X) =
1
d

d∑
j=1

∩©i≤nmij(X) =
1
d

d∑
j=1

∏
ivi∈X

mij(ivi)

Note that ∩© is the operator of the conjunctive rule of combination intro-
duced in [12]. The belief function is naturally defined as follows: BelDB(X) =∑

Y ⊆X mDB(Y )

Example 1. In the database example (table 1) the mass of the evidential itemset
A1B1{C1, C2} is the sum of its line masses in the database divided by d = 2 so
mDB(A1B1{C1, C2}) = 0.06. Its belief in the database is the sum of all database
masses of evidential itemsets that are included in it, which are A1B1C1(0.06),
A1B1C2(0.04) and A1B1{C1, C2}(0.06) so BelDB(A1B1{C1, C2}) = 0.16.

According to [9,2], the support of an itemset X in the evidential database, is its
belief measurement in the database BoE.

2.3 The FIM Problem

Let EDB be an evidential database, X be an evidential itemset and Θ be the
cross product of all attributes’ domains. The FIM problem consists in extracting
the set F that contains the frequent evidential itemsets in EDB whose supports
exceed the user-defined support threshold denoted by minsupp. Formally, the
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set F is defined as follows: F = {X ⊆ Θ/X.supportEDB ≥ minsupp} where
X.supportEDB is the support of the itemset X in the database EDB.

3 Maintaining Frequent Itemsets in Evidential Databases

3.1 Problem Definition

The problem of IMFI in perfect databases was introduced in [5]. We present here
the same problem in the context of evidential databases. It is formally defined
as follows:

Let EDB be an evidential database and D be its size. Let F be the set of
frequent itemsets in EDB and minsupp the support threshold under which F
was mined. After some updates of EDB -consisting in inserting the increment
edb+ of size d+, and deleting the decrement edb− of size d−-, we obtain EDB′ =
EDB ∪ edb+ \ edb−. The size of EDB′ is denoted by D′. The problem of IMFI
consists in computing F ′: the set of frequent evidential itemsets in EDB′ under
the initial support threshold minsupp.

3.2 Classification of Itemsets

In this section, we study the different kinds of itemsets that exist in the updated
database EDB′. The classification done below helps us to constitute the set
F ′ of new frequent itemsets. it is based on the status (frequent or not) of the
itemsets in EDB and then their status in EDB′.

Indeed, when EDB is updated by inserting edb+ and deleting edb−, some
itemsets that were infrequent in EDB will emerge to be frequent in EDB′, and
vice versa; some itemsets that were frequent in EDB will become infrequent
under the threshold minsupp. Below is the exact classification of the itemsets in
EDB′:

– Winner Itemsets are itemsets X that were infrequent in EDB
(X.supportEDB < minsupp × D) and become frequent in EDB′ thanks to
the updates.

– Loser Itemsets are itemsets X that were frequent in EDB
(X.supportEDB ≥ minsupp × D) and become infrequent in EDB′ because
of the updates.

– Persistent Itemsets are itemsets X that were frequent in EDB
(X.supportEDB ≥ minsupp × D) and remain frequent in EDB′ in spite
of the updates.

– Invalid Itemsets are itemsets X that were infrequent in EDB
(X.supportEDB < minsupp ×D) and remain also infrequent in EDB′.

– Hidden Itemsets are itemsets X that are composed of non-singleton items
(such as A4{B5, B6}) and occur in the data increment but not in the initial
database. These itemsets could be frequent in EDB without being present
in F because they didn’t occur in EDB at least once.
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An itemset belongs necessarily to one of these classes. Now, the goal of the IMFI
is to compute the set F ′ that is composed of the sets W and P of respectively
winner and persistent itemsets, but also of some hidden itemsets. These ”winner”
hidden itemsets are composed (vs. singleton) itemsets that occurred only in the
data increment and whose supports in EDB′ exceed the support threshold.

3.3 Description of Our Incremental Method

Unlike the IMFI method presented in [3], our new solution takes into account
deletion updates. It produces the itemsets in F ′ level-by-level in the itemset
lattice, i.e., it mines the frequent itemsets of size k before extracting the itemsets
of size k + 1 and so on. It proceeds exactly as follows:

First, we generate the set of candidate itemsets of size k, denoted by Ck, from
the set F ′k−1 (frequent itemsets of size k − 1 in EDB′)1 via the Apriori Gen
function [1]. Ck contains three types of itemsets; (1) itemsets of Fk whose sup-
ports in EDB are known, these itemsets compose the set PPk of potentially
persistent itemsets, (2) itemsets composed of singleton items (like A1B2C1 or
A2B2C1 but not A2{B2, B3}) that were not frequent in EDB and so future
winner or invalid itemsets, they compose the set PWk of potentially winner
itemsets, and (3) itemsets composed of non singleton items, that didn’t occur
in EDB and thus we have no information about their frequency (or not) in the
initial database. These itemsets are handled in the set SS, the frequent ones
among them will be stored in the set FS.

Thus, the set Ck is split into three complementary sets PPk, PWk and SSk;
the set PPk = Ck ∩ Fk including candidate itemsets that are in Fk (potentially
persistent itemsets) and the set PWk ∪ SSk = Ck \ Fk including the remain-
der candidate itemsets. Then the set PWk will contain the itemsets that are
composed of singleton items, and SSk will contain the rest. After preparing our
three sets of candidate itemsets (PWk, PPk and SSk), we scan the decrement
edb− and we update supports of itemsets in PPk (so we get their supports in
EDB \ edb−). We also obtain the supports of the itemsets of PWk and SSk

in edb−. At this step, we can prune the set PPk thanks to the proposition 1.
Indeed, if the support of an itemset in EDB \ edb− is less than the Persistents
Pruning Threshold (see proposition 1) denoted by ppt = minsupp × D′ − d+,
then it could not be frequent in EDB′. This kind of itemsets is deleted from
PPk. After, we scan the increment edb+ to update the supports of the item-
sets of PPk, PWk and SSk. After this scan, we can already distinguish be-
tween persistent itemsets (X.supportEDB′ ≥ minsupp × D′) and loser ones
(X.supportEDB′ < minsupp × D′). The set Pk of persistent itemset is already
computed after the light scans of the data decrement edb− and increment edb+.
Once the persistent itemsets are found, we will try to compute the winner item-
sets and the frequent hidden itemsets to complete the set F ′. Thanks to the
proposition 2, we prune the set PWk by eliminating all itemsets whose supports
in edb+ \ edb− do not exceed the Winners Pruning Threshold denoted by wpt

1 Assume that the set C1 in the first level contains all possible items in EDB′.
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(see proposition 2). This optimization is very important because it makes the
return to the initial database less heavy. Indeed, from the itemsets of PWk, only
those whose supports exceed the wpt will be updated when scanning the initial
database EDB \edb−, to obtain their supports in the whole of EDB′. After this
scan, we can filter the winner itemsets from the invalid ones by comparing their
supports in EDB′ to the minimum support threshold minsupp × D′. Finally,
we are obliged to compute the supports of the itemsets of SSk in the whole of
EDB \ edb−, to get the set FS of frequent ones in the updated database. The
computation of FS is a costly operation that we cannot avoid.

Proposition 1 (The Persistents Pruning Threshold). Let X be a fre-
quent itemset in EDB. X could not persist if: X.supportEDB −X.supportedb− <
minsupp ×D′ − d+

Proof. X is frequent in EDB′ if and only if: X.supportEDB′ ≥ minsupp ×
D′ ⇔ X.supportEDB + X.supportedb+ − X.supportedb− ≥ minsupp × D′ ⇔
X.supportEDB −X.supportedb− ≥ minsupp ×D′ −X.supportedb+ (1) We know
that the support of X in edb+ is at the most d+, and so X.supportedb+ ≤ d+ (2)

(1) and (2) ⇒ X.supportEDB −X.supportedb− ≥ minsupp ×D′ − d+

Proposition 2 (The Winners Pruning Threshold). Let be X an itemset
that was infrequent in EDB. X could not win if: X.supportedb+−X.supportedb− <
minsupp × (d+ − d−)

Proof. X is frequent in EDB′ if and only if: X.supportEDB′ ≥ minsupp ×
D′ ⇔ X.supportEDB + X.supportedb+ − X.supportedb− ≥ minsupp × D′ ⇔
X.supportedb+ −X.supportedb− ≥ minsupp ×D′ −X.supportEDB (1) Now, we
know that X is infrequent in EDB ⇔ X.supportEDB < minsupp ×D (2)

(1) and (2)⇒ X.supportedb+−X.supportedb− ≥ minsupp×D′−minsupp×D
⇔ X.supportedb+ −X.supportedb− ≥ minsupp × (d+ − d−)

In the next section, we present the data structure we use to accelerate the support
computation. The data structure is adapted to the evidential character of the
data, it allows also the optimization of the early pruning of loser and invalid
itemsets.

3.4 Used Data Structure

To compute the supports of the candidate itemsets, we use the RidLists data
structure introduced in [2]. It consists in storing for each evidential item the list
of the couples (1) record identifier of the line that contains the item and (2)
the belief of the item in the corresponding record. Table 2 presents the RidLists
of only the evidential items {A2, A3} and {C1, C2}. Once we have the RidLists
representation of the evidential database, we can compute the support of any
itemset via the intersection of the lists of its items. Its support is the sum of the
product of the believes of the shared records identifiers of its items [2].
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Table 2. The RidLists of the items {A2, A3} and {C1, C2}

item rid list

{A2, A3} (1, 0.4)(2, 0.8)
{C1, C2} (1, 1)(2, 1)

3.5 The Incremental Maintenance Algorithm

Our algorithm proceeds level-by-level as described above. In the first iteration,
we compute the frequent evidential items. It is a particular iteration compared
to the other ones, i.e., when k ≥ 2. Indeed, when k ≥ 2 the set Ck -from which
starts our method- is computed from the set F ′k−1 via the Apriori Gen function.
Thus, this latter function could not generate the set C1, hence the particularity
of the first iteration.

Algorithm 1 presents the procedure that computes the frequent evidential
items. It starts not from a candidate set, but from both the items of the data
increment and the set of initial frequent items F1. This method allows to compute
the sets PP1 and PW1, but also the set SS of super items, i.e., non-singleton
items that are not in F1. This latter set is very special because it includes the only
items whose we do not know any information about their frequency in EDB.
In other words, we do not know if these items are frequent in EDB or not.
We present here the procedure ComputeFrequentItems followed by a detailed
example that explains more explicitly our method.

Algorithm 1. ComputeFrequentItems

Require: RLEDB as RIDLIST, RLedb+ as
RIDLIST, RLedb− as RIDLIST, F1 as Set
of Items, minsupp as Real

Ensure: F1′ as Set of Items
1 PP1 ← F1
2 for all item i in PP1 do
3 compute i.supportedb−
4 if i.supportEDB − i.supportedb− <

minsupp × D′ − d+ then
5 Delete i from PP1
6 else
7 Compute i.supportedb+

8 if i.supportEDB′ ≥ minsupp × D′
then

9 Add i to P1
10 else
11 Delete i from PP1
12 end if
13 end if
14 end for
15 for all item i in RLedb+ and not in F1 do
16 if i is a superset then
17 Add i to SS

18 else
19 Compute i.supportedb+

20 Compute i.supportedb−
21 if i.supportedb+ − i.supportedb− ≥

minsupp × (d+ − d−) then
22 Add i to PW1
23 end if
24 end if
25 end for
26 for all item i in PW1 do
27 Compute i.supportEDB\edb−
28 if i.supportEDB′ ≥ minsupp × D′ then
29 Add i to W1
30 end if
31 end for
32 for all item i in SS do
33 Compute i.supportEDB′
34 if i.supportEDB′ ≥ minsupp × D′ then
35 Add i to FS
36 end if
37 end for
38 F1′ ← P1 ∪ W1 ∪ FS

Algorithm 2 is the process of our incremental maintenance solution that gen-
erates the set F ′.
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Algorithm 2. ComputeFrequentItemsets

Require: RLEDB as RIDLIST, RLedb+ as
RIDLIST, RLedb− as RIDLIST, F as Set of
Itemsets, minsupp as Real

Ensure: F ′ as Set of Itemsets
1 ComputeFrequentItems(RLEDB, RLedb+ ,

F1, minsupp, F1′)
2 k ← 1
3 while Fk′ = ∅ do
4 k ← k + 1; Ck ← Apriori Gen(Fk−1′)
5 PPk ← Fk ∩ Ck;PWk ← Ck \ Fk

6 for all itemset X ∈ PPk do
7 Compute X.supportedb−
8 if X.supportEDB − X.supportedb− <

minsupp × D − d+ then
9 Delete X from PPk

10 else
11 Compute X.supportedb+

12 if X.supportEDB′ < minsupp × D′
then

13 Delete X from PPk

14 else
15 Add X to Pk

16 end if
17 end if
18 end for
19 for all itemset X ∈ PWk do
20 Compute i.supportedb+

21 Compute i.supportedb−
22 if X is composed of singleton-items

then
23 if X.supportedb+−X.supportedb−<

minsupp × (d+ − d−) then
24 Delete X from PWk

25 else
26 Compute X.supportEDB\edb−
27 if X.supportEDB′ ≥ minsupp ×

D′ then
28 Add X to Wk

29 end if
30 end if
31 else
32 Add X to SS
33 end if
34 end for
35 for all itemset X ∈ SS do
36 Compute X.supportEDB\edb−
37 if X.supportEDB′ ≥ minsupp × D′

then
38 Add X to FS
39 end if
40 end for
41 Fk′ ← Pk ∪ Wk ∪ FS
42 end while

4 Performance Analysis

In order to evaluate the performance of our solution, we implemented the meth-
ods of [2] -denoted by FIMED- and of [9] -denoted by HPSS - as well as our
solution. These three algorithms were tested over several synthetic databases [2].
For short, we content with the tests led on the database D4000I500C14%U10.
The size of this database is 4000 lines, it contains 500 items distributed on 14
columns. The percent of the records that include evidential values is 10%.

In the first experimentation, we perform a simple FIM operation over the
first 3500 records under a fixed support threshold, and we stored the set F of
frequent itemsets. Then, we insert the last 500 records (those we eliminated in
the initial FIM operation), and we delete the first 500 records. After that, we
maintain the set F after the updates (insertion and deletion) we did, to produce
the set F ′ of frequent itemsets in the updated database. We used the three
implemented methods, that are FIMED and HPSS (classic approach) and our
solution (incremental approach). Indeed, when we perform maintenance via our
solution, we use the initial data set (that includes 3500 records), the increment
data (500 records), the decrement data (500 records) and the set F of the initial
frequent itemsets in the initial database. These operations are performed for
several support thresholds.

The figure 1 shows how the incremental solution is the less costly in term of
execution time. That is logical since this solution takes a considerable advantage
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Fig. 1. Comparison of the performances of FIMED, HPSS and our solution

Fig. 2. Effect of the data increment and decrement sizes on the solution’s performance

from the result of the initial mining operation, i.e., the set F of initially frequent
itemsets. Indeed, the difference between the incremental solution and the classic
ones is essentially in the candidate itemsets generation phase where our method
lightens the set of candidates thanks to the pruning techniques presented in
section 3.3. The second experimentation is about the effect of the data increment
and data decrements sizes on our solution’s performance. In figure 2, we note
that the more the sizes of the data increment and decrement are important, the
less the incremental solution is efficient. Indeed, our solution takes a considerable
advantage from the persistent itemsets computation. When the set Pk is large,
its complement in Ck, namely PWk ∩ SSk is small. In this case, the return to
the initial database is light which accelerates the computation of F ′. Now, the
more the decrement and the increment are important, the more PWk ∩ SSk

are also important. More simply, when the changes (insertion and deletion) are
important, the difference between the initial frequent itemsets (namely the set
F ) and the new ones (namely the set F ′) is also important and the incremental
solution takes less advantage from the results of the previous FIM operation.
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5 Conclusion

This work aims to solve the problem of incremental maintenance of frequent
itemsets when mined data are updated. It is an alternative to the classic solu-
tion that consists in mining again the whole of the updated data without taking
into consideration the results of the previous mining operations. The experimen-
tations led on our method showed satisfying results.
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Abstract. We study how to derive a fuzzy rule-based classification
model using the theoretical framework of belief functions. For this pur-
pose we use the recently proposed Evidential c-means (ECM) to derive
Takagi-Sugeno (TS) models solely from data. ECM allocates, for each
object, a mass of belief to any subsets of possible clusters, which allows
to gain a deeper insight in the data while being robust with respect
to outliers. Some classification examples are discussed, which show the
advantages and disadvantages of the proposed algorithm.

1 Introduction

Classification problem is an important subject for a variety of fields, including
pattern recognition, artificial intelligence, credit risk and direct marketing. In a
classification problem the aim is to assign class labels to a set of data instances
described by multiple features. A possible method to solve classification problems
is to use a fuzzy rule based model, built from data [1,2,3]. Fuzzy models use if-
then rules and logical connectives to establish relations between the variables
defined for the model of the system. The fuzzy sets in the rules serve as an
interface amongst qualitative conceptualization in the model, and the numerical
input and output variables. The if-then rules provide a transparent description of
the system, that may reflect a possible nonlinearity of the system. The rule-based
nature of the model allows for a linguistic description of the knowledge.

One way of obtaining Takagi-Sugeno fuzzy models is product-space fuzzy
clustering. A clustering algorithm finds a partition matrix which best explains
and represents the unknown structure of the data with respect to the model
that defines it [4]. Different clustering algorithms can be used, which will yield
different information and insights about the underlying structure of the data.

Uncertainty in the data is a challenge for classification [5]. Several approaches
have been proposed to deal with this problem, using the framework of belief
functions. In [6,7,8], it was proposed to represent the partial knowledge regarding
the class membership of an object using a basic belief assignment. A classification
method based on the decision tree approach that takes into consideration the
uncertainty characterized by the classes of the training examples, as well as the
uncertainty of their attribute values was proposed in [9].

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 228–237, 2010.
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In this paper we study the use of Evidential C-Means (ECM) for system iden-
tification. For this it is necessary to relate information represented in the frame-
work of the theory of beliefs, as understood in the transferable belief model [10],
and fuzzy sets. Previous studies have shown that consonant beliefs and fuzzy sets
are related [11]. In our approach, we consider that the obtained credal partition
captures relevant information for correct interpretation of data substructure,
and we discuss the possibility to map the obtained credal partition to a fuzzy
set, providing linguistic interpretation and labels to the obtained structure. Us-
ing the credal partition it is possible to highlight the points that unambiguously
belong to one cluster, and the points that lie at the boundary of two or more clus-
ters. We try to convene this added information into the rule based classification
system.

The paper is organized as follows. Section 2 reviews briefly the main concepts
underlying the theory of belief functions. Section 3 presents its use for deriving
a credal partition from object data. Section 4 presents the method used for
classification and system identification in this work. The experimental setup
and the results are presented in Section 5 and Section 6, respectively. A brief
discussion of the results is in Section 7. Finally the conclusions are given in
Section 8.

2 Belief Functions

Dempster-Shafer theory of evidence, is a theoretical framework for reasoning
with partial and unreliable information. In the following, we briefly recall some
of the basics of the belief function theory. More details can be found in [12,10,13].

Let Ω be a finite set of elementary values ω called the frame of discernment.
The basic belief assignment (bba)[12] is defined as a function m from 2Ω to [0, 1],
satisfying: ∑

A⊆Ω

m(A) = 1 , (1)

which represents the partial knowledge regarding the actual value taken by ω.
The subsets A of Ω such that m(A) > 0 are the focal sets of m. Each focal set
A is a set of possible values for ω, and the value m(A) can be interpreted as the
part of belief supporting exactly that the actual event belongs to A.

A bba m such that m(∅) = 0 is said to be normal [12]. This condition may be
relaxed by assuming that ω might take its value outside Ω, which means that
Ω might be incomplete [14]. The quantity m(∅) is then interpreted as a mass
of belief given to the hypothesis that ω might not lie in Ω. A bba m can be
equivalently represented by a plausibility function pl : 2ω �→ [0, 1], defined as

pl(A) �
∑

B∩A =∅
m(B) ∀A,B ⊆ Ω . (2)

The plausibility pl(A) represents the potential amount of support given to A.
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The decision making problem regarding the selection of one single hypothesis
in Ω, is solved in the transferable belief model framework, by using a pignistic
probability, BetP, defined, for a normal bba, by [13]:

BetP(ω) �
∑
ω∈A

m(A)
|A| ∀ω ∈ Ω , (3)

where |A| denotes the cardinality of A ⊆ Ω. It is shown, that this is the only
transformation between belief function and a probability function satisfying el-
ementary rationality requirements, in which each mass of belief m(A) is equally
distributed among the elements of A [15].

3 Evidential c-Means

In [6], the Evidential c-Means (ECM) algorithm was proposed to derive a credal
partition from object data. In this algorithm the partial knowledge regarding the
class membership of an object i is represented by a bba mi on the set Ω. This
representation makes it possible to model all situations ranging from complete
ignorance to full certainty concerning the class label of the object. This idea was
also applied to relational data in [8] and proximity data [7].

Determining a credal partition M = (m1,m2, . . . ,mn) from object data, using
ECM, implies determining, for each object i, the quantities mij = mi(Aj)(Aj �=
∅, Aj ⊆ Ω) in such a way that mij is low (high) when the distance dij between i
and the focal set Aj is high (low). The distance between an object and any non
empty subset of Ω is defined by associating to each subset Aj of Ω the barycenter
v̄ of the centers associated to the classes composing Aj . It is assumed that each
class ωk is represented by a center vk ∈ Rp. Specifically,

skj =
{

1, if ωk ∈ Aj

0 otherwise . (4)

The barycenter v̄j associated to Aj is:

v̄j =
1
τj

c∑
k=1

skjvk , (5)

where τj = |Aj | denotes the cardinality of Aj . The distance dij is then defined
as d2

ij � ||xi − v̄j ||. The proposed objective function for ECM, used to derive
the credal partition M and the matrix V containing the cluster centers, is given
by:

JECM (M,V,A) =
n∑

i=1

∑
{j/Aj⊆Ω,Aj =∅}

τα
j m

β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅ , (6)

subject to ∑
{j/Aj⊆Ω,Aj =∅}

mij +mi∅ = 1 ∀i = 1, n , (7)
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where β > 1 is a weighting exponent that controls the fuzziness of the partition,
δ controls the amount of data considered as outliers, and mi∅ denotes mi(∅),the
amount of evidence that the class of object i does not lie in Ω. The weighting
coefficient τα

j aims at penalizing the subsets in Ω of high cardinality and the
exponent α allows to control the degree of penalization. The second term of (7)
is used to give a separate treatment term for the empty set. This focal element
is in fact associated to a noise cluster, which allows to detect atypical data. The
minimization of (7), can be done using the Lagrangian method.

The credal partition provides different structures, that can give different types
of information about the data. A possibilistic partition could be obtained by
computing from each bba mi the plausibilities pli({wk}) of the different clusters,
using (2). The value pli({wk}) represents the plausibility that object i belongs
to cluster k. In the same way, a probabilistic fuzzy partition may be obtained
by calculating the pignistic probability BetPi({wk}), using (3) induced by each
bba mi.

Furthermore, a hard credal partition can be obtained, by assigning each object
to the set of clusters with the highest mass. This allows to divide the partition
space into a maximum of 2c groups. Formally, the X(Aj) for j = 1, . . . , 2c defines
a hard credal partition of the n objects [6]:

X(Aj) = {i/mi(Aj) = max
k

mi(Ak)} . (8)

Finally, it is possible to characterize each cluster ωk by a set of objects which
can be classified in ωk without any ambiguity and the set of objects which could
possibly be assigned to ωk. These two sets ωL

k and ωU
k , are defined as the lower

and upper approximations of ωk respectively [6], and they are defined as:

ωL
k = X{ωk}, and ωU

k = U
j/ωk∈Aj

X(Aj) . (9)

The information obtained from the credal partition and its approximations can
be considered intuitive and simple to interpret. In this work, we try to incor-
porate the added degrees of freedom and information obtained from the credal
partition, in the rule based classification systems.

4 Rule Based Classification

4.1 Model Structure

A fuzzy classification system consists of a set of fuzzy IF-THEN rules combined
with a fuzzy inference mechanism. This type of rules can be viewed as an exten-
sion of the Takagi-Sugeno fuzzy model [16], and it can be described by N rules
of the following type [17]:

Rq
k : If x1 is Fk1 and . . . and xn is Fknthen dq(x) = gq

k(x) , (10)

where gk, k = 1, 2, . . . , N is the consequent function for rule Rk, and dq(x) is a
discriminant function associated with each class ωq, q = 1, . . . , Q. Note that the
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index q indicates that the rule is associated with the output of class q. The output
of the classifier assigns the class label corresponding to the maximum value of
the discriminant functions. The antecedent parts of the rules are the same for
different discriminants, but the consequents may be different. The output of each
discriminant function dq(x) can be interpreted as a score for the associated class
q given the input feature vector x. The degree of fulfillment βi(x) of the ith rule,
is computed using the intersection operator in the cartesian product space of
the antecedent variables as βi(x) = μFi1(x1) ∧ μFi2(x2) ∧ . . . ∧ μFip(xp). Other
t-norms, such as the product, can be used instead of the minimum operator.

4.2 Model Parameters

To form the fuzzy system model from the data set with n data samples, given
by X = [x1, x2, . . . , xn]T , Y = [y1, y2, . . . , yn]T where each data sample has a
dimension of p (n � p), the structure is first determined and afterwards the
parameters of the structure are identified. The number of rules characterizes
the structure of a fuzzy system and in our case corresponds to the number of
partitions obtained from the clustering algorithm.

In this work, we use ECM to partition the space using the framework of belief
function and map the obtained credal partition as a fuzzy set. When clustering
the object data with ECM, several clustering structures can be obtained, as ex-
plained in Section 3. In this work we focus on the partitioning structure obtained
from the credal partition, which we expect to better describe the data and its
underlying structure.

Using c clusters, the credal partition obtained from ECM partitions the space
in at most 2c intervals, with a center associated with each interval. In contrast,
using the well-known FCM [18], the space is partition in, at most, c intervals.
The added information from the credal partition allows to reveal objects that
unambiguously belong to a given cluster and the set of objects that lie at the
boundaries of each cluster. Since the values of the credal partitionm are in [0, 1]p,
this value can be perceived as an assignment to each subset of the partition.
Thus we can obtain the following mapping ϕ : m ∈ [0, 1]p �→ Aij , using one the
following functions:

ϕ1 : μFij (xjk) = projj(mik) (11a)

ϕ2 : μFij (xjk) = X(Aj) (11b)

ϕ3 : supp(F ) = ωL
k , core(F ) = ωU

k (11c)

where supp(F ) = {x ∈ X |μF (x) > 0}, core(F ) = {x ∈ X |μF (x) = 1} and
projj is a pointwise projection of the partition matrix M onto the axes of the
antecedent variables xj .

The obtained point-wise fuzzy sets Fij can now be approximated by appropri-
ate parametric functions, such as Gaussian functions, resulting in the antecedent
membership functions. Although, the obtained antecedent membership functions
from each one of the mappings presented in (11) will be different from one an-
other, there are situations where they can be very similar. For example, the
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mappings (11b) and (11c) will be equivalent for cases where the obtained credal
partition does not indicate that some points lie in the boundaries of two or more
clusters. The number of obtained rules using the proposed method is, at most
2c−1, as we exclude, m(∅). The consequent parameters for each rule are obtained
by means of linear least square estimation, which concludes the identification of
the classification system.

5 Experimental Setup

We used several data sets to test the proposed modelling approach. The Wiscon-
sin Breast Cancer (WBC) database [19] is composed of 699 objects, 10 features
and has missing values and an uneven distribution of classes [20]. Also, two
databases related with bankruptcy prediction were used. The Altman data set
[21] has 66 objects and 5 features, and the CR data set [22] which contains ex-
treme values, missing values and a very skewed class distribution. The CR data
set is composed of 1817 companies and has 51 features.

In our experiments we used minimum amount of improvement ε = 0.0001,
maximum number of iterations 100, β = 3 for both ECM and FCM, α = 1
and δ = 2000. The initialization for the cluster prototypes centers in ECM were
obtained with FCM, as suggested in [6]. Since all cases are binary classification,
two clusters were used for all models. In [6] an index for choosing the number
of clusters to be used with ECM is discussed. All trials terminated with the
convergence criteria after a few iterations.

In all tests we used a simple holdout method for validation. 50 trials were
made and only the results obtained with the testing set are reported below. The
overall performance of the models is measured by the classification accuracy.

As already stated, the Wisconsin Breast Cancer and the CR database have
missing values. It was considered that these missing values are missing completely
at random (MCAR) [23], and thus imputation of values is the usual course of
action. The missing values were inferred using the expectation-maximization
(EM) algorithm, as explained in [22].

6 Examples

Table 1 exhibits the obtained mean accuracy and respective variance, for each
class and the global accuracy of different fuzzy models, for all the data sets
under study. These models were obtained using the three methods explained in
(11) for mapping the antecedent fuzzy sets. Also, for comparison purposes, the
results obtained for a fuzzy rule-based model that uses the FCM to derive the
antecedent fuzzy sets is shown.

The obtained global accuracy of the model obtained using ECM, is compa-
rable to the results obtained using FCM algorithm. Depending on the type of
mapping used, different accuracies for each class are obtained. For the case of
the CR database, the mapping ϕ1 and ϕ2 give better results in terms of the
class Bankrupt, which is arguably, the more relevant class in study. In general,
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Table 1. Classification accuracy for the databases in study- mean (variance)

Database Method ϕ1 ϕ2 ϕ3 FCM
WBC Class 0 0.978 (0.016) 0.971 (0.014) 0.976 (0.014) 0.972 (0.018)

Class 1 0.936 (0.032) 0.961 (0.023) 0.946 (0.026) 0.956 (0.027)
Global 0.964 (0.016) 0.968 (0.013) 0.966 (0.013) 0.966 (0.013)

Altman Bankrupt 0.960 (0.067) 0.990 (0.032) 1.000 (0.000) 0.980 (0.042)
Not Bankrupt 1.000 (0.189) 0.730 (0.048) 0.620 (0.079) 0.600 (0.094)
Global 0.980 (0.111) 0.860 (0.021) 0.810 (0.039) 0.790 (0.046)

CR Bankrupt 0.465 (0.068) 0.478 (0.105) 0.326 (0.132) 0.361 (0.082)
Not Bankrupt 0.988 (0.008) 0.985 (0.003) 0.989 (0.005) 0.989 (0.005)
Global 0.966 (0.009) 0.964 (0.006) 0.961 (0.006) 0.962 (0.005)
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Fig. 1. Antecedent Membership Functions for ECM with mapping ϕ2 and FCM

the mapping ϕ1 and ϕ2 give better results. Also note that using the mapping
ϕ3, only two rules are obtained, while for the other mappings, three rules are
obtained.

Figure 1 shows the obtained antecedent membership functions using ECM and
mapping ϕ2, as well as using FCM, for three features of the Altman database.
It is interesting to note that although only two clusters are used, three member-
ship functions are obtained for ECM, corresponding to the focal sets {ω1, ω2, Ω}.
It is our opinion that this conveys more information than using, for instance,
the FCM algorithm. Linguistic terms can easily be assigned on the cases of for
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the membership functions obtained with ECM, e.g. High for Fk1, Low for Fk2
and Medium for Fk12. This proposed method seems to provide more informa-
tion regarding the underlying structure of the model of the model, using the
same number of clusters. Specifically for the case of bankruptcy prediction it is
very appealing to be able to have a model that identifies the cases which are
in between classes, as in general, these cases are the ones that require further
assessment [22].

7 Discussion

During the experiments performed in all data sets, it was noticed that if the
parameters of ECM were not chosen carefully, no object would be assigned as
belonging to the boundaries of two or more clusters. This would result in results
that are not as good as the ones obtained with FCM. Furthermore, it was noticed
that ECM works very good in databases that contain many points in between
clusters, i.e. noisy data. This is due to the fact that the credal partition gives
relevant information about the points that unambiguously belong to one cluster,
and the points that lie at the boundary of two or more clusters. Since these points
can be seen as noise, FCM may have problems clustering them.

The proposed method seems to provide more information regarding the un-
derlying structure of the model, using the same number of clusters. In the case of
the (noisy) CR database, better results were obtained with the use of ECM, spe-
cially for the bankruptcy class while the overall accuracy remains comparable. In
the general case of bankruptcy prediction it is very appealing to derive a model
that identifies the cases which are in between classes, as in general, these cases
are the ones that require further assessment [22]. More research is needed into
transforming the information about more difficult cases (i.e. boundary cases) in
specific rules.

The proposed models, obtained by extracting rules from the credal partition
obtained with ECM, are computationally only slightly more complex compared
to models using FCM, because a small number of clusters is used. This increase
is due to the fact that in the case of FCM c rules are derived, while in the case of
ECM, at most 2c rules are derived, for the cases of the mapping ϕ1 and ϕ2. Note
that the added rules refer to the points that lie at the boundary of two or more
clusters. The assignment of linguistic terms to the obtained credal partitions,
can be seen as an quantification of the degree of belief, and can be easily done
by inspecting the obtained membership functions. It was noted that in some
cases, due to the overlap of membership functions, the linguistic interpretation
may be difficult, and further optimization of the models is required [24].

8 Conclusions

This paper discusses the use of the credal partition obtained from the Eviden-
tial C-Means based on the theoretical framework of belief functions, in deriving
rule based classification models. We compare the performance of the proposed



236 R.J. Almeida and U. Kaymak

methodology with the models obtained by using the fuzzy partition matrix de-
rived from the well know Fuzzy C-Means algorithm. The results with the pro-
posed methodology are similar to the results obtained using FCM, but have the
advantage that the use of ECM seems to provide more information about the
system, which is successfully translated into rules. However, more future research
is needed to assess all the characteristics of the proposed method. We will also
concentrate on comparing the partitions obtained with ECM with the partitions
obtained from FCM using 2c clusters.
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Abstract. Diversity being inherent in classifiers is widely acknowledged
as an important issue in constructing successful classifier ensembles. Al-
though many statistics have been employed to measure diversity among
classifiers to determine whether it correlates with ensemble performance
in the literature, most these measures are incorporated and explained
in the non-evidential context. In this paper, we first introduce a mod-
elling for formulating classifier outputs as triplet mass functions and an
unform notation for defining diversity measures, we then present our
studies on the relationship between diversity obtained by four pairwise
and non-pairwise diversity measures and accuracy of classifiers combined
in different orders in the framework of belief functions. Our experimental
results demonstrate that the negative correlation between the diversity
and accuracy is stronger than the positive one, which is not in favor of the
claim that increasing diversity could lead to reduction of generalization
error of classifier ensembles.

Keywords: diversity, ensemble learning, belief functions and classifier
combination.

1 Introduction

The combination of multiple classifiers/ensemble approach is rather powerful
decision making and classification techniques that have been used successfully
for modelling many practical problems. In the modelling of classifiers combina-
tion, many researchers believe the diversity being inherent in the classifiers plays
an important role in constructing successful ensemble classifiers. Unfortunately
to date there exists no general accepted theoretical framework underpinning
the development of methods for capturing diversity among ensemble classifiers.
Although many statistics have been employed to measure diversity with the in-
tension to determine whether it correlates with ensemble performance in the
literature, results are varied. Most commonly these measures are incorporated
and explained in the context of majority voting, linear sum and non-evidential
framework [1]. Presently there is little effort concerning how diversity measured
by statistics imparts ensemble performance in the framework of the Dempster-
Shafer (DS) theory of evidence [2], where classifier outputs are modeled as pieces
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of evidence that are thereby combined by Dempster’s rule of combination. In this
paper, we present our studies on measuring diversity among classifiers and then
experimentally examine the relationship between diversity obtained by four pair-
wise and non-pairwise diversity measures and accuracy of combined classifiers
by Dempster’s rule of combination.

Early studies on the relationship between diversity and ensemble performance
have stimulated considerable interest and they can be categorized into the con-
texts of regression and classification. In the context of classification, Kuncheva
et al. carried out an experimental study on the relationship between diversity
and accuracy [1]. Their results show although there are proven connections be-
tween diversity and accuracy in some special cases, there is no strong linear and
non-linear correlation between diversity and accuracy. In [3], Tang, et al. con-
ducted a follow-up comprehensive study. They investigate the correlation among
the six statistical measures used in [1] and relate these measures to the concept
of margin proposed in [4], which is explained a key factor to the success of
Boosting algorithms. The experimental results indicate that large diversity may
not consistently correspond to better ensemble performance and the information
available from varying diversity cannot provide a consistent guidance for making
an ensemble of classifiers to achieve good generalization performance.

In the previous study[5], we have developed new evidence structures called a
triplet and quartet and a formalism for modelling classifier outputs as triplet and
quartet mass functions, and we also established a range of formulae for combining
these mass functions in order to arrive at a consensus decision. However in that
study we did not address the issues of how diversity impacts the performance of
classifiers combined by Dempster’s rule of combination. In this work, we carry
out an analysis of effects of diversity on the quality of ensemble classifiers that
are independently generated by 13 machine learning algorithms and are com-
bined using a purely evidential combination function in decreasing and mixed
orders. We use the triplet as an underlying evidence structure for representing
classifier outputs and study the correlation between diversity and accuracy by
the Spearmans rank correlation method over 9 benchmark data sets. The exper-
imental results demonstrate that the positive correlation between the diversity
and accuracy in decreasing order is weaker than that in mixed order, which could
not confirm the role of diversity in reducing general errors of classifier ensembles.
Our results conjectures that the order of combining classifiers could be regarded
as a useful factor in constructing successful classifier ensembles.

2 Representation of Classifier Outputs

In ensemble approaches, a learning algorithm is provided with a training data
set made up of D × C = {〈d1, c1〉, · · · , 〈d|D|, cq〉} (1 ≤ q ≤ |C|) for deriving
some unknown function f such that f(d) = c. D is a set of instances in the
form of (di1 , · · · , din) where dij is either a nominal or ordinal value. C is set of
class labels ci. Given a set of training data D×C, a learning algorithm is aimed
at learning a function ϕ in terms of classifier from the training data set, where
classifier ϕ is an approximation to an unknown function f .
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Given a new instance d, a classification task is to make decision for d using ϕ
about whether d belongs to class ci. Instead of single-class assignment, we regard
such a classifying process as a mapping:

ϕ : D → C × [0, 1] (1)

where C × [0, 1] = {(ci, si) | ci ∈ C, 0 ≤ si ≤ 1}, si is a numeric value.
The greater the value of class si, the greater the amount of belief given to the
proposition of instance d belonging to ci. Simply we denote a classifier output
by ϕ(d) = {s1, · · · , s|C|}. Given an ensemble of classifiers, ϕ1, ϕ2, · · · , ϕM , all the
classifier outputs on instance d can be organized into a matrix as illustrated in
formula (2).

⎛⎜⎜⎜⎝
ϕ1(d)
ϕ2(d)

...
ϕM (d)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
s11 s12 . . . s1|C|
s21 s22 . . . s2|C|
...

... . . .
...

sM1 sM2 . . . sM|C|

⎞⎟⎟⎟⎠ (2)

3 Basics of the Dempster-Shafer (DS) Theory of
Evidence

The DS theory of evidence remedies the limitations of the traditional Bayesian
belief model to allow the explicit representation of uncertainty and management
of conflict information involved in the decision making process [2]. It formulates
a proposition (alternative) set as a frame of discernment, denoted by Ω and its
power set 2Ω is all the subsets of Ω.

Definition 1. Let Ω be a frame of discernment. Let m be a mass function,
which is defined as a assignment function assigning a numeric value in [0, 1] to
X ∈ 2Ω with two conditions below.

1) m(∅) = 0, 2)
∑

X⊆Ω

m(X) = 1

where X is called a focal element, focus or singleton if X is one element subset
with m(X) > 0. Given the general representation of classifier outputs in formula
(2) and Definition 1, we define an application-specific mass function below.

Definition 2. Let Ω = {c1, . . . , c|Ω|} be a frame of discernment and let ϕ(d)
be a list of scores, an application-specific mass function is defined a mapping
function, m : 2Ω → [0, 1] as follows:

m({ci}) =
si∑|Ω|

j=1 sj

(3)

where 1 ≤ i ≤ |Ω|.
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This mass function expresses the degrees of belief with respect to determining
class labels to which a given instance could be assigned.

Definition 3. Let Ω be a frame of discernment. Let m1 and m2 be two mass
functions defined for X,Y ⊆ Ω. Dempster’s rule of combination (or Dempster’s
rule) is, denoted by ⊕, defined as

(m1 ⊕m2)(A) =
∑

X∩Y =Am1(X)m2(Y )∑
X∩Y =∅m1(X)m2(Y )

(4)

where operator ⊕ is also called the orthogonal sum. N =
∑

X∩Y =∅m1(X)m2(Y )
is the normalization constant. E = 1 −N is called the conflict factor. This rule
strongly emphasizes the agreement between multiple independent sources and
ignores all the conflicting evidence through a normalization factor.

Given the formulation of classifier outputs in formula (2), by formula (3),
we can rewrite ϕ(d) as ϕ(d) = {m({c1}),m({c2}), · · · ,m({c|C|})}. Based on the
triplet structure in [5], we can further represent ϕ(d) by a triplet structure as
ϕ(d) = 〈{u}, {v}, C〉 and then rewrite formula (2) as (5) below,

⎛⎜⎜⎜⎝
ϕ1(d)
ϕ2(d)

...
ϕM (d)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
m1({u1}) m1({v1}) m1(C)
m2({u2}) m2({v2}) m2(C)

...
...

...
mM ({uM}) mM ({vM}) mM (C)

⎞⎟⎟⎟⎠ (5)

More details about the triplet formulation and calculation can be found in [5].

4 Diversity Measures

This section defines statistical diversity measures in an uniform way. Formally
suppose we are given M classifiers denoted by ϕ1, · · · , ϕM , a set of classes
C = {c1, · · · , c|C|} and a test set T = {x1, · · · , x|T |}. For x ∈ T , each classi-
fier produces an output vector ϕi(x), which is modeled as a binary output, i.e.
ϕi(x) = 1 if ϕi correctly classifies x, ϕi(x) = 0 if ϕ incorrectly classifies x. We
also denote ϕ̂(x) = {ϕ(x)|ϕi(x) = 1, 1 ≤ i ≤M,x ∈ T }. With this notation, we
define four statistical diversity measures below.

4.1 Kappa (κ) Statistic

The κ statistic is the most widely used pairwise method to measure the level of
agreement between classifiers [7]. Given two classifiers ϕi and ϕj and a test data
set T , we can construct a global contingency table where entry n(ch, ck) contains
the number of instances x ∈ T for ϕi(x) = ch and ϕj(x) = ck. If ϕi and ϕj are
identical on the data set, then all non-zero counts will appear along the diagonal
of the table, otherwise there will be a number of counts off the diagonal. Now
we define
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κi,j =
μ1 − μ2

1− μ2
(6)

where μ1 is the probability that two classifiers agree and μ2 is a correction term
for μ1, estimating the probability that the two classifiers agree simply by chance.

The pairwise κ statistic over the whole set of classifiers over T is then defined
as follows:

κ =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

κi,j (7)

κ = 0 when the agreement of two classifiers equals that expected by chance,
κ = 1 when two classifiers agree on all the testing instances, and negative values
of κ mean that an agreement is less than expected by chance.

4.2 Disagreement Measure

The disagreement measure is used to characterize the diversity between a clas-
sifier and its complementary classifier [1] [3]. Formally let n(a, b) be the number
of which the binary outputs of ϕi and ϕj are a and b on test instances, where a
and b take only two values on 1 and 0, respectively. The disagreement between
two classifiers is measured by:

disi,j =
n(0, 1) + n(1, 0)

n(0, 0) + n(0, 1) + n(1, 0) + n(1, 1)
(8)

The pairwise disagreement diversity among the whole set of classifiers over T is
then defined as an average over all pairs of classifiers below:

dis =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

disi,j (9)

The diversity increases as values of the disagreement measure increase.

4.3 Q-Statistic

The Q-statistic (qs) is a well studied measure in statistics [1] [3]. The disagree-
ment between two classifiers over a testing set T is measured by:

Qi,j =
n(0, 0)n(1, 1)− n(1, 0)n(0, 1)
n(0, 0)n(1, 1) + n(1, 0)n(0, 1)

(10)

The definition of n(a, b) is the same as in Section 4.2. For two classifiers ϕi

and ϕj , Qi,j is a measurement of diversity between ϕi and ϕj . When Qi,j = 1
indicates that all the class labels assigned by ϕi for instances x ∈ T are exactly
the same as ones assigned by ϕj . Qi,j = −1 means that all the class labels
recognized by ϕi for instances x ∈ T are entirely different from those that ϕj
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recognizes. For a set of classifiers, the averaged Qi,j statistics for all the pairs of
classifiers over T is measured by

qs =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

Qi,j (11)

4.4 Kohavi-Wolpert Variance

In [6], Kohavi and Wolpert proposed a formula for representing the classification
errors of classifiers. This formula is built on the basis of the bias-variance decom-
position of errors of classifiers. The expression of the variability of a predicted
class label c ∈ C for an instance x ∈ T is

variancex =
1
2

(1 −
|C|∑
i=1

P (c = ci|x)2) (12)

Averaging variance over the whole set of test data T , we have a revised measure,
denoted by kw, which can be used to measure the diversity among the whole set
of classifiers:

kw =
1

|T |M2 (
|T |∑
i=1

|ϕ̂(xi)|(M − |ϕ̂(xi)|)) (13)

The diversity increases as the kw variance increases.

5 Experimental Evaluation

5.1 Experimental Settings

In our experiments, we used nine data sets downloaded from the UCI machine
learning repository, including anneal, audiology, balance car, glass, autos, seg-
ment, soybean and wine. All the selected data sets have at least three or more
classes as required by the triplet structure.

For base (individual) classifiers, we used thirteen learning algorithms which
all are taken from the Waikato Environment for Knowledge Analysis (Weka)
version 3.4, including AOD, NaiveBayes, SOM, IB1, IBk, KStar, DecisionStump,
J48, RandomForest, DecisionTable, JRip, NNge, and PART. These algorithms
were simply chosen on the basis of their performance in three randomly picked
data sets. Parameters used for each algorithm was at the Weka default settings
described in[8].

For the combination of classifiers in decreasing order, we first rank all the 13
classifiers, and then we combine the best with the second best, denoted by 2c,
and combine the combined result of the 2 classifiers with the third best, denoted
by 3c, and so forth, until combine the combined result of the 12 classifiers with
the 13th classifiers, denoted by 13c as delineated in Fig. 1. With respect to the
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Fig. 1. Diversity and accuracy of the corresponding combinations of 13 classifiers over
the 9 data sets in decreasing order

Fig. 2. Diversity and accuracy of the corresponding combinations of 13 classifiers over
the 9 data sets in mixed order
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Table 1. Correlation between diversity and combined accuracies of individual classifiers
using Dempster’s rule in decreasing (left) and mixed (right) orders

Dataset kw qs dis κ kw qs dis κ

anneal -0.3893 -0.5307 -0.2593 0.2705 0.4684 -0.4861 0.4442 -0.4444
audiology -0.3332 0.2215 -0.3321 0.3303 0.9818 -0.9682 0.9573 -0.9311
balance -0.9731 0.9858 -0.9720 0.9768 -0.1789 0.0420 -0.3588 0.352
car -0.9530 0.0664 -0.9330 0.9593 0.8003 -0.7737 0.6616 -0.5170
glass 0.0253 -0.2486 0.0793 -0.0797 0.6870 -0.3240 0.5365 -0.5362
autos -0.3120 0.4156 -0.3657 0.3447 0.7708 -0.8755 0.5998 -0.4814
segment 0.0975 0.5778 0.0312 -0.0309 0.6408 -0.7968 0.5554 -0.5566
soybean -0.4667 0.2020 -0.4647 0.4360 -0.6776 0.4193 -0.6621 0.6491
wine -0.6079 0.7458 -0.5881 0.5899 -0.7616 0.3411 -0.7278 0.7311

Av -0.4347 0.2706 -0.4227 0.4219 0.3036 -0.3803 0.2230 -0.1928
Abs(Av) 0.4620 0.4438 0.4473 0.4464 0.6632 0.5586 0.6116 0.5778

combination of classifiers in mixed order, the order of classifiers is random. We
first pick up two classifiers to combine, specified by 2c, and then combine the
combined result of the 2 classifiers with the third classifier that is randomly
chosen, denoted by 3c, until combine the previous result with the last classifiers,
denoted by 13c as depicted in Fig. 2.

To assess how the diversity of 12 groups of classifiers and the corresponding
ensemble accuracy is actually correlated, we carried out a correlation analysis on
each pair of the groups of the classifier diversity and the combined accuracy over
the nine data sets, resulting in 12 pairs of the correlation coefficient r ∈ [−1, 1]
and p-value∈ [0, 1]. A positive r indicates a positive correlation between diversity
and accuracy, whereas a negative r indicates a negative correlation between
them. Here negative correlation indicates that one increases while the other
decreases in values. The closer the value of is to 0, the smaller the correlation.
p-value indicates the degree of that the correlation is statistically significant.

5.2 Experimental Results

In this experimental study, we carried out three groups of experiments, includ-
ing the combinations of different groups of classifiers using Dempter’s rule of
combination in decreasing and mixed orders; the diversity being inherent in the
different groups of classifiers in decreasing and mixed orders; and the relation-
ship between the diversity and accuracy. For the sake of comparison, we place
the results of the diversity and accuracy in the same order into the same figures
and present them in Figs. 1 and 2, respectively.

From these figures, we can observe that the curves of the combined accuracy,
which are marked by ”DS”, are slightly different. For decreasing order, the smaller
the number of the combinations of classifiers, the better the combined perfor-
mance of classifiers, and they converge to the combination of the best with the
second best. While the combinations of classifiers in mixed order appears to be
opposite, the larger the number of the combinations of classifiers, the better the
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combined performance of classifiers. However this phenomenon is not apparent
when the combined accuracy exceeds 85%.

In Fig.1 according to the behaviors of the curves and the nature of the four
diversity measures, the diversity curves of 12 groups of classifiers from 2c to 13c
over the 9 data sets can be characterized into two groups: one is measured by
qs and κ, and the other is measured by kw and dis. It can be observed that
the fitness between kw and dis is better than that between qs and κ, and the
curve margins between qs and κ are larger than those between kw and dis.
Roughly speaking, for the former group the curves decrease as more classifiers
are added, whereas for the latter group, the curves increase with the addition of
more classifiers, i.e. both of them go towards the closer from 2c to 13c. These
results suggest that the order of classifiers has an impact on the agreement among
the classifiers − the more classifiers are added into the groups of classifiers, the
more diversity appears among the groups.

Inspecting Fig.2 the diversity curves of 12 groups of classifiers can be similarly
divided into two groups. It is clear to see that when more classifiers are added
into the groups of classifiers, the first group of the curves roughly decreases, while
the second group increases but both of them have some fluctuations. There is
no consistent trend that can visually be identified. For example, there are sharp
changes between 9c and 10c in the cases of glass, autos, segment, soybean, wine,
the later three seems to be correlated to the combined accuracy that is over 85%,
but the first two cases could not confirm this. In addition, we notice that when
the accuracy of the combined classifiers is less 65%, the curves of the diversity
measured by qs are above those obtained by κ in the cases of audiology, balance,
car, glass, which is similar to that in decreasing order. This result could indicate
that qs is not as effective as the other three measures in measuring diversity
among the groups of classifiers when the combined accuracy of the groups of
classifiers is less than 65%.

Table 1 presents a correlation analysis on the relationship between the ensem-
ble accuracy and the diversity by using the Spearmans rank method. The left
group is the results of the decreasing order and the right one is the results of the
mixed order. Based on the properties of the diversity measures, when the qs and
κ coefficients are positive and kw and dis are negative, they represent a positive
correlation between the diversity and accuracy, otherwise they express a nega-
tive correlation. From the decreasing order results, we can find that the diversity
obtained by the four diversity measures are not very strong since the correlation
coefficients only over 3 of the 9 data sets is statistically significant (p ≤ 0.05),
which are shown in bold, and the average coefficients and their absolute values
are lower than the critical value 0.577 (making p ≤ 0.05). From the mixed order
results, it can be observed that the negative correlation between the diversity
and accuracy appear to be very strong because the the kw coefficients over 7
of the 9 data sets is statistically significant (p ≤ 0.05) and for dis there are 5
of the 9 data sets being statistically significant. The strong correlation reveals
the fact that the larger diversity measured by kw and dis corresponds to the
poor performance of the combined classifiers, which intuitively complies with the
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results depicted in Fig. 2. Therefore both of the results are consistent with the
findings reported in [1] [3] that increasing diversity might not consistently lead
to reduction of generalization error of classifier ensembles.

6 Summary and Future Work

In this study we report a range of experiments on 9 benchmark data sets with
the different groups of classifiers generated by 13 machine learning algorithms
and combined by Dempster’s rule of combination in different orders. In order
to quantify the relationship between the diversity and accuracy, the correlation
coefficients with respect to the accuracy and each of the four diversity results
over the different classifier combinations were calculated. The experimental re-
sults reveal the fact that the strong negative correlation in mixed order does not
favorites the claim that increasing diversity would lead to reduction of general-
ization error of classifier ensembles. This fact is, however, not fully supported
by the weaker correlation in decreasing order that warrants a further investiga-
tion. Meanwhile our studies could postulate that the decreasing order could be
a better way to combine classifiers. To solid these findings, we are carrying out
a further experimental study.
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Abstract. Multinomial subjective opinions are a special type of belief functions,
where belief mass can be assigned to singletons of the frame as well as to the
whole frame, but not to overlapping subsets of the frame. The multiplicative
product of two multinomial opinions applies to the Cartesian product of the two
corresponding frames. The challenge when multiplying multinomial opinions is
that the raw product initially produces belief mass terms on overlapping subsets
which does not fit into the opinion requirement of only having belief mass on
singletons and on the whole frame. It is therefore necessary to reassign belief
mass from overlapping subsets to singletons and to the frame in a way that pre-
serves consistency for multinomial opinions. This paper describes a method for
computing multinomial products of opinions according to this principle.

1 Introduction

Arguments in subjective logic are called “subjective opinions” or just “opinions” for
short[1,2], and are traditionally denoted as ω. A binomial opinion applies to a single
proposition/state in a frame. A multinomial opinion applies to the whole frame, i.e.
to all the propositions/states in the frame. A binomial opinion is represented by the
quadruple consisting of belief mass, disbelief mass, uncertainty mass and base rate,
denoted as ω = (b, d, u, a). A multinomial opinion is represented by the composite
function consisting of a belief vector, uncertainty mass and a base rate vector, denoted as
ω = (�b, u,�a). The uncertainty mass is interpreted as ”uncertainty about probabilities”,
i.e. as the second order complement probability of the first order probability expectation
values.

It is relatively straightforward to define operators for subjective opinions that gener-
alize classical binary logic and probabilistic operators. The literature describes a variety
of practical operators that provide a basis for modeling and analyzing situations where
input arguments are incomplete or affected by uncertainty. Binomial and multinomial
opinions are equivalent to Beta and Dirichlet probability density functions respectively.
Through this equivalence subjective logic provides a calculus for reasoning with prob-
ability density functions. In addition to generalizing the set of basic operators tradi-
tionally used in binary logic and classical probability calculus, subjective logic also
contains some non-traditional operators which are specific to subjective logic.
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In this manuscript we describe multinomial opinion multiplication which previously
has not been described in the literature. Multinomial products are useful e.g. when
combining opinions about different aspects of the same phenomenon or object.

It is straightforward to compute multinomial products in traditional probability cal-
culus, which simply consists of multiplication of the argument probability vectors. In
binary logic, the product of two binary frames with their binary truth values produces a
quaternary frame with corresponding truth values, which in turn can be multiplied with
other frames. The related analytical framework of the Dempster-Shafer belief theory
[5] traditionally does not define multiplication of bbas that apply to separate frames,
but it would be straightforward to do. The approach would simply be to multiply the
belief mass terms of the argument belief functions and assign the product belief masses
to the corresponding subsets of the product frame. Multiplication of binomial opinions
has also been described in the literature [3].

The challenge with multinomial multiplication in subjective logic is that it initially
produces belief mass terms that do not fit into the multinomial representation of ω =
(�b, u,�a). What is needed therefore is a transformation of the initial product terms into a
product opinion that conforms with the required representation. This approach to com-
puting the multinomial opinion product is described below.

2 The Multinomial Opinion Representation

Uncertainty comes in many flavours, and a good taxonomy is described in [6]. In subjec-
tive logic, the uncertainty relates to probability values. For example, let the probability
estimate of a future event x be expressed as P (x) = 0.5, e.g. for obtaining heads when
flipping a coin. In subjective logic, the probability P expressed without uncertainty is
interpreted as dogmatic and expresses a crisp value, even though the outcome of the
event itself might be totally unpredictable. The probability of an event is thus separated
from the certainty/uncertainty of its probability. With this separation subjective logic
can be applied in case of an event with very likely outcome but where the probability
of the outcome still can be totally uncertain. This is possible by including the base rate
of an event in the belief representation. For example the a priori likelihood that a given
person selected at random is immune against tetanus1 is close to 1, simply due to the
base rate of tetanus immunity in the population. However, before actually testing the
person, the immunity is still uncertain. The extreme case of an absolutely likely event
that still has an uncertain probability is theoretically possible but is at the same time a
singularity in subjective logic.

A general multinomial opinion is a composite function consisting of a belief vector
�b, an uncertainty mass u and a base rate vector �a. These components are defined next.

Definition 1. Belief Mass Vector
Let X = {xi|i = 1, . . . k} be a frame of cardinality k and let �b be a vector function

from the singletons of X to [0, 1]k satisfying:

�b(∅) = 0 and
∑
x∈X

�b(x) ≤ 1 . (1)

1 Assuming a random person from the population of the developed world.
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Then�b is called a belief mass vector, or belief vector for short.

The parameter �b(xi) is interpreted as belief mass on xi, i.e. the amount of positive
belief that xi is true. The belief vector can be interpreted as a sub-additive probability
function because the sum can be less than one. Additivity is achieved by including the
uncertainty mass defined below.

Definition 2. Uncertainty Mass
Let X = {xi|i = 1, . . . k} be a frame with a belief vector �b. Let u be a function from
X to [0, 1] representing uncertainty over X satisfying:

u+
∑
x∈X

�b(x) = 1 . (2)

The parameter u is then called an uncertainty mass.

The uncertainty mass can be interpreted as the lack of committed belief about the truth
of any of the propositions ofX . In other words, uncertainty mass reflects that the belief
owner does not know which of the propositions ofX in particular is true, only that one
of them must be true.

In case the belief vector is subadditive, i.e.
∑

x∈X

�b(x) < 1, the base rate vector to-

gether with base rates will determine the probability expectation values over X . The
base rate vector is defined below.

Definition 3. Base Rate Vector
LetX = {xi|i = 1, . . . k} be a frame and let �a be a vector function from the singletons
of X to [0, 1]k representing non-informative a priori probability over X satisfying:

�a(∅) = 0 and
∑
x∈X

�a(x) = 1 . (3)

Then �a is called a base rate vector.

Having defined the belief vector, the uncertainty mass and the base rate vector, the
general opinion can be defined.

Definition 4. Subjective Opinion
Let X = {xi|i = 1, . . . k} be a frame, i.e. a set of k exhaustive and mutually disjoint

propositions xi. Let �b be a belief vector, let u be the corresponding uncertainty mass,
and let �a be the base rate vector over X , all seen from the viewpoint of a subject entity
A. The composite function ωA

X = (�b, u,�a) expresses A’s subjective beliefs overX . This
represents the traditional belief notation of opinions.

We use the convention that the subscript on the multinomial opinion symbol indicates
the frame to which the opinion applies, and that the superscript indicates the subject
owner of the opinion so that ωA

X denotes A’s opinion aboutX . Subscripts can be omit-
ted when it is clear and implicitly assumed to which frame an opinion applies, and
superscripts can be omitted when it is irrelevant who the owner is.
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Assuming that the frame X has cardinality k, then the belief vector �b and the base
rate vector �a will have k parameters each. The uncertainty parameter u is a simple
scalar. A multinomial opinion over a frame of cardinality k will thus contain 2k +
1 parameters. However, given the constraints of Eq.(2) and Eq.(3), the multinomial
opinion will actually only have 2k− 1 degrees of freedom. A binomial opinion will for
example be 3-dimensional.

The introduction of the base rate vector allows the probabilistic transformation to
be independent from the internal structure of the frame. The probability expectation
of multinomial opinions is a vector expressed as a function of the belief vector, the
uncertainty mass and the base rate vector.

Definition 5. Probability Expectation Vector
LetX = {xi|i = 1, . . . k} be a frame and let ωX be an opinion onX with belief vector
�b, uncertainty mass u, and base rate vector �a. The function �EX from the singletons of
X to [0, 1]k expressed as:

�EX(xi) = �b(xi) + �a(xi)u . (4)

is then called the probability expectation vector over X .

It can be shown that �EX satisfies the additivity principle:

�EX(∅) = 0 and
∑
x∈X

�EX(x) = 1 . (5)

The base rate vector of Def.3 expresses non-informative a priori probability, whereas
the probability expectation function of Eq.(4) expresses informed probability estimates,
i.e. that are based on evidence which comes in addition to the base rates.

Given a frame of cardinality k, the default base rate of each element in the frame is
1/k, but it is possible to define arbitrary base rates for all elements of the frame, as long
as the additivity constraint of Eq.(3) is satisfied.

Two different multinomial opinions on the same frame will normally share the same
base rate vectors. However, it is obvious that two different observers can assign different
base rates to the same frame, in addition to assigning different beliefs to the frame. This
naturally reflects different views, analysis and interpretations of the same context and
situation seen by different observers.

The largest multinomial opinions that can be easily visualized are trinomial, in which
case it can be represented as a point inside an equal-sided tetrahedron (pyramid with
triangular base), as shown in Fig.1 below.

In Fig.1 the vertical elevation of the opinion point inside the tetrahedron represents
the uncertainty mass. When considering a triangular side plane and the opposite ver-
tex corresponding to a given state xi, the orthogonal distances from the plane to the
opinion point represents the belief mass value on the state xi. This geometric structure
is commonly called a barycentric coordinate system, so named by August Ferdinand
Möbius (1827). It can be shown that the opinion point is the center of mass when it is
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uX

Opinion 
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Fig. 1. Opinion tetrahedron with example opinion

assumed that the uncertainty mass and the belief masses are placed on their respective
vertices.

The base rate vector �aX is indicated as a point on the base plane. The line that joins
the tetrahedron apex and the base rate vector point represents the director. The probabil-
ity expectation vector point is geometrically determined by drawing a projection from
the opinion point parallel to the director onto the base plane.

In general, the triangle and tetrahedron belong to the simplex family of geometrical
shapes. Multinomial opinions on frames of cardinality k can in general be represented
as a point in a simplex of dimension (k + 1). For example, binomial opinions can
be represented inside a triangle which is a 3D simplex, and trinomial opinions can be
represented inside a tetrahedron which is a 4D simplex.

The 2D aspect of paper and computer display units makes it impractical to visual-
ize larger than 4D simplexes, meaning that opinions larger than trinomial do not lend
themselves to traditional visualization.

3 Products of Multinomial Opinions

Evaluating the products of two separate multinomial opinions involves the Cartesian
product of the respective frames to which the opinions apply. Let ωX and ωY be two
independent multinomial opinions that apply to the separate frames

X = {x1, x2, . . . xk} with cardinality k (6)

Y = {y1, y2, . . . yl} with cardinality l . (7)
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The Cartesian productX × Y with cardinality kl is expressed as the matrix:

X × Y =

⎛⎜⎜⎜⎜⎝
(x1, y1), (x2, y1), · · · (xk, y1)
(x1, y2), (x2, y2), · · · (xk, y2)

. . · · · .

. . · · · .
(x1, yl), (x2, yl), · · · (xk, yl)

⎞⎟⎟⎟⎟⎠ (8)

We now turn to the product of the multinomial opinions. The raw terms produced by
ωX · ωY can be separated into different groups.

1. The first group of terms consists of belief masses on singletons of X × Y :

bIX×Y =

⎧⎪⎪⎨⎪⎪⎩
bX(x1)bY (y1), bX(x2)bY (y1), . . . bX(xk)bY (y1)
bX(x1)bY (y2), bX(x2)bY (y2), . . . bX(xk)bY (y2)
. . . . . .
bX(x1)bY (yl), bX(x2)bY (yl), . . . bX(xk)bY (yl)

(9)

2. The second group of terms consists of belief masses on rows of X × Y :

bRows
X×Y =

(
uXbY (y1), uXbY (y2), . . . uXbY (yl)

)
(10)

3. The third group of terms consists of belief masses on columns of X × Y :

bColumns
X×Y =

(
bX(x1)uY , bX(x2)uY , . . . bX(xk)uY

)
(11)

4. The last term is simply the belief mass on the whole product frame:

uFrame
X×Y = uXuY (12)

The singleton terms of Eq.(9) and the term on the whole frame are unproblematic be-
cause they conform with the opinion representation of having belief mass only on sin-
gletons and on the whole frame. In contrast, the terms on rows and columns apply
to overlapping subsets which is not compatible with the required opinion format, and
therefore need to be reassigned. Some of it can be reassigned to singletons, and some
to the whole frame. There are several possible strategies for determining the amount
of uncertainty mass to be assigned to singletons and to the frame. Two methods are
described below.

3.1 Determining Uncertainty Mass

1. The Method of Assumed Belief Mass: The simplest method is to assign the belief
mass from the terms of Eq.(10) and Eq.(11) to singletons. Only the uncertainty mass
from Eq.(12) is then considered as uncertainty in the product opinion, expressed as:

uX×Y = uXuY . (13)

A problem with this approach is that it in general produces less uncertainty than
intuition would dictate.
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2. The Method of Assumed Uncertainty Mass: A method that preserves more un-
certainty is to consider the belief mass from Eq.(10) and Eq.(11) as potential un-
certainty mass that together with the uncertainty mass from Eq.(12) can be called
intermediate uncertainty mass. The intermediate uncertainty mass is thus:

uI
X×Y = uRows

X×Y + uColumns
X×Y + uFrame

X×Y (14)

The probability expectation values of each singleton in the product frame can easily
be computed as the product of the expectation values of each pair of states fromX
and Y , as expressed in Eq.(15).

E((xi, yj)) = E(xi)E(yj)
= (bX(xi) + aX(xi)uX)(bY (yj) + aY (yj)uY ) (15)

We also require that the probability expectation values of the states in the product
frame can be computed as a function of the product opinion according to Eq.(16).

E((xi, yj)) = bX×Y ((xi, yj)) + aX(xi)aY (yj)uX×Y (16)

In order to find the correct uncertainty mass for the product opinion, each state
(xi, yj) ∈ X×Y will be investigated in turn to find the smallest uncertainty mass
that satisfies both Eq.(16) and Eq.(17).

bIX×Y ((xi, yj))
uI
X×Y

=
bX×Y ((xi, yj))

uX×Y
(17)

The uncertainty mass that satisfies both Eq.(16) and Eq.(17) for state (xi, yj) can
be expressed as:

u
(i,j)
X×Y =

uI
X×Y E((xi, yj))

bIX×Y ((xi, yj)) + aX(xi)aY (yj)uI
X×Y

(18)

The product uncertainty can now be determined as the smallest u(i,j)
X×Y among all the

states, expressed as:

uX×Y = min
{
u

(i,j)
X×Y where (xi, yj) ∈ X×Y

}
(19)

3.2 Determining Belief Mass

Having determined the uncertainty mass, either according to Eq.(13) or according to
Eq.(19), the expression for the product expectation of Eq.(15) can be used to compute
the belief mass on each element in the product frame, as expressed by Eq.(20).

bX×Y ((xi, yj)) = E((xi, yj))− aX(xi)aY (yj)uX×Y (20)

It can be shown that the additivity property of Eq.(21) is preserved.

uX×Y +
∑

(xi,yj)∈X×Y

bX×Y ((xi, yj)) = 1 (21)

From Eq.(20) it follows directly that the product operator is commutative. It can also be
shown that the product operator is associative.
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4 Example

We consider the scenario where a GE (Genetic Engineering) process can produce Male
(M) or Female (F) eggs, and that in addition, each egg can have genetical mutation S or
T independently of its gender. This constitutes two binary framesX = {M,F} and Y =
{S,T}, or alternatively the quaternary product frame X×Y = {MS,MT,FS,FT}.
Sensor A observes whether each egg is M or F, and SensorB observes whether the egg
has mutation S or T.

Assume that an opinion regarding the gender of a specific egg is derived from Sen-
sor A data, and that an opinion regarding its mutation is derived from Sensor B data.
Sensors A and Sensor B have thus observed different and orthogonal aspects, so their
respective opinions can be combined with multiplication. This is illustrated in Fig.2.

The result of the opinion multiplication can be considered as an opinion based on a
single observation where both aspects are observed at the same time. Let the observation
opinions be:

Gender ωA
X :

⎧⎨⎩
�bAX = (0.8, 0.1)
uA

X = 0.1
�aA

X = (0.5, 0.5)
Mutation ωB

Y :

⎧⎨⎩
�bBY = (0.7, 0.1)
uB

Y = 0.2
�aB

Y = (0.2, 0.8)
(22)

The Cartesian product frame can be expressed as:

X × Y =
(

MS, FS
MT, FT

)
(23)

According to Eq.(15) the product expectation values are:

E(X×Y ) =
(

0.629, 0.111
0.221, 0.039

)
(24)

Below are described the results of both methods proposed in Sec.3.1.

1. When applying the method of Assumed Belief Mass where the uncertainty mass is
determined according to Eq.(13), the product opinion is computed as:

bX×Y =
(

0.627, 0.109
0.213, 0.031

)
, uX×Y = 0.02, aX×Y =

(
0.1, 0.4
0.1, 0.4

)
(25)

Sensor A

Sensor B

Multiplication Product opinion about egg

Opinion about gender

Opinion about mutation

Fig. 2. Multiplication of opinions on orthogonal aspects of GE eggs
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2. When applying the method of Assumed Uncertainty where the uncertainty mass is
determined according to Eq.(18) and Eq.(19), the product opinion is computed as:

bX×Y =
(

0.620, 0.102
0.185, 0.003

)
, uX×Y = 0.09, aX×Y =

(
0.1, 0.4
0.1, 0.4

)
(26)

The results indicate that there can be a significant difference between the two meth-
ods, and that the safest approach is to use the assumed uncertainty method because it
preserves the most uncertainty in the product opinion.

5 Discussion and Conclusion

Multiplication of multinomial opinions is useful in many situations, such as when com-
bining input from sensors that observe different aspects of a target. Two methods for
computing the product of multinomial opinions are presented in this paper, where the
method of assumed uncertainty is recommended because it preserves the most uncer-
tainty and thereby better reflects the uncertainty of the input arguments.

Subjective opinions are related to general bbas. One of the differences is that a bba
can assign belief mass to any subset of a frame, whereas an opinion can only assign
belief mass to singletons and to the whole frame. The other difference is that bbas do
not include base rates, whereas opinions do. Consequently opinions represent both a
subset of, and an extension of general bbas.

Opinions can be derived from bbas if it can be assumed that base rates can be defined
separately [4]. It is thus possible to use general bbas as input to subjective logic models
in general and to multiplication of opinions in particular.

The advantage of subjective logic over traditional probability calculus and proba-
bilistic logic is that real world situations can be modeled and analyzed more realistically.
The analyst’s partial ignorance and lack of information can be taken explicitly into ac-
count during the analysis, and explicitly expressed in the conclusion. When used for
decision support, subjective logic allows decision makers to be better informed about
uncertainties affecting the assessment of specific situations. At the same time subjective
logic is compatible with traditional statistical analysis.

While the belief representation of opinions is less flexible than that of general bbas, it
has the advantage that traditional statistical analysis can be directly applied and that the
set of operators such as conditional deduction and abduction can be used for modeling
Bayesian networks and the transitivity operator can be used to model trust networks.
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Abstract. This paper deals with the evaluation of a piece of informa-
tion when successively reported by several agents. It describes a model
based on the Theory of Evidence in which the evaluation of a reported
piece of information is defined by a plausibility degree and depends on
validity degrees of agents which report it.
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1 Introduction

Before making a decision, any rational agent tries to know what is the current
state of the world. For doing so, the agent has to acquire information about the
current state of the world and this can be done by different ways. First, the agent
can itself acquire information if it has got the capacity for doing so. For instance,
in order to know if I take my umbrella before going out, I can glance at the sky
through the window. The agent can also get information it needs via another
agent which can provide it. For instance, in order to know if I take my umbrella
before going out, I can look at the web site of Météo-France. Sometimes, the
process is more complex and the agent gets information it needs via a long chain
of agents. This is the case when, in order to know if I take my umbrella before
going out, I read in my newspaper, the forecast provided by Météo-France. Or
when I ask my neighbour to read the forecast in his newspaper. Here, between
the agent which provides the report (Météo-France) and I who need it, there is a
sequence of agents: the newspaper, the neighbour, each one in its turn reporting
information to the next one.

Once a piece of information is acquired, the problem of evaluating it, i.e.
evaluating its truth, cannot be ignored. This means asking the question: how
true is this piece of information ? If it is not easy to answer this question when
the report is acquired via another agent, it is even less when it is reported by
several successive agents. Indeed, how can I estimate how true is the report
”rainy weather today” given by my neighbour after he reads in his newspaper
the forecast provided by Météo France ?

The question of computing the evaluation of a piece of information reported by
several successive agents is the object of this paper. Our objective is to propose

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 258–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a method for characterizing information evaluation by taking into account some
properties of agents. Furthermore, in order to be as general as possible, we
consider that information evaluation is not a binary value. Consequently, we use
the Theory of Evidence as model.

This paper is organized as follows. Section 2 presents some works we drew
inspiration from. Section 3 presents our model. Finally, section 4 is devoted to a
discussion, points outs the limitations of this work and its possible extensions.

2 State of the Art

A domain in which the question of information evaluation is very important is
military Intelligence. For this reason, NATO has defined a standard in order
to guide intelligence officers to associate information with its evaluation [11].
According to this standard, this evaluation is a pair of two values. The first one
corresponds to the reliability degree of the source which provides the piece of
information and the second value refers to the information credibility. Informal
comments define such values. More precisely, the reliability degree of a source
depends on how, from its past use, we can trust the source for delivering true
information. The credibility degree of a piece of information depends on the fact
that it is confirmed or not by several sources and also depends on the fact that
it is more or less in conflict with other information.

This way of defining information evaluation has been criticized in [4] where it
is shown that the two values are not independent.

Several proposals have been proposed in order to circumvent the main limi-
tations of the NATO guidelines [4], [9]. For instance, [9] suggests to define the
overall confidence in a reported information by taking into account not only
the source reliability and information credibility but also information plausibil-
ity and the source competence. Information plausibility refers to the degree of
match between a reported information and our knowledge of the world. The
furthest information is from what we know about the world, the less plausible
information is. The source competence is generally topic dependent and refers to
the skills, experience of the source with regard to the topic tackled by informa-
tion it reports. However none of the proposals deals with reported information
as informally defined in introduction and which is precisely the main point of
interest of this article.

As far as we know, the work described in [8] is the only one which studies the
case of reported information. This work considers French Press Agency (AFP)
dispatches, each press dispatch being represented by a sentence, the most rep-
resentative one, which can mention several successive sources like, for instance:
”President X said that country Y is probably developing nuclear power”. Here,
AFP reports ”country Y is probably developing nuclear power” reported by X.
In this work, parameters which are considered as having an influence on the
evaluation of such information are: the quality of the source, which can be de-
fined from its past use if the source is already known, or be defined a-priori if
we know which type the source is. Notice that this notion of quality is close to
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the notion of reliability already mentioned; the opinion of the source on its own
report which is drawn from text analysis and in particular, from the analysis
of the subjective modalities mentioned in the report such ”I am certain that
...” or ”this is highly probable”, ”this is impossible”, ”I am fearing that ...”...;
relations which may exist between the agent which makes the report and agents
mentioned in this report; relations which may exist between successive sources.
Such relations can be neutral, hostile or well-willing. For instance, in case of non
neutral relation, the source may make a non sincere report, thus propagating a
piece of information it knows to be false.

We have also found interesting contributions in the domain of logic. Among
them, [7] and [2] are worth mentioning.

In his work about the notion of trust, [7], R. Demolombe studies the relations
which exist between a piece of information, its truth and the mental attitudes
of the agent which produces this piece of information. The formalism he uses is
a modal logic, [3], some operators of which are: Bi (Bip means “agent i believes
that p”), Ij

i (Ij
i p means “agent i informs agent j that p”). Operator Bi obeys

KD system which is quite usual for beliefs and operator Ij
i only obeys rule

of equivalence substitutivity. Before focusing on the notion of trust which is
his main subject, the author defines several properties agents can have, called
epistemic properties, among which the following are interesting for our problem:

– Sincerity: Agent i is sincere with regard to j for information p iff, if i informs
j that p, then i believes p. I.e. a sincere agent believes what he says. Thus
sincere(i, j, p) ≡ Ij

i p→ Bip.
– Competence Agent i is competent about p iff, if i believes p, then p is true. I.e.

the beliefs of a competent agent are true. Thus competent(i, p) ≡ Bip→ p.
– Validity: Agent i is valid with regard to j for p iff, if i informs j about p,

then p is true. I.e. a valid agent tells the truth. Thus valid(i, j, p) ≡ Ij
i p→ p.

Thus we have: sincere(i, j, p) ∧ competent(i, p)→ valid(i, j, p).
In [2], Ph. Capet also uses modal logic to characterize the ability of agents

for lying. Several definitions of lies are proposed, from the simplest and thus the
most questionable one to the richest one. Besides the operators Bi and Ij

i
1, he

considers an intention operator Inti, where Intiφ means that agent i intends
that φ. The three definitions successively given in the thesis are:

– (1) lies(i, j, p) ≡ Ij
i p∧¬p. According to this definition, agent i lies when he

tells some other agent j something which is false. This is a bit strong and it
can be shown that this definition characterizes in fact a notion of “untruth”.
This is the case of forecasts found on an odd web site and which happen to
be false. One cannot consider that this site lies, but we can conclude that
this site is not valid (according to Demolombe’s terminology) at least for p.

– (2) lies(i, j, p) ≡ Ij
i p ∧ Bi¬p. According to this definition, and agent i

lies when he tells some other agent j something he himself does not believe.
However this definition does not consider the j’s intention. This is why it is
refined in:

1 The author denotes it Aj
i but we prefer to re-use the previous notation.
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– (3) lies(i, j, p) ≡ Ij
i p∧Bi¬p ∧ IntiBjp. According to this definition, agent

i lies when he tells some other agent j something he does not believe and
when he intends that j believes it. This definition can also be refined by
assuming an inference mechanism in j, say:

– (3′) lies(i, j, p) ≡ Ij
i p ∧ Bi¬p ∧ IntiBjf(p) where f(p) is a fact which

depends on p such as p ∧ q, ¬p etc. This is the case for instance when an
expert reports that the leak in the nuclear plant will have no consequence on
water pollution to make people believe that nuclear plants are safe even if
he thinks the contrary.

The two previous works are worth mentioning since they clarify some properties
of information sources in regard with their ability of telling true information or
telling false information.

In recent works, [6], D. Dubois and T. Denoeux address very close questions
by using the Theory of Evidence [10]. In this theory, the concept which corre-
sponds to the notion of evaluation is the concept of plausibility. In their work,
the authors propose a mechanism for computing the plausibility of a piece of
information which is emitted by an agent i given our uncertain belief about i’s
reliability. In this work, the reliability of an agent is defined by its relevance and
its sincerity. For Dubois and Denoeux, an agent is relevant if it is competent in
the topic of the piece of information it provides; an agent is sincere if it does not
lie (a non-sincere agent says the opposite of what it believes). Thus Dubois and
Denoeux’s notion of “reliability” and Demolombe’s notion of “validity” are very
close, despite being modelled in different formalisms.

Consider that an agent i provides information φ. The belief one has about i’s
reliability is used in Dubois and Denoeux’s model as follows. If i is not competent
in the topic of φ, then φ is replaced by the tautology φ ∨ ¬φ; If i is competent
in the topic of φ, then, if it is sincere then we keep φ, else φ is replaced by ¬φ.

Competence and sincerity can be considered as two independent notions.
Thus, if p is the probability of i’s being competent and q is the probability of i’s
being sincere, then the plausibility of φ can be shown to be equal to p.q+ 1− p.

In their work, Dubois and Denoeux assume that any piece of information is
provided by a single agent. They do not assume that information is reported
by several successive agents. However, like Dubois and Denoeux, we think that
the Theory of Evidence is an interesting formalism when one has to deal with
uncertainty. In what follows, we show how we use the Theory of Evidence to deal
with graded validity (we prefer to use this term instead of the term reliability)
and how to get a graded plausibility of reported information.

3 Modelisation in the Theory of Evidence

In this section, we suggest to model our problem in the framework of the Theory
of Evidence. This choice is justified by the fact that this formalism offers two
interesting concepts which are the concept of mass assignment, which allows
us to express degrees of beliefs on information and the concept of plausibility
function which will allow us to quantify the evaluation of a piece of information.
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We assume that the reader is familiar with the Theory of Evidence and also
with the propositional logic.

3.1 First Case: One Agent

In this first case, we consider that an agent i reports a piece of information φ.
This is denoted Riφ. The question we deal with is: how true is φ ? In order to
answer this question, we take as a starting point the notion of validity introduced
by Demolombe in [7] and we generalize it in the framework of the Theory of
Evidence, thus expressing a graded validity.

We consider a propositional language the two letters of which are: φ and Riφ,
representing respectively the facts “information φ is true” and “agent i reported
information φ”. The four interpretations of this language are {w1, w2, w3, w4}.
w1 represents the situation in which i has reported information φ and φ is true.
It is denoted w1 = {Riφ, φ}; w2 represents the situation in which i has reported
information φ and φ is false. It is denoted w2 = {Riφ,¬φ}; w3 represents the
situation in which i did not report information φ and φ is true. It is denoted w3 =
{¬Riφ, φ}.; w4 represents the situation in which i did not report information φ
and φ is false. It is denoted w4 = {¬Riφ,¬φ}. We consider as discernment frame,
the set Θ = {w1, w2, w3, w4}.
Definition 1. Consider an agent i and a piece of information φ. We consider
that i is valid for φ at the degree di, di ∈ [0, 1], written valid(i, φ, di) if and only
if our beliefs can be modelled by the mass assignment mv(i,φ,di) defined by:

mv(i,φ,di)(w1 ∨ w3 ∨ w4) = di

mv(i,φ,di)(w2 ∨ w3 ∨ w4) = 1− di

Let us recall that assigning a mass on a disjunction of wi is equivalent to assigning
this mass on any propositional formula satisfied by all the wi in the disjunction.
The equivalence is proved in [5]). Consequently, the mass assignment defined in
the previous definition can be reformulated by:

mv(i,φ,di)(Riφ→ φ) = di

mv(i,φ,di)(Riφ→ ¬φ) = 1− di

Thus, according to definition 1, we consider that i is valid for φ at the degree di

if and only if the degree of our beliefs in the fact that, “if i reports φ then φ is
true” is di and the degree of our belief in the fact “if i reports φ then φ is false”
is 1− di.

In this work, we consider that for any agent i and any information φ, degree
di is unique. This means that we implicitly assume that the current environment
in which we evaluate the validity does not influence our evaluation of it. This is
obviously simplistic.

The following particular cases are worth detailing:

– (di = 1) We say that i is valid for φ if and only if i is valid for φ at the
degree 1. Thus we have mv(i,φ,1)(Riφ→ φ) = 1. I.e. we are certain that if i
reports φ then φ is true.
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– (di = 0) We say that i is invalid for φ if and only if i is valid for φ at the
degree 0. Thus we have mv(i,φ,0)(Riφ→ ¬φ) = 1. I.e. we are certain that if
i reports φ then φ is false.

Definition 2. We denote mRiφ the mass assignment defined by: mRiφ(Riφ) = 1
(or equivalently, mRiφ(w1 ∨ w2) = 1)

The mass function defined by this definition represents the fact that, for sure,
agent i has reported information φ.

Definition 3. Let us consider that agent i is valid for φ at the degree di. After
i reports φ, our beliefs are modelled by the mass assignment m obtained by
Dempster’s combination of mv(i,φ,di) and mRiφ. I.e.,

m = mv(i,φ,di) ⊕mRiφ

Notice that we have:

m(Riφ ∧ φ) = di

m(Riφ ∧ ¬φ) = 1− di

Definition 4. Consider that agent i, valid for φ at degree di, reports φ. Thus
the evaluation of information ψ is defined by: pl(ψ) where pl is the plausibility
function associated with the mass assignment m.

According to this definition, we define the evaluation of any piece of informa-
tion by its plausibility as given by the plausibility function associated with the
mass assignment m. In particular, we have:

Proposition 1. pl(φ) = di

Thus, the evaluation of a reported piece of information is the degree of validity of
the agent which reported it. The higher this degree the higher this evaluation is.

Proposition 2. pl(¬φ) = 1− di

Consequently, if di > 0.5, φ is more plausible than ¬φ.
It must be noticed that the mass function m given by definition 3, which

models our beliefs after agent i, valid for φ at the degree di reports φ, is identical
to the mass function defined obtained by Dubois and Denoeux’s model [6] if one
considers an agent i reporting information φ, where i is supposed to be totally
competent and sincere at the degree di.

3.2 Second Case: Two Agents

Here, we consider that agent j reports that agent i has reported φ. This is
denoted: RjRiφ. The question is: how true is φ ? or saying it differently, what
is the influence of validity degrees of i and j on the evaluation of φ ?

Now, we consider a propositional language the letters of which are: φ, Riφ,
and RjRiφ. This language has got 8 interpretations w1...w8. The frame of
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discernment is the set Θ = {w1, ...w8}. We do not detail these wi because,
as before, we will assign mass on formulas and not on disjunctions of wi.

Definition 5. Consider that RjRiφ, valid(i, φ, di) and valid(j, Riφ, dj). Then,
our beliefs are defined by the mass assignment denoted m defined by:

m = mv(i,φ,di) ⊕mv(j,Rjφ,dj) ⊕mRjRiφ

Thus, when RjRiφ, our beliefs are defined by combining, by Dempster’s rule of
combination: our beliefs on the fact that i is valid at the degree di and our beliefs
on the fact that j, known to be valid at the degree dj has reported information
Riφ.

Proposition 3

m(RjRiφ ∧Riφ ∧ φ) = di.dj

m(RjRiφ ∧Riφ ∧ ¬φ) = (1 − di)dj

m(RjRiφ ∧ ¬Riφ) = 1− dj

Proposition 4

pl(φ) = (di − 1).dj + 1
pl(¬φ) = 1− didj

The two following cases are worth examining:

– (dj = 1) In this case, valid(j, Riφ, 1). Thus we get pl(φ) = di and pl(¬φ) =
1− di. We come to the “one agent” case (see before).

– (dj = 0) In this case, valid(j, Riφ, 0), i.e. Riφ is false. We have: pl(φ) = 1
and pl(¬φ) = 1. Thus we cannot decide among φ and ¬φ which is the most
plausible.

Proposition 5. pl(φ) > pl(¬φ)⇐⇒ dj �= 0 and di > 0.5
I.e. we can conclude that φ is strictly more plausible than ¬φ iff j is not in-

valid, and i is valid at a degree strictly higher than 0.5.

Example. Let us illustrate this on the example given in introduction. Consider
that the reports about the weather are given to me by my neighbour who read
them in his newspaper. If I consider that my neighbour is valid (i.e. he really tells
me what he reads in his newspaper) and if I consider his newspaper valid (the
forecast is always true in this newspaper) then, I can conclude that the forecast
my neighbour gives me is true. If I consider that my neighbour is valid (i.e. he
really tells me what he reads in his newspaper) and if I consider his newspaper
invalid (the forecast is always false in this newspaper), then, I can conclude that
the forecast my neighbour gives me is false. But If I consider that my neigh-
bour is invalid (i.e he does not tell me what he reads in his newspaper because
for instance the newspaper were not distributed today) I cannot conclude: the
forecast he reports may be true but it may be false as well.
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3.3 General Case

We consider here the case when agent in reports that agent in−1 has reported
that agent ..... i1 has reported φ. This is denoted Rin ...Ri1φ. The question is
again the influence of the degrees of validity of agents on the evaluation of
information.

We consider a propositional language the n + 1 letters of which are φ, Ri1φ,
Ri2Ri1φ, ..., Rin ...Ri1φ. This language has got 2n+1 interpretations which form
the frame of discernment we consider but we do not detail them because, as
before, we assign masses to formulas.

Definition 6. Assume Rin ...Ri1φ, valid(i1, φ, d1), valid(i2, Ri1φ, d2),..,
valid(in, Rin−1 ...Ri1φ, dn). Then, our beliefs are defined by the following mass
assignment:

m = mv(i1,φ,d1)⊕...mv(in−1,Rin−2 ...Ri1φ,dn−1)⊕mv(in,Rin−1 ...Ri1φ,dn)⊕mRin ...Ri1φ

By this definition, when Rin ...Ri2Ri1φ, our beliefs are defined by combining: our
beliefs in the fact that i1 is valid at degree d1 and ....; our beliefs in the fact
that in−1 is valid at degree din−1 and our beliefs in the fact that in, known to
be valid at degree din has reported Rin−1 ...Ri2Ri1φ.

Proposition 6

pl(φ) = (d1 − 1).d2...dn + 1
pl(¬φ) = 1− d1...dn

Proposition 7. pl(φ) > pl(¬φ)⇐⇒ ∀i = 2...n di �= 0 and d1 > 0.5
I.e. we can conclude that φ is strictly more plausible than ¬φ iff i2 ... in are not
invalid and i1 is valid at a degree strictly greater than 0.5.

4 Discussion

The main contribution of our paper is a model for characterizing the evaluation
of reported information. This model assumes that the evaluation of reported in-
formation mainly depends on the ability of the reporting agents to report some-
thing true or to report something false. More precisely, it depends on the degree
at which the reporting agents are reporting something true (i.e. are valid). The
Theory of Evidence is used to express this model and its notion of plausibility
allows us to characterize the evaluation of reported information.

This work takes credit for addressing a problem which has received little
attention. However, many assumptions we made could be relaxed.

For instance, we could enrich the model by adding a supplementary level of
uncertainty for representing our uncertain belief about the reported information
itself. Indeed here, we assume that for sure, we face a reported information
(see definition 2). The mass assignment mRiφφ could be extended to express
uncertainty as follows: mRiφφ(Riφ) = x and mRiφ(Θi) = 1− x, for x �= 1.
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We also have to study the parameters which influence the degrees at which
agents report true information (i.e. their degree of validity). This paper considers
these degrees as given, but in real application, we will have to provide guides
to define them. For doing so, it will be necessary to take into account more
knowledge about reporting agents.

As for the different choices we make (choices of a combination method for
combining assignments defined on the same frame, choice of a method for com-
bining assignments defined on different frames...), each of them can be discussed.
Analysing the plausibility function we would get by making other choices defines
an interesting research direction.

Another interesting open issue is to extend the type of information reported by
the agents. In particular, we are currently investigating means of handling infor-
mation of the type “agent i reports that he believes that φ is highly probable”.

Finally, in the immediate future, we are going to study a variant of the present
model in which the degree of validity will be splitted in two independent degrees:
the degree of validity of a source as well as its degree of invalidity.
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Abstract. A fuzzy relation R between elements from two finite uni-
verses is considered. Granules of R created by pairs of subsets from the
two universes are evaluated. A rough extension of R based on a general-
ized rough set model is proposed. This extension allows us to introduce
the notions of R-related sets, strongly R-related sets and R-compatible
sets. R-related sets can be further used for evaluations of R-relationship
between partitions of elements from two related universes.

Keywords: fuzzy relation, rough sets, aggregation functions, granula-
tion, approximation, decision making.

1 Introduction

Granulation involves decomposition of whole to parts. In the early eighties
Pawlak introduced the theory of rough sets [3] which quickly became one of the
most important mathematical frameworks in granular computing [9,10,11,12].
The basic structure of rough set theory is an approximation space consisting
of the universe of discourse U and an equivalence relation defined on U . The
equivalence relation and the induced equivalence classes may be regarded as the
available information (knowledge base) for approximation of an arbitrary subset
X of U . The lower approximation is the union of all equivalence classes included
in X and the upper approximation is the union of all equivalence classes having a
non-empty intersection with X . The lower and the upper approximations create
a rough set. Many generalizations and modifications of rough sets theory have
been proposed [4,5,8].

We refer to the generalization suggested by Yao, Wong and Wang [7]. In their
model the equivalence relation on the single universe is replaced by an arbitrary
binary relation between two universes. We use this model in order to answer the
following question arising in applications: If two finite universes U and W are
connected by a fuzzy relation R, to what degree is a concept defined on U related
to a concept defined on W? If concepts are precise (e.g., well defined categories
of some external attributes observed or measured on U and W ) they can be
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represented by crisp subsets of U and W . We focus on gradual evaluation of the
relationship of a subset X from U to a subset Y from W . We evaluate the degree
to which X is related (R-related) to Y at a level of importance α ∈ (0, 1] by using
the generalized rough set approximation of Y in knowledge base (approximation
space) created by elements from W to which elements from X are related at
least to the degree α.

In Section 2 we propose a rough extension of a fuzzy relation R between
two universes to an interval-valued fuzzy relation between subsets from the two
universes considering a level α ∈ (0, 1]. Then we introduce the notions of Rα-
related sets, strongly Rα-related sets and Rα-compatible sets and we discuss
some of their properties. Overall evaluation of the R-relationship between two
related sets can be obtained by aggregation of their Rα-relationships over all
α ∈ (0, 1] by an appropriate aggregation function [2]. The choice of aggregation
function depends on the area of application. In Section 3 we explain how R-
related sets can be used in a quick (rough) assessment of the relationship between
partitions of elements from two related universes. We conclude our paper with
an illustrative example in Section 4.

2 Rough Extension of a Fuzzy Relation

2.1 Related Sets and Strongly Related Sets

Let U and W be finite nonempty universes of discourse. The family of all crisp
subsets of U and the family of all fuzzy subsets of U will be denoted by 2U and
F(U), respectively. A fuzzy set R ∈ F(U ×W ) is referred to as a fuzzy relation
from U to W . The value of R(x, y) gives the strength of the relationship of an
element x ∈ U to an element y ∈ W . A pair of sets (X,Y ) ∈ 2U × 2W induces
granule RXY of R, which is the fuzzy relation R restricted to the Cartesian prod-
uct X × Y ⊂ U ×W . A numerical evaluation of granule RXY gives information
about the strength of the relationship between X and Y . Some evaluations based
on aggregation of membership grades of RXY by two aggregation functions were
examined in [1].

In this paper we consider approximation of R by its crisp α-level sets Rα, α ∈
(0, 1]. Let us recall that Rα ⊂ U × W is defined as follows: for all (x, y) ∈
U ×W, Rα(x, y) = 1 if R(x, y) ≥ α and R(x, y) = 0 otherwise. Then, regardless
of the area of application, we say that x is related to y at level α (or simply
Rα-related) if Rα(x, y) = 1. For each x ∈ U the Rα-neighborhood of x is the set

rα(x) = {y ∈W : Rα(x, y) = 1}. (1)

Then, using the generalized rough set model [7], a set Y ∈ 2W can be represented
in terms of elements from U which are Rα-related with elements in Y by pair of
sets

Rα, Y = {x ∈ U : rα(x) ⊂ Y }, (2)

Rα, Y = {x ∈ U : rα(x) ∩ Y �= ∅}. (3)
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The sets Rα, Y and Rα, Y are called the lower and the upper approximations of
Y , respectively. The pair (Rα, Y , Rα, Y ) is called a generalized rough set. Several
other generalizations of the rough set model over two universes were suggested
in [6]. In applications, α may be interpreted as the level of importance. Further
in this paper we will use notations |.| for cardinality of a set, N for the set of
all positive integers and Y c for the complement of Y . We propose the following
rough extension of R at level α ∈ (0, 1].

Definition 1. Let R ∈ F(U ×W ) and α ∈ (0, 1]. Then the mapping
ψα

R : 2U×2W → [0, 1]2 defined for all (X,Y ) ∈ 2U×2W by (ψα

R
(X,Y ), ψ

α

R(X,Y ))
where

ψα

R
(X,Y ) =

|Rα, Y ∩X |
|X | , (4)

ψ
α

R(X,Y ) =
|Rα, Y ∩X |
|X | , (5)

will be called the rough extension of R at level α.

Note that ψα

R
(X,Y ) is the proportion of elements from X which have all their

Rα-related elements from W included in Y . It can be interpreted as the degree
to which X is strongly Rα-related to Y (or necessity that X is R-related to Y
at level α.) On the other hand ψ

α

R(X,Y ) is the proportion of elements from X
which have at least one of their Rα-related elements from W included in Y . It
can be interpreted as the degree to which X is Rα-related to Y (or possibility
that X is R-related to Y at level α.) In the case of single element sets X = {x}
and Y = {y} we have that ψ

α

R(x, y) = Rα(x, y).

Definition 2. Let R ∈ F(U ×W ), α ∈ (0, 1] and (X,Y ) ∈ 2U × 2W . We say
that X is Rα-related to Y if ψ

α

R(X,Y ) = 1. We say that X is strongly Rα-related
to Y if ψα

R
(X,Y ) = 1.

Proposition 1. Let R ∈ F(U×W ). For all (X,Y ) ∈ 2U×2W and all α ∈ (0, 1]
the following hold:
i) ψα

R(X,Y ) = (1, 1) if and only if for all x ∈ X : R(x, y) ≥ α⇒ y ∈ Y ,
ii) ψα

R(X,Y ) = (0, 1) if and only if for each x ∈ X there exist y1 ∈ Y
and y2 ∈ Y c such that R(x, y1) ≥ α and R(x, y2) ≥ α,

iii) ψα
R(X,Y ) = (0, 0) if and only if R(x, y) < α for all (x, y) ∈ X × Y .

Proposition 2. Let α ∈ (0, 1]. Consider fuzzy relations R,R1 ∈ F(U ×W ) and
a pair of subsets (X,Y ) ∈ 2U × 2W . Then
i) if R1(x, y) ≤ R(x, y) for all (x, y) ∈ X × Y we obtain that

ψ
α

R1
(X,Y ) ≤ ψα

R(X,Y ),

ii) if R1(x, y) ≤ R(x, y) for all (x, y) ∈ X × Y and R1(x, y) ≥ R(x, y) for all
(x, y) ∈ X × Y c we obtain that

ψα

R1
(X,Y ) ≤ ψα

R
(X,Y ).
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Proposition 3. Let R ∈ F(U×W ). For all (X,Y ) ∈ 2U×2W and all α ∈ (0, 1]
we have that

ψα

R
(X,Y ) + ψ

α

R(X,Y c) = ψ
α

R(X,W ). (6)

From equation (6) it follows that if ψ
α

R(X,W ) = 1, i.e., X is Rα-related to the
whole universe W then

ψα

R
(X,Y ) = 1− ψα

R(X,Y c), (7)

which is a well known relationship in rough set theory. This property can be used
for evaluation of ψα

R
(X,Y ) when ψ

α

R(X,Y ) is known. For convenient evaluation
of ψ

α

R(X,Y ) we can use the formula

ψ
α

R(X,Y ) =
∑

x∈X maxy∈Y (Rα(x, y))
|X | . (8)

Proposition 4. Consider R ∈ F(U × W ), (X,Y ) ∈ 2U × 2W and α1, α2 ∈
(0, 1] such that α1 ≤ α2. Then ψ

α1

R (X,Y ) ≥ ψ
α2

R (X,Y ), and if ψ
α1

R (X,W ) =
ψ

α2

R (X,W ) then also ψα1

R
(X,Y ) ≤ ψα2

R
(X,Y ).

Proposition 5. Let R ∈ F(U ×W ). For all (X,Y ) ∈ 2U × 2W , all D ⊂ Y and
all α ∈ (0, 1] we have that ψα

R
(X,D) ≤ ψα

R
(X,Y ) and ψ

α

R(X,D) ≤ ψα

R(X,Y ).

From Proposition (5) it follows that if ψ
α

R(X,Y ) = 1 then ψ
α

R(X,Z) = 1 for all
Z ⊃ Y . Note that for a nonempty C ⊂ X we may obtain ψ

α

R(C, Y ) ≥ ψα

R(X,Y )
or ψ

α

R(X,C) ≤ ψ
α

R(X,Y ). However, if ψ
α

R(X,Y ) = 1 then ψ
α

R(C, Y ) = 1 for all
∅ �= C ⊂ X .

Proposition 6. Let R ∈ F(U ×W ). For all (X,Y ) ∈ 2U × 2W and α ∈ (0, 1]

ψ
α

R(X,Y ) =

⎧⎨⎩1 if α ≤ minx∈X(maxy(R(x, y)),
0 if α > max(x,y)∈X×Y (R(x, y)),
δ ∈ (0, 1) otherwise.

(9)

There is a variety of ways to obtain an overall evaluation evalR(X,Y ) from
gradual evaluations evalαR(X,Y ), α ∈ (0, 1]. For example, if for all α1, α2 ∈ (0, 1]
we have that evalα1

R ≥ eval
α2
R when α1 ≤ α2 then

evalR(X,Y ) = max{α : evalαR(X,Y ) = 1}. (10)

If evalα1
R ≤ eval

α2
R when α1 ≤ α2 then

evalR(X,Y ) = min{α : evalαR(X,Y ) = 1}. (11)

If we want to take into account different weights of evalαR(X,Y ) at different
levels α, we can use formula

evalR(X,Y ) =
k∑

t=1

(αt − αt+1)evalαt

R (X,Y ), (12)

where 1 = α1 > α2 > . . . > αk > αk+1 = 0, k ∈ N, is a sequence which includes
all distinct membership grades of granule RXY .
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2.2 Compatible Sets

The inverse relation of R ∈ F(U ×W ) is relation R−1 ∈ F(W × U) such that
R−1(y, x) = R(x, y) for all (y, x) ∈ W × U . We may also evaluate the degree to
which Y ∈ 2W is R−1

α -related to X ∈ 2U .

Definition 3. Let R ∈ F(U ×W ) and α ∈ (0, 1]. We say that X ∈ 2U and
Y ∈ 2W are Rα-compatible if X is Rα-related to Y and Y is R−1

α -related to X.
We say that X ∈ 2U and Y ∈ 2W are strongly Rα-compatible if X is strongly
Rα-related to Y and Y is strongly R−1

α -related to X.

The degrees of Rα-compatibility and strong Rα-compatibility between X ∈ 2U

and Y ∈ 2W can be evaluated by coefficients

γα
R(X,Y ) = min{ψα

R(X,Y ), ψ
α

R−1(Y,X)}, (13)

and
γα

R
(X,Y ) = min{ψα

R
(X,Y ), ψα

R−1(Y,X)}, (14)

respectively.
The degree of R-compatibility and the degree of strong R-compatibility between
X and Y can be evaluated by applying formula (12) to formulas (13) and (14),
respectively.

In some applications, especially when R represents relationships between re-
sources and goals, we might be interested in some special subsets of the related
sets in question. We introduce the notions of the core of a set from one universe
with respect to a set from another related universe.

Definition 4. Let R ∈ F(U ×W ), α ∈ (0, 1] and (X,Y ) ∈ 2U × 2W . Then the
subset of Y

Y α
core =

⋃
x∈X

rα(x) ∩ Y (15)

will be called the Rα-core of Y with respect to X. The subset of X

Xα
core =

⋃
y∈Y

r−1
α (y) ∩X (16)

will be called the R−1
α -core of X with respect to Y .

Proposition 7. Let R ∈ F(U ×W ), α ∈ (0, 1] and (X,Y ) ∈ 2U × 2W . Then
the following hold true:

ψ
α

R(X,Y ) = ψ
α

R(X,Y α
core), (17)

and
ψ

α

R−1(Y α
core, X) = 1. (18)

Analogous properties hold for R−1
α -core of X with respect to Y .
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3 Related Partitions

Now we consider a partition P consisting of clusters {P1, . . . , Pk} of elements
from U and a partition Q created by clusters {Q1, . . . , Qm} of elements from
W, k,m ∈ N . We can use the R-relationships of individual clusters from P to
individual clusters from Q for evaluation of R-relationship of P to Q.

In applications we encounter two basic types of partitions. Firstly, we may
have partitions where it is desirable to have the relationships of all clusters from
P to all clusters from Q as strong as possible. In this case we can evaluate the
relationship of P to Q by aggregation of overall evaluations

{evalR(Pi, Qj), Pi ×Qj ∈ P ×Q, i = 1, . . . k, j = 1, . . . ,m} (19)

by an aggregation function (e.g., arithmetic mean, minimum or maximum). If
evalR(Pi, Qj) is the degree of R-compatibility between clusters Pi and Qj then
by aggregation of (19) we obtain the degree ofR-compatibility between partitions
P and Q.

Secondly, we may have partitions of U and W with the same number of
clusters, say k, and we would like to have a good match of each cluster Pi ∈ P
to its corresponding cluster Qi ∈ Q, i = 1, . . . , k. Therefore we will evaluate the
degree of Rα-matching of P to Q by aggregation of overall evaluations

{evalR(Pi, Qi), Pi ×Qi ∈ P ×Q, i = 1, . . . , k} (20)

by a selected aggregation function. If evalR(Pi, Qi) is the degree ofR-compatibility
between clusters Pi andQi then by aggregation of (20) we obtain the degree ofR-
matching between partitions P and Q.

4 Application

Quantitative evaluations of relationship between sets of related elements pre-
sented in the previous sections can be used in all applications where the following
concept of gradual relationship is justified:

Considering R ∈ F(U ×W ), a set X ∈ 2U is related to a set Y ∈ 2W at level
α ∈ (0, 1], if each element x ∈ X is related to at least one element y ∈ Y to the
degree R(x, y) ≥ α. Formally,

X is Rα-related to Y ⇐⇒ min
x∈X

(max
y∈Y

R(x, y)) ≥ α.

If in addition max(R(x, y), (x, y) ∈ X × Y c) < α, then X is strongly Rα-related
to Y . Our method is based on simple calculations and provides clear interpreta-
tion of numerical results. We will illustrate it with the following example.

Example. The manager of a university tutoring center collected information
from students attending the center and tutors of mathematics working in the
center. Students were asked to describe their preferences for individual tutors on
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Table 1. Preference of students for tutors

x\y y1 y2 y3 y4 y5 y6

x1 0.6 0.5 0.4 0.6 0.4 1
x2 0.8 0.7 0.5 0.2 0.5 0.6
x3 0.5 0.7 1 0 0.2 0.3
x4 0.6 0.7 0.9 0.3 0 0.2
x5 0.4 0.6 1 0.8 0.7 0
x6 0.1 0.3 0.6 0.9 0 0.3
x7 1 0 0.5 0.5 0.5 0.5
x8 0.7 0.2 0.8 0.9 0.2 1
x9 0.3 0.6 0.2 0.4 0.3 0.7
x10 0.5 0.4 0.2 0.9 0.6 0.7

the scale [0, 1], where 0 means no preference and 1 indicates the full preference.
The results from a small set of students U = {x1, . . . , x10} and a small set
of tutors W = {y1, . . . , y6} are described by a fuzzy relation R ∈ F(U ×W ) in
Table 1. The manager also collected information about the major field of study of
students and tutors, using categories SC=science and NS=non-science, the most
convenient time for students to attend the center (M=morning, A=afternoon)
and the most convenient time for tutors to work in the center (M, A) in the
second half of the semester. He wants to answer the following questions:
Question 1. Are tutors from both groups (SC, NS) preferred reasonably well by
both groups of students (SC, NS)? Namely, is each group of tutors preferred by
each group of students at least to the degree 0.5?
Question 2. If two schedules of tutors are available for the second half of semester
(M, A working hours) which one is a better match with preferences of students
partitioned according to their most convenient time for attendance of the center?

Answer to Question 1: The threshold 0.5 can be interpreted as follows: It is
expected that each student will have in each group of tutors at least one tutor
preferred to the degree at least 0.5. If X is the set of students majoring in science
and Y is the set of tutors with a science major, we need to check whether

min(max{α : ψ
α

R(Xi, Yj) = 1}, Xi ∈ {X,Xc}, Yj ∈ {Y, Y c} ≥ 0.5.

In Table 2 we have results of evaluations of Rα-relationship of the set X =
{x1, x2, x3, x4} ⊂ U to the set Y = {y1, y2, y3} ⊂W, α ∈ (0, 1]}. Then

evalR(X,Y ) = max{α : ψ
α

R(X,Y ) = 1} = 0.6.

Table 2. Rα-relationship of X to Y

α (0, 0.3] (0.3, 0.6] (0.6, 0.8] (0.8, 0.9] (0.9, 1]
ψ

α

R(X, Y ) 1 1 3/4 2/4 1/4
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Analogously we can evaluate preferences of X to Y c (non-science tutors), Xc

(non-science students) to Y and finally Xc to Y c. We have the following results:
evalR(X,Y c) = 0.3, evalR(Xc, Y ) = 0.5 and evalR(Xc, Y c) = 0.5.

Because of the low degree of preference of students with science major for
tutors with non-science major (0.3), the manager’s expectations are not sat-
isfied. However, evaluations by formula (10) are influenced by extreme values
(outliers). The effect of outliers can be reduced by using for evaluation of the
overall preference formula (12). Then

ψR(X,Y ) = (1 − .9)
1
4

+ (0.9− 0.8)
2
4

+ (0.8− .6)
3
4

+ (0.6− 0)1 = 0.825,

which is the weighted average proportion of students from X who have at least
one preferred tutor in Y to the degree α ∈ (0, 1]. The values of ψR for pairs of
groups of students and groups of tutors are in Table 3. Then we conclude:

Table 3. Values of ψR

students\tutors Y Y c

X 0.825 0.55
Xc 0.75 0.80

Partition P of students according to their major field of study (science, non-
science) is R-related to the partition Q of mathematics tutors (science majors,
non-science majors) to the degree

ψ(P,Q) = min{0.825, 0.55, 0.75, 0.916}= 0.55.

This means that each group of students prefers each group of tutors at least to
the degree 0.55, which agrees with the manager’s expectations, if his threshold
0.5 is interpreted as follows: on average, at least 50 percent of students from each
group will have in each group of tutors at least one tutor preferred to the degree
α ∈ (0, 1]. We can see that the highest preference is in the group of students with
science majors for science mathematics tutors (0.825) followed by the preference
of students with non-science majors for non-science mathematics tutors (0.8).
Students with non-science majors show reasonable preference for science tutors
(0.75), but the preference of students with science majors for non-science tutors
is only moderate (0.55).

Answer toQuestion 2: We evaluateR-matching of partitionP of students given by
clusters P1 = {x3, x4, x5, x6} = morning hours and P2 = {x1, x2, x7, x8, x9, x10}
= afternoon hours to partitions Q and T of tutors according to their working
hours. Partition Q is created by clusters Q1 = {y2, y3, y4} = morning and Q2 =
{y1, y5, y6} = afternoon hours. Partition T is created by clusters T1 = {y1, y3, y6}
= morning and T2 = {y2, y4, y5} = afternoon hours.

Partition P matches partition Q to the degree

μ(P,Q) = min{ψR(P1, Q1), ψR(P2, Q2)} = min{0.95, 0.90} = 0.90.
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The degree of strong matching of P to Q is

μ(P,Q) = min{ψ
R

(P1, Q1), ψ
R

(P2, Q2)} = min{0.425, 0.2} = 0.2.

On the other hand, P matches T to the degree

μ(P, T ) = min{ψR(P1, T1), ψR(P2, T2)} = min{0.875, 0.70} = 0.70

and the degree of strong matching is

μ(P,Q) = min{ψ
R

(P1, T1), ψ
R

(P2, T2)} = min{0.175, 0.03}= 0.03.

Because μ(P,Q) > μ(P, T ) and also μ(P,Q) > μ(P, T ), the manager should
choose schedule Q.

5 Conclusion

Evaluation of relationships between crisp sets proposed in this paper can be
easily extended to evaluation of relationships between fuzzy sets. It is enough to
take into account that each fuzzy set can be represented by its crisp α-level sets.
Relationship between crisp or fuzzy concepts defined on two related universes can
be used in variety of applications, especially in decision making and approximate
reasoning.
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Abstract. The aim of this paper is to summarize our experiments for
discovering process of creation of traffic jams. These experiments were
conducted during work on our master theses. We obtained data sets from
the vehicular traffic simulator which were used to create a proper ontolo-
gy based on the domain knowledge. The ontology was used as a schema
for hierarchical classifier, which used Bayesian network created by genetic
algorithm and rough sets based methods.

Keywords: Granules, ontology, domain knowledge, ontology approxi-
mation, hierarchical classifier, rough sets, Bayesian network, time win-
dow, process mining, cellular automaton, traffic modelling.

1 Introduction

Discovering knowledge from real-life data is a hard task. Concepts to be learned
are vague, complex and often temporal. Their proper understanding requires
domain knowledge, which is not present in a given data set.

In this paper we present method for investigating process of creation of traffic
jam. First, we obtain data from the vehicular traffic simulator (2) then we encode
domain knowledge in the ontology which describes hierarchy of vague concepts
approximated by classifier. In our work, concepts and their approximations form
granule and granules from one level form higher level granules. This schema form
hierarchical classifier for predicting creation of traffic jams in the city. First two
levels of the hierarchy use rough-based classifiers, and the last one – Bayesian
network.

2 Traffic Simulation Framework

Traffic Simulation Framework (TSF) is a program for simulating traffic in cities.
Its functionality was described in details in [5].

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 278–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Traffic simulation model is based on well-known model created by K. Nagel
and M. Schreckenberg. It describes traffic on straight, one–way road, which is
divided into some number of cells. Each cell may contain one car or may be
empty. In each tick of discrete clock, cars change their position and speed with
carefully chosen rules (see [8] or [5]). This model was broadly examined and
generalized (see [4], [14]).

In TSF roads are modelled as a graph, which was created using maps from
[12]. All edges are divided into cells which forms a cellular automaton with tran-
sition rules which are a generalization of these presented in [8]. TSF introduces
support for crossroads and traffic lights. Moreover, each car is an autonomous
agent which has start and end points of its journey, path connecting them and
preferences regarding its road behaviour (see [5]). During our experiments these
parameters were carefully chosen to model traffic during morning hours.

3 Vague Concepts, Granular Computing and Ontologies

Most of the time people use concepts, which are vague. Even when they seem nat-
ural, we cannot give their precise definition. Some remedy was found in methods,
which laid foundations for granular computing: fuzzy sets (see [16]) and rough
sets (see [13]). Unfortunately, simple classifiers based on these methods are not
sufficient for real-life problems, where examined concept is ,,far” from given data
in sense of some semantic distance.

One of solutions to that problem is a granular computing. Some objects
and knowledge about them form so-called ,,granules”. Simple granules can be
grouped into little more complicated granule of higher level of abstraction. This
process can be viewed as a human way of achieving data compression (see [10]).

Definition 1. Ontology is a specification of a conceptualization ([6]).

It can be used for modelling semantic layer. Usually it contains concepts, rela-
tions between them and other distinctions that are relevant for a given problem.
It can be expressed in a natural language in some form of a dictionary, or in a
more precise manner: in first order logic or as a graph (see [7]).

4 Proposed Ontology

Ontology that we propose has been described in details in [1]. Concepts in this
ontology are organized in levels. They correspond to complexity of streets graph.
First level describes one section of street (part of street between intersections).
Although section itself is a spatial concept, its state changes over time. The state
is characterized by the number of cars on section and their average velocity.
Direction of their changes and average values are attributes of time windows —
fixed time periods. These attributes determine vertex of section’s behavioural
graph in the current time window (see 1 (a)).

Street sections are grouped into crossroads (more precisely: parts of crossroads
which could impact road lanes in examined direction) — the second level of



280 M. Adamczyk, P. Betliński, and P. Gora

(a) (b)

Fig. 1. Graphs used in ontology for describing behaviour: (a) Base graph for behaviour
of part of city. Each concept was properly defined for examined case (section, type of
crossroad, etc.). ,,Shortcuts” – edges which corresponds to paths in given graph were
omitted for clarity. (b) Graph of traffic lights changes (for section which is entering
crossroad in examined direction).

concepts hierarchy. Similarly to street sections, crossroads are observed in time
window sequences. Behaviour of sections and state of relation form attributes of
behavioural paths. They make possible to identify the state (vertex) of a given
crossroad in crossroad’s behavioural graph (see 1 (a, b)). Of course, concepts in
vertices are dependent on geometry of observed crossroad.

Identified behaviours of examined crossroads form time series describing state
of some part of city which were analysed using Bayesian network.

5 A Bayesian Network Classifier Predicting Traffic Jams

In this chapter we will present method of predicting traffic jam on a given street
section using Bayesian networks. This method has been designed and imple-
mented by Pawe�l Betliński (details can be found in [2]). Whole approach is a
kind of process mining method (see [3], [11], [15]).

Suppose we have a street section between 2 consecutive crossroads, where we
would like to predict a traffic jam. It seems that the main features which impact
future traffic on this section are current situation on this section and in sections
of direct entry and exit. The example is presented in figure 2 where we consider
sections in the depth 1 and 2 from the investigated section.

The whole operation of the program will be illustrated in a situation such
as in figure 2 (b), that is, with appeal to a depth 2. The aim is to predict any
traffic jam, which appears in the section labelled C. However, we must first define
notion of traffic jam, and also character of data flowing into the program from
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(a) (b)

Fig. 2. Example of entry and exit sections to a depth 1 (a) and 2 (b)

simulations. This definitions will be here quite simple and have no connection
with ontology area, but they were very useful in program testing.

Time series, which comes to the program after a simulation, is - keeping to
our example of figure 2 (b), a data array of 15 attributes: C, OUT 1, OUT 2, . . . ,
OUT 9, IN1, IN2, . . . , IN6. k-th array row registers situation of all 15 sections
in k-th time segment of simulation - where each segment corresponds in real
urban traffic to five minutes. This value of each attribute in k-th row is simply
the average speed of all vehicles going through the street section corresponding
to the attribute during k-th ’five minutes’. However, for simplicity, such average
speed was not recorded directly in a table, but only the digit between 0 and 5
- depending on a segment, in which an average speed is located, namely as in
table 3 (a).

So, for example, digit 3 in 17-th row and column corresponding to attribute
C means that in 17-th ’five minutes’ period of simulation on the street section
denoted by C cars were driving with the average speed in range (30, 40].

Construction of a meaningful definition of a traffic jam on a basis of sensory
data is a separate issue, and this topic was elaborated in [1]. But for the purpose
of the experiments there was created modest definition, stating that a traffic jam
on a given street segment occurs when the average speed of vehicles travelling
through that part within ’five minutes’ of simulation is no more than 10 km/h
- which corresponds to digit 0 in the table.

After constructing time series using simulation we placed the following objec-
tive: create a classification model, which would enable prediction of traffic jams
in the section C, e.g. with 2 steps advance (1 step = ’five minutes’). Our solution
is based on Bayesian networks (see [9]).

The approach depends on two basic parameters. The first is a size of time
window. Time window is formed by cutting some number of rows (this number
is exactly the size of the window) from data table described above. Such a time
window is intended to be used as a basis for predicting a traffic jam which may
occur on the street section C. The second fundamental parameter is the number
of steps ahead of our predictions - i.e. on how many steps before appearance of
traffic jam (0 value of attribute C) program should predict this situation.
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Velocity segment (km/h) sign

[0, 10] 0
(10, 20] 1
(20, 30] 2
(30, 40] 3
(40, 50] 4
above 50 5

(a)

d p k S [%] T [%]

1 2 2 25 51
1 2 4 29 57
1 2 6 33 59
1 1 2 35 62
1 1 4 41 68
1 1 6 46 71
1 0 2 44 70
1 0 4 50 75
1 0 6 54 79
2 2 2 48 73
2 2 4 55 80
2 2 6 59 81
2 1 2 57 77
2 1 4 60 86
2 1 6 64 88
2 0 2 61 82
2 0 4 68 89
2 0 6 69 93

(b)

Fig. 3. (a) Average speed segments. (b) Statistics S and T for all 18 experiments.

For example, using time window of the size 5 and predicting with 1 step in
advance mean that the program predicts e.g. value 0 of attribute C in 23-th row
based on time window from row 17 to 21. If program predicts with two steps
advance, this would mean that it would have predicted this traffic jam based on
time window from row 16 to 20, etc.

We would expect some time before a traffic jam in section C characteristic
symptoms in a course of time series, so some specific value configuration of time
window observed some number of steps before 0 value of attribute C. These
characteristic configurations in time window gave the idea of applying Bayesian
networks.

As a reminder, Bayesian network learned on a basis of some data table having
attributes X1, ..., Xa, a ∈ N, is a directed, acyclic graph with vertices X1, ..., Xa,
along with parameters (assigned to each vertex) defining the appropriate condi-
tional distribution of a given vertex provided its parents. Well-trained network,
which means as sparse as it is possible, illustrates in its structure natural re-
lationships in data - for the given vertex its parents in a network are direct
causes. It is important also that sparse Bayesian network holds in a compressed
manner joint distribution of attributes X1, ..., Xa (so for some big a it might be
still possible to have a Bayesian network describing all distribution, while direct
notation of this distribution needs for example 2a− 1 numbers in case of binary
attributes). Such Bayesian network can be used later as a classifier, predicting
value of some decision attribute provided given value of other attributes.
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It is not a simple task to obtain a good network structure designed to describe
distribution of data. Finding an optimal graph (relative to fixed criteria - for
example, a commonly used Bayesian criterion) in a family of all graphs having
a vertices becomes impossible task quite quickly with an increase of a. Pawe�l
Betliński designed for this purpose the genetic algorithm, which was later applied
to learning Bayesian networks analysing traffic (see [2]). Much emphasis in this
genetic algorithm was placed on a careful design of cross-over and mutation
operators. We omit description of this algorithm, focusing on the main program.

One of the ideas in our approach is to create a network that simply models
distribution of characteristic for subsequent appearance of traffic jam value con-
figurations in time window. This distribution generally can be very complicated,
e.g. distribution in 100-dimensional space - if we consider time window of size
5× 20, and this would be a huge problem for many other methods, for example
clustering.

Now we go to a more formal description of the method. Suppose that k (size of
time window) and p (on how many steps before a traffic jam we want to predict
it) and 0 < δ < 1 are constants. The algorithm consists of two phases:

1. First phase:
– Repeat m times (wherem is a fixed parameter) a single simulation (every

time with different parameters) until value of attribute C is 0 for the first
time. Sensory data from simulation obtained for a fixed area (e.g. such as
on figure 2 (b)) are converted to time series. From each of m generated
time series we extract a time window of size k, which appears p steps
before first traffic jam - that is first value 0 of attribute C.

– After completing the above iteration, we have as the result m time win-
dows, which can be now combined into one large data table. In the first
row first time window is placed (we create one row from k rows of the
time window, writing them one by one in time order), in the second row
we put the second time window, and so on. Let’s call created table as
D1. It has m rows and n columns, where n denote how many numbers
form each time window.

– We create Bayesian network BN1 modelling distribution of all rows in
table D1. The aforementioned genetic algorithm finds network structure,
and then standard method (counting from table D1 frequencies express-
ing conditional distributions) is used to learn parameters of this graph.

2. Second phase:
– We conduct many simulations, and for each simulation we capture from

corresponding time series (for the same area as in the first phase) all
time windows of size k, such that its value configuration has probability
greater then δ, according to created Bayesian networkBN1. We save such
time windows and values of attribute C p steps later after the window.

– We combine all obtained windows in one table - in each row we place one
time window as before, but we add one more (decision) column, which
values indicate whether in sector C traffic jam appeared p steps after
time window saved in this row: we write 1 - if it appeared, otherwise 0.
This table has n+ 1 columns and will be called D2.
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– We create Bayesian network BN2 modelling distribution of all rows in
table D2 (we use the same method as in the first phase). BN2, in con-
junction with BN1, is our final classifier, predicting traffic jam in sector
C with p steps in advance.

Let’s now consider a sense of this method. Result of the first phase is the Bayesian
network BN1. We know, that it should model distribution of value configurations
in time windows (of size k), which occurs p steps before traffic jam in C. But
in the first phase we observe only this time windows, after which we have traffic
jam p steps later, so we do not have any knowledge about all other windows.
By analyzing all windows we see, that some of them, which were considered as
a reason of traffic jam, because they occurs often before it, in fact are not any
reason, and, e.g., only in 10 percent cases after such window we have traffic jam.
So the first phase is like a sieve - it eliminates an excess of time windows leaving
only those, which potentially might be traffic jam reason. Value of decision is
more balanced in this way - which greatly facilitates task of BN2.

In the second phase we catch from all potential traffic jam reasons really
important rules. We conduct simulations again and catch all time windows which
are frequent (value configuration - read from Bayesian network - has probability
in BN1 greater then δ) and cause traffic jams in the future. For example we
could set δ = 0.01, and focus in this way on at most 100 most frequent windows
appearing before traffic jam - and use later only them to create meaningful rules.

This rules determines Bayesian network BN2, created on the basis of table
D2, which illustrates consequences of each interesting for BN1 window (whether
we have or not have traffic jam p steps later).

Networks BN1 and BN2 create a classification model, which can be used in
practice. If we want to predict in step t0 traffic jam in step t0 +1+p in sector C,
then we first count from BN1 the probability pr of value configuration in time
window from step t0 − k + 1 to step t0. If δ ≥ pr - we predict, that a traffic
jam will not appear. Otherwise, we count from BN2 the probability pr1 of value
configuration in our time window (from step t0−k+1 to step t0) combined with
traffic jam appearance p steps later (so value 1 of last attribute - like in table
D2), and probability pr0 of value configuration combined with no traffic jam p
steps later (value 0 of last attribute). If pr1 > pr0 we predict, that traffic jam
will appear, otherwise - we predict, that no.

6 Combined Approach

So far we described separate parts of our project, which we are working on.
Idea of combining described approaches is very simple and based on granular
computing. On every level of complexity one could apply Bayesian networks
instead of rough sets based method. Our choice is to apply it on last level. So
instead of using table with sensory data as a basis for Bayesian network inference,
we simply use now data generated by first two levels of described ontology.
This significantly reduces dimension of the problem, so Bayesian networks BN1
and BN2 can be learned faster. Moreover, obtained classifier can now reason



Combined Bayesian Networks and Rough-Granular Approaches 285

Fig. 4. Result: BN2 Bayesian network

on higher level concepts, which increases its prediction power. Additionally, its
representation can be now easier examined by human.

Figure 4 shows one of graph discovered by our approach. It represents Bayesian
network, which describes relations between examined crossroads. As one can
notice, state C of Ślasko-Dabrowski bridge is mostly determined by states of
crossroad OUT1. This fact is consistent with our observations during simulations.
Crossroad OUT2 was always almost empty and chosen by small number of cars,
which were leaving the bridge. Additionally, we can see in graph, that the direct
reason of state of crossroad IN1 in step t + 3 is situation on the bridge in step
t + 5. It seems to be natural too, because cars which are in some step on the
bridge were in previous steps at the crossroad IN1.

7 Experiments

Now we present the results of the experiment, in which sector C is Ślasko-
Dabrowski bridge, with direction toward the center. For this experiment we used
special type of simulation which is called ’Morning in Warsaw’ (traffic simulates
morning in the city, when people go from home to work).

The whole experiment actually consists of 18 smaller, appointed by choosing
any combination of the following parameters:

– depth d of entry and exit sections in an analysis: 1 (illustrated in figure 5 (a))
and 2 (illustrated in figure 5 (b)). For both of these depths there were not
taken all the sections for this depth. We selected for analysis only those,
which tend to have dense traffic.

– size of a time window k = 2, 4, 6
– parameter p = 0, 1, 2 (how many steps before traffic jam we want to predict

it).
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(a) (b)

Fig. 5. Area on which program was tested: depth 1 (a) and depth 2 (b)

Common to all experiments were: m = 1000 - number of simulations in the first
phase (which means that the table D1 has 1000 rows), and simulations in second
phase have been repeated until table D2 reached 10000 rows. Parameter δ was
more complicated: δ = (0.05)win vol, where win vol means number of elements in
a time window (height × width), so δ depends on d and k. When a time window
increases (i.e. d or k increases) - δ decreases - this means we allow more time
windows for the second phase. That is good, because when win vol increases
there are more possible value configurations of a time window.

In each of the 18 cases learned networks BN1 and BN2 were then tested to
see how well they predict traffic jams. This test was based on 500 additional
simulations. Each simulation was running until this step, when in the section C
appears traffic jam (value 0 of attribute C). Results achieved during this test
will be described by statistics, which we call S and T . Statistic S is the ratio of
number of these traffic jam signals given by the classifier, which were correct, to
the total number of traffic jam signals. So in other words statistic S tells us how
often the classifier was right telling that in p steps there will appear a traffic jam
in C. Statistic T is the ratio of number of those of the 500 traffic jams, which
have been properly captured by the network p steps before, to 500 - the total
number of traffic jams. In other words T tells us how often real traffic jam was
detected in advance of p steps.

Table 3 (b) presents rounded results of the above statistics S and T for all 18
experiments. We summarize them as follows:

– Generally results for T are better than for S, which means that our classifier
detects most of real traffic jams, but it also often detects traffic jam, when
it actually doesn’t appear.

– A deeper analysis with greater monitored area gives better results - in both
statistics S and T .

– The larger window size, the better results of S and T .
– The larger parameter p, the more difficult is traffic jam to predict - which

seems to be quite natural.
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Abstract. This paper presents some recent results of the research on
the scalability of rough set based classification methods. The proposed
solution is based on the close relationship between reduct calculation
problem in rough set theory and association rule generation problem.
This is a continuation of our previous results (see, e.g. [10] [11]). In this
paper, the set of decision rules satisfying the test object is generated
directly from the training data set. To make it scalable, we adopted the
idea of the FP-growth algorithm for frequent item-sets [7], [6]. The ex-
perimental results on some benchmark data sets are showing the ability
of the proposed solution to process a growing data sets.

Keywords: Data mining, Scalability, Rough set, Lazy learning.

1 Introduction

Classification of new unseen objects is the most important task in data min-
ing. There are many classification approaches like “nearest neighbors”, “naive
Bayes”, “decision tree”, “decision rule set”, “neural networks” etc. Every clas-
sification method has some advantages and disadvantages, hence the choice of
classification methods in practical data mining applications depends on different
criteria like: accuracy, description clearness, time and memory complexity etc.

This paper is related to the rule-based classification approach based on rough
set theory. The typical manner consists of two basic steps: generalization and
specification. In generalization step, some set of decision rules is constructed from
data as a knowledge base. In the specialization step the set of rules that match
a new object (to be classified) is selected and a conflict resolving mechanism will
be employed to make the decision for the new object. This approach is quite
common in classification methods based on rough set theory (see e.g., [2], [15],
[17], [18]). The main reproach to the application of the present above method in
data ming is related to the lack of scalability.

The biggest troubles stick in the rule induction step, where the potential
number of all rules is exponential. Most of existing heuristics for eager rule
induction have at least O(n2) time complexity, where n is the number of objects
in the analyzed data set. However not all of the generated rules are later used in

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 288–297, 2010.
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the classification phase. Moreover, the existing algorithms require multiple data
scanning. In case of large decision table, the data must be held in a database
system and the main problem is to minimize the number SQL queries used in
the algorithm.

This paper we adopt the idea of FP-growth algorithms [7], [6] to implement the
rough set based lazy classification method. The FP-growth algorithm is known as
an efficient and scalable method for frequent pattern discovery from transaction
data sets. We present the method called FDP, which is a modification of FP-
growth, but is applicable for decision tables. We present the experimental results
to confirm the advantages of the proposed method.

2 Basic Notions

In this Section, we recall some well known notions related to rough sets and
classification systems.

An information system [12] is a pair A = (U,A), where U is a non-empty,
finite set of objects and A = {a1, ..., ak} is a non-empty finite set of attributes
(or features), i.e. ai : U → Vai for i = 1, ..., k, where Vai is called the domain
of ai. Let B = {ai1 , ..., aij} ⊂ A, the set INFB = Vai1

× ... × Vaij
is called

information space defined by B and the function infB : U → INFB defined by
infB(u) = 〈ai1(u), ..., aij (u)〉 is called “B-information map”.

Two objects x, y ∈ U are called indiscernible by attributes from B if
infB(x) = infB(y). It has been shown that the indiscernibility relation, de-
fined by IND(B) = {(x, y) : infB(x) = infB(y)}, is the equivalent relation (see
[14]). For any u ∈ U , the set [u]B = {x ∈ U : (x, u) ∈ IND(B)} is called the
indiscernibility class of u relative to B. Many notions in rough set theory can
be defined on the basis of such classes. The main subject of rough set theory is
concept description, which is the most important challenge in Data Mining. Any
concept can be associated with the set of elements belonging to this concept.
In rough set theory, any concept X ⊂ U can be described by attributes from
B ⊂ A by the pair of B-lower approximation and B-upper approximation of X ,
respectively, where

BX = {u ∈ U : [u]B ⊂ X}, BX = {u ∈ U : [u]B ∩X �= ∅}

Any information system of the form A = (U,A ∪ {dec}) with a distinguished
attribute dec is called a decision table. The attribute dec /∈ A is called the
decision attribute (or the decision, for short).

The classification problem can be formulated in terms of decision tables. As-
sume that objects from an universe X are classified into d classes by a decision
function dec : X → Vdec = {1, ..., d} which is unknown for learner. Every object
from X is characterized by attributes from A, but the decision dec is known
for objects from a sample set U ⊂ X only. The information about function dec
is given by decision table A = (U,A ∪ {dec}). The problem is to construct
from A a function LA : INFA → Vdec in such a way that the probability
P({u ∈ X : dec(u) = LA(infA(u))}) is sufficiently high. The function LA is
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called decision algorithm or classifier and the methods constructing them from
given decision table A are called classification methods.

2.1 Rough Sets and Classification Problem

In this paper, we are dealing with the classification method based on minimal
consistent decision rules, which is preferred by many Rough Set based classifi-
cation methods, e.g., [2], [15], [17], [18].

Let A = (U,A ∪ {dec}) be a decision table and k ∈ Vdec. By decision rule for
kth decision class we mean the expressions of form

(ai1 = v1) ∧ ... ∧ (aim = vm)⇒ (dec = k) (1)

where aij ∈ A and vj ∈ Vaij
. For any decision rule r of form (1), the set of objects

from U satisfying the assumption of r is called the carrier of r and is denoted by
[r]. By length and support of decision rule r we denote the number of descriptors
and the number of objects satisfying the assumption of r, i.e. sup(r) = |[r]|. The

confidence of decision rule r is defined by conf(r) =
|[r] ∩DECk|
|[r]| . The decision

rule r is called consistent with A if conf(r) = 1. The decision rule r is called
minimal consistent decision rule if it is consistent with A and any decision rule
r′ created from r by removing one of descriptors from left hand side of r is not
consistent with A.

The set of all minimal consistent decision rules for a given decision table A, de-
noted by MinConsRules(A), can be found by computing object oriented reducts
(or local reducts) [8], [2] [17]. This paper is based on the boolean reasoning ap-
proach to local reducts [14], [8], [11].

The set MinConsRules(A) can be used as a knowledge base in classification
systems. In data mining philosophy, we are interested in extraction of short and
strong decision rules with high confidence. The linguistic features like “short”,
”strong” or “high confidence” of decision rules can be formulated using of their
length, support and confidence. In practice, instead of MinConsRules(A), we
are using the set of short, strong, and high accuracy decision rules defined by:

RULES(A, λ, σ, α) =
{
r: length(r) ≤ λ, sup(r) ≥ σ and conf(r) ≥ α

}
All heuristics for object oriented reducts can be modified to induce the set
RULES(A, λ, σ, α) of decision rules.

Discretization of real value attributes is another important task in data min-
ing, particularly for rule based classification methods. Empirical results show
that the quality of classification methods depends on the discretization algo-
rithm used in the preprocessing step. In general, discretization is a process of
searching for a partition of attribute domains into intervals and unifying the
values over each interval. Hence, the discretization problem can be defined as a
problem of searching for a relevant set of cuts on the attribute domain.

In rough set theory, the optimal discretization problem has been transformed
into a corresponding problem related to reducts of a new decision table [11].
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The greedy algorithm for this approach, called MD-heuristic, has been imple-
mented in RSES system. It has been shown that MD-heuristic for discretization
is an efficient preprocessing method for rule based classifiers [2].

There are two main classification approaches called eager and lazy. The eager
(or laborious) methods induce a generalized model from the input data (the gen-
eralization step) and uses extracted model to classify new objects (specialization
step). Typical rule based classification methods consist of three phases:

1. Learning phase: generates a set of decision rules from a given decision
table A.

2. Rule selection phase: selects from RULES(A) the set of rules supported
by x. We denote this set by MatchRules(A, x).

3. Post-processing phase: makes decision for x using a voting algorithm for
decision rules from MatchRules(A, x)

In lazy learning approaches, new objects are classified without generalization
step. For example, in kNN (k Nearest Neighbors) method, the decision of new
object x can be made by weighting the decision of k nearest neighbors of x.
In lazy decision tree methods, we are trying to reconstruct the path p(x) of an
“imaginable decision tree” that can be applied for new object x.

3 Scalable Classification Methods in Rough Sets

The scalability means the ability of an algorithm to process a growing input
data. In this paper, we are interested in the scalability with respect to the grow-
ing number of training examples. The scalability is one of the most advisable
properties of data mining algorithm.

Unfortunately, as we recalled before, the time and memory complexity of
existing rule induction algorithms can not by applied to very large decision
tables. That is why the rule induction methods based on rough sets are criticized
due to the lack of scalability. We will show that some of them can be implemented
in such a way that they become more scalable in the client-server environment.

The first proposition is related to discretization methods. The idea was based
on using “divide and conquer” technique to localize the cut that is very close

Rule selection

Classification

New object x �

Decision table S

MatchedRules(S, x)






� dec(x)

�

�

�

�

�

�

�

�

Fig. 1. The lazy rule-based classification system
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to the optimal with respect to discernibility measure. It has been shown that it
can be done by using only O(log n) simple SQL queries, where n is the number
of objects. This technique has been generalized for other measures.

The second proposition is based on a tricky implementation of lazy rule-based
classification approach presented in Fig. 1. In general, lazy methods need more
time complexity for the classification step, i.e., the answer time for the question
about decision of a new object is longer than in eager classification methods.
But lazy classification methods are well scalable, i.e., they can be realized for
larger decision table using distributed computer system [4], [3], [13], [11].

In other words, we will extract the set of decision rules covering the object x di-
rectly from data without explicit rule generation. We show that this diagram can
work for the classification method described in previous section using the set of de-
cision rules fromMinRules(S, λ, σ, α). Formally, the problem is formulated as fol-
lows: given a decision table S = (U,A∪{dec}) and a new object x, determine the set
MatchRules(S, x) = {r ∈ MinRules(S, λ, σ, α) : x satisfies r} of decision rules
that can be classified by x. In [10], we proved that the setMatchRules(S, x) can be
calculated by a modification of Apriori algorithm proposed in [1] for frequent item
set generation from data bases. Another searching method forMatchRules(S, x),
is based on FP-growth algorithm [7], [6], has been proposed in [9].

The FP-growth algorithm is known as an efficient and scalable method for
frequent pattern discovery from transaction data sets. We present the method
called FDP, which is a modification of FP-growth, but it is applicable for decision
tables. This method consists of the following steps:

– Construction of the data structure called FDP (x) (Frequent Decision Pat-
tern tree). This step requires only two data scanning passes:
• The first scanning pass is required to calculate the frequencies of de-

scriptors from infA(x). After the first data scan, these descriptors are
ordered with respect to their frequencies. The low-frequent descriptors
are useless in constructing strong decision rules and can be removed. Let
DESC(x) be the resulting list of frequent descriptors.
• In the second scanning pass, each training object u is converted into a

list D(u) of frequent descriptors from DESC(x) that occur in infA(u),
and then we insert the list D(u) into the data structure FDP (x).

– Generation of the set of frequent decision rules from FDP (x) by a recursive
procedure. This step does not guarantee the minimality of the obtained rules
(some rules are still reducible)

– Insert the obtained rules into a data structure called the minimal rule tree –
denoted by MRT (x) – to get the set of irreducible decision rules. This data
structure can be used to perform different voting strategy.

As we see later, the key concept in this method is the FDP tree structure. In
fact, similarly to the original FP-tree, FDP is the prefix tree for the collection of
ordered list of descriptors. But, unlike FP-tree, each node in FDP tree consists
of four fields: descriptor name, support, class distribution and node link, where
descriptor name is the name of descriptor, support is the number of training
objects that contain all descriptors on the path from the root to the current
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A a1 a2 a3 a4 dec

ID outlook temp. hum. windy play
1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no
x sunny mild high TRUE ?

=⇒

ID descriptor lists dec
1 d3, d1 no
2 d3, d4, d1 no
3 d3 yes
4 d3, d2 yes
5 yes
6 d4 no
7 d4 yes
8 d3, d2, d1 no
9 d1 yes
10 d2 yes
11 d2, d4, d1 yes
12 d3, d2, d4 yes
13 yes
14 d3, d2, d4 no

Fig. 2. A decision table A and test object x

node, class distribution is the detail support for each decision class and node link
are used to create list of nodes of the same descriptor.

Example. The detailed definitions and algorithms for this method were described
in [9]. Because of the space limitation, we will illustrate the proposed method
by the following example.

Let us illustrate our concept for the golf data set presented in Figure 2 (left).
The test object induces four descriptors: d1 : a1 = sunny, d2 : a2 = mild, d3 :
a3 = high and d4 : a4 = TRUE. Thus we can fix the order of descriptors as follow:
DESC(x) = [d3, d2, d4, d1]. After the first data scan, the training objects can be
rewritten as presented in Fig. 2. The corresponding FDP tree for this collection of
frequent descriptor lists is shown in Fig. 3. In order to generate decision rules from
the FDP tree, one can apply the FDP-growth algorithm which is the modification
of FP-growth algorithm [7], [6]. The detail of this step has been described in [9].
In this example, we can obtain the following set of 4 decision rules.

1 (outlook = sunny) ∧ (hum. = high) ⇒ play = no
2 (outlook = sunny) ∧ (temp. = mild) ∧ (windy = TRUE) ⇒ play = yes
3 (outlook = sunny) ∧ (temp. = mild) ∧ (hum. = high) ⇒ play = no
4 (outlook = sunny) ∧ (hum. = high) ∧ (windy = TRUE) ⇒ play = no

One can see that this is not the set of irreducible decision rules, because, the
rules number 3 and 4 are the extensions of rule nr 1. To reduce the set of rules
one can use the additional data structure called MRT (minimal rule tree). In
fact, MRT is the modification of FPMAX tree, the data structure for extraction
of maximal frequent patterns, presented in [5]. The following figure illustrates
the resulting MRT tree after inserting all decision rules. After all steps, one can
obtain two minimal decision rules presented in Fig. 4.
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Fig. 3. The FDP tree for the object x from Table 2 and the set of decision rules
extracted from the tree

1 (outlook = sunny) ∧ (hum. = high) ⇒ play = no
2 (outlook = sunny) ∧ (temp. = mild) ∧ (windy = TRUE) ⇒ play = yes

Fig. 4. The MRT tree for the previous set of decision rules

4 Experimental Results

The FDP-growth algorithm was implemented and tested on data sets from UCI
Machine Learning Repository. We compared the accuracy of FDP-growth al-
gorithm with other lazy classifiers: IBk (nearest neighbors classifier) and LBR
(Naive Bayes classifier) which are available in WEKA [16]. All experiments were
done on PC with dual Processor Athlon X2 4000+ (2 x 2.1GHz) and 4GB RAM.

The first experiment was performed on the Poker-hand data set. This data
set consists of 10 conditional attributes and 9 decision classes. The training data
set consists of 25010 instances, while the test data contain 1000000 instances.

In order to verify the scalability of the proposed solution, we switched the
role of this data sets. The experiments were performed on training data sets of
different sizes: 10000, 20000, 50000, 100000, 200000, 500000 and 1000000. The
accuracy of classifiers were estimated on the sample of 1000 testing instances.
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Fig. 5. Comparing the accuracy and computation time of three lazy classifiers for
poker-hand data

Fig. 6. Comparing the accuracy and computation time of three lazy classifiers for
Forest Covertype data

The second experiment has been done on the Forest Covertype data set. This
data set consists of 581012 objects 54 conditional attributes and 7 decision
classes. A sample of 580000 instances was used as the training set. In order to
verify the scalability of the proposed solution, the experiments were performed
on training data sets of different sizes: 10000, 20000, 50000, 100000, 200000 and
580000. The accuracy of classifiers were estimated on the sample of 500 unseen
instances.

The third experiment has been done on the data set called Pen-Based Recog-
nition of Handwritten Digits. This is a small data set consisting of 7494 training
objects and 3699 test objects, 16 conditional numeric attributes and 10 decision
classes. The experiments were performed on the samples of sizes: 7494, 5000,
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Fig. 7. Comparing the accuracy and computation time of three lazy classifiers for
Pen-Based Recognition of Handwritten Digits data

3000, 2000, 1000. The accuracy of classifiers were estimated on the sample of
500 instances from the test data set.

On Fig. 5, Fig. 6 and Fig. 7, we present the detailed results of the described
above experiments. The plots of classification accuracy for different training data
sizes are presented on the left hand side, while the plots of computation time
are presented in the right hand side of these figures.

5 Conclusions

We have presented a scalable lazy classifier which is is a rough set based clas-
sifier. We have modified the FP-growth algorithm to calculate the set of mini-
mal decision rules for test objects. The experiment results are showing that the
computation time seems to be linearly depends on the size of training set. The
proposed method can be easily implemented in the distributed computer system.

If we are constructing the FDP-tree for each training object, we will have an
algorithm for object oriented reducts calculation for the decision table. Hence
the proposed method can be also applied for eager learning. We plan to use the
data structures proposed in this paper to develop efficient incremental learning
methods for stream data.
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Abstract. The study of association rules within groups of individuals
in a database is interesting to define their characteristics and their be-
havior. In this paper, we define group association rules and we study
interestingness measures for them. These evaluation measures can be
used to rank groups of individuals and also rules within each group.

1 Introduction

Association rules have been used to analyze the relationships among the frequent
itemsets in transactional and relational databases. Let I = {I1, I2, ..., Im} be a
set of items. Let D be a set of database transactions where each transaction T
is a set of items such that T ⊆ I. Let S be a set of items. A transaction T is said
to contain S if and only if S ⊆ T [1]. An association rule is an implication of
the form A⇒ C, where A ⊆ I , C ⊆ I , and A ∩ C = ∅.

Databases can naturally contain groups of individuals that share some char-
acteristics [2]. For example, in a census database, we can define groups of indi-
viduals according to their sex, their marital status, whether they have children,
or even by combining several of such features. Men who have children are an
example of such a group.

In this paper, we will describe how association rules can be defined in those
groups to study the features that individuals in the same group have in common.
For example, in the group of men who have children, we could find an association
rule lives in suburbs⇒ owns 2 car, which is interpreted as men who have children
and live in suburbs own 2 cars with some confidence value. If we obtained more
rules, we could characterize the men who have children group and we could
compare their behavior to the behavior of other groups in the database, for
example, men who are single.

We define a group as a set of items G = {G1, G2, ..., Gn} such that G ⊆ I. A
group association rule G : A⇒ C is an association rule A⇒ C defined over
the group G. In other words, a group association rule G : A ⇒ C is equivalent
to the classical association rule GA⇒ C.

In this paper, we will describe how to adapt some of the interestingness mea-
sures that have been defined for association rules [3] [4] to group association
rules and how these modified measures will help us to rank the different groups
in a database in order to highlight the most interesting ones [5].
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c© Springer-Verlag Berlin Heidelberg 2010



Interestingness Measures for Association Rules within Groups 299

Our paper is organized as follows. In Section 2, we describe some rule eval-
uation metrics proposed in the literature. Section 3 introduces interestingness
measures for group association rules. In Section 4, we explain how to order groups
and group association rules within each group. Finally, we end our paper with
some conclusions in Section 5.

2 Interestingness Measures for Standard Association
Rules

The classical measures used to characterize an association rule are its support
and its confidence [6][1].

Definition 1. The support of an itemset X in the database D is defined as the
percentage of transactions that contain X, i.e.,

supp(X)= P(X).

Definition 2. The rule A⇒ C holds in the transaction set D with support s,
where s is the percentage of transactions in D that contain A ∪ C, i.e.,

supp(A⇒ C) = P(A ∪ C).

Definition 3. The rule A ⇒ C has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain C,
i.e.,

conf(A⇒ C) = P(C|A) = supp(A⇒C)
supp(A)

Confidence has some drawbacks as we can see in the example shown in Figure
1 where we have a graphical representation of two rules, A ⇒ B and A ⇒ C.
In the case of the A ⇒ B rule, we have the following support values for the
intervening itemsets: supp(A)= 28%, supp(B)=38%, and supp(A ∪ B) = 21%.
Therefore, the confidence for the A⇒ B rule is 75%. In the case of the A⇒ C
rule, even though the support of the consequent changes (supp(C)=85%), the
confidence value of the A⇒ C rule is also 75%.

In the first case, B was present in 38% of the transactions in the database
and its presence increases to 75% in transactions where A is also present. In the
second case, however, the presence of the A reduces the presence of C, from 85%
to 75%. Therefore, the confidence measure does not let us distinguish between
these two cases.

In conclusion, confidence does not take into account the support of the rule
consequent, hence it is not able to detect negative dependencies between items.
Several measures have been proposed in the literature as alternatives to the
support and confidence measures [3]. In the following paragraphs, we describe
some of them:

Definition 4. The interest of the rule A⇒ C, also known as lift[7], is defined
as:
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A A

B
C

Fig. 1. Graphical depiction of two rules, A ⇒ B and A ⇒ C, both with the same
confidence but different consequent support

int(A⇒ C)= supp(A⇒C)
supp(A)supp(C)

Interest measures how many times more often A and B occur together than
expected if they where statistically independent. Values above 1 indicate pos-
itive dependence, while those below 1 indicate negative dependence. The in-
terest of the A ⇒ B and A ⇒ C rules in the the aforementioned example is
int(A ⇒ B)=4.2 and int(A ⇒ C)=0.91. Here, int(A ⇒ B) > int(A ⇒ C),
which correspond to our intuition that A⇒ B is more interesting than A⇒ C.

Interest measures the degree of dependence between the itemsets. However,
it only measures co-occurrence, but not the implication direction because it is a
symmetric measure, i.e., int(A⇒ C)=int(C ⇒ A).

Definition 5. The conviction[8] of the rule A⇒ C is defined as:

conv(A⇒ C) = supp(A)supp(¬C)
supp(A∪¬C)

The advantage of conviction with respect to the confidence measure is that it
takes into account both the support of the antecedent and the support of the
consequent of the rule. Conviction values in the (0,1) interval mean negative
dependence, values above 1 mean positive dependence, and a value of 1 means
independence, as happened with the interest measure.

In the example of Figure 1, supp(¬B)=0.62 and supp(A∪¬B) = 0.07. There-
fore, the conviction of the A⇒ B rule is 2.48. In the A⇒ C rule, supp(¬C)=0.15
and supp(A ∪ ¬C) = 0.07. Therefore, conv(A⇒ C)=0.6, which means negative
dependence.

Unlike interest, rules that hold 100%, like the Vietnam veteran ⇒ more than
5 years old rule, have the highest possible conviction value of ∞, which is an
useful property. If 5% of the people are Vietnam veterans and 90% are more than
five years old, then the interest of the Vietnam veteran ⇒ more than 5 years old
rule is (0.05)/(0.05)*0.9 = 1.11, sightly above 1, which is the value that would
indicate statistical independence [8].

The main drawback of the conviction measure is that is not bounded, i.e., its
range is [0,∞]. Therefore, it is difficult to establish a conviction threshold.

Let us now define the gain of a rule as the difference between its confidence
and the support of its consequent. Formally,

Definition 6. The gain of a rule A⇒ C is defined as:

gain(A⇒ C) = conf(A⇒ C)− supp(C).
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0 1 0 1

Supp(B) Supp(C)

Fig. 2. Graphical examples illustrating the gain (and the certainty factor) of the rules
derived from the scenarios represented in Figure 1: A⇒ B (left) and A ⇒ C (right)

The gain values for the rules in Figure 1 is gain (A ⇒ B)=0.75-0.38=0.37 and
gain (A ⇒ C)=0.75-0.85=-0.10. Figure 2 graphically shows these values. The
length of the arrows represents the gain of the rules, i.e., the increase (A⇒ B)
or decrease (A⇒ C) in the presence of the consequent given that A is present.

Definition 7. The certainty factor[9] of a rule A⇒ C is defined as:

CF (A⇒ C) = gain(A⇒C)
1−supp(C) if gain(A⇒ C) ≥ 0, and

CF (A⇒ C) = gain(A⇒C)
supp(C) if gain(A⇒ C) < 0.

The certainty factor is the gain value normalized into the [-1,1] interval.
The certainty factor is interpreted as a measure of the variation of the proba-

bility that C is in a transaction when we consider only those transactions where
A is. More specifically, a positive CF measures the decrease of the probability
that C is not in a transaction, given that A is.

In the example of Figure 1 a), the CF of the A⇒ B rule is 0.37/(1-0.38)=0.60
while the CF for the A⇒ C rule is -0.10/0.85=-0.12.

3 Interestingness Measures for Group Association Rules

In the following paragraphs, we will explain how to adapt the measures described
in Section 2 to group association rules, as well as how these new measures can
be useful to evaluate this kind of association rules.

G

GA

Fig. 3. Graphical representation of a group G
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3.1 Group Support

Definition 8. The support of an itemset X in the group G is the percentage of
transactions in G that contain X, i.e.,

suppG(X) = P (XG)
P (G) = conf(G⇒ X).

Figure 3 shows the representation of a group G in an example dataset. The
support of circles (•) in the group G is suppG(•)= 6/15=0.4.

Definition 9. The support of the group association rule G : A ⇒ C is defined
as:

suppG(A⇒ C) = P (GAC)
P (G) = conf(G⇒ AC).

In the previous example, the support of the group association rule G : A⇒ • is
suppG(A⇒ •) = 5/15 = 0.33.

3.2 Group Confidence

Definition 10. The confidence of the group association rule G : A ⇒ C is de-
fined as:

confG(A⇒ C) = suppG(A⇒C)
suppG(A) = conf(GA⇒ C).

The confidence of the rule G : A ⇒ • in Figure 3 is confG(A ⇒ •) = (5/15) /
(10/15) = 0.5.

3.3 Group Gain

Definition 11. The gain of the group association rule G : A⇒ C is defined as:

gainG(A⇒ C) = confG(A⇒ C)− suppG(C)
= conf(GA⇒ C)− conf(G⇒ C)

The gain represents the difference between the confidence in the presence of the
consequent when we know that the antecedent appears in the group, minus the
support of the consequent in the group.

In Figure 3, the support of the circles in the group G was suppG(•) = 6/15
= 0.4 and the confidence of the G : A ⇒ • rule is confG(A ⇒ •) = 0.5. Then,
the gain of the rule is gainG(A ⇒ •) = 0.5-0.4 = 0.1. That means that, within
the group G, finding a circle is 10% more likely when A holds.

Rules with high positive gain values help us to describe subgroups within the
group G. For example, in the men with children group, the rule lives in suburbs
⇒ 2 cars might have a high positive gain value. That would suggest that, within
the men with children group, living in suburbs increases the likelihood of owning
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2 cars. Therefore, it would be easier to find men with two cars among those how
live in suburbs than in the overall group of men who have children.

On the other side, rules with high negative gain values help us to find char-
acteristics that do not define the subgroup. For example, in the men older than
30 group, the rule lives downtown ⇒ owns a car might have a negative gain.
That would suggests that, within the men older than 30 group, living downtown
decrease the likelihood of owning a car. Therefore, it would be more difficult to
find men older than 30 who own a car among those that live downtown than in
the overall group.

Property 1. The gain of the G : A⇒ C rule is the difference between the gain
of the GA⇒ C rule and the gain of the G⇒ C rule , i.e.,

gainG(A⇒ C) = gain(GA⇒ C)− gain(G⇒ C)

Proof. By Definition 6, gain(G⇒ C) = conf(G⇒ C)− supp(C). Then, we can
solve for conf(G⇒ C) as conf(G⇒ C) = gain(G⇒ C)+supp(C). If we replace
the conf(G⇒ C) in Definition 11, we obtain gainG(A⇒ C)=conf(GA⇒ C)−
conf(G⇒ C) = conf(GA⇒ C)−supp(C)−gain(G⇒ C). Finally, by Definition
6, conf(GA ⇒ C) − supp(C) = gain(GA ⇒ C). Therefore, gainG(A ⇒ C)
=gain(GA⇒ C)− gain(G⇒ C).

Theorem 2. The difference between the gain of the G : A⇒ C rule in the group
G and the gain of the A ⇒ C rule in the database equals the gain of the rule
A : G⇒ C in the group A minus the gain of the G⇒ C rule in the database , i.e.,

gainG(A⇒ C)− gain(A⇒ C) = gainA(G⇒ C)− gain(G⇒ C).

Proof. By Definition 6, gain(G⇒ C) = conf(G⇒ C)− supp(C).
We can isolate conf(G ⇒ C) = gain(G ⇒ C) + supp(C) and replace it

in gainG(A ⇒ C) = conf(GA ⇒ C) − conf(G ⇒ C) = conf(GA ⇒ C) −
(gain(G⇒ C) + supp(C)).

If we isolate supp(C) from Definition 6 and replace it in the previous expres-
sion, we obtain: gainG(A⇒ C) = conf(GA⇒ C)−(gain(G⇒ C)+supp(C)) =
conf(GA⇒ C)−gain(G⇒ C)−(conf(A⇒ C)−gain(A⇒ C)) = conf(GA⇒
C)− (conf(A⇒ C)− gain(G⇒ C) + gain(A⇒ C)).

By Definition 11, the first term can be expressed as conf(GA ⇒ C) −
conf(A ⇒ C) = gainA(G ⇒ C). Then, we have gainG(A ⇒ C) = gainA(G ⇒
C)− gain(G⇒ C) + gain(A⇒ C)).

Therefore, gainG(A⇒ C)− gain(A⇒ C) = gainA(G⇒ C)− gain(G⇒ C).

3.4 Group Gain Normalization

The range of the gain is [−suppG(C), 1−suppG(C)]. In the followings paragraphs,
we propose several ways to normalize the group gain depending on the kind of
information we want to highlight. For example, we can normalize the gain into
the [−1, 1] interval to obtain a gain factor measure that corresponds to the
certainty factor in the general association rule framework.
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Group Gain Factor

Definition 12. The gain factor of the group association rule G : A ⇒ C is
defined as:
GFG (A⇒ C) = gainG(A⇒C)

1−suppG(C) if gainG(A⇒ C) ≥ 0, and

GFG (A⇒ C)= gainG(A⇒C)
suppG(C) if gainG(A⇒ C) < 0.

In our example, the gain factor of the rule G : A⇒ • is GFG(A⇒ •)= 0.1/(1-
0.4) =0.17.

This measure is proportional to the group gain. When it is positive, it is also
inversely proportional to the value [1 − suppG(C)]. Therefore, all other things
being equal, GF will be larger for subgroups of elements that were more common
in the group G (i.e., those having a higher suppG(C)). When GF is negative, it
is inversely proportional to suppG(C): it will have a larger absolute value when
the subgroup (C) is less frequent in G.

Group Variation

Definition 13. The variation of a group association rule G : A⇒ C is defined
as:
δG(A⇒ C) = gainG(A⇒C)

suppG(C) = confG(A⇒C)−suppG(C)
suppG(C)

In contrast to the GF, variation is inversely proportional to suppG(C) when it
is positive. It will have a higher value the less frequent C is in G. It should be
noted that the variation equals the gain factor when the gain is negative. The
variation of the rule G : A⇒ • in Figure 3 is δG(A⇒ •)= 0.1/(0.4)=0.25.

Group Impact

Definition 14. The impact of the group association rule G : A⇒ C is defined
as:
impactG(A⇒ C) = supp(GA) ∗ gainG(A⇒ C)

The impact of a group association rule represents the number of individuals that
are affected by the rule, i.e., the number of individuals that we did not expect
to find in the transactions of the group G that contain A (GA) given what we
knew about G.

The impact is proportional to gainG(A⇒ C) and supp(GA). It will be higher
for those rules with a high gain and a frequent antecedent A in the group G.

In our example from Figure 3, impactG(A ⇒ •) = (10)*0.1=1. That should
be interpreted as: there is 1 circle that we did not expect to be in GA when we
only knew the support of • in G, suppG(•)=0.4, i.e., we did expect 4 circles in
GA but there are 5, actually.

Impact Ratio

Definition 15. The impact ratio of the group association rule G : A ⇒ C is
defined as:
IRG(A⇒ C) = impactG(A⇒C)

supp(G)
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The impact ratio of a group association rule represents the proportion of the
impact of the rule in the group G with respect to the size of the group. The
impact ratio is IRG(A⇒ •)= 1/15=0.07 in the example from Figure 3.

4 Ranking Groups and Group Association Rules

The amount of rules and groups obtained in the rule mining process can be
huge, hence it may be difficult to extract useful information from them. All
these groups, as well as the rules within them, are obtained in an unsupervised
process and we will use the measures we have described to highlight those rules
and groups that might be relevant to the user according to several criteria.

In this section, we explain how to rank the groups and the rules within the
groups according to their potential interestingness.

4.1 Ranking Rules within a Particular Group

The use of each measure provides us a different ordering among rules. We will
choose a measure depending on the kind of information we want to highlight. In
this section, we analyze how two rules in a group will have a different relative
ordering in a group depending of the measure we use to evaluate them.

Characterizing subgroups within the group. If we are interested in ob-
taining those rules that characterize subgroups within a group (i.e., rules sharing
their consequent), we should use the gain measure because a high gain increases
our confidence in the presence of the consequent when we know that the an-
tecedent holds.

– If we want to highlight the most frequent subgroups, the gain factor, as
inversely proportional to the interval [1− suppG(C)], should be used.

– If we want to highlight anomalies, the variation measure is a better choice
since, in contrast to the gain factor, it overweighs those subgroups that have
a low support in the group.

Characterizing subgroups within the group using frequent features. If
we are interested, not only in the subgroups, but also in using features that are
frequent in our database, we should use a measure that takes into account the
frequency of the antecedent of the rules, e.g., the impact measure.

This measure has the advantage that it has an easy interpretation: it indicates
the number of individuals in G that are directly affected by the rule A ⇒ C,
i.e., those individuals that are not expected to be in GA when we only know the
overall support of C in the group.

4.2 Ranking Groups within the Database

Apart from the order of the rules within a group, we can establish an ordering
relationship among the groups in our database to highlight those groups that
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include more interesting rules. For example, this can be useful for analyzing the
behavior of groups in our database and studying the features that individuals in
the same group have in common.

Impact seems to be a good measure to evaluate the interestingness of the
group because it takes into account the number of individuals that are affected
by each rule in the group. We should average the impact of the n rules within
a given group to indicate the overall interestingness of that group. However, as
we have explained in Section 4.1, some rules are more interesting than others.
Then, they should not have the same weight.

We can define the weighted impact for the rules in a group using a different
interest measure depending on the information we want to highlight. Formally,
we define the weighted impact as:

Weighted impact(G) =
∑n

i=1 IG(A⇒C)·impactG(A⇒C)∑n
i=1 IG(A⇒C)

where IG(A ⇒ C) represents one of the interestingness measures described in
Section 3 and analyzed in Section 4.1 for each A⇒ C rule in the group G.

Large groups tend to have higher impact values for their rules because the
impact depends on the support of the antecedent in the group and it is usually
larger in large groups. Therefore, small groups are penalized in the ranking if we
use the impact measure. If we also want to take into account the relative size of
the groups, we can use the impact ratio measure, which gives us a more balanced
ranking. Thus we define a weighted impact ratio measure to rank groups within
the database:

Weighted IR(G) =
∑n

i=1 IG(A⇒C)·IRG(A⇒C)∑
n
i=1 IG(A⇒C)

5 Conclusions

Databases naturally contain groups of individuals that share some of their fea-
tures and some aspects of their behavior. In this paper, we have proposed group
association rules, which are association rules that are discovered within these
groups of individuals.

We have adapted some of the standard interestingness measures for associ-
ation rules to group association rules and we have also proposed new interest-
ingness measures to evaluate this particular kind of association rules. We have
studied the properties of these measures and which ones could be useful for the
user depending on the information he is interested in.

Finally, we have proposed some guidelines to rank the groups in a database
and the rules within each group depending on the user goals.

Acknowledgements

This work is supported by research project TIN2009-08296.



Interestingness Measures for Association Rules within Groups 307

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco (2005)

2. Plasse, M., Niang, N., Saporta, G., Villeminot, A., Leblond, L.: Combined use of
association rules mining and clustering methods to find relevant links between binary
rare attributes in a large data set. Computational Statistics & Data Analysis 52(1),
596–613 (2007)

3. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM
Computing Surveys 38(3), 9 (2006)

4. Berzal, F., Blanco, I.J., Sánchez, D., Vila, M.A.: Measuring the accuracy and interest
of association rules: A new framework. Intelligence Data Analysis 6(3), 221–235
(2002)

5. Bayardo Jr., R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining (1999)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: 20th International Conference on Very Large Data Bases, pp. 487–499
(1994)

7. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing associa-
tion rules to correlations. In: Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, vol. 26(2), pp. 265–276 (1997)

8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and im-
plication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data, vol. 26, pp. 255–264 (1997)

9. Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Math-
ematical biosciences 23, 351–379 (1975)



Data Mining in RL-Bags

M. Dolores Ruiz�, Miguel Delgado, and Daniel Sánchez

Dept. Computer Science and Artificial Intelligence, University of Granada,
C/Periodista Daniel Saucedo Aranda s/n , 18071 Granada, Spain

{mdruiz,daniel}@decsai.ugr.es,
mdelgado@ugr.es

Abstract. Many databases in real life involve items with their quanti-
ties. This kind of databases can be modeled using the theory of bags or
by fuzzy bags if we deal with imprecise properties of objects. We present
a general framework for extracting useful knowledge from fuzzy bags or
more generally from RL-bags, a new type of bag which extends the one
of fuzzy bag and preserves the usual crisp properties overall when using
the negation. The main contribution is how to deal with the informa-
tion provided with the RL-bags for then mining useful and interesting
association rules, as the RL-bags involve uncertainty over the quantities
associated to the objects.

Keywords: bags, RL-bags, RL-sets, RL-representations, fuzzy rules.

1 Introduction

In this paper, we are going to deal with databases which either contain or can be
transformed into bags [12] or fuzzy bags [5]. These databases are special in the
sense that a transaction not only contains the information that an item occurs or
not, it also specifies the times that an item occurs in each transaction, possibly
to a certain degree. This happens very often in the context of market baskets
but there are other fields of application as we can see in [7], [9], [8].

In this kind of structures, we may be interested in associations that do not
involve items only, but also their frequency of appearance in the bag. For example
“most of baskets that contains a lot of bread also contains a lot of milk”. As this
example shows, these quantities are imprecise very often. Some theories like the
theory of fuzzy sets help in dealing with this type of imprecise knowledge [13].
The theory of fuzzy sets has been already used in many situations to represent
some real-world domains that are intrinsically fuzzy. But there exist new models
to represent imprecise information such as the Restriction Level Representation
(RLR) theory which extends that of fuzzy sets and allows us to extend crisp
operations to the imprecise case, keeping all the properties of the crisp case,
notably those involving negation. On the basis of this theory, we shall present
� We would like to acknowledge support for this work from the Spanish Ministry for

Science and Innovation by the project grants TIN2006-15041-C04-01 and TIN2009-
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here the notion of Restriction-Level bag (RL-bag for short) that generalizes that
of fuzzy bag.

The RLR theory [11] is suitable when we have to operate with vague concepts
and we need, or want to keep the ordinary boolean properties. They are also
useful when translating crisp procedures as we can see in [6] and for the formu-
lation of properties to the fuzzy case. In our case, we are interested in preserving
the usual crisp properties of bags when dealing with uncertainty, specially when
mining rules involving the negation of items.

The aim of this work is twofold. First we present the concept of RL-bag
extending the known concept of fuzzy bag1. And second, we present how we can
deal with the information provided by the RL-bags (the uncertainty and the
frequency of items) to obtain meaningful and interesting rules for the user.

The paper is organized as follows: first we review some definitions about RL-
sets and bags. Then we define the concept of RL-bag using the RLR theory. We
follow presenting a new approach for mining association rules in RL-bags using
the approach developed in [6] which extends the measures used for assessing
crisp rules to the fuzzy case. Finally, we give some concluding remarks.

2 Representation by Restriction Levels

The basic idea of the RLR theory [11], [10] is that vague properties defined on
a set of objects X can be described by a collection of crisp representatives each
one being a crisp realization under a certain restriction. The so called restriction
levels (RL) are represented by values in the unit interval meaning possible levels
of relaxation of the property where 1 corresponds to the most restrictive, 0 means
no restriction at all and the restriction level 0.5 is halfway between being totally
strict and no strict at all.

Definition 1. [10] A RL-set Λ is a finite set of restriction levels Λ =
{α1, . . . , αm} verifying that 1 = α1 > α2 > · · · > αm > αm+1 = 0, m ≥ 1.

The RL-set of an atomic property represented by means of a fuzzy set A is
defined as follows.

Definition 2. [10] Let be A a fuzzy set defined on the referencial X. Then the
RL-set associated to A is given by:

ΛA = {A(x) |x ∈ supp(A)} ∪ {1} (1)

where A(x) is the membership grade of x to the fuzzy set A, and supp(.) denotes
the support of a fuzzy set.

The employedRL-set to represent an imprecise property is obtained by the union
of the RL-sets associated to the atomic properties which define that property.
1 A fuzzy bag can be seen as a RL-bag, but the associated operations between fuzzy

bags do not coincide with those defined over RL-bags.
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A RL-representation associated to an imprecise property in X is defined by
a pair (Λ, ρ) where Λ is a RL-set and ρ : Λ→ P(X) is a function which applies
each restriction level into a crisp realization in this level. For example, the RL-
representation of an imprecise atomic property defined by a fuzzy set A will be
the pair (ΛA, ρA), where ΛA is given by the equation (1) and ρA(α) = Aα =
{x ∈ X |A(x) ≥ α} for all α ∈ ΛA.

Given an imprecise property P represented by (ΛP , ρP ), the set of crisp rep-
resentatives of P is the set [10] ΩP = {ρP (α) | α ∈ ΛP }.
Definition 3. [10] Let be (Λ, ρ) a RL-representation with Λ = {α1, . . . , αm}
verifying that 1 = α1 > α2 > · · · > αm > αm+1 = 0. Let α ∈ (0, 1] and
αi, αi+1 ∈ Λ satisfying that αi > α > αi+1. Then we define

ρ(α) = ρ(αi). (2)

If we look to this definition, this extension for values that there are not in the
RL-set of the function ρ, is the natural extension if we think in a fuzzy set
A and its α-cuts. Using this definition the concept of equivalence between two
RL-representations is straightforward.

Definition 4. [10] Let (Λ, ρ) and (Λ′, ρ′) be two RL-representations on X. We
will say that both representations (and the corresponding properties) are equiv-
alent, noted by (Λ, ρ) ≡ (Λ′, ρ′), if and only if, ∀α ∈ (0, 1]

ρ(α) = ρ(α′). (3)

Summarizing, only a finite RL-set is necessary for defining a RLR, but the
representation extends to any other RL in (0, 1].

The usual boolean operations are extended to RLRs by applying them on the
representatives of the same RL of the arguments independently. In particular,
we present here the logic operations of disjunction, conjunction and negation.
The basic ideas of how they are defined can be found in [10],[11].

Definition 5. Let P,Q be two imprecise properties with RL-representations
(ΛP , ρP ), (ΛQ, ρQ). Then, P ∧Q, P ∨Q and ¬P are imprecise properties rep-
resented by (ΛP∧Q, ρP∧Q), (ΛP∨Q, ρP∨Q) and (Λ¬P , ρ¬P ) respectively, where
ΛP∧Q = ΛP∨Q = ΛP ∪ ΛQ, Λ¬P = ΛP and, for all α ∈ (0, 1],

ρP∧Q(α) = ρP (α) ∩ ρQ(α),
ρP∨Q(α) = ρP (α) ∪ ρQ(α),

ρ¬P (α) = ρP (α),

(4)

where Y is the usual complement of a crisp set Y .

Basic boolean properties that cannot be verified simultaneously by any standard
fuzzy set theory (FST) hold simultaneously for RLRs. We want to remark that
fuzzy sets are closed with respect to some of these RLR operations in the sense
that the corresponding RLR yields the usual nested α-cut representation and
hence the result is a fuzzy set. However, this is not true in general when negation
is employed.
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3 Bags and Bag Databases

Bags, also called multisets, were introduced by R. Yager [12] as set-like alge-
braic structures where an element can appear more than once. Bags are useful
in order to model market basket situations, but they can be used in others con-
texts. For example, in the real world is usual to find that several individually
different objects verify the same properties in a certain context (space, time).
In other words, we can say they are instances of the same class. Counting how
many objects verify a certain property in a given context seems to be a natural
application of bags in practice [5].

There are several definitions of the bag concept [12],[5], but the usual one
formalizes a bag B as an application, typically named count function, defined
from a set of objects O that maps every object to a non negative integer number.
A bag database is defined then as a set of bags, all of them defined over the same
set of objects.

When the objects are items, we have bag transactions. An example of such
bag transaction2 could be B = {b1, b1, b3, b3, b3, b7, b7}. For brevity, we represent
every bag by B = {(b1, q1), . . . , (bk, qk)} where bj ∈ I represents an item and qj
is a non negative integer number for all 1 ≤ j ≤ k. Under these conditions, a
bag database D, is a set of bags D = {B1, . . . , Bn} where Bi is a bag for every
1 ≤ i ≤ n.

4 RL-Bags

In this section we define the new concept of RL-Bag using the RLR theory.
This formalization will extend the so called fuzzy bags and will provide a good
generalization of operations to the crisp case overall when dealing with negation.

The concept of fuzzy bag is presented in [7] as follows:

Definition 6. Assume O is a set of objects. A fuzzy bag B̃ is a mapping from
the cartesian product O×[0, 1] to the set of non-negative integers N characterized
by:

fB̃(w/b) : [0, 1]×O −→ N, (5)

where b is an object in O and w ∈ [0, 1] represents its membership grade.

A fuzzy bag B̃ can also be denoted by B̃ = {(w1/b1, q1), . . . , (wk/bk, qk)} where
qi = f(wi/bi) ∈ N is the count associated to the fuzzy object wi/bi.

Example 1. Consider the following two fuzzy bags B̃1 and B̃2 defined over the
set of objects O = {b1, b2, b3}:

B̃1 = {(0.2/b1, 2), (0.3/b2, 3), (0.1/b3, 4), (0.2/b3, 5)}
B̃2 = {(0.4/b2, 5)}

(6)

Then, fB̃1
(0.3/b2) = 3, fB̃1

(0.2/b3) = 5 and fB̃2
(0.4/b2) = 5 are examples of

their associated mappings.
2 We shall refer in the following to these as simply “bags” for the sake of brevity.
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Let B̃α be the α-cut of the fuzzy bag B̃. In the same way as fuzzy sets, a fuzzy
bag can be represented by its α-cuts via the formula [9]:

(fB̃)α(b) =
∑
w≥α

f(w/b). (7)

where (fB̃)α(b) is the number of occurrences of the element b in B̃α. For instance,
in the previous example B̃1 is represented by its α-cuts as follows:

(B̃1)0.1 = {(b1, 2), (b2, 3), (b3, 9)}
(B̃1)0.2 = {(b1, 2), (b2, 3), (b3, 5)}
(B̃1)0.3 = {(b2, 3)}

(8)

where the element (b3, 9) at the α-cut 0.1 comes from the elements
(0.1/b3, 4), (0.2/b3, 5). Then, given a fuzzy bag B̃, the following property holds
[9]:

∀α, β ∈ (0, 1], α ≤ β then B̃β ⊆ B̃α. (9)

Consequently the α-cuts of a fuzzy bag are nested crisp bags and a fuzzy bag
can be represented by the family of all its α-cuts.

There exist other approaches which also generalizes the concept of fuzzy bag
using a different formulation [2], [4]. In [4] the main idea is to consider a math-
ematical correspondence between properties and objects, from which classical
bags are obtained as counts. This view enriches the classical view of bags, allow-
ing to define algebraic operations that reduce to classical algebraic and numerical
operations on classical bags and fuzzy bags in some particular cases.

In the mentioned papers about fuzzy bags, the set of operations are defined
in terms of fuzzy operators. Some of them, such as the complement of a fuzzy
bag and the difference between fuzzy bags, suffer from the same problems that
the fuzzy operators used to extend them [9]. The restriction level representation
theory gives us the tool for avoiding some of these drawbacks by using the
operations defined in section 2.

From this point on, we will define the concept of RL-bag using the RLR theory
which will allow to manage with fuzzy bags as a set of crisp bags each of them
defined over a restriction level.

Definition 7. Assume that O is a set of objects and B(O) is the set containing
all the possible bags defined over O. A RL-bag, β, will be a pair (Λβ, ρβ) where
Λβ is a RL-set and ρβ : Λβ −→ B(O) is a function which applies each restriction
level into a crisp bag defined over the set of objects.

From this definition it is easy to see that a fuzzy bag is a particular case of
RL-bag, but the opposite is not true, because a RL-bag does not necessarily
fulfil the property about nested crisp bags when descending the restriction level
(or the α-cut in the fuzzy case).

Using Definition 7 it is straightforward to extend the usual logic operators
to RL-bags by applying the operators to the crisp bags in each restriction level
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Table 1. Examples of RL-bags defined over the set of objects O = {b1, b2, b3, b4}

α ρβ1 ρβ2(α)
1 {(b3, 2)} {(b1, 1), (b2, 2)}

0.7 {(b1, 2), (b3, 2)} {(b1, 1), (b2, 2), (b3, 1)}
0.6 {(b1, 2), (b2, 1), (b3, 2)} {(b1, 2), (b2, 5), (b3, 1)}
0.4 {(b1, 2), (b2, 1), (b3, 4)} {(b1, 3), (b2, 5)}

adding to the RL-set the new levels as in definition 5. We want to remark that
operations defined over RL-bags following the RLR philosophy do not coincide
with those operations defined for fuzzy bags using the fuzzy set theory. So, the
real contribution of the RL-bag concept is that of managing fuzzy bags as a set
of crisp bags which are satisfied to a certain degree. This generalization of fuzzy
bag allows us to operate with fuzzy bags without loosing the crisp properties of
bags, and it is also useful when extending crisp measures to the fuzzy case as
for instance when mining rules in fuzzy bag databases.

Nevertheless, we are more interested in how the linguistic labels interact with
the RL-bags in order to propose a general method for mining association rules
from a database constituted by fuzzy bags or RL-bags. The key of our proposal
(presented in next section) is how to combine linguistic labels with RL-bags and
how to take advantage of the quantities associated to each object for measuring
their changes and variation in the whole set of fuzzy bags.

5 Mining Fuzzy Rules in RL-Bags

This section presents a new approach for mining association rules in a database
which contains fuzzy bags by using their representation as RL-bags. This kind of
databases are very frequent in the field of information retrieval or text mining.
For instance, a document d can be seen as a special case of fuzzy bag because
we could represent it by a set of triples of the form:

d = {(wk/ik, fk), k = 1, . . . p}

where ik ∈ I is the kth item in the document, wk ∈ [0, 1] is the weight or the
degree of relevance associated to the item ik and fk is the number of appearances
of ik in the document. In these terms, a collection of documents can be considered
as a set of fuzzy bags, that is, a fuzzy bag database. Then, it is interesting to
develop new methods for mining interesting rules in fuzzy bag databases. In
our case we will treat a fuzzy bag as a RL-bag in order to preserve the crisp
properties when operating between them.

In our previous work dealing with crisp bags [5], we extract meaningful rules
from a crisp bag database considering the user’s knowledge about the defini-
tion of good representative linguistic terms for the quantities of each item. Our
previous approach can be divided in mainly two steps. First, we transform the
bag database into a fuzzy transactional one using the linguistic terms defined by
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the user and then we extract the fuzzy association rules using the support and
certainty factor as proposed in [3].

Following the same idea, we can transform a database which containsRL-bags
into a fuzzy one (seen by restriction levels as we will see in Example 2) and then
apply some developed tools for mining fuzzy association rules.

Our approach can be summarized in some simple steps as the Algorithm 1
shows.

Algorithm 1. Mining Fuzzy Rules in Fuzzy Bag Databases
Input: Fuzzy bag database (or RL bag database), minsupp, minconf or minCF
Output: Set of fuzzy association rules
1. Database Preprocessing

1.1 The user gives a set of linguistic labels associated to the frequencies of each item.
1.2 Database transformation into a fuzzy database using the previous labels.

2. Mining Process
2.1 Mining Fuzzy Rules in the transformed fuzzy database.

2.1.1 Computation of the associated 4ft-table in each restriction level.
2.1.2 Computation of the values for the 4ft-quantifiers associated to support and
confidence or certainty factor, extracting those rules that exceed the minimum
associated thresholds.

Let I = {i1, . . . , im} be a set of items. We call RL-bag database to a set
D = {β1, . . . , βn} of RL-bags defined over I. The first step is to transform D
into a new database D̃ formed by a set of crisp bags defined in each restriction
level. In this step the participation of the user is necessary in order to define
a set of linguistic labels associated to the frequencies of the items appearance.
Nevertheless, the previous labels can be defined using a clustering process [1], or
simply by defining a partition by means of trapezoidal numbers in the domain
[minf,maxf ] where the bounds correspond to the minimum value of the fre-
quency (we will use 0 by convention) and to the maximum value of the frequency
respectively.

The main idea of this transformation consists in considering the linguistic
label as a set of intervals, each one defined in a different restriction level. Then,
we see if the frequency f(w/i) associated to the item i at level α = w belongs
to the corresponding interval in that restriction level, in that case we will have
that the new item 〈i, label〉 is satisfied in level α (see table 3).

Once we have the fuzzy database defined in terms of restriction levels, we can
easily compute for each pair of items X and Y of the previous type (〈i, label〉) the
associated 4ft-table, noted by 4ft(Mα, X, Y, D̃), for each RL α as follows [6]:

Mαi Y ¬Y

X ai bi
¬X ci di

where ai is the number of transactions in the database D̃ satisfying X and Y at
the level αi, bi the number of transactions satisfying X and not Y in level αi,
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and so on. The value for the support and for the confidence are extended from
the crisp case to the fuzzy case in [6] using the previous 4ft-table as follows (we
also extend the certainty factor in [6] but it is not included here due to the lack
of space.)

Supp(X → Y ) =
∑

αi∈ΛX∧Y

(αi − αi+1)
(

ai

ai + bi + ci + di

)
(10)

Conf(X → Y ) =
∑

αi∈ΛX∧Y

(αi − αi+1)
(

ai

ai + bi

)
(11)

If the Supp(X → Y ) and the Conf(X → Y ) exceed the minsupp and minconf
thresholds, the rule X → Y will be mined from the database D̃. We want to
remark that items X and Y are of the form 〈i, label〉, so the extracted rules will
be of the type: “most of transactions that contain few ij also contain a lot of
ik” where we have a relation between the joint occurrence of ij and ik and also
a relation between their associated frequencies by means of the linguistic labels
few and a lot.

Example 2. Let D1 be constituted by the following four RL-bags:

Table 2. D1

α β1 β2 β3 β4

1 {(i1, 2), (i2, 1), (i3, 4)} {(i2, 1), (i3, 20)} {(i1, 2), (i2, 5), (i3, 13)} {(i4, 7)}
0.8 {(i1, 6), (i2, 1), (i3, 5)} {(i1, 1), (i2, 1), (i3, 23)} {(i1, 2), (i2, 1), (i3, 15)} φ
0.5 {(i1, 10), (i2, 1), (i4, 4)} {(i1, 2), (i2, 1), (i3, 23)} {(i1, 2), (i2, 6), (i3, 15)} {(i1, 5), (i4, 7)}
0.2 {(i1, 2), (i4, 6)} {(i1, 2), (i4, 12), (i3, 23)} {(i1, 2), (i2, 6), (i3, 16)} φ

where i1, i2, i3, i4 are the items associated to the RL-bags β1, . . . , β4. Notice
that β4 does not correspond to a fuzzy bag, but it could come from the negation
and/or conjunction of some fuzzy bags.

For every item in I = {i1, i2, i3, i4} we can define a set of linguistic terms
related to the frequencies which indicates how to measure the quantity. In Fig-
ure 1 there is an example of linguistic labels associated to every item in I. In
general, we could have different sets of labels associated to each particular item.

To obtain a new database D̃1 fromD1 constituted by a set of crisp transactions
in each restriction level, we first consider the linguistic labels Lj ∈ {low, medium,
a lot} defined in Figure 1 as a set of intervals in each restriction level, as we show
in Figure 1. For that, we consider the same set of restriction levels Λβ1 ∪ · · · ∪
Λβ4 = {1, 0.8, 0.5, 0.2} used in the RL-bag database, and then we take the α-cut
of the linguistic label where α ∈ Λβ1∪· · ·∪Λβ4 . Then, we check for each restriction
level if the quantities associated to the item are in the interval or not. By this
procedure, we obtain a new item in the form 〈i, Lij〉 for each linguistic label as
Table 3 shows. In the process, as the linguistic labels are overlapped, one single
item can be transformed into two new items, as for instance, at level 0.2 the initial
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α few medium a lot
1 [5, 10] [15, 20] [25,∞)

0.8 [4, 11] [14, 21] [24,∞)
0.5 [2.5, 12.5] [12.5, 22.5] [22.5,∞)
0.2 [1, 14] [11, 22] [21,∞)

Fig. 1. Linguistic labels associated to items i1, i2, i3, i4 and their representation by
restriction levels

Table 3. Database D̃1 resulted from the transformation of D1 using the set of linguistic
labels in Figure 1

α β̃1 β̃2

1 φ {〈i3, medium〉}
0.8 {〈i1, few〉 , 〈i3, few〉} φ
0.5 {〈i1, few〉 , 〈i4, few〉} {〈i3, a lot〉}
0.2 {〈i1, few〉 , 〈i4, few〉} {〈i1, few〉 , 〈i4, few〉 , 〈i4, medium〉 , 〈i3, a lot〉}

α β̃3 β̃4

1 {〈i2, few〉} {〈i4, few〉}
0.8 {〈i3, medium〉} φ
0.5 {〈i2, few〉 , 〈i3, medium〉} {〈i1, few〉 , 〈i4, few〉}
0.2 {〈i1, few〉 , 〈i2, few〉 , 〈i3, medium〉} φ

item (i4, 12) turn into 〈i4, few〉 and 〈i4,medium〉, because 12 ∈ [1, 14] ∩ [11, 22].
In the other way round, an initial item can disappear in a certain level if its
quantity does not belong to any interval.

Now, we are in the second phase of the process where we have to compute
the 4ft-table, Mαi , associated to every pair of items in each restriction level
αi, and then to check if the support exceeds the imposed threshold, and if so,
if confidence also exceeds the minconf threshold. When both conditions are
satisfied, we will obtain a fuzzy association rule involving the quantity of items,
in this case, rules expressed in terms of the defined linguistic labels.

In this case, we show the 4ft-table associated to items X = 〈i1, few〉 and
Y = 〈i4, few〉 in Table 4 where aj is the number of transactions in D̃1 containing
both items in level αj , and so on. Then, we compute the support and confidence
measures at every level and we aggregate the values using the formulas (10)

Table 4. 4ft(Mαj , 〈i1, few〉 , 〈i4, few〉 , D̃1)

Mαj aj bj cj dj

M1 0 0 1 3
M0.8 0 1 0 3
M0.5 2 0 0 2
M0.2 2 1 0 1
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and (11) obtaining for instance that Supp (〈i1, few〉 → 〈i4, few〉) = 0.25 and
Conf (〈i1, few〉 → 〈i4, few〉) = 0.433, so if we fix the minconf threshold to 0.7
this rule will not be extracted.

6 Conclusions

The main contributions are the definition of RL-bags, a new type of bag which
extends the one of fuzzy bag, and the presented framework for extracting use-
ful knowledge from fuzzy bags or more generally from RL-bags. In the proposed
method, we present how performing some transformations in a RL-bag database
defining some linguistic labels associated to the quantities, we can achieve inter-
esting association rules from this special type of database.
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Abstract. The automatic generation of fuzzy systems have been widely
investigated with several proposed approaches in the literature. Since for
most methods the generation process complexity increases exponentially
with the number of features, a previous feature selection can highly im-
prove the process. Filters, wrappers and embedded methods are used for
feature selection. For fuzzy systems it would be desirable to take the
fuzzy granulation of the features domains into account for the feature
selection process. In this paper a fuzzy wrapper, previously proposed by
the authors, and a fuzzy C4.5 decision tree are used to select features.
They are compared with three classic filters and the features selected
by the original C4.5 decision tree algorithm, as an embedded method.
Results using 10 datasets indicate that the use of the fuzzy granulation
of features domains is an advantage to select features for the purpose of
inducing fuzzy rule bases.

Keywords: Feature selection, fuzzy classification methods, C4.5, Fuzzy
C4.5, machine learning.

1 Introduction

Fuzzy systems have been widely used for a variety of tasks, such as classification,
optimization and control [1,2]. A system can be defined as a fuzzy system if at
least one of its variables is defined in terms of fuzzy sets according to the fuzzy
set and fuzzy logic theories, proposed by Loft A. Zadeh [3]. A fuzzy system is
usually comprised by a knowledge base and an inference mechanism. The fuzzy
data base, which contains the definitions of the features (also named attributes
or variables) in terms of fuzzy sets, and the fuzzy rule base, which contains a set
of rules defining a given problem, form the knowledge base. The inference mech-
anism derives the conclusions (or outputs) of the system based on the knowledge
base and inputs.

Independently from the adopted approach for the generation of fuzzy rule
based systems, feature selection is always an important concern, for it brings
the benefits of improving interpretability and reducing the computational cost of
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the whole process. This issue was tackled with different genetic feature selection
based approaches in [4,5]. In [6] a fuzzy neural network is used, and in [7] the
authors use a process based on the fuzzy mutual information measure instead.

Filters are a common choice for the task of Feature Subset Selection (FSS).
They are simple, fast, and use general characteristics of the data that might suit
different datasets and tasks. An approach that considers the aspects of fuzzy
logic in the selection process was presented in [8] where an extended definition
of the mutual information measure between two fuzzified continuous variables
for feature selection was proposed. Another option is the use of embedded meth-
ods, such as decision trees, which induce a classifier and select features at the
same time. In [9], the authors select features using a crips decision tree before
generating fuzzy rule bases. In order to provide a connection between the FSS
process and the designed fuzzy system, in [10] we proposed the Fuzzy-Wrapper
method, which is a wrapper that uses the Wang & Mendel method [11] to gen-
erate fuzzy rule bases as its base algorithm. It produced good results and was
significantly better than 4 filters, when compared using 8 datasets. Nevertheless,
wrappers have inherent disadvantages related to the cost of the search process
and depending on the number of features their use might become unfeasible.

As an alternative to the classic filters and decision trees (used as an embedded
method to select features) which do not consider the fuzzy logic to select features,
and wrappers, which are costly, in this paper we propose the use of a fuzzy
decision tree, based on the classic C4.5 algorithm, to select features. The fuzzy
C4.5 is compared to the Fuzzy-Wrapper method, the classic C4.5 decision
tree method, and three filters.

The remainder of this paper is organized as follows. In Section 2 the funda-
mental concepts of fuzzy classification systems are presented. Section 3 describes
the main concepts of FSS, including a short description of the Fuzzy-Wrapper
method and the fuzzy C4.5 algorithm used in this work. Section 4 presents and
discusses the experimental results. Finally, conclusions and future work are pre-
sented in Section 5.

2 Fuzzy Classification Systems

Classification is an important task in areas such as pattern recognition, decision
making, and data mining, among others. The classification task can be roughly
described as: given a set of objects E = {e1, e2, ..., en}, also named examples,
cases, or patterns, which are described by m features, assign a class ci from a
set of classes C = {c1, c2, ..., cj} to an object ep, ep = (ap1 , ap2 , ..., apm).

Fuzzy classification systems are rule based fuzzy systems that require the
granulation of the features domain by means of fuzzy sets and partitions. The
linguistic variables in the antecedent part of the rules represent features, and
the consequent part represents a class. A typical fuzzy classification rule can be
expressed by
Rk : IF X1 is A1l1 AND ... AND Xm is AmlmTHEN Class = ci

where Rk is the rule identifier, X1, ..., Xm are the features of the example con-
sidered in the problem (represented by linguistic variables), A1l1 , ..., Amlm are
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the linguistic values used to represent the feature values, and ci ∈ C is the class.
The inference mechanism compares the example to each rule in the fuzzy rule
base aiming at determining the class it belongs to.

The classic and general fuzzy reasoning methods are widely used in the litera-
ture. Given a set of fuzzy rules (fuzzy rule base) and an input pattern, the classic
fuzzy reasoning method classifies this input pattern using the class of the rule
with maximum compatibility to the input pattern, while the general fuzzy rea-
soning method calculates the sum of compatibility degrees for each class and uses
the class with highest sum to classify the input pattern. Next section discusses
the feature subset selection task.

3 Feature Subset Selection

The task of feature selection aims at finding small subsets of features that de-
scribe the dataset at hand as well as or even better than the original set does.
The importance of this task lies on the fact that, in practice, the performance of
most learning algorithms is affected by the presence of irrelevant and/or redun-
dant features. Besides that, when automatically generating fuzzy rule bases, a
particular challenge is the dimensionality problem. Other advantages associated
with feature selection are related to reducing the potential hypothesis space by
improving data quality, thus increasing the efficiency of the learning algorithm,
and enhancing the comprehensibility of the induced classifier [12].

Feature selection methods can be classified into three main categories ac-
cording to the dependence to the classifier: i)filters; ii) wrappers; iii) embedded
methods. These approaches are discussed next.

3.1 Filters

Filters select features before the induction of the classifier. It is a separate process
that does not interact with and is independent from the learning algorithm itself.
The basic idea of filters is to use general characteristics of the dataset to filter
the features before the induction of the classifier takes place.

Some common filters might include the CFS [13], ReliefF [14], and Consistency
[15]. CFS stands for Correlation-based Feature Selection and uses the correlation
between features to select them. ReliefF ranks the features by their usefulness
on distinguishing between very similar examples belonging to different classes
and presents an average merit ranking that can be used to select features. Con-
sistency, on the other hand, evaluates the subset of features using the level of
consistency between feature values and class values.

These general characteristics used by filters (correlation, distinguishability,
consistency, among others) might be appropriate for different domains and tasks.
Another advantage of filters is that they are fast and simple.

3.2 Wrappers and the Fuzzy-Wrapper Method

The wrapper approach uses the induction algorithm itself as a black box to eval-
uate candidate feature subsets, repeating the process on each feature subset until
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a stopping criterion is met. This way, wrapper methods take into consideration
all the important characteristics of the learning algorithm in the final decision
of the FSS process. Wrappers usually use a forward search strategy to avoid the
exponential complexity of the search process [16]. However, the computational
cost of wrapper methods is prohibitive on large datasets.

In order to take advantage of the fuzzy data base, i.e., the definition of the
fuzzy partitions and fuzzy sets that will granulate the features domains in the
feature selection process, in [10] we proposed the Fuzzy-Wrapper method,
which was further evaluated in [17]. The main idea of this method is to use
a wrapper to sequentially generate fuzzy rule bases using the Wang & Mendel
(WM) method, combining the features of the dataset. The WM method was
originally proposed for regression but can be easily adopted for classification
tasks. The best-first heuristic technique is used in order to avoid exponential
complexity. The Fuzzy-Wrapper method can be described by the following
steps:

1. For a domain with m features, generate all FRBs by the WM method, com-
bining all possible (m− 1) features.

2. Remove the feature of the FRB with the best, i.e., lowest error rate, from
the dataset, and again generate all FRBs by the WM method combining all
possible (m− 2) features.

3. Repeat the previous step until only 1 feature remains.
4. Rank the generated FRBs by their error rates.
5. Select the features present in the FRB with the best (lowest) error rate.

Regarding the complexity of the method, since for the WM method the max-
imum number of fuzzy rules generated is limited to the number of training
examples (n), the complexity of the Fuzzy-Wrapper for examples described
by m features is O(n×m2).

3.3 Embedded Methods for Feature Subset Selection and the
Proposed Version of the Fuzzy C4.5

Similarly to wrappers, feature selection by embedded methods is linked with the
induction algorithm. However, in this case this link is much stronger than in
wrappers, since the feature selection is included in the classifier construction.
Embedded methods for FSS induce a classifier that usually do not include all
possible features, thus, making it possible to define the set of features included in
the classifier as the most relevant ones. A typical example of embedded methods
for FSS is decision trees [18].

Decision trees are widely used in machine learning and various algorithms
have been proposed for their generation, such as ID3, C4.5, and CART [18,19].
These algorithms generate a tree structure through recursively partitioning the
feature space until the whole decision space is completely partitioned into a set
of non-overlapping subspaces.

C4.5 is a well-known decision tree algorithm proposed and implemented by
Quinlan [18] that uses the information gain and entropy measures when deciding
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on the importance of the features, making it possible to select features with the
ranking of the generated branches.

Several fuzzy approaches for the induction of decision trees have also been
proposed [20], including a fuzzy C4.5 [21]. The fuzzy induction process is very
similar to the induction of a classic decision tree. The proposed version of the
fuzzy C4.5 algorithm used in this paper applies the same measures of the C4.5
algorithm (entropy and information gain) to decide the importance of the fea-
tures. However, the features are all defined in terms of fuzzy sets before the
induction of the tree. This way, the process can be seen as inducing a tree using
only discrete features, since the continuous features are defined in terms of fuzzy
sets and the training set is fuzzified before the decision tree induction. Next, we
present the main steps of the induction process of the fuzzy tree.

1. Define the fuzzy data base, i.e., the fuzzy granulation of the features
domains;

2. Use the fuzzy data base to fuzzify the training set;
3. Calculate the entropy and information gain of each feature to split the train-

ing set and generate rules until all features were used or all examples from
the training set were classified;

4. Once the tree is induced, it is pruned using the standard pruning rate (25%).

The third step includes all the well-know steps of the classic decision tree al-
gorithms. Notice that the fuzzification of the training data is done before the
induction of the tree.

One special issue regarding decision trees is that they can be seen as a set
of disjunct rules in which only one rule is fired for a given input example. Re-
garding fuzzy decision trees, they can be seen as a set of rules that can be fired
simultaneously, each one presenting a class and a degree of certainty for a given
input pattern to be classified. This characteristic of the fuzzy decision trees al-
lows the use of the fuzzy classic and general reasoning methods, i.e., since more
than one rule derived from the decision tree can be fired, an input pattern can
be classified with the class of the rule with highest compatibility with the input
pattern, or with the class with the highest sum from the set of rules with that
given class. Next, we present the experiments and results.

4 Experiments

In order to evaluate the ability of selecting features of the proposed fuzzy C4.5
algorithm, we compared its results with the Fuzzy-Wrapper method. The
classic C4.5 decision tree (using the implementation proposed by Quinlan [18]),
and three classic filters available at WEKA [22], CFS, ReliefF and Consistency
(previously described in Section 3.1) were also tested. 10 benchmark datasets
available at the UCI Machine Learning repository [23] were used. In [17], both
the classic and general fuzzy reasoning methods were tested. Since the classic
reasoning method performed better than the general one, in this paper we de-
cided to adopt only the classic fuzzy reasoning method.
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Table 1 summarizes the dataset characteristics giving the total number of
examples (Examples), total number of features (Features), including the number
of continuous and discrete features in brackets, number of classes (Classes), the
majority error (ME), and the number of fuzzy sets for each of the attributes
(FS). Examples with missing values were removed.

Regarding the number of fuzzy sets describing each feature, they were defined
by the Fuzzy-DBD method [24], which chooses the number of fuzzy sets for
each feature based on a heuristic process. Specifically, we used triangular shaped
fuzzy sets evenly distributed in the features domains.

Table 1. Dataset characteristics

Dataset Examples Features Classes ME FS

Credit 653 15(6,9) 2 45.33 2
Cylinder 277 32(19,13) 2 35.74 2

Dermatology 358 34(33,1) 6 68.99 2
Diabetes 769 8(8,0) 2 34.90 2

Glass 220 9(9,0) 7 65.46 7
Heart 270 13(13,0) 2 44.44 2

Ionosphere 351 34(34,0) 2 35.90 3
Segment 210 19(19,0) 7 85.71 3
Vehicle 846 18(18,0) 4 74.23 2
Wine 178 13(13,0) 3 59.74 3

Table 2 presents the original number of features of each dataset (F), the
number of features selected by the Fuzzy-Wrapper method (FW), as well
as the ones selected by the Fuzzy C4.5 (FC4.5), C4.5, CFS, ReliefF (RF) and
Consistency (Cons.) methods. The average number of features is also presented.
The best results are light-gray shaded.

Table 2. Original and selected number of features

Dataset F FW FC4.5 C4.5 CFS RF Cons.

Credit 15 12 10 9 7 12 13
Cylinder 32 9 24 18 6 16 9

Dermatology 34 17 17 7 16 16 8
Diabetes 8 2 5 6 4 5 8

Glass 9 6 6 9 7 8 7
Heart 13 3 5 12 8 12 10

Ionosphere 34 7 10 14 14 33 7
Segment 19 8 10 12 7 15 9
Vehicle 18 10 11 18 11 18 18
Wine 13 7 8 3 10 13 5

Average 19.5 8.1 10.6 10.8 9 14.8 9.4

Results show that the Fuzzy-Wrapper method was able to select the small-
est number of features for 5 out of the 10 datasets, with one tie with FC4.5. The
Fuzzy-Wrapper also shows the best average number of selected features. Reli-
efF, on the other hand, had the worst average of selected features, reducing one
of the original number of features for the glass, heart and ionosphere datasets,
and no features for the wine and vehicle datasets.
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In order to evaluate the quality of the selected sets of features we used the
Wang & Mendel (WM) method to generate fuzzy rule bases and calculate their
precision. The classification power of these sets of selected features can be seen
as an indication of their quality to describe the dataset. It is important to notice
that the WM method is a quite simple approach to generate fuzzy rule bases and
was used in these experiments because of its simplicity and ease implementation
only for preliminary comparisons.

Table 3 presents the error rates and standard deviation (in brackets) for the
Fuzzy-Wrapper (FW/WM), fuzzy C4.5 (FC4.5) using the rule base induced
by the fuzzy tree, fuzzy C4.5 (FC4.5/WM), C4.5 (C4.5/WM), CFS (CFS/WM),
ReliefF (RF/WM), and Consistency (Cons/WM). The suffix WM indicates that
the error rates were obtained by the rule bases generated by the Wang & Mendel
method. The column division in the middle of the table separates the first three
methods (FW/WM, FC4.5, and FC4.5/WM) that make the selection of features
using the fuzzyfied data, from the others that use the original data. The best
results are light-gray shaded. The last line of the table presents the ranking of
the methods according to their error rates.

Notice that the FC4.5 is used as an embedded method, since it induces a
fuzzy classifier and select features at the same time. On the other hand, for the
FC4.5/WM and the C4.5/WM, the decision tree (fuzzy or not) is used only to
select the features which appear in the generated branches. These features are
then used by the WM method to generate the fuzzy rule base.

Table 3. Error rates

Dataset All FW/WM FC4.5 FC4.5/WM C4.5/WM CFS/WM RF/WM Cons/WM

Credit 0.21(0.09) 0.23(0.06) 0.11(0.06) 0.43(0.08) 0.43(0.02) 0.43(0.08) 0.23(0.03) 0.28(0.04)
Cylinder 0.43(0.11) 0.35(0.1) 0.17(0.04) 0.35(0.09) 0.49(0.13) 0.52(0.13) 0.43(0.11) 0.56(0.12)
Derma 0.24(0.08) 0.15(0.06) 0.06(0.05) 0.24(0.08) 0.36(0.04) 0.24(0.11) 0.24(0.08) 0.24(0.08)

Diabetes 0.40(0.07) 0.40(0.04) 0.30(0.05) 0.55(0.07) 0.51(0.06) 0.51(0.08) 0.47(0.06) 0.40(0.05)
Glass 0.42(0.02) 0.37(0.08) 0.25(0.16) 0.65(0.10) 0.50(0.07) 0.54(0.05) 0.42(0.07) 0.48(0.08)
Heart 0.47(0.03) 0.19(0.03) 0.19(0.07) 0.47(0.05) 0.31(0.06) 0.24(0.03) 0.32(0.02) 0.29(0.08)
Iono 0.34(0.05) 0.24(0.07) 0.08(0.06) 0.34(0.03) 0.44(0.04) 0.41(0.08) 0.36(0.09) 0.39(0.10)

Segment 0.25(0.02) 0.21(0.01) 0.12(0.02) 0.26(0.05) 0.26(0.07) 0.27(0.03) 0.26(0.03) 0.34(0.01)
Vehicle 0.76(0.02) 0.36(0.03) 0.37(0.05) 0.61(0.06) 0.43(0.09) 0.52(0.09) 0.43(0.10) 0.43(0.03)
Wine 0.61(0.08) 0.03(0.04) 0.05(0.07) 0.11(0.08) 0.13(0.04) 0.05(0.05) 0.10(0.01) 0.14(0.01)

Ranking 4 2 1 5 8 7 3 6

For this setup, the fuzzy C4.5 classifier (FC4.5) was able to obtain the smallest
error rates for 7 out of 10 datasets, with one tie with the Fuzzy-Wrapper
method, which obtained the smallest error rates for the remaining datasets.
The FC4.5 also performed reasonably well in terms of feature selection. The
Fuzzy-Wrapper, on the other hand, was the best in terms of selected features.
Nevertheless, it is important to notice that the use of wrappers might not be a
reasonable alternative for feature selection for datasets with many features due
to its complexity. The features selected by the ReliefF filter produced the third
best results, but it is important to bear in mind that ReliefF was the worst
approach in terms of selected features.
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Other important fact to be taken into consideration is that WM didnot yield
good results for any approach, but for the Fuzzy-Wrapper. On the contrary,
in many cases the results are worse than the majority error. Nevertheless, the
excellent performance of the fuzzy C4.5 both in terms of precision and number
of rules (discussed next) can be seen as the required motivation for further
experiments and comparisons with other more complex fuzzy rule base inducers,
such as genetic approaches.

To test whether there is a difference among the algorithms we used the Fried-
man test [25] with the null-hypothesis that the performance of all algorithms,
assessed in terms of the error rates, are comparable. The last line of Table 3
shows the Friedman ranking. Compared to the Friedman statistics, we could
reject the null-hypothesis at 95% of confidence level and then proceed with the
Dunn test [25] to compare each algorithm against the others. Results show that
the Fuzzy-Wrapper method is better than the CFS method and significantly
better than the C4.5 (comparing the rule base generated by the WM method).
Results also show that the fuzzy C4.5 using the rule base of the induced trees is
significantly better than fuzzy C4.5 and ReliefF, both using the WM fuzzy rule
base. Results also show that the fuzzy C4.5, using the decision tree rule base, is
extremely better than the C4.5 and CFS, both using the WM fuzzy rule base.

Although the aim of this paper is to assess the methods for feature subset
selection, another important aspect to be considered is the interpretability of
the resulting rule bases. The Wang & Mendel method generates rules with a
conjunction for each input feature in the antecedent of the rules, i.e., if we have
m features for a given dataset, each resulting rule will have m conjunctions.
Also, the number of rules generated by the WM method is closely connected to
the number of features and the number of fuzzy sets describing each feature. On
the other hand, with the fuzzy C4.5 method the rules present a variable number
of conjunctions in their antecedent and there is no fixed connection between
the number of features and the number of resulting rules. This flexibility of
the decision trees greatly improves the interpretability of the resulting rule base
and is an important advantage when compared to the rule bases generated by
the WM method, for instance. In order to allow an overall comparison, for our
experiments the number of rules generated by the proposed fuzzy C4.5 algorithm
ranged from approximately 5% to 50% of the number of rules generated by the
WM method.

5 Conclusion

Fuzzy systems generation have been the focus of a strong research effort in the
last years. Depending on the adopted approach, a preselection of features might
be essential for the process. Feature selection can also improve the interpretabil-
ity of the induced rules. The use of filters for this task is a common choice,
since they are simple, fast and use general characteristics found in the data that
might suit different domains and tasks. Wrappers are also another option which
uses the induction algorithm itself to select features, although they are usually
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computational costly due to the complexity of the process. A third option is the
use of embedded methods, such as decision trees, which induce a classifier and
select features at the same time.

This paper proposes a simple version of the Fuzzy C4.5 method to be used for
attribute selection, and compares its results with a fuzzy wrapper, 3 filters and
the C4.5 classic decision tree algorithm, aiming at proposing fuzzy alternatives
to feature selection.

Results show that the fuzzy decision tree is able to select subsets of features
with high classification power, being a good alternative to wrapper approaches
for datasets with many features. The fuzzy C4.5 algorithm decides the granu-
lation of the features domains in terms of fuzzy sets for the induction process.
Furthermore, it is a very simple and fast algorithm, having no restrictions for
large datasets described by many features.

As stated before, the WM method is a quite basic approach to generate fuzzy
rule bases. This way, we intend to investigate the use of the fuzzy C4.5 method
to select features for a genetic generation of fuzzy rule bases. We also intend to
investigate the impact of different pruning rates for the generation of the fuzzy
C4.5 decision tree.
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8. Sánchez, L., Suárez, M.R., Villar, J.R., Couso, I.: Mutual information-based feature
selection and fuzzy discretization of vague data. International Journal of Approxi-
mate Reasoning 49(3), 607–622 (2008)



Feature Subset Selection for Fuzzy Classification Methods 327

9. Alonso, J.M., Magdalena, L.: An interpretability-guided modeling process for learn-
ing comprehensible fuzzy rule-based classifiers. In: International Conference on In-
telligent Systems Design and Applications, pp. 432–437 (2009)

10. Cintra, M.E., de Arruda Camargo, H., Monard, M.C.: Fuzzy feature subset selec-
tion using the Wang & Mendel method. In: HIS 2008, vol. 1, pp. 590–595 (2008)

11. Wang, L.: The WM method completed: a flexible fuzzy system approach to data
mining. IEEE Transactions on Fuzzy Systems 11, 768–782 (2003)

12. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
The Journal of Machine Learning Research 5, 1205–1224 (2004)

13. Hall, M.A.: Correlation-based feature selection for discrete and numeric class Ma-
chine Learning. In: Proceedings of the 17th International Conference on Machine
Learning, pp. 359–366. Morgan Kaufmann, San Francisco (2000)

14. Kira, K., Rendell, L.: A practical approach to feature selection. International Con-
ference on Machine Learning 1, 368–377 (1992)

15. Liu, H., Setiono, R.: A probabilistic approach to feature selection - a filter solution.
In: Proceedings of the 13th International Conference on Machine Learning, vol. 1,
pp. 319–327 (1996)

16. Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection. In:
Proceedings of the 18th Int. Conf. on Machine Learning, pp. 74–81 (2001)

17. Cintra, M.E., Martin, T.P., Monard, M.C., Camargo, H.A.: Feature subset selection
using a fuzzy method. In: International Conference on Intelligent Human-Machine
Systems and Cybernetics, vol. 2, pp. 214–217 (2009)

18. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, CA (1988)
19. Quinlan, J.R.: Bagging, boosting and c4.5. In: Proceedings of the 13th Conf. Arti-

ficial Intelligence, pp. 725–730 (1996)
20. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and

Systems 138(2), 221–254 (2003)
21. Kazunor, H., Motohide, U., Hiroshi, S., Yuushi, U.: Fuzzy C4.5 for generating fuzzy

decision trees and its improvement. Faji Shisutemu Shinpojiumu Koen Ronbun-
shu 15, 515–518 (1999)

22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations, 2nd edn. Morgan Kaufmann, San Francisco
(2005)

23. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
24. Cintra, M.E., Camargo, H.A., Martin, T.P.: Optimising the fuzzy granulation of

attribute domains. In: International Fuzzy Systems Association World Conference,
pp. 742–747 (2009)
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Abstract. The naive credal classifier (NCC) extends naive Bayes clas-
sifier (NBC) to imprecise probabilities to robustly deal with the speci-
fication of the prior; NCC models a state of ignorance by using a set of
priors, which is formalized by Walley’s Imprecise Dirichlet Model (IDM).
NCC has been shown to return more robust classification than NBC.
However, there are particular situations (which we precisely characterize
in the paper) under which the extreme densities included by the IDM
force NCC to become very indeterminate, although NBC is able to is-
sue accurately classifications. In this paper, we propose two approaches
which overcome this issue, by restricting the set of priors of the IDM .
We analyze both approaches theoretically and experimentally.

1 Introduction

The naive Bayes classifier (NBC) is often accurate, despite the unrealistic as-
sumption of independence of the features given the class. However, especially on
small data sets, NBC can happen to issue prior-dependent classifications, i.e.,
the most probable class varies depending on the adopted prior. This is accept-
able if the prior can be carefully elicited to model domain knowledge; otherwise,
prior-dependent classifications can be fragile. Usually, NBC is learned using a
uniform prior, in the attempt of being non-informative. Yet, this solution is
hardly satisfactory because the uniform prior models indifference rather than
ignorance and anyway the choice of any single prior implies some arbitrariness.

The naive credal classifier (NCC) extends NBC to imprecise probabilities to
robustly deal with the specification of the prior density; NCC models a state
of ignorance by using a set of priors, which is formalized by Walley’s Imprecise
Dirichlet Model (IDM) (see [2] for a tutorial). IDM satisfies several properties de-
sirable to model prior ignorance, such as the representation invariance principle
(RIP) and the likelihood principle (LP) [2].

NCC turns the set of priors into a set of posteriors by element-wise application
of Bayes rule; eventually, it returns all the classes which are non-dominated1

within the set of posteriors. In fact, NCC returns a set of classes when faced
with instances whose classification is prior-dependent; it issues weaker but more
robust classifications than NBC. We call determinate the classifications made of
a single class, and indeterminate the others.
1 The definition of dominance is given in Section 2.
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Yet, there are particular situations (which we precisely characterize in the
paper) under which the extreme densities included by the IDM force NCC to
become very indeterminate; as pointed out in [7, Sec. 6], this behavior is correct
in principle, since it shows that the classifications issued by NBC are prior de-
pendent. Yet in such cases the large indeterminacy of NCC is questionable, as
it is mostly due to extreme (namely, very skewed) priors; in fact, NCC becomes
more determinate if such extreme priors are removed. Moreover, in such cases
NBC (learned with uniform prior) achieves good accuracy on the instances inde-
terminately classified by NCC, which further shows an excessive indeterminacy
of NCC. A way to increase the determinacy of NCC in such cases is to remove
these extreme densities by restricting the IDM’s set of priors by a small amount
(an ε), in order to remove the boundary. In this paper we propose two approaches
to cut off the extreme densities in the IDM; in both cases, the amount of den-
sities removed from IDM is controlled by the parameter ε > 0. The value of
ε determines a trade-off between robustness and informativeness of the issued
classifications: increasing ε increases informativeness, at a cost of some robust-
ness. The setting ε = 0 corresponds to the IDM, which is maximally robust but,
at least in such particular cases, leads to a questionable high indeterminacy.

An alternative approach for restricting the credal set by modelling domain
knowledge is given in [1], where only those priors that guarantee an improve-
ment of the Mean Squared Error over the Maximum Likelihood Estimator are
included in the credal set. In [1] it is also shown that removing extreme densities
from the IDM is equivalent to express preferences among subregions of the pa-
rameter space; from this viewpoint, the two approaches proposed in this paper
are informative; thus, as we show in Sec.2.1, they cannot satisfy at the same
time both RIP and LP.

By experiments, we show under which conditions NCC, learned with Wal-
ley’s IDM, can become unnecessarily indeterminate; we compare its behavior
against that of an alternative credal classifier, CMA (credal model averaging)
[3]. Then, we show that NCC becomes more determinate without compromising
its reliability, when the two approaches for restricting the IDM are applied.

2 Naive Credal Classifier

NCC models prior near-ignorance by a set of priors; the set is formally defined
by using Walley’s Imprecise Dirichlet Model (IDM) [6]. NCC updates each prior
with the observed likelihood, via element-wise application of Bayes’ rule; in this
way, NCC turns the set of priors into a set of posteriors. Let us denote the
classification variable by C, taking values in the finite set C, where the possible
classes are denoted by lower-case letters. We have k features F1, . . . , Fk taking
generic values [f1, . . . , fk] = f from the sets F1, . . . ,Fk; the features are assumed
to be discrete. We denote by θc,f the real unknown probability (chance) that
(C,F1, . . . , Fk) equals (c, f ), by θfi|c the chance that Fi = fi conditional on
c and by θf |c the chance of (f1, . . . , fk) conditional on c. Let N be the total
number of samples; let n(c) and n(fi |c ) be the observed frequencies of class
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c and of (fi |c ). NCC, like NBC, (naively) assumes the independence of the
attributes given the class θf |c =

∏k
i=1 θfi|c . The likelihood function is:

L(n|θ) ∝
∏
c∈C

⎡⎣θn(c)
c

k∏
i=1

∏
fi∈Fi

θ
n(fi|c )
fi|c

⎤⎦ , (1)

where n denotes the vector of all the above frequencies. Observe that for all
c and i, the observations satisfy the structural constraints 0 ≤ n(fi |c) ≤ n(c),∑

c n(c) = N and
∑

fi∈Fi
n(fi |c ) = n(c). The prior density is expressed similarly

to the likelihood function, except that frequencies n(·) are replaced everywhere
by st(·) − 1, i.e., the prior is a Dirichlet density with parameters α(·) = st(·).
The parameter s is a positive real number which can be regarded as the number
of hidden samples, in the common interpretation of conjugate Bayesian priors as
additional sample units (the number can be fractional, though); the parameters
t(·) can be regarded as the proportion of units of the given type; for instance, tc′ is
the proportion of hidden units having class c′ in the hidden samples. Theoretical
considerations suggest that s should lie between 1 and 2 [2], while the t(·) are
usually set according to the uniform prior: t(c) = 1

|C| and t(ai|c) = 1
|C||F| . By

multiplying the prior density and the likelihood function, we obtain a posterior
density of the same form as the likelihood, with n(·) replaced by st(·) + n(·) −
1. We estimate the posterior joint probability of class and features by taking
expectation over the posterior probability of θ, i.e., P (c, f |n, s, t) equal to:

P (c|n, s, t)
k∏

i=1

P (fi|c,n, s, t) =
n(c) + st(c)
N + s

k∏
i=1

n(fi |c) + st(fi |c )
n(c) + st(c)

. (2)

Equation (2) is the posterior probability densities of class and features returned
by NBC. However, the specification of any single prior entails the risk of issuing
fragile prior-dependent classifications. Walley’s IDM overcomes this problem, by
letting the parameters t vary within intervals instead of being fixed to precise
values. In particular, t vary within the polytope T , defined by the following
constraints:

T :=

⎧⎨⎩∑
c∈C

t(c) = 1,
∑

fi∈Fi

t(fi |c ) = t(c), 0 < t(fi |c ) < t(c) ∀(i, fi, c)

⎫⎬⎭ . (3)

Thus, IDM takes into consideration all the priors densities which belong to the
simplex T . Notice that, the above constraints are necessary and sufficient con-
ditions to ensure that all the densities, obtained by letting t vary in T , are
proper. Walley’s IDM satisfies the representation invariance principle because
the uncertainty about any event does not depend on refinements or coarsening
of categories; the likelihood principle, because posterior inferences depend on the
data through the likelihood function only. The specific approach used by NCC
[7] to identify the non-dominated classes is called maximality [6]. Consider the
1 − 0 utility functions associated with the actions of choosing class c′ or c′′.
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The family of posterior probabilities P (c, f |n, s, t) (obtained by letting t vary in
T ) are used to determine the lower expected utility of deciding between c′ or
c′′. Class c′ dominates c′′ if the expected utility w.r.t. P (c, f |n, s, t) of choosing
a class c′ over c′′ is strictly positive for each t ∈ T . In the case of NCC, c′

dominates c′′ if and only if [7]:

inf
t∈T

P (c′, f |n, t,s)
P (c′′, f |n, t, s) = inf

t∈T

[
n(c′′) + st(c′′)
n(c′) + st(c′)

]k−1 k∏
i=1

n(fi |c′ ) + st(fi |c′ )
n(fi |c′′ ) + st(fi |c′′ )

> 1.

(4)
When faced with a prior-dependent instance, NCC identifies more non-dominated
classes and issues an indeterminate classification, thus preserving reliability.

2.1 Restricting IDM

As already observed, by considering all prior Dirichlet densities such that 0 <
t(c) < 1 and 0 < t(fi |c ) < t(c) for all i and c, IDM excludes the extremes of
the simplex T , which correspond to improper densities. This means that the
simplex T is obtained by restricting the set 0 ≤ t(c) ≤ 1 and 0 ≤ t(fi |c ) ≤ t(c)
by an arbitrary small ε. If n(fi |c) > 0 and n(fi |c ) < n(c) for each feature i and
class c, the posterior densities corresponding to the extremes of the simplex T
are proper for any choice of ε. Thus, in this case, we can let ε go to zero. This
is proved in [7] for the optimization in (4). In particular, it is shown that the
infimum of (4) is obtained by letting t(fi |c′ ) → 0 and t(fi |c′′ ) → t(c′′), thus
using extreme densities (i.e., ε = 0). Then, problem (4) is solved by optimizing
on t(c′′) only. Since function (4) is convex with respect to t(c′′), the minimization
can be solved exactly and efficiently.

In some cases, the use of extreme densities in (4) generate what we call the
class problem and the feature problem. The class problem, already observed in
[7, Sec. 6], takes place when a class c′′ is never observed in the sample; in this
case, it is difficult for an alternative class c′ to dominate c′′: for any value fi

of any feature, there are no data for estimating P (fi|c′′), which therefore under
the IDM varies between 0 and 1 and is set to 1 during the minimization. As this
behavior repeats for each feature, P (fi|c′) P (fi|c′′), thus often preventing an
alternative class c′ to dominate c′′. In fact, c′′ will be often identified as non-
dominated. The feature problem happens instead when there are no observations
of one or more values of a certain feature conditional on class c′. In this case, there
are no observations for estimating P (fi|c′), which goes to sharp to zero during
the solution of (4); this leads to sharp 0 also P (c′, f |n, t,s), because of Fi alone,
regardless the information coming from all the remaining features. When either
the class or the feature problem happen, NCC can get very indeterminate, while
at the same time NBC achieves good accuracy on the instances indeterminately
classified by NCC; this can be seen as disappointing behavior of NCC.

Note that if n(c′′) = 0 (class problem) or n(fi |c′ ) = 0 (feature problem),
the choice of extreme prior densities (t(c′′) = 0 and, respectively, t(fi |c′ ) = 0)
lead to improper posteriors. Although, in this case, IDM is still well-defined, we
cannot let ε go sharp to zero in the optimization in (4). Therefore, the set of
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posteriors and the set of non-dominated classes will depend on the choice of ε.
In this paper, we propose two approaches to remove the extreme densities from
T , in order to increase the NCC determinacy.

The first approach uses the following restricted set for t:

Tε =
{
t(c′), t(c′′) ≥ ε, t(c′) + t(c′′) = 1, ε ≤ t(fi|c′) ≤ t(c′), ε ≤ t(fi|c′′) ≤ t(c′′)

}
(5)

where ε ∈ (0, 0.5]; we call NCCε the resulting classifier. Such an approach is
appropriate to deal with the feature problem, as it guarantees t(fi|c′) ≥ ε and
therefore avoids sharp zeros in the computation of the numerator; however, it
should not be too effective against the class problem, as the conditional prob-
abilities at the denominator will nevertheless reach 1 − ε. Moreover, the credal
set of (5) satisfies the RIP, as it is not dependent on the number of categories.
However, this comes at a cost. In fact, Eq.(5) requires to adjust the boundary of
the credal set on every different pairwise comparison. For instance, when com-
paring c′ with c′′, t(c′) and t(c′′) are lower-bounded by ε while t(c) = 0 for all the
remaining classes; but when comparing c′ against c′′′, t(c′) and t(c′′′) are lower-
bounded by ε, while t(c′′) (and all the remaining t(c)) goes to 0 . Therefore, such
an approach does not respect the likelihood principle as the set of priors depends
on the couple of classes under exam. Moreover, it cannot be guaranteed that if
c′ dominates c′′ and c′′ dominates c′′′, then also c′ dominates c′′′ (transitivity),
because the pairwise comparisons are in fact performed on credal sets having
different boundaries. For this reason, this approach should be used with small
values of ε, so to enable addressing the feature problem while only minimally
perturbing the credal set of the IDM. Using a value of ε comprised between
0.01 and 0.1, transitivity has been however always satisfied in our experiments.
When the priors are restricted to be in Tε, the analytical optimization procedure
described in [7] remains valid, because the derivatives of function are unchanged
compared to [7].

The second approach is based on a ε-contamination of the uniform prior of
NBC with the set of priors in T , which results in the set:

Tc :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
c∈C

t(c) = 1, t(c) ∈
[
ε0

1
|C| , ε0

1
|C| + (1− ε0)

]
,

∑
fi∈Fi

t(fi |c ) = t(c), t(fi|c) ∈
[
εi
t(c)
|Fi|

, εi
t(c)
|Fi|

+ (1 − εi)t(c)
]
, ∀(i, c)

(6)
where the ε0 refers to the class variable, while for each feature a different param-
eter εi ∈ (0, 1) can be specified. We call NCCc the resulting classifier, where c
stands for “contaminated”. This approach, unlike the previous one, satisfies LP
(no dependence of the set of priors on the data) but not RIP, since the priors
depend on the number of classes (through 1/|C|) and number of categories of
the features (through 1/|Fi|). The minimization problem, has to be numerically
approximated because the interval for t(fi |c ) depends on t(c) and function (4)
is not convex in t(c). When ε0 → 1 and εi → 1 ∀i, the set of priors collapses to
the uniform prior and thus the classifier coincides with the NBC. Instead, NCCε
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never reduces to a single prior; with ε = 0.5 it uses a single prior to compare a
couple of classes, but this prior changes with the couple of classes.

3 Credal Model Averaging

Let us consider NBC again: given k features, there are 2k possible NBCs, each
characterized by a different subset of features; we denote by M the set of such
models and by m a generic model. By feature selection, one can identify a single
best feature set and then work with a single NBC. An alternative approach is
Bayesian Model Averaging (BMA), which instead averages over all the 2k differ-
ent NBCs, the weight assigned to each classifier being proportional to its poste-
rior probability. The joint probability P (c, f |n, s, t) is obtained by marginalizing
m out:

P (c, f |n, s, t) ∝
∑

m∈M
P (c, f |n, s, t,m)P (n|m, s, t)P (m), (7)

where P (c, f |n, s, t,m) is the posterior probability of c, f computed by m, P (n|m,
s, t) represents the likelihood of model m and P (m) the prior probability of m.
Dash and Cooper [5] provide an exact and efficient algorithm to compute BMA
over 2k NBCs. This algorithm has been extended to imprecise probabilities in
[3], giving rise to credal model averaging (CMA) . In particular, CMA speci-
fies a set of prior over the models instead of adopting a single P (m); in fact,
CMA imprecisely averages over the 2k NBCs. CMA is free from both the feature
problem and the class problem, as its base classifiers are NBCs.

4 Comparing Credal Classifiers

In order to completely describe the performance of a credal classifier, 4 indicators
are necessary: determinacy: i.e, the percentage of determinate classifications;
single accuracy: the accuracy of the classifier when determinate; set-accuracy:
the accuracy of the classifier when indeterminate; indeterminate output size:
the average number of classes returned by the classifier when indeterminate.
Instead, to compare credal classifiers we adopt two metrics which have been
introduced in [4]. We refer to a classifier as accurate on a certain instance if its
output includes the correct class, regardless how many classes it has returned;
we refer to a classifier as determinate if its output contains only a single class.
The discounted -accuracy is: d-acc = 1

n

∑n
i=1(accurate)i/|Zi|, where (accurate)i

is a 0-1 variable, showing whether the classifier is accurate or not on the i-th
instance; |Zi| is the number of classes returned on the i-th instance. Yet, there
is no reason for linearly discounting the accuracy on the number of returned
classes; an alternative non-parametric approach proposed in [4] removes this
arbitrariness, being based on a rank test. The rank test is more robust than
d-acc, as it does not encode any (arbitrary) functional form for discounting
accuracy on the basis of the output size; yet, it uses less pieces of information
than d-acc and can be therefore be less sensitive. Overall, a cross-check of both
metrics is recommended.
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5 Results

We presents results on 45 classification data sets; they are publicly available from
the WEKA data sets page.2 Over each data set, we perform 10 runs of 10-folds
cross-validation, namely 100 training/test experiments. Numerical features have
been discretized via the entropy-based discretization; within each training-test
experiment, the bins are learned on the current training set and then applied
unchanged on the current testing set. The comparison of BMA and NBC shows
11 wins for NBC, 25 ties, 9 wins for BMA (over each data sets, the accuracies
measured during cross-validation have been compared with a t-test, with α =
5%). There is therefore a balance between the two classifiers. Instead, when
considering credal classifiers, CMA clearly dominates NCC: according to the
rank test [or the discounted accuracy], there are 23 [26] wins for CMA, 17 [14]
ties and 5 [5] wins for NCC3. In particular, CMA has much larger determinacy
than NCC (on average, 95% vs 76%) and also higher discounted accuracy (0.76 vs
0.70 on average). We must recall that CMA also includes an ε parameter, which
controls the determinacy of CMA. Yet, even adopting different values of ε, CMA
remains much more determinate than NCC. The scatter plots of determinacy
and discounted accuracy for the two classifiers are in Fig. 1.

Fig. 1. Scatter plot of determinacy and the discounted-accuracy of CMA and NCC

We focus on three data sets which highlight the consequences of the class and
the feature problem; the characteristics of the data sets and the performance
of the classifiers are shown in Tab.1. NCC has very low determinacy on these
three data sets; this implies that many instances are classified in prior-dependent
way by NBC. Yet, the classifications issued by NBC using the uniform prior are
quite accurate; in particular, they are much more accurate than simply return-
ing the majority class, as shown in Table 1. The model of prior-ignorance which
characterizes NCC is indeed theoretically sound, but in these cases its large inde-
terminacy appears questionable. On squash-stored, NCC suffers from the feature
problem: the feature fruit has 22 states and requires to estimate 66 parameters
for the conditional densities, from only 52 instances; removing this feature in-
creases the NCC determinacy from 31% to 60%. Instead, NCCε properly deals
2 http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html
3 On each data set, the values discounted accuracy measured for NCC and CMA

during cross-validation have been compared via t-test, significance 5%.

http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html
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Table 1. Comparison of NCC and CMA on three data sets especially difficult for NCC.
Majority is the percentage of instances belonging to the most frequent class in the data
set.

Data set N Feats |C| Majority Accuracy
NBC BMA

primary-tumor 339 17 22 25% 46% 36%
audiology 226 69 24 25% 79% 73%

squash-stored 52 24 3 44% 66% 59%

Data set Determ. Disc-acc NBC accuracy when
NCC CMA NCC CMA NCC det. NCC ind.

primary-tumor 10% 88% 0.19 0.36 70% 43%
audiology 7% 95% 0.21 0.70 98% 78%

squash-stored 32% 84% 0.49 0.58 70% 63%

with this feature: even using a small ε (0.01), determinacy increases from 32%
to 42% and discounted-accuracy from 0.48 to 0.57, approaching that of CMA.
Moreover single-accuracy (accuracy when determinate) also increases from 70%
to 79%, showing that the feature problem prevents NCC to extract useful infor-
mation from the remaining features. With NCCc, it is instead necessary to use
a larger ε (recall that NCCc lower-bounds the conditional probabilities in the
numerator of Eq.(4) by ε

|Fi||C|); for instance, with ε=0.1, NCCc achieves deter-
minacy 36% with discounted-accuracy of 0.53. Moreover, NCCc too has higher
the single-accuracy than NCC. Note that for both NCCε and NCCc, adopting
increasing ε would steadily increase determinacy, as in fact it will reduce the
credal set and thus the probability of the instance being prior-dependent. In-
stead, it cannot be foreseen how the discounted accuracy will vary when ε is
increased, as this depends on the trade-off between determinacy and accuracy,
which cannot be predicted in advance.

The low determinacy of NCC on both audiology and primary-tumor is instead
due to the class problem, as several classes are never observed, or observed only
once or twice; in fact, removing these classes from the data set largely increases
the NCC determinacy. However, NCCε does not address the class problem, as
already pointed out; it is therefore more interesting analyse the behavior of
NCCc. In Fig.2, we show how the main indicators of performance of NCCc

vary with different values of ε; for ε=1, the classifier corresponds to NBC. This
plots highlight the trade-off between robustness and determinacy: increasing ε
implies higher determinacy, which however comes generally at a cost of some
accuracy, both on the instances determinately and indeterminately classified.
Domain knowledge can suggest which is a reasonable choice of ε. As a last
experiment, we have run NCCε and NCCc, setting for both ε = 0.01, on all the
data sets. Overall, both classifiers achieve determinacy and discounted-accuracy
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Fig. 2. Sensitivity of NCCc to the value of ε. For ε=1, NCCc corresponds to NBC;
therefore, determinacy is 100% and set-accuracy is not measurable.

which is significantly higher than that of NCC, although the impact is generally
much lighter than in the three extreme examples previously analyzed.

6 Conclusions

We have presented two approaches to restrict the set of priors of the IDM, in
order to overcome the large indeterminacy of NCC, when dealing with what we
have called the feature problem and the class problem, discussing advantages
and disadvantages of such approaches from a theoretical point of view. Then,
by experiments, we have shown that on the data sets where such two problems
heavily penalize the NCC determinacy, a small restriction of the set of priors
considerably increase the determinacy of the classifier without penalizing its
reliability. This is particularly important on real problems, where a trade-off
between informativeness and robustness is desirable. As future work, these two
approaches could constitute a starting point to design a new classifier, which
performs credal model averaging over NCCs characterized by different sets of
features. In this case, restricting the imprecision could be a key-issue to manage
the quantity of returned indeterminate classifications.
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Abstract. We demonstrate a theory for evaluating the likelihood of a
probability by way of possibility distributions. This theory derives from
the standard probability distribution theory by using the possibility to
define an arbitrary function whose values are bounded by [0, 1] that rep-
resents the confidence that one may have in the outcomes. In other words,
when in classic probability theory the probability of an event is repre-
sented by an integral of the probability mass over this event, in possibil-
ity theory the probability of an event is the integral of the probability
mass times the confidence function over the whole space. This theory is
then extended in order to define a similar notion to probability distribu-
tions, namely Possibility-Probability distributions, which represent, as
for probabilities, the possibilities of a calculated probability for a given
fuzzy event. In this context, we aim to define an estimation method of
such a Possibility-Probability distribution in the case of experimental
samples and the corresponding distribution.

Keywords: Possibility, Probability, Probability of Fuzzy Events, and
Possibility of Probability.

1 Introduction

When only small samples of data and/or unreliable data is available, first order
uncertainty calculations based on ordinary probability is questioned in the lit-
erature [1,2]. In this paper, we introduce an enhanced theory for evaluating the
likelihood of the probability by way of possibility distributions. Basically, this
theory derives from the standard probability distribution theory by using pos-
sibility as an an extra confidence measure. The confidence is represented as an
arbitrary function whose values lie between 0 and 1, and represent the confidence
that one may have in the outcomes. In classic probability theory, the probability
of an event is represented by a measurable set, and is the integral of the proba-
bility measure over this set. However, in possibility theory the probability of an
fuzzy event is the integral of the probability measure weighted by the confidence
function over the whole space. This confidence is in general equivalent to the
membership function of that particular event.

Next, we extend the method in order to define a similar notion to proba-
bility distributions, namely Possibility-Probability Distributions (PPD), which
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represent, as for probabilities, the possibilities of a calculated probability for a
given fuzzy event. In this context, we aim to define an algorithmic estimation
of such a possibility distribution in the case of experimental samples and the
corresponding distributions.

The earliest concept of the probability of a fuzzy event was introduced in
Zadeh [3]. In [4], Zadeh’s approach further improved and argued that the prob-
ability of a fuzzy event must be a fuzzy number rather than a crisp value. Later,
Huang [5] introduced an approach to calculate PPD based on his information dif-
fusion technique. This technique is especially capable of coping with small data
samples. Therefore, Huang [6,7] suggested his method of Possibility-Probability
calculation was suitable for risk evaluation. Huang and Gedeon [8] extended
this method for the use of fuzzy events to calculate Possibility-Probability dis-
tributions. However, they did not consider the use of the proper probability
calculation of fuzzy events [3]. We aim here to enhance the approach in [8] by
using proper probability calculation of fuzzy events. Also, we introduce a further
generalized model compared to both approaches in papers [5] and [8].

2 Possibility of Probability

In this section, we first demonstrate the method in [6] for the calculation of
PPD. Huang [6] provides the following definition for a Possibility-Probability
distribution.

Definition 1. Let (Ω,ϕ, P ) be a probability space, and P be probability measure.
Let the possibility that the probability of x occurring is p be πx(p):

Πp = {πx(p) | x ∈ Ω, p ∈ P } (1)

and is called a possibility-probability distribution.

In definition 1, they consider PPD of non-fuzzy events. They further use the
information diffusion method [5] to deal with limited sample data. The mathe-
matical definition of the information distribution is a mapping from a Cartesian
product to the unit interval [0, 1] [6,5,7].

Definition 2. Let X = {xi | i = 1, . . . , n} and Y = {yj | j = 1, . . . ,m}, then

μ : X × Y → [0, 1] (2)

is called an information distribution of X on Y , if μ(x, y) has the following
properties:

(a) ∀x ∈ X, if ∃y ∈ Y , such that x = y, then μ(x, y) = 1 (i.e. μ is reflexive).
(b) For x ∈ X, ∀y′

, y
′′ ∈ Y , if | y′ − x |≤| y′′ − x | then μ(y′ − x) ≤ μ(y′′ − x)

(monotonicity).

(c)
m∑

j=1

μ(xi, yj) = 1, i = 1, . . . , n (additive).
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μ is called a distribution function of X on Y and can be calculated as follows:

μ(xi, yj) =

{
1− |xi−yj |

�j
; if | xi − yj |≤ !j

0 ; if | xi − yj |> !j

(3)

= qij

where !j = yj+1 − yj such that j = 1, . . . ,m and i = 1, . . . , n.

2.1 Interval Set Model

Let X = {xi | i = 1, . . . , n} be a sample, X ⊂ �, and Y = {yj | j = 1, . . . ,m}
be a discrete universe of X . Huang [6,7] used the following method to calculate
a possibility-probability distribution on intervals,

Ij = [yj −
!j

2
, yj +

!j

2
], yj ∈ Y, (4)

with respect to the probability values,

pk =
k

n
, k ∈ {1, . . . , n} (5)

Here k is the number of observations that fall into the interval Ij . From here
onwards, πIj (pk) represents the possibility-probability value of that an event
occurs in the interval Ij .

2.2 Joining and Leaving Possibility

Let us take that xk ∈ X . Next, they assume that the possibility of a probability
that includes xk ∈ X is based on the distance between center yj(∈ Y ) and the
data point xk. If xk ∈ XIj

1 (see figure 1) then xk will leave the interval XIj with
the possibility of,

q−kj =
| xk − yj |
!j

= 1− qij (6)

Similarly, if xk �∈ XIj , then xk will join the interval XIj with the possibility of,

q+kj = 1− | xk − yj |
!j

= qij (7)

The following figure 1 illustrates the situation. Now take that cardinality of XIj

is nj . Huang [6] writes that the possibility of probability of an event x occurs in
Ij is nj

n is:

πIj (
nj

n
) = 1 (8)

1 XIj is called the interior set of interval Ij [6] that contains all elements of
interval Ij .
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Fig. 1. Intervals on the Universe of Discourse

It is intuitive that nj

n is the most probable event and thus its possibility is 1. Now,
if we assume that xk ∈ XIj may leave the interval Ij when there is a disturbance
in the random experiment. Therefore, the possibility that the probability of
x ∈ Ij is nj−1

n is:

πIj (
nj − 1
n

) =
∨

xs∈XIj

q−sj (9)

If two elements leave the interval, we can write that the possibility that the
probability of x ∈ Ij is nj−2

n is:

πIj (
nj − 2
n

) =
∨

xs1 ,xs2∈XIj
|xs1 =xs2

(q−s1j ∧ q−s2j) (10)

Similarly, if xk �∈ XIj may join the interval Ij when there is a disturbance in the
random experiment. Therefore, the possibility that the probability of x ∈ Ij is
nj+1

n is:

πIj (
nj + 1
n

) =
∨

xs ∈XIj

q+sj (11)

Finally, when there are nj observations in interval Ij , we can write a Possibility-
Probability distribution of Ij as follows, [6]:

ΠIj (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧xs∈XIj
q−sj p = p0

...∨
xs1 ,xs2∈XIj

|xs1 =xs2
(q−s1j ∧ q−s2j) p = pnj−2∨

xs∈XIj
q−sj p = pnj−1

1 p = pnj∨
xs ∈XIj

q+sj p = pnj+1∨
xs1 ,xs2 ∈XIj

|xs1 =xs2
(q+s1j ∧ q+s2j) p = pnj+2

...
∧xs ∈XIj

q+sj p = pn

(12)

Where pnj = nj

n .
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3 Enhanced Possibility-Probability Calculation Methods

In [8] fuzzy intervals are used instead of the mutually exclusive intervals in [6].
The following method of Possibility-Probability calculation can be found in [8].

Let A = {A1, . . . , Am} be m fuzzy events in the space of interest. Here yj(∈ Y )
in figure 1 is the middle of the core of the fuzzy set Aj in figure 2. Further, figure
2 illustrates all the fuzzyfied intervals. Let us take that | yj − yj+1 |= d and

Fig. 2. Intervals on the Universe of Discourse

X = {x1, . . . , xn} be the sample space, and these values fall in the interval
[yj , yj+1]. Now [8] define Sj and Sj+1 as follows,

Sj =
n∑

i=1

μAj (xi) (13)

Sj+1 =
n∑

i=1

μAj+1(xi) (14)

S = Sj + Sj+1 (15)

Similarly to Huang’s method [6], Huang and Gedeon’s method [8] also assumes
that Sj

S is the maximum possible probability of the event Aj and write

πAj (
Sj

S
) = 1 (16)

Now, they consider that the element xk ∈ X may leave from fuzzy set Aj ,
according to the fact that the data point that has the minimum membership to
Aj will leave the interval. Therefore, the possibility of probability of Aj occurring

being
Sj−μAj

(xk)
S as,

πAj (
Sj − μAj (xk)

S
) =

xk − yj

d
(17)

Next if, two points xk, xk−1 ∈ X may leave the fuzzy set Aj , the the possibility

of probability of Aj occurring being
Sj−μAj

(xk)−μAj
(xk−1)

S can be written as

πAj (
Sj − μAj (xk)− μAj (xk−1)

S
) =

xk−1 − yj

d
(18)
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where μAj (xk) ≥ μAj (xk−1). Conversely, it is possible that some data point will
move to the fuzzy set Aj . Suppose that xt has the minimum membership to
Aj+1 and it is most likely to leave Aj+1. Therefore, the possibility of probability

of Aj occurring being
Sj+μAj+1 (xt)

S is,

πAj (
Sj + μAj+1(xt)

S
) =

yj+1 − xt

d
(19)

and the possibility of probability of Aj occurring being
Sj+μAj+1 (xt)+μAj+1 (x+1t)

S
is,

πAj (
Sj + μAj+1(xt) + μAj+1(xt+1)

S
) =

yj+1 − xt+1

d
(20)

where μAj+1(xt) ≥ μAj+1(xt+1). Huang and Gedeon’s [8] method can be ab-
stracted into the following form: Let A = {A1, . . . , Am} be n fuzzy events in
the space of interest. Here yj(∈ Y ) is the middle of the core of the fuzzy set
Aj . Further, | yj − yj+1 |= d and X = {x1, . . . , xn} be the sample space
and the values fall in the interval [yj, yj+1]. Now, let us take that the set
X′ = {xk+1, . . . , xk+h | 0 ≤ k < n, 0 < h < n} ⊆ X , and the possibility of

probability of Aj occurring being
Sj −

∑h
t=1 μAj (xk+t)
S

as

πAj (
Sj −

∑h
t=1 μAj (xk+t)
S

) =
| yj −minh

t=1 xk+t |
d

(21)

The possibility of probability of Aj occurring being
Sj +

∑h
t=1 μAj+1(xk+t)

S
is

πAj (
Sj +

∑h
t=1 μAj+1(xk+t)

S
) =
| yj −minh

t=1 xk+t |
d

(22)

4 Possibility-Probability by Employing Probability of
Fuzzy Events

Huang’s [6,7] method of calculating PPD has serious disadvantages. Firstly, they
consider non-fuzzy events to find a possibility of a probability. Therefore, their
method can be seen as finding the Possibility-Probability of non-fuzzy events.
Secondly, their method assumes that the possibility of an event is proportional to
the Euclidian distances between the data points and the centers of those events,
and thus lacks a representation of the fuzziness of data against their intervals in
the universe.

Huang and Gedeon’s [8] measure of the probability of a fuzzy event (eg. prob-
ability in equation (16)) is not based on a precise probability measure for a fuzzy
event [3]. Further, they consider a special case where all data points in X fall
in the interval [yj , yj+1]. In general this not the case, thus equation (15) needs

to be improved. In equations (19) and (20), when they write that
Sj+μAj+1 (xt)

S
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is the probability of fuzzy set Ai, they violate the concept of the cardinality of
a fuzzy set by adding μAj+1(xt) to Aj ’s cardinality. They also do not consider
that Aj ’s cardinality Sj has already accumulated μAj (xt). Therefore, they are
twice adding xt’s occurrence in the form of μAj (xt) and μAj+1(xt) to Sj . These
are major drawback of Huang and Gedeon’s [8] method that we overcome in our
methods.

Huang and Gedeon [8] in their first method of finding the possibility of prob-
ability also used the same Euclidian distance approach of finding the possibility
of their fuzzy events. In their second method, they correctly use fuzzy infor-
mation, which is the ratio of membership values, to calculate the possibility of
probability. However, the second measure is not normalized therefore they need
to use an additional scaling function to normalize the data [8].

In this section we provide generalized Possibility-Probability calculation meth-
ods that overcome the problems associated with the [6,7] and [8] methods. Addi-
tionally, we give a more concrete definition for Possibility-Probability distribution.
Unlike Huang’s definition in [6], our definition does not consider only a random
variable. However, similar to [9], we also use the term ”variable”, that substitutes
for ”random variable” in conventional probability theory, considering the fact that
a probability measure based on possibility theory can model uncertainty that is
caused by more than randomness [1].

Definition 3. Let (�n, ϕ, P ) be a probability space, let ϕ be the σ-field of Borel
sets in �n, and P is a probability measure. Let X be a variable on �n. Further
let A be a fuzzy subset of �n in ϕ. Now, the ”Prob(X is A) takes a value in B”
induces a possibility distribution ΠProb(X is A) in P :

Π(Prob(X is A) = p) = πProb(X is A) = μB(p) (23)

Where B is a fuzzy sub set in P .

Here Π(Prob(X is A) is B) or is ΠProb(X is A) denoted the PPD of A. Therefore
in short we could also denote this as Π(Prob(A)) or ΠProb(A).

Note 1. As we mentioned earlier, in definition 1, Huang considers PPD of non-
fuzzy events. In definition 3, we consider PPD of fuzzy events. Thus, the proba-
bility ”P (X is A)” in the above 2 equations is the probability of the fuzzy event
A denoted by [3]:

Definition 4. When X is discrete,

P (X is A) =
∑

i

μA(xi)× PX(xi) (24)

Here μA is the membership function of the fuzzy set A and PX denotes the
probability distribution function of X.
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4.1 Approximation of Possibility of Probability: A Generalized
Method

Let us take a situation where we have n number of records of data and a permu-
tation .(i) on each x ∈ X such that μAj (x(1)) ≥ μAj (x(2)) ≥ . . . ≥ μAj (x(k)) ≥
μAj (x(k+1)) . . . ≥ μAj (x(n)) where Aj is the jth fuzzy subset on U (in �n) and
X is a variable on U according to definition (3). Also, for the simplicity of the
discussion, in the rest of the paper, we write μAj (x) to denote μAj (u) s.t u = x
where u ∈ U and x ∈ X .

Initial Event. Let k be an integer such that at least k + 1 ≤ n and let Xk =
{x(1), . . . , x(k)} be a sub set of X . Further let us take Ak

j as the kth fuzzy event
of the fuzzy set Aj . The membership function of the kth fuzzy event Ak

j can be
defined as follows:

μAk
j (xi) =

{
μAj(xi) if xi ∈ Xk

0 otherwise
(25)

Let nk
j =| Xk |= k be the cardinality of Ak

j . Now, based on the equation (24),
the probability of fuzzy event Ak

j can be calculated as

Prob(XisAk
j ) =

nk
j∑

i=1

μAk
j
(xi)p(xi) (26)

Now, for the ease of understanding and explaining the leaving and joining pos-
sibilities, let us assume that event Ak

j is the starting (initial) event. Similarly to
the previous methods the possibility of the initial event is 1.

Leaving Possibility. Next, let the element xk, which has the lowest member-
ship to the fuzzy event Ak

j , leaves the fuzzy event Ak
j , and let the new resulting

fuzzy event state be denoted by Ak−1
j . The cardinality of the new fuzzy event

Ak−1
j is nk−1

j =| Xk−1 |= k − 1. Based on equation (24), the probability of the
new fuzzy event, ie. Ak−1

j , can be calculated as follows:

Prob(XisAk−1
j ) =

nk−1
j∑

i=1

μAk−1
j

(xi)p(xi) = pAk−1
j

(27)

Next, the possibility that the probability of Ak−1
j occurring being pAk−1

j
can be

calculated as follows

π(Prob(XisAk−1
j )) = 1−

nk
j

max
i=nk−1

j +1

[
μAk

j
(xi)
]

(28)

In general, after l(≤ k) data points leave Ak
j , we can calculate the possibility of

the fuzzy event Ak−l
j occurring being pAk−l

j
.

π(Prob(XisAk−l
j )) = 1−

nk
j

max
i=nk−l

j +1

[
μAk

j
(xi)
]

(29)
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This process will continue until all data points will leave the initial fuzzy event
Ak

j .

Note 2. Note that in equation (29) when l = 0, it gives the possibility that the
probability of Aj occurring being pAk

j
as:

π(Prob(XisAk
j )) = 1− μAk

j
(xk+1) = 1− 0 = 1

Joining Possibility. Let us assume that the element xk+1 will join the fuzzy
event Ak

j , and let the new resulting fuzzy event states be Ak+1
j . Now the car-

dinality of the fuzzy event Ak+1
j is nk+1

j =| Xk+1 |= k + 1. Now, based on the
equation (24), the probability of the new fuzzy event, ie. Ak+1

j , can be calculated
as follows:

Prob(XisAk+1
j ) =

nk+1
j∑

i=1

μAk+1
j

(xi)p(xi) = pAk+1
j

(30)

Next, the possibility that the probability of Ak+1
j occurring being pAk+1

j
can be

calculated as follows:

π(Prob(XisAk+1
j )) =

nk+1
j

min
i=nk

j +1

[
μAk+1

j
(xi)
]

(31)

In general, after l(≤ (n−k)) data points join Ak
j , we can calculate the possibility

of the fuzzy event Ak+l
j occurring being pAk+l

j
.

π(Prob(XisAk+l
j )) =

nk+l
j

min
i=nk

j +1

[
μAk+l

j
(xi)
]

(32)

This process will continue until all possible data points will join the initial fuzzy
event Ak

j .

Possibility of Probability. In this subsection, we give a generalized method
of calculation of the possibility for the all available probabilities for the event
Aj .

ΠProb(X is Aj) =
nk

j∑
l=0

1−
nk

j

max
i=nk−l

j +1

[
μAk

j
(xi)
]

Prob(X is Ak−l
j )

+
n∑

l=nk
j +1

nk+l
j

min
i=nk

j +1

[
μAk+l

j
(xi)
]

Prob(XisAk+l
j )

(33)

Here in equation (33),
∑

denote an union operation of a fuzzy number and
P (XisAk

j ) is given by equation (26).
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5 Conclusion

First we have shown the disadvantages of Huang’s [6] method. Secondly, we
removed the mathematical irregularities in Huang and Gedeon’s method [8]. As
a result, we provide a generalized method that estimates a PPD from available
data. Importantly, the generalized PPD assume the fuzziness of the events that
occurs in reality. Our method can be described as a generalized Possibility-
Probability calculation method that uses a possibility theory based approach to
estimate the likelihood of the reality of the calculated probability. This method
is very useful when only a small sample of data is available.
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Abstract. The General Unary Hypothesis Automaton (GUHA) sifts through
large data sets and finds 2×2 contingency tables satisfying certain dependencies
expressible by generalized quantifiers that indicate possible relations between
attributes. In this work we show how these tables can be further investigated
by Bayesian statistical methods. In this way we are able to translate tables that
have been discovered by GUHA into verbal statements and probability density
plots that are comprehensible to anyone who has a basic understanding of
probability.

Keywords: data mining, Bayesian statistics, GUHA, contingency table.

1 Introduction

Introduced in 1966 [1], the General Unary Hypothesis Automaton (GUHA) method
is one of the oldest data mining methods; see [2, 5, 6] for a detailed description. The
GUHA method is designed for exploratory analysis of large data sets, when the aim is to
get orientation in the domain of investigation by analyzing the behaviour of variables,
finding interactions among them, etc. The mathematical structure underlying GUHA
theory allows software to identify “interesting” features in the data without exhaus-
tive search. There have been several software implementations of GUHA, most no-
tably the freely available LISp–Miner developed by Rauch et al. at Prague University of
Economics [3].

GUHA is applied to data that can be represented by an m×n Boolean array, with the
1’s or 0’s in each column indicating the presence or absence of an observed property
among m objects or instances. A Boolean function of the n observed properties can be
represented by an m-vector of 1’s and 0’s, and is called an attribute. Any two attributes
φ and ψ can be summarised by a 2×2 double dichotomy contingency table

ψ ¬ψ
φ a b
¬φ c d

where a is the number of instances for which both φ and ψ have value 1; the remaining
table entries b,c,d are the corresponding counts for φ ∧¬ψ , ¬φ ∧ψ , ¬φ ∧¬ψ , and
a + b + c + d = m. The aim of the exploratory data analysis in GUHA is to identify,
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from all possible 2× 2 contingency tables, those tables that indicate the existence of
“interesting” relations between attributes: they are defined true or supported by the data.
Relations between attributes that are not true are false (not supported by the data). True
relations between attributes φ and ψ , called hypotheses, are the outputs of a GUHA
procedure.

Such an analysis is made computationally feasible by restricting attention to rela-
tions expressed by generalised quantifiers, which satisfy certain monotonicity condi-
tions. Each generalised quantifier has its characteristic truth definition. The LISp–Miner
system supports many different generalised quantifiers. In this study we focus on the
following four:

Founded implication. For a given fixed strength 0 < p ≤ 1 and support r > 0, this
relation is true (denoted φ ⇒p,r ψ) if

a
a + b

≥ p and a≥ r

and false otherwise. Typically one sets p≈ 1, in which case a verbal interpretation
of this relation is “most φ are ψ”.

Founded equivalence. For a given fixed strength 0 < p ≤ 1 and support r > 0, this
relation is true (denoted φ ≡p,r ψ) if

a + d
a + b + c + d

≥ p and a≥ r

and false otherwise. Typically one sets p≈ 1, in which case a verbal interpretation
of this relation is “φ is almost equivalent to ψ”.

Above average. For a given fixed strength p> 0 and support r> 0, this relation is true
(denoted by ∼+

p,r) if

a
a + b

≥ (1 + p)(a + c)
a + b + c + d

and a≥ r

and false otherwise. Typically one sets 1 + p� 1, in which case a verbal interpre-
tation of this relation is “ψ is much more prevalent among φ than in general”.

Association. This relation is true (denoted φ ∼ ψ) if

ad > bc

and false otherwise. In statistics, the ratio ad
bc is called the odds ratio; a value close

to 1 indicates that the attributes φ and ψ are independent. Because

ad > bc ⇔ a
a + b

>
c

c + d
,

a verbal interpretation of this relation is “ψ is more prevalent among φ than among
¬φ .” Also, because

ad > bc ⇔ a
a + c

>
b

b + d
,

another verbal interpretation of this relation is “φ is more prevalent among ψ than
among ¬ψ .”
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After the computer has sifted through a data set and has found all attribute pairs whose
2×2 contingency tables satisfy the truth condition of a given generalised quantifier, the
analyst can proceed to a deeper study of the possible relation between the attributes:
collect further data collection, apply statistical methods, discuss with subject-domain
experts, etc.

A useful starting point in this post-processing is the study and interpretation of the
contingency tables themselves. A statistical analysis is attractive because it can provides
information about the uncertainty associated with inferences. LISp–Miner already con-
tains tools to compute frequentist (e.g. Fisherian) statistical quantities. The results of
frequentist statistical analysis (e.g. hypothesis tests), however, often require extensive
statistical training and expertise to understand correctly.

In contrast, the results of a Bayesian statistical inference can be understood by any-
one with a basic understanding of probability. This is because Bayesian inference pro-
duces probability densities of underlying parameters and the probability of statements
(hypotheses).

In this work we present some Bayesian methods that can be used to evaluate state-
ments that directly correspond to GUHA generalised quantifiers. We focus on the four
generalised quantifiers presented above, because the corresponding statistical counter-
parts are straightforward. We show how to translate tables that have been found by
GUHA into verbal statements and probability density plots, that is, we use Bayesian
analysis as a GUHA post-processor.

2 Statistical Analysis of Contingency Tables

2.1 Multinomial Model

We start by describing a standard statistical model for 2× 2 contingency tables with
unconstrained row sums and column sums. Given two attributes φ and ψ , there are 4
possible disjoint attribute combinations for every object:

xi ∈ {φ ∧ψ︸ ︷︷ ︸
X1

, φ ∧¬ψ︸ ︷︷ ︸
X2

, ¬φ ∧ψ︸ ︷︷ ︸
X3

, ¬φ ∧¬ψ︸ ︷︷ ︸
X4

}

To each attribute combination Xj one can associate a parameter θ j that represents its
probability of occurrence, given that the parameters θ = [θ1,θ2,θ3,θ4] are known, that
is,

P(xi = Xj |θ ) = θ j (i ∈ {1, . . . ,m}, j ∈ {1,2,3,4}).

The parameter vector θ is a point in R4 on the simplex

θ j ≥ 0,
4

∑
j=1

θ j = 1.

The probability mass function (pmf) for a set of observations x1, . . . ,xm that are mutu-
ally independent given θ is
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p(x1:m |θ ) = θ a
1 ·θ b

2 ·θ c
3 ·θ d

4 ,

with the convention that 00 = 1. The pmf for the corresponding contingency table y =
[a,b,c,d] is y |θ ∼Multinomial(θ ), that is,

p(y |θ ) ∝ θ a
1 ·θ b

2 ·θ c
3 ·θ d

4 .

This is a model of how, given the parameters, the data could have been generated.
Statistical inference is the inverse problem: given the data, determine θ . In Bayesian
statistics, inference is accomplished using probability theory.

Let p(θ ) be a probability density function (pdf) that describes our state of knowledge
about θ before the data is looked at — this is called the prior distribution. Then, by
Bayes’ law, the information provided by the observations improves our state of knowl-
edge, which is now described by the posterior distribution

p(θ |y) ∝ p(y |θ )p(θ ).

For the multinomial model, it is convenient to use the prior distribution θ ∼
Dirichlet(α ′,β ′,γ ′,δ ′), where α ′,β ′,γ ′,δ ′ are positive real values that are chosen to
model the prior state of knowledge. The Dirichlet pdf is

p(θ ) ∝ θ α ′−1
1 ·θ β ′−1

2 ·θ γ ′−1
3 ·θ δ ′−1

4 (θ j ≥ 0,
4

∑
j=1

θ j = 1).

Small values of α ′,β ′,γ ′,δ ′ give a relatively “vague” distribution, with large dispersion;
the density is constant if α ′ = β ′ = γ ′ = δ ′ = 1.

With the multinomial model and Dirichlet prior, the posterior pdf is, by Bayes’
law,

p(θ |y) ∝ θ a+α ′−1
1 ·θ b+β ′−1

2 ·θ c+γ ′−1
3 ·θ d+δ ′−1

4

that is, θ |y∼Dirichlet(α,β ,γ,δ ), where α = α ′+a,β = β ′+b,γ = γ ′+c,δ = δ ′+d.

This posterior pdf is a complete description of our state of knowledge (and remaining
uncertainty about) the parameters of the statistical model.

2.2 Evaluating Hypotheses

In this study, we are interested in using Bayesian methods to evaluate the validity of
statements that correspond to generalised quantifiers used in GUHA, in particular, the
generalised quantifiers presented in section 1. Consider first how to evaluate the state-
ment “most φ are ψ”. Recall that, in our statistical model, θ1 is the proportion of φ
that are ψ , while θ2 is the proportion of φ that are not ψ . The proportion of ψ among
the φ is θ1

θ1+θ2
. Then, given a 2×2 contingency table, there are various ways one could

proceed:
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1. One could plot the posterior pdf of θ1
θ1+θ2

. A pdf that has most of its mass at the right

end of the interval [0,1] indicates that θ1
θ1+θ2

≈ 1. The dispersion seen in the graph
gives an indication of the uncertainty that remains. The shape of the graph can
be summarised by computing some statistics, such as mean and standard deviation.
For the Dirichlet prior, the posterior distribution is θ1

θ1+θ2
|y∼Beta(α,β ), for which

the mean is α
α+β and the variance is αβ

(α+β )2(α+β +1) .

2. Suppose we can agree on a numerical value of p for the concept of “most”, say
p = 95%. One could then compute the value P( θ1

θ1+θ2
≥ p |y), that is, the posterior

probability that the proportion of ψ among the φ is ≥ p. Being a probability, this
p value is much easier to understand and interpret than the “significance levels” of
classical hypothesis testing.

The statement “φ and ψ are almost equivalent” can be analysed as follows. The pro-
portion of (φ ∧ψ)∨ (¬φ ∧¬ψ) is θ1 + θ4, so one plot the posterior pdf of the sum
θ1 + θ4 and compute its mean and standard deviation. For the Multinomial-Dirichlet
model, θ1 + θ4 |y∼ Beta(α + δ ,β + γ), for which the mean is α+δ

A and the variance is
(α+δ )(β +γ)

A2(A+1) , where A = α + β + γ + δ . Given a numerical value p to model “almost”,

one can compute the value P(θ1 + θ4 > p |y).
The statement “ψ is much more prevalent among φ than in general” can be analysed

as follows. The proportion of ψ in general is θ1 +θ3, while the proportion of ψ that are
φ is θ1

θ1+θ2
. One can then proceed to plot the posterior pdf of the ratio θ1

θ1+θ2
/(θ1 + θ3)

and compute its mean and standard deviation. Given a numerical value p to model

“much more”, one can compute the value P(
θ1

θ1+θ2
θ1+θ3

≥ (1 + p) |y).
The statement “ψ is more prevalent among φ than among ¬φ” can be analysed sim-

ilarly. The proportion of ψ that are φ is θ1
θ1+θ2

, the proportion of ψ that are ¬φ is θ3
θ3+θ4

.
One can plot the posterior pdf of the ratio of these proportions, compute its mean and
standard deviation, or compute the value P( θ1

θ1+θ2
> θ3

θ3+θ4
|y). This probability, which

is equal to P( θ1θ4
θ2θ3

> 1 |y), is called the probability of positive association in [4], where

a closed-form formula for it is derived. Note that if θ1θ4
θ2θ3

= 1, then

P(φ |θ )P(ψ |θ ) = (θ1 + θ2) · (θ1 + θ3) = θ1 · (θ1 + θ2 + θ3 + θ4) = θ1 = P(φ ∧ψ |θ )

that is, φ and ψ are independent given θ .

3 Example

To illustrate, we use Tjen-Sien Lim’s publicly available benchmark data test set [7]
from the 1987 National Indonesia Contraceptive Prevalence Survey. These are the re-
sponses from interviews of m = 1473 married women who were not (as far as they
knew) pregnant at the time of interview. The challenge is to learn to predict a woman’s
contraceptive method from knowledge about her demographic and socio-economic
characteristics.
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The 10 survey response variables and their types are

Age integer 16–49
Education 4 categories
Husband’s education 4 categories
Number of children borne integer 0–15
Islamic binary (yes/no)
Working binary (yes/no)
Husband’s occupation 4 categories
Standard of living 4 categories
Good media exposure binary (yes/no)
Contraceptive method used 3 categories (None, Long-term, Short-term)

The data was processed into binary form as follows. The three binary variables need
no processing. The 3-category variable (“contraceptive method used”) is divided into
three binary properties, one for each category; each of the four 4-category variables
is similarly divided into four binary properties. The age variable is divided into 118
properties: 31 3-year ranges (16–18, 17–19, . . . , 47–49), 30 4-year ranges (16–19, . . . ,
46–49), 29 5-year ranges, and 20 6-year ranges. Similarly, the number-of-children vari-
able is divided into 58 properties: 16 singletons (0, 1,. . . , 15), 15 two-unit ranges (0–1,
1–2, . . . , 14–15), 14 3-unit ranges (0–2, . . . , 13–15), and 13 4-unit ranges (0–3, . . . ,
12–15). Altogether, there were 198 binary properties.

In the first LISp-Miner run, the system was set the task of finding ”founded impli-
cation” relations φ ⇒0.95,50 ψ with the Contraceptive method properties as ψ and all
possible boolean functions of the remaining properties as φ . In 7 seconds, after explic-
itly testing 179 447 tables, 9 contingency tables satisfying the relation were found. One
of them was

ψ ¬ψ
φ 92 2
¬φ 534 842

where φ=”no children” and ψ =“not using contraceptives”. The verbal interpretation
of the table is “Most married women without children are not using contraceptives.”

Applying the Bayesian model of section 2 to this table, with a vague prior (α ′ =
β ′ = 1), the posterior distribution for the proportion of ψ among the φ is θ1

θ1+θ2
|y ∼

Beta(93,3). The plot of the pdf shows that most of the probability is concentrated in the
right end of the interval.

0 1

1
/(

1
+

2
)

The mean 93
96 ≈ 0.969 and standard deviation≈ 0.018. Furthermore, we compute

P(
θ1

θ1 + θ2
≥ 0.95 |y) =

∫ 1

0.95

Γ (93 + 3)
Γ (93)Γ (3)

t92(1− t)2dt = 0.8595.
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Thus, we are over 85% sure that at least 95% of married women without children are
not using contraceptives. These computations require less than 0.01 second on a current
laptop, and can be done using publicly available statistical software libraries.

In the second LISp-Miner run, the system was set the task of finding ”founded equiv-
alence” relations φ ≡0.7,r ψ . In 7 seconds, after explicitly testing 106 308 tables, 158
contingency tables satisfying the relation were found. One of them was

ψ ¬ψ
φ 544 355
¬φ 33 541

where φ = “highly educated” and ψ = “husband highly educated”. The verbal inter-
pretation of the table is “High education and high education of husband are almost
equivalent”.

Applying the Bayesian model of section 2 to this table, with a vague prior (α ′ =
β ′ = γ ′ = δ ′ = 1), the posterior distribution for the proportion of (φ ∧ψ)∨ (¬φ ∧¬ψ)
is θ1 + θ4 |y∼ Beta(1087,390). The plot of the pdf shows that most of the probability
is concentrated around the mean, E(θ1 + θ4 |y) = 1087

1477 = 0.736.

0 0.25 0.5 0.75 1

1
+

4

The standard deviation is ≈ 0.0115. Furthermore, we compute

P(θ1 + θ4 ≥ 0.70 |y) = 0.9989.

Thus, we are 99.89% sure that high education of husband and wife has at least 70% rate
of coincidence. Again, the computing times for this post-processing are negligible.

In the third LISp-Miner run, the system was set the task of finding “above-average”
relations φ ∼+

3,15 ψ . In 3 minutes 17 seconds, after explicitly testing 4 888 398 tables,
14 contingency tables satisfying the relation were found. One of them was

ψ ¬ψ
φ 21 2
¬φ 312 1138

where φ =“Age 37–45 and Children 4 and Husband highly educated and Living stan-
dard high”, and ψ =“Using long-term contraception method”.

Applying the Bayesian model of section 2 to this table, with a vague prior (α ′= β ′=
γ ′ = δ ′ = 1), we obtain the posterior

θ1:4 |y∼ Dirichlet(22,3,313,1139)

To evaluate how much larger is the proportion of ψ among the φ than the proportion
of ψ in general, we generate 104 independent Monte Carlo samples from the posterior
and plot the histogram of the proportion ratio ( θ1

θ1+θ2
)/(θ1 + θ3):
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The ratio samples’ mean is 3.89 and the standard deviation is 0.33. We note that, al-
though the table satisfies the generalised quantifier for the statement “ψ is over 4 times
more prevalent among φ than in general”, the statistical model indicates that the actual
factor may be somewhere between 3 and 4.8. The above Monte Carlo computations and
histogram plotting require less than 0.1 second on a current laptop.

The number of samples with ratio larger than 3 is over 9900, so we can say that we are
over 99% certain that ψ is at least 3 times more prevalent among φ than in general, that
is, that the use of long-term contraceptives is at least 3 times more prevalent among rich
women aged 37–45 with 4 children and highly educated husband than among married
women in general.

4 Conclusions

A GUHA data analysis produces a set of contingency tables, each of which corresponds
to a statement asserting the existence of a relation among attributes. In this work we
have looked at how the validity of the statement can be evaluated using a statistical
analysis of the contingency table. The analysis allows the GUHA user to quantify the
statement’s uncertainty and thus to present a more complete picture of the information
that is coded in the contingency table.
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Abstract. Rank correlation can be used to compare two linearly or-
dered rankings. If the rankings include noise values, the rank correlation
coefficient will yield lower values than it actually should. In this paper,
we propose an algorithm to remove pairs of values from rankings in order
to increase Kendall’s tau rank correlation coefficient. The problem itself
is motivated from real data in bioinformatics context.

Keywords: Rank correlation coefficient, greedy algorithm, graph
algorithms.

1 Introduction

The motivation for the formal problem we will discuss in this paper comes from
biological experiments with the bacterium Pseudomonas aeruginosa. In these
experiments, each of more than 4,000 genes was knocked out and the mutants
resulting from the knocked out genes were examined under more than 100 con-
ditions. Conditions are, for instance, different antibiotics in varying concentra-
tions. For each condition we obtain a value, describing the deviation from the
“normal condition”. Genes that are functionally related are expected to show
similar behaviour under the same conditions, especially under those where they
should be highly activated (expressed) if they were not knocked out. If we order
the deviations from the “normal condition” for each mutant, we can compare
these rankings of the conditions. A high correlation between two rankings would
be a hint to functionally related genes. However, although many of the genes
will play a certain role under almost all conditions, there are some conditions
for each gene where it might have no influence. Unfortunately, we do not know
which conditions these are for each gene. These conditions can therefore lead to
a reduction of the correlation between the genes or mutants.

In order to reduce this effect, we do not consider the correlation with re-
spect to all conditions. For each pair of genes, we are allowed to remove a fixed
small number k of conditions, to compute the correlation coefficient. Here we
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c© Springer-Verlag Berlin Heidelberg 2010



Rank Correlation Coefficient Correction by Removing Worst Cases 357

use Kendall’s tau rank correlation coefficient [2]. The task is to remove those
conditions that lead to the highest increase of the rank correlation coefficient.

The paper is organized as follows. In Sect. 2, we briefly recall Kendall’s tau
rank correlation coefficient and show how it can be associated with undirected
graphs. Section 3 reformulates our problem as a graph problem and discusses
the infeasible brute force solution and a greedy approach. An improved greedy
algorithm based on a look-ahead strategy is proposed in Sect. 4. Experimental
results are provided in Sect. 5 before the final conclusions.

2 Formalization of the Problem

Let x and y be two rankings of length n and both be free of duplicate values
(so-called ties). Then Kendall’s tau rank correlation coefficient can be used to
measure the degree of correspondence between x and y. It is defined as

τ =
pc − pd(

n
2

) , (1)

where pc denotes the number of concordant (meaning: in the same order) and
pd the number of discordant (meaning: in the opposite order) among all

(
n
2

)
different pairs. Two pairs (xi, yi) and (xj , yj) are referred to as concordant if
sgn(xi − xj) = sgn(yi − yj) and denoted discordant otherwise. As it is assumed
throughout this paper that both rankings are free of ties, every two pairs are
either concordant or discordant.

Furthermore, the correspondence between x and y can be represented by an
undirected graph by applying the following set of instructions:

1. Create a graph G = (V,E) where V is the set of n nodes labelled v1, . . . , vn.
2. For every pair (i, j) s.t. 1 ≤ i < j ≤ n, add an undirected edge between vi

and vj to E if (xi, yi) and (xj , yj) are discordant.

Theorem 1. For −1 ≤ τ ≤ 1, the number of edges in the resulting graph is
given by

|E| =
(
n

2

)
1− τ

2
. (2)

Proof. As the number of edges |E| equals the number of discordant pairs and

pc + pd =
(
n

2

)
(3)

holds, it follows from (1) that

τ =

(
n
2

)
− 2|E|(
n
2

) . (4)

Solving (4) for |E| proves this theorem. $%

Thus, the resulting graph is free of edges provided that τ = 1 whereas it will
equal the so-called complete graph Kn if τ = −1.
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3 Reformulation as a Graph Problem

Recall that we seek to delete a fixed constant k < n of conditions for the pair of
rankings we want to compare. This set of conditions has to be selected in such a
way that as many discordant pairs as possible are removed in order to increase
the rank correlation coefficient.

As the correspondence between two rankings can be represented by an undi-
rected graph, an equivalent task is to delete a k-subset of the nodes from the
graph such that as many edges as possible are thereby removed. At first glance,
finding the best k-subset might seem to be an easily solvable problem. However,
as deleting any node from the graph decreases the degree of all its adjacent
nodes, this is actually a considerably more difficult task. In fact, this is a varia-
tion of the so-called node-deletion problem [4]. However, this problem is usually
seen with regard to finding a minimum number of nodes whose deletion results
in a subgraph that satisfies a given graph-property. As approaches [1] for those
kinds of tasks cannot be applied to our specific problem, we will now examine
two generic approaches along with their advantages and disadvantages.

3.1 Bruteforce Approach

The most obvious approach to our problem is to determine all
(
n
k

)
subsets of k

nodes and select the set whose deletion results in the removal of more edges than
any other set. Note that the total number of removed edges does not depend on
the order the nodes of a set are deleted in. Thus, it is sufficient to test only one
of all k! permutations for each set of k nodes.

While this approach guarantees to find the best set, it will rarely be used in
practice unless testing all

(
n
k

)
subsets can be done in reasonable time which will

only be possible if both n and min(k, n−k) are very small. In other cases, one is
usually interested in a different approach that requires less steps, but accepts at
the same time that less edges in comparison to the bruteforce algorithm might
be removed from the graph.

3.2 Using a Greedy Strategy

Greedy algorithms are based on the idea of choosing the local optimum in each
step hoping this will lead to the best overall performance. While there are some
problems that can efficiently be solved by this approach, such as creating a
minimum cost spanning tree [3], greedy algorithms often only find approximate
solutions. Note that the definition of the local optimum depends on the specific
field of application. As we seek to remove as many edges as possible from the
graph by deleting a given number of nodes, a greedy strategy for this problem
is to delete the node with the highest degree in each step.

It is important to realize that the strategy described above may fail to remove
the maximum number of edges if more than two nodes are deleted from the
graph. We show this is indeed true for k = 3 by comparing the bruteforce
algorithm to this greedy strategy when applied to the graph in Fig. 1 that is based



Rank Correlation Coefficient Correction by Removing Worst Cases 359

Table 1. Pair of rankings that can be represented by the graph in Fig. 1

1 2 3 4 5 6 7
5 6 7 1 3 4 2

v1 v2 v3

v7

v4 v5 v6

Fig. 1. Example for a graph for which the greedy algorithm removes less edges than
the bruteforce approach

on the rankings in Table 1. Initially, the greedy algorithm deletes node v7 as it
has a higher degree than any other node. Consequently, five edges are removed
from the graph. Note that all remaining nodes have degree three and the graph is
now symmetric with respect to {v1, v2, v3} and {v4, v5, v6}. As each pair of nodes
from either set is not adjacent, the greedy algorithm will delete any pair. Thus,
a total of eleven nodes are removed from this graph. The bruteforce approach,
however, yields a better result. Initially, each pair of nodes of the set {v1, v2, v3}
is not adjacent and each of these nodes has degree four. Consequently, deleting
all nodes of the set {v1, v2, v3} in arbitrary order allows the bruteforce algorithm
to remove twelve edges from the graph. However, this greedy approach might
still be preferred to the bruteforce algorithm as it can easily be implemented
and often comes close to the maximum number of edges that can be removed by
deleting a certain number of nodes. As this greedy strategy has to find the node
having the highest degree in each of k iterations (which can be done in O(n)
steps), its overall complexity is O(kn).

4 An Improved Greedy Strategy

Throughout this section, we use Si to denote the set of nodes that were removed
in the first i− 1 iterations and let degS(v) be the degree of v ∈ V if all nodes of
the set S were removed from the graph.

The greedy strategy that we described in the previous section does not succeed
in removing as many edges as possible from a graph in all cases as it does not
take into account the number of edges that can be removed in the subsequent
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k − i iterations when deciding on the node that will be deleted in the ith step.
Thus, in order to improve this greedy strategy for the node-deletion problem, it
is necessary to find a way to compute or estimate the number of edges that can
be removed in the remaining k− i steps provided that a node v of the set V \Si

was deleted in the ith step. We will now look at three different approaches.

1. One idea is to choose from all
(
n−i
k−i

)
possibilities of selecting k − i nodes

from the remaining n− i nodes the set that results in the highest number of
removed edges if all its elements are deleted from the current graph. However,
this approach basically corresponds to the idea of the bruteforce algorithm
described in Sect. 3.1 and will be of limited use for bigger graphs.

2. A different approach is to sort the remaining nodes by their degree in de-
scending order and select the first k − i nodes from the ordered list. Then,
approximate the sought-for value by calculating the sum of degrees of the
selected nodes. Note that this approach usually overestimates the real num-
ber of edges that can be removed in the remaining iterations as it does not
consider that some of the selected nodes may be connected by an edge that
is consequently counted twice.

3. Moreover, one can also attempt to take into account the effects of deleting
v by looking ahead one step in the iteration and apply a second greedy
algorithm to determine a lower bound on the number of edges that can be
removed in the subsequent iterations. This approach will now be described
in more detail.

Assume that the algorithm has completed the first i− 1 iterations and now has
to find the node that will be deleted in the ith step. For each node v of the set
V \ Si of the remaining n− i+ 1 nodes, carry out the following steps:

1. Create a copy of the current graph and delete v from this copy.
2. For each of the subsequent k− i iterations, find and delete from the copy the

node with the highest degree. Let hi(v) denote the total number of edges
that are removed from the copy in this step.

Finally, set
gi(v) = degSi

(v) + hi(v) (5)

to calculate a lower bound on the number of edges that can be removed in the
ith step and its subsequent iterations provided that v was deleted in the ith
iteration. In order to apply this idea to the node-deletion problem, determine in
each iteration 1 ≤ i ≤ k the node w ∈ V \ Si that maximizes gi, remove it from
the graph along with its adjacent edges and update the set of deleted nodes by
setting Si+1 = Si ∪{w}. A high-level description of this nested greedy approach
is given in Algorithm 1.

It should be emphasized that hi(v) provides only a lower bound (but usually
a good one provided that k − i is not too large) on the exact number of edges
that can be removed in the remaining k− i iterations if v was deleted in the ith
step. While an algorithm deleting nodes on the basis of gi will consequently not
remove as many edges as possible in all cases, it will never perform worse than
the greedy algorithm described in Sect. 3.2.



Rank Correlation Coefficient Correction by Removing Worst Cases 361

Theorem 2. The nested greedy algorithm never removes less edges than the
greedy approach.

Proof. If t ∈ V denotes the node having the highest degree in the initial graph,
the total number of edges removed by the greedy algorithm equals g1(t). Algo-
rithm 1 evaluates g1(v) for all v ∈ V to calculate a lower bound on the overall
number of edges that can be removed under the assumption that v was deleted
in the first step and selects the node that maximizes g1. As t ∈ V , it follows
that g1(t) ≤ maxv∈V g1(v) and the nested greedy algorithm will therefore never
remove less edges in comparison to the greedy approach. $%

S ← ∅1

r ← 0 // Denotes the number of edges removed by this algorithm2

for i← 1 to k do3

b← null4

m ← −1 // Any other value less than zero is fine5

for v ∈ V \ S do6

u ← degS(v)7

S′ ← S ∪ {v} // Create a copy and delete v from this copy8

for j ← i + 1 to k do9

w ← v ∈ V \ S′ : degS′(v) ≥ degS′(x)∀x ∈ V \ S′10

u← u + degS′(w)11

S′ ← S′ ∪ {w} // Delete w from the copy12

end13

if u > m then14

m ← u15

b← v16

end17

end18

r ← r + degS(b)19

S ← S ∪ {b} // Update graph by deleting b20

end21

Algorithm 1. The nested greedy algorithm for the node-deletion problem

The inner loop (lines 1 to 1) of Algorithm 1 that is used to calculate hi makes this
approach more complex in comparison to the greedy algorithm. Recall that the
number of nodes that have not been removed from the graph at the beginning of
the ith iteration (1 ≤ i ≤ k) equals n− i+ 1. In each iteration i and for every node
v ∈ V \ Si of the set of the remaining nodes a copy of the graph is created which v
is deleted from. Then, k − i iterations (i.e. for i+ 1 ≤ j ≤ k) of the inner loop are
used to calculate hi(v). In each of these iterations the node having highest degree
among all n− j+ 1 nodes that remain in the copy of the graph has to be found and
deleted from the copy. Thus, the total number of steps can be evaluated as

k∑
i=1

(
(n− i+ 1) ·

k∑
j=i+1

(n− j + 1)
)

= O
(
k2n2 + k4) . (6)
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Recall that a total of k nodes are removed from a graph with n nodes. As k will
be much smaller than n in our field of application, the total number of steps is
limited by O

(
k2n2

)
.

Further improvement of Algorithm 1 requires a better estimation of the num-
ber of edges that can be removed in the subsequent iterations than the lower
bound provided by hi. We found that increasing the level of nesting the greedy
algorithms easily allows for an improved lower bound and will be useful if either
the number of nodes in the graph or the number of nodes that one is allowed to
remove increases. To illustrate this idea, the entire Algorithm 1 was nested into
another greedy algorithm. This new algorithm has running time O

(
k3n3

)
as

Algorithm 1 will be called O(n) times in each of k iterations and will be denoted
twice nested greedy. It can be shown using the arguments of the previous proof
that this new algorithm will never perform worse than Algorithm 1.

5 Experimental Results

We compared our proposed nested greedy as well as the twice nested greedy
algorithm to the bruteforce approach and the greedy algorithm on the basis of
three parameters. The first parameter, n, denotes the number of conditions used
for the comparison of two rankings. While n was larger than 100 in the ex-
periments with the bacterium Pseudomonas aeruginosa, we used values ranging
from 30 to 60 to keep the running times of the algorithms, and in particular of
the bruteforce approach, low. The second parameter, denoted τ , represents the
value of Kendall’s tau rank correlation coefficient for a pair of rankings. Recall
that the number of edges in a graph is given by

(
n
2

) 1−τ
2 for −1 ≤ τ ≤ 1. Our

tests included values of 0, 0.25 and 0.5 in order to test the algorithms on graphs
of varying sparsity. Finally, as k, the number of conditions that we are allowed
to remove to increase the rank correlation coefficient, is unknown, we used two
values ranging from 10% to 15% of the value of n.

The tests were performed as follows. For each combination of n and τ , we
created a list of 10,000 pairs of rankings with a length of n and a rank correlation
coefficient of τ . If this was not possible, for example if n = 15 and τ = 0,
the pairs of rankings were created in such a way that their rank correlation
coefficient is as close to τ as possible. Then, each pair of rankings was used
to create an undirected graph using the instructions in Sect. 2. Finally, the
algorithms were applied to delete k nodes from each graph in such a way that as
many edges are thereby removed. The numbers in the three rightmost columns of
Table 2 represent the number of times (out of 10,000) that each of the algorithms
removed less edges from a graph in comparison to the bruteforce approach. In
order to compare the algorithms on bigger graphs, a slightly different approach
was required. For each combination of n and τ , we again created 10,000 pairs of
rankings, but excluded the bruteforce approach from the tests as it could not be
applied to the resulting graphs in reasonable length of time. As the twice nested
greedy algorithm never performs worse than the greedy or the nested greedy
approach, all comparisons were no longer done with respect to the bruteforce



Rank Correlation Coefficient Correction by Removing Worst Cases 363

Table 2. Results on comparing three different greedy algorithms with respect to the
bruteforce approach

n τ k Greedy Nested Greedy Twice Nested Greedy

30 0 3 205 7 0
30 0 5 548 31 3
30 0.25 3 149 6 0
30 0.25 5 466 21 0
30 0.5 3 183 3 0
30 0.5 5 479 33 0
40 0 4 291 12 0
40 0 6 482 43 0
40 0.25 4 190 4 0
40 0.25 6 470 44 3
40 0.5 4 227 4 1
40 0.5 6 483 39 1

Table 3. Results on comparing the greedy and the nested greedy approach with respect
to the twice nested greedy algorithm

n τ k Greedy Nested Greedy

50 0 5 269 13
50 0 8 612 49
50 0.25 5 207 9
50 0.25 8 548 36
50 0.5 5 226 8
50 0.5 8 601 48
60 0 6 304 15
60 0 9 567 46
60 0.25 6 269 11
60 0.25 9 566 45
60 0.5 6 261 10
60 0.5 9 559 63

approach, but to the twice nested greedy algorithm. Consequently, the results
in Table 3 only provide a valuable indication but do not exactly resemble how
well the greedy and the nested greedy algorithm perform on bigger graphs in
comparison to the bruteforce approach. We conclude from these results that the
greedy algorithm should not be used for the correction of the rank correlation
coefficient as it happens quite frequently that this algorithm does not remove
as many discordant pairs as possible, even if the number of conditions that one
is allowed to remove is small. Our proposed nested greedy algorithm, however,
provides a more reliable method and removed less discordant pairs in comparison
to the bruteforce approach in only very few cases. While the twice nested greedy
algorithm yields results that come even closer to those of the bruteforce approach,
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it shall only be used if one accepts the higher running time. However, if both n
and min(k, n− k) are very small, the bruteforce approach might still be used.

6 Conclusions

We have proposed an efficient algorithm to cope with an otherwise infeasible
problem. Our basic assumption was that the number k of conditions to be re-
moved is fixed. Future work will include investigations on choosing k automati-
cally based on statistical considerations, i.e. to find the point, when we start to
increase the rank correlation coefficient artificially.
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Abstract. Probabilistic relational modelling and learning is used for
the problem of diagnosing lung cancer based on data obtained from peak
clusters in ion mobility spectra. Markov Logic Networks and the MLN
system Alchemy are employed for various modelling and learning scenar-
ios which are evaluated with respect to ease of use, classification accuracy,
and knowledge representation aspects.

1 Introduction

Probabilistic propositional logics have already been studied and used in many
applications where uncertainty is inherent in the available information. Exploit-
ing the greater expressive power of first order logic in the combination with
probability is the objective of some more recent approaches like Bayesian Logic
Programs [3] or Markov Logic Networks (MLNs) [8].

This paper reports on a case study of using probabilistic relational modelling
and learning as provided by MLNs and the MLN system Alchemy [4] in the field
of biomedical diagnosis. We focus on the early detection of lung cancer by ion
mobility spectrometry obtained from the breath a patient exhales [1], a non-
invasive diagnostic method which delivers results within a few minutes and can
be applied at low costs. To be more precise, we investigated the relationships
between the presence of certain peaks in the spectra and the presence of bronchial
carcinoma. In order to allow for small variations of peak locations in different
spectra, we extracted peak clusters from the data with the help of a multi-level
modification of the k-means algorithm. We set up various learning scenarios, and
evaluate them with respect to ease of use and classification accuracy. The MLNs
prove to return satisfactory results as a logic-based machine learning tool, but
also weaknesses with respect to semantical clearness and expressivity become
apparent.
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2 Ion Mobility Spectrometry

In order to determine chemical substances in gaseous analytes, ion mobility spec-
trometry (IMS) can be used [1]. This method relies on characterizing substances
in gases by their ion mobility. Figure 1 illustrates the working principle of an
ion mobility spectrometer. After ionisation, ion swarms enter the drift region
through an ion shutter. The time needed to pass the drift region is called drift
time, and the ion mobility is inversely proportional to the drift time. Ion mobility
is determined by mapping the drift time to the signal intensity measured at the
Faraday plate (cf. Fig. 1). If the gaseous analyte contains various substances,
they may reach the Faraday plate at the same time. Therefore, a multi capillary
column is used for the pre-separation of different substances [1] so that they
enter the spectrometer at different time points, called retention times.

Formally, a drift vector S is a sequence S = (z1, . . . , zn) of signal intensities
zi measured at the Faraday plate at time points i× C where C is a fixed time
interval. A spectrum M is a sequence M = (S0, . . . , Sm) of drift vectors corre-
sponding to distinct retention times rt0 , . . . , rtm . An IMS spectrum M can be
visualized as a heat map on the two dimensions drift time and retention time,
while the signal intensity is represented by a colour. One is particularly inter-
ested in peaks in this heat map as each peak gives information about a particular
substance in the analyte. A peak object in a spectrum is characterized by a set
of direct or closely related neighbours in the matrix M whose signal value is
above a given minimal value; thus, a peak object corresponds to a specific area
in the heat map. The determination of peaks in a measurement requires sophis-
ticated processing of the raw spectra (see [1] for details). Peak objects taken
from two different measurements that correspond to the same substance occur
at corresponding areas in their respective heat maps, and in order to identify
such corresponding peaks, they will be mapped to peak clusters.

3 A Modified k-Means Algorithm for Peak Clustering

An IMS database D = {M1, . . . ,Mk} is a set of measurements Mi where each
measurement is an IMS spectrum Mi = (Si

0, . . . , S
i
m). For a spectrum M let

peaks(M) denote the set of peaks in M , and peaks(D) = ∪M∈Dpeaks(M).
Then a peak clustering for D is a partitioning PC 1, . . . ,PC p of peaks(D), and
peakIndex : peaks(D) → {1, . . . , p} denotes the mapping that sends each peak
P to the index i of the unique peak cluster PC i with P ∈ PC i. A peak cluster
is meant to represent a vague concept of a peak that corresponds to a substance
but allows for slight variations in its actual manifestation within a spectrum.

Since in the ideal case each peak in a spectrum corresponds to a differ-
ent substance, we are only interested in peak clusterings that map all peaks
within one and the same measurement to different clusters, i.e., if the restriction
peakIndex|peaks(M) is injective for everyM ∈ D. Such a clustering for D is called
(measurement) slicing. In order to obtain a slicing peak clustering for an IMS
database D, we extended the well-known k-means algorithm [5] to a multi-level
k-means approach:
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Fig. 1. Schematic overview of an ion mobility spectrometer (from [1])

– First, the k-means algorithm is applied to peaks(D). Each resulting cluster
that contains at least two peaks from the same measurement is called non-
slicing and is processed further on the next level; all other clusters are kept
for the final clustering.

– To each non-slicing cluster PC , k-means is applied where the number of
clusters to be obtained from PC is set to the maximal number of peaks in
PC stemming from the same measurement. This step is applied again on
any subsequent level as long as a non-slicing cluster occurs.

It is easy to prove that the multi-level k-means algorithm terminates and yields
a slicing peak clustering for every IMS database D. So, the standard k-means
algorithm is employed with different values for k that take domain specific in-
formation into account. In this way, not a fixed number of clusters results but
the clustering is as finely grained as the IMS database requires.

In our case study, we investigated an IMS database consisting of 158 measure-
ments obtained from screening the breath of 158 patients out of which 82 had
lung cancer (bronchial carcinoma, bc). The idea behind this setting is to support
early diagnosis of lung cancer on the basis of the substances a person exhales
[1].

Applying the multi-level k-means algorithm to this database yielded a data-
base Dbc with 33 peak clusters, in the following referred to by the identifiers
pc0 , . . . , pc32 . For each peak cluster pc, Table 1 shows the probability resp.
relative frequency P (pc) that a measurement has a peak belonging to pc, and
the conditional probability P (bc|pc) that a measurement having a peak belonging
to pc stems from a person having bronchial carcinoma.

In the following sections, we apply methods of probabilistic relational mod-
elling and learning to (a logic representation of) Dbc. The logic representation
(for convenience, also referred to as Dbc) involves atomic formulas of the form
bc(M) and pcInM (pc18 ,M ), indicating that measurement M belongs to a per-
son with lung cancer, and that peak cluster pc18 occurs in measurement M ,
respectively.
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Table 1. Peak clusters and probabilities calculated for Dbc with 158 measurements

pc P (pc) P (bc|pc) pc P (pc) P (bc|pc) pc P (pc) P (bc|pc)

pc0 0.84 0.43 pc11 0.04 0.83 pc22 0.60 0.40
pc1 0.23 0.68 pc12 0.03 0.60 pc23 0.65 0.40
pc2 0.93 0.50 pc13 0.04 0.86 pc24 0.09 0.43
pc3 0.11 0.82 pc14 0.89 0.56 pc25 0.63 0.56
pc4 0.67 0.55 pc15 0.03 0.60 pc26 0.53 0.43
pc5 0.39 0.72 pc16 0.06 1.00 pc27 0.05 0.75
pc6 0.04 0.83 pc17 0.51 0.74 pc28 0.06 0.33
pc7 0.22 0.91 pc18 0.47 0.48 pc29 0.25 0.33
pc8 0.05 0.88 pc19 0.04 1.00 pc30 0.52 0.20
pc9 0.61 0.67 pc20 0.03 1.00 pc31 0.81 0.51
pc10 0.06 0.20 pc21 0.24 0.76 pc32 0.24 0.68

4 Relational Probabilistic Learning and Modelling

Inductive Logic Programming (ILP) has been used very successfully in ma-
chine learning for inducing first-order hypotheses from examples and background
knowledge [6]. For the application scenario described in Sec. 3, we will use the
ILP system Aleph [9] for learning bronchial carcinoma diagnosing rules from Dbc.

Markov logic [8] establishes a framework which combines Markov networks
[7] with first-order logic to handle a broad area of statistical relational learning
tasks. The Markov logic syntax complies with first-order logic except that each
formula Fi is quantified by an additional (positive or negative) weight value wi.
Semantics are given to sets of Markov logic formulas by a probability distribu-
tion over (propositional) possible worlds which is given by a log-linear model
defined over weighted ground formulas. The fundamental idea in Markov logic
is that first-order formulas are not handled as hard constraints but each formula
is more or less softened depending on its weight. These weights induce a kind
of priority ordering on the formulas of the knowledge base that determines their
respective influence on the probabilities of the log-linear model. A Markov logic
network (MLN) L is a set of weighted first-order logic formulas together with a
set of constants C. The ground Markov network ML,C specifies

P (X = x) = 1
Z exp (

∑
iwini(x)) (1)

as the probability distribution over possible worlds x ∈ X , where Z is a nor-
malization factor. For each formula Fi, ni(x) compactly expresses the number
of true groundings of Fi in the possible world x. The semantics of L is given by
a ground Markov network ML,C constructed from Fi and C [8]. The standard
semantics of Markov networks [7] is used for reasoning, e.g. to determine the
probabilistic inferences of L (see [8] for details).

Alchemy’s inference algorithms allow to calculate (approximately) the con-
ditional probability of a certain ground atom, given some other ground literals
as evidence [4]. However, it has to be emphasised that an MLN only allows to
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express an if-then-rule as a material implication, not as a conditional probability.
Probabilities of material implications may differ largely from conditional proba-
bilities and are known to be quite unintuitive in certain cases. As (1) shows, the
weight of an MLN implication is effective for a probability if the implication is
logically satisfied, regardless whether both the premise and the consequent hold,
or just the premise fails.

5 Learning Classification Rules with ILP and MLNs

In this section, we present different setups to learn MLNs from the data set
Dbc. Our goal is to calculate the probability that a certain measurement m is
from some person with a bronchial carcinoma, given the information for each
of the 33 peak clusters whether or not it is contained in measurement m. That
is, we want to calculate the conditional probability of bc(m), given the truth
values of the literals pcInM (pc0 ,m), . . . , pcInM (pc32 ,m). We use the software
package Alchemy [4] which provides several sophisticated algorithms to perform
(structure and parameter) learning and inference of MLNs.

We will validate a learned MLN in terms of classification accuracy, defined as
the proportion of the correctly predicted (positive and negative) results on the
total number of measurements in a testing set. Therefore, we perform a 10-fold
cross-validation and determine the average accuracy value of all ten testing sets.
Moreover, we will try to elucidate the semantics of MLN-weights by investigating
the correlations between them and conditional probabilities.

5.1 Learning Logic Rules with the ILP System Aleph

In our first learning setup, we use the inductive logic programming (ILP) system
Aleph [9] for learning first-order logic rules from the data set. Besides other
parameters, Aleph allows to make detailed specifications about which atoms
may appear in the body or head of a rule. We require that the head of a rule
must contain the bc predicate, and the body must consist of one or more atoms
of the pcInM predicate, with a constant in the first argument. This way, Aleph
is guided to learn classification rules regarding bc.

The rules learned with Aleph are displayed in Table 2. We use a compact
notation in all tables, where e. g. the atom pcInM (pc18 ,M ) is abbreviated as
Pc18 and bc(M) as bc. The first seven rules have bc(M) as their consequent,
whereas the four other rules have the negated atom ¬bc(M). The premisses of
all rules consist of conjunctions of at most three positive pcInM literals. From
the 33 peak clusters in the data set, there are actually only 18 contained in
the rule-set, so the other 15 peak clusters seem to carry no useful information
according to the Aleph result. Viewing an implication p ⇒ q as a directed rule
if p then q, we can talk of its support (the relative number of database entries
satisfying p∧q) and its confidence (the number of entries satisfying p∧q relative
to the number of entries satisfying p). Taking a closer look at the support of
these rules, it becomes obvious that most rules apply only to a small part of the
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Table 2. Rules learned with the ILP system Aleph in compact form. E. g., Pc5 ∧ Pc8
⇒ bc abbreviates pcInM (pc5 , M ) ∧ pcInM (pc8 ,M )⇒ bc(M).

# Rule Supp. Conf. # Rule Supp. Conf.

1 Pc5 ∧Pc8 ⇒bc 0.03 1.00 7 Pc1 ∧Pc4 ∧Pc17⇒ bc 0.08 1.00
2 Pc7 ∧Pc17 ∧Pc31⇒bc 0.16 1.00 8 Pc28 ∧Pc30 ⇒¬bc 0.04 1.00
3 Pc18 ∧Pc21 ∧Pc25⇒bc 0.06 1.00 9 Pc24 ∧Pc29 ∧Pc30⇒¬bc 0.03 1.00
4 Pc1 ∧Pc3 ⇒bc 0.05 1.00 10 Pc10 ∧Pc23 ⇒¬bc 0.05 1.00
5 Pc16 ⇒bc 0.06 1.00 11 Pc5 ∧Pc24 ∧Pc30⇒¬bc 0.02 1.00
6 Pc3 ∧Pc17 ∧Pc23⇒bc 0.03 1.00

data; merely rule 2 applies to some larger amount of measurements. Notice that
all rules have confidence 1.0 due to the fact that the whole data set Dbc was
given to Aleph for learning these rules.

Taking the conditional probabilities from Table 1 into consideration, we can
compare the consequent of a rule with the conditional probabilities of the peak
clusters in the rule’s premise. E. g., for pcInM (pc5 ,M ) and pcInM (pc8 ,M ) –
the premise of rule 1 – we have P (bc|pc5 ) = 0.72 and P (bc|pc8 ) = 0.88 in the
data set. So each of these peak clusters (by itself) shows a clearly above 0.5
conditional probability and therefore can be considered to be an indicator for
bc; and this observation matches the consequent bc(M) of rule 1. Comparing
the conditional probabilities of the peak clusters in the premisses of the other
rules with their respective consequences shows a similar result: apart from three
exceptions, the indication of each peak cluster’s conditional probability matches
the consequent of the respective rule. That is, a peak cluster with a conditional
probability above 0.5 is contained in the premise of a rule whose consequent is
bc(M); and a peak cluster with a conditional probability below 0.5 is contained
in the premise of a rule whose consequent is ¬bc(M).

Compared to the simple observations from Table 1, the rules in Table 2 seem
quite plausible. According to these rules, there are only few dependencies be-
tween the 18 peak clusters occurring in the rules, since at most three peak clusters
are contained in the same rule and only six of these peak clusters appear two or
(at most) three times.

5.2 Learning Weights of Aleph Formulas with Alchemy

In a subsequent step, we take the Aleph implications (Table 2) as logical base
structure of an MLN and learn appropriate weights for them from the data set
using Alchemy. The resulting weights are represented in Table 3. Evaluating the
MLN prediction performance results in an accuracy of 78%.

If we take the implications as if-then-rules, we can determine the conditional
probabilities of these rules under the distribution induced by the MLN, i. e. we
use Alchemy to calculate the conditional probability of a rule’s consequent ground
atom given its premise ground atoms as evidence. E. g., for rule 1, Alchemy deter-
mines the probability P (bc(m)|pcInM (pc5 ,m)∧pcInM (pc8 ,m)) = 0.9800 in the
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Table 3. MLN formulas originated from Aleph rules [78% accuracy]

# Formula Wt. CPr. # Formula Wt. CPr.

1 Pc5 ∧Pc8 ⇒bc 4.596 0.980 7 Pc1 ∧Pc4 ∧Pc17⇒ bc 4.352 0.985
2 Pc7 ∧Pc17 ∧Pc31⇒bc 6.004 0.996 8 Pc28 ∧Pc30 ⇒¬bc 3.772 0.978
3 Pc18 ∧Pc21 ∧Pc25⇒bc 4.402 0.982 9 Pc24 ∧Pc29 ∧Pc30⇒¬bc 3.376 0.991
4 Pc1 ∧Pc3 ⇒bc 4.433 0.992 10 Pc10 ∧Pc23 ⇒¬bc 4.041 0.974
5 Pc16 ⇒bc 4.788 0.971 11 Pc5 ∧Pc24 ∧Pc30⇒¬bc 2.668 0.961
6 Pc3 ∧Pc17 ∧Pc23⇒bc 4.665 0.989

MLN. The conditional probabilities obtained this way for each rule are stated in
the ”CPr.” column of Table 3. Notice that the conditional probabilities of all rules
are not exactly 1.0, as expected, but rather close to it. This is due to the fact that
Alchemy performs approximate inference and thereby, as a side-effect, prevents
overfitting.

The weights of the MLN formulas are not easy to interpret, since they do not
have a clear probabilistic semantics. To put it very simply, the violation of a
formula with a relative high weight will lead to a stronger probability decrease
(of a possible world) than the violation of a formula with a lower weight, all
other things being equal (see equation (1)). So the weight of a formula expresses
in a way the relative ”importance” or ”strength” of a formula within the set
of MLN formulas. The learned weights of the eleven formulas are all positive.
Taking a look at the support values from Table 2, it is interesting to notice that
rule 2 has both the highest support and weight, and that rule 11 has both the
lowest support and weight. It has to be kept in mind that the weight of an MLN
implication does not reflect (in any way) a conditional probability associated
with this implication. This becomes evident by observing that the highest weight
is more than twice the lowest, although all conditional probabilities are very
similar (close to 1).

5.3 Simple Classification with MLNs

In a further learning setup, we predefine the formula structure of a quite simple
MLN: The MLN consists of the 33 implications pcInM (pc0 ,M) ⇒ bc(M), . . . ,
pcInM (pc32 ,M) ⇒ bc(M). Since the Alchemy syntax allows to express such
”partially grounded” formulas in a compact way, the whole predefined struc-
tural Alchemy input merely consists of single line. With this MLN structure,
we follow a straightforwardly modelled classification approach: To classify the
bc state of a measurement, we consider each peak cluster separately, leaving out
any connections or dependencies among them. To some extent, this approach
resembles Naive Bayes classification, where explicit independence assumptions
among classifying attributes are made. The weights learned with Alchemy for
the 33 implications are stated in Table 4.

The evaluation of the learned MLN reveals quite a high accuracy of 88%, al-
though the enforced MLN structure lacks any connections between peak
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Table 4. Predefined classification formulas and their learned weights [88% accuracy]

Formula Weight Formula Weight Formula Weight

Pc0 ⇒ bc −1.6771 Pc11 ⇒ bc 1.0978 Pc22 ⇒ bc −0.7165
Pc1 ⇒ bc 1.1153 Pc12 ⇒ bc 0.2402 Pc23 ⇒ bc −1.7247
Pc2 ⇒ bc −0.9009 Pc13 ⇒ bc 3.0332 Pc24 ⇒ bc 1.1053
Pc3 ⇒ bc 2.2471 Pc14 ⇒ bc 0.4628 Pc25 ⇒ bc 0.7341
Pc4 ⇒ bc 2.0735 Pc15 ⇒ bc 2.3570 Pc26 ⇒ bc −0.9295
Pc5 ⇒ bc 0.5205 Pc16 ⇒ bc 6.9273 Pc27 ⇒ bc 1.0999
Pc6 ⇒ bc 2.2603 Pc17 ⇒ bc 1.5759 Pc28 ⇒ bc 0.1661
Pc7 ⇒ bc 2.6155 Pc18 ⇒ bc −0.4797 Pc29 ⇒ bc −1.1484
Pc8 ⇒ bc 3.6903 Pc19 ⇒ bc 3.5149 Pc30 ⇒ bc −3.1752
Pc9 ⇒ bc 0.6047 Pc20 ⇒ bc 4.3739 Pc31 ⇒ bc 0.2722

Pc10 ⇒ bc −0.1953 Pc21 ⇒ bc 2.1169 Pc32 ⇒ bc −0.2974

clusters. But the high accuracy suggests that those connections are not of such
great importance for classifying the measurements regarding bc.

Comparing the learned weights of the implications in Table 4 to the condi-
tional probabilities in Table 1 of the respective peak clusters, shows no clear
correlation. At least, it is noticeable, that most implications with a positive
weight contain a peak cluster with a conditional probability clearly above 0.5;
and that vice versa most implications with a negative weight contain a peak
cluster with a conditional probability clearly below 0.5. But since this obser-
vations do not hold for peak clusters pcInM (pc24 ,M ), pcInM (pc28 ,M ), and
pcInM (pc32 ,M ), it does not allow to draw a direct relation between the weights
and the conditional probabilities. It is also peculiar that some peak clusters with
an (almost) identical conditional probability belong to implications with signif-
icantly different weights (e. g.pcInM (pc10 ,M ) and pcInM (pc30 ,M ), as well as
pcInM (pc12 ,M ) and pcInM (pc15 ,M )). Thus, despite its accuracy of 88%, the
MLN is somewhat unsatisfactory from a knowledge representation point of view.

5.4 MLN Structure Learning

In our last learning setup, we make use of Alchemy’s structure learning feature
to learn an MLN from scratch. Alchemy does not allow to make detailed speci-
fications about the formulas to be learned (compared to Aleph in Sec. 5.1), i. e.
we cannot impose the requirement that the pcInM ( , ) atoms have a constant
in the first argument. As a consequence, Alchemy’s structure learning algorithm
produces no useful results when applied to Dbc without any further information.
So we modify the relational modelling in some aspect by replacing the binary
predicate pcInM (PC ,M ) by 33 unary predicates pc0 (M ), . . . , pc32 (M ).

The structure (and weight) learning with Alchemy starts from an empty MLN
and results in an MLN with 89 formulas (including 34 atomic formulas for all 34
predicates). Table 5 shows 18 of the learned formulas (including those with the
highest and lowest overall weights), the other ones are disjunctions over up to
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Table 5. Some of the MLN formulas emerged from Alchemy’s structure learning [90%
accuracy]

# Formula Weight CPr. Supp. Conf.

37 Pc7 ⇒ bc 4.43 1.0000 0.20 0.91
39 Pc11 ⇒ Pc9 4.82 0.9920 0.04 1.00
44 Pc17 ∧ Pc28 ⇒ Pc21 5.05 0.9930 0.02 1.00
46 Pc15 ∧ Pc25 ⇒ Pc5 −4.30 0.0050 0.00 0.00
47 Pc17 ∧ Pc19 ∧ Pc20 ⇒ Pc9 −8.98 0.0000 0.00 0.00
53 Pc12 ∧ Pc20 ∧ Pc22 ⇒ Pc11 −8.14 0.0000 0.00 0.00
57 ¬Pc1 ∧ ¬Pc18 ∧ ¬Pc23 ∧ Pc31 ⇒ bc 6.38 1.0000 0.08 1.00
61 ¬Pc10 ∧ Pc14 ∧ ¬Pc18 ∧ Pc21 ⇒ bc 7.15 1.0000 0.08 1.00
62 ¬Pc12 ∧ ¬Pc22 ∧ ¬Pc30 ∧ Pc31 ⇒ bc 7.49 1.0000 0.16 1.00
66 Pc4 ∧ Pc26 ∧ Pc28 ∧ Pc29 ⇒ bc −5.62 0.0090 0.00 0.00
68 ¬Pc9 ∧ ¬Pc13 ∧ ¬Pc16 ∧ Pc23 ∧ ¬Pc29 ⇒ ¬bc 4.01 0.9980 0.16 0.96
70 Pc1 ∧ Pc3 ∧ ¬Pc15 ∧ ¬Pc23 ∧ Pc26 ⇒ ¬bc −5.18 0.0000 0.00 0.00
72 Pc0 ∧ ¬Pc11 ∧ ¬Pc12 ∧ ¬Pc21 ∧ Pc22 ⇒ ¬bc 2.45 0.9210 0.31 0.89
75 Pc5 ∧ Pc7 ∧ ¬Pc28 ∧ ¬Pc29 ∧ Pc31 ⇒ ¬bc −2.78 0.0000 0.00 0.00
80 Pc0 ∧ ¬Pc12 ∧ ¬Pc16 ∧ Pc30 ∧ ¬Pc32 ⇒ bc −5.55 0.0030 0.01 0.03
81 ¬Pc6 ∧ ¬Pc13 ∧ ¬Pc28 ∧ Pc31 ∧ Pc32 ⇒ ¬bc 5.61 0.9630 0.05 0.73
82 ¬Pc3 ∧ ¬Pc4 ∧ Pc25 ∧ ¬Pc28 ∧ ¬Pc32 ⇒ ¬bc 8.77 1.0000 0.07 1.00
89 ¬Pc3 ∧ ¬Pc11 ∧ Pc13 ∧ ¬Pc17 ∧ ¬Pc31 ⇒ ¬bc −5.15 0.0000 0.00 0.00

six peak cluster literals. The evaluation of this MLN shows an accuracy of 90%.
Compared to the previous results, this MLN models much more connections
among the peak clusters and their combined influence regarding bc(M). It has
to be noticed that only 13 of the 55 non-atomic formulas involve a bc literal, so
the other 42 formulas express connections among the peak clusters regardless of
the bc(M) state. The formulas contain positive and negative peak cluster literals
as well, whereas the rules in Table 3 contain positive literals only.

As done in Sec. 5.1, we compare the conditional peak cluster probabilities
from Table 1 with the premises of implications involving bc literals. Contrary to
Sec. 5.1, the comparison shows no clear result: The premises of the implications
involve peak cluster literals whose conditional probability goes along with the
implication’s consequent, as well as peak cluster literals who do not match this
pattern. So – compared to previous results – these implications exhibit more
complex and subtle connections between the occurrences of peak clusters and
the bc(M) state.

Taking the implications as rules, we can determine their support and confi-
dence in the data set: Most of the rules have no high support. The confidence
of all rules with positive weight is very high or even 1.0; merely rule 81 shows
a somewhat lower confidence. Those rules with a negative weight show (almost)
0.0 confidence. This makes sense considering the impact of a negative weight.

It is not surprising that the weights of this MLN do not suggest any further
interpretations or relations, seeing that even the very simple structured MLN
from Sec. 5.3 did not allow us to draw any useful conclusions from the weights.
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So it can be summed up that this MLN provides a good classification result, but
the semantics of the learned weights still remains quite unclear.

6 Conclusions and Future Work

In this paper we illustrated how probabilistic relational modelling and learning
can be applied successfully in the biomedical domain to support the diagnosis of
lung cancer based on ion mobility spectrometry. We introduced a multi-level k-
means clustering algorithm, which we employed to preprocess the IMS input data
for logical modelling, and presented three different approaches to learn MLNs
from the clustered data set, using the software packages Aleph and Alchemy.
In particular, Alchemy proved to be an effective and easy-to-use system for re-
lational probabilistic parameter learning. The validation of the three learned
MLNs showed a satisfactory, or good classification accuracy of 78%, 88%, and
90%, respectively. However, from a knowledge representation point of view, the
resulting MLNs are not suitable to serve as intelligible knowledge bases. The
weight of an MLN formula has no clear semantics, so only for very simple MLNs
or in very special cases the impacts of a certain weight can be estimated. Another
shortcoming of MLNs is that if-then-rules can only be expressed as material im-
plications. The combination of both these weaknesses makes it hard to interpret
the learned MLN formulas and their weights. Our results show that MLN learned
from data provides the user with only a very vague and maybe fallacious picture
of the domain under consideration. Specifying an MLN by the user from scratch
by setting up weights intuitively might yield unexpected, even false results.

As part of our ongoing and future work, we will compare MLN models for IMS
data with alternative approaches from the relational machine learning domain,
like relational association rules [2] and Bayesian logic programs [3]. Moreover, in
order to allow for a more accurate modelling of the application domain, we will
take into account also information about intensity and area of peaks which can
be extracted from the available data as well.
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Abstract. In this paper, we address the two problems of automated
smoothing and peak detection in spectral data analysis. We introduce
the concept of triplet significance, and propose a repeated averaging ap-
proach, which is able to find a balance between noise reduction and
signal preservation based on properties of a spectrum’s curvature. For
evaluation purposes, multiple spectra are simulated at different levels of
resolution and different distances between peaks for varying amplitudes
of uniformly distributed noise. The results empirically show that the
proposed methodology outperforms existing approaches based on local
maximum detection or the lag-one autocorrelation coefficient.

1 Introduction and Related Work

Spectroscopic experiments commonly provide insights in the atomic or molecular
structure and composition of a given sample [1]. Thereby, the pure signal result-
ing from spectroscopic experiments can often be represented as a superposition
of basis functions with a Lorentzian or Gaussian shape. They are known as the
peaks of a spectrum. For the remainder of this paper, we consider a spectrum to
be given as follows:

Definition 1 (Spectrum). A spectrum is defined as a bivariate data vector
a = {

(
x1, y1

)
, . . . ,

(
xn, yn

)
} of finite length n, with ordered positions x1 < x2 <

· · · < xn at equal distances Δx = xi+1 − xi, i ∈ {1, . . . , n − 1}. We define the
respective values yi ∈ IR, i ∈ {1, . . . , n} in a minimalistic manner to be given as

yi =
m∑
j

fj(xi) + Ei, (1)

with fj(xi) = Aj
λj

λ2
j + (xi − ωj)2

. (2)

Ei denotes signal noise at datapoint xi, and fj : IR → IR represents the j-th
Lorentz function of the spectrum with horizontal position ωj, with half-width-at-
half-height parameter λj , and with scale Aj.
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Within this paper, the occurrence of baseline drifts and other perturbations of
the signal at lower frequencies are not explicitly considered, based on the assump-
tion that existing preprocessing methods can properly handle these distortion
effects, and refer for example to [2] for more detailed information). For reasons of
simplicity, we further consider the standard case of λj = Aj = 1, j ∈ {1, . . . ,m},
resulting in maximal peak heights of fj(ωj) = 1.

In the context of automated spectral data analysis, finding an accurate model
of the measured signal is a desirable goal to achieve. For this purpose, the prob-
lems of peak picking and peak fitting are commonly solved, namely the identifica-
tion of the set of underlying basis functions, and subsequently the approximation
of the corresponding parameters. Concerning the former problem, peaks can eas-
ily be identified by searching for local maxima [3,4,5]. In this way however, two
problems arise and need to be handled carefully: Firstly, noise and other distor-
tions of the measurement commonly introduce additional local maxima, leading
to an increased number of false-positive peaks (“ghost peaks”). Secondly, over-
lapping peaks are potentially omitted, and the resulting model is likely to be
substantially falsified [6].

As reported previously, peaks can alternatively be identified by means of prop-
erties of a spectrum’s curvature [7]. Empirical studies show that, given a certain
degree of smoothness of the considered spectra, peaks can successfully be dis-
criminated from noise based on a scoring of peaks, which basically reflects the
length and the degree of the respective curvatures. A positive side-effect from
investigating the curvature is that the method can also identify peaks which
are not represented as distinctive local maxima but as monotonically increasing
(left) or monotonically decreasing (right) “shoulders” of other peaks. For this
reason, we stick to this idea and give in the following similar definitions of a
peak triplet and its score.

Definition 2 (Peak Triplet). Given spectrum a, and given the second discrete
derivative a′′ = {(x2, y

′′
2 ), . . . , (xn−1, y

′′
n−1)}, with y′′i = yi−1 + yi+1 − 2 yi, a peak

triplet p is defined as a triplet of indices p = {l,m, r}, for which the following holds:

y′′m < 0 ∧ y′′m−1 > y′′m ≤ y′′m+1

∧ l < m ∧ y′′l−1 < y′′l ≥ y′′l+1 ∧ y′′j ≥ y′′j+1, j ∈ {l, . . . ,m− 1}
∧ r > m ∧ y′′r−1 < y′′r ≥ y′′r+1 ∧ y′′j < y′′j+1, j ∈ {m, . . . , r − 1}

Further, we call a pair of peak triplets (p1 = {l1,m1, r1}, p2 = {l2,m2, r2}) to be
adjacent, if r1 = l2 holds.

In other words, a peak triplet encapsulates a local minimum of the second deriva-
tive by its nearest local maxima in both directions.

Definition 3 (Peak Triplet Score). The score s(p) of a peak triplet p =
{l,m, r} is defined as

s(p) =
r∑

i = l

zi, with zi =

⎧⎪⎨⎪⎩
− 1

2y
′′
i , for y′′i < 0 ∧

(
i = l ∨ i = r

)
−y′′i , for y′′i < 0
0 else.

(3)
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Fig. 1. The second derivative of example peak triplets {l, m, r} and the considered area
(colored in grey). The horizontal line denotes the zero line.

The score of a peak triplet expresses its likeliness of representing a “real”peak.
Negative values of the second derivative are considered exclusively in order to fo-
cus on curvatures in clockwise direction only. Fig. 1 shows example peak triplets
and the area under consideration.

In extension to [7], we additionally introduce the concept of triplet significance
in units of σ as follows:

Definition 4 (Peak Triplet Significance θ). With Q denoting the set of peak
triplets found in blank signal, the significance θ of a peak triplet p with score s(p)
is defined as

s(p) = s̄+ θ σ ⇔ θ =
s(p)− s̄

σ
, (4)

with s̄ =
1
|Q|
∑
i∈Q

s(pi) and σ =
√

1
|Q|
∑
i∈Q

(
s(pi)− s̄

)2
as the mean and standard deviation score of all peak triplets in Q, respectively.
Further,we call a triplet p to be accepted, if for a given significance threshold δ it
holds θ ≥ δ. The set of accepted triplets is in the remainder of this paper denoted
as A.

For the purpose of noise reduction, we consider the mean filter, which is also
known as moving average or box filter [8]. In particular, we consider repeated
averaging with a filter window of length 3, given as

smd(yi) =
1
3

i+1∑
k = i−1

yk′ , with k′ =

⎧⎪⎨⎪⎩
|k|+ 2, for k ≤ 0,
2n− k, for k > n,

k, else.
(5)

With the observation that the sum between two consecutive iteration steps only
differs by the values yi−a and yi+a, respectively, mean-filtering of n datapoints
can be executed in time O(n+ a).

Repeated averaging has already been considered decades ago, and is valued
for its computational efficiency and easy-to-implement characteristics [9]. In the
following we will briefly describe the effects of filtering, and refer for example to
[10] for more detailed information.

Repeatedly smoothing by (5) steadily changes the coefficients of the filter
window. For example, the first execution of replaces each value yi by smd(yi) =
1
3 (yi−1 + yi + yi+1), after the second execution the value at index i is given
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as smd(smd(yi)) = 1
9 (yi−2 + 2 yi−1 + 3 yi + 2 yi+1 + yi+2), and analogously,

smd(smd(smd(yi))) = 1
27 (yi−3 + 3 yi−2 + 6 yi−1 + 7 yi + 6 yi+1 + 3 yi+2 + yi+3).

In fact, the weights after b times executing (5) equal the trinomial coefficients1

obtained after expansion of (1 + t+ t2)b (see e.g. [13]). As a consequence of the
central limit theorem, the coefficients discretely approximate the probability den-
sity function of the Gaussian distribution [14]. Mean filtering thus corresponds
to a discrete version of convolving the data with a Gaussian kernel.

A heuristic non-parametric approach for automated Gaussian smoothing has
been proposed in [15], based on the change in the number and the maximal pair-
wise distance of adjacent local maxima. The shown results though indicate that
the proposed method seems to be rather unsuitable for datasets maintaining a
higher diversity of peak positions as those considered by the paper.

In [16], an automated smoothing approach is proposed based on the lag-one
autocorrelation coefficient ρ1, given as

ρ1 = 1− 1
2

∑
i=2

(yi − yi−1)2∑
i=1

y2
i

n

n− 1
, (6)

where n stands for the number of real-valued datapoints yi. In rough summary,
the smoothing degree is repeatedly increased, until the lag-one autocorrelation
coefficient of the residual, namely the observed spectrum subtracted by the
smoothed, is closest to the lag-one autocorrelation coefficient of blank signal.
As a drawback, the method tends to excessively smoothen the considered spec-
tra. In the remainder of this paper, an automated method for finding a proper
smoothing degree is proposed based on changes in the curvature during the
smoothing procedure of a given spectrum.

2 Methods

Repeatedly filtering the data by (5) allows to mitigate the impact of noise, but
at some point also tends to merge curvatures emerging from distinct Lorentz
functions. Figure 2 for example shows the effects of smoothing (thick dotted
line) for varying smoothing repeats b of an example spectrum (dotted line) with
uniformly distributed noise U(−0.3, 0.3) and significance threshold δ = 6.0. The
spectrum is originally given as a sum of two Lorentz functions with parameters
λ = A = 1, and with distance d = |ω2−ω1| = 1.5 at a resolution 1

Δx = 10. In the
beginning (b = 1), the second derivative (thin solid line) is highly distorted due to
the effects of noise (Fig. 2(a)). Increasing the degree of smoothing by repeatedly
executing (5) allows to encapsulate two major clockwise-rotating curvatures of
the spectrum as two adjacent peak triplets (Figs. 2(b) - 2(d)). Further smoothing
leads to a merge of the two triplets, and only a single peak is observed for b > 50
1 It might be worth mentioning that following [11] no less than Euler found them

worthy for a 20-page account [12].
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(a) b = 1

(b) b = 10

(c) b = 25

(d) b = 50

(e) b = 100

Fig. 2. Smoothing effects on an example spectrum of two standard Lorentz functions.
Shown are the original spectrum (dots) after adding white noise at an amplitude of
0.3, the smoothed spectrum (thick solid line) and the corresponding second derivative
(thin solid line). b denotes the number of smoothing steps.
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(Fig. 2(e)). The aim thus is to find the number of smoothing repeats, which
properly balances the trade-off between noise removal and signal preservation.

For a given significance threshold δ, an intuitive approach for determining a
reasonable degree of smoothing is given by maximizing the sum of scores

fsum(A) =
∑

j∈|A|
s(pj) (7)

for the set of accepted triplets A (see Def. 4). However, considering that the
score of each triplet itself is given as a sum of second derivative values already,
we may presume that merging of two adjacent triplets p1 and p2 has almost no
effect on fsum (compare Def. 3), written as

s(p1) + s(p2) ≈ s(p1,2) (8)

with p1,2 denoting the triplet received after merging of p1 and p2. To circumvent
this problem, we may consider

s(p1) ≥ 2 ∧ s(p2) ≥ 2 ⇒ s(p1) s(p2) ≥ s(p1) + s(p2) ≈ s(p1,2), (9)

and the degree of smoothing can then be found by maximizing

fmult(A) = log

⎛⎝ |A|∏
i=1

(
2 + s(pi)− (s̄+ δσ)

)⎞⎠ =
|A|∑
i=1

log
(
2 +Θi − δ

)
. (10)

δ denotes a predefined significance threshold, and Θi denotes the significance of
peak triplet pi (see Def. 4). fmult now allows to prevent significant peak triplets
pi from being merged together, since by definition it holds Θi ≥ δ for all triplets
pi ∈ A. Figure 3 shows the corresponding selection scores fsum and fmult for the
merging scenario of Fig. 2. In agreement with the assumption from above, the
sum of scores of accepted triplets (fsum, top line in fig. 3(a)) keeps increasing
even after the two triplets have merged to a single one (b > 50). In contrast, an
essential decrease can be observed for fmult (top line in fig. 3(b)). A pseudo-code

(a) fsum (b) fmult

Fig. 3. The respective selection scores fsum and fmult (top lines) of Fig. 2 in comparison
with the respective number of selected peaks (bottom line) for increasing smoothing
repeats b
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Algorithm 1.
Input: Spectrum a, blank signal ablank, significance threshold δ
Output: List of accepted peak triplets A∗

1: best ← 0; last←∞; A∗ ← ∅;
2: while ( |Q| > 1 and |ρ1,blank − ρ1,res| ≤ last ) do
3: Find set of triplets Q out of blank signal ablank;
4: last ← |ρ1,blank − ρ1,res|;
5: Find accepted peak triplets A on a, given δ;
6: if ( fmult(A) ≥ best ) then
7: best ← fmult(A); A∗ ← A;
8: end if
9: Apply (5) on all values in a and ablank;

10: end while
11: return A∗;

representation for an automated smoothing approach based on fmult is given by
Algorithm 1.

In summary, a given spectrum a is repeatedly smoothed, as long as blank
triplets exist, and as long as the autocorrelation coefficient of the residual,
p1,res, approaches that of blank signal, p1,blank. Note that the chosen degree
of smoothing by Algorithm 1 is less or equal to that of [16]. With b denoting
the number of smoothing repeats needed for the execution of lines 3-11, with
n denoting the number of datapoints in a, and with m denoting the number of
datapoints in the blank signal, Algorithm 1 has a total worst-case runtime of
O
(
b(n+m+ |A|+ |Q|)

)
.

3 Results

In this section, initial results of Algorithm 1 are presented, based on simulated
spectra containing two standard Lorentz functions (2) with width and scale pa-
rameters A = λ = 1. With d = |ω2 − ω1| denoting the distance between the two
peaks, and with r = 1

Δx denoting the resolution of the spectrum, three peak dis-
tances d ∈ {1.2, 1.5, 2.0} and three different spectrum resolutions r ∈ {5, 10, 20}
are considered, resulting in a total number of nine different smoothing scenarios.
Each scenario is sampled 20 times, and uniformly distributed noise U(− v

100 ,
v

100 )
is added to each datapoint, with noise amplitudes v in the range 0 ≤ v ≤ 50.
Triplets are found within the range [ω1− 5, ω2 + 5] out of a total spectral range of
[ω1−20, ω2+20]. All evaluation runs are based on a significance threshold δ = 6.0.

Fig. 4 shows the performance of Algorithm 1 on average out of 20 runs for
each of the considered scenarios. The number of accepted peak triplets |A∗| with
maximal selection score fmult is denoted as Alg 1, and shown as squares. In
addition, the number of accepted triplets |A| found after the last execution of
line 5 in Algorithm 1 is denoted as Auto-Cor, and shown as circles. In a sense,
these results represent the outcome of the lag-one autocorrelation approach of
[16], and thus can be seen as baseline results, compared to which the impact
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(a) d = 1.2, r = 5 (b) d = 1.2, r = 10 (c) d = 1.2, r = 20

(d) d = 1.5, r = 5 (e) d = 1.5, r = 10 (f) d = 1.5, r = 20

(g) d = 2.0, r = 5 (h) d = 2.0, r = 10 (i) d = 2.0, r = 20

Fig. 4. Number of accepted peak triplets after the execution of Algorithm 1 for different
scenarios and varying noise amplitudes. The length of the error bars equals two times
the standard deviation out of 20 runs (see the text for more details).

of fmult can be determined. In addition, for the degree of smoothing chosen by
Algorithm 1, the number of local maxima with a maximal value higher than the
spectrum average value is denoted as #Max, and shown as diamonds.

The figures generally show that it can be highly beneficial to identify peaks
as curvatures of the spectrum rather than as maxima, since both methods Auto-
Cor and Algorithm 1 leave the spectra in most cases with exactly one maximum
after smoothing. Furthermore, it can also generally be observed that an increase
in the peak distance d (from top to bottom in all columns) and also an increase
in the resolution r (from left to right in all rows) have both a beneficial impact,
i.e. the maximal noise amplitude, for which two peaks can still be identified,
increases for increasing d or r or both.
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An interesting result is given by the fact that Algorithm 1 is capable of iden-
tifying both peaks on average for even higher noise amplitudes and even smaller
peak distances than Auto-Cor in all considered scenarios. Thus, at least for the
considered datasets, maximizing (10) apparently comes to a better compromise
between noise reduction and signal preservation than minimizing the autocor-
relation distance only. The software implementing Algorithm 1 is written in
C-Sharp, and is freely available at http://ls1-www.cs.tu-dortmund.de/~koh.

4 Summary and Conclusions

In this paper, we have initially proposed an automated smoothing and peak
detection method based on repeated averaging and balancing the trade-off be-
tween noise reduction and preservation of significant curvatures. By providing a
template region of blank signal, only a single peak significance threshold needs
to be specified in advance. The time and space complexity of the corresponding
algorithm are considerably low, allowing the proposed approach to be considered
also for the analysis of high-throughput data.

Empirical studies on simulated datasets show that the number of peaks is
found correctly for uniformly distributed noise amplitudes of up to 50% of a
peak’s maximal value. Furthermore, next to obvious improvements due to in-
creasing distances between the peaks, significant improvements are also observed
for increasing the resolution. This is insofar interesting, as typically the observed
distances between two adjacent peaks are often substrate specific and inherently
dependent on particular properties of a given sample. In contrast, the resolution
is commonly limited due to technological boundaries, which will presumably be
further improved only as a matter of time.

Of course, observing a correct number does not necessarily imply correct posi-
tions of the respective peaks. In addition, it remains to be seen whether similar
observations can be made in further studies of more heterogeneous datasets.
Further investigations regarding for example different colors of noise, different
filter windows to begin with, more heterogeneous datasets concerning varying
width and scale parameters of the peak functions, and also regarding the im-
pact on subsequent steps in spectral data analysis, e.g. spectrum modeling or
peak alignment, need to be carried out and will be one of the author’s ongoing
research interests in the near future.
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Abstract. This paper pursues previous studies concerning the foundations of a 
possibility/fuzzy expression of measurement uncertainty. Indeed a possibility 
distribution can be identified to a family of probability distributions whose dis-
persion intervals are included in the level cuts of the possibility distribution. 
The fuzzy inclusion ordering, dubbed specificity ordering, constitutes the basis 
of a maximal specificity principle for uncertainty expression. We argue that the 
latter is sounder than the maximal entropy principle to deal with cases of partial 
or incomplete information, at least in a measurement context. The two ap-
proaches are compared on philosophical issues and on some common practical 
cases.  

Keywords: measurement uncertainty, possibility theory, maximum entropy 
principle, maximum specificity principle, uncertainty intervals. 

1   Introduction 

Uncertainty interval statement about a quantity under measurement goes back to a 
very long way [1]. It has taken two main distinct forms [2]. The first form is related to 
the concept of confidence interval that summarizes the information about a fixed but 
unknown parameter by an interval (with random extremities) containing the parame-
ter with a specified confidence (between 0 and 100%). The second form is related to 
the concept of coverage interval (having fixed extremities) defined around the meas-
urement result, which will contain a specified part (between 0 and 100%) of the dis-
tribution of the measured values. Commonly, in both forms, a probability level of 
95% is considered [3], but there is no compelling scientific reason for this choice. 
Note that often confusions and difficulties occur with the different kinds of uncer-
tainty intervals that may be used (this is partly caused because their names are formed 
from a limited number of words such as interval, confidence, coverage). But the dif-
ferent uncertainty intervals are always deduced from dispersion intervals of a random 
variable X according to an inference method (frequentist, Bayesian, …). In addition, 
to build uncertainty intervals requires the knowledge of the probability distribution of 
X. In a lot of situations, the assumption of Gaussian distribution is quite satisfactory 
(due to the Central Limit Theorem), but it is not always the case, especially when no 
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prior information or a few measurement are available. It is why a lot of authors  
recommend to use a maximum entropy approach [3], introduced by Jaynes [4], for 
determining a single probability distribution, the one which has the minimum infor-
mation content (in the Shannon sense) according to the available partial information, 
e.g. specified central moments of different orders or specified percentiles. 

In previous works, we have proposed a possibility-theory-based alternative ap-
proach to the probability ones to express measurement uncertainty [5][6]. This  
approach considers within one single possibility distribution the whole sets of uncer-
tainty intervals of all the confidence levels between 0 and 1. In this paper, we discuss 
a maximum specificity principle to build this possibility distribution that discards the 
maximum entropy principle while satisfying its underlying philosophical foundations, 
and those of the preceding indifference or insufficient reason principles [1]. The idea 
is to consider each value of the considered variable as possible while it is not elimi-
nated by the available information which suggests to maximize the probability  
degrees instead of the Shannon entropy. Note that there exist other different represen-
tations than a possibility distribution to deal with partial information about the prob-
ability distribution. Among them are probability intervals [7], Ferson’s p-boxes [8], 
Neumaier’s clouds [9], but all use a pair of distribution. But the paper is limited to the 
comparison of the proposed possibility approach to the conventional maximum en-
tropy, and also, it does not consider the lack of missing information under maximum 
entropy by intervals of second order uncertainty [10]. In section 2, we discuss the 
philosophical issues of representing partial or incomplete knowledge about measure-
ment distribution either by the probability maximum entropy principle or by the pos-
sibility maximum specificity principle. The section 3 presents some practical results 
obtained by the two approaches on some common cases reflecting different amount of 
a priori information. Some concluding remarks point out the interest of the possibility 
approach and some future developments. 

2   Philosophical Issues  

2.1   Historical Perspectives 

The problem of assigning numerical values to probabilities based upon lack of infor-
mation dates back to the origin of probability [1]. Jakob Bernouilli in Ars Conjectandi 
in 1713 states that if we are ignorant of the ways an event can occur (and therefore 
have no reason to believe that one way will occur preferentially compared to another), 
the event will occur equally likely in any way.  But Jakob Bernouilli also argued that 
this principle of indifference could be used almost exclusively in games of chance, 
and for others contexts, e.g. judging the risk of death, he advocated another method 
based on his famous law of large numbers. Laplace in 1813 expressed the indifference 
principle in the form: equipossible alternatives may be accorded equal probabilities if 
nothing more is known about the underlying probability distribution. He turned this 
rule into the cornerstone of a comprehensive theory of probability by stating that this 
indifference principle relies on symmetry in our belief or judgement in order to obtain 
numerical values for probabilities. The underlying motivation is, of course, that in this 
view, the term probability should be understood as a degree of belief and hence the 
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uniform probability represents exactly the situation where all possible states are 
equally credible. It was the economist Keynes who renamed the principle of indiffer-
ence into the principle of insufficient reason in contrast to Leibniz's principle of suffi-
cient reason, and he stressed that it is valid only in the rather special case when there 
is no knowledge indicating unequal probabilities. The principle of sufficient reason 
basically says that every fact has a sufficient reason for why it is the way it is and not 
otherwise.  

Since the middle of the 19th century, the principle of insufficient reason had plenty 
of detractors [11]. One of the first objections is that one cannot derive empirical pre-
dictions from a lack of knowledge. Mere ignorance is no ground for any inference 
whatsoever: ex nihilo nihil (nothing comes from nothing, it cannot be that because we 
are ignorant of the matter we know something about it). Another objection from Ber-
trand is that when one choose different parameterization for a variable x ranging over 
a continuum, a probability density that is uniform over x becomes non uniform under 
a non linear parameter transformation, e.g. y=x2. This conflicts with the intuition that 
if we are ignorant of x we are also ignorant of y. The last famous objection we men-
tion had been made by Reichenbach in 1935 who claimed that the principle was circu-
lar because the only sensible meaning one can give to the word “equipossible” in the 
Laplace definition is in fact “equiprobable”. The principle was also discredited in the 
first part of the 20th by Fisher, Von Mises, Neuman and Pearson. The revival is due to 
Jaynes who introduced in 1957 the maximum entropy principle [4] as an extension of 
the principle of insufficient reason.   

2.2   Maximum Entropy Principle 

When faced with partial or incomplete probability knowledge such as moments, 
range, percentile constraints, leading in fact to a family P of probability distributions 
and not to a single one, the maximum entropy principle provides a way to select the 
one having the minimum information content in the Shannon sense. The formulation 
for the probability density f of a continuous variable having prescribed moments and 
percentile constraints is [12][13]: 

max ( ) arg max ( ( ) ln( ( )) )
b

ent f

a

f x f x f x dx∈= −∫P  

subject to ( ) ( ) , 1, ...,
b

i i

a

h x f x dx i nμ= =∫  ; ( ) 1
b

a

f x dx =∫  and ( ) 0f x ≥  

where [ ],a b  is the domain of the variable, ( )ih x  is x  raised to a certain power for 

moment constraints or an indicator function for percentile constraints, and the 'i sμ  

are the given values of moments or percentiles of the distribution. The solution of this 
optimization problem can be obtained by using the method of Lagrange multipliers 
and leads to the following density: 

0 1 1 2 21 ( ) ( ) ... ( )
max ( ) na a h x a h x ah x

entf x e− − − − − −= . 
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When only the normalization and non-negativity density constraints are available, the 
maximum entropy density is uniform over a bounded domain: 

0 1
max

1
( ) ,a

entf x e a x b
b a

− −= = ≤ ≤
−

. 

If the first moment μ  is available, the maximum entropy density on the non-negative 

domain is: 

0 11
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1
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x
a a x

entf x e e xμ

μ
−− − −= = ≥ . 

If the first and second moments μ and 2σ  are available over the interval [ ],−∞ ∞ , the 

maximum entropy density is a Gaussian one: 
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When percentiles of the distribution are available, the maximum entropy density is a 
staircase probability density function that satisfies the percentile constraints. More-
over, it is uniform over each interval, and is integrated into a piecewise linear cumula-
tive probability distribution that has the shape of a taut string. But note that the  
existence a maximum entropy distribution in not guarenteed, even in some simple 
situations, e.g. for a specified mean μ  with a distribution defined on [ ],−∞ +∞ , and 

also for the constraints 0, 1μ σ= =  and its third moment 3 1EX = [14]. 

2.3   Maximum Specificity Principle 

A possibility distribution π is a mapping from a set (in the measurement context the 
set of reals R) to the unit interval such that π(x) = 1 for some x belonging to R [15]. It 
generates a set function Π called a possibility measure, and such 
that , ( ) sup ( )x AA R A xπ∈∀ ⊂ Π = and also a necessity measure N. The degree of ne-

cessity (certainty) of an event A is computed from the degree of possibility of the 
complementary event A  : , ( ) 1 ( ) inf (1 ( ))x AA R N A A xπ∉∀ ⊂ = − Π = − .  

Definition: a possibility distribution 1π  is called more specific (i.e. more thinner in a 

broad sense) than 2π  as soon as 1 2, ( ) ( )x R x xπ π∀ ∈ ≤ (fuzzy set inclusion). 

The more specific π, the more informative it is. If ( ) 1xπ =  for some x and 

( ) 0yπ = for all y x≠ , then π is totally specific (fully precise and certain knowledge), 

if ( ) 1xπ = for all x then π is totally non specific (complete ignorance). In fact, a nu-

merical degree of possibility can be viewed as an upper bound to a probability degree 
[16]. Namely, with every possibility distribution π one can associate a non-empty 
family of probability measures dominated by the possibility measure: 

}{( ) , , ( ) ( )P A R P A Aπ = ∀ ⊂ ≤ ΠP . This provides a bridge between probability and 
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possibility, and there is also a bridge with interval calculus. Indeed, a unimodal nu-
merical possibility distribution may also be viewed as a nested set of coverage inter-

vals, which are the α  cuts of π : [ ] }{, , ( )x x x xα α π α= ≥ . Obviously, the coverage 

intervals built around the same point 0x  are nested. It has been proven in [6] that 

stacking the coverage intervals of a probability distribution F on top of one another 

leads to a possibility distribution (denoted 0xπ  having 0x as modal value). In fact, in 

this way, the α-cuts of 0xπ are identified with the coverage interval *Iβ  of probability 

level 1β α= −   around the nominal value 0x .  

For a symmetric unimodal (with mode m ) probability density, the equivalent pos-
sibility distribution is [17]: 

( ) ( ) ( ) 2(1 ( ))m m
F Fm t m t P X m t F tπ π− = + = − ≥ = −  

In fact, the possibility representations of probability families P induced by incom-
plete probabilistic data is clearly related to a bound for the probabil-
ity ( )P X m x− ≥ when the knowledge of  the probability density f  associated to the 

random variable X is not available: 

( ) max ( )Px P X m xπ ∈= − ≥P  

subject to ( ) ( ) , 1, ...,
b

i i

a

h x f x dx i nμ= =∫  ; ( ) 1
b

a

f x dx =∫  and ( ) 0f x ≥  

Therefore the determination of a maximum specific possibility distribution according 
to the available information is an optimization problem but different from the one 
given by the maximum entropy approach. The maximum specificity possibility distri-
bution is also clearly related to probability inequalities. For example, if only the 
mean μ and the standard deviation σ  are known, the possibility distribution can be 

obtained from the Bienaymé-Chebychev inequality [18]: 

                                

2

2
( ) ( ) min(1, )BC BCt t

t

σπ μ π μ+ = − = .                                (1) 

2.4   Discussion 

The maximum entropy principle is subject to the same objections (ignorance equal to 
equi-repartition, parameterization influence on ignorance, equi-possible/equi-probable 
confusion) as the insufficient reason principle. Moreover in the context of measure-
ment uncertainty expression, any maximum information uncertainty has to consider 
the fact that information of X on a continuous scale exists only on a statement like 
x X xε ε− ≤ ≤ +  and thus is related to the integral of the probability density, i.e. to 
the cumulative distribution F. Consequently quantities that involve the density in 
other way, like the entropy, should not form the basis of a method of inference. As 
claimed by Jaynes, the distribution representing maximum uncertainty must be the 
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distribution that maximizes the “spread”[4]. The latter has to consider an ordering on 
the measurement domain; it is not the case of the entropy. 

The maximum specificity principle does not suffer from the preceding objections. 
Indeed when one chooses different parameterization for a variable x ranging over a 
continuum, a possibility distribution which is rectangular over x remains (by appling 
Zadeh’s propagation principle [15]) rectangular under a parameter transformation, i.e. 
ex nihilo nihil. There is no problem of circularity in the definition since possibility 
and probability are clearly defined in a separate axiomatic way.  The possibility dis-
tribution associated to a considered probability distribution is clearly related to the 
cumulative distribution F, and has thus a measurement meaning. Therefore, the possi-
bility theory offers an interesting alternative approach to the treatment of incomplete 
knowledge. It proposes a more comprehensive way to express how all information 
available can properly be taken into account by considering a family of probability 
distributions instead of a single one. It replaces the ceteris paribus probability ap-
proach by a ceteris incognitis possibility approach using no more information than is 
available. Indeed, imposing the maximum entropy consists to add information that is 
not present. Thus the possibility representation is the right maximally noncommittal 
distribution with regard to missing shape information. In fact, we agree with the ob-
jectives of the maximum entropy principle, but we differ in the definition of the in-
formation content measure: the lengths of the uncertainty intervals instead of the 
Shannon entropy. As both approaches provide uncertainty intervals, these intervals 
can be the basis of practical comparisons between the two approaches as presented in 
the next section. 

3   Some Common Practical Cases of Information Shortage 

As discussed above, when the probability density is unknown, some parameters are 
nevertheless known, e.g. the support, the mode, the mean, the standard deviation.   
But, knowing one or many of such parameters does not specify the probability density 
uniquely (it defines a family of probability distributions). In this section we compare 
the probability maximum entropy and possibility maximum specificity principles 
from the respective coverage intervals they provide in some common cases. 

3.1   Case of Finite Support Distributions  

Only the support known 
When only the support is known, the maximum entropy probability density is the 
uniform density and the associated possibility distribution is the uniform possibility 
distribution. Therefore the two approaches lead to the same uncertainty interval  
expressions. 

Mode known 
If the variable is known to be unimodal, then the maximum specific possibility distribu-
tion is a triangular possibility distribution with the mode as vertex [19] (see figure 1). In 
particular if the variable is symmetric then the mode is the middle of the support and the 
maximal specific possibility distribution is the often used triangular symmetric possibility 
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distribution [6]. The maximum entropy distribution approach leads also to the same 
symmetric triangular possibility distribution but only if the mean is imposed to be the 
middle of the support (it is the case if the symmetry is known). If the mode is known but 
not the mean, the maximum entropy probability distribution is the uniform distribution. 
Nevertheless, it is justified to consider the mode for building the uncertainty intervals. 
Therefore the equivalent possibility distribution is a triangular possibility distribution. 
Note that the rectangular possibility distribution is the envelope of all the asymmetric 
triangular possibility distributions with modes ranging along the support. Note also that 
the knowledge of the mode increases the specificity of the possibility distribution. It is 
not straightforward to introduce the unimodality constraints in the maximum entropy 
approach but a way do to it and a few examples are proposed in [20]. 

 

Fig. 1. Possibility distributions from the two principles in the finite support case 

3.2   Case of Infinite Support Symmetric Unimodal Distributions  

It is the most widely encountered case in the measurement context. If nothing more is 
specified concerning the distribution, the associated possibility distribution is the 
totally non specific; the maximal entropy distribution does not exist and the use of an 
improper probability distribution equals to a constant on the whole universe is rec-
ommended [21]. Actually, this improper probability distribution turns out to be a 
possibility distribution. 

Mean and standard deviation known 
When the mean μ and the standard deviation σ are known the maximum entropy 

probability density is a Gaussian density.  Note that though the distribution is unimo-
dal, the unimodality property has not been declared in the constraints. Thus adding 
this important knowledge, does not modify the maximum entropy distribution. Thus 
the uncertainty is not reduced by the unimodality knowledge contrary to the maxi-
mum specificity approach: the Gauss-Winckler inequality [22] leads to a possibility 
distribution ( GWπ in eq. 4) rather more specific than the Bienaymé-Chebychev possi-

bility distribution (see figure 2): 
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The figure 2 shows the uncertainty intervals obtained from the maximum entropy and 
maximum specificity principles. The possibility distribution obtained from the Gauss-
Winckler includes the one obtained from the Gauss distribution, but they are not very 
different for probability levels less to 90%. 

 

Fig. 2. Possibility distributions from the two principles in the infinite support case 

Let us remark that it is possible to deduce the expression of the extremal continu-
ous probability distribution in the specificity order sense, i.e. the one giving the 
minimum specificity possibility distribution. We obtain first the cumulative distribu-
tion by dividing by two the increasing part of the possibility distribution, and revers-
ing and dividing by two the decreasing part. Then we compute the associated density 
by taking the derivative, thus we obtain: 
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Note that this extremal distribution has an infinite standard deviation and thus does 
not belong to the family from which it is the specificity bound. In the same line, for 
the non unimodal case, using equation (1), we obtain the following bimodal density:   
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These densities can be useful for the inverse transformation from possibility to prob-
ability and could be compared to the Smet pignistic transformation [23] developed for 
a subjective setting. 

4   Conclusion 

The paper contributions have shown that the probability maximum entropy principle 
can be replaced by an arguably better (in the sense less informative) possibility 
maximum specificity principle, at least in a measurement context. Indeed a possibility 
distribution provides an interesting way to represent different amounts of knowledge 
about measurement distribution, especially for partial probability information, e.g. a 
support, a mode, and/or a standard deviation constraint. The comparison of uncer-
tainty intervals resulting from the two uncertainty principles shows that the practical 
results are quite close in common cases. But the maximum entropy distribution pre-
sents some flaws: it does not lead to the maximum uncertainty expression, i.e. the 
uncertainty intervals are too short (because information that is not available is implic-
itly added), or it may fail to exist, and the uncertainty can increase with the amount of 
knowledge. In contrary, the maximum specific possibility distribution always exists, 
and the more available the information, the more specific it is. In particular the maxi-
mum specificity approach makes a good use of the unimodality property that is not 
the case of the maximum entropy approach. Further developments will deal with how 
considering other different forms of knowledge in the possibility representation. 
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Abstract. In this paper we introduce an extension of the lazy learning
method called Lazy Induction of Descriptions (LID). This new version
is able to deal with fuzzy cases, i.e., cases described by attributes tak-
ing continuous values represented as fuzzy sets. LID classifies new cases
based on the relevance of the attributes describing them. This relevance
is assessed using a distance measure that compares the correct partition
(i.e., the correct classification of cases) with the partitions induced by
each one of the attributes. The fuzzy version of LID introduced in this
paper uses two fuzzy versions of the Rand index to compare fuzzy parti-
tions: one proposed by Campello and another proposed by Hüllermeier
and Rifqi. We experimented with both indexes on data sets from the
UCI machine learning repository.

1 Introduction

Case-based reasoning (CBR) is based on the idea that similar problems (cases)
have similar solutions. Given a problem to be solved the first step of a CBR
method [1] is to retrieve a subset of cases assessed as the most similar to the
problem. Depending on the similarity criteria, the subset of retrieved cases will
be different and, thus, the solution of the new problem will also be different.
Notice that, differently than inductive learning methods (e.g., decision trees),
CBR methods are lazy in the sense that the problem solving process depends
on each new problem. Lazy Induction of Descriptions (LID) [3] is a lazy learning
method useful for classification tasks. LID retrieves precedents based on the
relevance of attributes. This relevance is assessed using a distance measure that
compares the correct partition (i.e., the correct classification of cases) with the
partitions induced by each one of the attributes.

Although LID is able to deal with relational objects represented as feature
terms [2], we take here a version of LID that handles objects (cases) represented
using propositional representation, that is, as a set of pairs attribute-value, where
the values are nominal (i.e., they take values in a finite set of values). However,
sometimes this representation is not appropriate (for instance to represent peo-
ple weight, age or some physical measures) being common the necessity to give
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continuous values to attributes. There are a lot of approaches dealing with at-
tributes taking continuous values. Some of these approaches discretize the con-
tinuous values and then they use the usual similarity measures on the discretized
values [9,11]. By means of the discretization, continuous values can be handled
as nominal. However in this procedure there is a lost of information since the
values near to the thresholds of the discretization interval are considered equal
but, in fact, they are not. With the goal of reducing such lost of information,
other approaches use fuzzy sets to deal with continuous values (see for instance
[12]). Previous versions of LID handle cases with attributes having nominal val-
ues and, when cases have attributes taking continuous values, they are previously
discretized. The distance measure to compare partitions, denoted here by LM, is
the one introduced by López de Mántaras in [7]. In this paper we want to analyze
the performance of LID when the continuous values of attributes are represented
using fuzzy sets. Since the distance LM is not appropriate for this task, it must
be replaced by some other measure able to deal with fuzzy partitions.

In this paper we use two fuzzy versions of the Rand index [10]: one proposed
by Campello [5], which can compare a fuzzy partition with a crisp one, and
another one proposed by Hüllermeier and Rifqi [8], which can compare two
fuzzy partitions. In Section 2 we give a brief introduction of LID and the Rand
index. In Section 3 we explain the fuzzy version of LID. In Section 4 we show
the results of the experiments with fuzzy LID.

2 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant attributes of a problem and
searches in a case base for cases sharing these relevant attributes. The prob-
lem is classified when LID finds a set of relevant attributes shared by a subset
of cases all of them belonging to the same class. We call similitude term the
description formed by these relevant features and discriminatory set the set of
cases satisfying the similitude term.

Given a problem for solving p, the LID algorithm (Fig. 1) initializes D0 as
a description with no attributes, the discriminatory set SD0 as the set of cases
satisfying D0, i.e., all the available cases, and C as the set of solution classes
into which the known cases are classified. Let Di be the current similitude term
and SDi be the set of all the cases satisfying Di. When the stopping condition
of LID is not satisfied, the next step is to select an attribute for specializing Di.
The specialization of Di is achieved by adding attributes to it. Given a set F
of attributes candidate to specialize Di, the next step of the algorithm is the
selection of an attribute f ∈ F . Selecting the most discriminatory attribute in
F is heuristically done using a distance (the LM distance in [3]). Such distance
is used to compare each partition Pf induced by an attribute f with the correct
partition Pc. The correct partition has as many sets as solution classes. Each
attribute f ∈ F induces in the discriminatory set a partition Pf with as many
sets as the number of different values that f takes in the cases. Given a distance
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x

x
xx

x x
x
x

D1

D2

Dn

Function LID (p, Di, SDi, C)
if stopping-condition (SDi) then return class (SDi)

       else  fd := Select-attribute (p, SDi, C)
               Di+1 := Add-attribute (fd, Di)
               SDi+1 := Discriminatory-set (Di+1, SDi)
               LID (p, Di+1, SDi+1, C)
  end-if
end-function

Fig. 1. The LID algorithm. On the right there is the intuitive idea of LID.

Δ and two attributes f and g inducing respectively partitions Pf and Pg, we
say that f is more discriminatory than g iff Δ(Pf ,Pc) < Δ(Pg,Pc). This means
that the partition Pf is closer to the correct partition than the partition Pg. LID
selects the most discriminatory attribute to specialize Di. Let fd be the most
discriminatory attribute in F . The specialization of Di defines a new similitude
term Di+1 by adding to Di the attribute fd. The new similitude term Di+1 =
Di ∪ {fd} is satisfied by a subset of cases in SDi , namely SDi+1 . Next, LID
is recursively called with SDi+1 and Di+1. The recursive call of LID has SDi+1

instead of SDi because the cases that are not satisfied by Di+1 will not satisfy any
further specialization. Notice that the specialization reduces the discriminatory
set at each step, i.e., we get a sequence SDn ⊂ SDn−1 ⊂ . . . ⊂ SD0 . LID has two
stopping situations: 1) all the cases in the discriminatory set SDj belong to the
same solution class Ci, or 2) there is no attribute allowing the specialization of
the similitude term. When the stopping condition 1) is satisfied, p is classified as
belonging to Ci. When the stopping condition 2) is satisfied, SDj contains cases
from several classes; in such situation the majority criteria is applied, and p is
classified in the class of the majority of cases in SDj .

Now let us explain how to select the most discriminant attribute using the
Rand index [10]. This index is used to compare clusterings being both classical
partitions and it takes as basic unit of comparison the way in which two objects
are clustered. The situation in which two objects are placed either together in
the same cluster in both clusterings, or placed in different clusters in both clus-
terings, represents a similarity between the clusterings. Conversely, the situation
in which two objects are in the same cluster in one clustering and in different
clusters in the other, shows a dissimilarity between both clusterings. The Rand
index assesses the similarity between clusterings based on the number of equal
assignments of pairs of objects normalized by the total number of pairs. Inside
LID, the Rand index is used to compare the partitions induced by each one of the
attributes describing the objects with the correct partition. LetX = {x1, . . . , xn}
be a finite set of objects, and let P = {P1, . . . , Pk} and Q = {Q1, . . . , Qh} be
two partitions of X in k and h sets, respectively. Given two objects x and x′

we say that both objects are paired in a partition when both objects belong to
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(define (object :id OBJ-50) 
     (Sepallength (define (fuzzy-value)

  (Value 7.0)
  (Membership 0 0 1)))

     (Sepalwidth (define (fuzzy-value)
  (Value 3.2)
  (Membership 0 1 0)))

     (Petallength (define (fuzzy-value)
  (Value 4.7)
  (Membership 0 0.6087 0.3913)))

     (Petalwidth (define (fuzzy-value)
  (Value 1.4)
  (Membership  0 1 0))))

(define (object :id OBJ-50) 
     (Sepallength 7.0)
     (Sepalwidth 3.2)

(Petallength 4.7)
     (Petalwidth 1.4))

Fig. 2. On the left there is a propositional representation of an object. On the right
there is the representation of the same object extended with the membership vector.

the same set of the partition. Otherwise, we say that both objects are impaired.
Now let us consider the set C := {(xi, xj) ∈ X ×X : 1 ≤ i < j ≤ n}, which can
be identified with the set of unordered pairs {x, y}, with x, y ∈ X . The Rand
index between the partitions P and Q is defined as follows:

R(P ,Q) =
a+ d

a+ b+ c+ d
(1)

where a = |{(x, x′) ∈ C : x and x′ paired in P and paired in Q}|,
b = |{(x, x′) ∈ C : x and x′ paired in P and impaired in Q}|,
c = |{(x, x′) ∈ C : x and x′ impaired in P and paired in Q}|,
d = |{(x, x′) ∈ C : x and x′ impaired in P and impaired in Q}|.

Notice that in fact the Rand index gives a measure of the similarity between
two partitions. Therefore we say that the attribute f inducing Pf is more dis-
criminatory than the attribute g inducing Pg iff 1−R(Pf ,Pc) < 1−R(Pg,Pc).

3 A Fuzzy Version of LID

In this section we explain a fuzzy version of LID using two fuzzifications of
the Rand index: the one defined by Campello [5] and another one defined by
Hüllermeier and Rifqi [8]. Firstly, we will explain how to represent the fuzzy
cases handled by fuzzy LID. The left of Fig. 2 shows an example of an object
from the Iris data set represented as a set of pairs attribute-value. The right of
Fig. 2 shows the fuzzy representation of the same object. Notice that the value of
each attribute is an object that has in turn two attributes: Value and Membership.
The attribute Value takes the same value v that in the crisp version (for instance,
7.0 in the attribute Sepallength). The attribute Membership takes as value the
so-called membership vector associated to v, that is, a n-tuple μ, being n the
number of fuzzy sets associated to the continuous range of an attribute. Each
position i of μ represents the membership of the value v to the corresponding
fuzzy set Fi. In the next we will explain how to compute the membership vector.
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Given an attribute taking continuous values, let us suppose that the domain
expert has given α1, . . . , αn as the thresholds determining the discretization in-
tervals for that attribute. Let α0 and αn+1 be the minimum and maximum
respectively of the values that this attribute takes in its range. For each one of
the n + 1 intervals [α0, α1], . . . , [αn, αn+1] corresponds a trapezoidal fuzzy set
defined as follows, where 1 < i < n+ 1:

F1(x) =

⎧⎨⎩
1 when α0 ≤ x ≤ α1 − δ1

α1+δ1−x
2δ1

when α1 − δ1 < x < α1 + δ1
0 when α1 + δ1 ≤ x

Fi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 when x ≤ αi−1 − δi−1

x−(αi−1−δi−1)
2δi−1

when αi−1 − δi−1 < x < αi−1 + δi−1

1 when αi−1 + δi−1 ≤ x ≤ αi − δi
αi+δi−x

2δi
when αi − δi < x < αi + δi

0 when αi + δi ≤ x

Fn+1(x) =

⎧⎨⎩
0 when x ≤ αn − δn

x−(αn−δn)
2δn

when αn − δn < x < αn + δn
1 when αn + δn ≤ x ≤ αn+1

The parameters δi are computed as follows: δi = p · |αi−αi−1|, where the factor
p corresponds to a percentage that we can adjust. Figure 3 shows the trapezoidal
fuzzy sets defined when n = 2. For instance, for the Iris data set the values of
αi for the Petallength attribute are: α0 = 1, α1 = 2.45, α2 = 4.75, α3 = 6.9.
The value 4.7 taken by the object obj-50 in the attribute Petallength (Fig. 2) has
associated the membership vector (0, 0.6087, 0.3913), meaning that such value
belongs to a degree 0 to the fuzzy set F1 corresponding to the interval [1, 2.45],
to a degree 0.6087 to the fuzzy set F2 corresponding to [2.45, 4.75], and to a
degree 0.3913 to the fuzzy set F3 corresponding to [4.75, 6.9].

In the fuzzy version of LID, the correct partition is the same than in the
crisp case since each object belongs to a unique solution class. However, when

1
2

F1 F2 F3

1 1 2 2

1 + 1 -x

      2 1

F1(x) =
x ( 1 1)

      2 1

F2(x) =

0 3

Fig. 3. Trapezoidal fuzzy sets. The values α1 and α2 are given by the domain expert
as the thresholds of the discretization intervals for a given attribute.
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the partitions induced by each attribute are fuzzy, an object can belong (to a
certain degree) to more than one partition set. Thus the algorithm of the fuzzy
LID is the same explained in Section 2 but using the particular representation
for the fuzzy cases and replacing the Rand index by one of its fuzzy versions.

3.1 The Campello’s Fuzzy Rand Index

In [5] Campello extends the Rand index to make it feasible to compare fuzzy
partitions. To this end, he first rewrite the original formulation of the Rand
index in an equivalent form by using basic concepts from set theory. Given the
partitions P and Q of a set of objects X , and the set C of pairs of elements in
X defined in Sec. 2, Campello defines the following subsets of C:

V = {(x, x′) : x and x′ paired in P}, W = {(x, x′) : x and x′ impaired in P},
Y = {(x, x′) : x and x′ paired in Q}, Z = {(x, x′) : x and x′ impaired in Q}.

According to these definitions, the coefficients in Eq. (1) can be rewritten as
follows: a = |V ∩ Y |, b = |V ∩ Z|, c = |W ∩ Y |, d = |W ∩ Z|. When we consider
fuzzy partitions, the sets above are fuzzy sets. Let Pi(x) ∈ [0, 1] be the degree
of membership of the object x ∈ X to the set Pi. Campello defines the fuzzy
binary relations V,W, Y and Z on the set C by using the following expressions
involving a t-norm ⊗ and a t-conorm ⊕:

V (x, x′) =
⊕k

i=1(Pi(x) ⊗ Pi(x′)), W (x, x′) =
⊕

1≤i=j≤k(Pi(x)⊗ Pj(x′)),
Y (x, x′) =

⊕h
i=1(Qi(x) ⊗Qi(x′)), Z(x, x′) =

⊕
1≤i=j≤h(Qi(x) ⊗Qj(x′)).

As it is usually done, Campello takes the intersection of fuzzy binary relations as
the t-norm of the membership degrees of the pairs, and he uses the sigma-count
principle for defining the fuzzy set cardinality (see [6]). Thus, the coefficients a,
b, c, d are obtained as follows:

a = |V
⋂
Y | =

∑
(x,x′)∈C(V (x, x′)⊗ Y (x, x′))

b = |V
⋂
Z| =

∑
(x,x′)∈C(V (x, x′)⊗ Z(x, x′))

c = |W
⋂
Y | =

∑
(x,x′)∈C(W (x, x′)⊗ Y (x, x′))

d = |W
⋂
Z| =

∑
(x,x′)∈C(W (x, x′)⊗ Z(x, x′))

Then, the fuzzy version of the Rand index is also defined by the equation
(1) giving a measure of the similarity between two partitions. Since LID uses a
normalized distance measure, we have to take 1−R(P ,Q). The Campello’s fuzzy
formulation of the Rand index is appropriated to compare a crisp partition with
a fuzzy partition. Notice that the correct partition in classification problems is
commonly crisp, therefore the use of the distance associated to the Rand index
of Campello inside LID is justified. We will denote as CI such distance.

3.2 The Hüllermeier-Rifqi’s Fuzzy Rand Index

When CI is used to compare two fuzzy partitions, it presents an important prob-
lem since the property of reflexivity is not satisfied. For this reason Hüllermeier
and Rifqi proposed in [8] a different fuzzy version for the Rand index which
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allows the comparison of two fuzzy partitions and that satisfies all the desirable
metric properties. Let us recall their definition.

Given a fuzzy partition P = {P1, P2, . . . , Pk}, each object x is characterized
by its membership vector P(x) = (P1(x), P2(x), ..., Pk(x)) ∈ [0, 1]k where Pi(x)
is the membership degree of x to the cluster Pi. Given two objects x and x′ and
two fuzzy partitions P and Q, the degree of concordance of both objects in these
partitions is defined by means the expression 1−|EP(x, x′)−EQ(x, x′)| where EP
is the fuzzy equivalence relation on X defined by EP (x, x′) := 1−‖P(x)−P(x′)‖
being ‖.‖ a distance on [0, 1]k yielding values in [0, 1]. Thus, two objects are
equivalent to a degree 1 when both have the same membership degrees in all
the sets of the partition. This fuzzy equivalence is used to define the notion of
concordance as a fuzzy binary relation, which generalizes the crisp binary relation
(induced by a crisp partition) defined on the set C of unordered pairs of objects
of X using the notions of paired and unpaired. Then, a distance measure on fuzzy
partitions using the degree of discordance is defined as |EP (x, x′) − EQ(x, x′)|.
Thus given a data set X of n elements, and two fuzzy partitions P and Q on
X , the distance between both partitions is the normalized sum of degrees of
discordance:

d(P ,Q) =

∑
(x,x′)∈C |EP(x, x′)− EQ(x, x′)|

n(n− 1)/2
. (2)

Since the Rand index measures similarity, by using the expression 1−d(P ,Q) we
can asses the similarity of two fuzzy partitions P and Q. In [8] the authors prove
that this similarity is a generalization of the Rand index, and they prove also that
the distance (2) is a pseudometric, i.e., it satisfies the properties of reflexivity,
symmetry, and the triangular inequality. Let us recall that a fuzzy partition
P = {P1, . . . , Pk} is called normal if a) for each x ∈ X , P1(x) + · · ·+Pk(x) = 1,
and b) it has a prototypical element, i.e., for every Pi ∈ P , there exists an x ∈ X
such that Pi(x) = 1. In their paper Hüllermeier and Rifqi also show that for
normal partitions, and taking the equivalence relation on X defined by

EP(x, x′) = 1− 1
2

k∑
i=1

|Pi(x)− Pi(x′)|, (3)

the distance defined by the equation (2) is a metric, i.e., it also satisfies the
property of separation (d(P ,Q) = 0 implies P = Q). We have taken this metric
as measure of the distance in our experiments. From now on, we will call HR
the distance proposed by Hüllermeier and Rifqi using (3).

4 Experiments

We conducted several experiments on four data sets coming from the UCI Repos-
itory [4] using the fuzzy versions of the Rand index inside LID. We used four data
sets: iris, heart-statlog, glass and thyroids. For the evaluation of the crisp Rand
index we taken the discretization intervals provided by Weka [13], and the same
thresholds have been used for defining fuzzy sets. Thus, for instance, for the Iris
data set, Weka gets the following intervals:
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– Attribute Petalwidth: (∞, 0.8], (0.8, 1.75], (1.75,∞)
– Attribute Petallength: (∞, 2.45], (2.45, 4.75], (4.75,∞)
– Attribute Sepalwidth: (∞, 2.95], (2.95, 3.35], (3.35,∞)
– Attribute Sepallength: (∞, 5.55], (5.55, 6.15], (6.15,∞)

We performed three kinds of experiments: 1) using the crisp Rand index (with
the discretization proposed by Weka); 2) using the fuzzyfication proposed by
Campello (CI); and 3) using the fuzzyfication proposed by Hüllermeier-Rifqi
(HR). The experiments with the crisp Rand index are considered as the baseline
of the LID performance. In the fuzzy experiments, to calculate the values δi (see
Sec. 3) we experimented with p = 0.05, 0.10, 0.15, 0.20. Moreover when using the
Campello’s fuzzyfication we also need to choose a t-norm and a t-conorm. In our
experiments we taken the Minimum and the Maximum, respectively.

Table 1 shows the results of LID after seven trials of 10-fold cross-validation.
For each index, there are three columns C, I and M corresponding respectively to
the percentage of correct, incorrect and multiple answers. LID produces multiple
answers when the last similitude term cannot be further specialized and the cases
included in its associated discriminatory set belong to several solution classes. In
such situation, LID is not able to classify the new problem and, depending on the
domain, this can be interpreted as no solution. For this reason we counted them
separately. We chosen to show the results obtained taking p = 0.15 since this
is the value producing the least percentage of incorrect classifications. Results
obtained with the values 0.05 and 0.10 are not significantly different from those
with p = 0.15. Worst results are those obtained with p = 0.20. The parameter p is
a measure of the overlapping degree between two fuzzy sets. In our experiments,
the error percentage is not largely influenced by this degree.

It is difficult to extract a clear conclusion about which is the best method since
none of them is better than others in all the domains, however the fuzzy versions
of LID seems to be better than the crisp version. Our interpretation of this is that
the use of fuzzy sets probably supports a more finest classification since, compared
with the crisp version, the use of both CR and HR produce a lower percentage of
both incorrect and multiple classifications (this happens for all domains except
thyroids). Thus, when domains have classes with unclear frontiers (i.e., it is diffi-
cult to find a discriminant description for them), the use of fuzzy sets can correct
these frontiers. Notice also that the percentage of multiple classifications produced
by the Rand index is clearly lower than the one produced by both fuzzy versions

Table 1. Percentage of correct classifications (C), incorrect classifications (I) and mul-
tiple classifications (M) of LID using the Rand index, CI and HR. Results are the mean
of 7 trials of 10-fold cross-validation and they correspond to p = 0.15

Rand CI HR
Data C I M C I M C I M
iris 88.78 5.61 7.89 91.73 5.32 2.95 93.72 1.33 4.95
glass 35.46 9.50 55.04 9.56 6.26 84.18 30.63 13.97 55.40
thyroids 86.56 4.60 8.84 79.15 5.37 15.48 81.19 5.37 13.44
heart-statlog 65.40 16.19 18.41 54.55 14.97 30.48 56.40 16.67 26.93
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(except for the iris domain). Since the percentage of incorrect classifications is
also higher for the Rand index, we conclude that some of the objects that have
not been classified using CI and HR (i.e., they produced multiple classifications)
have been incorrectly classified using the Rand index. Therefore, the choice of a
method has to be done taking into account the characteristics of the application
domain. Sometimes it is preferable do not have answer in front of having an in-
correct one; however, for some domains, to have more than one answer could be a
valuable clue for classifying an object (for instance, when performing knowledge
discovery).

Concerning the two fuzzy versions of LID, HR produces a lower percentage
of multiple classifications than CI (except for the iris domain), however the
percentage of incorrect classifications is higher in two of the domains (glass and
heart-statlog). This means that CI is “more sure” in the classification of cases
although a lot of times it cannot give a unique classification. Notice that for
the glass domain the percentage of incorrect classifications is the lowest one;
however the percentage of multiple classifications (i.e., no answer) is the highest
one. We also conducted some experiments with the bal data set, also from the
UCI repository, and the results of both HR and CI are not significantly different.
Both indexes produce a percentage of incorrect classifications (3.52%) clearly
lower than the produced by the Rand index (25.80%). Nevertheless, the Rand
index produces a higher percentage of correct answers than the fuzzy indexes
(65.53% in front of 60.54%).

Our conclusion is that the difference among the results using crisp and fuzzy
indexes is strongly influenced by domain characteristics. Therefore it is neces-
sary to perform an accurate analysis of the application domain (for instance,
separability of classes, range of the values, etc.) in order to clearly determine the
situations in which an index is better than others.

5 Conclusions and Future Work

We have introduced a new version of the method LID able to deal with fuzzy
cases. Thus, cases have attributes taking continuous values which have been
represented using fuzzy sets. In the current paper we experimented with LID
using two different fuzzyfications of the Rand index one proposed by Campello
and the other one proposed by Hüllermeier and Rifqi. From our experiments we
concluded that it is difficult to assess a clear judgement about which measure is
the best one in terms of classification accuracy. We performed experiments with
different overlapping degrees of the fuzzy sets representing the values of the
attributes, and we seen that this degrees do not significantly influence accuracy
results. Our main conclusion is that the choice among the measures has to be
made from an accurate analysis of the characteristics of the application domain.

All measures have a high computational cost, however we plan to experiment
with the fuzzy extension proposed by Campello in order to exploit two param-
eters of the method: the t-norm and the t-conorm. In the experiments we used
respectively the Minimum and the Maximum. In the future we plan to experi-
ment with the t-norms of �Lukasiewicz and Product and their dual t-conorms.
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We also plan to use the similitude term generated by LID as a partial descrip-
tion of the solution classes as we have already done for the crisp version of LID.
Now, this similitude term is fuzzy and this opens new opportunities to describe
classes. In particular, we are thinking on knowledge discovery processes where
the domain experts cannot define clearly the classes. In such domains, a fuzzy
description of the classes could be very useful.
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Abstract. This paper introduces a filter, named FCF (Fuzzy Clustering-
based Filter), for removing redundant features, thus making it possible to
improve the efficacy and the efficiency of data mining algorithms. FCF is
based on the fuzzy partitioning of features into clusters. The number of
clusters is automatically estimated from data. After the clustering pro-
cess, FCF selects a subset of features from the obtained clusters. To do so,
we study four different strategies that are based on the information pro-
vided by the fuzzy partition matrix. We also show that these strategies
can be combined for better performance. Empirical results illustrate the
performance of FCF, which in general has obtained competitive results in
classification tasks when compared to a related filter that is based on the
hard partitioning of features.

1 Introduction

Feature selection involves choosing a subset of the original attributes (features)
by eliminating the redundant, uninformative, and noisy ones. This issue has been
broadly investigated in supervised learning tasks for which datasets with many
features are available, like in text mining and gene expression data analysis. A
comprehensive survey of feature selection algorithms is presented in [1]. In brief,
there are two fundamentally different approaches for feature selection [2,3]: wrap-
per and filter. The former evaluates the subset of selected features using criteria
based on the results of learning algorithms that will be ultimately employed,
while the latter selects features based on intrinsic properties of the data, being
independent of the learning algorithm to be used. Wrappers are often criticized
because they require massive amounts of computation [4]. In data mining appli-
cations, one usually faces large datasets, and thus methods called filters, which
are commonly faster than wrappers, are often more interesting [2]. The readers
interested in filtering methods are referred to references [5,4,2,6,7,8] and the bib-
liography therein. While some filters may involve some kind of transformation
of the feature space (e.g., principal component analysis and factor analysis), the
present work focuses on finding subsets of features of the original space, mainly
because this often allows much simpler and comprehensible results, maintaining
the physical interpretation of the selected features.

The feature selection method proposed in this paper is based on the Simplified
Silhouette Filter (SSF) [9,10], which removes redundant features by partitioning

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 406–415, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the original feature set into some hard clusters, from which a subset of features is
selected, thus allowing dimensionality reduction. Similarly to SSF, the filter here
proposed, named FCF (Fuzzy Clustering-based Filter), also relies on grouping
similar features. Contrarily to the approach adopted in SSF, however, FCF uses a
fuzzy clustering algorithm — instead of the hard counterpart used by SSF. This
characteristic makes FCF more appropriate for detecting clusters with overlap-
ping structures, which are commonly found in real-world applications. Besides
using a different clustering algorithm, FCF also differs from SSF in the way fea-
tures are selected from the induced clusters. In particular, FCF takes advantage
of the information contained in the fuzzy partition matrix in order to remove
redundant features. To that end, four strategies are investigated. We also show
that these strategies can be combined for better performance.

The remainder of this paper is organized as follows. Section 2 describes the
SSF algorithm studied in [9,10], whereas Section 3 addresses the proposed FCF.
Section 4 analyzes empirical results obtained in 11 datasets by comparing FCF
to SSF. Finally, Section 5 concludes the paper and points out some future work.

2 Related Work

In [9,10], the Simplified Silhouette Filter (SSF) was studied and compared to
two state-of-art algorithms [6,5]. It has shown competitive results in relation
to such algorithms, which were also designed to remove redundant features by
clustering them. The filter here proposed (FCF) has been conceived to improve
SSF, whose main characteristics are addressed in the sequel.

SSF is based on the partitioning of a set X = {x1,x2, . . . ,xM} of features,
xj ∈ (N , into a collection CX = {C1, C2, . . . , Ck} of k mutually disjoint subsets
of correlated features Ci of X . Features that belong to the same cluster should
be more similar (correlated) to each other than features that belong to different
clusters. Therefore, it is necessary to devise means of evaluating similarities (in
our case, correlations) between features. This problem can be tackled indirectly,
i.e., distance measures can be used to quantify dissimilarities (lack of correla-
tion) between features. In this work, a distance measure based on the Pearson
correlation coefficient (ρ) — Eq. (1) — is employed.

ρd(xi,xj) = 1− |ρ(xi,xj)| (1)

Attempting at finding a globally optimum solution for clustering problems is usu-
ally not computationally feasible [11]. This difficulty has stimulated the search
for efficient approximate algorithms. Following this trend, SSF uses a heuristic
procedure, based on the simplified silhouette criterion [12], for finding the num-
ber of clusters and the corresponding (feature) partitions. To define the simplified
silhouette (SS) [12], consider a feature xj belonging to cluster Ca. The dissimi-
larity of xj to the medoid of Ca is denoted by a(j). Now let us take into account
cluster Ci. The dissimilarity of xj to the medoid of Ci will be called d(xj , Ci).
After computing d(xj , Ci) for all clusters Ci �= Ca, the smallest one is selected,
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i.e. b(j) = min d(xj , Ci), Ci �= Ca. This value represents the dissimilarity of xj

to its neighbor cluster, and the silhouette s(j) is given by:

s(j) =
b(j)− a(j)

max{a(j), b(j)} (2)

The higher s(j) the better the assignment of xj to a given cluster. In addition,
if s(j) is equal to zero, then it is not clear whether the feature should have been
assigned to its current cluster or to a neighboring one [13]. Finally, if Ca is a
singleton, then s(j) is not defined and the most neutral choice is to set s(j) = 0
[14]. The average of s(j), j = 1, 2, . . . , M , can be used as a criterion to assess the
quality of a given feature partition. By doing so, the best clustering is achieved
when the silhouette value is maximized.

The computation of SS [12] depends only on the achieved partition and not
on the adopted clustering algorithm. Thus, SS can be applied to assess parti-
tions (taking into account the number of clusters) obtained by several clustering
algorithms. We adopt the well-known k-medoids1 algorithm to obtain partitions
to be evaluated by SS. This algorithm is interrupted as soon as medoids from
two consecutive iterations are equal. Roughly speaking, k-medoids is designed to
minimize the sum of distances between features and nearest medoids. From the
SS criterion viewpoint, good partitions are also obtained when this minimization
is suitably performed, as well as when clusters are well separated.

SS is a numeric criterion that allows estimating the number of clusters auto-
matically. Thus, it can provide a way of circumventing an important limitation
of k-medoids, namely: k must be determined a priori. In this sense, one can per-
form multiple runs of k-medoids (for different values of k) and then choose the
best available partition, which corresponds to the maximum achieved value for
SS. It is also well-known that k-medoids may get stuck at suboptimal solutions
for a given k [15]. To alleviate this problem, one can perform multiple runs of
k-medoids for a fixed k, as done in the sampling strategy performed by SSF,
which is summarized in Algorithm 1.

After running Algorithm 1, two strategies can be used by SSF to select a
subset of features from the induced clusters, namely: (SSF-1) For each cluster,
its medoid is chosen as a representative feature [9] — by doing so, a subset of
k∗ features is selected; (SSF-2) Besides selecting the medoid of each cluster, the
feature least correlated (less redundant) with the medoid is also selected [10] —
thus, two features from each cluster are chosen, resulting in the selection of 2k∗

features.

3 Fuzzy Clustering-Based Filter (FCF)

The SSF algorithm addressed in Section 2 splits the set of available features into
non-overlapping feature clusters. In practice, however, several data sets comprise
1 The number of clusters, k, will be also denoted further in this paper by c, following

the traditional notation adopted in the fuzzy clustering literature.
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Algorithm 1. SSF Sampling Strategy [9,10]
Input: Choose the minimum and maximum number of clusters — kmin and

kmax — and a number of initial partitions (np) for k-medoids.
SSV ←− −∞; // Simplified Silhouette Value //1

for k ∈ {kmin, . . . , kmax} do2

Generate np random initial partitions of features into k nonempty clusters;3

Run k-medoids for each initial partition generated in Step 3 and compute4

its corresponding simplified silhouette. Let the best obtained value be BOV;
if BOV > SSV then5

SSV ←− BOV ;6

k∗ ←− k;7

Hold the corresponding k∗ clusters of features;8

end9

end10

Return SSV and the corresponding k∗ clusters of features.11

ill-delineated subsets that cannot be adequately split this way. For instance,
there are situations in which the structure existing in the data is characterized
by categories that overlap with each other to some degree. In these cases, the
use of clustering algorithms that are capable of dealing with such overlapping
data clusters is recommended. Fuzzy clustering techniques can naturally cope
with this sort of problem since they aim at finding fuzzy clusters to which all
the data (in our case, features) belong to some (possibly null) degree. This fact
has motivated us to introduce the Fuzzy Clustering-based Filter (FCF), which
adopts the fuzzy clustering algorithm known as Fuzzy c-Medoids (FCMdd) [16]
to generate clusters of similar (correlated) features.

FCMdd [16] is an adaptation of the popular FCM algorithm [17] to deal with
medoids. Let d(xi,xj) be the dissimilarity between features xi and xj , computed
by Eq. (1), and V = (v1,v2, ...,vc), vi ∈ X , be a c-subset of X . Also, let Xc be
the set of all c-subsets V of X . FCMdd aims at minimizing functional (3):

Jm(V;X) =
M∑

j=1

c∑
i=1

μm
ij d(xj ,vi) (3)

where the minimization is performed over all V in Xc, m is the so-called “fuzzi-
fier” whose default value is two, μij represents the fuzzy membership of xj to
cluster i — computed by Eq. (4) — and c is the number of fuzzy clusters.

uij =

[
c∑

l=1

(
d(xj ,vi)
d(xj ,vl)

)2/(m−1)
]−1

(4)

After computing each element μij we have a fuzzy partition matrix Uc×M .
In order to automatically estimate the number of clusters (c) from data, FCF

essentially uses the sampling strategy summarized in Algorithm 1, except for
two important differences: (i) In FCF the FCMdd algorithm [16] substitutes the
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k-medoids used by SSF; and (ii) FCF employs a fuzzy version of the silhouette
[14] given by [18]:

FS =

∑M
j=1(upj − uqj)αs(j)∑M

j=1(upj − uqj)α
(5)

where μpj and μqj are the first and second largest elements of the jth column of
the partition matrix U, respectively, α is a weighting coefficient whose default
value is 1, and s(j) is the traditional silhouette [14], which is given by Eq. (2), but
considering that a(j) is the average distance of xj to all other objects belonging
to cluster Ca and that b(j) is the average distance of xj to all objects belonging
to nearest cluster Ci �= Ca.

It is also worth mentioning that the sampling strategy used by SSF (based on
multiple runs of k-medoids) outputs a set of hard clusters — Step 11 in Algorithm
1 — whereas FCF performs a post-processing step based on the fuzzy partition
matrix corresponding to the best available partition — elected by the FS in (5).
To that end, Step 8 of Algorithm 1 has also been modified to hold the respective
fuzzy partition matrix, instead of a set of clusters. FCF uses such a partition
matrix to perform feature selection according to four strategies, namely:

– Strategy 1: For each cluster, one selects only its medoid, which is the feature
most correlated with the other features of the same cluster. The underly-
ing assumption of this strategy is that medoids summarize the information
contained in the clusters, in such a way that the remaining features can be
deemed redundant. From the partition matrix, the medoid of each cluster
i, i = 1, ..., c, is the feature j that has the maximum membership value μij

among ui1, ui2, ..., uiM . Thus, this strategy selects c features.
– Strategy 2: Let us assume that the jth feature is classified into the ith fuzzy

cluster if the membership μij is higher than the membership of this feature
to any other fuzzy cluster, i.e., μij ≥ μqj for every q ∈ {1, ..., c} , q �= i. After
classifying features, there may be some of them that are weakly correlated
with the medoids. These features can encompass useful information not cap-
tured by the medoids and, as such, they are potentially interesting for feature
selection purposes. Based on this assumption, Strategy 2 selects, from each
cluster i, i = 1, ..., c, the feature that has the minimum membership value
among those classified into that cluster. This strategy also selects c features.

– Strategy 3: This strategy selects the feature least correlated with all clus-
ters. We define this feature as the one that has the smallest variance in the
membership degrees to the clusters. This selection strategy is particularly in-
teresting for situations in which a given feature j has (approximately) equal
membership values w.r.t. all clusters, what suggests that the information it
holds is not captured by any of them.

– Strategy 4: This is similar to the 3rd strategy, but it only considers pairs
of clusters to perform feature selection. More precisely, for every pair of
clusters, the feature that presents the smallest variance w.r.t. the respective
membership values is selected. Doing so, c(c−1)/2 features are selected. The
rationale behind this strategy is that features in-between two clusters can
subsume information not captured by them.
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Features selected by any of the above strategies are included into a subset of
features. Obviously these strategies can be combined. For instance, the user
may choose to apply only the 1st and the 2nd strategies or, alternatively, he
or she may decide to use all of them. From this standpoint, we believe that 5
of such combinations allow deriving FCF variants of particular interest. Two
of them (FCF-1 and FCF-12) are motivated by the feature selection criteria
adopted by SSF. In particular, FCF-1 uses only the 1st strategy, whereas FCF-
12 uses both the 1st and the 2nd strategies. Analogously, we additionally have
FCF-13, FCF-14, and, finally, FCF-1234 (all strategies). These FCF variants are
experimentally investigated in this paper. Considering computational efficiency,
it can be shown that the time complexity of FCF (including any of its feature
selection strategies) is estimated as O(

∑cmax

c=cmin
M2+c2M), where cmin and cmax

are the minimum and maximum number of clusters, respectively.

4 Empirical Evaluation

Eleven datasets were used to assess the performance of the proposed algorithm.
Six of them are bioinformatics datasets used by Yeung et al. [19]. These authors
created five types of synthetic array datasets with error distributions derived
from bioinformatics real data. We used such datasets to test our feature selec-
tion method. These datasets (here called Bio1, Bio2, Bio3, Bio4, and Bio5) are
composed of 400 genes (instances), described by 20 measurements (features).
There are six approximately equal-sized classes in each dataset. In addition, we
tested the described feature selection algorithms in a real-world dataset (Yeast
Galactose data [19]), which is composed of 20 measurements and 205 genes. In
this dataset, the expression patterns reflect four functional categories.

The real-world dataset presented in [20], called Colon Cancer, was also used.
This dataset contains 62 samples, whose classes correspond to either tumor or
normal biopsies, described by the expression levels of 2,000 genes. The other
real-world datasets used in our study are widely known and available at the
UCI Machine Learning Repository [21], namely: Ionosphere, Wisconsin Breast
Cancer, Pima Indians Diabetes, and Spambase.

In the experiments, we set cmin=2, cmax=M/2, and np=20 for clustering
features by SSF and FCF. In the experiments with the Colon Cancer dataset,
however, we set cmax=

√
M due to its size, for which running experiments with

cmax=M/2 has shown to be computationally prohibitive. From a practical view-
point, one can consider that these values determine the size of the search space
to be assessed, as well as the computational effort to find the corresponding
clustering solution. Therefore, domain knowledge, when available, can be incor-
porated into this approach in order to set those parameters in scenarios in which
there are limitations of computational resources.

The quality of each feature subset found by a given filter is here assessed by the
generalization capability of the obtained classifier, which is estimated using a 10-
fold cross-validation process [22]. We have followed an established methodology
to compare different feature selection algorithms. In particular, feature selection
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Table 1. Accuracies (%) obtained using NB (standard deviations in parentheses)

Dataset FCF-1 FCF-12 FCF-13 FCF-14 FCF-1234 SSF-1 SSF-2 Full
Bio1 99.8 (1) 99.8 (1) 99.8 (1) 99.5 (1) 99.5 (1) 100.0 (0) 100.0 (0) 100.0 (0)
Bio2 96.5 (2) 97.3 (2) 96.5 (2) 96.8 (1) 97.5 (1) 96.0 (3) 97.3 (2) 98.8 (1)
Bio3 99.5 (1) 100.0 (0) 99.8 (1) 99.8 (1) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0)
Bio4 85.8 (3) 96.8 (2) 94.3 (3) 94.3 (3) 96.8 (2) 92.0 (4) 97.0 (2) 97.5 (3)
Bio5 99.5 (1) 99.8 (1) 100.0 (0) 100.0 (0) 99.8 (1) 99.5 (1) 100.0 (0) 99.8 (1)
Yeast 92.6 (4) 94.6 (5) 94.6 (5) 97.1 (2) 97.1 (2) 94.1 (3) 94.6 (4) 97.6 (2)
Wisc 94.1 (2) 94.3 (2) 94.1 (2) 94.4 (2) 94.4 (2) 93.4 (2) 94.4 (2) 96.2 (1)
Pima 69.7 (4) 75.6 (5) 70.8 (5) 75.8 (5) 75.6 (5) 65.5 (3) 69.3 (6) 75.6 (5)
Iono 75.2 (7) 83.5 (7) 76.6 (7) 79.2 (10) 82.9 (9) 86.3 (6) 82.4 (6) 83.2 (3)
Spam 69.3 (4) 74.2 (3) 69.5 (4) 76.3 (3) 77.5 (3) 68.1 (6) 74.0 (4) 79.7 (1)
Colon 46.2 (21) 58.1 (18) 58.3 (20) 58.3 (21) 63.1 (24) 58.3 (19) 67.9 (15) 51.9 (20)

Table 2. Accuracies (%) obtained using NN (standard deviations in parentheses)

Dataset FCF-1 FCF-12 FCF-13 FCF-14 FCF-1234 SSF-1 SSF-2 Full
Bio1 99.8 (1) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0)
Bio2 95.8 (2) 97.3 (1) 96.8 (2) 96.0 (2) 96.0 (2) 96.3 (2) 96.0 (2) 99.0 (1)
Bio3 99.0 (1) 100.0 (0) 99.8 (1) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0)
Bio4 81.5 (4) 95.5 (2) 87.8 (6) 87.8 (6) 95.5 (2) 91.8 (3) 97.3 (2) 97.5 (2)
Bio5 99.3 (1) 99.8 (1) 99.8 (1) 99.8 (1) 99.8 (1) 100.0 (0) 100.0 (0) 100.0 (0)
Yeast 91.6 (5) 94.1 (5) 94.1 (5) 97.5 (3) 97.5 (3) 90.12 (7) 94.1 (4) 98.1 (3)
Wisc 93.9 (1) 93.6 (2) 93.0 (1) 93.7 (2) 93.7 (2) 93.3 (1) 92.9 (2) 95.9 (1)
Pima 62.2 (4) 70.4 (4) 63.0 (5) 70.6 (4) 70.4 (4) 64.9 (4) 63.5 (4) 69.8 (5)
Iono 86.0 (7) 88.0 (5) 88.9 (5) 88.3 (4) 85.8 (5) 88.3 (4) 88.3 (4) 86.3 (6)
Spam 87.3 (2) 89.2 (2) 87.5 (2) 90.5 (1) 90.2 (1) 88.2 (1) 88.9 (2) 90.9 (1)
Colon 48.8 (17) 63.1 (20) 56.7 (24) 72.9 (19) 81.0 (17) 75.7 (15) 76.2 (9) 74.3 (10)

has been performed using only the training folds, and classification accuracy has
been estimated in the test folds [23]. The same training/test folds were used
for all algorithms. In order to provide some reassurance about the validity and
non-randomness of the obtained results, we present the results of statistical tests
by following the approach proposed by Demšar [24]. In brief, this approach is
aimed at comparing multiple algorithms on multiple datasets, and it is based
on the use of the well known Friedman test with a corresponding post-hoc test.
The Friedman test is a non-parametric counterpart of the well-known ANOVA.
If the null hypothesis, which states that the algorithms under study have similar
performances, is rejected, then we proceed with the Nemenyi post-hoc test for
pair-wise comparisons between algorithms.

Tables 1 and 2 report the average classification results (standard deviations
appear within parentheses) for the Näıve Bayes (NB) and Nearest Neighbor (NN)
classifiers. These classifiers were chosen to illustrate the relative performance of
the feature selection methods evaluated in this work due to their widespread use
in practice [25]. We used the NB and NN classifiers available in the Weka System
[22], using its default parameters. In Tables 1 and 2, values in bold represent the
best accuracies obtained with feature selection in each dataset.

Before delving into the details of some particular results found in each dataset,
let us provide an overview of the classification results. Considering the different
feature selection strategies for FCF (FCF-1, FCF-12, FCF-13, FCF-14, FCF-1234
— as explained in Section 3), the statistical test procedure used here (Friedman
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Table 3. Average Rate (%) of Selected Features

Dataset FCF-1 FCF-12 FCF-13 FCF-14 FCF-1234 SSF-1 SSF-2
Bio1 18.5 36.5 23.5 37.0 50.0 30.0 60.0
Bio2 15.0 30.0 20.0 30.0 44.5 18.0 36.0
Bio3 14.5 29.0 19.5 28.5 42.5 38.5 77.0
Bio4 10.0 20.0 15.0 15.0 20.0 15.0 30.0
Bio5 18.0 34.5 23.0 32.0 39.0 25.0 50.0
Yeast 15.5 20.5 20.5 28.0 28.0 10.0 15.5

Wisconsin 35.5 50.0 46.6 56.6 56.6 22.22 33.3
Pima 50.0 93.7 62.5 92.5 93.7 37.5 75.0

Ionosphere 13.2 26.1 16.1 34.1 40.8 33.8 63.5
Spambase 48.95 77.89 50.70 89.3 95.2 36.6 64.3

Colon Cancer 0.2 0.3 0.2 0.4 0.6 0.1 0.2

and Nemenyi tests) suggests (with α=5%) that FCF-1 presented worse perfor-
mance than FCF-(12|14|1234), independently of the classifier used. Comparing
FCF-1234 (best FCF variant) with SSF (with its two feature selection strategies,
SSF-1 and SSF-2, as explained in Section 2) the statistical procedure indicate dif-
ference only between FCF-1234 and SSF-1 (with α=10%) when the NB classifier
is used. Although the difference between FCF-1234 and SSF-2 was not statisti-
cally significant, the former was capable of obtaining better or equal results than
the latter in 64% and 73% of the cases for NB and NN classifiers, respectively.

Taking into account the number of selected features (Table 3), some expected
significant differences (with α=5%) were observed, namely: (i) FCF-1 selected
less features than FCF-(12|14|1234) and SSF-2; (ii) FCF-13 selected less features
than FCF-1234; (iii) SSF-1 selected less features than FCF-1234 and SSF-2.

Now let us shed light on some particular results obtained for specific datasets.
In the Bio1 and Bio3 datasets, the classification accuracy obtained using all fea-
tures (Full - last column) is 100% for both NB and NN. In this scenario, one
may wonder if it is possible to remove some redundant features without decreas-
ing classification performance. Our results show that this indeed can occur for
practically all the assessed filters. FCF-1 has shown a slightly worse performance
than the other filters in Bio3 for NN (accuracy of 99%). However, it is worth
mentioning that it provided such a very good classification rate by using the
smallest feature subset (with 14.5% of selected features). Therefore, this kind of
analysis must be done carefully, for that, depending on the application, a reduc-
tion in more than 80% in the number of features (the largest reduction obtained
considering all methods) can offer an interesting tradeoff between efficacy and
efficiency. The results achieved in Bio2 and Bio5 are very similar to those ob-
tained for Bio1 and Bio3. Considering Bio4, by its turn, all the assessed filters
obtained worse accuracies than the use of all available features. FCF presented
a significant accuracy reduction, especially using NN. SSF-2 provided the best
classification results in this dataset, selecting only 30% of the features. In the
Yeast dataset, FCF-14 and FCF-1234 provided the best classification results,
using only 28% of the features on average. Similar results were observed in the
Spambase and Pima datasets. For Winsconsin, all filters obtained very similar
classification results. The same holds for Ionosphere when NN is used, but for
NB we can arrive at different conclusions. In particular, SSF-1 presented the
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best classification results, selecting only 34% of the features, whereas FCF-12
presented a slightly worse classification performance, but selecting only 26% of
the features. Considering Colon Cancer, FCF-1234 and SSF-2 presented the best
classification results, selecting less than 1% of the features.

5 Conclusions

This paper introduced the Fuzzy Clustering-based Filter (FCF), which is based
on the fuzzy partitioning of features into clusters. FCF allows the elimination of
redundant features. It was assessed in eleven classification datasets, using four
feature selection strategies proposed in the paper. We have shown that the com-
bination of these strategies lead, in general, to better performance, resulting in
a FCF variant here named FCF-1234. This variant also showed improvements
in relation to the Simplified Silhouette Filter (SSF) [9,10], which is a related
algorithm based on the hard partitioning of features. In particular, although
statistically significant differences were not found between FCF-1234 and SSF
(selecting two features per cluster), the former presented better or equal classifi-
cation results in approximately 70% of the performed experiments. The reported
results also showed that it is possible to remove redundant features without
significantly decreasing classification performance — sometimes even accuracy
improvements can be achieved. This fact was clearly observed from the results
reported for the Colon Cancer dataset, in which FCF and SSF selected less than
1% of the original features.

Although interesting results have been reported in this paper, there are several
issues that can be investigated in the future. For example, a study on different
feature selection strategies, taking into account different correlation measures, is
a promising future work. Also, a more comprehensive experimental evaluation,
comprising more datasets, is in order.
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Abstract. The present work dedicates itself to the aggregation of non-
convex data-inherent structures into fuzzy classes. A key feature of this ag-
gregation is its conduction within a closed fuzzy classification framework,
being built around a single, generic type of a convex membership function.
After a short elaboration concerning this essential building block a novel
automated, data-driven design strategy to aggregate complex (noncon-
vex) data-inherent structures is introduced. The whole aggregation pro-
cess will be illustrated with the help of an example.

1 Introduction

We are drowning in data but thirsting for knowledge. In order to convert the
omnipresent flood of data into valuable and meaningful knowledge it has to
be analysed, categorised and represented. However when dealing with real-life
data it might be infeasible to derive an analytical model. Reasons for this cir-
cumstance are the high complexity of the underlying phenomena, imprecisions
(e. g. measuring inaccuracies) or vague knowledge about the phenomena itself
(e. g. missing information) [2,7]. In such a case it is assumed that objects (e. g.
measurement data) reflect characteristics of the phenomenon in the form of pat-
terns, subsequently referred to as data-inherent structures. The aggregation of
those structures into superordinate entities (classes) allows a generalisation, rep-
resentation and storage of their immanent knowledge [3]. An important aspect
within this aggregation process is the representation of occurring uncertainties
as supplementary property. One way to take such things into account is a class
definition in form of fuzzy sets [9]. In terms of this idea the we will treat the ag-
gregation approach as a fuzzy classification task. In order to present its general
idea this paper will refrain from overly-formalised notations in favour of visually
comprehensible examples.

2 Fuzzy Pattern Classes

The core component of the classification approach pursued here is a fuzzy set
referred to as fuzzy pattern class (FPC). The subsequent sections provide only
a necessary survey about its assets. A detailed description (rationale, definition,
capabilities and utilisation) can be found in [1,5].

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 416–425, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Membership function and parameters

Definition of a Fuzzy Pattern Class: From a theoretical point a fuzzy pattern
class corresponds to an asymmetric, parametric and multivariate membership
function (1), defined over its specific universe of discourse (the class space U).

μ(x) =

(
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As Fig. 1 might indicate the multivariate form (1) derives from unidimensional
FPC basis functions. Each basis function relates to a specific dimension of U .
There it is defined by a set of seven parameters with the following meaning: The
left and right class borders cl, cr characterise the support of the membership
function in a crisp sense. The parameters bl/r ∈ (0, 1] are referred to as border
membership, assigning membership values to the class borders cl/r. The fuzziness
of a FPC basis function is determined by the parameters dl/r ∈ [2,∞). All FPC
basis functions are fuzzy-logically combined into (1) with the help of an N-fold
compensatory Hamacher intersection operator, preserving the function concept
and its properties. In terms of a PCA the FPC is fit optimal to its supporting
data by a supplementary location u0 and rotation φ of the class space U .

Deduction of Fuzzy Pattern Classes: The deduction of FPCs forms a self-con-
tained part of research establishing two principal approaches [1]. The first way
that can be thought of is a definition by expertise, i. e. an expert assigns all
FPC parameters based upon task and domain specific knowledge. The second
approach is an automatic data-driven method based upon a class labelled set
of learning objects. It determines all class parameters in a two step aggregation
procedure, see [5]. Figure 2 illustrates the result of this aggregation procedure
for a set of 400 objects. Regarding the right hand side of Fig. 2 it needs to be
stressed that objects are treated as fuzzy pattern entities. This extension is jus-
tified by the fact that every observation (measurement) contains an “elementary
fuzziness” ce (e. g. impression of a sensor) [5].
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Fig. 2. Aggregation of objects to a fuzzy pattern class

Application and Mode of Operation: For applicative purposes the set of task
relevant FPCs is deposited into a so called fuzzy pattern classifier. In operating
mode the classifier assigns unknown objects to its class structure. The results
of the classification process are the gradual object memberships μk (x) to each
available class k = 1, . . . ,K. All memberships are calculated according to (1)
and stored into a vector of memberships μ =

(
μ1 (x) , μ2 (x) , ..., μK (x)

)T .

Properties of Fuzzy Pattern Classes: Thanks to the side-specific parametric def-
inition FPCs combine a diversity of asymmetric shapes with interpretability and
transparency. For the same reason FPCs provide a fair trade-off between data
compression, computational cost and generalisation. Together with the data-
driven automated aggregation procedure FPCs establish a closed classification
framework (from data to FPCs). Besides all advantages FPCs are limited by
their convex nature, causing them to form oversimplified classes when it comes
to map nonconvex sets of data. In such a case the FPCs envelope the data but
they comprise also object-unsupported class space, see Fig. 3.

Fig. 3. Examples for nonconvex data-inherent structures and their associated FPCs

Under the condition that the classification framework remains conserved two
ways of addressing this major drawback can been though of: Firstly a further seg-
mentation of the data into convex subsets, for example based on cluster analysis
[6], secondly a correction of FPCs by complementary fuzzy pattern classes.
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3 Concept of Complementary Fuzzy Pattern Classes

The latter and hereafter introduced approach pursues the idea that, the differ-
ence of convex sets can be a nonconvex set. In terms of fuzzy logic this means
that the negation of a class membership function over its object-unsupported
space allows the creation of a nonconvex fuzzy class. Fig. 4 sketches such a nega-
tion of FPCs for a C-shaped pattern. According to the approach adopted in this
paper, the negating complementary fuzzy pattern classes (CFPC) are defined
using (1) ensuring the conservation of the classification framework. As an effect
CFPCs exhibit the same properties as FPCs and they can be generated in an
automated data-driven manner.

Fig. 4. Nonconvex fuzzy pattern representation via negation

As for the remaining examples in Fig. 3 an S-shape can be corrected by two
CFPCs whereas a ring-dot shape can be corrected by double-negating CFPCs.

3.1 Deduction of Complementary Fuzzy Pattern Classes

Given a nonconvex set of learning data the task at hand lies in the determina-
tion of the appropriate complementary fuzzy pattern classes. Unfortunately the
non-linearity and ambiguity of such a data set render a direct determination of
CFPCs in terms of optimisation too costly. Yet a more subtle way to elaborate
a data-driven design follows from the automated class generation. Due to the
definition of CFPCs it can also be thought of a set of objects (complementary
objects) supporting such a type of class, see Fig. 5. Assuming the general case

Fig. 5. Complementary objects for the C-shaped problem

it is unlikely to be given a set of complementary objects beforehand. If how-
ever such a set is accessible it will be also in accordance with the classification
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framework to aggregate it into a CFPC. From this general point of view it be-
comes obvious that by generating a set of complementary objects a virtue can
be made out of the necessity. Since the generation of complementary objects is
vital to the subsequent CFPC deduction both aspects have been condensed into
the following algorithm, see Fig. 6.

step 1 step 2 step 3 step 4

step 5

determination of
object-unsupported
class space

estimation of
complementary
object density

complementary
object distribution

construction of the
complementing
fuzzy pattern class

is the CFPC
nonconvex ?

determination of
complementing
objects

step 6

yes

no

object generation
CFPC deduction

Fig. 6. Design algorithm for complementary fuzzy pattern classes

A variant of this algorithm has been presented in [4]. Scaling exponentially
with the dimension of the feature space it is only suitable for low-dimensional
cases. The subsequently presented approach addresses the high-dimensional case
by perceiving the set of learning objects as a graph over the metric feature space.

objects

object to object
connection (edge)

favourable positions for
complementary objects

Fig. 7. Idea for a graph based class space exploration

Its leading thought is the distribution of complementary objects alongside
object-to-object connections, see Fig. 7. Due to the fact that between M learning
objects (vertices) there are 1

2M(M − 1) object-to-object connections (edges)
a graph based approach scales quadratically with the number of objects but
independently from the class space dimension.

Step 1 to 3 Generation of Complementary Objects: Since there is little prior in-
formation about the shape of a data-inherent structure, the generation process
is led by the basic assumptions that: (a) complementary objects are permit-
ted to exist only in the according class space, and (b) complementary objects
accumulate only in unsupported areas of the class space.
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Step 1: In order to generate complementary objects it is necessary to reveal the
object-unsupported areas of the class space. In terms of the underlying graph
these areas can be specified by object-to-object connections that are fulfilling
two properties. At first such a connection possesses a minimum length of lmin =
4 ·max (ce), a requirement which is justified by assumption (b). In other words,
since objects and complementary objects are considered to be fuzzy entities they
must not intersect. All connections of smaller size are discarded, because such an
intersection might happen. The second property demands that a connection does
not intersect another object within its elementary fuzziness, see right hand side
of Fig. 8. This property ensures that connections which are traversing through
object-supported class space will be discarded.

elementary fuzziness

insignificant
object egdes

objects

Fig. 8. Exclusion of insignificant object-to-object connections

Both exclusions guarantee that the remaining object-to-object connections
perambulate only through the object-unsupported class space. They are referred
to as potential connections. According to assumption (b) the complementary
objects have to accumulated alongside these potential connections.

Step 2: In order to realise an accumulation of complementary objects on a
sound mathematical basis it is necessary to define a density model. Due to the
synthetical nature of this approach there are little restrictions for such a model.
However to facilitate subsequent tasks it is desirable that this model yields a
kind of distance dependent density gcobj(s). A distance measure that suits such
needs is the Euclidean distance s to the nearest learning object.

object 1
discretised
connection between
object 1 and 5

s
ce
...resolution

object 5 object 1 object 5
s

ce

class
membership

distance to the
nearest learning
object

objects

Fig. 9. Determination of distances along object-to-object connections

Along all potential connections s is determined by discretisation according to
Fig. 9, yielding a distance for every section. The discretisation resolution sce fol-
lows from the shortest object-to-complementary-object distance sce = 2·max (ce).
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Based on the available distance measure s the calculation of the complementary
object density can be conducted. Among other density models a logistic approach
of the following form was found the most promising.

gcobj (s) = rnd

⎛⎝ gmax

1 +
(

gmax
gmin
− 1
)
e−gmax(s−sce)

⎞⎠ (2)

It can be easily tuned by the parameters gmax (the maximum density) and
(the minimum density) gmin = gcobj (sce). The bounds for the minimum density
gmin ∈ (0, 0.5) follow straight from assumption (b). This means that the supre-
mum gmin = 0.5 must not be reached, otherwise the rounded density gcobj (s)
would result in complementary objects for distances s = sce. For computational
purposes gmin is set to gmin = 0.49, realising the steepest slope of (2). The deter-
mination of the maximum density gmax ∈ [0.5,∞) requires a prespecification of
a total number of complementary objects. gmax is fit to this total number with
the help of a binary search. After the specification of gmax the logistic density
model is applied to the set of all potential connections. In doing so it realises
the desired accumulation in form of an integer complementary object equivalent
for every section.

Step 3: According to the calculated density the complementary objects are dis-
tributed uniformly over their associated sections.

Step 4 to 6 Deduction of the CFPCs: Once the complementary objects have been
generated the deduction of a suitable nonconvex FPC classifier can be tackled.

Step 4: All complementary objects will be aggregated to a CFPC.

Step 5: The complementary objects still might form a nonconvex geometry. An
application of the aggregation procedure on such a structure results in an over-
simplified CFPC μCFPC. This may suggest that the whole problem was shifted to
the complementary objects. This, however, is not the case: According to the gen-
eration procedure the sets of complementary and learning objects are disjoint,
yet both sets together cover the entire class space. In the case of a nonconvex
complementary object geometry the associated CFPC will comprise subsets of
learning objects. The question whether such a case is at hand can be perceived
as a classification task. Employing our fuzzy classification approach, all learning
objects are assigned to the CFPC. If all learning objects yield a low member-
ship, the CFPC would be assumed to be sufficient and deduction is completed.
If, on the contrary, learning objects exhibit high degrees of CFPC membership,
they would indicate a nonconvex geometry of complementary objects. In such
a case the CFPC has to be further specified by a second-level CFPC μC2FPC.
Instead of starting over with the whole procedure it follows immediately from
complementation property that the learning objects can be seen as complemen-
tary objects of the complementary objects. This fortunate circumstance allows
to reuse a subset of the already known learning objects as second-level comple-
mentary objects.
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Step 6: It remains to ascertain which subset of the learning objects is the com-
plementing one. For this purpose assumption (a) can be posed upon the aggre-
gated CFPC. It demands that the second-level complementary objects have to
be located within the borders of the CFPC. This is generally satisfied for learn-
ing objects with a high degree of CFPC membership. Thanks to the previously
conducted classification (step 5) these second-level complementary objects are
already know. They are fed back to the algorithm at step 4 and aggregated into
the next-level CFPC. In general this CFPC cycle would continue until there is
no further complementing object. Since each CFPC is smaller in size compared
to its preceding class the disjoint learning and complementary object covering
of the class space guarantees the convergence of the algorithm.

3.2 Combination of Complementary Fuzzy Pattern Classes

The overall representation of a data-inherent structure results from a combina-
tion of the FPC and its succeeding CFPCs. The combination process is specified
according to the deduction process such that if an object does not belong to
the CFPC it belongs to the preceding FPC. Moreover the deduction process
might imply several levels of negation, which should to be respected in that
concatenation. A fuzzy-logical interpretation of this concept derives from the
concatenation of the minimum operator and natural complement [8].

μ = min
(
μFPC,

(
1− μCFPC)) (3)

4 Example

For the sake of comprehensibility the outlined algorithm will be illustrated with
the help of an example. For this purpose it was applied to a ring-dot shaped
data structure supported by a set of 900 objects, see Fig. 10.

Fig. 10. Left: learning objects and FPC; right: connections and complementary objects

As depicted, the standard FPC μFPC will assign high memberships to the
region in between both object geometries despite the fact that it is object-
unsupported. According to Step 1–3 a total of 923 complementary objects have
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been generated alongside the grey potential connections. However, the right hand
side of Fig. 10 reveals that the complementary objects (red) themselves form a
nonconvex (ring like) structure. Consequently their aggregation resulted in an
oversimplified CFPC μCFPC during step 4, a fact that was verified via classi-
fication in step 5. Within the selection step 6, all learning objects exceeding a
membership μCFPC > 0.5 have been assigned as second-level objects. As a mat-
ter of fact the classification resulted in high degrees of membership only for the
central accumulation of learning objects. Therefore only those central objects
have been aggregated into a second-level CFPC μC2FPC. After its aggregation
the cycle stopped because the membership of all available complementary ob-
jects was sufficiently low (μC2FPC < 0.5). At this point the deduction algorithm
for CFPCs stopped and provided three fuzzy pattern classes. All three classes
have been combined into a nonconvex fuzzy pattern classifier via (4).

μ = min
(
μFPC, 1−min

(
μCFPC,

(
1− μC2FPC

)))
(4)

Fig. 11. First and final (second-) level combination of CFPCs

Figure 11 depicts the hierarchical composition of the classifier, together with the
supporting objects.

5 Conclusions

This paper is dedicated to a fuzzy and data-driven class aggregation approach
for nonconvex data-inherent structures. Its main philosophy is the exclusive ap-
plication of a fuzzy classification framework being limited due to convexity. To
overcome its convex limitations a graph based design strategy relying on so
called complementary objects has been elaborated. The key steps within this
design strategy are the generation of such complementary objects, their distri-
bution, and the data-driven aggregation into CFPCs. The resulting CFPCs can
be applied to negate the preceding FPC realising a nonconvex fuzzy pattern
representation. Moreover the mutual negation of FPC and CFPCs implies a hi-
erarchical view to understand such a nonconvex fuzzy class formation. Within
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such a hierarchy it is the synergistic effect of mutual negation, shape diversity
and interpretability of the of class membership functions that provides a pow-
erful and flexible fuzzy classifier design for almost any shape of data-inherent
structures. A possible combination of FPC and CFPCs to a nonconvex overall
presentation has been demonstrated with the help of an example. In connection
with this example it has been shown that complementary objects have to be con-
structed only once. Another aspect worth to mention is that the CFPC design
works independent from clustering algorithms but features structure capturing.
Finally it has to be stressed that the introduced design strategy is an universal
approach that can be applied to any unimodal parametric membership function.

Possible applications for such an approach can be found in the areas of engi-
neering geodesy and deformation analysis.
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Abstract. It is likely in real-world applications that only little data is
available for training a knowledge-based system. We present a method for
automatically training the knowledge-representing membership functions
of a Fuzzy-Pattern-Classification system that works also when only little
data is available and the universal set is described insufficiently. Actually,
this paper presents how the Modified-Fuzzy-Pattern-Classifier’s member-
ship functions are trained using probability distribution functions.

Keywords: Fuzzy Logic, Probability Theory, Fuzzy-Pattern-Classifica-
tion, Machine Learning, Artificial Intelligence, Pattern Recognition.

1 Introduction

In many knowledge-based industrial application there is a necessity to train
using a small data set. It is typical that there are less than ten up to some tens
of training examples. Having only such a small data set, the description of the
underlying universal set, from which these examples are taken, is very vague
and connected to a high degree of uncertainty. It was Zadeh [1] who created
the basic theory for the nowadays established fuzzy systems, which are suitable
for modelling uncertain knowledge using possibility measures. One class of such
systems are the Fuzzy-Pattern-Classifiers (FPC) introduced by Bocklisch [2]
which are widely used in pattern recognition applications for object classification.
The basic concept is having a set of fuzzy membership functions μ : x → [0, 1]
per class which model characteristic features of those classes. These membership
functions map an object’s feature value x ∈ IR to the unit interval representing
the membership or degree of similarity of x to an ideal class member’s feature. All
memberships are aggregated subsequently by some fuzzy aggregation operator.
The object is then assigned to the class having the highest aggregated value.

One established member of the class of Fuzzy-Pattern-Classifiers is Lohweg’s
Modified-Fuzzy-Pattern-Classifier (MFPC) [3,4]. It is widely applied and estab-
lished in the industry, for instance in printing facilities for checking the print
results to give only one example [4,5,6,7]. In these applications, it proved its
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robustness, performance, and efficiency when implemented in hardware-based
solutions.

The MFPC’s membership functions are parameterisable unimodal potential
functions having at least two degrees of freedom left to the user which demand
the application of costly heuristics for finding their values. Mostly, the optimal
parameters are not found, resulting in a loss of robustness and therefore deteri-
orated classification rates.

In this paper we suggest an automatic method of learning the fuzzy member-
ship functions by estimating the data set’s probability distribution and deriv-
ing the function’s parameters automatically from it. The resulting Probabilistic
MFPC (PMFPC) membership function, extends the MFPC approach to asym-
metric membership functions and leaves only one degree of freedom leading to
a shorter learning time for obtaining stable and robust classification results.

There exist other approaches in the literature, which go in our direction, but
are not applicable here. Rodner and Denzler’s approach [8] transfers feature
relevance from previous, similar applications to choose the respective features
for a new classification task. Our approach is directed to applications where no
previous knowledge is available and the features are chosen heuristically. Drobics
et al.’s FS-FOIL method is also very promising, but the classification results
presented in [9] make use of a bigger training set. Also, the learning approach
of finding fuzzy decision rules is different from ours where fuzzy membership
functions’ shapes are determined.

After having introduced the topic of this paper in this Section, we proceed in
Sect. 2 by briefly introducing the Modified-Fuzzy-Pattern-Classifier. In Sect. 3
the new probabilistic parameterisation approach is described. The experiments
presented in Sect. 4 return promising results that the incorporation of PMFPC
membership functions in fuzzy classification tasks can improve classification re-
sults significantly when compared to MFPC. The paper concludes with Sect. 5
and provides an outlook on further research.

2 Modified Fuzzy Pattern Classifier

A hardware optimized derivate of Bocklisch’s Fuzzy-Pattern-Classifier (FPC) [2]
is the Modified-Fuzzy-Pattern-Classifier (MFPC), which can be efficiently imple-
mented as a pattern recognition system on a Field Programmable Gate Array
(FPGA), applicable in high-speed industrial applications [4]. Here, its properties
shall be briefly introduced. For details, we refer to [4] and [6].

The hardware efficient membership function used for the MFPC is Eichhorn’s
parameterisable unimodal potential function [10] defined as

μMFPC (m,p) = 2−d(m,p) ∈ [0, 1] with d (m,p) =
(

|m−S|
C

)D

, (1)

where p = (S,C,D) is a parameter vector defining the membership function’s
properties, namely mean value (S), width (C), and steepness of its edges (D).
d (m,p) is the distance measure of the inspected feature m with regard to the
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Fig. 1. Sample MFPC membership function at D = 2 and pCe = 0 (solid). The left
and right plots show changes (dashed → dash-dotted) with increasing pCe and D,
respectively. The vertical dotted line shows respective S ± C, the bold-dotted line S.

properties of the membership function, i. e. how far is the measured feature m
away from its mean value S. A sample MFPC membership function is depicted
in Fig. 1.

The MFPC membership function’s parameters S and C are obtained auto-
matically during a learning phase after extracting all regarded features m from
N typical members of a class by [3] S = Δ + mmin, C = (1 + 2pce) · Δ, where
pce ∈ [0, 1] is called percental elementary fuzziness and defines an arbitrary,
user-defined width adjustment factor, and where mmax = maxN

i=1mi, mmin =
minN

i=1mi, Δ = mmax−mmin
2 . The integer-valued parameterD is chosen arbitrar-

ily, typically as a power of 2 to keep calculating the distance measure d (m,p)
hardware-efficient [3].

The MFPC aggregation of M different features is expressed by

hMFPC (m,P) = 2−
1

M

∑M
i=1 di(mi,pi), with di (mi,pi) =

(
|mi−Si|

Ci

)Di

, (2)

where m is a vector of feature values mi and P a matrix of parameter vectors pi,
parameterising each membership function belonging to a feature mi. It is proved
in [6] that the membership functions are aggregated using the well-known geo-
metric mean aggregation operator, which is a fuzzy averaging operator. Since (2)
can be rewritten to

hMFPC (m,P) =
(∏M

i=1 2−di(mi,pi)
) 1

M

=
(∏M

i=1 μMFPC,i(mi,pi)
) 1

M

,

it is possible to use any other fuzzy membership function instead of μMFPC for
existing MFPC applications [6]. μMFPC’s parameters D and pce are not deter-
mined automatically and left to the user. An appropriate substitute of μMFPC,
which is parameterised completely automatically (or at least with a smaller num-
ber of free parameters) and yields optimal performances, was therefore searched
for and found in the Probabilistic MFPC membership function. This approach
is presented in the following.
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3 Probabilistic MFPC Membership Function

To learn a fuzzy membership function automatically, Random Fuzzy Variables
(RFV) can be applied [11], but this approach has disadvantages towards high-
speed real-time applications. The Probabilistic MFPC (PMFPC) membership
function approach we present here is able to preserve real-time demands (exper-
iments revealed that the parameterisation is executed one order of magnitude
faster than the RFV approach) while producing an optimal data set representa-
tion by incorporating an estimated probability distribution of the data.

The PMFPC approach is based on a generalised MFPC membership function

μPMFPC (m,p) = 2−ld( 1
B )d(m,p) ∈ [0, 1] with d (m,p) =

(
|m−S|

C

)D

, (3)

where B ∈ (0, 1] is the class boundary membership parameter, i. e. defining the
membership function’s value at m = S ± C: μPMFPC (S ± C,p) = B. This
parameter was actually already introduced by Bocklisch in his Fuzzy-Pattern-
Classifier definition [2]. D and B are automatically parameterised in the PMFPC
approach. pce is yet not automated to preserve the possibility of adjusting the
membership function slightly without needing to learn the membership functions
from scratch. The algorithms presented in this paper for automatically parame-
terising parametersD andB are inspired by former approaches: Bocklisch as well
as Eichhorn developed algorithms which allow obtaining a value for the (MFPC)
potential function’s parameter D automatically, based on the used training data
set. Bocklisch also proposed an algorithm for the determination of B. For details
we refer to [2] and [10]. However, these algorithms yield parameters that do not
fulfil the constraints connected with them (cf. Sect. 3.1 and 3.2) in all practical
cases. Hence, we propose a probability theory-based alternative described in the
following.

3.1 Automatically Parameterising the Steepness of the Edges

Bocklisch formulated constraints for D so the resulting membership function
appropriately describes the data set for which the membership function is cre-
ated [2]. He demands (i) 2 ≤ D ≤ 20; (ii) if the objects in the data set are uni-
formly distributed, the membership function should be sharp-edged (D = 20);
(iii) in case of an accumulation of objects at the outer boundaries, this distribu-
tion is represented by a sharp membership function as well (D = 20); and (iv)
an inner accumulation of objects should generate a fuzzy membership function,
thus D → 2. These constraints are visualised in Fig. 2, showing ten distributed
data points Xi and the resulting membership function μ(x) in accordance to the
aforementioned constraints. Bocklisch’s and Eichhorn’s algorithms adjust D af-
ter comparing the actual distribution of objects to a perfect uniform distribution.
However, the algorithms tend to change D for every (small) difference between
the actual distribution and a perfect uniform distribution. This explains why
both algorithms do not fulfil the constraints when applied to random uniform
distributions.
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Fig. 2. Distributions of Xi (bold dots) and their corresponding membership functions

We actually stick to the idea of adjusting D with respect to the similarity
of the actual distribution compared to an artificial, ideal uniform distribution,
but we use probability theoretical concepts. Our algorithm basically works as
follows: At first, the empirical cumulative distribution function (ECDF) of the
data set under investigation is determined. Then, the ECDF of an artificial
perfect uniform distribution in the range of the actual distribution is determined,
too. The similarity between both ECDFs is expressed by its correlation factor
which is subsequently mapped to D by a parameterisable function.

Determining the Distributions’ Similarity. Consider a sorted vector of n
feature values m = (m1,m2, . . . ,mn) with m1 ≤ m2 ≤ . . . ≤ mn, thus mmin =
m1 and mmax = mn. The corresponding ECDF Pm(x) is determined by Pm(x) =
|m̃|
n with m̃ = (mi|mi ≤ x ∀i ∈ INn), where |x| denotes the number of elements

in vector x and INn = [1, 2, . . . , n]. The artificial uniform distribution is created
by equidistantly distributing n values ui, hence u = (u1, u2, . . . , un) with ui =
m1 +(i− 1) · mn−m1

n−1 . Its ECDF Pu(x) is determined analogously by substituting
m with u. In the next step, the similarity between both distribution functions
is computed by calculating the correlation factor [12]

c =
∑k

i=1(Pm[xi]−Pm)(Pu[xi]−Pu)√∑k
i=1(Pm[xi]−Pm)2∑k

i=1(Pu[xi]−Pu)2 ,

where Pa is the mean value of Pa(x), computed as Pa = 1
k

∑k
i=1 Pa[xi]. c’s

properties can be found in [12]. It is actually the empirical correlation coefficient,
demanding sampled data to be determined, necessarily sampled at the same
locations xi. Since Pm(x) cannot be predicted, it seems to be appropriate to
sample at k equidistantly spaced locations. k is determined by k = 10�log10 n�+1,
but at least k = 50. This guarantees that the functions are sampled at not less
than five times as many sampling points as feature values are available. The
equidistant locations are determined as xi = m1 + (i− 1) · mn−m1

k−1 ∀i ∈ INk.
The correlation factor must now be mapped to D while fulfilling Bocklisch’s

constraints on D. Therefore, the average influence α(D) of the parameter D on
the membership function μMFPC, which is the base for μPMFPC, is investigated
to derive a mapping based on it. αD(x) is determined by taking ∂

∂DμMFPC(x,D)
with x = m−S

C , x > 0:
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αD(x) = ∂
∂DμMFPC(x,D) = ∂

∂D 2−xD

= ln(2)
(
−2−xD

)
xD ln(x).

The locations x represent the distance to the membership function’s mean value
S, hence x = 0 is the mean value itself, x = 1 is the class boundary S + C,
x = 2 twice the class boundary and so on. The average influence of D on the
membership function is evaluated for −1 ≤ x ≤ 1: This interval bears the most
valuable information since all feature values of the objects in the training data
set are included in this interval, and additionally those of the class members
are expected here during the classification process, except from only a typi-
cally neglectable number of outliers. Anyway, the range of x must be necessarily
bounded since the average influence of D on the membership function, namely
α(D) = 1

xr−xl

∫ xr

xl
αD(x) dx, is computing αD(x)’s mean value along x. But since

limx→∞ αD(x) = 0 ∀D, integration of αD(x) over IR would yield α(D) = 0 ∀D,
which is not true for that range of x where the majority of objects is present.
The mapping of D : c → [2, 20], which is derived in the following, must take
D’s average influence into consideration. A graphical representation of α(D) is
shown in Fig. 3 for the range 2 ≤ D ≤ 20, which is actually the only of interest.

Mapping the Distribution’s Similarity to the Edge’s Steepness. In the
general case, the correlation factor c can take values from the interval [−1, 1],
but when evaluating distribution functions, the range of values is restricted to
c ∈ [0, 1], which is because probability distribution functions are monotonically
increasing. This holds for both distributions, Pm(x) as well as Pu(x). It follows
c ≥ 0. The interpretation of the correlation factor is straight forward. A high
value of c means that the distribution Pm(x) is close to a uniform distribution.
If Pm(x) actually was a uniform distribution, c = 1 since Pm(x) = Pu(x). Ac-
cording to Bocklisch, D should take a high value here. The more Pm(x) differs
from a uniform distribution, the more c → 0, the more D → 2. Hence, the
mapping function D(c) must necessarily be an increasing function with taking
the exponentially decreasing average influence of D on the membership function
α(D) into consideration (cf. Fig. 3). An appropriate mapping D : c → [2, 20] is
an exponentially increasing function which compensates the changes of μMFPC
with respect to changes of c. While big changes in small c values result in minor

2 8 14 20
0

0.03

0.06

D

α
(D

)

Fig. 3. Average influence of the parameter D on μMFPC with respect to D
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changes of D, implying only a small change of the membership function, D in-
creases rapidly for big correlation factors, not affecting the membership function
strongly. We suggest the following heuristically determined exponential function,
which achieved promising results during experiments (cf. Sect. 4):

D(c) = 19c2q

+ 1 ⇒ D(c) ∈ [2, 20], (4)

where q is an adjustment parameter. This formulation guarantees thatD ∈ [2, 20]
∀c since c ∈ [0, 1]. Using the adjustment parameter q, D is adjusted with respect
to the aggregation operator used to fuse all n membership functions representing
each of the n features. Each fuzzy aggregation operator behaves differently. For
a fuzzy averaging operator h(a), Dujmović’ introduced the objective measure of
global andness ρg (for details cf. [13,6]). Assuming q = 1 in the following cases,
it can be observed that, when using aggregation operators with a global andness
ρ

h(a)
g → 0, the aggregated single, n-dimensional membership function is more

fuzzy than that one obtained when using an aggregation operator with ρh(a)
g → 1,

where the resulting function is sharp. This behaviour should be compensated
by adjusting D in such a way, that the aggregated membership functions have
comparable shapes: at some given correlation factor c, D must be increased if ρg

is high and vice versa. This is achieved by mapping the aggregation operator’s
global andness to q, hence q : ρg → IR. Our suggested solution is a direct mapping
of the global andness to the adjustment parameter q, hence q(ρg) = ρg ⇒ q ∈
[0, 1]. Mapping (4) is now completely defined and consistent with Bocklisch’s
constraints and our observations regarding the aggregation operator’s andness.

3.2 Determining the Class Boundary Membership Parameter

In addition to the determination of D, we present an algorithm to automatically
parameterise the class boundary membership B. This parameter is a measure for
the membership μMFPC(m,p) at the locations m ∈ {S + C, S − C}. Typically,
the class boundary membership is assigned a value of B = 0.5. The algorithm
for determining B is based on the algorithm Bocklisch developed [2], but was not
adopted as it stands since it has some disadvantages if this algorithm is applied
to distributions with a high density especially on the class boundaries. Due to
space limitations, this cannot be presented here.

When looking at μMFPC, the following two constraints on B can be derived:
(i) The probability of occurrence is the same for every object in uniform dis-
tributions, also on the class boundary. Here, B should have a high value. (ii)
For distributions where the density of objects decreases when going towards the
class boundaries B should be assigned a small value, since the probability that
an object occurs at the boundary is smaller than in the centre.

Hence, for sharp membership functions (D → 20) a high value for B should be
assigned, while for fuzzy membership functions (D → 2) the value of B should
be low. B = f(D) must have similar properties like α(D), meaning B changes
quickly where α(D) changes quickly and vice versa. We adopted Bocklisch’s
suitable equation for computing the class boundary membership [2]:
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B =
1

1 +
(

1
Bmax

− 1
)
·
(

Dmax
D

)1+ 1
q

,

where Bmax ∈ (0, 1) stands for the maximum possible value of B with a proposed
value of 0.9, Dmax = 20 is the maximum possible value of D and q is identical
in its meaning and value to q as used in (4).

3.3 An Asymmetric PMFPC Membership Function Formulation

A data set may be represented better if the membership function was formulated
asymmetrically instead of symmetrically as is the case with (3). This means

μPMFPC (m,p) =

⎧⎨⎩2−ld
(

1
Bl

)( |m−S|
Cl

)Dl

, m ≤ S
2−ld( 1

Br
)( |m−S|

Cr
)Dr

, m > S
, (5)

where S = 1
M

∑M
i=1mi,mi ∈m is the arithmetic mean of all feature values. If S

was computed as introduced in (2), the resulting membership function would not
describe the underlying feature vector m appropriately for asymmetrical feature
distributions. A new computation method must therefore also be applied to
Cl = S−mmin + pCe · (mmax−mmin) and Cr = mmax−S+ pCe · (mmax−mmin)
due to the change to the asymmetrical formulation. To compute the remaining
parameters, the feature vector must be split into the left side feature vector
ml = (mi|mi ≤ S) and the one for the right side mr = (mi|mi ≥ S) for all mi ∈
m. They are determined following the algorithms presented in the preceding
Sections, but using only the feature vector for one side to compute this side’s
respective parameter.

4 Experimental Results on PMFPC

In order to evaluate the classification performance of our probabilistic approach
on parameterising the fuzzy membership functions, the same data set is used to
learn both the original MFPC membership function μMFPC and also μPMFPC.
This data set “OCR” (the same as is used in [6]) was compiled in an industrial op-
tical character recognition application and consists of both a training and a test
data set. The test data set consists of 746 objects with each 17 features assigned
to twelve classes. The dedicated training data set used to learn the membership
function comprises 17 images per class, hence 204 images. This represents a typ-
ical situation occurring in classification applications, where the training data set
from which a robust classifier is to be derived is very small. For details about the
data set we refer to [6]. The subsequent classification is executed with different
aggregation operators by using the classifier framework presented in [6]. Here, the
incorporated aggregation operators are Yager’s family ofOrdered Weighted Aver-
aging (OWA) [14] and Larsen’s family of Andness-directed Importance Weighting
Averaging (AIWA) [15] operators (applied unweighted here)—which both can be
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adjusted in their andness degree—and additionally MFPC’s original geometric
mean (GM). Due to space limitations, we refer to [14] and [15] for the defini-
tion of OWA and AIWA operators. As a reference, the data set is also classified
using a Support Vector Machine (SVM) with a Gaussian radial basis function
(RBF). Since SVMs are capable of distinguishing between only two classes, the
classification procedure is adjusted to pairwise (or one-against-one) classification
according to [16]. Our benchmarking measure is the classification rate r+ = n+

N ,
where n+ is the number of correctly classified objects and N the total number of
objects that were evaluated. The best classification rates at a given aggregation
operator’s andness ρg are summarised in the following Table 1, where the best
classification rate per group is printed bold.

Table 1. “OCR” classification rates r+ for each aggregation operator at andness de-
grees ρg with regard to membership function parameters D and pCe

Aggregation μPMFPC μMFPC
Operator D = 2 D = 4 D = 8 D = 16

ρg pCe r+ pCe r+ pCe r+ pCe r+ pCe r+
0.5000 AIWA 0.255 93.70% 0.370 84.58% 0.355 87.67% 0.310 92.36% 0.290 92.90 %

OWA 0.255 93.70% 0.370 84.58% 0.355 87.67% 0.310 92.36% 0.290 92.90 %
0.6000 AIWA 0.255 93.16% 0.175 87.13% 0.205 91.02% 0.225 92.36% 0.255 92.23 %

OWA 0.255 93.57% 0.355 84.58% 0.365 88.47% 0.320 92.63% 0.275 92.76 %
0.6368 GM 0.950 84.45% 0.155 81.77% 0.445 82.17% 0.755 82.44% 1.000 82.44 %

AIWA 0.245 91.42% 0.135 85.52% 0.185 90.08% 0.270 89.81% 0.315 89.95 %
OWA 0.255 93.57% 0.355 84.72% 0.355 88.74% 0.305 92.63% 0.275 92.76 %

0.7000 AIWA 1.000 83.65% 0.420 82.71% 0.790 82.57% 0.990 82.31% 1.000 79.22 %
OWA 0.280 93.57% 0.280 84.85% 0.310 89.01% 0.315 92.76% 0.275 92.63 %

The best classification rates for the “OCR” data set are achieved when the
PMFPC membership function is incorporated, which are more than 11 % better
than the best incorporating μMFPC. The Support Vector Machine achieved a
best classification rate of r+ = 95.04 % by parameterising its RBF kernel with
σ = 5.640, which is 1.34 % or 10 objects better than the best PMFPC approach.

5 Conclusion and Outlook

Based on the MFPC membership function, we developed and presented a prob-
abilistic parameterisation method, which automatically learns the membership
functions based on a given set of training data. This method yields membership
functions which outperform any approach using μMFPC as a fuzzy classifier’s
membership functions and provides a performance similar to a Support Vector
Machine for the evaluated sample data set. Nevertheless, the presented approach
is not intended to serve as a SVM substitute, but to show its possible perfor-
mance compared to a state-of-the-art classification technique while providing
robust results for small training data sets and preserving real-time demands as
well as hardware-implementability. All results obtained must be seen in the scope
of the test case, general statements cannot be derived. Still more data sets need
to be classified to see if the trends hold.
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Abstract. We consider linguistic summaries of time series used for an
analysis of the past performance of investment (mutual) funds to help
make future investment decisions. We use results from psychology, cog-
nitive sciences and human decision making, which indicate a crucial role
of time in the sense that means and ends, like decisions and outcomes,
have a varying relevance and impact depending on the time when they
occur, notably that what occurs in a more immediate past is more rele-
vant and meaningful that what has occurred earlier. We propose to take
into account some of psychological findings related to the importance of
time by using different protoforms of linguistic summaries, temporal lin-
guistic summaries, a substantial extension of the protoforms employed
in our previous works. We consider two types of temporal protoforms ex-
emplified by “Recently, among all segments, most are slowly increasing”,
and exemplified by “Initially, among all short segments, most are quickly
decreasing”. We compare them with the traditional ones, and present
examples of their use for the analyses of investment funds.

1 Introduction

This paper is a continuation of our previous works (cf. Kacprzyk, Wilbik,
Zadrożny [1,2,3] or Kacprzyk, Wilbik [4,5,6]) which deal with the problem of
how to effectively and efficiently support a human decision maker in making de-
cisions concerning investments in some financial, notably in investment (mutual)
funds. Decision makers are here basically interested in future gains/losses. How-
ever, we follow the decision support paradigm, that is, assume primarily the user
autonomy and a need to support, not replace, him/her. We are not concerned
with forecasting the future daily prices.

This information is related to the history, or past, and this implies some
problems. Basically, from our perspective, in all investment decisions the future
is what really counts, and the past is irrelevant. But, the past is what we know,
and the future is (completely) unknown. Behavior of the human being is to a
large extend driven by his/her (already known) past experience. People usually
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tend to assume that what has happened in the past will also happen (to some,
maybe large extent) in the future. By the way, this is the underlying assumption
behind the statistical methods too! That attitude clearly implies that the past
can be employed to help the human decision maker find a good solution. We
follow here this path, i.e. we present a method to subsume the past, to be more
specific the past performance of an investment (mutual) fund, by presenting
results in a very human consistent way, using natural language statements.

This line of reasoning has often been articulated by many well known in-
vestment practitioners, and one can quote here some more relevant opinions. In
any information leaflets of investment funds, one may always notice a disclaimer
stating that “Past performance is no indication of future returns” which is true.
However, on the other hand, for instance, in a well known posting “Past Perfor-
mance Does Not Predict Future Performance” [7], they state something that may
look strange in this context, namely: “. . . according to an Investment Company
Institute study, about 75% of all mutual fund investors mistakenly use short-
term past performance as their primary reason for buying a specific fund”. But,
in an equally well known posting “Past performance is not everything” [8], they
state: “. . . disclaimers apart, as a practice investors continue to make investments
based on a scheme’s past performance. To make matters worse, fund houses are
only too pleased to toe the line by actively advertising the past performance of
their schemes leading investors to conclude that it is the single-most important
parameter (if not the most important one) to be considered while investing in a
mutual fund scheme”.

As strange as this may be, we may ask ourselves why it is so. Again, in a well
known posting “New Year’s Eve: Past performance is no indication of future
return” [9], they say “. . . if there is no correlation between past performance
and future return, why are we so drawn to looking at charts and looking at
past performance? I believe it is because it is in our nature as human beings
. . . because we don’t know what the future holds, we look toward the past . . . ”.

And, continuing along this line of reasoning, we can find many other exam-
ples of similar statements supporting our position. For instance, Myers [10] says:
“. . . Does this mean you should ignore past performance data in selecting a mu-
tual fund? No. But it does mean that you should be wary of how you use that
information . . .Lousy performance in the past is indicative of lousy performance
in the future. . . ”. And, further: Bogle [11] states: “... there is an important role
that past performance can play in helping you to make your fund selections.
While you should disregard a single aggregate number showing a fund’s past
long-term return, you can learn a great deal by studying the nature of its past
returns. Above all, look for consistency.”. In [12], we find: ”While past perfor-
mance does not necessarily predict future returns, it can tell you how volatile a
fund has been”.

We can quote more, and basically all of them emphasize the importance of
looking at the past to help make future decisions, and also generally advocate a
more comprehensive look not focused on single values but a very essence of past
behavior and returns.
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We have followed this line of reasoning in our past papers (cf. Kacprzyk,
Wilbik, Zadrożny [1,2,3] or Kacprzyk, Wilbik [4,5,6]), i.e. to try to find a hu-
man consistent, fuzzy quantifier based scheme for a linguistic summarization of
the past in terms of various aspects of how the time series representing daily
quotations of the investment fund(s) behave. However, we have mainly concen-
trated on a sheer absolute performance, i.e. the time evolution of the quotations
themselves. This may be relevant, and sometimes attractive to the users who
can see a summary of their gains/loses and their temporal evolution. One can
also use a maybe more realistic approach to take into account benchmarks of
the particular funds as points of departure which does not change the essence.

Though the use of linguistic data summaries of past performance of the time
series representing mutual fund quotations does take into account the importance
(or “value”) of time, in this paper we will go deeper into this issue by using
some results from psychology, cognitive sciences and human decision making.
Basically, we will employ some results by Ariely and Zakay [13] who consider
the role of time in decision making.

In our case, those psychological analyses will serve the purpose of suggesting,
and/or justifying a new types of protoforms of linguistic summaries of time
series. Basically, in our recent works (cf. Kacprzyk, Wilbik, Zadrożny [1,2,3] or
Kacprzyk, Wilbik [4,5,6]) we have used the following protoforms of the linguistic
summaries of times series: “Among all y’s, Q are P ”, exemplified by “among all
segments (of the time series) most are slowly increasing”, and “Among all R
segments, Q are P ”, exemplified by “among all short segments almost all are
quickly decreasing”.

However, since in our case the analysis of time series is a highly human focused
activity because its very purpose is to provide a human decision maker with some
support for making (future) decision, we should take into account some inherent
characteristics of time series and their evaluations that are consistent with the
human perception of their relevance for the decision making process. One of the
crucial aspects in this respect, which will be considered here is the importance
of time in the sense that means and ends, like decisions and outcomes, have a
carrying relevance and impact depending on the time moment when they oc-
cur. Basically, in virtually all cases what occurs in a more immediate past is
more relevant and meaningful that what has occurred earlier. This temporal re-
lationships change both the decisions and their evaluation as has been shown in
psychology (cf. Ariely and Zakay [13] or Rachlin [14]). Among many approaches
one can mention, for instance, a so called temporal construal theory by Liberman
and Trope [15] who have shown that options are evaluated differently depending
on time instants they come into question. They introduce the two main char-
acteristics of options: desirability, which refers to long time wishes or intentions
that are far away of their implementation of a decision option, and feasibility,
which refers to a short term, close to the implementation characteristics. One
can mention other works concerned with similar issues. It should be noted that
this fact has already been reflected in (dynamic, or multistage) decision making
and control models in which discounting is widely used.
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In our context, we propose to take into account some of those psychologi-
cal findings related to the importance of time by using different protoforms of
linguistic summaries of times series, called temporal linguistic summaries. We
consider two types of temporal protoforms: “ET among all y’s Q are P ”, exem-
plified by “Recently, among all segments, most are slowly increasing”, and “ET

among all Ry’s Q are P ”, exemplified by “Initially, among all short segments,
most are quickly decreasing”; they both go beyond the classic Zadeh’s proto-
forms. We will present formally those new temporal protoforms, compare them
with the traditional ones, and present examples of their use.

2 Linguistic Summaries of Time Series

A linguistic summary of data (database) is a (usually short) sentence (or a few
sentences), that captures the very essence of the data, that is numeric, large and
because of its size not comprehensible for human users. We use here Yager’s [16]
basic approach, and a linguistic summary includes: a summarizer P , a quantity
in agreement Q, i.e. a linguistic quantifier, truth (validity) T of the summary
and optionally, a qualifier R. Thus, basically the core of a linguistic summary is
a linguistically quantified proposition in the sense of Zadeh [17] which may be
written, respectively as

Qy′s are P QRy′s are P (1)

They may be exemplified, respectively by: “Most of employees earn low salary”,
T =0.7, or “Most of young employees earn low salary”, T =0.82.

In our approach we focus on trends, linear segments extracted from the time
series, obtained via using a piecewise linear segmentation method (cf. [18,19]).
We consider the following three features of (global) trends in time series: (1)
dynamics of change, (2) duration, and (3) variability. By dynamics of change
we understand the speed of change of the consecutive values of time series. It
may be described by the slope of a line representing the trend, represented by a
linguistic variable. Duration is the length of a single trend, and is also represented
by a linguistic variable. Variability describes how “spread out” a group of data
is. We compute it as a weighted average of values taken by some measures used
in statistics: (1) the range, (2) the interquartile range (IQR), (3) the variance,
(4) the standard deviation, and (5) the mean absolute deviation (MAD). This
is also treated as a linguistic variable.

For practical reasons for all we use a fuzzy granulation (cf. Bathyrshin at
al. [20,21]) to represent the values by a small set of linguistic labels as, e.g.:
increasing, slowly increasing, constant, slowly decreasing, decreasing, which are
equated with fuzzy sets.

For clarity and convenience we employ Zadeh’s [22] protoforms for dealing
with linguistic summaries [23]. A protoform is defined as a more or less abstract
prototype (template) of a linguistically quantified proposition. We have two types
of protoforms of linguistic summaries of trends:
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– a simple (short) form:

Among all segments, Q are P (2)

e.g.: “Among all segments, most are slowly increasing”.
– an extended form:

Among all R segments, Q are P (3)

e.g.: “Among all short segments, most are slowly increasing”.
The quality of linguistic summaries can be evaluated in many different ways

(cf. [4,5,6]). However the basic criterion is the truth value (a degree of truth
or validity), introduced by Yager in [16]. It describes the degree of truth (from
[0, 1]) to which a linguistically quantified proposition equated with a linguistic
summary is true.

Using Zadeh’s calculus of linguistically quantified propositions [17] it is cal-
culated in dynamic context using the same formulas as in the static case. Thus,
the truth value is calculated for the simple and extended form as, respectively:

T (Among all y’s, Q are P ) = μQ

(
1
n

n∑
i=1

μP (yi)

)
(4)

T (Among all Ry’s, Q are P ) = μQ

(∑n
i=1 μR(yi) ∧ μP (yi)∑n

i=1 μR(yi)

)
(5)

where ∧ is the minimum operation (or, for instance, a t-norm, cf. Kacprzyk,
Wilbik and Zadrożny [24]). It seems that the minimum operation is a good
choice since it can be easily interpreted and the numerical values correspond to
the intuition.

3 Temporal Protoforms

We can extend our protoforms given in (2) and (3) by adding a temporal ex-
pression ET like: “recently”, “in the very beginning” or “in May 2010”, “initially”,
. . . . The temporal protoforms have the following forms:
– a simple (short) form:

ET among all segments, Q are P (6)

e.g.: “Recently among all segments, most are slowly increasing”.
– an extended form:

ET among all R segments, Q are P (7)

e.g.: “Initially among all short segments, most are slowly increasing”.
To evaluate the quality of those summaries, the most important quality cri-

terion is again the truth value. The computation of truth values of temporal
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summaries is very similar to the previous case. We only need to consider tem-
poral expression as an additional external qualifier, as the temporal expression
limit the universe of interest, only to the trends (segments) that occur on the
time axis described by a fuzzy set modeling expression ET . We compute the
proportion of segments in which “trend is P” and occurred in ET to those that
occurred in ET . Next we compute the degree to which this proportion is Q.

Truth value of the simple temporal protoform (6) is computed as:

T (ET among all y’s, Q are P ) = μQ

(∑n
i=1 μET (yi) ∧ μP (yi)∑n

i=1 μET (yi)

)
(8)

where μET (yi) is degree to which a trend (segment) occurs during the time
span described by ET . Similarly we compute the truth of the extended temporal
protoform (7) as:

T (ET Among all Ry’s, Q are P ) = μQ

(∑n
i=1 μET (yi) ∧ μR(yi) ∧ μP (yi)∑n

i=1 μET (yi) ∧ μR(yi)

)
(9)

A natural question emerges, how to compute μET (yi). Let μET (t) be a mem-
bership function of a fuzzy set representing a linguistic variable ET . We assume
that the considered time span is normalized, i.e. t ∈ [0, 1], the first observation
is made for t = 0 and the last for t = 1. Let us consider a segment yi, starting
at time a and terminating at time b, 0 ≤ a < b ≤ 1. Then

μET (yi) =
1

b− a

∫ b

a

μET (t)dt (10)

and we can interpret this value as the average membership degree of ET in [a, b].
For clarity, in this paper – in which we introduce a new concept of tem-

poral protoforms – only the truth value is introduced. In many cases this is
not sufficient to differentiate between the summaries obtained and to improve
the accuracy of summary evaluation we have to use various quality criteria ex-
emplified by the degree of specificity, degree of appropriateness or measure of
informativeness. This issue will be considered in subsequent papers.

4 Numerical Results

The method proposed was tested on data on quotations of an investment (mu-
tual) fund that invests at least 50% of assets in shares listed at the Warsaw Stock
Exchange.

Data shown in Figure 1 were collected from January 2002 until the December
2009 with the value of one share equal to PLN 12.06 in the beginning of the
period to PLN 35.82 at the end of the time span considered (PLN stands for the
Polish Zloty). The minimal value recorded was PLN 9.35 while the maximal one
during this period was PLN 57.85. The biggest daily increase was equal to PLN
2.32, while the biggest daily decrease was equal to PLN 3.46. We illustrate the
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Fig. 1. Daily quotations of an investment fund in question

method proposed by analyzing the absolute performance of a given investment
fund, and not against benchmarks, for illustrativeness.

We obtain 362 extracted trends, with the shortest of 1 time unit only, and
the longest – 71 time units. We assume 3 labels only for each attribute: short,
medium and long for duration, increasing, constant and decreasing for dynamics
and low, moderate and high for variability. The use of linguistic values in the
summaries is clearly a reflection of a natural information granulation.

The summaries as presented in Section 2 are presented in Table 1. They are
ordered according to the truth value.

Table 1. Linguistic summaries

linguistic summary T
Among all low-variability y’s, most are short 1.0000
Among all decreasing y’s, almost all are short 1.0000
Among all increasing y’s, almost all are short 1.0000
Among all increasing y’s, most are low-variability 1.0000
Among all medium y’s, most are constant 1.0000
Among all short and decreasing y’s, most are low-variability 0.9834
Among all increasing y’s, most are short and low-variability 0.9819
Among all y’s, most are short 0.9718
Among all y’s, most are low-variability 0.9056
Among all moderate-variability y’s, most are short 0.8492
Among all constant y’s, most are low-variability 0.8085
Among all medium and constant y’s, most are low-variability 0.7785
Among all short and increasing y’s, almost all are low-variability 0.7657
Among all medium and low-variability y’s, almost all are constant 0.7601
Among all medium y’s, most are low-variability 0.7353

The temporal linguistic summaries describing the situation after the crisis
begun (i.e. after September 2007) are shown in Table 2.
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Table 2. Temporal linguistic summaries describing the situation after the crisis begun

linguistic summary T
After the crisis started among all y’s, almost all are short 1.0000
After the crisis started among all short y’s, most are low-variability 1.0000
After the crisis started among all low-variability y’s, almost all are short 1.0000
After the crisis started among all decreasing y’s, almost all are short 1.0000
After the crisis started among all short and decreasing y’s, most are low-
variability

0.9710

After the crisis started among all y’s, most are low-variability 0.9706
After the crisis started among all y’s, most are short and low-variability 0.8826
After the crisis started among all moderate-variability y’s, almost all are short 0.8150
After the crisis started among all increasing y’s, almost all are short and low-
variability

0.7465

After the crisis started among all constant y’s, almost all are short 0.7175

We may notice some differences between those descriptions. Summaries of the
whole time series use more often the word increasing than those describing the
crisis and latter time. Also if we compare length of the summaries, e.g. using the
following two summaries:

– Among all y’s, most are short, T = 0.9718
– After the crisis started among all y’s, almost all are short T =1.000

we notice that more short trends (segments) appear in the crisis time. In case
of variability, we can’t see much difference, as the variability is generally low.
Solution here could be adjusting the fuzzy sets describing the linguistic variables:
low, moderate and high or the use of other more detailed granulation.

Table 3. Temporal linguistic summaries for the initial stage

linguistic summary T
Initially among all y’s, almost all are constant 1.0000
Initially among all low-variability y’s, almost all are constant 1.0000
Initially among all long y’s, most are constant 1.0000
Initially among all medium y’s, most are constant 1.0000
Initially among all moderate-variability y’s, almost all are constant 1.0000
Initially among all long and low-variability y’s, most are constant 1.0000
Initially among all medium and low-variability y’s, most are constant 1.0000
Initially among all long and moderate-variability y’s, most are constant 1.0000
Initially among all short y’s, most are constant 1.0000
Initially among all long y’s, most are constant and low-variability 0.9501
Initially among all medium y’s, most are constant and low-variability 0.8213
Initially among all y’s, most are low-variability 0.8161
Initially among all y’s, most are constant and low-variability 0.8024
Initially among all y’s, majority are long 0.7089
Initially among all y’s, majority are long and constant 0.7089
Initially among all constant y’s, majority are medium 0.7022



444 J. Kacprzyk and A. Wilbik

For comparison, in Table 3 we show summaries from the initial stage of the
mutual fund, i.e. more or less two first years.

At the first glance we may see that those descriptions are different. In the
initial stage many trends were long, this word does not appears in the description
from the beginning of the crisis . Also the word constant occurs very often, and
there is no word about any increases or decreases. The only common thing
between those summaries is their low variability, but this can be caused by a
very coarse, three values granulation.

5 Concluding Remarks

Using results from from psychology, cognitive sciences and human decision mak-
ing, which clearly indicate a crucial role of time in the sense that means and
ends, like decisions and outcomes, have a varying relevance and impact depend-
ing on the time moment when they occur, notably that what occurs in a more
immediate past is more relevant and meaningful that what has occurred earlier,
we proposed different protoforms of linguistic summaries of times series, tem-
poral linguistic summaries, a substantial extension of the protoforms employed
in our previous works. We considered two types of temporal protoforms: “ET

among all y’s Q are P ”, exemplified by “Recently, among all segments, most are
slowly increasing”, and “ET among all Ry’s Q are P ”, exemplified by “Initially,
among all short segments, most are quickly decreasing”. We formally presented
those new temporal protoforms, compared them with the traditional ones, and
showed examples of their use for the analyses of investment funds.

As a possible future direction, we intend to more explicitly relate our model
to other findings in psychology and cognitive science.
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Abstract. Five papers have appeared in the last three years that propose differ-
ent fuzzy generalizations of Rand's classical comparison index for crisp cluster-
ing algorithms. We review the five generalizations, compare their complexities, 
and then give two numerical examples to compare their performance. Our  
extension (for the pairwise agreements) is O(n), while the other four generaliza-
tions are O(n2).  

Keywords: Cluster validity, Rand index, Fuzzy Rand Index. 

1   Introduction 

Let O={o1,…,on} denote n objects (fish, cigars, motorcycles, beers, etc.). When each 
object in O is represented by a (column) vector x, the set X = {x1,…,xn } ⊂ ℜ p is an 
object data representation of O. When each object in oi ∈ O has a physical label, O is 
a set of labeled data; otherwise, O is unlabeled.  Let integer c denote the number of 
classes, 1 < c < n. Clustering in unlabeled data is the assignment of one of four types 
of labels to each object in O. The label vectors of the objects are the columns of c-
partitions of O, which are sets of (cn) values {uik} that can be conveniently arrayed as 
(c ×n) matrices, say U = [uik]. The three sets are:  

Mpcn = U ∈ ℜ cn : uik ∈ [0,1]∀ i,k; 0 < uik ∀ i
k=1

n
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 = possibilistic c-partitions;     (1a) 

M fcn = U ∈ M pcn : uik = 1
i=1

c
∑ ∀ k

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 = fuzzy or probabilistic c-partitions;               (1b) 

Mhcn = U ∈ Mfcn : u ik ∈ {0,1}∀i,k{ } = crisp or hard c-partitions.                        (1c) 

It is convenient to have a single name for the set Mpcn−Mhcn , which contains the 

fuzzy, probabilistic, and possibilistic c-partitions of O. We call Mpcn−Mhcn  the soft c-

partitions of O. Clustering algorithms map X ⊂ ℜp or R ⊂ ℜnn  Mpcn. Let CP = 
{Ui: 1 ≤ i ≤ N} denote N different candidate partitions of a fixed object set O that 
may arise as a result of clustering (X or R) with one algorithm at various values of its 
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parameters; or more generally, with different algorithms, each with its own parame-
ters. Which U ∈ CP best explains and represents the (unknown) structure in O? This 
article is about one method for answering this question. Many other methods are 
nicely discussed in [1-4]. 

One group of methods for this problem use comparison indices, s(U,V). There are 
various ways to use such indices [5, 6]. The only application we consider in this note 
is when U is an algorithmically obtained partition, and V is a reference partition that 
purports to represent the "true cluster structure" in O. In this case s(U,V) measures the 
extent to which U's in CP recover or retrieve the "true" clusters in O, and hence, the 
sizes of U and V are equal. 

We never have an external reference partition in a real clustering situation which, 
by definition, involves unlabeled data. So, why do this at all? Well, the only way you 
can evaluate any clustering algorithm before using it in a real situation is to see how 
well it recovers "true but unknown" reference partitions. If nothing else, good recov-
ery rates on data with "known" cluster structure at least provide some psychological 
reassurance that the clustering algorithm can sometimes recover "good clusters". 

2   Comparison Indices and the Contingency Table for (U,V) 

Let U ∈ M hrn  and V ∈ M hcn  be crisp partitions of O. U and V need not possess the 
same number of clusters, r ≠ c. The four classical combinations for pairs of objects 
from O × O  in clusters of U and V are: (i) paired in U and V; (ii) not paired in U nor 
in V; (iii) paired in V but not in U; and (iv) paired in U but not in V [6, p. 194]. The 
comparison of U to V with a similarity measure s begins with the r × c contingency 
matrix N = UVT shown in Table 1 that contains counts of the number of occurrences 
of each of the four types over the n(n-1)/2 distinct, unordered pairs in O × O . Entry 

ijn  is the number of objects common to classes iU  and jV . 

Table 1. The contingency matrix N 

  Partition V: Vj = row j of V  

 Class         V1    V2     …    Vc Sums 

Partition U 

     Ui = row i  
             of U   

U1
U2

Ur

 

 

N =

n11 n12 n1c
n 21 n 22 n 2c

n r1 n r2 nrc

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
= UV T  

 

n1•
n2•

nr•

 

 Sums            n•1 n•2 n•c  n•• = n  
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The building blocks of many similarity measures for s(U,V) are the four equations 
(2a)-(2d). These four equations simply count the number of occurrences amongst the 
n(n-1)/2 pairs of each of the four types of unordered pairs. 

     a = 1

2
nij(nij −1)

j=1

c
∑

i=1

r
∑ ; number paired in U and V;                                                 (2a) 

 

d = 1
2

n2 + nij
2

j=1

c
∑

i=1

r
∑ − ( ni•

2

i=1

r
∑ + n• j

2

j=1

c
∑ )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; number paired in neither U nor V;            (2b) 

 

b = 1
2

n•j
2

j=1

c
∑ − nij

2

j=1

c
∑

i=1

r
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; number paired in V, not U;                                             (2c) 

 

c = 1
2

ni•
2

i=1

r
∑ − nij

2

j=1

c
∑

i=1

r
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; number paired in U, not V.                                             (2d) 

The sums (a+d) and (b+c) are usually interpreted, respectively, as (the total number 
of) agreements and disagreements between U and V. Anderson et al. [17] tabulate a 
[non-exhaustive] list of 14 coefficients that have been proposed for s(U,V) based on 
functions of a, b, c and d; Sokal and Sneath [8] list many others. In this note, the only 
index we consider is Rand's index, the classical form of which is 

                                        sr (U,V) = (a + d) (a + b + c + d) .          (3) 

3   Generalizing sr(U,V) When U and/or V Are Soft Partitions 

Rand's index first appeared in Sokal and Michener in 1958, where it was called a 
simple matching coefficient [8]. Rand reintroduced this function in 1971 [5], and the 
literature has consistently referred to it as "Rand's Index" since then. The resurgence 
of Rand's index in bioinformatics [9-12] has renewed interest in generalizing it, along 
with some of the other comparison indices based on the elements in Table 1, to vari-
ous non-crisp cases. Specifically, we mention the papers (in chronological order) of 
Campello [13, 2007], Frigui et al. [14, 2007], Brower [15, 2009], Hullermeier and 
Rifqi [16, 2009], and Anderson et al. [17, 2010]. All of these papers generalize the 
Rand index to the case of U and/or V being fuzzy partitions of the n objects. Next, we 
briefly review the method used to generalize (3) in each of these five articles. 

3.1   Campello [13] 

Campello presents a method for fuzzifying the indices of Rand, Jaccard, Fowlkes-
Mallow, Hubert and (one version of) the adjusted Rand. Campello's scheme is based 
on writing equations (2) in an equivalent form using (cardinalities of) intersections of 
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the crisp subsets of O×O corresponding to each of the four totals, and then replacing 
the crisp sets with fuzzy ones. Campello's generalization of equation (2a) is: 

                  

( ) ( )∑ ∑
−

= = == ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧∨∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∧∨=

1i

1j

n

2i
kjki

c

1k
kjki

r

1kCampello

vvuu  a  ;                   (4) 

3.2   Frigui et al. [14] 

These authors present generalizations of the Rand, Jaccard, Fowlkes-Mallow and 
Hubert indices. They address only the special case where U and V are both c × n 
partitions of O and V is a crisp reference partition. Instead of using the elements from 
Table 1 to compute equations (2), they first convert U and V into n × n coincidence 
matrices, U* = UT U;  V* = VT V. Frigui et al.'s generalization of equation (2a) is:  
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If product is used for t-norm and sum is used in place of t-conorm, then Frigui’s ap-
proach is in effect Campello’s [15]. However, Campello’s approach is more general. 
It applies to the cases of fuzzy, probabilistic, and possibilistic U and/or V.  

3.3   Brouwer [15]  

Brouwer discusses another generalization of the Rand, a (third variant of) the adjusted 
Rand, and Jaccard's index. His approach is also based on formulating the two poten-
tially very large n × n (bonding) matrices, U* = UT U; V* = VT V.  However, instead 
of dot product for constructing bonding matrix terms, he instead uses cosine correla-

tion, i.e. )cos(u j
i

*
j,i μ= , where )cos( j

iμ  is the angle between vectors U i
T and U j . In the 

sequel, Ai and Aj denote the vectors corresponding to the i-th row and j-th column of 
any matrix A, and Ai ,A

j  is the dot product of these two vectors. Brouwer’s gener-

alization of equation (2a) is: 
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3.4   Hullermeier and Rifqi [16] 

These authors consider only the Rand index. They argue that Campello's fuzzy Rand 
index is in some sense defective because it is not a metric. They do not formulate their 
index in terms of equations (2a)-(2d). Instead, their generalization is guided by the 
fact that Rand's index counts the number of paired agreements (a+d) divided by the 
total number of possible pairs (a+b+c+d), and this leads them to a direct generaliza-
tion of the Rand index: 
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3.5   Anderson et al. [17]  

This paper provides generalizations for 14 comparison indices. It begins by forming 
the contingency matrix as N = UVT. Anderson et al. note that a modification is needed 
to accommodate the case when U and/or V are possibilistic. In the possibilistic case, 

we can have ∑
=

• >
r

1i
in n , or n>∑

=
•

c

1j
jn . One or both of the terms ∑

=
•

r

1i

2
in  and ∑

=
•

c

1j

2
jn  can 

make d at (2b) relatively large and negative. Depending on b at (2c) and c at (2d), the 
(soft) Rand index can result in sr(U,V) < 0 or >1. To remedy this, they scale N with 

φ = n/ ni•
i=1

r
∑ or ϕ = n/ n•j

j=1

c
∑ . Since ∑∑

=
•

=
• =

c

1j
j

r

1i
i nn , ϕ = φ . These authors base their 

generalization on N* = φUVT = [n/ ni•
i=1

r
∑ ]UVT . An advantage of this scaling is that 

when U and V are crisp, fuzzy or probabilistic partitions, φ=1, thus N* = N = UVT. 
This shows that ANY index based on only the elements of Table 1 will reduce to the 
original index when U and V are both crisp partitions of the n objects; and otherwise, 
they will be valid soft generalizations of those indices. Moreover, in the case of pos-
sibilistic partitions, the normalization produces index values in the range [0,1]. 
Anderson et al.'s generalization of (2a) using N* = φUVT  is: 
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4   Examples 

The following two examples compare the five fuzzy Rand indices in Sections 3.1-3.5. 
Candidate fuzzy partitions are generated by the fuzzy c-means (FCM, [1]) algorithm 
using the fcm function from the MATLAB Fuzzy Logic Toolbox with c = 2, 3,…,10, 
m = 2, maximum number of iterations MAXIT = 100, objective function error 
EPS=1e-5 and random partition initialization. Scatterplots of the two data sets, X1 
and X2, are shown in Figure 1.  

In data set X1, each cluster of 500 points is a sample from a mixture of c=6 
equiprobable Gaussian distributions in two dimensions. Means of the six component 
densities are: [20 20]T, [1 40]T, [20 70]T, [40 6]T, [40 30]T, and [60 50]T, and the com-
mon covariance matrix was Σ=1.7I6. These clusters are fairly compact and well-
separated. We expect the best partition in CP to occur at c = 6. The reference partition 
V is the crisp 6x3000 partition with six "diagonal" blocks of 500 1's in each row.  
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Data set X2 is three well separated parallel line clusters of size 200 each. Samples 

are generated according to )c-dα(c + , where [0,1]α∈  is a uniformly distributed 

random number and )d,c(  are line segment endpoints. Clusters in X2 include: ([1 1]T, 
[1 10]T), ([6 2]T, [6 6]T), and ([10 0]T, [10 12]T). We expect the best partition in CP to 
occur at c = 3. The reference partition V is the crisp 3x600 partition with three "di-
agonal" blocks of 200 1's in each row.     

  

Fig. 1. Gaussian (X1) and parallel line (X2) data sets used for the two examples 

Figure 2 shows graphs of the five Fuzzy Rand indices for terminal FCM partitions 
on X1 as c varies from 2 to 10, so there are 9 candidate partitions in CP. This graph 
shows two things: first, the five indices are indeed different; and second, they have 
similar values on this well behaved data set. All five indices have clear maximums at 
c=6 which points to the most preferable partition in CP. Figure 2 might tempt you to  
 

 

Fig. 2. Comparison of the five fuzzy Rand indices on FCM 
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conjecture that Hullermeier and Rifki is bounded above by the other four indices, but 
we have not attempted a proof of this. The other indices all cross each other. 

Figure 3 shows graphs of the five Fuzzy Rand indices for terminal FCM parti-
tions on X2 as c varies from 2 to 10. The graph again shows that the five indices are 
indeed different and they have similar values on this data set. We expect FCM to 
fail on this example. The crisp V for c = 3 will NOT match well with the FCM c = 3 
partition. As expected, no indices have a clear maximum at c = 3. Hullermeier and 
Rifki have a maximum at c = 4 and the others are at c = 5. Also, Hullermeier and 
Rifki appear to again be bounded above by the other four indices, which all cross 
each other. 

 

Fig. 3. Comparison of the five fuzzy Rand indices on FCM 

5   Computational Complexity 

Assuming similar cost for different operations, the cost of evaluation of formula 
(2a) for all but the index of Hullermeier and Rifqi (who form the fuzzy Rand index 
directly) are reported in Table 2. The example in the last column of Table 2 shows 
that in terms of computational costs, Anderson et al.'s method is (at least 3 and at 
best 5) orders of magnitude less than the other generalizations of Rand's index.  
Computation of the Rand index at (3) involves calculation of all four equations, 
(2a)-(2d). Combining the factors as in (3) uses only addition and subtraction, and 
will cost all methods equally. Hence, we can extend the results of Table 2 from just 
equation (2a) to equation (3) without loss.  
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Table 2. Computational complexity for the five fuzzy Rand indices 

Method Computational Complexity n=1000, 
r = c = 5 

Anderson et al. [17] for (2a) O(2rcn+3rc) O(n) 50,075 

Brouwer [15] for (2a) 
(assuming cosine as a single 

operation) 

O(2n2+n+2) O(n2) 2,001,002 

Brouwer [15] for (2a) 
(using dot product and  

magnitude form) 

O(4n2+ rn2+ cn2-n+3rn+3cn+2) O(n2) 14,029,002 

Campello [13] for (2a) O(rn2+cn2+(n-n2)/2-rn-cn) O(n2) 9,490,500 

Hullermeier and Rifqi [16] 
(for the fuzzy Rand) 

O((3rn2+3cn2-3rn-3cn)/2+5) O(n2) 14,985,005 

Frigui et al. [14] for (2a) O(rn2+cn2+(n-n2)/2-rn-cn) O(n2) 9,490,500 

6   Discussion and Conclusions 

We compared our generalization of the classical Rand index with four other fuzzy 
generalizations of it both experimentally, and in terms of computational complexity. 
Our extension of the Rand index is O(n), while the other four are all O(n2). More 
examples using different types of data, algorithms and other indices that involve com-
paring partitions appear in [17]. The advantage of using N* = φUVT  is that this for-
mulation directly generalizes all indices that depend only on equations (2) to every 
combination of (U, V). There are sixteen possible pair types according as each of U, 
V are crisp, fuzzy, probabilistic or possibilistic, so we have, for example, 16 Rand 
indices, 16 Jaccard indices, and so on. Each formula there is recovered when U and V 
are crisp, i.e., these are true generalizations to every case - by definition. 
    The use of comparison indices for validation of clustering algorithms has the sig-
nificant advantage of being independent of the correspondence problem for compar-
ing clustering solutions to known reference partitions. When U is soft, one approach 
to retrieval assessment is to first harden any soft partition U. Then the hardened ver-

sion of U, say H(U), defines the function se (H(U),V) = 1− [H(U)]k − Vk

1k=1

n
∑ 2n , 

which counts the number of label matches. This comparison method is similar to 
assessment by s(U,V), but before using se(H(U),V), we must register the reference 
clusters to their algorithmic counterparts. This complication is avoided by s(U,V), 
because the indices in Table 2 depend only on the values in Table 1; double sums, 
row sums, or column sums of the entries of N=UVT. Consequently, crisp comparison 
indices such as Rand's index are independent of the correspondence problem which 
plagues evaluation of retrieval success for soft clustering algorithms by the "harden 
and count" method represented by sc(H(U), V). This important advantage for the 
comparison index method remains true even when r ≠ c and the resubstitution error 
rate cannot even be computed! 
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Abstract. In this paper we address the problem of controlling the dis-
closure of sensible information by inferring them by the other attributes
made public. This threat to privacy is commonly known as prediction
or attribute disclosure. Our approach is based on identifying those rules
able to link sensitive information to the other attributes being released.
In particular, the method presented in this paper is based on mining
fuzzy rules. The fuzzy approach is compared to (crisp) decision trees in
order to highlight pros and cons of it.

1 Introduction

In order to provide a richer set of data to analyze, statistical agencies and offices
release information regarding individuals, companies and other organizations. If
availability of microdata makes possible to investigate trends and relationships
more accurately, on the other side it poses relevant concerns regarding the risk of
revealing sensitive information about the respondents. Indeed, publishing aggre-
gate or individual data carries always the risk that individuals or organizations
could be identified and confidential information about them could be released.
Therefore, on one side there is a need of providing information in order to per-
form statistical analysis, whereas on the other it is necessary that some relevant
information is not revealed.

Statistical Disclosure Control (SDC) aims at releasing statistical records while
protecting confidentiality of information at the same time. Among the different
threats, there is the possibility that some sensitive information can be obtained
by other known data regarding some entity. In this case, the risk is that hidden
information is inferred using public information as premise. Discovering a link
between hidden and public information is possible can help SDC to prevent such
a risk.
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In this paper we propose to use rule extraction as means to identify possible
paths that if own by an intruder would be able to disclose sensitive informa-
tion. The reminder is organized as follows: Section 2 is devoted to some pre-
liminaries regarding information disclosure; Section 3 presents Data Mining as
means to prevent disclosure of sensitive information; Section 4 presents exper-
imental results; Section 5 draws conclusions and future directions worth being
investigated.

2 Information Disclosure

Information disclosure has place when an entity (i.e. a person or an organization)
is able to learn something regarding another entity by released microdata sets.
For example, illness regarding patients could be released via medical databases,
or competitors’ financial figures by business databases.

Microdata attributes of interest for statistical disclosure control can refer to
respondent identity (key attributes), or to relevant information (sensitive at-
tributes). In order to preserve the respondent’s privacy, the direct linkage be-
tween key and sensitive attributes is hidden by SDC. This process is known as
data anonymization. However, an intruder can still attack data anonymization
by reconstructing the original link with respect to some records.

In particular, there are two types of disclosure associated to microdata [13]:
(i) identity disclosure when the entity is (re-)associated to some sensitive data
in an anonymized database; (2) prediction disclosure when some sensitive data
is inferred by the other attributes for some known entity. The first is also known
as re-identification, the second as attribute disclosure.

Different metrics for measuring the level of privacy guaranteed by SDC have
been proposed over the time. Among them, k-anonymity [11], l-diversity [4],
p-sensitive [12] and t-closeness [3] each of these metrics is able to drive data
anonymization with respect to same aspect, but all of them share the common
idea that having more records within a group associable to an entity enforce
privacy protection.

However privacy should be related to the extent some information can be
considered sensitive. For instance, disclosing that incomes are within a given
range, can be considered as much as sensitive than more precise information.
This case is known in literature as similarity attack.

Therefore diversification, obtaining by altering the initial information, does
not necessarily lead to a stronger privacy protection. Even masking or removing
a sensitive attribute could be not enough to avoid attribute disclosure.

The aim of this paper is to show evidence that, even if there is no correlation
between data, it is still possible to find a link, although approximated, between
public and sensitive variables. The simpler this link is, the most likely it can be
discovered or known by intruder, representing thus a threat to no-disclosure of
sensitive information.



Identifying the Risk of Attribute Disclosure by Mining Fuzzy Rules 457

3 Data Mining

Domingo [1] establishes the connections between data mining and statistical
disclosure. The problem in attribute disclosure is basically finding an inferential
path from released attributes to sensitive information. Such a path can be due to
background knowledge. Mining rules, able to reconstruct the hidden linkage from
given patterns of the other attributes, can put into evidence that if some knowl-
edge is discovered by intruders, this can be used to break privacy protections.
In addition, similarity is inherently a fuzzy concept.

Data mining approaches can be seen as a way of knowledge discovery which is
essential for solving problems. Data mining techniques build a model to predict
or classify a problem like an expert. In this sense, data mining techniques may
infer relationships allowing us to study the problem of Information Disclosure.

There exists a huge number of machine learning approaches to cope with the
problem of classifying an example. Some of them, as Neural Networks or Support
Vector Machines (SVM) are very effective and efficient but the model they build
is little informative for the Statistical Disclosure problem (for example, SVM
provides the weights of the support vectors) [2].

On the other hand, Literature reports a considerable number of ID3-based
systems [5] and several fuzzy versions of decision trees [6].

4 Attribute Disclosure by Mining Fuzzy Rules

In this paper we use a data mining strategy based on building a decision tree
which provides the corresponding If-Then rules with fuzzy information in the If
part. This approach has two main advantages: first, the induction rules provide
us with some information about the most sensible attributes, and, second, as the
input information is fuzzified the disclosure risk is supposed to be decreased.

To provide the fuzzy rules, it is used a system based on C4.5 [7], the so-
called ARNI, and its fuzzy extension, the so-called FArni. But despite of using
Information gain as in C4.5, both systems ARNI and FArni use a measure
called Imputity Level (IL) for determining the quality of the rules induced from
examples [10]. IL [8] explicitly takes into account not only the probability of
success p, but also the difficulty of attaining that amount of examples of class C.
Later, once the fuzzy decision tree is induced, FArni returns compact fuzzy rule
sets after applying a pruning process inherited from ARNI and Fan [9]. FArni is
presented in detail in [10].

5 Experimental Results

The experiments in this paper were carried out with the TARRAGONA Data
Set, which is a real data set comprising figures of 834 companies in the Tarragona
area. Data correspond to year 1995. For each company, 13 quantitative variables
are given: Fixed assets, Current assets, Treasury, Uncommitted funds, Paid-up
capital, Short-term debt, Sales, Labor costs, Depreciation, and Operating profit,
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Financial outcome, Gross profit, Net profit, which are considered in this research
as target classes. Experimental results, after an initial analysis, show that this
approach is feasible and able to emerge background knowledge in preserving data
confidentiality.

Let’s check the behavior of a fuzzy learner in identifying the disclosure risk
over the TARRAGONA Data Set.
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In order to determine the attributes to be protected we have performed a
preliminary selection. Thus, we have selected four variables: Financial outcome,
Gross profit, Net profit and Operating outcome; this selection is motivated by
the informative relevance of the values of these variables. But, after performing a
statistical study of the correlations among these four variables we have obtained
strong (in some case, obvious) dependencies. In particular, Gross profit, Net
profit and Operating outcome are strongly correlated and can be considered to
be independent on Financial outcome, as outlined in Fig.1.

Moreover, when analysing the degree in which each of these variables is de-
pending on the rest, we can see how the behaviour of Net profit, Gross profit
and Operating outcome is, more ore less similar. In Figure 2 we represent these
dependencies in a radar chart (attributes on each radar axis are shown in the
lower graphic). We can observe how the fore mentioned three variables have very
similar behavior. Therefore, in a second step, we have choose only Net profit and
Financial outcome as the attributes to be protected.

Finally, there is no strong correlation between variables being released, as
depicted by pairwise scatter-plots in Fig.3. Therefore we can assume the variables
used for inference as independent.
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The low correlation between sensitive variables, as chosen in our experimen-
tation, leads to the need of adopting an alternative approach to statistics in
identifying threats to attribute disclosure.

Therefore four classifiers will be built, one for each objective variable. As in
many cases of practical interest it is not important that precise values of sensible
attributes are disclosed but rather the ranges they belong to, discovering treats
of disclosing sensitive information can be regarded as a classification problem,
where an intruder could be able to associate non-sensitive data to a class of
sensitive information.

Once we have selected the variables to protect, we want to measure how
strong is this protection if we attack the data with a data mining rule generator
as FArni. Since this method predicts only one class at once, we have constructed
one classifier for each variable. Therefore, two learners will be built, one for
Net profit and the other one for Financial outcome. On the other hand, since
FArni needs a class with discrete domain, we have discretized each variable using
quintiles as breaking points and then splitting the examples in five classes named
A, B, C, D, and E.

FArni constructs a fuzzy domain for each attribute. We have selected five
trapezoidal fuzzy sets labelled very low, low, medium, high and very high for
every domain. Each trapezoidal fuzzy set has been constructed assuming that
the 1-level set contains the fourth part of the total number of cases with non-zero
membership to the considered fuzzy set.

Obtained fuzzy rules are shown in the following subsections. We also compare
these results to the ones obtained by using the correspondent crisp rule generator.

5.1 Fuzzy Rules Obtained for Disclosing Net Profit

– Net Profit is A if :

• Paidup-capital is high and Uncommitted-funds is low

– Net Profit is B if :

• Uncommitted-funds is very low and Depreciation is low and T reasury is low

– Net Profit is C if :

• T reasury is very low and Labor-costs is very low and Depreciation is very
low and Paidup-capital is low and F ixed-assets is very low and Uncommitted-
funds is low

– Net Profit is D if :

• Labor-costs is high Paidup-capital is low and Uncommitted-funds is low

– Net Profit is E if :

• Uncommitted-funds is very high
• Depreciation is low and F ixed-assets is low Paidup-capital is very low and

T reasury is very low
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• Labor-costs is very high
• Uncommitted-funds is medium
• Shortterm-Debt is medium and Uncommitted-funds is low
• Labor-costs is low and Paidup-capital is low
• Paidup-capital is low and F ixed-assets is low
• Depreciation is low and Paidup-capital is low
• T reasury is medium

5.2 Crisp Rules Obtained for Disclosing Net Profit

– Net Profit is A if :

• Uncommitted-funds ≤ 12091 and T reasury ≤ 5545
• Uncommitted-funds ≤ 15407 and T reasury ≤ 7347 and Labor-costs ≤ 46958
• Uncommitted-funds ≤ 15407 and Sales ≤ 115535

– Net Profit is B if :

• Depreciation ≤ 1997 and Uncommitted-funds ≤ 15407 and Paidup-capital ≤
2000 and 115535 < Sales ≤ 204889

– Net Profit is C if :

• 18431 < Uncommitted-funds ≤ 50769 and 2734 < Depreciation ≤ 4496 and
9800 ¡Paidup-capital ≤ 20250 and Current-assets ≤ 76155

– Net Profit is D if :

• 50769 < Uncommitted-funds ≤ 145424 and Labor-costs > 26297 and
Depreciation > 1997 and T reasury > 2683 and Sales ≤ 547947

– Net Profit is E if :

• Sales > 1.27169e+06 and Depreciation > 5536
• Uncommitted-funds > 145424

5.3 Fuzzy Rules Obtained for Disclosing Financial Outcome

– Financial Outcome is A if :

• Sales is medium and Uncommitted-funds is low and T reasury is very low
• Shortterm-debt is very high and Uncommitted-funds is low
• Current-assets is very high and T reasury is very high
• Shortterm-debt is medium and T reasury is medium
• Shortterm-debt is low and Current-assets is medium and Uncommitted-funds

is low
• Depreciation is medium and Uncommitted-funds is low
• Current-assets is medium and T reasury is low
• F ixed-assets is low and Depreciation is low and Paidup-capital is very low and

Labor-costs is very low
• Labor-costs is very high and T reasury is very low
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• Current-assets is high
• Paidup-capital is high and Uncommitted-funds is low
• Labor-costs is medium and T reasury is medium and Uncommitted-funds is

low

– Financial Outcome is B if:

• T reasury is high and Uncommitted-funds is low

– Financial Outcome is C if:

• Paidup-capital is medium and T reasury is very low and Sales is very low and
Uncommitted-funds is low and Labor-costs is low

– Financial Outcome is D if:

• Labor-costs is very low and Paidup-capital is very low and F ixed-assets is very
low and Depreciation is low and Uncommitted-funds is low and T reasury is
low

– Financial Outcome is E if:

• Sales is medium and Uncommitted-funds is high and Current-assets is medium
• Current-assets is low and Labor-costs is high and Depreciation is very low
• T reasury is medium and Current-assets is very high
• T reasury is medium and Labor-costs is very high
• Current-assets is low and T reasury is very high

5.4 Crisp Rules Obtained for Disclosing Financial Outcome

– Financial Outcome is A if:

• Shortterm-debt > 143049
• F ixed-assets > 146919 and Depreciation > 5969
• F ixed-assets > 109215 and Depreciation > 9711
• Current-assets > 178945 and F ixed-assets > 11723

– Financial Outcome is B if :

• 124587 < Sales ≤ 318796 and Shortterm-debt > 70266 and T reasury ≤ 6404
and Paidup-capital > 3600 and Paidup-capital ≤ 38000 and Current-assets
≤ 104984 and F ixed-assets ≤ 68152

– Financial Outcome is C if :

• Uncommitted-funds ≤ 28411 and T reasury ≤ 5776 and Shortterm-debt >
21546 and Shortterm-debt ≤ 43227 and Depreciation > 586 and Depreciation
≤ 2072 and Paidup-capital > 800 and Labor-costs > 17249

– Financial Outcome is D if :

• Labor-costs ≤ 17249 and Shortterm-debt ≤ 43227 and Sales ≤ 158049 and
F ixed-assets ≤ 6133 and Paidup-capital ≤ 8500 and T reasury ≤ 10121
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• Current-assets ≤ 39986 and Shortterm-debt ≤ 43227 and Uncommitted-funds
≤ 28411

– Financial Outcome is E if :

• T reasury > 13592 and Uncommitted-funds > 22238 and Labor-costs ≤ 23039
and Current-assets ≤ 104984

• T reasury > 6564 and Uncommitted-funds > 29125 and Shortterm-debt ≤
31511

• T reasury > 5776 and Shortterm-debt ≤= 43227 and F ixed-assets ≤ 6068 and
Paidup-capital ≤ 6200 and Labor-costs > 17249

• T reasury > 11565 and Uncommitted-funds > 59198 and Current-assets >
104984 and Shortterm-debt ≤ 143049 and F ixed-assets ≤ 70563 and Paidup-
capital ≤ 38000 and Sales ≤ 707711

5.5 Experimentation Outcomes

In general, rules mined by FArni (fuzzy) are simpler than those obtained by
ARNI (crisp). The threat of disclosing attributes is related to the possibility
of being aware or building such links as background knowledge. Simplicity of
rules derives from the number of predicates involved in the antecedents and by
interpretability of them. In both cases, fuzzy rules resulted less structured and
easier to understand. As the risk of attribute disclosure is higher in the case of
simpler rules, the fuzzy approach looks able to find a higher number of threats.

6 Conclusions and Future Directions

In this paper we investigated the application of fuzzy rules mining as a means for
discovering conditions able to infer sensitive information, also known as attribute
disclosure, although approximated. Experimental results are encouraging. Fuzzy
rules are generally simpler and easier to interpret than other approaches, based
on decision trees for example. In the future we aim to study at which extent rules
can be generalized, and what is the role of background knowledge in determining
logical connections between data.
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Abstract. The associativity property, usually defined for binary func-
tions, can be generalized to functions of a given fixed arity n ≥ 1 as well
as to functions of multiple arities. In this paper, we investigate these two
generalizations in the case of Sugeno integrals over bounded distributive
lattices and present explicit descriptions of the corresponding associa-
tive functions. We also show that, in this case, both generalizations of
associativity are essentially the same.

Keywords: bounded distributive lattice, Sugeno integral, associativity,
idempotency, functional equation.

1 Introduction

Let X be an arbitrary nonempty set. Throughout this paper, we regard vectors
x in Xn as n-strings over X . The 0-string or empty string is denoted by ε so that
X0 = {ε}. We denote byX∗ the set of all strings overX , that is,X∗ =

⋃
n∈INX

n.
Moreover, we consider X∗ endowed with concatenation for which we adopt the
juxtaposition notation. For instance, if x ∈ Xn, y ∈ X , and z ∈ Xm, then
xyz ∈ Xn+1+m. Furthermore, for x ∈ Xm, we use the short-hand notation
xn = x · · ·x ∈ Xn×m. In the sequel, we will be interested both in functions of a
given fixed arity (i.e., functions f :Xn → X) as well as in functions defined on
X∗, that is, of the form g:X∗ → X . Given a function g:X∗ → X , we denote
by gn the restriction of g to Xn, i.e. gn := g|Xn . In this way, each function
g:X∗ → X can be regarded as a family (gn)n∈IN of functions gn:Xn → X . We
convey that g0 is defined by g0(ε) = ε.

In this paper, we are interested in the associativity property, traditionally
considered on binary functions. Recall that a function f :X2 → X is said to be
associative if f(f(xy)z) = f(xf(yz)) for every x, y, z ∈ X . The importance of
this notion is made clear by its natural interpretation. Essentially, it expresses
the fact that the order in which variables are bracketed is not relevant. This
algebraic property was extended to functions f :Xn → X , n ≥ 1, as well as to
functions g:X∗ → X in somewhat different ways.

A function f :Xn → X is said to be associative if, for every xz,x′z′ ∈ Xn−1

and every y,y′ ∈ Xn such that xyz = x′y′z′, we have f(xf(y)z) = f(x′f(y′)z′).

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 465–470, 2010.
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This generalization of associativity to n-ary functions goes back to Dörnte [6] and
led to the generalization of groups to n-groups (polyadic goups).1 In a somewhat
different context, this notion has been recently used to completely classify closed
intervals made of equational classes of Boolean functions; see [2].

On a different setting, associativity can be generalized to functions on X∗ as
follows. We say that a function g:X∗ → X is associative if, for every xyz,x′y′z′ ∈
X∗ such that xyz = x′y′z′, we have g(xg(y)z) = g(x′g(y′)z′). Alternative formu-
lations of this definition appeared in the theory of aggregation functions, where
the arity is not always fixed; see for instance [1,14,16,17].

In general, the latter definition is more restrictive on the components gn of
g:X∗ → X . For instance, the ternary real function f(xyz) = x−y+z is associa-
tive but cannot be the ternary component of an associative function g: IR∗ → IR.
Indeed, the equations

g2(g2(xy)z) = g2(xg2(yz)) = x− y + z (1)

have no solution, for otherwise we would have y = g2(g2(y0)0) and hence

g2(xy) = g2(xg2(g2(y0)0)) = g2(g2(xg2(y0))0) = x− g2(y0).

This would imply g2(xy) = x− y, which contradicts (1).
In this paper we show that, in the case of Sugeno integrals on bounded dis-

tributive lattices, the two notions of associativity are essentially the same. More
precisely, given a bounded distributive lattice L, we have that a Sugeno integral
f :Ln → L is associative if and only if it is the n-ary component of some asso-
ciative function g:L∗ → L; see Corollary 7. This paper is organized as follows:
in Sect. 2 we provide some preliminary results, which are then used in Sect. 3 to
obtain explicit descriptions of those associative Sugeno integrals; see Theorems 4
and 6.

2 Preliminary Results

The following proposition provides useful reformulations of associativity of func-
tions g:X∗ → X .

Proposition 1. Let g:X∗ → X be a function. The following assertions are
equivalent:

(i) g is associative.
(ii) For every xyz ∈ X∗, we have g(xg(y)z) = g(xyz).
(iii) For every xy ∈ X∗, we have g(g(x)g(y)) = g(xy).

Remark 2. (i) Associativity of functions g:X∗ → X was defined in [16] and
[17] as in assertions (iii) and (ii) of Proposition 1, respectively. For a recent
reference, see [14].

1 The first extensive study on polyadic groups was due to Post [20]. This study was fol-
lowed by several contributions towards the classification and description of n-groups
and similar “super-associative” structures; to mention a few, see [7,8,9,11,12,15,19].



Explicit Descriptions of Associative Sugeno Integrals 467

(ii) As observed in [1], associative functions g:X∗ → X are completely deter-
mined by their unary and binary components. Indeed, for every n ∈ IN,
n > 2, and every x1, . . . , xn ∈ X , we have

g(x1 · · ·xn) = g2(g2(· · · g2(g2(x1x2)x3) · · ·)xn).

3 Associative Sugeno Integrals

Let L be a bounded distributive lattice, with 0 and 1 as bottom and top elements.
A (lattice) polynomial function is any mapping f :Ln → L which can be obtained
as combinations of projections and constant functions using the lattice operations
∧ and ∨. Our interest in these lattice polynomial functions comes from the
fact that, as observed in [18], (discrete) Sugeno integrals can be regarded as
idempotent lattice polynomial functions, that is, polynomial functions satisfying
f(xn) = x for every x ∈ X . This view has several appealing aspects, in particular,
concerning normal form representations of Sugeno integrals. Indeed, as shown by
Goodstein [13], polynomial functions on bounded distributive lattices coincide
exactly with those functions representable in disjunctive normal form (DNF).

More precisely, for I ⊆ [n] = {1, . . . , n}, let eI ∈ {0, 1}n be the characteristic
vector of I and let αf : 2[n] → L be the function given by αf (I) = f(eI). Then

f(x) =
∨

I⊆[n]

(
αf (I) ∧

∧
i∈I

xi

)
. (2)

Thus, a function f :Ln → L is a Sugeno integral integral if and only if f fulfills
(2) with αf (∅) = 0 and αf ([n]) = 1. For further background, see [3,4].

Theorem 3 ([4]). A function f :Ln → L is a Sugeno integral if and only if it
is idempotent and satisfies

f(xyz) = med
(
f(x0z), y, f(x1z)

)
, for every xyz ∈ Ln. (3)

The following theorem is an immediate consequence of Theorem 6 in [5] and
it restricts the disjunctive normal form of n-ary Sugeno integrals.

Theorem 4. Let f :Ln → L be a Sugeno integral. If f is associative, then

f(x) = (bn ∧ x1) ∨
( n∨

i=1

(bn ∧ cn ∧ xi)
)
∨ (cn ∧ xn) ∨

n∧
i=1

xi, (4)

where bn = f(10n−1) and cn = f(0n−11).

Remark 5. (i) We observe that equation (4) can be rewritten in a more sym-
metric way as

f(x) = (bn ∧ x1) ∨med
( n∧

i=1

xi, bn ∧ cn,
n∨

i=1

xi

)
∨ (cn ∧ xn).

This formula reduces to f(x) = med
(∧n

i=1 xi, bn,
∨n

i=1 xi

)
as soon as f is a

symmetric function (i.e., invariant under permutation of its variables).
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(ii) A term function f :Ln → L is a Sugeno integral satisfying αf (I) ∈ {0, 1} for
every I ⊆ [n]. By Theorem 4, the only associative term functions f :Ln → L
are x �→ x1, x �→ xn, x �→

∧n
i=1 xi, and x �→

∨n
i=1 xi.

We say that a function g:L∗ → L is a Sugeno integral if every gn, n ≥ 1, is a
Sugeno integral. The following theorem yields a description of associative Sugeno
integrals g:L∗ → L. For a generalization to polynomial functions g:L∗ → L, see
Theorem 7 in [5].

Theorem 6. A Sugeno integral g:L∗ → L is associative if and only if g1(x) = x
and, for n ≥ 2,

gn(x) = (b2 ∧ x1) ∨
( n∨

i=1

(b2 ∧ c2 ∧ xi)
)
∨ (c2 ∧ xn) ∨

n∧
i=1

xi, (5)

where b2 = g2(10) and c2 = g2(01).

Proof. Sufficiency can be verified by making use of Proposition 1.
To verify that the conditions are necessary, note that since each gn is as-

sociative, by Theorem 4, each gn has the form (4) with bn = gn(10n−1) and
cn = gn(0n−11). By associativity and Theorem 3, for every n ≥ 3,

gn(10n−1) = g2(gn−1(10n−2)0) = med(0, gn−1(10n−2), g2(10)).

By reasoning recursively, one can see that bn = b2. Similarly, one can verify that
cn = c2, for every n ≥ 3. $%

Even though associativity for functions g:L∗ → L seems more restrictive on
their components gn than associativity for functions of a given fixed arity, from
Theorems 4 and 6 it follows that associativity for Sugeno integrals f :Ln → L
naturally extends componentwise to Sugeno integrals g:L∗ → L.

Corollary 7. Let f :Ln → L be a Sugeno integral. Then f is associative if and
only if there is an associative Sugeno integral g:L∗ → L such that gn = f .

Proof. Clearly, the condition is sufficient. Conversely, if f is associative, then by
Theorem 4

f(x) = (bn ∧ x1) ∨
( n∨

i=1

(bn ∧ cn ∧ xi)
)
∨ (cn ∧ xn) ∨

n∧
i=1

xi,

where bn = f(10n−1) and cn = f(0n−11). Let g:L∗ → L be the Sugeno integral
such that g1(x) = x and, for m ≥ 2,

gm(x) = (b ∧ x1) ∨
( m∨

i=1

(b ∧ c ∧ xi)
)
∨ (c ∧ xn) ∨

m∧
i=1

xi,

where b = f(10n−1) and c = f(0n−11). Clearly, gn = f and by Theorem 6 we
have that g is associative. $%
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Remark 8. (i) The case when L is a connected order topological space was con-
sidered by Fodor [10] who obtained an explicit description of those nonde-
creasing binary functions which are idempotent, continuous, and associative.

(ii) Many associative functions g:L∗ → L have been investigated in aggrega-
tion theory in the special case when L is the real unit interval [0, 1]; see, e.g.,
[14]. To give an example, there are only four such associative functions whose
n-ary restrictions are nondecreasing and stable under interval scale transfor-
mations (i.e., gn commutes with unary positive affine functions), namely,
x �→ x1, x �→ xn, x �→

∧n
i=1 xi, and x �→

∨n
i=1 xi. In particular, an associa-

tive function g: [0, 1]∗ → [0, 1] whose n-ary restrictions are discrete Choquet
integrals necessarily reduces to one of these four functions.
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Abstract. We prove the continuity of the Choquet integral of super-
modular capacities, in L∞ with respect to the weak*-topology, employing
a useful relationship between convex games and their Choquet integrals.
The main result is applied to generalized fair division problems, and the
existence of Pareto optimal α-allocations is demonstrated for the case of
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1 Preliminary

Let (Ω,F ) be a measurable space, where F is a σ-algebra of subsets of a
nonempty set Ω. Throughout this paper, a set function is a real-valued function
on F that vanishes at the empty set.

A set function ν is monotone if ν(A) ≤ ν(B) for every A,B ∈ F with
A ⊂ B; ν is supermodular (or convex ) if ν(A) + ν(B) ≤ ν(A ∪ B) + ν(A ∩ B)
for every A,B ∈ F . A supermodular set function is monotone if and only if it
is nonnegative.

A set function ν is bounded if supA∈F |ν(A)| < ∞. A monotone set function
is bounded. A set function ν is of bounded variation if ‖ν‖ := sup

∑k
i=1 |ν(Ai)−

ν(Ai−1)| is finite, where the supremum is taken over all finite chains ∅ = A0 ⊂
A1 ⊂ · · · ⊂ Ak = Ω in F .

Given a set function ν, an element N ∈ F is ν-null if ν(A ∪ N) = ν(A) for
every A ∈ F . If N ∈ F is ν-null, then ν(N) = 0; ν is null-additive if A∩N = ∅
and ν(N) = 0 imply ν(A ∪N) = ν(A).

A set function ν is absolutely continuous with respect to a set function μ if
every μ-null set is ν-null; ν is equivalent to μ if an element in F is ν-null if and
only if it is μ-null.

� This research is supported by a Grant-in-Aid for Scientific Research (No. 21530277)
from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
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A set function ν is strictly monotone if A ⊂ B with ν-nonnull B \ A implies
that ν(A) < ν(B).

A set function ν is continuous from above at A if ν(Ak) → ν(A) for every
sequence {Ak} in F with Ak ↓ A; ν is continuous from below at A if ν(Ak) →
ν(A) for every sequence {Ak} in F with Ak ↑ A; ν is continuous if it is both
continuous above and continuous below at every element in F . A continuous
monotone set function is called a capacity (or a fuzzy measure).

For later use, we employ the following result.

Proposition 1.1. (i) For a null-additive monotone set function ν, an element
N ∈ F is ν-null if and only if ν(N) = 0.

(ii) A bounded supermodular set function is of bounded variation.

(For a proof of condition (i), see [10, Theorem 2.1]; for that of condition (ii),
see [8].)

Let B(Ω,F ) be the space of bounded measurable functions on Ω with the
supremum norm. The Choquet integral ν̂ : B(Ω,F ) → R of a set function ν is
defined by an improper Riemann integral of the form

ν̂(f) =
∫ +∞

0
ν(f ≥ t)dt+

∫ 0

−∞
[ν(f ≥ t)− ν(Ω)]dt,

where ν(f ≥ t) denotes the value of ν at the measurable set {ω ∈ Ω | f(ω) ≥
t}. Note that this integral exists whenever ν is of bounded variation (see [10,
Theorem 7.21]); ν(A) = ν̂(χA) for every A ∈ F , where χA is the characteristic
function of A ∈ F .

The next result is due to [2].

Proposition 1.2. For every set function ν of bounded variation, the following
conditions are equivalent:

(i) ν is supermodular on F ;
(ii) ν̂ is concave on B(Ω,F );

(iii) ν̂ is supermodular on B(Ω,F ), i.e., ν̂(f) + ν̂(g) ≤ ν̂(f ∨ g) + ν̂(f ∧ g) for
every f, g ∈ B(Ω,F );

(iv) ν̂ is superadditive on B(Ω,F ), i.e., ν̂(f) + ν̂(g) ≤ ν̂(f + g) for every
f, g ∈ B(Ω,F ).

(For a proof, see [8].)
Let ba(Ω,F ) be the space of finitely additive set functions on F of bounded

variation with the total variation norm, which is the dual space of B(Ω,F )
(see [6, Theorem IV.5.1]), with the corresponding duality denoted by 〈f, λ〉 for
f ∈ B(Ω,F ) and λ ∈ ba(Ω,F ). The space ba(Ω,F ) is endowed with the weak*-
topology.

For a set function ν, define the subset C (ν) of ba(Ω,F ) by

C (ν) = {λ ∈ ba(Ω,F ) | ν ≤ λ and λ(Ω) = ν(Ω)}.
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The set C (ν) is called the core of ν in cooperative game theory. Note that C (ν)
is (possibly empty) weak*-compact in ba(Ω,F ) because it is bounded in the
total variation norm and weak*-closed (see [6, Corollary V.4.3]).

The following conditions on supermodular set functions indicate a profound
relationship between their cores and Choquet integrals.

Proposition 1.3. For every bounded supermodular capacity ν, the following
conditions are satisfied:

(i) C (ν) is nonempty.
(ii) Every element in C (ν) is countably additive.

(iii) There exists a finite measure μ such that

lim
μ(A)→0

sup{λ(A) | λ ∈ C (ν)} = 0.

(iv) ν is equivalent to any control measure1for C (ν).
(v) −ν̂ is the support function of C (ν), i.e.,

ν̂(f) = min{〈f, λ〉 | λ ∈ C (ν)} for every f ∈ B(Ω,F ).

Condition (i) is due to [7] and [15]; Conditions (ii) and (iii) are attributed to
[15]; Condition (iv) is proven by [8]; Condition (v) is demonstrated by [16], which
implies that ν is exact, i.e.,

ν(A) = min{λ(A) | λ ∈ C (ν)} for every A ∈ F . (1.1)

All of these assertions have been proven in full generality by [8].

2 Main Result

Let L∞(Ω,F , μ) be the space of μ-essentially bounded functions on Ω, with
which the weak*-topology σ(L∞, L1) is endowed. While ν̂ is Lipschitz of rank
‖ν‖ on B(Ω,F ) if ν is of bounded variation (see [8]), the following theorem, the
main result of this paper, states that the continuity of ν̂ can be strengthened to
the weak*-continuity on L∞(Ω,F , μ) when ν is a supermodular capacity.

Theorem 2.1. For every bounded set function ν, the following conditions are
equivalent.

(i) ν is a supermodular capacity;
(ii) ν is of bounded variation and for every control measure μ for C (ν), the Cho-

quet integral ν̂ : B(Ω,F )→ R of ν has a unique extension to L∞(Ω,F , μ)
on which ν̂ is concave and weak*-continuous.

1 A finite measure μ satisfying condition (iii) is called a control measure for C (ν).
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Proof. (i)⇒ (ii): Choose any control measure μ for C (ν). Since every element in
C (ν) is absolutely continuous with respect to μ, we have that if μ(N) = 0, then
λ(N) = 0 for every λ ∈ C (ν). By (1.1), we have ν(A ∪ N) = minλ∈C (ν) λ(A ∪
N) = minλ∈C (ν) λ(A) = ν(A) for every A ∈ F , which demonstrates that every
μ-null set is ν-null. Take any f ∈ L∞(Ω,F , μ). Then f = g a.e. for some
g ∈ B(Ω,F ). Since

(f ≥ t) = [(f ≥ t) ∩ (f = g)] ∪ [(f ≥ t) ∩ (f �= g)]

for every t ∈ R and the sets (f ≥ t) ∩ (f �= g) and (g ≥ t) ∩ (f �= g) are μ-null,
we have ν(f ≥ t) = ν(g ≥ t). Hence, ν̂(f) = ν̂(g) and the value ν̂(f) is well
defined because ν is of bounded variation by Proposition 1.1. It follows from
this argument that the Choquet integral ν̂ defined on B(Ω,F ) has a unique
extension to L∞(Ω,F , μ) (which we do not relabel).

The concavity of ν̂ on L∞(Ω,F , μ) follows easily from Proposition 1.2 or
from the observation that ν̂ is the pointwise minimum of the family of linear
functionals f �→ 〈f, λ〉 on B(Ω,F ) over λ ∈ C (ν).

From Proposition 1.1(ii), it follows that ν is of bounded variation.
Let {fα} ⊂ L∞(Ω,F , μ) be a convergent net with fα → f in σ(L∞, L1).

Then {fα} is norm bounded in view of its relative weak*-compactness (see [6,
Corollary V.4.3]). Since for each α there exists an element λα ∈ C (ν) such that
ν̂(fα) = 〈fα, λα〉 by Proposition 1.3(v) and C (ν) is weak*-compact in ba(Ω,F ),
we can extract a weak*-convergent subnet {λα} (which we do not relabel) with
λα → λ∗ ∈ C (ν). We thus have

|〈fα, λα〉 − 〈f, λ∗〉| = |〈fα − f, λ∗〉+ 〈fα, λα − λ∗〉|

≤
∣∣∣∣∫ (fα − f)dλ∗

∣∣∣∣+ ‖fα‖∞
∣∣∣∣∫ χΩdλα −

∫
χΩdλ∗

∣∣∣∣
≤
∣∣∣∣∫ (fα − f)g∗dμ

∣∣∣∣+ C

∣∣∣∣∫ χΩdλα −
∫
χΩdλ∗

∣∣∣∣→ 0,

where g∗ = dλ∗
dμ ∈ L1(Ω,F , μ) and the constant C is such that ‖fα‖∞ ≤ C for

each α. Therefore, ν̂(fα)→ 〈f, λ∗〉. Choose any λ ∈ C (ν). We then have

〈fα, λα〉 = ν̂(fα) ≤ 〈fα, λ〉 =
∫
fαgdμ for each α,

where g = dλ
dμ ∈ L1(Ω,F , μ). Taking the limit for this inequality yields 〈f, λ∗〉 ≤

〈f, λ〉 for every λ ∈ C (ν). Therefore, ν̂(f) = minλ∈C (ν)〈f, λ〉 = 〈f, λ∗〉, and
hence ν̂(fα)→ ν̂(f).

(ii) ⇒ (i): Let μ be a control measure stated in condition (ii). Since the
concavity of ν̂ is equivalent to the supermodularity of ν by Proposition 1.2, it
suffices to show that ν is continuous.

To this end, letAk ↑ A in F . Then {χAk
} is a bounded sequence inL∞(Ω,F , μ)

with χAk
↑ χA a.e. For every f ∈ L1(Ω,F , μ), we have χAk

f → χAf a.e. with
|χAk

f | ≤ |f | for each k. Then from Lebesgue’s dominated convergence theorem,
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χAk

fdμ →
∫
χAfdμ for every f ∈ L1(Ω,F , μ), which implies χAk

→ χA in
σ(L∞, L1). Therefore, ν(Ak) = ν̂(χAk

) → ν̂(χA) = ν(A), and hence ν is contin-
uous from below at every A ∈ F .

The verification of the continuity from above is similar.

3 Application to Fair Allocation Problems

The fair division of a cake among a finite number of players is formulated as
the partitioning of a measurable space (Ω,F ). Here, the cake Ω (nonempty set)
is a metaphor for a divisible heterogeneous commodity and the σ-algebra F of
subsets of Ω describes a possible collection of pieces of the cake.

There are n players, indexed by i = 1, . . . , n, whose preference on F is given
by a utility function νi : F → R, in terms of which the inequality νi(A) ≥ νi(B)
means that A is at least as good as B for player i. A partition of Ω is an n-tuple
(A1, . . . , An) of mutually disjoint elements A1, . . . , An in F whose union is Ω,
where each Ai is a piece of the cake given to player i. The primitive of a fair
division problem consists of 〈(Ω,F ), {νi}ni=1〉.

Let B(Ω,F ; Rn) be the space of Rn-valued bounded measurable functions
on Ω with the sup norm, where its generic element is denoted coordinately by
(f1, . . . , fn). An element (f1, . . . , fn) ∈ B(Ω,F ; Rn) is an allocation of Ω if∑n

i=1 fi = 1 and f1, . . . , fn ≥ 0. The set of allocations of Ω is denoted by A .
Note that an n-tuple of measurable sets (A1, . . . , An) is a partition of Ω if and
only if

∑n
i=1 χAi = 1. The primitive of a fair allocation problem corresponding to

that of the fair division problem 〈(Ω,F ), {νi}ni=1〉 is 〈B(Ω,F ), {ν̂i}ni=1〉, where
ν̂i is the Choquet integral of νi.

Definition 3.1. An allocation (f1, . . . , fn) is:

(i) Envy free if ν̂i(fj) ≤ ν̂i(fi) for each i, j = 1, . . . , n.
(ii) Weakly Pareto optimal if there exists no allocation (g1, . . . , gn) such that

ν̂i(fi) < ν̂i(gi) for each i = 1, . . . , n.
(iii) Pareto optimal if there exists no allocation (g1, . . . , gn) such that ν̂i(fi) ≤

ν̂i(gi) for each i = 1, . . . , n and ν̂j(fj) < ν̂j(gj) for some j.

The following result is a partial generalization of [1] and [18], the former demon-
strated the existence of Pareto optimal envy-free allocations in the fair division
problem and the latter showed that of Pareto optimal envy-free partitions in the
fair division problem, both of whom assumed that each νi is a nonatomic finite
measure.

Theorem 3.1. If νi is a strictly monotone, null-additive, supermodular capacity
for each i = 1, . . . , n, then there exists a Pareto optimal envy-free allocation.

4 Proof of Theorem 3.1

Under the hypothesis of Theorem 3.1, every element in C (νi) is a finite measure
and there exists a control measure μi for C (νi) by Proposition 1.3. Let μ be
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the finite measure given by μ =
∑n

i=1 μi. Then μ is a control measure for each
C (νi). From Theorem 2.1, each ν̂i defined on B(Ω,F ) has a unique extension
to L∞(Ω,F , μ) on which ν̂i is concave and weak*-continuous on L∞(Ω,F , μ).

We say that a function T : L∞(Ω,F , μ) → R is strictly monotone if f ≤ g
and f �= g implies that T (f) < T (g).

Lemma 4.1. If νi is a strictly monotone, null-additive, supermodular capacity,
then ν̂i is strictly monotone on L∞(Ω,F , μ).

Proof. By the strict monotonicity of νi, every element in C (νi) is nonzero and
nonnegative. Suppose that the inequality f ≤ g with f �= g in L∞(Ω,F , μ)
holds. Then there exists some A ∈ F with μ(A) > 0 on which f < g. Since
νi is equivalent to μ by Proposition 1.3(iv), the set A is νi-nonnull, which im-
plies that 0 < νi(A) ≤ λ(A) for every λ ∈ C (νi) by Proposition 1.1(i). Hence,
ν̂i(f) = minλ∈C (νi)〈f, λ〉 < minλ∈C (νi)〈g, λ〉 = ν̂i(g) by Proposition 1.3(v) and
the weak*-compactness of C (νi).

In the definition of allocations, we may adopt L∞(Ω,F , μ; Rn) in place of
B(Ω,F ; Rn) because such a replacement makes the possible utility values of
players along the allocations unchanged by Theorem 2.1.

Lemma 4.2. Suppose that νi is strictly monotone, null-additive, supermodular
capacity for each i. Then, an allocation is Pareto optimal if and only if it is
weakly Pareto optimal.

Proof. It is evident that Pareto optimality implies weak Pareto optimality. We
show the converse implication. Let (f1, . . . , fn) be a weakly Pareto optimal
allocation in L∞(Ω,F , μ; Rn). Suppose that (f1, . . . , fn) is not Pareto opti-
mal. There then exists an allocation (g1, . . . , gn) in L∞(Ω,F , μ; Rn) such that
ν̂i(fi) ≤ ν̂i(gi) for each i and ν̂j(fj) < ν̂j(gj) for some j. Thus, there exists some
A ∈ F with μ(A) > 0 on which gj is positive. By the weak*-continuity of ν̂j ,
there exists some ε > 0 such that ν̂j(fj) < ν̂j((1 − ε)gj). Let hi = gi + εgj

n−1
for i �= j and hj = (1− ε)gj. Then the resulting allocation (h1, . . . , hn) satisfies
ν̂i(fi) < ν̂i(hi) for each i by the strict monotonicity of ν̂i. This contradicts the
weak Pareto optimality of (f1, . . . , fn).

As mentioned above, the set A of allocations can be defined in L∞ without loss
of generality by

A =

{
(f1, . . . , fn) ∈ L∞(Ω,F , μ; Rn) |

n∑
i=1

fi = 1, f1, . . . , fn ≥ 0

}
.

Note that A is weak*-compact in L∞(Ω,F , μ; Rm) because it is bounded in the
essential sup norm and weak*-closed (see [6, Corollary V.4.3]). Define the utility
possibility set by

V = {(ν̂1(f1), . . . , ν̂n(fn)) ∈ Rn | (f1, . . . , fn) ∈ A }.
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It follows from the weak*-continuity of ν̂i and the weak*-compactness of A that
V is compact in Rn. Let A ∗ be the set of Pareto optimal allocations and define
the Pareto frontier of V by

V ∗ = {(ν̂1(f1), . . . , ν̂n(fn)) ∈ Rn | (f1, . . . , fn) ∈ A ∗}.

By Lemma 4.2, V ∗ is nonempty and included in the boundary of V .

Lemma 4.3 ([9]). There exists a homeomorphism ϕ from Δn−1 to V ∗
n such

that ϕ(s) = ρ(s)s for s ∈ Δn−1 with ρ : Δn−1 → (0,∞) a continuous function.

To prove Theorem 3.1, the following simple observation by [17] plays an impor-
tant role for establishing Pareto optimal envy-free allocations.

Lemma 4.4 ([17]). For every Pareto optimal allocation (f1, . . . , fn) there exists
some j such that ν̂i(fj) ≤ ν̂i(fi) for each i = 1, . . . , n.

Proof. Arbitrarily take a Pareto optimal allocation (f1, . . . , fn). Suppose, to
the contrary, that for each j there exists some π(j) ∈ {1, . . . , n} such that
ν̂π(j)(fπ(j)) < ν̂π(j)(fj). Then the map π from {1, . . . , n} into itself defined by
j �→ π(j) satisfies π(j) �= j for each j. We thus have πs(j) �= πs+1(j) and
ν̂πs+1(j)(fπs+1(j)) < ν̂πs+1(j)(fπs(j)) for every s = 0, 1, . . . , where πs is the s-th
iteration of π with π0 the identity map on {1, . . . , n}. If πs(j) is distinct from
πt(j) for every s �= t, then {πs(j)}∞s=0 constitutes an infinite sequence of positive
integers, which is obviously impossible. Therefore, for some integers s > t ≥ 0,
we have πs(j) = π(j)s−t. Let i0 = πs(j), i1 = πs−1(j), . . . , it = πs−t(j) and I =
{i0, . . . , it}. It is evident that ν̂i0(fi0) < ν̂i0(fi1), . . . , ν̂it−1 (fit−1) < ν̂it−1(fit),
and ν̂it(fit ) < ν̂it(fi0). Define the allocation (g1, . . . , gn) by

gi =

⎧⎪⎨⎪⎩
fik+1 if i = ik with 1 ≤ k ≤ t− 1,
fi0 if i = it,

fi if i �∈ I.

It is obvious that the resulting allocation (g1, . . . , gn) satisfies ν̂i(fi) < ν̂i(gi) for
each i ∈ I and ν̂i(gi) = ν̂i(fi) for each i �∈ I, and this contradicts the Pareto
optimality of (f1, . . . , fn).

Lemma 4.5 ([14]). Let Δi = {(α1, . . . , αn) ∈ Δn−1 | αi = 0} for each i =
1, . . . , n. If the collection {C1, . . . , Cn} is a closed covering of Δn−1 satisfying
Δi ⊂ Ci for each i, then

⋂n
i=1 Ci �= ∅.

Proof (Proof of Theorem 3.1). Let ψ be the homeomorphism from V ∗ to Δn−1

defined by ψ = ϕ−1 where ϕ is the homeomorphism from Lemma 4.3. For each
j = 1, . . . , n, define the sets Cj , Cj and Dj by

Cj = {(f1, . . . , fn) ∈ A ∗ | ν̂i(fj) ≤ ν̂i(fi) ∀i = 1, . . . , n},
Cj = {(ν̂1(f1), . . . , ν̂n(fn)) ∈ Rn | (f1, . . . , fn) ∈ Cj},
Dj = {(x1, . . . , xn) ∈ V ∗ | xj = 0}.
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As
⋃n

j=1 Cj = A ∗ by Lemma 4.4, the collection {ψ(C1), . . . , ψ(Cn)} of sets in
Rn is a closed covering of Δn−1. It is easy to verify that Dj is nonempty. Indeed,
a solution to the maximization problem

max

{
n∑

i=1

αixi | (x1, . . . , xn) ∈ V
}

with α ∈ Δn−1 and αj = 0 belongs to Dj in view of the strict monotonicity and
continuity for each ν̂i. Note that ψ(Dj) ⊂ ψ(Cj) for each j. Because ψ is given
by

V ∗ , (x1, . . . , xn) = ρ(s)s �→ s ∈ Δn−1,

we have ψ(Dj) = Δj for each j. Therefore, by Lemma 4.5, there exists some
s ∈

⋂n
j=1 ψ(Cj) = ϕ−1(

⋂n
j=1 Cj). Then for some (f1, . . . , fn) ∈ A ∗, we have

(ν̂1(f1), . . . , ν̂n(fn)) = ρ(s)s ∈
⋂n

j=1 Cj . Suppose that (f1, . . . , fn) �∈ Cj for
some j. We then have (ν̂1(f1), . . . , ν̂n(fn)) �∈ Cj , a contradiction. Therefore,
(f1, . . . , fn) ∈

⋂n
j=1 Cj . By construction, it is obvious that the allocation (f1, . . . ,

fn) is Pareto optimal and envy free.
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Abstract. A new integral for non-additive measure encompassing the
Choquet integral is proposed. We construct a model using it for multi-
criteria decision making problem and verify its feasibility applying to the
subjective quality estimation of video delivery services.

Keywords: Choquet integral, non-additive measure, multi-criteria
decision making, inclusion-exclusion integral.

1 Introduction

The monotone measure, which is also called a capacity[1] or a fuzzy measure
[2,3], is not additive so that we cannot use the Lebesgue integral as a integral
with respect to monotone measure. Several integrals have been proposed for
non-additive measure but the Choquet integral is the most popular and used
in applications of non-additive measure because it has some preferable or useful
properties. Then general classes of integral, which contains the Choquet integral
and also the Sugeno integral[2,3], are discussed by several authors [4,5,6,7]. In
this paper, we propose a new integral, called inclusion-exclusion integral, with
respect to non-additive measure. This integral encompasses the Choquet inte-
gral. We also construct a new “objective” subjective evaluation model using it. In
section 4 we apply our new model to the subjective evaluation problem of video
delivery services qulaity using real large data. After that we discuss the con-
ventional method of this field that can be interpreted as our inclusion-exclusion
integral.

2 Preliminaries

Throughout the paper, the whole set is denoted by Ω := {1, 2, . . . , n} and 2Ω

denotes the power set of Ω. The minimum and the maximum operation in 2Ω

are denoted by ∧ and ∨, respectively. For a set A, the number of elements of A
is denoted by |A|.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 480–489, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Definition 1 (monotone measure). A set function v : 2Ω → [0, 1] is called a
monotone measure if it satisfies
1. v(∅) = 0, v(Ω) = 1, and
2. v(A) ≤ v(B) whenever A ⊆ B,A,B ∈ 2Ω.

Definition 2 (Choquet integral). Let v be a monotone measure defined on
2Ω, and f a non-negative function on Ω. The Choquet integral of f w.r.t. v is
defined by

(C)
∫
f dv :=

n∑
i=1

(
f(σ(i)) − f(σ(i− 1))

)
v({σ(i), . . . , σ(n)}),

where σ is a permutation onΩ such that f(σ(1)) ≤ · · · ≤ f(σ(n)) and f(σ(0)) := 0.

Definition 3 (Möbius transform). Let v be a set function on 2Ω. The Möbius
transform of v, denoted by mv, is defined by

mv(A) :=
∑
B⊆A

(−1)|A\B|v(B) (1)

for any A ∈ 2Ω. And v and mv are one-to-one correspondence with

v(A) =
∑
B⊆A

mv(B) (2)

for any A ∈ 2Ω.

Proposition 1 ([8]). The Choquet integral of v is represented with Möbius
transform of v by

(C)
∫
fdv =

∑
A⊆Ω

(∧
i∈A

f(i)

)
mv(A). (3)

Definition 4 (k-additive measure). Let v be a monotone measure on 2Ω and
k a positive integer. A monotone measure v which satisfies mv(A) = 0 whenever
|A| > k is called k-additive measure.

A k-additive measure admits an interpretation that this measure has interactions
only among k criteria. The proposition below shows that the Choquet integral
is represented as a linear combination of the Möbius transforms of v.

Definition 5 (T -norm [9,10,11] etc. ). If a binary operation ⊗ : [0, 1] ×
[0, 1]→ [0, 1] satisfies
1. 0⊗ 0 = 0, x⊗ 1 = x for any x > 0,
2. x ≤ y implies x⊗ z ≤ y ⊗ z,
3. x⊗ y = y ⊗ x and
4. x⊗ (y ⊗ z)) = ((x⊗ y)⊗ z),
then ⊗ is called a T -norm.

By 4 in Definition 5, ⊗ is extended to ⊗ : [0, 1]n → [0, 1].
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3 Inclusion-Exclusion Integral

The inclusion-exclusion integral is defined as follows.

Definition 6 (inclusion-exclusion integral). Let v be a positive monotone
measure defined on 2Ω, ⊗ : ∪n

k=1[0, 1]k → [0, 1] be a T -norm and let f be a non-
negative function on Ω satisfying f(i) ≤ 1 for i ∈ Ω. The inclusion-exclusion
integral (IE integral) is defined by

⊗
∫
f dv :=

∑
A⊆Ω

⎧⎨⎩∑
B⊇A

(
(−1)|B\A|

⊗
i∈B

f(i)

)⎫⎬⎭ v(A), (4)

where ⊗i∈Bwi = ⊗{wi | i ∈ B}, B ⊆ Ω.

We named it after the inclusion-exclusion formula. Various inclusion-exclusion
integrals can be introduced using various T -norms.

Example 1. Adopting the multiplication as the T -norm in inclusion-exclusion
integral, we have

(M)
∫
f dv :=

∑
A⊆Ω

⎧⎨⎩∑
B⊇A

(
(−1)|B\A|

∏
i∈B

f(i)

)⎫⎬⎭ v(A).

We call it multiple inclusion-exclusion integral (MIE integral).

Proposition 2. Let v be a positive monotone measure defined on 2Ω. Let f and
g be non-negative functions on Ω dominated by 1.
(i) f ≤ g implies

(M)
∫
f dv ≤ (M)

∫
g dv.

(ii) If v is a classical measure, i.e., v is additive, then

(M)
∫
f dv =

∫
f dv,

where the right-hand side is the Lebesgue integral.
(iii)

(M)
∫
χA dv = v(A),

for any A ∈ 2Ω, where χA is the characteristic function of the set A ∈ 2X .

Proposition 3. Let v be a positive monotone measure defined on 2Ω. We have
for every pair (f, g) of non-negative functions on Ω dominated by 1. We have

(M)
∫

(f + g) dv ≤ (M)
∫
f dv + (M)

∫
g dv
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if and only if
v(A ∪B) + v(A ∩B) ≤ v(A) + v(B)

and
(M)

∫
(f + g) dv ≥ (M)

∫
f dv + (M)

∫
g dv

if and only if
v(A ∪B) + v(A ∩B) ≥ v(A) + v(B).

The Choquet integral also have properties of Proposition 3 and 4.

Proposition 4. The inclusion-exclusion integral is represented with Möbius
transform of v by

⊗
∫
f dv =

∑
A⊆Ω

(⊗
i∈A

f(i)

)
mv(A). (5)

Hereafter we use the above form as the IE integral instead of (4).

Corollary 1. The Choquet integral is one of inclusion-exclusion integrals, whose
T -norm is the minimum operation. In other words, the Choquet integral of v is
represented by

(C)
∫
f dv :=

∑
A⊆Ω

⎧⎨⎩∑
B⊇A

(
(−1)|B\A|

∧
i∈B

f(i)

)⎫⎬⎭ v(A).

4 Application to Subjective Quality Estimation of Video
Delivery Services

We analyze the large amount of real data of human subjective evaluations on a
product. We regard that this product has n criteria, X1, X2, . . . , Xn, determin-
ing its performance which means Ω = {1, 2, . . . , n} := {X1, X2, . . . , Xn}. The
data concerning these criteria are obtained by a survey with large amount of
sample products whose values for X1, X2, . . . , Xn are slight different from oth-
ers. A datum is (n + 1)-tuple which consists of n explanatory objective values
x1, x2, . . . , xn for X1, X2, . . . , Xn and one subjective value y which is intuitive
evaluation of the product. In other words, data are (x1

1, . . . , x
1
i , . . . , x

1
n, y

1), . . . ,
(xj

1, . . . , x
j
i , . . . , x

j
n, y

j), . . . , (xm
1 , . . . , x

m
i , . . . , x

m
n , y

m) and the last one of (n+1)-
tuple is the intuitive evaluation of the product. The format of each datum is as
Table 1. Since the scale of values depend on each criteria, we shall normalize
them in [0, 1] before analyzing with

f j(Xi) =
xj

i −min
j

(xj
i )

max
j

(xj
i )−min

j
(xj

i )
.
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Table 1. Crude data

No. x1 x2 x3 x4 x5 evaluation y

1 44.46 0.93 0.35 0.77 1.00 4.79
2 41.24 1.38 0.42 1.36 1.00 4.58
3 39.06 1.33 0.45 1.91 1.00 4.54
...

...
...

...
...

...
...

j 36.49 0.72 0.35 2.77 6.85 4.04
...

...
...

...
...

...
...

m 42.58 0.00 0.00 100.00 69.96 3.42

For a criterion such that the smaller values make the product the better evalu-
ation, we reverse the value in [0, 1]:

f j(Xi) = 1−
xj

i −min
j

(xj
i )

max
j

(xj
i )−min

j
(xj

i )
. (6)

n-tuple data normalised in this way correspond to f(X1), f(X2), . . . , f(Xn).

Table 2. Normalized data

No. f(X1) f(X2) f(X3) f(X4) f(X5) y

1 0.8272 0.7362 0.7127 0.9974 1.00 4.79
2 0.7270 0.6057 0.6751 0.9915 1.00 4.58
3 0.6591 0.6208 0.6751 0.9915 1.00 4.54
...

...
...

...
...

...
...

j 0.5789 0.7952 0.7821 0.9850 0.6735 4.04
...

...
...

...
...

...
...

m 0.7688 1.00 0.9771 0.00 0.8233 3.42

We shall consider that n objective values are input values and one subjective
value is output value.

We use real data of subjective quality on video delivery services. We regard
that the quality has five criteria:

X1 := overall noize,
X2 := degradation caused by block distortion,
X3 := degradation associated with blurring,
X4 := local spatial degradation,
X5 := freeze degradation,



Inclusion-Exclusion Integral and Its Application 485

determining its performance. These data are obtained by a survey with large
amount, which is 1139 samples whose values of X1, X2, X3, X4 and X5 are slight
different from others. A datum consists of five explanatory objective values for
X1, X2, X3, X4, X5, and one subjective value which is perceptual quality of the
video. Table 3 and 4 are data that we used. The smaller values of X2, X3, X4
and X5 are better so that we reverse them using (6).

4.1 Multiple Linear Regression Model

The multiple linear regression models are widely used for multi-criteria decision
making problems. The multiple linear regression model is given by

y =
n∑

i=1

f(Xi)ai + e.

In the case applying this model, we estimate coefficients a1, . . . , an and e by
data using, in general, the method of least squares. Each ai means the degree
of importance of i-th criterion Xi. If we don’t need them, we need not have to
normarize f(Xi).

The advantages of this model are following:

1. The linearity of the model enables us to identify the model easily, in other
words, we can estimate parameters a1, . . . , an and e easily.

2. There are many tools or software for this model.

The problem of this model is following:

1. There exist several unexplainable cases by this model. One reasons for it is
assumed that this model cannot handle the interactions between criteria.

4.2 Inclusion-Exclusion Integral Model

In this model, it is assumed that the degrees of importance of criteria have
interactions with other criteria. Let N = {1, . . . , n} be a set of criterion and v
be a monotone measure. The evaluation for f and that of the case of n = 5 are
given by

y =
∑

A⊆N

(⊗
i∈A

f(Xi)

)
mv(Xi) + e.

If it is needed, we can obtain v by mv with (2). Obtained v is not necessarily
monotone.

We adopt the minimum operation and the multiplication as the T -norm in
the inclusion-exclusion integral, in other words, we use the Choquet integral and
the MIE integral. The advantages of this model are following:

1. This model can express interactions among criteria, so that it can be applied
to various cases more than the multiple linear regression model.
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2. The form of the integration is linear, so that we can use tools or software for
the multiple linear regression model.

The problem of this model is as following:

1. In the case of the Choquet Integral, it can be difficult to retain independency
among values. For example, in an extreme case that all data satisfies f(1) <
f(2) < · · · < f(n), then the values f(1), f(1)∧ f(2), . . . , f(1)∧ · · · ∧ f(n) are
completely same. In the case that there are some data depending on other
data, we can not estimate parameters mv at all.

2. The model consists of 2n parameters, which are v(A) for 2N \{∅} and e. The
more n increases, the more the number of parameters explodes. We have to
prepare large amount of data corresponding to the number of parameters.
In other words, the more the number of parameters increases, the more we
need large amount data. For example, in general, it is known that to use 16
parameters more than 1000 data is needed.

We can reduce the second problem utilizing k-additive measure as v. Using k-
additive measure make the number of parameters decrease from 2n to

∑k
j=1 nCj+

1. It also makes retaining independency less difficult, so that problem 1 is reduced.
k-additive model is given by

y =
∑
A⊆N
|A|≤k

(⊗
i∈A

f(Xi)

)
mv(Xi) + e.

Now we have 5 criteria and adopting k = 2 we can decrease from 32 parameters
to 16 parameters.

Remark that parameters are not restricted, so that we cannot guarantee ob-
tained v by mv is monotone.

5 Results and Discussion

We have examined three models as follows:

1. the usual multiple linear regression model (Section 4.1),
2. the Choquet integral model with 2-additive measure (Section 4.2) and
3. the MIE integral model with 2-additive measure (Section 4.2).

We have estimated parameters of each model and obtained the squared multiple
correlation coefficient R2, the root mean squared error(RMSE) and Akaike’s
information criterion(AIC). The squared multiple correlation coefficient R2 is
the square of the correlation coefficient of real data values and estimated values:

R2 :=

⎛⎝ ∑m
i=1(yi − ȳ)(ŷi − ¯̂y)√∑m

i=1(yi − ȳ)2
√∑m

i=1(ŷi − ¯̂y)2

⎞⎠2

,
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where yi is the true value, ŷi is the estimate of yi, ȳi is the mean of yi, i = 1, . . . ,m
and m = 1139. It means that the estimation is better if R is closer to 1. The
RMSE is calculated by

RMSE :=

√√√√ 1
m

m∑
i=1

(yi − ŷi)2.

The AIC is calculated by

AIC = m

(
log

(
2π
m

m∑
i=1

(yi − ŷi)2
)

+ 1

)
+ 2(p+ 1),

where p is the number of parameters. It means that the estimation is better if its
AIC is smaller. In general, the more number of parameters, the model fit data
the more. In such case the AIC enables us to compare models whose number of
parameters are different.

Table 3. Squared correlation coefficients and root mean squared errors

model p R2 RMSE AIC
multiple linear regression model 6 0.567 0.664 2781.95

Choquet integral model 16 0.663 0.464 2393.74
MIE model 16 0.702 0.435 2320.23

The results are shown in Table 3. Results of analysis indicate the validity of
our proposed method comparing with the multiple linear regression model.

On the other hand, a model for subjective video quality has been recom-
mended by Telecommunication Standardizaion Sector of International Telecom-
munication Union (ITU-T) as J.247 Annex A [12]:

y = a1x1 + a2x2 + a3x3 + a4x4 + a5 log10(x5)
+a6(a1x1 + a2x2 + a3x3 + a4x4) log10(x5) + e

= a1x1 + a2x2 + a3x3 + a4x4 + a5x
′
5

+(a1a6)x1x
′
5 + (a2a6)x2x

′
5 + (a3a6)x3x

′
5 + (a4a6)x4x

′
5 + e,

where x′5 := log10(x5). This model specialize in subjective video quality estima-
tion. We can regard it as the MIE integral with 2-additive measure considering
that coefficients of x2x3, x2x4, . . . , x3x4 are vanished. Values of X5 largely con-
centrate to a small interval so that translating them by the increasing function
ϕ(x) = log10 x is reasonable for the sake of dispersing them. If we make other
values translation adequately, we obtain better estimation[4,13].

Using x′5 instead of x5, we obtain the following results.
In also this case, IE integral models are better than conventional models.
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Table 4. squared correlation coefficients and root mean squared errors

model p R2 RMSE AIC
multiple linear regression model 6 0.651 0.596 2658.89

Choquet integral model 16 0.733 0.522 2527.89
MIE model 16 0.723 0.532 2549.51

ITU-T R. J.247 Annex A 7 0.712 0.542 2552.72

6 Conclusions

We have examined the validity of the proposed model applying to the estima-
tion for subjective evaluation with large reliable data. We may go on from the
results of the examination to the conclusion that our proposed model is valid for
analyzing subjective evaluation problems. Adopting other T -norms, for exam-
ple parametrized families of T -norms, we can obtain better model to meet each
problem.

The proposed IE integral model is based on the non-additive set function and
it can be represented as a formula of a linear combination by the Möbius trans-
form, so that we can take advantage of the multiple linear regression analysis.
Using the inverse Möbius Transform, we obtain non-additive measure, which is
not necessarily monotone, therefore we can know not only degrees of importance
of each item but also more information from results of the analysis. For example,
interactions between explanatory values.

The future plans are to studying properties of the inclusion-exclusion inte-
gral and to verify its feasibility more detail particularly applying this model to
various data and also investigating other conventional models of various subjec-
tive evaluation problems which can be interpreted as inclusion-exclusion integral
models.
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Abstract. In this paper we study fuzzy measures which are defined on
algebras of fuzzy subsets of a given fuzzy set. Subsequently, we use these
fuzzy measures to define a fuzzy integral. We show basic properties of
these fuzzy measures and integrals. We are motivated by our research on
fuzzy quantifiers, where this fuzzy integral is used.

1 Introduction and Motivation

In this paper we study fuzzy measures which are defined on algebras of fuzzy
subsets of a given fuzzy set. We are motivated by our study of fuzzy quantifiers
[1,2] which generalizes the theory of generalized quantifiers [3,4] and follows a
research line started in [5]. In [2], we define fuzzy quantifiers of type 〈1〉 deter-
mined by fuzzy measures, where fuzzy measurable and measure spaces and fuzzy
measures were defined on algebras of fuzzy subsets of a given crisp set M . Fuzzy
quantifiers were then defined as integrals of fuzzy sets.

When we tried to generalize these quantifiers to type 〈1, 1〉 (and possibly
higher), we found out that it would be advantageous to define fuzzy measure
space on an algebra of fuzzy subsets of a given fuzzy set A. Then, the measure
of this fuzzy set A is always equal to - (or 1 depending on which structure of
truth values we use). This generating fuzzy set A is a model of the restriction
part of 〈1, 1〉 quantifier. For example, in “Many Swedes are blond”, ”Swedes”
(or “to be a Swede”) is the restriction and ”blond” (or “to be blond”) is the
scope of quantifier “many”. It is then natural to consider the restriction as the
domain of objects to which the scope applies. Hence, it is natural to consider it
as a (fuzzy) set which should have the maximal possible measure.

Fuzzy measures and integrals ([6], see also [7,8]) are important tools allowing
us to compare classical or fuzzy sets with respect to their size. Usually, fuzzy
measures are set functions defined on some algebra of sets which are monotone
with respect to inclusion and which assign zero to the empty set. In this con-
tribution, fuzzy measures are defined on algebras of fuzzy sets (measure spaces)
and, generally, they attain values from a complete residuated lattice L.

A fuzzy integral is then defined using these fuzzy measure spaces and some
of its properties are investigated. This integral can be used for the definition of
� This paper has been supported by the grant IAA108270901 of the GA AV ČR.
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(models of) fuzzy quantifiers. Contrary to usual definitions of fuzzy integrals,
these integrals can be used to integrate all fuzzy sets, that means, also fuzzy sets
which are not standardly measurable with respect to the used fuzzy measure
space. This enables us to introduce fuzzy quantifiers over spaces of all fuzzy sets
and not only over spaces of all measurable fuzzy sets (cf. [9]).

Let us remark that, besides these fuzzy measure spaces it is also possible to
define complementary fuzzy measure spaces on a fuzzy set A. We start with the
same fuzzy measurable space and define complementary fuzzy measure in such
a way that the measure of the empty set is - and the measure of A is ⊥ (see
analogous definition in [2], Sect. 3.1). If the structure of truth values is a complete
MV-algebra, then it is possible to define a complementary fuzzy measure by
means of a fuzzy measure and vice versa. Integrals on these complementary
fuzzy measure spaces can be used for defining quantifiers like “no” “at most
half”, etc. Due to limited space, we are not investigating this type of fuzzy
measures further in this paper.

This paper is structured as follows: Sect. 2 brings necessary preliminaries on
residuated lattices and fuzzy sets. In Sect. 3 we introduce our concept of fuzzy
measurable spaces, define fuzzy measures on these spaces and show some of
their properties. Further, we define isomorphisms of fuzzy measurable spaces
and of fuzzy measure spaces. To have these isomorphisms defined is vital for
the investigation of isomorphism-invariant fuzzy quantifiers. In Sect. 4 we define
fuzzy integral on fuzzy measure space generated by a given fuzzy set A and
present its basic properties. Finally, in Sect. 5 we comment on our results and
provide hints about directions of our further research. Due to a limited space,
we are not providing full proofs of theorems in this paper.

2 Preliminaries

2.1 Structures of Truth Values

In this paper, we suppose that the structure of truth values is a complete residuated
lattice (see e.g. [10]), i.e., an algebra L = 〈L,∧,∨,→,⊗,⊥,-〉 with four binary
operations and two constants such that 〈L,∧,∨,⊥,-〉 is a complete lattice, where
⊥ is the least element and- is the greatest element ofL, respectively, 〈L,⊗,-〉 is a
commutative monoid (i.e.,⊗ is associative, commutative and the identity a⊗- =
a holds for any a ∈ L) and the adjointness property is satisfied, i.e.

a ≤ b→ c iff a⊗ b ≤ c (1)

holds for each a, b, c ∈ L, where ≤ denotes the corresponding lattice ordering. A
residuated lattice is divisible, if a⊗ (a→ b) = a ∧ b holds for arbitrary a, b ∈ L,
and satisfies the law of double negation, if (a→ ⊥)→ ⊥ = a holds for any a ∈ L.
A divisible residuated lattice satisfying the law of double negation is called an
MV-algebra. For other information about residuated lattices we refer to [10,11].
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Example 1. It is easy to prove (see e.g. [12]) that the algebra

LT = 〈[0, 1],min,max, T,→T , 0, 1〉,

where T is a left continuous t-norm and a →T b =
∨
{c ∈ [0, 1] | T (a, c) ≤ b}

defines the residuum, is a complete residuated lattice. Moreover, if T is the
�Lukasiewicz t-norm, i.e., T (a, b) = max(a+ b− 1, 0) for all a, b ∈ [0, 1], then LT
is a complete MV-algebra called a �Lukasiewicz algebra (on [0, 1]).

Let us define the following additional operations for all a, b ∈ L:

a↔ b = (a→ b) ∧ (b→ a), (biresiduum)
¬a = a→ ⊥. (negation)

2.2 Fuzzy Sets

Let L = 〈L,∧,∨,→,⊗,⊥,-〉 be a complete residuated lattice and M be a uni-
verse of discourse (possibly empty). A mapping A : M → L is called a fuzzy set
on M .1 A value A(m) is called a membership degree of m in the fuzzy set A.
The set of all fuzzy sets on M is denoted by F(M). Obviously, if M = ∅, then
the empty mapping ∅ is the unique fuzzy set on ∅ and thus F(∅) = {∅}. A fuzzy
set A on M is called crisp, if there is a subset X of M such that A = 1X , where
1X denotes the characteristic function of X . Particularly, 1∅ denotes the empty
fuzzy set on M , i.e., 1∅(m) = ⊥ for any m ∈ M . This convention will be also
kept for M = ∅. The set of all crisp fuzzy sets on M is denoted by P(M). A
fuzzy set A is constant, if there is c ∈ L such that A(m) = c for any m ∈ M .
For simplicity, a constant fuzzy set is denoted by the corresponding element of
L, e.g., a, b, c.2 Let us denote Supp(A) = {m | m ∈ M & A(m) > ⊥} and
core(A) = {m | m ∈ M & A(m) = -}, the support and core of a fuzzy set A,
respectively. Obviously, Supp(1X) = core(1X) = X for any crisp fuzzy set. A
fuzzy set A is called normal, if core(A) �= ∅. Let A ∈ F(M) and Z be a set. Then
A � Z denotes the restriction of A : M → L to Z.

Let {Ai | i ∈ I} be a non-empty family of fuzzy sets on M . Then the union
of Ai is defined by (⋃

i∈I

Ai

)
(m) =

∨
i∈I

Ai(m) (2)

1 In many papers (see e.g. [10]), a mapping A : M → L is called L-fuzzy set or L-fuzzy
subset on M . Since we will always deal with a fixed complete residuated lattice in
the following text, we suppose that the denotation “fuzzy set” without a reference
to the considered residuated lattice is sufficient.

2 We suppose that the meaning of this symbol will be unmistakable from the context,
that is, it should be clear when an element of L is considered and when a constant
fuzzy set is assumed.
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for any m ∈M and the intersection of Ai is defined by(⋂
i∈I

Ai

)
(m) =

∧
i∈I

Ai(m) (3)

for any m ∈ M . Let A,B be fuzzy sets on M . The difference of A and B is a
fuzzy set A \B on M defined by

(A \B)(m) = A(m) ∧ (B(m)→ ⊥) (4)

for any m ∈M and the complement of A is a fuzzy set A = 1M \A. Finally, an
extension of the operations ⊗ and → on L to the operations on F(M) is given
by

(A⊗B)(m) = A(m) ⊗B(m) and (A→ B)(m) = A(m)→ B(m) (5)

for any A,B ∈ F(M) and m ∈M , respectively.
Since we will deal with fuzzy sets over different universes, let us introduce the

ordering relation between fuzzy sets on arbitrary universes. We say that a fuzzy
set A on M is a fuzzy subset of a fuzzy set B on M ′ and denote by A ⊆ B, if
A(m) ≤ B(m) for any m ∈ Supp(A). The set of all fuzzy subsets of A on M is
denoted by F(A). Thus

F(A) = {B | B ∈ F(M) and B ⊆ A}. (6)

Further, we say that a fuzzy set A on M is equal to a fuzzy set B on M ′ and
denote by A = B, if A ⊆ B and B ⊆ A. Obviously, if A and B are fuzzy sets
on the same universe M , then the proposed relations coincide with the common
definitions of ordering and equality relations.

Let f : M → M ′ be a mapping. A mapping f→ : FL(M) → FL(M ′) defined
by f→(A)(m) =

∨
m′∈f−1(m)A(m′) is called the fuzzy extension of the mapping

f . Obviously, if f is a bijective mapping, then f→(A)(f(m)) = A(m) for any
m ∈M .

3 Fuzzy Measures

In the following, we will consider algebras of fuzzy sets as a base for defining
fuzzy measures of fuzzy sets.

Definition 1. Let A be a non-empty fuzzy set on M . A subset F of F(A) is an
algebra of fuzzy sets on A, if the following conditions are satisfied

(i) 1∅, A ∈ F ,
(ii) if X ∈ F , then A \X ∈ F ,
(iii) if X,Y ∈ F , then X ∪ Y ∈ F .
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We denote Alg(A) the set of all algebras of fuzzy sets on A. A pair (A,F)
is called a fuzzy measurable space (on A), if F is an algebra of fuzzy sets on
A. Let (A,F) be a fuzzy measurable space and X ∈ F(A). We say that X is
F-measurable, if X ∈ F .

Remark 1. In order to refer to the universe of discourse M of A, we will some-
times write Dom(A) instead of M .

Remark 2. For a non-empty setM , one checks easily that the proposed definition
of algebra of fuzzy sets on 1M coincides with the standard definition of algebra
of fuzzy sets on M (cf. [6]).

Example 2. {1∅, A} and F(A) are trivial examples of algebras of fuzzy sets on
A. The set of all crisp subsets of a fuzzy set A is not, in general, an algebra of
fuzzy sets on A.

Contrary to the algebra of sets, the conditions of the algebra of fuzzy sets does not
ensure that the intersection of two F -measurable fuzzy sets is also F -measurable
fuzzy set, i.e., in general, there can be A,B ∈ F with A ∩B �∈ F . Therefore, we
define the following type of algebra.

Definition 2. We say that an algebra F of fuzzy sets on A is closed under
intersections, if C ∩D ∈ F , whenever C,D ∈ F .

Theorem 1. Let L be a complete residuated lattice satisfying the law of double
negation and A = 1∅. Then each algebra of fuzzy sets on A is closed under
intersections.

Let us introduce the concept of fuzzy measure as follows. The definition is a
modification of the definition of a normed measure with respect to truth values
(see e.g. [7,8]).

Definition 3. Let (A,F) be a fuzzy measurable space. A mapping μ : F → L is
called a fuzzy measure on (A,F), if

(i) μ(1∅) = ⊥ and μ(A) = -,
(ii) if B,C ∈ F such that B ⊆ C, then μ(B) ≤ μ(C).

A triplet (A,F , μ) is called the fuzzy measure space, if (A,F) is a fuzzy measur-
able space and μ is a fuzzy measure on (A,F). We denote Fms(M) the class
of all fuzzy measurable spaces defined on a non-empty universe M , i.e., a fuzzy
measure space (A,F , μ) belongs to Fms(M), if A ∈ F(M). It is easy to see that
Fms(M) ⊆ Fms(M ′), whenever M ⊆M ′.

In the following text, a fuzzy measure space (A,F , μ) may be shortly denoted
by the bold symbol A, i.e. A = (A,F , μ).

Sometimes, it is useful to extend a fuzzy measure on a new fuzzy measurable
space, where we may have a problem to define it directly. One of the well-known
approaches for measures is to establish an inner (or outer) measure, when the
values of inner measure are obtained approximatively using known values for
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fuzzy subsets (or supersets). In the following part, we will do it for the fuzzy
case.

Let (A,F) be a fuzzy measurable space and X ∈ F(M). Denote FX the set
of all F -measurable sets which are contained in X , i.e.,

FX = {B | B ∈ F and B ⊆ X}. (7)

Note that 1∅ ∈ FX for each X ∈ F(M) and if X is an F -measurable set, then
also X ∈ FX . If X = A, then we will write only F instead of F(A). The following
theorem introduces inner fuzzy measure on (M,F ′) determined by fuzzy measure
μ on some fuzzy measurable space (M,F), where F ⊆ F ′.

Theorem 2. Let (A,F , μ) be a fuzzy measure space and F ′ ∈ Alg(A) such that
F ⊆ F ′. A mapping μ∗ : F ′ → L defined by

μ∗(X) =
∨

B∈FX

μ(B) (8)

is a fuzzy measure on the fuzzy measurable space (A,F ′). Moreover, μ∗ and μ
coincide on F . We say that μ∗ is the inner fuzzy measure on (A,F ′) determined
by μ.

Example 3. Let (A,F , μ) be the fuzzy measure space where F = {1∅, A} and
F ′ = F(A) (the set of all fuzzy subsets of A). Then

μ∗(X) =
∨

B∈FX

μ(B) =
{
-, X = A,
⊥, otherwise,

since FX is either {1∅} or {1∅, A} = F , μ(1∅) = ⊥ and μ(A) = -.

In the following part we will define an isomorphism between fuzzy measure
spaces. These definitions are vital for the investigation of isomorphism invariant
fuzzy quantifiers (ISOM).

Definition 4. Let (A,F) and (B,G) be fuzzy measurable spaces. We say that a
mapping g : F → G is an isomorphism between (A,F) and (B,G), if

(i) g is a bijective mapping with g(1∅) = 1∅,
(ii) g(X ∪ Y ) = g(X)∪ g(Y ) and g(A \X) = B \ g(X) hold for any X,Y ∈ F ,
(iii) there exists a bijective mapping f : Dom(A) → Dom(B) with X(m) =

g(X)(f(m)) for any X ∈ F and m ∈ Dom(A).

Theorem 3. Let (A,F), (B,G) be fuzzy measurable spaces and g : F → G be
a surjective mapping. Then g is an isomorphism between (A,F) and (B,G) if
and only if there exists a bijective mapping f : Dom(A) → Dom(B) such that
g = f→.

Definition 5. Let (A,F) and (B,G) be fuzzy measurable spaces. We say that a
mapping g : F → G is an isomorphism between (A,F , μ) and (B,G, μ′), if
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(i) g is an isomorphism between (A,F) and (B,G),
(ii) μ(X) = μ′(g(X)) for any X ∈ F .

The following lemma formulated for a fuzzy measure space is a straightforward
consequence of the definition of isomorphism of fuzzy measure spaces.

Lemma 1. Let (A1,F1, μ1) and (A2,F2, μ2) be isomorphic fuzzy measure spaces.
If we put Bi = Ai � Supp(Ai), Gi = {Xi � Supp(Ai) | Xi ∈ Fi} and μ′i(X �
Supp(A)) = μi(X) for i = 1, 2, then the triplets (B1,G1, μ

′
1) and (B2,G2, μ

′
2) are

isomorphic fuzzy measure spaces.

If g is an isomorphism between fuzzy measure spaces A = (A,F , μ) and B =
(B,G, μ′), then we will write g(A,F , μ) = (B,G, μ′) or shortly g(A) = B.

We say that a system A of fuzzy measure spaces from Fms(M) is a closed un-
der isomorphisms system of fuzzy measure spaces in Fms(M), if it holds that if
A ∈ A and B ∈ Fms(M) are isomorphic, then B ∈ A. In the following text, for
simplicity, we will omit the term “under isomorphisms” in “closed under isomor-
phisms” and say only “closed system of fuzzy measure spaces in Fms(M)”. Note
that there are closed systems of fuzzy measure spaces containing non-isomorphic
fuzzy measure spaces. If a system A of mutually isomorphic fuzzy measure spaces
in Fms(M) is closed, then we say that A is closed system of mutually isomorphic
fuzzy measure spaces in Fms(M). Obviously, each closed system is a union of
closed systems of mutually isomorphic fuzzy measure spaces.

Lemma 2. A system A of fuzzy measure spaces in Fms(M) is closed if and
only if f→(A) ∈ A for any A ∈ A and any permutation3 f on Dom(A).

An important class of fuzzy measure spaces which will be used in our theory
of fuzzy quantifiers, namely when we will study so-called permutation invari-
ance of fuzzy quantifiers, covers the fuzzy measure spaces being invariant under
automorphisms in the following sense.

Definition 6. We say that (A,F , μ) is a cardinal fuzzy measure space, if

(i) if X ∈ F , then f→(X) ∈ F ,
(ii) μ(X) = μ(f→(X))

hold for any X ∈ F and for any permutation f on Dom(A).

Remark 3. The denotation “cardinal” in the previous definition means that the
measures are invariant under the same cardinality of fuzzy sets, where we can say
that two fuzzy sets X,Y have the same cardinality, if there exists a permutation
f on Dom(A) such that f→(X) = Y .

Lemma 3. A set {A} forms a closed system of fuzzy measure spaces in Fms(A)
if and only if A is a cardinal fuzzy measure space.

Lemma 4. If A is a cardinal fuzzy measure space, then A is a constant fuzzy
set.
3 A permutation on a set Z is a bijective mapping from Z to itself.
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Example 4. Trivial examples of closed systems of mutually isomorphic fuzzy
measure spaces in Fms(M) are a trivial fuzzy measure space (A, {∅, A}, μ),
where A ∈ F(M), and a fuzzy measure space (A,F(A), μ), where μ(A) = μ(B)
whenever there exists a permutation f on Dom(A) with f→(A) = B. Further
examples can be obtained from the second fuzzy measure space in such a way
that F(A) is replaced by F of all fuzzy sets from F(A) different from the constant
fuzzy sets taking a value c ∈]⊥, a[ (if c �= ¬¬c) or values c,¬c ∈]⊥, a[ (if c = ¬¬c),
where a = A(m) for any m ∈ Dom(A).4

Lemma 5. Let A = {Ai | i ∈ I} be a closed system of fuzzy measure spaces in
Fms(A). Put F the least algebra containing

⋃
i∈I Fi and

μ(X) =
∨
i∈I

∨
Y ∈Fi(X)

μi(Y ). (9)

Then A = (A,F , μ) is a cardinal fuzzy measure space.

4 �-Fuzzy Integral

In this part, we will introduce a type of fuzzy integral that can be defined on
an arbitrary fuzzy measure space (A,F , μ). The integrated functions are fuzzy
sets on Dom(A). For a convention with the classical measure theory, we will
prefer, in this part, the denotation f , g for the integrated functions instead of
X , Y , nevertheless, we will deal with them as with fuzzy sets. For example, f ∩g
denotes the intersection of fuzzy sets. This integral is defined over a general
operation 0 which substitutes one of the operations ∧ and ⊗, i.e., 0 ∈ {∧,⊗}.
This integral will be used as a basis for the definition of fuzzy quantifiers of type
〈1, 1〉 determined by fuzzy measures.

Definition 7. Let (A,F , μ) be a fuzzy measure space with M = Dom(A), f :
M → L and X be an F-measurable fuzzy set. The 0-fuzzy integral of f on X is
given by ∫ �

X

f dμ =
∨

Y ∈FX\{1∅}

∧
m∈Supp(Y )

(f(m)0 μ(Y )). (10)

If X = A, then we write
∫ �

f dμ.

Remark 4. For a discussion on the motivation and explanation of the formula of
our fuzzy integral see [2], Sect. 3.2, where similar type of fuzzy integral (albeit
on a different fuzzy measure space defined on algebra of fuzzy subsets of a crisp
universal set M) is explained and picture showing how to compute its value for
some individual f is provided.

4 The denotation ]⊥, a[ means the interval of all values b from L for which ⊥ < b < a.
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Theorem 4. Let (A,F , μ) be a fuzzy measure space with M = Dom(A). If
B ∈ F(M) such that A ⊆ B, G ∈ Alg(B) and A is crisp, then μ′ : G → L
defined by

μ′(X) =
∫ �

X dμ (11)

is a fuzzy measure on (B,G).

Let us show some of properties of the proposed 0-fuzzy integral.

Theorem 5. Let (A,F , μ) be a fuzzy measure space. Then

(i)
∫ �

X (f ∩ g) dμ ≤
∫ �

X f dμ ∧
∫ �

X g dμ,
(ii)

∫ �
X (f ∪ g) dμ ≥

∫ �
X f dμ ∨

∫ �
X g dμ,

(iii)
∫ �

X (c⊗ f) dμ ≥ c⊗
∫ �

X f dμ,
(iv)

∫ ∧
X

(c ∩ f) dμ = c ∧
∫ ∧

X
f dμ,

(v)
∫ �

X
(c→ f) dμ ≤ c→

∫ �
X
f dμ,

hold for any X ∈ F , f, g : M → L and c ∈ L.

Theorem 6. Let (A,F , μ) be a fuzzy measure space, c ∈ L and X be a set.
Then

(i)
∫ ⊗(c0 1X) dμ = c⊗ μ∗(1X), if X ⊆ Dom(A),

(ii)
∫ ∧(c0 1X) dμ ≥ c ∧ μ∗(1X), if X ⊆ Dom(A),

(iii)
∫ ⊗(c0 1X) dμ = c⊗ μ(1X), if 1X ∈ F ,

(iv)
∫ ∧(c0 1X) dμ ≥ c ∧ μ(1X), if 1X ∈ F ,

(v)
∫ ⊗ 1X dμ = μ(1X), if 1X ∈ F ,

(vi)
∫ ∧ 1X dμ ≥ μ(1X), if 1X ∈ F ,

(vii)
∫ �

c dμ = c.

If L is an MV-algebra, then all inequalities may be replaced by equalities.

The next theorem is important for stating a condition when fuzzy quantifiers
defined using our integrals are isomorphism invariant (ISOM).

Theorem 7. If g→ is an isomorphism between (A,F , μ) and (B,F ′, μ′), f :
Dom(A)→ L be a mapping and X be an F-measurable fuzzy set, then∫ �

X

f dμ =
∫ �

g→(X)
f ◦ g−1 dμ′.

5 Conclusion and Future Work

In this paper we introduced a definition of fuzzy measures on algebras of fuzzy
sets generated by some fuzzy set A. Further we defined fuzzy integral based
on these fuzzy measures. We introduced several related notions (inner fuzzy
measure, cardinal fuzzy measure space, etc.), investigated isomorphisms of fuzzy
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measurable and measure spaces and show basic properties of fuzzy integrals
based on these fuzzy measures.

As we mentioned in Sect. 1, our main motivation was the investigation of
fuzzy quantifiers of type 〈1, 1〉 and higher. We are currently working on semanti-
cal properties (permutation invariance, isomorphism invariance, extension, con-
servativity, monotonicity, etc. [4,1]) of these fuzzy quantifiers. These properties
are connected to various notions introduced here, e.g. isomorphism invariance is
based on isomorphisms of fuzzy measure spaces, permutation invariance on the
notion of cardinal fuzzy measure space, etc. Further, we plan to use these quanti-
fiers as models of so-called intermediate fuzzy quantifiers of Novák [13]. We also
plan to apply these quantifiers in data mining, time series analysis and possibly
also in other applications. For example, in time series analysis and modeling, we
can use quantifiers like “many” for filtering off of outliers, i.e. values that are
numerically distant from (the course of) the data.
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Abstract. In this note, the concept of strong absolute continuity of set
function is introduced in two different ways. By using the two types of
strong absolute continuity of monotone measure, the inheriting of con-
vergence a.e. and convergence in measure for sequence of measurable
function under the common addition operation is shown, respectively.
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1 Introduction

In non-additive measure theory, there are several different kinds of convergence
of sequence of measurable functions, such as almost everywhere convergence,
pseudo-almost everywhere convergence, convergence in measure, and conver-
gence pseudo-in measure, and theorems that describe implication relationship
between such convergence concepts are fundamental and important. Generally,
theorems in the classical measure theory no longer hold in non-additive measure
theory, so that to find necessary and/or sufficient conditions for such theorems
to hold is very important for the construction of non-additive measure theory.
In this direction there are a lot of results [4,5,8,9,10,12].

In this paper, we shall introduce the concept of strong absolute continuity of
set functions in two different ways. They are called strong absolute continuity
of type I and strong absolute continuity of type VI, respectively. By using the
two types of strong absolute continuity of monotone measure, the inheriting of
convergence a.e and convergence in measure for sequence of measurable function
under the common addition operation are investigated, respectively.
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2 Preliminaries

Let X be a non-empty set, F a σ-algebra of subsets of X , and (X,F) denotes
the measurable space.

Definition 1. ([8,12]) Set function μ : F → [0,+∞] is called a monotone
measure on (X,F) iff it satisfies the following requirements:

(1) μ(∅) = 0; (vanishing at ∅)
(2) A ⊂ B and A,B ∈ F ⇒ μ(A) ≤ μ(B). (monotonicity)

When μ is a monotone measure, the triple (X,F , μ) is called a monotone measure
space ([8,12]).

In some literature, a set function μ satisfying the conditions (1) and (2) of
Definition 1 is called a fuzzy measure or a non-additive measure.

In this paper, all the considered sets are supposed to belong to F and μ is
supposed to be a finite monotone measure, i.e., μ(X) < ∞. All concepts and
symbols not defined may be found in [8,12].

We define the conjugate μ of μ by

μ(A) = μ(X)− μ(X \A), A ∈ F .

Obviously, the conjugate μ of a monotone measure μ is also a monotone measure,
and it holds that μ = μ.

Let F be the class of all finite real-valued measurable functions on (X,F , μ),
and let f ∈ F, fn ∈ F (n = 1, 2, . . .) and {fn} denote a sequence of measurable
functions. We say that {fn} converges almost everywhere to f on X , and denote
it by fn

a.e.−→ f [μ] , if there is subset E ⊂ X such that μ(E) = 0 and fn → f
on X \ E; {fn} converges pseudo-almost everywhere to f on X , and denote it
by fn

p.a.e.−→ f [μ] , if there is a subset F ⊂ X such that μ(X \ F ) = μ(X) and
fn → f on X \ F ; {fn} converges in measure to f on X , and denote it by
fn

μ−→ f , if for any given σ > 0, lim
n→+∞

μ({|fn − f | ≥ σ}) = 0; {fn} converges

pseudo-in measure to f on X , and denote it by fn
p.μ−→ f , if for any given σ > 0,

lim
n→+∞

μ({|fn − f | < σ}) = μ(X).

From the definitions above, we know that the convergence in measure (or
almost everywhere) on X and the convergence pseudo-in measure (or pseudo-
almost everywhere) on X are dual to each other ([6,7,10]). We state them in the
following.

Proposition 1. Let μ be a finite monotone measure. Then
(1) fn

μ−→ f iff fn
p.μ−→ f ;

(2) fn
a.e.−→ f [μ] iff fn

p.a.e.−→ f [μ].

3 Strong Absolute Continuity and Null-Additivity of Set
Function

Absolute continuity of set function plays an important role in measure theory. In
non-additive measure theory, the researches on this matter were made and a lot
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of results were obtained [13,2,3]. Now we shall introduce the concept of strong
absolute continuity of set functions in two different ways. They are called strong
absolute continuity of type I and strong absolute continuity of type VI, respec-
tively. We discuss the properties of strong absolute continuity of a monotone
measure μ with respect to its conjugate μ.

Definition 2. ([13]) Let μ and ν be two monotone measures. We say that

(1) μ is absolutely continuous of Type I with respect to ν, denoted by μ  I ν,
iff μ(A) = 0 whenever ν(A) = 0;

(2) μ is absolutely continuous of Type VI with respect to ν, denoted by μ VI ν,
iff μ(An)→ 0 (n→∞) whenever ν(An)→ 0 (n→∞).

Obviously, μ VI ν imply μ I ν. The inverse statement may not be true.
Now we introduce the concept of strong absolute continuity of monotone mea-

sures.

Definition 3. Let μ and ν be two monotone measures. We say that

(1) μ is strongly absolutely continuous of Type I with respect to ν, denoted by
μ (s)

I ν, iff μ(A ∪B) = 0 whenever ν(A) = ν(B) = 0;
(2) μ is strongly absolute continuous of Type VI with respect to ν, denoted by

μ (s)
VI ν, iff μ(An ∪Bn)→ 0 (n→∞) whenever ν(An) ∨ ν(Bn)→ 0 (n→

∞).

Proposition 2. For monotone measures μ and ν, if μ (s)
VI ν, then μ (s)

I ν.

The several kinds of null-additivity of monotone measures play an important
role in discussing the convergence of measurable functions on monotone measure
spaces.

A set function μ : F → [0,+∞) is said to be (i) weakly null-additive [12] , if
μ(E) = μ(F ) = 0 imply μ(E ∪ F ) = 0; (ii) converse-null-additive at X [10], if
μ(X) = μ(X −N) implies μ(N) = 0; (iii) null-subtractive at X [10], if μ(N) = 0
implies μ(X −N) = μ(X);

Definition 4. A set function μ : F → [0,+∞) is said to be weakly pseudo-null-
additive, if μ(X − E) = μ(X − F ) = μ(X) imply μ(X − E ∪ F ) = μ(X).

Weak null-additivity and weak pseudo-null-additivity of monotone measure are
dual to each other, i.e., μ is weakly pseudo-null-additive iff μ is weakly null-
additive, i.e., μ(E) = μ(F ) = 0 imply μ(E ∪ F ) = 0.

Definition 5. ([1]) A set function μ : F → [0,+∞) is said to have pseudometric
generating property (for short p.g.p), if for each ε > 0 there is δ > 0 such that
for any E,F ∈ F , μ(E) ∨ μ(F ) < δ implies μ(E ∪ F ) < ε, or equivalently,
if for any {En} ⊂ F and {Fn} ⊂ F , μ(En) ∨ μ(Fn) → 0 (n → ∞) imply
μ(En ∪ Fn)→ 0 (n→∞).

Note: The concept of pseudometric generated property goes back to Dobrakov and
Drewnowski in seventies, and this was related to Frechet-Nikodym topology [1,8].
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Obviously, if μ has pseudometric generated property, then it is weakly null-
additive. The inverse statement may not be true ([3,10]).

We can easily obtain the following propositions.

Proposition 3. (i) μ is weakly null-additive iff μ is weakly pseudo-null-additive.
(ii) μ is null-subtractive at X iff μ is converse-null-additive at X.

Proposition 4. Let μ be monotone measure. Then
(i) μ is null-subtractive at X iff μ I μ.
(ii) μ is converse-null-additive at X iff μ I μ.
(iii) μ is weakly null-additive iff μ (s)

I μ.
(v) μ has p.g.p iff μ (s)

VI μ.

Proposition 5. (i) Let μ be null-subtractive at X. If μ is weakly null-additive,
then μ (s)

I μ. (ii) Let μ be converse-null-additive at X. If μ is weakly pseudo-
null-additive, then μ (s)

I μ.

4 Strong Absolute Continuity and Convergence of
Sequence of Measurable Functions

In this section , by using the two types of strong absolute continuity of a mono-
tone measure μ with respect to its conjugate μ, we discuss the inheriting of
convergence of sequence of measurable functions under the addition operation
on monotone measure space, respectively. In the following we show our main
results and omit their proofs.

Theorem 1. Let μ be monotone measure. Then,

(1) μ (s)
I μ, i.e., μ is weakly null-additive iff for any f, g, fn, gn ∈ F,

fn
a.e−→ f [μ] and gn

a.e−→ g [μ] =⇒ fn + gn
a.e−→ f + g [μ].

(2) μ (s)
I μ, i.e., μ is weakly pseudo-null-additive iff for any f, g, fn, gn ∈ F,

fn
p.a.e−→ f [μ] and gn

p.a.e−→ g [μ] =⇒ fn + gn
p.a.e−→ f + g [μ].

(3) μ (s)
I μ, i.e., μ is null-subtractive at X iff for any f, g, fn, gn ∈ F,

fn
a.e−→ f [μ] and gn

a.e−→ g [μ] =⇒ fn + gn
p.a.e−→ f + g [μ].

(4) μ (s)
I μ, i.e., μ is converse-null-additive at X iff for any f, g, fn, gn ∈ F,

fn
p.a.e−→ f [μ] and gn

p.a.e−→ g [μ] =⇒ fn + gn
a.e−→ f + g [μ].

Theorem 2. Let μ be monotone measure. Then,

(1) μ has p.g.p, i.e., μ (s)
VI μ iff for any f, g, fn, gn ∈ F,

fn
μ−→ f and gn

μ−→ g =⇒ fn + gn
μ−→ f + g.
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(2) μ has p.g.p, i.e., μ (s)
VI μ iff for any f, g, fn, gn ∈ F,

fn
p.μ−→ f and gn

p.μ−→ g =⇒ fn + gn
p.μ−→ f + g.

(3) μ (s)
VI μ iff for any f, g, fn, gn ∈ F,

fn
μ−→ f and gn

μ−→ g =⇒ fn + gn
p.μ−→ f + g.

(4) μ (s)
VI μ iff for any f, g, fn, gn ∈ F,

fn
p.μ−→ f and gn

p.μ−→ g =⇒ fn + gn
μ−→ f + g.
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Abstract. The aim of the paper is to propose an axiomatic system for
fuzzy measures (denoted by fuzzy c-measures) like cardinality of sets for
finite fuzzy sets that are defined in a universe of sets. The proposed ax-
iomatic system is a generalization of the Casasnovas-Torrens axiomatic
system introduced in [1]. We show a representation of fuzzy c-measures
by a pair of special lattice homomorphisms and investigate several se-
lected properties of fuzzy c-measure.

1 Introduction

In classical set theory, the cardinality of a set is a measure of the “number
of elements of the set”. A formal definition without knowing anything about
numbers is based on the notion of a one-to-one correspondence between sets. In
particular, we say that two sets A and B are equipollent (or also are equipotent,
equinumerous etc.) and write |A| = |B|, if there exists a one-to-one mapping of
A onto B. The notion of cardinality of sets introduced by this way has only a
functional role. In order to express the cardinality of sets as a specified object
itself, the equivalence of being equipollent (called equipollency or equipotency,
equinumerosity etc.) on the class of all sets is introduced. The cardinality of a
set A is then defined as the equivalence class of all equipollent sets with A or as
the least ordinal number that is the element of this equivalence class for A.

The familiar approaches to the definition of cardinality of fuzzy sets describing
the size of fuzzy sets are more or less analogous to the classical approaches for
sets. Nevertheless, for fuzzy sets, the situation is much more complicated by the
graduation of membership of elements of fuzzy sets. We can imagine two general
approaches to the cardinality of fuzzy sets that are based on:

(a) (graded) equipollence of fuzzy sets and fuzzy classes as fuzzy cardinals,
(b) fuzzy measures generalizing the cardinality of sets.

This paper is devoted to (b), for the approach (a), we refer to [2,3,4,5,6,7]. More
precisely, we consider a direction, when objects representing the cardinality of
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E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 505–514, 2010.
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fuzzy sets are described by generalized ordinal numbers. Let us mention that the
first definition of fuzzy cardinality of finite fuzzy sets, by means of functions from
N to [0, 1], was done by L.A. Zadeh in [8]. A substantial improvement of the
original definition was proposed again by L.A. Zadeh in [9] and gave rise to three
types of cardinality, namely, FGCount, FLCount and FECount (their definitions
are mentioned in Proposition 1, Sect. 3.1). For example, FGCount(A)(k) (see
C1(k)) expresses a degree to which a fuzzy set A has “at least” k elements. A
generalization of these measures using t-norms and t-conorms was proposed by
M. Wygralak in [10] and a further development can be found in [7]. Note that
both mentioned publications are an attempt to develop the cardinal theory for
vaguely defined sets including a relation between equipollence and equality of
cardinal numbers. An axiomatic approach to fuzzy cardinality of finite fuzzy sets
covering some of the well-known definitions, defined by means of the generalized
natural numbers, was proposed by J. Casasnovas and J. Torrens in [1].

In this contribution, we propose a generalization of Casasnovas-Torrens ax-
iomatic approach to fuzzy measures generalized cardinality of sets. Although,
the proposed system of fuzzy measures generalizes the cardinality of sets, some
properties like the valuation property or the fundamental correspondence be-
tween the equipollence of sets and the equality of their cardinals are failed here
in general. Therefore, we call these fuzzy measures as fuzzy c-measures, where
the letter “c” is an abbreviation of “like cardinality”. We consider fuzzy sets
from a universe of sets (see [4]) that is derived from the Grothendieck universe
(see e.g. [11]). This universe enables us to deal with fuzzy sets over different
universes of discourse and seems to be a suitable framework for a development
of the fuzzy set theory.

The paper is organized as follows: Sect. 2 is devoted to preliminaries, where
we introduce a lattice structure called an rdr-lattice in which the membership
degrees of fuzzy sets are interpreted and a universe of sets. Sect. 3 is devoted
to the axiomatic approach to fuzzy c-measures, their representation by lattice
homomorphisms and selected properties. The last section is a conclusion.

2 Preliminaries

2.1 Algebraic Structures of Membership Degrees of Fuzzy Sets

In this paper, the membership degrees of fuzzy sets are interpreted in a complete
residuated lattice which is, moreover, extended by an adjoint pair of operations.
We shall say that an algebra L = 〈L,∧,∨,⊗,→,⊕,1,⊥,-〉 with six binary
operations and two constants is a residuated-dually residuated lattice (shortly,
an rdr-lattice), if

(i) 〈L,∧,∨,⊥,-〉 is a bounded lattice, where ⊥ is the least element and - is
the greatest element of L, respectively,

(ii) 〈L,⊗,-〉 and 〈L,⊕,⊥〉 are commutative monoids,
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(iii) the pairs 〈⊗,→〉 and 〈⊕,1〉 form adjoint pairs, i.e.

a ≤ b→ c if and only if a⊗ b ≤ c, (1)
a ≤ b⊕ c if and only if a1 b ≤ c (2)

hold for each a, b, c ∈ L (≤ denotes the corresponding lattice ordering).

The operations ⊗,→, ⊕ and 1 are called multiplication, residuum, addition and
difference, respectively.1 We shall say that an rdr-lattice is complete (linearly
ordered), if 〈L,∧,∨,⊥,-〉 is a complete (linearly ordered) lattice, respectively.
Further, an rdr-lattice is divisible, if a⊗ (a→ b) = a ∧ b holds for all a, b, c ∈ L,
and dually divisible, if (a 1 b) ⊕ b = a ∨ b holds for all a, b, c ∈ L. To integrate
some of alternative constructions based on the operations of ∧ and ⊗, we shall
use the common symbol 0 (or

⊙
) for them. Analogously, we shall use 0 (or

⊙
)

to denote one of the operations ∨ or ⊕.

Example 1. Let T and S be a left continuous t-norm and a right continuous
t-conorm, respectively, and define →T and 1S by

a→T b =
∨
{c ∈ [0, 1] | T (a, c) ≤ b}, a1S b =

∧
{c ∈ [0, 1] | S(b, c) ≥ a}.

The algebra L = 〈[0, 1],min,max, T,→T , S,1S , 0, 1〉 is a complete rdr-lattice.

2.2 Fuzzy Sets and Fuzzy Classes in a Universe of Sets

In this paper, we deal with fuzzy sets and fuzzy classes from the universe of sets
over an rdr-lattice L defined as follows.

Definition 1. A universe of sets over L is a non-empty class U of sets having
the following properties:

(U1) x ∈ y and y ∈ U , then x ∈ U ,
(U2) x, y ∈ U , then {x, y} ∈ U ,
(U3) x ∈ U , then P(x) ∈ U ,
(U4) x ∈ U and yi ∈ U for any i ∈ x, then

⋃
i∈x yi ∈ U ,

(U5) x ∈ U and f : x→ L, then Ran(f) ∈ U ,

where L is the support of the complete residuated lattice L.

Simple examples of such universes are the classes of all, finite, or countable sets. If
we extend the ZFC by the axiom accepting the existence of strongly inaccessible
cardinals, then there are Grothendieck universes which are universes of sets
over L. From (U1), each set in U is a subclass of U .2 Notice that the opposite
implication is not true. This motivates us to say that a collection of elements is
1 Notice that if the adjoint pair 〈⊕,�〉 (or 〈⊗,→〉) is forgotten in the rdr-lattice L we

obtain the residuated lattice (or dually residuated lattice).
2 Note that each set is a subset of a Grothendieck universe.
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a set (a class) in U , if this collection is an element (a subset) of U . We shall say
that a class in U is proper, if it is not a set in U . From now, we suppose that
a universe of sets is given and we restrict ourselves to sets and classes in this
universe.

Let us put 0 = ∅, 1 = 0∪{0}, 2 = 1∪{1}, etc. Obviously, the natural numbers
0, 1, 2, . . . belong to U and, according to (U4), an arbitrary finite set of natural
numbers is also contained in U . Nevertheless, the set of all natural numbers (we
shall use N to denote it) need not be an element of U (it is sufficient to consider
the universe of all finite sets) and, generally, it is only a class in U .

Definition 2. Let U be a universe of sets over L. A mapping A : x → L is
called a fuzzy set in U , if x is a set in U .

A consequence of (U2), (U4) and (U5) is that each fuzzy set (perceived as a
relation A ⊆ x × L) belongs to U . Hence, all fuzzy sets form a class in U . It is
easy to see that fuzzy sets of higher order, i.e., fuzzy sets over sets of fuzzy sets,
may be established inside of U .

Let A be a fuzzy set in U . The set Dom(A) is called a universe of discourse
of A. Notice that the empty mapping of the empty set to L is also a fuzzy set
with the empty universe of discourse. We use F to denote the class of all fuzzy
sets in U . The set Supp(A) = {x ∈ Dom(A) | A(x) > ⊥} is called a support of
fuzzy set A and Aa = {x ∈ Dom(A) | A(x) ≥ a} is called an a-cut of fuzzy set A.
We shall say that a fuzzy set A is finite, if its support is a finite set and infinite,
if it is not finite. We shall use FIN to denote the class of all finite fuzzy sets.
A fuzzy set A is crisp, if A(x) ∈ {⊥,-} for any x ∈ Dom(A), and is called a
singleton, if A(x) > ⊥ for some x ∈ Dom(A) and A(y) = ⊥ for any y ∈ Dom(A)
with y �= x. We shall use {a/x} to denote a singleton A with A(x) = a > ⊥.

An essential predicate in our theory is a binary relation saying that two fuzzy
sets are the same fuzzy set. In the classical set theory we say that two sets are
the same sets, if they have the same elements. In our theory we define some
analogical notion as follows.

Definition 3. We shall say that fuzzy sets A and B are the same fuzzy sets
(symbolically, A = B), if Supp(A) = Supp(B) and A(x) = B(x) for any x ∈
Supp(A).

For example, A = {0.9/a, 0/b} and B = {0.9, /a} are the same fuzzy sets. Now,
we can introduce some operations with fuzzy sets in U . Here, we demonstrate
only the operations of the union and intersection, nevertheless, one can simply
define the other operations as the difference, product, disjoint union etc.

Definition 4. Let A,B ∈ F , x = Dom(A)∪Dom(B) and A′ = A, B′ = B such
that Dom(A′) = Dom(B′) = x. Then

• the union of A and B is a mapping A ∪B : x→ L defined by

(A ∪B)(a) = A′(a) ∨B′(a) (3)

for any a ∈ x,
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• the intersection of A and B is a mapping A ∩B : x→ L defined by

(A ∩B)(a) = A′(a) ∧B′(a) (4)

for any a ∈ x,

One can check easily that our definition is correct, i.e. there is no dependence
on the choice of fuzzy sets A′ and B′ in the previous definition.

Definition 5. We shall say that a fuzzy set A is less than or equal to a fuzzy
set B (it is denoted by A ⊆ B), if Supp(A) ⊆ Supp(B) and A(x) ≤ B(x) for
any x ∈ Supp(A).

It is easy to see that the (class) relation ⊆ defines a partial ordering of fuzzy
sets on F .

Although the notion of fuzzy set in U is the most important concept in our
theory, it seems to be useful (analogously to the classical set theory) to introduce
the concept of fuzzy class in U . Practically, a fuzzy class describes a family of sets
from U that possess some property, but we cannot precisely decide, if some object
has or has not the given property in general. The formal definition is as follows.

Definition 6. Let U be a universe of sets over L. A mapping A : X → L is
called a fuzzy class in U , if X is a class in U .

It is self evident that each fuzzy set is also a fuzzy class, but the inverse implica-
tion is not true. We shall say that a fuzzy class in U is proper, if its domain is a
proper class in U . For example, a mapping A : N → [0, 1] defined by A(n) = 1

n
is a proper fuzzy class in the universe of all finite sets.

To define fuzzy measures like cardinality for finite fuzzy sets, we need to
introduce a concept of generalized cardinal over N . Further, we will omit “over
N”, for simplicity, and say only “generalized cardinal”. A reasonable condition
(see e.g. [7,10]) for this concept is a convexity of fuzzy sets. The convexity of
fuzzy sets may be defined as follows. Recall that 0 ∈ {∧,⊗}.

Definition 7. Let A : x → L be a fuzzy set and ≤ be a linear ordering on x.
We shall say that A is an 0-convex fuzzy set, if A(a) 0 A(c) ≤ A(b) holds for
any a, b, c ∈ x with a ≤ b ≤ c.

Definition 8. A generalized cardinal A is an 0-convex fuzzy set A : N → L.

One can see that generalized cardinals may be finite or infinite3 and the finite
generalized cardinals are fuzzy sets belonging to each universe of sets.4 We shall
use N to denote the set of all fuzzy natural numbers and suppose that each fuzzy
3 This is a reason why we use “generalized cardinals over N” instead of e.g. ”fuzzy

natural numbers”.
4 Note that infinite generalized cardinals are used for some fuzzy c-measures which

are used, analogously to FLCount, to express the fact that a fuzzy set has “at most”
0, 1, 2, . . . elements (e.g. for the fuzzy set {1/a, 0.5/b} we can obtain by a fuzzy
c-measures the generalized cardinal {0/0, 0.5/1, 1/2, 1/3, . . . }).
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natural number is a fuzzy set in U . Notice that N is a class or a set in some
cases of U . To be able to manipulate with fuzzy natural numbers, we establish
the operation of addition on N by

(A+ B)(i) =
∨

k,l∈N
k+l=i

(A(k) 0B(l)). (5)

Obviously, we use the well-known Zadeh’s extension principle with a more gen-
eral operation 0. Define E : N → L by E(k) = -, if k = 0, and E(k) = ⊥
otherwise. One can prove easily the following statement saying that our defini-
tion of addition is correct.

Theorem 1. The triplet (N ,+, E) is a commutative monoid, where the divisi-
bility of L has to be supposed for 0 = ∧.

3 Fuzzy c-Measures of Finite Fuzzy Sets

3.1 Definition and Examples

In the following text, we suppose that L is a complete rdr-lattice which is,
moreover, divisible, whenever 0 is considered to be ∧.

Definition 9. A class mapping C : FIN → N is a fuzzy c-measure of finite
fuzzy sets, if, for arbitrary A,B ∈ FIN , it satisfies the following axioms

(C1) if A ∩B = ∅, then C(A ∪B) = C(A) + C(B),
(C2) if i, j ∈ N and i > |Supp(A)|, j > |Supp(B)|, then C(A)(i) = C(B)(j),
(C3) if A is a crisp set, then C(A) is a crisp set and C(A)(|A|) = -,
(C4) if a ∈ L, x, y ∈ U and i ∈ N , then C({a/x})(i) = C({a/y})(i),
(C5) if a, b ∈ L and x ∈ U , then

C({a0 b/x})(0) = C({a/x})(0)0 C({b/x})(0) (C5a),
C({a0 b/x})(1) = C({a/x})(1)0 C({b/x})(1) (C5b).

The axioms C1-C5 are called the additivity, variability, consistency, singleton
independency, preservation of non-existence and existence, respectively. For sim-
plicity, we shall often speak only about “c-measure” instead of “fuzzy c-measure
of finite fuzzy sets” in the following text.

The first three axioms are used from [1] and their motivation is as follows. The
additivity of c-measure is the property of cardinality of sets and it is very natural.
The idea of variability is that the c-measure of fuzzy sets is only influenced by the
elements that belong to its support. A consequence of this axiom is correctness
of our axiomatic system, it means, the same finite fuzzy sets5 have the same
c-measure. The axiom of consistency ensures the fact that the c-measures are
extensions of cardinality measure. The singleton independency guarantees that
5 See Definition 3.
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an arbitrary c-measure is not under influence of a form of considered elements.
Finally, a value C({A(x)/x})(0) expresses a degree to which {A(x)/x} may be
considered as the empty set {0/x}, i.e. x does not belong to A. Analogously, a
value C({A(x)/x})(1) determines a degree to which {A(x)/x} may be considered
as a singleton {1/x}. Since a0 b ≥ a∨ b, then a degree characterizing {a0 b/x}
as the empty set cannot be greater than the degrees obtained for {a/x} and
{b/x}. This relation is specified in the axiom (C5a). An analogous consideration
can be done also for the axiom (C5b).

The following proposition shows the FGCount, FLCount and FECount by
means of c-measures of finite fuzzy sets for 0 = ∧ (cf. [1,6,7]). Define a comple-
ment of A by A(x) = A(x) → ⊥ for any x ∈ Supp(A) and A(x) = ⊥ for any
x ∈ Dom(A) \ Supp(A).6

Proposition 1. Let 0 = ∧. Then mappings of FIN to N defined by

C1(A)(i) =
∨
{a | a ∈ L and |Aa| ≥ i}, (6)

C2(A)(i) = C1(A)(i), (7)

C3(A)(i) = C1(A)(i) ∧ C2(A)(i) (8)

for each i ∈ N are c-measures of finite fuzzy sets, where i = max(0, |Dom(A)|−i).
Example 2. Let L be the �Lukasiewicz algebra, i.e. a⊗ b = max(0, a+ b− 1) and
A = {0.5/a, 0.8/b, 0.1/c, 0.4/d, 0/e}. Then we may write

C1(A) = {1/0, 0.8/1, 0.5/2, 0.4/3, 0.1/4, 0/5, 0/6 . . .},
C2(A) = {0/0, 0.2/1, 0.5/2, 0.6/3, 0.9/4, 1/5, 1/6, . . .},
C3(A) = {0/0, 0.2/1, 0.5/2, 0.4/3, 0.1/4, 0/0, 0/6 . . .}.

Note that C1 do not define a c-measure for 0 = ⊗ in general. Two examples of
c-measures for ⊗ are given below.

Proposition 2. Let C1 be the c-measure defined above and 0 = ⊗. Then map-
pings of FIN to N defined by

C4(A)(i) = C1(A�)(i) (9)

C5(A)(i) =
{
-, i = 0,
C5(A)(i − 1)⊗ C1(A)(i), otherwise, (10)

for each i ∈ N are c-measures of finite fuzzy sets.

Example 3. Let us consider the same presumptions as in Example 2. Then we
may write

C4(A) = {1/0, 0/1, 0/2, . . .},
C5(A) = {1/0, 0.8/1, 0.3/2, 0/3, 0/4, 6 . . .},

where, for example, 0.3 = 0.8⊗ 0.5 = max(0, 0.8 + 0.5− 1).
6 One can verify that A = B implies A = B and thus = is a congruence with respect to

the complement in U . Note that the same result cannot be obtained for a definition
of A where A(x) = � for any x ∈ Dom(A) \ Supp(A).
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A straightforward consequence of the additivity of c-measures is the following
theorem.

Theorem 2. Let C : FIN → N be a c-measure and A ∈ FIN such that
Supp(A) = {x1, . . . , xm}. Then

C(A)(i) =
∨

i1,...,im∈{0,1}
i1+···+im=i

m⊙
k=1

C({A(xk)/xk})(ik) (11)

for each i ∈ N . Moreover, C(A)(i) = ⊥ or C(A)(i) = - hold for any m < i.

3.2 Representation of c-Measures

In [1], there is shown a representation of cardinalities of finite fuzzy sets using
two monotonic mappings f, g : [0, 1]→ [0, 1]. In order to introduce an analogical
representation for c-measures, we need to establish a generalization of monotonic
mappings used in [1].

Let L1,L2 be complete rdr-lattices. We shall say that h : L1 → L2 is an 0-
homomorphism of L1 to L2, if h is a homomorphism of the reduct (L1,01,-1) of
L1 to the reduct (L2,02,-2) of L2, i.e. h(a01b) = h(a)02h(b) and h(-1) = -2.7

Further, we shall say that h : L1 → L2 is an 0d-homomorphism, if h is a
homomorphism from the reduct (L1,01,⊥1) of L1 to the reduct (L2,02,-2) of
L2, i.e. h(a01 b) = h(a)0 h(b) and h(⊥1) = -2.

The following lemma shows a characterization of c-measures using 0- and
0d-homomorphisms.
Lemma 1. Let f, g : L → L be 0- and 0d-homomorphisms from L to L such
that f(⊥) ∈ {⊥,-} and g(-) ∈ {⊥,-}. Let Cf,g : FIN → N be a mapping
defined by the induction:

Cf,g({a/x})(0) = g(a), Cf,g({a/x})(1) = f(a), Cf,g({a/x})(k) = f(⊥), k > 1

hold for each singleton {a/x} ∈ FIN and

Cf,g(A) = Cf,g({A(x1)/x1}) + · · ·+ Cf,g({A(xm)/xm})
holds for each A ∈ FIN with Supp(A) = {x1, . . . , xm}. Then the mapping Cf,g

is a c-measure of finite fuzzy sets.

Theorem 3 (Representation of 0-cardinality). Let C : FIN → N be a
mapping satisfying the additivity axiom. Then the following statements are equiv-
alent:

(i) C is a c-measure of finite fuzzy sets,
(ii) there exist an 0-homomorphism f : L → L and an 0d-homomorphism

g : L→ L, such that f(⊥) ∈ {⊥,-}, g(-) ∈ {⊥,-} and

C({a/x})(0) = g(a), C({a/x})(1) = f(a), C({a/x})(k) = f(⊥)

hold for arbitrary a ∈ L, x ∈ U and k ∈ N , k > 1.
7 Note that each homomorphism between rdr-lattices (or residuated lattices which are

the reducts of original rdr-lattices) is also an !-homomorphism.
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3.3 Selected Properties of c-Measures

It is well known that cardinality is order preserving (class) mapping, i.e. A ⊆ B
implies |A| ≤ |B|. To investigate a monotonicity of c-measures, let us introduce
the order preserving (reversing) homomorphisms and c-measures. We shall say
that an 0-homomorphism (an 0d-homomorphism) h : L1 → L2 is order pre-
serving, if h(a) ≤ h(b) holds for arbitrary a, b ∈ L1 such that a ≤ b.8 Further, we
shall say that a c-measure C is order preserving (order reversing), if C(A) ≤ C(B)
holds for arbitrary A,B ∈ FIN such that A ≤ B (B ≤ A). Finally, we shall
say that an 0-homomorphism f (an 0d-homomorphism g) is trivial, if f(a) = -
(g(a) = ⊥) for any a ∈ L.

Thus, we may characterize the monotonicity for c-measures as follows. Recall
that, according to the representation theorem, we may freely use c-measures
generated by 0- and 0d-homomorphisms.

Theorem 4. Let Cf,g : FIN → N be a c-measure generated by order preserving
0- and 0d-homomorphisms f and g, respectively. Then

(i) Cf,g is order preserving if and only if g is trivial, i.e. Cf,g = Cf .
(ii) Cf,g is order reversing if and only if f is trivial, i.e. Cf,g = Cg.

In the cardinal theory of sets, there is a very important property of cardinality
called the valuation property and characterized by the following formula

|A ∩B|+ |A ∪B| = |A|+ |B|, (12)

A,B are arbitrary sets. Unfortunately, this property is not satisfied for all
c-measures, in general.9 A partial result is given in the following statement.
Note that an analogical result for FGCount and FLCount has been proved by
M. Wygralak in [7] (see Theorems 4.18 and 4.56).

Theorem 5. Let C : FIN → N be a c-measure. Then

C(A ∩B) + C(A ∪B) ≥ C(A) + C(B) (13)

holds for arbitrary A,B ∈ FIN . If L is linearly ordered, then C satisfies the
valuation property.

In the cardinal theory, there is a fundamental relation between the cardinality
of sets and bijective mappings saying that two sets have the same cardinality
if and only if there is a one-to-one correspondence between them. Note that we
usually say that two sets are equipotent or equipollent, if there exists a one-to-
one correspondence between them.
8 One can see that an !-homomorphism (an !d-homomorphism) is trivially order

preserving for ! = ∧ (! = ∨).
9 Note that a counterexample can be constructed in a complete rdr-lattice determined

by an Archimedean continuous t-norm T and t-conorm S, where the T -intersection
of fuzzy sets is defined by (A ∩T B)(x) = T (A(x),B(x)) and the S-union of fuzzy
sets by (A ∪S B)(x) = S(A(x),B(x)).
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Let A,B ∈ FIN be arbitrary L-fuzzy sets. We shall say that A and B are
equipollent, if there exists a bijective mapping f : Supp(A)→ Supp(B) such that
A(x) = B(f(x)) for each x ∈ Supp(A). The fact that A and B are equipollent
will be denoted by A ≡ B. The following theorem shows a “weaker implication”
between the equipollency of finite fuzzy sets and the equality of their generalized
cardinals. Note that the inverse implication cannot be principally satisfied in
general because of a wide scale of possible definitions of c-measures.

Theorem 6. Let C be a c-measure. If A ≡ B, then C(A) = C(B).

4 Conclusion

We presented an axiomatic approach to fuzzy measures like cardinality of sets for
fuzzy sets and showed some of their properties including a representation by two
lattice homomorphisms. One could see (the last theorem) that, contrary to the
Cantor-Bernstein theorem, we proved only a weaker implication. An interesting
question is whether there exists a wider class of c-measures provided with a
reasonable defined equipollency of fuzzy sets making the desired equivalence
true. Another interesting question is whether there exists a graded equipollency
for which a graded version of Cantor-Bernstein theorem is satisfied.
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Abstract. Choquet-integral-based evaluations by fuzzy rules are com-
prehensive evaluation methods involving the use of a fuzzy rule table and
the Choquet integral. Fuzzy measures are identified from the fuzzy rule
table. In this paper, we propose methods for developing fuzzy rule tables
for Choquet integral models on the basis of a basic fuzzy rule table and
weights of evaluation items.

1 Introduction

Fuzzy rule tables and fuzzy reasoning models are very useful tools for develop-
ing fuzzy control models. Choquet integral models[1] are also very useful models
for comprehensive evaluations in multiattribute decision making [2][3]. Choquet-
integral-based evaluations by fuzzy rules[4] inherit the merits of both the Cho-
quet integral model and the fuzzy rule table. Fuzzy rule tables and ”If-then
Rules” are very convenient and well-known tools and can be understood intu-
itively. Therefore, they are used in a large number of fuzzy applications use
them. However, max-min calculations do not have good properties such as the
monotonicity property. In our method, in order to use Choquet integral models,
max-min calculations are not performed.

The fuzzy rule table is of the same form as ordinal simplified fuzzy reasoning
models, but the calculations involve the extended Choquet integral, min-max
calculations or product-sum calculations are not performed. The comprehensive
evaluation values satisfy continuous and piecewise linear outputs. Moreover, if
fuzzy rules are monotone with respect to the inputs, the output values also satisfy
the monotonicity property. The model can represent the cumulative prospect
theory[5] and the bi-capacity models[6][7]. Some types of the model are special
cases of k-ary bicapacities and the Choquet integral[8],[9].

In section 3, Choquet-integral-based evaluations by fuzzy rules are described.
In section 4, the basic fuzzy rule table is defined. The basic fuzzy rule table is
a hypothetical fuzzy rule table that describes the degrees of interaction. From
the basic fuzzy rule table and weights of evaluation items, a fuzzy rule table is
developed.
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2 Definitions

2.1 Notations

X is the set of evaluation items (n: number of evaluation items), xi is the input
value of the ith item, and y is the comprehensive evaluation value.

2.2 Fuzzy Space Division Constraint

Each input i is divided into m fuzzy sets in which the membership functions
are pj

i for i = 1, . . . , n, j = 1, . . . ,m. For each input item, all the membership
functions satisfy the following conditions:

1. All fuzzy sets are normal and convex. The kernel of a membership function
is unique ∀i, j; that is, there is a unique point vj

i , where pj
i (vj

i ) = 1 ∀i and j.
2. The sum of the membership values is 1; that is

∑
j p

j
i (xi) = 1, ∀xi, i.

3. There are one or two active membership functions pj
i (xi) > 0 ∀xi, ∀i.

An example of the membership function is a triangle membership function such
as

p1
i (xi) = max(− 1

50
xi + 1, 0) (1)

p2
i (xi) =

{
1
50xi if xi ≤ 50
max(− 1

50 (xi − 50), 0) if xi > 50
(2)

p3
i (xi) = max(

1
50

(xi − 50), 0). (3)

where the domains of xi are [0, 100] and p1
i (xi), p2

i (xi), and p3
i (xi) are ”Small”,

”Middle”, and ”Big” membership functions respectively.

2.3 Fuzzy Rule Table

Representative points (k1, . . . , kn) are defined as n-tuple of kernel numbers. The
fuzzy rule table c is defined as a function from the representative points to the
output values:

c : {1, . . . ,m}n → R. (4)

Table 1 is an example of a fuzzy rule table.

2.4 Choquet Integral and Extended Choquet Integral

A non-monotone fuzzy measure μ♦ is defined as

μ♦ : 2X → R , μ♦(∅) = 0. (5)
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Table 1. Fuzzy rule table (n = 2 and m = 3)

Input 2 \ 1 Small (1) Middle (2) Big (3)
Small (1) 0 (= c(1, 1)) 50 (= c(2, 1)) 80 (= c(3, 1))
Middle (2) 30 (= c(1, 2)) 60 (= c(2, 2)) 90 (= c(3, 2))

Big (3) 70 (= c(1, 3)) 80 (= c(2, 3)) 100 (= c(3, 3))

The Choquet integral with respect to μ♦ is defined as

y = (C)
∫
hdμ ≡

∫ ∞

0
μ♦({x | h(x) > r})dr. (6)

The extended fuzzy measure and extended Choquet integral [10,11] are proposed
for handling the cases in which μ(∅) �= 0. An extended fuzzy measure μ is defined
as

μ : 2X → R. (7)

As the values in the integrand h are membership values, that is, h(i) ∈ [0, 1], ∀i
and μ(∅) = 0 is not assumed, the integration interval of the Choquet integral
calculation is limited to [0, 1]. The extended Choquet integral is defined as

y = (EC)
∫
hdμ ≡

∫ 1

0
μ({x | h(x) > r})dr. (8)

The extended Choquet integral can be calculated by using an ordinal Choquet
integral:

(EC)
∫
hdμ = (C)

∫
hdμ♦ + μ(∅) where μ♦(A) = μ(A)− μ(∅), ∀A ∈ 2X . (9)

3 Calculation Method Based on Segment Division

3.1 Segmentation and Segment Selection

Segmentation is performed at kernel points vj
i for all inputs. Figure 1 shows an

example of the segmentation. Segment S(k1,...,kn)(ki < m, ∀i) is the n-dimensional
rectangle whose vertices are the representative points (k1 + l1, . . . , kn + ln), ∀li ∈
{0, 1}, i = 1, . . . , n. First, the segment that includes the input values (x1, . . . , xn)
is selected. If x1 = 90 and x2 = 20, S(2,1) is selected.

In this model, each segment has a different extended fuzzy measure μ(k1,...,kn)

and integrand h(k1,...,kn), but the Choquet integral is calculated only for the
selected segment.

3.2 Base Point Selection

The base point is the origin of the fuzzy measure and integrand for the seg-
ment. First, the base point is selected from among the representative points in
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x1

x2

S(1,1) S(2,1)

S(1,2) S(2,2)

v1
1 = 0 v2

1 = 50 v3
1 = 100

v1
2 = 0

v2
2 = 50

v3
2 = 100

c(1, 1) = 0 c(2, 1) = 50 c(3, 1) = 80

c(1, 2) = 30 c(2, 2) = 60 c(3, 2) = 90

c(1, 3) = 70 c(2, 3) = 80 c(3, 3) = 100

Fig. 1. Segmentation

X

0
50 100

50

Base Point (2,1)

90

20

S(2,1) (Selected Segment)

μ(2,1)(∅) = c(2, 1) = 50

μ(2,1)({1}) = c(3, 1) = 80

μ(2,1)({2}) = c(2, 2) = 60 μ(2,1)({1, 2}) = c(3, 2) = 90

h(2,1)(1) = p31(90) = 0.8

h(2,1)(2) = p22(20) = 0.4Input (x1 = 90,x2 = 20)

(x1)

(x2)

Fig. 2. Calculation Process

the selected segment. Alternative base points of segment S(k1,...,kn) are (k1 +
l1, . . . , kn + ln), ∀li ∈ {0, 1}, i = 1, . . . , n.

The output values change with the methods for selecting the base points.
TF-, BP-, and AV-type are proposed in [4]. In this paper, the TF-type is used,
because this is the simplest type of method.

3.3 TF-Type

In TF-type models, the upper left representative points are selected as base points
for all segments; that is, the base point of segment S(k1,...,kn) is (k1, . . . , kn).

Extended fuzzymeasureμ(k1,...,kn) assignment. Extended fuzzy measuresμ(k1,...,kn)

are assigned as follows:

μ(k1,...,kn)(A) = c(l1, . . . , ln), ∀A ∈ 2X (10)

where li =

{
ki if i /∈ A
ki + 1 if i ∈ A.

Integrand h(k1,...,kn) assignment. Integrands h(k1,...,kn) are assigned as follows:

h(k1,...,kn)(i) = pki+1
i (xi), i = 1, . . . , n. (11)

Extended Choquet integral. The output value y is calculated from the extended
Choquet integral by using the fuzzy measure μ(k1,...,kn) and integrand h(k1,...,kn)

of the selected segment:

y = (EC)
∫
h(k1,...,kn)dμ(k1,...,kn) (12)
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3.4 Example

When x1 = 90 and x2 = 20, segment S(2,1) is selected, and (2, 1) is selected as the
base point. From figure 2, h(2,1)(1) = 0.8 and h(2,1)(2) = 0.4; μ(2,1)(∅) = c(2, 1) =
5, μ(2,1)({1}) = c(3, 1) = 80, μ(2,1)({2}) = c(2, 2) = 60, and μ(2,1)({1, 2}) =
c(3, 2) = 90. The output is y = (EC)

∫
h(2,1)dμ(2,1) = 78.

3.5 K-ary Bicapacities and Choquet Integral Model

K-ary bicapacities and the Choquet integral model were proposed by Grabisch
and Labreuche[8],[9]. F is a capacity on a lattice L = mn. The fuzzy rule table
c for equation (4) is F , that is c(l1, . . . , ln) = F (l1 − 1, . . . , ln − 1). In the k-
ary model, the domain of the integrand of the Choquet integral is the maximal
chain of the join-irreducible elements of L. When m = 3 and n = 2, the value of
f(1, 0), f(2, 0), f(0, 1), and f(0, 2) are given by DMs. The comprehensive value
is calculated by the Choquet integral of f with respect to F .

The TF-type model is a special case of the k-ary capacities model. In the
Choquet-integral-based evaluation models, there is only one ki for which
f(0, . . . , 0, ki, 0 . . . , 0) > 0, ∀i. When m = 3 and n = 2 and the segment S(i,j)

is selected, f(i, 0) = pi
1(x1), f(0, j) = pj

2(x2), f(k, 0) = 0, ∀k �= i, and f(0, k) =
0, ∀k �= j. The comprehensive value of the Choquet-integral-based evaluation is
equal to the value of the Choquet integral of f with respect to F .

4 Method for Developing Fuzzy Rule Tables on the Basis
of Weights and Interaction Degrees

It is not easy to identify all the output values of representative points if n is
large. For example, if n = 5 and m = 3, then the number of representative
points is mn = 243. Therefore, we propose an identification method based on
weights of evaluation items and a basic fuzzy rule table.

In this model, we assume that all evaluation items are homogeneous. This
means that they have the same fuzzy space division; that is, each evaluation item
has the same numbers of membership functions and the labels of the membership
functions are identified. Interaction degrees have a constant value across all set
of evaluation items such as in the case of λ fuzzy measure[12]. In this paper, we
are concerned only with m = 3 case.

4.1 Basic Fuzzy Rule Table

Basic fuzzy rule tables (figure 3) show the interaction degrees among evaluation
items and the output values of representative points with two homogeneous,
equally weighted, hypothetical evaluation items. The table is developed by DMs.
A basic fuzzy rule table b is a fuzzy rule table with m = 3 and n = 2:

b : {1, 2, 3} × {1, 2, 3} → R. (13)
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Basic fuzzy rule tables are assumed to be based on monotone fuzzy rule; that is,

b(i1, j1) ≥ b(i2, j2) if i1 ≥ i2, j1 ≥ j2. (14)

The output values are symmetrical, that is b(i, j) = b(j, i), ∀i, j. The output
values are b(k, k), k = 1, 2, 3 when xi = vk

i , i = 1, . . . , n. The value of b(1, 2)
indicates the interaction degree when all inputs are in the low area. If b(0, 0) +
1
2 [b(1, 1) − b(0, 0)] < b(1, 2) < b(2, 2), then the interaction degree among low
area inputs is substitute. If b(0, 0) < b(1, 0) < b(0, 0) + 1

2 [b(1, 1)− b(0, 0)], then
the interaction degree is complementary. The value of b(i + 1, i) indicates the
interaction degree when all inputs are in the diagonal segments G(i,i), i = 1, 2, 3.

DMs assign suitable output values that satisfy the monotony constraint of
basic fuzzy rule table (equation (14)). Table 2 is an example of a basic fuzzy rule
table. In the low area (G(1,1)), the interaction degree is substitute. In the high
area (G(2,2)), the interaction degree is complementary.

v

v

b
(1,1)

G
(1,1)

G
(2,2)

G
(1,2)

G
(2,1)

v

v

b
(2,1)

b
(3,1)

b
(1,2)

b
(2,2)

b
(3,2)

b
(2,3)

b
(3,3)

v
1

1
v
1

2 v
1

3

v
2

3

v
2

2

v
2

1

b
(1,3)

Low

High

Low High

Fig. 3. Basic Fuzzy Rule Table

Table 2. Basic Fuzzy Rule Table

Input 2 \ 1 Small (l11) Middle (l21) Big (l31)
Small (l12) 0 (b(1,1)) 30 (b(2,1)) 35 (b(3,1))
Middle (l22) 30 (b(1,2)) 50 (b(2,2)) 60 (b(3,2))
Big (l32) 35 (b(1,3)) 60 (b(2,3)) 100 (b(3,3))

4.2 Measurement of Interaction Degrees

To measure the interaction degree, ξ of the φs transformation[14] is used. Unlike
Murofusi and Soneda’s interaction degree between pairs of items[16], ξ can show
the interaction degree among two or more items such as λ.

φs Transformation. φs : [0, 1]× [0, 1]→ [0, 1] is defined as

φs(ξ, u) =

⎧⎪⎨⎪⎩
1 if (ξ = 1 and u > 0) or (ξ = 0 and u = 1)
0 if (ξ = 1 and u = 0) or (ξ = 0 and u < 1)
su−1
s−1 otherwise,

(15)

where s = (1−ξ)2

ξ2 . The function φs is one of the scaling functions[13]. The fuzzy
measure μ involving the use of the φs transformation is assigned as

μ(A) = φs(ξ,
∑
i∈A

ui), (16)
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where
∑n

i=1 ui = 1, ui ∈ [0, 1], i = 1, . . . n. The weights ui(i = 1, . . . , n) are
weights of evaluation items and ξ is an interaction degree to identify μ. If 0.5 <
ξ ≤ 1, then μ is a sub-additive fuzzy measure. If 0 ≤ ξ < 0.5, then μ is a
super-additive fuzzy measure. The inverse function of φs of u is

φ−1
s (ξ, v) =

log[v(s− 1) + 1]
log s

, ξ ∈ (0, 1), s =
(1− ξ)2
ξ2

. (17)

Measurement of Interaction Degree for Segment. To measure the inter-
action degree ξ(i,j) for segment G(i,j), the normal fuzzy measure μ(i,j) is assigned
on the basis of the values of the representative points in the segment,

μ(i,j)(∅) = 0, μ(i,j)({1}) =
b(i+ 1, j)− b(i, j)

b(i+ 1, j + 1)− b(i, j) (18)

μ(i,j)({2}) =
b(i, j + 1)− b(i, j)

b(i+ 1, j + 1)− b(i, j) , μ(i,j)({1, 2}) = 1 (19)

From the fuzzy measure μ(i,j) and the φs transformation, αP
(i,j), α

Q
(i,j) ∈ [0, 1]

and ξ(i,j) ∈ [0, 1] are calculated by using

φs(ξ(i,j), αP
(i,j)) = μ(i,j)({1}), φs(ξ(i,j), α

Q
(i,j)) = μ(i,j)({2}) (20)

where αP
(i,j) + αQ

(i,j) = 1. As φs(ξ, u) is a strong increasing function of ξ and u,
where ξ ∈ (0, 1) and u ∈ (0, 1), ξ and u can be calculated by repeated operations.
The superscripts P and Q indicate the area name.

In the diagonal segments G(1,1) and G(2,2), as μ({1}) = μ({2}), αL = αH =
0.5. In the segments G(1,2) and G(2,1), the value of μ({1}) and μ({2}) are
different. In segment G(1,2), as φs(0.387, 0.7565) = 0.6666(= μ(1,2)({1})) and
φs(0.387, 0.2435) = 0.1667(= μ(1,2)({2})), ξ(2,1) = 0.387, αL

(2,1) = 0.7565 and
αH

(2,1) = 0.2435.
The weights αL and αH are called additional weights. Table 3 lists the iden-

tified interaction degrees and additional weights corresponding to tabele 2.

Table 3. Interaction Degrees and Additional Weights

Segment Interaction Degree Additional Weights
G(1,1) ξ(1,1) = 0.6 αL

(1,1) = 0.5
G(2,2) ξ(2,2) = 0.2 αH

(2,2) = 0.5
G(2,1) ξ(2,1) = 0.387 αH

(2,1) = 0.2435, αL
(2,1) = 0.7565

G(1,2) ξ(1,2) = 0.387 αH
(1,2) = 0.2435, αL

(1,2) = 0.7565

4.3 Identification of Fuzzy Rule Table

In this section, a fuzzy rule table identification method based on the use of the
basic fuzzy rule table and weights of evaluation items is proposed. The example
(n = 3) involvs the use of table 2, and weights are w1 = 0.5, w2 = 0.3, and
w3 = 0.2.
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Identification of Fuzzy Measures. Normal fuzzy measures μ(i,...,i) of diago-
nal segments S(i,...,i) are assigned as

μ(i,...,i)(A) = φs(ξ(i,i),
∑
j∈A

wj), ∀A, i = 1, 2. (21)

As non diagonal segments have two or more values of ξ, the fuzzy measure values
cannot be calculated by one φs transformation. Therefore, fuzzy measures are
identified φs conversion methods[15].

Figure 4 shows the outline of the process for calculating μ(1,2,1). S(1,2,1) has
two inputs correspondin to the low area and one input corresponding to the
high area. In the lower levels of the hierarchy diagram, the inputs in a single
area are combined, and in the upper level, the different areas are combined. In the
different area conbination, there are additional weights αL and αH . Therefore,
in the connection, new weights ω are defined as

ωi =
α∗i

(1,2) × wi∑
j [α∗j

(1,2) × wj ]
(22)

where ∗i indicates the area to which the i-th input belongs.
As the interaction degrees in the lower and upper level of the hierarchy dia-

gram are different, the weights that are calculated in the lower level are coverted
to upper-level weights using the conversion ratio T , which is the ratio of the
value of the lower label φs to upper level. The details are presented in [15].

Low Low High

μ(1,2,1)

Inp.1 (ω1 ← w1α
L
(1,2)) Inp.2 (ω2 ← w2α

H
(1,2))Inp.3 (ω3 ← w3α

L
(1,2))

ξ(1,1) ξ(2,2)

ξ(1,2)

Fig. 4. Hierarchy Diagram of Segment S(1,2,1)

Procedure for Assigning Values of Representative Points. The values of
representative points are determined on the basis of fuzzy measure values of the
segment. When c(k1, . . . , kn) and c(k1+1, . . . , kn+1) in a segment S(k1,...,kn) have
been previously assigned, the value of the representative point in the segment
are as fellows

c(k1 + l1, . . . , kn + ln) =

μ(k1,...,kn)(
⋃

{j;lj=1}
{j})[c(k1 + 1, . . . , kn + 1)− c(k1, . . . , kn)] + c(k1, . . . , kn)

∀li ∈ {0, 1}, i = 1, . . . , n. (23)

1. Assign diagonal representative points

c(i, . . . , i) = b(i, i), i = 1, 2, 3 (24)
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2. Assign the representative point values of the diagonal segments S(i,...,i), i =
1, 2 using the equation (23).

3. Select a segment S(k1,...,kn) and assign the unassigned representative point
values using equation (23).

4. Repeat step 3 until all representative values are have been assigned.

Table 4 is the identified fuzzy rule table where w1 = 0.5, w2 = 0.3, and w3 = 0.2,
and table 2. Table 5 lists the Shapley values of the each segment.

Table 4. Identified Fuzzy Rule Table

x2

x1 x3 Small (1) Middle (2) Big (3)
Big (3) 15.31 32.58 35.00

1 Middle (2) 13.47 30.00 33.79
Small (1) 0.00 19.44 22.17
Big (3) 41.67 52.47 60.00

2 Middle (2) 38.98 50.00 54.32
Small (1) 30.00 42.96 48.21
Big (3) 48.90 69.88 100.00

3 Middle (2) 46.86 60.00 77.30
Small (1) 35.00 51.79 58.41

Table 5. Shapley Value

Segments 1 2 3
S(1,1,2) 0.59 0.35 0.06
S(1,2,2) 0.72 0.16 0.11
S(1,2,1) 0.64 0.11 0.25
S(2,1,2) 0.37 0.47 0.16
S(2,1,1) 0.26 0.44 0.30
S(2,2,1) 0.41 0.27 0.32
S(1,1,1) 0.50 0.30 0.20
S(2,2,2) 0.47 0.31 0.22
Average 0.49 0.30 0.20

5 Conclusion

In this paper, we proposed a fuzzy rule table identification method based on
fuzzy measure concepts. However, there are some problems that are yet to be
solved. In this method, only the m = 3 case is defined. If m > 3, there are two
or more ξ values among different areas.

In the fuzzy rule table identification procedure, some values of representa-
tive points can be identified in two or more segments; that is, some values are
dependent on the segment selection order.
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Abstract. We define and study a new class of implications determined
only by a negation. We examine under which conditions the most popular
eight axioms for implications are satisfied. We obtain the intersection of
the new class of implications with the S- and R- implications.
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cation axiom, S-implication, R-implication, �Lukasiewicz implication.

1 Introduction

An implication in fuzzy logic is an extension of the implication in binary logic. It
plays important roles in both mathematical and applied sides of fuzzy set theory
([1], [6], [9], [10], [11]).

Definition 1. An implication I is a [0, 1]2 → [0, 1] mapping that satisfies, for
all x, y, z ∈ [0, 1]:

FI1. first place antitonicity FA: x < y ⇒ I(x, z) ≥ I(y, z);
FI2. second place isotonicity SI: y < z ⇒ I(x, y) ≤ I(x, z);
FI3. dominance of falsity of antecedent DF: I(0, x) = 1;
FI4. dominance of truth of consequent DT: I(x, 1) = 1;
FI5. boundary condition BC: I(1, 0) = 0.

Besides the basic axioms there are many potential axioms for implications,
among which the following eight ones are widely used in the literature ([3],
[4], [5], [13]): For all x, y, z ∈ [0, 1],

FI6. neutrality of truth NT: I(1, x) = x;
FI7. exchange principle EP: I(x, I(y, z)) = I(y, I(x, z));
FI8. ordering principle OP: I(x, y) = 1 ⇔ x ≤ y;
FI9. strong negation principle SN: the mapping NI defined by NI(x) = I(x, 0),

is a strong negation;
FI10. consequent boundary CB: I(x, y) ≥ y;
FI11. identity ID: I(x, x) = 1;
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FI12. contrapositive principle CP: there exists a strong negation N such that
I(x, y) = I(N(y), N(x));

FI13. continuity CO: I is a continuous mapping.

In our recent work [12], we have studied dependencies and independencies of
these eight axioms, and found different implications satisfying different sub-
groups of these eight axioms. The following two implications were introduced:

I6(x, y) =
{

1, x ≤ y
y

1+
√

1−x
+
√

1− x, x > y
, x, y ∈ [0, 1]. (1)

I10(x, y) =

{
1, x ≤ y
(1−

√
1−x2)y
x +

√
1− x2, x > y

, x, y ∈ [0, 1]. (2)

I6 satisfies NT, OP, CB, ID, CO but not EP, SN and CP. I10 satisfies NT, OP,
SN, CB, ID, CO but not EP and CP. These implications actually have the same
form. Indeed they can be represented by IN where N is a negation:

IN (x, y) =
{

1, x ≤ y
(1−N(x))y

x +N(x), x > y
, x, y ∈ [0, 1], (3)

If IN is always an implication, then (3) is an interesting new class of implications
because it is only determined by a negation. In this paper we check that IN is
always an implication, and then study this new class of implications. In Section
2 we give some necessary basic notions about negations and some existing classes
of implications generated by negations, conjunctions and disjunctions in fuzzy
logic. In Section 3 we work out the axioms of the new class of implications.
In Section 4 we obtain the intersection of the new class of implications with
the S-implications and R-implications. In Section 5 we conclude our results and
propose the possible generalization of the new class of implications.

2 Preliminaries

The concepts of order automorphism and conjugate are useful in the paper.

Definition 2. ([3], Definition 0) A mapping ϕ : [a, b] → [a, b] ([a, b] ⊂ R) is an
order automorphism of the interval [a, b] if it is continuous, strictly increasing
and satisfies the boundary conditions: ϕ(a) = a and ϕ(b) = b.

Definition 3. ([2], Definition 2) Two mappings F , G: [0, 1]2 → [0, 1] are con-
jugate, if there exists an order automorphism ϕ of the unit interval such that
G = Fϕ, where Fϕ(x, y) = ϕ−1(F (ϕ(x), ϕ(y))), for all x, y ∈ [0, 1].

2.1 Negations in Fuzzy Logic

A negation in fuzzy logic is an extension of the negation in binary logic.
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Definition 4. A mapping N : [0, 1] → [0, 1] is a negation if it satisfies:

N1. boundary conditions: N(0) = 1 and N(1) = 0,
N2. monotonicity: (∀(x, y) ∈ [0, 1]2)(x ≤ y ⇒ N(x) ≥ N(y)).

A negation N is a strong negation if N(N(x)) = x, for all x ∈ [0, 1].

Strong negations are always continuous. But the converse is not true. One of the
famous classes of strong negations are the Sugeno negations Na: there exists an
a ∈ ] − 1,+∞[ such that for all x ∈ [0, 1], Na(x) = 1−x

1+ax . Notice that if a = 0,
then Na is the standard negation N0, N0(x) = 1 − x. An example of a class of
non-continuous negations is:

NA(x) =
{

1, x ∈ A,
0, x /∈ A , x ∈ [0, 1], (4)

where A = [0, α[ (α ∈ ]0, 1]) or A = [0, α], α ∈ [0, 1[ . Notice that NA is the class
of negations that take values only in {0, 1}. Another class of negations that will
be useful later is:

NA,β(x) =
{

1, x ∈ A,
1−x
1+βx , x /∈ A , x ∈ [0, 1], (5)

where A = [0, α[ (α ∈ ]0, 1]) or A = [0, α], α ∈ [0, 1[ , and β ∈ ]−1,+∞[ . Notice
that N{0},β is the class of Sugeno negations.

2.2 Classes of Implications in Fuzzy Logic

A conjunction in fuzzy logic is an extension of the conjunction in binary logic.
Widely used are triangular norms (t-norms for short).

Definition 5. A mapping T : [0, 1]2 → [0, 1] is a t-norm if for all x, y, z ∈ [0, 1],
T (x, 1) = x (boundary condition), y ≤ z ⇒ T (x, y) ≤ T (x, z) (monotonicity),
T (x, y) = T (y, x) (commutativity), and T (x, T (y, z)) = T (T (x, y), z) (associa-
tivity).

Four important t-norms ([7], Example 1.2, [5]) are commonly used:

1. TM(x, y) = min(x, y) (minimum),
2. TP(x, y) = xy (product),
3. TL(x, y) = max(x + y − 1, 0) (�Lukasiewicz t-norm),

4. TD(x, y) =
{

min(x, y), if x = 1 or y = 1
0, otherwise (drastic product).

TM, TP and TL are continuous t-norms, TD not (not even left-continuous).
A disjunction in fuzzy logic is an extension of the disjunction in binary logic.
Widely used are triangular conorms (t-conorms for short).

Definition 6. A mapping S: [0, 1]2 → [0, 1] is a t-conorm if for all x, y, z ∈
[0, 1], S(x, 0) = x (boundary condition), y ≤ z ⇒ S(x, y) ≤ S(x, z) (mono-
tonicity), S(x, y) = S(y, x) (commutativity), and S(x, S(y, z)) = S(S(x, y), z)
(associativity).
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Four important t-conorms ([7], Example 1.14) are commonly used:

1. SM(x, y) = max(x, y) (maximum),
2. SP(x, y) = x+ y − xy (probabilistic sum),
3. SL(x, y) = min(x+ y, 1) (�Lukasiewicz t-conorm, bounded sum),

4. SD(x, y) =
{

max(x, y), if x = 0 or y = 0
1, otherwise (drastic sum).

The most famous and important two existing classes of implications in fuzzy logic
which are generated by negations, t-norms and t-conorms are strong implications
(S-implications for short) and residuated implications (R-implications for short).

Definition 7. Let S be a t-conorm and N be a negation. An S-implication is
defined by

I(x, y) = S(N(x), y), ∀x, y ∈ [0, 1]. (6)

The four S-implications that are generated by the standard negation N0 and the
four aforementioned t-conorms are

(1) IKD(x, y) = max(1 − x, y) (Kleene-Dienes implication),
(2) IR(x, y) = 1− x+ xy (Reichenbach implication),
(3) IL(x, y) = min(1 − x+ y, 1) (�Lukasiewicz implication),

(4) ILS(x, y) =

⎧⎨⎩y, if x = 1
1− x, if y = 0
1, otherwise

.

Definition 8. Let T be a t-norm. An R-implication is defined by

I(x, y) = sup{t|T (x, t) ≤ y}, ∀x, y ∈ [0, 1]. (7)

The four R-implications that are generated by the four aforementioned t-norms
are

(1) IGD(x, y) =
{

1, if x ≤ y
y, if x > y

(Gödel implication)

(2) IGG(x, y)
{

1, if x ≤ y
y/x, if x > y

(Goguen implication),

(3) IL(x, y) = min(1 − x+ y, 1) (�Lukasiewicz implication),

(4) ILR(x, y) =
{
y, if x = 1
1, if x < 1 .

The �Lukasiewicz implication IL is both an S- and an R- implication. For IL and
implications that are conjugate with it we obtain:

Theorem 1. ([2]) A [0, 1]2 → [0, 1] mapping satisfies the exchange principle
(EP), the ordering principle (OP) and is continuous (CO) iff it is the
�Lukasiewicz implication IL, or it is conjugate with IL.
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3 A New Class of Implications Generated by a Negation

3.1 Is IN Defined by (3) Always an Implication?

We examine whether the mapping IN defined by (3) takes its values in [0, 1] and
it satisfies axioms FI1-FI5. First we rewrite IN as

IN (x, y) = SP(N(x), IGG(x, y)). (8)

It is then straightforward that IN (x, y) ∈ [0, 1], and IN satisfies F1-F5. There-
fore, IN is an implication.

3.2 The Axioms of the New Class of Implications

Now we work out whether IN defined by (3) satisfies the axioms FI6-FI13. If
not always, then under which conditions IN satisfies the axioms.
(1)NT: We see immediately from (8) that IN always satisfies NT.
(2)EP: We obtain the following theorem:

Theorem 2. The implication IN defined by (3) satisfies EP iff N belongs to
one of the following two classes of negations:

(1) NA defined by (4),
(2) NA,β defined by (5).

Proof. Necessity: Suppose IN satisfies EP. We will show that if N is not of the
form NA, N must be of the form NA,β. We will do this in three steps: first we
will show that we can find a y0 such that 0 < N(y0) < y0 < 1. Second we prove
that for x ≥ y0, N(x) = 1−x

1+βx for some fixed β. And finally we use this second
step to prove that for x < y0, N(x) = 1 or N(x) = 1−x

1+βx .
Indeed, if IN satisfies EP, then for all x, y, z ∈ [0, 1],
IN (x, IN (y, z)) = IN (y, IN (x, z)). Take z = 0, we obtain

(∀(x, y) ∈ [0, 1]2)(IN (x,N(y)) = IN (y,N(x))). (9)

Suppose N �= NA. Then in particular N �= N[0,1[ . So there exists a y1 ∈ [0, 1[
such that N(y1) < 1. Now take y0 ∈ ] max(y1, N(y1)), 1[ , then N(y0) ≤ N(y) <
y0 < 1. We first show that N(y0) > 0. Indeed, if N(y0) = 0, then for all x ∈ [0, 1],
we obtain:

N(x) = IN (x,N(y0)) = IN (y0, N(x)) =

{
1, y0 ≤ N(x)
N(x)

y0
, y0 > N(x)

⇒ N = NA,

which we have already excluded. Therefore N(y0) > 0. For all x ∈ [y0, 1[ ,
x > N(y0) and N(x) < y0. We obtain:

(9) ⇒ 1−N(x)
x

N(y0) +N(x) =
1−N(y0)

y0
N(x) +N(y0)

⇒ 1−N(x)− x
x

=
1−N(y0)− y0

y0N(y0)
N(x)
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If N(x) = 0, then 1−N(x)−x
x = 0 ⇒ x = 1, which we have already excluded.

Therefore we obtain:

1−N(x)− x
xN(x)

=
1−N(y0)− y0

y0N(y0)

⇒ N(x) =
1− x

1 + βx
(with β =

1−N(y0)− y0
y0N(y0)

, β ∈ ]− 1,+∞[).

Now we prove, for any x ∈ ]0, y0[ ,that if N(x) �= 1, then N(x) = 1−x
1+βx . In

other words that, because N is decreasing, N = NA,β defined by (5). Indeed, if
N(x) �= 1, then we can take y in ] max(N(x), y0), 1[ such that N(y) =< x (this
is possible because we have just proven that for y ∈ [y0, 1[ , N(y) = 1−y

1+βy ). We
obtain:

(9) ⇒ 1−N(x)− x
xN(x)

=
1−N(y)− y

yN(y)
= β.

Thus N(x) = 1−x
1+βx .

Sufficiency of NA: We obtain: INA(x, y) =
{

1, x ∈ A
IGG(x, y), x /∈ A. Thus

INA(x, INA(y, z)) =
{

1, x ∈ A or y ∈ A
IGG(x, IGG(y, z)), x /∈ A and y /∈ A.

According to [2], IGG satisfies EP. Therefore INA satisfies EP.
Sufficiency of NA,β, A = [0, α[ (α ∈ ]0, 1]) or A = [0, α] (α ∈ [0, 1[): We obtain:

INA,β (x, y) =

{
1, x ≤ y or x ∈ A
1−x+(1+β)y

1+βx , x > y and x /∈ A. Thus

INA,β (x, INA,β (y, z)) =

⎧⎪⎨⎪⎩
1, if x ∈ A or y ∈ A

or x+ y + βxy ≤ 1 + z + βz
2+β−x−y−βxy+(1+β)2z

(1+βx)(1+βy) , else

= INA,β (y, INA,β(x, z)).

(3) OP: We obtain the following theorem:

Theorem 3. The implication IN defined by (3) satisfies OP iff
x > 0 ⇒ N(x) < 1.

Proof. This follows from, for all 0 ≤ y < x ≤ 1,

IN (x, y) < 1 ⇔ 1−N(x)
x

y +N(x) < 1 ⇔ 1−N(x) > 0 ⇔ N(x) < 1.
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(4) SN: It is straightforward that NIN (x) = IN (x, 0) is a strong negation iff N
is a strong negation, because NIN = N .
(5) CB: Because IGG satisfies CB, IN satisfies CB according to (8).
(6) ID: We see immediately through definition that IN (x, x) = 1 for all x ∈ [0, 1].
(7) CP: We obtain the following theorem:

Theorem 4. The implication IN defined by (3) satisfies CP w.r.t. a strong
negation N

′
iff N is a Sugeno negation Na, a ∈ ]− 1,+∞[ , and N

′
= Na.

Proof. Necessity: Recall that IN always satisfies NT. If IN satisfies CP w.r.t.
N

′
, then according to ([12], Proposition 6.1), IN also satisfies SN, and for all

x ∈ [0, 1], N
′
(x) = IN (x, 0) = N(x). Therefore, N is strong and IN satisfies CP

w.r.t. N . We obtain

IN (N(y), N(x)) = IN (x, y)

⇒(∀x ∈]0, 1[)(∀y ∈]0, x[)(
1 − y −N(y)

N(y)
N(x) =

1−N(x)− x
x

y)

⇒(∀x ∈]0, 1[)(∀y ∈]0, x[)(
1 − y −N(y)

yN(y)
=

1− x−N(x)
xN(x)

)

⇒(∃a ∈ [−1,+∞])(∀x ∈]0, 1[)(
1− x−N(x)

xN(x)
= a).

If a = −1 or a = +∞, then N = NA defined in (4) with A = [0, 1[ or A = {0},
which is not a strong negation. Thus N = Na, which is a Sugeno implication.

Sufficiency: If N = Na, then IN (x, y) =
{

1, x ≤ y
(1+a)y+1−x

1+ax , x > y
, and

IN (N(y), N(x)) =
{

1, x ≤ y
1−y
N(y)N(x) + y, x > y

=
{

1, x ≤ y
(1+a)y+1−x

1+ax , x > y
.

Hence IN (x, y) = IN (N(y), N(x)).

(8) CO: We obtain the following theorem:

Theorem 5. The implication IN defined by (3) satisfies CO iff N is continuous.

Proof. It is easily verified that if N is continuous, IN is continuous in each
variable. Therefore by Corollary 1.2.2 in [1], IN is continuous. The converse
follows immediately from IN (x, 0) = N(x).

Combining the four theorems in this section and Theorem 1 in Section 2, we
obtain the following two corollaries:

Corollary 1. For the implication IN defined in (3), the following four condi-
tions are equivalent:
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(1) N is a Sugeno negation Na, a ∈ ]− 1,+∞[ ,
(2) IN satisfies EP and N is a continuous negation,
(3) IN satisfies CP (w.r.t. N),
(4) IN is conjugate with the �Lukasiewicz implication IL.

Notice that if a = 0, then N = N0. Then IN = IL.

Corollary 2. An implication IN defined by (3) satisfying EP and CO also sat-
isfies OP.

The converse of Corollary 2 is not true. For example, the implication
IN{0} = IGG: IGG satisfies OP but it is not continuous at the point (0, 0).

4 Intersection of the New Class of Implications with the
S- and R- Implications

4.1 Intersection of the New Class of Implications and S-Implications

In this section we find the intersection of the new class of implications defined
in (3) and the class of all S-implications as well as the class of all S-implications
generated by a t-conorm and a strong negation.

Theorem 6. The implication IN defined in (3) is an S-implication S(N
′
(x), y)

iff N = N
′
and N belongs to one of the following two negations:

(1) NA defined by (4) with A = [0, 1[ ,
(2) NA,β defined by (5).

Proof. Necessity: Because for all x ∈ [0, 1],
N(x) = IN (x, 0) = S(N

′
(x), 0) = N

′
(x), N = N

′
.

According to ([1], Proposition 2.4.6), any S-implication satisfies EP. Then ac-
cording to Theorem 2, if IN is an S-implication, then N = NA, A = [0, α[ (α ∈
]0, 1]) or A = [0, α] (α ∈ [0, 1[), or N = NA,β. Nevertheless,

INA(x, y) =
{

1, x ≤ y or x ∈ A
y
x , x > y and x /∈ A, (10)

while

S(NA(x), y) =
{

1, x ∈ A
y, x /∈ A. (11)

If A �= [0, 1[ , then we can take x and y such that 0 < y < x < 1 and x /∈ A.
Then S(NA(x), y) = y �= y

x = INA(x, y). Thus (10)�=(11) provided A �= [0, 1[ .
Therefore IN[0,α[ (α < 1) and IN[0,α] are not S-implications.
Sufficiency of N = N[0,1[: IN[0,1[(x, y) = S(N[0,1[(x), y) for any t-conorm S.
Sufficiency of N = NA,β : Take S(x, y) = min(1, x+ y+βxy). We can verify that
S is a t-conorm (for the associativity:

S(x, S(y, z)) = min(1, x+ y + z + βxy + βyz + βxz + β2xyz) = S(S(x, y), z)),
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and that

S(NA,β(x), y) =
{

1, x ∈ A or x ≤ y
1−x+y+βy

1+βx , x /∈ A and x > y

= INA,β (x, y).

Consequently, INA,β is an S-implication.

Combining Corollary 1 and Theorem 6 we obtain the following corollary.

Corollary 3. For the implication IN defined by (3), the following three condi-
tions are equivalent:

(1) IN is an S-implication generated by a t-conorm and a strong negation,
(2) N is a Sugeno negation Na, a ∈ ]− 1,+∞[,
(3) IN is conjugate with the �Lukasiewicz implication IL.

4.2 Intersection of the New Class of Implications and
R-Implications

In this section we find the intersection of the new class of implications defined
in (3) and the class of the R-implications generated by left-continuous t-norms.

Theorem 7. The implication IN defined in (3) is an R-implication generated
by a left-continuous t-norm iff N belongs to one of the following two negations:

(1) a Sugeno negation Na, a ∈ ]− 1,+∞[,
(2) NA defined by (4) with A = {0}.

Proof. Necessity: If IN is an R-implication generated by a left-continuous t-
norm, then according to ([4], Theorem 1.14), IN satisfies EP and OP. According
to Theorem 2, N = NA defined by (4), or N = NA,β defined by (5). According
to Theorem 3, N(x) < 1 provided x > 0. Therefore N = Na, or N = N{0}.
Sufficiency ofN = Na: According to Corollary 1, ifN = Na, then IN is conjugate
with IL. According to Theorem 1, IN is an R-implication.
Sufficiency of N = N{0}: IN{0} = IGG, the R-implication generated by the
continuous t-norm TP.

Notice that although IN[0,1[ is not an R-implication generated by a left-
continuous t-norm, it is the R-implication ILR generated by the non-left-
continuous t-norm TD.

5 Conclusions

In this paper we studied a new class of implications determined by a negation
N , i.e.,

IN(x, y) =
{

1, x ≤ y
(1−N(x))y

x +N(x), x > y
, x, y ∈ [0, 1].
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We first checked that IN is always an implication. For each of the axioms FI6-
FI13 we found sufficient and necessary conditions in terms ofN . We also obtained
the intersection of IN with any S-implications and R-implications generated by
a left-continuous t-norm. An example of IN being an R-implication generated
by a non-left-continuous t-norm was also given.

It is worth mentioning that if we take N as a Sugeno negation, then IN is an
implication that is conjugate with the �Lukasiewicz implication IL.

At the end of this paper we mention a possible generalization of the new class
of implications IN . If we replace SP and IGG in (8) with any t-conorm S and
any implication I, then we obtain a class of implications defined by N , S and I:

IN,S,I(x, y) = S(N(x), I(x, y)) x, y ∈ [0, 1].

Using the same proof for IN we obtain that IN,S,I is always an implication. This
class of implications helps us to generate new implications from existing ones,
which will be the topic of further research.
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1 Introduction

In the crisp, classical theory of relations, there is a one-to-one correspondence
between finite orders and the corresponding coverings on the same set. This
correspondence is represented by a Hasse diagram which determines both: an
order and the corresponding covering relation.

Since we deal with analogue problems in fuzzy settings, let us mention briefly
some historical data. Fuzzy orderings have been extensively investigated due to
their applicability in situations in which different kinds of comparison appear.
At the beginning, fuzzy ordering was introduced by Zadeh [26], and later in-
vestigated by many authors (see e.g., [19]) In the last decade the co-domain of
orderings was taken to be a residuated lattice (see [1]). These investigations were
applied in e.g., introducing fuzzy lattices [8,9], (see also [25]) and complement-
edness, [10]. We refer to the cited papers for more information.

Here we investigate fuzzy orders, coverings and diagrams in the framework of
residuated lattice valued fuzzy relations. Namely, for the given fuzzy order we
define fuzzy covering on the same set, and we prove that its essential property
is fuzzy total intransitivity. This property on the other hand generates a fuzzy
order for which it is a fuzzy covering. Though, this correspondence is not one-
to-one: we show that every fuzzy totally intransitive relation is a fuzzy covering
� The research of both authors was supported by Serbian Ministry of Science and Tech.

Development, Grant No. 144011 and by the Provincial Secretariat for Science and
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for a class of fuzzy orderings, among which there is a minimum one. In a finite
case, fuzzy total intransitivity enable construction of a Hasse-like diagram, a
particular fuzzy graph. Properties of such diagrams are investigated in terms
of fuzzy total intransitivity and fuzzy order. We mention that fuzzy coverings
and fuzzy total intransitivity were introduced in [20] and [23], but in different,
cutworthy framework: only the basic lattice operations were used. Our present
work deals with different operations (multiplication in a residuated lattice com-
bined with meet and join). We do not investigate cuts of such relations, but
we concentrate on their link to diagrams. Finally, let us comment our equality
framework. The one we use here is crisp equality, though in several papers men-
tioned in references fuzzy orderings are defined and investigated with respect
to fuzzy equalities (i.e., fuzzy equivalences with values 1 on the diagonal only).
This approach would lead to essentially different fuzzy diagrams then the ones
introduced here. Analogy with crisp cases would be less present, though such an
investigation would be interesting.

2 Preliminaries

2.1 Residuated Lattices

Recall that a poset (L,�) in which for every two-element subset {x, y} there
exist the infimum (x ∧ y) and the supremum (x ∨ y) is a lattice. It is complete
if the infimum and the supremum exist for every subset of L. As an algebraic
structure, a complete lattice is usually denoted by (L,∧,∨, 0, 1), where 0 and 1
are the smallest and the greatest element under the order � in L. Further on, a
commutative monoid (L,⊗, 1) is a nonempty set L together with a commutative
and associative binary operation ⊗ and a unit (neutral) element 1 ∈ L (for every
x ∈ L, 1⊗ x = x⊗ 1 = x).

A complete residuated lattice is here considered to be a structure (L,∧,∨,
⊗,→, 0, 1) in which

(L,∧,∨, 0, 1) is a complete lattice,
(L,⊗, 1) is a commutative monoid, and

the binary operations⊗ and→ form an adjoint pair, meaning that for all x, y, z ∈
L, x⊗ y � z if and only if x � y → z.

Residuated lattices were introduced in 1939. by Dilworth and Ward ([12]).
Recently, Blount and Tsinakis investigated these algebras in a more general way
([2]). A detailed study of residuated lattices can be found in a recent book by
Galatos et al. ([13]).

From the point of view of fuzzy mathematics, an extensive presentation of
residuated lattices is given in a book by Bělohlávek ([1]). Here we deal with fuzzy
relations, hence we use terminology, notions and related properties from this
book. Apart from general lattice properties (see eg., [6]), concerning additional
operations we use frequently the fact that multiplication⊗ is isotone with respect
to the lattice order � and distributive with respect to arbitrary infima. Observe
also that 0 is absorbing with respect to multiplication: 0⊗ x = 0, for every x.
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There are many examples of complete residuated lattices whose lattice reduct
(i.e., its part which is a complete lattice) is the unit interval of the real line,
together with min and max as the lattice operations. Depending on how the other
two binary operations are defined (⊗ and →), there are �Lukasiewicz structure,
Gödel structure, Product structure and others. All these are linearly ordered,
but there are others which are not, like Heyting and Boolean lattices, both under
suitably defined adjoint operations (for these, see also [1]).

2.2 Ordering Relation and Hasse Diagram

An ordered set, poset, is a pair (A,�) consisting of a nonempty set A and an
ordering (reflexive, antisymmetric and transitive) relation on A.

What we also use is a notion of a directed graph, which is an ordered pair
(V,A) consisting of a set V of vertices and a binary relation A on V , whose
elements are called edges. Directed graphs can be represented by a diagram,
so that vertices are points in a plain and edges are arrows connecting them. A
path is a sequence of vertices connected by edges. If the first and the last vertex
of a path coincide, then this path is a cycle. In particular, a loop is an edge
that connects a vertex to itself. A graph is simple if it has no loops. A graph
without cycles is said to be acyclic.

As it is known, Hasse diagram of a finite poset is a graph visually represent-
ing the corresponding covering relation. Without referring to a partial order,
Hasse diagram can be viewed as a directed acyclic graph which coincides with
its transitive reduction. By the definition, the transitive reduction of a bi-
nary relation R on a set X is a minimal relation on X whose transitive closure
coincides with the transitive closure of R.

Lemma 1. Every directed acyclic graph which coincides with its transitive re-
duction uniquely represents an ordering relation on the set of its vertices.

2.3 Fuzzy Relations

Let L=(L,∧,∨,⊗,→,0, 1) be a complete residuated lattice. Let X be a nonempty
set. A fuzzy relation ρ is a mapping from X2 to L.

Observe that there are several ways to name mappings from a set to a residu-
ated lattice: fuzzy, L-valued, L-fuzzy, lattice valued... Our choice is the adjective
’fuzzy’ because we use only one co-domain - a complete residuated lattice, hence
no confusion could arise.

As for a fuzzy set, we say that the support of a fuzzy relation ρ on X is the
crisp relation supp ρ ⊆ X2 determined by the non-zero values of ρ:

supp ρ := {(x, y) ∈ X2 | ρ(x, y) > 0}.

A fuzzy relation ρ on X is
(fuzzy) reflexive: if for all x ∈ L, ρ(x, x) = 1;
(fuzzy) antisymmetric: if for all x, y ∈ X , if x �= y, then ρ(x, y)⊗ ρ(y, x) = 0;
(fuzzy) transitive: for all x, y, z ∈ X , ρ(x, y) ≥ ρ(x, z)⊗ ρ(z, y).
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In connection with our comment about names, we sometimes omit adjective
’fuzzy’ but only for the above three well known relational properties.

A relation ρ is a fuzzy ordering relation if it is reflexive, antisymmetric and
transitive.

3 Fuzzy Covering

Let ρ : X2 → L be a fuzzy ordering relation on a set X .
Define a fuzzy relation αρ : X2 → L, as follows:
αρ(x, x) = 0, and if x �= y, then

αρ(x, y) :=
{

0, if ρ(x, z)⊗ ρ(z, y) > 0 for some z �∈ {x, y};
ρ(x, y), if ρ(x, z)⊗ ρ(z, y) = 0 for all z �∈ {x, y}.

We call the relation αρ a fuzzy covering relation induced by the fuzzy
ordering ρ.

Remarks. 1. In paper [20], an analogue definition of a fuzzy covering is given
in terms of basic lattice operations; here we use multiplication, and two notions
differ not only in formal definitions, but also in properties, as indicated later.

2. The term fuzzy covering follows the analogue crisp terminology. The same
notion could equivalently be named as fuzzy neighboring ; we consider the former
as more adequate.

Next we present a property which turn out to be essential for fuzzy coverings.
We say that a relation ρ on X is totally fuzzy intransitive if for every

n ∈ N, and all x1, . . . , xn ∈ X ,
from ρ(x1, x2)⊗ ρ(x2, x3)⊗ . . .⊗ ρ(xn−1, xn) > 0, it follows that
x1 �= xi, for all i = 2, . . . , n and
ρ(x1, xi) = 0, for all i = 3, . . . , n.

Theorem 1. Every fuzzy covering relation induced by a fuzzy order is totally
fuzzy intransitive.

Proof. Let αρ be the fuzzy covering induced by a fuzzy order ρ. From

αρ(x1, x2)⊗ αρ(x2, x3)⊗ . . .⊗ αρ(xn−1, xn) > 0,

we have that αρ(xi, xi+1) > 0 for every i = 1, . . . , n−1, and hence αρ(xi, xi+1) =
ρ(xi, xi+1) > 0 for each i. Since αρ(xi, xi+1) > 0, by the definition of αρ, we have
that xi �= xi+1, for all i = 1, ..., n− 1.

In case xi = x1, and ρ(x1, x2) ⊗ ρ(x2, x3) ⊗ . . . ⊗ ρ(xi−1, x1) > 0, we would
have 0 < ρ(x1, x2) ⊗ ρ(x2, x3) ⊗ . . . ⊗ ρ(xi−1, x1) ≤ ρ(x1, xi−1) ⊗ ρ(xi−1, x1),
contradicting the antisymmetry of ρ. Thus, x1 �= xi, for all i = 2, . . . , n.

From αρ(x1, xi) > 0, for some i ∈ {3, . . . , n} it follows that ρ(x1, xi) > 0. By
the transitivity of ρ, we have that ρ(x1, xi−1) ⊗ ρ(xi−1, xi) � . . . � ρ(x1, x2) ⊗
ρ(x2, x3)⊗ . . .⊗ρ(xi−1, xi) > 0. But then, αρ(x1, xi) = 0, by the definition of αρ.
Therefore, the assumption αρ(x1, xi) > 0 leads to a contradiction, which proves
the theorem. ��
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Every fuzzy covering is included in the corresponding fuzzy order. This simple
property, which is more precisely formulated in the sequel, is a direct consequence
of its definition.

Proposition 1. If ρ is a fuzzy order on X and αρ the corresponding fuzzy
covering, then for all x, y ∈ X ,
αρ(x, y) is either 0, or it coincides with the value of ρ.

Next we examine a kind of a converse of Theorem 1. We start with a totally
fuzzy intransitive relation and we construct the corresponding fuzzy order.

Theorem 2. LetX be a nonempty set and α a totally fuzzy intransitive relation
on X . Then there exists a fuzzy ordering relation ρ such that its fuzzy covering
relation is α.

Proof. Let α : X2 → L be a totally fuzzy intransitive relation onX . The required
fuzzy relation ρ is reflexive and for all distinct x, y ∈ X fulfils the following:

ρ(x, y) :=
∨

n∈N,xi∈X

(α(x, x1)⊗ α(x1, x2)⊗ . . .⊗ α(xn−1, xn)⊗ α(xn, y)).

To prove the antisymmetry, take x �= y. Then,

ρ(x, y) ⊗ ρ(y, x) =

=
∨

(α(x, x1)⊗ . . .⊗ α(xn, y))⊗
∨

(α(y, y1)⊗ . . .⊗ α(ym, x))

=
∨

(α(x, z1)⊗ . . .⊗ α(zp, y)⊗ α(y, zp+1)⊗ . . .⊗ α(zq, x)) = 0,

by distributivity of ⊗ with respect to join and by the definition of total intran-
sitivity (supremum is taken over all corresponding sequences).

For transitivity, we have
ρ(x, z)⊗ ρ(z, y) =

∨
(α(x, z1)⊗ . . .⊗ α(zp, z)⊗ α(z, zp+1)⊗ . . .⊗ α(zq, y)) �∨

(α(x, x1)⊗ . . .⊗α(xn, y)) = ρ(x, y), using distributivity of multiplication with
respect to join.

Next we should prove that the fuzzy covering relation induced by ρ is α. By
the definition, α(x, x) = 0. Let x �= y. If ρ(x, z)⊗ρ(z, y) > 0 for some z �∈ {x, y},
then by ρ(x, z)⊗ρ(z, y) =

∨
(α(x, z1)⊗ . . .⊗α(zp, z)⊗α(z, zp+1)⊗ . . .⊗α(zq, y))

it follows that there exists a chain of elements x, a1 . . . , an, z, b1 . . . , bm, y such
that α(x, a1) ⊗ . . . ⊗ α(an, z) ⊗ α(z, b1) ⊗ . . . ⊗ α(bm, y) > 0. This chain may
be as short as x, z, y, but not shorter. Therefore, by total fuzzy intransitivity, it
follows that α(x, y) = 0.

Further, ρ(x, z)⊗ρ(z, y) = 0 for all z �∈ {x, y}means that the join
∨

(α(x, z1)⊗
. . .⊗α(zp, z)⊗α(z, zp+1)⊗. . .⊗α(zq, y)) equals 0 whenever there is a correspond-
ing chain (with more than 2 elements) from x to y. Therefore, ρ(x, y) = α(x, y),
finally proving that fuzzy covering relation of ρ is α. ��

A following observation is a simple consequence of the fact that a fuzzy totally
intransitive relation is contained the corresponding fuzzy order.
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Corollary 1. A fuzzy totally intransitive relation is antisymmetric.

As we mentioned in Introduction, in the fuzzy settings there is no one-to-one
correspondence among fuzzy orderings and the corresponding fuzzy coverings.
One totally fuzzy intransitive relation can correspond to many fuzzy orderings
on the same set. Among these, the order obtained in the proof of Theorem 2 is
minimal, as shown in the sequel.

Let X be a nonempty set and α a totally fuzzy intransitive relation on X .
Denote by ρα the fuzzy order defined in the proof of Theorem 2:

ρα(x, y) :=
{

1, if x = y∨
n∈N,xi∈X(α(x, x1)⊗ . . .⊗ α(xn, y)), if x �= y.

Corollary 2. Let X be a nonempty set and α a totally fuzzy intransitive rela-
tion on X . Then the fuzzy relation ρα is the smallest fuzzy ordering on X whose
fuzzy covering is α.

Proof. ρα is a fuzzy ordering on X by Theorem 2. What we have to prove is that
every fuzzy ordering whose fuzzy covering is α is greater than ρα, in the sense
of fuzzy inclusion. Indeed, let θ be a fuzzy ordering on X , such that the fuzzy
covering of θ is α. By Proposition 1, for any distinct x, y ∈ X , if α(x, y) �= 0
then α(x, y) = θ(x, y). Hence, by the definition of ρα, for x �= y we have
ρα(x, y) =

∨
n∈N,xi∈X(α(x, x1)⊗ α(x1, x2)⊗ . . .⊗ α(xn−1, xn)⊗ α(xn, y)) �∨

n∈N,xi∈X(θ(x, x1)⊗ θ(x1, x2)⊗ . . .⊗ θ(xn−1, xn)⊗ θ(xn, y)) � θ(x, y).
In the last line of the above formula, we use associativity of ⊗, its isotonicity

with respect to �, and transitivity of θ; obviously, supremum is idempotent,
hence we obtain the upper bound θ(x, y). Therefore, for all x, y ∈ X , we have
ρα(x, y) � θ(x, y), and thus ρα ⊆ θ. ��

Observe that the relation ρα, defined by a precise formula, could be considered
as a main representative of the fuzzy ordering whose covering is α.

4 Fuzzy Diagram of a Fuzzy Order

Following the known terminology, we consider a fuzzy directed graph to be
an ordered pair (X, ρ), where X is a nonempty set and ρ is a fuzzy relation on
X . Observe that the definition adopted here is a special case of a fuzzy graph
being an ordered triple (X,μ, ρ), where in addition to above, μ is a fuzzy set
on X (see e.g., [18]). Hence, we consider a crisp set of vertices and a fuzzy
relation, which give rise to values or weights associated to edges. As usual, we
associate a diagram to a fuzzy directed graph (X, ρ): elements of X , vertices,
are represented by points in a plain, and for x, y ∈ X , ρ(x, y) is a weighted
edge, represented by an arrow from x to y, carrying the non-zero value (weight)
ρ(x, y). Since we do not deal here with undirected graphs, we use a term fuzzy
graph, meaning that the graph is directed. Finally, we also say that the graph,
or its diagram, corresponds to a fuzzy relation ρ. The notions of path, loop,
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acyclic and simple fuzzy graph are defined analogously as in the crisp case;
namely, the only difference with the crisp notions is that the arrows representing
edges carry non-zero weights.

As in the crisp case, we say that the transitive reduction of a fuzzy relation
ρ on a set X is a minimal fuzzy relation on X whose transitive closure coincides
with the transitive closure of ρ. As usual, the transitive closure of a fuzzy
relation ρ on X is the smallest transitive relation on X , containing ρ.

We say that a residuated lattice L is zero divisor free if there are no zero
divisors under ⊗ in L, i.e., if x⊗ y = 0 implies x = 0 or y = 0.

Proposition 2. Let L be a zero divisor free residuated lattice. Then the support
of a fuzzy ordering ρ on X is a crisp ordering on the same set.

Proof. The relation supp ρ is obviously reflexive. It is antisymmetric: if x �= y
and (x, y)∈ supp ρ, then ρ(x, y) > 0, hence by antisymmetry of ρ and by the
assumption on L (no zero divisors under ⊗), we have ρ(y, x) = 0, hence (y, x) �∈
supp ρ. Transitivity of supp ρ follows similarly. ��

Let ρ : X2 → L be a fuzzy ordering relation on a finite set X . Then the fuzzy
graph corresponding to the fuzzy covering relation induced by ρ is said to be
the fuzzy diagram of ρ; we also say that the diagram corresponds to this
fuzzy order.

Proposition 3. Let α : X2 → L be a fuzzy totally intransitive relation on the
finite set X . Then the fuzzy graph on X corresponding to α is simple and it
fulfills the following:

If there is an edge from x to y, then for any other path x, y1, . . . , yn, y from x
to y,

α(x, y1)⊗ α(y1, y2)⊗ . . .⊗ α(yn, y) = 0. (1)

Proof. The graph is obviously simple, since a fuzzy totally intransitive relation is
irreflexive (α(x, x) = 0 for every x). Formula (1) is obtained as a logical contra-
position of the definition of fuzzy total intransitivity. ��

Apart from reflexivity, the proof of the following lemma is identical to the proof
of Theorem 2.

Lemma 2. If α : X2 → L be a fuzzy totally intransitive relation on the finite
set X , then the least transitive relation α̂ containing α is

α̂(x, y) :=
{

0, if x = y∨
n∈N,xi∈X(α(x, x1)⊗ . . .⊗ α(xn, y)), if x �= y.

Next is a characterization theorem for fuzzy diagrams of fuzzy totally intransitive
relations.

Theorem 3. The fuzzy graph corresponding to a fuzzy totally intransitive rela-
tion coincides with its transitive reduction. If, in addition, the co-domain lattice
is zero divisor free, then this fuzzy graph is acyclic.
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Proof. Let α : X2 → L be a fuzzy totally intransitive relation. Suppose contrary,
that there is a fuzzy relation β : X2 → L such that β < α and that β̂ = α̂. Hence
there are x, y ∈ X , such that β(x, y) < α(x, y). Being less than α, fuzzy relation
β is also fuzzy totally intransitive (which can be proved directly), and we can
apply the previous lemma. Since α � α̂ and

β̂(x, y) :=
{

0, if x = y∨
n∈N,xi∈X(β(x, x1)⊗ . . .⊗ β(xn, y)), if x �= y,

it follows that there are elements xi such that

β(x, x1)⊗ . . .⊗ β(xn, y) > 0.

Therefore each factor is greater than 0, and the same holds for analogue values
of the relation α (since β < α). Since α(x, y) > 0, we get the contradiction by
Proposition 3.

If L is zero divisor free, then by the formula (1) in which y is replaced by x,
there are no cycles. ��

Conversely, we have the following claim, which is straightforward consequence
of the definition of a fuzzy totally intransitive relation.

Proposition 4. Let X be a finite set and (X,α) a fuzzy simple graph fulfilling
the property (1). Then α is a fuzzy totally intransitive relation on X .

As an obvious consequence of the unique correspondence among fuzzy graphs
and fuzzy totally intransitive relations on X , we obtain a link between fuzzy
orders and the corresponding fuzzy graphs.

Corollary 3. Let ρ : X2 → L be a fuzzy ordering relation on a finite set X .
Then there is a unique fuzzy diagram corresponding to ρ.

The converse of Corollary 3 does not hold as shown in the following proposition.
It is easily proved by Theorem 2 and Corollary 2.

Corollary 4. Let α be a totally fuzzy intransitive relation on a finite set X .
Then the fuzzy graph (X,α) corresponds to every fuzzy order whose fuzzy cov-
ering coincides with α.

5 Examples

We provide two simple examples illustrating the foregoing properties of fuzzy
orders, coverings and diagrams.

1. A fuzzy order ρ is given on a three-element set {a, b, c}, the lattice L is
Boolean (Figure 1). On the same picture the fuzzy diagram is presented, and
both, the fuzzy order ρ and the corresponding covering αρ are given by the
tables.
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ρ a b c
a 1 q u
b s 1 r
c 0 t 1

αρ a b c
a 0 q 0
b s 0 r
c 0 t 0
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L fuzzy diagram
Fig. 1.

2. Here we have the fuzzy order ρ on the set {a, b, c, d}, and the co-domain is
the standard product algebra ([0, 1],min,max, ·,→, 0, 1) (see [1]) which is zero
division free. ρ is the minimum fuzzy order for which αρ is the fuzzy covering.
The diagram is presented in Figure 2.

ρ a b c d
a 1 0.7 0.6 0.7
b 0 1 0.8 0.9
c 0 0 1 0
d 0 0 0 1

αρ a b c d
a 0 0.7 0 0
b 0 0 0.8 0.9
c 0 0 0 0
d 0 0 0 0

�

�

� �
�

�




c d

b

a

0.8 0.9

0.7 fuzzy diagram

Fig. 2.

6 Conclusion

The paper investigates connection of fuzzy orderings with Hasse-like diagrams
and covering (totally intransitive) fuzzy relations, in the framework of residuated
lattices. It turns out that this important field of fuzzy orderings is far from being
simply analogue to the crisp one. Our next task would be to generalize this
approach with respect to fuzzy equalities, in order to obtain fully fuzzified topic.
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20. Šešelja, B.: L-fuzzy covering relation. Fuzzy Set. Syst. 158(22), 2456–2465 (2007)
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Abstract. We introduce a notion of an idempotent semilinear space and consider
two systems of linear-like equations. These systems are equivalent to systems of
fuzzy relation equations with sup-∗ and inf-→ compositions. We show that the
theory of Galois connections can be successfully used in characterizing whether
these systems are solvable and, if so, finding their solutions sets. Moreover, be-
cause the two types of systems of linear-like equations are dual according to this
theory, it is sufficient to investigate only one system.

Keywords: Semilinear space, Residuated lattice, System of fuzzy relation
equations, Fixed point.

1 Introduction

The aim of this paper is twofold: first, to aid in the formalization and unification of tools
and methods used in the theory of fuzzy relation equations, and second, to propose a
generalization of the theory of linear spaces. As is known from the extant literature,
there are at least two types of systems of fuzzy relation equations that differ in types
of composition [1,2,3,4]. However, results about the solvability and the structure of
solution sets for both types of composition are, in some sense, dual. Additionally, there
is a profound theory of linear spaces wherein the problem of determining the solvability
of systems of linear equations is entirely solved. Thus, our motivation was to find a
proper generalization of the theory of linear spaces that can also serve as a theoretical
platform for the analysis of systems of fuzzy relation equations.

In this paper, we will show that the theory of Galois connections can be successfully
used in characterizing the solvability and finding any solutions sets of systems of linear-
like equations in semilinear spaces. If solvability is connected with a characterization
of the vectors on the right-hand sides, then there exists a Galois connection between
a set of admissible right-hand sides and a set of solutions. Moreover, on the basis of
this theory, two types of systems of linear-like equations are dual, and thus it suffices to
study only one of them.

2 Idempotent Semilinear Spaces

We recall that a linear (vector) space is a special case of a module over a ring, i.e.,
a linear space is a unitary module over a field [5]. In this paper, we will be dealing
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with a unitary semimodule over a commutative semiring [6,7], which will be called a
semilinear space. Moreover, our semilinear space will be an idempotent structure with
respect to its main operation.

Definition 1. Let R = (R,+, ·,0,1) be a commutative semiring and V = (V,+, 0̄) a
commutative monoid. We say that V is a (left) semilinear space over R if an exter-
nal (left) multiplication λ : x̄ �→ λx̄ is defined, where λ ∈ R and x̄ ∈ V. Moreover, the
following mutual properties are fulfilled for all x̄, ȳ ∈V and λ,µ ∈ R:

(SLS1) λ(x̄ + ȳ) = λx̄ + λȳ,
(SLS2) (λ + µ)x̄ = λx̄ + µx̄,
(SLS3) (λ ·µ)x̄ = λ(µx̄),
(SLS4) 1x̄ = x̄,
(SLS5) λ0̄ = 0̄.

When R is clear from the context, we will shorten “left semilinear space over R ” to
“semilinear space.” Elements of a semilinear space will be distinguished by an overline.

Example 1. Let R = (R,+, ·,0,1) be a commutative semiring. Let Rn (n ≥ 1) be the
set of n-dimensional vectors whose components are elements of R, i.e. Rn = {x̄ =
(x1, . . . ,xn) | x1 ∈ R, . . . ,xn ∈ R}. Let 0̄ = (0, . . . ,0) and

x̄ + ȳ = (x1, . . . ,xn) + (y1, . . . ,yn) = (x1 + y1, . . . ,xn + yn).

Then, R n = (Rn,+, 0̄) is a commutative monoid. For any λ ∈ R, external multiplication
λx̄ is defined by

λx̄ = λ(x1, . . . ,xn) = (λ · x1, . . . ,λ · xn).

Then, R n is a semilinear space over R .

Semilinear space R n, n ≥ 1, (see Example 1) will be called vectorial semilinear space
over R .

Definition 2. Semilinear space V over R is called idempotent if the operations + in
both V and R are idempotent.

Let V = (V,+, 0̄) be an idempotent semilinear space. Then

x̄≤ ȳ ⇐⇒ x̄ + ȳ = ȳ, (1)

is the natural order on V . Therefore, (V,≤) is a bounded ∨-semilattice where x̄∨ ȳ =
x̄ + ȳ = sup{x̄, ȳ}, and 0̄ is a bottom element.

It may happen (see Example 2 below) that two idempotent semilinear spaces V1 =
(V,+1, 0̄1) and V2 = (V,+2, 0̄2) with the same support V determine dual (or reverse)
natural orders≤1 and ≤2 on V , i.e.,

x̄≤1 ȳ ⇐⇒ ȳ≤2 x̄.

In this case, ≤2 is simply denoted ≥1. With respect to ≤1, (V2,≥1) is a ∧-semilattice
with the top element 0̄2 where x̄∧ ȳ = x̄+2 ȳ = inf{x̄, ȳ}. We will call V1 a ∨-semilinear
space, and V2 a ∧-semilinear space. Moreover, if V1 and V2 are idempotent semilinear
spaces over the same semiring, then we will call them dual. It is easy to see that for dual
semilinear spaces, the Principle of Duality for ordered sets holds true.
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Example 2. Let L = (L,∨,∧,∗,→,0,1) be an integral, residuated, commutative l-
monoid and L∨ = (L,∨,∗,0,1) a commutative ∨-semiring. Ln (n ≥ 1) is a set of n-
dimensional vectors as in Example 1.

1. Ln
∨ = (Ln,∨, 0̄) is an idempotent commutative monoid, where 0̄ = (0, . . . ,0) ∈ Ln,

and for any x̄, ȳ ∈ Ln,

x̄∨ ȳ = (x1, . . . ,xn)∨ (y1, . . . ,yn) = (x1∨ y1, . . . ,xn∨ yn).

The order on Ln
∨ is determined by ∨ so that x̄≤ ȳ if and only if x1 ≤ y1, . . . ,xn ≤ yn.

For any λ ∈ L, external multiplication λx̄ is defined by

λx̄ = λ(x1, . . . ,xn) = (λ∗ x1, . . . ,λ∗ xn).

Ln
∨ with external multiplication λ : x̄ �→ λx̄ is an (idempotent) ∨-semilinear space

over L∨.
2. Ln

∧ = (Ln,∧, 1̄) is an idempotent commutative monoid where 1̄ = (1, . . . ,1) ∈ Ln,
and for any x̄, ȳ ∈ Ln,

(x1, . . . ,xn)∧ (y1, . . . ,yn) = (x1∧ y1, . . . ,xn∧ yn).

The natural order on Ln
∧ is determined by ∧, and this ordering is dual to ≤, which

was introduced on Ln in case 1 above. We will denote the natural order on Ln
∧ by

≤d , so that x̄ ≤d ȳ if and only if x̄ ≥ ȳ . Alternatively, x̄ ≤d ȳ if and only if x1 ≥
y1, . . . ,xn ≥ yn. For any λ ∈ L, let us define external multiplication λ�x̄ by

λ�(x1, . . . ,xn) = (λ→ x1, . . . ,λ→ xn).

Ln
∧ with the external multiplication λ : x̄ �→ λ�x̄ is an (idempotent) ∧-semilinear

space over L∨.

∨-semilinear space Ln
∨ and ∧-semilinear space Ln

∧ are duals.

2.1 Galois Connections in Semilinear Spaces

Let us recall that a Galois connection between two ordered sets (A,≤) and (B,≤) is
a pair (h,g) of antitone mappings h : A → B and g : B → A such that h ◦ g ≥ idA and
g ◦ h ≥ idB (◦ denotes the composition of two mappings so that, e.g., for all x ∈ A,
h ◦ g)(x) = g(h(x))).

In this section, we will show that two dual idempotent semilinear spaces can be
connected by Galois connections.

Theorem 1. (i) Let Ln
∨ be a ∨-semilinear space and Ln

∧ be a ∧-semilinear space,
both over L∨. For each λ ∈ L, mappings x̄ �→ λx̄ and ȳ �→ λ�ȳ establish a Galois
connection between (Ln

∨,≤) and (Ln
∧,≤d).

(ii) Let Lm
∨ , m ≥ 1, be a ∨-semilinear space and Ln

∧, n ≥ 1, a ∧-semilinear space,
both over L∨. Then for each n×m matrix A ∈ Ln×m with transpose A∗, mappings
hA : Lm → Ln and gA∗ : Ln → Lm given by

hA(x̄)i = ai1 ∗ x1∨·· ·∨aim ∗ xm, i = 1, . . . ,n, (2)
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and
gA∗(ȳ) j = (a1 j → y1)∧·· ·∧ (an j → yn), j = 1, . . . ,m, (3)

establish a Galois connection between (Ln
∨,≤) and (Ln

∧,≤d).

Throughout this paper, let L = 〈L,∨,∧,∗,→,0,1〉 be an integral, residuated, commu-
tative l-monoid (a residuated lattice), U a non-empty set and LU a set of L-valued
functions on U . Fuzzy subsets of U are identified with L-valued functions on U (mem-
bership functions).

3 Systems of Fuzzy Relation Equations and Their Semilinear
Analogs

Let U and V be two universes (not necessary different), Ai ∈ LU , Bi ∈ LV arbitrarily
chosen fuzzy subsets of respective universes, and R ∈ LU×V a fuzzy subset of U ×V .
This last item is called a fuzzy relation. Lattice operations ∨ and ∧ are considered the
union and intersection of fuzzy sets, respectively. Two other binary operations ∗,→ of L
are used for compositions—binary operations on LU×V . We will consider two of them:
sup-∗ -composition, usually denoted ◦, and inf-→composition usually denoted �. The
first was introduced by L. Zadeh [8] and the second by W. Bandler and L. Kohout [9].
We will demonstrate definitions of both compositions on particular examples of set-
relation compositions A◦R and A � R, where A ∈ LU and R ∈ LU×V :

(A◦R)(v) =
∨

u∈U

(A(u)∗R(u,v)),

(A � R)(v) =
∧

u∈U

(A(u)→ R(u,v)).

Remark 1. Let us remark that both compositions can be considered as set-set composi-
tions where R is assumed to be replaced by a fuzzy set. They are used in this reduced
form later in instances of systems of fuzzy relation equations.

By a system of fuzzy relation equations with sup-*-composition (SFRE∗), we mean the
following system of equations

Ai ◦R = Bi, or
∨

u∈U

(Ai(u)∗R(u,v)) = Bi(v), 1≤ i≤ n, (4)

considered with respect to unknown fuzzy relation R∈ LU×V . Its counterpart is a system
of fuzzy relation equations with inf-→composition (SFRE→)

A j � R = D j, or
∧

u∈U

(A j(u)→ R(u,v)) = D j(v), 1≤ j ≤ m, (5)

also considered with respect to unknown R ∈ LU×V . System (4) and its potential so-
lutions are well investigated in the literature (see e.g. [1,2,10,11,12,13,14,15]). On the
other hand, investigations of the solvability of (5) are not so intensive (see [2,4,16]).
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4 Systems of Equations in Semilinear Spaces Lm
∨ and Ln

∧

4.1 System of Equations in Semilinear Space Lm
∨

Let Lm
∨ , with m ≥ 1, be a ∨-semilinear space over L∨, and Ln

∧, with n ≥ 1, be a ∧-
semilinear space over L∨. Let n×m matrix A = (ai j), vector b̄ = (b1, . . . ,bn) ∈ Ln, and
vector d̄ = (b1, . . . ,dm) ∈ Lm have components from L. The systems of equations

a11 ∗ x1∨·· ·∨a1m ∗ xm = b1,

. . . . . . . . . . . . . . . . . . . . . . . . . (6)

an1 ∗ x1∨·· ·∨anm ∗ xm = bn,

and

(a11 → y1)∧·· ·∧ (an1 → yn) = d1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

(a1m → y1)∧·· ·∧ (anm → yn) = dm,

are considered with respect to unknown vectors x̄ = (x1 . . . ,xm) ∈ Lm and ȳ = (y1 . . . ,
yn) ∈ Ln. By (2) and (3), systems (6) and (7) can be respectively represented as follows:

hA(x̄) = b̄.

and
gA∗(ȳ) = d̄.

It is easily seen that system (6) is an instance of (4) specified by U = {u1, . . . ,um},
V = {v1, . . . ,vn}, v ∈ V is fixed, Ai(u j) = ai j, Bi(v) = bi, and R(u j,v) = x j. Similarly,
system (7) is an instance of (5) specified by U = {u1, . . . ,un}, V = {v1, . . . ,vm}, v ∈ V
is fixed, Ai(u j) = a ji, Di(v) = di, and R(u j,v) = y j.

4.2 Solvability in Terms of Galois Connection

Below, we will give results regarding solvability and the solutions of systems (6) and
(7) represented as:

Ax̄ = b̄, (hA(x̄) = b̄),
A∗�ȳ = d̄, (gA∗(ȳ) = d̄),

where mappings hA,gA∗ establish a Galois connection between dually ordered spaces
(Lm
∨ ,≤) and (Ln

∧,≤d). Therefore, any result about the solvability of one system has its
dual counterpart, which can be obtained by

– replacing hA by gA∗ , and vice versa,
– replacing≤ by ≥, and vice versa,
– replacing ∨ by ∧, and vice versa.

For the reader’s convenience, we will formulate both dual results about the solvability
and the solutions of systems (6) and (7).
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Theorem 2. Let A be a given matrix, and hA and gA∗ establish a Galois connection
between semilinear spaces Lm

∨ and Ln
∧. Then,

(i) System (6) is solvable if and only if b̄ is a closed element of Ln
∧ with respect to the

closure operator gA∗ ◦ hA, or if and only if

b̄ = hA(gA∗(b̄)) = A(A∗�b̄). (8)

(ii) System (7) is solvable if and only if d̄ is a closed element of Lm
∨ with respect to the

closure operator hA ◦ gA∗, or if and only if

d̄ = gA∗(hA(d̄)) = A∗�(Ad̄). (9)

Remark 2. By (8), the right-hand side vector b̄ ∈ Ln of a solvable system (6) is a fixed
point of the closure operator gA∗ ◦ hA determined by the matrix of coefficients A. Simi-
larly by (9), the right-hand side vector d̄ ∈ Lm of a solvable system (7) is a fixed point
of the closure operator hA ◦ gA∗.

Remark 3. By Theorem 1, A(A∗�ȳ) ≤ ȳ so that the operator gA∗ ◦ hA is a closure in
Ln
∧ ordered by the dual ordering ≤d . In general, a closure operator in a dually ordered

space is called an opening operator with respect to the reverse, i.e., genuine, ordering
≤. We will not, however, use this term.

Corollary 1. Let the conditions of Theorem 2 be fulfilled. Then,

(i) b̄ is a fixed point of gA∗ ◦ hA if and only if there exists x̄ ∈ Lm such that hA(x̄) = b̄,
or Ax̄ = b̄.

(ii) d̄ is a fixed point of hA ◦gA∗ if and only if there exists ȳ ∈ Ln such that gA∗(ȳ) = d̄,
or A∗�ȳ = d̄.

Corollary 2. Let the conditions of Theorem 2 be fulfilled. Then,

(i) for each x̄ ∈ Lm, A(A∗�Ax̄) = Ax̄,
(ii) for each ȳ ∈ Ln, A∗�A(A∗�ȳ) = A∗�ȳ.

Theorem 3. Let A be a given matrix, gA∗ ◦ hA a closure operator on Ln
∧, hA ◦ gA∗ a

closure operator on Lm
∨ . Then,

(i) the set cl∗A(Ln) of fixed points of gA∗ ◦ hA is a semilinear subspace of Ln
∨.

(ii) the set clA(Lm) of fixed points of hA ◦ gA∗ is a semilinear subspace of Lm
∧ .

Theorem 4. Let systems (6) and (7) be specified by n×m matrix A and vectors b̄ ∈ Ln,
d̄ ∈ Lm, respectively. Then,

(i) if b̄ is a fixed point of gA∗ ◦ hA, then gA∗(b̄) = A∗�b̄ is a solution of system (6),
(ii) if d̄ is a fixed point of hA ◦ gA∗, then hA(d̄) = Ad̄ is a solution of system (7).

Theorem 5. Let systems (6) and (7) be specified by n×m matrix A and vectors b̄ ∈ Ln,
d̄ ∈ Lm, respectively. Then,
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(i) hA restricted to the set of fixed points clA(Lm) is a bijection between clA(Lm) and
cl∗A(Ln),

(ii) gA∗ restricted to the set of fixed points cl∗A(Ln) is a bijection between cl∗A(Ln) and
clA(Lm),

(iii) restriction gA∗ |cl∗A(Ln) is inverse of the restriction hA|clA(Lm).

Let ≡hA be an equivalence relation on Lm
∨ such that

x̄1 ≡hA x̄2 ⇐⇒ A(x̄1) = A(x̄2).

Similarly, let ≡gA∗ be an equivalence relation on Ln
∧ such that

ȳ1 ≡gA∗ ȳ2 ⇐⇒ A∗�ȳ1 = A∗�ȳ2.

Define [x̄]≡hA
as an equivalence class of x̄ with respect to ≡hA , and [ȳ]≡gA∗

an equiva-
lence class of ȳ with respect to ≡gA∗ .

Lemma 1. Let A be a n×m matrix. Then,

(i) For all x̄ ∈ Lm, [x̄]≡hA
= [A∗�Ax̄]≡hA

, where A∗�Ax̄ ∈ clA(Lm) is a fixed point of
hA ◦ gA∗ .

(ii) For all ȳ∈ Ln, [ȳ]≡gA∗
= [A(A∗�ȳ)]≡gA∗

, where A(A∗�ȳ)∈ cl∗A(Ln) is a fixed point
of gA∗ ◦ hA.

Theorem 6. Let systems (6) and (7) be specified by n×m matrix A and vectors b̄ ∈ Ln,
d̄ ∈ Lm, respectively. Then,

(i) [A∗�b̄]≡hA
is a set of solutions of (6) with the righthand side given by b̄, i.e.,

x̄ ∈ [A∗�b̄]≡hA
⇔ Ax̄ = b̄.

Moreover, A∗�b̄ ∈ clA(Lm), and A∗�b̄ is the greatest element in [A∗�b̄].
(ii) [Ad̄]≡gA∗

is a set of solutions of (7) with the righthand side given by d̄, i.e.

ȳ ∈ [Ad̄]≡gA∗
⇔ A∗�ȳ = d̄.

Moreover, Ad̄ ∈ cl∗A(Ln), and Ad̄ is the least element in [Ad̄].

5 Conclusion

In this paper, we showed that the theory of Galois connections can be successfully used
in characterizing the solvability and solutions sets of systems of linear-like equations in
semilinear spaces. The solvability is characterized by the relationship between vectors
of right-hand sides and solutions. Moreover, because two types of systems of linear-
like equations are shown to be dual on the basis of this theory, only one of them was
investigated.
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Abstract. In some previous papers we presented a fuzzy-interpolative self-
adaptive control architecture that is able to identify the current operating regime 
of the system by means of a qualitative analysis of the phase trajectory of the 
error. Here we are extending this technique in order to build a self-adjusting 
PID controller that can automatically set the input scaling factors. This way we 
can obtain simple interpolative controllers embedding conventional knowledge 
on the PID controller adjusting, adapted from the Ziegler-Nichols method.  

Keywords: fuzzy-interpolative controller, knowledge embedding by control 
rules, phase trajectory of the error, iterative feedback tuning. 

1   A Brief Introduction of the Fuzzy-Interpolative Methodology 

Humans are reasoning in a qualitative and symbolic way. When we want to extend 
this kind of reasoning over the artificial intelligent systems we have to deal with the 
fact that digital computers are reasoning in a totally opposite manner, based on quan-
titative analysis and numeric algorithms. This is an opposition between the flexible 
and comprehensive heuristic solutions and the precise and specialized numeric algo-
rithms. Thanks to the fuzzy sets theory and to the expert system technique, linguistic 
represented knowledge can now be embedded into digital systems. In other words, 
computers begin to operate with words and to accommodate with world knowledge 
WK [1]. We ask the question if low level computing devices, say microcontrollers, 
DSPs, etc. can benefit of WK, though sophisticated AI software, such as Matlab, are 
encountering difficulties?  

Our answer to this question is the Fuzzy-Interpolative Methodology FIM [2] that is 
used for designing the fuzzy-interpolative controllers FIC. A FIC is a fuzzy control-
ler, defined by a McVicar-Whelan table (a decision table), that can be automatically 
equaled with a corresponding look-up table with linear interpolations [3].  

The main FICs’ advantage is their extremely convenient implementation by means 
of interpolative networks, in any possible software technology. This is due to the fact 
that the interpolative networks can be directly associated to addressable memories, 
which is substantially helping the digital computation. In high level programming 
languages the look-up tables bring effectiveness, resources saving and quick develop-
ments. Digital hardware circuits (microcontrollers, DSPs) can also implement FICs 
thanks to their memory based architecture. Even analog circuitry such as the transli-
near analog CMOS can support FICs [4]. 



554 M.M. Balas and V.E. Balas 

FIM is taking advantage of both linguistic and interpolative nature of the FICs, 
merging their advantages: a) the use of linguistically represented expert knowledge in 
the conception and the development stages and b) the simplicity of the interpolative 
networks for the implementations. In close loop control FICs are perfectly matching a 
fundamental time analysis tool: the phase trajectory of the error PTE and their spe-
cific analysis method, the qualitative analysis. 

This approach was inspired by the fundamental papers of William Clocksin and 
A.J. Morgan [5] and of Laurent Foulloy [6]. 

2   The Fuzzy Self-Adaptive Interpolative Controllers 

The first controllers developed according to FIM are forming the family of the fuzzy 
self-adaptive interpolative controllers FSAIC [3]. There are three such control confi-
gurations, enclosing different amounts of symbolic knowledge. 

The first level of symbolism is materialized by the plane surface adaptive interpol-
ative controller PSAIC. During transient regimes PSAIC is PD (a 2D look-up-table). 
Its control surface is almost plane, in order to avoid the distortion of the phase trajec-
tory of the error. During the steady regime an integrative effect is gradually  
introduced, the structure becoming a PID one (a 3D look-up-table). The inputs are the 
control error ε, its derivate ε’ and its integrative ∫ε. The different PD tables that are 
creating the ∫ε dimension differ only at their central rule, that is activated when ε=zero 
and ε’=zero (the steady regime). Thus the integrative effect is gradually activated only 
when steady regimes occur.  

The PSAIC linguistic knowledge may be stated as follows: the PD control is used for 
transient regimes while the integrative effect initiates progressively only for steady 
regimes. 

The next level of symbolism is belonging to proper FSAICs, which have a superior 
adaptive feature by using a specific fuzzy-interpolative adaptive corrector. The cor-
rector, a Proportional Derivative FIC, is modulating the PSAIC output with a multip-
licative factor Gain, which is resulting out of an on-line quantitative analysis of PTE. 
This analysis is performed with the help of the Linguistic Phase Trajectory LPT, the 
succession of the activated adaptive rules. The rules that are surely pointing the oper-
ating regimes, the so called regime’s signatures, are identifying the respective regime 
simply by their activation. 

We have considered four significant operating regimes: transitory, steady, oscillat-
ing and unstable [7]. Their signatures in terms of PTE are shown in Fig. 1. Each time 
the adaptive corrector recognize a change of the operating regime it will adjust Gain, 
according to our generic knowledge on the PID controllers [8]. 

For instance, the steady regime is identified by the activation of the central R13: 
“ε=zero and ε’=zero” (see Fig. 2) and has as result an increased Gain. This will in-
crease the precision and will produce faster reactions of the control systems against 
perturbations. 

The rules that are characterizing the oscillatory regime, R12 and R14: “ε=zero and 
ε’≠zero” or R8 and R18: “ε≠zero and ε’=zero” (see Fig. 2) must decrease Gain, as 
well as the rules that are typical for the unstable regime, R5 and R21: “ε=big and 
ε’=big and sign(ε x ε’)=negative”. The theory standing behind these actions is the 
Nyquist stability criterion. 
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Fig. 1. PTE signatures of the main regimes 

Such way, the general knowledge of the system theory helps us to define four rule 
clusters: Steady (R13), Oscillating (R8, R12, R14 and R18), Unstable (R5 and R21) 
and Transitory (the other remaining rules). 

 

Fig. 2. A 5 x 5 McVicar-Whelan table with an associated linguistic phase trajectory 

The previously presented principle can be further refined, with different goals. For 
example, the death time plants demand specific correctors, as shown in ref. [9]. This 
highest symbolic level is achieved by FFSAIC (the fusioned fuzzy self-adaptive inter-
polative controller) which may include different, even contradictory control strate-
gies, into the same adaptive corrector [3].  

Another version of our approach is the fuzzy-interpolative self-adaptive PID  
controller [12]. 
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Fig. 3. The fuzzy-interpolative self-adaptive PID controller 

As shown in Fig. 3, this controller has a PD fuzzy-interpolative adaptive corrector 
for each of the PID tuning parameters. They identify the operating regimes by their 
LPT signatures and, according to the activated rules, they modulate the values of the 
corresponding tuning parameter. The knowledge that supports the tuning is a heuristic 
PID tuning methodology, inspired by the Ziegler-Nichols method. The stability issues 
are considered in the light of the Nyquist criterion. 

We illustrate this controller by the adaptive rules of the proportional effect KP: 

IF ε = zero and ε’= zero THEN KP = big 
IF ε = big or ε’= big THEN KP= small 
IF ε = big and ε’= big AND sign(ε x ε’)=negative THEN KP = very small 
IF ε = big and ε’= zero OR ε = zero and ε’= big THEN KP = very small 
ELSE KP = medium 

The explanation of the rules is the following:  

- during the steady regime KP  is big, for a good rejection of the disturbances; 
- when the system is far from the steady regime KP must decrease in order to avoid 

oscillations or overshoots; the error is anyway big so there is no need to amplify it 
excessively; 

- when we have oscillatory or unstable regime KP must be very small; 

The following numerical implementation illustrates the procedure. Assume E as the 
limit of the steady regime. If very small = 0.2, small = 0.45, medium = 0.6 and big = 1, 
then the implementation look-up table is the following: 

       row (ε): [-1 –E 0 E 1];         (1) 

            column (ε’): [-1 –E’ 0 E’ 1];     

            KP: [0.2 0.45 0.2 0.45 0.45; 0.6 0.6 0.6 0.6 0.6; 1 1 1 1 1; 0.6 0.6 0.6 0.6 0.6;  
                   0.45 0.45 0.2 0.45 0.2]. 

The other parameters are designed in the same manner. 
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The primary reason of this adaptations by qualitative analysis is to extend as much 
as possible the flinging of our controllers, without a model of the controlled plant, on 
behalf of our generic knowledge of the automate control science. The ultimate objec-
tive of this effort is the well-known universal controller imagined by J.J. Buckley. 
FICs are giving us reasons to hope that comprehensive general purpose controllers 
may be achieved even at low costs, using low level digital controllers [10, 11].  

3   The Self-Adaptive Scaling 

The only important mechanism of a self-adaptive controller that was not described so 
far in our FIM dedicated works is the self-tuning of the scaling factors. The scaling is 
necessary since FICs are normalized, in order to match the input and the output values 
of the controller to the feedback transducer respectively to the actuator.  

There are several options for a self-scaling architecture. A first option would be to 
directly address each of the controller’s terminals: the three inputs Proportional, Inte-
grative and Derivative and the Output, corresponding to the non-interacting version of 
the PID controller. However, because of the complex nonlinear interdependences be-
tween these variables, for the time being we could not reach an acceptable solution. 
That is why we preferred an architecture corresponding to the interacting PID version, 
where the main role will be played by the input scaling of the control error. The inte-
grative and derivative effects will be tuned in a Ziegler-Nichols inspired manner, hav-
ing in mind the PSAIC way of introducing the integrative. 

We will consider the Fig. 4 test control system composed by a PID and the four 
scaling devices, each one controlled by its own corrector.  

The simple fuzzy-interpolative correction mechanism previously described needs 
now to be upgraded because a fast and continuous shifting of the scaling factors is not 
recommended. The following architecture is a first step in this issue. 

 

Fig. 4. The test control system 
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If the plant or the actuators are not changing the output scaling factor must remain 
fixe, in order to avoid interferences with the input scaling factors’ variations. The cor-
relation between the actuator’s highest value Act and the output scaling factor out_sc 
is immediate: out_sc = Act, in order to avoid the actuator’s windup. In a real applica-
tion this can be done if the actuator is able to intercommunicate with the controller. 

The integrative and the derivative components, as well as the proportional factor 
are usually tuned according to Ziegler-Nichols or to other similar method, as Tyreus-
Luyblen for instance.  

We will consider the interacting PID version: 
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The manual tuning methods are first looking for KC, the value of KP that is beginning 
to produce oscillations with I and D effects turned off. This first off-line test must also 
identify TC the period of the oscillations. 

In the case of the PID control, The Ziegler-Nichols tuning is proposing the follow-
ing values: KP = KC / 1.7, TI = TC / 2 and TD = TC / 8. The Tyreus-Luyblen version is 
KP = KC / 2.2, TI = 2.2⋅TC and TD = TC / 6.3. Presenting a lower integrative effect, this 
tuning is meant to be more robust that the first one. We prefer the Ziegler-Nichols 
tuning because the PSAIC way of introducing the integrative effect is significantly 
increasing the control’s robustness. 

Since we want to develop an on-line automate tuning, we have to modify this  
procedure, in order to obtain an algorithm that is implementable with usual electronic 
circuitry. The first objectives are the identification of the oscillations and the measure-
ment of their period TC. These operations can be done with the help of the PTE, using 
the signature of the oscillating regimes, the succession of Fig. 2 rules R8 R12 R18 
R14. The inversed time delay between the activation of the same rule is TC. However, 
this on-line measurement is not performed in the same conditions as the conventional 
tuning, so we will accept the issued value only as a first guess.  

Once fixed TI = TC / 2 and TD = TC / 8, the most difficult part remains the tuning of 
the input scaling factor. The main difficulty appears because the oscillations that are 
guiding the manual algorithm need special conditions to appear. Even if we identify 
oscillations on-line, we cannot be sure about their causes. That is why we have to try 
again a first guess, which is the half of KC, where KC is the proportional gain in the 
moment when we detect the oscillations. 

Thus the first steps of our algorithm will be the followings: 

1) The detection of an oscillation by a R8-R12-R18-R14 cycle. 
2) The first guess of KC, TI and TD. 
3) The algorithm will continue by a tenure self-tuning stage that will end only when 

significant oscillations will occur, and a new tuning will become necessary. 

A lot of self-tuning algorithms were already tested and applied so far [13]. In our case 
we do not know the mathematical model of the plant and the gradient techniques are 
not feasible. In the same time we want a minimalist configuration, easy to implement 
on cheap devices, which does not need open loop tests.   
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That is why we will use a fuzzy-interpolative version of the iterative feedback tun-
ing [14]. Our approach follows a particular constraint: the algorithm must be repre-
sentable in VHDL or in other hardware description language. Such way the FPGA or 
the ASIC applications will be encouraged. 

4   The Fuzzy-Interpolative Iterative Feedback Tuning 

The fuzzy-interpolative iterative feedback tuning is simply multiplying or dividing KP 
by an iteration rate R, each time the Fig. 4 corrector Input scaling is identifying the 
signatures of the following situations: KP too small and KP too big. These signatures 
are defined for the Fig. 2 minimal rule base. 

a) The KP too small signature: 
When KP is too small, the control system is not able to force the plant to approach the 
small control errors zone. A typical step response of this kind would stabilize PTE at 
rules R3 or R23. The same case is appearing when the system is hanging too long, say 
longer that TC, at rules R8 or R18. This signature can be linguistically described: 

IF R3 or R23 OR R8 or R18 longer that TC THEN KP is too small 

This operation needs basic electronic circuits: comparators, a timer and logic gates. 
The result of KP is too small is the multiplying of KP by R. 

b) The KP too big signature: 
When KP is too big the control system has oscillatory tendencies during transient 
regimes and also chattering during the steady ones. The signature of the oscillations is 
already known: the succession R8-R12-R18-R14. This operation can be performed 
with a dedicated digital decoder. 

The identification of the chattering can rely on the membership value of R13, de-
noted μ13. It is now to underline that when we were talking about an activated rule in 
the definition of PTE we were meaning in fact the rule with the highest membership 
value, but this value is not necessarily 1. Several rules can be activated in the same 
time with different or equal membership values. As a result of this behavior, when the 
control system is firmly positioned on R13, μ13 = 1, but when we have chattering, al-
though μ13 is the highest comparing to other rules, μ13 < 1. 

The result of KP is too big is the division of KP by R. 
It is to note that this paper is only a first step in the study of the fuzzy-interpolative 

iterative feedback tuned PID controllers. Further researches on the optimization of 
this method and a portfolio of applications are necessary. Some pending problems are: 

- Which is the optimal iteration rate? For the time being we are using R = 2, pro-
posed by the majority of manual tuning methods, but the choice of this value is 
heuristic;  

- Which is the precise significance of all the rules of Fig. 2 rule base? Only statistic 
data issued from different applications could confirm our initial assumptions; 

- Can we further detail the definition of the operating regimes signatures? 

The considerations presented so far are identifying a research line into the adaptive 
control field. The previously described mechanisms were tested by simulations and 
our future work aims to integrate them into a coherent self-tuning PID structure. 
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5   Conclusions 

The on-line qualitative analysis of the phase trajectory of the error, achieved by rule 
based reasoning and implemented by fuzzy-interpolative correctors, is able to support 
the self-adaptive control. A new application of this technique is presented: a self-tun-
ing PID algorithm that is representable in hardware description languages.  

This research is only at an early stage but the preliminary results are ensuring us to 
be on a good direction towards a cheap yet powerful general purpose self-tuning PID 
controller.  
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Abstract. In the concept of fuzzy regions we introduced before, a region
was considered to be a fuzzy set of points, each having its own member-
ship grade. While this allows the modelling of regions in which points
only partly belong to the region, it has the downside that all the points
are considered independently, which is too loose a restriction for some
situations. The model is not able to support the fact that some points
may be linked together. In this contribution, we propose an extension to
the model, so that points can be made related to one another. It will per-
mit the user to, for instance, specify points or even (sub)regions within
the fuzzy region that are linked together: they all belong to the region
to the same extent at the same time. By letting the user specify such
subregions, the accuracy of the model can be increased: the model can
match the real situation better; while at the same time decreasing the
fuzziness: if points are known to be related, there is no need to consider
them independently. As an example, the use of such a fuzzy region to
represent a lake with a variable water level can be considered: as the
water level rises, a set of points will become flooded; it is interesting to
represent this set of points as a subset of the region, as these points are
somewhat related (the same can be done for different water levels). The
impact of this extension to the model on both surface area calculation
an distance measurement are considered, and new appropriate definitions
are introduced.

1 Introduction

The concept of the fuzzy regions was sparked by a lack of models capable of
handling imperfect information, built on a solid, theoretical foundation, appli-
cable for a wide range of representations and open to an implementation. In the
presented concept, a fuzzy region was defined as a fuzzy set of points over the
two dimensional domain. Each point therefore is given a membership grade indi-
cating the extent to which it belongs to the region (i.e. a veristic interpretation
[1]). While this broad definition is useful for many basic applications and allows
for unlimited distributions of membership grades over the region, it treats all the
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elements independently of one another. In some situations however, it is possible
a user has more information about a relation between elements of the region.
Consider the example of a lake, where there is a variation possible in the level of
water. At a random point in time we may not know the water level, but we do
know that if a particular point would be under the water, so would other points
(i.e. those at the same altitude just around the lake). If the likeliness of that
water level is 0.4, then it makes sense to assign all these points that membership
grade; however, as these points would be be at the same altitude, it is more
natural not to consider them independently but rather as a group the points.

In this paper, a brief overview of the current model for fuzzy regions is given
in section 2. Both the concept and the operations that are will be extended
are considered here. Section 3 then deals with the proposed extension to fuzzy
regions and the impact on the considered operations. The results are summarized
in the conclusion.

2 Current Fuzzy Regions

2.1 Concept

A crisp region is often defined by means of its outline: a polygon or other closed
line is defined as the boundary of the region, and the region is said to consist of
the points inside this outline ([3]). To define fuzzy regions, a different point of
view was adopted: rather than consider a crisp region to be defined by means of
an outline, it was considered to be be a set of points. From this point of view,
it is a small step to augment the definition to a fuzzy set ([8], [9]) of points.
In [5], the fuzzy region was defined over R2, thus with each element (point) a
membership grade was associated.

Definition 1 (Fuzzy region)

R̃ = {(p, μR̃(p))|p ∈ R2} (1)

A fuzzy region essentially is a fuzzy set defined over a two dimensional domain.
As a result, the traditional fuzzy operations for intersection and union (by means
of t-norms and t-conorms) are immiately applicable. Functionaly has been added
to deal with spatial aspects, some examples include the distance between regions
and the (fuzzy) surface area of a region. To determine topological relations how-
ever, appropriate definitions for the boundary, interior and exterior had to be
derived from the initial given fuzzy set.

2.2 Operations

Surface area: cardinality. For the surface area of fuzzy regions, two definiti-
tions have been introduced ([6]). The first is an application of fuzzy cardinality,
where each point is said to contribute its own membership grade.

S̃c(Ã) =
∫

p(x,y)∈U

μÃ(p(x, y))d(x, y) (2)

Where U is the considered universe (usually R2).



Adding Subregions and the Impact on Surface and Distance Calculation 563

This definition has the advantage of yielding a crisp number that takes the
fuzziness into account. The crisp number can easily be used in systems that
cannot deal with fuzzy data.

Surface area: fuzzy number. The second definition for surface area yields
a fuzzy number, such that all possible surface areas are possible values. This
approach has the advantage of yielding a result that holds more information than
the cardinality approach above, but it requires working with fuzzy numbers. For
each possible surface area, the membership grade matches the possibility of the
region being a region of this size. This is achieved by considering the surface
area of all α-levels.

S̃f (Ã) = {(x, μS̃f (Ã)(x)), x ∈ U} (3)

where U is the considered universe, most likely R2. For fuzzy regions defined as
fuzzy sets over R2, the membership function was defined as:

μS̃f (Ã)(x) : R → [0, 1]

x �→

⎧⎨⎩
1 if x = S(Ã1)
sup{α | S(Ãα) ≤ x ≤ S(Ãα)} if S(Ãα) ≤ x ≤ S(Ãα)
0 elsewhere

Distance. There are various options to define the distance between crisp re-
gions; the most common one is the euclidean distance which represents the short-
est distance between both regions. For fuzzy regions, the fuzzy distance d̃(R̃1, R̃2)
is a fuzzy number representing the possible distances between the α-cuts of R1
and R2.

d̃(R̃1, R̃2) = {(x, μd̃(R̃1,R̃2)(x)) | x ∈ R} (4)

where

μd̃(R̃1,R̃2) : R → [0, 1]

x �→ sup{α | d(R̃1α, R̃2α) ≤ x ≤ d(R̃1α, R̃2α)}

3 Extended Fuzzy Regions

3.1 Concept

The main problem with the above model is that all points are considered indi-
vidually. In many applications, it would be beneficial to group elements of the
fuzzy set together. In order to do this, the fuzzy set defining the region will be
defined over the domain ℘(R2); i.e. the powerset of R2. The powerset of a set is
a new set containing all the possible subsets of that particular set. To illustrate
this, consider the following example:

℘({0, 1, 2}) = {{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}
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For R2 this becomes:
℘(R2) =

{
X |X ⊆ R2}

At present, we are only considering the powerset over R2 as a means to further
model the distribution of membership grades in fuzzy regions. The use of the
fuzzy powerset over R2 (i.e. ℘̃(R2), the set of all fuzzy sets over R2) is also under
consideration, as it may allow the model to cope with more complex distributions
of membership grades, but at an increased complexity. Definition 2 shows the
new definitions for fuzzy regions.

Definition 2 (Fuzzy region).

R̃ = {(P, μR̃(P ))|P ∈ ℘(R2) ∧ ∀P1, P2 ∈ R̃ : P1 ∩ P2 = ∅} (5)

Note that it is required that no two elements of the fuzzy region share points:
the intersection between any two elements should be empty. A point can only be
considered to belong to the region once, even if it is to a membership grade less
than 1. An extension of this is under investigation, but is not elaborated upon
for now. With each element of the fuzzy set, a membership grade is associated;
it still has a veristic interpretation to indicate the degree to which this element
belongs to the fuzzy region. Before considering the impact of this new definition
on operations, it is interesting to verify that the model is a generalization of
the previous model, and that it still is capable of representing fuzzy regions as
defined before. A fuzzy region R̃1, defined as:

R̃1 = {(p, μR̃1
(p))|p ∈ R2}

can be defined using this new definition as a fuzzy region R̃, by using an appro-
priate membership function:

R̃2 = {(P, μR̃2
(P ))|P ∈ ℘(R2)}

where

μR̃2
(P ) =

{
μR̃1

(p) if P = {p}
0 elsewhere

The requirement that two elements need to be disjoint is automatically fulfilled
by the given membership function.

3.2 Operators

The change in definition will of course impact the operators that have been
defined. In [7], we presented two definitions for the surface area of fuzzy regions:
the first is an extension of fuzzy cardinality (each point basically contributes its
membership grade to the total area), which yielded a crisp number; whereas the
second results in a fuzzy number representing the possible surface areas for the
region. Both definitions (2.2) will now be adapted to suit the new definition. For
the distance between fuzzy regions, two approaches have been considered: one
using the α levels, and one based on topological aspects. In this contribution,
only the first approach is considered, as topological aspects are currently under
development.
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Surface area: cardinality. While the meaning of the original definition (each
element contributing its membership grade) remains the same, the present formal
definition as shown in (2) needs to be changed slightly to deal with the fact that
the basic elements of the fuzzy region are now sets rather than points. Each
element will once again contribute to the extent of its membership grade, but
the elements themselves are now possibly larger than a single point. As a result,
the surface areas of each basic element also needs to be taken into consideration:

Definition 3 (surface area (cardinality)).

S̃c(Ã) =
∫

X∈℘(U)
μÃ(X)

∫
p(x,y)∈X

d(x, y)dX (6)

This definition yields the same result as the previous definition if all basic ele-
ments are singleton sets.

Surface area: fuzzy number. The surface area as a fuzzy number is im-
pacted in a far greater way: a given set that is an element of the fuzzy region
will contribute its area, or won’t contribute at all, with nothing in between. Con-
sequently, there is a smaller number of possible surface areas; as illustrated on
figure 1. Figure 1a shows a fuzzy region in the classical definition and its surface
area: each point may or may not belong to it, so it may or may not play a part
in determining the surface area. The surface area is also shown, and every area
between 0 and 2x is a possibility. Figure 1b shows a similar fuzzy region, but
now the regions consists out of 2 sets: one set which is given membership grade
1, and one given membership grade 0.5. The expected surface area is also shown:
both regions either contribute as a whole, or don’t contribute at all. As a result,
the only possible surface areas are x and 2x. Figure 1c finally combines both
aspects: the points with membership grade 0.5 each are counted individually,
whereas the set with membership grade 1 is counted as one whole; this is also
reflected in the surface area.

Note that currently, a sub-region is not considered to have 0 as a possible
surface area, resulting in the fact that the total surface area for the region cannot
be 0 (e.g. for the region on Figure 1b). This choice is open for discussion when
the regions represent imprecision: some argue that there should always be one
valid value, which implies that a region must have some elements and thus that
0 is not a possible surface area; whereas others can argue that an empty region
is still a region. However if the regions are used to represent uncertainty, each
sub-region must also include 0 as a possible surface area. This discussion only
has a minor impact on the definition though.

In the new situation, where fuzzy regions are defined as fuzzy sets over ℘(R2),
the main problem with the original definition (definition 3) is that it makes all
surface areas between every strong and the weak α level possible, which - as
illustrated on fig 1b - may not be the case. As before, the surface area of the
region should be a (fuzzy) number representing the possible surface areas and
their membership grade. Furthermore each subregion is considered either as a
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Ã = Ã1 ∪ Ã2

= {(p, 1)|p ∈ A1}∪
{(p, 0.5)|p ∈ A2}

(a)

B̃ = {(B1, 1), (B2, 0.5)} (b)

C̃ = {(C1, 1)} ∪ C̃2

= C̃1 ∪ {(p, 0.5)|p ∈ C2}
(c)

Fig. 1. Three different examples of fuzzy regions, with their surface areas: (a) the
classical model, where each points is treated independently, (b) the new model, showing
a region consisting of two subregions each counted as a whole, (c) a region where there
is both a subregion where points are treated independently, and a subregion that is
counted as a whole. For each region, a mathematical explanation of its elements, a
graphical illustration, where the shade of grey is representative of the membership
grade, and its surface area are shown.

whole, or not at all, so its only possible contribution is its surface area; the
amount it contributes to the fuzzy number is the same is a the degree to which
it belongs to the region.

Consider the example in fig 2a; the surface area is the sum of all the surface
areas that make up the region. As each of these sub-regions are possible, their
surface areas are considered to be (non-normalized) fuzzy numbers, with just
one possible value which has a membership grade equal to the possibility of the
sub-region in R (fig 2c).

S̃f (R̃) = (S(R1), μR̃(R1))+̃(S(R2), μR̃(R2))+̃(S(R3), μR̃(R3))

To add up all these regions, fuzzy arithmetic is used, which implies considering
the different possible combinations:

– a surface area of x is only possible by considering either region 1, or region
2 or region 3; the membership grade for x therefore is: max(0.5, 1, 0.5) = 1

– a surface area of 2x is possible by considering either region 1 and 2, 1 and 3
or 2 and 3; which yields: max(min(0.5, 1),min(0.5, 0.5),min(1, 0.5)) = 0.5

– a surface area of 3x is only possible by considering all three regions; yielding
for 3x the membership grade: max(min(0.5, 1, 0.5)) = 0.5

The end result is
S̃f (R̃) = {(x, 1), (2x, 0.5), (3x, 0.5}
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R̃ = {(R1, 0.5), (R2, 1), (R3, 0.5)}

(a) (b)

(c1) (c2) (c3) (d)

Fig. 2. Example to illustrate the definition: (a) definition of the region, (b) graphical
representation, (ci) area of Ri, (d) total surface area of R

as also illustrated on fig 2d. In general, for any number of closed sets, the surface
area can be defined as:

S̃f(R̃) =
∑̃

X|μR̃(X)>0

(
S(X), μR̃(X)

)
(7)

Generalizing results in the definition:

Definition 4 (surface area (fuzzy number))

S̃f (R̃) =
∑̃

X|μR̃(X)>0

(∫
p(x,y)∈X

d(x, y), μR̃(X)

)
(8)

In [2], a fuzzy number X is defined as a fuzzy set over R that satisfies the
properties:

– X̃ is normalized, i.e. there is at least one element x for which μX̃(x) = 1
– ∀α ∈]0, 1] : X̃α is a closed interval
– the support X̃0 of X̃ must be bounded

For future computations, it is useful to have a fuzzy number as the result of
a fuzzy surface area: calculations with different surface areas can be performed
using fuzzy arithmetic. The new definition satisfies the first property if the region
has at least one element with membership grade 1; and always satisfies the second
and third properties if the fuzzy region is bound. While these assumptions are
technically not required in the definition of fuzzy regions, they are reasonable
assumptions which most likely will be made anyway.
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Distance: α level approach. For the distance between fuzzy regions, two
approaches have been considered [7]: one based on α-levels and one based on
topological aspects. In this contribution, only the first approach is considered,
in which the distance to a fuzzy region yields a fuzzy number, that models all
the possible distances between the corresponding α-levels, not dissimilar to the
concept of the surface area as a fuzzy number. To define the distance in the new
concept, consider two fuzzy regions Ã and B̃.

The original definition (definition 4) poses a problem similar to the calcu-
lation of the surface area: fewer distances than before need to be taken into
consideration, as elements can now be sets that contribute only as a whole. In a
similar approach to the surface calculation, the distances between the different
elements (subregions) are first considered, and then combined to form the overall
distance. As the elements of the newly defined fuzzy regions are basically crisp
sets in R2, there are different options for the distance between any two elements
of both fuzzy regions; here the shortest possible Euclidean distance is chosen.

d(A,B) = min
pA∈A,pB∈B

{d(pA, pB)}

where the distance between points is given by the Euclidean distance:

d(pA, pB) =
√

(xpA − xpB )2 + (ypA − ypB )2

with pi = (xpi , ypi)
The likelihood of each distance is given by the intersection of the membership

grades of both elements considered; we will use the minimum as the intersec-
tion operator. The membership grade associated with d(A,B) therefore is given
by: min(μR̃1

(A), μR̃2
(B)). The fuzzy number representing the distances is then

obtained as the (fuzzy) union of all possible distances between any element of
R̃A and any element of R̃B. This leads us to define the distance between fuzzy
regions as follows:

Definition 5 (distance)⋃̃
A|μR̃1

(A)>0,B|μR̃2
(B)>0

{
(d(A,B),min(μR̃1

(A), μR̃2
(B)))

}
In the case where all element of both μR̃1

(A) and μR̃2
(B) are singleton sets, i.e.

A = {pA}, B = {pB}, this definition yields the same result at the previous one:⋃̃
A|μR̃1

(A)>0,B|μR̃2
(B)>0

{
(d(A,B),min(μR̃1

(A), μR̃2
(B)))

}
⇔ μd̃(R̃1,R̃2)(x) = sup{α | α = min(μR̃1

(A), μR̃2
(B)) ∧ d(A,B) = x}

⇔ μd̃(R̃1,R̃2)(x) = sup{α | α = min(μR̃1
({pA}), μR̃2

({pB})) ∧ d(pA, pB) = x}

⇔ μd̃(R̃1,R̃2)(x) = sup{α | d(R̃1α, R̃2α) ≤ x ≤ d(R̃1α, R̃2α)}

In the previous definition, the membership was defined on a per-element basis:
for each distance, its membership was the highest value so that the distance
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between the weak α-cuts of both regions at this level is less or equal, and the
distance of the strong alpha cuts is greater or equal to it. The membership grade
for each distance in the new definition is defined as the greatest value (due to
the use of max as union operator) of the smallest membership grades of points
in both regions that are this distance apart. This smallest membership grade
is equivalent to the α-level in the previous definition: at a higher α level, the
distance between these two points will no longer be taken into consideration as
one point will not be present in the α-cut. As a result, these two definitions are
equivalent if all elements of the newly defined regions are singleton sets.

4 Conclusion

In this contribution, the concept of fuzzy regions was extended with the ability
to model groups of points belonging to some extent to the fuzzy region. This
enriches the theoretical model of fuzzy regions, but at the same time opens the
door for improvements to the derived practical models (both the bitmap based
an the triangular network model that have been developed before [4],[6]). The
new model can be used to incorporate possible subregions, and by carefully
chosing them also possible boundaries, that need to be considered as a whole.
Along with the changes to the model, some operators (namely surface calculation
and distance) have been considered. The adaptation of the model is such that
regions from the previous model can easily be represented with it; as such it
is a generalization of the previous model (which in turn was a generalization
of the crisp model). The next step is to consider the change that will occur
in topological relations, and to optimize three derived models (contour lines,
bitmaps, triangular networks) to handle the change in the theoretical model in
an efficient manner.
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Abstract. Liu’s inference is a process of deriving consequences from
fuzzy knowledge or evidence via the tool of conditional credibility. Using
membership functions, this paper derives some expressions of Liu’s in-
ference rule for fuzzy systems. This paper also gives some new inference
rules with multiple antecedents and with multiple if-then rules.

Keywords: Fuzzy inference, inference rule, credibility theory.

1 Introduction

Fuzzy inference is a process of deriving consequences from fuzzy knowledge or ev-
idence. Fuzzy inference has been studied by many scholars and a lot of inference
rules have been suggested. Zadeh [11] outlined the compositional rule of fuzzy
inference in 1973. Based on Zadeh’s paper, Mamdani and Assilian [10] proposed
an inference rule into a working control system. Besides, Lukasiewicz’s inference
rule is also widely used in fuzzy inference systems. Fuzzy inference systems have
been successfully applied in fields such as automatic control, data classification,
decision analysis, and expert systems.

Different from the above inference rules, a new type of inference rule was
proposed by Liu [8] and revised by Liu [9] in 2009. The new inference rule
derives the consequences by the tool of conditional fuzzy set. Such an inference
rule was renamed Liu’s inference rule by the community in order to differentiate
it from Zadeh’s rule, Mamdani’s rule, etc.

In this paper, we discuss the expressions of Liu’s inference rule for fuzzy
systems when membership functions are given. Section 2 introduces some basic
concepts and results on fuzzy sets as preliminary. By embedding the conditional
credibility into the framework of Liu’s inference rule, we obtain some expressions
of Liu’s inference rule by membership functions in Section 3. We also discuss
Liu’s inference rule with multiple antecedents and with multiple if-then rules in

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 571–580, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Section 4 and Section 5, respectively. Section 6 concludes this paper with a brief
summary.

2 Preliminaries

Credibility theory, founded by Liu [5] in 2004 and refined by Liu [7] in 2007, is
a branch of mathematics for studying the behavior of fuzzy phenomena. In this
section, we will introduce some useful definitions about conditional credibility
and fuzzy sets.

Let Θ be a nonempty set, and let � be the power set of Θ (i.e., all subsets
of Θ). Each element in � is called an event. In order to measure the event,
credibility measure Cr was introduced as a set function satisfying the normality,
monotonicity, self-duality, and maximality axioms. The triplet (Θ,�,Cr) is called
a credibility space. In order to define the credibility measure of an event A after
it has been learned that some other event B has occurred, Liu [7] defined a
conditional credibility measure Cr{A|B} as follows:

Definition 1. (Liu [7]) Let (Θ,�,Cr) be a credibility space, and A,B ∈ �. Then
the conditional credibility measure of A given B is defined by

Cr{A|B} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cr{A ∩B}
Cr{B} , if

Cr{A ∩B}
Cr{B} < 0.5

1− Cr{Ac ∩B}
Cr{B} , if

Cr{Ac ∩B}
Cr{B} < 0.5

0.5, otherwise

provided that Cr{B} > 0.

The concept of fuzzy set was initiated by Zadeh via membership function in
1965. In 2007, Liu [7] extended Zadeh’s fuzzy set by redefining a fuzzy set as a
function from a credibility space to a collection of sets.

Definition 2. (Liu [7]) A fuzzy set is a function ξ from a credibility space
(Θ,�,Cr) to a collection of sets of real numbers.

Liu’s fuzzy set has the same fashion of random set that is a function from a
probability space to a collection of sets.

A fuzzy set ξ on (Θ,�,Cr) is said to have a membership function μ(x) with
0 ≤ μ(x) ≤ 1 if

ξ(θ) = {x ∈ �|μ(x) ≥ (2Cr{θ}) ∧ 1}

for each θ ∈ Θ.

Definition 3. (Liu [9]) Let ξ and η be two fuzzy sets on the credibility space
(Θ,�,Cr). Then the complement ξc of the fuzzy set ξ is

ξc(θ) = (ξ(θ))c, ∀θ ∈ Θ.
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The union ξ ∪ η of fuzzy sets ξ and η is

(ξ ∪ η)(θ) = ξ(θ) ∪ η(θ), ∀θ ∈ Θ.

The intersection ξ ∩ η of fuzzy sets ξ and η is

(ξ ∩ η)(θ) = ξ(θ) ∩ η(θ), ∀θ ∈ Θ.

It is clear that
ξ ∪ ξc ≡ �, ξ ∩ ξc ≡ ∅

for any fuzzy set ξ. This property is very different from Zadeh’s fuzzy set.

Definition 4. (Liu [9]) Let ξ be a fuzzy set on (Θ,�,Cr). A conditional fuzzy
set of ξ given B is a function ξ|B from the conditional credibility space (Θ,�,
Cr{·|B}) to a collection of sets of real numbers such that

ξ|B(θ) ≡ ξ(θ), ∀θ ∈ Θ

in the sense of classical set theory.

Let ξ and ξ∗ be two fuzzy sets in the sense of Definition 2. In order to define the
matching degree that ξ∗ matches ξ, we first introduce the following symbols:

{ξ∗ ⊂ ξ} = {θ ∈ Θ
∣∣ ξ∗(θ) ⊂ ξ(θ)}

{ξ∗ ⊂ ξc} = {θ ∈ Θ
∣∣ ξ∗(θ) ⊂ ξ(θ)c}

{ξ∗ �⊂ ξc} = {θ ∈ Θ
∣∣ ξ∗(θ) ∩ ξ(θ) �= ∅}.

Definition 5. (Liu [9]) Let ξ and ξ∗ be two fuzzy sets. Then the event ξ∗ 	 ξ
(i.e., ξ∗ matches ξ) is defined as

{ξ∗ 	 ξ} =

{
{ξ∗ ⊂ ξ}, if Cr{ξ∗ ⊂ ξ} > Cr{ξ∗ ⊂ ξc}
{ξ∗ �⊂ ξc}, if Cr{ξ∗ ⊂ ξ} ≤ Cr{ξ∗ ⊂ ξc}.

Definition 6. (Liu [9]) Let ξ and ξ∗ be two fuzzy sets. Then the matching degree
of ξ∗ 	 ξ is defined as

Cr{ξ∗ 	 ξ} =

{
Cr{ξ∗ ⊂ ξ}, if Cr{ξ∗ ⊂ ξ} > Cr{ξ∗ ⊂ ξc}
Cr{ξ∗ �⊂ ξc}, if Cr{ξ∗ ⊂ ξ} ≤ Cr{ξ∗ ⊂ ξc}.

3 Inference Rule

Liu’s Inference Rule 1. (Liu [8,9]) Let X and Y be two concepts. Assume a
rule “if X is a fuzzy set ξ then Y is a fuzzy set η”. From X is a fuzzy set ξ∗ we
infer that Y is a fuzzy set

η∗ = η|ξ∗�ξ

which is the conditional fuzzy set of η given ξ∗ 	 ξ. Liu’s inference rule is rep-
resented by

Rule: If X is ξ then Y is η
From: X is ξ∗

Infer: Y is η∗ = η|ξ∗�ξ
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Theorem 1. Let ξ, ξ∗ and η be independent fuzzy sets with membership func-
tions μ, μ∗ and ν, respectively. Then Liu’s Inference Rule 1 yields that η∗ has a
membership function

ν∗(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ν(y)

sup
x∈�

μ(x) ∧ μ∗(x)
∧ 1, if sup

x∈�
μ(x) ∧ μ∗(x) < 1

2ν(y)
2− sup

x∈�
{μ(x)|μ(x) < μ∗(x)} ∧ 1, if sup

x∈�
μ(x) ∧ μ∗(x) = 1.

��

Proof. From the definition of membership function, we have

ν∗(y) = (2Cr{y ∈ η∗}) ∧ 1 = (2Cr{y ∈ η|ξ∗ 	 ξ}) ∧ 1. (1)

By using Definition 1, we obtain

Cr{y ∈ η|ξ∗ 	 ξ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cr{(y ∈ η) ∩ (ξ∗ 	 ξ)}
Cr{ξ∗ 	 ξ} ,

if
Cr{(y ∈ η) ∩ (ξ∗ 	 ξ)}

Cr{ξ∗ 	 ξ} < 0.5

1− Cr{(y �∈ η) ∩ (ξ∗ 	 ξ)}
Cr{ξ∗ 	 ξ} ,

if
Cr{(y �∈ η) ∩ (ξ∗ 	 ξ)}

Cr{ξ∗ 	 ξ} < 0.5

0.5, otherwise

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cr{y ∈ η}
Cr{ξ∗ 	 ξ} , if

Cr{y ∈ η}
Cr{ξ∗ 	 ξ} < 0.5

1− Cr{y �∈ η}
Cr{ξ∗ 	 ξ} , if

Cr{y �∈ η}
Cr{ξ∗ 	 ξ} < 0.5

0.5, otherwise.

(2)

If Cr{y ∈ η}/Cr{ξ∗ 	 ξ} ≥ 0.5, then Cr{y ∈ η|ξ∗ 	 ξ} ≥ 0.5 by Equation (2). It
follows from Equation (1) that

ν∗(y) = 1 =
2Cr{y ∈ η}
Cr{ξ∗ 	 ξ} ∧ 1.

Therefore,

ν∗(y) =
2Cr{y ∈ η}
Cr{ξ∗ 	 ξ} ∧ 1

for all y ∈ �. It follows from the definition of membership function that

Cr{y ∈ η} =

⎧⎨⎩
1
2
ν(y), if ν(y) < 1

1, if ν(y) = 1.
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If ν(y) = 1, then

2Cr{y ∈ η}
Cr{ξ∗ 	 ξ} ∧ 1 = 1 =

ν(y)
Cr{ξ∗ 	 ξ} ∧ 1.

Thus for all y ∈ �, we have

ν∗(y) =
ν(y)

Cr{ξ∗ 	 ξ} ∧ 1. (3)

Now we calculate Cr{ξ∗ 	 ξ}. It breaks down into two cases.

Case 1: sup
x∈�

μ(x) ∧ μ∗(x) < 1. We have Cr{ξ∗ �⊂ ξc} =
1
2

sup
x∈�

μ(x) ∧ μ∗(x) < 0.5

immediately. Since

{ξ∗ ⊂ ξ} ⊂ {ξ∗ �⊂ ξc} and {ξ∗ �⊂ ξc} = {ξ∗ ⊂ ξc}c, we have

Cr{ξ∗ ⊂ ξ} ≤ Cr{ξ∗ �⊂ ξc} < 0.5, Cr{ξ∗ ⊂ ξc} = 1− Cr{ξ∗ �⊂ ξc} > 0.5.

Hence Cr{ξ∗ ⊂ ξ} < Cr{ξ∗ ⊂ ξc}. It follows from Definition 6 that

Cr{ξ∗ 	 ξ} = Cr{ξ∗ �⊂ ξc} =
1
2

sup
x∈�

μ(x) ∧ μ∗(x).

Case 2: sup
x∈�

μ(x) ∧ μ∗(x) = 1. For this case, Cr {ξ∗ ⊂ ξc} = Cr{∅} = 0. Thus

Cr{ξ∗ ⊂ ξ} ≥ Cr{ξ∗ ⊂ ξc}.

From Definition 6 we have

Cr{ξ∗ 	 ξ} = Cr{ξ∗ ⊂ ξ} = 1− Cr{ξ∗ �⊂ ξ} = 1− 1
2

sup
x∈�

{μ(x)|μ(x) < μ∗(x)} .

Hence

Cr{ξ∗ 	 ξ} =

⎧⎪⎨⎪⎩
1
2

sup
x∈�

μ(x) ∧ μ∗(x), if sup
x∈�

μ(x) ∧ μ∗(x) < 1

1− 1
2

sup
x∈�

{μ(x)|μ(x) < μ∗(x)} , if sup
x∈�

μ(x) ∧ μ∗(x) = 1,
(4)

It follows from Equation (3) and Equation (4) that

ν∗(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ν(y)

sup
x∈�

μ(x) ∧ μ∗(x)
∧ 1, if sup

x∈�
μ(x) ∧ μ∗(x) < 1

2ν(y)
2− sup

x∈�
{μ(x)|μ(x) < μ∗(x)} ∧ 1, if sup

x∈�
μ(x) ∧ μ∗(x) = 1.

��
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Theorem 2. Let ξ and η be independent fuzzy sets with membership functions
μ and ν, respectively. If ξ∗ is a constant a, then Liu’s Inference Rule 1 yields
that η∗ has a membership function

ν∗(y) =

⎧⎨⎩
2ν(y)
μ(a)

∧ 1, if μ(a) < 1

ν(y), if μ(a) = 1.

��

Proof. From Equation (3), we have

ν∗(y) =
ν(y)

Cr{a	 ξ} ∧ 1. (5)

From Definition 6, we obtain

Cr{a	 ξ} =
{

Cr{{a} ⊂ ξ}, if Cr{{a} ⊂ ξ} > Cr{{a} ⊂ ξc}
Cr{{a} �⊂ ξc}, if Cr{{a} ⊂ ξ} ≤ Cr{{a} ⊂ ξc}

=
{

Cr{a ∈ ξ}, if Cr{a ∈ ξ} > Cr{a ∈ ξc}
Cr{a �∈ ξc}, if Cr{a ∈ ξ} ≤ Cr{a ∈ ξc}

= Cr{a ∈ ξ}

=
{
μ(a)/2, if μ(a) < 1
1, if μ(a) = 1. (6)

It follows from Equation (5) and Equation (6) that

ν∗(y) =

⎧⎨⎩
2ν(y)
μ(a)

∧ 1, if μ(a) < 1

ν(y), if μ(a) = 1. ��

4 Inference Rule with Multiple Antecedents

Liu’s Inference Rule 2. Let X, Y and Z be three concepts. Assume a rule “if
X is a fuzzy set ξ and Y is a fuzzy set η then Z is a fuzzy set τ”. From X is a
fuzzy set ξ∗ and Y is a fuzzy set η∗ we infer that Z is a fuzzy set

τ∗ = τ |(ξ∗�ξ)∩(η∗�η)

which is the conditional fuzzy set of τ given ξ∗ 	 ξ and η∗ 	 η. Liu’s inference
rule is represented by

Rule: If X is ξ and Y is η then Z is τ
From: X is ξ∗ and Y is η∗

Infer: Z is τ∗ = τ |(ξ∗�ξ)∩(η∗�η)
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Theorem 3. Let ξ, ξ∗, η, η∗ and τ be independent fuzzy sets with membership
functions μ, μ∗, ν, ν∗ and ψ respectively. Then Liu’s Inference Rule 2 yields
that τ∗ has a membership function

ψ∗(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ψ(z)
sup
x∈�

μ(x) ∧ μ∗(x) ∧ sup
y∈�

ν(y) ∧ ν∗(y)
∧ 1,

if sup
x∈�

μ(x) ∧ μ∗(x) ∧ sup
y∈�

ν(y) ∧ ν∗(y) < 1

2ψ(z)
2− sup

x∈�
{μ(x)|μ(x) < μ∗(x)} ∨ sup

y∈�
{ν(y)|ν(y) < ν∗(y)} ∧ 1,

if sup
x∈�

μ(x) ∧ μ∗(x) ∧ sup
y∈�

ν(y) ∧ ν∗(y) = 1.

��

Proof. From the definition of membership function, we have

ψ∗(z) = (2Cr{z ∈ τ∗}) ∧ 1 = (2Cr{z ∈ τ |(ξ∗ 	 ξ) ∩ (η∗ 	 η)}) ∧ 1. (7)

By using Definition 1, we have

Cr{z ∈ τ |(ξ∗ 	 ξ) ∩ (η∗ 	 η)}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cr{z ∈ τ}

Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} , if
Cr{z ∈ τ}

Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} < 0.5

1− Cr{z �∈ τ}
Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} , if

Cr{z �∈ τ}
Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} < 0.5

0.5, otherwise.

(8)

If Cr{z ∈ τ}/ (Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η}) ≥ 0.5, then Cr{z ∈ τ |(ξ∗ 	 ξ) ∩ (η∗ 	
η)} ≥ 0.5 by Equation (8). It follows from Equation (7) that

ψ∗(z) = (2Cr{z ∈ τ |(ξ∗ 	 ξ) ∩ (η∗ 	 η)})∧1 = 1 =
2Cr{z ∈ τ}

Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η}∧1.

Therefore,

ψ∗(z) =
2Cr{z ∈ τ}

Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} ∧ 1

for all z ∈ �. It follows from the definition of membership function that

Cr{z ∈ τ} =

⎧⎨⎩
1
2
ψ(z), if ψ(z) < 1

1, if ψ(z) = 1.

If ψ(z) = 1, then

2Cr{z ∈ τ}
Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} ∧ 1 = 1 =

ψ(z)
Cr{ξ∗ 	 ξ} ∧Cr{η∗ 	 η} ∧ 1.
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Thus for all z ∈ �, we have

ψ∗(z) =
ψ(z)

Cr{ξ∗ 	 ξ} ∧ Cr{η∗ 	 η} ∧ 1. (9)

It follows from Equation (4) that

Cr{ξ∗ 	 ξ} =

⎧⎪⎨⎪⎩
1
2

sup
x∈�

μ(x) ∧ μ∗(x), if sup
x∈�

μ(x) ∧ μ∗(x) < 1

1− 1
2

sup
x∈�

{μ(x)|μ(x) < μ∗(x)} , if sup
x∈�

μ(x) ∧ μ∗(x) = 1,

and

Cr{η∗ 	 η} =

⎧⎪⎪⎨⎪⎪⎩
1
2

sup
y∈�

ν(y) ∧ ν∗(y), if sup
y∈�

ν(y) ∧ ν∗(y) < 1

1− 1
2

sup
y∈�

{ν(y)|ν(y) < ν∗(y)} , if sup
y∈�

ν(y) ∧ ν∗(y) = 1.

Thus

ψ∗(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ψ(z)
sup
x∈�

μ(x) ∧ μ∗(x) ∧ sup
y∈�

ν(y) ∧ ν∗(y)
∧ 1,

if sup
x∈�

μ(x) ∧ μ∗(x) ∧ sup
y∈�

ν(y) ∧ ν∗(y) < 1

2ψ(z)
2− sup

x∈�
{μ(x)|μ(x) < μ∗(x)} ∨ sup

y∈�
{ν(y)|ν(y) < ν∗(y)} ∧ 1,

if sup
x∈�

μ(x) ∧ μ∗(x) ∧ sup
y∈�

ν(y) ∧ ν∗(y) = 1.

��

Theorem 4. Let ξ, η, and τ be independent fuzzy sets with membership func-
tions μ, ν, and ψ, respectively. If ξ∗ is a constant a and η∗ is a constant b, then
Liu’s Inference Rule 2 yields that τ∗ has a membership function

ψ∗(z) =

⎧⎨⎩
2ψ(z)

μ(a) ∧ ν(b)
∧ 1, if μ(a) ∧ ν(b) < 1

ψ(z), if μ(a) ∧ ν(b) = 1.
��

Proof. From Equation (9), we have

ψ∗(z) =
ψ(z)

Cr{a	 ξ} ∧ Cr{b	 η} ∧ 1. (10)

It follows from Equation (6) that

Cr{a	 ξ} =

{ 1
2
μ(a), if μ(a) < 1

1, if μ(a) = 1,
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and

Cr{b	 η} =

{ 1
2
ν(b), if ν(b) < 1

1, if ν(b) = 1.

Therefore,

Cr{a	 ξ} ∧ Cr{b	 η} =

{ 1
2

(μ(a) ∧ ν(b)) , if μ(a) ∧ ν(b) < 1

1, if μ(a) ∧ ν(b) = 1.
(11)

It follows from Equation (10) and Equation (11) that

��ψ∗(z) =

⎧⎨⎩
2ψ(z)

μ(a) ∧ ν(b)
∧ 1, if μ(a) ∧ ν(b) < 1

ψ(z), if μ(a) ∧ ν(b) = 1.
��

5 Inference Rule with Multiple If-Then Rules

Liu’s Inference Rule 3. Let X and Y be two concepts. Assume two rules “if
X is a fuzzy set ξ1 then Y is a fuzzy set η1” and “if X is a fuzzy set ξ2 then Y
is a fuzzy set η2”. From X is a fuzzy set ξ∗ we infer that Y is a fuzzy set

η∗ =
Cr{ξ∗ 	 ξ1} · η1|ξ∗�ξ1

Cr{ξ∗ 	 ξ1}+ Cr{ξ∗ 	 ξ2}
+

Cr{ξ∗ 	 ξ2} · η2|ξ∗�ξ2

Cr{ξ∗ 	 ξ1}+ Cr{ξ∗ 	 ξ2}
. (12)

The inference rule is represented by

Rule 1: If X is ξ1 then Y is η1
Rule 2: If X is ξ2 then Y is η2
From: X is ξ∗

Infer: Y is η∗ determined by (12)

Theorem 5. Let ξ1, ξ2, η1, η2 and ξ∗, be independent fuzzy sets, and let ξ1,
ξ2, ξ∗ have membership functions μ1, μ2, μ∗, respectively. Then Liu’s Inference
Rule 3 yields that

η∗ =
c1

c1 + c2
η∗1 +

c2
c1 + c2

η∗2 , (13)

where η∗1 = η1|ξ∗�ξ1 , η∗1 = η2|ξ∗�ξ2 , and

c1 =

⎧⎪⎨⎪⎩
1
2

sup
x∈�

μ1(x) ∧ μ∗(x), if sup
x∈�

μ1(x) ∧ μ∗(x) < 1

1− 1
2

sup
x∈�

{μ1(x)|μ1(x) < μ∗(x)} , if sup
x∈�

μ1(x) ∧ μ∗(x) = 1,
(14)

c2 =

⎧⎪⎨⎪⎩
1
2

sup
x∈�

μ2(x) ∧ μ∗(x), if sup
x∈�

μ2(x) ∧ μ∗(x) < 1

1− 1
2

sup
x∈�

{μ2(x)|μ2(x) < μ∗(x)} , if sup
x∈�

μ2(x) ∧ μ∗(x) = 1.
(15)

��
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Proof. Let c1 = Cr{ξ∗ 	 ξ1} and c2 = Cr{ξ∗ 	 ξ2}. Then we get Equation (14)
and Equation (15) immediately. According to Liu’s Inference Rule 3, we obtain
Equation (13). ��

6 Conclusions

We obtained some expressions of Liu’s inference rule by membership functions.
Furthermore, we extended Liu’s inference rule to fuzzy inference systems with
multiple antecedents and with multiple if-then rules.
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1 Introduction and Preliminary Results

In a series of papers the author introduced a set of new negations and implica-
tions over Intuitionistic Fuzzy Sets (IFSs, for all notations about IFSs see [2]).
Two of these negations were described in [6]. They generalize the classical nega-
tion over IFSs, but on the other hand, they have some non-classical properties.
The set has the form

N = {¬ε,η | 0 ≤ ε < 1 & 0 ≤ η < 1},

where for each IFS A = {〈x, μA(x), νA(x)〉|x ∈ E}:

¬ε,ηA = {〈x,min(1, νA(x) + ε),max(0, μA(x)− η)〉|x ∈ E}.

For numbers ε and η there are two cases.
• η < ε. As it is shown in [5], this case is impossible.
• η ≥ ε. Let everywhere below 0 ≤ ε ≤ η < 1 be fixed.
First, in [6] we showed that

¬0,0A = {〈x,min(1, νA(x)),max(0, μA(x))〉|x ∈ E}

= {〈x, νA(x), μA(x)〉|x ∈ E} = ¬1A,

where ¬1 is the classical intuitionistic fuzzy negation.
Second, we checked that set ¬ε,ηA is an IFS, because

min(1, b+ ε) + max(0, a− η) = min(1, b+ ε) ≤ 1.

Third, we constructed a new implication, generated by the new negation:

A→ε,η B = {〈x,max(c,min(1, b+ ε)),min(d,max(0, a− η))〉|x ∈ E}

= {〈x,min(1,max(c, b+ ε)),max(0,min(d, a− η))〉|x ∈ E}.

Fourth, in [2] the concepts of Tautological Set (TS) and Intuitionistic Fuzzy
Tautological Set (IFTS) were introduced as follows: the IFS A is a TS iff for

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 581–590, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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every x ∈ E : μA(x) = 1, νA(x) = 0; the IFS A is an IFTS iff for every x ∈ E :
μA(x) ≥ νA(x). Obviously, each TS is an IFTS.

In [6], we checked the axioms of intuitionistic logic (see, e.g., [18]) in the case,
when A,B and C are IFSs.

Fifth, in [7], a series of new versions of operation “subtraction” was introduced.
As a basis of the new versions of operation “subtraction” from [7], the well-known
formula from set theory:

A−B = A ∩ ¬B (1)

was used, A and B being given sets.
On the other hand, as we discussed in [3], the Law for Excluded Middle is

not always valid in IFS theory. By this reason, we can introduce a new series of
“subtraction” operations, that will have the form:

A−′′ B = ¬¬A ∩ ¬B. (2)

In some papers, e.g., [7,19], the properties of some IF-subtractions were studied.

2 Main Results

2.1 In [8], using (1), we obtained the following two operations of subtraction:

A−′ε,η B = A ∩ ¬ε,ηB

= {〈x,min(μA(x), 1, νB(x) + ε),max(νA(x), 0, μB(x)− η)〉|x ∈ E}
= {〈x,min(μA(x), νB(x) + ε),max(νA(x), μB(x)− η)〉|x ∈ E}.

Also, using (2) and having in mind that

¬ε,η¬ε,ηA = ¬ε,η{〈x,min(1, νA(x) + ε),max(0, μA(x)− η)〉x, |x ∈ E}

= {〈x,min(1,max(0, μA(x) − η) + ε),max(0,min(1, νA(x) + ε)− η)〉x, |x ∈ E}
= {〈x,min(1,max(ε, μA(x)−η+ε)),max(0,min(1−η, νA(x)+ε−η))〉x, |x ∈ E}

= {〈x,max(ε, μA(x)− η + ε),max(0,min(1− η, νA(x) + ε− η))〉x, |x ∈ E}
we obtain the following form of the operation −′′ε,η :

A−′′ε,η B = ¬ε,η¬ε,ηA ∩ ¬ε,ηB

= {〈x,max(ε, μA(x)− η + ε),max(0,min(1− η, νA(x) + ε− η))〉x, |x ∈ E}
∩{〈x,min(1, νB(x) + ε),max(0, μB(x)− η)〉x, |x ∈ E}

= {〈x,min(max(ε, μA(x)− η + ε), 1, νB(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μB(x) − η)〉x, |x ∈ E}
= {〈x,min(max(ε, μA(x)− η + ε), νB(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μB(x)− η)〉x, |x ∈ E}.
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Here, using the subtraction of setsA and ¬ε,ηA, we will introduce the following
two (ε, η)-norms for element x ∈ E:

||x||′ε,η = 〈min(μA(x), νA(x) + ε),max(νA(x), μA(x)− η)〉, (3)

||x||′′ε,η = 〈min(max(ε, μA(x)− η + ε), νA(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μA(x) − η)〉. (4)

Theorem 1. The two (ε, η)-norms are intuitionistic fuzzy pairs.

Proof. Let

X ≡ min(μA(x), νA(x) + ε) + max(νA(x), μA(x) − η).

If νA(x) ≥ μA(x) − η, then

X = min(μA(x), νA(x) + ε) + νA(x) ≤ μA(x) + νA(x) ≤ 1.

If νA(x) > μA(x) − η, then

X = min(μA(x), νA(x) + ε) + μA(x) − η

≤ νA(x) + ε+ μA(x)− η ≤ 1 + ε− η < 1.

Therefore, the first norm is an intuitionistic fuzzy pair.
Let

Y ≡ min(max(ε, μA(x)− η + ε), νA(x) + ε)

+ max(0,min(1− η, νA(x) + ε− η), μA(x)− η).

If max(0,min(1− η, νA(x) + ε− η), μA(x)− η) = 0, then

Y = min(max(ε, μA(x)− η + ε), νA(x) + ε) + 0 ≤ max(ε, μA(x)− η + ε) ≤ 1.

If max(0,min(1 − η, νA(x) + ε − η), μA(x) − η) = min(1 − η, νA(x) + ε − η),
then

min(1 − η, νA(x) + ε− η) ≥ μA(x)− η,

i.e., νA(x) + ε ≥ μA(x). Hence,

μA(x)− η) ≤ νA(x) + ε− η) ≤ νA(x)

and therefore

Y = min(max(ε, μA(x)− η + ε), νA(x) + ε) + min(1− η, νA(x) + ε− η)

= min(ε+ max(0, μA(x)− η), νA(x) + ε) + min(1− η, νA(x) + ε− η)

= ε+ min(max(0, μA(x)− η), νA(x)) + min(1− η, νA(x) + ε− η)

= ε+ max(0, μA(x) − η) + min(1, νA(x) + ε)− η
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≤ max(0, μA(x)− η) + min(1, νA(x) + ε).

If μA(x) ≥ η, then

Y ≤ μA(x) − η + min(1, νA(x) + ε) ≤ μA(x)− η + νA(x) + ε ≤ 1− η + ε ≤ 1;

if μA(x) < η, then Y ≤ min(1, νA(x) + ε) ≤ 1.
If max(0,min(1− η, νA(x) + ε− η), μA(x)− η) = μA(x) − η, then

Y = min(max(ε, μA(x) − η + ε), νA(x) + ε) + μA(x) − η

≤ νA(x) + ε+ μA(x)− η ≤ 1 + ε− η ≤ 1.

Therefore, the second norm is also an intuitionistic fuzzy pair.

All norms and distances, defined over IFSs up to now (see, e.g. [10,11,13,14,
15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]), have been real numbers, that may in
some cases be normalized to the [0, 1] interval. As we see, the two norms (3) and
(4) have the form of intuitionistic fuzzy pairs and they are the first of this form.

Let e∗, o∗, u∗ ∈ E so that μA(e∗) = 1, νA(e∗) = 0, μA(o∗) = 0, νA(o∗) = 1,
μA(u∗) = 0, νA(u∗) = 0. Then the norms of these three elements are:

x ||x||′ε,η ||x||′′ε,η

e∗ 〈ε, 1− η〉 〈ε, 1− η)〉
o∗ 〈0, 1〉 〈ε, 1− η〉
u∗ 〈0, 0〉 〈ε, 0〉

2.2 There are two ways for introducing distances between elements of a fixed
universe E, as it is shown on Fig. 1.
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Up to now, all distances, similarly to all norms, have been real numbers. Here,
and below, we will introduce distances, having forms of intuitionistic fuzzy pairs.

First, we will introduce the following five (ε, η)-distances between the values
of one element x ∈ E about two IFSs A and B, by analogy with the first (ε, η)-
norm:

d′ε,η;str opt(A,B)(x) = 〈min(μA(x), νB(x) + ε) + min(μB(x), νA(x) + ε)

−min(μA(x), νB(x) + ε).min(μB(x), νA(x) + ε),

max(νA(x), μB(x)− η).max(νB(x), μA(x)− η)〉,
d′ε,η;opt(A,B)(x) = 〈max(min(μA(x), νB(x) + ε),min(μB(x), νA(x) + ε)),

min(max(νA(x), μB(x)− η),max(νB(x), μA(x)− η))〉,

d′ε,η;aver(A,B)(x) = 〈min(μA(x), νB(x) + ε) + min(μB(x), νA(x) + ε)
2

,

max(νA(x), μB(x) − η) + max(νB(x), μA(x)− η)
2

〉,

d′ε,η;pes(A,B)(x) = 〈min(min(μA(x), νB(x) + ε),min(μB(x), νA(x) + ε)),

max(max(νA(x), μB(x)− η),max(νB(x), μA(x)− η))〉,
d′ε,η;str pes(A,B)(x) = 〈min(μA(x), νB(x) + ε).min(μB(x), νA(x) + ε),

max(νA(x), μB(x) − η) + max(νB(x), μA(x)− η)

−max(νA(x), μB(x)− η).max(νB(x), μA(x)− η)〉.
Second, we will introduce the following five (ε, η)-distances between the values

of two elements x, y ∈ E about the IFS A, by analogy with the first (ε, η)-norm:

d′ε,η;str opt(A)(x, y) = 〈min(μA(x), νA(y) + ε) + min(μA(y), νA(x) + ε)

−min(μA(x), νA(y) + ε).min(μA(y), νA(x) + ε),

max(νA(x), μA(y)− η).max(νA(y), μA(x)− η)〉,
d′ε,η;opt(A)(x, y) = 〈max(min(μA(x), νA(y) + ε),min(μA(y), νA(x) + ε)),

min(max(νA(x), μA(y)− η),max(νA(y), μA(x)− η))〉,

d′ε,η;aver(A)(x, y) = 〈min(μA(x), νA(y) + ε) + min(μA(y), νA(x) + ε)
2

,

max(νA(x), μA(y)− η) + max(νA(y), μA(x)− η)
2

〉,

d′ε,η;pes(A)(x, y) = 〈min(min(μA(x), νA(y) + ε),min(μA(y), νA(x) + ε)),

max(max(νA(x), μA(y)− η),max(νA(y), μA(x)− η))〉,
d′ε,η;str pes(A)(x, y) = 〈min(μA(x), νA(y) + ε).min(μA(y), νA(x) + ε),

max(νA(x), μA(y)− η) + max(νA(y), μA(x)− η)

−max(νA(x), μA(y)− η).max(νA(y), μA(x)− η)〉.
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Theorem 2. The ten (ε, η)-distances are intuitionistic fuzzy pairs.
The proof is similar to the above one.
As illustration, we will calculate the distances between the pairs (e∗, o∗),

(e∗, u∗) and (u∗, o∗).

(e∗, o∗) (e∗, u∗) (o∗, u∗)
d′ε,η;str opt(A) 〈1, 0〉 〈0, 1〉 〈0, 0〉
d′ε,η;aver(A) 〈1, 0〉 〈0, 1〉 〈0, 0〉
d′ε,η;opt(A) 〈12 ,

1
2 〉 〈0, 1〉 〈0, 1

2 〉
d′ε,η;pes(A) 〈0, 1〉 〈0, 1〉 〈0, 1〉
d′ε,η;str pes(A) 〈0, 1〉 〈0, 1〉 〈0, 1〉

Third, we will introduce the following five (ε, η)-distances between the values
of two elements x, y ∈ E about the IFS A, by analogy with the second (ε, η)-
norm:

d′′ε,η;str opt(A,B)(x) = 〈min(max(ε, μA(x)− η + ε), νB(x) + ε)

+ min(max(ε, μB(x)− η+ ε), νA(x) + ε)−min(max(ε, μA(x)− η+ ε), νB(x) + ε)

.min(max(ε, μB(x)−η+ε), νA(x)+ε),max(0,min(1−η, νA(x)+ε−η), μB(x)−η)

.max(0,min(1− η, νB(x) + ε− η), μA(x) − η)〉,
d′′ε,η;opt(A,B)(x) = 〈max(min(max(ε, μA(x) − η + ε), νB(x) + ε),

min(max(ε, μB(x)− η + ε), νA(x) + ε)),

min(max(0,min(1− η, νA(x) + ε− η), μB(x) − η),

max(0,min(1− η, νB(x) + ε− η), μA(x)− η))〉,

d′′ε,η;aver(A,B)(x) = 〈1
2
.(min(max(ε, μA(x) − η + ε), νB(x) + ε)

+ min(max(ε, μB(x) − η + ε), νA(x) + ε)),
1
2
.(max(0,min(1− η, νA(x) + ε− η), μB(x)− η)

+ max(0,min(1− η, νB(x) + ε− η), μA(x)− η))〉,
d′′ε,η;pes(A,B)(x) = 〈min(max(ε, μA(x) − η + ε, νB(x) + ε),

max(ε, μB(x)− η + ε), νA(x) + ε),

max(0,min(1−η, νA(x)+ε−η), μB(x)−η,min(1−η, νB(x)+ε−η), μA(x)−η)〉,
d′′ε,η;str pes(A,B)(x) = 〈min(max(ε, μA(x)− η + ε), νB(x) + ε).

min(max(ε, μB(x) − η + ε), νA(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μB(x) − η)

+ max(0,min(1− η, νB(x) + ε− η), μA(x)− η)

−max(0,min(1− η, νA(x) + ε− η), μB(x)− η)

.max(0,min(1− η, νB(x) + ε− η), μA(x) − η)〉.
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Fourth, we will introduce the following five (ε, η)-distances between the values
of two elements x, y ∈ E about the IFS A, by analogy with the second (ε, η)-
norm:

d′′ε,η;str opt(A)(x, y) = 〈min(max(ε, μA(x) − η + ε), νA(y) + ε)

+ min(max(ε, μA(y)− η + ε), νA(x) + ε)

−min(max(ε, μA(x) − η + ε), νA(y) + ε)

.min(max(ε, μA(y)− η + ε), νA(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μA(y)− η)

.max(0,min(1− η, νA(y) + ε− η), μA(x)− η)〉,

d′′ε,η;opt(A)(x, y) = 〈max(min(max(ε, μA(x)− η + ε), νA(y) + ε),

min(max(ε, μA(y)− η + ε), νA(x) + ε)),

min(max(0,min(1− η, νA(x) + ε− η), μA(y)− η),

max(0,min(1 − η, νA(y) + ε− η), μA(x) − η))〉,

d′′ε,η;aver(A)(x, y) = 〈1
2
.(min(max(ε, μA(x) − η + ε), νA(y) + ε)

+ min(max(ε, μA(y)− η + ε), νA(x) + ε)),

1
2
.(max(0,min(1− η, νA(x) + ε− η), μA(y)− η)

+ max(0,min(1− η, νA(y) + ε− η), μA(x) − η))〉,

d′′ε,η;pes(A)(x, y) = 〈min(max(ε, μA(x) − η + ε, νA(y) + ε),

max(ε, μA(y)− η + ε), νA(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μA(y)− η,

min(1− η, νA(y) + ε− η), μA(x)− η)〉,

d′′ε,η;str pes(A)(x, y) = 〈min(max(ε, μA(x)− η + ε), νA(y) + ε)

.min(max(ε, μA(y)− η + ε), νA(x) + ε),

max(0,min(1− η, νA(x) + ε− η), μA(y)− η)

+ max(0,min(1 − η, νA(y) + ε− η), μA(x) − η)

−max(0,min(1 − η, νA(x) + ε− η), μA(y)− η)

.max(0,min(1− η, νA(y) + ε− η), μA(x)− η)〉.

Theorem 3. The last ten (ε, η)-distances are intuitionistic fuzzy pairs.
The proof is similar to the above one.
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2.3 Now, we will discuss new distances between two given IFSs A and B.
Up to now, they have also been real numbers. Here, for the first time, we will
introduce a whole IFS, representing the distances between the origins of each
element x ∈ E with respect to the two sets. This set-form of distances can have
different forms, but we will describe the following ten of them:

D′(A,B)ε,η;type = {〈x, μd′(A,B)ε,η;type(x), νd′(A,B)ε,η;type(x)〉|x ∈ E},

D′′(A,B)ε,η;type = {〈x, μd′′(A,B)ε,η;type(x), νd′′(A,B)ε,η;type(x)〉|x ∈ E},

where
〈μd′(A,B)ε,η;type(x), νd′(A,B)ε,η;type(x)〉 = d′ε,η;type(A,B)(x),

〈μd′′(A,B)ε,η;type(x), νd′′(A,B)ε,η;type(x)〉 = d′′ε,η;type(A,B)(x)

for “type” ∈ {“str opt”, “opt”, “aver”, “pes”, “str pes”}.
The so constructed sets are IFSs and the proof of this fact is similar to the

above proof. Now, we can introduce the numerical form of the distances between
IFSs A and B by analogy with ordinary intuitionistic fuzzy distances (see, e.g.,
[2]).

3 Conclusion

The so constructed norms and distances generalize the norms and distances from
[2]. The latter are obtained from the above ones in the case when ε = η = 0. On
the other hand, the new objects generate different problems, e.g., for construction
of their integral representations. The idea for set-forms of the distances can be
transformed for all other forms of the intuitionistic fuzzy norms and distances,
discussed in the literature.

On the other hand, the above idea was generated in respect of author’s re-
search on Conway’s Game of Life (see, e.g., [12]). It is a popular zero-player game,
devised by John Horton Conway in 1970, and it is the best-known example of a
cellular automaton. Its “universe” is an infinite two-dimensional orthogonal grid
of square cells, each of which is in one of two possible states, live or dead. Every
cell interacts with its eight neighbours, which are the cells that are directly hor-
izontally, vertically, or diagonally adjacent. In a stepwise manner, the state of
each cell in the grid preserves or alternates with respect to a given list of rules.

In future we shall propose an intuitionistic fuzzy estimation of the cells’ state
in a modified Game of Life. For each cell we can define its IF estimation as a pair
consisting of the degrees lp and la, namely degrees of presence and absence of
life, where lp + la ≤ 1. In the classical Conway’s Game of Life, the live and dead
states correspond to the elementary IF estimations 〈1, 0〉 and 〈0, 1〉. In a future
research, using the above formulas for norms and distances, we can calculate the
IF state of liveliness of each cell, as functions of the current states of the cell’s
neighbours. Criteria of liveliness will also be determined in terms of IFS.
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1 Introduction

Fuzzy sets theory, first introduced by Zadeh in [13], has shown itself a very
valuable tool for problems that, by its very own nature, have to deal with im-
precision, ignorance or vagueness. However, the definition of fuzzy set does not
properly enough take into account this vagueness, since it imposes a single nu-
merical value to measure the membership of an element to a given set. In this
sense, Atanassov’s intuitionistic fuzzy sets theory ([2,3]) makes far more richer
the scope of the theory, since it allows to consider a second value, the so called
non-membership value, which clarifies the information the expert is providing
about the element and the set in consideration.

On the other hand, Lipschitzicianity is a very widely used concept in math-
ematical analysis. basically, it imposes a restriction in the way a function can
increase or decrease, and it occurs in fields as different as topology (fixed point
maps) or the study of ordinary differential equations ([9]).

In this work we intend to bring together this two concepts, by translating into
the Atanassov’s intuitionistic fuzzy sets setting the idea of 1-Lipschitzicianity.
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In particular, this has led us to consider the concept of contractive negations and
Atanassov’s intuitionistic aggregation functions, as those functions such that,
when applied to an Atanassov’s intuitionistic value, give raise to another
Atanassov’s intuitionistic value such that its Atanassov’s intuitionistic index is
less than or to the Atanassov’s intuitionistic index of the original pair. Since
Atanassov’s intuitionistic index can be used as a measure of how far a given
Atanassov’s intuitionistic set is from being an ordinary fuzzy set, by considering
this kind of functions we are ensuring that ”fuzziness” does not decrease. But this
decreasing can also be understood as a reduction of the lack of knowledge on an
expert when providing the membership and non-membership values, see [7].

Nevertheless, we want to stress that this work is only a first step in a very
large field of possible research. For this reason, we have focused on negations,
since they can be used as token for future developments of the theory, without
involving too complicated issues.

The structure of this paper is the following. In the next section we present
some preliminary results. In Section 3 we recall the concept of Lipschitz function.
In Section 4 we deal with Atanassov’s intuitionistic fuzzy negations. Sectio 5 is
the core of this work, focusing on contractive Atanassov’s intuitionistic fuzzy
negations. We end with some conclusions and remarks.

2 Preliminaries

In this section we recall the main concepts about Atanassov’s intuitionistic fuzzy
sets. For us, an Atanassov’s intuitionistic fuzzy set (AIFS) over a finite referential
X is a set

A = {(x, μA(x), νA(x))| x ∈ X}

where μA, νA : X → [0, 1] are called, respectively, the membership and non-
membership functions and have to satisfy the inequality

μA(x) + νA(x) ≤ 1

for all x ∈ X . In order to avoid notational problems, we will call Atanassov’s
intuitionistic pair any pair of numbers, denoted by 〈μ, ν〉, such that μ + ν ≤ 1,
with μ, ν ∈ [0, 1]. We denote by AIFS the set of all Atanassov’s intuitionistic
pairs P = 〈μP , νP 〉. Observe that any operation that we define over Atanassov’s
intuitionistic pairs can be naturally extended to act over Atanassov’s intuition-
istic fuzzy sets. In particular, given an Atanassov’s intuitionistic pair 〈μ, ν〉, we
can define its Atanassov’s intuitionistic index as

π(〈μ, ν〉) = 1− μ− ν .

Over AIFS we can consider two different orderings. The first one is defined
as P ≤L Q if and only if μP ≤ μQ and νP ≥ νQ. The second order relation is
P ⊆L Q if and only if μP ≥ μQ and νP ≥ νQ (see [8] for more details).

Observe that none of the two orderings is complete.
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3 Lipschitz Functions

We recall here the mathematical concepts of Lipschitz function, as well as some
properties that will be of interest for us.

Definition 1. A function f : [0, 1] → [0, 1] is called a Lipschitz mapping if there
exists K > 0 such that, for all x, y ∈ [0, 1], the inequality

|f(x)− f(y)| ≤ K|x− y|

holds.

The smallest of such K is called the Lipschitz constant of the mapping f . If K
is the Lipschitz constant of the mapping f , then f is also called a K-Lipschitz
mapping. In particular, 1-Lipschitz mappings are also called short maps.

Observe that K-Lipschitzicianity does not allow f to increase or decrease
faster than a given rate, which is defined by the constant K. In this sense, it is
clear that any K-Lipschitz mapping f is also continuous. Moreover, it can be
seen that a K-Lipschitz mapping is differentiable almost everywhere with respect
to the Lebesgue measure. Also observe that if f is a K1-Lipschitz function and g
is a K2-Lipschitz function, then f ◦g (and g ◦f) are K3-Lipschitz (K4-Lipschitz)
functions with K3(K4) ≤ K1K2.

For our following developments, we focus in bijective Lipschitz functions. In
this sense, we start by introducing the concept of automorphism on the unit
interval.

Definition 2. [6] A mapping ϕ : [0, 1] → [0, 1] is an automorphism if it is
strictly increasing and bijective. We denote by Aut([0, 1]) the set of all automor-
phisms over [0, 1].

Notice that for any automorphism ϕ the identities ϕ(0) = 0 and ϕ(1) = 1
hold. Observe also that any automorphism is in particular continuous, but not
necessarily K-Lipschitz, as the family of automorphisms ϕ(x) = xp with p < 1
shows. On the other hand, we have the following result.

Proposition 1. Letϕ ∈ Aut([0, 1]) beaK-Lipschitz automorphism.ThenK ≥ 1.

Proof. By definition
|ϕ(1)− ϕ(0)| = 1 = 1− 0

so the result is clear �
Observe that the only important point for the proof is that ϕ(1) = 1 and ϕ(0) =
0, regardless which the other values of ϕ are. In fact, not even monotonicity was
necessary.

Example 1. Each of the automorphisms ϕp(x) = xp with p ≥ 1 is p-Lipschitz.
To see it, first of all notice that, from the mean value theorem, if x > y

ϕp(x)− ϕp(y) = ϕ′
p(c)(x − y) ≤ p(x− y)
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for some c ∈ (x, y). So ϕp is Lipschitz with Lipschitz constant greater than
or equal to p. On the other hand, 1 − xp − p(1 − x) → 0 if x → 1, so the
p-Lipschitzicianity follows.

Moreover, 1-Lipschitzicianity completely determines an automorphism, as the
next result shows.

Proposition 2. An automorphism ϕ ∈ Aut([0, 1]) is 1-Lipschitz if and only if
ϕ(x) = x for all x ∈ [0, 1].

Proof. From the 1-Lipschitzicianity of ϕ, we have, on one hand, that

ϕ(x) = |ϕ(x) − ϕ(0)| ≤ |x− 0| = x

whereas on the other hand

1− ϕ(x) = |ϕ(1)− ϕ(x)| ≤ |1 − x| = 1− x

so we have that ϕ(x) ≥ x, and the result follows from both inequalities. �
Remark. There is not a similar uniqueness result for K-Lipschitz automor-
phisms with K > 1. To see it, fix K > 1, and s ∈]0, 1/K[. Then, the next
automorphisms are K-Lipschitz:

φs,1(x) = min(Kx, x
1 −Ks
1− s +

Ks− s
1− s )

and
φs,2(x) = max(Kx−K + 1, (1−Ks)x) .

Note that sup{φs,1(x)|s ∈]0, 1/K[} = min(Kx, 1) is the upper bound of all K-
Lipschitz automorphisms phi from Aut([0, 1]). Nevertheless, it is not strictly
monotone and thus not an automorphism. On the other hand, inf{φs,2(x)|s ∈
]0, 1/K[} = max(0,Kx−K + 1) is the lower bound of all K-Lipschitz automor-
phisms φ from Aut([0, 1]). As in the previous case, it is not strictly monotone
and thus not an automorphism.

Of course, there is nothing specific from a mathematical point of view in the
use of automorphisms. We can obtain a similar general result for any bijective
continuous mapping, as the next result shows.

Proposition 3. Let f : [a, b] → [c, d] be a bijective K-Lipschitz mapping. Then
K ≥ d−c

b−a and the only d−c
b−a -Lipschitz monotone bijection is

f(x) =
d− c
b− a (x− a) + c

if f is increasing, or

f(x) =
d− c
b− a (b− y) + c

if f is decreasing.
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Proof. Suppose first that f is increasing. Define the mapping g : [0, 1] → [0, 1] as

g(x) =
f((b − a)x+ a)− c

d− c

We have that

|g(x)− g(y)| ≤ |f((b− a)x+ a)− c
d− c − f((b− a)y + a)− c

d− c |

= |f((b − a)x+ a)
d− c − f((b − a)y + a)

d− c |

and, since f is K-Lipschitz, this is smaller than or equal to

K

d− c |(b − a)x+ a− (b − a)y − a| = K
b− a
d− c |x− y|

so g is a Lipschitz automorphism. From Proposition 1, it follows that

K
b − a
d− c ≥ 1

or equivalently

K ≥ d− c
b− a

as we intended to prove. If K = d−c
b−a , it follows from Proposition 2 that g(x),

and by clearing f in the definition of g, the result follows.
Finally, if f is decreasing, then the mapping h(x) = f(b+a−x) is increasing,

and the results follows from the calculations for the increasing case. �

3.1 Lipschitz Fuzzy Negations

In this section we analyze the relation between the Lipschitz property and the
concept of fuzzy negation. Further considerations on the subject, as well as
related developments, can be found in [10].

We start recalling the concept of (fuzzy) negation.

Definition 3. A fuzzy negation is a nonincreasing mapping N : [0, 1] → [0, 1]
such that N(0) = 1 and N(1) = 0. If N is continuous and strictly decreasing,
i.e., if x < y implies that N(x) > N(y), then N is called a strict negation. A
strict negation N which is involutive (i.e, such that N(N(x)) = N(x) for all
x ∈ [0, 1]) is called a strong negation.

The most representative example of negation is the so-called standard (or Zadeh’s)
negation NZ(x) = 1− x.

As a first result, we show that there are not purely contractive fuzzy negations,
i.e., K-Lipschitz fuzzy negations with K < 1.

Proposition 4. Let N be a K-Lipschitz fuzzy negation. Then K ≥ 1.
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Proof. The proof runs similarly to that of Proposition 1, just recalling the remark
after that result. �
Our aim is to see that the only 1-Lipschitz negation is Zadeh’s negation. From
Proposition 3 we have the following result.

Corollary 1. Let N be a strict negation. Then N is 1-Lipschitz if and only if
N(x) = 1− x for all x ∈ [0, 1].

Proof. Just observe that, if N is a strict negation, it is by definition a continuous,
strictly decreasing bijection from [0, 1] to [0, 1]. So, by Proposition 3, it follows
that

N(x) = 1− x
for all x ∈ [0, 1] �
Now we want to drop out strictness. This can be done as follows.

Theorem 1. Let N be a 1-Lipschitz negation. Then N(x) = 1 − x for all x ∈
[0, 1].

Proof. Since N is 1-Lipschitz, we have that, for any x ∈ [0, 1]

1−N(x) = N(0)−N(x) ≤ x

so N(x) ≥ 1− x. Analogously

N(x)− 0 = N(x) −N(1) ≤ 1− x

so N(x) ≤ 1− x. The result follows. �

4 Atanassov’s Intuitionistic Fuzzy Negations

Let f : [0, 1] → [0, 1] be a mapping. Then, the mapping f̂ : AIFS → AIFS
given by

f̂(P ) = {(x, μf(P ), νf(P ))}
with

μf(P ) = inf{f(t)| μP ≤ t ≤ 1− νP }
and

νf(P ) = 1− sup{f(t)| μP ≤ t ≤ 1− νP }
is well defined.

In this paper we consider the following notions of continuity on L([0, 1]).

(i) Moore continuity [11]. It is defined by considering the metric given by the
distance between two AIFSs P,Q ∈ AIFS, which is defined by: dM (P,Q) =
max{|μP − μQ|, |νP − νQ|}.
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(ii) Scott continuity. It is defined considering the quasi-metric qS(P,Q) =
max{μP − μQ, νP − νQ, 0}. It was introduced in [12] and [1].

The main result of [12] can be adapted to our setting as follows.

Theorem 2. Let f : [0, 1] → [0, 1] be a mapping. Then, the following items are
equivalent.

(i) f is continuous;
(ii) f̂ is Moore continuous;
(iii) f̂ is Scott continuous.

By analogy to fuzzy negations, negations for AIFS can be defined as follows.

Definition 4. A mapping N : AIFS → AIFS is an AIFS negation if, for all
A,B ∈ AIFS, the following properties hold.

(N1) N(0L) = 1L and N(1L) = 0L, where 0L = 〈0, 1〉 and 1L = 〈1, 0〉 ;
(N2a) If P ≤L Q, then N(Q) ≤L N(P );
(N2b) If P ⊆L Q, then N(P ) ⊆L N(Q);

If N also satisfies the involutive property

(N3) N(N(P )) = P for all P ∈ AIFS
then N is said to be a strong Atanassov’s intuitionistic fuzzy negation.

A Moore (or Scott) continuous Atanassov’s intuitionistic fuzzy negation is
said to be strict if it also satisfies the following properties.

(N4a) If P <L Q then N(Q) <L N(P );
(N4b) If P ⊂L Q then N(P ) ⊂L N(Q).

The proofs for the following propositions in this section are very similar to those
in [4].

Proposition 5. Let N : AIFS → AIFS be a mapping. Given P ∈ AIFS we
write N(P ) = 〈μN(P ), νN(P )〉. Then N is an (strict) Atanassov’s intuitionistic
fuzzy negation if and only if the mappings

Nμ(x) = μN(P )(〈x, 1 − x〉)

and
Nν(x) = 1− νN(P )(〈x, 1 − x〉)

are (strict) fuzzy negations and

N(〈x, y〉) = 〈Nμ(1− y), 1−Nν(x)〉

for all 〈x, y〉 ∈ AIFS.

Proposition 6. Let N1, N2 be (strict) fuzzy negations. If N1(x) ≤ N2(x) for
all x ∈ [0, 1], then the mapping I[N1, N2] : AIFS → AIFS defined by

I[N1, N2](〈x, y〉) = 〈N1(1− y), 1−N2(x)〉

is an Atanassov’s intuitionistic fuzzy negation.

Notice that if N = I[N1, N2], then Nμ = N1 and Nν = N2.
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5 Contractive Fuzzy Negations

Indeterminacy index is a measure of how far an Atanassov’s intuitionistic fuzzy
number is from being a fuzzy set. In the following we are interested in identifying
which AIFS negations do not increase the indeterminacy index. So we start
formally defining what we are looking for.

Definition 5. We say that an Atanassov’s intuitionistic fuzzy negation N is
contractive if for any Atanassov’s intuitionistic pair 〈μ(x), ν(x)〉 the inequality

π(N(〈μ(x), ν(x)〉)) ≤ π(〈μ(x), ν(x)〉)

holds.

Example 2. The Atanassov’s intuitionistic fuzzy negation

N̂Z(〈μ(x), ν(x)〉) = 〈ν(x), μ(x)〉

is clearly a contractive Atanassov’s intuitionistic fuzzy negation.

In particular, observe that

π(N̂Z(〈μ(x), ν(x)〉)) = π(〈μ(x), ν(x)〉)

for any Atanassov’s intuitionistic pair 〈μ(x), ν(x)〉. Moreover, we can assert the
following.

Proposition 7. Let N be an Atanassov’s intuitionistic fuzzy negation such that

π(N(〈x, y〉)) = π(〈x, y〉)

for all 〈x, y〉 ∈ AIFS. Then N = N̂Z .

Proof. Just observe that, by Proposition 5, there exist fuzzy negations Nμ and
Nν such that

N(〈x, y〉) = 〈Nμ(1− y), 1−Nν(x)〉

By hypothesis, we have that

Nν(x)−Nμ(1 − y) = 1− x− y

for all 〈x, y〉 ∈ AIFS. In particular, if we take y = 0, we arrive at Nν(x) = 1−x
for all x ∈ [0, 1]. Analogously, if x = 0 1−Nμ(1− y) = 1− y. The result follows

�
Our results on 1-Lipschitz negations together with Proposition 7 allow us to
characterize contractive Atanassov’s intuitionistic fuzzy negations. To start, we
have the following result.

Now we have the following result.



Atanassov’s Intuitionistic Contractive Fuzzy Negations 599

Theorem 3. Let N be an Atanassov’s intuitionistic fuzzy negation . If N is
contractive then there exists a fuzzy negation N such that N(〈x, y〉) = 〈N(1 −
y), 1−N(x)〉 for all 〈x, y〉 ∈ AIFS

Proof. From Proposition 6, we know that there exist fuzzy negations Nμ and Nν

such that
N(〈x, y〉) = 〈Nμ(1− y), 1−Nν(x)〉 .

Since N is contractive, since π(〈x, 1 − x〉 = 0 we arrive at

π(N(〈x, y〉)) = Nν(x) −Nμ(x) ≤ 0

for all x ∈ [0, 1], so the result follows. �
Notice that the converse of this theorem does not hold. In fact, if we consider
the strict negation N(x) = 1 − x2, then N(〈x, y〉) = 〈1 − (1 − y)2, x2〉. Since
N(〈0.5, 0.4〉) = 〈0.64, 0.25〉, as 1 − 0.5 − 0.4 = 0.1 < 1 − 0.64 − 0.25 = 0.11, it
follows that N is not contractive.

The following corollary follows straightforward from the previous result.

Corollary 2. An Atanassov’s intuitionistic fuzzy negation N is contractive if
and only if there exists a 1-Lipschitz fuzzy negation N such that N(〈x, y〉) =
〈N(1 − y), 1 − N(x)〉 for all 〈x, y〉 ∈ AIFS. In particular, The unique strict
contractive Atanassov’s intuitionistic fuzzy negation is

N̂Z(〈x, y〉) = 〈y, x〉 .

Proof. From the previous theorem we have that there exists a fuzzy negation N
such that

N(〈x, y〉) = 〈N(1 − y), 1−N(x)〉 .

Since N is contractive, it follows that

N(x)−N(1− y) ≤ 1− x− y

for all x, y ∈ [0, 1] such that x+y ≤ 1, or equivalently, N(x)−N(t) ≤ t−x for all
x, t ∈ [0, 1] such that x ≤ t. If x > t, then we have that π(N(〈t, 1 − x〉) ≤ x− t,
or, equivalently, N(t) − N(x) ≤ x − t. So we have that N is 1-Lipschitz. Since
we already know that the only 1-Lipschitz strict negation is the standard one,
the result follows. �

6 Conclusions

In this work we have related the concepts of Atanassov’s intuitionistic fuzzy
negation and the concept of Lipschitz function. We have in particular proved
that the only 1-Lipschitz Atanassov’s intuitionistic fuzzy negation is given by
precisely by the extension of Zadeh’s standard negation to the intuitionistic
setting.
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This work can be understood as a first step of a wider study on aggregation
function over Atanassov’s intuitionistic fuzzy sets. We hope that this study can
be of interest, firstly, to relate analytical concepts with widely used fuzzy con-
cepts; and secondly, in the applied field by providing a basis for the choice of some
aggregation functions instead of others, depending on the considered application.
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Abstract. Modern technology, especially Internet, allows people to find
the resources or knowledge they need by making use of the experiences
and opinions of other people. It is easy to collect a vast amount of data,
however, a problem of quality and reliability of these data is urgent. Trust
networks seem to be the best solution but they need more research and
attention. In this paper we join the discussion about trust representation
and trust propagation. We follow the idea of modeling trust in gradual
and dual form of trust and distrust degrees, using Atanassov’s intuition-
istic fuzzy sets (IFSs) theory as the basis. Moreover, we introduce a new
trust propagation operator based on group opinion and on relative scalar
cardinality of IFSs.

Keywords: Trust propagation, intuitionistic fuzzy sets, IFS, relative
scalar cardinality of IFS.

1 Introduction

Establishing a trust network between users involved in some business or social
activity through the Internet (e-business, recommender systems) contributes to
its quality, effectiveness and reliability. A trust network is a special type of social
network, where the relation between members is expressed by a trust degree. The
notion of trust is hard to formalize, but we agree with the common opinion that
trust should be modeled in a gradual way, to convey expressions from natural
language like ”to trust somebody very much” or ”rather do not trust somebody”,
as the opposite to binary ”trust” (fully) or ”don’t trust” (fully). Moreover, we
believe that trust should be modeled in a dual form of trust and distrust. Trust
would be defined as ones belief that the other user will behave in a dependable,
ethical and honest way, and this belief comes from past experience (this user
never/almost never let him down, usually gave useful information etc). On the
other hand, distrust is one’s belief of the other user lack of competence or even
harmful intentions (a degree of distrust may arise if other member behaved in
dishonest way, gave wrong information etc). What is important, distrust is not
necessarily a simple negation of trust, what leaves a space for expressing a lack
of knowledge or hesitation.

Besides the problem of trust modeling the crucial issue for trust network is
a mechanism of trust propagation - a way of deriving trust information from a

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 601–610, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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trusted third party. In a large system, it is unlikely for a single user to know all
the other members well enough to express the level of trust in them. Instead,
the user tries to compute trust information by consulting trusted third parties.
This problem is difficult and still not well defined and researched.

This paper focuses mainly on the problem of trust propagation. In Section 2
we review an approach to trust representation based on IFS theory (Atanassov’s
intuitionistic fuzzy set theory) presented in [2]. In Section 3 we present some ex-
isting approaches to trust propagation and propose a new propagation operator,
called Propσ , based on group opinion and on relative scalar cardinality of IFS,
that can be used to calculate trust score in complex trust networks. Section 4
concludes the paper.

2 IFS in Trust and Distrust Modeling

In the literature we can find different approaches to trust modeling. A proba-
bilistic approach deals with trust in a black or white fashion: a user can either
be trusted or not (e.g. [7]). In a gradual approach (e.g. [2], [6], [9], [13]) trust is
a matter of degree as opposed to being either right or wrong.

The approach adapted in this paper refers to the concept presented by De
Cock et al. in [2]. The authors argued that representing trust as a combination
of two values of trust and distrust degrees helps to preserve valuable information
about the provenance of trust absence. It enables to differentiate between a situ-
ation of distrust (towards a malicious user) and a situation of lack of knowledge
(towards an unknown user). This distinction is crucial for proper interpretation
and propagation of trust.

The adequate method of modeling trust in such dual form is IFS theory
(Atanassov’s intuitionistic fuzzy sets theory, see [1]). An IFS E is a pair of fuzzy
sets:

E = (A+, A−),

where A+ is a fuzzy set of elements that belong to E , and A− is a fuzzy set of
elements that do not belong to E . This theory, in contrast with fuzzy set theory,
incorporates uncertainty about the membership of an element, as A− is not
necessarily a negation of A+, but A− ⊂ (A+)c where the complement of fuzzy
set A is defined as Ac(x) = 1−A(x) for each x (for a generalized definition of IFS
with a use of a complement generated by an arbitrary strong negation see e.g.
[10]). Therefore, the value 1−A+(x)−A−(x) reflects uncertainty or hesitation
about membership of an element x in IFS E . Similarly, for example due to lack
of knowledge, uncertainty is present when specifying trust and distrust degrees.

The following definition formalizes a notion of trust network based on IFSs.

Definition 1. A trust network is a couple (A, R) such that A is a set of sources
and R is an A×A→ [0, 1]2 mapping. For every a and b in A:

R(a, b) = (R+(a, b), R−(a, b))

where
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– R(a, b) is called the trust score of a in b;
– R+(a, b) is called the trust degree of a in b;
– R−(a, b) is called the distrust degree of a in b;
– 1−R+(a, b)−R−(a, b) is called the uncertainty or hesitation margin.

Such representation let us express states like:

– source a doesn’t know anything about b: R(a, b) = (0, 0) (it neither trusts
nor distrusts b); the hesitation is maximal and equal to 1,

– source a fully distrust b: R(a, b) = (0, 1),
– source a has ambivalent attitude towards b: R(a, b) = (0.5, 0.5),
– source a rather trusts b, but at the same time distrust it a bit: R(a, b) =

(0.6, 0.2).

3 Trust Propagation Operator

Let us assume that source a expressed its trust in source b: R(a, b), and source
b expressed its trust in source c: R(b, c). Now we would like to estimate or
predict the value of trust score of a in c, what is called a trust propagation
(more precisely, it’s a transitive model of trust propagation). We must be aware
that propagating trust means in fact guessing a value of trust. This concept
is still not clear enough, but we assume, that a propagation operator, used to
estimate a new trust value, should depend on the value of the component trust
in a monotonic way (the higher the component trust values, the higher the result
trust value), but doesn’t need to be commutative. Furthermore, this operator
should depend on the distance between a and c (the longer the propagation
chain, the smaller the final trust value). Finally, the operator should be attack
resistant (it should not take into account opinions of false members).

In [13] four propagation operators of transitivity type were introduced. We
use the following notation: T denotes an arbitrary t-norm, i.e. an increasing,
commutative and associative [0, 1]2 → [0, 1] mapping satisfying T (1, x) = x for
all x ∈ [0, 1]; S denotes an arbitrary t-conorm, i.e. an increasing, commutative
and associative [0, 1]2 → [0, 1] mapping satisfying S(0, x) = x for all x ∈ [0, 1]; N
denotes a negator, i.e. a decreasing [0, 1] → [0, 1] mapping satisfying N(0) = 1
and N(1) = 0. Moreover, we take R(a, b) = (t1, d1) and R(b, c) = (t2, d2).

Propagation operators proposed in [13] are defined as:

Prop1((t1, d1), (t2, d2)) = (T (t1, t2), T (t1, d2))
Prop2((t1, d1), (t2, d2)) = (T (t1, t2), T (N(d1), d2))
Prop3((t1, d1), (t2, d2)) = (S(T (t1, t2), T (d1, d2)), S(T (t1, d2), T (d1, t2)))
Prop4((t1, d1), (t2, d2)) = (T (t1, t2), S(T (t1, d2), T (d1, t2)))

3.1 Trust Propagation Operator Based on Group Opinion

In this paper we introduce a new propagation operator using a slightly different
perspective. The approach is some extension of transitivity model, that allows
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Fig. 1. A model of trust network

more than one intermediate source in trust network. Such extension allows to
benefit from the big size of a trust network and variety of opinions. It is rea-
sonable to take into account all available information to estimate a final trust
score.

Intuitively, the method we propose resembles a behavior of a person that
forms his opinion about somebody by asking ”How many of my friends trust
this person?”. More formally, the simplified model of a trust network that we
consider is presented in Fig. 1. A user X wants to estimate a trust score in user
Y. X has a set of friends (direct neighbors that he trusts) a1, ..., am and some of
them (n of them) have an opinion about Y. So, we may form a question:

”How many sources trusted by X trust Y ?” (Q)

and take the answer to this question as a new trust score of X in Y.
We thus construct two IFSs: ”sources trusted by X” and ”sources that trust

Y ”. Using notation from Fig.1. we define those sets as:

– SX : {R(X, ai)|i = 1, ..., n} - a set a1, ..., an of sources trusted by X to a
degree R(X, a1), ..., R(X, an);

– SY : {R(ai, Y )|i = 1, ..., n} - a set a1, ..., an of sources that trust Y to a
degree R(a1, Y ), ..., R(an, Y ).

Let us notice that the question Q is in fact a question about relative scalar
cardinality of IFS:

σI(SY |SX) =
σI(SY ∩T,S SX)

σI(SX)
(1)

where:
σI(E) = [σ(A+), σ((A−)c)]

is a scalar cardinality of IFS E = (A+, A−), and

σ(A) =
∑

x∈supp(A)

f(A(x)).
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is a scalar cardinality of fuzzy set A with f being a non-decreasing function
f : [0, 1] → [0, 1] such that f(0) = 0, f(1) = 1 called cardinality pattern.
The intersection of two IFSs E = (A+, A−) and F = (B+, B−) is defined as
E ∩T,S F = (A+ ∩T B

+, A− ∪S B
−).

Relative scalar cardinality of IFS (1) is thus a proportion of two intervals:

σI(A|B) =
[σ(A+ ∩T B

+), σ((A− ∪S B
−)c)]

[σ(B+), σ((B−)c)]
.

To compute this value we propose to approximate it by using the following
formula:

σI(E|F) =
[
min

(
σ(A+|B+), σ(A+|(B−)c)

)
, (2)

max
(
σ((A−)c|(B−)c), σ((A−)c|B+)

)]
.

Formula (2) returns an interval [l, u] from [0, 1] showing the proportion of
number of sources that trust y and are trusted by x to the number of all sources
trusted by x. This proportion is given by lower l and upper u bound, and the
length of this interval expresses the hesitation or lack of knowledge about the
trust. It was shown (e.g. in [3]) that such interval representation is equivalent to
IFS defined as (l, 1− u). Now we can define the propagation operator.

Definition 2. The propagation operator based on relative scalar cardinality of
IFS is defined as:

Propσ(SX , SY ) =
(
min

(
σ(S+

Y |S
+
X), σ(S+

Y |(S
−
X)c)

)
,

1−max
(
σ((S−

Y )c|(S−
X)c), σ((S−

Y )c|S+
X)
))
.

Example
Let us consider a trust network from Fig.2. The values of trust score of X in
Y , R(X,Y ), for different t-norms (minimum, algebraic, �Lukasiewicz, Hamacher
with p = 3 and Schweizer with p = 0.2) and cardinality pattern f = id are:

– T = ∧ : R(X,Y ) = (0.63, 0.3)
– T = Ta : R(X,Y ) = (0.52, 0.39)
– T = T�L : R(X,Y ) = (0.4, 0.47)
– T = TH,3 : R(X,Y ) = (0.46, 0.44)
– T = TS,0.2 : R(X,Y ) = (0.5, 0.41)

An atomic and general form of the operator Propσ will be discussed in next
subsections.

3.2 Atomic form of Propσ

The simplest case of a propagation is an atomic propagation, when number
n of intermediate sources is equal to 1, so SX = {R(X, a)}, SY = {R(a, Y )}.
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Fig. 2. Sample trust network

Then, the propagation operator Propσ can be reduced to the form defined in
Definition 3, which is in fact a proper form of propagation operator. To simplify
the notation we will write (t1, d1) instead of {R(X, a)} and (t2, d2) instead of
{R(a, Y )}.
Definition 3. The atomic propagation operator Propσ is defined by:

Propσ((t1, d1), (t2, d2)) =
(
min

(
T (t2, t1)

t1
,
T (t2, N(d1))

N(d1)

)
,

1−max
(
T (N(d2), N(d1))

N(d1)
,
T (N(d2), t1)

t1

))
.

In the following we discuss some important properties connected with Propσ.

(P1) (full trust)

Propσ((1, 0), (0.7, 0.2)) = (0.7, 0.2)

In fact, for all (t, d) ∈ [0, 1]2 and for all t-norms T it holds that:

Propσ((1, 0), (t, d)) = (t, d)

Therefore, the propagation operator Propσ copies information from a fully
trusted source. This basic property coincides with all operators Prop1,
Prop2, Prop3 and Prop4 considered in [13].

(P2) (non-commutative) The propagation operator Propσ is not commutative.
For example:

Propσ((0.7, 0.2), (0.4, 0.5)) = (0, 29, 0, 58) and
Propσ((0.4, 0.5), (0.7, 0.2)) = (0, 51, 0, 33)

for Hamacher t-norm with p = 3 and f = id.
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(P3) (trustful) For each t, d ∈ (0, 1):

Propσ((t, d), (1, 0)) = (1, 0),
P ropσ((t, d), (0, 1)) = (0, 1),
P ropσ((t, d), (0, 0)) = (0, 0).

This property may be a little bit controversial, however, it arises from
Propσ main idea of building a trust score on the basis of other’s opinion.
Being ”trustful” means that opinions of other sources that know the source
Y directly are of main significance for the final value of trust score of X
in Y. This final trust score would be equal to some aggregation of direct
trust scores of a group’s member in Y, modified by a trust score of X to
the group’s members.

At the end we have to face a problem of division by 0, that appears in formula
from Definition 3 when trust equals 0 (precisely, in two cases: Propσ((0, 1), (t, d))
and Propσ((0, 0), (t, d))). It means that there is no single source we can trust.
In practise we probably will not take into account an opinion of sources that we
don’t trust to some acceptable degree, but from theoretical point of view there
is a need to fill this gap. We propose to assume that 0

0 = 0 what leads to the
following results:

Propσ((0, 1), (t, d)) = (0, 1),
P ropσ((0, 0), (t, d)) = (0, d).

3.3 General form of Propσ

Now we will show how the propagation operator Propσ can be used to calculate
the trust score when (a) the propagation chain has an arbitrary length; (b) the
information is delivered from many sources.

By the chain propagation we mean the situation when, in order to obtain a
trust score in Y, a source X asks its direct friend, those sources in turn consult
their friends and so on.

Let us consider the trust network from Fig.3. All the values R(xi, xi+1) are
known. The trust score R(X,Y ) is defined by the following recursive procedure:

R(xi, xn) = Propσ(R(xi, xi+1), R(xi+1, xn)), (3)
i = 1, 2, ..., n− 1.

Fig. 3. Chain propagation
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It means that X doesn’t have to have knowledge about the whole network. If
it knows a trust score R(X,Y ) then the procedure ends. Otherwise it asks its
direct neighbor x2 for the value R(x2, Y ) and weights it with its own trust score
R(X,x2). The source x2 follows the same procedure.

In this context we can distinguish further properties of Propσ:

(P4) (backward associativity)
Propagation operator Propσ is not associative. It is connected with the
feature of being ”trustful” - the most important is the opinion of a source
that knows Y directly. That is why, as it was stated in (3), the propagation
is backward (from Y to X).

(P5) (Archimedean property)
For Archimedean t-norms operator Propσ meets the demand of ”distance
dependency” - the longer the propagation chain the smaller the trust
degree and the bigger the hesitation degree. This property is intuitive, as
the information from a far-distant party is less reliable then from a direct
friend. For example, for Hamacher t-norm with p = 3 and f = id:

Propσ((0.7, 0.2), P ropσ((0.7, 0.2), (0.7, 0.2))) = Propσ((0.7, 0.2), (0.59, 0.26))
= (0.48, 0.33)

with the final hesitation being equal to 0.2. That is why Archimedean t-
norm seems to be the most adequate choice (in particular, more adequate
than classical minimum t-norm).

Fig. 4. Group propagation

Finally, let us consider the most general case when the source X receives
information about trust score in Y from more than one indirect source. It can
be combined with a chain propagation. We take the notation from Fig.4. Again,
the procedure of calculating final trust score is recursive:

R(xi, xn) = Propσ({R(xi, x
k
i+1)}k=1,...,mi , {R(xk

i+1, xn)}k=1,...,mi), (4)
i = 1, 2, ..., n− 1.

The following remarks sum up our discussion.

(P6) (unanimity) In case of unanimous sources that are equally trusted by X
the final trust score does not depend on the number n of intermediate
sources. For example, for Hamacher t-norm with p = 3 and f = id:
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Propσ({(0.2, 0.7)}1, {(0.6, 0.4)}1) = Propσ({(0.2, 0.7)}n, {(0.6, 0.4)}n)
= (0.37, 0.62)

(P7) (contradiction) In case of contradictory opinions of fully trusted sources,
the final trust score would always be R(X,Y ) = (s, s), s ∈ (0, 0.5]. For
example, for Hamacher t-norm with p = 3 and f = id:

Propσ({(1.0, 0.0), (1.0, 0.0)}, {(0.8, 0.1), (0.1, 0.8)}) = (0.45, 0.45)

(P8) (monotonicity) Adding a new source to the set of X neighbors with a
higher trust score in Y, results in increasing the final trust score of X in
Y. Similarly, adding a new source with a lower trust score in Y results
in decreasing a final trust score of X in Y. For example, for Hamacher
t-norm with p = 3 and f = id:

Propσ({(0.7, 0.2)}, {(0.8, 0.1)}) = (0.71, 0.13)
Propσ({(0.7, 0.2), (0.7, 0.2)}, {(0.8, 0.1), (0.5, 0.5)}) = (0.55, 0.36)

4 Conclusions and Further Work

The article introduced a new trust propagation operator Propσ that is based
on the opinion of a group of trusted sources, calculated with the use of relative
scalar cardinality of IFS. This operator has a lot of desired features - it is attack
resistant, it can deal with atomic propagation, chain propagation and group
propagation. Some experiments shown that the best results are obtained for
Archimedean t-norms. However, more researches need to be done, especially
on big networks. Besides, cardinality function f and its influence on the final
result needs more investigation - it seems that it can be useful for example for
introducing individually acceptable trust threshold. Also distrust degree still
need more closer look.
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Abstract. This paper is an attempt to apply a similarity/disimilarity
measure based on Atanassov IF-Sets to the comparison of lip shapes.
A method of encoding lip shapes is presented and a comparison of
numerical representations of lips based on the applied measure type is
suggested.
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1 Introduction

Recognizing and comparing lip shapes is very important for applications in
audio-visual speech recognition (cf. [11], [12]), lip reading (cf. [6], [9]) and pho-
netics research (cf. [8]). This article presents only one part of a larger project
which deals with visual speech recognition based on the movements of the lips.
Figure 1 shows a schematic diagram of the entire lip reading system (the elements
of the system to which this work relates appear in the boldfaced frame).

We will present concepts relating to numerical modeling of lip shapes and
their comparison, employing the idea of IF-Sets. Using such concepts makes it
possible to compare lip shapes in a bipolar view. We can see how two lip shapes
are similar to each other and simultaneously how they are dissimilar. We can also
estimate our hesitation degree for lip similarity which expresses our ignorance
in comparing them.

2 Preliminaries

The notion of intuitionistic fuzzy sets (IF-Sets) was introduced by Atanassov
in 1986 ([1]). It can be viewed as a generalization of fuzzy sets as introduced
by Zadeh in 1965 ([15]). They deliver tools for modeling simultaneously positive
and negative information approaches to different phenomena and enable us to
estimate our level of ignorance about them.
� The research project is supported by Ministry of Science and Higher Education grant

NN519 384936.
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Fig. 1. Architecture of the lip reading system

Definition 1. An intuitionistic fuzzy set (IF-Set) A in the universe X is an
object of the form A = {〈x;μ(x); ν(x)〉 : x ∈ X} where μ and ν are de-
grees of membership and non-membership of each x ∈ X, respectively, and
0 ≤ μ(x) + ν(x) ≤ 1 for each x ∈ X.

The number πA(x) = 1 − μA(x) − νA(x) is called the hesitation margin (or
intuitionistic fuzzy index) of the IF-Set A.

More details on the theory of Atanassov intuitionistic fuzzy sets can be found in
[1], [2], [7], [10] and [13,14].

Very interesting applications of IF-Sets for image processing and pattern
recognition can be found in [3], [4] and [5].

3 The Lip Shape Encoding

The main task in the procedure of building a lip shape model is to construct an
encoded pattern of a given lip shape that is representative and easy to compute
and compare. We propose the following pattern encoding procedure.

In the first step, on the picture of the face we mark two points denoting the
lip corners which are denoted by c1 and c5. The segment linking the two points
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is divided into three parts denoted by c2, c3, c4 through which segments parallel
to the segment c1, c5 are drawn limited by edges of the lips, setting test points
u1 u2 for the upper lips and l1, l2 l3 for the lower lips. In this manner a pattern
for the lip arrangement is constructed (see Fig. 2).

Fig. 2. Control points on the lip shape

In order to make this model independent of different sizes of lips or the picture
the ratios of the lengths of vertical and horizontal segments are encoded in the
pattern, rather than the distances between individual marked points are not (see
Fig. 3).

Fig. 3. Coding pattern of the lip shape

Definition 2. Lip pattern P is defined as the vector: P = (p1, p2, p3, p4, p5, p6)
where pi ∈ [0, 1] and p1 = |u1,c2|

|c1,c2| , p2 = |u2,c3|
|c1,c3| , p3 = |u3,c4|

|c4,c5| , p4 = |l1,c2|
|c1,c2| ,

p5 = |l2,c3|
|c1,c2| , p6 = |l3,c4|

|c4,c5| .

Here pi will be called the i-th pattern part of P .

It should be emphasized that an individual element of the lip shape pattern
pi takes values from the period [0, 1], and if pi is closer to 1 then vertical and
horizontal distances are more equal. If pi = 0 then there is no vertical deviation
from the line connecting the lip corners.

4 Similarity Measure

The construction of a lip shape similarity measure involves three steps:
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1. calculation of a distance (it can be a simple module of difference) between
particular pattern parts of two lip patterns;

2. interpretation of the distance by means of similarity and dissimilarity degree
(construct the IF-Set of each distance between corresponding pattern parts);

3. aggregation to one similarity and one dissimilarity measure value.

Definition 3. Let ai, bi be the i − th pattern parts of the lip patterns A, B
respectively. The similarity degree simi(A,B) of the i−th pattern parts is defined
as simi(A,B) = (1− |ai− bi|)2 and the dissimilarity degree of the i− th pattern
parts is defined as disi(A,B) = |ai − bi|2.

Fig. 4. Membership functions of similarity degree (sim) and dissimilarity degree (dis)

Definition 4. Let A, B be lip patterns. The IFS-LIP measure L(A,B) is a
triple (SIM,DIS,HES) so such L : A,B → (SIM,DIS,HES) and

SIM(A,B) =
∑6

i=1(wi ∗ simi(A,B))∑6
i=1 wi

,

DIS(A,B) =
∑6

i=1(wi ∗ disi(A,B))∑6
i=1 wi

,

HES(A,B) = 1− SIM(A,B)−DIS(A,B),
∀A,B 0 ≤ SIM(A,B) +DIS(A,B) ≤ 1 where wi is the weight representing the
importance of the i− th lip pattern.

As can be noticed, we have applied the weighted average of membership degrees
as an aggregation operator. The selection of appropriate values of wi is very
important. If all wi values are equal to 1, all fragments of the pattern will affect
the measure in the same way. However experimental results have suggested that
central elements of the lip pattern should have greater weights assigned. We
therefore suggest using the vector of weights w = (1, 2, 1, 1, 2, 1).
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5 Example

Table 1 and Table 2 present eight pictures of lip arrangements with the corre-
sponding patterns.

Table 3 presents values of the IFS-LIP measure between the lip arrangements
in Table 1 and Table 2.

After verification of the results, it can be concluded that the constructed
measure provides a more compressive form of information about the relations

Table 1. Lip shapes with encoded patterns P1 - P4

P1 = (0.05, 0, 0.14, 0.89, 0.58, 0.78) P2 = (0.15, 0.05, 0.12, 0.88, 0.54, 0.78)

P3 = (0.22, 0.05, 0.05, 0.73, 0.47, 0.51) P4 = (0.13, 0, 0.03, 0.62, 0.44, 0.56)

Table 2. Lip shapes with encoded patterns P5 - P8

P5 = (0, 0.07, 0.13, 0, 0.07, 0) P6 = (0.41, 0.22, 0.47, 0.38, 0.18, 0.21)

P7 = (0.26, 0.14, 0.29, 0.09, 0.06, 0) P8 = (0.53, 0.21, 0.32, 0.32, 0.18, 0.18)
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Table 3. Computed values of IFS-LIP measure

p1 p2 p3 p4 p5 p6 p7 p8

p1 (1,0,0) (0.93,0,0.07) (0.75,0.02,0.23) (0.75,0.03,0.22) (0.51,0.28,0.21) (0.37,0.17,0.45) (0.4,0.27,0.33) (0.38,0.19,0.43)

p2 (0.93,0,0.07) (1,0,0) (0.81,0.02,0.17) (0.78,0.02,0.2) (0.5,0.27,0.23) (0.42,0.15,0.43) (0.45,0.25,0.3) (0.42,0.17,0.42)

p3 (0.75,0.02,0.23) (0.81,0.02,0.17) (1,0,0) (0.88,0,0.11) (0.52,0.17,0.31) (0.51,0.09,0.4) (0.51,0.15,0.34) (0.5,0.09,0.4)

p4 (0.75,0.03,0.22) (0.78,0.02,0.2) (0.88,0,0.11) (1,0,0) (0.53,0.14,0.33) (0.5,0.1,0.41) (0.47,0.14,0.39) (0.48,0.1,0.42)

p5 (0.51,0.28,0.21) (0.5,0.27,0.23) (0.52,0.17,0.31) (0.53,0.14,0.33) (1,0,0) (0.55,0.08,0.37) (0.82,0.02,0.16) (0.59,0.08,0.33)

p6 (0.37,0.17,0.45) (0.42,0.15,0.43) (0.51,0.09,0.4) (0.5,0.1,0.41) (0.55,0.08,0.37) (1,0,0) (0.69,0.03,0.28) (0.88,0.01,0.11)

p7 (0.4,0.27,0.33) (0.45,0.25,0.3) (0.51,0.15,0.34) (0.47,0.14,0.39) (0.82,0.02,0.16) (0.69,0.03,0.28) (1,0,0) (0.73,0.03,0.24)

p8 (0.38,0.19,0.43) (0.42,0.17,0.42) (0.5,0.09,0.4) (0.48,0.1,0.42) (0.59,0.08,0.33) (0.88,0.01,0.11) (0.73,0.03,0.24) (1,0,0)

between lip arrangements. Apart from the information about similarities of lip
patterns (e.g. the relatively high similarity between p1 - p2, p6 - p8) we addition-
ally obtain the very essential information about hesitation in determining the
power of similarity (e.g. p1 - p6 and p1 - p8 where hesitation margin is higher
than the degree of similarity).

6 Summary

The idea of encoding lip shapes into patterns and comparing such patterns to the
suggested measure IFS-LIP appears to be very promising. We have attempted
to utilize the approach suggested by Atanassov which involves a the dual view
of the data. Our work presents the initial stage of more complex research on
modeling of lip shapes. Work is currently being undertaken on the implementa-
tion of algorithms of automatic lip shape pattern encoding on the basis of video
processing.
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Abstract. An interpretation of intuitionistic fuzzy sets is proposed
based on random set theory and prototype theory. The extension of
fuzzy labels are modelled by lower and upper random set neighbour-
hoods, identifying those element of the universe within an uncertain dis-
tance threshold of a set of prototypical elements. These neighbourhoods
are then generalised to compound fuzzy descriptions generated as logical
combinations of basic fuzzy labels. The single point coverage functions of
these lower and upper random sets are then shown to generate lower and
upper membership functions satisfying the min-max combination rules
of interval fuzzy set theory, the latter being isomophic to intuitionistic
fuzzy set theory.

1 Introduction

Intuitionistic fuzzy sets (IFS) were first proposed by Atanassov [1] as a bipolar
model of fuzzy sets where membership and non-membership are considered sep-
arately. The basis of IFS are two measures τ and ν where, for x an element of the
underlying universe and θ a fuzzy description generated recursively from a set
of basic fuzzy labels through application of logical connectives ∧,∨ and ¬, τθ(x)
corresponds to the membership degree of x in the extension of θ1 and νθ(x) is
the non-membership degree of x in the extension of θ. A duality relationship is
then defined between τ and ν such that, τ¬θ(x) = νθ(x) and ν¬θ(x) = τθ(x). It
is also assumed that τθ(x) + νθ(x) ≤ 1. Furthermore, τ and ν are fully truth-
functional satisfying the following combination rules for ∧ and ∨: For any fuzzy
descriptions θ and ϕ, and element x,

– τθ∧ϕ(x) = min(τθ(x), τϕ(x)), νθ∧ϕ(x) = max(νθ(x), νϕ(x))
– τθ∨ϕ(x) = max(τθ(x), τϕ(x)), νθ∨ϕ(x) = min(νθ(x), νϕ(x))

As shown by Atanassov and Gargov [2] and discussed by Dubois etal. [5], there
is an isomorphic relationship between IFS and an older notion of interval fuzzy
sets independently introduced by Zadeh [21], Grattan-Guiness [7], Jahn [11] and
1 The extension of θ is the set of elements to which the description θ can be appro-

priately applied.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 618–628, 2010.
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Sambuc [19]. In this framework lower and upper membership degrees are defined,
where μ

θ
(x) is the lower membership degree of element x in the extension of θ,

and μθ(x) is the upper membership degree of x in θ. These lower and upper
memberships then satisfy the following properties: For any element x and fuzzy
descriptions θ and ϕ

– μ
θ
(x) ≤ μθ(x)

– μ¬θ
(x) = 1− μθ(x), and μ¬θ(x) = 1− μ

θ
(x)

– μ
θ∧ϕ

(x) = min(μ
θ
(x), μ

ϕ
(x)), μθ∧ϕ(x) = min(μθ(x), μϕ(x))

– μ
θ∨ϕ

(x) = max(μ
θ
(x), μ

ϕ
(x)), μθ∨ϕ(x) = max(μθ(x), μϕ(x))

The mapping between interval fuzzy sets and IFS is then obtained by taking
μ

θ
(x) = τθ(x) and μθ(x) = 1 − νθ(x). In fact it is for this interval valued fuzzy

set theory for which we shall propose a direct interpretation based on random
set theory and prototype theory.

Prototype theory has been proposed by Rosch [16] [17] as an alternative model
of concepts in natural language. The fundamental idea is that concepts, instead
of being defined by formal rules or mappings, are represented by a set of proto-
typical cases. These cases correspond to those elements of the underlying universe
Ω, which it is certain satisfy the concept. Categorization of elements from Ω is
then based on similarity to the prototypes as quantified by a distance metric
defined on Ω (see [10] for an overview). By taking typicallity to be a decreasing
function of distance from prototypes, this approach would naturally explain the
fact that some instances are seen as being more typical exemplars of a concept
than others. For instance, robins are viewed as being a more typical example
of the concept bird than penguins, since the latter have certain atypical char-
acteristics such as the inability to fly. This notion of typicality is also strongly
related to concept vagueness where borderline cases have an intermediate range
of typicality values. In other words, such cases are not sufficiently similar to
the prototypes to be judged as having certain membership in the category but
are also not sufficiently dissimilar to the prototypes to be ruled out as being
certainly outside the category.

Random set theory has been proposed by Goodman and Nguyen as a frame-
work for linguistic reasoning in rule based systems [14], [8], [9]. Stated simply,
random sets are set-valued variables with an associated probability measure. In
Goodman and Nguyen’s work they provide a model of vague concepts from the
perspective that the extension of such a concept is an uncertain set. This is an
implicitly epistemic model of vagueness since by using a random set to model
a concept an intelligent agent is assuming that there is a correct extension set
about which they are uncertain. Notice that this does not require that there
is actually some objectively correct definition of the concept (as suggested by
Williamson [20]), but rather that the agent assumes, for the purposes of decision
making and communication, that such a definition exists (see Lawry [13] for a
discussion of this epistemic stance).

Dubois et al. [6] have identified both random sets and prototype theory as
possible interpretations of fuzzy set membership functions. More specifically,
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given a random set R modelling a concept, the fuzzy set membership value
of an element x in R is then taken to be the probability that the value of
R is a set which contains x. This is the single point coverage function of the
random set R. For the prototype theory model it is assumed that there exists
a similarity measure between the elements of Ω, which takes values in [0, 1].
Given a set of prototypical elements, the membership of x in the associated
fuzzy set is then taken as corresponding to the similarity between x and these
prototypes [18]. In [12] we have proposed a natural combination of prototype
theory and random set theory to model linguistic labels and descriptions. The
idea behind this approach is that, in order to decide whether the assertion ‘x
is Li’ is appropriate for element x and label Li with prototypes Pi, an agent
would threshold the distance between x and Pi. In other words, Li would be
deemed an appropriate label for x provided that d(x, Pi) ≤ ε, for some distance
function d : Ω2 → [0,∞) and threshold ε ≥ 0. However, the inherent uncertainty
about the extension of Li would naturally result in uncertainty about the value
of threshold ε. Consequently, the extension of Li would correspond to a random
set neighbourhood of the prototypes of Li as defined by those elements which
lie within the uncertain threshold ε of Pi. In the sequel we extend this idea, so
as to generate lower and upper neighbourhoods as extensions of a concept by
introducing lower and upper thresholds.

2 Lower and Upper Membership Functions

We envisage a population of communicating agents applying a finite set of la-
bels to describe the elements of an underlying universe of discourse. Given an
element x an agent must decide which labels and compound descriptions are
appropriate to describe x, where appropriateness is governed by the linguistic
conventions of the population. Agents adopt the epistemic stance [13] by assum-
ing that there is an uncertain but crisp division between those labels which are,
and those which are not appropriate to describe a given element. Now since an
agent’s knowledge of these linguistic conventions, obtained through their expe-
rience of communication with others, is partial and often conflicting they will
have significant uncertainty about the appropriateness of labels. It is assumed,
however, that there will be prototypical elements for which they will be certain
that a given label can describe. These prototypes will then form the basis of the
agent’s representation of each label. More formally:

Let Ω denote the underlying universe of discourse and LA = {L1, . . . , Ln} be a
finite set of labels for describing elements of Ω. LE then corresponds to the set of
compound express generated by recursive application of the connectives ∧, ∨ and
¬ to the labels in LA. For example, if LA contains labels red and blue, then LE
contains expressions including red and blue, red or blue, not red, not blue, red and
not blue etc. For each label Li there is a set of prototypical elements Pi ⊆ Ω, such
that Li is certainly appropriate to describe any prototypical elements in Pi. Given
a distance function d : Ω2 → [0,∞) satisfying d(x, x) = 0 and d(x, y) = d(y, x)
for all x, y ∈ Ω, lower and upper extensions of each label are defined to be those
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elements of Ω with distance from Pi less than or equal to a lower and an upper
threshold value respectively. In other words, the lower extension of Li is taken
to be {x ∈ Ω : d(x, Pi) ≤ ε} and the upper extension {x ∈ Ω : d(x, Pi) ≤ ε},
where ε ≤ ε and d(x, Pi) = inf{d(x, y) : y ∈ Pi}. Here, we further assume that
both ε and ε are functions of a single parameter α taking values in [0, 1]. The
underlying intuition is that α quantifies an agent’s overall level of imprecision in
their definition of labels, so that as α increases the difference between the upper
extension of a label and its lower extension decreases. In effect this means that
there exists an increasing function f : [0, 1] → [0,∞) and a decreasing function
f : [0, 1] → [0,∞) such that f ≤ f and for which ε = f(α) and ε = f(α).

Definition 1. Lower and Upper Threshold Functions
f : [0, 1] → [0,∞) and f : [0, 1] → [0,∞) where f is an increasing function and
f is a decreasing function satisfying ∀α ∈ [0, 1] f(α) ≤ f(α).

The lower and upper extension of the labels and the compound descriptions in
LE are then defined recursively as follows:

Definition 2. Lower and Upper Random Neighbourhoods

– ∀Li ∈ LA Nα
Li

= {x : d(x, Pi) ≤ f(α)}, Nα

Li
= {x : d(x, Pi) ≤ f(α)}.

– ∀θ, ϕ ∈ LE Nα
θ∧ϕ = Nα

θ ∩ Nα
ϕ, Nα

θ∧ϕ = Nα

θ ∩ N
α

ϕ.
– ∀θ, ϕ ∈ LE Nα

θ∨ϕ = Nα
θ ∪ Nα

ϕ, Nα

θ∨ϕ = Nα

θ ∪ N
α

ϕ.
– ∀θ ∈ LE Nα

¬θ = (Nα

θ )c, Nα

¬θ = (Nα
θ )c

Now in view of the distributed manner in which language is learnt through
the interaction and communications between a population of agents, it is likely
that an individual agent will be uncertain as to which value of α should be
adopted in a given context. Here, in keeping with the epistemic stance, we model
this uncertainty by a probability density function δ on α. The lower and upper
membership functions of expression θ ∈ LE for element x ∈ Ω are then given
by the probability of a value of α such that x ∈ Nα

θ and the probability of an α
such that x ∈ Nα

θ respectively.

Definition 3. Lower and Upper Membership Functions
Let δ be a density function on [0, 1]. Then ∀θ ∈ LE, ∀x ∈ Ω we define μ

θ
(x) =

δ({α : x ∈ Nα
θ }) and μθ(x) = δ({α : x ∈ Nα

θ })

Here μ
θ
(x) quantifies the agent’s belief that expression θ is definitely appropriate

to describe x, and μθ(x) is the belief that θ is possibly appropriate to describe x.
These lower and upper measures attempt to capture the intuition that ‘appro-
priateness’ or ‘assertability’ of descriptions is inherently bipolar. This bipolarity
manifests itself in the distinction between those descriptions which convention
would deem clearly appropriate to describe an element x, and those which con-
vention would not classify as incorrect, or perhaps even dishonest, descriptions.
Parikh [15] observes that:
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Certain sentences are assertible in the sense that we might ourselves
assert them and other cases of sentences which are non-assertible in the
sense that we ourselves (and many others) would reproach someone who
used them. But there will also be the intermediate kind of sentences,
where we might allow their use.

For example, consider a witness in a court of law describing a suspect as being
tall. Depending on the actual height of the suspect this statement may be deemed
as clearly true or clearly false, in which latter case the witness could be accused of
perjury. However, there will also be an intermediate height range for which, while
there may be doubt and differing opinions concerning the use of the description
tall, it would not be deemed as definitely inappropriate and hence the witness
would not be viewed as committing perjury.

We now investigate some basic properties of lower and upper neighbourhoods
and argue that μ

θ
and μθ can indeed be viewed as lower and upper membership

functions according to the random set interpretation of fuzzy sets. The following
theorem shows that the lower neighbourhood is, as intended, a subset of the
upper neighbourhood for any expression in LE.

Theorem 1. ∀Ψ ∈ LE, ∀α ∈ [0, 1] Nα
Ψ ⊆ N

α

Ψ

Proof. Let LE(1) = LA and LE(k) = LE(k−1) ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈
LE(k−1)}. We now proceed by induction on k. If Ψ = Li then Nα

Li
= {x :

d(x, Pi) ≤ f(α)} ⊆ {x : d(x, Pi) ≤ f(α} = Nα

Li
. Now assuming the result holds

for Ψ ∈ LE(k) we show that it holds for Ψ ∈ LE(k+1). If Ψ ∈ LE(k+1) then either
Ψ ∈ LE(k), in which case the result holds trivially, or ∃θ, ϕ ∈ LE(k) for which
one of the following holds:

– Ψ = θ ∧ ϕ in which case Nα
Ψ = Nα

θ∧ϕ = Nα
θ ∩ Nα

ϕ ⊆ Nα

θ ∩ N
α

ϕ (by the
inductive step) = Nα

θ∧ϕ = Nα

Ψ .
– Ψ = θ ∨ ϕ in which case Nα

Ψ = Nα
θ∨ϕ = Nα

θ ∪ Nα
ϕ ⊆ Nα

θ ∪ N
α

ϕ (by the
inductive step) = Nα

θ∨ϕ = Nα

Ψ .
– Ψ = ¬θ. Now by induction Nα

θ ⊇ Nα
θ and therefore (Nα

θ )c ⊆ (Nα
θ )c.

Hence, in this case Nα
Ψ = Nα

¬θ = (Nα

θ )c ⊆ (Nα
θ )c = Nα

¬θ = Nα

Ψ .

Corollary 1. ∀θ ∈ LE, ∀x ∈ Ω μ
θ
(x) ≤ μθ(x)

For any expression θ, Nα
θ and Nα

θ are both random sets taking as values subsets
of Ω. From this perspective μ

θ
and μθ are the single point coverage functions

of Nα
θ and Nα

θ respectively. Hence, according to the random set interpretation
of fuzzy sets proposed in [8], [9] and [6], μ

θ
(x) and μθ(x) can be viewed as

membership values of x in the lower and upper extension of θ respectively.

Theorem 2. ∀α, α′ ∈ [0, 1] where α ≤ α′ it holds that ∀θ ∈ LE Nα
θ ⊆ Nα′

θ and

Nα

θ ⊇ N
α′

θ .
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Proof. Let LE(1) = LA and LE(k) = LE(k−1)∪{θ∧ϕ, θ∨ϕ,¬θ : θ, ϕ ∈ LE(k−1)}.
We now proceed by induction on k. If Ψ = Li then Nα

Li
= {x : d(x, Pi) ≤

f(α)} ⊆ {x : d(x, Pi) ≤ f(α′)} = Nα′
Li

since f is an increasing function. Also

Nα

Li
= {x : d(x, Pi) ≤ f(α)} ⊇ {x : d(x, Pi) ≤ f(α′)} = Nα′

Li
since f is a

decreasing function. Now assuming the result holds for Ψ ∈ LE(k) we show that
it holds for Ψ ∈ LE(k+1). If Ψ ∈ LE(k+1) then either Ψ ∈ LE(k), in which case
the result holds trivially, or ∃θ, ϕ ∈ LE(k) for which one of the following holds:

– Ψ = θ∧ϕ. In this case Nα
Ψ = Nα

θ∧ϕ = Nα
θ ∩Nα

ϕ ⊆ Nα′
θ ∩Nα′

ϕ (by induction)

= Nα′
θ∧ϕ = Nα′

Ψ . Also Nα

Ψ = Nα

θ∧ϕ = Nα

θ ∩N
α

ϕ ⊇ N
α′

θ ∩Nα′

ϕ (by induction)

= Nα′

θ∧ϕ = Nα′

Ψ .
– Ψ = θ∨ϕ. In this case Nα

Ψ = Nα
θ∨ϕ = Nα

θ ∪Nα
ϕ ⊆ Nα′

θ ∪Nα′
ϕ (by induction)

= Nα′
θ∨ϕ = Nα′

Ψ . Also Nα

Ψ = Nα

θ∨ϕ = Nα

θ ∪N
α

ϕ ⊇ N
α′

θ ∪Nα′

ϕ (by induction)

= Nα′

θ∨ϕ = Nα′

Ψ .

– Ψ = ¬θ. In this case Nα
Ψ = Nα

¬θ = (Nα

θ )c ⊆ (Nα′

θ )c (by induction) = Nα′
¬θ =

Nα′
Ψ . Also Nα

Ψ = Nα

¬θ = (Nα
θ )c ⊇ (Nα′

θ )c (by induction) = Nα′

¬θ = Nα′

Ψ .

Corollary 2. ∀θ, ϕ ∈ LE, ∀x ∈ Ω
– μ

θ∧ϕ
(x) = min(μ

θ
(x), μ

ϕ
(x)), μθ∧ϕ(x) = min(μθ(x), μϕ(x))

– μ
θ∨ϕ

(x) = max(μ
θ
(x), μ

ϕ
(x)), μθ∨ϕ(x) = max(μθ(x), μϕ(x))

– μ¬θ
(x) = 1− μθ(x), μ¬θ(x) = 1− μ

θ
(x)

Proof. From theorem 2 we have that ∀θ, ϕ ∈ LE either {α : x ∈ Nα
θ } ⊆ {α : x ∈

Nα
ϕ} or {α : x ∈ Nα

θ } ⊇ {α : x ∈ Nα
ϕ} and either {α : x ∈ Nα

θ } ⊆ {α : x ∈ Nα

ϕ}
or {α : x ∈ Nα

θ } ⊇ {α : x ∈ Nα

ϕ}. Now assume w.l.o.g that {α : x ∈ Nα
θ } ⊆ {α :

x ∈ Nα
ϕ} then:

μ
θ∧ϕ

(x) = δ({α : x ∈ Nα
θ∧ϕ}) = δ({α : x ∈ Nα

θ } ∩ {α : x ∈ Nα
ϕ})

= δ({α : x ∈ Nα
θ }) = μ

θ
(x) = min(μ

θ
(x), μ

ϕ
(x)) and

μ
θ∨ϕ

(x) = δ({α : x ∈ Nα
θ∨ϕ}) = δ({α : x ∈ Nα

θ } ∪ {α : x ∈ Nα
ϕ})

= δ({α : x ∈ Nα
ϕ}) = μ

ϕ
(x) = max(μ

θ
(x), μ

ϕ
(x))

The result also follows similarly for μθ∧ϕ(x) and μθ∨ϕ(x). Furthermore,

μ¬θ
(x) = δ({α : x ∈ Nα

¬θ}) = δ({α : x ∈ (Nα

θ )c}) = δ({α : x ∈ Nα

θ }c)

= 1− δ({α : x ∈ Nα

θ }) = 1− μθ(x)

Similarly μ¬θ(x) = 1− μ
θ
(x)

Also notice from theorem 2 that ∀α ≤ α′ and ∀θ ∈ LE, Nα′

θ −Nα′
θ ⊆ Nα

θ −Nα
θ ,

and hence, in accordance with the original intuition, the parameter α is a direct
indicator of the imprecision associated with the definition of θ.
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Theorem 3. ∀θ, ϕ ∈ LE, ∀α ∈ [0, 1] the following hold:

– Nα
¬(¬θ) = Nα

θ , and Nα

¬(¬θ) = Nα

θ

– Nα
¬(θ∧ϕ) = Nα

¬θ∨¬ϕ and Nα

¬(θ∧ϕ) = Nα

¬θ∨¬ϕ

– Nα
¬(θ∨ϕ) = Nα

¬θ∧¬ϕ and Nα

¬(θ∨ϕ) = Nα

¬θ∧¬ϕ

– Nα
θ∧¬θ = ∅ and Nα

θ∨¬θ = Ω

Proof. – Nα
¬(¬θ) = (N

α

¬θ)c = ((Nα
θ )c)c =Nα

θ and similarly N
α

¬(¬θ) = (Nα
¬θ)c =

((Nα

θ )c)c = Nα

θ

– Nα
¬(θ∧ϕ) = (Nα

θ∧ϕ)c = (Nα

θ ∩ N
α

ϕ)c = (Nα

θ )c ∪ (Nα

ϕ)c = Nα
¬θ ∪ Nα

¬ϕ =
Nα

¬θ∨¬ϕ and similarly Nα

¬(θ∧ϕ) = (Nα
θ∧ϕ)c = (Nα

θ ∩ Nα
ϕ)c = (Nα

θ )c ∪
(Nα

ϕ)c = Nα

¬θ ∪ N
α

¬ϕ = Nα

¬θ∨¬ϕ

– Nα
¬(θ∨ϕ) = (Nα

θ∨ϕ)c = (Nα

θ ∪ N
α

ϕ)c = (Nα

θ )c ∩ (Nα

ϕ)c = Nα
¬θ ∩ Nα

¬ϕ =
Nα

¬θ∧¬ϕ and similarly Nα

¬(θ∨ϕ) = (Nα
θ∨ϕ)c = (Nα

θ ∪ Nα
ϕ)c = (Nα

θ )c ∩
(Nα

ϕ)c = Nα

¬θ ∩ N
α

¬ϕ = Nα

¬θ∧¬ϕ

– Nα
θ∧¬θ = Nα

θ ∩Nα
¬θ = Nα

θ ∩ (Nα

θ )c ⊆ Nα
θ ∩ (Nα

θ )c = ∅ by theorem 1.
– Nα

θ∨¬θ = Nα

θ ∪N
α

¬θ ⊇ Nα
θ ∪ N

α

¬θ = Ω by theorem 1

Example 1. Let Ω = R and Li be a label with prototype Pi = {10} (i.e. Li

denotes about 10 ). Let f(α) = 2α and f(α) = 4−2α (see figure 1) and also let δ
be a gaussian distribution with mean 0.5 and standard deviation 0.15 normalised
so as to have integral 1 on [0, 1] (see figure 2). From this we have the following
lower and upper neighbourhoods:

Nα
Li

= [10− 2α, 10 + 2α] and Nα

Li
= [6 + 2α, 14− 2α]

Hence, the lower and upper membership functions are given by (see figure 3):

μ
Li

(x) =

⎧⎪⎨⎪⎩
∫ 1

10−x
2
δ(ε)dε : 8 ≤ x ≤ 10∫ 1

x−10
2
δ(ε)dε : 10 < x ≤ 12

0 : otherwise

μLi
(x) =

⎧⎪⎪⎨⎪⎪⎩
∫ x−6

2
0 δ(ε)dε : 6 ≤ x ≤ 10∫ 14−x

2
0 δ(ε)dε : 10 < x ≤ 14

0 : otherwise

3 Discussion and Conclusions

We have introduced a random set and prototype theory interpretation of lower
and upper fuzzy membership functions. In particular, we have proposed lower
and upper random set extensions of fuzzy descriptions generated as recursive
combinations of random set neighbourhoods of prototypes defined for a set of
basic fuzzy labels. Each such extension then identifies those elements of Ω which
can be appropriately described by the associated fuzzy description. Random sets
are defined based on lower and upper threshold distances from prototypes which
are taken to be functions of a single parameter α indicating the overall level
of imprecision associated with concept definition. Uncertainty associated with
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Fig. 2. Normalised gaussian density function δ with mean 0.5 and standard deviation
0, 15

the correct level of α is modelled by a probability density function δ, according
to which we can calculate the lower and upper membership functions of x in
θ, as the probabilities of those α values for which x is in the lower and upper
extensions of θ respectively. In effect these two measures are the single point
coverage functions of the lower and upper random sets, and hence according to
the random set interpretation of membership functions, can be viewed as lower
and upper memberships functions of the extension of the fuzzy concept.

Based on this definition we have then shown that the lower and upper mem-
bership functions are fully truth-functional satisfying the min and max rules for
conjunction and disjunction as proposed for interval fuzzy sets. However, the
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Fig. 3. Example of lower and upper membership functions for label Li with prototype
Pi = {10}

interpretation also imposes other additional constraint on the calculus for lower
and upper membership functions. For instance, from theorem 3 it follows im-
mediately that ∀θ ∈ LE and ∀x ∈ Ω, μ

θ∧¬θ
(x) = 0 and μθ∨¬θ(x) = 1. Hence,

by corollary 2, it holds that min(μ
θ
(x), 1 − μθ(x)) = 0. In other words, for any

element x and expression θ, either μ
θ
(x) = 0 or μθ(x) = 1. Clearly then by ap-

plying the mapping τθ(x) = μ
θ
(x) and νθ(x) = 1− μθ(x) = μ¬θ

(x) we obtain a
calculus for membership and non-membership degree identical to that proposed
for IFS by Atanassov [1], but with the additional constraint that either τθ(x) = 0
or νθ(x) = 0 for any x and θ.

Dubois etal. [5] question the interpretation of IFS as an intuitionistic theory.
For example, unlike intuitionistic logic, IFS satisfies double negation while it
does not satisfy the law of non-contradiction 2. This criticism would seem to be
borne out under the current interpretation, since the fundamental notion under-
lying the measures μ and μ is that of random set neighbourhoods, which do not
seem to be at all intuitionistic in nature. For instance, from theorem 3 we see
that the double negation law is strongly validated since it holds for both lower
and upper neighbourhoods. Also theorem 3 shows that the behaviour of lower
and upper neighbourhoods with regard to the laws of excluded middle and non-
contradiction differs significantly from intuitionistic logic. Indeed, while the lower
neighbourhood does not satisfy excluded middle, the upper neighbourhood does.
Similarly, while the lower neighbourhood satisfies the law of non-contradiction,
the upper neighbourhood does not. Indeed the behaviour of lower and upper
random set neighbourhoods with regard to these laws is exactly what would be
expected from two criteria, one weaker and one stronger, related in a bipolar

2 We refer here to the standard min, max calculus for IFS where τ¬θ = νθ and ν¬θ = τθ.
Atanassov [3] shows that for other choices of negation operator, the law of non-
contradiction may be satisfied.
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manner as outlined in [4] , rather than being based on the notion of justifiability
as is the case in intuitionistic logic. In particular, lower and upper membership
functions would seem to be a special case of what Dubois and Prade [4] refer
to as symmetric bivariate unipolarity, whereby judgments are made according
to two distinct evaluations on unipolar scales. In the current context, we have
a strong and a weak evaluation criterion where the former corresponds to def-
inite appropriateness and the latter to possible appropriateness. As with many
examples of this type of bipolarity there is a natural duality between the two
evaluation criterion in that a description θ is definitely appropriate to describe
element x if and only if ¬θ is not possibly appropriate to describe x.
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Abstract. We present a general, triangular norm-based approach to hesitation 
degrees related to I-fuzzy sets, Atanassov's intuitionistic fuzzy sets. Our main 
aim will be a closer look at hesitation degrees generated by the three basic 
t-norms. We will give some illustrative examples showing a true practical sense 
of those degrees and emphasizing that the nature of triangular norm-based hesi-
tation degrees is generally twofold. They combine the size of ignorance and a 
fuzziness factor whenever the minimum or a strict t-norm is involved. 

Keywords: Atanassov’s intuitionistic fuzzy set, hesitation degree, triangular 
norm, fuzziness measure. 

1   Introduction 

The recent decade has brought a rapid growth of interest and research efforts in the 
areas of theory and applications of I-fuzzy sets, Atanassov's intuitionistic fuzzy sets. 
This is hardly surprising as I-fuzzy sets turn out to be a convenient and effective tool 
for representing incompletely known fuzzy sets, i.e. a tool for modeling a mixture of 
imprecision and incompleteness of information. 

As one knows, I-fuzzy sets are formally equivalent with interval-valued fuzzy sets 
(see e.g. [4]). However, from a practical viewpoint, those two concepts are different. 
In contrast to interval-valued fuzzy sets, I-fuzzy sets make it possible and even force 
us to think about and look, say, at given decision alternatives in the language of posi-
tive and negative information: in the language of advantages and disadvantages, posi-
tive and negative features, satisfaction and dissatisfaction, trust and distrust, etc. And 
just this bipolar optics offered by I-fuzzy sets seems to be difficult to overestimate as 
psychological investigations clearly suggest that decision makers have a tendency to 
focus on positive sides and, simultaneously, to forget about negative sides of deci-
sions they consider. 

Let us move on to a more formal discussion. Recollect that an I-fuzzy set is a pair 
E = ( A+, A−) of fuzzy sets  A

+, A−: U → [0, 1] with (see [1, 2]) 
 

A+ ⊂ ( A−)′ , 
i.e. (1) 
 A+( x) + A−( x) ≤  1  for each  x ∈U . 
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A+ is then understood as a membership function, whereas A− is interpreted as a non-
membership function. Consequently, A+( x) forms a membership degree and  A

−( x) is 
a nonmembership degree of  x. E models an incompletely known fuzzy set A. Speak-
ing more precisely, we assume all one knows about A is that 

 A+ ⊂  A ⊂ ( A
−)′  and, hence,  A− ⊂  A′⊂ ( A

+)′ . (2) 

The component A+, positive information about A, is thus a lower bound on A, whereas 
A−, negative information, forms a lower bound on A′: 

 A( x)∈[ A
+( x), 1 − A

−( x)],   A′( x)∈[ A
−( x), 1 − A

+( x)] . (3) 

A fundamental characterization of an I-fuzzy set is its hesitation area, a fuzzy set χE 
with 

 χE ( x) = 1 − A+( x) − A−( x) , (4) 

which is known as the degree (index, margin) of hesitation concerning x. It is the size 
of ignorance as to A( x), the length of any of the intervals in (3). Trivially, one has 

 A+( x) + χE ( x) = ( A
−)′( x) . (5) 

The subject literature proposes at least two more general approaches to hesitation 
degrees. The first one offers a triangular-norm based formulation of those degrees 
([7]; see also [8,12]). The second approach, presented in [3], can be characterized in 
terms of implication operators. We like to focus on the former. Section 2 will recol-
lect its idea and general properties. However, our main aim will be a look at hesitation 
degrees based on the three basic t-norms (Section 3). The Łukasiewicz t-norm tŁ with 
a tŁ b = 0 ∨ ( a + b − 1) then leads to the standard hesitation index from (4). Hesitation 
degrees generated by the minimum ∧  or the product t-norm tP with  a tP b = a b are 
different. They combine the size of ignorance as to A( x) and a fuzziness factor. Sec-
tion 4 will present illustrative examples showing a true practical sense of those com-
bined hesitation degrees. Throughout, we will assume that the reader is familiar with 
basic notions and facts from the area of triangular norms (see e.g. [6, 11]). 

2   I-Fuzzy Sets and Hesitation Degrees – A General Approach 

First, let us replace (1) by a more general relationship between the components A+ and 
A− of an I-fuzzy set E = ( A+, A−), namely 

A+ ⊂ ( A−)ν , 
i.e. (6) 

A+( x) ≤ ν( A
−( x))  for each  x∈U , 

where ν is a strong negation and B 

ν denotes the complement of B generated by ν. This 
generalization implies obvious modifications in (2)-(3). Clearly, (6) collapses to (1) if 
the standard Łukasiewicz negation νŁ is used, νŁ( a) = 1 − a. 
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The hesitation area χE of E can then be defined as 
 

χE = ( A
+)ν t∩ ( A

−)ν , 
i.e. (7) 

χE ( x) = ν( A+( x)) t ν( A−( x)) 
 

with a t-norm t. (7) reflects a simple intuition saying that hesitation consists in “not 
yes and not no”, “not pro and not contra”, etc. For instance, using a Schweizer-Sklar 
t-norm tS, p with 

 

a tS, p b = [0 ∨ ( a p + b p − 1)]1/p,  p > 0 , 
one gets 

 χE ( x) = [1 − ( A
+( x)) p − ( A

−( x)) p]1/p
 ,  (8) 

 
whereas (6) collapses to 

 

 ( A
+( x)) p + ( A

−( x)) p
 ≤  1  for each  x ∈U.  (9) 

 
Let us formulate a few general properties of (7). We easily notice that generally 

 
 χE ( x) = 1  ⇔   A+( x) = A−( x) = 0 .  (10) 
 

It is convenient, and quite sufficient from the viewpoint of applications, to restrict our 
further discussion to Archimedean t-norms and ∧ . t ν will denote the t-conorm which 
is ν-dual to t,  a t ν

 b = ν(ν( a) t ν( b)), whereas the negation induced by t will be denoted 
by νt , νt( a) = sup{c: a t c = 0}. 

 
Theorem 1.  Let E = ( A

+,  A
−

 ). If t is nilpotent, ν = νt , and h is the normed generator 
of t ν, then  

 

(a)   χE ( x) = h−1(1 − h ( A
+( x)) − h ( A

−( x))) , 
 

(b)   A+( x) t ν χE ( x) = ν( A
−( x))  

 

for each  x∈U. 
 

If a nilpotent t-norm is used, hesitation degrees thus form (a sort of) a “pure” size of 
ignorance as to  A( x): χE ( x) is isomorphic to 1 − A+( x) − A−( x) , the length of the 
interval [ A

+( x), νŁ( A
−( x))] (see e.g. (8)). Moreover, by (b), A+( x) and χE ( x) “sum up” 

to ν( A
−( x)) (cf. (5)). By (a), one also has for nilpotent t-norms 

 

χE ( x) = 0  ⇔   A−( x) = ν( A+( x)) , 
i.e. (11) 

χE = ∅1   ⇔   E collapses to a fuzzy set . 
 

The task of interpreting the χE ( x)’s becomes more sophisticated if t is strict or t = ∧ , 
i.e. t has no zero divisors. By (7), we then have 

 
χE ( x) = 0  ⇔   ( A+( x), A−( x)) ∈{(1, 0), (0, 1)} 

and, hence, (12) 
χE = ∅1   ⇔   E is a set . 
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If E forms an ordinary fuzzy set, E = ( A, Aν), one gets 
 
 χE ( x) = A( x) t ν( A( x)) ,  (13) 
 

i.e. χE ( x) collapses to a  t-based fuzziness index of A( x) (see Section 3). So, generally, 
χE ( x) seems to be the size of ignorance as to A( x) combined with a fuzziness index of 
A( x). Details and examples of this combination are the subject of the next sections. 

3   A Look through the Three Basic t-Norms 

Recollect that if the standard negation νŁ is used, then 
 

 Fuzz( B )  = ∑
∈U  x

φ ( B( x))  (14) 

 

is called the fuzziness measure (entropy measure of fuzziness, being more specific) of 
a fuzzy set B whenever φ: [0, 1] → [0, 1] satisfies the following (see [5, 9]):  

     (a)  φ(0) = φ(1) = 0  and  φ( a) > 0  for each  a ∈ (0, 1), 

     (b)  φ( a) < φ(0.5)  for each  a ≠ 0.5, 

     (c)  φ is nondecreasing on [0, 0.5] and nonincreasing on [0.5, 1], 

     (d)  φ( a) = φ(1 – a)  for each  a ∈ [0, 1]. 
 

Fuzz( B ) says how fuzzy B is. In other words, it is a measure of imprecision of infor-
mation carried by B. φ( a) can be viewed as a fuzziness index of a and, thus, Fuzz( B ) 
is just the sum of all the fuzziness indices of the membership degrees in B. If conve-
nient, one can refer to φ ( B( x)) as the fuzziness index of the very x. 

We are now ready to move on to a discussion of the hesitation degrees from (7) for 
the three basic t-norms. 

 

●  t = tŁ and ν = νt ,  i.e. ν = νŁ. χE ( x) is then nothing else than the hesitation degree 
 

χE ( x) = 1 − A+( x) − A−( x) 
 

from (4), i.e. it is just the size of ignorance as to  A( x). 
 

●  t = ∧  and ν = νŁ . Now 
 

 χE ( x) = 1 − A+( x) ∨ A−( x) = 1 − A+( x) − A−( x) + A+( x) ∧ A−( x) .  (15) 
 

Since  φ( a) = a ∧ (1 – a) is a fuzziness index and 
 

 A+( x) ∧ A−( x) = φ( A
+( x)) ∧ φ(1 − A

−( x)) ,  (16) 
 

we conclude that  A
+( x) ∧ A−( x) is the minimum possible fuzziness index of  A( x) (see 

also Section 4). By (15), χE ( x) thus becomes the sum of the size of ignorance as to 
A( x) and the minimum possible fuzziness index of  A( x). 
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●  t = tP and ν = νŁ . Then 
 
 χE ( x) = 1 − A+( x) − A−( x) + A+( x) ·A−( x) .  (17) 
 

We see that 
 

 A+( x) ·A−( x) ≤ φ( A
+( x)) ∧ φ(1 − A

−( x))  (18) 
 

with fuzziness index  φ( a) = a · (1 – a). Consequently, χE ( x) is the sum of the size of 
ignorance as to A( x) and a lower evaluation of the minimum possible fuzziness index 
of  A( x). 

4   Illustrative Examples 

Consider the following collection of 8 bottles of water which are more or less full. 
The water level in some bottles is partially unknown as they are partially covered up 
and, thus, invisible. That level is somewhere between the horizontal sides of the black 
rectangles (curtains) covering up the bottles. 

                                                                                      1 

           0.9                                                                                         0.9            0.7 

                          0.5                                                                          0.4

                                          0.2           
 0.25          0.1                                           

 0.3 

 

Fig. 1. Incompletely known fuzzy set of full bottles 

In terms of fuzzy sets, we thus deal with a universe of 8 bottles, U = { b1, … , b8}, 
and a fuzzy set  A of full bottles. However, A is incompletely known: our knowledge 
about  A( bi), the water level in bottle bi, is generally only partial. We see that Fig. 1 
presents a model situation which can be easily transferred, say, to 

     ●  a collection of resources (financial, natural, …) whose levels are partially 
         unknown, 
     ●  preferences with incompletely known degrees of intensity, 
     ●  modules of a system with incompletely known extents of faults, 
     ●  decisions with incompletely known consequences, 
     ●  partially unknown levels of trust, satisfaction, … 

Trying to represent A as an I-fuzzy set, let us look at each bottle from two opposite 
perspectives: in terms of its advantages and disadvantages, of being full and being 
empty. We then get: 

 
A+( b1) = 0.9,  A+( b2) = 0.5,  A+( b3) = 0,  A+( b4) = 0.25, 

 

A+( b5) = 0.1,  A+( b6) = 1,  A+( b7) = 0.4,  A+( b8) = 0.3, 
and (19) 

A−( b1) = 0,  A−( b2) = 0,  A−( b3) = 0.8,  A−( b4) = 0, 
 

A−( b5) = 0.9,  A−( b6) = 0,  A−( b7) = 0.1,  A−( b8) = 0.3, 
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Speaking practically, A+( bi) is the visible degree to which bi is full, whereas A−( bi) 
forms the visible degree to which  bi is empty. We are ready to move on to the issue of 
related hesitation degrees involving the three basic t-norms. 

 

●  t = tŁ and ν = νŁ. So, 

χE ( bi) = 1 − A+( bi) − A−( bi) 

with χE ( bi) collapsing to the size of ignorance as to  A( bi), the height of the curtain 
covering up bottle bi. Using (19), we get the following numerical results: 

 
χE ( b1) = 0.1,  χE ( b2) = 0.5,  χE ( b3) = 0.2,  χE ( b4) = 0.75, 

(20) 
χE ( b5) = 0,  χE ( b6) = 0,  χE ( b7) = 0.5,  χE ( b8) = 0.4 . 

 
Worth recollecting is here the notion of the sigma count σ( B) of a fuzzy set B, the 
sum of all the membership degrees in B forming a frequently used type of cardinality 
of  B ([14]; see also [10, 13]). By (20), we obtain 

 

σ( χE)  = ∑
i

χE ( bi)  =  2.45 . 

 
This is a total size of ignorance as to the content of the bottles. That lack of knowl-
edge is equivalent to a complete lack of information about the content of 2.45 bottles. 
As we thus see, the cardinality σ( χE) offers a very interesting type of information. 

 

●  t = ∧  and ν = νŁ . By (15), 
 

χE ( bi) = 1 − A+( bi) − A−( bi) + A+( bi) ∧ A−( bi) . 
 

This hesitation degree is now the sum of the size of ignorance as to A( bi) and the 
minimum possible fuzziness index of  A( bi). Using (19), we get 

 
χE ( b1) = 0.1,  χE ( b2) = 0.5,  χE ( b3) = 0.2,  χE ( b4) = 0.75, 

(21) 
χE ( b5) = 0.1,  χE ( b6) = 0,  χE ( b7) = 0.6,  χE ( b8) = 0.7 . 

 
In other words, (21) gives us considerably more information (2 in 1) in comparison 
with (20). By (21), we get 
 

σ( χE)  = ∑
i

(1 − A+( bi) − A−( bi))  + ∑
i

A+( bi) ∧ A−( bi)  =  2.45 + 0.5 = 2.95 , 

 
which is a total size of ignorance plus the minimum possible entropy measure of 
fuzziness of A, i.e. the minimum possible amount of water which has to be poured out 
from or poured into the bottles if one likes to make all of them totally classifiable, tot-
ally full or totally empty. The second component, 0.5, is thus the minimum possible 
distance of the system of bottles from a totally classifiable system. 
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●  t = tP and ν = νŁ . Then (see (17)) 
 
 χE ( bi) = 1 − A+( bi) − A−( bi) + A+( bi) ·A−( bi) 
 

and, applying (19), one gets 
 

χE ( b1) = 0.1,  χE ( b2) = 0.5,  χE ( b3) = 0.2,  χE ( b4) = 0.75, 
(22) 

χE ( b5) = 0.09,  χE ( b6) = 0,  χE ( b7) = 0.54,  χE ( b8) = 0.49 . 
 

χE ( bi) becomes the sum of the size of ignorance as to  A( bi) and a lower evaluation of 
the minimum possible fuzziness index  φ( a) = a · (1 – a)  of  A( bi). Finally, 

 

σ( χE)  = ∑
i

(1 − A+( bi) − A−( bi))  + ∑
i

A+( bi) · A−( bi)  =  2.45 + 0.22 = 2.67 . 

 
This is a total size of ignorance plus a lower evaluation of the minimum possible 
entropy measure of fuzziness of A (see (18)). 

5   Conclusions 

We presented a natural, triangular norm-based generalization of hesitation degrees 
related to I-fuzzy sets. It seems that this generalized look casts new light on the very 
essence of hesitation degrees by emphasizing their relationship with fuzziness mea-
sures whenever the minimum or a strict t-norm is involved. This was illustrated by 
simple examples involving the three basic t-norms. The results will be applied in 
group decision making algorithms. 
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Abstract. Recently, many papers have appeared dealing with the dis-
tributivity of fuzzy implications over t-norms, t-conorms and uninorms.
These equations have a very important role to play in efficient inferenc-
ing in approximate reasoning, especially fuzzy control systems. In [2] we
have discussed the distributivity of continuous functions, in particular
implication operations, over t-representable t-norms, generated from the
product t-norm, in intuitionistic fuzzy sets theory. In this work we con-
tinue investigations for interval-valued fuzzy sets theory, but without any
regular assumptions on an unknown function I.

Keywords: Interval-valued fuzzy sets, Intuitionistic fuzzy sets, Fuzzy
implication, Triangular norm, Distributivity, Functional equations.

1 Introduction

Distributivity of fuzzy implications over different fuzzy logic connectives has
been studied in the recent past by many authors (see [1], [19], [4], [17], [18], [3]).
These equations have a very important role to play in efficient inferencing in
approximate reasoning, especially fuzzy control systems (see [6]). Recently, in
[2], we have discussed the continuous solutions I of the following distributive
equation

I(x, T (y, z)) = T (I(x, y), I(x, z)),

where T is a t-representable t-norm defined over the interval-valued fuzzy sets
and generated from the product t-norm . In this paper we continue these inves-
tigations, but without any assumption on function I. As a byproduct result we
have obtained the solutions of the following functional equation

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (u1, u2), (v1, v2) ∈ L∞,

where L∞ = {(u1, u2) ∈ [0,∞]2 : u1 ≥ u2} and f : L∞ → [0,∞] is an unknown
function. Observe that this equation is correctly written, since if u, v ∈ L∞, then
u+ v ∈ L∞. Such theoretical developments connected with solutions of different

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 637–646, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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functional equations can be also useful in other topics like fuzzy mathematical
morphology (see [7]) or similarity measures (cf. [5]).

We assume that the reader is familiar with the notion of intuitionistic (by
Atanassov) fuzzy sets theory and interval-valued fuzzy sets theory. It is impor-
tant to notice that in [8] it is shown that both theories are equivalent from the
mathematical point of view. Since we are limited in number of pages, in this
article we discuss main results in the language of interval-valued fuzzy sets, but
they can be easily transformed to the intuitionistic fuzzy case. Let us define

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2},
(x1, x2) ≤LI (y1, y2) ⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2]. One can easily observe
that LI = (LI ,≤LI ) is a complete lattice with units 0LI = [0, 0] and 1LI = [1, 1].
An interval-valued fuzzy set on X is a mapping A : X → LI .

2 Basic Fuzzy Connectives

We also assume that the reader is familiar with the classical results concerning
basic fuzzy logic connectives, but we briefly mention some of the results employed
in the rest of the work.

Definition 2.1. Let L = (L,≤L) be a complete lattice. An associative, commu-
tative operation T : L2 → L is called a t-norm if it is increasing and 1L is the
neutral element of T .

Definition 2.2. We say that a t-norm T on ([0, 1],≤) is strict, if it is contin-
uous and strictly monotone, i.e., T (x, y) < T (x, z) whenever x > 0 and y < z.

The following characterization of strict t-norms is very well-known.

Theorem 2.3 ([14]). A function T : [0, 1]2 → [0, 1] is a strict t-norm if and
only if there exists a continuous, strictly decreasing function t : [0, 1] → [0,∞]
with t(1) = 0 and t(0) = ∞, which is uniquely determined up to a positive
multiplicative constant, such that

T (x, y) = t−1(t(x) + t(y)), x, y ∈ [0, 1].

T-norms on LI can be defined in many ways. In our article we shall consider the
following special class of t-norms.

Definition 2.4 (see [9]). A t-norm T on LI is called t-representable if there
exist t-norms T1 and T2 on ([0, 1],≤) such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)], [x1, x2], [y1, y2] ∈ LI .

It should be noted that not all t-norms on LI are t-representable (see [9]).
One possible definition of an implication on LI is based on the well-accepted

notation from fuzzy sets theory introduced by Fodor and Roubens [13].
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Definition 2.5. Let L = (L,≤L) be a complete lattice. A function I : L2 → L is
called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the following conditions:
I(0L, 0L) = I(1L, 1L) = 1L and I(1L, 0L) = 0L.

Directly from the above definition we can deduce that each implication I on L
satisfies also the normality condition I(0L, 1L) = 1L. Consequently, every impli-
cation restricted to the set {0L, 1L}2 coincides with the classical implication.

When L = ([0, 1],≤), then I is called a fuzzy implication, while if L = LI ,
then I is called an interval-valued fuzzy implication. Detailed investigations on
different classes of implications on above lattices and their algebraic properties
were presented in [10] and [16].

3 Some New Results Pertaining to Functional Equations

In this section we show one new result related to functional equations, which
will be crucial in the proof of main results. It can be seen as a generalization of
the classical facts from the theory of functional equations and as a full version
of Proposition 8 from [2]. In the proof we will use the following fact.

Proposition 3.1 ([3], Proposition 2). For a function f : [0,∞] → [0,∞] the
following statements are equivalent:

(i) f satisfies the additive Cauchy functional equation f(x + y) = f(x) + f(y),
for all x, y ∈ [0,∞].

(ii) Either f = ∞, or f = 0, or f(x) =

{
0, if x = 0
∞, if x ∈ (0,∞]

, or

f(x) =

{
0, if x ∈ [0,∞)
∞, if x = ∞

, or there exists a unique constant c ∈ (0,∞)

such that f(x) = cx, for all x ∈ [0,∞].

Proposition 3.2. Let L∞ = {(u1, u2) ∈ [0,∞]2 : u1 ≥ u2}. For a function
f : L∞ → [0,∞] the following statements are equivalent:

(i) f satisfies the functional equation

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (u1, u2), (v1, v2) ∈ L∞. (B1)

(ii) Either f = 0, or f = ∞, or

f(u1, u2) =

{
0, if u2 = 0,
∞, if u2 > 0,

(1)

or

f(u1, u2) =

{
0, if u2 <∞,
∞, if u2 = ∞,

(2)
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or

f(u1, u2) =

{
0, if u1 = 0,
∞, if u1 > 0,

(3)

or

f(u1, u2) =

{
0, if u1 = u2 <∞,
∞, if u2 = ∞ or u1 > u2,

(4)

or

f(u1, u2) =

{
0, if u2 = 0 and u1 <∞,
∞, if u2 > 0 or u1 = ∞,

(5)

or

f(u1, u2) =

{
0, if u1 <∞,
∞, if u1 = ∞,

(6)

or there exists unique c ∈ (0,∞) such that

f(u1, u2) = cu2, (7)

or

f(u1, u2) =

{
cu1, if u1 = u2,

∞, if u1 > u2,
(8)

or

f(u1, u2) =

{
cu2, if u1 <∞,
∞, if u1 = ∞,

(9)

or

f(u1, u2) =

{
cu1, if u2 = 0,
∞, if u2 > 0,

(10)

or

f(u1, u2) =

{
c(u1 − u2), if u2 <∞,
∞, if u2 = ∞,

(11)

or
f(u1, u2) = cu1, (12)

or there exist unique c1, c2 ∈ (0,∞), c1 �= c2 such that

f(u1, u2) =

{
c1(u1 − u2) + c2u2, if u2 <∞,
∞, if u2 = ∞,

(13)

for all (u1, u2) ∈ L∞.

Proof. (ii) =⇒ (i) It is a direct calculation that the above functions satisfy (B1).
(i) =⇒ (ii) Let a function f : L∞ → [0,∞] satisfy equation (B1) for all

(u1, u2), (v1, v2) ∈ L∞. Setting u1 = v1 = ∞ in (B1) we get

f(∞, u2 + v2) = f(∞, u2) + f(∞, v2), u2, v2 ∈ [0,∞].
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Let us denote f∞(x) := f(∞, x), for x ∈ [0,∞]. Therefore, we get

f∞(u2 + v2) = f∞(u2) + f∞(v2), u2, v2 ∈ [0,∞].

For this equation we can use solutions described in Proposition 3.1. We have 5
possible cases for the function f∞.

1. If f∞ = 0, then putting u1 = u2 = ∞ in (B1) we have

f(∞,∞) = f(∞,∞) + f(v1, v2), (v1, v2) ∈ L∞,

thus 0 = 0 + f(v1, v2), hence we get first possible solution f = 0.

2. If f∞(x) =

{
0, if x = 0
∞, if x ∈ (0,∞]

, then putting u1 = ∞ in (B1) we have

f(∞, u2 + v2) = f(∞, u2) + f(v1, v2), (v1, v2) ∈ L∞.

If we take u2 = v2 = 0 above, then we get 0 = 0 + f(v1, 0), thus f(v1, 0) = 0
for all v1 ∈ [0,∞]. If we take u2 = 0 and v2 > 0 above, then we get ∞ =
0 + f(v1, v2), thus f(v1, v2) = ∞. In summary, we get the solution (1).

3. If f∞(x) =

{
0, if x <∞
∞, if x ∈ [0,∞)

, then putting u1 = ∞ and u2 = 0 in (B1)

we have f(∞, v2) = f(v1, v2), so we get the solution (2) in this case.
4. If f∞(x) = cx with some real c > 0, then putting u1 = ∞ and u2 = 0 in

(B1) we have f(∞, v2) = f(v1, v2), so we get the solution (7) in this case.

Therefore, we need to solve our equation with the assumption that f∞ = ∞.
Setting now u2 = v2 = 0 in (B1) we get

f(u1 + v1, 0) = f(u1, 0) + f(v1, 0), u1, v1 ∈ [0,∞].

Let us denote f0(x) := f(x, 0), for x ∈ [0,∞]. Hence, we obtain

f0(u1 + v1) = f0(u1) + f0(v1), u1, v1 ∈ [0,∞].

For this equation we again can use solutions described in Proposition 3.1. We
have 5 possible cases for the function f0.

1. If f0 = 0, then f(∞, 0) = 0, which contradicts our assumption f∞ = ∞.
2. If f0 = ∞, then putting u1 = u2 = 0 in (B1) we have

f(v1, v2) = f(0, 0) + f(v1, v2), (v1, v2) ∈ L∞,

thus f(v1, v2) = ∞+ f(v1, v2), hence we get next possible solution f = ∞.

3. If f0(x) =

{
0, if x = 0
∞, if x ∈ (0,∞]

, then putting u2 = 0 in (B1) we have

f(u1 + v1, v2) = f(u1, 0) + f(v1, v2), u1 ∈ [0,∞], (v1, v2) ∈ L∞.
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Let us assume that u1 > 0 and v1 = v2 above. Then we get

f(u1 + v2, v2) = f(u1, 0) + f(v2, v2), u1 ∈ (0,∞], v2 ∈ [0,∞].

hence
f(u1 + v2, v2) = ∞, u1 ∈ (0,∞], v2 ∈ [0,∞].

Since u1 + v2 ∈ (v2,∞], we have obtained the result that f(x1, x2) = ∞ for
any (x1, x2) ∈ L∞ such that x1 > x2.
Let us take now u2 = u1 and v2 = v1 in (B1). Then we have

f(u1 + v1, u1 + v1) = f(u1, u1) + f(v1, v1), u1, v1 ∈ [0,∞].

Let us denote g(x) := f(x, x), for x ∈ [0,∞]. Therefore, we get

g(u1 + v1) = g(u1) + g(v1), u1, v1 ∈ [0,∞].

For this equation we again can use solutions described in Proposition 3.1.
We have 5 possible cases for the function g.
(a) If g = 0, then f(∞,∞) = 0, which contradicts our assumption f∞ = ∞.
(b) If g = ∞, then f(0, 0) = ∞, which contradicts our assumption 3. on

function f0.

(c) If g(x) =

{
0, if x = 0
∞, if x ∈ (0,∞]

, then we get the solution (3) in this case.

(d) If g(x) =

{
0, if x <∞
∞, if x ∈ [0,∞)

, then we get the solution (4) in this case.

(e) If g(x) = cx with some c > 0, then we get the solution (8) in this case.

4. If f0(x) =

{
0, if x <∞
∞, if x ∈ [0,∞)

, then putting u2 = u1 and v2 = v1 in (B1)

we have

f(u1 + v1, u1 + v1) = f(u1, u1) + f(v1, v1), u1, v1 ∈ [0,∞].

Let us denote g(x) := f(x, x), for x ∈ [0,∞]. Therefore, we get

g(u1 + v1) = g(u1) + g(v1), u1, v1 ∈ [0,∞].

For this equation we again can use solutions described in Proposition 3.1.
We have 5 possible cases for the function g.
(a) If g = 0, then f(∞,∞) = 0, which contradicts our assumption f∞ = ∞.
(b) If g = ∞, then f(0, 0) = ∞, which contradicts our assumption 4. on

function f0.

(c) If g(x) =

{
0, if x = 0
∞, if x ∈ (0,∞]

, then taking into account all assumptions

we get the solution (5).
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(d) If g(x) =

{
0, if x <∞
∞, if x ∈ [0,∞)

, then taking into account all assumptions

we get the solution (6).
(e) If g(x) = cx with some c > 0, then we get the solution (9) in this case.

5. Let f0(x) = c1x, with some real c1 > 0 for x ∈ [0,∞]. Putting u2 = u1 and
v2 = v1 in (B1) we have

f(u1 + v1, u1 + v1) = f(u1, u1) + f(v1, v1), u1, v1 ∈ [0,∞].

Let us denote g(x) := f(x, x), for x ∈ [0,∞]. Therefore, we get

g(u1 + v1) = g(u1) + g(v1), u1, v1 ∈ [0,∞].

For this equation we again can use solutions described in Proposition 3.1.
We have 5 possible cases for the function g.
(a) If g = 0, then f(∞,∞) = 0, which contradicts our assumption f∞ = ∞.
(b) If g = ∞, then f(0, 0) = ∞, which contradicts our assumption 5. on

function f0.

(c) If g(x) =

{
0, if x = 0
∞, if x ∈ (0,∞]

, then putting u2 = 0 and v1 = v2 in (B1)

we get

f(u1 + v2, v2) = f(u1, 0) + f(v2, v2), u1, v2 ∈ [0,∞],

thus

f(u1 + v2, v2) = c1u1 +

{
0, if v2 = 0
∞, if v2 > 0

=

{
c1u1, if v2 = 0
∞, if v2 > 0

,

for any u1, v2 ∈ [0,∞]. Therefore, this solution can be written as (10).

(d) If g(x) =

{
0, if x <∞
∞, if x ∈ [0,∞)

, then similarly as earlier putting u2 = 0

and v1 = v2 in (B1) we get

f(u1 + v2, v2) = f(u1, 0) + f(v2, v2), u1, v2 ∈ [0,∞],

thus

f(u1 + v2, v2) = c1u1 +

{
0, if v2 <∞
∞, if v2 = ∞

=

{
c1u1, if v2 <∞
∞, if v2 = ∞

,

for any u1, v2 ∈ [0,∞]. Therefore, this solution can be written as (11).
(e) If g(x) = c2x with some real c2 > 0, then similarly as earlier putting

u2 = 0 and v1 = v2 in (B1) we get

f(u1 + v2, v2) = f(u1, 0) + f(v2, v2), u1, v2 ∈ [0,∞],

thus
f(u1 + v2, v2) = c1u1 + c2v2, u1, v2 ∈ [0,∞].

If c1 = c2, then f(u1 + v2, v2) = c1(u1 + v2), therefore this solution can
be written as (12). If c1 �= c2, then we get the solution (13) in this case.

��
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4 Distributive Equation for t-Representable t-Norms

In this section we will show how we can use solutions presented in Proposition 3.2
to obtain all solutions, in particular fuzzy implications, of our main distributive
equation

I(x, T (y, z)) = T (I(x, y), I(x, z)), x, y, z ∈ LI , (14)

when a t-norm T on LI is t-representable and generated from strict t-norms.
Let us assume that a t-representable t-norm T and a function I are the solu-

tions of the functional equation (14) satisfying the required properties. Assume
that projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2, for [x1, x2] ∈ LI .

At this situation our distributive equation has the following form

I([x1, x2],[T1(y1, z1), T2(y2, z2)])
=[T1(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),
T2(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))],

for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . As a consequence we obtain the following
two equations

pr1(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))
= T1(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))
= T2(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2]))),

which are satisfied for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . Now, let us fix arbitrarily
[x1, x2] ∈ LI and define two functions g1

[x1,x2], g
2
[x1,x2] : L

I → LI by

g1
[x1,x2](·) := pr1 ◦ I([x1, x2], ·), g2

[x1,x2](·) := pr2 ◦ I([x1, x2], ·).

As a consequence we get the following two equations

g1
[x1,x2]([T1(y1, z1), T2(y2, z2)]) = T1(g1

[x1,x2]([y1, y2]), g1
[x1,x2]([z1, z2])),

g2
(x1,x2)([T1(y1, z1), T2(y2, z2)]) = T2(g2

[x1,x2]([y1, y2]), g2
[x1,x2]([z1, z2])).

When we assume that T1 = T2 = T , then in both cases we have obtained the
bisymmetry equation. The continuous and strictly increasing solutions are known
even for domain LI (see [15]). But in our investigation t-norms are not strictly
increasing, since T (0, y) = 0, so we cannot use results from the previous article.
Let us assume that T1 = T2 = T is a strict t-norm. Using the representation
theorem of strict t-norms (Theorem 2.3) we can transform our problem to the
following equation (for a simplicity we deal only with g1 now):

g1
[x1,x2]([t

−1(t(y1) + t(z1)),t−1(t(y2) + t(z2))])

= t−1(t(g1
[x1,x2]([y1, y2])) + t(g1

[x1,x2]([z1, z2]))).
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Hence

t ◦ g1
[x1,x2]([t

−1(t(y1) + t(z1)),t−1(t(y2) + t(z2))])

= t ◦ g1
[x1,x2]([y1, y2]) + t ◦ g1

[x1,x2]([z1, z2]).

This equation can be written in the following form:

t◦g1
[x1,x2]([t

−1(t(y1) + t(z1)), t−1(t(y2) + t(z2))])

= t ◦ g1
[x1,x2]([t

−1(t(y1)), t−1(t(y2))]) + t ◦ g1
[x1,x2]([t

−1(t(z1)), t−1(t(z2))]).

Let us put t(y1) = u1, t(y2) = u2, t(z1) = v1 and t(z2) = v2. Of course
u1, u2, v1, v2 ∈ [0,∞]. Moreover [y1, y2], [z1, z2] ∈ LI , thus y1 ≤ y2 and z1 ≤ z2.
The generator t is strictly decreasing, so u1 ≥ u2 and v1 ≥ v2. If we put

f[x1,x2](a, b) := t ◦ pr1 ◦ I([x1, x2], [t−1(a), t−1(b)]),

for a, b ∈ [0,∞] and a ≥ b, then we get the following functional equation

f[x1,x2](u1 + v1, u2 + v2) = f[x1,x2](u1, u2) + f[x1,x2](v1, v2), (15)

where (u1, u2), (v1, v2) ∈ L∞. In a same way we can repeat all the above cal-
culations but for the function g2, to obtain the following functional equation

f [x1,x2](u1 + v1, u2 + v2) = f [x1,x2](u1, u2) + f [x1,x2](v1, v2), (16)

where
f [x1,x2](a, b) := t ◦ pr2 ◦ I([x1, x2], [t−1(a), t−1(b)]).

Observe that (15) and (16) are exactly our functional equation (B1). Therefore,
using solutions of Proposition 3.2, we are able to obtain the description of the
vertical section I([x1, x2], ·) for a fixed [x1, x2] ∈ LI . Since in this proposition
we have 15 possible solutions, we should have 225 different solutions of (14).
Observe now that some of these solutions are not good, since the range of I is
LI . Since in this paper it is not possible to discuss all solutions we only present
one positive example and one negative.

Let us firstly assume that f[x1,x2](a, b) = 0 and f [x1,x2](a, b) = ∞. Then
t◦pr1◦I([x1, x2], [t−1(a), t−1(b)]) = 0 and t◦pr2◦I([x1, x2], [t−1(a), t−1(b)]) = ∞,
thus pr1◦I([x1, x2], [t−1(a), t−1(b)]) = 1 and pr2◦I([x1, x2], [t−1(a), t−1(b)]) = 0,
so

I([x1, x2], [y1, y2]) = [1, 0], [y1, y2] ∈ LI ,

for a fixed [x1, x2] ∈ LI . This solution is not good, since [1, 0] /∈ LI . Now, let us
assume that f[x1,x2](a, b) = ∞ and f [x1,x2](a, b) = 0. Then

I([x1, x2], [y1, y2]) = [0, 1], [y1, y2] ∈ LI ,

for a fixed [x1, x2] ∈ LI . This solution is correct, since [0, 1] ∈ LI .
We need to notice that not all obtained vertical solutions in LI can be used

for obtaining fuzzy implication on LI in the sense of Definition 2.5. One can
easily see that the above positive example is not a fuzzy implication. Also, for
example, the following vertical sections are not possible in this case: [0, 0], [0, 1].



646 M. Baczyński
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Abstract. In this paper we study properties of interval-valued fuzzy
relations which were introduced by L.A. Zadeh in 1975. Fuzzy set theory
turned out to be a useful tool to describe situations in which the data are
imprecise or vague. Interval-valued fuzzy set theory is a generalization
of fuzzy set theory which was introduced also by Zadeh in 1965. We
examine some properties of interval-valued fuzzy relations in the context
of Atanassov’s operators and decomposable operations in interval-valued
fuzzy set theory.

Keywords: Fuzzy relations, interval-valued fuzzy relations, Atanassov’s
operators, decomposable operations.

1 Introduction

The idea of a fuzzy relation was defined in [25]. An extension of fuzzy set the-
ory is interval-valued fuzzy set theory. Any interval-valued fuzzy set is defined
by an interval-valued membership function: a mapping from the given universe
to the set of all closed subintervals of [0,1]. In this work we study preserva-
tion of properties of interval-valued fuzzy relations by the powers of this rela-
tions, by lattice operations and Atanassov’s operators. Consideration of diverse
properties of the composition is interesting not only from a theoretical point
of view but also for applications, since the composition of interval-valued fuzzy
relations is proved to be useful in several fields, see for example [17] (perfor-
mance evaluation), [22] (genetic algorithm), [16] (approximate reasoning) or [1],
[14]. In [8] is analyzed some concept of interval-valued fuzzy set theory and
their application to edge detection in grayscale images. Where authors chose an
Atanassov’s operator and analyzed the number of the elements belonging to the
edge. Moreover, interval-valued fuzzy relations are applied in classification and
in decision making. Furthermore, it is interesting to use Atanassov’s operators
in intuitionistic fuzzy systems, i.e. we can change the values of the intuitionistic
fuzzy systems by the Atanassov’s operators [3]. Interval-valued fuzzy relations
(sets) are equivalent to some other extensions of fuzzy relations (sets) (see [11]).
Among others, interval-valued fuzzy relations are isomorphic to Atanassov’s in-
tuitionistic fuzzy relations. This fact was noticed by several authors [2], [9], [11].
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An Atanassov’s intuitionistic fuzzy relation is a pair of fuzzy relations, namely a
membership and a nonmembership function, which represent positive and nega-
tive aspects of the given information. These objects introduced by Atanassov and
originally called intuitionistic fuzzy relations were recently suggested to be called
Atanassov’s intuitionistic fuzzy relations or just bipolar fuzzy relations [13]. In
this work we recall some concepts and results useful in our further considerations.
Next, we study properties of decomposable operations and their relationship to
t-norms in interval-valued fuzzy set theory. Finally, we consider some properties
of interval-valued fuzzy relations and we study connections of its properties with
lattice operations and some Atanassov’s operators, so we consider preservation
of some properties of interval-valued fuzzy relations by lattice operations and
some Atanassov’s operators.

2 Basic Definitions

First we recall the notion of the lattice operations and the order in the family
of interval-valued fuzzy relations. Let X,Y, Z be non-empty sets and
Int([0, 1]) = {[x1, x2] : x1, x2 ∈ [0, 1], x1 ≤ x2}.

Definition 1 (cf. [23], [24]). An interval-valued fuzzy relation R between uni-
verses X,Y is a mapping R : X × Y → Int([0, 1]) such that

R(x, y) = [R(x, y), R(x, y)] ∈ Int([0, 1]), (1)

for all pairs (x, y) ∈ (X × Y ).
The class of all interval-valued fuzzy relations between universes X,Y will be
denoted by IVFR(X × Y ) or IVFR(X) for X = Y .

Interval-valued fuzzy relations reflect the idea that membership grades are often
not precise and the intervals represent such uncertainty.

The boundary elements in IVFR(X × Y ) are 1 = [1, 1] and 0 = [0, 0].
Let S,R ∈ IVFR(X × Y ). Then for every (x, y) ∈ (X × Y ) we can define

S(x, y) ≤ R(x, y) ⇔ S(x, y) ≤ R(x, y), S(x, y) ≤ R(x, y), (2)

(S ∨R)(x, y) = [max(S(x, y), R(x, y)),max(S(x, y), R(x, y))], (3)

(S ∧R)(x, y) = [min(S(x, y), R(x, y)),min(S(x, y), R(x, y))], (4)

where operations ∨ and ∧ are the supremum and the infimum in
IVFR(X × Y ), respectively. Similarly for arbitrary set T �= ∅

(
∨
t∈T

Rt)(x, y) = [
∨
t∈T

Rt(x, y),
∨
t∈T

Rt(x, y)], (5)

(
∧
t∈T

Rt)(x, y) = [
∧
t∈T

Rt(x, y),
∧
t∈T

Rt(x, y)]. (6)
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The pair (IV FR(X × Y ),≤) is a partially ordered set. As a result, the family
(IV FR(X × Y ),∨,∧) is a lattice (for the notion of a lattice and other related
concepts see [4]) which is a consequence of the fact that ([0, 1],max,min) is a
lattice. The lattice IV FR(X×Y ) is complete. This fact follows from the notion
of the supremum

∨
and the infimum

∧
and from the fact that the values of

fuzzy relations are from the interval [0, 1] which, with the operations maximum
and minimum, forms a complete lattice. As a result (IVFR(X × Y ),∨,∧) is a
complete, infinitely distributive lattice.

3 Properties of Decomposable Operations

In this paper we also study some properties of decomposable operations on an
interval-valued fuzzy set. A characterization of such properties of operations is
interesting not only from a theoretical point of view, but also for their applica-
tions, since they have proved to be useful in several fields. In [12] properties of
decomposable operation were considered with a definition:

Definition 2. An operation D : (Int([0, 1]))2 → Int([0, 1]) is called decompos-
able if there exist operations D1, D2 : [0, 1]2 → [0, 1] such that for all
x, y ∈ Int([0, 1])

D(x, y) = [D1(x1, y1), D2(x2, y2)],

where x = [x1, x2], y = [y1, y2].

Lemma 1 (cf. [12]). Increasing operations D1, D2 : [0, 1]2 → [0, 1] lead to the
decomposable operation D if and only if D1 ≤ D2.

Special classes of operations in Int([0, 1]) are interval-valued triangular norms
(IV t-norms) and triangular conorms (IV t-conorms), which are useful in ap-
proximate reasoning, e.g. for medical diagnosis and information retrieval.

Definition 3 (cf. [10], [19]). An IV t-norm T on Int([0, 1]) is an increasing,
commutative, associative operation T : (Int([0, 1]))2 → Int([0, 1]) with a neutral
element 1.
An IV t-conorm S on Int([0, 1]) is an increasing, commutative, associative op-
eration S : (Int([0, 1]))2 → Int([0, 1]) with a neutral element 0.

Theorem 1 (cf. [12]). Let D : (Int([0, 1]))2 → Int([0, 1]) be a decomposable
binary operation such that D = [D1, D2]. The decomposable operation D is a IV
t-norm (IV t-conorm) if and only if D1 and D2 are t-norms (t-conorms) and
D1 ≤ D2.

A decomposable operation D fulfilling conditions of Theorem 1 we call t-
representable (s-representable).

We will give the notions of some Atanassov’s operators for interval-valued
fuzzy relations. These notions follow the ones introduced by Atanassov for intu-
itionistic fuzzy relations [3].
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Definition 4. Let R ∈ IV FR(X × Y ), α, β ∈ [0, 1], α+ β ≤ 1. We define the
operator Fα,β : Int([0, 1])→ Int[0, 1] such that

Fα,β(R(x, y)) = [R(x, y) + α(R(x, y)−R(x, y)), R(x, y)− β(R(x, y)−R(x, y))].

In particular, if β = 1− α, then we denote Fα,1−α(R) = Kα(R) and
Kα(R) = R(x, y) + α(R(x, y)−R(x, y)) and
F0,1(R) = K0(R) = R, F1,0(R) = K1(R) = R.

Now, we consider more general definition of a decomposable operation:

Definition 5. An operation D : (Int([0, 1]))2 → Int([0, 1]) is called decompos-
able if there exist operations D1, D2 : [0, 1]2 → [0, 1] such that for all
x, y ∈ Int([0, 1])

D(x, y) = [D1(Fα,β(x), Fα,β(y)), D2(Fα,β(x), Fα,β(y))], (7)

where x = [x1, x2], y = [y1, y2], α, β ∈ [0, 1], α+ β ≤ 1 and
Fα,β(x) = x+ α(x − x), Fα,β(x) = x− β(x − x).

In a similar way to [7] and [12] we obtain

Theorem 2. An operation D : (Int([0, 1]))2 → Int([0, 1]) satisfying (7) is an
t-representable (s-representable) if and only if operations D1, D2 : [0, 1]2 →
[0, 1], D1 ≤ D2 are t-norms (t-conorms) and Fα,β = F0,0.

4 Properties of Interval-Valued Fuzzy Relations

Let us recall the notion of the composition in IV FR.

Definition 6 (cf. [6], [15]). Let S ∈ IVFR(X × Y ), R ∈ IVFR(Y × Z). By
the sup−min composition of the relations S and R we call the relation
S ◦R ∈ IVFR(X × Z),

(S ◦R)(x, z) = [(S ◦R)(x, z), (S ◦R)(x, z)],

where

(S ◦R)(x, z) =
∨

y∈Y

(S(x, y) ∧R(y, z)), (S ◦R)(x, z) =
∨

y∈Y

(S(x, y) ∧R(y, z))

and (S ◦R)(x, z) ≤ (S ◦R)(x, z).

(IV FR(X), ◦) is a semigroup (see [20]), then we can consider the powers of its
elements i.e. relations Rn for R ∈ IV FR(X), n ∈ N. Analogously to [18] we
define

Definition 7. By a power of relation R ∈ IV FR(X) we mean

R1 = R, Rn+1 = Rn ◦R, n ∈ N.

The sequence (Rn) is convergent, if

∃k∈NR
k+1 = Rk.
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In this section we continue the study from [21] and we examine transitivity
property. Similarly to definitions of properties of fuzzy relations considered by
Kaufmann we have

Definition 8. Let R ∈ IVFR(X). A relation R is called transitive if R2 ≤ R.

The transitivity guarantees the convergence of (Rn). Hence, the transitivity
property is one of the most interesting properties of crisp, fuzzy and bipolar
fuzzy relations. The Atanassov’s operator Fα,β may be applied, as indicated in
the introduction, to edge detection (see [8]). We examine preservation of tran-
sitivity by operator Fα,β and lattice operations. In [5] the authors introduced
the concept of a “partially included relation” for Atanassov’s intuitionistic fuzzy
relations. The justification for consideration of partially included relations is
connected with the fact that Atanassov’s operators Kα(R), where α ∈ [0, 1], do
not generally fulfil transitivity property of an Atanassov’s intuitionistic fuzzy
relation. However, for Atanassov’s intuitionistic fuzzy relations which are par-
tially included, the transitivity of an Atanassov’s intuitionistic fuzzy relation ρ
is equivalent to the transitivity of an operator Kα(ρ) for each α ∈ [0, 1]. We
consider a more general form of the concept of a partially included Atanassov’s
intuitionistic fuzzy relation. Namely

Definition 9 (cf. [5]). A relation R ∈IVFR(X) is called partially included if

sgn(R(x, z)−R(z, y)) = sgn(R(x, z)−R(z, y)), x, y, z ∈ X. (8)

Proposition 1. Let R ∈ IVFR(X), α, β ∈ [0, 1], α + β ≤ 1. If R is partially
included and transitive, then Fα,β(R) is transitive.

Proof. Let R2 ≤ R and R be partially included, x, y ∈ X . From (8) we obtain
((1− α)R(x, z) + αR(x, z)) ∧ ((1 − α)R(z, y) + αR(z, y)) =
(1− α)(R(x, z) ∧R(z, y)) + α(R(x, z) ∧R(z, y)).
Then F 2

α,β(R)(x, y) =
[(R(x, y) + α(R(x, y)−R(x, y)))2, (R(x, y)− β(R(x, y)−R(x, y)))2] =
[((1− α)R(x, y) + αR(x, y))2, ((1 − β)R(x, y) + βR(x, y))2] =
[
∨

z∈X((1 − α)R(x, z) + αR(x, z)) ∧ ((1 − α)R(z, y) + αR(z, y)),∨
z∈X((1 − β)R(x, z) + βR(x, z)) ∧ ((1 − β)R(z, y) + βR(z, y))].

From the above considerations we have
[
∨

z∈X((1 − α)(R(x, z) ∧R(z, y)) + α(R(x, z) ∧R(z, y))),∨
z∈X((1 − β)(R(x, z) ∧R(z, y)) + β(R(x, z) ∧R(z, y)))] ≤

[
∨

z∈X(1− α)(R(x, z) ∧R(z, y)) +
∨

z∈X α(R(x, z) ∧R(z, y)),∨
z∈X(1− β)(R(x, z) ∧R(z, y)) +

∨
z∈X β(R(x, z) ∧R(z, y))] =

Fα,β(R2)(x, y), so by the isotonicity of Fα,β we obtain
F 2

α,β(R)(x, y) ≤ Fα,β(R)(x, y).

In [21] we considered preservation of reflexivity (R(x, x) = 1, x ∈ X) and ir-
reflexivity of R (R(x, x) = 0, x ∈ X) by operator Fα,β . Now, we consider more
general properties i.e. local reflexivity and local irreflexivity. On the finite set X
the local reflexivity is called dominating principle and similarly to transitivity
guarantees convergence of the sequence (Rn), R ∈ IV FR(X).
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Definition 10. An interval-valued fuzzy relation R ∈ IV FR(X) is:
locally reflexive, if

∀x∈X(R(x, x) =
∨

y∈X

R(x, y) and R(x, x) =
∨

y∈X

R(y, x)), (9)

locally irreflexive, if

∀x∈X(R(x, x) =
∧

y∈X

R(x, y) and R(x, x) =
∧

y∈X

R(y, x)). (10)

We study connections of the above properties with some Atanassov operator:

Lemma 2. Let α, β ∈ [0, 1], α+ β ≤ 1.
If R ∈ IV FR(X) is locally reflexive, then for all x ∈ X

Fα,β(
∨

y∈X

R(x, y)) =
∨

y∈X

Fα,β(R(x, y)), Fα,β(
∨

y∈X

R(y, x)) =
∨

y∈X

Fα,β(R(y, x)).

(11)
If R ∈ IV FR(X) is locally irreflexive, then for all x ∈ X

Fα,β(
∧

y∈X

R(x, y)) =
∧

y∈X

Fα,β(R(x, y)), Fα,β(
∧

y∈X

R(y, x)) =
∧

y∈X

Fα,β(R(y, x)).

(12)

Proof. Let R ∈ IV FR(X) be locally reflexive, x ∈ X . For lattice operations we
have the following inequalities:
Fα,βR(x, x) ≤

∨
y∈X Fα,βR(x, y) =

[
∨

y∈X((1− α)R(x, y) + αR(x, y)),
∨

y∈X((1 − β)R(x, y) + βR(x, y))] ≤
[
∨

y∈X(1− α)R(x, y) +
∨

y∈X αR(x, y),
∨

y∈X(1− β)R(x, y) +
∨

y∈X βR(x, y)] =
Fα,β(

∨
y∈X R(x, y)) = Fα,βR(x, x).

Thus Fα,β(
∨

y∈X R(x, y)) =
∨

y∈X Fα,β(R(x, y)).
Analogously, we may prove the formula
Fα,β(

∨
y∈X R(y, x)) =

∨
y∈X Fα,β(R(y, x))

and the condition (12).

Theorem 3. Let α, β ∈ [0, 1], α + β ≤ 1. If an interval-valued fuzzy relation
R ∈ IV FR(X) is locally reflexive (locally irreflexive), then Fα,β(R(x, y)) is also
locally reflexive (locally irreflexive).

Proof. Let x ∈ X and R be locally reflexive. We have
R(x, x)(1 − α) =

∨
y∈X R(x, y)(1 − α), αR(x, x) =

∨
y∈X αR(x, y),

R(x, x)(1 − β) =
∨

y∈X R(x, y)(1 − β), βR(x, x) =
∨

y∈X βR(x, y).
Hence,
Fα,β(R(x, x)) = [R(x, x)(1 − α) + αR(x, x), R(x, x)(1 − β) + βR(x, x)] =
[
∨

y∈X R(x, y)(1−α) +
∨

y∈X αR(x, y),
∨

y∈X R(x, y)(1−β) +
∨

y∈X βR(x, y)] =
Fα,β(

∨
y∈X R(x, y))

and by Lemma 2 we obtain
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Fα,β(R(x, x)) =
∨

y∈X Fα,β(R(x, y)).
Similarly we prove the formula
Fα,β(R(x, x)) =

∨
y∈X Fα,β(R(y, x))

and the preservation of local irreflexivity property.

Moreover, we observe preservations of local reflexivity and local irreflexivity by
lattice operations in IV FR(X).

Theorem 4. Let P,R ∈ IV FR(X).
If P,R are locally reflexive, then P ∨R and P ∧R are locally reflexive.
If P,R are locally irreflexive, then P ∨R and P ∧R are locally irreflexive.

Proof. Let x ∈ X . First we consider locally reflexive relations P,R with respect
to second variable. Then for Q = P ∧R we have

Q(x, x) = P (x, x) ∧R(x, x) =
∨

y∈X

P (x, y) ∧
∨

z∈X

R(x, z).

So, for infinitely distributive lattice (IVFR(X × Y ),∨,∧) we observe
Q(x, x) =

∨
y∈X

∨
z∈X(P (x, y) ∧R(x, z)) ≥

∨
y∈X(P (x, y) ∧R(x, y)) ≥

P (x, x) ∧R(x, x) = Q(x, x).
As a consequence we have

Q(x, x) =
∨

y∈X

(P (x, y) ∧R(x, y)) =
∨

y∈X

Q(x, y),

which proves local reflexivity of P ∧ R with respect to the second variable. We
may prove the other conditions in a similar way.

The above theorem is not true for weak local reflexivity and weak local irreflex-
ivity, where the relation R is defined as weakly locally reflexive, if

∀x∈X(R(x, x) =
∨

y∈X

R(x, y) or R(x, x) =
∨

y∈X

R(y, x))

and the relation R is defined as weakly locally irreflexive, if

∀x∈X(R(x, x) =
∧

y∈X

R(x, y) or R(x, x) =
∧

y∈X

R(y, x)).

Example 1. Let n = 3. Relations

P =

⎡⎣0.6 0.6 0.6
0.4 0.4 0.4
0.7 0.7 0.7

⎤⎦ , R =

⎡⎣0.5 0.3 0.7
0.5 0.3 0.7
0.5 0.3 0.7

⎤⎦
are weakly locally reflexive, but the relation

P ∨R =

⎡⎣0.6 0.6 0.7
0.5 0.4 0.7
0.7 0.7 0.7

⎤⎦
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is not weakly locally reflexive. Relations P,R are weakly locally irreflexive, but

P ∧R =

⎡⎣0.5 0.3 0.6
0.4 0.3 0.4
0.5 0.3 0.7

⎤⎦
is not weakly locally irreflexive.

Moreover, since every increasing t-representable operation is distributive over
t-conorm S = [max,max] and t-norm T = [min,min] (see [12]) we can obtain a
more general theorem, i.e. an arbitrary t-representable t-norm (t-conorm) pre-
serves property of local reflexivity and local irreflexivity.

5 Conclusion

In this work we consider preservation of some properties of interval-valued fuzzy
relations by lattice operations and Atanassov’s operators Fα,β . These properties
may be applied to solving the problem of a convergence of sequence of powers of
an interval-valued fuzzy relation problem. We can also consider other Atanassov’s
operators and other properties interesting because of its applications.

Acknowledgments. This paper is partially supported by the Ministry of Sci-
ence and Higher Education Grant Nr N N519 384936.
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Abstract. In this paper, one presents entropy and cardinality measure for bi-
fuzzy sets. All these are constructed in the framework of a penta-valued repre-
sentation. This representation uses the following five indexes: index of truth, 
index of falsity, index of incompleteness, index of inconsistency and index of 
indeterminacy. Also a new metric distance for bounded real interval is defined. 

Keywords: cardinality, entropy, penta-valued representation, bifuzzy 
sets,intuitionistic fuzzy sets, fuzzy sets. 

1   Introduction 

Similarity measures play an important role in different research topics such as image 
analysis, pattern recognition, decision making and market prediction. In the same 
way, distance measure is an important tool which describes differences between two 
objects and considered as a dual concept of similarity measure [5]. The choice of a 
distance measure or a similarity measure for any fields of research is not trivial [13], 
[14], [17]. In this paper, one presents a new measure of distance for the interval ],[ ba . 
Then, using the similarities or distances, entropy and cardinality measures are con-
structed for bifuzzy sets. All these measures are done for bifuzzy values or bifuzzy 
sets in the framework of penta-valued representation. The proposed measure of en-
tropy reaches its maximum for elements for which membership function is equal to 
non-membership function. The structure of entropy offers the advantage we  
immediately are able to indicate possible reasons of the missing information: the 
incompleteness, the inconsistency or the lack of distinguish between member-
ship/non-membership and their negations. 

The paper has the following structure: section 2 presents the bifuzzy sets and their 
particular forms: intuitionistic fuzzy sets, paraconsistent fuzzy sets and fuzzy sets. 
Also, the main operators for bifuzzy sets are presented. Section 3 presents a represen-
tation of bifuzzy sets considering the net truth and definedness. These parameters can 
have positive or negative values. Supplementary, it is defined the index of indetermi-
nacy. Next, it is constructed a penta-valued representation. Section 4 presents a new 
metric distance for the interval ],[ ba  and its particular form for ]1,0[ . Section 5 pre-
sents measures for entropy and cardinality. Finally, the conclusions are presented in 
section 6. 
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2   The Bifuzzy Sets and Their Particular Forms 

Let X be a crisp set (the space of points), with a generic element of X  denoted by x . 
In the framework of Zadeh theory [17], a fuzzy set A in X  is characterized by the 
membership function ]1,0[: →Xμ . The non-membership function ]1,0[: →ν X  is 

obtained by negation and thus both functions define a partition of unity, namely: 

1=ν+μ  .                                                         (2.1) 

Atanassov has extended the fuzzy sets to the intuitionistic fuzzy sets [1]. Atanassov 
has relaxed the condition (2.1) to the following inequality: 

                                                          1≤ν+μ  .  

He has used the third function, the Atanassov intuitionistic fuzzy index or the index of 
undefinedness π . It is defined by: 

             ν−μ−=π 1  . 

In the same way, we can consider instead of (2.1) the following condition: 

             1≥ν+μ  . 

Thus, we obtain the paraconsistent fuzzy sets [15], [12] and one can define the index 
of contradiction or index of inconsistency [12]: 

                                                       1−ν+μ=κ  . 

More generally, we can consider a set A , defined by two functions totally independ-
ent ]1,0[: →μ X  and ]1,0[: →ν X . In this paper, we will use for this type of sets the 

name bifuzzy sets (BFS). For this kind of sets, one defines the union, the intersection, 
the complement, the negation and the dual operators [6]: 
The union BA ∪  for two sets BFSBA ∈,  is defined by: 

( ) ( )BABABABA ννμμνμ ∧∨= ,, ∪∪  .                            (2.2) 

The intersection BA∩  between two sets BFSBA ∈,  is defined by: 

( ) ( )BABABABA ννμμνμ ∨∧= ,, ∩∩                          
 (2.3) 

In formulae (2.2) and (2.3), the symbols “ ∨ ” and “ ∧ ” represent any couple of t-
conorm, t-norm. 

The complement cA  for the set  BFSA ∈  is defined by the formula: 

                                            
( ) ( )AAAA cc μννμ ,, =  .  

The negation nA  for the set  BFSA ∈  is defined by the formula: 

  
( ) ( )AAAA nn νμνμ −−= 1,1,  .  

The dual dA  for the set  BFSA ∈  is defined by the formula: 
( ) ( )AAAA dd μννμ −−= 1,1,  .     
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3   From Bifuzzy Sets Representation with Positive and Negative 
Values to a Penta-Valued One 

Considering a bifuzzy value 2]1,0[),( ∈νμ , we can define the following two  

parameters: 

net truth:  νμτ −=  .     (3.1) 

definedness   1−+= νμδ  .      (3.2) 

The net truth τ  and the definedness δ  verify the following two equalities:  

                                                ⎩
⎨
⎧

−=
−=

νμνμδ
νμνμτ

  

where xx −=1  and the symbol  represents any Frank t-norm [7]. From (3.1) and 
(3.2) it results the following inequality: 

1|||| ≤+ δτ .                                                     (3.3) 

and we can define the third parameter:  

||||1 δτ −−=i  .                                              (3.4) 

Taking into account the Belnap logic [4] that uses four logical values: true, false, 
contradictory and undefined, we will consider the following four points: )0,1(=T , 

)1,0(=F , )1,1(=C , )0,0(=U . The value ||τ  shows how close the point ),( νμ  to 

the set { }FT ,   is and the value || δ  shows how close the point ),( νμ  to the set { }FU ,  

is. Also, the value i  shows how close the point ),( νμ  to the center of square 

)5.0,5.0(  is. Because the point )5.0,5.0(  is equidistant to the four corners CUFT ,,, , 

we can say that parameter i  is index of indeterminacy and we will consider the fifth 
point )5.0,5.0(=I . Also, we define the following indexes: 

index of truth:   )0,max(τ=t  .    (3.5) 

index of falsity:  )0,max( τ−=f  .    (3.6) 

index of inconsistency:   )0,max(δ=c     (3.7) 

index of incompleteness: )0,max( δ−=u  .    (3.8) 

From (3.4)-(3.8) it results the following penta-valued fuzzy partition of unity: 

1=++++ icuft  . 

The penta-valued representation ),,,,( icuft  is related to the five points 

{ }ICUFT ,,,,  and it is connected to the penta-valued logic proposed in [12]. This 

logic uses the following five logical values: true, false, undefined (incomplete or 
unknown), contradictory (inconsistent or overdefined) and indeterminate (equidistant 
or neutral).  
If we consider the distance ||),( yxyxd −=  and the similarity ||1),( yxyxs −−= then 

we obtain:  ftd +=),( νμ  .      
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   icus ++=),( νμ  .    (3.9) 

   ),(|| νμτ d=  .     (3.10) 

   )1,(|| νμδ −= d  .     (3.11) 

Seeing the formulae (3.10), (3.11), we can generalize the formulae of net truth and 
definedness. We consider an arbitrary distance measure ]1,0[]1,0[]1,0[: →×D  that 

verifies the inequality (3.3): 

1)1,(),( ≤−+ νμνμ DD  .                                   (3.12) 

It results the following generalization of τ  and δ : 

⎪
⎩

⎪
⎨

⎧

<−
=
>

=
νμνμ
νμ
νμνμ

τ
  if   ),(

  if          0      

  if   ),(   
*

D

D

 .    

⎪
⎩

⎪
⎨

⎧

<+−−
=+
>+−

=
1  if     )1,(

1  if              0         

1  if     )1,(   
*

νμνμ
νμ
νμνμ

δ
D

D

 .   

From (3.4) it results: )1,(),(1* νμνμ −−−= DDi  .      

Finally, for indexes **** ,,, cuft  we will use formulae (3.5), (3.6), (3.7), (3.8) and 

one obtains: 

generalized index of truth:   )0,max( ** τ=t  .    

generalized index of falsity:  )0,max( ** τ−=f  .   

generalized index of inconsistency:  )0,max( ** δ=c  .    

generalized index of incompleteness: )0,max( ** δ−=u  .   

It results the following two equalities: 

    **),( ftD +=νμ  .     

   ***),( icuS ++=νμ  .    (3.13) 

where ),( νμS  is the negation of ),( νμD  and it represents a similarity measure be-

tween the membership μ  and the non-membership ν . 

4   New Metric Distance on the Interval [a,b] 

There are important distances defined on the interval ]1,0[  and that is because the 
membership functions are defined on the ]1,0[ . The frequently formula used for the 
distance on the interval ]1,0[  is the following: 

||),( yxyxd −=  .                                                  (4.1) 

The distance (4.1) takes into account only the difference yx − . We additionally propose 

a distance measure that includes also the sum yx + . This new distance is defined by: 
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|1|||1

||2
),(

−++−+
−=

yxyx

yx
yxD  .                              (4.2) 

More generally, for the interval ],[ ba , the distance has the following form:  

 
||||

||2
),(

bayxyxab

yx
yxD

−−++−+−
−=  .   (4.3) 

or  
|2||2|

||2
),(

baybaxab

yx
yxD

−−∨−−+−
−=  .  (4.4) 

where ( )βαβα ,max=∨  .  

The distance defined by (4.3) or (4.4) verifies the following three metric properties: 

• 0),( =yxD  ⇔  yx =  . 

• ),(),( xyDyxD =  . 

• ),(),(),( zxDzyDyxD ≥+  . 

The first two properties are evident. We will show the proof for the triangle inequal-
ity. We will analyze six possibilities. In the first four, we have 

{ }),,max(),,,min( zyxzyxy ∈  and for the last two, we have ),,( zyxmediany = . 

p1) yzx ≥≥  ⇒  ),(),( zxDyxD ≥  and it results  ),(),(),( zxDzyDyxD ≥+  . 

p2) xzy ≥≥  ⇒  ),(),( zxDyxD ≥  and it results ),(),(),( zxDzyDyxD ≥+  . 

p3) zxy ≥≥  ⇒  ),(),( zxDzyD ≥  and it results   ),(),(),( zxDzyDyxD ≥+  . 

p4) yxz ≥≥  ⇒  ),(),( zxDyzD ≥  and it results  ),(),(),( zxDzyDyxD ≥+  . 

p5) zyx ≥≥   

it results:   
⎪
⎩

⎪
⎨

⎧

−−∨−−≤−−
−−∨−−≤−−
−−∨−−≤−−

|2||2||2|

|2||2||2|

|2||2||2|

bazbaxbaz

bazbaxbay

bazbaxbax

 .  

and  
⎩
⎨
⎧

−−∨−−≤−−∨−−
−−∨−−≤−−∨−−

|2||2||2||2|

|2||2||2||2|

bazbaxbazbay

bazbaxbaybax
 . 

it consequences: 

  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−∨−−+−
−≥

−−∨−−+−
−≥

|2||2|

||2
),(

|2||2|

||2
),(

bazbaxab

zy
zyD

bazbaxab

yx
yxD

  

and summing up, one obtains: 

 
( )

),(
|2||2|

||||2
),(),( zxD

bazbaxab

zyyx
zyDyxD ≥

−−∨−−+−
−+−≥+  

p6) xyz ≥≥  This case can be proven similarly to case p5). 

The similarity can be defined for ],[ ba  using the negation of distance, namely: 

                          ||||

||||
),(1),(

bayxyxab

bayxyxab
yxDyxS

−−++−+−
−−++−−−=−=  . 
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For the interval [0,1] the similarity has the following particular form: 

|1|||1

|1|||1
),(

−++−+
−++−−=

yxyx

yxyx
yxS  .                                        (4.5) 

5   The Entropy and Cardinality of Bifuzzy Sets 

We define measures for entropy and cardinality in the framework of penta-valued 
representation. 

5.1   The Entropy of Bifuzzy Sets 

For a bifuzzy set, uncertainty results from the imprecise boundaries or it results from 
the lack of crisp distinction between the elements belonging and not belonging to a 
set. The uncertainty of fuzzy sets is called fuzziness. A measure of fuzziness is the 
entropy first mentioned by Zadeh [17]. Kaufman [9] proposed to measure a degree of 
fuzziness of any fuzzy set by a metric distance between its membership function and 
the membership function of its nearest crisp set. Another way given by Yager [16] 
was to view a degree of fuzziness in term of a lack of distinction between the fuzzy 
set and its complement. Kosko [10] proposed to measure the fuzzy entropy by the 
ratio between the distance to the nearest crisp element and the distance to the farthest 
crisp element. But this formula is nothing else then a similarity measure between the 
considered element and its complement. This is equivalent with the similarity meas-
ure between the membership μ  and the non-membership ν . In order to give a proper 
definition of the entropy of bifuzzy sets we have to consider three aspects of uncer-
tainty contained in these sets: the first one is connected with the missing information 
that results in a ”gap” between the membership function and the non-membership 
function; the second is connected with the supplementary information that results in a 
”glut” between the membership function and the non-membership function; the third 
is the lack of distinction between a bifuzy value and its negation. All these are cumu-
lated in the total uncertainty and this represents the bifuzzy entropy. 

Let there be a penta-fuzzy value ),,,,( icuftx =  and its complement ),,,,( icutfxc =  

[12]. Because 1=++++ icuft , for these two particular penta-fuzzy values, one 

can use the Bhattacharyya  similarity [3]: 

iiccuutfftxxS c
B ⋅+⋅+⋅+⋅+⋅=),(  . 

Having the similarity, one can define the entropy. Therefore we get: 

),( c
B xxSe =  .  

Because 0=⋅ ft  one obtains the sum of these three components of uncertainty: icu ,,  

icue ++=  .                                             (5.1.1) 
Incompleteness u , inconsistency c  and indeterminacy i  represent the sources of 
total uncertainty or in other words the sources of entropy. From (5.1.1), (3.9) and 
(3.13) it results that the proposed measures of entropy represents in same time the 
similarity measure between the membership μ  and the non-membership ν . Next, we 
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describe some requirements for the bifuzzy entropy. In the space ),( νμ  the entropy 

function ),( νμe  verifies the following conditions: 

e1)  0)1,0()0,1( == ee  

e2)     1),( =νμe  ⇔  νμ =  

e3) if   2112 ννμμ >≥>   then  ),(),( 2211 νμνμ ee >  

e4) if   2112 ννμμ <≤<   then  ),(),( 2211 νμνμ ee >  

e5) )1,1()1,1(),(),( νμμνμννμ −−=−−== eeee  

The properties (e1, e2, e3, e4, e5) represent an extension of properties considered by 
De Luca and Termini for entropy of fuzzy sets [11] and by Szmidt and Kacprzyk for 
intuitionistic fuzzy sets [14].  

In the space ),( δτ the entropy function ),( δτe  verifies the following conditions: 

f1)  0)0,1()0,1( =−= ee  

f2)     1),0( =δe  

f3) if   |||| 21 ττ >   then  ),(<),( 21 δτδτ ee  

f4) if   |||| 21 δδ >  then  ),(),( 21 δτδτ ee ≥  

f5) ),(),(),(),( δτδτδτδτ −−=−=−= eeee  

Also, we can consider a vector representation for entropy of bifuzzy sets, namely: 

),,( icue =  . 

For intuitionistic fuzzy sets it results a vector with two components: 

),( iueifs =  . 

For paraconsistent fuzzy sets it results a vector with two components: 

),( icepfs =  . 

For fuzzy sets it results a scalar: 

ie fs =  .  

Grzegorzewski and Mrówka proposed a vector representation of intuitionistic fuzzy 
entropy [8]. They considered the following vector: 

( )πνμ |,|1 −−=GMe  .                                      (5.1.2) 

Using ||),( yxyxd −= ,  one obtains: 

||1||1 τνμ −=−−=e  .                                      (5.1.3) 

                                                     )0,1max( νμ −−=u  . 

           )0,1max( −+= νμc  .    

           |1|||1 −+−−−= νμνμi  .               

For fuzzy sets one obtains: 

|12|1 −−== μfsfs ie  .                                     (5.1.4) 

The entropy (5.1.4) and in the same time the index of indeterminacy represents the 
Kaufmann index of fuzziness [9]. For intuitionistic fuzzy sets one obtains: 
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||1 νμ −−=ifse  .  

( )||1, νμππ −−−=ifse  .                                      (5.1.5) 

Bustince and Burillo considered for intuitionistic fuzzy sets the following measure for 
entropy [5]:   π=BBe  .                

This value is a component of the vector approach (5.1.2) or (5.1.5). 

Using the metric distance 
|1|||1

||2
),(

−++−+
−=

yxyx

yx
yxD , one obtains: 

||||1

||||1

|1|||1

|1|||1*

δτ
δτ

νμνμ
νμνμ

++
+−=

−++−+
−++−−=e .   (5.1.6)            

|1|||1

)0,1max(2*

−++−+
−−⋅=

νμνμ
νμ

u  .            

|1|||1

)0,1max(2*

−++−+
−+⋅=

νμνμ
νμ

c  .             

|1|||1

|1|||1*

−++−+
−+−−−=

νμνμ
νμνμ

i  .             

For fuzzy sets one obtains: 
|12|1

|12|1**

−+
−−==

μ
μ

fsfs ie .    (5.1.7) 

The entropy and the index of indeterminacy (5.1.7) represent the Kosko entropy [10]. 
For intuitionistic fuzzy sets one obtains: 

πνμ
πνμ

+−+
+−−=∗

||1

||1
ifse  .    (5.1.8) 

πνμ
π

+−+
=∗

||1

2
ifsu  .    (5.1.9) 

πνμ
πνμ

+−+
−−−=∗

||1

||1
ifsi  .               

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+
−−−

+−+
=

πνμ
πνμ

πνμ
π

||1

||1
,

||1

2*
ifse  .           

Formula (5.1.8) represents the entropy defined by Szmidt and Kacprzyk for intuitionistic 
fuzzy sets [13]. Also, we can underline that (5.1.9) represents a generalization of 
Atanassov intuitionistic fuzzy index. This generalization differs from that suggested in [2]. 

The entropy functions e  and *e  defined by (5.1.3) and (5.1.6) verify the conditions 
(e1, e2, e3, e4, e5) in the space ),( νμ  and (f1, f2, f3, f4, f5) in the space ),( δτ . 

Finally, the bifuzzy entropy for a set A  is obtained with the subsequent formula: 

          
)()( xeAE

Xx
∑
∈

=  .              
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5.2   The Cardinality of Bifuzzy Sets 

We will define the cardinality for a bifuzzy set A  by: 

)()( xnAcard
Xx
∑
∈

=  .    

where the cardinality function n  can be defined in two coordinate spaces: ),( νμ   

or ),( δτ . 

In the space ),( νμ  the cardinality function ),( νμn  verifies the following conditions: 

c1)   1)0,1( =n , 0)1,0( =n  

c2)    if 21 < μμ       then  ),(<),( 21 νμνμ nn  

c3)    if 21 >νν        then   ),(<),( 21 νμνμ nn  

c4)   1),(),( =+ μννμ nn  

c5)   )1,1(),( μννμ −−= nn  

In the space ),( δτ  the cardinality function ),( δτn  verifies the following conditions: 

d1)   1)0,1( =n , 0)0,1( =−n  

d2)    if 21 ττ <            then  ),(),( 21 δτδτ nn <  

d3)    if |||| 21 δδ >        then   )(),()(),( 21 τδττδτ signnsignn ⋅≤⋅   

d4)   1),(),( =−+ δτδτ nn  

d5)   ),(),( δτδτ −= nn  

We construct the cardinality of bifuzzy set, considering a function with the following 
structure: 

2

iuc
tn

+++=  .     (5.2.1) 

Using the distance ||),( yxyxd −=  one obtains: 

   
22

1

22

1 τνμ +=−+=n  .    (5.2.2) 

For fuzzy sets, one obtains: 
  μ=fsn  .      

Using the proposed distance 
|1|||1

||2
),(

−++−+
−=

yxyx

yx
yxD  one obtains: 

  
||||12

1

|1|||12

1*

δτ
τ

νμνμ
νμ

++
+=

−++−+
−+=n  .  (5.2.3) 

and for fuzzy sets, it results: 

   
|12|1

12

2

1*

−+
−+=

μ
μ

fsn  

The cardinality functions n  and *n  defined by (5.2.2) and (5.2.3) verify the condi-
tions (c1, c2, c3, c4, c5) in the space ),( νμ  and (d1, d2, d3, d4, d5) in the space 

),( δτ .   
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6   Conclusions 

In this paper, a new metric distance and similarity between elements of bounded in-
terval ],[ ba  is constructed. Based on this distance, new measures of entropy and 

cardinality for bifuzzy sets were defined. The new measures were constructed in the 
framework of representation of bifuzzy sets with positive and negative values. A 
multivalued representation of entropy is constructed in the framework of penta-valued 
knowledge representation. Also, some particular forms of cardinality and entropy are 
obtained for fuzzy sets and intuitionistic fuzzy sets.  
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Abstract. This paper is devoted to the iterative functional equation
I(x, y) = I(x, I(x, y)) for all x, y ∈ [0, 1] where I denotes a fuzzy im-
plication. This equation, that comes from a tautology in crisp logic, is
revised from the results obtained in A. Xie and F. Qin (2010) Information
Sciences, doi:10.1016/j.ins.2010.01.023, clarifying which kinds of continu-
ous t-norms and t-conorms can be used in order to generate D-operations
satisfying the mentioned equation.

1 Introduction

Aggregation operations are functions commonly used in the process of merging
several inputs into only one representative output. This simple idea has lead to
a theory based on such functions with a great number of applications in many
fields, like fuzzy control, decision making, data fusion, image processing, measure
theory and others. Due to these applications, the theory of aggregation functions
is a field of increasing interest as it is reflected by the recent publication of some
different but complementary monographs on the topic (see [5], [6], [10] and [18]).

Another application of aggregation functions can be found in fuzzy logic.
Specifically, some kinds of aggregation functions have been used in defining fuzzy
implications. Not only t-norms and t-conorms, but also copulas, quasi-copulas
and even conjunctors in general ([9]), representable aggregation functions ([7]),
and mainly uninorms ([1], [4], [8], [13], [15], [16]). Fuzzy implications are essential
in fuzzy logic, not only because they are used to model fuzzy conditionals, but
also because forward and backward inferences in any fuzzy rules based system are
managed through fuzzy implications. There are many equations involving fuzzy
implications, usually derived from equivalences in crisp logic, that have been
studied in the literature (see [2], [3], [14]), in order to obtain fuzzy implications
with specific properties.

One of these equations is given by

I(x, y) = I(x, I(x, y)) for all x, y ∈ [0, 1] (1)

where I denotes a fuzzy implication. This equation comes from the tautology in
crisp logic,

p→ (p→ q) ≡ p→ q,

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 666–675, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and it was already studied for R, (S,N) and QL-operations in [17]. Equation
(1) was also studied for the case of D-operations in the forthcoming paper [19].
The difference is that in case of QL-operations it becomes clear from the results
in [17] which continuous t-conorms and t-norms may be used to generate QL-
operations satisfying Equation (1). On the contrary, for the case of D-operations
characterizations found in [19] are given through conditions that are hard to
verify. Thus, except for the case of the maximum t-conorm, the results proved
there are not practical in order to decide when a given t-norm and a t-conorm
generate a D-operation satisfying Equation (1).

In this paper, we want to deal deeper with this equation in order to clarify
these questions, specially for the case of Archimedean t-norms and t-conorms
(in fact nilpotent ones), and with the case of ordinal sum t-conorms and t-
norms. Additionally, with our study infinitely many examples are derived and the
structure of the corresponding D-operations is given in many cases. Moreover,
the important case of implications in the sense of Definition 1 below, is not
considered separately in [19]. One goal in our study will be to detail such a case
and we will prove that one and only one D-implication is obtained satisfying
Equation (1) and that this implication is in fact the Kleene-Dienes implication.

The paper is structured as follows. After some preliminaries introducing the
necessary notation, we deal with Equation (1) in Section 3, by discussing which
kinds of t-norms and t-conorms can be used to generate D-operations satisfying
it, specially in cases when S is an Archimedean t-conorm or an ordinal sum. We
deal also in this section with the important case of D-implications.

2 Preliminaries

We will suppose the reader to be familiar with basic concepts on continuous t-
norms and t-conorms. For any result used but not recalled here see for instance
[11]. We will recall only some usual notation in this framework and also some
definitions and facts on fuzzy implications.

First of all, recall that nilpotent t-norms and t-conorms are fully characterized
as those t-norms and t-conorms that are conjugate with the �Lukasiewicz t-norm
(TL) and t-conorm (SL), respectively. That is, a t-norm T is nilpotent if and
only if there exists an automorphism ϕ of the unit interval such that

T (x, y) = (TL)ϕ(x, y) = ϕ−1(max(ϕ(x) + ϕ(y)− 1, 0)).

Recall that in this case the zero-region of (TL)ϕ is given by

(TL)ϕ(x, y) = 0 ⇐⇒ y ≤ (NC)ϕ(x) = ϕ−1(1− ϕ(x))

where NC denotes the classical negation NC(x) = 1−x. And a dual result holds
also for t-conorms.

Next we recall the most accepted definition of fuzzy implication.

Definition 1. A binary operator I : [0, 1]2 → [0, 1] is said to be an implication
function, or an implication, if it satisfies:
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(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.

As we have commented, implication functions can be derived from several
classes of aggregation functions. We will deal in this paper with those derived
from t-norms and t-conorms. The most usual kinds of such implications are:

– R-implications derived from a t-norm T by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} for all x, y ∈ [0, 1].

– (S,N)-implications derived from a t-conorm S and a fuzzy negation N by
IS,N (x, y) = S(N(x), y) for all x, y ∈ [0, 1]. If N is strong, they are called
S-implications.

– QL-operations derived from a t-conorm S, a t-norm T and a fuzzy negation
(usually strong) N by IQL(x, y) = S(N(x), T (x, y)) for all x, y ∈ [0, 1].

– D-operations derived from a t-conorm S, a t-norm T and a fuzzy negation
(usually strong) N by ID(x, y) = S(T (N(x), N(y)), y) for all x, y ∈ [0, 1].

Note that R and (S,N)-implications are always implications in the sense of
Definition 1, whereas QL and D-operations are not implications in general. A
characterization of those cases when QL or D-operations are implications is still
open (see [3]). However, in both cases a common necessary condition is known.

Proposition 1. ([12], [3]) Let S be a t-conorm, T a t-norm, N a fuzzy negation
and ID the corresponding D-operation (or IQL the QL-operation). If ID (IQL)
is an implication then S(N(x), x) = 1 for all x ∈ [0, 1].

When S and N are continuous the necessary condition given in the proposition
above implies that S must be nilpotent, say S = (SL)Φ, and moreover it must be
N(x) ≥ (NC)Φ(x) for all x ∈ [0, 1]. Recall thatD-operations satisfy all conditions
of Definition 1 except in general condition (I2). AdditionallyD-operations always
satisfy ID(x, 0) = N(x) for all x ∈ [0, 1] and ID(1, y) = y for all y ∈ [0, 1]
(see [12]).

3 Main Results

Our main goal is to study which continuous t-conorms S, continuous t-norms T
and strong negations N can be used to derive D-operations satisfying Equation
(1). We will begin however with some general results without conditions on
continuity. First of all, recall that the least and the greatest fuzzy negations are
respectively given by

ND1(x) =
{ 1 if x = 0

0 if x > 0.
and ND2(x) =

{
1 if x < 1
0 if x = 1
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When we derive D-operations from these negations, they are always implications
and they always satisfy Equation (1) without any further condition on the t-norm
T and the t-conorm S.

Proposition 2. Let S be a t-conorm, T a t-norm, N a fuzzy negation and ID
the corresponding D-operation. Then,

– If N is the greatest fuzzy negation, ID always satisfy Equation (1) and it is
the implication given by

ID(x, y) =
{

1 if x < 1
y if x = 1 (2)

– If N is the smallest fuzzy negation, ID always satisfy Equation (1), it is
never an implication and it is given by

ID(x, y) =
{
y if (x, y) �= (0, 0)
1 if (x, y) = (0, 0) (3)

Proof. It is easy to see that for any t-norm T and t-conorm S, the corresponding
D-operation ID is given by Equation (2) when N is the greatest fuzzy negation.
Hence, it is clearly an implication and satisfies I(x, I(x, y)) = I(x, y) = 1 when
x < 1 and I(1, I(1, y)) = I(1, y) = y.

Similarly, it can be proved that ID is given by Equation (3) when N is the
smallest fuzzy negation. It is not an implication because the section I(0, y) is not
increasing, but it again satisfies Equation (1) since I(x, I(x, y)) = I(x, y) = y
when (x, y) �= (0, 0), whereas I(0, 0) = 1 and also I(0, I(0, 0)) = I(0, 1) = 1. ��

Let us now deal with the case when the t-conorm S is continuous. From the
well known structure of continuous t-conorms we can divide our study into
three cases, depending on whether the t-conorm S is the maximum, any con-
tinuous Archimedean t-conorm, or any ordinal sum of continuous Archimedean
t-conorms.

3.1 When S = SM

In this case results from [19] leave totally clear which continuous t-norms and
strong negations can be used for our purposes. The result proved there looks as
follows.

Theorem 1. ([19]) If a D-operation I is generated by a t-conorm SM , a con-
tinuous t-norm T , and a strong negation N , then it satisfies Equation (1).

We only want to make the following remark on this result. The same proof of the
theorem above works for any t-norm (not necessarily continuous) and for any
fuzzy negation N (not necessarily strong) and thus the theorem remains true in
this more general framework.
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3.2 When S Is Continuous Archimedean

In this case, after showing that a necessary condition for the satisfaction of
Equation (1) by a D-operation generated by a continuous Archimedean t-conorm
is that both S and T must be nilpotent, the following result is proved in [19].

Theorem 2. ([19]) Let I be a D-operation generated by a nilpotent t-conorm
S = (SL)ϕ, a nilpotent t-norm T = (TL)φ, and a strong negation N . Then
it satisfies Equation (1) if and only if I(x, y) ≥ N(φ−1(1 − φ(N(x)))) holds
when 0 < (TL)φ(N(x), N(y)) < ϕ−1(1 − ϕ(y)), where both ϕ and φ are order
automorphisms on the unit interval.

As we can see, the necessary and sufficient condition in the above theorem is not
intuitive and it is not clear from it which t-norms and t-conorms can be used in
order to generate a D-operation satisfying Equation (1). However, several results
can be proved enlightening what happens in this case. It is proved in [19] that
in this case the following relation must hold

(NC)ϕ(x) ≤ N(x) ≤ (NC)φ

for all x ∈ [0, 1]. Moreover, we have the following remarks.

Remark 1. A straightforward computation shows that the condition I(x, y) ≥
N(φ−1(1−φ(N(x)))) when 0 < (TL)φ(N(x), N(y)) < ϕ−1(1−ϕ(y)) is equivalent
to the condition

φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ ϕ−1(ϕ(N((NC)φ(N(x)))) − ϕ(y))

when 0 < φ−1(φ(N(x)) + φ(N(y)) − 1) < ϕ−1(1 − ϕ(y)). Thus, the condition
can be expressed only in terms of N and the automorphisms ϕ and φ, making
easier its verification.

Remark 2. The resulting D-operation can be computed in this case and it is
easy to see that its expression is given by

I(x, y) =

⎧⎨⎩
y if T (N(x), N(y)) = 0
ϕ−1(ϕ(T (N(x), N(y))) + ϕ(y)) if 0 < T (N(x), N(y)) < (NC)ϕ(y)
1 otherwise

(4)

Note that there are many cases for which the condition of the previous theorem
is satisfied. For instance, we have the following particular cases.

Proposition 3. Consider a nilpotent t-conorm S = (SL)ϕ, a nilpotent t-norm
T = (TL)φ and a strong negation N such that (NC)ϕ ≤ N = (NC)φ and
h = ϕφ−1 is a subadditive function. Then the D-operation I generated by these
operators satisfies Equation (1).
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Proof. By Remark 1, it is sufficient to prove that

φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ ϕ−1(ϕ(N((NC)φ(N(x)))) − ϕ(y))

whenever 0 < T (N(x), N(y)) < (NC)ϕ(y). Since N = (NC)φ we have φ(N(x)) =
1− φ(x) and then the previous condition can be rewritten as

φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ ϕ−1(ϕ(N(x)) − ϕ(y)) ⇔
ϕ(φ−1(φ(N(x)) − φ(y))) ≥ ϕ(N(x)) − ϕ(y)

Now, taking N(x) = φ−1(a), y = φ−1(b) and h = ϕφ−1, we obtain that the last
inequality becomes h(a− b) ≥ h(a)− h(b) for all a, b such that

T (φ−1(a), N(φ−1(b))) < (NC)ϕ(φ−1(b)).

It has to be remarked that a− b = φ(N(x))−φ(y) = φ(N(x)) +φ(N(y))−1 > 0
because 0 < T (N(x), N(y)). Finally, consider c = a− b and we obtain

h(c) ≥ h(b+ c)− h(b) ⇔ h(b+ c) ≤ h(b) + h(c).

Thus, if h is subadditive the inequality above holds and consequently I satisfies
Equation (1). ��

Proposition 4. Consider a nilpotent t-conorm S = (SL)ϕ, a nilpotent t-norm
T = (TL)φ and a strong negation N such that (NC)ϕ = N ≤ (NC)φ. Then the
D-operation I generated by these operators satisfies Equation (1) if and only if
h = ϕφ−1 is a subadditive function.

Proof. By Remark 1, I satisfies (1) if and only if

φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ ϕ−1(ϕ(N((NC)φ(N(x)))) − ϕ(y))

whenever 0 < T (N(x), N(y)) < (NC)ϕ(y). However, since N = (NC)ϕ we have
ϕ(N(x)) = 1− ϕ(x) and we can rewrite this condition as follows,

ϕ(φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ ϕ(N((NC)φ(N(x)))) − ϕ(y) ⇔
ϕ(φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ 1− ϕ((NC)φ(N(x))) − ϕ(y) ⇔
ϕ(φ−1(φ(N(x)) + φ(N(y)) − 1) ≥ ϕ(N(y))− ϕ(φ−1(1− ϕ(N(x))))

Now, taking N(x) = φ−1(a), N(y) = φ−1(b) and h = ϕφ−1, we obtain that the
last inequality becomes

h(a+ b− 1) ≥ h(b)− h(1 − a) (5)

whenever 0 < T (φ−1(a), φ−1(b)) < φ−1(b). That is, I satisfies (1) if and only if
Equation (5) holds for all a, b with a + b − 1 > 0. Finally, changing c = 1 − a
Equation (5) becomes h(b − c) ≥ h(b) − h(c) and then considering d = b − c it
derives into

h(c+ d) ≤ h(c) + h(d) for all c, d with c+ d ≤ 1.

That is, I satisfies Equation (1) if and only if h = ϕφ−1 is a subadditive function.
��
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In Example 3 in [19], it is proved that taking ϕ(x) = x, N(x) = 1 − x
and φ(x) = x2, the obtained D-operation satisfies Equation (1) through the
verification of the condition of Theorem 2. However, note that in this case h(x) =
ϕ ◦ φ−1(x) =

√
x is a subadditive function and consequently, by the proposition

above the corresponding D-operation satisfies Equation (1). Thus, Example 3 in
[19] is a particular case of the above proposition. Similarly, in Example 4 in [19]
function h agrees with h(x) = x2 and consequently the corresponding I does not
satisfy (1) because h is not subadditive.

We note that in order D-operations to be fuzzy implications S must be such
that S(x,N(x)) = 1. Thus, we can find D-implications satisfying Equation
(1) only in the case when S is nilpotent. Unfortunately, there is one and only
one D-implication satisfying Equation (1), which agrees with the Kleene-Dienes
implication.

Proposition 5. Consider a nilpotent t-conorm S = (SL)ϕ, a nilpotent t-norm
T = (TL)φ and a strong negation N such that the corresponding D-operation I
satisfies Equation (1). Then the following conditions are equivalent.

(i) I is an implication.
(ii) (NC)φ = N = (NC)ϕ.
(iii) I is the Kleene-Dienes implication.

Proof. Let us begin with the proof of (i) ⇒ (ii). Suppose that I is an implication.
Note on one hand that

T (N(x), N(y)) = 0 ⇐⇒ N(y) ≤ (NC)φ(N(x)) ⇐⇒ y ≥ N((NC)φ(N(x)))
(6)

Thus, suppose first that there is some y0 such that (NC)ϕ(y0) < N(y0). Since T
is continuous there exists an x0 > 0 such that T (N(x0), N(y0)) = (NC)ϕ(y0) and
then I(x0, y0) = 1 by Remark 2, whereas I(x0, y) = y for ally ≥ N((NC)φ(N(x0)))
by Equation (6), violating condition (I2). That is,N = (NC)ϕ.

On the other hand, using Theorem 2 we know that I(x, y) ≥ N((NC)φ(N(x)))
for all x, y ∈ [0, 1]. Thus, fixed any x ∈]0, 1[ and taking into account Equation
(6), it must be I(x, y) = N((NC)φ(N(x))) for all y ≤ N((NC)φ(N(x))) in order
to preserve condition (I2). That is, it must be

ϕ(T (N(x), N(y))) + ϕ(y)) = ϕ(N((NC)φ(N(x)))) for all y ≤ N((NC)φ(N(x)))

or equivalently

ϕ(φ−1(φ(N(x)) + φ(N(y))− 1) + 1− ϕ(N(y))) = 1− ϕ((NC)φ(N(x)))

or
ϕ(φ−1(φ(N(x)) + φ(N(y)) − 1)) = ϕ(N(y)) − ϕ((NC)φ(N(x))).

Now, taking h = ϕφ−1, N(x) = φ−1(a) and N(y) = φ−1(b), we obtain

h(a+ b − 1) = h(b)− h(1− a) for all a, b with a+ b ≥ 1
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leading to a Cauchy equation and consequently to h = Id. That is, N = (NC)ϕ =
(NC)φ.

Now (ii) ⇒ (iii) is straightforward from the expression (4) and (iii) ⇒ (i) is
trivial. ��

3.3 When S Is an Ordinal Sum

In this case the characterization given in [19] is as follows.

Theorem 3. ([19]) Let I be a D-operation generated by a t-norm T a strong
negation N , and a t-conorm S = (〈am, bm, Sm〉)m∈A, where T is a con-
tinuous Archimedean t-norm or an ordinal sum of the corresponding family
{[cm, dm], Tm}, with each Tm being a continuous Archimedean t-norm, Sm a
continuous Archimedean and A a finite or countable infinite index set. Then
Equation (1) holds if and only if for arbitrary fixed (x, y) ∈ [0, 1]2, there exists
some (am, bm) such that T (N(x), N(y)) ∈ (am, bm), and the following conditions
are satisfied. If (y ∈ (am, bm) and I(x, y) < bm) or y /∈ (am, bm), then it always
holds that T (N(x), N ◦ I(x, y)) ≤ am.

It is obvious that the condition on the previous theorem is hard to verify and it
is not clear from it which t-norms and t-conorms can be used. In this case we
can give some partial results clarifying the situation in some particular cases.

Proposition 6. Let I be a D-operation generated by a strong negation N with
fixed point e, a continuous t-conorm S satisfying S(x, x) = x for all x ≤ e and
a t-norm T . Then I satisfies Equation (1).

Proof. When a continuous t-conorm S satisfies S(x, x) = x for all x ≤ e we have
S(x, y) = max(x, y) for all x, y such that min(x, y) ≤ e. Let us see that in this
case I(x, y) is always given by I(x, y) = max(T (N(x), N(y)), y). Effectively,

– When T (N(x), N(y)) ≤ y, since it holds also T (N(x), N(y)) ≤ N(y), we
have T (N(x), N(y)) ≤ e and the result follows.

– When T (N(x), N(y)) > y, we have y < T (N(x), N(y)) ≤ N(y) and conse-
quently y < e and the result follows again.

Now, Theorem 1 ends the proof. ��

Note that in the examples given in [19] after Remark 8 and in Remark 9 both
t-conorms are idempotent at least until the fixed point of the negation and
consequently the corresponding D-operation satisfies Equation (1) not only for
the product t-norm or for an specific ordinal sum t-norm, but also for any t-norm
(even not necessarily continuous).

Proposition 7. Let I be a D-operation generated by a continuous t-conorm S,
a strong negation N with fixed point e and a continuous t-norm T satisfying
T (e, e) = e. Then I satisfies Equation (1) if and only if S(x, x) = x for all
x ≤ e.
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S0

max{x, y}

e

e

Fig. 1. Structure of the t-conorm given in Proposition 6 with S0 any t-conorm

e

e

N(y)

N(x)

y

N

Fig. 2. Structure of the D-operation given in Corollary 1

Proof. If S(x, x) = x for all x ≤ e then by the previous proposition, I satisfies
Equation (1). Reciprocally, if T is a continuous t-norm satisfying T (e, e) = e then
T (x, y) = min(x, y) whenever min(x, y) ≥ e and, in particular, T (x,N(x)) =
min(x,N(x)) for all x ∈ [0, 1]. Thus, taking y = 0 and x ≥ e, we have

I(x, 0) = T (N(x), N(0)) = N(x)
I(x, I(x, 0)) = I(x,N(x)) = S(T (N(x), x), N(x)) = S(min(N(x), x), N(x))

= S(N(x), N(x)).

Therefore, if I satisfies Equation (1) we obtain S(N(x), N(x)) = N(x) for all
x ≥ e and so S(x, x) = x for all x ≤ e. ��

Note that this proposition includes Theorem 11 in [19] where the minimum
t-norm is considered. Moreover, in this case the structure of the resulting D-
operation can be described and can be viewed in Figure 2.

Corollary 1. Let I be a D-operation generated by a strong negation N with
fixed point e, a continuous t-conorm S satisfying S(x, x) = x for all x ≤ e, and
a continuous t-norm T satisfying T (e, e) = e. Then I satisfies Equation (1) and
it is given by

I(x, y) =

⎧⎨⎩y if y ≥ e or N(x) ≤ y < e
N(x) if y < e and y < min{x,N(x)}
N(y) if y < e and y ≥ x
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3. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft
Computing, vol. 231. Springer, Heidelberg (2008)
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Abstract. In this work we solve an open problem of U.Höhle [Problem
11, Fuzzy Sets and Systems 145 (2004) 471-479]. We show that the solu-
tion gives a characterization of all conditionally cancellative t-subnorms.
Further, we give an equivalence condition for a conditionally cancella-
tivite t-subnorm to be a t-norm and hence show that conditionally can-
cellativite t-subnorms whose natural negations are strong are, in fact,
t-norms.

1 Introduction

The paper by Klement et al. [6] is a collection of open problems posed during
the 24th Linz Seminar on fuzzy set theory. They deal with unsolved problems
(as of then) related to fuzzy aggregation operations, especially t-norms and t-
subnorms. Since the publication of [6], some problems mentioned therein have
been solved - for instance, Problem 1 was solved by Ouyang et al. [8], Problem 5
was solved by Ouyang and Li [8] while for some other problems partial solutions
have been given, see for instance, the papers of Viceńık [9], [10], [11] relating to
Problem 4(i).

One of the open problems listed therein was posed by Prof. U. Höhle (Problem
11) which reads as follows:

Problem 1 (U.Höhle, [6], Problem 11). Characterize all left-continuous t-norms
T which satisfy

I(x, T (x, y)) = max(n(x), y), x, y ∈ [0, 1] . (1)

where I is the residual operator linked to T , i.e.,

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, x, y ∈ [0, 1] , (2)
n(x) = nT (x) = I(x, 0) for all x ∈ [0, 1]. (3)

Further, Prof. U.Höhle goes on to remark the following:

Remark 1. ”In the class of continuous t-norms, only nilpotent t-norms fulfill the
above property.”

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 676–682, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this work we deal with two problems. Firstly, we solve the above open problem
of U.Höhle and show that the solution gives a characterization of all conditionally
cancellative t-subnorms. From the proven result it does follow that the remark of
Prof. U.Höhle - Remark 1 - is not always true and give an equivalence condition
for it to be true, viz., that the natural negation obtained from the t-norm is
strong.

Secondly, this quite naturally leads us to consider conditionally cancellative
t-subnorms whose natural negations are involutive. Once again, by proving an
equivalence condition for a conditionally cancellative t-subnorm to be a t-norm,
we show that conditionally cancellative t-subnorms whose natural negations are
involutive, in fact, become t-norms.

2 Preliminaries

Definition 1. A function N : [0, 1] → [0, 1] is called a fuzzy negation if N is
decreasing and N(0) = 1 , N(1) = 0 .

Definition 2 ([5], Definition 1.7). A t-subnorm is a function M : [0, 1]2 →
[0, 1] such that it is monotonic non-decreasing, associative, commutative and
M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1].

Note that for a t-subnorm 1 need not be the neutral element, unlike in the case
of a t-norm.

Definition 3 (cf. [5], Definition 2.9 (iii)). A t-subnorm M satisfies the Con-
ditional Cancellation Law if, for any x, y, z ∈ (0, 1],

M(x, y) = M(x, z) > 0 implies y = z . (CCL)

Alternately, (CCL) implies that on the positive domain of M , i.e., on the set
{(x, y) ∈ (0, 1]2 | M(x, y) > 0}, M is strictly increasing.

Definition 4 (cf. [1], Definition 2.3.1). Let M be any t-subnorm. Its natural
negation nM is given by

nM (x) = sup{t ∈ [0, 1] | M(x, t) = 0}, x ∈ [0, 1] . (4)

Note that though nM (0) = 1, it need not be a fuzzy negation, since nM (1) can
be greater than 0. However, we have the following result.

Lemma 1 (cf. [1], Proposition 2.3.4). Let M be any t-subnorm and nM its
natural negation. Then we have the following:

(i) M(x, y) = 0 =⇒ y ≤ nM (x) .
(ii) y < nM (x) =⇒M(x, y) = 0.
(iii) If M is left-continuous then y = nM (x) =⇒ M(x, y) = 0, i.e., the reverse

implication of (i) also holds.
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3 Solution to the Open Problem of U. Höhle

It should be noted that in the case T is left-continuous - as stated in Problem 1
- the sup in (2) actually becomes max. It is worth mentioning that the residual
can be determined for more generalised conjunctions and the conditions under-
which this residual becomes a fuzzy implication can be found in, for instance, [2],
[4]. Hence we further generalise the statement of Problem 1 by considering a
t-subnorm instead of a t-norm and also dropping the condition of left-continuity.
As we show below the solution characterizes the set of all conditionally cancella-
tive t-subnorms.

Theorem 1. Let M be any t-subnorm and I the residual operation linked to M
by (2). Then the following are equivalent:

(i) The pair (I,M) satisfies (1).
(ii) M is a Conditionally Cancellative t-subnorm.

Proof. Let M be any t-subnorm, not necessarily left-continuous. Note that we
denote nM simply by n.

(i) =⇒ (ii): Let the adjoint pair (I,M) satisfy (1). On the contrary, let us
assume that there exist x, y, z ∈ (0, 1) such that M(x, y) = M(x, z) > 0 but
y < z. Then we have that

LHS (1) = I(x,M(x, y)) = sup{t ∈ [0, 1] |M(x, t) ≤M(x, y)} ≥ z > y .

However, note that, from Lemma 1 (i) we have that y≥n(x), since M(x, y)>
0. Thus

RHS (1) = max(n(x), y) = y < LHS (1) ,

a contradiction to the fact that the adjoint pair (I,M) satisfies (1). Hence
M satisfies (CCL).

(ii) =⇒ (i): Now, let M satisfy (CCL). Consider any arbitrary x, y ∈ [0, 1]. Then
either n(x) > y or n(x) ≤ y.
If n(x) > y, then by Lemma 1 (ii) we see that M(x, y) = 0 and hence

LHS (1) = I(x,M(x, y)) = I(x, 0) = n(x) = max(n(x), y) = RHS (1).

If n(x) ≤ y and M(x, y) = 0 then by Lemma 1(i) we have that n(x) ≥ y
and hence n(x) = y and it reduces to the above case. Hence let M(x, y) > 0.
Then

RHS (1) = max(n(x), y) = y .

We claim now that LHS (1) = I(x,M(x, y)) = y . If this were not true, then
there exists 1 ≥ z > y (z �< y by the monotonicity of M) such that

I(x,M(x, y)) = sup{t ∈ [0, 1] |M(x, t) ≤M(x, y)} = z.
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This implies that there exists a w ∈ (0, 1) such that z > w > y and
M(x,w) ≤ M(x, y), which by the monotonicity of t-subnorm implies that
M(x,w) = M(x, y) with w � y, a contradiction to the fact that M satisfies
(CCL). Thus the adjoint pair (I,M) satisfies (1). ��

Example 1. Consider the product t-norm TP(x, y) = xy, which is a strict t-
norm and hence continuous and Archimedean, whose residual is the Goguen
implication given by

IGG(x, y) =

{
1, if x ≤ y,
y

x
, if x > y.

It can be easily verified that the pair (TP, IGG) does indeed satisfy (1) whereas
the natural negation of TP is the Gödel negation

nTP(x) = IGG(x, 0) =

{
1, if x = 0,
0, if x > 0.

This example clearly shows that the remark of U.Höhle, Remark 1, is not always
true. In the following we give an equivalence condition under which it is true.

Theorem 2. Let T be a continuous t-norm that satisfies (1) along with its resid-
ual. Then the following are equivalent:

(i) T is nilpotent.
(ii) nT is strong.

Proof. (i) =⇒ (ii): Obvious.
(ii) =⇒ (ii): If T is continuous and satisfies (1) along with its residual then, from

Theorem 1, T is conditionally cancellative and hence necessarily Archimedean
by [5], Proposition 2.15 (ii). Thus T is either nilpotent or strict. If T is contin-
uous with a strong natural negation, clearly, T has zero-divisors and hence T
is nilpotent. ��

4 Conditional Cancellativity and Unit Element

From the above remarks we note that when the natural negation of the under-
lying conjunction (a continuous t-norm, in the above case) is strong the class
of conjunctions that satisfy (1) along with its residual gets restricted. Hence we
study the class of t-subnorms M that satisfy (1) along with its residual and
whose natural negations are strong. In other words, we seek the characteriza-
tion of the class of conditionally cancellative t-subnorms with strong natural
negations.

Let us recall from the remark following Definition 4 that the natural negation
of a t-subnorm nM need not be a fuzzy negation. If a t-subnorm has 1 as its
neutral element, i.e., if it is a t-norm, then we have

M(1, y) = 0 ⇐⇒ y = 0,
i.e., y = sup{t|M(1, t) = 0} = nM (1) = 0.
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Equivalently, by the monotonicity of M we have that nM is a fuzzy negation.
However, this is only a necessary and not a sufficient condition.

Note that, so far, no general result giving equivalence conditions under which
a t-subnorm becomes a t-norm is available. It was Jenei [3] who proposed some
suficiency conditions and showed that left-continuous t-subnorms with strong
natural negations are t-norms, i.e., 1 does become a neutral element.

In the following we give an equivalence condition for a conditionally cancella-
tive t-subnorm to be a t-norm and show that in the case nM is a strong negation
then M always is a t-norm.

Lemma 2. Let M be a conditionally cancellative t-subnorm. Let M(1, y0) = y0,
for some y0 ∈ (0, 1].

(i) Then M(1, y) = y for all y ∈ [y0, 1].
(ii) Let y∗ = sup{t|M(1, t) = 0} = nM (1). Then M(1, y) = y for all y ∈ (y∗, y0].

Proof. Let M(1, y0) = y0, for some y0 ∈ (0, 1].

(i) Let y0 < y ≤ 1. Clearly, y0 = M(1, y0) < M(1, y) ≤ y. If M(1, y) = y′ < y,
then by associativity and conditional cancellativity we have

M(M(1, y0), y) = M(y0, y)

M(M(1, y), y0) = M(y′, y0)

⎫⎬⎭ =⇒M(y0, y) = M(y0, y′) =⇒ y = y′ ,

i.e., M(1, y) = y for all y ≥ y0.
(ii) Let y∗ < y ≤ y0. Clearly, y0 = M(1, y0) > y ≥ M(1, y) = y′. If M(1, y) =

y′ < y, then, once again, by associativity and conditional cancellativity we
have

M(M(1, y0), y) = M(y0, y)

M(M(1, y), y0) = M(y′, y0)

⎫⎬⎭ =⇒M(y0, y) = M(y0, y′) =⇒ y = y′ ,

i.e., M(1, y) = y for all y ∈ (y∗, y0]. ��

Based on the above result, we now have the following equivalence condition for
a conditionally cancellative t-subnorm to be a t-norm:

Theorem 3. Let M be any conditionally cancellative t-subnorm. Then the fol-
lowing are equivalent:

(i) M is a t-norm.
(ii) nM is a negation and M(1, y0) = y0, for some y0 ∈ (0, 1].

Proof. Sufficiency is obvious. Necessity follows from the fact that if nM is a
negation then y∗ = 0 in Lemma 2 above. ��

The final result of this work shows that in the case nM is a strong negation then
M always is a t-norm.
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Theorem 4. Let M be any conditionally cancellative t-subnorm. If nM is a
strong natural negation then M is a t-norm.

Proof. Our approach will be to show that M(1, 1) = 1 and then the result
follows easily from Theorem 3. Note also that since nM is a strong negation,
we have that nM (x) = 1 ⇐⇒ x = 0 and nM (x) = 0 ⇐⇒ x = 1. Equivalently,
M(1, x) = 0 ⇐⇒ x = 0.

On the contrary, let us assume that M(1, y) < y for all y ∈ (0, 1]. In particular,
M(1, 1) = z such that 0 < z < 1. Since nM is strong, there exists a z′ ∈ (0, 1)
such that z = nM (z′). We claim that z′ = 0 and hence z = 1.

If not, then there exists 0 < z′′ < z′ and by the definition of nM we have
that M(z, z′′) = 0. Also, by our assumption 0 < M(1, z′′) = z∗ < z′′. Now, by
associativity and conditional cancellativity we have

M(M(1, 1), z′′) = M(z, z′′)
M(M(1, z′′), 1) = M(z∗, 1)

}
=⇒M(z, z′′) = 0 = M(z∗, 1)

=⇒ z∗ = 0 ,

a contradiction. Thus z = 1 and hence we have the result. ��

5 Concluding Remarks

In this work we have solved a more generalised version of an open problem
of U.Höhle and shown that the solution gives a characterization of all con-
ditionally cancellative t-subnorms. Further, by proving an equivalence condi-
tion for a conditionally cancellative t-subnorm to be a t-norm, we have shown
that conditionally cancellative t-subnorms with involutive natural negations are
t-norms.
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1. Baczyński, M., Jayaram, B.: Fuzzy Implications. In: Studies in Fuzziness and Soft
Computing, vol. 231. Springer, Heidelberg (2008)

2. Demirli, K., De Baets, B.: Basic properties of implicators in a residual framework.
Tatra Mount. Math. Publ. 16, 31–46 (1999)

3. Jenei, S.: Continuity of left-continuous triangular norms with strong induced nega-
tions and their boundary condition. Fuzzy Sets and Systems 124, 35–41 (2001)

4. Jayaram, B., Mesiar, R.: I-Fuzzy Equivalence Relations and I-Fuzzy Partitions.
Info. Sci. 179, 1278–1297 (2009)

5. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer, Dordrecht (2000)
6. Klement, E.P., Mesiar, R., Pap, E.: Problems on triangular norms and related

operators. Fuzzy Sets and Systems 145, 471–479 (2004)
7. Ouyang, Y., Li, J., Fang, J.: A conditionally cancellative left-continuous t-norm is

not necessarily continuous. Fuzzy Sets and Systems 157, 2328–2332 (2006)
8. Ouyang, Y., Li, J.: An answer to an open problem on triangular norms. Info.

Sci. 175, 78–84 (2005)



682 B. Jayaram
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Abstract. In this paper, we study different methods to construct tri-
angular operations (t-norms and t-conorms) on the bounded distributive
lattice AL

1 , of discrete fuzzy numbers whose support is a subset of consec-
utive natural numbers on a finite chain L of consecutive natural numbers.
Moreover, we propose a method to compare two t-norms (t-conorms) de-
fined on AL

1 .

1 Introduction

Triangular norms (t-norms in short) on the unit interval were systematically inves-
tigated in the sixties by Schweizer and Sklar [12] in the framework of probabilistic
metric spaces. Moreover, these authors introduced triangular conorms (t-conorms
in short) as dual operations of t-norms. Since then, they are a useful tool for defin-
ing the intersection and union of fuzzy sets, and for modelling the logic connectives
conjunction and disjunction in fuzzy logic. Due to the close connection between or-
der theory and fuzzy set theory, see e.g.[8], several authors have investigated with
t-norms and t-conorms on a general bounded partially ordered set (finite chains,
product lattices, real unit square, etc), see e.g [1,9,11,15] and many others.

Voxman [13], introduced the concept of discrete fuzzy number such as a fuzzy
subset on R with discrete support and analogous properties to a fuzzy number. It
is well known that, arithmetic and lattice operations between fuzzy numbers are
defined using the Zadeh’s extension principle [10]. But, in general, for discrete
fuzzy numbers this method fails [2,3,4,14]. We have studied this drawback [2,3,4]
and we have obtained new closed operations in the set of discrete fuzzy numbers.
In particular, we showed [5] that A1, the set of discrete fuzzy numbers whose
support is a sequence of consecutive natural numbers, is a distributive lattice.
In this lattice, we considered a partial order, obtained in a usual way, from the
lattice operations of this set. So, from this partial order, we investigated [6] the
extension of monotone operations defined on a discrete setting to a closed binary
operation of discrete fuzzy numbers and also, we investigated different properties
such as the monotonicity, commutativity and associativity.

The aim of this article is the exposition of two methods to construct tri-
angular operations (t-norms and t-conorms) defined on the bounded distribu-
tive lattice AL

1 = {A ∈ A1 | supp(A) ⊆ L}, where L denotes the finite chain

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 683–692, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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L = {0, 1, · · · , n}. The first method is based on the result obtained in our ar-
ticle [6] and the second method is based on the representation of intuitionistic
fuzzy t-norms and t-conorms [7]. Moreover, we propose the comparison of two t-
norms(t-conorms) defined onAL

1 from the comparison of two t-norms(t-conorms)
defined on L.

2 Preliminaries

2.1 Triangular Norms and Conorms on Partially Ordered Sets

Let (P ;≤) be a non-trivial bounded partially ordered set (poset) with ”e” and
”m” as minimum and maximum elements respectively.

Definition 1. [1,15]A triangular norm (briefly t-norm) on P is a binary op-
eration T : P × P → P such that for all x, y, z ∈ P the following axioms are
satisfied:

1. T (x, y) = T (y, x) (commutativity)
2. T (T (x, y), z) = T (x, T (y, z)) (associativity)
3. T (x, y) ≤ T (x′, y′) whenever x ≤ x′, y ≤ y′ (monotonicity)
4. T (x,m) = x (boundary condition)

Definition 2. A triangular conorm (t-conorm for short) on P is a binary op-
eration S : P × P → P which, for all x, y, z ∈ P satisfies (1), (2), (3) and (4′):
S(x, e) = x, as boundary condition.

2.2 Triangular Norms and Conorms on Discrete Settings

Let L be the totally ordered set L = {0, 1, . . . , n} ⊂ N. A t-norm(t-conorm)
defined on L will be called a discrete t-norm(t-conorm).

Definition 3. [11] A t-norm(t-conorm) T (S) : L×L→ L is said to be smooth
if it satisfies T (S)(x+1, y)−T (S)(x, y) ≤ 1 and T (S)(x, y+1)−T (S)(x, y) ≤ 1.

Definition 4. [11] A t-norm(t-conorm) T : L×L→ L is said to be divisible if it
satisfies: For all x, y ∈ L with x ≤ y, there is z ∈ L such that x = T (y, z)(y =
S(x, z)).

Proposition 1. [11] Given a t-norm(t-conorm) T (S) on L, it is equivalent:

1. T (S) is smooth
2. T (S) is divisible

2.3 Discrete Fuzzy Numbers

By a fuzzy subset of R, we mean a function A : R → [0, 1]. For each fuzzy subset
A, let Aα = {x ∈ R : A(x) ≥ α} for any α ∈ (0, 1] be its α-level set ( or α-cut).
By supp(A), we mean the support of A, i.e. the set {x ∈ R : A(x) > 0}. By A0,
we mean the closure of supp(A).
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Definition 5. [13] A fuzzy subset A of R with membership mapping A : R →
[0, 1] is called discrete fuzzy number if its support is finite, i.e., there exist real
numbers x1, ..., xn ∈ R with x1 < x2 < ... < xn such that supp(A) = {x1, ..., xn},
and there are natural numbers s, t with 1 ≤ s ≤ t ≤ n such that:

1. A(xi)=1 for any natural number i with s ≤ i ≤ t ( core)
2. A(xi) ≤ A(xj) for each natural number i, j with 1 ≤ i ≤ j ≤ s
3. A(xi) ≥ A(xj) for each natural number i, j with t ≤ i ≤ j ≤ n

Remark 1. If the fuzzy subset A is a discrete fuzzy number then the support of
A coincides with its closure, i.e. supp(A) = A0.

From now on, we will denote the set of discrete fuzzy numbers by DFN and the
abbreviation dfn will denote a discrete fuzzy number.

Theorem 1. [14] (Representation of discrete fuzzy numbers) Let A be a discrete
fuzzy number. Then the following statements (1)-(4) hold:

1. Aα is a nonempty finite subset of R, for any α ∈ [0, 1]
2. Aα2 ⊆ Aα1 for any α1, α2 ∈ [0, 1] with 0 ≤ α1 ≤ α2 ≤ 1
3. For any α1, α2 ∈ [0, 1] with 0 ≤ α1 ≤ α2 ≤ 1, if x ∈ Aα1 − Aα2 we have
x < y for all y ∈ Aα2 , or x>y for all y ∈ Aα2

4. For any α0 ∈ (0, 1], there exist some real numbers α
′
0 with 0 < α′

0 < α0 such
that Aα′

0 = Aα0 ( i.e. Aα = Aα0 for any α ∈ [α′
0, α0]).

Theorem 2. [14] Conversely, if for any α ∈ [0, 1], there exists Aα ⊂ R satisfy-
ing analogous conditions to the (1)-(4)of Theorem 1, then there exists a unique
A ∈ DFN such that its α-cuts are exactly the sets Aα for any α ∈ [0, 1].

Throughout this article, if X and Y are subsets of real numbers
X
∧

Y = min(X,Y) = {z = min(x, y) | x ∈ X, y ∈ Y} and
X
∨

Y = max(X,Y) = {z = max(x, y) | x ∈ X, y ∈ Y}.

2.4 Maximum and Minimum of Discrete Fuzzy Numbers

Let A,B be two dfn and Aα = {xα
1 , · · · , xα

p }, Bα = {yα
1 , · · · , yα

k } their α-cuts
respectively.

In [4], for each α ∈ [0, 1], we consider the following sets,

minw(A,B)α = {z ∈ supp(A)
∧
supp(B)|min(xα

1 , y
α
1 ) ≤ z ≤ min(xα

p , y
α
k )} and

maxw(A,B)α = {z ∈ supp(A)
∨
supp(B)|max(xα

1 , y
α
1 ) ≤ z ≤ max(xα

p , y
α
k )}

where supp(A)
∧
supp(B) = {z = min(x, y)|x ∈ supp(A), y ∈ supp(B)} and

supp(A)
∨
supp(B) = {z = max(x, y)|x ∈ supp(A), y ∈ supp(B)}.

Proposition 2. [4] There exist two unique discrete fuzzy numbers, that we will
denote by minw(A,B) and maxw(A,B), such that they have the previous sets
minw(A,B)α and maxw(A,B)α as α-cuts respectively.
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The following result is not true, in general, for the set of discrete fuzzy numbers[5].

Proposition 3. [5] The triplet (A1,minw,maxw) is a distributive lattice, where
A1 denotes the set of discrete fuzzy numbers whose support is a sequence of
consecutive natural numbers.

Remark 2. [5] Using these operations, we can define a partial order on A1 on
the usual way:
A  B if and only if minw(A,B) = A, or equivalently, A  B if and only if
maxw(A,B) = B for any A,B ∈ A1. Equivalently, we can also define the partial
ordering in terms of α-cuts:
A  B if and only if min(Aα, Bα) = Aα

A  B if and only if max(Aα, Bα) = Bα

2.5 Discrete Fuzzy Numbers Obtained by Extending Discrete
t-Norms(t-Conorms) Defined on a Finite Chain

Let us consider a discrete t-norm(t-conorm) T (S) on the finite chain L =
{0, 1, · · · ,m} ⊂ N. Let DL be the subset of the discrete fuzzy numbers DL =
{A ∈ DFN such that supp(A) ⊆ L} and A,B ∈ DL. If X and Y are subsets
of L, then the subset {T (x, y)|x ∈ X, y ∈ Y} ⊆ L will be denoted by T (X,Y).
Analogously, S(X,Y) = {S(x, y)|x ∈ X, y ∈ Y}.

So, if we consider the α-cut sets, Aα = {xα
1 , ..., x

α
p }, Bα = {yα

1 , ..., y
α
k },

for A and B respectively then T (Aα, Bα) = {T (x, y)|x ∈ Aα, y ∈ Bα} and
S(Aα, Bα) = {S(x, y)|x ∈ Aα, y ∈ Bα} for each α ∈ [0, 1], where A0 and B0

denotes supp(A) and supp(B) respectively.

Definition 6. [6]For each α ∈ [0, 1], let us consider the sets

Cα = {z ∈ T (supp(A), supp(B))|minT (Aα, Bα) ≤ z ≤ maxT (Aα, Bα)}

Dα = {z ∈ S(supp(A), supp(B))|minS(Aα, Bα) ≤ z ≤ maxS(Aα, Bα)}

Remark 3. [6]From the monotonicity of the t-norm(t-conorm) T (S),

Cα = {z ∈ T (supp(A), supp(B))|T (xα
1 , y

α
1 ) ≤ z ≤ T (xα

p , y
α
k )}

Dα = {z ∈ S(supp(A), supp(B))|S(xα
1 , y

α
1 ) ≤ z ≤ S(xα

p , y
α
k )}

For α = 0 then C0 = T (supp(A), supp(B)) and D0 = S(supp(A), supp(B)).

Theorem 3. [6] There exists a unique discrete fuzzy number that will be denoted
by T (A,B)(S(A,B)) such that T (A,B)α = Cα(S(A,B)α = Dα) for each α ∈
[0, 1] and T (A,B)(z) = sup{α ∈ [0, 1] : z ∈ Cα}(S(A,B)(z) = sup{α ∈ [0, 1] :
z ∈ Dα})

Remark 4. [6] From the previous theorem, if T (S) is a discrete t-norm(t-conorm)
on L, we see that it is possible to define a binary operation on DL = {A ∈
DFN |supp(A) ⊆ L},
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T (S) : DL ×DL −→ DL

(A,B) �−→ T (A,B)(S(A,B))

that will be called the extension of the t-norm T (t-conorm S) to DL. Moreover,
T and S are commutative and associative binary operations. Also, if we restrict
these operations on the subset {A ∈ A1 | supp(A) ⊆ L = {0, 1, · · · , n}} ⊆ DL

we showed that T and S are increasing operations as well.

3 Distributive Bounded Lattices on A1

According to proposition 3, we know that A1 constitutes a partially ordered set
which is a lattice. Now, using this fact, we wish to see that the set AL

1 = {A ∈
A1 | supp(A) ⊆ L = {0, 1, · · · , n}} is a bounded distributive lattice with the
operations minw and maxw, considered in definition 2, as lattice operations.

Proposition 4. If A,B ∈ AL
1 then minw(A,B) and maxw(A,B) belong to AL

1 .

Proof. According to proposition 3, if A,B ∈ AL
1 ⊂ A1 then the discrete fuzzy

numbers maxw(A,B) and minw(A,B) ∈ A1. On the other hand, it is easy to see
that the sets supp(A)

∧
supp(B) and supp(A)

∨
supp(B) are subsets of L. So,

minw(A,B)α and maxw(A,B)α are subsets of L for each α ∈ [0, 1]. Hence, the
discrete fuzzy numbers minw(A,B) and maxw(A,B) belong to the set AL

1 . ��

Theorem 4. The triplet (AL
1 ,minw,maxw) is a bounded distributive lattice.

Proof. The distributive lattice structure stems from propositions 2, 3 and 4.
Moreover, it is straightforward to see that the natural number n, which is the
maximum of the chain L, as a discrete fuzzy number (i.e. it is the discrete fuzzy
number N such that it has only the natural number n as support) is the greatest
element of the distributive lattice AL

1 . Analogously, the natural number 0, which
is the minimum of the chain L, as a discrete fuzzy number (i.e. it is the discrete
fuzzy number O such that it has only the natural number 0 as a support) is the
least element of the distributive lattice AL

1 . ��

4 t-Norms and t-Conorms on (AL
1 , minw, maxw)

In this section, we wish to consider if it is possible to obtain a t-norm(t-conorm)
on some subset of A1 from a discrete triangular norm T (t-conorm S) on L.

Lemma 1. Let us consider T and S being a divisible t-norm and a divisible t-
conorm on L = {0, 1, · · · , n} respectively. If X and Y are subsets of consecutive
natural numbers on L then T (X,Y) and S(X,Y) are subsets of consecutive natural
numbers of L as well, where T (X,Y) = {T (a, b), a ∈ X, b ∈ Y} and S(X,Y) =
{S(a, b), a ∈ X, b ∈ Y}.

Proof. We will only show the case of a divisible t-norm because the proof for a
divisible t-conorm is analogous. From the monotonicity of T we can write the
set T (X,Y) as
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T (X,Y) = {z = T (a, b), a ∈ X, b ∈ Y | T (x, y) ≤ z ≤ T (x+ j, y + k)}

where x, x + j denote the minimum and maximum value of X respectively, and
y, y + k denote the minimum and maximum value of Y respectively. It follows
that if T (x, y) = T (x + j, y + k) then the property holds because in this case
T (X,Y) = {T (x, y)}. Now, let us suppose that there exists c ∈ L such that
c /∈ T (X,Y) and T (a, b) < c < T (a′, b′) with a, a′ ∈ X and b, b′ ∈ Y. Let us
consider

xc = max{t ∈ X such that T (t, s) < c, s ∈ Y }

yc = max{s ∈ Y such that T (t, s) < c, t ∈ X}

xc = min{t ∈ X such that T (t, s) > c, s ∈ Y}

yc = min{s ∈ Y such that T (t, s) > c, t ∈ X}

It is obvious that T (x, y) ≤ T (a, b) ≤ T (xc, yc) < c < T (xc, yc) ≤ T (a′, b′) ≤
T (x + j, y + k). Now, as T is a divisible t-norm on L we know [11] that T is a
smooth t-norm and so, the next inequality T (xc + 1, yc) − T (xc, yc) ≤ 1 holds.
So, from this inequality it is possible to consider two cases:

1. T (xc + 1, yc) = T (xc, yc)
2. T (xc + 1, yc) = T (xc, yc) + 1

In the first case, since xc + 1 > xc and T (xc + 1, yc) = T (xc, yc) < c we obtain a
contradiction with the election of the value of xc.

In the second case, we have two options. Either T (xc + 1, yc) < c, which is
a contradiction with the election of the value xc or T (xc + 1, yz) > c, which is
a contradiction with the existence of the value c, because T (xc + 1, yc) is the
consecutive natural number of T (xc, yc).

On the other hand, from the inequality T (xc, yc)−T (xc−1, yc) ≤ 1 we obtain
similar contradictions as before. �

Lemma 2. Let us consider T and S being a divisible t-norm and a divisible t-
conorm on L = {0, 1, · · · , n} respectively. If A and B are discrete fuzzy numbers
whose supports are sets of consecutive natural numbers of L then T (Aα, Bα)
and S(Aα, Bα) are subsets of consecutive natural numbers of L as well, where
T (Aα, Bα) = {T (a, b), a ∈ Aα, b ∈ Bα} and S(Aα, Bα) = {S(a, b), a ∈ Aα, b ∈
Bα} for all α ∈ [0, 1].

Proof. It is straightforward from lemma 1. ��

Remark 5. Let us point out from the previous lemmas that if X,Y are sets of
consecutive natural numbers the set T (X,Y) = {T (x, y) | x ∈ X y ∈ Y} can
be expressed as T (X,Y) = {z ∈ N | T (x1, y1) ≤ z ≤ T (xp, yk)} where x1, xp

denote the minimum and the maximum of X respectively and y1, yk denote the
minimum and the maximum of Y respectively.
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Theorem 5. Let T (S) be a divisible t-norm(t-conorm) on L and let

T (S) : AL
1 ×AL

1 → AL
1

(A,B) �−→ T (S)(A,B)

be the extension of t-norm(t-conorm) T (S) to AL
1 , defined according to theorem

3. Then, T (S) is a t-norm(t-conorm) on the bounded set AL
1 .

Proof. First of all, as T is a closed binary operation on L, since lemma 2, the
binary operation T is closed on AL

1 . Moreover, from remark 4 we know that T
is an associative, a commutative and an increasing binary operation. Finally, let
us consider the natural number n, which is the maximum of the chain L like a
discrete fuzzy number, (i.e., it is the discrete fuzzy number N such that it has
only the natural number n as support). Then, it is easy to see that T (A,N) = A,
because of T (A,N)α =

= {z ∈ T (suppA, n)|T (xα
1 , n) ≤ z ≤ T (xα

p , n)} =

= {z ∈ suppA|xα
1 ≤ z ≤ xα

p } = Aα for all α ∈ [0, 1]. �

Now, we will see that it is possible to construct a t-norm(t-conorm) on AL
1

from two divisible t-norms(t-conorms) T1, T2(S1, S2) defined on L such that
T1(x, y) ≤ T2(x, y)(S1(x, y) ≤ S2(x, y)) for all (x, y) ∈ L× L.

Proposition 5. Let T1, T2(S1, S2) be two discrete t-norms(t-conorms) on L such
that T1 ≤ T2(S1 ≤ S2), and A,B ∈ AL

1 . For each α ∈ [0, 1], let us consider the
sets TT1,T2(A,B)α = {z ∈ L|min(T1(Aα, Bα)) ≤ z ≤ max(T2(Aα, Bα))}, and
SS1,S2(A,B)α = {z ∈ L|min(S1(Aα, Bα)) ≤ z ≤ max(S2(Aα, Bα))}. Then,
there exist two discrete fuzzy numbers, that will be denoted by TT1,T2(A,B)
and SS1,S2(A,B) respectively such that they have the sets TT1,T2(A,B)α and
SS1,S2(A,B) as α-cuts.

Proof. We wish to show that the subsets TT1,T2(A,B)α satisfy the conditions 1-4
of theorem 1 of representation of discrete fuzzy numbers because afterwards we
can apply theorem 2 and the proposition turns out.

1. TT1,T2(A,B)α is a nonempty finite set, becauseAα andBα are both nonempty
finite sets (the discrete fuzzy numbers are normal fuzzy subsets) and according
to lemma 2, T1(Aα, Bα) and T2(Aα, Bα) are finite sets of consecutive natural
numbers.

2. TT1,T2(A,B)β ⊆ TT1,T2(A,B)α for any α, β ∈ [0, 1] with 0 ≤ α ≤ β ≤ 1,
because if A,B ∈ AL

1 and

Aα = {xα
1 , ..., x

α
p }, Aβ = {xβ

1 , ..., x
β
r },

Bα = {yα
1 , ..., y

α
k }, Bβ = {yβ

1 , ..., y
β
l },

then

Aβ ⊆ Aα implies xα
1 ≤ xβ

1 and xβ
r ≤ xα

p (1)

Bβ ⊆ Bα implies yα
1 ≤ yβ

1 and yβ
l ≤ yα

k (2)
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Then, from the monotonicity of the t-norms T1, T2, and according to hy-
pothesis T1 ≤ T2 and finally by the relations (1) and (2) we obtain:

T1(xα
1 , y

α
1 ) ≤ T1(xβ

1 , y
β
1 ) ≤ T2(xβ

1 , y
β
1 ) ≤ T2(xβ

r , y
β
l ) ≤ T2(xα

p , y
α
k )

Hence, combining the previous conditions the result holds.
3. If x ∈ TT1,T2(A,B)α hence x ∈ L and x does not belong to TT1,T2(A,B)β ,

then either x < T1(xβ
1 , y

β
1 ), which is the minimum of TT1,T2(A,B)β , or x >

T2(xβ
r , y

β
l ), which is the maximum of TT1,T2(A,B)β .

4. As A,B ∈ AL
1 , from Theorem 1 of representation of discrete fuzzy numbers,

for each α ∈ (0, 1] there exist real numbers α′
1 and α′

2 with 0 < α′
1 < α and

0 < α′
2 < α such that for each r ∈ [α′

1, α], Aα = Ar and moreover Bα = Br,
for each r ∈ [α′

2, α]. Thus, if α′ = α′
1 ∨ α′

2, we can obtain:

min(Ar) = min(Aα) and max(Ar) = max(Aα)
min(Br) = min(Bα) and max(Br) = max(Bα)

for each r ∈ [α′, α]. Therefore

T1(min(Ar),min(Br)) = T1(min(Aα),min(Bα))
T2(max(Ar),max(Br)) = T2(max(Aα),max(Bα))

Hence,
TT1,T2(A,B)α =

{z ∈ L|T1(min(Aα),min(Bα)) ≤ z ≤ T2(max(Aα),max(Bα))} =

{z ∈ L|T1(min(Ar),min(Br)) ≤ z ≤ T2(max(Ar),max(Br))} =

TT1,T2(A,B)r for each r ∈ [α′, α] ��

Proposition 6. The discrete fuzzy numbers TT1,T2(A,B) and SS1,S2(A,B) be-
long to AL

1 for all A,B ∈ AL
1 .

Proof. According to proposition 5 we know that TT1,T2(A,B) andSS1,S2(A,B) are
discrete fuzzy numbers. Moreover, it is obvious that theirα-cuts TT1,T2(A,B)α and
SS1,S2(A,B)α are subsets of consecutive natural numbers for all α ∈ [0, 1]. Hence,
TT1,T2(A,B),SS1,S2(A,B) ∈ AL

1 . ��

Theorem 6. Let T1 ≤ T2(S1 ≤ S2) be divisible t-norms(t-conorms) on L and let

TT1,T2(SS1,S2) : AL
1 ×AL

1 �−→ AL
1

(A,B) → TT1,T2(SS1,S2)(A,B)

be a binary operation, where TT1,T2(SS1,S2)(A,B) are the discrete fuzzy numbers
considered in the previous proposition 5. Then, TT1,T2(SS1,S2) is a t-norm(t-
conorm) on the bounded set AL

1 .

Proof. The commutativity and associativity properties stem from the commuta-
tivity and associativity properties of the discrete t-norms T1 and T2. Now, we wish
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to show that TT1,T2 is an increasing mapping, i.e. for each A,B,C ∈ AL
1 such that

B  C (where  is the partial order defined in remark 2) then TT1,T2(A,B)  
TT1,T2(A,C), i.e. minw(TT1,T2(A,B), TT1,T2(A,C)) = TT1,T2(A,B). This last rela-
tion is equivalent to see that minw(TT1,T2(A,B), TT1,T2(A,C))α = TT1,T2(A,B)α

for all α ∈ [0, 1] where TT1,T2(A,B)α = {z ∈ L|T1(xα
1 , y

α
1 ) ≤ z ≤ T2(xα

p , y
α
k )} and

TT1,T2(A,C)α = {z ∈ L|T1(xα
1 , w

α
1 ) ≤ z ≤ T2(xα

p , w
α
l )} with Aα = {xα

1 , ..., x
α
p },

Bα = {yα
1 , ..., y

α
k }, Cα = {wα

1 , ..., w
α
l } for A, B and C respectively.

Since remark 2, we know that the fact B  C, implies that min(Bα, Cα) = Bα

and yα
1 ≤ wα

1 , yα
k ≤ wα

l for all α ∈ [0, 1]. According to these last relations and
from the monotonicity of T1, T2 and the condition T1 ≤ T2 we obtain that
T1(xα

1 , y
α
1 ) ≤ T1(xα

1 , w
α
1 ) and T2(xα

p , y
α
k ) ≤ T2(xα

p , w
α
l ).

Therefore, minw(TT1,T2(A,B), TT1,T2(A,C))α =

= {z ∈ supp(TT1,T2(A,B))
∧
supp(TT1,T2(A,C))|

min(T1(xα
1 , y

α
1 ), T1(xα

1 , w
α
1 )) ≤ z ≤ min(T2(xα

p , y
α
k ), T2(xα

p , w
α
l ))} =

={z ∈ supp(TT1,T2(A,B))
∧
supp(TT1,T2(A,C))|T1(xα

1 , y
α
1 ) ≤ z ≤ T2(xα

p , y
α
k )}=

(As supp(TT1,T2(A,B)) and supp(TT1,T2(A,C)) are subsets of consecutive natural
numbers)

= {z ∈ supp(TT1,T2(A,B))|T1(xα
1 , y

α
1 ) ≤ z ≤ T2(xα

p , y
α
k )} = TT1,T2(A,B)α.

Finally, let us consider the natural number n, which is the maximum of the
chain L like a discrete fuzzy number, (i.e., it is the discrete fuzzy number N
such that it has only the natural number n as support). Then, it is easy to see
that TT1,T2(A,N) = A, because of TT1,T2(A,N)α = {z ∈ L|T1(xα

1 , n) ≤ z ≤
T2(xα

p , n)} = {z ∈ L|xα
1 ≤ z ≤ xα

p } = Aα for all α ∈ [0, 1]. ��

4.1 Comparison of t-Norms and t-Conorms on AL
1

It is well known [11] that the comparison of t-norms(t-conorms) defined on a
finite chain L is done in the usual way, i.e., pointwise. So,

Proposition 7. Let us consider T1(S1) and T2(S2) two divisible t-norms
(t-conorms) on the finite chain L = {0, 1, · · · , n} verifying T1(S1)(x, y) ≤ T2(S2)
(x, y) for all (x, y) ∈ L×L. Then, for all A,B ∈ AL

1 the inequality T1(S1)(A,B)  
T2(S2)(A,B) holds.

Proof. From remark 2, it is enough to see that

min(T1(A,B)α, T2(A,B)α) = T1(A,B)α

for all α ∈ [0, 1], where (T 1(A,B))0 and (T 2(A,B))0 denote the supports of
T 1(A,B) and T 2(A,B) respectively. For this reason, let us consider the α-cuts
Aα = {xα

1 , · · · , xα
p } and Bα = {yα

1 , · · · , yα
k } for A,B respectively. So, from
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lemma 2 T1(A,B)α = {z ∈ N | T1(xα
1 , y

α
1 ) ≤ z ≤ T1(xα

p , y
α
k )} and T2(A,B)α =

{z ∈ N | T2(xα
1 , y

α
1 ) ≤ z ≤ T2(xα

p , y
α
k )} are sets of consecutive natural numbers

because T1 and T2 are divisible t-norms on L and A,B ∈ AL
1 , then

min(T1(A,B)α, T2(A,B)α) =

{z = min(x, y) | x ∈ T1(A,B)α, y ∈ T2(A,B)α} =

{z ∈ N | min(T1(xα
1 , y

α
1 ), T2(xα

1 , y
α
1 )) ≤ z ≤ min(T1(xα

p , y
α
k ), T2(xα

p , y
α
k ))} = ( As

T1(x, y) ≤ T2(x, y) for all x, y ∈ L)={z ∈ N | T1(xα
1 , y

α
1 ) ≤ z ≤ T1(xα

p , y
α
k )}=

T1(A,B)α. ��
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Abstract. A class of extended aggregation operators, called impact functions,
is proposed and their basic properties are examined. Some important classes
of functions like generalized ordered weighted averaging (OWA) and ordered
weighted maximum (OWMax) operators are considered. The general idea is il-
lustrated by the Producer Assessment Problem which includes the scientometric
problem of rating scientists basing on the number of citations received by their
publications. An interesting characterization of the well known h-index is given.

Keywords: aggregation, extended aggregation function, OWA, OWMax,
h-index, scientometrics.

1 Introduction

Aggregation plays a central role in many areas of the human activity, including not only
statistics, engineering, computer science or physics but also decision making, economy
and social sciences. It appears always when the reasoning requires merging several
values into a single one which may represent a kind of synthesis for all individual
inputs. Such functions projecting multidimensional numerical space of input values into
one dimension are generally called aggregation operators.

Apart from particular applications the theory of aggregation operators is a rapidly
developing mathematical domain (we refer the reader to [6] for the recent state of art
monograph).

Classically, aggregation operators are usually considered for a fixed number of ar-
guments. For some applications it may be to restrictive. We face such a situation in
the so-called Producer Assessment Problem where given alternatives are rated not only
with respect to the quality of delivered items but also to their productivity. As a typ-
ical example we may indicate the problem of rating scientists by their publications’
citations.

This is the reason that the aggregation operators defined for arbitrary number of ar-
guments are of interest. In the paper we propose the axiomatic approach to such a class
of extended aggregation operators, called impact functions, and discuss some interest-
ing properties of such functions for different arities. We also study the properties of the
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generalized versions of some well known classes of aggregation operators like gener-
alized ordered weighted averaging (OWA) and ordered weighted maximum (OWMax)
operators. It is worth noting that well-known Hirsch h-index turns out to be a particular
example of the latter family.

2 Preliminaries

2.1 Basic Notation

We adopt the notational convention from the recent monograph [6].
Let I = [a, b] denote any nonempty closed interval of extended real numbers R̄ =

[−∞,∞]. In this paper we assume that 0 · ∞ = 0. Unless stated otherwise, n,m ∈ N.
Let N0 = {0, 1, 2, . . .} denote the set of all nonnegative integers. Moreover, let

[n] := {1, 2, . . . , n}.
The set of all vectors of arbitrary length with elements in I, i.e.

⋃∞
n=1 In, will be

denoted by I1,2,....
Given any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In, we write x ≤ y iff (∀i ∈ [n])

xi ≤ yi. Moreover, (n ∗ x) is equivalent to (x, x, . . . , x) ∈ In.
Let x(i) denote the ith-smallest value of x = (x1, . . . , xn). For simplicity of nota-

tion, we assume that x(n+j) := x(n) for j = 1, 2, . . . .
For any x ∈ In and y ∈ Im and any function f defined on In+m the notation f(x,y)

stands for f(x1, . . . , xn, y1, . . . , ym).
If f : X → Y and X ′ ⊂ X then a function f|X′ : X ′ → Y such that (∀x ∈

X ′) f|X′(x) = f(x) is called a restriction of f to X ′. Furthermore, if F is a family of
functions mappingX to Y , then F|X′ := {f|X′ : f ∈ F}.

2.2 Aggregation Functions

Let us recall the notion of the aggregation function, which is often considered in the
literature. Note that it is a particular sublass of the very broad family of aggregation
operators. Here is a slightly modified version of the definition given in [6].

Definition 1. An aggregation function in In = [a, b]n is any function a(n) : In → R̄
which

(nd) is nondecreasing in each variable, i.e. (∀x,y ∈ In) x ≤ y ⇒ a(n)(x) ≤
a(n)(y),

(bl) fulfills the lower boundary condition: infx∈In a(n)(x) = a,
(bu) fulfills the upper boundary condition: supx∈In a(n)(x) = b.

Typical examples of aggregation functions are: sample minimum, maximum, arithmetic
mean, median, and OWA operators. On the other hand, generally sample size, sum and
constant function are not aggregation functions in the above sense.

It is worth noticing that axioms (nd) and (bl) imply a(n)(n ∗ a) = a. We also have
a(n)(n ∗ b) = b by (nd) and (bu).

From now on, let E(I) be the set of all functions F : I1,2,... → R̄.
Now let us extend the class of aggregation functions to any number of arguments.

Our definition agrees with the one given in [6]. Note that quite a different extension was
proposed by Mayor and Calvo in [11].
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Definition 2. An extended aggregation function in I1,2,... is a function A ∈ E(I),
whose restriction a(n) := A|In to In for any n ∈ N is an aggregation function in In.

Note that any extended aggregation function may be regarded as a sequence (a(n))n∈N

of aggregation functions.
The set of all extended aggregation functions in I1,2,... will be denoted EA(I).

3 The Producer Assessment Problem and Impact Functions

Consider a producer (e.g. a writer, scientist, artist, craftsman) and a nonempty set of
his products (e.g. books, papers, works, goods). Suppose that each product is given a
rating (a single number in I = [a, b]), where a denotes the lowest admissible rating.
Here are some typical examples:

Producers Products Rates Discipline

Scientists Scientific articles Number of citations Scientometrics
(see e.g. [7])

Scientific institutes Scientists The h-index Scientometrics
Web servers Web pages Number of in-links Webometrics
Artists Paintings Auction price Auctions

Each possible state of a producer can be described by a point in I1,2,.... The Producer
Assessment Problem (or PAP for short) involves constructing and analyzing functions
which can be used to rate producers. A family of such functions should take into account
two following aspects of producer’s quality:

1. the ability to make highly-rated products,
2. overall productivity.

Clearly, the first component can be described well by a very broad class of (extended)
aggregation functions. However, in practice we are also interested in comparing entities
with different productivity. Therefore, we need some sine qua non conditions for such
assessing functions.

Definition 3. An impact function in I1,2,... is a function J ∈ E(I), I = [a, b] which is

(nd) nondecreasing in each variable: (∀n)(∀x,y ∈ In) x ≤ y ⇒ J(x) ≤ J(y),
(am) arity-monotonic, i.e. (∀n,m)(∀x ∈ In)(∀y ∈ Im) J(x) ≤ J(x,y),
(sy) symmetric, i.e. (∀n)(∀x ∈ In) (∀σ ∈ S[n]) J(x1, . . . , xn) =

J(xσ(1), . . . , xσ(n)), where S[n] denotes the set of all permutations of [n],
(bl) fulfills the lower boundary condition: infx∈I1,2,... J(x) = a,

(wbu) fulfills the weak upper boundary condition: supx∈I1,2,... J(x) ≤ b.

The set of all impact functions will be denoted by EI(I). Note that the set of require-
ments given in Def. 3 is a generalized version of the axiomatization proposed by Woeg-
inger [15,16] for the scientometric impact indices (for other axiomatizations of the
so-called bibliometric impact indices see [8,9,12]).
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The property (am) expresses the intuition that in many applications of the PAP, the
increase in production should not decrease the overall ranking. However, sometimes it
be may be viewed as a weak point, because many aggregation operators are excluded.

Please note that impact functions are not necessarily aggregation functions (in the
sense of Def. 1), because axiom (bu) is replaced by its weaker form (wbu). It is so
because the upper boundary condition together with (am) seems too tight (if some
J ∈ EI(I) fulfills (bu), then — by (bu), (nd), (am) and (sy) — (∀x ∈ In)(∃i ∈ [n])
xi = b implies J(x1, . . . , xn) = b).

4 Axiomatic Approach

4.1 Axiomatic Modeling

Below we discuss a set of properties which may be used to describe behavioral aspects
of classes of impact functions. Formally, a property P of functions in E(I) is just a
subset of E(I). We denote by P(nd), P(am), . . . the properties that appear in Def. 1 and
Def. 3, i.e. some families of functions satisfying axioms (nd), (am), . . . .

The concept of axiomatic modeling in decision making dates back as far as the works
of Arrow [1] (impossibility theorem in the problem of social states ordering) and May
[10] (group decision functions).

One approach considers a characterization of functions, i.e. a finite set of properties
P1, . . . , Pk ⊆ E(I) such that (!∃f) f ∈

⋂k
i=1 Pi. Moreover, that set should be minimal,

i.e. (∀j ∈ [k]) |
⋂k

i=1,i=j Pi| > 1.
In the other approach a family of properties P that seem to be sensible from the

practical point of view is of interest. Unfortunately quite often some of the properties
P1, . . . , Pl ∈ P are contradictory, i.e. P1 ∩· · · ∩Pl = ∅. Therefore, in such a case there
is no perfect (aggregation/impact) function that fulfill all imaginable properties.

4.2 Arity-Free Property

Generally, any two restrictions A|In and A|Im of the extended aggregation function A,
where n �= m, are not necessarily related. However, here we are especially interested
in properties which concern relations between restrictions of aggregation operators for
different arities. Below we propose a formalism that concerns the above mentioned
ideas.

Definition 4. An arity-free property is any P ⊆ E(I) such that{
F|Im : F ∈ P, F|In = f(n)

}
= P |Im

holds (∀n �= m) (∀f(n) ∈ P |In).

A family of all arity-free properties will be denoted by Paf . The other properties are
called arity-dependent. Please notice that depending on the context we implicitly as-
sume some fixed I.

It can be seen easily that four of the axioms in Defs. 1 and 3 can be treated as arity-
free properties, i.e. P(nd), P(bl), P(bu), P(sy) ∈ Paf . However, in general P(am) �∈ Paf .
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4.3 Ordering Property

Each function in E(I) implies a ranking, i.e. a linear (total) ordering relation in a set
of producers’ states. If valuation is expressed by a single numerical value such result
can further be considered as a point-of-reference (e.g. for the author self-improving
process). Therefore, it would be interesting to distinguish a class of properties that con-
cern only the relation between the function values regardless of the particular values
assumed by these functions.

Definition 5. An ordering property is any P ⊆ E(I) such that the following condition

F ∈ P =⇒ g ◦ F ∈ P

holds for any nondecreasing function g : R̄ → R̄, where ◦ marks function composition,
i.e. (g ◦ F)(x) = g(F(x)).

A family of all ordering properties will be denoted by Pord. Note that P(nd), P(am),
P(sy) ∈ Pord, but generally P(bl) and P(bu) �∈ Pord.

Even though being obvious the following proposition is worth of explicit stating.

Proposition 1. Any impact function cannot be defined by means of ordering properties
only.

Proof. Assume conversely that F is a unique function such that F ∈ P1 ∩ P2 ∩ . . . , for
some (possibly finite) sequence P1, P2, · · · ⊆ Pord. Take any nondecreasing g : Ī → R̄
and let F′ := g ◦ F. We have F ∈ P1 and F′ ∈ P1. For any i = 2, 3, . . . we have either
F′ ∈ P1 ∩ · · · ∩ Pi or P1 ∩ · · · ∩ Pi = ∅, which contradicts our assumption. �

Proposition 1 can also be formulated as follows: Any intersection of ordering properties
is also an ordering property.

4.4 Further Results

The following lemma allows to check efficiently whether a non-decreasing function is
arity-monotonic.

Lemma 1. For any F ∈ P(nd) we have

F ∈ P(am) ⇐⇒ (∀x ∈ I1,2,...) F(x) ≤ F(x,min I).

Proof. (⇒) Trivial.
(⇐) Fix x ∈ In and y ∈ Im for some n and m. We have F(x) ≤ F(x,min I) ≤

F(x, 2 ∗ min I) ≤ · · · ≤ F(x,m ∗ min I) ≤ F(x,y) by (nd), since (x,m ∗ min I) ≤
(x,y). �

In addition to axiom (am) some other reasonable arity-dependent conditions could be
considered.

It can sometimes be justifiable to treat the value a = min I as the “minimal ad-
missible quality”. Adding new products with such rate (negligible elements) should not
affect the overall ranking.
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Definition 6. We say that a function F ∈ E(I) is zero-insensitive (denoted F ∈ P(zi))
iff F(x, a) = F(x) for any x ∈ I1,2,....

We have P(zi) ∩ P(nd) ⊆ P(am) ∩ P(nd) (by Lemma 1) and P(zi) ∈ Pord.

Definition 7. We say that a function F ∈ P(bl) ∩ P(wbu) satisfies condition (s−) (de-
noted F ∈ P(s−)) iff (∀x ∈ I1,2,...) (∀y ∈ I) y ≤ F(x) =⇒ F(x, y) ≤ F(x).

Note that if F ∈ EI(I) then F ∈ P(s−) iff (∀x ∈ I1,2,...) F(x,F(x)) = F(x). We may
also see that F ∈ P(s−) ⇒ F ∈ P(zi).

Definition 8. We say that a function F ∈ P(bl) ∩ P(wbu) satisfies condition (s+) (de-
noted F ∈ P(s+)) iff (∀y ∈ I, y > a) F(y) > a and (∀x ∈ I1,2,...) (∀y ∈ I)
y > F(x) =⇒ F(x, y) > F(x).

Please, notice that both P(s+) and P(s−) �∈ Pord.

5 Exemplary Impact Functions

Below we examine two classes of important and interesting aggregation operators: or-
dered linear combination and ordered conditional maximum which generalize OWA
and OWMax operators, respectively. From now on, let I = [0,∞].

5.1 Ordered Linear Combination

Definition 9. A triangle of coefficients is a sequence! = (ci,n ∈ R̄ : i ∈ [n], n ∈ N).

Such object can be represented by

c1,1
c1,2 c2,2
c1,3 c2,3 c3,3

...
...

...
. . .

Definition 10. Given arbitrary triangle of coefficients! = (ci,n)i∈[n],n∈N the ordered
linear combination associated with ! is a function OLC� ∈ E(I) such that for any
x = (x1, . . . , xn) ∈ I1,2,...

OLC�(x) =
n∑

i=1

ci,n x(n−i+1), (1)

where x(n−i+1) denotes the ith-largest value of x.

A special case of OLC is the class of ordered weighted averaging functions (OWA,
introduced in [17]) with ! = (wi,n)i∈[n],n∈N such that (∀n)

∑n
j=1 wj,n = 1 and

wi,n ∈ [0, 1] for i ∈ [n]. So defined ! is called a weighting triangle (see e.g. [3,4]) as
an extension of OWA for input vectors of arbitrary length).

Lemma 2. For I = [a, b], a ≥ 0, any n ∈ N and given c, c′ ∈ [0,∞]n we have

(∀x ∈ In)
n∑

i=1

ci x(n−i+1) ≥
n∑

i=1

c′i x(n−i+1) ⇐⇒ (∀k ∈ [n])
k∑

i=1

ci ≥
k∑

i=1

c′i. (2)
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Proof.
∑n

i=1 ci x(n−i+1) −
∑n

i=1 c
′
i x(n−i+1) =

∑n−1
i=1 (ci − c′i)

(
x(n−i+1) − x(1)

)
+

x(1)
∑n

i=1(ci−c′i) =
∑n

k=1

(
x(n−k+1) − x(n−k)

)∑k
i=1(ci−c′i) = (∗),where x(0) =

0. For every j ∈ [n] we have x(n−j+1) − x(n−j) ≥ 0 because min I ≥ 0. Therefore

(∗) ≥ 0 holds for all x iff
∑k

i=1(ci − c′i) ≥ 0 for every k ∈ [n]. �

It can be seen easily that we have equality at the left side of (2) iff (∀i ∈ [n]) ci = c′i.

Proposition 2. For I = [0,∞] and any! = (ci,n)n∈N,i∈[n]

a) OLC� ∈ EA(I) iff (∀n) (∀i ∈ [n]) ci,n ≥ 0 and (∃j ∈ [n]) cj,n > 0.
b) OLC� ∈ EI(I) iff (∀n) (∀i ∈ [n]) ci,n ≥ 0 and

∑i
j=1 cj,n+1 ≥

∑i
j=1 cj,n.

An easy proof based on Lemma 1 and 2 is omitted. Axiom (nd) is fulfilled due to the
condition ci,n ≥ 0. Such OLC� is called an ordered conical combination.

Note that for an interval I′ = [a, b], where a ≥ 0 and b < ∞, under (nd), axioms
(bl) and (bu) hold if and only if OLC� is an OWA (a.k.a. ordered convex combination).
In that case the only aggregation function which is an impact function is the sample
maximum Max(x1, . . . , xn) := x(n).

Let us consider other properties mentioned in Sec. 4.4.

Lemma 3. For I = [0,∞] and any ! = (ci,n)n∈N,i∈[n] such that OLC� ∈ EI(I) the
following holds.

a) OLC� ∈ P(zi) iff (∀n)(∀i ∈ [n]) ci,n+1 = ci,n ≥ 0.
b) OLC� ∈ P(s−) iff (∃j ∈ N) (∀n) cj,n = q for j ≥ n and (∀i ∈ [n], i �= j) ci,n =

0, where q ∈ (0, 1].
c) OLC� ∈ P(s+) iff c1,1 > 0 and (∀n) if

∑n
i=1 ci,n < 1 then cn+1,n+1 > 0.

Note that the triangle of coefficients in a) and b) may be replaced by a (infinite-length)
coefficients vector (c1,1, c2,2, c3,3 . . . ).

Proof (Sketch). a) Obvious.
b) Let us fix n. We have to consider 3 cases. 1. If c·,n = (n ∗ 0) then condition

(s+) holds iff c·,n+1 = (n ∗ 0, q) for some q ≥ 0; 2. If c·,n = ((n − 1) ∗ 0, q) for
some q > 0 then (s+) (for any x) iff q ∈ (0, 1] and c·,n+1 = ((n − 1) ∗ 0, q, 0);
3. If c·,n = ((i − 1) ∗ 0, q, (n − i) ∗ 0) for some q ≥ 0 and i ∈ [n − 1] then (s+) iff
c·,n = ((i− 1) ∗ 0, q, (n− i+ 1) ∗ 0).

c) Fix n. For any x ∈ In if
∑j

i=1 ci,n ≥ 1 for some j ≤ n then
∑j

i=1 ci,nx(n−i+1)+
ε > x(n−j+1) for any ε > 0, as ci,n > 0 and therefore OLC�(x,OLC�(x) +
ε) > OLC�(x). If

∑n
i=1 ci,n < 1 then for y = (n ∗ b) OLC�(y) < b and then

OLC�(y,OLC�(y) + ε) > OLC�(y) iff cn+1,n+1 > 0 and the proof is complete. �

Note that both (s−) and (s+) holds if and only if c1,n = 1 and cj,n = 0 for any n and
j > 1, i.e. OLC� is the sample maximum.

5.2 Ordered Conditional Maximum

Definition 11. The ordered conditional maximum associated with a triangle of coef-
ficients ! = (ci,n ∈ I : i ∈ [n], n ∈ N) is a function OCM� ∈ E(I) such that
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OCM�(x) =
n∨

i=1

ci,n ∧ x(n−i+1) (3)

for x = (x1, . . . , xn) ∈ I1,2,....

A particular case of OCM is the ordered weighted maximum operator (OWMax) intro-
duced in [5], defined for I = [0, 1] and such that

∨n
i=1 ci,n = 1 and ci,n ∈ [0, 1].

Furthermore, OCM also generalizes the well-known h-index (see [14]). The h-index
was originally defined by Hirsch [7] for ratings in N0 as a function h such that

h(x1, . . . , xn) = max{i = 0, . . . , n : x(n−i+1) ≥ i}.

It was proposed as a method of assessing scientific merit of individual researchers by
means of the number of citations received by their scientific papers. Its popularity pos-
sibly arose from an appealing interpretation: one has h-index of, say H , if H of his
papers gained at least H and the remaining n − H papers at most H citations. Inter-
estingly, a similar object was earlier defined in the context of Bonferroni-type multiple
significance testing (see e.g. [2]).

Lemma 4. If ! = (ci,n)i∈[n],n∈N such that ci,n = i for n ∈ N and i ∈ [n] then for
any m ∈ N, x1, . . . , xm ∈ I ∩ N0,

OCM�(x1, . . . , xm) = h(x1, . . . , xm).

Proof. Let H = max{i : x(n−i+1) ≥ i}. We have
∨H

i=1 i ∧ x(n−i+1) = H and∨n
i=H+1 i ∧ x(n−i+1) = x(n−H) < H + 1. However, since x(n−H) ∈ N0, then

x(n−H) ≤ H and therefore
∨n

i=1 i ∧ x(n−i+1) = H . �

Note that we have h(2, 1.5) = 1 but OCM�(2, 1.5) = 1.5. Generally, for arbitrary x,
OCM�(x) = max{H,x(n−H)} ∈ [H,H + 1).

Lemma 5. For any I and any n ∈ N, given c, c′ ∈ In we have

(∀x ∈ In)
n∨

i=1

ci∧x(n−i+1) ≥
n∨

i=1

c′i∧x(n−i+1) ⇐⇒ (∀k ∈ [n])
k∨

i=1

ci ≥
k∨

i=1

c′i. (4)

The proof is omitted. Note that if K = {k = 2, 3, . . . , n : ck ≤
∨k−1

i=1 ci} then∨n
i=1 ci ∧ x(n−i+1) =

∨n
i=1,i∈K ci ∧ x(n−i+1). Additionally, it is easily seen that we

have equality at the left side of (4) iff (∀k ∈ [n])
∨k

i=1 ci =
∨k

i=1 c
′
i.

Proposition 3. For any I = [a, b] and any! = (ci,n)i∈[n],n∈N, ci,n ∈ I

a) OCM� ∈ EA(I) iff (∀n) (∃j ∈ [n]) cj,n = b.
b) OCM� ∈ EI(I) iff (∀n) (∀i ∈ [n]) ci,n ≥ a and

∨i
j=1 cj,n+1 ≥

∨i
j=1 cj,n.

The proof is omitted. Let us consider other properties.
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Lemma 6. For any I = [a, b] and any ! = (ci,n)i∈[n],n∈N such that OCM� ∈ EI(I)
the following holds:

a) OCM� ∈ P(zi) iff (∀n)(∀i ∈ [n])
∨i

j=1 cj,n+1 =
∨i

j=1 cj,n.
b) OCM� ∈ P(s−) iff OCM� ∈ P(zi).
c) OCM� ∈ P(s+) iff c1,1 > a and (∀n) if c1,n < b then c1,n+1 >

∨
i∈[n],ci,n<b ci,n.

Proof (Sketch). a) It follows from the remark to Lemma 5.
b) Let us fix n. We should only show that (∀i ∈ [n])

∨i
j=1 cj,n =

∨i
j=1 cj,n+1

implies OCM� ∈ (s−). Let OCM�(x) = cj,n ∧ x(n−j+1) for some j. But

as OCM�(x) ≤ x(n−j+1) and x(n−j+1) ∧
∨n+1

i=j+1 ci,n+1 ≤ x(n−j+1), it holds
OCM�(x,OCM�(x)) = cj,n+1 ∧ x(n−j+2) = cj,n ∧ x(n−j+1) = OCM�(x).

c) Let us fix n and let cj,n =
∨

i∈[n],ci,n<b ci,n for some j ∈ [n]. Take x = (n∗cj,n).
Then for any ε > 0 OCM�(x, cj,n + ε) > cj,n = OCM�(x) iff c1,n+1 > cj,n. Now
take any y ∈ In. Let OCM�(y) = cj,n ∧y(n−j+1) for some j. Then cj,n∧y(n−j+1) <
c1,n+1 ∧ ((cj,n ∧ y(n−j+1)) + ε), which completes the proof. �

All OCM� satisfying both conditions (s−) and (s+) are equivalent to the sample max-
imum (when c1,1 = b). The extended h-index is an impact function satisfying (zi).

6 Conclusions

In the paper we have considered a class of aggregation operators and discussed their
basic properties. The particular attention has been directed to remarkable classes of such
functions, i.e. ordered linear combination and ordered conditional maximum operators,
which generalize OWA and OWMax operators, respectively. However, extensions of
many other classes of aggregation operators would be interesting too.

The problem of ratings based on citations was mentioned to illustrate the need and
the importance of such extensions of the aggregation operators. Nowadays the afore-
mentioned h-index is probably the best known scientometric tool. However, many other
interesting bibliometric indices exist in the literature and they surely could be also char-
acterized in the framework of the impact functions. This is the topic of our further
research.

Finally, we want to stress that the suggested generalization of aggregation operators
might have applications not only in scientometrics or — generally — the Producer
Assessment Problem but in many other fields. However, one has to be conscious that
aggregation performed in some special areas may potentially require other particular
requirements that should be expressed by different axioms.
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Abstract. The conventional definition of distance between two points
has been extended to apply to collections of more than two elements. In
this paper some significant properties of those multi–argument distances
are analyzed and we study a class of multidistances that we call Fermat
multidistances.

Keywords: distance, multidistance, Fermat points, regularity.

1 Introduction

The conventional definition of distance over a space specifies properties that
must be obeyed by any measure of ”how separated” two points in that space are.
However often one wants to measure how separated the members of a collection of
more than two elements are. The usual way to do this is to combine the distance
values for all pairs of elements in the collection, into an aggregate measure. Thus,
given an Euclidean triangle (A,B,C) we can combine the distances AB,AC,BC
using, for instance, a 3–dimensional OWA operator, say W . Then, we calculate
the distance of A,B,C by means of the formula D(A,B,C) = W (AB,AC,BC).
It is clear that we have to choose the weighting vector of W such that the multi–
argument distance function D satisfies a group of axioms that extend in some
degree to those for ordinary distance functions. Of course we can consider other
procedures to measure how separated the vertices A,B,C are: in Euclidean
geometry the Fermat point of a triangle (A,B,C) is the point F for which
the sum of the distances from F to the vertices is as small as possible; i.e. it
is the point F such that FA + FB + FC is minimized. Then we can define
D(A,B,C) = FA+ FB + FC.

For pairwise distances and related distance matrix see for example [1]. A recent
paper [6] deals with the problem of aggregating pairwise distance values in order
to construct a multidistance function [11,4].

In addition to their intrinsic mathematical interest, multidistances have many
potential applications. In [5] the concept of T-indistinguishability relation, which
measure the degree of similarity between two elements of a set, has been extended
with the aim that it also measures the similarity between all the elements of a
finite list. The close relationship between them has been studied and examples

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 703–711, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of how to obtain T-multi-indistinguishabilities from multidistances has been ex-
plained. We think that further deeper development from both theoretical and
practical points of view should be carried out. Multidistances can be also di-
rectly incorporated into many other domains: distance–based clustering, pattern
recognition, etc, where the extension of ordinary (binary) distances to multidi-
mensional collections can be of interest. This is also the case of the so–called
Jensen–Shannon divergence (JSD) which is a distance for probability distribu-
tions that have been used to treat different problems such as analysis of symbolic
sequences, examination of texts in literature or separation of quantum states
[3,10].

In a recent paper related to consensus theory, consensus measures based on
metrics on weak orders were built by means of the arithmetic mean. As we will
see, this is nothing else but a particular multidistance [2]. In this same framework,
the Condorcet’s method to deal with the Condorcet’s effect (the application of
the pairwise majority rule to individual preference orders can generate a non
transitive collective preference) leads to a difficult combinatorial optimization
problem. It can be seen that M is a Condorcet’s solution (i.e., M is a ranking
with maximum support among all possible rankings) if and only if M is a Fermat
point (median) in a certain discrete metric space [9], but now one may find the
same problem: the medians can be difficult to calculate. It is in particular the
case when the metric space of all considered elements is not a good metric space
for medians.

In this paper we study a class of multi–argument distance functions that we
call Fermat multidistances. In Section 2 we expose some general preliminaries.
Section 3 is devoted to the discussion of some new properties in the study of
multidistances. And finally Section 4 deals with multi–argument distances based
on Fermat points.

2 Preliminaries

Definition 1. A function D :
⋃

n�1 Xn → [0,∞) is a multidistance on a non
empty set X when the following properties hold, for all n and x1, . . . , xn, y ∈ X:

(m1) D(x1, . . . , xn) = 0 if and only if xi = xj for all i, j = 1, . . . n.
(m2) D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n)) for any permutation π of 1, . . . , n,
(m3) D(x1, . . . , xn) � D(x1, y) + . . .+D(xn, y),

We say that D is a strong multidistance if it fulfills (m1), (m2) and:

(m3’) D(x1, . . .xk) � D(x1,y) + . . .+D(xk,y) for all x1, . . . ,xk,y ∈
⋃

n�1 Xn.

Expressions like D(x,y) in (m3’), that is, the function D applied to two lists
x = (x1, . . . , xn) ∈ Xn and y = (y1, . . . , ym) ∈ Xm, signify the multidistance of
the joined list:

D(x,y) = D(x1, . . . , xn, y1, . . . , ym). (1)
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Remark 1.

1) If D is a multidistance on X, then the restriction of D to X2, D|X2 , is an
ordinary distance on X.

2) Any ordinary distance d on X can be extended in order to obtain a multi-
distance. For example, we can define a function DM in this way:

DM (x1, . . . , xn) = max{d(xi, xj); i < j}. (2)

Then, DM is a strong multidistance on X such that D|X2 = d. We will call
it maximum multidistance.

Example 1. Based on the drastic distance, defined by

d(x, y) =
{

1 if x �= y,
0 if x = y,

(3)

several multidistances can be defined extending it. For instance,

– D1(x1, . . . , xn) =
{

0 if xi = xj ∀i, j,
1 otherwise,

– D2(x1, . . . , xn) = |{x1, . . . , xn}| − 1.

Both of them are strong.

Proposition 1. Let D and D′ be multidistances on X.

1) D +D′ is a multidistance on X.
2) If k > 0, then kD is a multidistance on X.
3) D

1+D and min{1, D} are also multidistances on X, with values in [0, 1].

Remark 2. If D is a multidistance on X, then the function D̃ :
⋃

n�1 Xn ×⋃
n�1 Xn → [0,+∞) defined by

D̃(x,y) = D(x1, . . . , xn, y1, . . . , ym) (4)

for all x = (x1, . . . , xn) ∈ Xn and y = (y1, . . . , ym) ∈ Xm is not a distance on
the set

⋃
n�1 Xn.

However, pseudodistances (distance functions allowing d(x, y) = 0 for distinct
values x, y) on this set can be constructed by means of D and an ordinary
distance δ on R in this way:

Dδ(x,y) = δ(D(x), D(y)). (5)

Given a non empty set X, a multidistance D defined on it and a list x =
(x1, . . . , xn) ∈ Xn, the following sets can be considered:

X(x,>) = {y ∈ X:D(x, y) > D(x)},
X(x,=) = {y ∈ X:D(x, y) = D(x)},
X(x,<) = {y ∈ X:D(x, y) < D(x)}.

(6)

(similar definitions for X(x,�) and X(x,�))
These three sets form a partition of X, with possibly one or two of them empty.
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Definition 2. Given a multidistance D and a list x = (x1, . . . , xn) ∈
⋃

n�1 Xn,
the closed ball of center x and radius r ∈ R is the set:

B(x, r) = {y ∈ X:D(x, y) � D(x) + r}. (7)

If n = 1 and r � 0, the list reduces to a point x, and the ball is B(x, r) = {y ∈
X:D(x, y) � D(x) + r}. As D(x) = 0, B(x, r) is an ordinary closed ball of the
metric space X.

Remark 3.

1) The closed ball centered at a list x and radius 0 is the set X(x,�).
2) There exist non empty balls with negative radius if and only if X(x,<) �= ∅.

3 Properties of Multidistances

In this section four remarkable properties for multidistances are introduced. They
are the following:

– Regularity [7]:

D(x, y) � D(x), (8)

for all x ∈
⋃

n�1 Xn, y ∈ X. That is, the multidistance of a list cannot
decrease when adding a new element.

– Stability:
D(x) = D(x, xi), (9)

for all x ∈
⋃

n�1 Xn and any element xi of x. In other words, repeated
elements are superfluous regarding the value of the multidistance of a list.

– Superadditivity:
D(x,y) � D(x) +D(y), (10)

for all x,y ∈
⋃

n�1 Xn

– Homogeneity:

D(
k︷ ︸︸ ︷

x, . . . ,x) = kD(x), (11)

for all x ∈
⋃

n�1 Xn.

Stability and homogeneity are incompatible because the first means, in particu-
lar,D(x, . . . ,x) = D(x). The relationship between superadditivity and regularity
is given in the following result.

Proposition 2. Any superadditive multidistance is regular.

Proof. Superadditivity means that D(x, y) � D(x) + D(y) for a list x and an
element y; but D(y) = 0. ��

The converse is not true, as the next example shows.
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Example 2. Consider the multidistance D defined in this way: D(x) is the di-
ameter of the ball with minor radius containing all the elements of the list x.
Clearly, D is regular, because the diameter can not decrease when a new ele-
ment is added, but it is not superadditive. For instance, in the Euclidean line,
D(0, 1, 0, 2) = 2 � D(0, 1) +D(0, 2) = 1 + 2.

The problem of finding the smallest enclosing ball (SEB) of a set of points
is a well–studied problem with a large number of applications. In the two–
dimensional case, the Minimal Enclosing Circle Problem is, simply stated, the
problem of finding the smallest circle that completely contains a set of points.
Formally, given a set S of n planar points, find the circle C of smallest radius
such that all points in S are contained in either C or its boundary. The minimal
enclosing circle is used in planning the location of a shared facility (for example,
a hospital servicing a community). In 1983, N. Meggido showed that the minimal
enclosing circle problem can be solved in O(n) time using the prune–and–search
techniques for linear programming [8].

The relationship with strongness can also be established.

Proposition 3. Any strong multidistance is regular, stable, superadditive and
non–homogeneous.

Proof. Condition (8) of regularity is a particular case of (m3’), with k = 1 and
added element y. The superadditivity can be proven in this way:

D(x,y) � D(x, z) +D(y, z) � D(x) +D(y),

the first inequality due to the strongness and the second one, to the regularity.
To prove the stability we can see that D(x) � D(x, xi), because D is regular.

On the other hand, for an appropriate application of strongness:

D(x, xi) � D(x1, . . . , xi−1, xi+1, . . . , xn, xi) +D(xi, xi, xi) = D(x),

and so D is stable, hence non homogeneous. ��

The four properties, together with strongness, are depicted as a Venn diagram
in Figure 1. The Fermat multidistance is also placed; it is regular, superadditive,
homogeneous and non–stable, as we will see in Section 4. Regularity and stability
have a precise meaning in terms of the balls defined in Section 2.

Proposition 4. Let D be a multidistance.

1. D is regular if and only if the balls with negative radius are empty.
2. If D is stable then the elements of any list belong to any ball with non–

negative radius centered at the list.

Proof.

1. Regularity means that D(x, y)−D(x) � 0, that is, B(x, r) �= ∅ when r < 0.
2. If D is stable then D(x, xi)−D(x) = 0 and so xi ∈ B(x, r) when r � 0. ��
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Strongness

Superadditivity

Stability

Regularity

Homogeneity

DF�

Fig. 1. Properties of multidistances

Remark 4. The second statement of the proposition can be converted into a
characterization in this way: D is regular and stable if and only if the elements
of any list belong to any ball with non–negative radius centered at the list.

Now we study how these properties are fulfilled for two families of multidistances
based on an ordinary distance d defined on a set X: the ones defined with OWAs
and those based on the sum of the ordinary pairwise distances of the elements
of the list.

OWA–Based Multidistances. Let W = {Wn;n ≥ 2} be a family of OWAs
[12], where the weights ωn

1 , . . . , ω
n

(n
2)

of the
(
n
2

)
–dimensional OWA Wn, are ap-

plied to the list of the
(
n
2

)
pairwise distances arranged in an increasing order.

The function DW :
⋃

n�1 Xn → [0,∞) defined by:

DW (x) =

⎧⎪⎨⎪⎩
0 if n = 1,

Wn(

(n
2)︷ ︸︸ ︷

d(x1, x2), d(x1, x3), . . . , d(xn−1, xn)) if n � 2,
(12)

for all x = (x1, . . . , xn) ∈ Xn, is a multidistance if and only if, for all n � 3:

ωn
1 + . . .+ ωn

n−1 > 0. (13)

Special cases are when Wn = max, with lists of weights (1, 0, . . . , 0) for all
n, obtaining the maximum multidistance DM given in (2), or when Wn =(

1
(n
2)
, . . . , 1

(n
2)

)
, whose corresponding multidistance is the arithmetic mean of

the pairwise distances.

– If DW is regular then, for all n � 3:

ωn
1 + . . .+ ωn

n−1 = 1, (14)
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– DW is stable if and only if ωn
1 = α and ωn

n−1 = 1− α.
– DM is the only strong multidistance of the family.
– There are neither homogeneous nor superadditive OWA–based

multidistances.

Sum–Based Multidistances. We can define a function Dλ:
⋃

n�1 Xn → [0,∞)
in this way:

Dλ(x) =
{

0 if n = 1,
λ(n)

∑
i<j d(xi, xj), if n � 2, (15)

Such a function is a multidistance if and only if:

(i) λ(2) = 1,
(ii) 0 < λ(n) ≤ 1

n−1 for any n > 2.

As an example, if λ(n) = 1
(n
2)

then Dλ is again the arithmetic mean.

With respect to the properties:

– Dλ is regular if and only if λ(n) = 1
n−1 for all n � 2.

– There are no stable, homogeneous or strong multidistances within this family.

4 Fermat Multidistance

Let (X, d) be a metric space and (x1, . . . , xn) ∈ Xn.

Proposition 5. The function f : X → [0,+∞) defined by f(x) =
∑n

i=1 d(xi, x)
is continuous and it reaches a minimum.

Sketch of the proof. Each d(xi, x), x ∈ X, is a continuous, non–negative and lower
bounded function, such that d(xi, xi) = 0. Therefore, the function f also reaches
a minimum value. ��

Definition 3. We will call Fermat set of a list x = (x1, . . . , xn) ∈ Xn and
we will denote by Fx, the set of points where the function f above reaches the
minimum value:

Fx =
{
x ∈ X:

n∑
i=1

d(xi, x) �
n∑

i=1

d(xi, x
′), ∀x′ ∈ X

}
. (16)

Proposition 6. Let DF :
⋃

n�1 Xn → [0,∞) be the function defined by:

DF (x1, . . . , xn) = min
x∈X

{ n∑
i=1

d(xi, x)
}
. (17)

1) DF is a multidistance on X.
2) DF is maximum in the sense that any other multidistance D such that

D|X2 = DF |X2 takes values not greater than DF : D(x) � DF (x), ∀x ∈⋃
n�1 Xn.
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3) DF is not in general a strong multidistance.

This function DF will be called the Fermat multidistance associated with an
ordinary distance d. It was defined in [4], based on the idea of the Fermat point
explained in the introduction, and it fulfills three of the properties defined in
Section 3.

Example 3. In the metric space (Rm, d), where d is the Manhattan distance:

d((a1, . . . , am), (b1, . . . , bm)) =
m∑

i=1

|ai − bi|,

the set F associated to the points xi = (ai1, . . . , aim), i = 1, . . . , n is:

F(x1,...,xn) =
m∏

i=1

[a(�n+1
2 �)i, a(�n+2

2 �)i],

where the parentheses in the subindexes signify that a(1)i, . . . , a(m)i is a non–
decreasing rearrangement of the components i of the points, "x# is the floor
function and

∏
is the usual cartesian product of sets.

If m is an odd number, the extreme points of the intervals coincide and the
set F(x1,...,xn) reduces to a point, whose coordinates are the medians of the
respective coordinates of the points x1, . . . ,xn: see Figure 2.

�
�

�
�

��F
�

�

�
�

�

�
F

Fig. 2. Fermat sets F associated with two families of points in R2

Proposition 7. The multidistance of Fermat DF defined on any metric space
(X, d) is superadditive, and hence regular, and homogeneous.

Proof. The homogeneity of DF follows from the fact that the Fermat sets of
k︷ ︸︸ ︷

x, . . . ,x and x are the same. The superadditivity can be proven as follows. Let
z1, z2, z3 be points in the Fermat sets of x ∈ Xn, y ∈ Xm and the join list
xy ∈ Xn+m, respectively. Then,

DF (x,y) =
∑n

i=1 d(xi, z3) +
∑m

i=1 d(yi, z3)
�
∑n

i=1 d(xi, z1) +
∑m

i=1 d(yi, z2)
= DF (x) +DF (y). ��
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The remain property of stability is not fulfilled. For example, in the Euclidean
line the multidistance of the list (0, 1, 2) is D(0, 1, 2) = 2, because F(0,1,2) = {1},
and on the other hand the multidistance (0, 0, 1, 2) has Fermat set F(0,0,1,2) =
{0}, hence D(0, 0, 1, 2) = 3.

The sets defined by (6) can be expressed in terms of the Fermat sets:

X(x,>) = X \ Fx, X(x,=) = Fx, X(x,<) = ∅. (18)

Acknowledgments. The authors acknowledge the support of the Govern Balear
grant PCTIB2005GC1–07 and the Spanish DGI grant MTM2009–10962.

References

1. Blumenthal, L.M.: Theory and applications of distance geometry, 2nd edn. Chelsea
Publishing Co., New York (1970)
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Abstract. Aggregation functions and utility functions belong to very in-
teresting parts of modern decision making theory. We develop basic con-
cept of the connection of aggregation functions theory and utility theory
to determine gross annual premium in general insurance. We introduce
specific values of the gross annual premium on the basis of aggregation of
the person’s utility functions which were determined empirically based
on a short personal interview. Moreover, by specific utility function we
determine minimal gross annual premium acceptable for the insurer.

Keywords: Utility function, Mixture utility operator, Risk averse, Risk
loving.

1 Introduction

This paper was inspired by the books Modern Actuarial Risk Theory [2] and
Actuarial Models - The Mathematics of Insurance [9] where the authors intro-
duce a model for determination of maximal and minimal premium in insurance.
Moreover, in [9] Rotar introduces many types of classical utility functions, for
example, positive-power function u(x) = xa for all x ≥ 0 and some a > 0;

negative-power function u(x) =
1
xa

for all x > 0 and some a > 0; logarithmic

function u(x) = lnx for x > 0, etc.
However, in real life people do not behave according to theoretical utility

functions. There is a psychological problem rather than a mathematical one. Se-
riousness and also uncertainty of respondent’s answers depend on situation, on
form of questions asked, on time which respondents have, and on many psycho-
logical and social factors. We can find a very interesting approach about utility
functions in [3].

In our paper we introduce a possibility of the determination of the person’s
utility function on the basis of personal interview with virtual money. First, we
develop one type of aggregation operators, so-called mixture utility operators
- MUg, generalized mixture utility operators - GMUg and ordered generalized
mixture utility operators - OGMUg. These operators represent some extension of

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 712–721, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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mixture operators, generalized mixture operators and ordered generalized mix-
ture operators [1], [4], [5], [10], [11], [12]. Moreover, we aggregate a number of the
person’s utility functions obtained from the interview using the mixture utility
operators above. Consequently, we determine maximal value of the gross annual
premium in general insurance by means of final aggregated utility function. Be-
cause it might be difficult to determine utility function for insurance company,
we determine minimal premium acceptable for insurer by classic model of utility
function U(x) = lnx.

Our paper is organized as follows: in Section 2 we recall basic properties of
utility functions and their applications in insurance [2], [9]. We recall proper-
ties of mixture operators, generalized mixture operators and ordered generalized
mixture operators mainly focused on their monotonicity. In Section 3 we develop
MUg operator, GMUg operator and OGMUg operator and sufficient conditions
for their non-decreasingness. In Section 4 we introduce a specific application of
the aggregated utility function on the determination of gross annual premium.
Moreover, we introduce corresponding minimal premium acceptable for insurer.
Finally, in Section 5 some conclusions and indications of our next investigation
about mentioned topic are included.

2 Preliminaries

In this section we recall you some basic features of utility function and expected
utility, too. We recall some definitions of different types of mixture operators
and some sufficient conditions for their non-decreasingness.

2.1 Utility Function

Utility function may be used as a basis for describing individual approaches to
risk. Three basic approaches have been characterized. Opposite cases refer to
risk loving and risk averse who accepts favorable gambles only. There is risk-
neutral between these two extremes. Risk-neutral behavior is typical of persons
who are enormously wealthy. Many people may be both risk averse and loving,
depending on the range of monetary values being considered.

The theorem below describes properties of the utility function and its expected
value.

Theorem 1. (Jensen’s inequality)[2], [9] Let X be a random variable (with a
finite expectation). Then, if u(x) is concave,

E [u (X)] ≤ u (E [X ]) . (1)

If u(x) is convex,

E [u (X)] ≥ u (E [X ]) . (2)

Equality holds if and only if u (x) is linear with respect to X or var (X) = 0.
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In this part we illustrate whether to buy insurance by evaluating an individ-
ual’s decision.

Now, suppose that our respondent has two alternatives - to buy insurance or
not. Suppose that he owns a capital w and that he values wealth by the utility
function u. Let’s assume he is insured against a loss X for a premium P . If he is
insured that means a certain alternative. This decision gives us the utility value
u (w − P ). If he is not insured that means an uncertain alternative. In this case
the expected utility is E [u (w −X)]. Based on Jensen’s inequality (1) we get

E [u (w −X)] ≤ u (E [w −X ]) = u (w − E [X ]) = u (w − P ) . (3)

Since utility function u is a non-decreasing continuous function, this is equivalent
to P ≤ Pmax, where Pmax denotes the maximum premium to be paid. This so-
called zero utility premium is the solution to the following utility equilibrium
equation

E [u (w −X)] = u (w − Pmax) . (4)

The difference (w − Pmax) is also called certainty equivalent.
The insurer with utility function U(x) and capital W , with insurance of loss

X for a premium P must satisfy the inequality

E [U (W + P −X)] ≥ U (W ) , (5)

and hence for the minimal accepted premium Pmin

U (W ) = E
[
U
(
W + Pmin −X

)]
. (6)

2.2 Mixture Operator

In this part we review some mixture operators introduced in [4], [6], [8]. Suppose
that each alternative x is characterized by a score vector x = (x1, . . . , xn) ∈
[0, 1]n, where n ∈ N −{1} is the number of applied criteria. A mixture operator
can be defined as follows:

Definition 1. Mixture operator Mg : [0, 1]n → [0, 1] is the arithmetic mean
weighted by a continuous weighting function g : [0, 1] →]0,∞[ given by

Mg(x1, . . . , xn) =

n∑
i=1

g(xi) · xi

n∑
i=1

g(xi)
, (7)

where (x1, . . . , xn) is an input vector.

Observe that due to the continuity of weighting function g, each mixture operator
Mg is continuous. Evidently, Mg is an idempotent operator, [6], [8].

Note that sometimes different continuous weighting functions are applied for
different criteria score what leads to a generalized mixture operator, see [6], [8].
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Definition 2. Generalized mixture operator Mg : [0, 1]n → [0, 1] is given by

Mg(x1, . . . , xn) =

n∑
i=1

gi(xi) · xi

n∑
i=1

gi(xi)
, (8)

where (x1, . . . , xn) is an input vector and g = (g1, . . . , gn) is a vector of contin-
uous weighting functions.

Obviously, generalized mixture operators are continuous and idempotent.
Generalized mixture operator based on the ordinal approach can be defined

as follows.

Definition 3. Ordered generalized mixture operator M
′
g : [0, 1]n → [0, 1] is given

by

M
′
g(x1, . . . , xn) =

n∑
i=1

gi(x(i)) · x(i)

n∑
i=1

gi(x(i))
, (9)

where g = (g1, . . . , gn) is a vector of continuous weighting functions and
(x(1), . . . , x(n)) is a non-decreasing permutation of an input vector.

An ordered generalized mixture operator is a generalization of an OWA operator
[13], corresponding to constant weighting functions gi = wi, wi ∈ [0, 1],
n∑

i=1
wi = 1.

However, a mixture operator need not be non-decreasing. Marques-Pereira
and Pasi [4] stated first sufficient condition for a weighting function g in order
mixture operator (7) is non-decreasing. It can be defined as follows:

Proposition 1. Let g : [0, 1] →]0,∞[ be a non-decreasing smooth weighting
function which satisfies the next condition:

0 ≤ g′(x) ≤ g(x) (10)

for all x ∈ [0, 1].
Then Mg : [0, 1]n → [0, 1] is an aggregation operator for each n ∈ N , n > 1.

We have generalized sufficient condition (10) in our previous work. In the next
part we recall more general sufficient conditions mentioned in [5], [12].

Proposition 2. Let g : [0, 1] →]0,∞[ be a non-decreasing smooth weighting
function which satisfies the condition:

0 ≤ g′(x)(1 − x) ≤ g(x) (11)

for all x ∈ [0, 1].
Then Mg : [0, 1]n → [0, 1] is an aggregation operator for each n ∈ N , n > 1.
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Moreover, we have improved sufficient condition (11), but constrained by n.

Proposition 3. For a fixed n ∈ N , n > 1, let g : [0, 1] →]0,∞[ be a non-
decreasing smooth weighting function satisfying the condition:

g2(x)
(n− 1)g(1)

+ g(x) ≥ g′(x)(1 − x) (12)

for all x ∈ [0, 1].
Then Mg : [0, 1]n → [0, 1] is an aggregation operator.

In the next proposition we introduce a sufficient condition for non-decreasin-
gness of generalized mixture operators.

Proposition 4. For a fixed n ∈ N , n > 1, i = 1, . . . , n, let gi : [0, 1] →]0,∞[ be
a non-decreasing smooth weighting functions, such that

g2
i (x)∑

j =i

gj(1)
+ gi(x) ≥ g′i(x) · (1− x) (13)

for all x ∈ [0, 1].
Then Mg : [0, 1]n → [0, 1], where g = (g1, . . . , gn), is an aggregation operator.

3 Mixture Utility Operator

In this part we develop mixture utility operators, generalized mixture utility
operators and ordered generalized mixture utility operatorss.

Suppose that each alternative u is characterized by utility vector
u = (u1, . . . , un) ∈ [0, 1]n, where n ∈ N − {1} is the number of aggregated

utility values.

Definition 4. Mixture utility operator MUg : [0, 1]n → [0, 1] is the arithmetic
mean weighted by a continuous weighting function g : [0, 1] →]0,∞[ given by

MUg(u1(x), . . . , un(x)) =

n∑
i=1

g(ui(x)) · ui(x)

n∑
i=1

g(ui(x))
, (14)

where (u1(x), . . . , un(x)) is a vector of utility values for fixed x, x ∈ R.

Observe that due to the continuity of weighting function g, each mixture utility
function MUg is continuous and idempotent.

On the basis of Definition 2. a generalized mixture utility operator can be
defined as follows:
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Definition 5. Generalized mixture utility operator GMUg : [0, 1]n → [0, 1] is
given by

GMUg(u1(x), . . . , un(x)) =

n∑
i=1

gi(ui(x)) · ui(x)

n∑
i=1

gi(ui(x))
, (15)

where (u1(x), . . . , un(x)) is a vector of utility values for fixed x, x ∈ R
and g = (g1, . . . , gn) is a vector of weighting functions.

Clearly, generalized mixture utility functions are continuous and idempotent.

Definition 6. Ordered generalized mixture utility function OGMUg : [0, 1]n →
[0, 1] is given by

OGMUg(u1, . . . , un) =

n∑
i=1

gi(u(i)(x)) · u(i)(x)

n∑
i=1

gi(u(i)(x))
, (16)

where g = (g1, . . . , gn) is a vector of continuous weighting functions and
(u(1)(x), . . . , u(n)(x)) is a non-decreasing permutation of a vector of utility

values for fixed x, x ∈ R.

However, mixture utility operators do not have to be non-decreasing. On the
basis of sufficient conditions (10), (11), (12) and (13), we can rewrite similar
sufficient conditions for mixture utility functions. If operators MUg : [0, 1]n →
[0, 1], GMUg : [0, 1]n → [0, 1] and OGMUg : [0, 1]n → [0, 1] satisfy conditions

0 ≤ g′(u(x)) ≤ g(u(x)) for all u(x) ∈ [0, 1], (17)

0 ≤ g′(u(x))(1 − u(x)) ≤ g(u(x)) for all u(x) ∈ [0, 1], (18)

g2(u(x))
(n− 1)g(1)

+ g(u(x)) ≥ g′(u(x))(1 − u(x)) for all u(x) ∈ [0, 1], (19)

g2
i (u(x))∑

j =i

gj(1)
+ gi(u(x)) ≥ g′i(u(x)) · (1 − u(x)) for all u(x) ∈ [0, 1] (20)

then they are aggregation functions.
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4 Maximal and Minimal Premium

In practice, the utility function can be determined empirically by a personal
interview made by the decision maker. This function may be constructed from
the information gleaned from the short interview. The respondent may use this
function in any personal decision analysis in which the payoff falls between 0
and 30000�. We recall the interview which is compiled as follows:

Suppose that you are owner of an estate that has the possible loss of 30000�
in the future. However, you have a possibility to withdraw from this possible loss
under the penalty the amount: 1000�, 5000�, 10000�, 15000�, 25000�. Your
portfolio manager can provide you with information expressing the probability
of the loss the 30000�.
What would be the biggest probability of the loss, to retain risk of the possible
loss above?

Only a few proportioned graphic points are required. We have information
(data) from three respondents. They have very similar approach to risk, that
means they are risk averse for larger losses and risk loving for smaller losses. Util-
ity function for the first respondent is determined by points (0, 1), (−1000, 0.85),
(−5000, 0.75), (−10000, 0.60), (−15000, 0.60), (−25000, 0.20), (−30000, 0.00).

From the second respondent we obtain points as follows: (0, 1), (−1000, 0.85),
(−5000, 0.75), (−10000, 0.60), (−15000, 0.50), (−25000, 0.40), (−30000, 0.00),
and from the last one (0, 1), (−1000, 0.85), (−5000, 0.70), (−10000, 0.75),
(−15000, 0.60), (−25000, 0.40), (−30000, 0.00).

Observe that these utility functions are for larger losses concave and for
smaller losses convex, as shown in Figure 1.

In this case we have three utility functions which we aggregate by MUg op-
erator and OGMUg operator in order to get only one collective utility function
for people with similar approach to risk.

We decided to aggregate utility values by MUg operator because we can ob-
serve as weights rise continuously according to the utility value. Also, we aggre-
gate individual utility values by means of OGMUg operator to allocate higher
weight to the higher utility value. That means we give the higher weight to the
more risk averse utility value. Moreover, we can observe a modification of weights
continuously. We use weighting function g(u(x)) = 0.75u2(x) + 0.25 for aggrega-
tion with MUg function and vector of weighting functions g = (g1, g2, g3), where
g1(u(x)) = 0.75u2(x)+0.25, g2(u(x)) = 0.5u2(x)+0.5, g3(u(x)) = 0.2u2(x)+0.8
for aggregation withOGMUg operator. All used weighting functions fulfill mono-
tonicity conditions (17) - (20) .

We decided to use such aggregation in order to see and be able to investigate
weight by means of continuous mixture utility function.

Different person’s utility functions for our three respondents and mixture
utility functions were created by the SPSS system and they are presented in
Table 1. This table also provides the values of Adjusted R square, F statistics
and significance level for individual utility functions and for aggregated mixture
utility operators.



Mixture Utility in General Insurance 719

Remark 1. Expected utility is calculated by the well-known formula

E [u (X)] =
n∑

i=1

u(xi) · pi, (21)

where X = (x1, x2, . . . , xn) is a vector of the possible alternatives and pi is the
probability of alternative xi.

Expected utilities can be calculated by linear function, too which is deter-
mined uniquely by points [−30000, , u(−30000)] and [0, u(0)]. In both cases we
get the same values of the expected utilities.

Fig. 1. Utility functions of selected respondents (functions from Table 1)

Table 1. Person’s utility functions and mixture utility functions

Utility Function Adjusted F Sig.
R square

u1(x) = 5.549 · 10−14x3 + 2.183 · 10−9x2 + 4.784 · 10−5x + 0.948 0.964 54.379 0.004
u2(x) = 1.191 · 10−13x3 + 5.108 · 10−9x2 + 7.801 · 10−5x + 0.977 0.966 57.871 0.004
u3(x) = 1.003 · 10−13x3 + 3.762 · 10−9x2 + 5.425 · 10−5x + 0.955 0.965 55.515 0.004

MUg(x) = 9.301 · 10−14x3 + 3.726 · 10−9x2 + 6.004 · 10−5x + 0.960 1 1.698E6 0.000
OGMUg(x) = 9.969 · 10−14x3 + 4.025 · 10−9x2 + 6.281 · 10−5x + 0.962 1 1.030E4 0.000

In the figure below are the individual utility functions and final OGMUg func-
tion created by the SPSS system.

We determine minimal premium by the means of (6) with respect to utility
function for insurer U(x) = lnx with his basic capital W = 2655513.51� and
loss X = 30000�.

Equation (6) can be rewritten as follows:

U (W ) = p · U(W + Pmin −X) + (1− p) · U(W + Pmin), (22)



720 J. Špirková

Table 2. Expected Utility, Maximal and Minimal Premium

probability E [MUg] P max E [OGMUg ] P max P min

of loss with respect to with respect to
p MUg OGMUg

0.00 0.960000 0.00 0.962000 0.00 0.00
0.01 0.950409 161.35 0.952466 153.29 301.69
0.05 0.912047 841.73 0.914329 799.08 1508.10
0.1 0.864093 1786.65 0.866657 1694.17 3015.34
0.2 0.768186 4155.05 0.771314 3928.81 6027.24
0.3 0.672279 7904.69 0.675971 7463.95 9035.69
0.4 0.576372 15656.20 0.580628 15854.90 12040.70
0.5 0.480465 21018.60 0.485285 21358.90 15042.40
0.6 0.384558 23877.00 0.389942 24116.10 18040.60
0.7 0.288651 25896.30 0.294599 26055.30 21035.50
0.8 0.192744 27494.30 0.199256 27590.20 24027.00
0.9 0.096837 28835.00 0.103913 28879.00 27015.20
1.0 0.00093 30000.00 0.008570 30000.00 30000.00

and hence

W = (W + Pmin −X)p · (W + Pmin)(1−p). (23)

We determine individual minimal premiums with corresponding probability by
the Mathematica 5 system.

Remark 2. Utility functions are used to compare investments mutually. For this
reason, we can scale a utility function by multiplying it by any positive constant
and/or translate it by adding any other constant(positive or negative). This kind
of transformation is called a positive affine transformation. All our results would
be the same.

5 Conclusion

We have shown how to construct person’s utility function and we have calcu-
lated maximal premium for loss of 30000� according to the mixture utility
function. On the basis of mixture utility function and ordered generalized mix-
ture utility function we have determined maximal premium for persons having
approximately similar approach to risk. Another utility function would be re-
quired if evaluating a decision with more extreme payoffs or if our respondent’s
attitudes change because of a new job or lifestyle. Moreover, the utility function
must be revised from time to time. In our future work we would like to inves-
tigate mixture utility operators with other weighting functions, insurer’s utility
function and to extend and in more detail investigate mentioned model with
different interviews and fictive games.
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12. Špirková, J.: Dissertation thesis, Weighted aggregation operators and their appli-
cations, Bratislava (2008)

13. Yager, R.R.: Generalized OWA Aggregation Operators. Fuzzy Optimization and
Decision Making 3, 93–107 (2004)



E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 722–730, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Application of Evolutionary Algorithms to the 
Optimization of the Flame Position in Coal-Fired Utility 

Steam Generators 

W. Kästner1, R. Hampel1, T. Förster1, M. Freund1, M. Wagenknecht1 D. Haake2,  
H. Kanisch2, U.-S. Altmann3, and F. Müller3 

1 University of Applied Sciences Zittau/Goerlitz, IPM, Germany 
2 Vattenfall Europe Generation AG, Cottbus, Germany 

3 CombTec GmbH, Zittau, Germany 

Abstract. The construction and operation of modern power station units on coal 
base are subject to considerable economic, ecological and political constraints 
enforcing the system’s elements to operate at their technical upper limits. The 
control and prevention of fuel-caused harmful effects is crucial for profits and 
losses with respect to availability, efficiency and maintenance expenses. Ad-
vanced power plant technologies are an indefensible high-risk without adequate 
developed monitoring and optimization systems. A real-time optimization 
method of the flame position in a multi-burner firing system that is affected by 
corrosion processes at the evaporative heating surfaces is presented. The base is 
a model of the flame position generated by artificial neural networks. Evolu-
tionary algorithms are used to optimize the fuel distribution which depends on 
the feeding of the coal dust burners. By analyzing the current plant status and 
technical restrictions for the respective components the solution set is reduced 
to a single solution which is realized as control action.  

Keywords: combustion chamber, corrosion, optimization, artificial neural  
network, evolutionary algorithm. 

1   Introduction 

1.1   Background 

To meet the technical, economical and ecological challenges in the operation of a 
conventional power plant a modern process monitoring and optimal process control-
ling are essential. The combustion chamber as the central and most complex element 
of a coal-fired power plant is of particular interest. Its functioning is decisive to meet 
performance criteria like efficiency, pollutant emissions, component load or resource 
management. The control and reduction of high-temperature corrosion at the evapora-
tive heating surfaces are of crucial importance. By symmetric positioning the flame, 
damage-causing processes in the wall area like particle composition, oxygen defi-
ciency and thermal load can be reduced [2]. At present the operator can control the 
flame position in the combustion chamber by trimming the mill feeders (being the 
correcting variable for the burner firing rate). 
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1.2   Reference Unit and Operational Measuring Technique 

The reference steam generator in the Jänschwalde power plant is characterized by a 
two-point firing (Fig. 1, left hand). Under normal conditions, five of the six mills 
which blow the pulverised brown coal via main and vapour burners into the combus-
tion chamber are operating [3], one stays in reserve or is under maintenance. Hence, 
for a uniform split-up of the overall fuel quantity to the mills the flame position in the 
combustion chamber is asymmetric. The asymmetry is the main cause for high-
temperature corrosion (Fig. 1, right hand). By an appropriate distribution of the fuel 
(resulting in a distribution of the respective air quantity to the operating burners) a 
shift of the flame to the centre of the combustion chamber can be performed. Hereby, 
the current plant status restricts the degrees of freedom for the optimization. 

 

Fig. 1. Schematic depiction of the two-point firing (left hand) and the evaporative heating  
surface with corrosion (right hand) 

 

Fig. 2. Isothermal line display of the temperature distribution (left hand) and abstracted 4-Zone-
Trapezoidal-Display (right hand) 

For a correct estimation of the current flame position the measurements of the in-
stalled diagnostic system CombPyr-2D+ established by the CombTec Company [1] 
were used. At this a temperature distribution over the furnace cross-sectional area is 
determined using 12 pyrometers at a level above the burner belt. This distribution can 
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be depicted by the 4-Zone-Trapezoidal-Display (Fig. 2). The 4 zones under considera-
tion show the difference between the mean zone temperatures (TABW1…4) and the 
overall cross section mean.  The unsymmetrical flame position to be optimized can be 
described by these 4 values in qualitative and quantitative ways. 

2   Process Modelling 

The physical processes of the local effects are rather complex and an analytic descrip-
tion for an on-line application is not possible. Thus, a process model based on  
artificial neural networks (ANN) was built [8]. In doing so, expert knowledge [4] and 
operational measuring data were used. The 4 zone deviations determined by the 
CombPyr system are modelled using the parameters considered as significant for the 
flame positioning (amongst others the mass and volume flows, coal quality attributes, 
mill temperatures after classifier, oxygen regime).  For the ANN a multilayer percep-
tron technique [5] was used. This was of special advantage, because no apriori known 
functional dependencies could be used (as mentioned above). They had to be ap-
proximated by characteristic process patterns (learn data). Connecting the inputs and 
outputs via hidden layers and weight matrices you get an abstract and generalization 
able model. Figure 3 shows a principal network structure. To improve the model qual-
ity, for each combination of 5 operating mills an adapted ANN was created. 

 

Fig. 3. Example of an ANN network structure 

3   Process Optimization 

3.1   Optimization with Evolutionary Algorithms 

Evolutionary algorithms (EA) are optimization methods which are based on evolu-
tionary processes in the nature [6]. The performance criteria arguments are coded as 
individuals (solution candidates). The values of the performance criteria (respectively 
of the fitness function) evaluate the individual’s quality. By the fitness a selection is 
performed and unsuited individuals are dropped. By crossover and mutation the indi-
viduals are varied. Thus, a goal-oriented search to get appropriate solutions can be  
realized. 



 Application of Evolutionary Algorithms to the Optimization of the Flame Position 725 

Figure 4 shows the principal structure of an EA. After initializing a starting popula-
tion of individuals and their evaluation by the performance criteria and fitness func-
tion the artificial evolution is realized by a loop improving the individuals iteratively. 
From the population parents are selected and new children are born by crossover and 
mutation with corresponding evaluations. By a replacement strategy the new popula-
tion is built from the previous (parents and new born children). If a stop criterion is 
fulfilled the evolution is terminated and the found individuals are output.  

The main advantage of EA is the fact that they do not require a special structure of 
the optimization problem. Particularly, no gradients are necessary. Thus, rather gen-
eral problems (nonlinear, discontinuous, multimodal) can be solved. In the projects 
context it is of special interest that they are also suited for multicriterial problems [7]. 

 

Fig. 4. Principle of artificial evolution 

3.2   The Optimization Problem 

The speeds of the mill feeders DRZ10…60 are the variables to be optimized. They are 
proportional to the coal quantity and hence to the burner firing rate. From the techno-
logical and unit-dependent general requirements in the operating point you get the re-
strictions for the optimization [8]. As limiting factors the changing coal quality, the 
wear of the coal mills and the current pollutant emission are mentioned. This results 
in lower and upper bounds for the speeds of the mill feeder which are derived from 
measurements or given by the operator. These bounds are strict (1). 

,min ,opt ,maxi i iDRZ DRZ DRZ≤ ≤  . (1) 

The overall fuel quantity of the steam generator has to be maintained by the single in-
dividuals as well (2). 

10...60
i

i

DRZ const
=

=∑  . (2) 
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The ANN inputs which are coupled with the mill feeder speeds by the instrumentation 
and control system are adapted to the changed speeds by the implementation of the 
control characteristics [3] in order to enable a correct prediction and evaluation of the 
changed flame position. The remaining inputs are assumed to be kept constant by 
trimming (accounting the large delay times of the control processes).  

The performance criteria are constituted by the temperature deviations in the zones 
of the combustion chamber TABW1…4. A central flame position is characterized by an 
even temperature deviation in the opposite zones. Hence, the algorithm aims at mini-
mizing the differences of temperature deviations between zones 1 and 2 (ΔT1) and  
respectively zones 3 and 4 (ΔT2) in the trapezoid model (Fig.2). The corresponding 
bicriterial problem is given by (3). 

1 1 2

2 3 4

min

min

T TABW TABW

T TABW TABW

Δ = − →

Δ = − →
 . 

 

(3) 

3.3   The Optimization Algorithm 

For the optimization the created ANN models are at disposal. They yield nonlinear 
and multimodal criteria. The time for the calculation of the criteria for one individual 
was 1.6 milliseconds. Hence, with a stipulated optimization-duration of maximum 20 
seconds, online application is possible (supposing an effective implementation of the 
algorithm). The developed optimization algorithm approximates the Pareto set of the 
given bicriterial problem, therefore it indicates a Pareto EA. To keep the computation 
time small some simplifications were realized. No selection of parents is made. Actu-
ally all individuals are used to create children who are built merely by mutation. The 
crossover is omitted, since it did not show a significant improvement.  

The individual c contains the values of the variables, performance criteria and fit-
ness. For the function evaluations the ANN are used and for the solution candidates 
(3) is applied. Afterwards, the fitness fitness*(c) is calculated by Pareto ranking (Fig. 
5). It has the advantage (over varying the weights of a scalar surrogate criterion) of a 
computing time reduction. In the ranking process, all individuals get the initial fitness 
0. Then they are compared. If an individual c2 has increased values for both criteria in 
comparison with an individual c1 it is dominated by the latter and gets a higher fitness 
value (i.e., a lower fitness value corresponds to a higher quality). If an individual c3 
has a smaller value for one criterion and a larger for the other one with respect to in-
dividual c1, both individuals are incomparable and equipollent. In this case, the fitness 
values of c1 and c3 remain unchanged. 

In correspondence to the population size POPSIZE, copies of the current plant 
status (ANN inputs) are merged in one population. The plant status itself is saved at 
position 0 of the population (Population[0]) and will not be changed by the evolution 
process. This ensures the access to the current status. Uniform mutation was applied. 
For each mill feeder speed DRZ10…60 it is separately decided whether a variation is 
necessary. To it, a uniformly distributed random number z corresponding to the muta-
tion rate MUTRATE is determined (4). 

[ ; ]z MUTRATE MUTRATE∈ −  . (4) 
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Fig. 5. Principle of Pareto-Ranking 

By the mutation only the constant sum of the mill feeder speeds (2) is not ensured. 
Hence, a repair function has to be used. Each mill feeder of the individual is modified 
by (5). 

( )
( ) ( )

10...60
10...60

[0]

5

i i
i

DRZ Population DRZ c
DRZ c =

−
=
∑

 . 

 

(5) 

For the creation of the starting population for the next iteration, the individual’s fit-
ness is varied by a niching method (fitness sharing). To it, all individuals are com-
pared with respect to their variable values. As similarity measure the Manhattan dis-
tance dMan is used (6). 

( ) ( ) ( )Man
10...60

; i j j i
j

d c c DRZ c DRZ c
=

−∑  . 
 

(6) 

If individuals have similar speeds (using a fixed threshold DIST), the fitness of the in-
dividual with higher fitness is further increased. The fitness of the individual with 
lower fitness remains unchanged. Therefore, individuals in one niche with higher fit-
ness are punished and get a lower initial probability for the next population. For each 
pair of individuals a sharing value sh is determined by (7).  

( ) ( ) ( ); wenn ;
;

0 sonst
Man i Man i

i

DIST d c c d c c DIST
sh c c

− <⎧
= ⎨
⎩

 . 

 

(7) 

The presented sharing-operator prevents the concentration of the population in only 
few niches and uses the explorative character of the algorithm investigating the target 
area. The fitness fitness(c) is given by the following (8). 
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( ) ( ) ( )
( ) ( )

2

 mit 
* *

* ;
i

i

i
c Population

fitness c fitness c

fitness c fitness c sh c c
∈

<

= + ∑  . 
 

(8) 

The replacement strategy consists in the selection of individuals with the lowest fit-
ness from the set of solution candidates of the previous population and the current 
children. The maximal number of iterations is given by MAXGEN. 

The values for the population size POPSIZE, the maximal number of iterations 
MAXGEN, the mutation rate MUTRATE and the sharing distance DIST were deter-
mined by statistical experiments with different parameter values where the conver-
gence of the population and a small computing time of the algorithm served as criteria. 

3.4   The Optimization Output 

The algorithm yields 80 solution candidates (individuals) which approximate the 
Pareto set. The shape of the set may vary with regard to the operational and plant 
status. In Figure 6 exemplarily two results are depicted. The left-hand graphic shows a 
good approximation of the Pareto set. The approximation in the second case is altered 
for a different (more complex) plant status. 

 

Fig. 6. Results of the optimization 

4   Choice of a Final Solution 

The reduction of the solution set provided by the EA to a solution matching best the 
current plant status is carried out by appropriate indicators. These indicators can be 
weighted with respect to given operational priorities. The smallest overall evaluation 
(weighted sum) characterizes the most preferable solution to be realized. The indica-
tors evaluate not only the fitness of the candidate, but also the complex firing based 
and operational consequences. Among others, the expected pollution, the necessary 
mill loads and the resulting dynamic of the flame must be taken into account. Since 
different solutions can lead to similar flame positions, a solution can be found that is 
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optimal concerning the current state. Alternatively, a re-computation or re-evaluation 
may be necessary to new situations (e.g. the steady varying operating parameters). 
This leads to a drastic unburden of the operating personnel and to an objectifying of 
the decision-making process. 

5   Functional Verification 

The optimization algorithm (including the ANN) and the solution choice module have 
been implemented in a software system. It also realizes the data processing, the plant 
state diagnosis and the communication with the operator. In several test runs the func-
tionality of the developed method and the capability of the EA with respect to the im-
provement of the flame position could be verified at the reference unit [8]. Figure 7 
shows the temperature distribution before (upper graphics) and after (lower graphics) 
the optimization process. An extended version of the program including an automatic 
mill feeder trimming with an integration of the control signals in the instrumentation 
and control system is being realized and will be tested in the first half of 2010. 

 

Fig. 7. Example of a realized solution 
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luciano@uniovi.es

2 Universidad de Oviedo, Departamento de Estad́ıstica e I.O. y D.M.
couso@uniovi.es

Abstract. Measuring the current in the neutral-grounding resistor is
needed for monitoring resistance-grounded three phase transformers.
This current is limited to hundreds of amperes in case of a fault, and
are almost negligible otherwise. The current transformer that senses the
current must be rated for the fault conditions, thus it is difficult to obtain
a precise measurement of the current when there is not a ground-fault
in the system.

In this paper we propose a computer-based method for filtering the out-
put of the current transformer and improving its accuracy for small cur-
rents. This processing is complicated, as the amount of noise is very high,
and this noise is strongly correlated with the useful signal. We propose to
use Kalman filtering, based on a model of the system, and augment the
state of this model with a shaping filter, whose frequency response, when
fed with white Gaussian noise, reproduces our measurements of the am-
bient noise. In particular, since the Power Spectral Density (PSD) of the
noise changes with time, we propose to use a possibilistic description of the
PSD of the noise, and search for a model whose PSD is between the soft
margins defined by the possibilistic model. We will use a state-space based
representation and a genetic algorithm, guided by a fuzzy fitness function,
for evolving the shaping filter that best matches the ambient noise. The
proposed method has been evaluated with field data captured at a 130KV
substation transformer at La Corredoria (Asturias, Spain).

1 Introduction: Ground-Neutral Monitoring Systems

Neutral-grounding resistors (NGR) provide current for ground-fault detection
and selective coordination. Its failure is dangerous, as it converts a resistance-
grounded system into an ungrounded system. While this is not a common prob-
lem in Europe, the probability of the NGR becoming open is higher in those
parts of the world where these elements are subject to higher thermal stresses
and continuous monitoring of the NGR is needed. Else, there is no indication
that the system has become ungrounded, and the risk of transient overvoltages
or the presence of voltages on otherwise safe conductors exists.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 731–740, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In Figure 1 a 130KV tree phase substation transformer and its NGR (yellow
circle in the left part of the figure) are shown. The NGR is connected to the
neutral of the transformer (center part of the same figure) and to earth (right
part). This particular resistor is designed for limiting the current to 500A in case
of a fault. A suitable current transformer (CT) measures the current through
the NGR and its output is constantly monitored.

Fig. 1. La Corredoria substation transformer and its NGR (left part). Detail of the
connection between the NGR and the neutral (center) and ground (right), showing the
current transformer used in this paper.

The absence of current at the CT means that either the transformer is bal-
anced or the NGR is open, thus the monitoring of this current does not prevent
by itself the risks mentioned before. A NGR monitoring system involves more
elements [8,11], as shown in Figure 2 (this system will be further explained in
Section 2). In this schema, a resistor is used for measuring the voltage at the
neutral of the transformer; this value, divided by the current through the NGR,
is the ohmic value of the NGR, as desired.

Ground

Neutral

resistor

Current

Transformer

High value

resistor

A
B

N

G

Fig. 2. Schema of a NGR monitoring system
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There is still a caveat with this scheme: in case the system is perfectly bal-
anced, no current flows by the NGR and the voltage at the neutral is also null,
thus we cannot tell whether the NGR is open or not. There are two possibilities
for overcoming this problem:

– We can inject DC or low frequency current into the NGR path and measure
the increase in the voltage of the neutral, or

– We can amplify the output of the current transformer and measure the resid-
ual current. We expect that this residual current has components in the first
odd harmonics, because of the stray capacities of the line, and also at very
high frequencies (> 1KHz) because of the use of Power Line Carrier [3], thus
it is potentially usable for detecting open NGRs.

In this study we will explore the second option. The main difficulty of this
approach is in the level of amplification need, which will be affected by the
important ambient noise near a substation transformer. That is to say, we need
to separate the measurement of the actual current from those stray currents
induced in the transmission line. The problem is, these stray currents are strongly
correlated with the signal, and their Power Spectral Density (PSD) also varies
with time within certain limits.

We have decided to make a Kalman filtering of the signal, taking into account
the spectrum of the noise by mean of a shaping filter [5] that is designed to
produce a signal with the same PSD as the ambient noise. This shaping filter
will be used to augment the state of the system, as we will explain in Section
2. For obtaining the model of such a shaping filter we propose to use Genetic
Algorithms (see Section 3). It is remarked that the novelty of this approach,
apart from the definition of specialized genetic operators and the representation
of the individuals, is in the fact that the desired PSD is not completely known,
thus the GA will be guided by a fuzzy fitness function. In Section 4 we show the
results of the application of this system to real-world data. The paper finishes
with the concluding remarks in Section 5.

2 Description of the Measurement System

The measuring system that will be analyzed in this paper is shown in the left
part of Figure 3. The output of the current transformer is connected to a resistive
load RL (the burden resistor of the current transformer has not been shown in
the schema). Alas, if the cable is not perfectly shielded then there will be stray
currents flowing through it; we have represented them as a coupled coil Lmutual

in the figure. When studying the noise, we replace the current transformer by a
resistance of high value, and measure the voltage dropped in RL. The voltage
drop in RL depends on the sum of both currents: the current in the secondary
of the CT and the stray currents we have mentioned.

According to our own experimentation, at low frequencies, the current in the
NGR is comprised of the first odd harmonics (50Hz, 150Hz, 250Hz and 350Hz),
while at high frequencies the contribution of the DLC produces a more complex
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profile. In this work we limit ourselves to low frequencies, and propose that the
current yC by the NGR is modeled by the state space discrete system

xC(kh+ h) = ΦCxN (kh) (1)
yC(xk) = CCxC(kh) (2)

where ΦC will have all its poles at the unit circle, at frequencies that match the
mentioned harmonics. Observe that such a system is unstable and the input is
not needed.

Secondly, we want to devise a similar model for the noise, and combine it with
the preceding model as shown in the right part of Figure 3. The noise model is
a shaping filter whose input is white Gaussian noise and whose output mimics
the frequency behavior of the noise, measured as described before. The model
of the shaping filter will be expressed in observable canonical form, because of
reasons that will be made clear in Section 3:

xN (kh+ h) = ΦNxN (kh) + ΓNv(k) (3)
yN(xk) = CNxN (kh) (4)

where v(k) is Gaussian white noise with mean 0 and variance 1, and CN =
(1, . . . , 0).

Ground

Neutral

resistor

Current

Transformer

N

Lmutual

RL

N

C

N

v(kh)

CN

CC

y(kh)

xn(kh)

xc(kh)

Fig. 3. Block diagram of the augmented system

The augmented system (see Figure 3) is

x(kh+ h) = Φx(kh) + e(k) (5)
y(xk) = CNxN (kh) (6)

where x = (xT
C |xT

N )T , and e(k) is white noise with covariance R1

R1 =
(

0 0
0 ΓNΓ

T
N

)
(7)
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and the combination of the two state space matrices we have proposed is

Φ =
(

ΦC 0
0 ΦN

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos 2πf1h sin 2πf1h
0

0
− sin 2πf1h cos 2πf1h

...

0 cos 2πf4h sin 2πf4h
− sin 2πf4h cos 2πf4h

0

c1 1 0 · · · 0 0
c2 0 1 · · · 0 0

...
c8 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

C = (CC | CN ) = (CC | 1 . . . 0) (9)

thus particularizing the Kalman filter [5] to this case, we obtain the equations

x̂(k + 1 | k) = Φx̂(k | k − 1) +K(k)(Y (k)− Cx̂(k | k − 1)) (10)
K(k) = ΦP (k)CT (CP (k)CT )−1 (11)

P (k + 1) = ΦP (k)ΦT +R1 − ΦP (k)CT (CP (k)CT )−1CP (k)ΦT . (12)

3 Genetic Optimization of a Shaping Filter

This section describes the use of Genetic Algorithms for evolving the three ma-
trices ΦN , ΓN and CN described before. Observe that we need to restrict our
search to stable systems, i.e. to those matrices ΦN whose eigenvalues are in
the unit circle. We want that the PSD of this system, when the input v(k) is
Gaussian white noise, is similar to the PSD of the ambient noise.

There are two challenges in this search: (1) the PSD is time-varying, and (2)
it is not trivial to determine the complex eigenvalues of a general matrix [9]. We
have solved them as follows:

1. We have divided the spectrum of frequencies between 50 and 500Hz in 10
bands, and computed five confidence intervals at levels 0.50, 0.25, 0.10, 0.05,
0.01 for the energy of the noise for each band. These five intervals are re-
garded as α-cuts of fuzzy values describing our knowledge about the PSD of
the noise.

2. We do not generate random matrices and discard those corresponding to
unstable processes. We represent instead ΦN by means of the roots of its
characteristic polynomial, and use the observable canonical form of the
system.

In the following paragraphs we discuss both subjects: the computation of the
PSD and the representation of the matrices that comprise the model of the
noise.
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3.1 Fuzzy PSD

Let yN(kh) the output of the noise model, when the input is v(kh), white Gaus-
sian noise. Let us assume a zero-th order hold (yN (t) constant in t ∈ [kh, kh+h))
and let the autocorrelation of this time series be

E(yN (t) · yN(t+ τ)) = ψyN (τ). (13)

Then, the PSD of the noise is the Fourier transform of the autocorrelation,

Ψx(ω) =
∫ ∞

−∞
ψyN (τ)e−jωτdτ (14)

and the energy of the band [ωk −Δ/2, ωk +Δ/2] is

energy(ωk) =
∫ ωk+Δ/2

ωk−Δ/2
Ψx(ω)dω. (15)

We have defined 10 bands of width 50Hz each, at frequencies ωk = 100kπ,
k = 1, . . . , 10. We want to obtain 10 fuzzy sets describing the expected energy at
each band, and its dispersion. First, the energy at each band ω is measured N
independent times, and the values energyi(ω), i = 1 . . .N are obtained. Second,
following the interpretation in [1,10,2], we compute the intervals

Iα(ω) = [I−α (ω), I+
α (ω)] (16)

where Iα(ω) is the smallest interval for which

#{i | I−α (ω) ≤ energyi(ω) ≤ I+
α (ω)} ≥ N(1− α). (17)

Lastly, we define the fuzzy PSD of the noise as the fuzzy set with membership
function

P̃SDω(x) = sup{α | x ∈ Iα(ω)}. (18)

3.2 Representation of the State, Input and Output Matrices

We have mentioned that the state matrix will be codified by mean of its poles,
or roots of the characteristic polynomial of ΦN , which is

8∑
i=0

ciλ
i =

8∏
i=1

(λ− pi) (19)

where pi are the complex poles of the system. It is remarked that the poles must
be conjugated in pairs or be real numbers for the ci to be real numbers.

The matrix ΓN is codified as a vector of 8 real numbers. C has only one term
different than zero, and this value is not represented in the genetic chain but
solved so that the average energy of the individual is the same as the modal
point of the average energy of the noise.
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3.3 Generation of the Initial Population

The individuals are generated at random, but taking into account that the com-
plex poles are paired with their conjugates, so the state matrix of the noise
is real. The probability of appearance of each pole is not uniform, but biased
towards unstable poles of the form cos 100kπ ± j sin 100kπ.

3.4 Genetic Operators

The genetic operators are, for the most part, standard two-point crossover and
arithmetic mutation [7]. The particularities of both are:

Crossover. Since complex poles must be accompanied by their conjugates, we
represent both together and prevent the point between them from being an split
in the crossover. We also do an arithmetic combination of the cut points, in order
to introduce genetic diversity.

Mutation. If a pole is mutated, then its conjugate must be modified in accor-
dance. The mutation is defined as the convex combination between the value
and a randomly generated parameter.

3.5 Fitness Function

The fitness is the degree of compatibility between the fuzzy PSD of the individual
(obtained by simulation of the candidate model in 10 random sequences, as
explained in Section 3.1) and the fuzzy PSD of the ambient noise,∑

k

log
˜PSDmodel(100kπ)˜PSDnoise(100kπ)

(20)

where the “log” and “quotient” operators are the extensions of the conventional
operators to fuzzy aritmetic [4].

3.6 Generational Scheme

The generational scheme is steady state, with a tournament of size 5, where the
offspring of the two winners replaces the last two individuals in the tournament.
The probabilities of mutation and crossover are 0.05 and 1. In the tournament
we have used the uniform dominance defined in [6].

4 Numerical Results

In this section we will compare first the use of crisp and fuzzy fitness functions
for finding the model of the ambient noise, then we will apply it to estimate the
current in the NGR of a 130KV transformer, as mentioned.

4.1 Crisp and Fuzzy Fitness Functions

In the left part of Figure 4 we have superimposed some experimental measure-
ments of the PSD of the ambient noise, taken at the same point but at different
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times. Observe that there is a significant dispersion of the energy of each har-
monic, mainly at high frequencies. In this paper we claim that it is preferable to
fit a model to a fuzzy description of this data than fitting a model to the average
values of the same data.

To illustrate this result, we have learned 30 crisp models and 30 fuzzy models,
following the methodology explained in the preceding section. The fitness of a
crisp model was computed with the same equation (20) than the fuzzy model,
but replacing the fuzzy PSD by the average of the PSDs. The 60 models were
tested against an independent set of 10 PSDs of the actual noise, measured at a
later time. The results are shown in the right part of Figure 4 and in Table 1.

Table 1. Train and test error (30 repetitions) of crisp and fuzzy approaches

Train Test
Best Average Worst Best Average Worst

Crisp-GA 5.073 3.430 5.135 9.230
Fuzzy-GA 2.538 4.248 8.133 2.510 4.312 8.477
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Fig. 4. Left: Dispersion of the ambient PSD. Right: Boxplots of the average error model
with crisp and fuzzy fitness functions.

The boxplots show the dispersion of the average error of the model, and
the table shows the mean values of the best, average and worst models. The
p-value of a Wilcoxon test between the two samples of test errors (“Average”
column) is 0.0399, thus there is a significant difference between crisp and fuzzy
methodologies, at a confidence level of 95%.

4.2 Real-World Data

We have sampled the output of the current transformer (CT) in the NGR, and
the results are displayed in the red curve in the left part of Figure 5. Observe that
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Fig. 5. Left: signal (red) and noise (black) in the CT. Right: Kalman filtering of the
CT output (red line with circles).

there is a high amount of high-frequency noise, that makes hard to perceive the
actual shape of the current; we have filtered out these components with a low-
pass filter before applying the Kalman filtering. We have superimposed (black
trace) a capture of the ambient noise taken elsewhere, that is not synchronized
with this current. In the right part of the same figure we have displayed again
the preprocessed output of the CT, along with the Kalman filtering of this signal
(red curve with dots); observe that this filtered signal is a nearly periodical curve
comprising the first four odd harmonics, as expected.

5 Concluding Remarks and Future Work

In this paper we have proposed a method for obtaining the state-space equations
describing a shaping filter that mimics the ambient noise at a substation trans-
former. This model is intended to augment the state of a model of the current
flowing through the NGR of the transformer, in order to obtain a model whose
input is white noise and therefore suitable for Kalman filtering. We have shown
that the use of a possibilistic representation of the dispersion of the PSD of
the noise with time can be exploited by a fuzzy fitness function-driven Genetic
Algorithm, producing models with improved generalization capabilities.

In future works we intend to extend this study to high frequencies, that have
been filtered out in this paper. Frequencies above 1KHz are seldom considered
in the determination of the NGR continuity, however we think that the use of
the power line for digital transmission causes a measurable effect that could
be captured with different sensors (i.e. Rogowski coils) and compared to the
measurement in the neutral of the transformer, allowing a finer monitoring of
the health of the NGR.
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Abstract. This contribution proposes a Genetic Algorithm for jointly
performing a feature selection and granularity learning for Fuzzy Rule-
Based Classification Systems in the scenario of data-sets with a high
imbalance degree. We refer to imbalanced data-sets when the class dis-
tribution is not uniform, a situation that it is present in many real ap-
plication areas. The aim of this work is to get more compact and precise
models by selecting the adequate variables and adapting the number of
fuzzy labels for each problem.

Keywords: Fuzzy Rule-Based Classification Systems, imbalanced data-
sets, Genetic Algorithms, feature selection, granularity level.

1 Introduction

The problem of imbalanced data-sets [1] for binary classification occurs when
the number of instances for each class are very different between them, and
usually the less representative class is the one which has more interest from
the point of view of the learning task. We develop an experimental analysis
in the context of imbalance classification for binary data-sets when the class
imbalance ratio is high. In this study, we will make use of linguistic Fuzzy Rule
Based Classification Systems (FRBCSs), a very useful tool in the framework
of computational intelligence, since they provide a very interpretable model for
the end user [2]. The good behavior of FRBCS when dealing with imbalanced
data-sets has been recently analysed in [3].

An FRBCS presents two main components: the Inference System and the
Knowledge Base (KB). The KB is composed of the Rule Base (RB) constituted
by the collection of fuzzy rules, and of the Data Base (DB), containing the mem-
bership functions of the fuzzy partitions associated to the linguistic variables.
The composition of the KB of an FRBCS directly depends on the problem being
solved. If there is no expert information about the problem under solving, an
automatic learning process must be used to derive the KB from examples.

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 741–750, 2010.
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In many classification problems, a large number of features can originate RBs
with a high number of rules, thus presenting a low degree of interpretability and
a possible overfitting (the error over the training data set is very low but the
FRBCS present a significative decrease on the prediction ability). This problem
can be tackled from a double perspective: a reduction of the rule set, minimising
the number of fuzzy rules included in the RB or a feature selection process that
reduces the number of features used by the FRBCS. Notice that, for high di-
mensional problems and problems where a high number of instances is available,
it is difficult for rule reduction approaches to get small rule sets, and therefore
the system comprehensibility and interpretability may not be as good as desired.
For high dimensionality classification problems, a feature selection process, that
determines the most relevant variables before or during the FRBCS inductive
learning process, must be considered. It increases the efficiency and accuracy of
the learning and classification stages.

The number of labels per linguistic variable (granularity) is an information
that has not been considered to be relevant for the majority of FRBCS learning
methods. However, the fuzzy partition granularity of a linguistic variable can
be viewed as a sort of context information with a significative influence in the
FRBCS behavior. Considering a specific label set for a variable, some labels can
result irrelevant, that is, they can contribute nothing and even can cause con-
fusion. In other cases, it would be necessary to add new labels to appropriately
differentiate the values of the variable. In a previous work [4], we analyse the
influence of granularity learning in the performance of FRBCSs for imbalanced
data sets, and the results obtained show that is possible an significant improve-
ment in the classification ability only by learning an adequate number of labels
per variable although the complexity of the model was lightly increased.

Our objective is to propose a genetic learning process to improve the predic-
tion ability of the FRBCSs for imbalanced data-sets joint with a significative
reduction of the model complexity in order to increase the FRBCS interpretabi-
lity. Our proposal uses a Genetic Algorithm (GA) for jointly perform a feature
selection and a granularity learning, and considers a classical FRBCS learning
method to derive the rule base, the Chi et al.’s approach [5]. In order to show the
influence of choosing a good set of features and an adequate granularity level,
we compare the results obtained with the ones obtained by Chi et al.’s method
with all the variables selected with and without an adequate granularity level.
We also want to check the performance of our method compared with a non-
FRBCS classification model, C4.5 [6], a decision tree algorithm that has been
used as a reference in the imbalanced data-sets field [7].

We have selected a large collection of data-sets with high imbalance from UCI
repository [8] for developing our experimental analysis. In order to deal with the
problem of imbalanced data-sets we will make use of a preprocessing technique,
the “Synthetic Minority Over-sampling Technique” (SMOTE) [9], to balance the
distribution of training examples in both classes. Furthermore, we will perform
a statistical study using non-parametric tests [10] to find significant differences
among the obtained results.
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This contribution is organized as follows. First, Section 2 introduces the prob-
lem of imbalanced data-sets, describing its features, how to deal with this prob-
lem and the metric we have employed in this context. Next, in Section 3 we will
expose the characteristics of our proposal, a GA for feature selection and granu-
larity learning. Section 4 contains the experimental study. Finally, in Section 5,
some conclusions will be pointed out.

2 Imbalanced Data-Sets in Classification

Learning from imbalanced data is an important topic that has recently appeared
in the Data Mining community [1]. This problem is very representative since it
appears in a variety of real-world applications including, but not limited to,
medical applications, finance, telecommunications, biology and so on. We refer
to imbalanced data when the class distribution is not uniform. In this situation,
the number of examples that represents one of the classes of the data-set (usually
the concept of interest) is much lower than that of the other classes. We will use
the imbalance ratio (IR) [11] as a threshold to categorize the different imbalanced
scenarios, which is defined as the ratio of the number of instances of the majority
class and the minority class. We consider that a data-set presents a high degree
of imbalance when its IR is higher than 9 (less than 10% of positive instances).

Standard classifier algorithms have a bias towards the majority class, since
the rules that predicts the higher number of examples are positively weighted
during the learning process in favour of the accuracy metric. Consequently, the
instances that belongs to the minority class are misclassified more often than
those belonging to the majority class [12].

In a previous work on this topic [3], we analysed the cooperation of some pre-
processing methods with FRBCSs, showing a good behaviour for the oversam-
pling methods, specially in the case of the SMOTE methodology [9]. According
to this, we will employ in this contribution the SMOTE algorithm in order to
deal with imbalanced data-sets. In short, its main idea is to form new minority
class examples by interpolating between several minority class examples that lie
together.

Most of proposals for automatic learning of classifiers use some kind of accu-
racy measure like the classification percentage over the example set. However,
these measures can lead to erroneous conclusions working with imbalanced data-
sets since it doesn’t take into account the proportion of examples for each class.
Therefore, in this work we use the Area Under the Curve (AUC) metric [13],
which can be defined as (1+TPrate−FPrate)/2, where TPrate is the percentage
of positive cases correctly classified as belonging to the positive class and FPrate

is the percentage of negative cases misclassified as belonging to the positive class.

3 Genetic Algorithm for the Data Base Learning

In this section, we propose an standard generational GA for the DB that allows
us to select a set of variables (feature selection) and learn an adequate number
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of labels for each selected variable (granularity learning). Once the granularity
for each selected feature are determined, the DB is built. Uniform partitions
with triangular membership functions are considered due to its simplicity. Next,
we use a quick method that derives the fuzzy classification rules and then the
chromosome can be evaluated. The RB derivation algorithm used in this work
is the method proposed in [5], that we have called the Chi et al.’s method.

We denote our proposal as GA-FS-GL (Genetic Algorithm for Feature Selec-
tion and Granularity Learning). The main purpose of GA-FS-GL is to obtain
FRBCSs with good accuracy and reduced complexity taking the feature selection
and granularity learning as a base. Unfortunately, FRBCSs with good perfor-
mance have a high number of rules, thus presenting a low degree of readability.
On the other hand, as mentioned before, the KB design methods sometimes lead
to a certain overfitting to the training data-set used for the learning process. In
order to avoid that problem, our genetic process try to design a compact and
interpretable KB by penalizing FRBCSs with high number of selected variables
and/or high granularity average as it will be explained in this Section. Next, we
describe the main components of GA-FS-GL.

Encoding the DB. For a classification problem with N variables, each chro-
mosome will be composed of two parts to encode the relevant variables and the
number of linguistic terms for variable (i.e. the granularity):

– Relevant variables (C1): the selected features are stored in a binary coded ar-
ray of length N . In this array, an 1 indicates that the correspondent variable
is selected for the FRBCS.

– Granularity level (C2): the number of labels per variable is stored in an
integer array of length N. In this contribution, the possible values considered
are taken from the set {2, . . . , 7}.

If vi is the bit that represents whether the variable i is selected and gi is the
granularity of variable i, a representation of the chromosome is shown next:

C1 = (v1, v2, . . . , vN ) C2 = (g1, g2, . . . , gN) C = C1C2

Initial Gene Pool. The initial population is composed of six groups with a
different number of selected variables. Next, we describe its generation:

– In the first group all the chromosomes have all the features selected. It
is composed of two parts. In the first part all the chromosomes have the
same granularity in all its variables and it is composed of g chromosomes,
with g being the cardinality of the significant term set, in our case g = 6,
corresponding to the six possibilities for the number of labels, 2 . . . 7. For each
granularity level, one individual is created. The second part is composed of
10 chromosomes and the granularity level is randomly selected.

– The next four groups have the same structure than the first group but each
one of them with a different percentage of randomly selected variables (75%,
50%, 25% and 10%). So, each group has g+10 chromosomes (16 in our case).
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– The last group is composed for the remaining chromosomes, and all of their
components are randomly selected.

The minimum number of individuals is the sum of the chromosomes of the five
first groups: (g + 10)× 5.

Evaluating the Chromosome. There are three steps that must be done to
evaluate each chromosome:

– Generate the DB using the information contained in the chromosome. For
all the selected variables (vi = 1), a uniform fuzzy partition with triangu-
lar membership functions is built considering the number of labels of that
variable (gi).

– Generate the RB by running the the Chi et al.’s method.
– Calculate the value of the evaluation function: The usual way to proceed in

this type of genetic learning is to choose a kind of accuracy measure over the
training data-set, like the AUC metric. However, as mentioned before, we will
lightly penalize FRBCSs with high number of selected variables and/or high
granularity levels in order to avoid the possible overfitting, thus improving
the generalization capability of the final FRBCS. To do that, once the RB
has been generated and its AUC over the training set has been calculated,
the fitness function to be minimized is:

FC = ω1 · (1 −AUC) + ω2 · (Ng/N)

being Ng the sum of the granularity levels of all the selected variables. In
order to normalize these two values, we calculate ω2 taking two values as
a base: the AUC of the FRBCS obtained with the RB generation method
considering the DB with all the variables selected, the maximum number of
labels (max g) per variable and uniform fuzzy partitions:

ω2 = αω2 ·
AUCmax g

max g

with αω2 being a weighting percentage.

Genetic Operators

– Selection: we will employ the tournament selection with k = 2, in which
two chromosomes are selected at random from the population, and the one
with highest fitness is taken to be included in the next population, after the
application of the genetic operators.

– Crossover: the crossover works in the two parts of the chromosome at the
same time. Therefore, an standard crossover operator is applied over C1
and C2. This operator performs as follows: a crossover point p is randomly
generated in C1 and the two parents are crossed at the p-th variable in C1
(the possible values for p are {2, . . . , N}). The crossover is developed this way
in the two chromosome parts, C1 and C2, thereby producing two meaningful
descendants.
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– Mutation: two different operators are used, each one of them acting on
different chromosome parts. A brief description of them is given below:
• Mutation on C1: As this part of the chromosome is binary coded, a simple

binary mutation is developed, flipping the value of the gene.
• Mutation on C2: The mutation operator selected for C2 performs a slight

change in the selected variable. Once a granularity level is randomly
selected to be muted, a local modification is developed by changing the
number of labels of the variable to the immediately upper or lower value
(the decision is made at random). When the value to be changed is the
lowest (2) or highest one (7), the only possible change is developed.

4 Experimental Study

We will study the performance of GA-FS-GL employing a large collection of
imbalanced data-sets with a high imbalance ratio (IR > 9). Specifically, we
have considered twenty-two data-sets from UCI repository [8] with different IR,
as shown in Table 1, where we denote the number of examples (#Ex.), number
of attributes (#Atts.), class name of each class (minority and majority), class
attribute distribution and IR. This table is in ascendant order according to the
IR. Multi-class data-sets are modified to obtain two-class imbalanced problems,
defining the joint of one or more classes as positive and the joint of one or more
classes as negative. In order to reduce the effect of imbalance, we will employ
the SMOTE preprocessing method [9] for all our experiments, considering only
the 1-nearest neighbour to generate the synthetic samples, and balancing both
classes to the 50% distribution.

We will analyse the influence of feature selection and granularity learning by
means of a comparison between the performance of GA-FS-GL and two FRBCS
models obtained by Chi et al.’s method with all the variables selected:

– The original Chi et al.’s method, that needs of the existence of a previous
definition for the DB, normally uniform fuzzy partitions with the same num-
ber of labels in all the variables. So, it is necessary to choose a number of
labels. The usual values employed for Chi et al.’s approach in the specialized
literature are 3 and 5 labels per variable. Previous experiments [4] showed
that the FRBCSs with three labels for variable obtain better results in pre-
diction ability (less value in AUC for the test data set) and interpretability
(less number of rules) so we choose this granularity level for the comparison.
In the latter, we will refer that method as G3-Chi.

– The method proposed in [4] (denoted GA-GL), that uses a GA for granularity
learning and the Chi et al.’s method to derive the RB.

As mentioned before, we also compare the results of GA-FS-GL with C4.5 [6],
a method of reference in the field of classification with imbalanced data-sets
[7]. The configuration for the FRBCSs approaches, GA-FS-GL, GA-GL and
Chi et al.’s, is presented below. This parameter selection has been carried out
according to the results achieved by the Chi et al.’s method in our former studies
on imbalanced data-sets [3]:
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Table 1. Summary Description for Imbalanced Data-Sets

Data-set #Ex. #Atts. Class (min.; maj.) %Class(min., maj.) IR
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (vac; nuc) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

– Conjunction operator to compute the compatibility degree of the example
with the antecedent of the rule: Product T-norm.

– Rule Weight: Penalized Certainty Factor [14].
– Conjunction operator between the compatibility degree and the rule weight:

Product T-norm.
– Fuzzy Reasoning Method: Winning Rule.

To develop the different experiments we consider a 5-folder cross-validation
model, i.e., 5 random partitions of data with a 20%, and the combination of 4 of
them (80%) as training and the remaining one as test. Since a GA is a probabilis-
tic method, three runs with different seeds for the pseudo-random sequence are
made for each data partition. For each data-set we consider the average results of
the five partitions per three executions. Furthermore, Wilcoxon’s Signed-Ranks
Test [15] is used for statistical comparison of our experimental results. The spe-
cific parameters setting for the GA of GA-FS-GL is listed below, being N the
number of variables:

-Number of evaluations: 500 ·N -Population Size: 100 individuals
-Crossover Probability Pc : 0.6 -Mutation Probability Pm : 0.2
-Parameters of the evaluation function (Section 3): (ω1 : 0.7 , αω2 : 0.3)

Table 2 shows the results in performance (using the AUC metric) for GA-FS-GL
and the algorithms employed for comparison, that is, G3-Chi, GA-GL and C4.5,
being AUCTr the AUC over the training data-set and AUCTst the AUC over
the test data-set. The final line of the table shows the mean of the number of
rules (NR) of the classifiers.
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Table 2. Detailed results table for the problems considered

Data-set G3-Chi GA-GL GA-FS-GL C4.5
AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st

Yeast2vs4 89.68 87.36 93.79 90.84 94.38 94.52 98.14 85.88
Yeast05679vs4 82.65 79.17 86.11 81.78 83.37 78.97 95.26 76.02
Vowel0 98.57 98.39 99.59 99.07 96.58 96.49 99.67 94.94
Glass016vs2 62.71 54.17 85.96 60.54 78.23 56.07 97.16 60.62
Glass2 66.54 55.30 83.71 57.42 79.42 56.88 95.71 54.24
Ecoli4 94.06 91.51 98.14 90.90 93.20 92.31 97.69 83.10
Yeast1vs7 82.00 80.63 82.43 75.79 77.37 70.75 93.51 70.03
Shuttle0vs4 100.00 99.12 100.00 99.42 100.00 99.97 99.99 99.97
Glass4 95.27 85.70 98.71 87.92 95.02 85.20 98.44 85.08
Page-Blocks13vs4 93.68 92.05 99.59 99.10 98.25 96.99 99.75 99.55
Abalone9vs18 70.23 64.70 82.38 73.68 78.63 68.18 95.31 62.15
Glass016vs5 90.57 79.71 98.21 85.43 95.50 84.57 99.21 81.29
Shuttle2vs4 95.00 90.78 99.73 94.25 99.09 98.78 99.90 99.17
Yeast1458vs7 71.25 64.65 85.69 65.47 76.00 74.67 91.58 53.67
Glass5 94.33 83.17 98.03 79.92 94.57 79.15 99.76 88.29
Yeast2vs8 78.61 77.28 84.57 79.32 81.69 79.46 91.25 80.66
Yeast4 83.58 83.15 86.90 80.66 84.47 80.31 91.01 70.04
Yeast1289vs7 74.70 77.12 80.27 70.98 76.00 74.67 94.65 68.32
Yeast5 94.68 93.58 96.48 94.73 95.58 93.54 97.77 92.33
Ecoli0137vs26 93.96 81.90 97.69 81.36 97.22 80.99 96.78 81.36
Yeast6 88.48 88.09 91.09 86.06 89.37 87.01 92.42 82.80
Abalone19 71.44 63.94 80.28 69.03 77.40 73.16 85.44 52.02
Mean 85.09 80.52 91.33 81.98 88.39 81.42 95.93 78.25
NR mean 68.67 82.36 37.31 22.45

As it can be observed, the performance obtained by GA-FS-GL is higher than
the one for G3-Chi, both in AUCTr and AUCTst, showing the significative in-
fluence of the feature selection and granularity level in the behaviour of the
classifier. GA-FS-GL obtain results very similar to GA-GL in AUC (Table 3
shows no significative differences between them in AUCTst) but the number of
rules is very much lower in GA-FS-GL by the feature selection process, reduc-
ing the complexity of the model. Therefore, the interpretability of the FRBCSs
generated by GA-FS-GL is greater than the other methods. Furthermore, GA-
FS-GL present better results than C4.5 in AUCTst. This situation is represented
statistically by means of a Wilcoxon test (Table 3, with R+ corresponds to GA-
FS-GL and R− to the other method).

Table 3. Wilcoxon test to compare the methods according to their performance

Comparison R+ R− p-value
GA-FS-GL vs. G3-Chi 150.5 102.5 0.436
GA-FS-GL vs. GA-GL 95.0 158.0 0.306
GA-FS-GL vs. C4.5 198.5 54.5 0.019

GA-FS-GL obtain precise and interpretable models by selecting a reduced set
of features and finding an appropriate granularity level in each selected variable.
Thus, we show in Table 4 the mean of selected variables (SV) in the first column.
The remaining columns show two values for each feature of the problem, the first
is the selection ratio of the variable, that is, the relation between the number of
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Table 4. Mean of number of selected variables and labels learned by GA-FS-GL

Variables
Data-set SV 1 2 3 4 5 6 7 8 9 10
Yeast2vs4 2.0 1.0/3.0 .00/0.0 1.0/4.0 .00/0.0 .00/0.0 .00/0.0 .00/0.0 .00/0.0 - -
Yeast05679vs4 2.8 1.0/2.4 .40/2.5 .60/2.0 .00/0.0 .80/2.0 .00/0.0 .00/0.0 .00/0.0 - -
Glass016vs2 2.6 .40/4.5 .20/3.0 .00/0.0 .60/5.0 .60/5.7 .40/4.0 .20/7.0 .00/0.0 .20/3.0 -
Glass2 2.6 .40/5.0 .00/0.0 .40/2.0 .40/4.5 1.0/4.6 .00/0.0 .00/0.0 .00/0.0 .40/6.5 -
Ecoli4 2.0 .00/0.0 .60/2.0 .00/0.0 .00/0.0 1.0/3.0 .20/3.0 .20/2.0 - - -
Shuttle0vs4 2.0 .20/3.0 .20/4.0 .20/3.0 .00/0.0 .00/0.0 .20/3.0 .80/3.8 .40/4.5 .00/0.0 -
Yeast1vs7 2.2 .60/2.7 .00/0.0 1.0/2.6 .00/0.0 .00/0.0 .00/0.0 .20/2.0 .40/3.5 - -
Glass4 2.4 .00/0.0 .00/0.0 .40/4.0 .60/3.7 .20/2.0 .00/0.0 .60/3.0 .60/3.3 .00/0.0 -
Pageblocks13vs4 2.0 1.0/4.4 .00/0.0 .00/0.0 .00/0.0 1.0/4.4 .00/0.0 .00/0.0 .00/0.0 .00/0.0 .00/0.0
Abalone9vs18 2.2 .40/2.0 .00/0.0 .00/0.0 .20/2.0 .00/0.0 .60/6.7 .00/0.0 1.0/5.8 - -
Glass016vs5 2.8 .20/6.0 .40/3.0 1.0/3.6 .20/2.0 .00/0.0 .00/0.0 .20/3.0 .60/3.3 .20/3.0 -
Shuttle2vs4 2.8 .60/3.0 .00/0.0 1.0/3.0 .00/0.0 .00/0.0 .00/0.0 1.0/2.2 .00/0.0 .20/3.0 -
Yeast1458vs7 4.0 .60/5.3 .80/5.0 1.0/4.6 .60/5.3 .00/0.0 .00/0.0 .00/0.0 1.0/3.2 - -
Glass6 2.4 .00/0.0 .40/3.5 1.0/3.2 .00/0.0 .00/0.0 .00/0.0 .20/3.0 .60/3.0 .20/4.0 -
Yeast2vs8 2.2 .80/4.0 .40/2.0 .00/0.0 .00/0.0 .00/0.0 1.0/2.0 .00/0.0 .00/0.0 - -
Yeast4 2.6 1.0/3.0 .40/2.0 .80/3.0 .00/0.0 .40/2.0 .00/0.0 .00/0.0 .00/0.0 - -
Yeast1289vs7 3.2 1.0/2.2 .00/0.0 1.0/3.2 .00/0.0 .00/0.0 .00/0.0 .20/5.0 1.0/2.2 - -
Yeast5 2.8 1.0/3.2 .80/2.3 .60/2.0 .20/2.0 .20/2.0 .00/0.0 .00/0.0 .00/0.0 - -
Yeast6 2.8 .80/3.0 .80/2.3 .00/0.0 .00/0.0 .40/2.0 .00/0.0 .20/2.0 .60/2.7 - -
Ecoli0137vs26 3.2 1.0/3.6 .40/3.5 1.0/2.8 .00/0.0 .00/0.0 .40/4.5 .40/5.0 - - -
Abalone19 2.0 .00/0.0 .00/0.0 .20/3.0 .00/0.0 .00/0.0 .60/6.7 .20/3.0 1.0/5.8 - -

.00/0.0 .00/0.0 .00/0.0 .80/4.0 1.0/7.0 .20/3.0 .00/0.0 .20/2.0 .00/0.0 .00/0.0
Vowel0 2.2 11 12 13

.00/0.0 .00/0.0 .00/0.0

occasions in that the variable was selected and the number of total executions
for each problem. The second value is the average of the number of labels for
the cases in which that variable was selected.

As it can be observed in Table 4, the number of selected variables is very low.
In all the problems the number of selected features is reduced, at least, to the
half of the original. Moreover, in nineteen problems, less than three variables are
selected in the average of the 15 executions. Regarding to the granularity level
mean, there are significant differences among the variables of each data-set. This
situation is caused by the advantage of increasing or decreasing the granularity
for a good data representation in the fuzzy partition. Therefore, GA-FS-GL
obtain FRBCSs with high prediction ability and very reduced complexity, that
was the main purpose of this contribution.

5 Conclusions

This contribution has proposed a method to design FRBCS with good accuracy
and interpretability for imbalanced data-sets with a high imbalance ratio. A GA
is used for feature selection and granularity learning, which is combined with an
efficient fuzzy classification rule generation method to obtain the complete KB
of the FRBCS. We must remark one advantage of our proposal, the GA can be
combined with any rule generation method. We have used a simple algorithm
for efficiency but another more accurate one can be used. Our future work will
be focused on applying a multi-objective genetic algorithm in order to obtain
a set of solutions with different trade-off between accuracy (high AUC) and
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interpretability (low number of rules), eliminating the problem of the choice of
weights in the fitness function.
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Abstract. Grid computing has arisen as the next-generation infrastruc-
ture for high demand computational applications founded on the collab-
oration and coordination of a large set of distributed resources. The
need to satisfy both users and network administrators QoS demands in
such highly changing environments requires the consideration of adaptive
scheduling strategies dealing with inherent dynamism and uncertainty.
In this paper, a meta-scheduler based on Fuzzy Rule-Based Systems is
proposed for scheduling in grid computing. Moreover, a new learning
strategy inspired by stochastic optimization algorithm Differential Evo-
lution (DE), is incorporated for the evolution of expert system knowledge
or rules bases. Simulation results show that knowledge acquisition pro-
cess is improved in terms of convergence behaviour and final result in
comparison to other evolutionary strategy, genetic Pittsburgh approach.
Also, the fuzzy meta-scheduler performance is compared to other ex-
tended scheduling strategy, EASY-Backfilling in diverse criteria such as
flowtime, tardiness and machine usage.

Keywords: Evolutionary Algorithms, Knowledge Acquisition, Fuzzy
Rule-Based Systems, Grid Computing.

1 Introduction

Grid computing is an emerging framework providing computational capabilities
for the solving of large-scale problems in science and engineering previously re-
stricted by local resources [1]. A grid is made up of a set of heterogeneous resources,
geographically distributed and interconnected through high speed networks that
cooperate together with the aim of overcoming actual technological limitations of
machines as independent components nowadays. Grids are fully dynamic environ-
ments with uncertainties [2] where new resources become available, existing ma-
chines fall down or decrease performance in response to local policies with time. In
this sense, a major challenge is given by the efficient assignment of jobs to existing
resources or grid scheduling problem, which is known to be a NP-hard problem [3].

Fuzzy Rule-Based Systems are expert systems incorporating knowledge in the
form of IF-THEN fuzzy rules and fuzzy sets [4] extensively used in diverse areas
such as intelligent control of elevator systems [5] or classification in speech/music
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discrimination applications [6]. Also, scheduling is increasingly arising as an appli-
cation field for FRBSs [7,8]. However, FRBS-based schedulers performance highly
depends on the quality of theirs knowledge bases and so with the learning strat-
egy. In this regard, the role of Genetic Algorithms (GAs) must be highlighted [4].
Specifically, there exist two successful strategies for the learning of fuzzy rules,
namely, Pittsburgh and Michigan approaches [4,9]. Pittsburgh approach is a well-
known genetic learning strategy for FRBSs founded on the definition of RBs as
chromosomes or individuals of the population to be evolved. Thus, in Pittsburgh
approach, genetic operators, i.e., crossover, mutation and selection are applied at
the level of sets of rules. As a consequence, Pittsburgh strategy provides a RB by
competition and cooperation (i.e., crossover) with other RBs in contrast to other
extended strategies such as Michigan approach where individual rules must com-
pete and cooperate to be incorporated in the final RB. In this work, a new learning
strategy is suggested to evolve rule bases (RBs) of fuzzy schedulers based on the
well-known evolutionary strategy Differential Evolution (DE) [10].

DE is a stochastic real-parameter optimization algorithm derived from
Evolutionary Algorithms (EAs) extensively used in recent applications including
location management in mobile computing [11], optimization of non-linear chem-
ical processes [12] and reactive power optimization [13]. The algorithm follows
the classical EAs computational steps. However, DE suggests the modification
of population individuals by weighted difference of other randomly selected indi-
viduals in such a way that no separated probability distribution is required, thus
resulting in a self-organized procedure. Also, DE is a very simple and straightfor-
ward strategy. DE is driven by only a few control parameters and can be imple-
mented in a few lines of code in most programming languages. Further, DE has
proven its efficiency in optimizing a range of multi-dimensional objective functions
in terms of convergence speed, robustness and final accuracy [10]. Hence, in this
work, DE algorithm is adapted for the evolution of fuzzy rules. Simulations results
prove this strategy outperforms other widely used learning strategy, Pittsburgh
approach, considering final evaluation and convergence behaviour. Moreover, the
fuzzy meta-scheduler performance is compared to an extended scheduling strat-
egy, EASY-Backfilling [14]. The rest of the paper is summarized as follows. Section
2 provides an overview of the scheduling problem in grids and introduces DE main
features. In Section 3, the suggested fuzzy scheduler with evolutionary learning is
presented. Finally, Section 5 concludes the paper.

2 Background

A computational grid is generally seen as set of Hj heterogeneous computational
machines, distributed within diverse administrative or resources domains, RDj ={
rj,1, rj,2, . . . , rj,Hj

}
, each imposing its own access and sharing policies [3]. Also,

the association of RDs makes up a global domain so-called Virtual Organization,
V O = {RD1, RD2, . . . , RDG}. Hence, the scheduling problem in grids can be
viewed as a hierarchical problem concerning two levels. On the one hand, a grid
meta-scheduler, assigns L users jobs J = {J1, J2, . . . , JL} to availableRDs within
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a grid VO, whereas local schedulers are responsible for scheduling jobs within
its own RD.

Many efforts have been made to provide solutions to this problem. Many of
today’s production systems such as Condor [15] and meta-scheduling systems like
Grid Service Broker [16], are based on queued-based strategies such as EASY-
Backfilling or EDF [14]. On the other hand, as stated in [17] any scheduling
strategy for grids aiming to provide a certain level of QoS must concern grid
state, resulting in scheduled-based strategies. In this regard, adaptive scheduling
suggests the consideration of future and present grid state to avoid or prevent
performance deterioration [3]. FRBS models are flexible and are increasingly
used as scheduling systems for scheduling jobs in large-scale distributed systems.
However, the learning of these systems is critical for performance and so new
strategies are demanded to improve knowledge acquisition process. In this regard,
learning strategies based on GAs are extensively used. In GFRBSs [4] rules or
sets of rules are considered as individuals that cooperate and compete as to
be included in the next generation and genetic operators are applied to evolve
population. Specifically, Pittsburgh, Michigan and hybrid approaches [4,9] are
some of the most successful strategies in this area. However, in the light of the
relevance of the learning strategies in FRBS-schedulers, a new learning strategy
based on DE is proposed for the learning of fuzzy rules.

DE is a stochastic, population-based optimization algorithm introduced by
Storn and Price in 1996 [10]. It was initially intended to optimize real parameter,
real valued functions. In DE, a set ofNP D-dimensional vector parameters, xi

G =
1, 2, ..., NP , are considered in every generation,G, and the goal is to find vector x∗,
in a way that fitness f : X ⊆ RN → R is optimum; x∗ ∈ X such that (f(x∗) ≤
f(x)∀x ∈ X). Following the general procedure in EAs, DE generates new vector
parameters at every generation by means of mutation, crossover and selection pro-
cedures. Concretely, a mutant vector, so-called donor vector, vi

G+1, is constructed
for every target vector, xi

G, through the weighted difference of randomly selected
parameters vectors to a third vector and its components are included to trial vector,
ui

G+1, with crossover (CR) probability. Next, trial vector performance is compared
to target vector performance and the one with best object function evaluation is in-
cluded for the next generationG+1.DE has proven to be effective in many research
areas for optimization of objective functions that are non-linear,multi-dimensional
or presentingmany localminimaor stochasticity andnewapplicationareas are con-
tinually coming out for this evolutionary strategy as shown by a number of recent
publications [11,12,13]. In this paper, we suggest the adaptation of DE to knowl-
edge acquisition in grid computing.

3 Proposed Meta-scheduler with Differential
Evolution-Based Learning Strategy

3.1 Fuzzy Rule-Based Meta-scheduler for Grid Computing

The suggested meta-scheduler bases its strategy in the fuzzy description of the
grid state and the application of Mamdani type rules to infer the best selection
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of resources. Rules are made up of antecedents and a consequent, representing
activation condition and corresponding RD state evaluation, respectively. Hence,
rules have the form

Ri = IF x1is A1l and/or . . . xnis Anl THEN xo isBl (1)

where (x1, . . . , xn) indicates RDs input features, Anl and Bl denote the associ-
ated fuzzy sets for feature xn and output for rule i, respectively, and l is limited
to the number of fuzzy sets for input and output, NFin and NFout. Concretely,
in this work, three gaussian membership functions are suggested to describe the
condition of every input feature in each RD, NFin = 3, in such a way that there
exist seven possible sets, A, for each antecedent element. On the other hand, five
sets are considered for rules consequents, NFout = 5, and so eleven values, B,
can be associated to xo.

There exist many grid features, (x1, . . . , xn), that may be relevant to be con-
sidered in jobs scheduling for grid computing. In this work, we suggest the use
of seven variables to describe every RD state. Table 1 shows a brief description
of these variables. It must be underlined here that accuracy in RDs status de-
scription is critical for the fuzzy meta-scheduler performance and this way, a
complex genome is required. Note other variables may be included to provide a
more precise description of every RD state. However, as it can be derived from
rules encoding, the search space highly increases with the number of considered
features. Hence, this description tries to reconcile both accuracy in resources
state characterization and complexity of fuzzy rules learning.

Fig. 1 shows the general structure for the fuzzy meta-scheduler within a grid
environment. As it can be derived, it follows the general structure for Mamdani
fuzzy logic systems (FLSs): fuzzification system, inference system, defuzzification
system and knowledge base. The goal is to obtain a performance index or RD
selector, yo, describing the suitability of the RD under analysis to be selected
for the next schedule. First, fuzzification system is responsible for associating a
linguistic label to every crisp input value featuring a RD state. Linguistic labels
correspond to fuzzy sets and so a certain degree of uncertainty is tolerated in
the characterization of resources conditions. On the other hand, inference system
applies system knowledge (rules bases) to obtain a fuzzy linguistic label for the
output. Finally, defuzzification system translates this output linguistic label into

Table 1. Grid system input features

Feature Description

Number of free processing elements (FPE) Number of free processing element within RDi.

Previous Tardiness (PT) Sum of tardiness of all finished jobs in RDi.

Resource Makespan (RM) Current makespan for RDi.

Resource Tardiness (RT) Current tardiness of jobs within RDi.

Previous Score (PS) Previous deadline score of already finished jobs in RDi.

Resource Score (RS) Number of non delayed jobs so far in RDi.

Resources In Execution (RE) Number of Resources currently executing jobs within RDi.
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a crisp value, RD selector, yo. Thus, in every schedule, the RD with higher yo

is selected as target domain for the considered unscheduled job. However, a job
may require specific machine characteristics and so only those RDs satisfying jobs
constraints participate in each schedule. Note that the role of RBs is critical for
the whole scheduling system performance. Thereby, next section is focused on
providing high quality RBs by applying a learning strategy based on well-known
DE optimization algorithm.
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Fig. 1. Fuzzy Rule-Based Meta-scheduler structure

3.2 Learning Strategy Based on Differential Evolution

The proposed DE-based learning strategy follows the general procedure of evo-
lutionary algorithms, i.e., initialization, mutation, crossover and selection. First,
in the initialization stage, the cost function to be optimized with D real pa-
rameters must be specified. There exist a number of criteria to be selected for
the construction of cost function in grid computing depending on both users
and administrators (i.e., flowtime, makespan, machine usage, slowdown, aver-
age weighted response time or tardiness). However, we will focus on single cri-
teria optimization. Also, in this work, function parameters are represented by
antecedents, consequent and connectives of rules. Hence, on the basis of rules
encoding, population individuals have the form:

RBi
G =

⎡⎢⎢⎣
xi

1,1,G xi
1,2,G . . . xi

1,D,G

xi
2,1,G xi

2,2,G . . . xi
2,D,G

. . . . . . . . . . . .
xi

NR,1,G xi
NR,2,G . . . xi

NR,D,G

⎤⎥⎥⎦ , i = 1, 2, ..., N. (2)

where NR denotes the number of fuzzy rules and G is the generation number.
Note that canonical DE strategy has been modified to evolve FRBSs and every
individuals row represents the codification of a fuzzy rule. Thus, parameters
vectors are extended to [NR, D] dimension matrices representing sets of rules.
Concretely, with seven input features for grid characterization (see Table 1)
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D = 10. Also, in this stage, for every RBi, each parameter is randomly initialized
considering each individual lower and upper bounds for antecedents, consequents
and connectives of the rules:

xi
j,k,G ∈ [−NFin, NFin] , j ∈ {1, 2, ..., NR}, k ∈ {1, 2, ..., NI} (3)

xi
j,k,G ∈ [−NFout, NFout] , j ∈ {1, 2, ..., NR}, k = NI + 1 (4)

xi
j,k,G ∈ {1, 2}, j ∈ {1, 2, ..., NR}, k = D (5)

where NI denotes the number of input variables and NFin and NFout represent
the number of input features inputs and outputs features, respectively. Note two
possible connectives are considered (“AND” and “OR” represented by 1 and 2,
respectively) and rules weights are equal to unity.

Once population has been initialized, every candidate, RBi
G, undergoes mu-

tation, crossover and selection processes. Mutation is typically employed in EAs
as a way to avoid local optimums and thus to expand search space. With this
aim, for every target base RBi

G, three individuals, RBr1
G , RBr2

G and RBr3
G are

randomly selected in a way that r1, r2 and r3 are different to i and the weighted
difference of RBr2

G and RBr3
G is added to the third base RBr1

G :

DBi
G+1 = RBr1

G + F (RBr2
G , RBr3

G ) (6)

where F is the mutation factor, F ∈ [0, 2], and DBi
G+1 is the donor base for

RBi
G. Next, crossover is considered. Within this stage, the trial base TBi

G+1 is
constructed though the elements of both target, RBi

G and donor bases, DBi
G+1.

Specifically, elements of DBi
G+1 are incorporated to TBi

G+1 with probability
CR:

TBi
j,k,G+1 =

{
DBi

j,k,G+1 if randi
j,k ≤ CR

RBi
j,k,G+1 if randi

j,k > CR
(7)

with j ∈ {1, 2, ..., NR}, k ∈ {1, 2, ..., D}. It must be highlighted that uniform
distributions are considered for random selections in this approach. Finally, se-
lection process is responsible for deciding which bases are chosen for the next
generation. To this end, both target bases and trial bases are evaluated and the
ones with higher scores are selected:

RBi
G+1 =

{
TBi

G+1 if f(TBi
G+1) ≤ f(RBi

G)
RBi

G otherwise
(8)

Mutation, crossover and selection processes are repeated until the stopping con-
dition is met. Concretely, in this work, a fixed number of generations is considered
as stopping condition. It is to be mentioned there exist other versions for DE,
including exponential crossover or x/rand differential variation [10]. However, in
this work, a standard DE-based strategy is proposed for rules evolution.
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4 Simulations Results and Discussion

The suggested learning strategy and meta-scheduler performance are evaluated
with Alea [18]. Alea is a simulation software based on GridSim toolkit that allows
the analysis of scheduling strategies in computational grids. In this work, the grid
scenario and jobs traces are obtained from Czech National Grid Infrastructure
Metacentrum [19]. Metacentrum is a CESNET (operator of academic network of
the Czech Republic -National Research and Education Network, NREN) project
whose goal is to cooperate in the development of a high performance computa-
tional infrastructure by coordinating a large set of institutions resources world-
wide. Specifically, the grid is made up of 210 machines, integrating 806 CPUs of
heterogeneous types (i.e., Opteron and Xeon) and speed (i.e., 1500-3200 MHz),
running Linux and distributed in 14 RDs. On the other hand, jobs are collected
from Metacentrum traces from January to May 2009 (available at [19]). Con-
cretely, 2000 and 2400 jobs are considered in training and validation scenario,
respectively. Also, makespan [3] is suggested as training index for the learning
process.

With the aim of providing a fair step by step comparison in terms of computa-
tional effort or functions evaluations (FEs) through generations, Pittsburgh strat-
egy is taken into account [4,9]. As mentioned before, Pittsburgh population is
made up of a set of RBs and genetic operators are applied at this level. Hence, as
it occurs in suggested DE-based strategy, every generation requires a number of
selected population FEs. This way, both strategies can be compared at every gen-
eration bearing in mind the same computational effort. To be precise, DE is con-
figured with binomial crossover with probability CR=0.5, mutation factor F=0.8
with 1/rand differential variation, population size -18 NP- and RB size set to 10
rules. On the other hand, Pittsburgh approach considers two-point crossover (i.e.,
two random cut points are selected for the combination of RBs [4]), exponential de-
creasing mutation factor (i.e., random modification of genome elements as to avoid
local optima), elitist selection λ = 0.9 (i.e., those individuals achieving the best
accuracy are selected with rate λ), population size of 20 RBs in a way that 18 par-
ticles are evaluated at every generation and initial maximum RB size fixed to 20
rules. Simulations are conducted for 120 generations and 30 experiments for every
learning strategy. Note that both evolutionary strategies behaviour can be com-
pared considering the same genome, number of generations and total FEs. Also, in
order to further analyze Pittsburgh approach in comparison to DE, we conducted
simulations with Pittsburgh approach in an alternative configuration. Specifically,
Pittsburgh behaviour is also studied with λ = 0.8 and initial maximum RB size set
to 10 rules. Fig. 2 illustrates convergence behaviour for best particle at every gen-
eration for DE and considered configurations for Pittsburgh strategy. It is shown
that DE-based learning strategy converges faster than Pittsburgh approach from
tenth generation and achieves a more accurate final result than Pittsburgh ap-
proach in both settings. Concretely, DE improves best Pittsburgh configuration
solution final training fitness by 1.54% on average, as presented in Table 2. Fur-
ther, Table 2 summarizes statistics on the 30 runs regarding distribution (average,
best and worse). It is shown that DE best solution outperforms best Pittsburgh
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Fig. 2. DE and Pittsburgh approach best individual average fitness (makespan)

Table 2. Training results

Strategy/fitness statistic (hours) Average fitness Best fitness Worst fitness

DIFFERENTIAL EVOLUTION 456.0620 433.8595 459.5848

Pittsburgh configuration 1 463.2184 451.4051 467.8432

Pittsburgh configuration 2 465.0112 457.8231 467.8431

Table 3. Scheduling strategies results in validation scenario

Metric/Strategy Fuzzy-DE Fuzzy-Pittsburgh EASY-BF

Makespan (hours) 456.0620 461.0906 485.9961

Flow-time (hours) 24.6542 24.6849 24.3032

Weighted usage (%) 46.97 46.42 44.47

Classic usage (%) 58.28 56.52 47.01

Tardiness (hours) 1.3377 1.3215 0.8987

solution by 3.89%. Also, DE worst solution is 1.77% reducer than Pittsburgh one.
Moreover, Table 3 presents results for DE, Pittsburgh and EASY schedulers in
validation scenario. It is observed that DE performance in makespan outperforms
Pittsburgh (in its best configuration -configuration 1-) by 1.10% and EASY-BF
by 6.16%. Further, DE-based scheduler succeeds in improving machine weighted
(1.17% and 5.32% in comparison to Pittsburgh and EASY-BF, respectively) and
classic usage (3.02% with respect to Pittsburgh and 19.34% to EASY-BF). How-
ever, as expected, metrics such as flowtime and tardiness present a more deterio-
rated performance. Note that the proposed learning strategy has been trained to
improve makespan, which may have conflicting interest with these two criteria.
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5 Conclusions and Future Work

In this work, a meta-scheduler based on FRBSs for grid computing has been
suggested. The meta-scheduler obtains a fuzzy characterization of every partic-
ipating RD state in order to consider system inherent uncertainty and infers an
associated performance index showing the suitability to be selected for the next
schedule. The inference process is subject to the system knowledge quality and
thus with the learning process. That is, RBs quality is relevant for the whole
meta-scheduler performance and a new evolutionary strategy for the evolution
of fuzzy rules inspired on DE has been proposed in this work. DE has proven to
be an efficient optimization algorithm in diverse areas of science and engineering
and its adaptation to fuzzy meta-schedulers learning has been presented. Simu-
lations results show DE-based learning strategy improves other classic learning
strategy, Pittsburgh approach, in training fitness (makespan) final result (1.54%)
and convergence behaviour. Also, it has been shown that DE-based scheduler
outperforms EASY-BF scheduling strategy in terms of makespan by 6.16% and
machine weighted and classic usage by 5.32% and 19.34%, respectively. Thus,
accuracy in training results and convergence properties together with algorithm
simplicity supports the use of DE for learning of FRBS schedulers for grid com-
puting. In future work, new versions of DE and multi-objective techniques will
be studied as to further improve the fuzzy meta-scheduler performance.
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Matthé, Tom II-85, II-137
Maturo, Antonio II-251
Mauris, Gilles I-386
Mayag, Brice I-148
Mayor, Gaspar I-703
Medina, Jesús II-430
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